
Installation and Configuration

General Installation Considerations

Before starting the installation, first you need to know what do you want to use PHP for.
There are three main fields you can use PHP, as described in the What can PHP do?
section:

• Websites and web applications (server-side scripting)

• Command line scripting

• Desktop (GUI) applications

For the first and most common form, you need three things: PHP itself, a web server and a
web browser. You probably already have a web browser, and depending on your operating
system setup, you may also have a web server (e.g. Apache on Linux and MacOS X; IIS
on Windows). You may also rent webspace at a company. This way, you don't need to set
up anything on your own, only write your PHP scripts, upload it to the server you rent, and
see the results in your browser.

In case of setting up the server and PHP on your own, you have two choices for the
method of connecting PHP to the server. For many servers PHP has a direct module
interface (also called SAPI). These servers include Apache, Microsoft Internet Information
Server, Netscape and iPlanet servers. Many other servers have support for ISAPI, the
Microsoft module interface (OmniHTTPd for example). If PHP has no module support for
your web server, you can always use it as a CGI or FastCGI processor. This means you
set up your server to use the CGI executable of PHP to process all PHP file requests on
the server.

If you are also interested to use PHP for command line scripting (e.g. write scripts
autogenerating some images for you offline, or processing text files depending on some
arguments you pass to them), you always need the command line executable. For more
information, read the section about writing command line PHP applications. In this case,
you need no server and no browser.

With PHP you can also write desktop GUI applications using the PHP-GTK extension. This
is a completely different approach than writing web pages, as you do not output any
HTML, but manage windows and objects within them. For more information about
PHP-GTK, please » visit the site dedicated to this extension. PHP-GTK is not included in
the official PHP distribution.

From now on, this section deals with setting up PHP for web servers on Unix and Windows
with server module interfaces and CGI executables. You will also find information on the
command line executable in the following sections.

PHP source code and binary distributions for Windows can be found at
» http://www.php.net/downloads.php. We recommend you to choose a » mirror nearest to
you for downloading the distributions.

http://gtk.php.net/
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://www.php.net/mirrors.php

Installation on Unix systems

This section will guide you through the general configuration and installation of PHP on
Unix systems. Be sure to investigate any sections specific to your platform or web server
before you begin the process.

As our manual outlines in the General Installation Considerations section, we are mainly
dealing with web centric setups of PHP in this section, although we will cover setting up
PHP for command line usage as well.

There are several ways to install PHP for the Unix platform, either with a compile and
configure process, or through various pre-packaged methods. This documentation is
mainly focused around the process of compiling and configuring PHP. Many Unix like
systems have some sort of package installation system. This can assist in setting up a
standard configuration, but if you need to have a different set of features (such as a secure
server, or a different database driver), you may need to build PHP and/or your web server.
If you are unfamiliar with building and compiling your own software, it is worth checking to
see whether somebody has already built a packaged version of PHP with the features you
need.

Prerequisite knowledge and software for compiling:

• Basic Unix skills (being able to operate "make" and a C compiler)

• An ANSI C compiler

• flex: Version 2.5.4

• bison: Version 1.28 (preferred), 1.35, or 1.75

• A web server

• Any module specific components (such as gd, pdf libs, etc.)

The initial PHP setup and configuration process is controlled by the use of the command
line options of the configure script. You could get a list of all available options along with
short explanations running./configure --help. Our manual documents the different options
separately. You will find the core options in the appendix, while the different extension
specific options are descibed on the reference pages.

When PHP is configured, you are ready to build the module and/or executables. The
command make should take care of this. If it fails and you can't figure out why, see the
Problems section.

Apache 1.3.x on Unix systems

This section contains notes and hints specific to Apache installs of PHP on Unix platforms.
We also have instructions and notes for Apache 2 on a separate page.

You can select arguments to add to the configure on line 10 below from the list of core
configure options and from extension specific options described at the respective places in
the manual. The version numbers have been omitted here, to ensure the instructions are
not incorrect. You will need to replace the 'xxx' here with the correct values from your files.

Example #1 - Installation Instructions (Apache Shared Module Version) for PHP

1. gunzip apache_xxx.tar.gz

2. tar -xvf apache_xxx.tar

3. gunzip php-xxx.tar.gz

4. tar -xvf php-xxx.tar

5. cd apache_xxx

6. ./configure --prefix=/www --enable-module=so

7. make

8. make install

9. cd ../php-xxx

10. Now, configure your PHP. This is where you customize your PHP

 with various options, like which extensions will be enabled. Do a

 ./configure --help for a list of available options. In our example

 we'll do a simple configure with Apache 1 and MySQL support. Your

 path to apxs may differ from our example.

 ./configure --with-mysql --with-apxs=/www/bin/apxs

11. make

12. make install

 If you decide to change your configure options after installation,

 you only need to repeat the last three steps. You only need to

 restart apache for the new module to take effect. A recompile of

 Apache is not needed.

 Note that unless told otherwise, 'make install' will also install PEAR,

 various PHP tools such as phpize, install the PHP CLI, and more.

13. Setup your php.ini file:

 cp php.ini-dist /usr/local/lib/php.ini

 You may edit your .ini file to set PHP options. If you prefer your

 php.ini in another location, use --with-config-file-path=/some/path in

 step 10.

 If you instead choose php.ini-recommended, be certain to read the list

 of changes within, as they affect how PHP behaves.

14. Edit your httpd.conf to load the PHP module. The path on the right hand

 side of the LoadModule statement must point to the path of the PHP

 module on your system. The make install from above may have already

 added this for you, but be sure to check.

 For PHP 4:

 LoadModule php4_module libexec/libphp4.so

 For PHP 5:

 LoadModule php5_module libexec/libphp5.so

15. And in the AddModule section of httpd.conf, somewhere under the

 ClearModuleList, add this:

 For PHP 4:

 AddModule mod_php4.c

 For PHP 5:

 AddModule mod_php5.c

16. Tell Apache to parse certain extensions as PHP. For example,

 let's have Apache parse the .php extension as PHP. You could

 have any extension(s) parse as PHP by simply adding more, with

 each separated by a space. We'll add .phtml to demonstrate.

 AddType application/x-httpd-php .php .phtml

 It's also common to setup the .phps extension to show highlighted PHP

 source, this can be done with:

 AddType application/x-httpd-php-source .phps

17. Use your normal procedure for starting the Apache server. (You must

 stop and restart the server, not just cause the server to reload by

 using a HUP or USR1 signal.)

Alternatively, to install PHP as a static object:

Example #2 - Installation Instructions (Static Module Installation for Apache) for
PHP

1. gunzip -c apache_1.3.x.tar.gz | tar xf -

2. cd apache_1.3.x

3. ./configure

4. cd ..

5. gunzip -c php-5.x.y.tar.gz | tar xf -

6. cd php-5.x.y

7. ./configure --with-mysql --with-apache=../apache_1.3.x

8. make

9. make install

10. cd ../apache_1.3.x

11. ./configure --prefix=/www --activate-module=src/modules/php5/libphp5.a

 (The above line is correct! Yes, we know libphp5.a does not exist at this

 stage. It isn't supposed to. It will be created.)

12. make

 (you should now have an httpd binary which you can copy to your Apache
bin dir if

 it is your first install then you need to "make install" as well)

13. cd ../php-5.x.y

14. cp php.ini-dist /usr/local/lib/php.ini

15. You can edit /usr/local/lib/php.ini file to set PHP options.

 Edit your httpd.conf or srm.conf file and add:

 AddType application/x-httpd-php .php

Note

Replace php-5 by php-4 and php5 by php4 in PHP 4.

Depending on your Apache install and Unix variant, there are many possible ways to stop
and restart the server. Below are some typical lines used in restarting the server, for
different apache/unix installations. You should replace /path/to/ with the path to these
applications on your systems.

Example #3 - Example commands for restarting Apache

1. Several Linux and SysV variants:

/etc/rc.d/init.d/httpd restart

2. Using apachectl scripts:

/path/to/apachectl stop

/path/to/apachectl start

3. httpdctl and httpsdctl (Using OpenSSL), similar to apachectl:

/path/to/httpsdctl stop

/path/to/httpsdctl start

4. Using mod_ssl, or another SSL server, you may want to manually

stop and start:

/path/to/apachectl stop

/path/to/apachectl startssl

The locations of the apachectl and http(s)dctl binaries often vary. If your system has locate
or whereis or which commands, these can assist you in finding your server control
programs.

Different examples of compiling PHP for apache are as follows:

./configure --with-apxs --with-pgsql

This will create a libphp5.so (or libphp4.so in PHP 4) shared library that is loaded into
Apache using a LoadModule line in Apache's httpd.conf file. The PostgreSQL support is
embedded into this library.

./configure --with-apxs --with-pgsql=shared

This will create a libphp4.so shared library for Apache, but it will also create a pgsql.so
shared library that is loaded into PHP either by using the extension directive in php.ini file
or by loading it explicitly in a script using the dl() function.

./configure --with-apache=/path/to/apache_source --with-pgsql

This will create a libmodphp5.a library, a mod_php5.c and some accompanying files and
copy this into the src/modules/php5 directory in the Apache source tree. Then you compile
Apache using --activate-module=src/modules/php5/libphp5.a and the Apache build system
will create libphp5.a and link it statically into the httpd binary (replace php5 by php4 in PHP
4). The PostgreSQL support is included directly into this httpd binary, so the final result
here is a single httpd binary that includes all of Apache and all of PHP.

./configure --with-apache=/path/to/apache_source --with-pgsql=shared

Same as before, except instead of including PostgreSQL support directly into the final
httpd you will get a pgsql.so shared library that you can load into PHP from either the
php.ini file or directly using dl().

When choosing to build PHP in different ways, you should consider the advantages and
drawbacks of each method. Building as a shared object will mean that you can compile
apache separately, and don't have to recompile everything as you add to, or change, PHP.
Building PHP into apache (static method) means that PHP will load and run faster. For
more information, see the Apache » web page on DSO support.

Note

Apache's default httpd.conf currently ships with a section that looks like this:

User nobody

Group "#-1"

Unless you change that to "Group nogroup" or something like that ("Group daemon" is
also very common) PHP will not be able to open files.

Note

Make sure you specify the installed version of apxs when using

http://httpd.apache.org/docs/1.3/dso.html

--with-apxs=/path/to/apxs. You must NOT use the apxs version that is in the apache
sources but the one that is actually installed on your system.

Apache 2.0 on Unix systems

This section contains notes and hints specific to Apache 2.0 installs of PHP on Unix
systems.

Warning

We do not recommend using a threaded MPM in production with Apache 2. Use the
prefork MPM instead, or use Apache 1. For information on why, read the related FAQ
entry on using Apache2 with a threaded MPM

You are highly encouraged to take a look at the » Apache Documentation to get a basic
understanding of the Apache 2.0 Server.

Note

PHP and Apache 2.0.x compatibility notes

The following versions of PHP are known to work with the most recent version of
Apache 2.0.x:

• PHP 4.3.0 or later available at » http://www.php.net/downloads.php.

• the latest stable development version. Get the source code
» http://snaps.php.net/php5-latest.tar.gz or download binaries for Windows
» http://snaps.php.net/win32/php5-win32-latest.zip.

• a prerelease version downloadable from » http://qa.php.net/.

• you have always the option to obtain PHP through » anonymous CVS.

These versions of PHP are compatible to Apache 2.0.40 and later.

Apache 2.0 SAPI -support started with PHP 4.2.0. PHP 4.2.3 works with Apache
2.0.39, don't use any other version of Apache with PHP 4.2.3. However, the
recommended setup is to use PHP 4.3.0 or later with the most recent version of
Apache2.

All mentioned versions of PHP will work still with Apache 1.3.x.

Download the most recent version of » Apache 2.0 and a fitting PHP version from the
above mentioned places. This quick guide covers only the basics to get started with
Apache 2.0 and PHP. For more information read the » Apache Documentation. The
version numbers have been omitted here, to ensure the instructions are not incorrect. You

http://httpd.apache.org/docs/2.0/
http://www.php.net/downloads.php
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/win32/php5-win32-latest.zip
http://snaps.php.net/win32/php5-win32-latest.zip
http://qa.php.net/
http://www.php.net/anoncvs.php
http://www.apache.org/
http://httpd.apache.org/docs/2.0/

will need to replace the 'NN' here with the correct values from your files.

Example #4 - Installation Instructions (Apache 2 Shared Module Version)

1. gzip -d httpd-2_0_NN.tar.gz

2. tar xvf httpd-2_0_NN.tar

3. gunzip php-NN.tar.gz

4. tar -xvf php-NN.tar

5. cd httpd-2_0_NN

6. ./configure --enable-so

7. make

8. make install

 Now you have Apache 2.0.NN available under /usr/local/apache2,

 configured with loadable module support and the standard MPM prefork.

 To test the installation use your normal procedure for starting

 the Apache server, e.g.:

 /usr/local/apache2/bin/apachectl start

 and stop the server to go on with the configuration for PHP:

 /usr/local/apache2/bin/apachectl stop.

9. cd ../php-NN

10. Now, configure your PHP. This is where you customize your PHP

 with various options, like which extensions will be enabled. Do a

 ./configure --help for a list of available options. In our example

 we'll do a simple configure with Apache 2 and MySQL support. Your

 path to apxs may differ, in fact, the binary may even be named apxs2 on

 your system.

 ./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql

11. make

12. make install

 If you decide to change your configure options after installation,

 you only need to repeat the last three steps. You only need to

 restart apache for the new module to take effect. A recompile of

 Apache is not needed.

 Note that unless told otherwise, 'make install' will also install PEAR,

 various PHP tools such as phpize, install the PHP CLI, and more.

13. Setup your php.ini

 cp php.ini-dist /usr/local/lib/php.ini

 You may edit your .ini file to set PHP options. If you prefer having

 php.ini in another location, use --with-config-file-path=/some/path in

 step 10.

 If you instead choose php.ini-recommended, be certain to read the list

 of changes within, as they affect how PHP behaves.

14. Edit your httpd.conf to load the PHP module. The path on the right hand

 side of the LoadModule statement must point to the path of the PHP

 module on your system. The make install from above may have already

 added this for you, but be sure to check.

 For PHP 4:

 LoadModule php4_module modules/libphp4.so

 For PHP 5:

 LoadModule php5_module modules/libphp5.so

15. Tell Apache to parse certain extensions as PHP. For example, let's have

 Apache parse .php files as PHP. Instead of only using the Apache AddType

 directive, we want to avoid potentially dangerous uploads and created

 files such as exploit.php.jpg from being executed as PHP. Using this

 example, you could have any extension(s) parse as PHP by simply adding

 them. We'll add .phtml to demonstrate.

 <FilesMatch \.php$>

 SetHandler application/x-httpd-php

 </FilesMatch>

 Or, if we wanted to allow .php, .php2, .php3, .php4, .php5, .php6, and

 .phtml files to be executed as PHP, but nothing else, we'd use this:

 <FilesMatch "\.ph(p[2-6]?|tml)$">

 SetHandler application/x-httpd-php

 </FilesMatch>

 And to allow .phps files to be executed as PHP source files, add this:

 <FilesMatch "\.phps$">

 SetHandler application/x-httpd-php-source

 </FilesMatch>

16. Use your normal procedure for starting the Apache server, e.g.:

 /usr/local/apache2/bin/apachectl start

 - OR -

 service httpd restart

Following the steps above you will have a running Apache2 web server with support for
PHP as a SAPI module. Of course there are many more configuration options available
Apache and PHP. For more information type./configure --help in the corresponding source
tree. If you wish to build a multithreaded version of Apache2, you must overwrite the
standard MPM-Module prefork either with worker or perchild. To do so append to your
configure line in step 6 above either the option --with-mpm=worker or --with-mpm=perchild.
Before doing so, please beware the consequences and have at least a fair understand of
what the implications. For more information, read the Apache documentation regarding
» MPM-Modules.

Note

If you want to use content negotiation, read the Apache MultiViews FAQ.

http://httpd.apache.org/docs/2.0/mpm.html
http://httpd.apache.org/docs/2.0/mpm.html

Note

To build a multithreaded version of Apache your system must support threads. This
also implies to build PHP with experimental Zend Thread Safety (ZTS). Therefore not
all extensions might be available. The recommended setup is to build Apache with the
standard prefork MPM-Module.

Lighttpd 1.4 on Unix systems

This section contains notes and hints specific to Lighttpd 1.4 installs of PHP on Unix
systems.

Please use the » Lighttpd trac to learn how to install Lighttpd properly before continuing.

Fastcgi is the preferred SAPI to connect PHP and Lighttpd. Fastcgi is automagically
enabled in php-cgi in PHP5.3, but for older versions configure php with --enable-fastcgi. To
confirm that PHP has fastcgi enabled, php -v should contain PHP 5.2.5 (cgi-fcgi) Before
PHP 5.2.3, fastcgi was enabled on the php binary (there was no php-cgi).

Letting Lighttpd spawn php processes

To configure Lighttpd to connect to php and spawn fastcgi processes, edit lighttpd.conf.
Sockets are preferred to connect to fastcgi processes on the local system.

Example #5 - Partial lighttpd.conf

server.modules += ("mod_fastcgi")

fastcgi.server = (".php" =>

 ((

 "socket" => "/tmp/php.socket",

 "bin-path" => "/usr/local/bin/php-cgi",

 "bin-environment" => (

 "PHP_FCGI_CHILDREN" => "16",

 "PHP_FCGI_MAX_REQUESTS" => "10000"

)

 "min-procs" => 1,

 "max-procs" => 1,

 "idle-timeout" => 20

))

)

The bin-path directive allows lighttpd to spawn fastcgi processes dynamically. PHP will
spawn children according to the PHP_FCGI_CHILDREN environment variable. The
"bin-environment" directive sets the environment for the spawned processes. PHP will kill
a child process after the number of requests specified by PHP_FCGI_MAX_REQUESTS is
reached. The directives "min-procs" and "max-procs" should generally be avoided with
PHP. PHP manages its own children and opcode caches like APC will only share among

http://trac.lighttpd.net/trac/

children managed by PHP. If "min-procs" is set to something greater than 1, the total
number of php responders will be multiplied PHP_FCGI_CHILDREN (2 min-procs * 16
children gives 32 responders).

Spawning with spawn-fcgi

Lighttpd provides a program called spawn-fcgi to ease the process of spawning fastcgi
processes easier.

Spawning php-cgi

It is possible to spawn processes without spawn-fcgi, though a bit of heavy-lifting is
required. Setting the PHP_FCGI_CHILDREN environment var controls how many children
PHP will spawn to handle incoming requests. Setting PHP_FCGI_MAX_REQUESTS will
determine how long (in requests) each child will live. Here's a simple bash script to help
spawn php responders.

Example #6 - Spawning FastCGI Responders

#!/bin/sh

Location of the php-cgi binary

PHP=/usr/local/bin/php-cgi

PID File location

PHP_PID=/tmp/php.pid

Binding to an address

#FCGI_BIND_ADDRESS=10.0.1.1:10000

Binding to a domain socket

FCGI_BIND_ADDRESS=/tmp/php.sock

PHP_FCGI_CHILDREN=16

PHP_FCGI_MAX_REQUESTS=10000

env -i PHP_FCGI_CHILDREN=$PHP_FCGI_CHILDREN \

 PHP_FCGI_MAX_REQUESTS=$PHP_FCGI_MAX_REQUESTS \

 $PHP -b $FCGI_BIND_ADDRESS &

echo $! > "$PHP_PID"

Connecting to remote FCGI instances

Fastcgi instances can be spawned on multiple remote machines in order to scale
applications.

Example #7 - Connecting to remote php-fastcgi instances

fastcgi.server = (".php" =>

 (("host" => "10.0.0.2", "port" => 1030),

 ("host" => "10.0.0.3", "port" => 1030))

)

Caudium

PHP can be built as a Pike module for the » Caudium webserver. Follow the simple
instructions below to install PHP for Caudium.

Example #8 - Caudium Installation Instructions

1. Make sure you have Caudium installed prior to attempting to

 install PHP 4. For PHP 4 to work correctly, you will need Pike

 7.0.268 or newer. For the sake of this example we assume that

 Caudium is installed in /opt/caudium/server/.

2. Change directory to php-x.y.z (where x.y.z is the version number).

3. ./configure --with-caudium=/opt/caudium/server

4. make

5. make install

6. Restart Caudium if it's currently running.

7. Log into the graphical configuration interface and go to the

 virtual server where you want to add PHP 4 support.

8. Click Add Module and locate and then add the PHP 4 Script Support
module.

9. If the documentation says that the 'PHP 4 interpreter isn't

 available', make sure that you restarted the server. If you did

 check /opt/caudium/logs/debug/default.1 for any errors related to

 <filename>PHP4.so</filename>. Also make sure that

 <filename>caudium/server/lib/[pike-version]/PHP4.so</filename>

 is present.

10. Configure the PHP Script Support module if needed.

You can of course compile your Caudium module with support for the various extensions
available in PHP 4. See the reference pages for extension specific configure options.

Note

When compiling PHP 4 with MySQL support you must make sure that the normal
MySQL client code is used. Otherwise there might be conflicts if your Pike already has
MySQL support. You do this by specifying a MySQL install directory the --with-mysql
option.

fhttpd related notes

To build PHP as an fhttpd module, answer "yes" to "Build as an fhttpd module?" (the
--with-fhttpd = DIR option to configure) and specify the fhttpd source base directory. The
default directory is /usr/local/src/fhttpd. If you are running fhttpd, building PHP as a module
will give better performance, more control and remote execution capability.

http://caudium.net/

Note

Support for fhttpd is no longer available as of PHP 4.3.0.

Sun, iPlanet and Netscape servers on Sun Solaris

This section contains notes and hints specific to Sun Java System Web Server, Sun ONE
Web Server, iPlanet and Netscape server installs of PHP on Sun Solaris.

From PHP 4.3.3 on you can use PHP scripts with the NSAPI module to generate custom
directory listings and error pages. Additional functions for Apache compatibility are also
available. For support in current web servers read the note about subrequests.

You can find more information about setting up PHP for the Netscape Enterprise Server
(NES) here: » http://benoit.noss.free.fr/php/install-php4.html

To build PHP with Sun JSWS/Sun ONE WS/iPlanet/Netscape web servers, enter the
proper install directory for the --with-nsapi=[DIR] option. The default directory is usually
/opt/netscape/suitespot/. Please also read /php-xxx-version/sapi/nsapi/nsapi-readme.txt.

• Install the following packages from » http://www.sunfreeware.com/ or another
download site:

• autoconf-2.13
• automake-1.4
• bison-1_25-sol26-sparc-local
• flex-2_5_4a-sol26-sparc-local
• gcc-2_95_2-sol26-sparc-local
• gzip-1.2.4-sol26-sparc-local
• m4-1_4-sol26-sparc-local
• make-3_76_1-sol26-sparc-local
• mysql-3.23.24-beta (if you want mysql support)
• perl-5_005_03-sol26-sparc-local
• tar-1.13 (GNU tar)

• Make sure your path includes the proper directories
PATH=.:/usr/local/bin:/usr/sbin:/usr/bin:/usr/ccs/bin and make it available to your
system export PATH.

• gunzip php-x.x.x.tar.gz (if you have a .gz dist, otherwise go to 4).

• tar xvf php-x.x.x.tar

• Change to your extracted PHP directory: cd ../php-x.x.x

• For the following step, make sure /opt/netscape/suitespot/ is where your netscape
server is installed. Otherwise, change to the correct path and run:
./configure --with-mysql=/usr/local/mysql \

http://benoit.noss.free.fr/php/install-php4.html
http://www.sunfreeware.com/

--with-nsapi=/opt/netscape/suitespot/ \

--enable-libgcc

• Run make followed by make install.

After performing the base install and reading the appropriate readme file, you may need to
perform some additional configuration steps.

Configuration Instructions for Sun/iPlanet/Netscape

Firstly you may need to add some paths to the LD_LIBRARY_PATH environment for the
server to find all the shared libs. This can best done in the start script for your web server.
The start script is often located in: /path/to/server/https-servername/start. You may also
need to edit the configuration files that are located in:
/path/to/server/https-servername/config/.

• Add the following line to mime.types (you can do that by the administration server):
type=magnus-internal/x-httpd-php exts=php

• Edit magnus.conf (for servers >= 6) or obj.conf (for servers < 6) and add the following,
shlib will vary depending on your system, it will be something like
/opt/netscape/suitespot/bin/libphp4.so. You should place the following lines after mime
types init.
Init fn="load-modules" funcs="php4_init,php4_execute,php4_auth_trans"
shlib="/opt/netscape/suitespot/bin/libphp4.so"

Init fn="php4_init" LateInit="yes" errorString="Failed to initialize PHP!"
[php_ini="/path/to/php.ini"]
(PHP >= 4.3.3) The php_ini parameter is optional but with it you can place your php.ini
in your web server config directory.

• Configure the default object in obj.conf (for virtual server classes [version 6.0+] in their
vserver.obj.conf):
<Object name="default">

.

.

.

.#NOTE this next line should happen after all 'ObjectType' and before all
'AddLog' lines

Service fn="php4_execute" type="magnus-internal/x-httpd-php" [inikey=value
inikey=value ...]

.

.

</Object>
(PHP >= 4.3.3) As additional parameters you can add some special php.ini -values, for
example you can set a docroot="/path/to/docroot" specific to the context php4_execute
is called. For boolean ini-keys please use 0/1 as value, not "On","Off",... (this will not
work correctly), e.g. zlib.output_compression=1 instead of
zlib.output_compression="On"

• This is only needed if you want to configure a directory that only consists of PHP
scripts (same like a cgi-bin directory):
<Object name="x-httpd-php">

ObjectType fn="force-type" type="magnus-internal/x-httpd-php"

Service fn=php4_execute [inikey=value inikey=value ...]

</Object>
After that you can configure a directory in the Administration server and assign it the
style x-httpd-php. All files in it will get executed as PHP. This is nice to hide PHP usage
by renaming files to.html.

• Setup of authentication: PHP authentication cannot be used with any other
authentication. ALL AUTHENTICATION IS PASSED TO YOUR PHP SCRIPT. To
configure PHP Authentication for the entire server, add the following line to your
default object:
<Object name="default">

AuthTrans fn=php4_auth_trans

.

.

.

</Object>

• To use PHP Authentication on a single directory, add the following:
<Object ppath="d:\path\to\authenticated\dir*">

AuthTrans fn=php4_auth_trans

</Object>

Note

The stacksize that PHP uses depends on the configuration of the web server. If you
get crashes with very large PHP scripts, it is recommended to raise it with the Admin
Server (in the section "MAGNUS EDITOR").

CGI environment and recommended modifications in php.ini

Important when writing PHP scripts is the fact that Sun JSWS/Sun ONE
WS/iPlanet/Netscape is a multithreaded web server. Because of that all requests are
running in the same process space (the space of the web server itself) and this space has
only one environment. If you want to get CGI variables like PATH_INFO, HTTP_HOST etc.
it is not the correct way to try this in the old PHP way with getenv() or a similar way
(register globals to environment, $_ENV). You would only get the environment of the
running web server without any valid CGI variables!

Note

Why are there (invalid) CGI variables in the environment?

Answer: This is because you started the web server process from the admin server
which runs the startup script of the web server, you wanted to start, as a CGI script (a
CGI script inside of the admin server!). This is why the environment of the started web
server has some CGI environment variables in it. You can test this by starting the web

server not from the administration server. Use the command line as root user and start
it manually - you will see there are no CGI-like environment variables.

Simply change your scripts to get CGI variables in the correct way for PHP 4.x by using
the superglobal $_SERVER. If you have older scripts which use $HTTP_HOST, etc., you
should turn on register_globals in php.ini and change the variable order too (important:
remove "E" from it, because you do not need the environment here):
variables_order = "GPCS"

register_globals = On

Special use for error pages or self-made directory listings (PHP >= 4.3.3)

You can use PHP to generate the error pages for "404 Not Found" or similar. Add the
following line to the object in obj.conf for every error page you want to overwrite:
Error fn="php4_execute" code=XXX script="/path/to/script.php" [inikey=value
inikey=value...]
where XXX is the HTTP error code. Please delete any other Error directives which could
interfere with yours. If you want to place a page for all errors that could exist, leave the
code parameter out. Your script can get the HTTP status code with
$_SERVER['ERROR_TYPE'].

Another possibility is to generate self-made directory listings. Just create a PHP script
which displays a directory listing and replace the corresponding default Service line for
type="magnus-internal/directory" in obj.conf with the following:
Service fn="php4_execute" type="magnus-internal/directory"
script="/path/to/script.php" [inikey=value inikey=value...]
For both error and directory listing pages the original URI and translated URI are in the
variables $_SERVER['PATH_INFO'] and $_SERVER['PATH_TRANSLATED'].

Note about nsapi_virtual() and subrequests (PHP >= 4.3.3)

The NSAPI module now supports the nsapi_virtual() function (alias: virtual()) to make
subrequests on the web server and insert the result in the web page. This function uses
some undocumented features from the NSAPI library. On Unix the module automatically
looks for the needed functions and uses them if available. If not, nsapi_virtual() is disabled.

Note

But be warned: Support for nsapi_virtual() is EXPERIMENTAL!!!

CGI and command line setups

The default is to build PHP as a CGI program. This creates a command line interpreter,
which can be used for CGI processing, or for non-web-related PHP scripting. If you are
running a web server PHP has module support for, you should generally go for that
solution for performance reasons. However, the CGI version enables users to run different

PHP-enabled pages under different user-ids.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

As of PHP 4.3.0, some important additions have happened to PHP. A new SAPI named
CLI also exists and it has the same name as the CGI binary. What is installed at
{PREFIX}/bin/php depends on your configure line and this is described in detail in the
manual section named Using PHP from the command line. For further details please read
that section of the manual.

Testing

If you have built PHP as a CGI program, you may test your build by typing make test. It is
always a good idea to test your build. This way you may catch a problem with PHP on your
platform early instead of having to struggle with it later.

Using Variables

Some server supplied environment variables are not defined in the current » CGI/1.1
specification. Only the following variables are defined there: AUTH_TYPE,
CONTENT_LENGTH, CONTENT_TYPE, GATEWAY_INTERFACE, PATH_INFO,
PATH_TRANSLATED, QUERY_STRING, REMOTE_ADDR, REMOTE_HOST,
REMOTE_IDENT, REMOTE_USER, REQUEST_METHOD, SCRIPT_NAME,
SERVER_NAME, SERVER_PORT, SERVER_PROTOCOL, and SERVER_SOFTWARE.
Everything else should be treated as 'vendor extensions'.

HP-UX specific installation notes

This section contains notes and hints specific to installing PHP on HP-UX systems.

There are two main options for installing PHP on HP-UX systems. Either compile it, or
install a pre-compiled binary.

Official pre-compiled packages are located here: » http://software.hp.com/

Until this manual section is rewritten, the documentation about compiling PHP (and related
extensions) on HP-UX systems has been removed. For now, consider reading the
following external resource: » Building Apache and PHP on HP-UX 11.11

OpenBSD installation notes

This section contains notes and hints specific to installing PHP on » OpenBSD 3.6.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://software.hp.com/
http://www.tekwire.net/joomla/building/apache/comp_apache_hpux11.11.htm
http://www.openbsd.org/

Using Binary Packages

Using binary packages to install PHP on OpenBSD is the recommended and simplest
method. The core package has been separated from the various modules, and each can
be installed and removed independently from the others. The files you need can be found
on your OpenBSD CD or on the FTP site.

The main package you need to install is php4-core-4.3.8.tgz, which contains the basic
engine (plus gettext and iconv). Next, take a look at the module packages, such as
php4-mysql-4.3.8.tgz or php4-imap-4.3.8.tgz. You need to use the phpxs command to
activate and deactivate these modules in your php.ini.

Example #9 - OpenBSD Package Install Example

pkg_add php4-core-4.3.8.tgz

/usr/local/sbin/phpxs -s

cp /usr/local/share/doc/php4/php.ini-recommended /var/www/conf/php.ini

 (add in mysql)

pkg_add php4-mysql-4.3.8.tgz

/usr/local/sbin/phpxs -a mysql

 (add in imap)

pkg_add php4-imap-4.3.8.tgz

/usr/local/sbin/phpxs -a imap

 (remove mysql as a test)

pkg_delete php4-mysql-4.3.8

/usr/local/sbin/phpxs -r mysql

 (install the PEAR libraries)

pkg_add php4-pear-4.3.8.tgz

Read the » packages(7) manual page for more information about binary packages on
OpenBSD.

Using Ports

You can also compile up PHP from source using the » ports tree. However, this is only
recommended for users familiar with OpenBSD. The PHP 4 port is split into two
sub-directories: core and extensions. The extensions directory generates sub-packages
for all of the supported PHP modules. If you find you do not want to create some of these
modules, use the no_* FLAVOR. For example, to skip building the imap module, set the
FLAVOR to no_imap.

Common Problems

• The default install of Apache runs inside a » chroot(2) jail, which will restrict PHP
scripts to accessing files under /var/www. You will therefore need to create a
/var/www/tmp directory for PHP session files to be stored, or use an alternative
session backend. In addition, database sockets need to be placed inside the jail or
listen on the localhost interface. If you use network functions, some files from /etc such
as /etc/resolv.conf and /etc/services will need to be moved into /var/www/etc. The

http://www.openbsd.org/cgi-bin/man.cgi?query=packages
http://www.openbsd.org/ports.html
http://www.openbsd.org/cgi-bin/man.cgi?query=chroot

OpenBSD PEAR package automatically installs into the correct chroot directories, so
no special modification is needed there. More information on the OpenBSD Apache is
available in the » OpenBSD FAQ.

• The OpenBSD 3.6 package for the » gd extension requires XFree86 to be installed. If
you do not wish to use some of the font features that require X11, install the
php4-gd-4.3.8-no_x11.tgz package instead.

Older Releases

Older releases of OpenBSD used the FLAVORS system to compile up a statically linked
PHP. Since it is hard to generate binary packages using this method, it is now deprecated.
You can still use the old stable ports trees if you wish, but they are unsupported by the
OpenBSD team. If you have any comments about this, the current maintainer for the port
is Anil Madhavapeddy (avsm at openbsd dot org).

Solaris specific installation tips

This section contains notes and hints specific to installing PHP on Solaris systems.

Required software

Solaris installs often lack C compilers and their related tools. Read this FAQ for
information on why using GNU versions for some of these tools is necessary. The required
software is as follows:

• gcc (recommended, other C compilers may work)

• make

• flex

• bison

• m4

• autoconf

• automake

• perl

• gzip

• tar

• GNU sed

In addition, you will need to install (and possibly compile) any additional software specific
to your configuration, such as Oracle or MySQL.

Using Packages

http://www.openbsd.org/faq/faq10.html#httpdchroot
http://www.libgd.org/

You can simplify the Solaris install process by using pkgadd to install most of your needed
components.

Debian GNU/Linux installation notes

This section contains notes and hints specific to installing PHP on » Debian GNU/Linux.

Using APT

While you can just download the PHP source and compile it yourself, using Debian's
packaging system is the simplest and cleanest method of installing PHP. If you are not
familiar with building software on Linux, this is the way to go.

The first decision you need to make is whether you want to install Apache 1.3.x or Apache
2.x. The corresponding PHP packages are respectively named libapache-mod-php* and
libapache2-mod-php*. The steps given below will use Apache 1.3.x. Please note that, as
of this writing, there is no official Debian packages of PHP 5. Then the steps given below
will install PHP 4.

PHP is available in Debian as CGI or CLI flavour too, named respectively php4-cgi and
php4-cli. If you need them, you'll just have to reproduce the following steps with the good
package names. Another special package you'd want to install is php4-pear. It contains a
minimal PEAR installation and the pear commandline utility.

If you need more recent packages of PHP than the Debian's stable ones or if some PHP
modules lacks the Debian official repository, perhaps you should take a look at
» http://www.apt-get.org/. One of the results found should be » Dotdeb. This unofficial
repository is maintained by » Guillaume Plessis and contains Debian packages of the most
recent versions of PHP 4 and PHP 5. To use it, just add the to following two lines to your
/etc/apt/sources.lists and run apt-get update:

Example #10 - The two Dotdeb related lines

deb http://packages.dotdeb.org stable all

deb-src http://packages.dotdeb.org stable all

The last thing to consider is whether your list of packages is up to date. If you have not
updated it recently, you need to run apt-get update before anything else. This way, you will
be using the most recent stable version of the Apache and PHP packages.

Now that everything is in place, you can use the following example to install Apache and
PHP:

Example #11 - Debian Install Example with Apache 1.3

apt-get install libapache-mod-php4

http://www.debian.org/
http://www.apt-get.org/
http://www.apt-get.org/
http://www.dotdeb.org/
mailto:gui@php.net

APT will automatically install the PHP 4 module for Apache 1.3, and all its dependencies
and then activate it. If you're not asked to restart Apache during the install process, you'll
have to do it manually :

Example #12 - Stopping and starting Apache once PHP 4 is installed

/etc/init.d/apache stop

/etc/init.d/apache start

Better control on configuration

In the last section, PHP was installed with only core modules. This may not be what you
want and you will soon discover that you need more activated modules, like MySQL,
cURL, GD, etc.

When you compile PHP from source yourself, you need to activate modules via the
configure command. With APT, you just have to install additional packages. They're all
named 'php4-*' (or 'php5-*' if you installed PHP 5 from a third party repository).

Example #13 - Getting the list of PHP additional packages

dpkg -l 'php4-*'

As you can see from the last output, there's a lot of PHP modules that you can install
(excluding the php4-cgi, php4-cli or php4-pear special packages). Look at them closely
and choose what you need. If you choose a module and you do not have the proper
libraries, APT will automatically install all the dependencies for you.

If you choose to add the MySQL, cURL and GD support to PHP the command will look
something like this:

Example #14 - Install PHP with MySQL, cURL and GD

apt-get install php4-mysql php4-curl php4-gd

APT will automatically add the appropriate lines to your different php.ini (
/etc/php4/apache/php.ini, /etc/php4/cgi/php.ini, etc).

Example #15 - These lines activate MySQL, cURL and GD into PHP

extension=mysql.so

extension=curl.so

extension=gd.so

You'll only have to stop/start Apache as previously to activate the modules.

Common Problems

• If you see the PHP source instead of the result the script should produce, APT has
probably not included /etc/apache/conf.d/php4 in your Apache 1.3 configuration.
Please ensure that the following line is present in your /etc/apache/httpd.conf file then
stop/start Apache:

Example #16 - This line activates PHP 4 into Apache

Include /etc/apache/conf.d/

• If you installed an additional module and if its functions are not available in your
scripts, please ensure that the appropriate line is present in your php.ini, as seen
before. APT may fail during the installation of the additional module, due to a confusing
debconf configuration.

Installation on Mac OS X

This section contains notes and hints specific to installing PHP on Mac OS X. There are
two slightly different versions of Mac OS X, Client and Server, our manual deals with
installing PHP on both systems. Note that PHP is not available for MacOS 9 and earlier
versions.

Using Packages

There are a few pre-packaged and pre-compiled versions of PHP for Mac OS X. This can
help in setting up a standard configuration, but if you need to have a different set of
features (such as a secure server, or a different database driver), you may need to build
PHP and/or your web server yourself. If you are unfamiliar with building and compiling your
own software, it's worth checking whether somebody has already built a packaged version
of PHP with the features you need.

The following resources offer easy to install packages and precompiled binaries for PHP
on Mac OS:

• MacPorts: » http://www.macports.org/

• Entropy: » http://www.entropy.ch/software/macosx/php/

• Fink: » http://fink.sourceforge.net/

Using the bundled PHP

PHP has come standard with Macs since OS X version 10.0.0. Enabling PHP with the
default web server requires uncommenting a few lines in the Apache configuration file
httpd.conf whereas the CGI and/or CLI are enabled by default (easily accessible via the
Terminal program).

Enabling PHP using the instructions below is meant for quickly setting up a local
development environment. It's highly recommended to always upgrade PHP to the newest
version. Like most live software, newer versions are created to fix bugs and add features
and PHP being is no different. See the appropriate MAC OS X installation documentation
for further details. The following instructions are geared towards a beginner with details
provided for getting a default setup to work. All users are encouraged to compile, or install
a new packaged version.

The standard installation type is using mod_php, and enabling the bundled mod_php on
Mac OS X for the Apache web server (the default web server, that is accessible via
System Preferences) involves the following steps:

http://www.macports.org/
http://www.entropy.ch/software/macosx/php/
http://fink.sourceforge.net/

• Locate and open the Apache configuration file. By default, the location is as follows:
/etc/httpd/httpd.conf Using Finder or Spotlight to find this file may prove difficult as by
default it's private and owned by the root user.

Note

One way to open this is by using a Unix based text editor in the Terminal, for
example nano, and because the file is owned by root we'll use the sudo command
to open it (as root) so for example type the following into the Terminal Application
(after, it will prompt for a password): sudo nano /etc/httpd/httpd.conf

Noteworthy nano commands: ^w (search), ^o (save), and ^x (exit) where ^
represents the Ctrl key.

• With a text editor, uncomment the lines (by removing the #) that look similar to the
following (these two lines are often not together, locate them both in the file):
LoadModule php4_module libexec/httpd/libphp4.so

AddModule mod_php4.c
Notice the location/path. When building PHP in the future, the above files should be
replaced or commented out.

• Be sure the desired extensions will parse as PHP (examples: .php .html and .inc) Due
to the following statement already existing in httpd.conf (as of Mac Panther), once PHP
is enabled the.php files will automatically parse as PHP.
<IfModule mod_php4.c>

 # If php is turned on, we respect .php and .phps files.

 AddType application/x-httpd-php .php

 AddType application/x-httpd-php-source .phps

 # Since most users will want index.php to work we

 # also automatically enable index.php

 <IfModule mod_dir.c>

 DirectoryIndex index.html index.php

 </IfModule>

</IfModule>

• Be sure the DirectoryIndex loads the desired default index file This is also set in
httpd.conf. Typically index.php and index.html are used. By default index.php is
enabled because it's also in the PHP check shown above. Adjust accordingly.

• Set the php.ini location or use the default A typical default location on Mac OS X is
/usr/local/php/php.ini and a call to phpinfo() will reveal this information. If a php.ini is
not used, PHP will use all default values. See also the related FAQ on finding php.ini.

• Locate or set the DocumentRoot This is the root directory for all the web files. Files in
this directory are served from the web server so the PHP files will parse as PHP before
outputting them to the browser. A typical default path is
/Library/WebServer/Documents but this can be set to anything in httpd.conf.
Alternatively, the default DocumentRoot for individual users is
/Users/yourusername/Sites

• Create a phpinfo() file The phpinfo() function will display information about PHP.
Consider creating a file in the DocumentRoot with the following PHP code:

<?php phpinfo(); ?>

• Restart Apache, and load the PHP file created above To restart, either execute sudo
apachectl graceful in the shell or stop/start the "Personal Web Server" option in the OS
X System Preferences. By default, loading local files in the browser will have an URL
like so: http://localhost/info.php Or using the DocumentRoot in the user directory is
another option and would end up looking like: http://localhost/~yourusername/info.php

The CLI (or CGI in older versions) is appropriately named php and likely exists as
/usr/bin/php. Open up the terminal, read the command line section of the PHP manual,
and execute php -v to check the PHP version of this PHP binary. A call to phpinfo() will
also reveal this information.

Compiling for OS X Server

Mac OS X Server install

• Get the latest distributions of Apache and PHP.

• Untar them, and run the configure program on Apache like so.
./configure --exec-prefix=/usr \

--localstatedir=/var \

--mandir=/usr/share/man \

--libexecdir=/System/Library/Apache/Modules \

--iconsdir=/System/Library/Apache/Icons \

--includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/Header
s \

--enable-shared=max \

--enable-module=most \

--target=apache

• If you want the compiler to do some optimization, you may also want to add this line:
setenv OPTIM=-O2

• Next, go to the PHP 4 source directory and configure it.
./configure --prefix=/usr \

 --sysconfdir=/etc \

 --localstatedir=/var \

 --mandir=/usr/share/man \

 --with-xml \

 --with-apache=/src/apache_1.3.12
If you have any other additions (MySQL, GD, etc.), be sure to add them here. For the
--with-apache string, put in the path to your apache source directory, for example
/src/apache_1.3.12.

• Type make and make install. This will add a directory to your Apache source directory
under src/modules/php4.

• Now, reconfigure Apache to build in PHP 4.

./configure --exec-prefix=/usr \

--localstatedir=/var \

--mandir=/usr/share/man \

--libexecdir=/System/Library/Apache/Modules \

--iconsdir=/System/Library/Apache/Icons \

--includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/Header
s \

--enable-shared=max \

--enable-module=most \

--target=apache \

--activate-module=src/modules/php4/libphp4.a
You may get a message telling you that libmodphp4.a is out of date. If so, go to the
src/modules/php4 directory inside your Apache source directory and run this
command: ranlib libmodphp4.a. Then go back to the root of the Apache source
directory and run the above configure command again. That'll bring the link table up to
date. Run make and make install again.

• Copy and rename the php.ini-dist file to your bin directory from your PHP 4 source
directory: cp php.ini-dist /usr/local/bin/php.ini or (if your don't have a local directory)
cp php.ini-dist /usr/bin/php.ini.

Compiling for MacOS X Client

The following instructions will help you install a PHP module for the Apache web server
included in MacOS X. This version includes support for the MySQL and PostgreSQL
databases. These instructions are graciously provided by » Marc Liyanage.

Warning

Be careful when you do this, you could screw up your Apache web server!

Do this to install:

• Open a terminal window.

• Type wget http://www.diax.ch/users/liyanage/software/macosx/libphp4.so.gz,
wait for the download to finish.

• Type gunzip libphp4.so.gz.

• Type sudo apxs -i -a -n php4 libphp4.so

• Now type sudo open -a TextEdit /etc/httpd/httpd.conf. TextEdit will open with the
web server configuration file. Locate these two lines towards the end of the file: (Use
the Find command)
#AddType application/x-httpd-php .php

#AddType application/x-httpd-php-source .phps
Remove the two hash marks (#), then save the file and quit TextEdit.

• Finally, type sudo apachectl graceful to restart the web server.

http://www.entropy.ch/software/macosx/

PHP should now be up and running. You can test it by dropping a file into your Sites folder
which is called test.php. Into that file, write this line: <?php phpinfo() ?>.

Now open up 127.0.0.1/~your_username/test.php in your web browser. You should see a
status table with information about the PHP module.

Installation on Windows systems

This section applies to Windows 98/Me and Windows NT/2000/XP/2003. PHP will not work
on 16 bit platforms such as Windows 3.1 and sometimes we refer to the supported
Windows platforms as Win32. Windows 95 is no longer supported as of PHP 4.3.0.

Note

Windows 98 is no longer supported as of PHP 5.3.0.

Note

Windows 95 is no longer supported as of PHP 4.3.0.

There are two main ways to install PHP for Windows: either manually or by using the
installer.

If you have Microsoft Visual Studio, you can also build PHP from the original source code.

Once you have PHP installed on your Windows system, you may also want to load various
extensions for added functionality.

Warning

There are several all-in-one installers over the Internet, but none of those are endorsed
by PHP.net, as we believe that using one of the official windows packages from
» http://www.php.net/downloads.php is the best choice to have your system secure
and optimized.

Windows Installer (PHP 5.2 and later)

The Windows PHP installer for later versions of PHP is built using MSI technology using
the Wix Toolkit (» http://wix.sourceforge.net/). It will install and configure PHP and all the
built-in and PECL extensions, as well as configure many of the popular web servers such
as IIS, Apache, and Xitami.

First, install your selected HTTP (web) server on your system, and make sure that it works.
Then proceed with one of the following install types.

Normal Install

http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://wix.sourceforge.net/

Run the MSI installer and follow the instructions provided by the installation wizard. You
will be prompted to select the Web Server you wish to configure first, along with any
configuration details needed.

You will then be prompted to select which features and extensions you wish to install and
enable. By selecting "Will be installed on local hard drive" in the drop-down menu for each
item you can trigger whether to install the feature or not. By selecting "Entire feature will be
installed on local hard drive", you will be able to install all sub-features of the included
feature (for example by selecting this options for the feature "PDO" you will install all PDO
Drivers).

Warning

It is not recommended to install all extensions by default, since many other them
require dependencies from outside PHP in order to function properly. Instead, use the
Installation Repair Mode that can be triggered thru the 'Add/Remove Programs' control
panel to enable or disable extensions and features after installation.

The installer then sets up PHP to be used in Windows and the php.ini file, and configures
certain web servers to use PHP. The installer will currently configure IIS, Apache, Xitami,
and Sambar Server; if you are using a different web server you'll need to configure it
manually.

Silent Install

The installer also supports a silent mode, which is helpful for Systems Administrators to
deploy PHP easily. To use silent mode:
msiexec.exe /i php-VERSION-win32-install.msi /q

You can control the install directory by passing it as a parameter to the install. For
example, to install to e:\php:
msiexec.exe /i php-VERSION-win32-install.msi /q INSTALLDIR=e:\php
You can also use the same syntax to specify the Apache Configuration Directory
(APACHEDIR), the Sambar Server directory (SAMBARDIR), and the Xitami Server
directory (XITAMIDIR).

You can also specify what features to install. For example, to install the mysqli extension
and the CGI executable:
msiexec.exe /i php-VERSION-win32-install.msi /q ADDLOCAL=cgi,ext_php_mysqli

The current list of Features to install is as follows:
MainExecutable - php.exe executable

ScriptExecutable - php-win.exe executable

ext_php_* - the various extensions (for example: ext_php_mysql for MySQL)

apache13 - Apache 1.3 module

apache20 - Apache 2.0 module

apache22 - Apache 2,2 module

apacheCGI - Apache CGI executable

iis4ISAPI - IIS ISAPI module

iis4CGI - IIS CGI executable

NSAPI - Sun/iPlanet/Netscape server module

Xitami - Xitami CGI executable

Sambar - Sambar Server ISAPI module

CGI - php-cgi.exe executable

PEAR - PEAR installer

Manual - PHP Manual in CHM Format

For more information on installing MSI installers from the command line, visit
» http://msdn.microsoft.com/en-us/library/aa367988.aspx

Upgrading PHP with the Install

To upgrade, run the installer either graphically or from the command line as normal. The
installer will read your current install options, remove your old installation, and reinstall
PHP with the same options as before. It is recommended that you use this method of
keeping PHP updated instead of manually replacing the files in the installation directory.

Windows Installer (PHP 5.1.0 and earlier)

The Windows PHP installer is available from the downloads page at
» http://www.php.net/downloads.php. This installs the CGI version of PHP and for IIS,
PWS, and Xitami, it configures the web server as well. The installer does not include any
extra external PHP extensions (php_*.dll) as you'll only find those in the Windows Zip
Package and PECL downloads.

Note

While the Windows installer is an easy way to make PHP work, it is restricted in many
aspects as, for example, the automatic setup of extensions is not supported. Use of
the installer isn't the preferred method for installing PHP.

First, install your selected HTTP (web) server on your system, and make sure that it works.

Run the executable installer and follow the instructions provided by the installation wizard.
Two types of installation are supported - standard, which provides sensible defaults for all
the settings it can, and advanced, which asks questions as it goes along.

The installation wizard gathers enough information to set up the php.ini file, and configure
certain web servers to use PHP. One of the web servers the PHP installer does not
configure for is Apache, so you'll need to configure it manually.

Once the installation has completed, the installer will inform you if you need to restart your
system, restart the server, or just start using PHP.

http://msdn.microsoft.com/en-us/library/aa367988.aspx
http://msdn.microsoft.com/en-us/library/aa367988.aspx
http://www.php.net/downloads.php
http://www.php.net/downloads.php

Warning

Be aware, that this setup of PHP is not secure. If you would like to have a secure PHP
setup, you'd better go on the manual way, and set every option carefully. This
automatically working setup gives you an instantly working PHP installation, but it is
not meant to be used on online servers.

Manual Installation Steps

This install guide will help you manually install and configure PHP with a web server on
Microsoft Windows. To get started you'll need to download the zip binary distribution from
the downloads page at » http://www.php.net/downloads.php.

Although there are many all-in-one installation kits, and we also distribute a PHP installer
for Microsoft Windows, we recommend you take the time to setup PHP yourself as this will
provide you with a better understanding of the system, and enables you to install PHP
extensions easily when needed.

Note

Upgrading from a previous PHP version

Previous editions of the manual suggest moving various ini and DLL files into your
SYSTEM (i.e. C:\WINDOWS) folder and while this simplifies the installation procedure
it makes upgrading difficult. We advise you remove all of these files (like php.ini and
PHP related DLLs from the Windows SYSTEM folder) before moving on with a new
PHP installation. Be sure to backup these files as you might break the entire system.
The old php.ini might be useful in setting up the new PHP as well. And as you'll soon
learn, the preferred method for installing PHP is to keep all PHP related files in one
directory and have this directory available to your systems PATH.

Note

MDAC requirements

If you use Microsoft Windows 98/NT4 download the latest version of the Microsoft Data
Access Components (MDAC) for your platform. MDAC is available at
» http://msdn.microsoft.com/data/. This requirement exists because ODBC is built into
the distributed Windows binaries.

The following steps should be completed on all installations before any server specific
instructions are performed:

Extract the distribution file into a directory of your choice. If you are installing PHP 4,

http://www.php.net/downloads.php
http://msdn.microsoft.com/data/
http://msdn.microsoft.com/data/

extract to C:\, as the zip file expands to a foldername like php-4.3.7-Win32. If you are
installing PHP 5, extract to C:\php as the zip file doesn't expand as in PHP 4. You may
choose a different location but do not have spaces in the path (like C:\Program Files\PHP)
as some web servers will crash if you do.

The directory structure extracted from the zip is different for PHP versions 4 and 5 and
look like as follows:

Example #17 - PHP 4 package structure

c:\php

 |

 +--cli

 | |

 | |-php.exe -- CLI executable - ONLY for command line scripting

 |

 +--dlls -- support DLLs required by some extensions

 | |

 | |-expat.dll

 | |

 | |-fdftk.dll

 | |

 | |-...

 |

 +--extensions -- extension DLLs for PHP

 | |

 | |-php_bz2.dll

 | |

 | |-php_cpdf.dll

 | |

 | |-..

 |

 +--mibs -- support files for SNMP

 |

 +--openssl -- support files for Openssl

 |

 +--pdf-related -- support files for PDF

 |

 +--sapi -- SAPI (server module support) DLLs

 | |

 | |-php4apache.dll

 | |

 | |-php4apache2.dll

 | |

 | |-..

 |

 +--PEAR -- initial copy of PEAR

 |

 |

 |-go-pear.bat -- PEAR setup script

 |

 |-..

 |

 |-php.exe -- CGI executable

 |

 |-..

 |

 |-php.ini-dist -- default php.ini settings

 |

 |-php.ini-recommended -- recommended php.ini settings

 |

 |-php4ts.dll -- core PHP DLL

 |

 |-...

Or:

Example #18 - PHP 5 package structure

c:\php

 |

 +--dev

 | |

 | |-php5ts.lib

 |

 +--ext -- extension DLLs for PHP

 | |

 | |-php_bz2.dll

 | |

 | |-php_cpdf.dll

 | |

 | |-..

 |

 +--extras

 | |

 | +--mibs -- support files for SNMP

 | |

 | +--openssl -- support files for Openssl

 | |

 | +--pdf-related -- support files for PDF

 | |

 | |-mime.magic

 |

 +--pear -- initial copy of PEAR

 |

 |

 |-go-pear.bat -- PEAR setup script

 |

 |-fdftk.dll

 |

 |-..

 |

 |-php-cgi.exe -- CGI executable

 |

 |-php-win.exe -- executes scripts without an opened command
prompt

 |

 |-php.exe -- CLI executable - ONLY for command line scripting

 |

 |-..

 |

 |-php.ini-dist -- default php.ini settings

 |

 |-php.ini-recommended -- recommended php.ini settings

 |

 |-php5activescript.dll

 |

 |-php5apache.dll

 |

 |-php5apache2.dll

 |

 |-..

 |

 |-php5ts.dll -- core PHP DLL

 |

 |-...

Notice the differences and similarities. Both PHP 4 and PHP 5 have a CGI executable, a
CLI executable, and server modules, but they are located in different folders and/or have
different names. While PHP 4 packages have the server modules in the sapi folder, PHP 5
distributions have no such directory and instead they're in the PHP folder root. The
supporting DLLs for the PHP 5 extensions are also not in a seperate directory.

Note

In PHP 4, you should move all files located in the dll and sapi folders to the main folder
(e.g. C:\php).

Here is a list of server modules shipped with PHP 4 and PHP 5:

• sapi/php4activescript.dll (php5activescript.dll) - ActiveScript engine, allowing you to
embed PHP in your Windows applications.

• sapi/php4apache.dll (php5apache.dll) - Apache 1.3.x module.

• sapi/php4apache2.dll (php5apache2.dll) - Apache 2.0.x module.

• sapi/php5apache2_2.dll - Apache 2.2.x module.

• sapi/php4isapi.dll (php5isapi.dll) - ISAPI Module for ISAPI compliant web servers like
IIS 4.0/PWS 4.0 or newer.

• sapi/php4nsapi.dll (php5nsapi.dll) - Sun/iPlanet/Netscape server module.

• sapi/php4pi3web.dll (no equivalent in PHP 5) - Pi3Web server module.

Server modules provide significantly better performance and additional functionality
compared to the CGI binary. The CLI version is designed to let you use PHP for command
line scripting. More information about CLI is available in the chapter about using PHP from
the command line.

Warning

The SAPI modules have been significantly improved as of the 4.1 release, however, in
older systems you may encounter server errors or other server modules failing, such
as ASP.

The CGI and CLI binaries, and the web server modules all require the php4ts.dll (
php5ts.dll) file to be available to them. You have to make sure that this file can be found
by your PHP installation. The search order for this DLL is as follows:

• The same directory from where php.exe is called, or in case you use a SAPI module,
the web server's directory (e.g. C:\Program Files\Apache Group\Apache2\bin).

• Any directory in your Windows PATH environment variable.

To make php4ts.dll / php5ts.dll available you have three options: copy the file to the
Windows system directory, copy the file to the web server's directory, or add your PHP
directory, C:\php to the PATH. For better maintenance, we advise you to follow the last
option, add C:\php to the PATH, because it will be simpler to upgrade PHP in the future.
Read more about how to add your PHP directory to PATH in the corresponding FAQ entry
(and then don't forget to restart the computer - logoff isn't enough).

The next step is to set up a valid configuration file for PHP, php.ini. There are two ini files
distributed in the zip file, php.ini-dist and php.ini-recommended. We advise you to use
php.ini-recommended, because we optimized the default settings in this file for
performance, and security. Read this well documented file carefully because it has
changes from php.ini-dist that will drastically affect your setup. Some examples are
display_errors being off and magic_quotes_gpc being off. In addition to reading these,
study the ini settings and set every element manually yourself. If you would like to achieve
the best security, then this is the way for you, although PHP works fine with these default
ini files. Copy your chosen ini-file to a directory that PHP is able to find and rename it to
php.ini. PHP searches for php.ini in the locations described in The configuration file
section.

If you are running Apache 2, the simpler option is to use the PHPIniDir directive (read the
installation on Apache 2 page), otherwise your best option is to set the PHPRC
environment variable. This process is explained in the following FAQ entry.

Note

If you're using NTFS on Windows NT, 2000, XP or 2003, make sure that the user
running the web server has read permissions to your php.ini (e.g. make it readable by
Everyone).

The following steps are optional:

• Edit your new php.ini file. If you plan to use OmniHTTPd, do not follow the next step.
Set the doc_root to point to your web servers document_root. For example:

doc_root = c:\inetpub\wwwroot // for IIS/PWS

doc_root = c:\apache\htdocs // for Apache

• Choose the extensions you would like to load when PHP starts. See the section about

Windows extensions, about how to set up one, and what is already built in. Note that
on a new installation it is advisable to first get PHP working and tested without any
extensions before enabling them in php.ini.

• On PWS and IIS, you can set the browscap configuration setting to point to:
c:\windows\system\inetsrv\browscap.ini on Windows 9x/Me,
c:\winnt\system32\inetsrv\browscap.ini on NT/2000, and
c:\windows\system32\inetsrv\browscap.ini on XP. For an up-to-date browscap.ini, read
the following FAQ.

PHP is now setup on your system. The next step is to choose a web server, and enable it
to run PHP. Choose a web server from the table of contents.

ActiveScript

This section contains notes specific to the ActiveScript installation.

ActiveScript is a Windows only SAPI that enables you to use PHP script in any
ActiveScript compliant host, like Windows Script Host, ASP/ASP.NET, Windows Script
Components or Microsoft Scriptlet control.

As of PHP 5.0.1, ActiveScript has been moved to the » PECL repository. The DLL for this
PECL extension may be downloaded from either the » PHP Downloads page or from
» http://pecl4win.php.net/

Note

You should read the manual installation steps first!

After installing PHP, you should download the ActiveScript DLL (php5activescript.dll) and
place it in the main PHP folder (e.g. C:\php).

After having all the files needed, you must register the DLL on your system. To achieve
this, open a Command Prompt window (located in the Start Menu). Then go to your PHP
directory by typing something like cd C:\php. To register the DLL just type regsvr32
php5activescript.dll.

To test if ActiveScript is working, create a new file, named test.wsf (the extension is very
important) and type:
<job id="test">

<script language="PHPScript">

 $WScript->Echo("Hello World!");

</script>

</job>
Save and double-click on the file. If you receive a little window saying "Hello World!" you're
done.

http://pecl.php.net/
http://www.php.net/downloads.php
http://pecl4win.php.net/
http://pecl4win.php.net/

Note

In PHP 4, the engine was named 'ActivePHP', so if you are using PHP 4, you should
replace 'PHPScript' with 'ActivePHP' in the above example.

Note

ActiveScript doesn't use the default php.ini file. Instead, it will look only in the same
directory as the .exe that caused it to load. You should create php-activescript.ini and
place it in that folder, if you wish to load extensions, etc.

Microsoft IIS / PWS

This section contains notes and hints specific to IIS (Microsoft Internet Information Server).

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

General considerations for all installations of PHP with IIS or PWS

• First, read the Manual Installation Instructions. Do not skip this step as it provides
crucial information for installing PHP on Windows.

• CGI users must set the cgi.force_redirect PHP directive to 0 inside php.ini. Read the
faq on cgi.force_redirect for important details. Also, CGI users may want to set the
cgi.redirect_status_env directive. When using directives, be sure these directives aren't
commented out inside php.ini.

• The PHP 4 CGI is named php.exe while in PHP 5 it's php-cgi.exe. In PHP 5, php.exe is
the CLI, and not the CGI.

• Modify the Windows PATH environment variable to include the PHP directory. This
way the PHP DLL files and PHP executables can all remain in the PHP directory
without cluttering up the Windows system directory. For more details, see the FAQ on
Setting the PATH.

• The IIS user (usually IUSR_MACHINENAME) needs permission to read various files
and directories, such as php.ini, docroot, and the session tmp directory.

• Be sure the extension_dir and doc_root PHP directives are appropriately set in php.ini.
These directives depend on the system that PHP is being installed on. In PHP 4, the
extension_dir is extensions while with PHP 5 it's ext. So, an example PHP 5

extensions_dir value is "c:\php\ext" and an example IIS doc_root value is
"c:\Inetpub\wwwroot".

• PHP extension DLL files, such as php_mysql.dll and php_curl.dll, are found in the zip
package of the PHP download (not the PHP installer). In PHP 5, many extensions are
part of PECL and can be downloaded in the "Collection of PECL modules" package.
Files such as php_zip.dll and php_ssh2.dll. » Download PHP files here.

• When defining the executable, the 'check that file exists' box may also be checked. For
a small performance penalty, the IIS (or PWS) will check that the script file exists and
sort out authentication before firing up PHP. This means that the web server will
provide sensible 404 style error messages instead of CGI errors complaining that PHP
did not output any data.

• The PHP executable is distributed as a 32bit application. If you are running a 64bit
version of Windows you will either need to rebuild the binary yourself, or make sure IIS
is configured to also run 32bit extensions. You can usually turn this on by using the IIS
Administration script as follows: Cscript.exe adsutil.vbs SET
W3SVC/AppPools/Enable32bitAppOnWin64 1

Windows NT/200x/XP and IIS 4 or newer

PHP may be installed as a CGI binary, or with the ISAPI module. In either case, you need
to start the Microsoft Management Console (may appear as 'Internet Services Manager',
either in your Windows NT 4.0 Option Pack branch or the Control Panel=>Administrative
Tools under Windows 2000/XP). Then right click on your Web server node (this will most
probably appear as 'Default Web Server'), and select 'Properties'.

If you want to use the CGI binary, do the following:

• Under 'Home Directory', 'Virtual Directory', or 'Directory', do the following:

• Change the Execute Permissions to 'Scripts only'

• Click on the 'Configuration' button, and choose the Application Mappings tab. Click
Add and set the Executable path to the appropriate CGI file. An example PHP 5 value
is: C:\php\php-cgi.exe Supply.php as the extension. Leave 'Method exclusions' blank,
and check the 'Script engine' checkbox. Now, click OK a few times.

• Set up the appropriate security. (This is done in Internet Service Manager), and if your
NT Server uses NTFS file system, add execute rights for I_USR_ to the directory that
contains php.exe / php-cgi.exe.

To use the ISAPI module, do the following:

• If you don't want to perform HTTP Authentication using PHP, you can (and should)
skip this step. Under ISAPI Filters, add a new ISAPI filter. Use PHP as the filter name,
and supply a path to the php4isapi.dll / php5isapi.dll.

• Under 'Home Directory', 'Virtual Directory', or 'Directory', do the following:

• Change the Execute Permissions to 'Scripts only'

http://www.php.net/downloads.php

• Click on the 'Configuration' button, and choose the Application Mappings tab. Click
Add and set the Executable path to the appropriate ISAPI DLL. An example PHP 5
value is: C:\php\php5isapi.dll Supply.php as the extension. Leave 'Method exclusions'
blank, and check the 'Script engine' checkbox. Now, click OK a few times.

• Stop IIS completely (NET STOP iisadmin)

• Start IIS again (NET START w3svc)

With IIS 6 (2003 Server), open up the IIS Manager, go to Web Service Extensions, choose
"Add a new Web service extension", enter in a name such as PHP, choose the Add button
and for the value browse to either the ISAPI file (php4isapi.dll or php5isapi.dll) or CGI (
php.exe or php-cgi.exe) then check "Set extension status to Allowed" and click OK.

In order to use index.php as a default content page, do the following: From within the
Documents tab, choose Add. Type in index.php and click OK. Adjust the order by choosing
Move Up or Move Down. This is similar to setting DirectoryIndex with Apache.

The steps above must be repeated for each extension that is to be associated with PHP
scripts..php is the most common although.php3 may be required for legacy applications.

If you experience 100% CPU usage after some time, turn off the IIS setting Cache ISAPI
Application.

Windows and PWS 4

PWS 4 does not support ISAPI, only PHP CGI should be used.

• Edit the enclosed pws-php4cgi.reg / pws-php5cgi.reg file (look into the SAPI folder for
PHP 4, or in the main folder for PHP 5) to reflect the location of your php.exe /
php-cgi.exe. Backslashes should be escaped, for example:
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\w3svc\parameters\S
cript Map] ".php"="C:\\php\\php.exe" (change to C:\\php\\php-cgi.exe if you are using
PHP 5) Now merge this registery file into your system; you may do this by
double-clicking it.

• In the PWS Manager, right click on a given directory you want to add PHP support to,
and select Properties. Check the 'Execute' checkbox, and confirm.

Windows and PWS/IIS 3

The recommended method for configuring these servers is to use the REG file included
with the distribution (pws-php4cgi.reg in the SAPI folder for PHP 4, or pws-php5cgi.reg in
the main folder for PHP 5). You may want to edit this file and make sure the extensions
and PHP install directories match your configuration. Or you can follow the steps below to
do it manually.

Warning

These steps involve working directly with the Windows registry. One error here can
leave your system in an unstable state. We highly recommend that you back up your
registry first. The PHP Development team will not be held responsible if you damage
your registry.

• Run Regedit.

• Navigate to: HKEY_LOCAL_MACHINE /System /CurrentControlSet /Services /W3Svc
/Parameters /ScriptMap.

• On the edit menu select: New->String Value.

• Type in the extension you wish to use for your php scripts. For example.php

• Double click on the new string value and enter the path to php.exe in the value data
field. ex: C:\php\php.exe "%s" %s for PHP 4, or C:\php\php-cgi.exe "%s" %s for PHP
5.

• Repeat these steps for each extension you wish to associate with PHP scripts.

The following steps do not affect the web server installation and only apply if you want
your PHP scripts to be executed when they are run from the command line (ex. run
C:\myscripts\test.php) or by double clicking on them in a directory viewer window. You
may wish to skip these steps as you might prefer the PHP files to load into a text editor
when you double click on them.

• Navigate to: HKEY_CLASSES_ROOT

• On the edit menu select: New->Key.

• Name the key to the extension you setup in the previous section. ex:.php

• Highlight the new key and in the right side pane, double click the "default value" and
enter phpfile.

• Repeat the last step for each extension you set up in the previous section.

• Now create another New->Key under HKEY_CLASSES_ROOT and name it phpfile.

• Highlight the new key phpfile and in the right side pane, double click the "default value"
and enter PHP Script.

• Right click on the phpfile key and select New->Key, name it Shell.

• Right click on the Shell key and select New->Key, name it open.

• Right click on the open key and select New->Key, name it command.

• Highlight the new key command and in the right side pane, double click the "default
value" and enter the path to php.exe. ex: c:\php\php.exe -q %1. (don't forget the %1).

• Exit Regedit.

• If using PWS on Windows, reboot to reload the registry.

PWS and IIS 3 users now have a fully operational system. IIS 3 users can use a nifty
» tool from Steven Genusa to configure their script maps.

Apache 1.3.x on Microsoft Windows

This section contains notes and hints specific to Apache 1.3.x installs of PHP on Microsoft
Windows systems. There are also instructions and notes for Apache 2 on a separate page.

Note

Please read the manual installation steps first!

There are two ways to set up PHP to work with Apache 1.3.x on Windows. One is to use
the CGI binary (php.exe for PHP 4 and php-cgi.exe for PHP 5), the other is to use the
Apache Module DLL. In either case you need to edit your httpd.conf to configure Apache
to work with PHP, and then restart the server.

It is worth noting here that now the SAPI module has been made more stable under
Windows, we recommend it's use above the CGI binary, since it is more transparent and
secure.

Although there can be a few variations of configuring PHP under Apache, these are simple
enough to be used by the newcomer. Please consult the Apache Documentation for
further configuration directives.

After changing the configuration file, remember to restart the server, for example, NET
STOP APACHE followed by NET START APACHE, if you run Apache as a Windows
Service, or use your regular shortcuts.

Note

Remember that when adding path values in the Apache configuration files on
Windows, all backslashes such as c:\directory\file.ext must be converted to forward
slashes: c:/directory/file.ext. A trailing slash may also be necessary for directories.

Installing as an Apache module

You should add the following lines to your Apache httpd.conf file:

http://www.genusa.com/iis/iiscfg.html
http://www.genusa.com/iis/iiscfg.html

Example #19 - PHP as an Apache 1.3.x module

This assumes PHP is installed to c:\php. Adjust the path if this is not the case.

For PHP 4:

Add to the end of the LoadModule section

Don't forget to copy this file from the sapi directory!

LoadModule php4_module "C:/php/php4apache.dll"

Add to the end of the AddModule section

AddModule mod_php4.c

For PHP 5:

Add to the end of the LoadModule section

LoadModule php5_module "C:/php/php5apache.dll"

Add to the end of the AddModule section

AddModule mod_php5.c

For both:

Add this line inside the <IfModule mod_mime.c> conditional brace

AddType application/x-httpd-php .php

For syntax highlighted .phps files, also add

AddType application/x-httpd-php-source .phps

Installing as a CGI binary

If you unzipped the PHP package to C:\php\ as described in the Manual Installation Steps
section, you need to insert these lines to your Apache configuration file to set up the CGI
binary:

Example #20 - PHP and Apache 1.3.x as CGI

ScriptAlias /php/ "c:/php/"

AddType application/x-httpd-php .php

For PHP 4

Action application/x-httpd-php "/php/php.exe"

For PHP 5

Action application/x-httpd-php "/php/php-cgi.exe"

specify the directory where php.ini is

SetEnv PHPRC C:/php

Note that the second line in the list above can be found in the actual versions of httpd.conf,
but it is commented out. Remember also to substitute the c:/php/ for your actual path to
PHP.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

If you would like to present PHP source files syntax highlighted, there is no such
convenient option as with the module version of PHP. If you chose to configure Apache to
use PHP as a CGI binary, you will need to use the highlight_file() function. To do this
simply create a PHP script file and add this code: <?php
highlight_file('some_php_script.php'); ?>.

Apache 2.0.x on Microsoft Windows

This section contains notes and hints specific to Apache 2.0.x installs of PHP on Microsoft
Windows systems. We also have instructions and notes for Apache 1.3.x users on a
separate page.

Note

You should read the manual installation steps first!

Note

Apache 2.2.x Support

Users of Apache 2.2.x may use the documentation below except the appropriate DLL
file is named php5apache2_2.dll and it only exists as of PHP 5.2.0. See also
» http://snaps.php.net/

Warning

We do not recommend using a threaded MPM in production with Apache 2. Use the
prefork MPM instead, or use Apache 1. For information on why, read the related FAQ
entry on using Apache2 with a threaded MPM

You are highly encouraged to take a look at the » Apache Documentation to get a basic
understanding of the Apache 2.0.x Server. Also consider to read the » Windows specific
notes for Apache 2.0.x before reading on here.

http://snaps.php.net/
http://snaps.php.net/
http://httpd.apache.org/docs/2.0/
http://httpd.apache.org/docs/2.0/platform/windows.html
http://httpd.apache.org/docs/2.0/platform/windows.html

Note

PHP and Apache 2.0.x compatibility notes

The following versions of PHP are known to work with the most recent version of
Apache 2.0.x:

• PHP 4.3.0 or later available at » http://www.php.net/downloads.php.

• the latest stable development version. Get the source code
» http://snaps.php.net/php5-latest.tar.gz or download binaries for Windows
» http://snaps.php.net/win32/php5-win32-latest.zip.

• a prerelease version downloadable from » http://qa.php.net/.

• you have always the option to obtain PHP through » anonymous CVS.

These versions of PHP are compatible to Apache 2.0.40 and later.

Apache 2.0 SAPI -support started with PHP 4.2.0. PHP 4.2.3 works with Apache
2.0.39, don't use any other version of Apache with PHP 4.2.3. However, the
recommended setup is to use PHP 4.3.0 or later with the most recent version of
Apache2.

All mentioned versions of PHP will work still with Apache 1.3.x.

Warning

Apache 2.0.x is designed to run on Windows NT 4.0, Windows 2000 or Windows XP.
At this time, support for Windows 9x is incomplete. Apache 2.0.x is not expected to
work on those platforms at this time.

Download the most recent version of » Apache 2.0.x and a fitting PHP version. Follow the
Manual Installation Steps and come back to go on with the integration of PHP and Apache.

There are two ways to set up PHP to work with Apache 2.0.x on Windows. One is to use
the CGI binary the other is to use the Apache module DLL. In either case you need to edit
your httpd.conf to configure Apache to work with PHP and then restart the server.

Note

Remember that when adding path values in the Apache configuration files on
Windows, all backslashes such as c:\directory\file.ext must be converted to forward
slashes: c:/directory/file.ext. A trailing slash may also be necessary for directories.

Installing as a CGI binary

http://www.php.net/downloads.php
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/win32/php5-win32-latest.zip
http://snaps.php.net/win32/php5-win32-latest.zip
http://qa.php.net/
http://www.php.net/anoncvs.php
http://www.apache.org/

You need to insert these three lines to your Apache httpd.conf configuration file to set up
the CGI binary:

Example #21 - PHP and Apache 2.0 as CGI

ScriptAlias /php/ "c:/php/"

AddType application/x-httpd-php .php

For PHP 4

Action application/x-httpd-php "/php/php.exe"

For PHP 5

Action application/x-httpd-php "/php/php-cgi.exe"

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

Installing as an Apache module

You need to insert these two lines to your Apache httpd.conf configuration file to set up the
PHP module for Apache 2.0:

Example #22 - PHP and Apache 2.0 as Module

For PHP 4 do something like this:

LoadModule php4_module "c:/php/php4apache2.dll"

Don't forget to copy the php4apache2.dll file from the sapi directory!

AddType application/x-httpd-php .php

For PHP 5 do something like this:

LoadModule php5_module "c:/php/php5apache2.dll"

AddType application/x-httpd-php .php

configure the path to php.ini

PHPIniDir "C:/php"

Note

Remember to substitute your actual path to PHP for the c:/php/ in the above examples.
Take care to use either php4apache2.dll or php5apache2.dll in your LoadModule
directive and not php4apache.dll or php5apache.dll as the latter ones are designed to
run with Apache 1.3.x.

Note

If you want to use content negotiation, read related FAQ.

Warning

Don't mix up your installation with DLL files from different PHP versions. You have the
only choice to use the DLL's and extensions that ship with your downloaded PHP
version.

Sun, iPlanet and Netscape servers on Microsoft Windows

This section contains notes and hints specific to Sun Java System Web Server, Sun ONE
Web Server, iPlanet and Netscape server installs of PHP on Windows.

From PHP 4.3.3 on you can use PHP scripts with the NSAPI module to generate custom
directory listings and error pages. Additional functions for Apache compatibility are also
available. For support in current web servers read the note about subrequests.

CGI setup on Sun, iPlanet and Netscape servers

To install PHP as a CGI handler, do the following:

• Copy php4ts.dll to your systemroot (the directory where you installed Windows)

• Make a file association from the command line. Type the following two lines:
assoc .php=PHPScript

ftype PHPScript=c:\php\php.exe %1 %*

• In the Netscape Enterprise Administration Server create a dummy shellcgi directory
and remove it just after (this step creates 5 important lines in obj.conf and allow the
web server to handle shellcgi scripts).

• In the Netscape Enterprise Administration Server create a new mime type (Category:
type, Content-Type: magnus-internal/shellcgi, File Suffix:php).

• Do it for each web server instance you want PHP to run

More details about setting up PHP as a CGI executable can be found here:
» http://benoit.noss.free.fr/php/install-php.html

NSAPI setup on Sun, iPlanet and Netscape servers

To install PHP with NSAPI, do the following:

http://benoit.noss.free.fr/php/install-php.html
http://benoit.noss.free.fr/php/install-php.html

• Copy php4ts.dll to your systemroot (the directory where you installed Windows)

• Make a file association from the command line. Type the following two lines:
assoc .php=PHPScript

ftype PHPScript=c:\php\php.exe %1 %*

• In the Netscape Enterprise Administration Server create a new mime type (Category:
type, Content-Type: magnus-internal/x-httpd-php, File Suffix: php).

• Edit magnus.conf (for servers >= 6) or obj.conf (for servers < 6) and add the following:
You should place the lines after mime types init.
Init fn="load-modules" funcs="php4_init,php4_execute,php4_auth_trans"
shlib="c:/php/sapi/php4nsapi.dll"

Init fn="php4_init" LateInit="yes" errorString="Failed to initialise PHP!"
[php_ini="c:/path/to/php.ini"]
(PHP >= 4.3.3) The php_ini parameter is optional but with it you can place your php.ini
in your web server configuration directory.

• Configure the default object in obj.conf (for virtual server classes [Sun Web Server
6.0+] in their vserver.obj.conf): In the <Object name="default"> section, place this line
necessarily after all 'ObjectType' and before all 'AddLog' lines:
Service fn="php4_execute" type="magnus-internal/x-httpd-php" [inikey=value
inikey=value ...]
(PHP >= 4.3.3) As additional parameters you can add some special php.ini -values, for
example you can set a docroot="/path/to/docroot" specific to the context php4_execute
is called. For boolean ini-keys please use 0/1 as value, not "On","Off",... (this will not
work correctly), e.g. zlib.output_compression=1 instead of
zlib.output_compression="On"

• This is only needed if you want to configure a directory that only consists of PHP
scripts (same like a cgi-bin directory):
<Object name="x-httpd-php">

ObjectType fn="force-type" type="magnus-internal/x-httpd-php"

Service fn=php4_execute [inikey=value inikey=value ...]

</Object>
After that you can configure a directory in the Administration server and assign it the
style x-httpd-php. All files in it will get executed as PHP. This is nice to hide PHP usage
by renaming files to.html.

• Restart your web service and apply changes

• Do it for each web server instance you want PHP to run

Note

More details about setting up PHP as an NSAPI filter can be found here:
» http://benoit.noss.free.fr/php/install-php4.html

Note

The stacksize that PHP uses depends on the configuration of the web server. If you
get crashes with very large PHP scripts, it is recommended to raise it with the Admin
Server (in the section "MAGNUS EDITOR").

http://benoit.noss.free.fr/php/install-php4.html
http://benoit.noss.free.fr/php/install-php4.html

CGI environment and recommended modifications in php.ini

Important when writing PHP scripts is the fact that Sun JSWS/Sun ONE
WS/iPlanet/Netscape is a multithreaded web server. Because of that all requests are
running in the same process space (the space of the web server itself) and this space has
only one environment. If you want to get CGI variables like PATH_INFO, HTTP_HOST etc.
it is not the correct way to try this in the old PHP way with getenv() or a similar way
(register globals to environment, $_ENV). You would only get the environment of the
running web server without any valid CGI variables!

Note

Why are there (invalid) CGI variables in the environment?

Answer: This is because you started the web server process from the admin server
which runs the startup script of the web server, you wanted to start, as a CGI script (a
CGI script inside of the admin server!). This is why the environment of the started web
server has some CGI environment variables in it. You can test this by starting the web
server not from the administration server. Use the command line as root user and start
it manually - you will see there are no CGI-like environment variables.

Simply change your scripts to get CGI variables in the correct way for PHP 4.x by using
the superglobal $_SERVER. If you have older scripts which use $HTTP_HOST, etc., you
should turn on register_globals in php.ini and change the variable order too (important:
remove "E" from it, because you do not need the environment here):
variables_order = "GPCS"

register_globals = On

Special use for error pages or self-made directory listings (PHP >= 4.3.3)

You can use PHP to generate the error pages for "404 Not Found" or similar. Add the
following line to the object in obj.conf for every error page you want to overwrite:
Error fn="php4_execute" code=XXX script="/path/to/script.php" [inikey=value
inikey=value...]
where XXX is the HTTP error code. Please delete any other Error directives which could
interfere with yours. If you want to place a page for all errors that could exist, leave the
code parameter out. Your script can get the HTTP status code with
$_SERVER['ERROR_TYPE'].

Another possibility is to generate self-made directory listings. Just create a PHP script
which displays a directory listing and replace the corresponding default Service line for
type="magnus-internal/directory" in obj.conf with the following:
Service fn="php4_execute" type="magnus-internal/directory"
script="/path/to/script.php" [inikey=value inikey=value...]
For both error and directory listing pages the original URI and translated URI are in the
variables $_SERVER['PATH_INFO'] and $_SERVER['PATH_TRANSLATED'].

Note about nsapi_virtual() and subrequests (PHP >= 4.3.3)

The NSAPI module now supports the nsapi_virtual() function (alias: virtual()) to make
subrequests on the web server and insert the result in the web page. The problem is, that
this function uses some undocumented features from the NSAPI library.

Under Unix this is not a problem, because the module automatically looks for the needed
functions and uses them if available. If not, nsapi_virtual() is disabled.

Under Windows limitations in the DLL handling need the use of a automatic detection of
the most recent ns-httpdXX.dll file. This is tested for servers till version 6.1. If a newer
version of the Sun server is used, the detection fails and nsapi_virtual() is disabled.

If this is the case, try the following: Add the following parameter to php4_init in
magnus.conf / obj.conf:
Init fn=php4_init ... server_lib="ns-httpdXX.dll"
where XX is the correct DLL version number. To get it, look in the server-root for the
correct DLL name. The DLL with the biggest filesize is the right one.

You can check the status by using the phpinfo() function.

Note

But be warned: Support for nsapi_virtual() is EXPERIMENTAL!!!

OmniHTTPd Server

This section contains notes and hints specific to » OmniHTTPd on Windows.

Note

You should read the manual installation steps first!

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

You need to complete the following steps to make PHP work with OmniHTTPd. This is a
CGI executable setup. SAPI is supported by OmniHTTPd, but some tests have shown that
it is not so stable to use PHP as an ISAPI module.

Note

Important for CGI users

http://www.omnicron.ca/

Read the faq on cgi.force_redirect for important details. This directive needs to be set
to 0.

• Install OmniHTTPd server.

• Right click on the blue OmniHTTPd icon in the system tray and select Properties

• Click on Web Server Global Settings

• On the 'External' tab, enter: virtual = .php | actual = c:\php\php.exe (use php-cgi.exe if
installing PHP 5), and use the Add button.

• On the Mime tab, enter: virtual = wwwserver/stdcgi | actual = .php, and use the Add
button.

• Click OK

Repeat steps 2 - 6 for each extension you want to associate with PHP.

Note

Some OmniHTTPd packages come with built in PHP support. You can choose at setup
time to do a custom setup, and uncheck the PHP component. We recommend you to
use the latest PHP binaries. Some OmniHTTPd servers come with PHP 4 beta
distributions, so you should choose not to set up the built in support, but install your
own. If the server is already on your machine, use the Replace button in Step 4 and 5
to set the new, correct information.

Sambar Server on Microsoft Windows

This section contains notes and hints specific to the » Sambar Server for Windows.

Note

You should read the manual installation steps first!

This list describes how to set up the ISAPI module to work with the Sambar server on
Windows.

• Find the file called mappings.ini (in the config directory) in the Sambar install directory.

• Open mappings.ini and add the following line under [ISAPI]:

http://www.sambar.com/

Example #23 - ISAPI configuration of Sambar

#for PHP 4

*.php = c:\php\php4isapi.dll

#for PHP 5

*.php = c:\php\php5isapi.dll

(This line assumes that PHP was installed in c:\php.)

• Now restart the Sambar server for the changes to take effect.

Note

If you intend to use PHP to communicate with resources which are held on a different
computer on your network, then you will need to alter the account used by the Sambar
Server Service. The default account used for the Sambar Server Service is
LocalSystem which will not have access to remote resources. The account can be
amended by using the Services option from within the Windows Control Panel
Administation Tools.

Xitami on Microsoft Windows

This section contains notes and hints specific to » Xitami on Windows.

Note

You should read the manual installation steps first!

This list describes how to set up the PHP CGI binary to work with Xitami on Windows.

Note

Important for CGI users

Read the faq on cgi.force_redirect for important details. This directive needs to be set
to 0. If you want to use $_SERVER['PHP_SELF'] you have to enable the
cgi.fix_pathinfo directive.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read

http://www.xitami.com/

our CGI security section to learn how to defend yourself from such attacks.

• Make sure the web server is running, and point your browser to xitamis admin console
(usually http://127.0.0.1/admin), and click on Configuration.

• Navigate to the Filters, and put the extension which PHP should parse (i.e. .php) into
the field File extensions (.xxx).

• In Filter command or script put the path and name of your PHP CGI executable i.e.
C:\php\php.exe for PHP 4, or C:\php\php-cgi.exe for PHP 5.

• Press the 'Save' icon.

• Restart the server to reflect changes.

Building from source

This chapter teaches how to compile PHP from sources on windows, using Microsoft's
tools. To compile PHP with cygwin, please refer to Installation on Unix systems.

Quick Guide to Building On Windows

This step-by-step quick-start guide was written in March of 2008, running Windows XP
Service Pack 2 with all the latest updates and building PHP 5.2.5 and PHP 5.3.
Experiences using different tools may differ.

• Download and install:

• » Microsoft Visual C++ 2008 Express Edition

• » Windows SDK for Windows Server 2008 and .NET Framework 3.5

• Copy C:\Program Files\Microsoft SDKs\Windows\v6.1\Include\WinResrc.h to
C:\Program Files\Microsoft SDKs\Windows\v6.1\Include\winres.h.

• Create the directory C:\work.

• Download » the Windows build tools and unzip the contents into C:\work.

• Create the directory C:\usr\local\lib. Copy the C:\work\win32build\bin\bison.simple into
the new directory.

• Download » the Windows DNS resolver library and unzip the contents into C:\work.

• Open C:\work\bindlib_w32\bindlib.dsw. If and when asked whether to update the
project, choose Yes. Choose either Debug or Release configuration in the top toolbar,
then choose Build => Build Solution.

http://www.microsoft.com/express/download/
http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC
http://www.php.net/extra/win32build.zip
http://www.php.net/extra/bindlib_w32.zip

• Obtain a copy of the PHP source and extract it into the C:\work directory. At this point,
that directory should look something like this:
+-C:\work

| +-bindlib_w32

| | +-Debug

| | | +-resolv.lib

| | | +-...

| | +-...

| +-win32build

| | +-bin

| | +-include

| | +-lib

| +-php-5.2.5

| | +-build

| | +-win32

| | +-...

• Open a shell using the Visual Studio 2008 Command Prompt shortcut in the Start
menu.

• Execute the command:
C:\Program Files\Microsoft Visual Studio 9.0\VC> set
"PATH=C:\work\win32build\bin;%PATH%"

C:\Program Files\Microsoft Visual Studio 9.0\VC>

• Enter the C:\work\php-5.2.5 directory.

• Run cscript /nologo win32\build\buildconf.js.

• Run cscript /nologo configure.js --disable-all --enable-cli --enable-cgi
--enable-object-out-dir=.. --disable-ipv6. To enable debugging, add --enable-debug to
the end.

• Run nmake.

• If all went well, there will now be a working PHP CLI executable at
C:\work\Debug_TS\php.exe, or C:\work\Release_TS\php.exe.

Build Environment

To compile and build PHP you need a Microsoft Development Environment. The following
environments are supported:

• Microsoft Visual C++ 6.0 (official)

• Microsoft Visual C++ .NET

• Microsoft Visual C++ 2005, Windows Platform SDK and .NET Framework SDK
(current)

While VC6 (Microsoft Visual C++ 6.0) is used to perform official Windows builds, it can no
longer be downloaded from Microsoft's website. New users seeking to build PHP for free
must use Microsoft Visual C++ 2005 Express Edition and its auxiliary components.

Setting up Microsoft Visual C++ 2005 Express

Note

Combined, these components are very large and will require over one gigabyte of disk
space.

Setting up Microsoft Visual C++ 2005 Express is rather involved, and requires the
installation of three separate packages and various compatibility changes. Be sure to keep
track of the paths in which these programs are installed into. Download and install the
following programs:

• » Microsoft Visual C++ 2005 Express

• » Microsoft Windows Server 2005 Platform SDK

• » .NET Framework 2.0 Software Development Kit

There are a few post-installation steps:

• » MSVC 2005 Express must be configured to use Windows Platform SDK. It is not
necessary to perform step two, as PHP does not use the graphical user interface.

• Windows Platform SDK contains a file named WinResrc.h usually in Include folder
inside the SDK's installation directory. This needs to be copied and renamed to
winres.h, the name PHP uses for the file.

Finally, when using MSVC 2005 Express from the command line, several environment
variables must be set up. vsvars32.bat usually found in C:\Program Files\Microsoft Visual
Studio 8\Common7\Tools (search for the file if otherwise) contains these declarations. The
PATH, INCLUDE and LIB environment variables need the corresponding bin, include and
lib directories of the two newly installed SDKs added to them.

Note

The .NET SDK paths may already be present in the vsvars32.bat file, as this SDK
installs itself into the same directory as Microsoft Visual C++ 2005 Express.

Libraries

To extract the downloaded files you will also need a ZIP extraction utility. Windows XP and
newer already include this functionality built-in.

Before you get started, you have to download:

http://msdn.microsoft.com/vstudio/express/visualc/
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB
http://www.microsoft.com/downloads/details.aspx?FamilyId=FE6F2099-B7B4-4F47-A244-C96D69C35DEC
http://msdn2.microsoft.com/en-us/library/ms235626(VS.80).aspx

• the win32 buildtools from the PHP site at » http://www.php.net/extra/win32build.zip.

• the source code for the DNS name resolver used by PHP from
» http://www.php.net/extra/bindlib_w32.zip. This is a replacement for the resolv.lib
library included in win32build.zip.

• If you plan to compile PHP as a Apache module you will also need the » Apache
sources.

Finally, you are going to need the source to PHP itself. You can get the latest development
version using » anonymous CVS, a » snapshot or the most recent released » source
tarball.

Putting it all together

After downloading the required packages you have to extract them in a proper place:

• Create a working directory where all files end up after extracting, e.g: C:\work.

• Create the directory win32build under your working directory (C:\work) and unzip
win32build.zip into it.

• Create the directory bindlib_w32 under your working directory (C:\work) and unzip
bindlib_w32.zip into it.

• Extract the downloaded PHP source code into your working directory (C:\work).

• Build the libraries you are going to need (or download the binaries if available) and
place the headers and libs in the C:\work\win32build\include and C:\work\win32build\lib
directories, respectively.

• If you don't have cygwin installed with bison and flex, you also need to make the
C:\work\win32build\bin directory available in the PATH, so that thoses tools can be
found by the configure script.

Following this steps your directory structure looks like this:
+--C:\work

| |

| +--bindlib_w32

| | |

| | +--arpa

| | |

| | +--conf

| | |

| | +--...

| |

| +--php-5.x.x

| | |

| | +--build

| | |

| | +--...

| | |

| | +--win32

| | |

| | +--...

| |

| +--win32build

http://www.php.net/extra/win32build.zip
http://www.php.net/extra/bindlib_w32.zip
http://www.php.net/extra/bindlib_w32.zip
http://www.apache.org/dist/httpd/
http://www.apache.org/dist/httpd/
http://www.php.net/anoncvs.php
http://snaps.php.net/
http://www.php.net/downloads.php

| | |

| | +--bin

| | |

| | +--include

| | |

| | +--lib

If you aren't using » Cygwin, you must also create the directories C:\usr\local\lib and then
copy bison.simple from C:\work\win32build\bin to C:\usr\local\lib.

Note

If you want to use PEAR and the comfortable command line installer, the CLI-SAPI is
mandatory. For more information about PEAR and the installer read the documentation
at the » PEAR website.

Build resolv.lib

You must build the resolv.lib library. Decide whether you want to have debug symbols
available (bindlib - Win32 Debug) or not (bindlib - Win32 Release), but please remember
the choice you made, because the debug build will only link with PHP when it is also built
in debug mode. Build the appropriate configuration:

• For GUI users, launch VC++, by double-clicking in C:\work\bindlib_w32\bindlib.dsw.
Then select Build=>Rebuild All.

• For command line users, make sure that you either have the C++ environment
variables registered, or have run vcvars.bat, and then execute one of the following
commands:

• msdev bindlib.dsp /MAKE "bindlib - Win32 Debug"

• msdev bindlib.dsp /MAKE "bindlib - Win32 Release"

At this point, you should have a usable resolv.lib in either your C:\work\bindlib_w32\Debug
or Release subdirectories. Copy this file into your C:\work\win32build\lib directory over the
file by the same name found in there.

Building PHP using the new build system [PHP >=5 only]

This chapter explains how to compile PHP >=5 using the new build system, which is
CLI-based and very similar with the main PHP's Unix build system.

Note

This build system isn't available in PHP 4. Please refer to Building PHP using DSW
files [PHP 4] instead.

http://www.cygwin.com/
http://pear.php.net/manual/

Before starting, be sure you have read Putting it all together and you have built all needed
libraries, like » Libxml or » ICU (needed for PHP >= 6).

First you should open a Visual Studio Command Prompt, which should be available under
the Start menu. A regular Command Prompt window shouldn't work, as probably it doesn't
have the necessary environment variables set. Then type something like cd
C:\work\php-5.x.x to enter in the PHP source dir. Now you are ready to start configuring
PHP.

The second step is running the buildconf batch file to make the configure script, by
scanning the folder for config.w32 files. By default this command will also search in the
following directories: pecl; ..\pecl; pecl\rpc; ..\pecl\rpc. Since PHP 5.1.0, you can change
this behaviour by using the --add-modules-dir argument (e.g. cscript /nologo
win32/build/buildconf.js --add-modules-dir=../php-gtk2 --add-modules-dir=../pecl).

The third step is configuring. To view the list of the available configuration options type
cscript /nologo configure.js --help. After choosing the options that you will enable/disable,
type something like: cscript /nologo configure.js --disable-foo --enable-fun-ext. Using
--enable-foo=shared will attempt to build the 'foo' extension as a shared, dynamically
loadable module.

The last step is compiling. To achieve this just issue the command nmake. The generated
files (e.g. .exe and .dll) will be placed in either Release_TS or Debug_TS directories (if
built with Thread safety), or in the Release or Debug directories otherwise.

Optionally you may also run PHP's test suite, by typing nmake test. If you want to run just
a specific test, you may use the 'TESTS' variable (e.g. nmake /D TESTS=ext/sqlite/tests
test - will only run sqlite's tests). To delete the files that were created during the
compilation, you can use the nmake clean command.

A very useful configure option to build snapshots is --enable-snapshot-build, which add a
new compiling mode (nmake build-snap). This tries to build every extension available (as
shared, by default), but it will ignore build errors in individual extensions or SAPI.

Building PHP using DSW files [PHP 4]

Compiling PHP using the DSW files isn't supported as of PHP 5, as a much more flexible
system was made available. Anyway, you can still use them, but keep in mind that they
are not maintained very often, so you can have compiling problems. To compile PHP 4 for
windows, this is the only available way though.

Configure MVC ++

The first step is to configure MVC++ to prepare for compiling. Launch Microsoft Visual
C++, and from the menu select Tools => Options. In the dialog, select the directories tab.
Sequentially change the dropdown to Executables, Includes, and Library files. Your entries
should look like this:

• Executable files: C:\work\win32build\bin, Cygwin users: C:\cygwin\bin

http://www.xmlsoft.org/
http://icu.sourceforge.net/

• Include files: C:\work\win32build\include

• Library files: C:\work\win32build\lib

Compiling

The best way to get started is to build the CGI version:

• For GUI users, launch VC++, and then select File => Open Workspace and select
C:\work\php-4.x.x\win32\php4ts.dsw. Then select Build=>Set Active Configuration and
select the desired configuration, either php4ts - Win32 Debug_TS or php4ts - Win32
Release_TS. Finally select Build=>Rebuild All.

• For command line users, make sure that you either have the C++ environment
variables registered, or have run vcvars.bat, and then execute one of the following
commands from the C:\work\php-4.x.x\win32 directory:

• msdev php4ts.dsp /MAKE "php4ts - Win32 Debug_TS"

• msdev php4ts.dsp /MAKE "php4ts - Win32 Release_TS"

• At this point, you should have a usable php.exe in either your
C:\work\php-4.x.x\Debug_TS or Release_TS subdirectories.

It is possible to do minor customization to the build process by editing the
main/config.win32.h file. For example you can change the default location of php.ini, the
built-in extensions, and the default location for your extensions.

Next you may want to build the CLI version which is designed to use PHP from the
command line. The steps are the same as for building the CGI version, except you have to
select the php4ts_cli - Win32 Debug_TS or php4ts_cli - Win32 Release_TS project file.
After a successful compiling run you will find the php.exe in either the directory
Release_TS\cli\ or Debug_TS\cli\.

In order to build the SAPI module (php4isapi.dll) for integrating PHP with Microsoft IIS,
set your active configuration to php4isapi-whatever-config and build the desired dll.

Installation of extensions on Windows

After installing PHP and a web server on Windows, you will probably want to install some
extensions for added functionality. You can choose which extensions you would like to
load when PHP starts by modifying your php.ini. You can also load a module dynamically
in your script using dl().

The DLLs for PHP extensions are prefixed with php_.

Many extensions are built into the Windows version of PHP. This means additional DLL

files, and the extension directive, are not used to load these extensions. The Windows
PHP Extensions table lists extensions that require, or used to require, additional PHP DLL
files. Here's a list of built in extensions:

In PHP 4 (updated PHP 4.3.11): BCMath, Caledar, COM, Ctype, FTP, MySQL, ODBC,
Overload, PCRE, Session, Tokenizer, WDDX, XML and Zlib

In PHP 5 (updated PHP 5.0.4), the following changes exist. Built in: DOM, LibXML, Iconv,
SimpleXML, SPL and SQLite. And the following are no longer built in: MySQL and
Overload.

The default location PHP searches for extensions is C:\php4\extensions in PHP 4 and
C:\php5 in PHP 5. To change this setting to reflect your setup of PHP edit your php.ini file:

• You will need to change the extension_dir setting to point to the directory where your
extensions lives, or where you have placed your php_*.dll files. For example:

extension_dir = C:\php\extensions

• Enable the extension(s) in php.ini you want to use by uncommenting the
extension=php_*.dll lines in php.ini. This is done by deleting the leading ; from the
extension you want to load.

Example #24 - Enable Bzip2 extension for PHP-Windows

// change the following line from ...

;extension=php_bz2.dll

// ... to

extension=php_bz2.dll

• Some of the extensions need extra DLLs to work. Couple of them can be found in the
distribution package, in the C:\php\dlls\ folder in PHP 4 or in the main folder in PHP 5,
but some, for example Oracle (php_oci8.dll) require DLLs which are not bundled with
the distribution package. If you are installing PHP 4, copy the bundled DLLs from
C:\php\dlls folder to the main C:\php folder. Don't forget to include C:\php in the system
PATH (this process is explained in a separate FAQ entry).

• Some of these DLLs are not bundled with the PHP distribution. See each extensions
documentation page for details. Also, read the manual section titled Installation of
PECL extensions for details on PECL. An increasingly large number of PHP
extensions are found in PECL, and these extensions require a separate download.

Note

If you are running a server module version of PHP remember to restart your web
server to reflect your changes to php.ini.

The following table describes some of the extensions available and required additional
dlls.

PHP Extensions

Extension Description Notes

php_bz2.dll bzip2 compression functions None

php_calendar.dll Calendar conversion
functions

Built in since PHP 4.0.3

php_crack.dll Crack functions None

php_ctype.dll ctype family functions Built in since PHP 4.3.0

php_curl.dll CURL, Client URL library
functions

Requires: libeay32.dll,
ssleay32.dll (bundled)

php_dba.dll DBA: DataBase (dbm-style)
Abstraction layer functions

None

php_dbase.dll dBase functions None

php_dbx.dll dbx functions

php_domxml.dll DOM XML functions PHP <= 4.2.0 requires:
libxml2.dll (bundled) PHP >=
4.3.0 requires: iconv.dll
(bundled)

php_dotnet.dll .NET functions PHP <= 4.1.1

php_exif.dll EXIF functions php_mbstring.dll. And,
php_exif.dll must be loaded
after php_mbstring.dll in
php.ini.

php_fbsql.dll FrontBase functions PHP <= 4.2.0

php_fdf.dll FDF: Forms Data Format
functions.

Requires: fdftk.dll (bundled)

php_filepro.dll filePro functions Read-only access

php_ftp.dll FTP functions Built-in since PHP 4.0.3

php_gd.dll GD library image functions Removed in PHP 4.3.2. Also
note that truecolor functions
are not available in GD1,
instead, use php_gd2.dll.

php_gd2.dll GD library image functions GD2

php_gettext.dll Gettext functions PHP <= 4.2.0 requires
gnu_gettext.dll (bundled),
PHP >= 4.2.3 requires
libintl-1.dll, iconv.dll
(bundled).

php_hyperwave.dll HyperWave functions None

php_iconv.dll ICONV characterset
conversion

Requires: iconv-1.3.dll
(bundled), PHP >=4.2.1
iconv.dll

php_ifx.dll Informix functions Requires: Informix libraries

php_iisfunc.dll IIS management functions None

php_imap.dll IMAP POP3 and NNTP
functions

None

php_ingres.dll Ingres II functions Requires: Ingres II libraries

php_interbase.dll InterBase functions Requires: gds32.dll
(bundled)

php_java.dll Java functions PHP <= 4.0.6 requires:
jvm.dll (bundled)

php_ldap.dll LDAP functions PHP <= 4.2.0 requires
libsasl.dll (bundled), PHP >=
4.3.0 requires libeay32.dll,
ssleay32.dll (bundled)

php_mbstring.dll Multi-Byte String functions None

php_mcrypt.dll Mcrypt Encryption functions Requires: libmcrypt.dll

php_mhash.dll Mhash functions PHP >= 4.3.0 requires:
libmhash.dll (bundled)

php_mime_magic.dll Mimetype functions Requires: magic.mime
(bundled)

php_ming.dll Ming functions for Flash None

php_msql.dll mSQL functions Requires: msql.dll (bundled)

php_mssql.dll MSSQL functions Requires: ntwdblib.dll
(bundled)

php_mysql.dll MySQL functions PHP >= 5.0.0, requires

libmysql.dll (bundled)

php_mysqli.dll MySQLi functions PHP >= 5.0.0, requires
libmysql.dll (libmysqli.dll in
PHP <= 5.0.2) (bundled)

php_oci8.dll Oracle 8 functions Requires: Oracle 8.1+ client
libraries

php_openssl.dll OpenSSL functions Requires: libeay32.dll
(bundled)

php_overload.dll Object overloading functions Built in since PHP 4.3.0

php_pdf.dll PDF functions None

php_pgsql.dll PostgreSQL functions None

php_printer.dll Printer functions None

php_shmop.dll Shared Memory functions None

php_snmp.dll SNMP get and walk
functions

NT only!

php_soap.dll SOAP functions PHP >= 5.0.0

php_sockets.dll Socket functions None

php_sybase_ct.dll Sybase functions Requires: Sybase client
libraries

php_tidy.dll Tidy functions PHP >= 5.0.0

php_tokenizer.dll Tokenizer functions Built in since PHP 4.3.0

php_w32api.dll W32api functions None

php_xmlrpc.dll XML-RPC functions PHP >= 4.2.1 requires:
iconv.dll (bundled)

php_xslt.dll XSLT functions PHP <= 4.2.0 requires
sablot.dll, expat.dll (bundled).
PHP >= 4.2.1 requires
sablot.dll, expat.dll, iconv.dll
(bundled).

php_yaz.dll YAZ functions Requires: yaz.dll (bundled)

php_zip.dll Zip File functions Read only access

php_zlib.dll ZLib compression functions Built in since PHP 4.3.0

Installation of PECL extensions

Introduction to PECL Installations

» PECL is a repository of PHP extensions that are made available to you via the » PEAR
packaging system. This section of the manual is intended to demonstrate how to obtain
and install PECL extensions.

These instructions assume /your/phpsrcdir/ is the path to the PHP source distribution, and
that extname is the name of the PECL extension. Adjust accordingly. These instructions
also assume a familiarity with the » pear command. The information in the PEAR manual
for the pear command also applies to the pecl command.

To be useful, a shared extension must be built, installed, and loaded. The methods
described below provide you with various instructions on how to build and install the
extensions, but they do not automatically load them. Extensions can be loaded by adding
an extension directive. To this php.ini file, or through the use of the dl() function.

When building PHP modules, it's important to have known-good versions of the required
tools (autoconf, automake, libtool, etc.) See the » Anonymous CVS Instructions for details
on the required tools, and required versions.

Downloading PECL extensions

There are several options for downloading PECL extensions, such as:

• » http://pecl.php.net/ The PECL web site contains information about the different
extensions that are offered by the PHP Development Team. The information available
here includes: ChangeLog, release notes, requirements and other similar details.

• pecl download extname PECL extensions that have releases listed on the PECL web
site are available for download and installation using the » pecl command. Specific
revisions may also be specified.

• CVS Most PECL extensions also reside in CVS. A web-based view may be seen at
» http://cvs.php.net/pecl/. To download straight from CVS, the following sequence of
commands may be used. Note that phpfi is the password for user cvsread:

$ cvs -d:pserver:cvsread@cvs.php.net:/repository login

$ cvs -d:pserver:cvsread@cvs.php.net:/repository co pecl/extname

• Windows downloads Windows users may find compiled PECL binaries by downloading
the Collection of PECL modules from the » PHP Downloads page, or by retrieving a
» PECL Snapshot or an extension DLL on » PECL4WIN. To compile PHP under
Windows, read the appropriate chapter.

http://pecl.php.net/
http://pear.php.net/
http://pear.php.net/manual/en/installation.php
http://www.php.net/anoncvs.php
http://pecl.php.net/
http://pear.php.net/manual/en/installation.php
http://cvs.php.net/pecl/
http://cvs.php.net/pecl/
http://www.php.net/downloads.php
http://snaps.php.net/
http://snaps.php.net/
http://pecl4win.php.net/

PECL for Windows users

As with any other PHP extension DLL, installation is as simple as copying the PECL
extension DLLs into the extension_dir folder and loading them from php.ini. For example,
add the following line to your php.ini:

extension=php_extname.dll

After doing this, restart the web service.

Compiling shared PECL extensions with the pecl command

PECL makes it easy to create shared PHP extensions. Using the » pecl command, do the
following:

$ pecl install extname

This will download the source for extname, compile, and install extname.so into your
extension_dir. extname.so may then be loaded via php.ini

By default, the pecl command will not install packages that are marked with the alpha or
beta state. If no stable packages are available, you may install a beta package using the
following command:

$ pecl install extname-beta

You may also install a specific version using this variant:

$ pecl install extname-0.1

Note

After enabling the extension in php.ini, restarting the web service is required for the
changes to be picked up.

http://pear.php.net/manual/en/installation.php

Compiling shared PECL extensions with phpize

Sometimes, using the pecl installer is not an option. This could be because you're behind a
firewall, or it could be because the extension you want to install is not available as a PECL
compatible package, such as unreleased extensions from CVS. If you need to build such
an extension, you can use the lower-level build tools to perform the build manually.

The phpize command is used to prepare the build environment for a PHP extension. In the
following sample, the sources for an extension are in a directory named extname:

$ cd extname

$ phpize

$./configure

$ make

make install

A successful install will have created extname.so and put it into the PHP extensions
directory. You'll need to and adjust php.ini and add an extension=extname.so line before
you can use the extension.

If the system is missing the phpize command, and precompiled packages (like RPM's) are
used, be sure to also install the appropriate devel version of the PHP package as they
often include the phpize command along with the appropriate header files to build PHP
and its extensions.

Execute phpize --help to display additional usage information.

Compiling PECL extensions statically into PHP

You might find that you need to build a PECL extension statically into your PHP binary. To
do this, you'll need to place the extension source under the php-src/ext/ directory and tell
the PHP build system to regenerate its configure script.

$ cd /your/phpsrcdir/ext

$ pecl download extname

$ gzip -d < extname.tgz | tar -xvf -

$ mv extname-x.x.x extname

This will result in the following directory:

 /your/phpsrcdir/ext/extname

From here, force PHP to rebuild the configure script, and then build PHP as normal:

$ cd /your/phpsrcdir

$ rm configure

$./buildconf --force

$./configure --help

$./configure --with-extname --enable-someotherext --with-foobar

$ make

$ make install

Note

To run the 'buildconf' script you need autoconf 2.13 and automake 1.4+ (newer
versions of autoconf may work, but are not supported).

Whether --enable-extname or --with-extname is used depends on the extension. Typically
an extension that does not require external libraries uses --enable. To be sure, run the
following after buildconf:

$./configure --help | grep extname

Problems?

Read the FAQ

Some problems are more common than others. The most common ones are listed in the
PHP FAQ, part of this manual.

Other problems

If you are still stuck, someone on the PHP installation mailing list may be able to help you.
You should check out the archive first, in case someone already answered someone else
who had the same problem as you. The archives are available from the support page on
» http://www.php.net/support.php. To subscribe to the PHP installation mailing list, send an
empty mail to » php-install-subscribe@lists.php.net. The mailing list address is
» php-install@lists.php.net.

If you want to get help on the mailing list, please try to be precise and give the necessary
details about your environment (which operating system, what PHP version, what web
server, if you are running PHP as CGI or a server module, safe mode, etc...), and
preferably enough code to make others able to reproduce and test your problem.

Bug reports

If you think you have found a bug in PHP, please report it. The PHP developers probably
don't know about it, and unless you report it, chances are it won't be fixed. You can report
bugs using the bug-tracking system at » http://bugs.php.net/. Please do not send bug
reports in mailing list or personal letters. The bug system is also suitable to submit feature
requests.

Read the » How to report a bug document before submitting any bug reports!

http://www.php.net/support.php
http://www.php.net/support.php
mailto:php-install-subscribe@lists.php.net
mailto:php-install@lists.php.net
mailto:php-install@lists.php.net
http://bugs.php.net/
http://bugs.php.net/how-to-report.php

Runtime Configuration

The configuration file

The configuration file (php.ini) is read when PHP starts up. For the server module
versions of PHP, this happens only once when the web server is started. For the CGI and
CLI version, it happens on every invocation.

php.ini is searched in these locations (in order):

• SAPI module specific location (PHPIniDir directive in Apache 2, -c command line
option in CGI and CLI, php_ini parameter in NSAPI, PHP_INI_PATH environment
variable in THTTPD)

• The PHPRC environment variable. Before PHP 5.2.0 this was checked after the
registry key mentioned below.

• As of PHP 5.2.0, the following registry locations are searched in order:
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y.z\IniFilePath,
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y\IniFilePath and
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x\IniFilePath, where x, y and z mean the
PHP major, minor and release versions.

• HKEY_LOCAL_MACHINE\SOFTWARE\PHP\IniFilePath (Windows Registry location)

• Current working directory (except CLI)

• The web server's directory (for SAPI modules), or directory of PHP (otherwise in
Windows)

• Windows directory (C:\windows or C:\winnt) (for Windows), or --with-config-file-path
compile time option

If php-SAPI.ini exists (where SAPI is used SAPI, so the filename is e.g. php-cli.ini or
php-apache.ini), it's used instead of php.ini. SAPI name can be determined by
php_sapi_name().

Note

The Apache web server changes the directory to root at startup causing PHP to
attempt to read php.ini from the root filesystem if it exists.

The php.ini directives handled by extensions are documented respectively on the pages of
the extensions themselves. The list of the core directives is available in the appendix.
Probably not all PHP directives are documented in the manual though. For a complete list
of directives available in your PHP version, please read your well commented php.ini file.
Alternatively, you may find the » the latest php.ini from CVS helpful too.

http://cvs.php.net/viewvc.cgi/php-src/php.ini-dist?view=co

Example #25 - php.ini example

; any text on a line after an unquoted semicolon (;) is ignored

[php] ; section markers (text within square brackets) are also ignored

; Boolean values can be set to either:

; true, on, yes

; or false, off, no, none

register_globals = off

track_errors = yes

; you can enclose strings in double-quotes

include_path = ".:/usr/local/lib/php"

; backslashes are treated the same as any other character

include_path = ".;c:\php\lib"

Since PHP 5.1.0, it is possible to refer to existing .ini variables from within .ini files.
Example: open_basedir = ${open_basedir} ":/new/dir".

How to change configuration settings

Running PHP as an Apache module

When using PHP as an Apache module, you can also change the configuration settings
using directives in Apache configuration files (e.g. httpd.conf) and.htaccess files. You will
need "AllowOverride Options" or "AllowOverride All" privileges to do so.

There are several Apache directives that allow you to change the PHP configuration from
within the Apache configuration files. For a listing of which directives are PHP_INI_ALL,
PHP_INI_PERDIR, or PHP_INI_SYSTEM, have a look at the List of php.ini directives
appendix.

php_value name value

Sets the value of the specified directive. Can be used only with PHP_INI_ALL and
PHP_INI_PERDIR type directives. To clear a previously set value use none as the
value.

Note

Don't use php_value to set boolean values. php_flag (see below) should be used
instead.

php_flag name on|off

Used to set a boolean configuration directive. Can be used only with PHP_INI_ALL
and PHP_INI_PERDIR type directives.

php_admin_value name value

Sets the value of the specified directive. This can not be used in.htaccess files. Any
directive type set with php_admin_value can not be overridden by.htaccess. To clear a
previously set value use none as the value.

php_admin_flag name on|off

Used to set a boolean configuration directive. This can not be used in.htaccess files.
Any directive type set with php_admin_flag can not be overridden by.htaccess.

Example #26 - Apache configuration example

<IfModule mod_php5.c>

 php_value include_path ".:/usr/local/lib/php"

 php_admin_flag safe_mode on

</IfModule>

<IfModule mod_php4.c>

 php_value include_path ".:/usr/local/lib/php"

 php_admin_flag safe_mode on

</IfModule>

Caution

PHP constants do not exist outside of PHP. For example, in httpd.conf you can not use
PHP constants such as E_ALL or E_NOTICE to set the error_reporting directive as
they will have no meaning and will evaluate to 0. Use the associated bitmask values
instead. These constants can be used in php.ini

Changing PHP configuration via the Windows registry

When running PHP on Windows, the configuration values can be modified on a
per-directory basis using the Windows registry. The configuration values are stored in the
registry key HKLM\SOFTWARE\PHP\Per Directory Values, in the sub-keys corresponding
to the path names. For example, configuration values for the directory c:\inetpub\wwwroot
would be stored in the key HKLM\SOFTWARE\PHP\Per Directory
Values\c\inetpub\wwwroot. The settings for the directory would be active for any script
running from this directory or any subdirectory of it. The values under the key should have
the name of the PHP configuration directive and the string value. PHP constants in the
values are not parsed. However, only configuration values changeable in PHP_INI_USER
can be set this way, PHP_INI_PERDIR values can not.

Other interfaces to PHP

Regardless of how you run PHP, you can change certain values at runtime of your scripts
through ini_set(). See the documentation on the ini_set() page for more information.

If you are interested in a complete list of configuration settings on your system with their
current values, you can execute the phpinfo() function, and review the resulting page. You
can also access the values of individual configuration directives at runtime using ini_get()
or get_cfg_var().

	Installation and Configuration
	General Installation Considerations
	Installation on Unix systems
	Apache 1.3.x on Unix systems
	Apache 2.0 on Unix systems
	Lighttpd 1.4 on Unix systems
	Letting Lighttpd spawn php processes
	Spawning with spawn-fcgi
	Spawning php-cgi
	Connecting to remote FCGI instances

	Caudium
	fhttpd related notes
	Sun, iPlanet and Netscape servers on Sun Solaris
	CGI environment and recommended modifications in php.ini
	Special use for error pages or self-made directory listings (PHP >= 4.3.3)
	Note about nsapi_virtual and subrequests (PHP >= 4.3.3)

	CGI and command line setups
	Testing
	Using Variables

	HP-UX specific installation notes
	OpenBSD installation notes
	Using Binary Packages
	Using Ports
	Common Problems
	Older Releases

	Solaris specific installation tips
	Required software
	Using Packages

	Debian GNU/Linux installation notes
	Using APT
	Better control on configuration
	Common Problems

	Installation on Mac OS X
	Using Packages
	Using the bundled PHP
	Compiling for OS X Server
	Compiling for MacOS X Client

	Installation on Windows systems
	Windows Installer (PHP 5.2 and later)
	Normal Install
	Silent Install
	Upgrading PHP with the Install
	Windows Installer (PHP 5.1.0 and earlier)
	Manual Installation Steps
	ActiveScript
	Microsoft IIS / PWS
	General considerations for all installations of PHP with IIS or PWS
	Windows NT/200x/XP and IIS 4 or newer
	Windows and PWS 4
	Windows and PWS/IIS 3

	Apache 1.3.x on Microsoft Windows
	Installing as an Apache module
	Installing as a CGI binary

	Apache 2.0.x on Microsoft Windows
	Installing as a CGI binary
	Installing as an Apache module

	Sun, iPlanet and Netscape servers on Microsoft Windows
	CGI setup on Sun, iPlanet and Netscape servers
	NSAPI setup on Sun, iPlanet and Netscape servers
	CGI environment and recommended modifications in php.ini
	Special use for error pages or self-made directory listings (PHP >= 4.3.3)
	Note about nsapi_virtual and subrequests (PHP >= 4.3.3)

	OmniHTTPd Server
	Sambar Server on Microsoft Windows
	Xitami on Microsoft Windows
	Building from source
	Quick Guide to Building On Windows
	Build Environment
	Setting up Microsoft Visual C++ 2005 Express
	Libraries
	Putting it all together
	Build resolv.lib
	Building PHP using the new build system [PHP >=5 only]
	Building PHP using DSW files [PHP 4]
	Configure MVC ++
	Compiling

	Installation of extensions on Windows

	Installation of PECL extensions
	Introduction to PECL Installations
	Downloading PECL extensions
	PECL for Windows users
	Compiling shared PECL extensions with the pecl command
	Compiling shared PECL extensions with phpize
	Compiling PECL extensions statically into PHP

	Problems?
	Read the FAQ
	Other problems
	Bug reports

	Runtime Configuration
	The configuration file
	How to change configuration settings
	Running PHP as an Apache module
	Changing PHP configuration via the Windows registry
	Other interfaces to PHP

