
Session Handling

Introduction

Session support in PHP consists of a way to preserve certain data across subsequent
accesses. This enables you to build more customized applications and increase the
appeal of your web site.

A visitor accessing your web site is assigned a unique id, the so-called session id. This is
either stored in a cookie on the user side or is propagated in the URL.

The session support allows you to register arbitrary numbers of variables to be preserved
across requests. When a visitor accesses your site, PHP will check automatically (if
session.auto_start is set to 1) or on your request (explicitly through session_start() or
implicitly through session_register()) whether a specific session id has been sent with the
request. If this is the case, the prior saved environment is recreated.

Caution

If you do turn on session.auto_start then you cannot put objects into your sessions
since the class definition has to be loaded before starting the session in order to
recreate the objects in your session.

All registered variables are serialized after the request finishes. Registered variables which
are undefined are marked as being not defined. On subsequent accesses, these are not
defined by the session module unless the user defines them later.

Warning

Some types of data can not be serialized thus stored in sessions. It includes resource
variables or objects with circular references (i.e. objects which passes a reference to
itself to another object).

Note

Session handling was added in PHP 4.0.0.

Note

Please note when working with sessions that a record of a session is not created until
a variable has been registered using the session_register() function or by adding a
new key to the $_SESSION superglobal array. This holds true regardless of if a
session has been started using the session_start() function.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Note

Optionally you can use shared memory allocation (mm), developed by Ralf S.
Engelschall, for session storage. You have to download » mm and install it. This option
is not available for Windows platforms. Note that the session storage module for mm
does not guarantee that concurrent accesses to the same session are properly locked.
It might be more appropriate to use a shared memory based filesystem (such as tmpfs
on Solaris/Linux, or /dev/md on BSD) to store sessions in files, because they are
properly locked. Session data is stored in memory thus web server restart deletes it.

Installation

Session support is enabled in PHP by default. If you would not like to build your PHP with
session support, you should specify the --disable-session option to configure. To use
shared memory allocation (mm) for session storage configure PHP --with-mm[=DIR].

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

By default, all data related to a particular session will be stored in a file in the directory
specified by the session.save_path INI option. A file for each session (regardless of if
any data is associated with that session) will be created. This is due to the fact that a
session is opened (a file is created) but no data is even written to that file. Note that
this behavior is a side-effect of the limitations of working with the file system and it is
possible that a custom session handler (such as one which uses a database) does not
keep track of sessions which store no data.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Session configuration options

http://www.ossp.org/pkg/lib/mm/

Name Default Changeable Changelog

session.save_path "" PHP_INI_ALL

session.name "PHPSESSID" PHP_INI_ALL

session.save_handler "files" PHP_INI_ALL

session.auto_start "0" PHP_INI_ALL

session.gc_probabilit
y

"1" PHP_INI_ALL

session.gc_divisor "100" PHP_INI_ALL Available since PHP
4.3.2.

session.gc_maxlifeti
me

"1440" PHP_INI_ALL

session.serialize_han
dler

"php" PHP_INI_ALL

session.cookie_lifeti
me

"0" PHP_INI_ALL

session.cookie_path "/" PHP_INI_ALL

session.cookie_doma
in

"" PHP_INI_ALL

session.cookie_secur
e

"" PHP_INI_ALL Available since PHP
4.0.4.

session.cookie_httpo
nly

"" PHP_INI_ALL Available since PHP
5.2.0.

session.use_cookies "1" PHP_INI_ALL

session.use_only_co
okies

"1" PHP_INI_ALL Available since PHP
4.3.0.

session.referer_chec
k

"" PHP_INI_ALL

session.entropy_file "" PHP_INI_ALL

session.entropy_leng
th

"0" PHP_INI_ALL

session.cache_limiter "nocache" PHP_INI_ALL

session.cache_expire "180" PHP_INI_ALL

session.use_trans_si
d

"0" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.2.3.
PHP_INI_PERDIR in
PHP < 5. Available
since PHP 4.0.3.

session.bug_compat
_42

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.bug_compat
_warn

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.hash_functio
n

"0" PHP_INI_ALL Available since PHP
5.0.0.

session.hash_bits_pe
r_character

"4" PHP_INI_ALL Available since PHP
5.0.0.

url_rewriter.tags "a=href,area=href,fra
me=src,form=,fieldset
="

PHP_INI_ALL Available since PHP
4.0.4.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

The session management system supports a number of configuration options which you
can place in your php.ini file. We will give a short overview.
session.save_handler string

session.save_handler defines the name of the handler which is used for storing and
retrieving data associated with a session. Defaults to files. Note that individual
extensions may register their own save_handler s; registered handlers can be obtained
on a per-installation basis by referring to phpinfo(). See also
session_set_save_handler().

session.save_path string
session.save_path defines the argument which is passed to the save handler. If you
choose the default files handler, this is the path where the files are created. See also
session_save_path(). There is an optional N argument to this directive that determines
the number of directory levels your session files will be spread around in. For example,
setting to '5;/tmp' may end up creating a session file and location like
/tmp/4/b/1/e/3/sess_4b1e384ad74619bd212e236e52a5a174If. In order to use N you
must create all of these directories before use. A small shell script exists in ext/session
to do this, it's called mod_files.sh. Also note that if N is used and greater than 0 then
automatic garbage collection will not be performed, see a copy of php.ini for further
information. Also, if you use N, be sure to surround session.save_path in "quotes"
because the separator (;) is also used for comments in php.ini.

Warning

If you leave this set to a world-readable directory, such as /tmp (the default), other
users on the server may be able to hijack sessions by getting the list of files in that

directory.

Note

Prior to PHP 4.3.6, Windows users had to change this variable in order to use
PHP's session functions. A valid path must be specified, e.g.: c:/temp.

session.name string
session.name specifies the name of the session which is used as cookie name. It
should only contain alphanumeric characters. Defaults to PHPSESSID. See also
session_name().

session.auto_start boolean
session.auto_start specifies whether the session module starts a session automatically
on request startup. Defaults to 0 (disabled).

session.serialize_handler string
session.serialize_handler defines the name of the handler which is used to
serialize/deserialize data. Currently, a PHP internal format (name php or php_binary)
and WDDX are supported (name wddx). WDDX is only available, if PHP is compiled
with WDDX support. Defaults to php.

session.gc_probability integer
session.gc_probability in conjunction with session.gc_divisor is used to manage
probability that the gc (garbage collection) routine is started. Defaults to 1. See
session.gc_divisor for details.

session.gc_divisor integer
session.gc_divisor coupled with session.gc_probability defines the probability that the
gc (garbage collection) process is started on every session initialization. The
probability is calculated by using gc_probability/gc_divisor, e.g. 1/100 means there is a
1% chance that the GC process starts on each request. session.gc_divisor defaults to
100.

session.gc_maxlifetime integer
session.gc_maxlifetime specifies the number of seconds after which data will be seen
as 'garbage' and cleaned up. Garbage collection occurs during session start.

Note

If different scripts have different values of session.gc_maxlifetime but share the
same place for storing the session data then the script with the minimum value will
be cleaning the data. In this case, use this directive together with
session.save_path.

Note

If you are using the default file-based session handler, your filesystem must keep
track of access times (atime). Windows FAT does not so you will have to come up
with another way to handle garbage collecting your session if you are stuck with a
FAT filesystem or any other filesystem where atime tracking is not available. Since
PHP 4.2.3 it has used mtime (modified date) instead of atime. So, you won't have
problems with filesystems where atime tracking is not available.

session.referer_check string
session.referer_check contains the substring you want to check each HTTP Referer
for. If the Referer was sent by the client and the substring was not found, the
embedded session id will be marked as invalid. Defaults to the empty string.

session.entropy_file string
session.entropy_file gives a path to an external resource (file) which will be used as an
additional entropy source in the session id creation process. Examples are
/dev/random or /dev/urandom which are available on many Unix systems.

session.entropy_length integer
session.entropy_length specifies the number of bytes which will be read from the file
specified above. Defaults to 0 (disabled).

session.use_cookies boolean
session.use_cookies specifies whether the module will use cookies to store the
session id on the client side. Defaults to 1 (enabled).

session.use_only_cookies boolean
session.use_only_cookies specifies whether the module will only use cookies to store
the session id on the client side. Enabling this setting prevents attacks involved
passing session ids in URLs. This setting was added in PHP 4.3.0. Defaults to 1
(enabled) since PHP 6.0.

session.cookie_lifetime integer
session.cookie_lifetime specifies the lifetime of the cookie in seconds which is sent to
the browser. The value 0 means "until the browser is closed." Defaults to 0. See also
session_get_cookie_params() and session_set_cookie_params().

Note

The expiration timestamp is set relative to the server time, which is not necessarily
the same as the time in the client's browser.

session.cookie_path string
session.cookie_path specifies path to set in session_cookie. Defaults to /. See also
session_get_cookie_params() and session_set_cookie_params().

session.cookie_domain string
session.cookie_domain specifies the domain to set in session_cookie. Default is none
at all meaning the host name of the server which generated the cookie according to
cookies specification. See also session_get_cookie_params() and
session_set_cookie_params().

session.cookie_secure boolean
session.cookie_secure specifies whether cookies should only be sent over secure
connections. Defaults to off. This setting was added in PHP 4.0.4. See also
session_get_cookie_params() and session_set_cookie_params().

session.cookie_httponly boolean
Marks the cookie as accessible only through the HTTP protocol. This means that the
cookie won't be accessible by scripting languages, such as JavaScript. This setting
can effectively help to reduce identity theft through XSS attacks (although it is not
supported by all browsers).

session.cache_limiter string
session.cache_limiter specifies cache control method to use for session pages
(none/nocache/private/private_no_expire/public). Defaults to nocache. See also
session_cache_limiter().

session.cache_expire integer
session.cache_expire specifies time-to-live for cached session pages in minutes, this
has no effect for nocache limiter. Defaults to 180. See also session_cache_expire().

session.use_trans_sid boolean
session.use_trans_sid whether transparent sid support is enabled or not. Defaults to 0
(disabled).

Note

For PHP 4.1.2 or less, it is enabled by compiling with --enable-trans-sid. From PHP
4.2.0, trans-sid feature is always compiled.

URL based session management has additional security risks compared to cookie
based session management. Users may send a URL that contains an active
session ID to their friends by email or users may save a URL that contains a
session ID to their bookmarks and access your site with the same session ID
always, for example.

session.bug_compat_42 boolean
PHP versions 4.2.3 and lower have an undocumented feature/bug that allows you to
initialize a session variable in the global scope, albeit register_globals is disabled. PHP
4.3.0 and later will warn you, if this feature is used, and if session.bug_compat_warn is
also enabled. This feature/bug can be disabled by disabling this directive.

session.bug_compat_warn boolean
PHP versions 4.2.3 and lower have an undocumented feature/bug that allows you to
initialize a session variable in the global scope, albeit register_globals is disabled. PHP

4.3.0 and later will warn you, if this feature is used by enabling both
session.bug_compat_42 and session.bug_compat_warn.

session.hash_function mixed
session.hash_function allows you to specify the hash algorithm used to generate the
session IDs. '0' means MD5 (128 bits) and '1' means SHA-1 (160 bits). Since PHP
6.0.0 it is also possible to specify any of the algorithms provided by the hash extension
(if it is available), like sha512 or whirlpool. A complete list of supported algorithms can
be obtained with the hash_algos() function.

Note

This was introduced in PHP 5.

session.hash_bits_per_character integer
session.hash_bits_per_character allows you to define how many bits are stored in
each character when converting the binary hash data to something readable. The
possible values are '4' (0-9, a-f), '5' (0-9, a-v), and '6' (0-9, a-z, A-Z, "-", ",").

Note

This was introduced in PHP 5.

url_rewriter.tags string
url_rewriter.tags specifies which HTML tags are rewritten to include session id if
transparent sid support is enabled. Defaults to
a=href,area=href,frame=src,input=src,form=fakeentry,fieldset=

Note

If you want HTML/XHTML strict conformity, remove the form entry and use the
<fieldset> tags around your form fields.

The track_vars and register_globals configuration settings influence how the session
variables get stored and restored.

Note

As of PHP 4.0.3, track_vars is always turned on.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SID (string)
Constant containing either the session name and session ID in the form of "name=ID"
or empty string if session ID was set in an appropriate session cookie.

Examples

Note

As of PHP 4.1.0, $_SESSION is available as a global variable just like $_POST,
$_GET, $_REQUEST and so on. Unlike $HTTP_SESSION_VARS, $_SESSION is
always global. Therefore, you do not need to use the global keyword for $_SESSION.
Please note that this documentation has been changed to use $_SESSION
everywhere. You can substitute $HTTP_SESSION_VARS for $_SESSION, if you
prefer the former. Also note that you must start your session using session_start()
before use of $_SESSION becomes available.

The keys in the $_SESSION associative array are subject to the same limitations as
regular variable names in PHP, i.e. they cannot start with a number and must start with
a letter or underscore. For more details see the section on variables in this manual.

If register_globals is disabled, only members of the global associative array $_SESSION
can be registered as session variables. The restored session variables will only be
available in the array $_SESSION.

Use of $_SESSION (or $HTTP_SESSION_VARS with PHP 4.0.6 or less) is recommended
for improved security and code readability. With $_SESSION, there is no need to use the
session_register(), session_unregister(), session_is_registered() functions. Session
variables are accessible like any other variables.

Example #1 - Registering a variable with $_SESSION.

<?php

session_start();

// Use $HTTP_SESSION_VARS with PHP 4.0.6 or less

if (!isset($_SESSION['count'])) {

 $_SESSION['count'] = 0;

} else {

 $_SESSION['count']++;

}

?>

Example #2 - Unregistering a variable with $_SESSION and register_globals
disabled.

<?php

session_start();

// Use $HTTP_SESSION_VARS with PHP 4.0.6 or less

unset($_SESSION['count']);

?>

Caution

Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable the
registering of session variables through the $_SESSION superglobal.

Warning

You can't use references in session variables as there is no feasible way to restore a
reference to another variable.

If register_globals is enabled, then each global variable can be registered as session
variable. Upon a restart of a session, these variables will be restored to corresponding
global variables. Since PHP must know which global variables are registered as session
variables, users need to register variables with session_register() function. You can avoid
this by simply setting entries in $_SESSION.

Caution

Before PHP 4.3.0, if you are using $_SESSION and you have disabled
register_globals, don't use session_register(), session_is_registered() or
session_unregister(). Disabling register_globals is recommended for both security and
performance reasons.

If register_globals is enabled, then the global variables and the $_SESSION entries will
automatically reference the same values which were registered in the prior session
instance. However, if the variable is registered by $_SESSION then the global variable is
available since the next request.

There is a defect in PHP 4.2.3 and earlier. If you register a new session variable by using
session_register(), the entry in the global scope and the $_SESSION entry will not
reference the same value until the next session_start(). I.e. a modification to the newly
registered global variable will not be reflected by the $_SESSION entry. This has been
corrected in PHP 4.3.0.

Passing the Session ID

There are two methods to propagate a session id:

• Cookies

• URL parameter

The session module supports both methods. Cookies are optimal, but because they are
not always available, we also provide an alternative way. The second method embeds the
session id directly into URLs.

PHP is capable of transforming links transparently. Unless you are using PHP 4.2.0 or
later, you need to enable it manually when building PHP. Under Unix, pass
--enable-trans-sid to configure. If this build option and the run-time option
session.use_trans_sid are enabled, relative URIs will be changed to contain the session id
automatically.

Note

The arg_separator.output php.ini directive allows to customize the argument seperator.
For full XHTML conformance, specify & there.

Alternatively, you can use the constant SID which is defined if the session started. If the
client did not send an appropriate session cookie, it has the form
session_name=session_id. Otherwise, it expands to an empty string. Thus, you can
embed it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly to
another page using SID.

Example #3 - Counting the number of hits of a single user

<?php

session_start();

if (empty($_SESSION['count'])) {

$_SESSION['count'] = 1;

} else {

$_SESSION['count']++;

}

?>

<p>

Hello visitor, you have seen this page <?php echo $_SESSION['count']; ?>
times.

</p>

<p>

To continue, <a href="nextpage.php?<?php echo htmlspecialchars(SID);
?>">click

here.

</p>

The htmlspecialchars() may be used when printing the SID in order to prevent XSS related
attacks.

Printing the SID, like shown above, is not necessary if --enable-trans-sid was used to

compile PHP.

Note

Non-relative URLs are assumed to point to external sites and hence don't append the
SID, as it would be a security risk to leak the SID to a different server.

Custom Session Handlers

To implement database storage, or any other storage method, you will need to use
session_set_save_handler() to create a set of user-level storage functions.

Sessions and security

External links: » Session fixation

The session module cannot guarantee that the information you store in a session is only
viewed by the user who created the session. You need to take additional measures to
actively protect the integrity of the session, depending on the value associated with it.

Assess the importance of the data carried by your sessions and deploy additional
protections -- this usually comes at a price, reduced convenience for the user. For
example, if you want to protect users from simple social engineering tactics, you need to
enable session.use_only_cookies. In that case, cookies must be enabled unconditionally
on the user side, or sessions will not work.

There are several ways to leak an existing session id to third parties. A leaked session id
enables the third party to access all resources which are associated with a specific id.
First, URLs carrying session ids. If you link to an external site, the URL including the
session id might be stored in the external site's referrer logs. Second, a more active
attacker might listen to your network traffic. If it is not encrypted, session ids will flow in
plain text over the network. The solution here is to implement SSL on your server and
make it mandatory for users.

http://www.acros.si/papers/session_fixation.pdf

Session Functions

session_cache_expire

session_cache_expire -- Return current cache expire

Description

int session_cache_expire ([int $new_cache_expire])

session_cache_expire() returns the current setting of session.cache_expire.

The cache expire is reset to the default value of 180 stored in session.cache_limiter at
request startup time. Thus, you need to call session_cache_expire() for every request (and
before session_start() is called).

Parameters

new_cache_expire

If new_cache_expire is given, the current cache expire is replaced with
new_cache_expire.

Note

Setting new_cache_expire is of value only, if session.cache_limiter is set to a value
different from nocache.

Return Values

Returns the current setting of session.cache_expire. The value returned should be read in
minutes, defaults to 180.

Examples

Example #4 - session_cache_expire() example

<?php

/* set the cache limiter to 'private' */

session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

/* set the cache expire to 30 minutes */

session_cache_expire(30);

$cache_expire = session_cache_expire();

/* start the session */

session_start();

echo "The cache limiter is now set to $cache_limiter
";

echo "The cached session pages expire after $cache_expire minutes";

?>

See Also

• session.cache_expire
• session.cache_limiter
• session_cache_limiter()

session_cache_limiter

session_cache_limiter -- Get and/or set the current cache limiter

Description

string session_cache_limiter ([string $cache_limiter])

session_cache_limiter() returns the name of the current cache limiter.

The cache limiter defines which cache control HTTP headers are sent to the client. These
headers determine the rules by which the page content may be cached by the client and
intermediate proxies. Setting the cache limiter to nocache disallows any client/proxy
caching. A value of public permits caching by proxies and the client, whereas private
disallows caching by proxies and permits the client to cache the contents.

In private mode, the Expire header sent to the client may cause confusion for some
browsers, including Mozilla. You can avoid this problem by using private_no_expire mode.
The expire header is never sent to the client in this mode.

The cache limiter is reset to the default value stored in session.cache_limiter at request
startup time. Thus, you need to call session_cache_limiter() for every request (and before
session_start() is called).

Parameters

cache_limiter

If cache_limiter is specified, the name of the current cache limiter is changed to the
new value.

Return Values

Returns the name of the current cache limiter.

ChangeLog

Version Description

4.2.0 The private_no_expire cache limiter was
added.

Examples

Example #5 - session_cache_limiter() example

<?php

/* set the cache limiter to 'private' */

session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

echo "The cache limiter is now set to $cache_limiter
";

?>

See Also

• session.cache_limiter

session_commit

session_commit -- Alias of session_write_close()

Description

This function is an alias of: session_write_close().

session_decode

session_decode -- Decodes session data from a string

Description

bool session_decode (string $data)

session_decode() decodes the session data in data, setting variables stored in the
session.

Parameters

data

The encoded data to be stored.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• session_encode()

session_destroy

session_destroy -- Destroys all data registered to a session

Description

bool session_destroy (void)

session_destroy() destroys all of the data associated with the current session. It does not
unset any of the global variables associated with the session, or unset the session cookie.

In order to kill the session altogether, like to log the user out, the session id must also be
unset. If a cookie is used to propagate the session id (default behavior), then the session
cookie must be deleted. setcookie() may be used for that.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #6 - Destroying a session with $_SESSION

<?php

// Initialize the session.

// If you are using session_name("something"), don't forget it now!

session_start();

// Unset all of the session variables.

$_SESSION = array();

// If it's desired to kill the session, also delete the session cookie.

// Note: This will destroy the session, and not just the session data!

if (isset($_COOKIE[session_name()])) {

 setcookie(session_name(), '', time()-42000, '/');

}

// Finally, destroy the session.

session_destroy();

?>

Notes

Note

Only use session_unset() for older deprecated code that does not use $_SESSION.

See Also

• unset()
• setcookie()

session_encode

session_encode -- Encodes the current session data as a string

Description

string session_encode (void)

session_encode() returns a string with the contents of the current session encoded within.

Return Values

Returns the contents of the current session encoded.

See Also

• session_decode()

session_get_cookie_params

session_get_cookie_params -- Get the session cookie parameters

Description

array session_get_cookie_params (void)

Gets the session cookie parameters.

Return Values

Returns an array with the current session cookie information, the array contains the
following items:

• "lifetime" - The lifetime of the cookie in seconds.

• "path" - The path where information is stored.

• "domain" - The domain of the cookie.

• "secure" - The cookie should only be sent over secure connections.

• "httponly" - The cookie can only be accessed through the HTTP protocol.

ChangeLog

Version Description

5.2.0 The "httponly" entry was added in the
returned array.

4.0.4 The "secure" entry was added in the
returned array.

See Also

• session.cookie_lifetime
• session.cookie_path
• session.cookie_domain
• session.cookie_secure
• session.cookie_httponly
• session.cookie_lifetime

• session_set_cookie_params()

session_id

session_id -- Get and/or set the current session id

Description

string session_id ([string $id])

session_id() is used to get or set the session id for the current session.

The constant SID can also be used to retrieve the current name and session id as a string
suitable for adding to URLs. See also Session handling.

Parameters

id

If id is specified, it will replace the current session id. session_id() needs to be called
before session_start() for that purpose. Depending on the session handler, not all
characters are allowed within the session id. For example, the file session handler only
allows characters in the range a-z, A-Z and 0-9 !

Note

When using session cookies, specifying an id for session_id() will always send a
new cookie when session_start() is called, regardless if the current session id is
identical to the one being set.

Return Values

session_id() returns the session id for the current session or the empty string ("") if there
is no current session (no current session id exists).

See Also

• session_regenerate_id()
• session_start()
• session_set_save_handler()
• session.save_handler

session_is_registered

session_is_registered -- Find out whether a global variable is registered in a session

Description

bool session_is_registered (string $name)

Finds out whether a global variable is registered in a session.

Parameters

name

The variable name.

Return Values

session_is_registered() returns TRUE if there is a global variable with the name name
registered in the current session, FALSE otherwise.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use isset()
to check a variable is registered in $_SESSION.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered() and session_unregister().

session_module_name

session_module_name -- Get and/or set the current session module

Description

string session_module_name ([string $module])

session_module_name() gets the name of the current session module.

Parameters

module

If module is specified, that module will be used instead.

Return Values

Returns the name of the current session module.

session_name

session_name -- Get and/or set the current session name

Description

string session_name ([string $name])

session_name() returns the name of the current session.

The session name is reset to the default value stored in session.name at request startup
time. Thus, you need to call session_name() for every request (and before session_start()
or session_register() are called).

Parameters

name

The session name references the session id in cookies and URLs. It should contain
only alphanumeric characters; it should be short and descriptive (i.e. for users with
enabled cookie warnings). If name is specified, the name of the current session is
changed to its value.

Warning

The session name can't consist of digits only, at least one letter must be present.
Otherwise a new session id is generated every time.

Return Values

Returns the name of the current session.

Examples

Example #7 - session_name() example

<?php

/* set the session name to WebsiteID */

$previous_name = session_name("WebsiteID");

echo "The previous session name was $previous_name
";

?>

See Also

• The session.name configuration directive

session_regenerate_id

session_regenerate_id -- Update the current session id with a newly generated one

Description

bool session_regenerate_id ([bool $delete_old_session])

session_regenerate_id() will replace the current session id with a new one, and keep the
current session information.

Parameters

delete_old_session

Whether to delete the old associated session file or not. Defaults to FALSE.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.3 Since then, if session cookies are enabled,
use of session_regenerate_id() will also
submit a new session cookie with the new
session id.

5.1.0 Added the delete_old_session parameter.

Examples

Example #8 - A session_regenerate_id() example

<?php

session_start();

$old_sessionid = session_id();

session_regenerate_id();

$new_sessionid = session_id();

echo "Old Session: $old_sessionid
";

echo "New Session: $new_sessionid
";

print_r($_SESSION);

?>

See Also

• session_id()
• session_start()
• session_name()

session_register

session_register -- Register one or more global variables with the current session

Description

bool session_register (mixed $name [, mixed $...])

session_register() accepts a variable number of arguments, any of which can be either a
string holding the name of a variable or an array consisting of variable names or other
arrays. For each name, session_register() registers the global variable with that name in
the current session.

You can also create a session variable by simply setting the appropriate member of the
$_SESSION or $HTTP_SESSION_VARS (PHP < 4.1.0) array.

<?php

// Use of session_register() is deprecated

$barney = "A big purple dinosaur.";

session_register("barney");

// Use of $_SESSION is preferred, as of PHP 4.1.0

$_SESSION["zim"] = "An invader from another planet.";

// The old way was to use $HTTP_SESSION_VARS

$HTTP_SESSION_VARS["spongebob"] = "He's got square pants.";

?>

If session_start() was not called before this function is called, an implicit call to
session_start() with no parameters will be made. $_SESSION does not mimic this
behavior and requires session_start() before use.

Parameters

name

A string holding the name of a variable or an array consisting of variable names or
other arrays.

...

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Caution

If you want your script to work regardless of register_globals, you need to instead use
the $_SESSION array as $_SESSION entries are automatically registered. If your
script uses session_register(), it will not work in environments where the PHP directive
register_globals is disabled.

Note

register_globals: important note

As of PHP 4.2.0, the default value for the PHP directive register_globals is off, and it
was completely removed as of PHP 6.0.0. The PHP community discourages
developers from relying on this directive, and encourages the use of other means,
such as the superglobals.

Caution

This registers a global variable. If you want to register a session variable from within a
function, you need to make sure to make it global using the global keyword or the
$GLOBALS[] array, or use the special session arrays as noted below.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered(), and session_unregister().

Note

It is currently impossible to register resource variables in a session. For example, you
cannot create a connection to a database and store the connection id as a session
variable and expect the connection to still be valid the next time the session is
restored. PHP functions that return a resource are identified by having a return type of
resource in their function definition. A list of functions that return resources are
available in the resource types appendix.

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, assign
values to $_SESSION. For example: $_SESSION['var'] = 'ABC';

See Also

• session_is_registered()
• session_unregister()
• $_SESSION

session_save_path

session_save_path -- Get and/or set the current session save path

Description

string session_save_path ([string $path])

session_save_path() returns the path of the current directory used to save session data.

Parameters

path

Session data path. If specified, the path to which data is saved will be changed.
session_save_path() needs to be called before session_start() for that purpose.

Note

On some operating systems, you may want to specify a path on a filesystem that
handles lots of small files efficiently. For example, on Linux, reiserfs may provide
better performance than ext2fs.

Return Values

Returns the path of the current directory used for data storage.

See Also

• The session.save_path configuration directive

session_set_cookie_params

session_set_cookie_params -- Set the session cookie parameters

Description

void session_set_cookie_params (int $lifetime [, string $path [, string $domain [, bool
$secure [, bool $httponly]]]])

Set cookie parameters defined in the php.ini file. The effect of this function only lasts for
the duration of the script. Thus, you need to call session_set_cookie_params() for every
request and before session_start() is called.

Parameters

lifetime

path

domain

secure

httponly

Return Values

No value is returned.

ChangeLog

Version Description

5.2.0 The httponly parameter was added.

4.0.4 The secure parameter was added.

See Also

• session.cookie_lifetime
• session.cookie_domain
• session.cookie_secure
• session.cookie_httponly
• session_get_cookie_params()

session_set_save_handler

session_set_save_handler -- Sets user-level session storage functions

Description

bool session_set_save_handler (callback $open, callback $close, callback $read,
callback $write, callback $destroy, callback $gc)

session_set_save_handler() sets the user-level session storage functions which are used
for storing and retrieving data associated with a session. This is most useful when a
storage method other than those supplied by PHP sessions is preferred. i.e. Storing the
session data in a local database.

Parameters

open

close

read

Read function must return string value always to make save handler work as expected.
Return empty string if there is no data to read. Return values from other handlers are
converted to boolean expression. TRUE for success, FALSE for failure.

write

Note

The "write" handler is not executed until after the output stream is closed. Thus,
output from debugging statements in the "write" handler will never be seen in the
browser. If debugging output is necessary, it is suggested that the debug output be
written to a file instead.

destroy

gc

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #9 - session_set_save_handler() example

The following example provides file based session storage similar to the PHP sessions
default save handler files. This example could easily be extended to cover database
storage using your favorite PHP supported database engine.

<?php

function open($save_path, $session_name)

{

 global $sess_save_path;

 $sess_save_path = $save_path;

 return(true);

}

function close()

{

 return(true);

}

function read($id)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 return (string) @file_get_contents($sess_file);

}

function write($id, $sess_data)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 if ($fp = @fopen($sess_file, "w")) {

 $return = fwrite($fp, $sess_data);

 fclose($fp);

 return $return;

 } else {

 return(false);

 }

}

function destroy($id)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 return(@unlink($sess_file));

}

function gc($maxlifetime)

{

 global $sess_save_path;

 foreach (glob("$sess_save_path/sess_*") as $filename) {

 if (filemtime($filename) + $maxlifetime < time()) {

 @unlink($filename);

 }

 }

 return true;

}

session_set_save_handler("open", "close", "read", "write", "destroy", "gc");

session_start();

// proceed to use sessions normally

?>

Notes

Warning

As of PHP 5.0.5 the write and close handlers are called after object destruction and
therefore cannot use objects or throw exceptions. The object destructors can however
use sessions.

It is possible to call session_write_close() from the destructor to solve this chicken and
egg problem.

Warning

Current working directory is changed with some SAPIs if session is closed in the script
termination. It is possible to close the session earlier with session_write_close().

See Also

• The session.save_handler configuration directive

session_start

session_start -- Initialize session data

Description

bool session_start (void)

session_start() creates a session or resumes the current one based on the current session
id that's being passed via a request, such as GET, POST, or a cookie.

If you want to use a named session, you must call session_name() before calling
session_start().

session_start() will register internal output handler for URL rewriting when trans-sid is
enabled. If a user uses ob_gzhandler or like with ob_start(), the order of output handler is
important for proper output. For example, user must register ob_gzhandler before session
start.

Return Values

This function always returns TRUE.

ChangeLog

Version Description

4.3.3 As of now, calling session_start() while the
session has already been started will result
in an error of level E_NOTICE. Also, the
second session start will simply be ignored.

Examples

Example #10 - A session example: page1.php

<?php

// page1.php

session_start();

echo 'Welcome to page #1';

$_SESSION['favcolor'] = 'green';

$_SESSION['animal'] = 'cat';

$_SESSION['time'] = time();

// Works if session cookie was accepted

echo '
page 2';

// Or maybe pass along the session id, if needed

echo '
page 2';

?>

After viewing page1.php, the second page page2.php will magically contain the session
data. Read the session reference for information on propagating session ids as it, for
example, explains what the constant SID is all about.

Example #11 - A session example: page2.php

<?php

// page2.php

session_start();

echo 'Welcome to page #2
';

echo $_SESSION['favcolor']; // green

echo $_SESSION['animal']; // cat

echo date('Y m d H:i:s', $_SESSION['time']);

// You may want to use SID here, like we did in page1.php

echo '
page 1';

?>

Notes

Note

If you are using cookie-based sessions, you must call session_start() before anything
is outputted to the browser.

Note

Use of zlib.output_compression is recommended rather than ob_gzhandler()

See Also

• $_SESSION
• The session.auto_start configuration directive
• session_id()

session_unregister

session_unregister -- Unregister a global variable from the current session

Description

bool session_unregister (string $name)

session_unregister() unregisters the global variable named name from the current session.

Parameters

name

The variable name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use unset()
to unregister a session variable. Do not unset() $_SESSION itself as this will disable
the special function of the $_SESSION superglobal.

Caution

This function does not unset the corresponding global variable for name, it only
prevents the variable from being saved as part of the session. You must call unset() to
remove the corresponding global variable.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered() and session_unregister().

session_unset

session_unset -- Free all session variables

Description

void session_unset (void)

The session_unset() function frees all session variables currently registered.

Return Values

No value is returned.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use unset()
to unregister a session variable, i.e. unset ($_SESSION['varname']);.

Caution

Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable the
registering of session variables through the $_SESSION superglobal.

session_write_close

session_write_close -- Write session data and end session

Description

void session_write_close (void)

End the current session and store session data.

Session data is usually stored after your script terminated without the need to call
session_write_close(), but as session data is locked to prevent concurrent writes only one
script may operate on a session at any time. When using framesets together with sessions
you will experience the frames loading one by one due to this locking. You can reduce the
time needed to load all the frames by ending the session as soon as all changes to
session variables are done.

Return Values

No value is returned.

	Sessions
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Registering a variable with $_SESSION.
	Passing the Session ID
	Custom Session Handlers

	Sessions and security
	Session Functions
	session_cache_expire
	session_cache_limiter
	session_commit
	session_decode
	session_destroy
	session_encode
	session_get_cookie_params
	session_id
	session_is_registered
	session_module_name
	session_name
	session_regenerate_id
	session_register
	session_save_path
	session_set_cookie_params
	session_set_save_handler
	session_start
	session_unregister
	session_unset
	session_write_close

