
PostgreSQL

Introduction

PostgreSQL database is Open Source product and available without cost. Postgres,
developed originally in the UC Berkeley Computer Science Department, pioneered many
of the object-relational concepts now becoming available in some commercial databases.
It provides SQL92/SQL99 language support, transactions, referential integrity, stored
procedures and type extensibility. PostgreSQL is an open source descendant of this
original Berkeley code.

Installing/Configuring

Requirements

To use PostgreSQL support, you need PostgreSQL 6.5 or later, PostgreSQL 8.0 or later to
enable all PostgreSQL module features. PostgreSQL supports many character encodings
including multibyte character encoding. The current version and more information about
PostgreSQL is available at » http://www.postgresql.org/ and the » PostgreSQL
Documentation.

Installation

In order to enable PostgreSQL support, --with-pgsql[=DIR] is required when you compile
PHP. DIR is the PostgreSQL base install directory, defaults to /usr/local/pgsql. If shared
object module is available, PostgreSQL module may be loaded using extension directive in
php.ini or dl() function.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PostgreSQL configuration options

Name Default Changeable Changelog

pgsql.allow_persisten
t

"1" PHP_INI_SYSTEM

pgsql.max_persistent "-1" PHP_INI_SYSTEM

pgsql.max_links "-1" PHP_INI_SYSTEM

pgsql.auto_reset_per
sistent

"0" PHP_INI_SYSTEM Available since PHP
4.2.0.

pgsql.ignore_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

pgsql.log_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://www.postgresql.org/
http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

pgsql.allow_persistent boolean
Whether to allow persistent Postgres connections.

pgsql.max_persistent integer
The maximum number of persistent Postgres connections per process.

pgsql.max_links integer
The maximum number of Postgres connections per process, including persistent
connections.

pgsql.auto_reset_persistent integer
Detect broken persistent links with pg_pconnect(). Needs a little overhead.

pgsql.ignore_notice integer
Whether or not to ignore PostgreSQL backend notices.

pgsql.log_notice integer
Whether or not to log PostgreSQL backends notice messages. The PHP directive
pgsql.ignore_notice must be off in order to log notice messages.

Resource Types

There are two resource types used in the PostgreSQL module. The first one is the link
identifier for a database connection, the second a resource which holds the result of a
query.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PGSQL_ASSOC (integer)
Passed to pg_fetch_array(). Return an associative array of field names and values.

PGSQL_NUM (integer)
Passed to pg_fetch_array(). Return a numerically indexed array of field numbers and
values.

PGSQL_BOTH (integer)
Passed to pg_fetch_array(). Return an array of field values that is both numerically
indexed (by field number) and associated (by field name).

PGSQL_CONNECT_FORCE_NEW (integer)
Passed to pg_connect() to force the creation of a new connection, rather then re-using
an existing identical connection.

PGSQL_CONNECTION_BAD (integer)
Returned by pg_connection_status() indicating that the database connection is in an
invalid state.

PGSQL_CONNECTION_OK (integer)
Returned by pg_connection_status() indicating that the database connection is in a
valid state.

PGSQL_SEEK_SET (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the start of the object.

PGSQL_SEEK_CUR (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the current position.

PGSQL_SEEK_END (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the end of the object.

PGSQL_EMPTY_QUERY (integer)
Returned by pg_result_status(). The string sent to the server was empty.

PGSQL_COMMAND_OK (integer)
Returned by pg_result_status(). Successful completion of a command returning no
data.

PGSQL_TUPLES_OK (integer)
Returned by pg_result_status(). Successful completion of a command returning data
(such as a SELECT or SHOW).

PGSQL_COPY_OUT (integer)
Returned by pg_result_status(). Copy Out (from server) data transfer started.

PGSQL_COPY_IN (integer)
Returned by pg_result_status(). Copy In (to server) data transfer started.

PGSQL_BAD_RESPONSE (integer)
Returned by pg_result_status(). The server's response was not understood.

PGSQL_NONFATAL_ERROR (integer)
Returned by pg_result_status(). A nonfatal error (a notice or warning) occurred.

PGSQL_FATAL_ERROR (integer)
Returned by pg_result_status(). A fatal error occurred.

PGSQL_TRANSACTION_IDLE (integer)
Returned by pg_transaction_status(). Connection is currently idle, not in a transaction.

PGSQL_TRANSACTION_ACTIVE (integer)
Returned by pg_transaction_status(). A command is in progress on the connection. A
query has been sent via the connection and not yet completed.

PGSQL_TRANSACTION_INTRANS (integer)
Returned by pg_transaction_status(). The connection is idle, in a transaction block.

PGSQL_TRANSACTION_INERROR (integer)
Returned by pg_transaction_status(). The connection is idle, in a failed transaction
block.

PGSQL_TRANSACTION_UNKNOWN (integer)
Returned by pg_transaction_status(). The connection is bad.

PGSQL_DIAG_SEVERITY (integer)
Passed to pg_result_error_field(). The severity; the field contents are ERROR, FATAL,
or PANIC (in an error message), or WARNING, NOTICE, DEBUG, INFO, or LOG (in a
notice message), or a localized translation of one of these. Always present.

PGSQL_DIAG_SQLSTATE (integer)
Passed to pg_result_error_field(). The SQLSTATE code for the error. The SQLSTATE
code identifies the type of error that has occurred; it can be used by front-end
applications to perform specific operations (such as error handling) in response to a
particular database error. This field is not localizable, and is always present.

PGSQL_DIAG_MESSAGE_PRIMARY (integer)
Passed to pg_result_error_field(). The primary human-readable error message
(typically one line). Always present.

PGSQL_DIAG_MESSAGE_DETAIL (integer)
Passed to pg_result_error_field(). Detail: an optional secondary error message
carrying more detail about the problem. May run to multiple lines.

PGSQL_DIAG_MESSAGE_HINT (integer)
Passed to pg_result_error_field(). Hint: an optional suggestion what to do about the
problem. This is intended to differ from detail in that it offers advice (potentially
inappropriate) rather than hard facts. May run to multiple lines.

PGSQL_DIAG_STATEMENT_POSITION (integer)
Passed to pg_result_error_field(). A string containing a decimal integer indicating an
error cursor position as an index into the original statement string. The first character
has index 1, and positions are measured in characters not bytes.

PGSQL_DIAG_INTERNAL_POSITION (integer)
Passed to pg_result_error_field(). This is defined the same as the
PG_DIAG_STATEMENT_POSITION field, but it is used when the cursor position
refers to an internally generated command rather than the one submitted by the client.
The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

PGSQL_DIAG_INTERNAL_QUERY (integer)
Passed to pg_result_error_field(). The text of a failed internally-generated command.
This could be, for example, a SQL query issued by a PL/pgSQL function.

PGSQL_DIAG_CONTEXT (integer)
Passed to pg_result_error_field(). An indication of the context in which the error
occurred. Presently this includes a call stack traceback of active procedural language
functions and internally-generated queries. The trace is one entry per line, most recent
first.

PGSQL_DIAG_SOURCE_FILE (integer)
Passed to pg_result_error_field(). The file name of the PostgreSQL source-code
location where the error was reported.

PGSQL_DIAG_SOURCE_LINE (integer)
Passed to pg_result_error_field(). The line number of the PostgreSQL source-code
location where the error was reported.

PGSQL_DIAG_SOURCE_FUNCTION (integer)
Passed to pg_result_error_field(). The name of the PostgreSQL source-code function
reporting the error.

PGSQL_ERRORS_TERSE (integer)
Passed to pg_set_error_verbosity(). Specified that returned messages include
severity, primary text, and position only; this will normally fit on a single line.

PGSQL_ERRORS_DEFAULT (integer)
Passed to pg_set_error_verbosity(). The default mode produces messages that
include the above plus any detail, hint, or context fields (these may span multiple
lines).

PGSQL_ERRORS_VERBOSE (integer)
Passed to pg_set_error_verbosity(). The verbose mode includes all available fields.

PGSQL_STATUS_LONG (integer)
Passed to pg_result_status(). Indicates that numerical result code is desired.

PGSQL_STATUS_STRING (integer)
Passed to pg_result_status(). Indicates that textual result command tag is desired.

PGSQL_CONV_IGNORE_DEFAULT (integer)

Passed to pg_convert(). Ignore default values in the table during conversion.

PGSQL_CONV_FORCE_NULL (integer)
Passed to pg_convert(). Use SQL NULL in place of an empty string.

PGSQL_CONV_IGNORE_DEFAULT (integer)
Passed to pg_convert(). Ignore conversion of NULL into SQL NOT NULL columns.

Examples

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from a PostgreSQL database.

Example #1 - PostgreSQL extension overview example

<?php

// Connecting, selecting database

$dbconn = pg_connect("host=localhost dbname=publishing user=www
password=foo")

 or die('Could not connect: ' . pg_last_error());

// Performing SQL query

$query = 'SELECT * FROM authors';

$result = pg_query($query) or die('Query failed: ' . pg_last_error());

// Printing results in HTML

echo "<table>\n";

while ($line = pg_fetch_array($result, null, PGSQL_ASSOC)) {

 echo "\t<tr>\n";

 foreach ($line as $col_value) {

 echo "\t\t<td>$col_value</td>\n";

 }

 echo "\t</tr>\n";

}

echo "</table>\n";

// Free resultset

pg_free_result($result);

// Closing connection

pg_close($dbconn);

?>

PostgreSQL Functions

Notes

Note

Not all functions are supported by all builds. It depends on your libpq (The PostgreSQL
C client library) version and how libpq is compiled. If PHP PostgreSQL extensions are
missing, then it is because your libpq version does not support them.

Note

Most PostgreSQL functions accept connection as the first optional parameter. If it is
not provided, the last opened connection is used. If it doesn't exist, functions return
FALSE.

Note

PostgreSQL automatically folds all identifiers (e.g. table/column names) to lower-case
values at object creation time and at query time. To force the use of mixed or upper
case identifiers, you must escape the identifier using double quotes ("").

Note

PostgreSQL does not have special commands for fetching database schema
information (eg. all the tables in the current database). Instead, there is a standard
schema named information_schema in PostgreSQL 7.4 and above containing system
views with all the necessary information, in an easily queryable form. See the
» PostgreSQL Documentation for full details.

http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

pg_affected_rows

pg_affected_rows -- Returns number of affected records (tuples)

Description

int pg_affected_rows (resource $result)

pg_affected_rows() returns the number of tuples (instances/records/rows) affected by
INSERT, UPDATE, and DELETE queries.

Note

This function used to be called pg_cmdtuples().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of rows affected by the query. If no tuple is affected, it will return 0.

Examples

Example #2 - pg_affected_rows() example

<?php

$result = pg_query($conn, "INSERT INTO authors VALUES ('Orwell', 2002,
'Animal Farm')");

$cmdtuples = pg_affected_rows($result);

echo $cmdtuples . " tuples are affected.\n";

?>

The above example will output:

1 tuples are affected.

See Also

• pg_query()
• pg_query_params()
• pg_execute()
• pg_num_rows()

pg_cancel_query

pg_cancel_query -- Cancel an asynchronous query

Description

bool pg_cancel_query (resource $connection)

pg_cancel_query() cancels an asynchronous query sent with pg_send_query(),
pg_send_query_params() or pg_send_execute(). You cannot cancel a query executed
using pg_query().

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #3 - pg_cancel_query() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 // Cancel the currently running query. Will be the second query if it is

 // still running.

 pg_cancel_query($dbconn);

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

See Also

• pg_send_query()
• pg_connection_busy()

pg_client_encoding

pg_client_encoding -- Gets the client encoding

Description

string pg_client_encoding ([resource $connection])

PostgreSQL supports automatic character set conversion between server and client for
certain character sets. pg_client_encoding() returns the client encoding as a string. The
returned string will be one of the standard PostgreSQL encoding identifiers.

Note

This function requires PHP 4.0.3 or higher and PostgreSQL 7.0 or higher. If libpq is
compiled without multibyte encoding support, pg_client_encoding() always returns
SQL_ASCII. Supported encoding depends on PostgreSQL version. Refer to the
PostgreSQL Documentation supported encodings.

The function used to be called pg_clientencoding().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

The client encoding, or FALSE on error.

Examples

Example #4 - pg_client_encoding() example

<?php

// Assume $conn is a connection to a ISO-8859-1 database

$encoding = pg_client_encoding($conn);

echo "Client encoding is: ", $encoding, "\n";

?>

The above example will output:

Client encoding is: ISO-8859-1

See Also

• pg_set_client_encoding()

pg_close

pg_close -- Closes a PostgreSQL connection

Description

bool pg_close ([resource $connection])

pg_close() closes the non-persistent connection to a PostgreSQL database associated
with the given connection resource.

Note

Using pg_close() is not usually necessary, as non-persistent open connections are
automatically closed at the end of the script.

If there is open large object resource on the connection, do not close the connection
before closing all large object resources.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #5 - pg_close() example

<?php

$dbconn = pg_connect("host=localhost port=5432 dbname=mary")

 or die("Could not connect");

echo "Connected successfully";

pg_close($dbconn);

?>

The above example will output:

Connected successfully

See Also

• pg_connect()

pg_connect

pg_connect -- Open a PostgreSQL connection

Description

resource pg_connect (string $connection_string [, int $connect_type])

pg_connect() opens a connection to a PostgreSQL database specified by the
connection_string.

If a second call is made to pg_connect() with the same connection_string as an existing
connection, the existing connection will be returned unless you pass
PGSQL_CONNECT_FORCE_NEW as connect_type.

The old syntax with multiple parameters $conn = pg_connect("host", "port", "options", "tty",
"dbname") has been deprecated.

Parameters

connection_string

The connection_string can be empty to use all default parameters, or it can contain
one or more parameter settings separated by whitespace. Each parameter setting is in
the form keyword = value. Spaces around the equal sign are optional. To write an
empty value or a value containing spaces, surround it with single quotes, e.g., keyword
= 'a value'. Single quotes and backslashes within the value must be escaped with a
backslash, i.e., \' and \\. The currently recognized parameter keywords are: host,
hostaddr, port, dbname, user, password, connect_timeout, options, tty (ignored),
sslmode, requiressl (deprecated in favor of sslmode), and service. Which of these
arguments exist depends on your PostgreSQL version.

connect_type

If PGSQL_CONNECT_FORCE_NEW is passed, then a new connection is created,
even if the connection_string is identical to an existing connection.

Return Values

PostgreSQL connection resource on success, FALSE on failure.

Examples

Example #6 - Using pg_connect()

<?php

$dbconn = pg_connect("dbname=mary");

//connect to a database named "mary"

$dbconn2 = pg_connect("host=localhost port=5432 dbname=mary");

// connect to a database named "mary" on "localhost" at port "5432"

$dbconn3 = pg_connect("host=sheep port=5432 dbname=mary user=lamb
password=foo");

//connect to a database named "mary" on the host "sheep" with a username and
password

$conn_string = "host=sheep port=5432 dbname=test user=lamb password=bar";

$dbconn4 = pg_connect($conn_string);

//connect to a database named "test" on the host "sheep" with a username and
password

?>

See Also

• pg_pconnect()
• pg_close()
• pg_host()
• pg_port()
• pg_tty()
• pg_options()
• pg_dbname()

pg_connection_busy

pg_connection_busy -- Get connection is busy or not

Description

bool pg_connection_busy (resource $connection)

pg_connection_busy() determines whether or not a connection is busy. If it is busy, a
previous query is still executing. If pg_get_result() is used on the connection, it will be
blocked.

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE if the connection is busy, FALSE otherwise.

Examples

Example #7 - pg_connection_busy() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $bs = pg_connection_busy($dbconn);

 if ($bs) {

 echo 'connection is busy';

 } else {

 echo 'connection is not busy';

 }

?>

See Also

• pg_connection_status()
• pg_get_result()

pg_connection_reset

pg_connection_reset -- Reset connection (reconnect)

Description

bool pg_connection_reset (resource $connection)

pg_connection_reset() resets the connection. It is useful for error recovery.

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #8 - pg_connection_reset() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $dbconn2 = pg_connection_reset($dbconn);

 if ($dbconn2) {

 echo "reset successful\n";

 } else {

 echo "reset failed\n";

 }

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_connection_status()

pg_connection_status

pg_connection_status -- Get connection status

Description

int pg_connection_status (resource $connection)

pg_connection_status() returns the status of the specified connection.

Parameters

connection

PostgreSQL database connection resource.

Return Values

PGSQL_CONNECTION_OK or PGSQL_CONNECTION_BAD.

Examples

Example #9 - pg_connection_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $stat = pg_connection_status($dbconn);

 if ($stat === PGSQL_CONNECTION_OK) {

 echo 'Connection status ok';

 } else {

 echo 'Connection status bad';

 }

?>

See Also

• pg_connection_busy()

pg_convert

pg_convert -- Convert associative array values into suitable for SQL statement

Description

array pg_convert (resource $connection, string $table_name, array $assoc_array [, int
$options])

pg_convert() checks and converts the values in assoc_array into suitable values for use in
a SQL statement. Precondition for pg_convert() is the existence of a table table_name
which has at least as many columns as assoc_array has elements. The fieldnames in
table_name must match the indices in assoc_array and the corresponding datatypes must
be compatible. Returns an array with the converted values on success, FALSE otherwise.

Note

If there are boolean fields in table_name don't use the constant TRUE in assoc_array.
It will be converted to the string 'TRUE' which is no valid entry for boolean fields in
PostgreSQL. Use one of t, true, 1, y, yes instead.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table against which to convert types.

assoc_array

Data to be converted.

options

Any number of PGSQL_CONV_IGNORE_DEFAULT, PGSQL_CONV_FORCE_NULL
or PGSQL_CONV_IGNORE_NOT_NULL, combined.

Return Values

An array of converted values, or FALSE on error.

Examples

Example #10 - pg_convert() example

<?php

 $dbconn = pg_connect('dbname=foo');

 $tmp = array(

 'author' => 'Joe Thackery',

 'year' => 2005,

 'title' => 'My Life, by Joe Thackery'

);

 $vals = pg_convert($dbconn, 'authors', $tmp);

?>

See Also

• pg_meta_data()

pg_copy_from

pg_copy_from -- Insert records into a table from an array

Description

bool pg_copy_from (resource $connection, string $table_name, array $rows [, string $
delimiter [, string $null_as]])

pg_copy_from() inserts records into a table from rows. It issues a COPY FROM SQL
command internally to insert records.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to copy the rows.

rows

An array of data to be copied into table_name. Each value in rows becomes a row in
table_name. Each value in rows should be a delimited string of the values to insert into
each field. Values should be linefeed terminated.

delimiter

The token that separates values for each field in each element of rows. Default is TAB.

null_as

How SQL NULL values are represented in the rows. Default is \N ("\\N").

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #11 - pg_copy_from() example

<?php

 $db = pg_connect("dbname=publisher") or die("Could not connect");

 $rows = pg_copy_to($db, $table_name);

 pg_query($db, "DELETE FROM $table_name");

 pg_copy_from($db, $table_name, $rows);

?>

See Also

• pg_copy_to()

pg_copy_to

pg_copy_to -- Copy a table to an array

Description

array pg_copy_to (resource $connection, string $table_name [, string $delimiter [,
string $null_as]])

pg_copy_to() copies a table to an array. It issues COPY TO SQL command internally to
retrieve records.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to copy the data into rows.

delimiter

The token that separates values for each field in each element of rows. Default is TAB.

null_as

How SQL NULL values are represented in the rows. Default is \N ("\\N").

Return Values

An array with one element for each line of COPY data. It returns FALSE on failure.

Examples

Example #12 - pg_copy_to() example

<?php

 $db = pg_connect("dbname=publisher") or die("Could not connect");

 $rows = pg_copy_to($db, $table_name);

 pg_query($db, "DELETE FROM $table_name");

 pg_copy_from($db, $table_name, $rows);

?>

See Also

• pg_copy_from()

pg_dbname

pg_dbname -- Get the database name

Description

string pg_dbname ([resource $connection])

pg_dbname() returns the name of the database that the given PostgreSQL connection
resource.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the name of the database the connection is to, or FALSE on error.

Examples

Example #13 - pg_dbname() example

<?php

 error_reporting(E_ALL);

 pg_connect("host=localhost port=5432 dbname=mary");

 echo pg_dbname(); // mary

?>

pg_delete

pg_delete -- Deletes records

Description

mixed pg_delete (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_delete() deletes records from a table specified by the keys and values in assoc_array.
If options is specified, pg_convert() is applied to assoc_array with the specified options.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to delete rows.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the values of those fields that are to be deleted.

options

Any number of PGSQL_CONV_FORCE_NULL, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC or PGSQL_DML_STRING combined. If PGSQL_DML_STRING
is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #14 - pg_delete() example

<?php

 $db = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $res = pg_delete($db, 'post_log', $_POST);

 if ($res) {

 echo "POST data is deleted: $res\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• pg_convert()

pg_end_copy

pg_end_copy -- Sync with PostgreSQL backend

Description

bool pg_end_copy ([resource $connection])

pg_end_copy() syncs the PostgreSQL frontend (usually a web server process) with the
PostgreSQL server after doing a copy operation performed by pg_put_line().
pg_end_copy() must be issued, otherwise the PostgreSQL server may get out of sync with
the frontend and will report an error.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #15 - pg_end_copy() example

<?php

 $conn = pg_pconnect("dbname=foo");

 pg_query($conn, "create table bar (a int4, b char(16), d float8)");

 pg_query($conn, "copy bar from stdin");

 pg_put_line($conn, "3\thello world\t4.5\n");

 pg_put_line($conn, "4\tgoodbye world\t7.11\n");

 pg_put_line($conn, "\\.\n");

 pg_end_copy($conn);

?>

See Also

• pg_put_line()

pg_escape_bytea

pg_escape_bytea -- Escape a string for insertion into a bytea field

Description

string pg_escape_bytea ([resource $connection], string $data)

pg_escape_bytea() escapes string for bytea datatype. It returns escaped string.

Note

When you SELECT a bytea type, PostgreSQL returns octal byte values prefixed with '\'
(e.g. \032). Users are supposed to convert back to binary format manually.

This function requires PostgreSQL 7.2 or later. With PostgreSQL 7.2.0 and 7.2.1,
bytea values must be cast when you enable multi-byte support. i.e. INSERT INTO
test_table (image) VALUES ('$image_escaped'::bytea); PostgreSQL 7.2.2 or later
does not need a cast. The exception is when the client and backend character
encoding does not match, and there may be multi-byte stream error. User must then
cast to bytea to avoid this error.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A string containing text or binary data to be inserted into a bytea column.

Return Values

A string containing the escaped data.

ChangeLog

Version Description

5.2.0 connection added

Examples

Example #16 - pg_escape_bytea() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Read in a binary file

 $data = file_get_contents('image1.jpg');

 // Escape the binary data

 $escaped = pg_escape_bytea($data);

 // Insert it into the database

 pg_query("INSERT INTO gallery (name, data) VALUES ('Pine trees',
'{$escaped}')");

?>

See Also

• pg_unescape_bytea()
• pg_escape_string()

pg_escape_string

pg_escape_string -- Escape a string for insertion into a text field

Description

string pg_escape_string ([resource $connection], string $data)

pg_escape_string() escapes a string for insertion into the database. It returns an escaped
string in the PostgreSQL format. Use of this function is recommended instead of
addslashes(). If the type of the column is bytea, pg_escape_bytea() must be used instead.

Note

This function requires PostgreSQL 7.2 or later.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A string containing text to be escaped.

Return Values

A string containing the escaped data.

ChangeLog

Version Description

5.2.0 connection added

Examples

Example #17 - pg_escape_string() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Read in a text file (containing apostrophes and backslashes)

 $data = file_get_contents('letter.txt');

 // Escape the text data

 $escaped = pg_escape_string($data);

 // Insert it into the database

 pg_query("INSERT INTO correspondence (name, data) VALUES ('My letter',
'{$escaped}')");

?>

See Also

• pg_escape_bytea()

pg_execute

pg_execute -- Sends a request to execute a prepared statement with given parameters,
and waits for the result.

Description

resource pg_execute (resource $connection, string $stmtname, array $params)

resource pg_execute (string $stmtname, array $params)

Sends a request to execute a prepared statement with given parameters, and waits for the
result.

pg_execute() is like pg_query_params(), but the command to be executed is specified by
naming a previously-prepared statement, instead of giving a query string. This feature
allows commands that will be used repeatedly to be parsed and planned just once, rather
than each time they are executed. The statement must have been prepared previously in
the current session. pg_execute() is supported only against PostgreSQL 7.4 or higher
connections; it will fail when using earlier versions.

The parameters are identical to pg_query_params(), except that the name of a prepared
statement is given instead of a query string.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name of the prepared statement to execute. if "" is specified, then the unnamed
statement is executed. The name must have been previously prepared using
pg_prepare(), pg_send_prepare() or a PREPARE SQL command.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Warning

Elements are converted to strings by calling this function.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #18 - Using pg_execute()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Prepare a query for execution

$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

// Execute the prepared query. Note that it is not necessary to escape

// the string "Joe's Widgets" in any way

$result = pg_execute($dbconn, "my_query", array("Joe's Widgets"));

// Execute the same prepared query, this time with a different parameter

$result = pg_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

?>

See Also

• pg_prepare()
• pg_send_prepare()
• pg_query_params()

pg_fetch_all_columns

pg_fetch_all_columns -- Fetches all rows in a particular result column as an array

Description

array pg_fetch_all_columns (resource $result [, int $column])

pg_fetch_all_columns() returns an array that contains all rows (records) in a particular
column of the result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

column

Column number, zero-based, to be retrieved from the result resource. Defaults to the
first column if not specified.

Return Values

An array with all values in the result column.

FALSE is returned if column is larger than the number of columns in the result, or on any
other error.

Examples

Example #19 - pg_fetch_all_columns() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT title, name, address FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

// Get an array of all author names

$arr = pg_fetch_all_columns($result, 1);

var_dump($arr);

?>

See Also

• pg_fetch_all()

pg_fetch_all

pg_fetch_all -- Fetches all rows from a result as an array

Description

array pg_fetch_all (resource $result)

pg_fetch_all() returns an array that contains all rows (records) in the result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

An array with all rows in the result. Each row is an array of field values indexed by field
name.

FALSE is returned if there are no rows in the result, or on any other error.

Examples

Example #20 - PostgreSQL fetch all

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT * FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$arr = pg_fetch_all($result);

var_dump($arr);

?>

See Also

• pg_fetch_row()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_array

pg_fetch_array -- Fetch a row as an array

Description

array pg_fetch_array (resource $result [, int $row [, int $result_type]])

pg_fetch_array() returns an array that corresponds to the fetched row (record).

pg_fetch_array() is an extended version of pg_fetch_row(). In addition to storing the data
in the numeric indices (field number) to the result array, it can also store the data using
associative indices (field name). It stores both indicies by default.

Note

This function sets NULL fields to the PHP NULL value.

pg_fetch_array() is NOT significantly slower than using pg_fetch_row(), and is significantly
easier to use.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

result_type

An optional parameter that controls how the returned array is indexed. result_type is
a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM and
PGSQL_BOTH. Using PGSQL_NUM, pg_fetch_array() will return an array with
numerical indices, using PGSQL_ASSOC it will return only associative indices while
PGSQL_BOTH, the default, will return both numerical and associative indices.

Return Values

An array indexed numerically (beginning with 0) or associatively (indexed by field name),
or both. Each value in the array is represented as a string. Database NULL values are
returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,

or on any other error.

ChangeLog

Version Description

4.1.0 The row parameter became optional.

4.0.0 The result_type parameter was added.

Examples

Example #21 - pg_fetch_array() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$arr = pg_fetch_array($result, 0, PGSQL_NUM);

echo $arr[0] . " <- Row 1 Author\n";

echo $arr[1] . " <- Row 1 E-mail\n";

// As of PHP 4.1.0, the row parameter is optional; NULL can be passed
instead,

// to pass a result_type. Successive calls to pg_fetch_array will return
the

// next row.

$arr = pg_fetch_array($result, NULL, PGSQL_ASSOC);

echo $arr["author"] . " <- Row 2 Author\n";

echo $arr["email"] . " <- Row 2 E-mail\n";

$arr = pg_fetch_array($result);

echo $arr["author"] . " <- Row 3 Author\n";

echo $arr[1] . " <- Row 3 E-mail\n";

?>

See Also

• pg_fetch_row()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_assoc

pg_fetch_assoc -- Fetch a row as an associative array

Description

array pg_fetch_assoc (resource $result [, int $row])

pg_fetch_assoc() returns an associative array that corresponds to the fetched row
(records).

pg_fetch_assoc() is equivalent to calling pg_fetch_array() with PGSQL_ASSOC as the
optional third parameter. It only returns an associative array. If you need the numeric
indices, use pg_fetch_row().

Note

This function sets NULL fields to the PHP NULL value.

pg_fetch_assoc() is NOT significantly slower than using pg_fetch_row(), and is
significantly easier to use.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

Return Values

An array indexed associatively (by field name). Each value in the array is represented as a
string. Database NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

4.1.0 The parameter row became optional.

Examples

Example #22 - pg_fetch_assoc() example

<?php

$conn = pg_connect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT id, author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_assoc($result)) {

 echo $row['id'];

 echo $row['author'];

 echo $row['email'];

}

?>

See Also

• pg_fetch_row()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_object

pg_fetch_object -- Fetch a row as an object

Description

object pg_fetch_object (resource $result [, int $row [, int $result_type]])

object pg_fetch_object (resource $result [, int $row [, string $class_name [, array $
params]]])

pg_fetch_object() returns an object with properties that correspond to the fetched row's
field names. It can optionally instantiate an object of a specific class, and pass parameters
to that class's constructor.

Note

This function sets NULL fields to the PHP NULL value.

Speed-wise, the function is identical to pg_fetch_array(), and almost as fast as
pg_fetch_row() (the difference is insignificant).

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

result_type

Ignored and deprecated. Defaults to PGSQL_ASSOC.

class_name

The name of the class to instantiate, set the properties of and return. If not specified, a
stdClass object is returned.

params

An optional array of parameters to pass to the constructor for class_name objects.

Return Values

An object with one attribute for each field name in the result. Database NULL values are

returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

5.0.0 class_name and params were added. The
old form with result_type still exists for
backwards compatibility.

4.3.0 result_type default changed from
PGSQL_BOTH to PGSQL_ASSOC, since
the numeric index was illegal.

4.1.0 The parameter row became optional.

Examples

Example #23 - pg_fetch_object() example

<?php

$database = "store";

$db_conn = pg_connect("host=localhost port=5432 dbname=$database");

if (!$db_conn) {

 echo "Failed connecting to postgres database $database\n";

 exit;

}

$qu = pg_query($db_conn, "SELECT * FROM books ORDER BY author");

while ($data = pg_fetch_object($qu)) {

 echo $data->author . " (";

 echo $data->year . "): ";

 echo $data->title . "
";

}

pg_free_result($qu);

pg_close($db_conn);

?>

See Also

• pg_query()
• pg_fetch_array()
• pg_fetch_assoc()
• pg_fetch_row()
• pg_fetch_result()

pg_fetch_result

pg_fetch_result -- Returns values from a result resource

Description

string pg_fetch_result (resource $result, int $row, mixed $field)

string pg_fetch_result (resource $result, mixed $field)

pg_fetch_result() returns the value of a particular row and field (column) in a PostgreSQL
result resource.

Note

This function used to be called pg_result().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

field

A string representing the name of the field (column) to fetch, otherwise an int
representing the field number to fetch. Fields are numbered from 0 upwards.

Return Values

Boolean is returned as "t" or "f". All other types, including arrays are returned as strings
formatted in the same default PostgreSQL manner that you would see in the psql program.
Database NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, or on any other error.

Examples

Example #24 - pg_fetch_result() example

<?php

$db = pg_connect("dbname=users user=me") || die();

$res = pg_query($db, "SELECT 1 UNION ALL SELECT 2");

$val = pg_fetch_result($res, 1, 0);

echo "First field in the second row is: ", $val, "\n";

?>

The above example will output:

First field in the second row is: 2

See Also

• pg_query()
• pg_fetch_array()

pg_fetch_row

pg_fetch_row -- Get a row as an enumerated array

Description

array pg_fetch_row (resource $result [, int $row])

pg_fetch_row() fetches one row of data from the result associated with the specified
result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

Return Values

An array, indexed from 0 upwards, with each value represented as a string. Database
NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

4.1.0 The parameter row became optional.

Examples

Example #25 - pg_fetch_row() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

See Also

• pg_query()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_field_is_null

pg_field_is_null -- Test if a field is SQL NULL

Description

int pg_field_is_null (resource $result, int $row, mixed $field)

int pg_field_is_null (resource $result, mixed $field)

pg_field_is_null() tests if a field in a PostgreSQL result resource is SQL NULL or not.

Note

This function used to be called pg_fieldisnull().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, current
row is fetched.

field

Field number (starting from 0) as an integer or the field name as a string.

Return Values

Returns 1 if the field in the given row is SQL NULL, 0 if not. FALSE is returned if the row is
out of range, or upon any other error.

Examples

Example #26 - pg_field_is_null() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die ("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 if ($res) {

 if (pg_field_is_null($res, 0, "year") == 1) {

 echo "The value of the field year is null.\n";

 }

 if (pg_field_is_null($res, 0, "year") == 0) {

 echo "The value of the field year is not null.\n";

 }

}

?>

pg_field_name

pg_field_name -- Returns the name of a field

Description

string pg_field_name (resource $result, int $field_number)

pg_field_name() returns the name of the field occupying the given field_number in the
given PostgreSQL result resource. Field numbering starts from 0.

Note

This function used to be called pg_fieldname().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The field name, or FALSE on error.

Examples

Example #27 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_num()

pg_field_num

pg_field_num -- Returns the field number of the named field

Description

int pg_field_num (resource $result, string $field_name)

pg_field_num() will return the number of the field number that corresponds to the
field_name in the given PostgreSQL result resource.

Note

This function used to be called pg_fieldnum().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_name

The name of the field.

Return Values

The field number (numbered from 0), or -1 on error.

Examples

Example #28 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select author, year, title from authors where
author = 'Orwell'");

 echo "Column 'title' is field number: ", pg_field_num($res, 'title');

?>

The above example will output:

Column 'title' is field number: 2

See Also

• pg_field_name()

pg_field_prtlen

pg_field_prtlen -- Returns the printed length

Description

int pg_field_prtlen (resource $result, int $row_number, mixed $field_name_or_number)

int pg_field_prtlen (resource $result, mixed $field_name_or_number)

pg_field_prtlen() returns the actual printed length (number of characters) of a specific
value in a PostgreSQL result. Row numbering starts at 0. This function will return -1 on
an error.

field_name_or_number can be passed either as an integer or as a string. If it is passed as
an integer, PHP recognises it as the field number, otherwise as field name.

See the example given at the pg_field_name() page.

Note

This function used to be called pg_fieldprtlen().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result. Rows are numbered from 0 upwards. If omitted, current row is
fetched.

Return Values

The field printed length, or FALSE on error.

Examples

Example #29 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_size()

pg_field_size

pg_field_size -- Returns the internal storage size of the named field

Description

int pg_field_size (resource $result, int $field_number)

pg_field_size() returns the internal storage size (in bytes) of the field number in the given
PostgreSQL result.

Note

This function used to be called pg_fieldsize().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The internal field storage size (in bytes). -1 indicates a variable length field. FALSE is
returned on error.

Examples

Example #30 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_prtlen()
• pg_field_type()

pg_field_table

pg_field_table -- Returns the name or oid of the tables field

Description

mixed pg_field_table (resource $result, int $field_number [, bool $oid_only])

pg_field_table() returns the name of the table that field belongs to, or the table's oid if
oid_only is TRUE.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

oid_only

By default the tables name that field belongs to is returned but if oid_only is set to
TRUE, then the oid will instead be returned.

Return Values

On success either the fields table name or oid. Or, FALSE on failure.

Examples

Example #31 - Getting table information about a field

<?php

$dbconn = pg_connect("dbname=publisher") or die("Could not connect");

$res = pg_query($dbconn, "SELECT bar FROM foo");

echo pg_field_table($res, 0);

echo pg_field_table($res, 0, true);

$res = pg_query($dbconn, "SELECT version()");

var_dump(pg_field_table($res, 0));

?>

The above example will output something similar to:

foo

14379580

bool(false)

Notes

Note

Returning the oid is much faster than returning the table name because fetching the
table name requires a query to the database system table.

See Also

• pg_field_name()
• pg_field_type()

pg_field_type_oid

pg_field_type_oid -- Returns the type ID (OID) for the corresponding field number

Description

int pg_field_type_oid (resource $result, int $field_number)

pg_field_type_oid() returns an integer containing the OID of the base type of the given
field_number in the given PostgreSQL result resource.

You can get more information about the field type by querying PostgreSQL's pg_type
system table using the OID obtained with this function. The PostgreSQL format_type()
function will convert a type OID into an SQL standard type name.

Note

If the field uses a PostgreSQL domain (rather than a basic type), it is the OID of the
domain's underlying type that is returned, rather than the OID of the domain itself.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The OID of the field's base type. FALSE is returned on error.

Examples

Example #32 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Assume 'title' is a varchar type

 $res = pg_query($dbconn, "select title from authors where author =
'Orwell'");

 echo "Title field type OID: ", pg_field_type_oid($res, 0);

?>

The above example will output:

Title field type OID: 1043

See Also

• pg_field_type()
• pg_field_prtlen()
• pg_field_name()

pg_field_type

pg_field_type -- Returns the type name for the corresponding field number

Description

string pg_field_type (resource $result, int $field_number)

pg_field_type() returns a string containing the base type name of the given field_number
in the given PostgreSQL result resource.

Note

If the field uses a PostgreSQL domain (rather than a basic type), it is the name of the
domain's underlying type that is returned, rather than the name of the domain itself.

Note

This function used to be called pg_fieldtype().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

A string containing the base name of the field's type, or FALSE on error.

Examples

Example #33 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Assume 'title' is a varchar type

 $res = pg_query($dbconn, "select title from authors where author =
'Orwell'");

 echo "Title field type: ", pg_field_type($res, 0);

?>

The above example will output:

Title field type: varchar

See Also

• pg_field_prtlen()
• pg_field_name()
• pg_field_type_oid()

pg_free_result

pg_free_result -- Free result memory

Description

bool pg_free_result (resource $result)

pg_free_result() frees the memory and data associated with the specified PostgreSQL
query result resource.

This function need only be called if memory consumption during script execution is a
problem. Otherwise, all result memory will be automatically freed when the script ends.

Note

This function used to be called pg_freeresult().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #34 - pg_free_result() example

<?php

$db = pg_connect("dbname=users user=me") || die();

$res = pg_query($db, "SELECT 1 UNION ALL SELECT 2");

$val = pg_fetch_result($res, 1, 0);

echo "First field in the second row is: ", $val, "\n";

pg_free_result($res);

?>

The above example will output:

First field in the second row is: 2

See Also

• pg_query()
• pg_query_params()
• pg_execute()

pg_get_notify

pg_get_notify -- Gets SQL NOTIFY message

Description

array pg_get_notify (resource $connection [, int $result_type])

pg_get_notify() gets notifications generated by a NOTIFY SQL command. To receive
notifications, the LISTEN SQL command must be issued.

Parameters

connection

PostgreSQL database connection resource.

result_type

An optional parameter that controls how the returned array is indexed. result_type is
a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM and
PGSQL_BOTH. Using PGSQL_NUM, pg_get_notify() will return an array with
numerical indices, using PGSQL_ASSOC it will return only associative indices while
PGSQL_BOTH, the default, will return both numerical and associative indices.

Return Values

An array containing the NOTIFY message name and backend PID. Otherwise if no
NOTIFY is waiting, then FALSE is returned.

Examples

Example #35 - PostgreSQL NOTIFY message

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Listen 'author_updated' message from other processes

pg_query($conn, 'LISTEN author_updated;');

$notify = pg_get_notify($conn);

if (!$notify) {

 echo "No messages\n";

} else {

 print_r($notify);

}

?>

See Also

• pg_get_pid()

pg_get_pid

pg_get_pid -- Gets the backend's process ID

Description

int pg_get_pid (resource $connection)

pg_get_pid() gets the backend's (database server process) PID. The PID is useful to
determine whether or not a NOTIFY message received via pg_get_notify() is sent from
another process or not.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The backend database process ID.

Examples

Example #36 - PostgreSQL backend PID

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Backend process PID. Use PID with pg_get_notify()

$pid = pg_get_pid($conn);

?>

See Also

• pg_get_notify()

pg_get_result

pg_get_result -- Get asynchronous query result

Description

resource pg_get_result ([resource $connection])

pg_get_result() gets the result resource from an asynchronous query executed by
pg_send_query(), pg_send_query_params() or pg_send_execute().

pg_send_query() and the other asynchronous query functions can send multiple queries to
a PostgreSQL server and pg_get_result() is used to get each query's results, one by one.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The result resource, or FALSE if no more results are available.

Examples

Example #37 - pg_get_result() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 $res2 = pg_get_result($dbconn);

 echo "Second call to pg_get_result(): $res2\n";

 $rows2 = pg_num_rows($res2);

 echo "$res2 has $rows2 records\n";

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

Second call to pg_get_result(): Resource id #4

Resource id #4 has 1 records

See Also

• pg_send_query()

pg_host

pg_host -- Returns the host name associated with the connection

Description

string pg_host ([resource $connection])

pg_host() returns the host name of the given PostgreSQL connection resource is
connected to.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the name of the host the connection is to, or FALSE on error.

Examples

Example #38 - pg_host() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Successfully connected to: " . pg_host($pgsql_conn) . "
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• pg_connect()
• pg_pconnect()

pg_insert

pg_insert -- Insert array into table

Description

mixed pg_insert (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_insert() inserts the values of assoc_array into the table specified by table_name. If
options is specified, pg_convert() is applied to assoc_array with the specified options.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to insert rows. The table table_name must at least have
as many columns as assoc_array has elements.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the values of those fields that are to be inserted.

options

Any number of PGSQL_CONV_OPTS, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC, PGSQL_DML_ASYNC or PGSQL_DML_STRING combined. If
PGSQL_DML_STRING is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #39 - pg_insert() example

<?php

 $dbconn = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $res = pg_insert($dbconn, 'post_log', $_POST);

 if ($res) {

 echo "POST data is successfully logged\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_last_error

pg_last_error -- Get the last error message string of a connection

Description

string pg_last_error ([resource $connection])

pg_last_error() returns the last error message for a given connection.

Error messages may be overwritten by internal PostgreSQL (libpq) function calls. It may
not return an appropriate error message if multiple errors occur inside a PostgreSQL
module function.

Use pg_result_error(), pg_result_error_field(), pg_result_status() and
pg_connection_status() for better error handling.

Note

This function used to be called pg_errormessage().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the last error message on the given connection, or FALSE on error.

Examples

Example #40 - pg_last_error() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Query that fails

 $res = pg_query($dbconn, "select * from doesnotexist");

 echo pg_last_error($dbconn);

?>

See Also

• pg_result_error()
• pg_result_error_field()

pg_last_notice

pg_last_notice -- Returns the last notice message from PostgreSQL server

Description

string pg_last_notice (resource $connection)

pg_last_notice() returns the last notice message from the PostgreSQL server on the
specified connection. The PostgreSQL server sends notice messages in several cases,
for instance when creating a SERIAL column in a table.

With pg_last_notice(), you can avoid issuing useless queries by checking whether or not
the notice is related to your transaction.

Notice message tracking can be set to optional by setting 1 for pgsql.ignore_notice in
php.ini.

Notice message logging can be set to optional by setting 0 for pgsql.log_notice in php.ini.
Unless pgsql.ignore_notice is set to 0, notice message cannot be logged.

Parameters

connection

PostgreSQL database connection resource.

Return Values

A string containing the last notice on the given connection, or FALSE on error.

ChangeLog

Version Description

4.3.0 This function is now fully implemented.
Earlier versions ignores database
connection parameter.

4.3.0 The pgsql.ignore_notice and
pgsql.log_notice php.ini directives were
added.

4.0.6 PHP 4.0.6 has problem with notice message
handling. Use of the PostgreSQL module

with PHP 4.0.6 is not recommended even if
you are not using pg_last_notice().

Examples

Example #41 - pg_last_error() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 $res = pg_query("CREATE TABLE test (id SERIAL)");

 $notice = pg_last_notice($pgsql_conn);

 echo $notice;

?>

The above example will output:

CREATE TABLE will create implicit sequence "test_id_seq" for "serial" column
"test.id"

See Also

• pg_query()
• pg_last_error()

pg_last_oid

pg_last_oid -- Returns the last row's OID

Description

string pg_last_oid (resource $result)

pg_last_oid() is used to retrieve the OID assigned to an inserted row.

OID field became an optional field from PostgreSQL 7.2 and will not be present by default
in PostgreSQL 8.1. When the OID field is not present in a table, the programmer must use
pg_result_status() to check for successful insertion.

To get the value of a SERIAL field in an inserted row, it is necessary to use the
PostgreSQL CURRVAL function, naming the sequence whose last value is required. If the
name of the sequence is unknown, the pg_get_serial_sequence PostgreSQL 8.0 function
is necessary.

PostgreSQL 8.1 has a function LASTVAL that returns the value of the most recently used
sequence in the session. This avoids the need for naming the sequence, table or column
altogether.

Note

This function used to be called pg_getlastoid().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

A string containing the OID assigned to the most recently inserted row in the specified
connection, or FALSE on error or no available OID.

Examples

Example #42 - pg_last_oid() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 $res1 = pg_query("CREATE TABLE test (a INTEGER) WITH OIDS");

 $res2 = pg_query("INSERT INTO test VALUES (1)");

 $oid = pg_last_oid($res2);

?>

See Also

• pg_query()
• pg_result_status()

pg_lo_close

pg_lo_close -- Close a large object

Description

bool pg_lo_close (resource $large_object)

pg_lo_close() closes a large object. large_object is a resource for the large object from
pg_lo_open().

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loclose().

Parameters

result

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #43 - pg_lo_close() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_open()
• pg_lo_create()
• pg_lo_import()

pg_lo_create

pg_lo_create -- Create a large object

Description

int pg_lo_create ([resource $connection])

pg_lo_create() creates a large object and returns the OID of the large object. PostgreSQL
access modes INV_READ, INV_WRITE, and INV_ARCHIVE are not supported, the object
is created always with both read and write access. INV_ARCHIVE has been removed from
PostgreSQL itself (version 6.3 and above).

To use the large object interface, it is necessary to enclose it within a transaction block.

Instead of using the large object interface (which has no access controls and is
cumbersome to use), try PostgreSQL's bytea column type and pg_escape_bytea().

Note

This function used to be called pg_locreate().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A large object OID or FALSE on error.

Examples

Example #44 - pg_lo_create() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

pg_lo_export

pg_lo_export -- Export a large object to file

Description

bool pg_lo_export (resource $connection, int $oid, string $pathname)

bool pg_lo_export (int $oid, string $pathname)

pg_lo_export() takes a large object in a PostgreSQL database and saves its contents to a
file on the local filesystem.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loexport().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

pathname

The full path and file name of the file in which to write the large object on the client
filesystem.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #45 - pg_lo_export() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 $handle = pg_lo_open($database, $oid, "w");

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_lo_export($database, $oid, '/tmp/lob.dat');

 pg_query($database, "commit");

?>

See Also

• pg_lo_import()

pg_lo_import

pg_lo_import -- Import a large object from file

Description

int pg_lo_import (resource $connection, string $pathname)

int pg_lo_import (string $pathname)

pg_lo_import() creates a new large object in the database using a file on the filesystem as
its data source.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function used to be called pg_loimport().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

pathname

The full path and file name of the file on the client filesystem from which to read the
large object data.

Return Values

The OID of the newly created large object, or FALSE on failure.

ChangeLog

Version Description

4.2.0
The syntax of this function changed. It used
to be:
int pg_lo_import (string $pathname [,
resource $connection])

Examples

Example #46 - pg_lo_import() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_import($database, '/tmp/lob.dat');

 pg_query($database, "commit");

?>

See Also

• pg_lo_export()
• pg_lo_open()

pg_lo_open

pg_lo_open -- Open a large object

Description

resource pg_lo_open (resource $connection, int $oid, string $mode)

pg_lo_open() opens a large object in the database and returns large object resource so
that it can be manipulated.

Warning

Do not close the database connection before closing the large object resource.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loopen().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

mode

Can be either "r" for read-only, "w" for write only or "rw" for read and write.

Return Values

A large object resource or FALSE on error.

Examples

Example #47 - pg_lo_open() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_close()
• pg_lo_create()

pg_lo_read_all

pg_lo_read_all -- Reads an entire large object and send straight to browser

Description

int pg_lo_read_all (resource $large_object)

pg_lo_read_all() reads a large object and passes it straight through to the browser after
sending all pending headers. Mainly intended for sending binary data like images or
sound.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loreadall().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

Number of bytes read or FALSE on error.

Examples

Example #48 - pg_lo_read_all() example

<?php

 header('Content-type: image/jpeg');

 $image_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $image_oid, "r");

 pg_lo_read_all($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_read()

pg_lo_read

pg_lo_read -- Read a large object

Description

string pg_lo_read (resource $large_object [, int $len])

pg_lo_read() reads at most len bytes from a large object and returns it as a string.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loread().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

len

An optional maximum number of bytes to return. Defaults to 8192.

Return Values

A string containing len bytes from the large object, or FALSE on error.

Examples

Example #49 - pg_lo_read() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 $data = pg_lo_read($handle, 50000);

 pg_query($database, "commit");

 echo $data;

?>

See Also

• pg_lo_read_all()

pg_lo_seek

pg_lo_seek -- Seeks position within a large object

Description

bool pg_lo_seek (resource $large_object, int $offset [, int $whence])

pg_lo_seek() seeks a position within a large object resource.

To use the large object interface, it is necessary to enclose it within a transaction block.

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

offset

The number of bytes to seek.

whence

One of the constants PGSQL_SEEK_SET (seek from object start),
PGSQL_SEEK_CUR (seek from current position) or PGSQL_SEEK_END (seek from
object end) .

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #50 - pg_lo_seek() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 // Skip first 50000 bytes

 pg_lo_seek($handle, 50000, PGSQL_SEEK_SET);

 // Read the next 10000 bytes

 $data = pg_lo_read($handle, 10000);

 pg_query($database, "commit");

 echo $data;

?>

See Also

• pg_lo_tell()

pg_lo_tell

pg_lo_tell -- Returns current seek position a of large object

Description

int pg_lo_tell (resource $large_object)

pg_lo_tell() returns the current position (offset from the beginning) of a large object.

To use the large object interface, it is necessary to enclose it within a transaction block.

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

The current seek offset (in number of bytes) from the beginning of the large object. If there
is an error, the return value is negative.

Examples

Example #51 - pg_lo_tell() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 // Skip first 50000 bytes

 pg_lo_seek($handle, 50000, PGSQL_SEEK_SET);

 // See how far we've skipped

 $offset = pg_lo_tell($handle);

 echo "Seek position is: $offset";

 pg_query($database, "commit");

?>

The above example will output:

Seek position is: 50000

See Also

• pg_lo_seek()

pg_lo_unlink

pg_lo_unlink -- Delete a large object

Description

bool pg_lo_unlink (resource $connection, int $oid)

pg_lo_unlink() deletes a large object with the oid. Returns TRUE on success or FALSE
on failure.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_lounlink().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #52 - pg_lo_unlink() example

<?php

 // OID of the large object to delete

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 pg_lo_unlink($database, $doc_oid);

 pg_query($database, "commit");

?>

See Also

• pg_lo_create()
• pg_lo_import()

pg_lo_write

pg_lo_write -- Write to a large object

Description

int pg_lo_write (resource $large_object, string $data [, int $len])

pg_lo_write() writes data into a large object at the current seek position.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_lowrite().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

data

The data to be written to the large object. If len is specified and is less than the length
of data, only len bytes will be written.

len

An optional maximum number of bytes to write. Must be greater than zero and no
greater than the length of data. Defaults to the length of data.

Return Values

The number of bytes written to the large object, or FALSE on error.

Examples

Example #53 - pg_lo_write() example

<?php

 $doc_oid = 189762345;

 $data = "This will overwrite the start of the large object.";

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "w");

 $data = pg_lo_write($handle, $data);

 pg_query($database, "commit");

?>

See Also

• pg_lo_create()
• pg_lo_open()

pg_meta_data

pg_meta_data -- Get meta data for table

Description

array pg_meta_data (resource $connection, string $table_name)

pg_meta_data() returns table definition for table_name as an array.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

The name of the table.

Return Values

An array of the table definition, or FALSE on error.

Examples

Example #54 - Getting table metadata

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $meta = pg_meta_data($dbconn, 'authors');

 if (is_array($meta)) {

 echo '<pre>';

 var_dump($meta);

 echo '</pre>';

 }

?>

The above example will output:

array(3) {

["author"]=>

array(5) {

 ["num"]=>

 int(1)

 ["type"]=>

 string(7) "varchar"

 ["len"]=>

 int(-1)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

["year"]=>

array(5) {

 ["num"]=>

 int(2)

 ["type"]=>

 string(4) "int2"

 ["len"]=>

 int(2)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

["title"]=>

array(5) {

 ["num"]=>

 int(3)

 ["type"]=>

 string(7) "varchar"

 ["len"]=>

 int(-1)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

}

See Also

• pg_convert()

pg_num_fields

pg_num_fields -- Returns the number of fields in a result

Description

int pg_num_fields (resource $result)

pg_num_fields() returns the number of fields (columns) in a PostgreSQL result resource.

Note

This function used to be called pg_numfields().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of fields (columns) in the result. On error, -1 is returned.

Examples

Example #55 - pg_num_fields() example

<?php

$result = pg_query($conn, "SELECT 1, 2");

$num = pg_num_fields($result);

echo $num . " field(s) returned.\n";

?>

The above example will output:

2 field(s) returned.

See Also

• pg_num_rows()
• pg_affected_rows()

pg_num_rows

pg_num_rows -- Returns the number of rows in a result

Description

int pg_num_rows (resource $result)

pg_num_rows() will return the number of rows in a PostgreSQL result resource.

Note

This function used to be called pg_numrows().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of rows in the result. On error, -1 is returned.

Examples

Example #56 - pg_num_rows() example

<?php

$result = pg_query($conn, "SELECT 1");

$rows = pg_num_rows($result);

echo $rows . " row(s) returned.\n";

?>

The above example will output:

1 row(s) returned.

See Also

• pg_num_fields()
• pg_affected_rows()

pg_options

pg_options -- Get the options associated with the connection

Description

string pg_options ([resource $connection])

pg_options() will return a string containing the options specified on the given PostgreSQL
connection resource.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the connection options, or FALSE on error.

Examples

Example #57 - pg_options() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 echo pg_options($pgsql_conn);

?>

See Also

• pg_connect()

pg_parameter_status

pg_parameter_status -- Looks up a current parameter setting of the server.

Description

string pg_parameter_status (resource $connection, string $param_name)

string pg_parameter_status (string $param_name)

Looks up a current parameter setting of the server.

Certain parameter values are reported by the server automatically at connection startup or
whenever their values change. pg_parameter_status() can be used to interrogate these
settings. It returns the current value of a parameter if known, or FALSE if the parameter is
not known.

Parameters reported as of PostgreSQL 8.0 include server_version, server_encoding,
client_encoding, is_superuser, session_authorization, DateStyle, TimeZone, and
integer_datetimes. (server_encoding, TimeZone, and integer_datetimes were not reported
by releases before 8.0.) Note that server_version, server_encoding and integer_datetimes
cannot change after PostgreSQL startup.

PostgreSQL 7.3 or lower servers do not report parameter settings, pg_parameter_status()
includes logic to obtain values for server_version and client_encoding anyway.
Applications are encouraged to use pg_parameter_status() rather than ad hoc code to
determine these values.

Caution

On a pre-7.4 PostgreSQL server, changing client_encoding via SET after connection
startup will not be reflected by pg_parameter_status().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

param_name

Possible param_name values include server_version, server_encoding, client_encoding,
is_superuser, session_authorization, DateStyle, TimeZone, and integer_datetimes.

Return Values

A string containing the value of the parameter, FALSE on failure or invalid param_name.

Examples

Example #58 - pg_parameter_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 echo "Server encoding: ", pg_parameter_status($dbconn, "server_encoding");

?>

The above example will output:

Server encoding: SQL_ASCII

pg_pconnect

pg_pconnect -- Open a persistent PostgreSQL connection

Description

resource pg_pconnect (string $connection_string [, int $connect_type])

pg_pconnect() opens a connection to a PostgreSQL database. It returns a connection
resource that is needed by other PostgreSQL functions.

If a second call is made to pg_pconnect() with the same connection_string as an existing
connection, the existing connection will be returned unless you pass
PGSQL_CONNECT_FORCE_NEW as connect_type.

To enable persistent connection, the pgsql.allow_persistent php.ini directive must be set to
"On" (which is the default). The maximum number of persistent connection can be defined
with the pgsql.max_persistent php.ini directive (defaults to -1 for no limit). The total number
of connections can be set with the pgsql.max_links php.ini directive.

pg_close() will not close persistent links generated by pg_pconnect().

Parameters

connection_string

The connection_string can be empty to use all default parameters, or it can contain
one or more parameter settings separated by whitespace. Each parameter setting is in
the form keyword = value. Spaces around the equal sign are optional. To write an
empty value or a value containing spaces, surround it with single quotes, e.g., keyword
= 'a value'. Single quotes and backslashes within the value must be escaped with a
backslash, i.e., \' and \\. The currently recognized parameter keywords are: host,
hostaddr, port, dbname, user, password, connect_timeout, options, tty (ignored),
sslmode, requiressl (deprecated in favor of sslmode), and service. Which of these
arguments exist depends on your PostgreSQL version.

connect_type

If PGSQL_CONNECT_FORCE_NEW is passed, then a new connection is created,
even if the connection_string is identical to an existing connection.

Return Values

PostgreSQL connection resource on success, FALSE on failure.

Examples

Example #59 - Using pg_pconnect()

<?php

$dbconn = pg_pconnect("dbname=mary");

//connect to a database named "mary"

$dbconn2 = pg_pconnect("host=localhost port=5432 dbname=mary");

// connect to a database named "mary" on "localhost" at port "5432"

$dbconn3 = pg_pconnect("host=sheep port=5432 dbname=mary user=lamb
password=foo");

//connect to a database named "mary" on the host "sheep" with a username and
password

$conn_string = "host=sheep port=5432 dbname=test user=lamb password=bar";

$dbconn4 = pg_pconnect($conn_string);

//connect to a database named "test" on the host "sheep" with a username and
password

?>

See Also

• pg_connect()
• Persistent Database Connections

pg_ping

pg_ping -- Ping database connection

Description

bool pg_ping ([resource $connection])

pg_ping() pings a database connection and tries to reconnect it if it is broken.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #60 - pg_ping() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

if (!pg_ping($conn))

 die("Connection is broken\n");

?>

See Also

• pg_connection_status()
• pg_connection_reset()

pg_port

pg_port -- Return the port number associated with the connection

Description

int pg_port ([resource $connection])

pg_port() returns the port number that the given PostgreSQL connection resource is
connected to.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

An int containing the port number of the database server the connection is to, or FALSE
on error.

Examples

Example #61 - pg_port() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Successfully connected to port: " . pg_port($pgsql_conn) .
"
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

pg_prepare

pg_prepare -- Submits a request to create a prepared statement with the given
parameters, and waits for completion.

Description

resource pg_prepare (resource $connection, string $stmtname, string $query)

resource pg_prepare (string $stmtname, string $query)

pg_prepare() creates a prepared statement for later execution with pg_execute() or
pg_send_execute(). This feature allows commands that will be used repeatedly to be
parsed and planned just once, rather than each time they are executed. pg_prepare() is
supported only against PostgreSQL 7.4 or higher connections; it will fail when using earlier
versions.

The function creates a prepared statement named stmtname from the query string, which
must contain a single SQL command. stmtname may be "" to create an unnamed
statement, in which case any pre-existing unnamed statement is automatically replaced;
otherwise it is an error if the statement name is already defined in the current session. If
any parameters are used, they are referred to in the query as $1, $2, etc.

Prepared statements for use with pg_prepare() can also be created by executing SQL
PREPARE statements. (But pg_prepare() is more flexible since it does not require
parameter types to be pre-specified.) Also, although there is no PHP function for deleting a
prepared statement, the SQL DEALLOCATE statement can be used for that purpose.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name to give the prepared statement. Must be unique per-connection. If "" is
specified, then an unnamed statement is created, overwriting any previously defined
unnamed statement.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #62 - Using pg_prepare()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Prepare a query for execution

$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

// Execute the prepared query. Note that it is not necessary to escape

// the string "Joe's Widgets" in any way

$result = pg_execute($dbconn, "my_query", array("Joe's Widgets"));

// Execute the same prepared query, this time with a different parameter

$result = pg_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

?>

See Also

• pg_execute()
• pg_send_execute()

pg_put_line

pg_put_line -- Send a NULL-terminated string to PostgreSQL backend

Description

bool pg_put_line (string $data)

bool pg_put_line (resource $connection, string $data)

pg_put_line() sends a NULL-terminated string to the PostgreSQL backend server. This is
needed in conjunction with PostgreSQL's COPY FROM command.

COPY is a high-speed data loading interface supported by PostgreSQL. Data is passed in
without being parsed, and in a single transaction.

An alternative to using raw pg_put_line() commands is to use pg_copy_from(). This is a far
simpler interface.

Note

The application must explicitly send the two characters "\." on the last line to indicate to
the backend that it has finished sending its data, before issuing pg_end_copy().

Warning

Use of the pg_put_line() causes most large object operations, including pg_lo_read()
and pg_lo_tell(), to subsequently fail. You can use pg_copy_from() and pg_copy_to()
instead.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A line of text to be sent directly to the PostgreSQL backend. A NULL terminator is
added automatically.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #63 - pg_put_line() example

<?php

 $conn = pg_pconnect("dbname=foo");

 pg_query($conn, "create table bar (a int4, b char(16), d float8)");

 pg_query($conn, "copy bar from stdin");

 pg_put_line($conn, "3\thello world\t4.5\n");

 pg_put_line($conn, "4\tgoodbye world\t7.11\n");

 pg_put_line($conn, "\\.\n");

 pg_end_copy($conn);

?>

See Also

• pg_end_copy()

pg_query_params

pg_query_params -- Submits a command to the server and waits for the result, with the
ability to pass parameters separately from the SQL command text.

Description

resource pg_query_params (resource $connection, string $query, array $params)

resource pg_query_params (string $query, array $params)

Submits a command to the server and waits for the result, with the ability to pass
parameters separately from the SQL command text.

pg_query_params() is like pg_query(), but offers additional functionality: parameter values
can be specified separately from the command string proper. pg_query_params() is
supported only against PostgreSQL 7.4 or higher connections; it will fail when using earlier
versions.

If parameters are used, they are referred to in the query string as $1, $2, etc. params
specifies the actual values of the parameters. A NULL value in this array means the
corresponding parameter is SQL NULL.

The primary advantage of pg_query_params() over pg_query() is that parameter values
may be separated from the query string, thus avoiding the need for tedious and
error-prone quoting and escaping. Unlike pg_query(), pg_query_params() allows at most
one SQL command in the given string. (There can be semicolons in it, but not more than
one nonempty command.)

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #64 - Using pg_query_params()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Find all shops named Joe's Widgets. Note that it is not necessary to

// escape "Joe's Widgets"

$result = pg_query_params($dbconn, 'SELECT * FROM shops WHERE name = $1',
array("Joe's Widgets"));

// Compare against just using pg_query

$str = pg_escape_string("Joe's Widgets");

$result = pg_query($dbconn, "SELECT * FROM shops WHERE name = '{$str}'");

?>

See Also

• pg_query()

pg_query

pg_query -- Execute a query

Description

resource pg_query (string $query)

resource pg_query (resource $connection, string $query)

pg_query() executes the query on the specified database connection.

If an error occurs, and FALSE is returned, details of the error can be retrieved using the
pg_last_error() function if the connection is valid.

Note

Although connection can be omitted, it is not recommended, since it can be the cause
of hard to find bugs in scripts.

Note

This function used to be called pg_exec(). pg_exec() is still available for compatibility
reasons, but users are encouraged to use the newer name.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

query

The SQL statement or statements to be executed. When multiple statements are
passed to the function, they are automatically executed as one transaction, unless
there are explicit BEGIN/COMMIT commands included in the query string. However,
using multiple transactions in one function call is not recommended.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #65 - pg_query() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

Example #66 - Using pg_query() with multiple statements

<?php

$conn = pg_pconnect("dbname=publisher");

// these statements will be executed as one transaction

$query = "UPDATE authors SET author=UPPER(author) WHERE id=1;";

$query .= "UPDATE authors SET author=LOWER(author) WHERE id=2;";

$query .= "UPDATE authors SET author=NULL WHERE id=3;";

pg_query($conn, $query);

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_fetch_array()

• pg_fetch_object()
• pg_num_rows()
• pg_affected_rows()

pg_result_error_field

pg_result_error_field -- Returns an individual field of an error report.

Description

string pg_result_error_field (resource $result, int $fieldcode)

pg_result_error_field() returns one of the detailed error message fields associated with
result resource. It is only available against a PostgreSQL 7.4 or above server. The error
field is specified by the fieldcode.

Because pg_query() and pg_query_params() return FALSE if the query fails, you must
use pg_send_query() and pg_get_result() to get the result handle.

If you need to get additional error information from failed pg_query() queries, use
pg_set_error_verbosity() and pg_last_error() and then parse the result.

Parameters

result

A PostgreSQL query result resource from a previously executed statement.

fieldcode

Possible fieldcode values are: PGSQL_DIAG_SEVERITY,
PGSQL_DIAG_SQLSTATE, PGSQL_DIAG_MESSAGE_PRIMARY,
PGSQL_DIAG_MESSAGE_DETAIL, PGSQL_DIAG_MESSAGE_HINT,
PGSQL_DIAG_STATEMENT_POSITION, PGSQL_DIAG_INTERNAL_POSITION
(PostgreSQL 8.0+ only), PGSQL_DIAG_INTERNAL_QUERY (PostgreSQL 8.0+ only),
PGSQL_DIAG_CONTEXT, PGSQL_DIAG_SOURCE_FILE,
PGSQL_DIAG_SOURCE_LINE or PGSQL_DIAG_SOURCE_FUNCTION.

Return Values

A string containing the contents of the error field, NULL if the field does not exist or
FALSE on failure.

Examples

Example #67 - pg_result_error_field() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 $res1 = pg_get_result($dbconn);

 echo pg_result_error_field($res1, PGSQL_DIAG_SQLSTATE);

?>

See Also

• pg_result_error()

pg_result_error

pg_result_error -- Get error message associated with result

Description

string pg_result_error (resource $result)

pg_result_error() returns any error message associated with the result resource.
Therefore, the user has a better chance of getting the correct error message than with
pg_last_error().

The function pg_result_error_field() can give much greater detail on result errors than
pg_result_error().

Because pg_query() returns FALSE if the query fails, you must use pg_send_query() and
pg_get_result() to get the result handle.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

Returns a string if there is an error associated with the result parameter, FALSE
otherwise.

Examples

Example #68 - pg_result_error() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 $res1 = pg_get_result($dbconn);

 echo pg_result_error($res1);

?>

See Also

• pg_result_error_field()
• pg_query()
• pg_send_query()
• pg_get_result()
• pg_last_error()
• pg_last_notice()

pg_result_seek

pg_result_seek -- Set internal row offset in result resource

Description

bool pg_result_seek (resource $result, int $offset)

pg_result_seek() sets the internal row offset in a result resource.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

offset

Row to move the internal offset to in the result resource. Rows are numbered starting
from zero.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #69 - pg_result_seek() example

<?php

// Connect to the database

$conn = pg_pconnect("dbname=publisher");

// Execute a query

$result = pg_query($conn, "SELECT author, email FROM authors");

// Seek to the 3rd row (assuming there are 3 rows)

pg_result_seek($result, 2);

// Fetch the 3rd row

$row = pg_fetch_row($result);

?>

See Also

• pg_fetch_row()
• pg_fetch_assoc()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_result_status

pg_result_status -- Get status of query result

Description

mixed pg_result_status (resource $result [, int $type])

pg_result_status() returns the status of a result resource, or the PostgreSQL command
completion tag associated with the result

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

type

Either PGSQL_STATUS_LONG to return the numeric status of the result, or
PGSQL_STATUS_STRING to return the command tag of the result. If not specified,
PGSQL_STATUS_LONG is the default.

Return Values

Possible return values are PGSQL_EMPTY_QUERY, PGSQL_COMMAND_OK,
PGSQL_TUPLES_OK, PGSQL_COPY_OUT, PGSQL_COPY_IN,
PGSQL_BAD_RESPONSE, PGSQL_NONFATAL_ERROR and
PGSQL_FATAL_ERROR if PGSQL_STATUS_LONG is specified. Otherwise, a string
containing the PostgreSQL command tag is returned.

ChangeLog

Version Description

4.3.0 The type parameter was added.

Examples

Example #70 - pg_result_status() example

<?php

// Connect to the database

$conn = pg_pconnect("dbname=publisher");

// Execute a COPY

$result = pg_query($conn, "COPY authors FROM STDIN;");

// Get the result status

$status = pg_result_status($result);

// Determine status

if ($status == PGSQL_COPY_IN)

 echo "Copy began.";

else

 echo "Copy failed.";

?>

The above example will output:

Copy began.

See Also

• pg_connection_status()

pg_select

pg_select -- Select records

Description

mixed pg_select (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_select() selects records specified by assoc_array which has field=>value. For a
successful query, it returns an array containing all records and fields that match the
condition specified by assoc_array.

If options is specified, pg_convert() is applied to assoc_array with the specified flags.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to select rows.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the conditions that a row must meet to be retrieved.

options

Any number of PGSQL_CONV_FORCE_NULL, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC, PGSQL_DML_ASYNC or PGSQL_DML_STRING combined. If
PGSQL_DML_STRING is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #71 - pg_select() example

<?php

 $db = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $rec = pg_select($db, 'post_log', $_POST);

 if ($rec) {

 echo "Records selected\n";

 var_dump($rec);

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_send_execute

pg_send_execute -- Sends a request to execute a prepared statement with given
parameters, without waiting for the result(s).

Description

bool pg_send_execute (resource $connection, string $stmtname, array $params)

Sends a request to execute a prepared statement with given parameters, without waiting
for the result(s).

This is similar to pg_send_query_params(), but the command to be executed is specified
by naming a previously-prepared statement, instead of giving a query string. The function's
parameters are handled identically to pg_execute(). Like pg_execute(), it will not work on
pre-7.4 versions of PostgreSQL.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name of the prepared statement to execute. if "" is specified, then the unnamed
statement is executed. The name must have been previously prepared using
pg_prepare(), pg_send_prepare() or a PREPARE SQL command.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

Returns TRUE on success, FALSE on failure. Use pg_get_result() to determine the query
result.

Examples

Example #72 - Using pg_send_execute()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Prepare a query for execution

 if (!pg_connection_busy($dbconn)) {

 pg_send_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

 $res1 = pg_get_result($dbconn);

 }

 // Execute the prepared query. Note that it is not necessary to escape

 // the string "Joe's Widgets" in any way

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Joe's Widgets"));

 $res2 = pg_get_result($dbconn);

 }

 // Execute the same prepared query, this time with a different parameter

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

 $res3 = pg_get_result($dbconn);

 }

?>

See Also

• pg_prepare()
• pg_send_prepare()
• pg_execute()

pg_send_prepare

pg_send_prepare -- Sends a request to create a prepared statement with the given
parameters, without waiting for completion.

Description

bool pg_send_prepare (resource $connection, string $stmtname, string $query)

Sends a request to create a prepared statement with the given parameters, without waiting
for completion.

This is an asynchronous version of pg_prepare(): it returns TRUE if it was able to dispatch
the request, and FALSE if not. After a successful call, call pg_get_result() to determine
whether the server successfully created the prepared statement. The function's
parameters are handled identically to pg_prepare(). Like pg_prepare(), it will not work on
pre-7.4 versions of PostgreSQL.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name to give the prepared statement. Must be unique per-connection. If "" is
specified, then an unnamed statement is created, overwriting any previously defined
unnamed statement.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

Return Values

Returns TRUE on success, FALSE on failure. Use pg_get_result() to determine the query
result.

Examples

Example #73 - Using pg_send_prepare()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Prepare a query for execution

 if (!pg_connection_busy($dbconn)) {

 pg_send_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

 $res1 = pg_get_result($dbconn);

 }

 // Execute the prepared query. Note that it is not necessary to escape

 // the string "Joe's Widgets" in any way

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Joe's Widgets"));

 $res2 = pg_get_result($dbconn);

 }

 // Execute the same prepared query, this time with a different parameter

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

 $res3 = pg_get_result($dbconn);

 }

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_execute()
• pg_send_execute()
• pg_send_query_params()

pg_send_query_params

pg_send_query_params -- Submits a command and separate parameters to the server
without waiting for the result(s).

Description

bool pg_send_query_params (resource $connection, string $query, array $params)

Submits a command and separate parameters to the server without waiting for the
result(s).

This is equivalent to pg_send_query() except that query parameters can be specified
separately from the query string. The function's parameters are handled identically to
pg_query_params(). Like pg_query_params(), it will not work on pre-7.4 PostgreSQL
connections, and it allows only one command in the query string.

Parameters

connection

PostgreSQL database connection resource.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

Returns TRUE on success or FALSE on failure.

Use pg_get_result() to determine the query result.

Examples

Example #74 - Using pg_send_query_params()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Using parameters. Note that it is not necessary to quote or escape

 // the parameter.

 pg_send_query_params($dbconn, 'select count(*) from authors where city =
$1', array('Perth'));

 // Compare against basic pg_send_query usage

 $str = pg_escape_string('Perth');

 pg_send_query($dbconn, "select count(*) from authors where city =
'${str}'");

?>

See Also

• pg_send_query()

pg_send_query

pg_send_query -- Sends asynchronous query

Description

bool pg_send_query (resource $connection, string $query)

pg_send_query() sends a query or queries asynchronously to the connection. Unlike
pg_query(), it can send multiple queries at once to PostgreSQL and get the results one by
one using pg_get_result().

Script execution is not blocked while the queries are executing. Use pg_connection_busy()
to check if the connection is busy (i.e. the query is executing). Queries may be cancelled
using pg_cancel_query().

Although the user can send multiple queries at once, multiple queries cannot be sent over
a busy connection. If a query is sent while the connection is busy, it waits until the last
query is finished and discards all its results.

Parameters

connection

PostgreSQL database connection resource.

query

The SQL statement or statements to be executed.

Return Values

Returns TRUE on success or FALSE on failure.

Use pg_get_result() to determine the query result.

Examples

Example #75 - pg_send_query() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 $res2 = pg_get_result($dbconn);

 echo "Second call to pg_get_result(): $res2\n";

 $rows2 = pg_num_rows($res2);

 echo "$res2 has $rows2 records\n";

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

Second call to pg_get_result(): Resource id #4

Resource id #4 has 1 records

See Also

• pg_query()
• pg_cancel_query()
• pg_get_result()
• pg_connection_busy()

pg_set_client_encoding

pg_set_client_encoding -- Set the client encoding

Description

int pg_set_client_encoding (string $encoding)

int pg_set_client_encoding (resource $connection, string $encoding)

pg_set_client_encoding() sets the client encoding and returns 0 if success or -1 if error.

PostgreSQL will automatically convert data in the backend database encoding into the
frontend encoding.

Note

The function used to be called pg_setclientencoding().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

encoding

The required client encoding. One of SQL_ASCII, EUC_JP, EUC_CN, EUC_KR,
EUC_TW, UNICODE, MULE_INTERNAL, LATINX (X=1...9), KOI8, WIN, ALT, SJIS,
BIG5 or WIN1250. The exact list of available encodings depends on your PostgreSQL
version, so check your PostgreSQL manual for a more specific list.

Return Values

Returns 0 on success or -1 on error.

Examples

Example #76 - pg_set_client_encoding() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Set the client encoding to UNICODE. Data will be automatically

// converted from the backend encoding to the frontend.

pg_set_client_encoding($conn, UNICODE);

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

// Write out UTF-8 data

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

See Also

• pg_client_encoding()

pg_set_error_verbosity

pg_set_error_verbosity -- Determines the verbosity of messages returned by
pg_last_error() and pg_result_error().

Description

int pg_set_error_verbosity (resource $connection, int $verbosity)

int pg_set_error_verbosity (int $verbosity)

Determines the verbosity of messages returned by pg_last_error() and pg_result_error().

pg_set_error_verbosity() sets the verbosity mode, returning the connection's previous
setting. In PGSQL_ERRORS_TERSE mode, returned messages include severity, primary
text, and position only; this will normally fit on a single line. The default mode (
PGSQL_ERRORS_DEFAULT) produces messages that include the above plus any
detail, hint, or context fields (these may span multiple lines). The
PGSQL_ERRORS_VERBOSE mode includes all available fields. Changing the verbosity
does not affect the messages available from already-existing result objects, only
subsequently-created ones.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

verbosity

The required verbosity: PGSQL_ERRORS_TERSE, PGSQL_ERRORS_DEFAULT or
PGSQL_ERRORS_VERBOSE.

Return Values

The previous verbosity level: PGSQL_ERRORS_TERSE, PGSQL_ERRORS_DEFAULT
or PGSQL_ERRORS_VERBOSE.

Examples

Example #77 - pg_set_error_verbosity() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 pg_set_error_verbosity($dbconn, PGSQL_ERRORS_VERBOSE);

 $res1 = pg_get_result($dbconn);

 echo pg_result_error($res1);

?>

See Also

• pg_last_error()
• pg_result_error()

pg_trace

pg_trace -- Enable tracing a PostgreSQL connection

Description

bool pg_trace (string $pathname [, string $mode [, resource $connection]])

pg_trace() enables tracing of the PostgreSQL frontend/backend communication to a file.
To fully understand the results, one needs to be familiar with the internals of PostgreSQL
communication protocol.

For those who are not, it can still be useful for tracing errors in queries sent to the server,
you could do for example grep '^To backend' trace.log and see what queries actually were
sent to the PostgreSQL server. For more information, refer to the » PostgreSQL
Documentation.

Parameters

pathname

The full path and file name of the file in which to write the trace log. Same as in fopen()
.

pathname

An optional file access mode, same as for fopen(). Defaults to "w".

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #78 - pg_trace() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 pg_trace('/tmp/trace.log', 'w', $pgsql_conn);

 pg_query("SELECT 1");

http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

 pg_untrace($pgsql_conn);

 // Now /tmp/trace.log will contain backend communication

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• fopen()
• pg_untrace()

pg_transaction_status

pg_transaction_status -- Returns the current in-transaction status of the server.

Description

int pg_transaction_status (resource $connection)

Returns the current in-transaction status of the server.

Caution

pg_transaction_status() will give incorrect results when using a PostgreSQL 7.3 server
that has the parameter autocommit set to off. The server-side autocommit feature has
been deprecated and does not exist in later server versions.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The status can be PGSQL_TRANSACTION_IDLE (currently idle),
PGSQL_TRANSACTION_ACTIVE (a command is in progress),
PGSQL_TRANSACTION_INTRANS (idle, in a valid transaction block), or
PGSQL_TRANSACTION_INERROR (idle, in a failed transaction block).
PGSQL_TRANSACTION_UNKNOWN is reported if the connection is bad.
PGSQL_TRANSACTION_ACTIVE is reported only when a query has been sent to the
server and not yet completed.

Examples

Example #79 - pg_transaction_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $stat = pg_transaction_status($dbconn);

 if ($stat === PGSQL_TRANSACTION_UNKNOWN) {

 echo 'Connection is bad';

 } else if ($stat === PGSQL_TRANSACTION_IDLE) {

 echo 'Connection is currently idle';

 } else {

 echo 'Connection is in a transaction state';

 }

?>

pg_tty

pg_tty -- Return the TTY name associated with the connection

Description

string pg_tty ([resource $connection])

pg_tty() returns the TTY name that server side debugging output is sent to on the given
PostgreSQL connection resource.

Note

pg_tty() is obsolete, since the server no longer pays attention to the TTY setting, but
the function remains for backwards compatibility.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the debug TTY of the connection, or FALSE on error.

Examples

Example #80 - pg_tty() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Server debug TTY is: " . pg_tty($pgsql_conn) . "
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

pg_unescape_bytea

pg_unescape_bytea -- Unescape binary for bytea type

Description

string pg_unescape_bytea (string $data)

pg_unescape_bytea() unescapes PostgreSQL bytea data values. It returns the unescaped
string, possibly containing binary data.

Note

When you SELECT a bytea type, PostgreSQL returns octal byte values prefixed with '\'
(e.g. \032). Users are supposed to convert back to binary format manually.

This function requires PostgreSQL 7.2 or later. With PostgreSQL 7.2.0 and 7.2.1,
bytea values must be cast when you enable multi-byte support. i.e. INSERT INTO
test_table (image) VALUES ('$image_escaped'::bytea); PostgreSQL 7.2.2 or later
does not need a cast. The exception is when the client and backend character
encoding does not match, and there may be multi-byte stream error. User must then
cast to bytea to avoid this error.

Parameters

data

A string containing PostgreSQL bytea data to be converted into a PHP binary string.

Return Values

A string containing the unescaped data.

Examples

Example #81 - pg_unescape_bytea() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Get the bytea data

 $res = pg_query("SELECT data FROM gallery WHERE name='Pine trees'");

 $raw = pg_fetch_result($res, 'data');

 // Convert to binary and send to the browser

 header('Content-type: image/jpeg');

 echo pg_unescape_bytea($raw);

?>

See Also

• pg_escape_bytea()
• pg_escape_string()

pg_untrace

pg_untrace -- Disable tracing of a PostgreSQL connection

Description

bool pg_untrace ([resource $connection])

Stop tracing started by pg_trace().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Always returns TRUE.

Examples

Example #82 - pg_untrace() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 pg_trace('/tmp/trace.log', 'w', $pgsql_conn);

 pg_query("SELECT 1");

 pg_untrace($pgsql_conn);

 // Now tracing of backend communication is disabled

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• pg_trace()

pg_update

pg_update -- Update table

Description

mixed pg_update (resource $connection, string $table_name, array $data, array $
condition [, int $options])

pg_update() updates records that matches condition with data. If options is specified,
pg_convert() is applied to data with specified options.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to update rows.

data

An array whose keys are field names in the table table_name, and whose values are
what matched rows are to be updated to.

condition

An array whose keys are field names in the table table_name, and whose values are
the conditions that a row must meet to be updated.

options

Any number of PGSQL_CONV_OPTS, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC or PGSQL_DML_STRING combined. If PGSQL_DML_STRING
is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #83 - pg_update() example

<?php

 $db = pg_connect('dbname=foo');

 $data = array('field1'=>'AA', 'field2'=>'BB');

 // This is safe, since $_POST is converted automatically

 $res = pg_update($db, 'post_log', $_POST, $data);

 if ($res) {

 echo "Data is updated: $res\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_version

pg_version -- Returns an array with client, protocol and server version (when available)

Description

array pg_version ([resource $connection])

pg_version() returns an array with the client, protocol and server version. Protocol and
server versions are only available if PHP was compiled with PostgreSQL 7.4 or later.

For more detailed server information, use pg_parameter_status().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns an array with client, protocol and server_version keys and values (if available).
Returns FALSE on error or invalid connection.

Examples

Example #84 - pg_version() example

<?php

 $dbconn = pg_connect("host=localhost port=5432 dbname=mary")

 or die("Could not connect");

 $v = pg_version($dbconn);

 echo $v['client'];

?>

The above example will output:

7.4

See Also

• pg_parameter_status()

	PostgreSQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	PostgreSQL extension overview example

	PostgreSQL Functions
	Notes
	pg_affected_rows
	pg_cancel_query
	pg_client_encoding
	pg_close
	pg_connect
	pg_connection_busy
	pg_connection_reset
	pg_connection_status
	pg_convert
	pg_copy_from
	pg_copy_to
	pg_dbname
	pg_delete
	pg_end_copy
	pg_escape_bytea
	pg_escape_string
	pg_execute
	pg_fetch_all_columns
	pg_fetch_all
	pg_fetch_array
	pg_fetch_assoc
	pg_fetch_object
	pg_fetch_result
	pg_fetch_row
	pg_field_is_null
	pg_field_name
	pg_field_num
	pg_field_prtlen
	pg_field_size
	pg_field_table
	pg_field_type_oid
	pg_field_type
	pg_free_result
	pg_get_notify
	pg_get_pid
	pg_get_result
	pg_host
	pg_insert
	pg_last_error
	pg_last_notice
	pg_last_oid
	pg_lo_close
	pg_lo_create
	pg_lo_export
	pg_lo_import
	pg_lo_open
	pg_lo_read_all
	pg_lo_read
	pg_lo_seek
	pg_lo_tell
	pg_lo_unlink
	pg_lo_write
	pg_meta_data
	pg_num_fields
	pg_num_rows
	pg_options
	pg_parameter_status
	pg_pconnect
	pg_ping
	pg_port
	pg_prepare
	pg_put_line
	pg_query_params
	pg_query
	pg_result_error_field
	pg_result_error
	pg_result_seek
	pg_result_status
	pg_select
	pg_send_execute
	pg_send_prepare
	pg_send_query_params
	pg_send_query
	pg_set_client_encoding
	pg_set_error_verbosity
	pg_trace
	pg_transaction_status
	pg_tty
	pg_unescape_bytea
	pg_untrace
	pg_update
	pg_version

