
Process Control

Introduction

Process Control support in PHP implements the Unix style of process creation, program
execution, signal handling and process termination. Process Control should not be
enabled within a web server environment and unexpected results may happen if any
Process Control functions are used within a web server environment.

This documentation is intended to explain the general usage of each of the Process
Control functions. For detailed information about Unix process control you are encouraged
to consult your systems documentation including fork(2), waitpid(2) and signal(2) or a
comprehensive reference such as Advanced Programming in the UNIX Environment by W.
Richard Stevens (Addison-Wesley).

PCNTL now uses ticks as the signal handle callback mechanism, which is much faster
than the previous mechanism. This change follows the same semantics as using "user
ticks". You use the declare() statement to specify the locations in your program where
callbacks are allowed to occur. This allows you to minimize the overhead of handling
asynchronous events. In the past, compiling PHP with pcntl enabled would always incur
this overhead, whether or not your script actually used pcntl.

There is one adjustment that all pcntl scripts prior to PHP 4.3.0 must make for them to
work which is to either to use declare() on a section where you wish to allow callbacks or
to just enable it across the entire script using the new global syntax of declare().

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Process Control support in PHP is not enabled by default. You have to compile the CGI or
CLI version of PHP with --enable-pcntl configuration option when compiling PHP to enable
Process Control support.

Note

Currently, this module will not function on non-Unix platforms (Windows).

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The following list of signals are supported by the Process Control functions. Please see
your systems signal(7) man page for details of the default behavior of these signals.

WNOHANG (integer)

WUNTRACED (integer)

SIG_IGN (integer)

SIG_DFL (integer)

SIG_ERR (integer)

SIGHUP (integer)

SIGINT (integer)

SIGQUIT (integer)

SIGILL (integer)

SIGTRAP (integer)

SIGABRT (integer)

SIGIOT (integer)

SIGBUS (integer)

SIGFPE (integer)

SIGKILL (integer)

SIGUSR1 (integer)

SIGSEGV (integer)

SIGUSR2 (integer)

SIGPIPE (integer)

SIGALRM (integer)

SIGTERM (integer)

SIGSTKFLT (integer)

SIGCLD (integer)

SIGCHLD (integer)

SIGCONT (integer)

SIGSTOP (integer)

SIGTSTP (integer)

SIGTTIN (integer)

SIGTTOU (integer)

SIGURG (integer)

SIGXCPU (integer)

SIGXFSZ (integer)

SIGVTALRM (integer)

SIGPROF (integer)

SIGWINCH (integer)

SIGPOLL (integer)

SIGIO (integer)

SIGPWR (integer)

SIGSYS (integer)

SIGBABY (integer)

Examples

This example forks off a daemon process with a signal handler.

Example #1 - Process Control Example

<?php

declare(ticks=1);

$pid = pcntl_fork();

if ($pid == -1) {

 die("could not fork");

} else if ($pid) {

 exit(); // we are the parent

} else {

 // we are the child

}

// detatch from the controlling terminal

if (posix_setsid() == -1) {

 die("could not detach from terminal");

}

// setup signal handlers

pcntl_signal(SIGTERM, "sig_handler");

pcntl_signal(SIGHUP, "sig_handler");

// loop forever performing tasks

while (1) {

 // do something interesting here

}

function sig_handler($signo)

{

 switch ($signo) {

 case SIGTERM:

 // handle shutdown tasks

 exit;

 break;

 case SIGHUP:

 // handle restart tasks

 break;

 default:

 // handle all other signals

 }

}

?>

PCNTL Functions

See Also

A look at the section about POSIX functions may be useful.

pcntl_alarm

pcntl_alarm -- Set an alarm clock for delivery of a signal

Description

int pcntl_alarm (int $seconds)

Creates a timer that will send a SIGALRM signal to the process after the given number of
seconds. Any call to pcntl_alarm() will cancel any previously set alarm.

Parameters

seconds

The number of seconds to wait. If seconds is zero, no new alarm is created.

Return Values

Returns the time in seconds that any previously scheduled alarm had remaining before it
was to be delivered, or 0 if there was no previously scheduled alarm.

pcntl_exec

pcntl_exec -- Executes specified program in current process space

Description

void pcntl_exec (string $path [, array $args [, array $envs]])

Executes the program with the given arguments.

Parameters

path

path must be the path to a binary executable or a script with a valid path pointing to an
executable in the shebang (#!/usr/local/bin/perl for example) as the first line. See your
system's man execve(2) page for additional information.

args

args is an array of argument strings passed to the program.

envs

envs is an array of strings which are passed as environment to the program. The array
is in the format of name => value, the key being the name of the environmental
variable and the value being the value of that variable.

Return Values

Returns FALSE on error and does not return on success.

pcntl_fork

pcntl_fork -- Forks the currently running process

Description

int pcntl_fork (void)

The pcntl_fork() function creates a child process that differs from the parent process only
in its PID and PPID. Please see your system's fork(2) man page for specific details as to
how fork works on your system.

Return Values

On success, the PID of the child process is returned in the parent's thread of execution,
and a 0 is returned in the child's thread of execution. On failure, a -1 will be returned in the
parent's context, no child process will be created, and a PHP error is raised.

Examples

Example #2 - pcntl_fork() example

<?php

$pid = pcntl_fork();

if ($pid == -1) {

 die('could not fork');

} else if ($pid) {

 // we are the parent

 pcntl_wait($status); //Protect against Zombie children

} else {

 // we are the child

}

?>

See Also

• pcntl_waitpid()
• pcntl_signal()

pcntl_getpriority

pcntl_getpriority -- Get the priority of any process

Description

int pcntl_getpriority ([int $pid [, int $process_identifier]])

pcntl_getpriority() gets the priority of pid. Because priority levels can differ between
system types and kernel versions, please see your system's getpriority(2) man page for
specific details.

Parameters

pid

If not specified, the pid of the current process is used.

process_identifier

One of PRIO_PGRP, PRIO_USER or PRIO_PROCESS.

Return Values

pcntl_getpriority() returns the priority of the process or FALSE on error. A lower numerical
value causes more favorable scheduling.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

See Also

• pcntl_setpriority()

pcntl_setpriority

pcntl_setpriority -- Change the priority of any process

Description

bool pcntl_setpriority (int $priority [, int $pid [, int $process_identifier]])

pcntl_setpriority() sets the priority of pid.

Parameters

priority

priority is generally a value in the range -20 to 20. The default priority is 0 while a
lower numerical value causes more favorable scheduling. Because priority levels can
differ between system types and kernel versions, please see your system's
setpriority(2) man page for specific details.

pid

If not specified, the pid of the current process is used.

process_identifier

One of PRIO_PGRP, PRIO_USER or PRIO_PROCESS.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• pcntl_getpriority()

pcntl_signal

pcntl_signal -- Installs a signal handler

Description

bool pcntl_signal (int $signo, callback $handler [, bool $restart_syscalls])

The pcntl_signal() function installs a new signal handler for the signal indicated by signo.

Parameters

signo

The signal number.

handler

The signal handler which may be the name of a user created function, or method, or
either of the two global constants SIG_IGN or SIG_DFL.

Note

Note that when you set a handler to an object method, that object's reference
count is increased which makes it persist until you either change the handler to
something else, or your script ends.

restart_syscalls

Specifies whether system call restarting should be used when this signal arrives and
defaults to TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.0 The restart_syscalls parameter was
added.

4.3.0 The ability to use an object method as a
callback became available.

4.3.0 As of PHP 4.3.0 PCNTL uses ticks as the
signal handle callback mechanism, which is
much faster than the previous mechanism.
This change follows the same semantics as
using " user ticks ". You must use the
declare() statement to specify the locations
in your program where callbacks are
allowed to occur for the signal handler to
function properly (as used in the above
example).

Examples

Example #3 - pcntl_signal() example

<?php

// tick use required as of PHP 4.3.0

declare(ticks = 1);

// signal handler function

function sig_handler($signo)

{

 switch ($signo) {

 case SIGTERM:

 // handle shutdown tasks

 exit;

 break;

 case SIGHUP:

 // handle restart tasks

 break;

 case SIGUSR1:

 echo "Caught SIGUSR1...\n";

 break;

 default:

 // handle all other signals

 }

}

echo "Installing signal handler...\n";

// setup signal handlers

pcntl_signal(SIGTERM, "sig_handler");

pcntl_signal(SIGHUP, "sig_handler");

pcntl_signal(SIGUSR1, "sig_handler");

// or use an object, available as of PHP 4.3.0

// pcntl_signal(SIGUSR1, array($obj, "do_something");

echo"Generating signal SIGTERM to self...\n";

// send SIGUSR1 to current process id

posix_kill(posix_getpid(), SIGUSR1);

echo "Done\n"

?>

See Also

• pcntl_fork()
• pcntl_waitpid()

pcntl_wait

pcntl_wait -- Waits on or returns the status of a forked child

Description

int pcntl_wait (int &$status [, int $options])

The wait function suspends execution of the current process until a child has exited, or
until a signal is delivered whose action is to terminate the current process or to call a
signal handling function. If a child has already exited by the time of the call (a so-called
"zombie" process), the function returns immediately. Any system resources used by the
child are freed. Please see your system's wait(2) man page for specific details as to how
wait works on your system.

Note

This function is equivalent to calling pcntl_waitpid() with a -1 pid and no options.

Parameters

status

pcntl_wait() will store status information in the status parameter which can be
evaluated using the following functions: pcntl_wifexited(), pcntl_wifstopped(),
pcntl_wifsignaled(), pcntl_wexitstatus(), pcntl_wtermsig() and pcntl_wstopsig().

options

If wait3 is available on your system (mostly BSD-style systems), you can provide the
optional options parameter. If this parameter is not provided, wait will be used for the
system call. If wait3 is not available, providing a value for options will have no effect.
The value of options is the value of zero or more of the following two constants OR
'ed together:

Possible values for options

WNOHANG Return immediately if no child has exited.

WUNTRACED Return for children which are stopped, and
whose status has not been reported.

Return Values

pcntl_wait() returns the process ID of the child which exited, -1 on error or zero if WNOHANG

was provided as an option (on wait3-available systems) and no child was available.

See Also

• pcntl_fork()
• pcntl_signal()
• pcntl_wifexited()
• pcntl_wifstopped()
• pcntl_wifsignaled()
• pcntl_wexitstatus()
• pcntl_wtermsig()
• pcntl_wstopsig()
• pcntl_waitpid()

pcntl_waitpid

pcntl_waitpid -- Waits on or returns the status of a forked child

Description

int pcntl_waitpid (int $pid, int &$status [, int $options])

Suspends execution of the current process until a child as specified by the pid argument has
exited, or until a signal is delivered whose action is to terminate the current process or to call a
signal handling function.

If a child as requested by pid has already exited by the time of the call (a so-called "zombie"
process), the function returns immediately. Any system resources used by the child are freed.
Please see your system's waitpid(2) man page for specific details as to how waitpid works on
your system.

Parameters

pid

The value of pid can be one of the following:

possible values for pid

< -1 wait for any child process whose process
group ID is equal to the absolute value of
pid.

-1 wait for any child process; this is the same
behaviour that the wait function exhibits.

0 wait for any child process whose process
group ID is equal to that of the calling
process.

> 0 wait for the child whose process ID is equal
to the value of pid.

Note

Specifying -1 as the pid is equivalent to the functionality pcntl_wait() provides (minus
options).

status

pcntl_waitpid() will store status information in the status parameter which can be
evaluated using the following functions: pcntl_wifexited(), pcntl_wifstopped(),
pcntl_wifsignaled(), pcntl_wexitstatus(), pcntl_wtermsig() and pcntl_wstopsig().

options

The value of options is the value of zero or more of the following two global constants OR
'ed together:

possible values for options

WNOHANG return immediately if no child has exited.

WUNTRACED return for children which are stopped, and
whose status has not been reported.

Return Values

pcntl_waitpid() returns the process ID of the child which exited, -1 on error or zero if
WNOHANG was used and no child was available

See Also

• pcntl_fork()
• pcntl_signal()
• pcntl_wifexited()
• pcntl_wifstopped()
• pcntl_wifsignaled()
• pcntl_wexitstatus()
• pcntl_wtermsig()
• pcntl_wstopsig()

pcntl_wexitstatus

pcntl_wexitstatus -- Returns the return code of a terminated child

Description

int pcntl_wexitstatus (int $status)

Returns the return code of a terminated child. This function is only useful if pcntl_wifexited()
returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the return code, as an integer.

See Also

• pcntl_waitpid()
• pcntl_wifexited()

pcntl_wifexited

pcntl_wifexited -- Checks if status code represents a normal exit

Description

bool pcntl_wifexited (int $status)

Checks whether the child status code represents a normal exit.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child status code represents a normal exit, FALSE otherwise.

See Also

• pcntl_waitpid()
• pcntl_wexitstatus()

pcntl_wifsignaled

pcntl_wifsignaled -- Checks whether the status code represents a termination due to a signal

Description

bool pcntl_wifsignaled (int $status)

Checks whether the child process exited because of a signal which was not caught.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child process exited because of a signal which was not caught, FALSE
otherwise.

See Also

• pcntl_waitpid()
• pcntl_signal()

pcntl_wifstopped

pcntl_wifstopped -- Checks whether the child process is currently stopped

Description

bool pcntl_wifstopped (int $status)

Checks whether the child process which caused the return is currently stopped; this is only
possible if the call to pcntl_waitpid() was done using the option WUNTRACED.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child process which caused the return is currently stopped, FALSE
otherwise.

See Also

• pcntl_waitpid()

pcntl_wstopsig

pcntl_wstopsig -- Returns the signal which caused the child to stop

Description

int pcntl_wstopsig (int $status)

Returns the number of the signal which caused the child to stop. This function is only useful if
pcntl_wifstopped() returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the signal number.

See Also

• pcntl_waitpid()
• pcntl_wifstopped()

pcntl_wtermsig

pcntl_wtermsig -- Returns the signal which caused the child to terminate

Description

int pcntl_wtermsig (int $status)

Returns the number of the signal that caused the child process to terminate. This function is
only useful if pcntl_wifsignaled() returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the signal number, as an integer.

See Also

• pcntl_waitpid()
• pcntl_signal()
• pcntl_wifsignaled()

	PCNTL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Process Control Example

	PCNTL Functions
	pcntl_alarm
	pcntl_exec
	pcntl_fork
	pcntl_getpriority
	pcntl_setpriority
	pcntl_signal
	pcntl_wait
	pcntl_waitpid
	pcntl_wexitstatus
	pcntl_wifexited
	pcntl_wifsignaled
	pcntl_wifstopped
	pcntl_wstopsig
	pcntl_wtermsig

