
PHP / Java Integration

Introduction

There are two possible ways to bridge PHP and Java: you can either integrate PHP into a
Java Servlet environment, which is the more stable and efficient solution, or integrate Java
support into PHP. The former is provided by a SAPI module that interfaces with the Servlet
server, the latter by this Java extension.

The Java extension provides a simple and effective means for creating and invoking
methods on Java objects from PHP. The JVM is created using JNI, and everything runs
in-process.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Installing/Configuring

Requirements

You need a Java VM installed on your machine to use this extension.

Installation

This » PECL extension is not bundled with PHP.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. In order to use these functions you must compile PHP
with Java support by using the --with-java[=DIR] where DIR points to the base install
directory of your JDK. This extension can only be built as a shared extension. Additional
build instructions can be found in php-src/ext/java/README.

Windows users will enable php_java.dll inside of php.ini in order to use these functions. In
PHP 4 this DLL resides in the extensions/ directory within the PHP Windows binaries
download. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Note

In order to enable this module on a Windows environment with PHP <= 4.0.6, you
must make jvm.dll available to your systems PATH. No additional DLL is needed for
PHP versions > 4.0.6.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Java configuration options

Name Default Changeable Changelog

java.class.path NULL PHP_INI_ALL

java.home NULL PHP_INI_ALL

java.library.path NULL PHP_INI_ALL

java.library JAVALIB PHP_INI_ALL

http://pecl.php.net/
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Java Servlet SAPI

The Java Servlet SAPI builds upon the mechanism defined by the Java extension to
enable the entire PHP processor to be run as a servlet. The primary advantage of this from
a PHP perspective is that web servers which support servlets typically take great care in
pooling and reusing JVMs. Build instructions for the Servlet SAPI module can be found in
php4/sapi/README. Notes:

• While this code is intended to be able to run on any servlet engine, it has only been
tested on Apache's Jakarta/tomcat to date. Bug reports, success stories and/or
patches required to get this code to run on other engines would be appreciated.

• PHP has a habit of changing the working directory. sapi/servlet will eventually change
it back, but while PHP is running the servlet engine may not be able to load any
classes from the CLASSPATH which are specified using a relative directory syntax, or
find the work directory used for administration and JSP compilation tasks.

Examples

Example #1 - Java Example

<?php

// get instance of Java class java.lang.System in PHP

$system = new Java('java.lang.System');

// demonstrate property access

echo 'Java version=' . $system->getProperty('java.version') . '
';

echo 'Java vendor=' . $system->getProperty('java.vendor') . '
';

echo 'OS=' . $system->getProperty('os.name') . ' ' .

 $system->getProperty('os.version') . ' on ' .

 $system->getProperty('os.arch') . '
';

// java.util.Date example

$formatter = new Java('java.text.SimpleDateFormat',

 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");

echo $formatter->format(new Java('java.util.Date'));

?>

Example #2 - AWT Example

<?php

// This example is only intended to be run using the CLI.

$frame = new Java('java.awt.Frame', 'PHP');

$button = new Java('java.awt.Button', 'Hello Java World!');

$frame->add('North', $button);

$frame->validate();

$frame->pack();

$frame->visible = True;

$thread = new Java('java.lang.Thread');

$thread->sleep(10000);

$frame->dispose();

?>

Notes:

• new Java() will create an instance of a class if a suitable constructor is available. If no
parameters are passed and the default constructor is useful as it provides access to
classes like java.lang.System which expose most of their functionallity through static
methods.

• Accessing a member of an instance will first look for bean properties then public fields.
In other words, print $date.time will first attempt to be resolved as $date.getTime(),

then as $date.time.

• Both static and instance members can be accessed on an object with the same syntax.
Furthermore, if the java object is of type java.lang.Class, then static members of the
class (fields and methods) can be accessed.

• Exceptions raised result in PHP warnings, and NULL results. The warnings may be
eliminated by prefixing the method call with an "@" sign. The following APIs may be
used to retrieve and reset the last error:

• java_last_exception_get()

• java_last_exception_clear()

• Overload resolution is in general a hard problem given the differences in types
between the two languages. The PHP Java extension employs a simple, but fairly
effective, metric for determining which overload is the best match. Additionally, method
names in PHP are not case sensitive, potentially increasing the number of overloads to
select from. Once a method is selected, the parameters are coerced if necessary,
possibly with a loss of data (example: double precision floating point numbers will be
converted to boolean).

• In the tradition of PHP, arrays and hashtables may pretty much be used
interchangably. Note that hashtables in PHP may only be indexed by integers or
strings; and that arrays of primitive types in Java can not be sparse. Also note that
these constructs are passed by value, so may be expensive in terms of memory and
time.

Java Functions

java_last_exception_clear

java_last_exception_clear -- Clear last Java exception

Description

void java_last_exception_clear (void)

Clears last Java exception.

Return Values

No value is returned.

Examples

See java_last_exception_get() for an example.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

java_last_exception_get

java_last_exception_get -- Get last Java exception

Description

object java_last_exception_get (void)

Gets last Java exception.

Return Values

Returns an exception object.

Examples

The following example demonstrates the usage of Java's exception handler from within
PHP:

Example #3 - Java exception handler

<?php

$stack = new Java('java.util.Stack');

$stack->push(1);

// This should succeed

$result = $stack->pop();

$ex = java_last_exception_get();

if (!$ex) {

 echo "$result\n";

}

// This should fail (error suppressed by @)

$result = @$stack->pop();

$ex = java_last_exception_get();

if ($ex) {

 echo $ex->toString();

}

// Clear last exception

java_last_exception_clear();

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This

function should be used at your own risk.

	Java
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Java Servlet SAPI
	Examples
	Java Example

	Java Functions
	java_last_exception_clear
	java_last_exception_get

