
COM and .Net (Windows)

Introduction

COM is an acronym for Component Object Model; it is an object orientated layer (and
associated services) on top of DCE RPC (an open standard) and defines a common
calling convention that enables code written in any language to call and interoperate with
code written in any other language (provided those languages are COM aware). Not only
can the code be written in any language, but it need not even be part of the same
executable; the code can be loaded from a DLL, be found in another process running on
the same machine, or, with DCOM (Distributed COM), be found in another process on a
remote machine, all without your code even needing to know where a component resides.

There is a subset of COM known as OLE Automation which comprises a set of COM
interfaces that allow loose binding to COM objects, so that they can be introspected and
called at run-time without compile-time knowledge of how the object works. The PHP COM
extension utilizes the OLE Automation interfaces to allow you to create and call compatible
objects from your scripts. Technically speaking, this should really be called the "OLE
Automation Extension for PHP", since not all COM objects are OLE compatible.

Now, why would or should you use COM? COM is one of the main ways to glue
applications and components together on the Windows platform; using COM you can
launch Microsoft Word, fill in a document template and save the result as a Word
document and send it to a visitor of your web site. You can also use COM to perform
administrative tasks for your network and to configure your IIS; these are just the most
common uses; you can do much more with COM.

Starting with PHP 5, this extension (and this documentation) was rewritten from scratch
and much of the old confusing and bogus cruft has be removed. Additionally, we support
the instantiation and creation of .Net assemblies using the COM interoperability layer
provided by Microsoft.

Please read » this article for an overview of the changes in this extension in PHP 5.

http://devzone.zend.com/node/view/id/762

Installing/Configuring

COM functions are only available for the Windows version of PHP.

.Net support requires PHP 5 and the .Net runtime.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

You are responsible for installing support for the various COM objects that you intend to
use (such as MS Word); we don't and can't bundle all of those with PHP.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Com configuration options

Name Default Changeable Changelog

com.allow_dcom "0" PHP_INI_SYSTEM Available since PHP
4.0.5.

com.autoregister_typ
elib

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_ver
bose

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_cas
esensitive

"1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.code_page "" PHP_INI_ALL Available since PHP
5.0.0.

com.typelib_file "" PHP_INI_SYSTEM Available since PHP
4.0.5.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

com.allow_dcom

When this is turned on, PHP will be allowed to operate as a D-COM (Distributed COM)
client and will allow the PHP script to instantiate COM objects on a remote server.

com.autoregister_typelib

When this is turned on, PHP will attempt to register constants from the typelibrary of
objects that it instantiates, if those objects implement the interfaces required to obtain
that information. The case sensitivity of the constants it registers is controlled by the
configuration directive.

com.autoregister_verbose

When this is turned on, any problems with loading a typelibrary during object
instantiation will be reported using the PHP error mechanism. The default is off, which
does not emit any indication if there was an error finding or loading the type library.

com.autoregister_casesensitive

When this is turned on (the default), constants found in auto-loaded type libraries will
be registered case sensitively. See com_load_typelib() for more details.

com.code_page

It controls the default character set code-page to use when passing strings to and from
COM objects. If set to an empty string, PHP will assume that you want CP_ACP, which
is the default system ANSI code page. If the text in your scripts is encoded using a
different encoding/character set by default, setting this directive will save you from
having to pass the code page as a parameter to the COM class constructor. Please
note that by using this directive (as with any PHP configuration directive), your PHP
script becomes less portable; you should use the COM constructor parameter
whenever possible.

Note

This configuration directive was introduced with PHP 5.

com.typelib_file

When set, this should hold the path to a file that contains a list of typelibraries that
should be loaded on startup. Each line of the file will be treated as the type library
name and loaded as though you had called com_load_typelib(). The constants will be
registered persistently, so that the library only needs to be loaded once. If a type library
name ends with the string #cis or #case_insensitive, then the constants from that
library will be registered case insensitively.

Resource Types

This extension defines a reference to a COM component returned by deprecated
com_load() (this function does not exist in PHP 5; use the COM class instead).

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CLSCTX_INPROC_SERVER (integer)

CLSCTX_INPROC_HANDLER (integer)

CLSCTX_LOCAL_SERVER (integer)

CLSCTX_REMOTE_SERVER (integer)

CLSCTX_SERVER (integer)

CLSCTX_ALL (integer)

VT_NULL (integer)

VT_EMPTY (integer)

VT_UI1 (integer)

VT_I2 (integer)

VT_I4 (integer)

VT_R4 (integer)

VT_R8 (integer)

VT_BOOL (integer)

VT_ERROR (integer)

VT_CY (integer)

VT_DATE (integer)

VT_BSTR (integer)

VT_DECIMAL (integer)

VT_UNKNOWN (integer)

VT_DISPATCH (integer)

VT_VARIANT (integer)

VT_I1 (integer)

VT_UI2 (integer)

VT_UI4 (integer)

VT_INT (integer)

VT_UINT (integer)

VT_ARRAY (integer)

VT_BYREF (integer)

CP_ACP (integer)

CP_MACCP (integer)

CP_OEMCP (integer)

CP_UTF7 (integer)

CP_UTF8 (integer)

CP_SYMBOL (integer)

CP_THREAD_ACP (integer)

VARCMP_LT (integer)

VARCMP_EQ (integer)

VARCMP_GT (integer)

VARCMP_NULL (integer)

NORM_IGNORECASE (integer)

NORM_IGNORENONSPACE (integer)

NORM_IGNORESYMBOLS (integer)

NORM_IGNOREWIDTH (integer)

NORM_IGNOREKANATYPE (integer)

NORM_IGNOREKASHIDA (integer)

DISP_E_DIVBYZERO (integer)

DISP_E_OVERFLOW (integer)

MK_E_UNAVAILABLE (integer)

Errors and error handling

Exceptions (PHP 5)

This extension will throw instances of the class com_exception whenever there is a
potentially fatal error reported by COM. All COM exceptions have a well-defined code
property that corresponds to the HRESULT return value from the various COM operations.
You may use this code to make programmatic decisions on how to handle the exception.

Examples

For Each

Starting with PHP 5, you may use PHP's own foreach statement to iterate over the
contents of a standard COM/OLE IEnumVariant. In laymans terms, this means that you
can use foreach in places where you would have used For Each in VB/ASP code.

Example #1 - For Each in ASP

<%

Set domainObject = GetObject("WinNT://Domain")

For Each obj in domainObject

 Response.Write obj.Name & "
"

Next

%>

Example #2 - while() ... Next() in PHP 4

<?php

$domainObject = new COM("WinNT://Domain");

while ($obj = $domainObject->Next()) {

 echo $obj->Name . "
";

}

?>

Example #3 - foreach in PHP 5

<?php

$domainObject = new COM("WinNT://Domain");

foreach ($domainObject as $obj) {

 echo $obj->Name . "
";

}

?>

Arrays and Array-style COM properties

Many COM objects expose their properties as arrays, or using array-style access. In PHP

4, you may use PHP array syntax to read/write such a property, but only a single
dimension is allowed. If you want to read a multi-dimensional property, you could instead
make the property access into a function call, with each parameter representing each
dimension of the array access, but there is no way to write to such a property.

PHP 5 introduces the following new features to make your life easier:

• Access multi-dimensional arrays, or COM properties that require multiple parameters
using PHP array syntax. You can also write or set properties using this technique.

• Iterate SafeArrays ("true" arrays) using the foreach control structure. This works
because SafeArrays include information about their size. If an array-style property
implements IEnumVariant then you can also use foreach for that property too; take a
look at For Each for more information on this topic.

COM Functions

See Also

For further information on COM read the » COM specification or perhaps take a look at
Don Box's » Yet Another COM Library (YACL). You might find some additional useful
information in our FAQ for PHP and COM. If you're thinking of using MS Office
applications on the server side, you should read the information here: » Considerations for
Server-Side Automation of Office.

http://www.microsoft.com/Com/resources/comdocs.asp
http://www.sellsbrothers.com/links/dbox/yacl.zip
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757

COM

COM -- COM class

$obj = new COM("Application.ID")

Description

The COM class allows you to instantiate an OLE compatible COM object and call its
methods and access its properties.

Methods

com COM::COM (string $module_name [, mixed $server_name [, int $codepage [, string $
typelib]]])

COM class constructor. The parameters have the following meanings:
module_name

Can be a ProgID, Class ID or Moniker that names the component to load. A ProgID is
typically the application or DLL name, followed by a period, followed by the object
name. e.g: Word.Application. A Class ID is the UUID that uniquely identifies a given
class. A Moniker is a special form of naming, similar in concept to a URL scheme, that
identifies a resource and specifies how it should be loaded. As an example, you could
load up Word and get an object representing a word document by specifying the full
path to the word document as the module name, or you can use LDAP: as a moniker
to use the ADSI interface to LDAP.

server_name
The name of the DCOM server on which the component should be loaded and run. If
NULL, the object is run using the default for the application. The default is typically to
run it on the local machine, although the administrator might have configured the
application to launch on a different machine. If you specify a non- NULL value for
server, PHP will refuse to load the object unless the configuration option is set to
TRUE. If server_name is an array, it should contain the following elements (case
sensitive!). Note that they are all optional (although you need to specify both
Username and Password together); if you omit the Server setting, the default server
will be used (as mentioned above), and the instantiation of the object will not be
affected by the directive.

DCOM server name

server_name key type description

Server string The name of the server.

Username string The username to connect as.

Password string The password for Username.

Flags integer One or more of the following
constants, logically OR'd
together:
CLSCTX_INPROC_SERVE
R,
CLSCTX_INPROC_HANDL
ER,
CLSCTX_LOCAL_SERVER,
CLSCTX_REMOTE_SERVE
R, CLSCTX_SERVER and
CLSCTX_ALL. The default
value if not specified here is
CLSCTX_SERVER if you
also omit Server, or
CLSCTX_REMOTE_SERVE
R if you do specify a server.
You should consult the
Microsoft documentation for
CoCreateInstance for more
information on the meaning
of these constants; you will
typically never have to use
them.

codepage
Specifies the codepage that is used to convert strings to unicode-strings and vice versa.
The conversion is applied whenever a PHP string is passed as a parameter or returned
from a method of this COM object. The code page is sticky in PHP 5, which means that it
will propagate to objects and variants returned from the object. Possible values are
CP_ACP (use system default ANSI code page - the default if this parameter is omitted),
CP_MACCP, CP_OEMCP, CP_SYMBOL, CP_THREAD_ACP (use codepage/locale set
for the current executing thread), CP_UTF7 and CP_UTF8. You may also use the number
for a given codepage; consult the Microsoft documentation for more details on codepages
and their numeric values.

Overloaded Methods

The returned object is an overloaded object, which means that PHP does not see any fixed
methods as it does with regular classes; instead, any property or method accesses are passed
through to COM.

Starting with PHP 5, PHP will automatically detect methods that accept parameters by
reference, and will automatically convert regular PHP variables to a form that can be passed
by reference. This means that you can call the method very naturally; you needn't go to any
extra effort in your code.

In PHP 4, to pass parameters by reference you need to create an instance of the VARIANT
class to wrap the byref parameters.

Pseudo Methods

In PHP versions prior to 5, a number of not very pleasant hacks meant that the following
method names were not passed through to COM and were handled directly by PHP. PHP 5
eliminates these things; read the details below to determine how to fix your scripts. These
magic method names are case insensitive.

void COM::AddRef (void)

Artificially adds a reference count to the COM object.

Warning

You should never need to use this method. It exists as a logical complement to the
Release() method below.

void COM::Release (void)

Artificially removes a reference count from the COM object.

Warning

You should never need to use this method. Its existence in PHP is a bug designed to work
around a bug that keeps COM objects running longer than they should.

Pseudo Methods for Iterating

These pseudo methods are only available if com_isenum() returns TRUE, in which case, they
hide any methods with the same names that might otherwise be provided by the COM object.
These methods have all been eliminated in PHP 5, and you should use For Each instead.

variant COM::All (void)

Returns a variant representing a SafeArray that has 10 elements; each element will be an
empty/null variant. This function was supposed to return an array containing all the elements
from the iterator, but was never completed. Do not use.

variant COM::Next (void)

Returns a variant representing the next element available from the iterator, or FALSE when
there are no more elements.

variant COM::Prev (void)

Returns a variant representing the previous element available from the iterator, or FALSE
when there are no more elements.

void COM::Reset (void)

Rewinds the iterator back to the start.

COM examples

Example #4 - COM example (1)

<?php

// starting word

$word = new COM("word.application") or die("Unable to instantiate Word");

echo "Loaded Word, version {$word->Version}\n";

//bring it to front

$word->Visible = 1;

//open an empty document

$word->Documents->Add();

//do some weird stuff

$word->Selection->TypeText("This is a test...");

$word->Documents[1]->SaveAs("Useless test.doc");

//closing word

$word->Quit();

//free the object

$word = null;

?>

Example #5 - COM example (2)

<?php

$conn = new COM("ADODB.Connection") or die("Cannot start ADO");

$conn->Open("Provider=SQLOLEDB; Data Source=localhost;

Initial Catalog=database; User ID=user; Password=password");

$rs = $conn->Execute("SELECT * FROM sometable"); // Recordset

$num_columns = $rs->Fields->Count();

echo $num_columns . "\n";

for ($i=0; $i < $num_columns; $i++) {

 $fld[$i] = $rs->Fields($i);

}

$rowcount = 0;

while (!$rs->EOF) {

 for ($i=0; $i < $num_columns; $i++) {

 echo $fld[$i]->value . "\t";

 }

 echo "\n";

 $rowcount++; // increments rowcount

 $rs->MoveNext();

}

$rs->Close();

$conn->Close();

$rs = null;

$conn = null;

?>

DOTNET

DOTNET -- DOTNET class

$obj = new DOTNET("assembly", "classname")

Description

The DOTNET class allows you to instantiate a class from a .Net assembly and call its methods
and access its properties.

Methods

string DOTNET::DOTNET (string $assembly_name, string $class_name [, int $codepage])

DOTNET class constructor. assembly_name specifies which assembly should be loaded, and
class_name specifices which class in that assembly to instantiate. You may optionally specify a
codepage to use for unicode string transformations; see the COM class for more details on
code pages.

The returned object is an overloaded object, which means that PHP does not see any fixed
methods as it does with regular classes; instead, any property or method accesses are passed
through to COM and from there to DOTNET. In other words, the .Net object is mapped
through the COM interoperability layer provided by the .Net runtime.

Once you have created a DOTNET object, PHP treats it identically to any other COM object;
all the same rules apply.

Example #6 - DOTNET example

<?php

$stack = new DOTNET("mscorlib", "System.Collections.Stack");

$stack->Push(".Net");

$stack->Push("Hello ");

echo $stack->Pop() . $stack->Pop();

?>

Note

You need to install the .Net runtime on your web server to take advantage of this feature.

VARIANT

VARIANT -- VARIANT class

$vVar = new VARIANT($var)

Description

The VARIANT is COM's equivalent of the PHP zval; it is a structure that can contain a value
with a range of different possible types. The VARIANT class provided by the COM extension
allows you to have more control over the way that PHP passes values to and from COM.

Methods

object VARIANT::VARIANT ([mixed $value [, int $type [, int $codepage]]])

VARIANT class constructor. Parameters:
value

initial value. if omitted, or set to NULL an VT_EMPTY object is created.

type
specifies the content type of the VARIANT object. Possible values are one of the VT_XXX
Predefined Constants. In PHP versions prior to PHP 5, you could force PHP to pass a
variant object by reference by OR'ing VT_BYREF with the type. In PHP 5, this hack is not
supported; instead, PHP 5 can detect parameters passed by reference automatically; they
do not even need to be passed as VARIANT objects. Consult the MSDN library for
additional information on the VARIANT type.

codepage
specifies the codepage that is used to convert strings to unicode. See the parameter of the
same name in the COM class for more information.

PHP versions prior to PHP 5 define a number of (undocumented) virtual properties for
instances of the VARIANT class; these properties have all been removed in PHP 5 in favour of
its more natural syntax; these differences are best highlighted by example:

Example #7 - Variant example, PHP 4.x style

<?php

$v = new VARIANT(42);

print "The type is " . $v->type . "
";

print "The value is " . $v->value . "
";

?>

Example #8 - Variant example, PHP 5 style

<?php

$v = new VARIANT(42);

print "The type is " . variant_get_type($v) . "
";

print "The value is " . $v . "
";

?>

The reason for the change is that, internally, the COM extension sees VARIANT, COM and
DOTNET classes as the same thing, and the design philosophy for these classes is that all
property and member accesses are passed through to COM with no interference. The new
syntax is more natural and less effort, and most of the removed virtual properties didn't make
any sense in a PHP context in any case.

Note

PHP 5 takes a much simpler approach to handling VARIANTs; when returning a value or
fetching a variant property, the variant is converted to a PHP value only when there is a
direct mapping between the types that would not result in a loss of information. In all other
cases, the result is returned as an instance of the VARIANT class. You can force PHP to
convert or evaluate the variant as a PHP native type by using a casting operator explicitly,
or implicitly casting to a string by print() ing it. You may use the wide range of variant
functions to perform arithmetic operations on variants without forcing a conversion or
risking a loss of data.

See also variant_get_type().

com_addref

com_addref -- Increases the components reference counter [deprecated]

Description

void com_addref (void)

Increases the components reference counter.

Return Values

No value is returned.

Notes

Warning

You should never need to use this function.

com_create_guid

com_create_guid -- Generate a globally unique identifier (GUID)

Description

string com_create_guid (void)

Generates a Globally Unique Identifier (GUID).

A GUID is generated in the same way as DCE UUID's, except that the Microsoft convention is
to enclose a GUID in curly braces.

Return Values

Returns the GUID as a string.

See Also

• uuid_create() in the PECL uuid extension

com_event_sink

com_event_sink -- Connect events from a COM object to a PHP object

Description

bool com_event_sink (variant $comobject, object $sinkobject [, mixed $sinkinterface])

Instructs COM to sink events generated by comobject into the PHP object sinkobject.

Be careful how you use this feature; if you are doing something similar to the example below,
then it doesn't really make sense to run it in a web server context.

Parameters

comobject

sinkobject

sinkobject should be an instance of a class with methods named after those of the
desired dispinterface; you may use com_print_typeinfo() to help generate a template class
for this purpose.

sinkinterface

PHP will attempt to use the default dispinterface type specified by the typelibrary
associated with comobject, but you may override this choice by setting sinkinterface to
the name of the dispinterface that you want to use.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #9 - COM event sink example

<?php

class IEEventSinker {

 var $terminated = false;

 function ProgressChange($progress, $progressmax) {

 echo "Download progress: $progress / $progressmax\n";

 }

 function DocumentComplete(&$dom, $url) {

 echo "Document $url complete\n";

 }

 function OnQuit() {

 echo "Quit!\n";

 $this->terminated = true;

 }

}

$ie = new COM("InternetExplorer.Application");

// note that you don't need the & for PHP 5!

$sink =& new IEEventSinker();

com_event_sink($ie, $sink, "DWebBrowserEvents2");

$ie->Visible = true;

$ie->Navigate("http://www.php.net");

while(!$sink->terminated) {

 com_message_pump(4000);

}

$ie = null;

?>

See Also

• com_print_typeinfo()
• com_message_pump()

com_get_active_object

com_get_active_object -- Returns a handle to an already running instance of a COM object

Description

variant com_get_active_object (string $progid [, int $code_page])

com_get_active_object() is similar to creating a new instance of a COM object, except that it
will only return an object to your script if the object is already running. OLE applications use
something known as the Running Object Table to allow well-known applications to be
launched only once; this function exposes the COM library function GetActiveObject() to get a
handle on a running instance.

Parameters

progid

progid must be either the ProgID or CLSID for the object that you want to access (for
example Word.Application).

code_page

Acts in precisely the same way that it does for the COM class.

Return Values

If the requested object is running, it will be returned to your script just like any other COM
object.

Errors/Exceptions

There are a variety of reasons why this function might fail, the most common being that the
object is not already running. In that situation, the exception error code will be
MK_E_UNAVAILABLE; you can use the getCode method of the exception object to check the
exception code.

Notes

Warning

Using com_get_active_object() in a web server context is not always a smart idea. Most
COM/OLE applications are not designed to handle more than one client concurrently, even
(or especially!) Microsoft Office. You should read » Considerations for Server-Side
Automation of Office for more information on the general issues involved.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757

com_get

com_get -- Gets the value of a COM Component's property [deprecated]

Description

Deprecated, use the OO syntax instead.

Example #10 - OO syntax

<?php

// do this

$var = $obj->property;

// instead of this:

$var = com_get($obj, 'property');

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_invoke

com_invoke -- Calls a COM component's method [deprecated]

Description

mixed com_invoke (resource $com_object, string $function_name [, mixed $
function_parameters])

com_invoke() invokes the method named function_name of the COM component referenced
by com_object. com_invoke() returns FALSE on error, returns the function_name 's return
value on success. All the extra parameters function_parameters are passed to the method
function_name.

Example #11 - Don't use com_invoke(), use OO syntax instead

<?php

// do this

$val = $obj->method($one, $two);

// instead of this:

$val = com_invoke($obj, 'method', $one, $two);

?>

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_isenum

com_isenum -- Indicates if a COM object has an IEnumVariant interface for iteration
[deprecated]

Description

bool com_isenum (variant $com_module)

Checks to see if a COM object can be enumerated using the Next() method hack. See COM
class for more details on these methods.

Parameters

com_module

The COM object.

Return Values

Returns TRUE if the object can be enumatated, FALSE otherwise.

Notes

Note

This function does not exist in PHP 5; use the more natural foreach statement to iterate
over the contents of COM objects. See For Each for more details.

com_load_typelib

com_load_typelib -- Loads a Typelib

Description

bool com_load_typelib (string $typelib_name [, bool $case_insensitive])

Loads a type-library and registers its constants in the engine, as though they were defined
using define().

Note that it is much more efficient to use the configuration setting to pre-load and register the
constants, although not so flexible.

If you have turned on , then PHP will attempt to automatically register the constants
associated with a COM object when you instantiate it. This depends on the interfaces provided
by the COM object itself, and may not always be possible.

Parameters

typelib_name

typelib_name can be one of the following:

• The filename of a.tlb file or the executable module that contains the type library.

• The type library GUID, followed by its version number, for example
{00000200-0000-0010-8000-00AA006D2EA4},2,0.

• The type library name, e.g. Microsoft OLE DB ActiveX Data Objects 1.0 Library.

PHP will attempt to resolve the type library in this order, as the process gets more and
more expensive as you progress down the list; searching for the type library by name is
handled by physically enumerating the registry until we find a match.

case_insensitive

The case_insensitive behaves in the same way as the parameter with the same name in
the define() function.

Return Values

Returns TRUE on success or FALSE on failure.

com_load

com_load -- Creates a new reference to a COM component [deprecated]

Description

Deprecated, use the OO syntax instead.

Example #12 - OO syntax

<?php

// do this

$obj = new COM($module);

// instead of this:

$obj = com_load($module);

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_message_pump

com_message_pump -- Process COM messages, sleeping for up to timeoutms milliseconds

Description

bool com_message_pump ([int $timeoutms])

This function will sleep for up to timeoutms milliseconds, or until a message arrives in the
queue.

The purpose of this function is to route COM calls between apartments and handle various
synchronization issues. This allows your script to wait efficiently for events to be triggered,
while still handling other events or running other code in the background. You should use it in
a loop, as demonstrated by the example in the com_event_sink() function, until you are
finished using event bound COM objects.

Parameters

timeoutms

The timeout, in milliseconds. If you do not specify a value for timeoutms, then 0 will be
assumed. A 0 value means that no waiting will be performed; if there are messages
pending they will be dispatched as before; if there are no messages pending, the function
will return FALSE immediately without sleeping.

Return Values

If a message or messages arrives before the timeout, they will be dispatched, and the function
will return TRUE. If the timeout occurs and no messages were processed, the return value will
be FALSE.

com_print_typeinfo

com_print_typeinfo -- Print out a PHP class definition for a dispatchable interface

Description

bool com_print_typeinfo (object $comobject [, string $dispinterface [, bool $wantsink]])

The purpose of this function is to help generate a skeleton class for use as an event sink. You
may also use it to generate a dump of any COM object, provided that it supports enough of the
introspection interfaces, and that you know the name of the interface you want to display.

Parameters

comobject

comobject should be either an instance of a COM object, or be the name of a typelibrary
(which will be resolved according to the rules set out in com_load_typelib()).

dispinterface

The name of an IDispatch descendant interface that you want to display.

wantsink

If set to TRUE, the corresponding sink interface will be displayed instead.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• com_event_sink()
• com_load_typelib()

com_propget

com_propget -- Alias of com_get()

Description

This function is an alias of: com_get().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_propput

com_propput -- Alias of com_set()

Description

This function is an alias of: com_set().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_propset

com_propset -- Alias of com_set()

Description

This function is an alias of: com_set().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_release

com_release -- Decreases the components reference counter [deprecated]

Description

void com_release (void)

Decreases the components reference counter.

Return Values

No value is returned.

ChangeLog

Version Description

5.0.0 This function was removed.

Notes

Warning

You should never need to use this function.

com_set

com_set -- Assigns a value to a COM component's property

Description

Deprecated, use the OO syntax instead.

Example #13 - OO syntax

<?php

// do this

$obj->property = $value;

// instead of this:

com_set($obj, 'property', $value);

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

variant_abs

variant_abs -- Returns the absolute value of a variant

Description

mixed variant_abs (mixed $val)

Returns the absolute value of a variant.

Parameters

val

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the absolute value of val.

See Also

• abs()

variant_add

variant_add -- "Adds" two variant values together and returns the result

Description

mixed variant_add (mixed $left, mixed $right)

Adds left to right using the following rules (taken from the MSDN library), which
correspond to those of Visual Basic:

Variant Addition Rules

If Then

Both expressions are of the string type Concatenation

One expression is a string type and the
other a character

Addition

One expression is numeric and the other is
a string

Addition

Both expressions are numeric Addition

Either expression is NULL NULL is returned

Both expressions are empty Integer subtype is returned

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result.

See Also

• variant_sub()

variant_and

variant_and -- Performs a bitwise AND operation between two variants

Description

mixed variant_and (mixed $left, mixed $right)

Performs a bitwise AND operation. Note that this is slightly different from a regular AND
operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant AND Rules

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE FALSE

FALSE FALSE FALSE

FALSE NULL FALSE

NULL TRUE NULL

NULL FALSE FALSE

NULL NULL NULL

See Also

• variant_or()

variant_cast

variant_cast -- Convert a variant into a new variant object of another type

Description

variant variant_cast (variant $variant, int $type)

This function makes a copy of variant and then performs a variant cast operation to force
the copy to have the type given by type.

This function wraps VariantChangeType() in the COM library; consult MSDN for more
information.

Parameters

variant

The variant.

type

type should be one of the VT_XXX constants.

Return Values

Returns a VT_DATE variant.

See Also

• variant_set_type()

variant_cat

variant_cat -- concatenates two variant values together and returns the result

Description

mixed variant_cat (mixed $left, mixed $right)

Concatenates left with right and returns the result.

This function is notionally equivalent to $left. $right.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of the concatenation.

See Also

• String Operators for the string concatenation operator

variant_cmp

variant_cmp -- Compares two variants

Description

int variant_cmp (mixed $left, mixed $right [, int $lcid [, int $flags]])

Compares left with right.

This function will only compare scalar values, not arrays or variant records.

Parameters

left

The left operand.

right

The right operand.

lcid

A valid Locale Identifier to use when comparing strings (this affects string collation).

flags

flags can be one or more of the following values OR'd together, and affects string
comparisons:

Variant Comparision Flags

value meaning

NORM_IGNORECASE Compare case insensitively

NORM_IGNORENONSPACE Ignore nonspacing characters

NORM_IGNORESYMBOLS Ignore symbols

NORM_IGNOREWIDTH Ignore string width

NORM_IGNOREKANATYPE Ignore Kana type

NORM_IGNOREKASHIDA Ignore Arabic kashida characters

Note

As with all the variant arithmetic functions, the parameters for this function can be either a
PHP native type (integer, string, floating point, boolean or NULL), or an instance of a
COM, VARIANT or DOTNET class. PHP native types will be converted to variants using
the same rules as found in the constructor for the VARIANT class. COM and DOTNET
objects will have the value of their default property taken and used as the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in the
COM library; for more information on these functions, consult the MSDN library. The PHP
functions are named slightly differently; for example variant_add() in PHP corresponds to
VarAdd() in the MSDN documentation.

Return Values

Returns one of the following:

Variant Comparision Results

value meaning

VARCMP_LT left is less than right

VARCMP_EQ left is equal to right

VARCMP_GT left is greater than right

VARCMP_NULL Either left, right or both are NULL

variant_date_from_timestamp

variant_date_from_timestamp -- Returns a variant date representation of a Unix timestamp

Description

variant variant_date_from_timestamp (int $timestamp)

Converts timestamp from a unix timestamp value into a variant of type VT_DATE. This
allows easier interopability between the unix-ish parts of PHP and COM.

Parameters

timestamp

A unix timestamp.

Return Values

Returns a VT_DATE variant.

See Also

• variant_date_to_timestamp()
• mktime()
• time()

variant_date_to_timestamp

variant_date_to_timestamp -- Converts a variant date/time value to Unix timestamp

Description

int variant_date_to_timestamp (variant $variant)

Converts variant from a VT_DATE (or similar) value into a Unix timestamp. This allows
easier interopability between the Unix-ish parts of PHP and COM.

Parameters

variant

The variant.

Return Values

Returns a unix timestamp.

See Also

• variant_date_from_timestamp()
• date()
• strftime()

variant_div

variant_div -- Returns the result from dividing two variants

Description

mixed variant_div (mixed $left, mixed $right)

Divides left by right and returns the result.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Division Rules

If Then

Both expressions are of the string, date,
character, boolean type

Double is returned

One expression is a string type and the
other a character

Division and a double is returned

One expression is numeric and the other is
a string

Division and a double is returned.

Both expressions are numeric Division and a double is returned

Either expression is NULL NULL is returned

right is empty and left is anything but
empty

A com_exception with code
DISP_E_DIVBYZERO is thrown

left is empty and right is anything but
empty.

0 as type double is returned

Both expressions are empty A com_exception with code
DISP_E_OVERFLOW is thrown

See Also

• variant_idiv()

variant_eqv

variant_eqv -- Performs a bitwise equivalence on two variants

Description

mixed variant_eqv (mixed $left, mixed $right)

Performs a bitwise equivalence on two variants.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If each bit in left is equal to the corresponding bit in right then TRUE is returned,
otherwise FALSE is returned.

variant_fix

variant_fix -- Returns the integer portion of a variant

Description

mixed variant_fix (mixed $variant)

Gets the integer portion of a variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If variant is negative, then the first negative integer greater than or equal to the variant is
returned, otherwise returns the integer portion of the value of variant.

Notes

Warning

This documentation is based on the MSDN documentation; it appears that this function
is either the same as variant_int(), or that there is an error in the MSDN
documentation.

See Also

• variant_int()
• variant_round()
• floor()
• ceil()
• round()

variant_get_type

variant_get_type -- Returns the type of a variant object

Description

int variant_get_type (variant $variant)

Returns the type of a variant object.

Parameters

variant

The variant object.

Return Values

This function returns an integer value that indicates the type of variant, which can be an
instance of COM, DOTNET or VARIANT classes. The return value can be compared to
one of the VT_XXX constants.

The return value for COM and DOTNET objects will usually be VT_DISPATCH; the only
reason this function works for those classes is because COM and DOTNET are
descendants of VARIANT.

In PHP versions prior to 5, you could obtain this information from instances of the
VARIANT class ONLY, by reading a fake type property. See the VARIANT class for more
information on this.

variant_idiv

variant_idiv -- Converts variants to integers and then returns the result from dividing them

Description

mixed variant_idiv (mixed $left, mixed $right)

Converts left and right to integer values, and then performs integer division.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Integer Division Rules

If Then

Both expressions are of the string, date,
character, boolean type

Division and integer is returned

One expression is a string type and the
other a character

Division

One expression is numeric and the other is
a string

Division

Both expressions are numeric Division

Either expression is NULL NULL is returned

Both expressions are empty A com_exception with code
DISP_E_DIVBYZERO is thrown

See Also

• variant_div()

variant_imp

variant_imp -- Performs a bitwise implication on two variants

Description

mixed variant_imp (mixed $left, mixed $right)

Performs a bitwise implication operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Implication Table

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE TRUE

FALSE NULL TRUE

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

variant_int

variant_int -- Returns the integer portion of a variant

Description

mixed variant_int (mixed $variant)

Gets the integer portion of a variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If variant is negative, then the first negative integer greater than or equal to the variant is
returned, otherwise returns the integer portion of the value of variant.

See Also

• variant_fix()
• variant_round()
• floor()
• ceil()
• round()

variant_mod

variant_mod -- Divides two variants and returns only the remainder

Description

mixed variant_mod (mixed $left, mixed $right)

Divides left by right and returns the remainder.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the remainder of the division.

See Also

• variant_div()
• variant_idiv()

variant_mul

variant_mul -- Multiplies the values of the two variants

Description

mixed variant_mul (mixed $left, mixed $right)

Multiplies left by right.

Parameters

left

The left operand.

right

The right operand.
Boolean values are converted to -1 for FALSE and 0 for TRUE.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Multiplication Rules

If Then

Both expressions are of the string, date,
character, boolean type

Multiplication

One expression is a string type and the
other a character

Multiplication

One expression is numeric and the other is
a string

Multiplication

Both expressions are numeric Multiplication

Either expression is NULL NULL is returned

Both expressions are empty Empty string is returned

See Also

• variant_div()
• variant_idiv()

variant_neg

variant_neg -- Performs logical negation on a variant

Description

mixed variant_neg (mixed $variant)

Performs logical negation of variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of the logical negation.

variant_not

variant_not -- Performs bitwise not negation on a variant

Description

mixed variant_not (mixed $variant)

Performs bitwise not negation on variant and returns the result.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the bitwise not negation. If variant is NULL, the result will also be NULL.

variant_or

variant_or -- Performs a logical disjunction on two variants

Description

mixed variant_or (mixed $left, mixed $right)

Performs a bitwise OR operation. Note that this is slightly different from a regular OR
operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant OR Rules

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

See Also

• variant_and()
• variant_xor()

variant_pow

variant_pow -- Returns the result of performing the power function with two variants

Description

mixed variant_pow (mixed $left, mixed $right)

Returns the result of left to the power of right.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of left to the power of right.

See Also

• pow()

variant_round

variant_round -- Rounds a variant to the specified number of decimal places

Description

mixed variant_round (mixed $variant, int $decimals)

Returns the value of variant rounded to decimals decimal places.

Parameters

variant

The variant.

decimals

Number of decimal places.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the rounded value.

See Also

• round()

variant_set_type

variant_set_type -- Convert a variant into another type "in-place"

Description

void variant_set_type (variant $variant, int $type)

This function is similar to variant_cast() except that the variant is modified "in-place"; no
new variant is created. The parameters for this function have identical meaning to those of
variant_cast().

Parameters

variant

The variant.

type

Return Values

No value is returned.

See Also

• variant_cast()

variant_set

variant_set -- Assigns a new value for a variant object

Description

void variant_set (variant $variant, mixed $value)

Converts value to a variant and assigns it to the variant object; no new variant object is
created, and the old value of variant is freed/released.

Parameters

variant

The variant.

value

Return Values

No value is returned.

variant_sub

variant_sub -- Subtracts the value of the right variant from the left variant value

Description

mixed variant_sub (mixed $left, mixed $right)

Subtracts right from left.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Subtraction Rules

If Then

Both expressions are of the string type Subtraction

One expression is a string type and the
other a character

Subtraction

One expression is numeric and the other is
a string

Subtraction.

Both expressions are numeric Subtraction

Either expression is NULL NULL is returned

Both expressions are empty Empty string is returned

See Also

• variant_add()

variant_xor

variant_xor -- Performs a logical exclusion on two variants

Description

mixed variant_xor (mixed $left, mixed $right)

Performs a logical exclusion.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant XOR Rules

If left is If right is then the result is

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

NULL NULL NULL

See Also

• variant_or()
• variant_and()

	COM
	Introduction
	Installing/Configuring
	
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Errors and error handling
	Examples
	For Each
	Arrays and Array-style COM properties

	COM Functions
	See Also
	COM
	DOTNET
	VARIANT
	com_addref
	com_create_guid
	com_event_sink
	com_get_active_object
	com_get
	com_invoke
	com_isenum
	com_load_typelib
	com_load
	com_message_pump
	com_print_typeinfo
	com_propget
	com_propput
	com_propset
	com_release
	com_set
	variant_abs
	variant_add
	variant_and
	variant_cast
	variant_cat
	variant_cmp
	variant_date_from_timestamp
	variant_date_to_timestamp
	variant_div
	variant_eqv
	variant_fix
	variant_get_type
	variant_idiv
	variant_imp
	variant_int
	variant_mod
	variant_mul
	variant_neg
	variant_not
	variant_or
	variant_pow
	variant_round
	variant_set_type
	variant_set
	variant_sub
	variant_xor

