
System program execution

Introduction

Those functions provide means to execute commands on the system itself, and means to
secure such commands.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a process resource, returned by proc_open().

Predefined Constants

This extension has no constants defined.

Program execution Functions

Notes

Warning

Open files with lock (especially open sessions) should be closed before executing a
program in the background.

See Also

These functions are also closely related to the backtick operator. Also, while in safe mode
you must consider the safe_mode_exec_dir directive.

escapeshellarg

escapeshellarg -- Escape a string to be used as a shell argument

Description

string escapeshellarg (string $arg)

escapeshellarg() adds single quotes around a string and quotes/escapes any existing
single quotes allowing you to pass a string directly to a shell function and having it be
treated as a single safe argument. This function should be used to escape individual
arguments to shell functions coming from user input. The shell functions include exec(),
system() and the backtick operator.

Parameters

arg

The argument that will be escaped.

Return Values

The escaped string.

Examples

Example #1 - escapeshellarg() example

<?php

system('ls '.escapeshellarg($dir));

?>

See Also

• escapeshellcmd()
• exec()
• popen()
• system()
• backtick operator

escapeshellcmd

escapeshellcmd -- Escape shell metacharacters

Description

string escapeshellcmd (string $command)

escapeshellcmd() escapes any characters in a string that might be used to trick a shell
command into executing arbitrary commands. This function should be used to make sure
that any data coming from user input is escaped before this data is passed to the exec() or
system() functions, or to the backtick operator.

Following characters are preceded by a backslash: #&;`|*?~<>^()[]{}$\, \x0A and \xFF. '
and " are escaped only if they are not paired. In Windows, all these characters plus % are
replaced by a space instead.

Parameters

command

The command that will be escaped.

Return Values

The escaped string.

Examples

Example #2 - escapeshellcmd() example

<?php

$e = escapeshellcmd($userinput);

// here we don't care if $e has spaces

system("echo $e");

$f = escapeshellcmd($filename);

// and here we do, so we use quotes

system("touch \"/tmp/$f\"; ls -l \"/tmp/$f\"");

?>

See Also

• escapeshellarg()
• exec()
• popen()
• system()
• backtick operator

exec

exec -- Execute an external program

Description

string exec (string $command [, array &$output [, int &$return_var]])

exec() executes the given command.

Parameters

command

The command that will be executed.

output

If the output argument is present, then the specified array will be filled with every line
of output from the command. Trailing whitespace, such as \n, is not included in this
array. Note that if the array already contains some elements, exec() will append to the
end of the array. If you do not want the function to append elements, call unset() on the
array before passing it to exec().

return_var

If the return_var argument is present along with the output argument, then the return
status of the executed command will be written to this variable.

Return Values

The last line from the result of the command. If you need to execute a command and have
all the data from the command passed directly back without any interference, use the
passthru() function.

To get the output of the executed command, be sure to set and use the output parameter.

Examples

Example #3 - An exec() example

<?php

// outputs the username that owns the running php/httpd process

// (on a system with the "whoami" executable in the path)

echo exec('whoami');

?>

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• system()
• passthru()
• escapeshellcmd()
• pcntl_exec()
• backtick operator

passthru

passthru -- Execute an external program and display raw output

Description

void passthru (string $command [, int &$return_var])

The passthru() function is similar to the exec() function in that it executes a command. This
function should be used in place of exec() or system() when the output from the Unix
command is binary data which needs to be passed directly back to the browser. A
common use for this is to execute something like the pbmplus utilities that can output an
image stream directly. By setting the Content-type to image/gif and then calling a pbmplus
program to output a gif, you can create PHP scripts that output images directly.

Parameters

command

The command that will be executed.

return_var

If the return_var argument is present, the return status of the Unix command will be
placed here.

Return Values

No value is returned.

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• exec()
• system()
• popen()
• escapeshellcmd()
• backtick operator

proc_close

proc_close -- Close a process opened by proc_open() and return the exit code of that
process.

Description

int proc_close (resource $process)

proc_close() is similar to pclose() except that it only works on processes opened by
proc_open(). proc_close() waits for the process to terminate, and returns its exit code. If
you have open pipes to that process, you should fclose() them prior to calling this function
in order to avoid a deadlock - the child process may not be able to exit while the pipes are
open.

Parameters

process

The proc_open() resource that will be closed.

Return Values

Returns the termination status of the process that was run.

proc_get_status

proc_get_status -- Get information about a process opened by proc_open()

Description

array proc_get_status (resource $process)

proc_get_status() fetches data about a process opened using proc_open().

Parameters

process

The proc_open() resource that will be evaluated.

Return Values

An array of collected information on success, and FALSE on failure. The returned array
contains the following elements:

element type description

command string The command string that
was passed to proc_open().

pid int process id

running bool TRUE if the process is still
running, FALSE if it has
terminated.

signaled bool TRUE if the child process
has been terminated by an
uncaught signal. Always set
to FALSE on Windows.

stopped bool TRUE if the child process
has been stopped by a
signal. Always set to FALSE
on Windows.

exitcode int The exit code returned by the
process (which is only
meaningful if running is
FALSE). Only first call of

this function return real
value, next calls return -1.

termsig int The number of the signal that
caused the child process to
terminate its execution (only
meaningful if signaled is
TRUE).

stopsig int The number of the signal that
caused the child process to
stop its execution (only
meaningful if stopped is
TRUE).

See Also

• proc_open()

proc_nice

proc_nice -- Change the priority of the current process

Description

bool proc_nice (int $increment)

proc_nice() changes the priority of the current process by the amount specified in
increment. A positive increment will lower the priority of the current process, whereas a
negative increment will raise the priority.

proc_nice() is not related to proc_open() and its associated functions in any way.

Parameters

increment

The increment value of the priority change.

Return Values

Returns TRUE on success or FALSE on failure. If an error occurs, like the user lacks
permission to change the priority, an error of level E_WARNING is also generated.

Notes

Note

Availability

proc_nice() will only exist if your system has 'nice' capabilities. 'nice' conforms to:
SVr4, SVID EXT, AT&T, X/OPEN, BSD 4.3. This means that proc_nice() is not
available on Windows.

proc_open

proc_open -- Execute a command and open file pointers for input/output

Description

resource proc_open (string $cmd, array $descriptorspec, array &$pipes [, string $cwd [,
array $env [, array $other_options]]])

proc_open() is similar to popen() but provides a much greater degree of control over the
program execution.

Parameters

cmd

The command to execute

descriptorspec

An indexed array where the key represents the descriptor number and the value
represents how PHP will pass that descriptor to the child process. 0 is stdin, 1 is
stdout, while 2 is stderr. The currently supported pipe types are file and pipe. The file
descriptor numbers are not limited to 0, 1 and 2 - you may specify any valid file
descriptor number and it will be passed to the child process. This allows your script to
interoperate with other scripts that run as "co-processes". In particular, this is useful for
passing passphrases to programs like PGP, GPG and openssl in a more secure
manner. It is also useful for reading status information provided by those programs on
auxiliary file descriptors.

pipes

Will be set to an indexed array of file pointers that correspond to PHP's end of any
pipes that are created.

cwd

The initial working dir for the command. This must be an absolute directory path, or
NULL if you want to use the default value (the working dir of the current PHP process)

env

An array with the environment variables for the command that will be run, or NULL to
use the same environment as the current PHP process

other_options

Allows you to specify additional options. Currently supported options include:

• suppress_errors (windows only): suppresses errors generated by this function
when it's set to TRUE

• bypass_shell (windows only): bypass cmd.exe shell when set to TRUE
• context: stream context used when opening files (created with

stream_context_create())

• binary_pipes: open pipes in binary mode, instead of using the usual
stream_encoding

Return Values

Returns a resource representing the process, which should be freed using proc_close()
when you are finished with it. On failure returns FALSE.

ChangeLog

Version Description

6.0.0 Added the context and binary_pipes options
to the other_options parameter.

5.2.1 Added the bypass_shell option to the
other_options parameter.

5.0.0 Added the cwd, env and other_options
parameters.

Examples

Example #4 - A proc_open() example

<?php

$descriptorspec = array(

 0 => array("pipe", "r"), // stdin is a pipe that the child will read from

 1 => array("pipe", "w"), // stdout is a pipe that the child will write to

 2 => array("file", "/tmp/error-output.txt", "a") // stderr is a file to
write to

);

$cwd = '/tmp';

$env = array('some_option' => 'aeiou');

$process = proc_open('php', $descriptorspec, $pipes, $cwd, $env);

if (is_resource($process)) {

 // $pipes now looks like this:

 // 0 => writeable handle connected to child stdin

 // 1 => readable handle connected to child stdout

 // Any error output will be appended to /tmp/error-output.txt

 fwrite($pipes[0], '<?php print_r($_ENV); ?>');

 fclose($pipes[0]);

 echo stream_get_contents($pipes[1]);

 fclose($pipes[1]);

 // It is important that you close any pipes before calling

 // proc_close in order to avoid a deadlock

 $return_value = proc_close($process);

 echo "command returned $return_value\n";

}

?>

The above example will output something similar to:

Array

(

 [some_option] => aeiou

 [PWD] => /tmp

 [SHLVL] => 1

 [_] => /usr/local/bin/php

)

command returned 0

Notes

Note

Windows compatibility: Descriptors beyond 2 (stderr) are made available to the child
process as inheritable handles, but since the Windows architecture does not associate
file descriptor numbers with low-level handles, the child process does not (yet) have a
means of accessing those handles. Stdin, stdout and stderr work as expected.

Note

If you only need a uni-directional (one-way) process pipe, use popen() instead, as it is
much easier to use.

See Also

• popen()
• exec()
• system()
• passthru()
• stream_select()
• The backtick operator

proc_terminate

proc_terminate -- Kills a process opened by proc_open

Description

bool proc_terminate (resource $process [, int $signal])

Signals a process (created using proc_open()) that it should terminate. proc_terminate()
returns immediately and does not wait for the process to terminate.

proc_terminate() allows you terminate the process and continue with other tasks. You may
poll the process (to see if it has stopped yet) by using the proc_get_status() function.
However this is only possible with PHP 5.2.2 or newer, as previous versions destroyed the
given process resource.

Parameters

process

The proc_open() resource that will be closed.

signal

This optional parameter is only useful on POSIX operating systems; you may specify a
signal to send to the process using the kill(2) system call. The default is SIGTERM.

Return Values

Returns the termination status of the process that was run.

See Also

• proc_open()
• proc_close()
• proc_get_status()

shell_exec

shell_exec -- Execute command via shell and return the complete output as a string

Description

string shell_exec (string $cmd)

This function is identical to the backtick operator.

Parameters

cmd

The command that will be executed.

Return Values

The output from the executed command.

Examples

Example #5 - A shell_exec() example

<?php

$output = shell_exec('ls -lart');

echo "<pre>$output</pre>";

?>

Notes

Note

This function is disabled when PHP is running in safe mode.

See Also

• exec()
• escapeshellcmd()

system

system -- Execute an external program and display the output

Description

string system (string $command [, int &$return_var])

system() is just like the C version of the function in that it executes the given command and
outputs the result.

The system() call also tries to automatically flush the web server's output buffer after each
line of output if PHP is running as a server module.

If you need to execute a command and have all the data from the command passed
directly back without any interference, use the passthru() function.

Parameters

command

The command that will be executed.

return_var

If the return_var argument is present, then the return status of the executed
command will be written to this variable.

Return Values

Returns the last line of the command output on success, and FALSE on failure.

Examples

Example #6 - system() example

<?php

echo '<pre>';

// Outputs all the result of shellcommand "ls", and returns

// the last output line into $last_line. Stores the return value

// of the shell command in $retval.

$last_line = system('ls', $retval);

// Printing additional info

echo '

</pre>

<hr />Last line of the output: ' . $last_line . '

<hr />Return value: ' . $retval;

?>

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• exec()
• passthru()
• popen()
• escapeshellcmd()
• pcntl_exec()
• backtick operator

	Program execution
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Program execution Functions
	Notes
	See Also
	escapeshellarg
	escapeshellcmd
	exec
	passthru
	proc_close
	proc_get_status
	proc_nice
	proc_open
	proc_terminate
	shell_exec
	system

