
Security

Introduction

PHP is a powerful language and the interpreter, whether included in a web server as a
module or executed as a separate CGI binary, is able to access files, execute commands
and open network connections on the server. These properties make anything run on a
web server insecure by default. PHP is designed specifically to be a more secure
language for writing CGI programs than Perl or C, and with correct selection of
compile-time and runtime configuration options, and proper coding practices, it can give
you exactly the combination of freedom and security you need.

As there are many different ways of utilizing PHP, there are many configuration options
controlling its behaviour. A large selection of options guarantees you can use PHP for a lot
of purposes, but it also means there are combinations of these options and server
configurations that result in an insecure setup.

The configuration flexibility of PHP is equally rivalled by the code flexibility. PHP can be
used to build complete server applications, with all the power of a shell user, or it can be
used for simple server-side includes with little risk in a tightly controlled environment. How
you build that environment, and how secure it is, is largely up to the PHP developer.

This chapter starts with some general security advice, explains the different configuration
option combinations and the situations they can be safely used, and describes different
considerations in coding for different levels of security.

General considerations

A completely secure system is a virtual impossibility, so an approach often used in the
security profession is one of balancing risk and usability. If every variable submitted by a
user required two forms of biometric validation (such as a retinal scan and a fingerprint),
you would have an extremely high level of accountability. It would also take half an hour to
fill out a fairly complex form, which would tend to encourage users to find ways of
bypassing the security.

The best security is often unobtrusive enough to suit the requirements without the user
being prevented from accomplishing their work, or over-burdening the code author with
excessive complexity. Indeed, some security attacks are merely exploits of this kind of
overly built security, which tends to erode over time.

A phrase worth remembering: A system is only as good as the weakest link in a chain. If
all transactions are heavily logged based on time, location, transaction type, etc. but the
user is only verified based on a single cookie, the validity of tying the users to the
transaction log is severely weakened.

When testing, keep in mind that you will not be able to test all possibilities for even the
simplest of pages. The input you may expect will be completely unrelated to the input
given by a disgruntled employee, a cracker with months of time on their hands, or a
housecat walking across the keyboard. This is why it's best to look at the code from a
logical perspective, to discern where unexpected data can be introduced, and then follow
how it is modified, reduced, or amplified.

The Internet is filled with people trying to make a name for themselves by breaking your
code, crashing your site, posting inappropriate content, and otherwise making your day
interesting. It doesn't matter if you have a small or large site, you are a target by simply
being online, by having a server that can be connected to. Many cracking programs do not
discern by size, they simply trawl massive IP blocks looking for victims. Try not to become
one.

Installed as CGI binary

Possible attacks

Using PHP as a CGI binary is an option for setups that for some reason do not wish to
integrate PHP as a module into server software (like Apache), or will use PHP with
different kinds of CGI wrappers to create safe chroot and setuid environments for scripts.
This setup usually involves installing executable PHP binary to the web server cgi-bin
directory. CERT advisory » CA-96.11 recommends against placing any interpreters into
cgi-bin. Even if the PHP binary can be used as a standalone interpreter, PHP is designed
to prevent the attacks this setup makes possible:

• Accessing system files: http://my.host/cgi-bin/php?/etc/passwd The query information
in a URL after the question mark (?) is passed as command line arguments to the
interpreter by the CGI interface. Usually interpreters open and execute the file
specified as the first argument on the command line. When invoked as a CGI binary,
PHP refuses to interpret the command line arguments.

• Accessing any web document on server: http://my.host/cgi-bin/php/secret/doc.html The
path information part of the URL after the PHP binary name, /secret/doc.html is
conventionally used to specify the name of the file to be opened and interpreted by the
CGI program. Usually some web server configuration directives (Apache: Action) are
used to redirect requests to documents like http://my.host/secret/script.php to the PHP
interpreter. With this setup, the web server first checks the access permissions to the
directory /secret, and after that creates the redirected request
http://my.host/cgi-bin/php/secret/script.php. Unfortunately, if the request is originally
given in this form, no access checks are made by web server for file /secret/script.php,
but only for the /cgi-bin/php file. This way any user able to access /cgi-bin/php is able
to access any protected document on the web server. In PHP, compile-time
configuration option --enable-force-cgi-redirect and runtime configuration directives
doc_root and user_dir can be used to prevent this attack, if the server document tree
has any directories with access restrictions. See below for full the explanation of the
different combinations.

Case 1: only public files served

If your server does not have any content that is not restricted by password or ip based
access control, there is no need for these configuration options. If your web server does
not allow you to do redirects, or the server does not have a way to communicate to the
PHP binary that the request is a safely redirected request, you can specify the option
--enable-force-cgi-redirect to the configure script. You still have to make sure your PHP
scripts do not rely on one or another way of calling the script, neither by directly
http://my.host/cgi-bin/php/dir/script.php nor by redirection http://my.host/dir/script.php.

Redirection can be configured in Apache by using AddHandler and Action directives (see
below).

http://www.cert.org/advisories/CA-1996-11.html

Case 2: using --enable-force-cgi-redirect

This compile-time option prevents anyone from calling PHP directly with a URL like
http://my.host/cgi-bin/php/secretdir/script.php. Instead, PHP will only parse in this mode if it
has gone through a web server redirect rule.

Usually the redirection in the Apache configuration is done with the following directives:

Action php-script /cgi-bin/php

AddHandler php-script .php

This option has only been tested with the Apache web server, and relies on Apache to set
the non-standard CGI environment variable REDIRECT_STATUS on redirected requests.
If your web server does not support any way of telling if the request is direct or redirected,
you cannot use this option and you must use one of the other ways of running the CGI
version documented here.

Case 3: setting doc_root or user_dir

To include active content, like scripts and executables, in the web server document
directories is sometimes considered an insecure practice. If, because of some
configuration mistake, the scripts are not executed but displayed as regular HTML
documents, this may result in leakage of intellectual property or security information like
passwords. Therefore many sysadmins will prefer setting up another directory structure for
scripts that are accessible only through the PHP CGI, and therefore always interpreted
and not displayed as such.

Also if the method for making sure the requests are not redirected, as described in the
previous section, is not available, it is necessary to set up a script doc_root that is different
from web document root.

You can set the PHP script document root by the configuration directive doc_root in the
configuration file, or you can set the environment variable PHP_DOCUMENT_ROOT. If it
is set, the CGI version of PHP will always construct the file name to open with this
doc_root and the path information in the request, so you can be sure no script is executed
outside this directory (except for user_dir below).

Another option usable here is user_dir. When user_dir is unset, only thing controlling the
opened file name is doc_root. Opening a URL like http://my.host/~user/doc.php does not
result in opening a file under users home directory, but a file called ~user/doc.php under
doc_root (yes, a directory name starting with a tilde [~]).

If user_dir is set to for example public_php, a request like http://my.host/~user/doc.php will
open a file called doc.php under the directory named public_php under the home directory
of the user. If the home of the user is /home/user, the file executed is
/home/user/public_php/doc.php.

user_dir expansion happens regardless of the doc_root setting, so you can control the
document root and user directory access separately.

Case 4: PHP parser outside of web tree

A very secure option is to put the PHP parser binary somewhere outside of the web tree of
files. In /usr/local/bin, for example. The only real downside to this option is that you will
now have to put a line similar to:

#!/usr/local/bin/php

as the first line of any file containing PHP tags. You will also need to make the file
executable. That is, treat it exactly as you would treat any other CGI script written in Perl
or sh or any other common scripting language which uses the #! shell-escape mechanism
for launching itself.

To get PHP to handle PATH_INFO and PATH_TRANSLATED information correctly with
this setup, the PHP parser should be compiled with the --enable-discard-path configure
option.

Installed as an Apache module

When PHP is used as an Apache module it inherits Apache's user permissions (typically
those of the "nobody" user). This has several impacts on security and authorization. For
example, if you are using PHP to access a database, unless that database has built-in
access control, you will have to make the database accessible to the "nobody" user. This
means a malicious script could access and modify the database, even without a username
and password. It's entirely possible that a web spider could stumble across a database
administrator's web page, and drop all of your databases. You can protect against this with
Apache authorization, or you can design your own access model using LDAP,.htaccess
files, etc. and include that code as part of your PHP scripts.

Often, once security is established to the point where the PHP user (in this case, the
apache user) has very little risk attached to it, it is discovered that PHP is now prevented
from writing any files to user directories. Or perhaps it has been prevented from accessing
or changing databases. It has equally been secured from writing good and bad files, or
entering good and bad database transactions.

A frequent security mistake made at this point is to allow apache root permissions, or to
escalate apache's abilities in some other way.

Escalating the Apache user's permissions to root is extremely dangerous and may
compromise the entire system, so sudo'ing, chroot'ing, or otherwise running as root should
not be considered by those who are not security professionals.

There are some simpler solutions. By using open_basedir you can control and restrict
what directories are allowed to be used for PHP. You can also set up apache-only areas,
to restrict all web based activity to non-user, or non-system, files.

Filesystem Security

PHP is subject to the security built into most server systems with respect to permissions
on a file and directory basis. This allows you to control which files in the filesystem may be
read. Care should be taken with any files which are world readable to ensure that they are
safe for reading by all users who have access to that filesystem.

Since PHP was designed to allow user level access to the filesystem, it's entirely possible
to write a PHP script that will allow you to read system files such as /etc/passwd, modify
your ethernet connections, send massive printer jobs out, etc. This has some obvious
implications, in that you need to ensure that the files that you read from and write to are
the appropriate ones.

Consider the following script, where a user indicates that they'd like to delete a file in their
home directory. This assumes a situation where a PHP web interface is regularly used for
file management, so the Apache user is allowed to delete files in the user home
directories.

Example #1 - Poor variable checking leads to....

<?php

// remove a file from the user's home directory

$username = $_POST['user_submitted_name'];

$userfile = $_POST['user_submitted_filename'];

$homedir = "/home/$username";

unlink("$homedir/$userfile");

echo "The file has been deleted!";

?>

Since the username and the filename are postable from a user form, they can submit a
username and a filename belonging to someone else, and delete it even if they're not
supposed to be allowed to do so. In this case, you'd want to use some other form of
authentication. Consider what could happen if the variables submitted were "../etc/" and
"passwd". The code would then effectively read:

Example #2 -... A filesystem attack

<?php

// removes a file from anywhere on the hard drive that

// the PHP user has access to. If PHP has root access:

$username = $_POST['user_submitted_name']; // "../etc"

$userfile = $_POST['user_submitted_filename']; // "passwd"

$homedir = "/home/$username"; // "/home/../etc"

unlink("$homedir/$userfile"); // "/home/../etc/passwd"

echo "The file has been deleted!";

?>

There are two important measures you should take to prevent these issues.

• Only allow limited permissions to the PHP web user binary.

• Check all variables which are submitted.

Here is an improved script:

Example #3 - More secure file name checking

<?php

// removes a file from the hard drive that

// the PHP user has access to.

$username = $_SERVER['REMOTE_USER']; // using an authentication mechanisim

$userfile = basename($_POST['user_submitted_filename']);

$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (file_exists($filepath) && unlink($filepath)) {

 $logstring = "Deleted $filepath\n";

} else {

 $logstring = "Failed to delete $filepath\n";

}

$fp = fopen("/home/logging/filedelete.log", "a");

fwrite($fp, $lo gstring);

fclose($fp);

echo htmlentities($logstring, ENT_QUOTES);

?>

However, even this is not without its flaws. If your authentication system allowed users to
create their own user logins, and a user chose the login "../etc/", the system is once again
exposed. For this reason, you may prefer to write a more customized check:

Example #4 - More secure file name checking

<?php

$username = $_SERVER['REMOTE_USER']; // using an authentication
mechanisim

$userfile = $_POST['user_submitted_filename'];

$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (!ctype_alnum($username) || !preg_match('/^(?:[a-z0-9_-]|\.(?!\.))+$/iD',
$userfile)) {

 die("Bad username/filename");

}

//etc...

?>

Depending on your operating system, there are a wide variety of files which you should be
concerned about, including device entries (/dev/ or COM1), configuration files (/etc/ files

and the .ini files), well known file storage areas (/home/, My Documents), etc. For this
reason, it's usually easier to create a policy where you forbid everything except for what
you explicitly allow.

Null bytes related issues

As PHP uses the underlying C functions for filesystem related operations, it may handle
null bytes in a quite unexpected way. As null bytes denote the end of a string in C, strings
containing them won't be considered entirely but rather only until a null byte occurs. The
following example shows a vulnerable code that demonstrates this problem:

Example #5 - Script vulnerable to null bytes

<?php

$file = $_GET['file']; // "../../etc/passwd\0"

if (file_exists('/home/wwwrun/'.$file.'.php')) {

 // file_exists will return true as the file /home/wwwrun/../../etc/passwd
exists

 include '/home/wwwrun/'.$file.'.php';

 // the file /etc/passwd will be included

}

?>

Therefore, any tainted string that is used in a filesystem operation should always be
validated properly. Here is a better version of the previous example:

Example #6 - Correctly validating the input

<?php

$file = $_GET['file'];

// Whitelisting possible values

switch ($file) {

 case 'main':

 case 'foo':

 case 'bar':

 include '/home/wwwrun/include/'.$file.'.php';

 break;

 default:

 include '/home/wwwrun/include/main.php';

}

?>

Database Security

Nowadays, databases are cardinal components of any web based application by enabling
websites to provide varying dynamic content. Since very sensitive or secret information
can be stored in a database, you should strongly consider protecting your databases.

To retrieve or to store any information you need to connect to the database, send a
legitimate query, fetch the result, and close the connection. Nowadays, the commonly
used query language in this interaction is the Structured Query Language (SQL). See how
an attacker can tamper with an SQL query.

As you can surmise, PHP cannot protect your database by itself. The following sections
aim to be an introduction into the very basics of how to access and manipulate databases
within PHP scripts.

Keep in mind this simple rule: defense in depth. The more places you take action to
increase the protection of your database, the less probability of an attacker succeeding in
exposing or abusing any stored information. Good design of the database schema and the
application deals with your greatest fears.

Designing Databases

The first step is always to create the database, unless you want to use one from a third
party. When a database is created, it is assigned to an owner, who executed the creation
statement. Usually, only the owner (or a superuser) can do anything with the objects in
that database, and in order to allow other users to use it, privileges must be granted.

Applications should never connect to the database as its owner or a superuser, because
these users can execute any query at will, for example, modifying the schema (e.g.
dropping tables) or deleting its entire content.

You may create different database users for every aspect of your application with very
limited rights to database objects. The most required privileges should be granted only,
and avoid that the same user can interact with the database in different use cases. This
means that if intruders gain access to your database using your applications credentials,
they can only effect as many changes as your application can.

You are encouraged not to implement all the business logic in the web application (i.e.
your script), instead do it in the database schema using views, triggers or rules. If the
system evolves, new ports will be intended to open to the database, and you have to
re-implement the logic in each separate database client. Over and above, triggers can be
used to transparently and automatically handle fields, which often provides insight when
debugging problems with your application or tracing back transactions.

Connecting to Database

You may want to establish the connections over SSL to encrypt client/server

communications for increased security, or you can use ssh to encrypt the network
connection between clients and the database server. If either of these is used, then
monitoring your traffic and gaining information about your database will be difficult for a
would-be attacker.

Encrypted Storage Model

SSL/SSH protects data travelling from the client to the server, SSL/SSH does not protect
the persistent data stored in a database. SSL is an on-the-wire protocol.

Once an attacker gains access to your database directly (bypassing the webserver), the
stored sensitive data may be exposed or misused, unless the information is protected by
the database itself. Encrypting the data is a good way to mitigate this threat, but very few
databases offer this type of data encryption.

The easiest way to work around this problem is to first create your own encryption
package, and then use it from within your PHP scripts. PHP can assist you in this with
several extensions, such as Mcrypt and Mhash, covering a wide variety of encryption
algorithms. The script encrypts the data before inserting it into the database, and decrypts
it when retrieving. See the references for further examples of how encryption works.

In case of truly hidden data, if its raw representation is not needed (i.e. not be displayed),
hashing may also be taken into consideration. The well-known example for the hashing is
storing the MD5 hash of a password in a database, instead of the password itself. See
also crypt() and md5().

Example #7 - Using hashed password field

<?php

// storing password hash

$query = sprintf("INSERT INTO users(name,pwd) VALUES('%s','%s');",

 pg_escape_string($username), md5($password));

$result = pg_query($connection, $query);

// querying if user submitted the right password

$query = sprintf("SELECT 1 FROM users WHERE name='%s' AND pwd='%s';",

 pg_escape_string($username), md5($password));

$result = pg_query($connection, $query);

if (pg_num_rows($result) > 0) {

 echo 'Welcome, $username!';

} else {

 echo 'Authentication failed for $username.';

}

?>

SQL Injection

Many web developers are unaware of how SQL queries can be tampered with, and
assume that an SQL query is a trusted command. It means that SQL queries are able to
circumvent access controls, thereby bypassing standard authentication and authorization
checks, and sometimes SQL queries even may allow access to host operating system
level commands.

Direct SQL Command Injection is a technique where an attacker creates or alters existing
SQL commands to expose hidden data, or to override valuable ones, or even to execute
dangerous system level commands on the database host. This is accomplished by the
application taking user input and combining it with static parameters to build a SQL query.
The following examples are based on true stories, unfortunately.

Owing to the lack of input validation and connecting to the database on behalf of a
superuser or the one who can create users, the attacker may create a superuser in your
database.

Example #8 - Splitting the result set into pages ... and making superusers
(PostgreSQL)

<?php

$offset = $argv[0]; // beware, no input validation!

$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET
$offset;";

$result = pg_query($conn, $query);

?>

Normal users click on the 'next', 'prev' links where the $offset is encoded into the URL. The
script expects that the incoming $offset is a decimal number. However, what if someone
tries to break in by appending a urlencode() 'd form of the following to the URL

0;

insert into pg_shadow(usename,usesysid,usesuper,usecatupd,passwd)

 select 'crack', usesysid, 't','t','crack'

 from pg_shadow where usename='postgres';

--

If it happened, then the script would present a superuser access to him. Note that 0; is to
supply a valid offset to the original query and to terminate it.

Note

It is common technique to force the SQL parser to ignore the rest of the query written
by the developer with -- which is the comment sign in SQL.

A feasible way to gain passwords is to circumvent your search result pages. The only thing
the attacker needs to do is to see if there are any submitted variables used in SQL
statements which are not handled properly. These filters can be set commonly in a
preceding form to customize WHERE, ORDER BY, LIMIT and OFFSET clauses in
SELECT statements. If your database supports the UNION construct, the attacker may try
to append an entire query to the original one to list passwords from an arbitrary table.

Using encrypted password fields is strongly encouraged.

Example #9 - Listing out articles ... and some passwords (any database server)

<?php

$query = "SELECT id, name, inserted, size FROM products

 WHERE size = '$size'

 ORDER BY $order LIMIT $limit, $offset;";

$result = odbc_exec($conn, $query);

?>

The static part of the query can be combined with another SELECT statement which
reveals all passwords:

'

union select '1', concat(uname||'-'||passwd) as name, '1971-01-01', '0' from
usertable;

--

If this query (playing with the ' and --) were assigned to one of the variables used in
$query, the query beast awakened.

SQL UPDATE's are also susceptible to attack. These queries are also threatened by
chopping and appending an entirely new query to it. But the attacker might fiddle with the
SET clause. In this case some schema information must be possessed to manipulate the
query successfully. This can be acquired by examining the form variable names, or just
simply brute forcing. There are not so many naming conventions for fields storing
passwords or usernames.

Example #10 - From resetting a password ... to gaining more privileges (any
database server)

<?php

$query = "UPDATE usertable SET pwd='$pwd' WHERE uid='$uid';";

?>

But a malicious user sumbits the value ' or uid like'%admin%'; -- to $uid to change the
admin's password, or simply sets $pwd to "hehehe', admin='yes', trusted=100 " (with a
trailing space) to gain more privileges. Then, the query will be twisted:

<?php

// $uid == ' or uid like'%admin%'; --

$query = "UPDATE usertable SET pwd='...' WHERE uid='' or uid like '%admin%';
--";

// $pwd == "hehehe', admin='yes', trusted=100 "

$query = "UPDATE usertable SET pwd='hehehe', admin='yes', trusted=100 WHERE

...;";

?>

A frightening example how operating system level commands can be accessed on some
database hosts.

Example #11 - Attacking the database hosts operating system (MSSQL Server)

<?php

$query = "SELECT * FROM products WHERE id LIKE '%$prod%'";

$result = mssql_query($query);

?>

If attacker submits the value a%' exec master..xp_cmdshell 'net user test testpass /ADD' --
to $prod, then the $query will be:

<?php

$query = "SELECT * FROM products

 WHERE id LIKE '%a%'

 exec master..xp_cmdshell 'net user test testpass /ADD'--";

$result = mssql_query($query);

?>

MSSQL Server executes the SQL statements in the batch including a command to add a
new user to the local accounts database. If this application were running as sa and the
MSSQLSERVER service is running with sufficient privileges, the attacker would now have
an account with which to access this machine.

Note

Some of the examples above is tied to a specific database server. This does not mean
that a similar attack is impossible against other products. Your database server may be
similarly vulnerable in another manner.

Avoiding techniques

You may plead that the attacker must possess a piece of information about the database
schema in most examples. You are right, but you never know when and how it can be
taken out, and if it happens, your database may be exposed. If you are using an open
source, or publicly available database handling package, which may belong to a content
management system or forum, the intruders easily produce a copy of a piece of your code.
It may be also a security risk if it is a poorly designed one.

These attacks are mainly based on exploiting the code not being written with security in
mind. Never trust any kind of input, especially that which comes from the client side, even
though it comes from a select box, a hidden input field or a cookie. The first example
shows that such a blameless query can cause disasters.

• Never connect to the database as a superuser or as the database owner. Use always

customized users with very limited privileges.

• Check if the given input has the expected data type. PHP has a wide range of input
validating functions, from the simplest ones found in Variable Functions and in
Character Type Functions (e.g. is_numeric(), ctype_digit() respectively) and onwards
to the Perl compatible Regular Expressions support.

• If the application waits for numerical input, consider verifying data with is_numeric(), or
silently change its type using settype(), or use its numeric representation by sprintf().

Example #12 - A more secure way to compose a query for paging

<?php

settype($offset, 'integer');

$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET
$offset;";

// please note %d in the format string, using %s would be meaningless

$query = sprintf("SELECT id, name FROM products ORDER BY name LIMIT 20
OFFSET %d;",

 $offset);

?>

• Quote each non numeric user supplied value that is passed to the database with the
database-specific string escape function (e.g. mysql_real_escape_string(),
sql_escape_string(), etc.). If a database-specific string escape mechanism is not
available, the addslashes() and str_replace() functions may be useful (depending on
database type). See the first example. As the example shows, adding quotes to the
static part of the query is not enough, making this query easily crackable.

• Do not print out any database specific information, especially about the schema, by fair
means or foul. See also Error Reporting and Error Handling and Logging Functions.

• You may use stored procedures and previously defined cursors to abstract data
access so that users do not directly access tables or views, but this solution has
another impacts.

Besides these, you benefit from logging queries either within your script or by the database
itself, if it supports logging. Obviously, the logging is unable to prevent any harmful
attempt, but it can be helpful to trace back which application has been circumvented. The
log is not useful by itself, but through the information it contains. More detail is generally
better than less.

Error Reporting

With PHP security, there are two sides to error reporting. One is beneficial to increasing
security, the other is detrimental.

A standard attack tactic involves profiling a system by feeding it improper data, and
checking for the kinds, and contexts, of the errors which are returned. This allows the
system cracker to probe for information about the server, to determine possible
weaknesses. For example, if an attacker had gleaned information about a page based on
a prior form submission, they may attempt to override variables, or modify them:

Example #13 - Attacking Variables with a custom HTML page

<form method="post"
action="attacktarget?username=badfoo&password=badfoo">

<input type="hidden" name="username" value="badfoo" />

<input type="hidden" name="password" value="badfoo" />

</form>

The PHP errors which are normally returned can be quite helpful to a developer who is
trying to debug a script, indicating such things as the function or file that failed, the PHP
file it failed in, and the line number which the failure occurred in. This is all information that
can be exploited. It is not uncommon for a php developer to use show_source(),
highlight_string(), or highlight_file() as a debugging measure, but in a live site, this can
expose hidden variables, unchecked syntax, and other dangerous information. Especially
dangerous is running code from known sources with built-in debugging handlers, or using
common debugging techniques. If the attacker can determine what general technique you
are using, they may try to brute-force a page, by sending various common debugging
strings:

Example #14 - Exploiting common debugging variables

<form method="post"
action="attacktarget?errors=Y&showerrors=1&debug=1">

<input type="hidden" name="errors" value="Y" />

<input type="hidden" name="showerrors" value="1" />

<input type="hidden" name="debug" value="1" />

</form>

Regardless of the method of error handling, the ability to probe a system for errors leads to
providing an attacker with more information.

For example, the very style of a generic PHP error indicates a system is running PHP. If
the attacker was looking at an .html page, and wanted to probe for the back-end (to look
for known weaknesses in the system), by feeding it the wrong data they may be able to
determine that a system was built with PHP.

A function error can indicate whether a system may be running a specific database engine,
or give clues as to how a web page or programmed or designed. This allows for deeper
investigation into open database ports, or to look for specific bugs or weaknesses in a web
page. By feeding different pieces of bad data, for example, an attacker can determine the
order of authentication in a script, (from the line number errors) as well as probe for
exploits that may be exploited in different locations in the script.

A filesystem or general PHP error can indicate what permissions the web server has, as
well as the structure and organization of files on the web server. Developer written error
code can aggravate this problem, leading to easy exploitation of formerly "hidden"
information.

There are three major solutions to this issue. The first is to scrutinize all functions, and
attempt to compensate for the bulk of the errors. The second is to disable error reporting
entirely on the running code. The third is to use PHP's custom error handling functions to
create your own error handler. Depending on your security policy, you may find all three to
be applicable to your situation.

One way of catching this issue ahead of time is to make use of PHP's own
error_reporting(), to help you secure your code and find variable usage that may be
dangerous. By testing your code, prior to deployment, with E_ALL, you can quickly find
areas where your variables may be open to poisoning or modification in other ways. Once
you are ready for deployment, you should either disable error reporting completely by
setting error_reporting() to 0, or turn off the error display using the php.ini option
display_errors, to insulate your code from probing. If you choose to do the latter, you
should also define the path to your log file using the error_log ini directive, and turn
log_errors on.

Example #15 - Finding dangerous variables with E_ALL

<?php

if ($username) { // Not initialized or checked before usage

 $good_login = 1;

}

if ($good_login == 1) { // If above test fails, not initialized or checked
before usage

 readfile ("/highly/sensitive/data/index.html");

}

?>

Using Register Globals

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on this
feature is highly discouraged.

Perhaps the most controversial change in PHP is when the default value for the PHP
directive register_globals went from ON to OFF in PHP » 4.2.0. Reliance on this directive
was quite common and many people didn't even know it existed and assumed it's just how
PHP works. This page will explain how one can write insecure code with this directive but
keep in mind that the directive itself isn't insecure but rather it's the misuse of it.

When on, register_globals will inject your scripts with all sorts of variables, like request
variables from HTML forms. This coupled with the fact that PHP doesn't require variable
initialization means writing insecure code is that much easier. It was a difficult decision, but
the PHP community decided to disable this directive by default. When on, people use
variables yet really don't know for sure where they come from and can only assume.
Internal variables that are defined in the script itself get mixed up with request data sent by
users and disabling register_globals changes this. Let's demonstrate with an example
misuse of register_globals:

Example #16 - Example misuse with register_globals = on

<?php

// define $authorized = true only if user is authenticated

if (authenticated_user()) {

 $authorized = true;

}

// Because we didn't first initialize $authorized as false, this might be

// defined through register_globals, like from GET auth.php?authorized=1

// So, anyone can be seen as authenticated!

if ($authorized) {

 include "/highly/sensitive/data.php";

}

?>

When register_globals = on, our logic above may be compromised. When off, $authorized
can't be set via request so it'll be fine, although it really is generally a good programming
practice to initialize variables first. For example, in our example above we might have first
done $authorized = false. Doing this first means our above code would work with
register_globals on or off as users by default would be unauthorized.

Another example is that of sessions. When register_globals = on, we could also use
$username in our example below but again you must realize that $username could also

http://www.php.net/releases/4_2_0.php

come from other means, such as GET (through the URL).

Example #17 - Example use of sessions with register_globals on or off

<?php

// We wouldn't know where $username came from but do know $_SESSION is

// for session data

if (isset($_SESSION['username'])) {

 echo "Hello {$_SESSION['username']}";

} else {

 echo "Hello Guest
";

 echo "Would you like to login?";

}

?>

It's even possible to take preventative measures to warn when forging is being attempted.
If you know ahead of time exactly where a variable should be coming from, you can check
to see if the submitted data is coming from an inappropriate kind of submission. While it
doesn't guarantee that data has not been forged, it does require an attacker to guess the
right kind of forging. If you don't care where the request data comes from, you can use
$_REQUEST as it contains a mix of GET, POST and COOKIE data. See also the manual
section on using variables from external sources.

Example #18 - Detecting simple variable poisoning

<?php

if (isset($_COOKIE['MAGIC_COOKIE'])) {

 // MAGIC_COOKIE comes from a cookie.

 // Be sure to validate the cookie data!

} elseif (isset($_GET['MAGIC_COOKIE']) || isset($_POST['MAGIC_COOKIE'])) {

 mail("admin@example.com", "Possible breakin attempt",
$_SERVER['REMOTE_ADDR']);

 echo "Security violation, admin has been alerted.";

 exit;

} else {

 // MAGIC_COOKIE isn't set through this REQUEST

}

?>

Of course, simply turning off register_globals does not mean your code is secure. For
every piece of data that is submitted, it should also be checked in other ways. Always
validate your user data and initialize your variables! To check for uninitialized variables you
may turn up error_reporting() to show E_NOTICE level errors.

For information about emulating register_globals being On or Off, see this FAQ.

Note

Superglobals: availability note

Superglobal arrays such as $_GET, $_POST, and $_SERVER, etc. are available as of
PHP 4.1.0. For more information, read the manual section on superglobals

User Submitted Data

The greatest weakness in many PHP programs is not inherent in the language itself, but
merely an issue of code not being written with security in mind. For this reason, you should
always take the time to consider the implications of a given piece of code, to ascertain the
possible damage if an unexpected variable is submitted to it.

Example #19 - Dangerous Variable Usage

<?php

// remove a file from the user's home directory... or maybe

// somebody else's?

unlink ($evil_var);

// Write logging of their access... or maybe an /etc/passwd entry?

fwrite ($fp, $evil_var);

// Execute something trivial.. or rm -rf *?

system ($evil_var);

exec ($evil_var);

?>

You should always carefully examine your code to make sure that any variables being
submitted from a web browser are being properly checked, and ask yourself the following
questions:

• Will this script only affect the intended files?

• Can unusual or undesirable data be acted upon?

• Can this script be used in unintended ways?

• Can this be used in conjunction with other scripts in a negative manner?

• Will any transactions be adequately logged?

By adequately asking these questions while writing the script, rather than later, you
prevent an unfortunate re-write when you need to increase your security. By starting out
with this mindset, you won't guarantee the security of your system, but you can help
improve it.

You may also want to consider turning off register_globals, magic_quotes, or other
convenience settings which may confuse you as to the validity, source, or value of a given
variable. Working with PHP in error_reporting(E_ALL) mode can also help warn you about
variables being used before they are checked or initialized (so you can prevent unusual
data from being operated upon).

Magic Quotes

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on this
feature is highly discouraged.

Magic Quotes is a process that automagically escapes incoming data to the PHP script.
It's preferred to code with magic quotes off and to instead escape the data at runtime, as
needed.

What are Magic Quotes

When on, all ' (single-quote), " (double quote), \ (backslash) and NULL characters are
escaped with a backslash automatically. This is identical to what addslashes() does.

There are three magic quote directives:

• magic_quotes_gpc Affects HTTP Request data (GET, POST, and COOKIE). Cannot
be set at runtime, and defaults to on in PHP. See also get_magic_quotes_gpc().

• magic_quotes_runtime If enabled, most functions that return data from an external
source, including databases and text files, will have quotes escaped with a backslash.
Can be set at runtime, and defaults to off in PHP. See also
set_magic_quotes_runtime() and get_magic_quotes_runtime().

• magic_quotes_sybase If enabled, a single-quote is escaped with a single-quote
instead of a backslash. If on, it completely overrides magic_quotes_gpc. Having both
directives enabled means only single quotes are escaped as ''. Double quotes,
backslashes and NULL's will remain untouched and unescaped. See also ini_get() for
retrieving its value.

Why use Magic Quotes

• Useful for beginners Magic quotes are implemented in PHP to help code written by
beginners from being dangerous. Although SQL Injection is still possible with magic
quotes on, the risk is reduced.

• Convenience For inserting data into a database, magic quotes essentially runs
addslashes() on all Get, Post, and Cookie data, and does so automagically.

Why not to use Magic Quotes

• Portability Assuming it to be on, or off, affects portability. Use get_magic_quotes_gpc()
to check for this, and code accordingly.

• Performance Because not every piece of escaped data is inserted into a database,
there is a performance loss for escaping all this data. Simply calling on the escaping
functions (like addslashes()) at runtime is more efficient. Although php.ini-dist enables
these directives by default, php.ini-recommended disables it. This recommendation is
mainly due to performance reasons.

• Inconvenience Because not all data needs escaping, it's often annoying to see
escaped data where it shouldn't be. For example, emailing from a form, and seeing a
bunch of \' within the email. To fix, this may require excessive use of stripslashes().

Disabling Magic Quotes

The magic_quotes_gpc directive may only be disabled at the system level, and not at
runtime. In otherwords, use of ini_set() is not an option.

Example #20 - Disabling magic quotes server side

An example that sets the value of these directives to Off in php.ini. For additional
details, read the manual section titled How to change configuration settings.

; Magic quotes

;

; Magic quotes for incoming GET/POST/Cookie data.

magic_quotes_gpc = Off

; Magic quotes for runtime-generated data, e.g. data from SQL, from exec(),
etc.

magic_quotes_runtime = Off

; Use Sybase-style magic quotes (escape ' with '' instead of \').

magic_quotes_sybase = Off

If access to the server configuration is unavailable, use of.htaccess is also an option.
For example:

php_flag magic_quotes_gpc Off

In the interest of writing portable code (code that works in any environment), like if setting
at the server level is not possible, here's an example to disable magic_quotes_gpc at
runtime. This method is inefficient so it's preferred to instead set the appropriate directives
elsewhere.

Example #21 - Disabling magic quotes at runtime

<?php

if (get_magic_quotes_gpc()) {

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

?>

Hiding PHP

In general, security by obscurity is one of the weakest forms of security. But in some
cases, every little bit of extra security is desirable.

A few simple techniques can help to hide PHP, possibly slowing down an attacker who is
attempting to discover weaknesses in your system. By setting expose_php = off in your
php.ini file, you reduce the amount of information available to them.

Another tactic is to configure web servers such as apache to parse different filetypes
through PHP, either with an.htaccess directive, or in the apache configuration file itself.
You can then use misleading file extensions:

Example #22 - Hiding PHP as another language

Make PHP code look like other code types

AddType application/x-httpd-php .asp .py .pl

Or obscure it completely:

Example #23 - Using unknown types for PHP extensions

Make PHP code look like unknown types

AddType application/x-httpd-php .bop .foo .133t

Or hide it as HTML code, which has a slight performance hit because all HTML will be
parsed through the PHP engine:

Example #24 - Using HTML types for PHP extensions

Make all PHP code look like HTML

AddType application/x-httpd-php .htm .html

For this to work effectively, you must rename your PHP files with the above extensions.
While it is a form of security through obscurity, it's a minor preventative measure with few
drawbacks.

Keeping Current

PHP, like any other large system, is under constant scrutiny and improvement. Each new
version will often include both major and minor changes to enhance security and repair
any flaws, configuration mishaps, and other issues that will affect the overall security and
stability of your system.

Like other system-level scripting languages and programs, the best approach is to update
often, and maintain awareness of the latest versions and their changes.

	Security
	Introduction
	General considerations
	Installed as CGI binary
	Possible attacks
	Case 1: only public files served
	Case 2: using --enable-force-cgi-redirect
	Case 3: setting doc_root or user_dir
	Case 4: PHP parser outside of web tree

	Installed as an Apache module
	Filesystem Security
	Null bytes related issues

	Database Security
	Designing Databases
	Connecting to Database
	Encrypted Storage Model
	SQL Injection
	Avoiding techniques

	Error Reporting
	Using Register Globals
	User Submitted Data
	Magic Quotes
	What are Magic Quotes
	Why use Magic Quotes
	Why not to use Magic Quotes
	Disabling Magic Quotes

	Hiding PHP
	Keeping Current

