Sockets

Introduction

The socket extension implements a low-level interface to the socket communication
functions based on the popular BSD sockets, providing the possibility to act as a socket
server as well as a client.

For a more generic client-side socket interface, see stream_socket_client(),
stream_socket_server(), fsockopen(), and pfsockopen().

When using these functions, it is important to remember that while many of them have
identical names to their C counterparts, they often have different declarations. Please be
sure to read the descriptions to avoid confusion.

Those unfamiliar with socket programming can find a lot of useful material in the
appropriate Unix man pages, and there is a great deal of tutorial information on socket
programming in C on the web, much of which can be applied, with slight modifications, to
socket programming in PHP. The » Unix Socket FAQ might be a good start.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.3.0.

http://www.unixguide.net/network/socketfaq/
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

The socket functions described here are part of an extension to PHP which must be
enabled at compile time by giving the --enable-sockets option to configure.

Note

IPv6 Support was added in PHP 5.0.0.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.
AF_UNIX (integer)

AF_INET (integer)

AF_INET®6 (integer)

SOCK_STREAM (integer)

SOCK_DGRAM (integer)

SOCK_RAW (integer)

SOCK_SEQPACKET (integer)

SOCK_RDM (integer)

MSG_OOB (integer)

MSG_WAITALL (integer)

MSG_PEEK (integer)

MSG_DONTROUTE (integer)

MSG_EOR (integer)

MSG_EOF (integer)

SO_DEBUG (integer)

SO_REUSEADDR (integer)

SO_KEEPALIVE (integer)

SO_DONTROUTE (integer)

SO_LINGER (integer)

SO_BROADCAST (integer)

SO_OOBINLINE (integer)

SO_SNDBUF (integer)

SO_RCVBUF (integer)

SO_SNDLOWAT (integer)

SO_RCVLOWAT (integer)

SO_SNDTIMEO (integer)

SO_RCVTIMEO (integer)

SO_TYPE (integer)

SO_ERROR (linteger)

SOL_SOCKET (integer)

PHP_NORMAL_READ (integer)

PHP_BINARY_READ (integer)

SOL_TCP (integer)

SOL_UDRP (integer)

Examples

Example #1 - Socket example: Simple TCP/IP server

This example shows a simple talkback server. Change the address and port variables
to suit your setup and execute. You may then connect to the server with a command
similar to: telnet 192.168.1.53 10000 (where the address and port match your setup).
Anything you type will then be output on the server side, and echoed back to you. To
disconnect, enter 'quit'.

#! /usr/1ocal /bin/php -q
<?php
error_reporting(E_ALL);

/[* Allow the script to hang around waiting for connections. */
set _time_limt(0)

[* Turn on inplicit output flushing so we see what we're getting
* as it comes in. */
ob_implicit_flush();

$address = '192.168.1.53";
$port = 10000;

if (($sock = socket create(AF | NET, SOCK STREAM SCOL TCP)) === false) {
echo "socket create() failed: reason
socket strerror(socket last _error()) . "\n";
}
i f (socket bind($sock, $address, $port) === false) {
echo "socket bind() failed: reason: "
socket strerror(socket |ast_error($sock)) . "\n";
}
if (socket listen($sock, 5) === false) {
echo "socket listen() failed: reason
socket strerror(socket |ast_error($sock)) . "\n";
}
do {
if (($nmsgsock = socket accept ($sock)) === false) {
echo "socket accept() failed: reason
socket strerror(socket |last_error($sock)) . "\n";
br eak;
}
/* Send instructions. */
$msg = "\ nWel cone to the PHP Test Server. \n"
“"To quit, type '"quit'. To shut down the server type 'shutdown'.\n";
socket _write($nsgsock, $nsg, strlen($nsg));
do {
if (false === ($buf = socket_read($nsgsock, 2048, PHP_NORMAL_READ)))
{

echo "socket read() failed: reason

socket strerror(socket |ast _error($nmsgsock)) . "\n";

break 2;

}

if ('$buf = trinm($buf)) {
conti nue;

}

if ($buf == "quit') {
br eak;

}

if ($buf == 'shutdown') {
socket cl ose($nsgsock);
break 2;

}

$t al kback = "PHP: You said '$buf'.\n";
socket _write($nsgsock, $tal kback, strlen($tal kback));
echo "$buf\n";
} while (true);
socket _cl ose($nsgsock);
} while (true);

socket cl ose($sock);
?>

Example #2 - Socket example: Simple TCP/IP client

This example shows a simple, one-shot HTTP client. It simply connects to a page,
submits a HEAD request, echoes the reply, and exits.

<?php
error_reporting(E_ALL);

echo "<h2>TCP/ | P Connecti on</ h2>\n";

[* CGet the port for the WAV service. */
$service port = getservbyname('ww , 'tcp');

/[* Get the | P address for the target host. */
$address = get host bynane(' www. exanpl e. com) ;

/* Create a TCP/I P socket. */
$socket = socket create(AF_| NET, SOCK STREAM SOL TCP);

if ($socket === false) {

echo "socket create() failed: reason
socket _strerror(socket_last_error()) . "\n";
} else {

echo "OK.\n";

}

echo "Attenpting to connect to '$address' on port '$service port'...";
$result = socket connect ($socket, $address, $service port);

if ($result === false) {

echo "socket_connect() failed.\nReason: ($result)
socket _strerror(socket | ast_error($socket)) . "\n";
} else {

echo "OK.\n";

}

$in = "HEAD / HTTP/ 1. 1\r\n";

$in .= "Host: www exanple.comr\n”;
$in .= "Connection: Cose\r\n\r\n";
$out = "'"';

echo "Sending HTTP HEAD request...";
socket write($socket, $in, strien($in));
echo "OK.\n";

echo "Reading response:\n\n";

while ($out = socket read($socket, 2048)) {
echo $out;

}

echo "Cd osing socket...";
socket _cl ose($socket);
echo "OK.\n\n";

?>

Socket Errors

The socket extension was written to provide a usable interface to the powerful BSD
sockets. Care has been taken that the functions work equally well on Win32 and Unix
implementations. Almost all of the sockets functions may fail under certain conditions and
therefore emit an E_ WARNING message describing the error. Sometimes this doesn't
suddenly emit an E_ WARNING message because the connectioﬁ-B}BRE-ﬁ-ﬁ-éxpectedly. It's
common to suppress the warning with the @ -operator and catch the error code within the
function with this error code to retrieve a string describing the erroir-.-é-e-é-aé-i}-d-é-s-cription
for more information.

Note

The E_WARNING messages generated by the socket extension are in English though
the retrieved error message will appear depending on the current locale (

LC_MESSAGES):
War ni ng - socket _bind() unable to bind address [98]: Die Adresse wird
bereits verwendet

Socket Functions

socket_accept

socket_accept -- Accepts a connection on a socket
Description

resource socket_accept (resource $socket)

accept incoming connections on that socket. Once a successful connection is made, a
new socket resource is returned, which may be used for communication. If there are
multiple connections queued on the socket, the first will be used. If there are no pending

connections. The original listening socket socket , however, remains open and may be
reused.

Parameters

socket

Return Values

Returns a new socket resource on success, or FALSE on error. The actual error code can

socket_bind

socket_bind -- Binds a name to a socket
Description

bool socket_bind (resource $socket, string $address [, int $port])

Binds the name given in addr ess to the socket described by socket . This has to be done

Parameters

socket

addr ess
If the socket is of the AF_INET family, the address is an IP in dotted-quad notation
(e.g. 127.0.0.1). If the socket is of the AF_UNIX family, the address is the path of a
Unix-domain socket (e.g. /tmp/my.sock).

port (Optional)
The port parameter is only used when connecting to an AF_INET socket, and
designates the port on the remote host to which a connection should be made.

Return Values

Returns TRUE on success or FALSE on failure.

<?php
/] Create a new socket
$sock = socket create(AF_I NET, SOCK STREAM SOL_TCP);

/1 An exanmple list of |IP addresses owned by the conputer
$sour cei ps[' kevin'] '127.0.0.1";
$sour cei ps[' madcoder'] '127.0.0.2";

/1 Bind the source address
socket _bi nd($sock, $sourceips[' nadcoder']);

/1 Connect to destination address
socket _connect ($sock, '127.0.0.1', 80);

Il Wite
$request = 'GET / HTTP/1.1' . "\r\n"
"Host: exanple.com . "\r\n\r\n";
socket _write($sock, $request);
/1 O ose
socket _cl ose($sock);
?>
Notes
Note

if trying to bind the socket to a wrong address that does not belong to your machine.

See Also

socket_clear_error

socket clear_error -- Clears the error on the socket or the last error code
Description

void socket_clear_error ([resource $socket |)

This function clears the error code on the given socket or the global last socket error if no
socket is specified.

This function allows explicitly resetting the error code value either of a socket or of the
extension global last error code. This may be useful to detect within a part of the
application if an error occurred or not.

Parameters

socket

Return Values
No value is returned.

See Also

socket close

socket close -- Closes a socket resource
Description

void socket_close (resource $socket)

sockets and cannot be used on any other type of resources.

Parameters

socket

Return Values
No value is returned.

See Also

socket_connect

socket_connect -- Initiates a connection on a socket
Description

bool socket_connect (resource $socket, string $address [, int $port])

Initiate a connection to addr ess using the socket resource socket, which must be a valid

Parameters

socket

addr ess
The addr ess parameter is either an IPv4 address in dotted-quad notation (e.g.
127.0.0.1) if socket is AF_INET, a valid IPv6 address (e.g.::1) if IPv6 support is
enabled and socket is AF_INET®6 or the pathname of a Unix domain socket, if the
socket family is AF_UNIX.

port
The port parameter is only used and is mandatory when connecting to an AF_INET or
an AF_INET®6 socket, and designates the port on the remote host to which a
connection should be made.

Return Values

Returns TRUE on success or FALSE on failure. The error code can be retrieved with

explanation of the error.

Note

If the socket is non-blocking then this function returns FALSE with an error Operation
Now in progress.

See Also

socket create listen

socket_create_listen -- Opens a socket on port to accept connections
Description

resource socket_create_listen (int $port [, int $hackl og])

local interfaces on the given port waiting for new connections.

This function is meant to ease the task of creating a new socket which only listens to
accept new connections.

Parameters

port
The port on which to listen on all interfaces.

backl og
The backl og parameter defines the maximum length the queue of pending
connections may grow to. SOMAXCONN may be passed as backl og parameter, see

Notes

Note

If you want to create a socket which only listens on a certain interface you need to use

socket_create pair

socket_create_pair -- Creates a pair of indistinguishable sockets and stores them in an
array

Description

bool socket_create_pair (int $domai n, int $type, int $protocol , array &$fd)

them in fd. This function is commonly used in IPC (InterProcess Communication).

Parameters

domai n
The domai n parameter specifies the protocol family to be used by the socket. See

type
The type parameter selects the type of communication to be used by the socket. See

pr ot oco
The protocol parameter sets the specific protocol within the specified donai n to be
used when communicating on the returned socket. The proper value can be retrieved
by name by using getprotobyname(). If the desired protocol is TCP, or UDP the
corresponding constants SOL_TCP, and SOL_UDP can also be used. See

fd
Reference to an array in which the two socket resources will be inserted.

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php

$sockets = array();

/* Setup socket pair */

if (socket _create pair(AF_UN X, SOCK STREAM 0, $sockets) === false) {
echo "socket _create_pair failed. Reason

".socket strerror(socket last _error());
}
/* Send and Recieve Data */
if (socket write($sockets[0], "ABCdef123\n", strlen("ABCdef123\n")) ===
fal se) {
echo "socket wite() failed. Reason
".socket strerror(socket |last _error($sockets[0]));

}
if (($data = socket read($sockets[1], strlen("ABCdef123\n"),
PHP_BI NARY_READ) === fal se) {
echo "socket read() failed. Reason
".socket strerror(socket |last _error($sockets[1]));

}
var _dunp($dat a) ;

/* Cl ose sockets */
socket _cl ose($sockets[0]);

socket _cl ose($sockets[1]);
?>

<?php
Sary = array();
$strone = ' Message From Parent.';
$strtwo = ' Message From Child.';
if (socket create pair(AF_UNI X, SOCK STREAM 0, $ary) === false) {
echo "socket create pair() failed. Reason
".socket strerror(socket last _error());
}
$pid = pentl _fork();
if ($pid ==-1) {
echo ' Could not fork Process.';
} elseif ($pid) {
[*parent */
socket cl ose($ary[0]);
if (socket wite($ary[1], $strone, strlen($strone)) === false) {
echo "socket wite() failed. Reason
".socket strerror(socket last _error($ary[1]));
}
if (socket read($ary[1l], strlen($strtwd), PHP_BI NARY READ) == $strtwo) {
echo "Reci eved $strtwo\n";
}

socket _cl ose($ary[1]);
} else {
[*chil d*/
socket _cl ose($ary[1]);
if (socket write($ary[0], $strtwo, strlen($strtwo)) === false) {
echo "socket wite() failed. Reason
".socket strerror(socket last _error($ary[0]));

}
if (socket read($ary[0], strlen($strone), PHP_ BI NARY READ) == $strone) {
echo "Reci eved $strone\n";

socket cl ose($ary[0]);

See Also

» socket_create()

socket create

socket_create -- Create a socket (endpoint for communication)

Description

resource socket_create (int $domai n, int $t ype, int $protocol)

Creates and returns a socket resource, also referred to as an endpoint of communication.

A typical network connection is made up of 2 sockets, one performing the role of the client,
and another performing the role of the server.

Parameters

domai n
The domai n parameter specifies the protocol family to be used by the socket.

Available address/protocol families

Domain Description

AF_INET IPv4 Internet based protocols. TCP and
UDP are common protocols of this protocol
family.

AF_INET6 IPv6 Internet based protocols. TCP and

UDP are common protocols of this protocol
family. Support added in PHP 5.0.0.

AF_UNIX Local communication protocol family. High
efficiency and low overhead make it a great
form of IPC (Interprocess Communication).

type
The type parameter selects the type of communication to be used by the socket.

Available socket types

Type Description

SOCK_STREAM Provides sequenced, reliable, full-duplex,
connection-based byte streams. An
out-of-band data transmission mechanism
may be supported. The TCP protocol is
based on this socket type.

SOCK_DGRAM

Supports datagrams (connectionless,
unreliable messages of a fixed maximum
length). The UDP protocol is based on this
socket type.

SOCK_SEQPACKET

Provides a sequenced, reliable, two-way
connection-based data transmission path for
datagrams of fixed maximum length; a
consumer is required to read an entire
packet with each read call.

SOCK_RAW Provides raw network protocol access. This
special type of socket can be used to
manually construct any type of protocol. A
common use for this socket type is to
perform ICMP requests (like ping,
traceroute, etc).

SOCK_RDM Provides a reliable datagram layer that does
not guarantee ordering. This is most likely
not implemented on your operating system.

pr ot ocol

The protocol parameter sets the specific protocol within the specified domai n to be used
when communicating on the returned socket. The proper value can be retrieved by name
by using getprotobyname(). If the desired protocol is TCP, or UDP the corresponding
constants SOL_TCP, and SOL_UDP can also be used.

Common protocols

Name

Description

icmp

The Internet Control Message Protocol is
used primarily by gateways and hosts to
report errors in datagram communication.
The "ping" command (present in most
modern operating systems) is an example
application of ICMP.

udp

The User Datagram Protocol is a
connectionless, unreliable, protocol with
fixed record lengths. Due to these aspects,
UDP requires a minimum amount of protocol
overhead.

tcp

The Transmission Control Protocol is a
reliable, connection based, stream oriented,
full duplex protocol. TCP guarantees that all
data packets will be received in the order in
which they were sent. If any packet is

somehow lost during communication, TCP
will automatically retransmit the packet until
the destination host acknowledges that
packet. For reliability and performance
reasons, the TCP implementation itself
decides the appropriate octet boundaries of
the underlying datagram communication
layer. Therefore, TCP applications must
allow for the possibility of partial record
transmission.

Return Values

SOCK_STREAM respectively and additionally emits an E_ WARNING message.

See Also

socket_get _option

socket_get_option -- Gets socket options for the socket
Description

mixed socket_get_option (resource $socket, int $l evel , int $opt nane)

parameter for the specified socket .

Parameters

socket

| evel
The | evel parameter specifies the protocol level at which the option resides. For example,
to retrieve options at the socket level, a | evel parameter of SOL_SOCKET would be
used. Other levels, such as TCP, can be used by specifying the protocol number of that
level. Protocol numbers can be found by using the getprotobyname() function.

opt name

Available Socket Options

Option Description Type
SO _DEBUG Reports whether debugging |int
information is being
recorded.
SO_BROADCAST Reports whether int

transmission of broadcast
messages is supported.

SO_REUSEADDR Reports whether local int
addresses can be reused.

SO_KEEPALIVE Reports whether connections |int
are kept active with periodic
transmission of messages. If
the connected socket fails to
respond to these messages,
the connection is broken and
processes writing to that
socket are notified with a

SIGPIPE signal.

SO_LINGER

Reports whether the socket
data is pre'ééh-t-.-l-ég/— aéféult,
when the socket is closed, it
attempts to send all unsent
data. In the case of a
connection-oriented socket,
peer to acknowledge the
data.

If |_onoff is non-zero and
|_linger is zero, all the unsent
data will be discarded and
RST (reset) is sent to the
peer in the case of a
connection-oriented socket.

On the other hand, if |_onoff
is non-zero and |_linger is
block until all the data is sent
or the time specified in
|_linger elapses. If the socket
is non-blocking,

return an error.

array. The array will contain
two keys: |_onoff and |_linger

SO_OOBINLINE Reports whether the socket |int
leaves out-of-band data
inline.
SO_SNDBUF Reports the size of the send |int
buffer.
SO_RCVBUF Reports the size of the int
receive buffer.
SO_ERROR Reports information about int (cannot be set by
error status and clears it. socket_set_option())
SO_TYPE Reports the socket type int (cannot be set by

(e.g. SOCK_STREAM).

SO_DONTROUTE

Reports whether outgoing
messages bypass the
standard routing facilities.

int

SO_RCVLOWAT

Reports the minimum
number of bytes to process
for socket input operations.

int

SO_RCVTIMEO

Reports the timeout value for
input operations.

array. The array will contain
two keys: sec which is the
seconds part on the timeout
value and usec which is the
microsecond part of the
timeout value.

SO_SNDTIMEO

Reports the timeout value
specifying the amount of time
that an output function blocks
because flow control
prevents data from being
sent.

array. The array will contain
two keys: sec which is the
seconds part on the timeout
value and usec which is the
microsecond part of the
timeout value.

SO_SNDLOWAT

Reports the minimum
number of bytes to process
for socket output operations.

int

Return Values

Returns the value of the given option, or FALSE on errors.

Examples

<?php
$socket

$linger = array('l_linger'
socket set option($socket,

var _dunp(socket get option($socket,

?>

socket create |isten(1223);

=> 1, 'l _onoff' => 1);

SOL_SOCKET, SO LINGER, $linger);

SOL_SOCKET, SO REUSEADDR)) ;

ChangelLog

Version

Description

4.3.0

The name of this function was changed. It
used to be called socket_getopt().

socket_getpeername

socket_getpeername -- Queries the remote side of the given socket which may either
result in host/port or in a Unix filesystem path, dependent on its type

Description

bool socket_getpeername (resource $socket, String &addr ess [, int &port |)

Queries the remote side of the given socket which may either result in host/port or in a
Unix filesystem path, dependent on its type.

Parameters

socket

the peers (remote) IP address in appropriate notation (e.g. 127.0.0.1 or fe80::1) in the
addr ess parameter and, if the optional port parameter is present, also the associated

filesystem path (e.g. /var/run/daemon.sock) in the addr e-é-s"béﬁr-ﬁeter.
port
If given, this will hold the port associated to addr ess.

Return Values

FALSE if the socket type is not any of AF_INET, AF_INET®6, or AF_UNIX, in which case
the last socket error code is not updated.

Notes

Note

See Also

socket_getsockname

socket_getsockname -- Queries the local side of the given socket which may either result

in host/port or in a Unix filesystem path, dependent on its type
Description

bool socket_getsockname (resource $socket, string &addr [, int &port])

Note

Parameters

socket

the local IP address in appropriate notation (e.g. 127.0.0.1 or fe80::1) in the address
parameter and, if the optional port parameter is present, also the associated port. If

filesystem path (e.g. /var/run/daemon.sock) in the addr ess parameter.

port
If provided, this will hold the associated port.

Return Values

FALSE if the socket type is not any of AF_INET, AF_INET®6, or AF_UNIX, in which case

the last socket error code is not updated.

See Also

socket_last_error

socket _last_error -- Returns the last error on the socket

Description

int socket_last_error ([resource $socket |)

If a socket resource is passed to this function, the last error which occurred on this

particular socket is returned. If the socket resource is omitted, the error code of the last
failed socket function is returned. The latter is particularly helpful for functions like

Parameters

socket

Return Values
This function returns a socket error code.

Examples

<?php
$socket = @ocket create(AF_I NET, SOCK STREAM SOL_TCP);

if ($socket === false) {
$errorcode = socket last_error();
$errornsg = socket _strerror(3$errorcode);

die("Couldn't create socket: [$errorcode] $errornsg");

Notes

Note

purpose.

socket_listen

socket_listen -- Listens for a connection on a socket
Description

bool socket_listen (resource $socket [, int $backl og])

SOCK_SEQPACKET.

Parameters

socket

backl og
A maximum of backl og incoming connections will be queued for processing. If a
connection request arrives with the queue full the client may receive an error with an
indication of ECONNREFUSED, or, if the underlying protocol supports retransmission,
the request may be ignored so that retries may succeed.

Note

The maximum number passed to the backl og parameter highly depends on the
underlying platform. On Linux, it is silently truncated to SOMAXCONN. On win32, if
passed SOMAXCONN, the underlying service provider responsible for the socket
will set the backlog to a maximum reasonable value. There is no standard
provision to find out the actual backlog value on this platform.

Return Values

Returns TRUE on success or FALSE on failure. The error code can be retrieved with

explanation of the error.

See Also

socket read

socket_read -- Reads a maximum of length bytes from a socket
Description

string socket_read (resource $socket, int $l ength [, int $type])

Parameters

socket

| ength
The maximum number of bytes read is specified by the | engt h parameter. Otherwise
you can use \r, \n, or \0 to end reading (depending on the type parameter, see below).

type
Optional type parameter is a named constant:

« PHP_BINARY_READ (Default) - use the system recv() function. Safe for reading
binary data.

« PHP_NORMAL_READ - reading stops at \n or \r.

Return Values

representation of the error.

Note

ChangelLog

Version Description

4.1.0 The default value for type was changed
from PHP_NORMAL_READ to
PHP_BINARY_READ

See Also

» socket_accept()

socket_recv

socket_recv -- Receives data from a connected socket
Description

int socket_recv (resource $socket, string &buf, int $l en, int $fl ags)

Warning

This function is currently not documented; only its argument list is available.

socket recvfrom

socket_recvfrom -- Receives data from a socket whether or not it is connection-oriented
Description

int socket_recvfrom (resource $socket, string &s$buf, int $l en, int $fl ags, string &$nane
[, int &port])

gather data from both connected and unconnected sockets. Additionally, one or more flags
can be specified to modify the behaviour of the function.

The name and port must be passed by reference. If the socket is not connection-oriented,
name Will be set to the internet protocol address of the remote host or the path to the UNIX

socket. If the socket is connection-oriented, nane is NULL. Additionally, the port will
contain the port of the remote host in the case of an unconnected AF_INET or AF_INET6
socket.

Parameters

socket
The socket must be a socket resource previously created by socket_create().

buf
The data received will be fetched to the variable specified with buf .

I en
Up to | en bytes will be fetched from remote host.

flags
The value of fI ags can be any combination of the following flags, joined with the
binary OR (|) operator.

Possible values for fl ags

Flag Description

MSG_0O0OB Process out-of-band data.

MSG_PEEK Receive data from the beginning of the
receive queue without removing it from the
queue.

MSG_WAITALL Block until at least | en are received.
However, if a signal is caught or the remote
host disconnects, the function may return

less data.

MSG_DONTWAIT With this flag set, the function returns even if
it would normally have blocked.

nane
If the socket is of the type AF_UNIX type, nane is the path to the file. Else, for
unconnected sockets, nane is the IP address of, the remote host, or NULL if the socket is
connection-oriented.

port
This argument only applies to AF_INET and AF_INET6 sockets, and specifies the remote
port from which the data is received. If the socket is connection-oriented, port will be
NULL.

Return Values

<?php
error_reporting(E_ALL | E_STRICT);

$socket = socket create(AF_|I NET, SOCK DGRAM SOL_UDP);
socket bind($socket, '127.0.0.1', 1223);

$from=""

$port = 0O;

socket _recvfronm($socket, $buf, 12, 0, $from $port);

echo "Received $buf fromrenote address $from and renote port $port" . PHP_ECL
?>

This example will initiate an UDP socket on port 1223 of 127.0.0.1 and print at most 12
characters received from a remote host.

ChangelLog

Version Description

4.3.0

See Also

socket_select

socket_select -- Runs the select() system call on the given arrays of sockets with a
specified timeout

Description

int socket_select (array &s$read, array & wite, array &except, int $tv_sec [, int $
tv_usec])

coming with BSD sockets background will recognize that those socket resource arrays are
in fact the so-called file descriptor sets. Three independent arrays of socket resources are
watched.

Parameters

read
The sockets listed in the read array will be watched to see if characters become
available for reading (more precisely, to see if a read will not block - in particular, a

zero length string).

wite
The sockets listed in the writ e array will be watched to see if a write will not block.

except
The sockets listed in the except array will be watched for exceptions.

tv_sec
The tv_sec and tv_usec together form the timeout parameter. The timeout is an

tv_usec

Warning

On exit, the arrays are modified to indicate which socket resource actually changed
status.

empty array or NULL instead. Also do not forget that those arrays are passed by reference

Note

Due a limitation in the current Zend Engine it is not possible to pass a constant
modifier like NULL directly as a parameter to a function which expects this parameter
to be passed by reference. Instead use a temporary variable or an expression with the
leftmost member being a temporary variable:

<?php

$e = NULL

socket select($r, $w, $e, 0);
?>

Return Values

modified arrays, which may be zero if the timeout expires before anything interesting
happens. On error FALSE is returned. The error code can be retrieved with

Note
Be sure to use the === operator when checking for an error. Since the socket_select()
may return O the comparison with == would evaluate to TRUE:
Example #10 - Understanding socket_select() 's result
<?php
$e = NULL
if (false === socket _select($r, $w, $e, 0)) {
echo "socket select() failed, reason
socket _strerror(socket last_error()) . "\n";
}
2>
Examples

<?php

/* Prepare the read array */

$read = array($socketl, $socket?2);
$write = NULL
$except = NULL;

$num changed_sockets = socket_sel ect ($read, $wite, $except, 0);

i f ($num.changed_sockets === fal se) {
/* Error handling */
} else if ($num changed_sockets > 0) {
/* At |east at one of the sockets sonething interesting happened */

}

?>

Notes

Note

Be aware that some socket implementations need to be handled very carefully. A few
basic rules:

have nothing to do if there is no data available. Code that depends on timeouts is
not usually portable and difficult to debug.

» No socket resource must be added to any set if you do not intend to check its

socket resource that is available for writing must be written to, and any socket
resource available for reading must be read from.

 If you read/write to a socket returns in the arrays be aware that they do not
necessarily read/write the full amount of data you have requested. Be prepared to
even only be able to read/write a single byte.

* It's common to most socket implementations that the only exception caught with
the except array is out-of-bound data received on a socket.

See Also

socket_send

socket_send -- Sends data to a connected socket
Description

int socket_send (resource $socket, string $buf, int $l en, int $fl ags)

Parameters

socket

buf
A buffer containing the data that will be sent to the remote host.

I en
The number of bytes that will be sent to the remote host from buf .

flags
The value of fI ags can be any combination of the following flags, joined with the
binary OR (|) operator.

Possible values for fl ags

MSG_OOB Send OOB (out-of-band) data.

MSG_EOR Indicate a record mark. The sent data
completes the record.

MSG_EOF Close the sender side of the socket and
include an appropriate notification of this at
the end of the sent data. The sent data
completes the transaction.

MSG_DONTROUTE Bypass routing, use direct interface.

Return Values

See Also

socket_sendto

socket_sendto -- Sends a message to a socket, whether it is connected or not

Description

int socket_sendto (resource $socket, string $buf, int $I en, int $f1 ags, string $addr [, int $
port])

port atthe address addr.

Parameters

socket

buf
The sent data will be taken from buffer buf.

I en
| en bytes from buf will be sent.

flags
The value of flags can be any combination of the following flags, joined with the binary
OR (|) operator.

Possible values for fl ags

MSG_OOB Send OOB (out-of-band) data.

MSG_EOR Indicate a record mark. The sent data
completes the record.

MSG_EOF Close the sender side of the socket and
include an appropriate notification of this at
the end of the sent data. The sent data
completes the transaction.

MSG_DONTROUTE Bypass routing, use direct interface.

addr
IP address of the remote host.

port
port is the remote port number at which the data will be sent.

Return Values

<?php
$sock = socket _create(AF_I NET, SOCK DGRAM SOL_UDP);
$msg = "Ping !"
$len = strlen($nmsg);

socket _sendt o($sock, $msg, $len, 0, '127.0.0.1', 1223);
socket cl ose($sock);
?>

See Also

socket_set block

socket_set_block -- Sets blocking mode on a socket resource
Description

bool socket_set_block (resource $socket)

the socket parameter.

When an operation (e.g. receive, send, connect, accept, ...) is performed on a blocking socket,
the script will pause its execution until it receives a signal or it can perform the operation.

Parameters

socket

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
$socket = socket create |isten(1223);
socket set bl ock($socket);

socket _accept ($socket);
?>

This example creates a listening socket on all interfaces on port 1223 and sets the socket

See Also

socket _set _nonblock

socket_set_nonblock -- Sets nonblocking mode for file descriptor fd
Description

bool socket_set_nonblock (resource $socket)

the socket parameter.

When an operation (e.g. receive, send, connect, accept, ...) is performed on a non-blocking
socket, the script not pause its execution until it receives a signal or it can perform the
operation. Rather, if the operation would result in a block, the called function will fail.

Parameters

socket

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
$socket = socket_create_listen(1223);
socket set nonbl ock($socket);

socket _accept ($socket) ;
?>

This example creates a listening socket on all interfaces on port 1223 and sets the socket

connection exactly at this moment.

See Also

socket_set_option

socket_set_option -- Sets socket options for the socket
Description

bool socket_set_option (resource $socket, int $l evel , int $opt nane, mixed $opt val)

specified protocol | evel , to the value pointed to by the opt val parameter for the socket .

Parameters

socket

| eve
The | evel parameter specifies the protocol level at which the option resides. For example,
to retrieve options at the socket level, a | evel parameter of SOL_SOCKET would be
used. Other levels, such as TCP, can be used by specifying the protocol number of that
level. Protocol numbers can be found by using the getprotobyname() function.

opt name

optva
The option value.

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
$socket = socket create(AF_| NET, SOCK STREAM SOL TCP);

if (!'is_resource($socket)) {

echo '"Unable to create socket: '. socket strerror(socket |ast _error())
PHP_EQL;
}

if (!socket set option($socket, SOL SOCKET, SO REUSEADDR, 1)) {
echo 'Unable to set option on socket: '. socket _strerror(socket last _error())

PHP_EQL:

}
if (!socket bind($socket, '127.0.0.1", 1223)) {
echo 'Unable to bind socket: '. socket strerror(socket last _error())
PHP EOL;
}
$rval = socket get option($socket, SCOL SOCKET, SO REUSEADDR);
if ($rval === false) {
echo 'Unable to get socket option: '. socket strerror(socket last _error())
PHP_EQL;
} else if ($rval == 0) {
echo ' SO REUSEADDR is set on socket !'' . PHP_EQ;
}
?>
ChangelLog
Version Description
4.3.0 This function was renamed. It used to be
called socket_setopt().

socket _shutdown

socket_shutdown -- Shuts down a socket for receiving, sending, or both
Description

bool socket_shutdown (resource $socket [, int $how])

default) from being sent through the socket

Parameters

socket

how
The value of howcan be one of the following:

possible values for how

0 Shutdown socket reading
1 Shutdown socket writing
2 Shutdown socket reading and writing

Return Values

Returns TRUE on success or FALSE on failure.

socket_strerror

socket_strerror -- Return a string describing a socket error
Description

string socket_strerror (int $errno)

Note

Although the error messages generated by the socket extension are in English, the system
messages retrieved with this function will appear depending on the current locale (
LC_MESSAGES).

Parameters

errno

Return Values
Returns the error message associated with the errno parameter.

Examples

<?php
if (false == ($socket = @ocket _create(AF_I NET, SOCK _STREAM SCL_TCP))) {
echo "socket create() failed: reason: " . socket strerror(socket last _error())
o"\n";
}

if (false == (@ocket _bi nd($socket, '127.0.0.1', 80))) {
echo "socket _bind() failed: reason:
socket strerror(socket |ast_error($socket)) . "\n";

}

?>

The expected output from the above example (assuming the script is not run with root
privileges):

socket _bind() failed: reason: Perm ssion denied

See Also

socket_write

socket_write -- Write to a socket
Description
int socket_write (resource $socket, string $buffer [, int $l ength])

Parameters

socket

buf f er
The buffer to be written.

[engt h
The optional parameter | engt h can specify an alternate length of bytes written to the
socket. If this length is greater then the buffer length, it is silently truncated to the length of
the buffer.

Return Values

Returns the number of bytes successfully written to the socket or FALSE one error. The error

to get a textual explanation of the error.

Note

written. Be sure to use the === operator to check for FALSE in case of an error.

Notes

Note

depending on the network buffers etc., only a certain amount of data, even one byte, is
written though your buffer is greater. You have to watch out so you don't unintentionally
forget to transmit the rest of your data.

See Also

» socket_accept()

	Sockets
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Socket Errors
	Socket Functions
	socket_accept
	socket_bind
	socket_clear_error
	socket_close
	socket_connect
	socket_create_listen
	socket_create_pair
	socket_create
	socket_get_option
	socket_getpeername
	socket_getsockname
	socket_last_error
	socket_listen
	socket_read
	socket_recv
	socket_recvfrom
	socket_select
	socket_send
	socket_sendto
	socket_set_block
	socket_set_nonblock
	socket_set_option
	socket_shutdown
	socket_strerror
	socket_write

