
Alternative PHP Cache

Introduction

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. It was
conceived of to provide a free, open, and robust framework for caching and optimizing
PHP intermediate code.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/apc.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Note

On Windows, APC needs a temp path to exist, and be writable by the web server. It
checks TMP, TEMP, USERPROFILE environment variables in that order and finally
tries the WINDOWS directory if none of those are set.

Note

For more in-depth, highly technical implementation details, see the
» developer-supplied TECHNOTES file.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Although the default APC settings are fine for many installations, serious users should
consider tuning the following parameters.

There are two main decisions you have to make. First, how much shared memory do you
want to set aside for APC, and second, whether you want APC to check if a file has been
modified on every request. The two ini directives involved here are apc.shm_size and
apc.stat. Read the sections on these two directives carefully below.

Once you have a running server, you should copy the apc.php script that comes with the

http://pecl.php.net/
http://pecl.php.net/package/apc
http://pecl.php.net/package/apc
http://www.php.net/downloads.php
http://pecl4win.php.net/
http://cvs.php.net/viewvc.cgi/pecl/apc/TECHNOTES.txt?view=co
http://cvs.php.net/viewvc.cgi/pecl/apc/TECHNOTES.txt?view=co

extension to somewhere in your docroot and load it up in your browser. It provides you
with a detailed look at what is happening in your cache. If you have GD enabled in PHP, it
will even have pretty graphs. First thing to check is of course that it is actually caching
files. Assuming it is working you should then pay close attention to the Cache full count
number on the left. That tells you the number of times the cache has filled up and has had
to forcefully clean up any entries not accessed within the last apc.ttl seconds. You should
configure your cache to minimize this number. If you are constantly filling your cache, the
resulting cache churn is going to hurt performance. You should either set more memory
aside for APC, or use apc.filters to cache fewer scripts.

APC configuration options

Name Default Changeable Changelog

apc.enabled "1" PHP_INI_SYSTEM PHP_INI_SYSTEM in
APC 2. PHP_INI_ALL
in APC <= 3.0.12.

apc.shm_segments "1" PHP_INI_SYSTEM

apc.shm_size "30" PHP_INI_SYSTEM

apc.optimization "0" PHP_INI_ALL PHP_INI_SYSTEM in
APC 2. Removed in
APC 3.0.13.

apc.num_files_hint "1000" PHP_INI_SYSTEM

apc.user_entries_hint "4096" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.user_ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.gc_ttl "3600" PHP_INI_SYSTEM

apc.cache_by_defaul
t

"1" PHP_INI_ALL PHP_INI_SYSTEM in
APC <= 3.0.12.
Available since APC
3.0.0.

apc.filters NULL PHP_INI_SYSTEM

apc.mmap_file_mask NULL PHP_INI_SYSTEM

apc.slam_defense "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.file_update_prote
ction

"2" PHP_INI_SYSTEM Available since APC
3.0.6.

apc.enable_cli "0" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.max_file_size "1M" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.stat "1" PHP_INI_SYSTEM Available since APC
3.0.10.

apc.write_lock "1" PHP_INI_SYSTEM Available since APC
3.0.11.

apc.report_autofilter "0" PHP_INI_SYSTEM Available since APC
3.0.11.

apc.include_once_ov
erride

"0" PHP_INI_SYSTEM Available since APC
3.0.12.

apc.rfc1867 "0" PHP_INI_SYSTEM Available since APC
3.0.13.

apc.rfc1867_prefix "upload_" PHP_INI_SYSTEM

apc.rfc1867_name "APC_UPLOAD_PR
OGRESS"

PHP_INI_SYSTEM

apc.rfc1867_freq "0" PHP_INI_SYSTEM

apc.localcache "0" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.localcache.size "512" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.coredump_unma
p

"0" PHP_INI_SYSTEM Available since APC
3.0.16.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

apc.enabled boolean
apc.enabled can be set to 0 to disable APC. This is primarily useful when APC is
statically compiled into PHP, since there is no other way to disable it (when compiled
as a DSO, the extension line in php.ini can just be commented-out).

apc.shm_segments integer
The number of shared memory segments to allocate for the compiler cache. If APC is

running out of shared memory but you have already set apc.shm_size as high as your
system allows, you can try raising this value.

apc.shm_size integer
The size of each shared memory segment in MB. By default, some systems (including
most BSD variants) have very low limits on the size of a shared memory segment.

apc.optimization integer
The optimization level. Zero disables the optimizer, and higher values use more
aggressive optimizations. Expect very modest speed improvements. This is
experimental.

apc.num_files_hint integer
A "hint" about the number of distinct source files that will be included or requested on
your web server. Set to zero or omit if you're not sure; this setting is mainly useful for
sites that have many thousands of source files.

apc.user_entries_hint integer
Just like apc.num_files_hint, a "hint" about the number of distinct user cache variables
to store. Set to zero or omit if not sure.

apc.ttl integer
The number of seconds a cache entry is allowed to idle in a slot in case this cache
entry slot is needed by another entry. Leaving this at zero means that your cache could
potentially fill up with stale entries while newer entries won't be cached.

apc.user_ttl integer
The number of seconds a user cache entry is allowed to idle in a slot in case this
cache entry slot is needed by another entry. Leaving this at zero means that your
cache could potentially fill up with stale entries while newer entries won't be cached.

apc.gc_ttl integer
The number of seconds that a cache entry may remain on the garbage-collection list.
This value provides a fail-safe in the event that a server process dies while executing a
cached source file; if that source file is modified, the memory allocated for the old
version will not be reclaimed until this TTL reached. Set to zero to disable this feature.

apc.cache_by_default boolean
On by default, but can be set to off and used in conjunction with positive apc.filters so
that files are only cached if matched by a positive filter.

apc.filters string
A comma-separated list of POSIX extended regular expressions. If any pattern
matches the source filename, the file will not be cached. Note that the filename used
for matching is the one passed to include/require, not the absolute path. If the first
character of the expression is a + then the expression will be additive in the sense that
any files matched by the expression will be cached, and if the first character is a - then
anything matched will not be cached. The - case is the default, so it can be left off.

apc.mmap_file_mask string
If compiled with MMAP support by using --enable-mmap this is the mktemp-style
file_mask to pass to the mmap module for determing whether your mmap'ed memory

region is going to be file-backed or shared memory backed. For straight file-backed
mmap, set it to something like /tmp/apc.XXXXXX (exactly 6 X s). To use POSIX-style
shm_open/mmap put a.shm somewhere in your mask. e.g. /apc.shm.XXXXXX You
can also set it to /dev/zero to use your kernel's /dev/zero interface to anonymous
mmap'ed memory. Leaving it undefined will force an anonymous mmap.

apc.slam_defense integer
On very busy servers whenever you start the server or modify files you can create a
race of many processes all trying to cache the same file at the same time. This option
sets the percentage of processes that will skip trying to cache an uncached file. Or
think of it as the probability of a single process to skip caching. For example, setting
apc.slam_defense to 75 would mean that there is a 75% chance that the process will
not cache an uncached file. So, the higher the setting the greater the defense against
cache slams. Setting this to 0 disables this feature. Deprecated by apc.write_lock.

apc.file_update_protection integer
When you modify a file on a live web server you really should do so in an atomic
manner. That is, write to a temporary file and rename (mv) the file into its permanent
position when it is ready. Many text editors, cp, tar and other such programs don't do
this. This means that there is a chance that a file is accessed (and cached) while it is
still being written to. This apc.file_update_protection setting puts a delay on caching
brand new files. The default is 2 seconds which means that if the modification
timestamp (mtime) on a file shows that it is less than 2 seconds old when it is
accessed, it will not be cached. The unfortunate person who accessed this half-written
file will still see weirdness, but at least it won't persist. If you are certain you always
atomically update your files by using something like rsync which does this correctly,
you can turn this protection off by setting it to 0. If you have a system that is flooded
with io causing some update procedure to take longer than 2 seconds, you may want
to increase this a bit.

apc.enable_cli integer
Mostly for testing and debugging. Setting this enables APC for the CLI version of PHP.
Normally you wouldn't want to create, populate and tear down the APC cache on every
CLI request, but for various test scenarios it is handy to be able to enable APC for the
CLI version of APC easily.

apc.max_file_size integer
Prevent files larger than this value from getting cached. Defaults to 1M.

apc.stat integer
Be careful if you change this setting. The default is for this to be On which means that
APC will stat (check) the script on each request to see if it has been modified. If it has
been modified it will recompile and cache the new version. If you turn this setting off, it
will not check. That means that in order to have changes become active you need to
restart your web server. On a production server where you rarely change the code,
turning stats off can produce a significant performance boost. For included/required
files this option applies as well, but note that if you are using relative path includes (any
path that doesn't start with / on Unix) APC has to check in order to uniquely identify the
file. If you use absolute path includes APC can skip the stat and use that absolute path
as the unique identifier for the file.

apc.write_lock boolean

On busy servers when you first start up the server, or when many files are modified,
you can end up with all your processes trying to compile and cache the same files.
With write_lock enabled, only one process at a time will try to compile an uncached
script while the other processes will run uncached instead of sitting around waiting on
a lock.

apc.report_autofilter boolean
Logs any scripts that were automatically excluded from being cached due to early/late
binding issues.

apc.include_once_override boolean
Optimize include_once() and require_once() calls and avoid the expensive system
calls used.

apc.rfc1867 boolean
RFC1867 File Upload Progress hook handler is only available if you compiled APC
against PHP 5.2.0 or later. When enabled, any file uploads which includes a field
called APC_UPLOAD_PROGRESS before the file field in an upload form will cause
APC to automatically create an upload_ key user cache entry where key is the value of
the APC_UPLOAD_PROGRESS form entry. Note that the file upload tracking is not
threadsafe at this point, so new uploads that happen while a previous one is still going
will disable the tracking for the previous.

Example #1 - An apc.rfc1867 example

<?php

print_r(apc_fetch("upload_$_POST[APC_UPLOAD_PROGRESS]"));

?>

The above example will output something similar to:

Array

(

 [total] => 1142543

 [current] => 1142543

 [rate] => 1828068.8

 [filename] => test

 [name] => file

 [temp_filename] => /tmp/php8F

 [cancel_upload] => 0

 [done] => 1

)

apc.rfc1867_prefix string
Key prefix to use for the user cache entry generated by rfc1867 upload progress
functionality.

apc.rfc1867_name string
Specify the hidden form entry name that activates APC upload progress and specifies
the user cache key suffix.

apc.rfc1867_freq string

The frequency that updates should be made to the user cache entry for upload
progress. This can take the form of a percentage of the total file size or a size in bytes
optionally suffixed with 'k', 'm', or 'g' for kilobytes, megabytes, or gigabytes respectively
(case insensitive). A setting of 0 updates as often as possible, which may cause slower
uploads.

apc.localcache boolean
This enables a lock-free local process shadow-cache which reduces lock contention
when the cache is being written to.

apc.localcache.size integer
The size of the local process shadow-cache, should be set to a sufficently large value,
approximately half of apc.num_files_hint.

apc.coredump_unmap boolean
Enables APC handling of signals, such as SIGSEGV, that write core files when
signaled. When these signals are received, APC will attempt to unmap the shared
memory segment in order to exclude it from the core file. This setting may improve
system stability when fatal signals are received and a large APC shared memory
segment is configured.

Warning

This feature is potentially dangerous. Unmapping the shared memory segment in a
fatal signal handler may cause undefined behaviour if a fatal error occurs.

Note

Although some kernels may provide a facility to ignore various types of shared
memory when generating a core dump file, these implementations may also ignore
important shared memory segments such as the Apache scoreboard.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

APC Functions

apc_add

apc_add -- Cache a variable in the data store

Description

bool apc_add (string $key, mixed $var [, int $ttl])

Caches a variable in the data store, only if it's not already stored.

Note

Unlike many other mechanisms in PHP, variables stored using apc_add() will persist
between requests (until the value is removed from the cache).

Parameters

key

Store the variable using this name. key s are cache-unique, so attempting to use
apc_add() to store data with a key that already exists will not overwrite the existing
data, and will instead return FALSE. (This is the only difference between apc_add()
and apc_store().)

var

The variable to store

ttl

Time To Live; store var in the cache for ttl seconds. After the ttl has passed, the
stored variable will be expunged from the cache (on the next request). If no ttl is
supplied (or if the ttl is 0), the value will persist until it is removed from the cache
manually, or otherwise fails to exist in the cache (clear, restart, etc.).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2 - A apc_add() example

<?php

$bar = 'BAR';

apc_add('foo', $bar);

var_dump(apc_fetch('foo'));

echo "\n";

$bar = 'NEVER GETS SET';

apc_add('foo', $bar);

var_dump(apc_fetch('foo'));

echo "\n";

?>

The above example will output:

string(3) "BAR"

string(3) "BAR"

See Also

• apc_store()
• apc_fetch()
• apc_delete()

apc_cache_info

apc_cache_info -- Retrieves cached information from APC's data store

Description

array apc_cache_info ([string $cache_type [, bool $limited]])

Retrieves cached information and meta-data from APC's data store.

Return Values

Array of cached data (and meta-data), or FALSE on failure

Note

apc_cache_info() will raise a warning if it is unable to retrieve APC cache data. This
typically occurs when APC is not enabled.

Parameters

cache_type

If cache_type is " user ", information about the user cache will be returned. If
cache_type is " filehits ", information about which files have been served from the
bytecode cache for the current request will be returned. This feature must be enabled
at compile time using --enable-filehits. If an invalid or no cache_type is specified,
information about the system cache (cached files) will be returned.

limited

If limited is TRUE, the return value will exclude the individual list of cache entries.
This is usefull when trying to optimize calls for statistics gathering.

ChangeLog

Version Description

3.0.11 The limited parameter was introduced.

3.0.16 The " filehits " option for the cache_type
parameter was introduced.

Examples

Example #3 - A apc_cache_info() example

<?php

print_r(apc_cache_info());

?>

The above example will output something similar to:

Array

(

 [num_slots] => 2000

 [ttl] => 0

 [num_hits] => 9

 [num_misses] => 3

 [start_time] => 1123958803

 [cache_list] => Array

 (

 [0] => Array

 (

 [filename] => /path/to/apc_test.php

 [device] => 29954

 [inode] => 1130511

 [type] => file

 [num_hits] => 1

 [mtime] => 1123960686

 [creation_time] => 1123960696

 [deletion_time] => 0

 [access_time] => 1123962864

 [ref_count] => 1

 [mem_size] => 677

)

 [1] => Array (...iterates for each cached file)

)

See Also

• APC configuration directives

apc_clear_cache

apc_clear_cache -- Clears the APC cache

Description

bool apc_clear_cache ([string $cache_type])

Clears the user/system cache.

Return Values

Returns TRUE on success or FALSE on failure.

Parameters

cache_type

If cache_type is " user ", the user cache will be cleared; otherwise, the system cache
(cached files) will be cleared.

See Also

• apc_cache_info()

apc_compile_file

apc_compile_file -- Stores a file in the bytecode cache, bypassing all filters.

Description

bool apc_compile_file (string $filename)

Stores a file in the bytecode cache, bypassing all filters.

Parameters

filename

Full or relative path to a PHP file that will be compiled and stored in the bytecode
cache.

Return Values

Returns TRUE on success or FALSE on failure.

apc_define_constants

apc_define_constants -- Defines a set of constants for retrieval and mass-definition

Description

bool apc_define_constants (string $key, array $constants [, bool $case_sensitive])

define() is notoriously slow. Since the main benefit of APC is to increase the performance
of scripts/applications, this mechanism is provided to streamline the process of mass
constant definition. However, this function does not perform as well as anticipated.

For a better-performing solution, try the » hidef extension from PECL.

Note

To remove a set of stored constants (without clearing the entire cache), an empty array
may be passed as the constants parameter, effectively clearing the stored value(s).

Parameters

key

The key serves as the name of the constant set being stored. This key is used to
retrieve the stored constants in apc_load_constants().

constants

An associative array of constant_name => value pairs. The constant_name must follow
the normal constant naming rules. value must evaluate to a scalar value.

case_sensitive

The default behaviour for constants is to be declared case-sensitive; i.e. CONSTANT
and Constant represent different values. If this parameter evaluates to FALSE the
constants will be declared as case-insensitive symbols.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

http://pecl.php.net/package/hidef

Example #4 - apc_define_constants() example

<?php

$constants = array(

 'ONE' => 1,

 'TWO' => 2,

 'THREE' => 3,

);

apc_define_constants('numbers', $constants);

echo ONE, TWO, THREE;

?>

The above example will output:

123

See Also

• apc_load_constants()
• define()
• constant()
• Or the PHP constants reference

apc_delete

apc_delete -- Removes a stored variable from the cache

Description

bool apc_delete (string $key)

Removes a stored variable from the cache.

Parameters

key

The key used to store the value (with apc_store()).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #5 - A apc_delete() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

apc_delete('foo');

// this is obviously useless in this form

?>

See Also

• apc_store()
• apc_fetch()

apc_fetch

apc_fetch -- Fetch a stored variable from the cache

Description

mixed apc_fetch (string $key)

Fetchs a stored variable from the cache.

Parameters

key

The key used to store the value (with apc_store()).

Return Values

The stored variable on success; FALSE on failure

Examples

Example #6 - A apc_fetch() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

var_dump(apc_fetch('foo'));

?>

The above example will output:

string(3) "BAR"

See Also

• apc_store()
• apc_delete()

apc_load_constants

apc_load_constants -- Loads a set of constants from the cache

Description

bool apc_load_constants (string $key [, bool $case_sensitive])

Loads a set of constants from the cache.

Parameters

key

The name of the constant set (that was stored with apc_define_constants()) to be
retrieved.

case_sensitive

The default behaviour for constants is to be declared case-sensitive; i.e. CONSTANT
and Constant represent different values. If this parameter evaluates to FALSE the
constants will be declared as case-insensitive symbols.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #7 - apc_load_constants() example

<?php

$constants = array(

 'ONE' => 1,

 'TWO' => 2,

 'THREE' => 3,

);

apc_define_constants('numbers', $constants);

apc_load_constants('numbers');

echo ONE, TWO, THREE;

?>

The above example will output:

123

See Also

• apc_define_constants()
• define()
• constant()
• Or the PHP constants reference

apc_sma_info

apc_sma_info -- Retrieves APC's Shared Memory Allocation information

Description

array apc_sma_info ([bool $limited])

Retrieves APC's Shared Memory Allocation information.

Parameters

limited

When set to FALSE (default) apc_sma_info() will return a detailed information about
each segment.

Return Values

Array of Shared Memory Allocation data; FALSE on failure.

Examples

Example #8 - A apc_sma_info() example

<?php

print_r(apc_sma_info());

?>

The above example will output something similar to:

Array

(

 [num_seg] => 1

 [seg_size] => 31457280

 [avail_mem] => 31448408

 [block_lists] => Array

 (

 [0] => Array

 (

 [0] => Array

 (

 [size] => 31448408

 [offset] => 8864

)

)

)

)

See Also

• APC configuration directives

apc_store

apc_store -- Cache a variable in the data store

Description

bool apc_store (string $key, mixed $var [, int $ttl])

Cache a variable in the data store.

Note

Unlike many other mechanisms in PHP, variables stored using apc_store() will persist
between requests (until the value is removed from the cache).

Parameters

key

Store the variable using this name. key s are cache-unique, so storing a second value
with the same key will overwrite the original value.

var

The variable to store

ttl

Time To Live; store var in the cache for ttl seconds. After the ttl has passed, the
stored variable will be expunged from the cache (on the next request). If no ttl is
supplied (or if the ttl is 0), the value will persist until it is removed from the cache
manually, or otherwise fails to exist in the cache (clear, restart, etc.).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #9 - A apc_store() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

var_dump(apc_fetch('foo'));

?>

The above example will output:

string(3) "BAR"

See Also

• apc_add()
• apc_fetch()
• apc_delete()

	APC
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	APC Functions
	apc_add
	apc_cache_info
	apc_clear_cache
	apc_compile_file
	apc_define_constants
	apc_delete
	apc_fetch
	apc_load_constants
	apc_sma_info
	apc_store

