
Regular Expression (POSIX Extended)

Introduction

Tip

PHP also supports regular expressions using a Perl-compatible syntax using the
PCRE functions. Those functions support non-greedy matching, assertions, conditional
subpatterns, and a number of other features not supported by the POSIX-extended
regular expression syntax.

Warning

These regular expression functions are not binary-safe. The PCRE functions are.

Regular expressions are used for complex string manipulation. PHP uses the POSIX
extended regular expressions as defined by POSIX 1003.2. For a full description of POSIX
regular expressions see the » regex man pages included in the regex directory in the PHP
distribution. It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

http://www.tin.org/bin/man.cgi?section=7&topic=regex

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Warning

Do not change the TYPE unless you know what you are doing.

To enable regexp support configure PHP --with-regex[=TYPE]. TYPE can be one of
system, apache, php. The default is to use php.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Example #1 - Regular Expression Examples

<?php

// Returns true if "abc" is found anywhere in $string.

ereg("abc", $string);

// Returns true if "abc" is found at the beginning of $string.

ereg("^abc", $string);

// Returns true if "abc" is found at the end of $string.

ereg("abc$", $string);

// Returns true if client browser is Netscape 2, 3 or MSIE 3.

eregi("(ozilla.[23]|MSIE.3)", $_SERVER["HTTP_USER_AGENT"]);

// Places three space separated words into $regs[1], $regs[2] and $regs[3].

ereg("([[:alnum:]]+) ([[:alnum:]]+) ([[:alnum:]]+)", $string, $regs);

// Put a
 tag at the beginning of $string.

$string = ereg_replace("^", "
", $string);

// Put a
 tag at the end of $string.

$string = ereg_replace("$", "
", $string);

// Get rid of any newline characters in $string.

$string = ereg_replace("\n", "", $string);

?>

POSIX Regex Functions

See Also

For regular expressions in Perl-compatible syntax have a look at the PCRE functions. The
simpler shell style wildcard pattern matching is provided by fnmatch().

ereg_replace

ereg_replace -- Replace regular expression

Description

string ereg_replace (string $pattern, string $replacement, string $string)

This function scans string for matches to pattern, then replaces the matched text with
replacement.

Parameters

pattern

A POSIX extended regular expression.

replacement

If pattern contains parenthesized substrings, replacement may contain substrings of
the form \\ digit, which will be replaced by the text matching the digit'th parenthesized
substring; \\0 will produce the entire contents of string. Up to nine substrings may be
used. Parentheses may be nested, in which case they are counted by the opening
parenthesis.

string

The input string.

Return Values

The modified string is returned. If no matches are found in string, then it will be returned
unchanged.

Examples

For example, the following code snippet prints "This was a test" three times:

Example #2 - ereg_replace() example

<?php

$string = "This is a test";

echo str_replace(" is", " was", $string);

echo ereg_replace("()is", "\\1was", $string);

echo ereg_replace("(()is)", "\\2was", $string);

?>

One thing to take note of is that if you use an integer value as the replacement parameter,
you may not get the results you expect. This is because ereg_replace() will interpret the
number as the ordinal value of a character, and apply that. For instance:

Example #3 - ereg_replace() example

<?php

/* This will not work as expected. */

$num = 4;

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has words.' */

/* This will work. */

$num = '4';

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has 4 words.' */

?>

Example #4 - Replace URLs with links

<?php

$text = ereg_replace("[[:alpha:]]+://[^<>[:space:]]+[[:alnum:]/]",

 "\\0", $text);

?>

Notes

Tip

preg_replace(), which uses a Perl-compatible regular expression syntax, is often a
faster alternative to ereg_replace().

See Also

• ereg()
• eregi()
• eregi_replace()
• str_replace()
• preg_match()

ereg

ereg -- Regular expression match

Description

int ereg (string $pattern, string $string [, array &$regs])

Searches a string for matches to the regular expression given in pattern in a
case-sensitive way.

Parameters

pattern

Case sensitive regular expression.

string

The input string.

regs

If matches are found for parenthesized substrings of pattern and the function is called
with the third argument regs, the matches will be stored in the elements of the array
regs. $regs[1] will contain the substring which starts at the first left parenthesis;
$regs[2] will contain the substring starting at the second, and so on. $regs[0] will
contain a copy of the complete string matched.

Return Values

Returns the length of the matched string if a match for pattern was found in string, or
FALSE if no matches were found or an error occurred.

If the optional parameter regs was not passed or the length of the matched string is 0, this
function returns 1.

Examples

Example #5 - ereg() example

The following code snippet takes a date in ISO format (YYYY-MM-DD) and prints it in
DD.MM.YYYY format:

<?php

if (ereg ("([0-9]{4})-([0-9]{1,2})-([0-9]{1,2})", $date, $regs)) {

 echo "$regs[3].$regs[2].$regs[1]";

} else {

 echo "Invalid date format: $date";

}

?>

Notes

Note

preg_match(), which uses a Perl-compatible regular expression syntax, is often a
faster alternative to ereg().

Note

Up to (and including) PHP 4.1.0 $regs will be filled with exactly ten elements, even
though more or fewer than ten parenthesized substrings may actually have matched.
This has no effect on ereg() 's ability to match more substrings. If no matches are
found, $regs will not be altered by ereg().

See Also

• eregi()
• ereg_replace()
• eregi_replace()
• preg_match()
• strpos()
• strstr()
• quotemeta()

eregi_replace

eregi_replace -- Replace regular expression case insensitive

Description

string eregi_replace (string $pattern, string $replacement, string $string)

This function is identical to ereg_replace() except that this ignores case distinction when
matching alphabetic characters.

Parameters

pattern

A POSIX extended regular expression.

replacement

If pattern contains parenthesized substrings, replacement may contain substrings of
the form \\ digit, which will be replaced by the text matching the digit'th parenthesized
substring; \\0 will produce the entire contents of string. Up to nine substrings may be
used. Parentheses may be nested, in which case they are counted by the opening
parenthesis.

string

The input string.

Return Values

The modified string is returned. If no matches are found in string, then it will be returned
unchanged.

Examples

Example #6 - Highlight search results

<?php

$pattern = '(>[^<]*)('. quotemeta($_GET['search']) .')';

$replacement = '\\1\\2';

$body = eregi_replace($pattern, $replacement, $body);

?>

See Also

• ereg()
• eregi()
• ereg_replace()

eregi

eregi -- Case insensitive regular expression match

Description

int eregi (string $pattern, string $string [, array &$regs])

This function is identical to ereg() except that it ignores case distinction when matching
alphabetic characters.

Parameters

pattern

Case insensitive regular expression.

string

The input string.

regs

If matches are found for parenthesized substrings of pattern and the function is called
with the third argument regs, the matches will be stored in the elements of the array
regs. $regs[1] will contain the substring which starts at the first left parenthesis;
$regs[2] will contain the substring starting at the second, and so on. $regs[0] will
contain a copy of the complete string matched.

Return Values

Returns the length of the matched string if a match for pattern was found in string, or
FALSE if no matches were found or an error occurred.

If the optional parameter regs was not passed or the length of the matched string is 0, this
function returns 1.

Examples

Example #7 - eregi() example

<?php

$string = 'XYZ';

if (eregi('z', $string)) {

 echo "'$string' contains a 'z' or 'Z'!";

}

?>

See Also

• ereg()
• ereg_replace()
• eregi_replace()
• stripos()
• stristr()

split

split -- Split string into array by regular expression

Description

array split (string $pattern, string $string [, int $limit])

Splits a string into array by regular expression.

Parameters

pattern

Case sensitive regular expression. If you want to split on any of the characters which
are considered special by regular expressions, you'll need to escape them first. If you
think split() (or any other regex function, for that matter) is doing something weird,
please read the file regex.7, included in the regex/ subdirectory of the PHP distribution.
It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

string

The input string.

limit

If limit is set, the returned array will contain a maximum of limit elements with the
last element containing the whole rest of string.

Return Values

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the case-sensitive regular expression pattern.

If there are n occurrences of pattern, the returned array will contain n +1 items. For
example, if there is no occurrence of pattern, an array with only one element will be
returned. Of course, this is also true if string is empty. If an error occurs, split() returns
FALSE.

Examples

Example #8 - split() example

To split off the first four fields from a line from /etc/passwd:

<?php

list($user, $pass, $uid, $gid, $extra) =

 split(":", $passwd_line, 5);

?>

Example #9 - split() example

To parse a date which may be delimited with slashes, dots, or hyphens:

<?php

// Delimiters may be slash, dot, or hyphen

$date = "04/30/1973";

list($month, $day, $year) = split('[/.-]', $date);

echo "Month: $month; Day: $day; Year: $year
\n";

?>

Notes

Tip

preg_split(), which uses a Perl-compatible regular expression syntax, is often a faster
alternative to split(). If you don't require the power of regular expressions, it is faster to
use explode(), which doesn't incur the overhead of the regular expression engine.

Tip

For users looking for a way to emulate Perl's @chars = split('', $str) behaviour, please
see the examples for preg_split() or str_split().

See Also

• preg_split()
• spliti()
• str_split()
• explode()
• implode()
• chunk_split()
• wordwrap()

spliti

spliti -- Split string into array by regular expression case insensitive

Description

array spliti (string $pattern, string $string [, int $limit])

Splits a string into array by regular expression.

This function is identical to split() except that this ignores case distinction when matching
alphabetic characters.

Parameters

pattern

Case insensitive regular expression. If you want to split on any of the characters which
are considered special by regular expressions, you'll need to escape them first. If you
think spliti() (or any other regex function, for that matter) is doing something weird,
please read the file regex.7, included in the regex/ subdirectory of the PHP distribution.
It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

string

The input string.

limit

If limit is set, the returned array will contain a maximum of limit elements with the
last element containing the whole rest of string.

Return Values

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the case insensitive regular expression pattern.

If there are n occurrences of pattern, the returned array will contain n +1 items. For
example, if there is no occurrence of pattern, an array with only one element will be
returned. Of course, this is also true if string is empty. If an error occurs, spliti() returns
FALSE.

Examples

This example splits a string using 'a' as the separator :

Example #10 - spliti() example

<?php

$string = "aBBBaCCCADDDaEEEaGGGA";

$chunks = spliti ("a", $string, 5);

print_r($chunks);

?>

The above example will output:

Array

(

 [0] =>

 [1] => BBB

 [2] => CCC

 [3] => DDD

 [4] => EEEaGGGA

)

See Also

• preg_split()
• split()
• explode()
• implode()

sql_regcase

sql_regcase -- Make regular expression for case insensitive match

Description

string sql_regcase (string $string)

Creates a regular expression for a case insensitive match.

Parameters

string

The input string.

Return Values

Returns a valid regular expression which will match string, ignoring case. This
expression is string with each alphabetic character converted to a bracket expression;
this bracket expression contains that character's uppercase and lowercase form. Other
characters remain unchanged.

Examples

Example #11 - sql_regcase() example

<?php

echo sql_regcase("Foo - bar.");

?>

The above example will output:

[Ff][Oo][Oo] - [Bb][Aa][Rr].

This can be used to achieve case insensitive pattern matching in products which support
only case sensitive regular expressions.

	POSIX Regex
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	POSIX Regex Functions
	ereg_replace
	ereg
	eregi_replace
	eregi
	split
	spliti
	sql_regcase

