Language Reference

Basic syntax

Escaping from HTML

When PHP parses a file, it looks for opening and closing tags, which tell PHP to start and
stop interpreting the code between them. Parsing in this manner allows php to be
embedded in all sorts of different documents, as everything outside of a pair of opening
and closing tags is ignored by the PHP parser. Most of the time you will see php
embedded in HTML documents, as in this example.

<p>This is going to be ignored. </ p>

<?php echo "Wiile this is going to be parsed.'; ?>
<p>This will also be ignored. </ p>

You can also use more advanced structures:

Example #1 - Advanced escaping

<?php

i f ($expression) {
?>
This is true.
<?php

} else {
?>
This is fal se.
<?php

}

?>

This works as expected, because when PHP hits the ?> closing tags, it simply starts

course, but for outputting large blocks of text, dropping out of PHP parsing mode is
generally more efficient than sending all of the text through echo() or print().

There are four different pairs of opening and closing tags which can be used in php. Two
of those, <?php ?> and <script language="php"> </script>, are always available. The other
two are short tags and ASP style tags, and can be turned on and off from the php.ini
configuration file. As such, while some people find short tags and ASP style tags
convenient, they are less portable, and generally not recommended.

Note

Also note that if you are embedding PHP within XML or XHTML you will need to use
the <?php ?> tags to remain compliant with standards.

Example #2 - PHP Opening and Closing Tags

1. <?php echo "if you want to serve XHTM. or XM. docunents, do like this'
?>

2. <script |anguage="php">
echo 'some editors (like FrontPage) don\'t
i ke processing instructions';
</script>

3. <? echo 'this is the sinplest, an SGW processing instruction'; ?>
<?= expression ?> This is a shortcut for "<? echo expression ?>"

4. <%echo 'You nmay optionally use ASP-style tags'; %
<% S$variable; # This is a shortcut for "<%echo . . ." %

While the tags seen in examples one and two are both always available, example one is
the most commonly used, and recommended, of the two.

Short tags (example three) are only available when they are enabled via the
short_open_tag php.ini configuration file directive, or if php was configured with the
--enable-short-tags option.

ASP style tags (example four) are only available when they are enabled via the asp_tags
php.ini configuration file directive.

Note

Using short tags should be avoided when developing applications or libraries that are
meant for redistribution, or deployment on PHP servers which are not under your
control, because short tags may not be supported on the target server. For portable,
redistributable code, be sure not to use short tags.

Instruction separation

As in C or Perl, PHP requires instructions to be terminated with a semicolon at the end of
each statement. The closing tag of a block of PHP code automatically implies a semicolon;
you do not need to have a semicolon terminating the last line of a PHP block. The closing
tag for the block will include the immediately trailing newline if one is present.

<?php
echo 'This is a test';
?>

<?php echo 'This is a test' ?>

<?php echo 'W onitted the last closing tag'

Note

The closing tag of a PHP block at the end of a file is optional, and in some cases
omitting it is helpful when using include() or require(), so unwanted whitespace will
not occur at the end of files, and you will still be able to add headers to the response
later. It is also handy if you use output buffering, and would not like to see added
unwanted whitespace at the end of the parts generated by the included files.

Comments

PHP supports 'C', 'C++' and Unix shell-style (Perl style) comments. For example:

<?php
echo '"This is a test'; // This is a one-line c++ style comment
/* This is a multi |ine comrent

yet another |ine of comment */
echo '"This is yet another test';
echo "One Final Test'; # This is a one-line shell-style coment
?>

The "one-line" comment styles only comment to the end of the line or the current block of
PHP code, whichever comes first. This means that HTML code after // ... ?>or # ... 7>
WILL be printed: ?> breaks out of PHP mode and returns to HTML mode, and // or #
cannot influence that. If the asp_tags configuration directive is enabled, it behaves the
same with // %> and # %>. However, the </script> tag doesn't break out of PHP mode in a
one-line comment.

<h1>This is an <?php # echo 'sinple';?> exanple.</hl>
<p>The header above will say 'This is an exanple'.</p>

'C' style comments end at the first */ encountered. Make sure you don't nest 'C’ style
comments. It is easy to make this mistake if you are trying to comment out a large block of
code.

<?php
/*
echo "This is a test'; /* This coment will cause a problem */
*
/
?>

Types

Introduction

PHP supports eight primitive types.

Four scalar types:

And finally two special types:

e resource

* number

+ callback

And the pseudo-variable $. ...

Some references to the type "double” may remain in the manual. Consider double the
same as float; the two names exist only for historic reasons.

The type of a variable is not usually set by the programmer; rather, it is decided at runtime
by PHP depending on the context in which that variable is used.

Note

To get a human-readable representation of a type for debugging, use the gettype()
function. To check for a certain type, do not use gettype(), but rather the is_ type
functions. Some examples:

<?php

$a_bool = TRUE; /1 a bool ean
$a_str = "foo"; [/ a string
$a_str2 = 'foo'; // a string
$an_int = 12; /1 an integer

echo gettype($a_bool); // prints out: bool ean
echo gettype($a_str); [/ prints out: string

/1 1f this is an integer, increnent it by four
if (is_int($an_int)) {

$an_int += 4;
}

/1 1f $bool is a string, print it out
/1 (does not print out anything)
if (is_string(%$a_bool)) {
echo "String: $a_bool"
}

?>

function on it.

Note that a variable may be evaluated with different values in certain situations, depending

type comparison tables may also be useful, as they show examples of various type-related
comparisons.

Booleans

FALSE.

Note

Syntax

<?php
$foo = True; // assign the value TRUE to $foo
?>

<?php

/1l == is an operator which test

/'l equality and returns a bool ean

if ($action == "show version") {
echo "The version is 1.23"

}
/1 this is not necessary..

i f ($show separators == TRUE) {
echo "<hr>\n";

}

/'l ...because instead, this can be used:
if ($show separators) {

echo "<hr>\n";
}

?>

Converting to boolean

» SimpleXML objects created from empty tags

Warning

-1 is considered TRUE, like any other non-zero (whether negative or positive) number!

<?php

var _dunp((bool) ""); /'l bool (fal se)
var _dunp((bool) 1); /'l bool (true)
var _dunp((bool) -2); /'l bool (true)
var _dunp((bool) "foo"); /'l bool (true)
var _dunp((bool) 2.3e5); /'l bool (true)

var _dunp((bool) array(12)); // bool (true)
var _dunp((bool) array()); /'l bool (fal se)

var _dunp((bool) "false"); /'l bool (true)
?>

Integers

See also:

* Arbitrary length integer / GMP
* Floating point numbers

» Arbitrary precision / BCMath

Syntax

notation, optionally preceded by a sign (- or +).

To use octal notation, precede the number with a 0 (zero). To use hexadecimal notation
precede the number with Ox.

Example #3 - Integer literals

<?php

$a = 1234; // deci mal nunber

$a = -123; // a negative nunber

$a = 0123; // octal nunber (equivalent to 83 decinal)

$a = Ox1A; // hexadeci nal nunber (equivalent to 26 decinal)

?>

deci nal : [1-9][0-9]*
| O

hexadeci mal : O[xX][0-9a-fA-F] +

oct al . 0[0-7]+

i nt eger . [+-]?deci mal
| [+-]?hexadeci nal
| [+-]7?octal

using the constant PHP_INT_MAX since PHP 4.4.0 and PHP 5.0.5.

Warning

ignored.

Example #4 - Octal weirdness

<?php
var _dunp(01090); // 010 octal = 8 deci nal
?>

Integer overflow

<?php

$l arge_nunber = 2147483647;
var _dunp($l arge_nunber);

/1 output: int(2147483647)

$l arge_nunber = 2147483648;
var _dunp($l arge_nunber);
/1 output: float(2147483648)

/1l it's true also for hexadeci mal specified integers between 27231 and 2"32- 1:

var _dunp(Oxffffffff);
/'l output: float(4294967295)

/1 this doesn't go for hexadecinmal specified integers above 2732-1
var _dunp(0x100000000);
/] output: int(2147483647)

$mllion = 1000000;

$l arge_nunber = 50000 * $million;
var _dunp($l arge_nunber);

/1 output: float(50000000000)

?>

Warning

Unfortunately, there was a bug in PHP which caused this to not always work correctly
when negative numbers were involved. For example, the result of -50000 * $million is
-429496728. However, when both operands were positive, there was no problem.

This was fixed in PHP 4.1.0.

over rounding.

<?php

var_dunp(25/7); /1 float(3.5714285714286)
var_dunp((int) (25/7)); // int(3)

var _dunmp(round(25/7)); [/ float(4)

?>

Converting to integer

See also: type-juggling.

From booleans

warning, not even a notice will be issued when this happens!

Warning

results.

<?php
echo (int) ((0.1+40.7) * 10); // echoes 7!
?>

See also the warning about float precision.

From strings

From other types

Caution

observed behaviour, as it can change without notice.

Floating point numbers

Floating point numbers (also known as "floats"”, "doubles", or "real numbers") can be
specified using any of the following syntaxes:

<?php

$a = 1.234;
$b = 1. 2e3;
$c = 7E-10;
?>

Formally:

LNUM [0-9] +
DNUM ([0-9]*[\.1{LNUM) | ({LNUMH[\.][0-9]*)
EXPONENT _DNUM (({LNUMp | {DNUM}) [eE][+-]? {LNUM)

The size of a float is platform-dependent, although a maximum of ~1.8e308 with a
precision of roughly 14 decimal digits is a common value (the 64 bit IEEE format).

Warning

Floating point precision

It is typical that simple decimal fractions like 0.1 or 0.7 cannot be converted into their
internal binary counterparts without a small loss of precision. This can lead to
confusing results: for example, floor((0.1+0.7)*10) will usually return 7 instead of the
expected 8, since the internal representation will be something like 7.9.

This is due to the fact that it is impossible to express some fractions in decimal
notation with a finite number of digits. For instance, 1/3 in decimal form becomes 0.3.

So never trust floating number results to the last digit, and never compare floating point
numbers for equality. If higher precision is necessary, the arbitrary precision math
functions and gmp functions are available.

Converting to float

there are exactly 256 different characters possible. This also implies that PHP has no
native support of Unicode. See utf8_encode() and utf8 decode() for some basic Unicode
functionality.

Note

running.

Syntax

[]
0,
3
=1
D
Q

c
o
—+
®
a

°
o
o
c
o
o
o)
c
e
—
®
a

L]
>
@
-
@
Q
o
o
%)
<
>
=
Q
X

.
>
o
=
Q.
o
(@]
(7))

<
>
—
QD
X

—~
(23
>
(@]
(¢]
U
I
o
o
w
(=)

~

attempting to escape any other character will print the backslash too.

Note

<?php
echo "this is a sinple string'

echo ' You can al so have enbedded newl ines in
strings this way as it is

okay to do'
/1 Qutputs: Arnold once said: "I'Il be back"
echo '"Arnold once said: "I\'Il be back"'

/1 Qutputs: You deleted C*.*?
echo 'You deleted C* *?

/1 Qutputs: You deleted C*.*?
echo ' You deleted C*. *?

/1 Qutputs: This will not expand: \n a new ine
echo 'This will not expand: \n a newine'

I/ Qutputs: Variables do not $expand $either
echo 'Variabl es do not $expand $either';
?>

Double quoted

special characters:

Escaped characters

Sequence Meaning

\n linefeed (LF or Ox0A (10) in ASCII)

\r carriage return (CR or 0xOD (13) in ASCII)

\t horizontal tab (HT or 0x09 (9) in ASCII)

\v vertical tab (VT or 0xOB (11) in ASCII) (since
PHP 5.2.5)

\f form feed (FF or OXxOC (12) in ASCII) (since
PHP 5.2.5)

\\ backslash

\$ dollar sign

\" double-quote

\[0-7]{1,3} the sequence of characters matching the
regular expression is a character in octal
notation

\x[0-9A-Fa-f]{1,2} the sequence of characters matching the
regular expression is a character in
hexadecimal notation

close the quotation.

The closing identifier must begin in the first column of the line. Also, the identifier must
follow the same naming rules as any other label in PHP: it must contain only alphanumeric
characters and underscores, and must start with a non-digit character or underscore.

Warning

It is very important to note that the line with the closing identifier must contain no other
characters, except possibly a semicolon (;). That means especially that the identifier
may not be indented, and there may not be any spaces or tabs before or after the
semicolon. It's also important to realize that the first character before the closing
identifier must be a newline as defined by the local operating system. This is \n on
UNIX systems, including Mac OS X. The closing delimiter (possibly followed by a
semicolon) must also be followed by a newline.

If this rule is broken and the closing identifier is not "clean”, it will not be considered a

closing identifier, and PHP will continue looking for one. If a proper closing identifier is
not found before the end of the current file, a parse error will result at the last line.

Example #5 - Invalid example

<?php
class foo {
public $bar = <<<EOT
bar
ECT;
}

?>

means that quotes in a heredoc do not need to be escaped, but the escape codes listed
above can still be used. Variables are expanded, but the same care must be taken when

Example #6 - Heredoc string quoting example

<?php

$str = <<<EOD

Exampl e of string
spanning nultiple lines
usi ng heredoc synt ax.
ECD;

/* More conplex exanple, with variables. */
class foo
{

var $f oo;

var $bar;

function foo()
{
' Foo';

$t hi s->f oo ;
array('Barl', 'Bar2', 'Bar3');

$t hi s- >bar

}

$foo = new foo();
$name = ' MyNane' ;

echo <<<ECOT

My name is "$nane". | amprinting sone $foo->foo.
Now, | am printing sonme {$foo->bar[1]}.

This should print a capital '"A: \x41

EOT;

?>

The above example will output:

My nane is "MyNane". | amprinting sone Foo.
Now, | am printing sone Bar?2.
This should print a capital "A: A

Note

Heredoc support was added in PHP 4.

Nowdoc

Nowdocs are to single-quoted strings what heredocs are to double-quoted strings. A
nowdoc is specified similarly to a heredoc, but no parsing is done inside a nowdoc. The
construct is ideal for embedding PHP code or other large blocks of text without the need
for escaping. It shares some features in common with the SGML <!/[CDATA]]]> construct,
in that it declares a block of text which is not for parsing.

A nowdoc is identified with the same <<< seqeuence used for heredocs, but the identifier
which follows is enclosed in single quotes, e.g. <<<'EOT". All the rules for heredoc
identifiers also apply to nowdoc identifiers, especially those regarding the appearance of
the closing identifier.

Example #7 - Nowdoc string quoting example

<?php

$str = <<<' EOD

Exanpl e of string
spanning rmultiple Iines
usi ng nowdoc synt ax.
EQD;

/* More conpl ex exanple, with variables. */
class foo
{

public $foo;

public $bar;

function foo()
{
$t hi s->f oo
$t hi s- >bar

' Foo';
array('Barl', 'Bar2', 'Bar3');

}

$foo = new foo();
$name = ' MyNane' ;

echo <<<' EOT'

My name is "$nane". | amprinting sone $foo->foo.
Now, | am printing sonme {$foo->bar[1]}.

This should not print a capital 'A: \x41

EOT;

?>

The above example will output:

My nanme is "$name". | amprinting sone $foo->foo
Now, | amprinting sonme {$foo->bar[1]}.
This should not print a capital 'A: \x41

Note

Unlike heredocs, nowdocs can be used in any static data context. The typical example
is initializing class members or constants:

Example #8 - Static data example

<?php
class foo {
public $bar = <<<' ECQT
bar
ECT;
}

?>

Note

Nowdoc support was added in PHP 5.3.0.

Variable parsing

The complex syntax was introduced in PHP 4, and can be recognised by the curly braces
surrounding the expression.

Simple syntax
If a dollar sign ($) is encountered, the parser will greedily take as many tokens as possible

to form a valid variable name. Enclose the variable name in curly braces to explicitly
specify the end of the name.

<?php

$beer = ' Hei neken';

echo "$beer's taste is great"; // works; "'" is an invalid character for
vari abl e nanes

echo "He drank sone $beers"”; // won't work; 's' is a valid character for

vari abl e nanes
echo "He drank sone ${beer}s"; // works

echo "He drank sone {$beer}s"; // works
?>

closing square bracket (]) marks the end of the index. The same rules apply to object
properties as to simple variables.

<?php

/'l These exanples are specific to using arrays inside of strings.

/1 When outside of a string, always quote array string keys and do not use
/'l {braces}.

/1 Show all errors
error_reporting(E_ALL);

$fruits = array(' strawberry' => 'red', 'banana' => 'yellow);

/1 Works, but note that this works differently outside a string
echo "A banana is $fruits[banana]."

/1 \Works
echo "A banana is {$fruits['banana']}.";

/1 Works, but PHP | ooks for a constant naned banana first, as described bel ow
echo "A banana is {$fruits[banana]}."

/1 Won't work, use braces. This results in a parse error
echo "A banana is $fruits[' banana']."

/1 \Works
echo "A banana is " . $fruits['banana'] . ".";

/1 Wrks
echo "This square is $square->w dth neters broad."

/1l Wn't work. For a solution, see the conplex syntax.
echo "This square is $square->w dth0OO centineters broad."
?>

For anything more complex, you should use the complex syntax.

Complex (curly) syntax

This isn't called complex because the syntax is complex, but because it allows for the use
of complex expressions.

it in { and }. Since { can not be escaped, this syntax will only be recognised when the $
immediately follows the {. Use {\$to get a literal {$. Some examples to make it clear:

<?php
/'l Show all errors
error_reporting(E_ALL);

$great = 'fantastic';

/1 Won't work, outputs: This is { fantastic}
echo "This is { $great}";

/1 Works, outputs: This is fantastic
echo "This is {$great}";
echo "This is ${great}";

/'l \Works
echo "This square is {$square->w dth}00 centineters broad."

/'l \Works
echo "This works: {$arr[4][3]}";

/1 This is wong for the sanme reason as $foo[bar] is wong outside a string.
/1 In other words, it will still work, but only because PHP first |ooks for a
/'l constant nanmed foo; an error of |evel E_NOTICE (undefined constant) wll be
/1 thrown.

echo "This is wong: {$arr[foo][3]}";

/1 Works. Wien using multi-dinensional arrays, always use braces around arrays
/1 when inside of strings
echo "This works: {$arr['foo"'][3]}";

/'l \Wbrks.
echo "This works: " . $arr['foo'][3];

echo "This works too: {$obj->val ues[3]->nane}";
echo "This is the value of the var naned $nane: {${$nane}}"

echo "This is the value of the var nanmed by the return value of getNane():
{${get Name()}}";

echo "This is the value of the var named by the return val ue of
\ $obj ect - >get Nane(): {${$obj ect->get Name()}}";
?>

Note

Functions and method calls inside {$} work since PHP 5.

String access and modification by character

However, this syntax is deprecated as of PHP 6. Use square brackets instead.

Example #9 - Some string examples

<?php
[/l Get the first character of a string
$str = "This is a test.';

$first = $str[0];

/1 Get the third character of a string
$third = $str[2];

/1 Get the last character of a string.
$str = 'This is still a test.';
$last = $str[strlen($str)-1];

/1 Modify the Iast character of a string

$str = 'Look at the sea';
$strstrlen($str)-1] = "'e';
?>

Note

Accessing variables of other types using [] or {} silently returns NULL.

Useful functions and operators

See the string functions section for general functions, and the regular expression functions
or the Perl-compatible regular expression functions for advanced find & replace
functionality.

There are also functions for URL strings, and functions to encrypt/decrypt strings (mcrypt
and mhash).

Finally, see also the character type functions.

Converting to string

notation (4.1E+6).

Note

The decimal point character is defined in the script's locale (category LC_NUMERIC).
See the setlocale() function.

function.

NULL is always converted to an empty string.

provide any useful information about the value beyond its type. See the functions print_r()
and var_dump() for more effective means of inspecting the contents of these types.

called serialization, and is performed by the serialize() function. If the PHP engine was
built with WDDX support, PHP values can also be serialized as well-formed XML text.

String conversion to numbers

The string will be evaluated as a float if it contains any of the characters '.', 'e', or 'E'.

data, this will be the value used. Otherwise, the value will be 0 (zero). Valid numeric data
is an optional sign, followed by one or more digits (optionally containing a decimal point),
followed by an optional exponent. The exponent is an 'e' or 'E' followed by one or more
digits.

<?php

$foo = 1 + "10.5"; /1l $foo is float (11.5)
$foo = 1 + "-1.3e3"; /1l $foo is float (-1299)
$foo = 1 + "bob-1.3e3"; /1l $foo is integer (1)
$foo = 1 + "bob3"; /1l $foo is integer (1)
$foo = 1 + "10 Smal |l Pigs"; /1 $foo is integer (11)
$foo = 4 + "10.2 Little Piggies"; // $foo is float (14.2)
$foo = "10.0 pigs " + 1; /1 $foo is float (11)
$foo = "10.0 pigs " + 1.0; /1 $foo is float (11)

?>

For more information on this conversion, see the Unix manual page for strtod(3).

To test any of the examples in this section, cut and paste the examples and insert the
following line to see what's going on:

<?php
echo "\ $f oo==%$foo0; type is " . gettype ($foo) . "
\n";
?>

Do not expect to get the code of one character by converting it to integer, as is done in C.
Use the ord() and chr() functions to convert between ASCII codes and characters.

Arrays

keys. This type is optimized for several different uses; it can be treated as an array, list
(vector), hash table (an implementation of a map), dictionary, collection, stack, queue, and

are also possible.

Explanation of those data structures is beyond the scope of this manual, but at least one
example is provided for each of them. For more information, look towards the considerable
literature that exists about this broad topic.

Syntax

Specifying with array()

number of comma-separated key => value pairs.

array(key => value

)
/1 key may only be an Integer or string

/'l value may be any val ue of any type

<?php

$arr = array("foo" => "bar", 12 => true);
echo $arr["foo"]; // bar

echo $arr[12]; /111

?>

A value can be any PHP type.

<?php

$arr = array("sonmearray" => array(6 => 5, 13 => 9, "a" => 42));
echo $arr["sonearray"]|[6]; /15

echo $arr["sonmearray"][13]; /1 9

echo $arr["sonearray"]["a"]; [/ 42

?>

new key will be that value plus 1. If a key that already has an assigned value is specified,
that value will be overwritten.

<?php
/1l This array is the sane as ..
array(5 => 43, 32, 56, "b" => 12);

/[l ...this array
array(5 => 43, 6 => 32, 7 => 56, "b" => 12);
?>

Warning

negative would create a new key as described above. Since PHP 4.3.0, the new key
will be 0.

empty string as a key will create (or overwrite) a key with the empty string and its value; it
is not the same as using empty brackets.

offset type.

Creating/modifying with square bracket syntax

also be omitted, resulting in an empty pair of brackets ([]).

$arr[key] = value;
$arr[] = value;

/'l value may be any val ue of any type

If $arr doesn't exist yet, it will be created, so this is also an alternative way to create an

remove a key/value pair, call the unset() function on it.

<?php
$arr = array(5 => 1, 12 => 2);

$arr[] = 56; Il This is the same as $arr[13] = 56;
/] at this point of the script

$arr["x"] = 42; // This adds a new el enent to
/'l the array with key "x"

unset ($arr[5]); // This renoves the elenent fromthe array

unset ($arr); /1l This deletes the whole array
?>

Note

yet, the key will be O (zero). If a key that already has a value is specified, that value will
be overwritten.

re-indexed. The following example illustrates:

<?php

/'l Create a sinple array.
Sarray = array(1, 2, 3, 4, 5);
print_r($array);

/1 Now del ete every item but |leave the array itself intact:
foreach ($array as $i => $val ue) {
unset ($array[$i]);

}
print_r($array);

/1 Append an item (note that the new key is 5, instead of 0).
Sarray[] = 6;
print_r($array);

/1 Re-index:

$array = array_val ues($array);
$array[] = 7;

print_r($array);

?>

The above example will output:

Array

(
[0] =>1
[1] => 2
[2] =>3
[3] =>4
[4] => 5

)

Array

(

)

Array

(
[5] =>6

)

Array

(

[0] =>6

[1] => 7

Useful functions

There are quite a few useful functions for working with arrays. See the array functions
section.

Note

reindexed using the array_values() function.

<?php
$a = array(1l => 'one', 2 => "two', 3 => "three');
unset ($a[2]) ;

/* will produce an array that woul d have been defined as
$a = array(1l => 'one', 3 => "three');
and NOT

$a = array(1l => 'one', 2 =>"three');
*/

$b = array_val ues($a);
/1 Now $b is array(0 => 'one', 1 =>"three')
?>

Array do's and don'ts

Why is $foo[bar] wrong?

Always use quotes around a string literal array index. For example, $foo['bar'] is correct,
while $foo[bar] is not. But why? It is common to encounter this kind of syntax in old scripts:

<?php
$f oo[bar] = 'eneny';
echo $foo[bar];

/1l etc
?>

This is wrong, but it works. The reason is that this code has an undefined constant (bar)

<?php

error_reporting(E_ALL);

ini_set('display _errors', true);

ini_set('htm _errors', false);

/1 Sinple array:

Sarray = array(1, 2);

$count = count (S$array);

for ($i = 0; $i < $count; $i++) {
echo "\ nChecking $i: \n";
echo "Bad: " . $array['$i'] . "\n";
echo "Good: " . $array[$i] . "\n";
echo "Bad: {$array['$i']}\n";
echo "CGood: {$array[$i]}\n";

The above example will output:

Checki ng O:

Notice: Undefined index: $i in /path/to/script.htm on line 9
Bad:

Good: 1

Notice: Undefined index: $i in /path/to/script.htm on line 11
Bad:

Good: 1

Checking 1:

Notice: Undefined index: $i in /path/to/script.htm on line 9
Bad:

Good: 2

Notice: Undefined index: $i in /path/to/script.htm on line 11
Bad:

Good: 2

More examples to demonstrate this behaviour:

<?php
/'l Show all errors
error_reporting(E_ALL);

$arr = array('fruit' => '"apple', 'veggie' => 'carrot');

/'l Correct
print $arr['fruit']; // apple
print $arr['veggie']; // carrot

/'l Incorrect. This works but also throws a PHP error of |evel E NOTICE because
/1 of an undefined constant named fruit

I

/1l Notice: Use of undefined constant fruit - assunmed 'fruit' in...

print $arr[fruit]; /'l apple

/1 This defines a constant to denbnstrate what's going on. The val ue 'veggie€'
/'l is assigned to a constant nanmed fruit.
define('fruit', 'veggie');

/'l Notice the difference now
print $arr['fruit']; // apple
print $arr[fruit]; /'l carrot

/1l The following is okay, as it's inside a string. Constants are not |ooked for
/'l within strings, so no E_NOTICE occurs here
print "Hello Sarr[fruit]"; /1 Hello apple

/'l Wth one exception: braces surrounding arrays within strings allows constants
/'l to be interpreted

print "Hello {$arr[fruit]}"; /'l Hello carrot

print "Hello {Sarr['fruit']}"; [// Hello apple

/1 This will not work, and will result in a parse error, such as:

/'l Parse error: parse error, expecting T_STRING or T VAR ABLE or T_NUM STRI NG
/1l This of course applies to using superglobals in strings as wel

print "Hello $arr["fruit']";

print "Hello $_CET['foo0']";

/' Concatenation is another option
print "Hello " . Sarr['fruit']; // Hello apple
?>

When error_reporting is set to show E_NOTICE level errors (by setting it to E_ALL, for
example), such uses will become immediately visible. By default, error_reporting is set not
to show notices.

expression. This means that code like this works:

<?php
echo $arr[sonefunc($bar)];
?>

This is an example of using a function return value as the array index. PHP also knows
about constants:

<?php
$error _descriptions[E_ERROR] = "A fatal error has occured"

$error_descriptions[E_WARNI NG
$error_descripti ons[E_NOTI CE]
?>

"PHP i ssued a warni ng"
"This is just an infornmal notice";

Note that E_ ERROR is also a valid identifier, just like bar in the first example. But the last
example is in fact the same as writing:

<?php
$error_descriptions[1]
$error _descriptions[2]

$error_descriptions][8]
?>

"A fatal error has occured"
"PHP i ssued a war ni ng"
"This is just an infornmal notice";

because E_ERROR equals 1, etc.

So why is it bad then?

At some point in the future, the PHP team might want to add another constant or keyword,
or a constant in other code may interfere. For example, it is already wrong to use the
words empty and default this way, since they are reserved keywords.

Note

which was converted. In other words, (array)$scalarValue is exactly the same as
array($scalarValue).

properties. The keys are the member variable names, with a few notable exceptions:
private variables have the class name prepended to the variable name; protected variables
have a "*' prepended to the variable name. These prepended values have null bytes on
either side. This can result in some unexpected behaviour:

<?php

class A {
private $A; // This will becone '\0A\ 0A

}

class B extends A {
private $A; // This will becone '\0B\OA
public $AA; // This will becone 'AA

}

var _dunp((array) new B());
?>

The above will appear to have two keys named 'AA’, although one of them is actually
named \OA\OA'.

Examples

The array type in PHP is very versatile. Here are some examples:

<?php
/1 this
$a = array('color' => 'red'

‘"taste’ => 'sweet',

"shape' => 'round'

"nane' => 'apple',

4 /1 key will be O
)

/1 is conpletely equivalent with

$a['color'] = "red'

$a['taste'] = 'sweet';

$a[' shape'] = 'round'

$a[' nane'] = 'apple’;

$a[] = 4; /1 key will be 0
$b[] ="a';

$b[] ="b";

$b[] = "c";

/1 will result inthe array array(0 == 'a" , 1 =>"'b" , 2 =>"¢"),
/[l or sinply array('a', "b'", 'c")

?>

Example #10 - Using array/()

<?php
/1 Array as (property-)map
$map = array('version' => 4,

os => "' Li nux',
"l ang’ => "english",

"short _tags' => true

)

/1 strictly nunerical keys
$array = array(7,

8,
0,
156,
-10
);
/] this is the same as array(0 => 7, 1 => 28, ...)
$swi tching = array(10, // key =0
5 => 6,
3 = 7,
"at =>4,
11, // key = 6 (maxi mum of integer-indices was 5)
'8 => 2, /] key = 8 (integer!)
'02" => 77, Il key = "'02
0 => 12 // the value 10 will be overwitten by 12
);
/1 enmpty array
$enpty = array();
?>
Example #11 - Collection
<?php
$colors = array('red', "blue', '"green', 'yellow);

foreach ($colors as $color) {
echo "Do you |ike $color?\n";
}

?>
The above example will output:

Do you like red?
Do you like blue?
Do you like green?
Do you like yell ow?

reference. Before that, a workaround is necessary:

Example #12 - Collection

<?php

/1 PHP 5

foreach ($colors as &$color) {
$col or = strtoupper($col or);

}

unset ($color); /* ensure that following wites to
$color will not nmodify the last array el enent */

/1 Wbrkaround for ol der versions
foreach ($colors as $key => $color) {
$col or s[$key] = strtoupper ($col or);

}

print_r($colors);
?>

The above example will output:

Array

(
[0] == RED
[1] => BLUE
[2] => GREEN
[3] => YELLOW

This example creates a one-based array.

Example #13 - One-based index

<?php

$firstquarter = array(l => 'January', 'February', 'March');
print_r($firstquarter);

?>

The above example will output:

Array

(
[1] => 'January'
[2] => 'February
[3] => '"March'

Example #14 - Filling an array

<?php

/1 fill an array with all itens froma directory

$handl e = opendir('.");

while (false !'== ($file = readdir($handle))) {
$files[] = $file;

}

cl osedir ($handl e);

2>

array functions section for more information. The count() function can be used to count the

Example #15 - Sorting an array

<?php
sort($files);
print_r($files);
?>

Example #16 - Recursive and multi-dimensional arrays

<?php

$fruits = array ("fruits" => array ("a" => "orange",
"b" => "banana",
"c" => "apple"

),
“nunbers" => array (1
2
3,
4,
5
6
),
"hol es” => array ("first",
5 => "second",
“third"
)

)

/1 Sonme exanples to address values in the array above
echo $fruits["holes"][5]; /1 prints "second"
echo $fruits["fruits"]["a"]; // prints "orange"
unset ($fruits["holes"][0]); [/ renove "first"

/1l Create a new nulti-dinensional array
$j ui ces["appl e"]["green"] = "good";
?>

<?php
$arrl = array(2, 3);
$arr2 = S$arri;

$arr2[] = 4; /] $arr2 is changed,
Il $arrl is still array(2, 3)

$arr3 = &Sarr1;

$arr3[] = 4; // now $arrl and $arr3 are the sane
?>

Objects

Object Initialization

To create a new object, use the new statement to instantiate a class:

<?php
class foo

{

function do_foo()

{
}

echo "Doing foo.";

}

$bar = new f oo;
$bar - >do_f oo();
?>

Converting to object

If an object is converted to an object, it is not modified. If a value of any other type is
converted to an object, a new instance of the stdClass built-in class is created. If the value
named by keys, and corresponding values. i:-E)-r"any other value, a member variable named
scalar will contain the value.

<?php

$obj = (object) 'ciaod

echo $obj->scalar; [// outputs 'ciao
?>

Resources

Note

See also the get_resource_type() function.

Converting to resource

Freeing resources

Thanks to the reference-counting system introduced with PHP 4's Zend Engine, a

garbage collector. For this reason, it is rarely necessary to free the memory manually.

Note

Persistent database links are an exception to this rule. They are not destroyed by the
garbage collector. See the persistent connections section for more information.

NULL

The special NULL value represents a variable with no value. NULL is the only possible

* it has been assigned the constant NULL.
« it has not been set to any value yet.

it has been unset().

Syntax

<?php
$var = NULL;
?>

See also the functions is_null() and unset().

Pseudo-types and variables used in this documentation

mixed

mixed indicates that a parameter may accept multiple (but not necessarily all) types.

callback

Some functions like call_user_func() or usort() accept user-defined callback functions as a

be used, except language constructs such as: array(), echo(), empty(), eval(), exit(), isset()
, list(), print() or unset().

Apart from common user-defined function, create_function() can also be used to create an
anonymous callback function.

Example #17 - Callback function examples

<?php

/1 An exanpl e cal |l back function
function my_cal |l back_function() {

echo "hello world!';

}

/1 An exanpl e cal | back net hod
class Myd ass {
static function nyCall backMet hod() {
echo "Hello World!'";

}
}

/1 Type 1. Sinple callback
call _user_func('my_call back function');

/1 Type 2: Static class nethod call
call _user _func(array(' Myd ass', 'nyCall backMethod'));

/1 Type 3: Object nethod call
$obj = new Myd ass();
cal |l _user_func(array($obj, 'nyCallbackMethod'));

[l Type 4: Static class method call (As of PHP 5.2.3)
call _user_func(' MyC ass: : nyCal | backMet hod') ;

/1 Type 5. Relative static class nethod call (As of PHP 5.3.0)
class A {
public static function who() ({
echo "A\n";

}
}

class B extends A {
public static function who() {

echo "B\n";
}
}
call _user_func(array('B, 'parent::who')); // A
?>
Note

In PHP4, it was necessary to use a reference to create a callback that points to the

void

void as a return type means that the return value is useless. void in a parameter list means
that the function doesn't accept any parameters.

$. .. in function prototypes means and so on. This variable name is used when a function

can take an endless number of arguments.

Type Juggling

PHP does not require (or support) explicit type definition in variable declaration; a
variable's type is determined by the context in which the variable is used. That is to say, if

change is in how the operands are evaluated and what the type of the expression itself is.

<?php

$foo = "0"; // $foo is string (ASCI| 48)

$f oo += 2; /1 $foo is now an integer (2)

$foo = $foo + 1.3; // $foo is now a float (3.3)

$foo =5 + "10 Little Piggies"; // $foo is integer (15)
$foo = 5 + "10 Smal |l Pigs"; /1 $foo is integer (15)
?>

change the type of a variable, see the settype() function.

To test any of the examples in this section, use the var_dump() function.

Note

<?php

$a ='car'; // $ais a string

$a[0] = 'b'; /1 $a is still a string
echo $a; /'l bar

?>

Type Casting

Type casting in PHP works much as it does in C: the name of the desired type is written in
parentheses before the variable which is to be cast.

<?php

$foo = 10; /1 $foo is an integer

$bar = (bool ean) $foo; /] $bar is a bool ean
?>

The casts allowed are:

(binary) casting and b prefix forward support was added in PHP 5.2.1

Note that tabs and spaces are allowed inside the parentheses, so the following are
functionally equivalent:

<?php

$foo = (int) $bar;
$foo = (int) $bar;
?>

<?php
$bi nary = (binary)$string;
$binary = b"binary string"
?>

Note

double quotes.

<?php
$foo = 10; /1 $foo is an integer

$str
$f st

" $f 00" ; /1 $str is a string
(string) $foo; // $fst is also a string

/1 This prints out that "they are the sane"
if ($fst === $str) {

echo "they are the same";
}

?>

It may not be obvious exactly what will happen when casting between certain types. For
more information, see these sections:

* The type comparison tables

Variables

Basics

Variables in PHP are represented by a dollar sign followed by the name of the variable.
The variable name is case-sensitive.

Variable names follow the same rules as other labels in PHP. A valid variable name starts
with a letter or underscore, followed by any number of letters, numbers, or underscores.
As a regular expression, it would be expressed thus:
'la-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*"

Note

For our purposes here, a letter is a-z, A-Z, and the ASCII characters from 127 through
255 (0x7f-0xff).

Note

$this is a special variable that can't be assigned.

Tip

See also the Userland Naming Guide.

For information on variable related functions, see the Variable Functions Reference.

<?php

$var = 'Bob';

$var = 'Joe';

echo "$var, $var"; /'l outputs "Bob, Joe"

$4site = 'not yet'; /1 invalid; starts with a nunber
$_4site = '"not yet'; /1 valid; starts with an underscore
$tayte = 'mansi kka'; /1 valid; "& 1is (Extended) ASCI| 228.
?>

By default, variables are always assigned by value. That is to say, when you assign an
expression to a variable, the entire value of the original expression is copied into the
destination variable. This means, for instance, that after assigning one variable's value to

another, changing one of those variables will have no effect on the other. For more

means that the new variable simply references (in other words, "becomes an alias for" or
"points to") the original variable. Changes to the new variable affect the original, and vice
versa.

To assign by reference, simply prepend an ampersand (&) to the beginning of the variable
which is being assigned (the source variable). For instance, the following code snippet
outputs 'My name is Bob' twice:

<?php

$foo = ' Bob'; /] Assign the value 'Bob' to $foo
$bar = &$foo; /'l Reference $foo via $bar

$bar = "My nane is $bar"; // Alter $bar..

echo $bar;

echo $foo; /1l $foo is altered too.

?>

One important thing to note is that only named variables may be assigned by reference.

<?php
$foo = 25
$bar = &3$f oo; /1 This is a valid assignnent.
$bar = &24 * 7); /] Invalid; references an unnaned expression
function test()
{
return 25;
}
$bar = &test(); /1 lnvalid.
?>

It is not necessary to initialize variables in PHP however it is a very good practice.
Uninitialized variables have a default value of their type - FALSE, zero, empty string or an
empty array.

Example #18 - Default values of uninitialized variables

<?php

echo ($unset _bool ? "true" : "false"); // false

$unset _int += 25; // 0 + 25 => 25

echo $unset _string . "abc"; // "" . "abc" => "abc"

$unset _array[3] = "def"; // array() + array(3 => "def") => array(3 => "def")
?>

Relying on the default value of an uninitialized variable is problematic in the case of
including one file into another which uses the same variable name. It is also a major
security risk with register_globals turned on. E_NOTICE level error is issued in case of
working with uninitialized variables, however not in the case of appending elements to the
uninitialized array. isset() language construct can be used to detect if a variable has been
already initialized.

Predefined variables

PHP provides a large number of predefined variables to any script which it runs. Many of
these variables, however, cannot be fully documented as they are dependent upon which
server is running, the version and setup of the server, and other factors. Some of these
variables will not be available when PHP is run on the command line. For a listing of these

Warning

In PHP 4.2.0 and later, the default value for the PHP directive register_globals is off.
This is a major change in PHP. Having register_globals off affects the set of predefined
variables available in the global scope. For example, to get DOCUMENT_ROOT you'll
use $ SERVER['DOCUMENT_ROOT'] instead of $DOCUMENT_ROOQT, or

$ GET['id"] from the URL http://www.example.com/test.php?id=3 instead of $id, or
$_ENV['HOME'] instead of $HOME.

For related information on this change, read the configuration entry for register_globals
, the security chapter on Using Register Globals, as well as the PHP » 4.1.0 and
» 4.2.0 Release Announcements.

preferred.

From version 4.1.0 onward, PHP provides an additional set of predefined arrays containing
variables from the web server (if applicable), the environment, and user input. These new
arrays are rather special in that they are automatically global--i.e., automatically available
in every scope. For this reason, they are often known as "superglobals”. (There is no
mechanism in PHP for user-defined superglobals.) The superglobals are listed below;
however, for a listing of their contents and further discussion on PHP predefined variables

directive.

Note

Variable variables

http://www.php.net/releases/4_1_0.php
http://www.php.net/releases/4_2_0.php
http://www.php.net/releases/4_2_0.php

Note

Even though both the superglobal and HTTP_* VARS can exist at the same time; they
are not identical, so modifying one will not change the other.

If certain variables in variables_order are not set, their appropriate PHP predefined arrays
are also left empty.

Variable scope

The scope of a variable is the context within which it is defined. For the most part all PHP
variables only have a single scope. This single scope spans included and required files as
well. For example:

<?php

$a = 1;

i nclude 'b.inc'
?>

Here the $a variable will be available within the included b.inc script. However, within
user-defined functions a local function scope is introduced. Any variable used inside a
function is by default limited to the local function scope. For example:

<?php
$a = 1; /* global scope */

function Test ()

{
}

Test();
?>

echo $a; /* reference to local scope variable */

This script will not produce any output because the echo statement refers to a local
version of the $a variable, and it has not been assigned a value within this scope. You may
notice that this is a little bit different from the C language in that global variables in C are
automatically available to functions unless specifically overridden by a local definition. This
can cause some problems in that people may inadvertently change a global variable. In
PHP global variables must be declared global inside a function if they are going to be used
in that function.

The global keyword

First, an example use of global:

Example #19 - Using global

<?php
$a = 1,
$b = 2;

function Sum()
gl obal $a, $b;

$b = $a + $b;
}

Sum() ;
echo $b;
?>

The above script will output "3". By declaring $a and $b global within the function, all
references to either variable will refer to the global version. There is no limit to the number
of global variables that can be manipulated by a function.

A second way to access variables from the global scope is to use the special PHP-defined
$GLOBALS array. The previous example can be rewritten as:

Example #20 - Using $GLOBALS instead of global

<?php
$a = 1;
$b = 2;

function Sum()
{

}

Sum() ;
echo $b;
?>

$GLOBALS[' b'] = $GLOBALS['a'] + $GLOBALS['b'];

The $GLOBALS array is an associative array with the name of the global variable being
the key and the contents of that variable being the value of the array element. Notice how

example demonstrating the power of superglobals:

Example #21 - Example demonstrating superglobals and scope

<?php

function test gl obal ()
{
/1 Most predefined variables aren't "super" and require
/1 '"global'" to be available to the functions |ocal scope.
gl obal $HTTP_POST_VARS:
echo $HTTP_POST_VARS[' nane'];
/1 Supergl obal s are available in any scope and do
/1 not require 'global'. Superglobals are avail able
/1 as of PHP 4.1.0, and HITP_POST _VARS i s now
/1 deened deprecat ed.
echo $ POST[' nane'];
}
?>

Using static variables

Another important feature of variable scoping is the static variable. A static variable exists
only in a local function scope, but it does not lose its value when program execution leaves
this scope. Consider the following example:

Example #22 - Example demonstrating need for static variables

<?php
function Test()
{
$a = 0;
echo $a;
$a++;

This function is quite useless since every time it is called it sets $a to 0 and prints "0". The
$a ++ which increments the variable serves no purpose since as soon as the function exits
the $a variable disappears. To make a useful counting function which will not lose track of
the current count, the $a variable is declared static:

Example #23 - Example use of static variables

<?php

function Test()

{
static $a = O;
echo $a;
$a++;

?>

Now, every time the Test() function is called it will print the value of $a and increment it.

Static variables also provide one way to deal with recursive functions. A recursive function
is one which calls itself. Care must be taken when writing a recursive function because it is
possible to make it recurse indefinitely. You must make sure you have an adequate way of
terminating the recursion. The following simple function recursively counts to 10, using the

static variable $count to know when to stop:

Example #24 - Static variables with recursive functions

<?php
function Test ()

{

static $count = O;

$count ++;
echo $count;
if ($count < 10) {

Test () ;
}
$count - - ;
}
?>
Note

Static variables may be declared as seen in the examples above. Trying to assign
values to these variables which are the result of expressions will cause a parse error.

Example #25 - Declaring static variables

<?php

function foo(){
static $int = 0; /'l correct
static $int = 1+2; /[l wong (as it is an expression)
static $int = sqrt(121); // wong (as it is an expression too)
$i nt ++
echo $int;

}

?>

References with global and static variables

scope with the global statement actually creates a reference to the global variable. This
can lead to unexpected behaviour which the following example addresses:

<?php

function test _global _ref() {
gl obal $obj ;
$obj = &new stdcl ass;

}

function test _global _noref() {
gl obal $obj ;
$obj = new stdcl ass;

}

test _global _ref();
var _dunp($obj);
test gl obal noref();

var _dunmp($obj);
2>

Executing this example will result in the following output:

NULL
obj ect (stdC ass) (0) {

}

A similar behaviour applies to the static statement. References are not stored statically:

<?php
function &get instance_ref() {
static $obj;

echo 'Static object:

var _dunp($obj);

if (!lisset(%obj)) {
/'l Assign a reference to the static variable
$obj = &new stdcl ass;

}

$obj - >propert y++;

return $obj;

}

function &get instance_noref () {
static $obj;

echo 'Static object:
var _dunmp($obj) ;
if (!lisset(%obj)) {
/1l Assign the object to the static variable

$obj = new stdcl ass;

}
$obj - >pr opert y++;
return $obj;

}

$obj 1 = get _instance ref();

$still _obj1l = get_instance_ref();
echo "\ n";

$obj 2 = get _instance noref();
$still _obj2 = get_instance_noref();
?>

Executing this example will result in the following output:

Static object: NULL
Static object: NULL

Static object: NULL
Static object: object(stdd ass)(1l) {

["property"]=>
int(1)

}

This example demonstrates that when assigning a reference to a static variable, it's not
remembered when you call the &get_instance_ref() function a second time.

Variable variables

Sometimes it is convenient to be able to have variable variable names. That is, a variable
name which can be set and used dynamically. A normal variable is set with a statement
such as:

<?php
$a = 'hello';
?>

A variable variable takes the value of a variable and treats that as the name of a variable.
In the above example, hello, can be used as the name of a variable by using two dollar
signs. i.e.

<?php
$%a = '"world';
?>

At this point two variables have been defined and stored in the PHP symbol tree: $a with
contents "hello" and $hello with contents "world". Therefore, this statement:

<?php
echo "$a ${$a}";

?>

produces the exact same output as:

<?php
echo "$a $hell o";
?>

I.e. they both produce: hello world.

In order to use variable variables with arrays, you have to resolve an ambiguity problem.
That is, if you write $$a[1] then the parser needs to know if you meant to use $a[l] as a
variable, or if you wanted 3a as the variable and then the [1] index from that variable. The
syntax for resolving this ambiguity is: ${$a[1]} for the first case and ${$a}[1] for the second.

Warning

within functions or class methods. The variable $this is also a special variable that
cannot be referenced dynamically.

Variables From External Sources

HTML Forms (GET and POST)

When a form is submitted to a PHP script, the information from that form is automatically
made available to the script. There are many ways to access this information, for example:

Example #26 - A simple HTML form

<form acti on="foo. php" met hod="post">
Nanme: <input type="text" nane="usernane" />

Email: <input type="text" nane="email" />

<i nput type="submt" name="submt" value="Subnmt ne!" />
</ fornp

Depending on your particular setup and personal preferences, there are many ways to
access data from your HTML forms. Some examples are:

Example #27 - Accessing data from a simple POST HTML form

<?php
// Avail able since PHP 4.1.0

echo $ POST[' usernane'];
echo $ REQUEST[' usernane'];

i mport _request _variables('p', 'p_');
echo $p_usernane;

/1 Unavail able since PHP 6. As of PHP 5.0.0, these |long predefined
/1 variables can be disabled with the register |ong arrays directive.

echo $HTTP_POST_VARS[' user nane'];

on. As of
of f.

/1 Available if the PHP directive register_globals
/1 PHP 4.2.0 the default value of register_globals
/1 Using/relying on this nmethod is not preferred.

echo $user nane;
?>

Using a GET form is similar except you'll use the appropriate GET predefined variable
instead. GET also applies to the QUERY_STRING (the information after the '?'in a URL).
So, for example, http://www.example.com/test.php?id=3 contains GET data which is

As shown, before PHP 4.2.0 the default value for register_globals was on. The PHP
community is encouraging all to not rely on this directive as it's preferred to assume it's off
and code accordingly.

Note

The magic_quotes_gpc configuration directive affects Get, Post and Cookie values. If
turned on, value (It's "PHP!") will automagically become (It\'s \"PHP!\"). Escaping is
needed for DB insertion. See also addslashes(), stripslashes() and
magic_quotes_sybase.

PHP also understands arrays in the context of form variables (see the related faq). You
may, for example, group related variables together, or use this feature to retrieve values
from a multiple select input. For example, let's post a form to itself and upon submission
display the data:

Example #28 - More complex form variables

<?php

if ($_POST) {
echo ' <pre>'
echo htnm speci al chars(print_r($ _POST, true));
echo ' </ pre>'

}

?>

<form action="" met hod="post">
Name: <input type="text" nanme="personal [nane]" />

Emai | : <input type="text" nane="personal [email]" />

Beer:

<select multiple name="beer[]">
<option val ue="wart hog">Wart hog</ opti on>
<option val ue="gui nness" >QGui nness</ opti on>
<option value="stuttgarter">Stuttgarter Schwabenbrau</option>
</ sel ect >

<i nput type="submit" value="submit ne!" />
</ fornp

IMAGE SUBMIT variable names

When submitting a form, it is possible to use an image instead of the standard submit
button with a tag like:

<i nput type="inage" src="inage.qgif" nane="sub" />

When the user clicks somewhere on the image, the accompanying form will be transmitted
to the server with two additional variables, sub_x and sub_y. These contain the
coordinates of the user click within the image. The experienced may note that the actual
variable names sent by the browser contains a period rather than an underscore, but PHP
converts the period to an underscore automatically.

HTTP Cookies

PHP transparently supports HTTP cookies as defined by » Netscape's Spec. Cookies are
a mechanism for storing data in the remote browser and thus tracking or identifying return
users. You can set cookies using the setcookie() function. Cookies are part of the HTTP
header, so the SetCookie function must be called before any output is sent to the browser.
This is the same restriction as for the header() function. Cookie data is then available in
the appropriate cookie data arrays, such as $ COOKIE, $HTTP_COOKIE_VARS as well
as in $_REQUEST. See the setcookie() manual page for more details and examples.

If you wish to assign multiple values to a single cookie variable, you may assign it as an
array. For example:

http://wp.netscape.com/newsref/std/cookie_spec.html

<?php

set cooki e(" MyCooki e[foo]", 'Testing 1', tinme()+3600);
set cooki e("MyCooki e[bar]", 'Testing 2', tinme()+3600);
?>

That will create two separate cookies although MyCookie will now be a single array in your
script. If you want to set just one cookie with multiple values, consider using serialize() or
explode() on the value first.

Note that a cookie will replace a previous cookie by the same name in your browser unless
the path or domain is different. So, for a shopping cart application you may want to keep a
counter and pass this along. i.e.

Example #29 - A setcookie() example

<?php
if (isset($_COXIE['count'])) {
$count = $ COXIE[' count'] +
} else {
$count = 1;

1

}

set cooki e(' count', $count, time()+3600);
set cooki e("Cart[$count]", $item tine()+3600);
?>

Dots in incoming variable names

Typically, PHP does not alter the names of variables when they are passed into a script.
However, it should be noted that the dot (period, full stop) is not a valid character in a PHP

variable name. For the reason, look at it:

<?php

$varnane.ext; [* invalid variable nane */
?>

Now, what the parser sees is a variable named $varname, followed by the string
concatenation operator, followed by the barestring (i.e. unquoted string which doesn't
match any known key or reserved words) 'ext’. Obviously, this doesn't have the intended
result.

For this reason, it is important to note that PHP will automatically replace any dots in
incoming variable names with underscores.

Determining variable types

Because PHP determines the types of variables and converts them (generally) as needed,
it is not always obvious what type a given variable is at any one time. PHP includes
several functions which find out what type a variable is, such as: gettype(), is_array(),
is_float(), is_int(), is_object(), and is_string(). See also the chapter on Types.

Constants

A constant is an identifier (name) for a simple value. As the name suggests, that value

actually constants). A constant is case-sensitive by default. By convention, constant
identifiers are always uppercase.

The name of a constant follows the same rules as any label in PHP. A valid constant name

starts with a letter or underscore, followed by any number of letters, numbers, or
underscores. As a regular expression, it would be expressed thusly:
[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7{-\xff]*

Tip

See also the Userland Naming Guide.

Example #30 - Valid and invalid constant names

<?php

/1 Valid constant nanes
define("FOO', "sonet hing");
define("FOO2", "sonet hing el se");

defi ne("FOO_BAR", "sonething nore");

/1 lInvalid constant nanes
define("2FQ0', "sonet hing");

/1 This is valid, but should be avoi ded:
/1 PHP may one day provide a nagi cal constant

/1 that will break your script
define("__FOO__", "something");
?>

Note

For our purposes here, a letter is a-z, A-Z, and the ASCII characters from 127 through
255 (0x7f-0xff).

Syntax

You can define a constant by using the define() -function. Once a constant is defined, it
can never be changed or undefined.

You can get the value of a constant by simply specifying its name. Unlike with variables,
you should not prepend a constant with a $. You can also use the function constant() to
read a constant's value if you wish to obtain the constant's name dynamically. Use
get_defined_constants() to get a list of all defined constants.

Note

Constants and (global) variables are in a different namespace. This implies that for
example TRUE and $TRUE are generally different.

If you use an undefined constant, PHP assumes that you mean the name of the constant

Is wrong (unless you first define() bar as a constant). If you simply want to check if a
constant is set, use the defined() function.

These are the differences between constants and variables:

» Constants do not have a dollar sign ($) before them;
» Constants may only be defined using the define() function, not by simple assignment;

» Constants may be defined and accessed anywhere without regard to variable scoping
rules;

» Constants may not be redefined or undefined once they have been set; and

« Constants may only evaluate to scalar values.

Example #31 - Defining Constants

<?php

define(" CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

echo Constant; // outputs "Constant"” and issues a notice.
?>

See also Class Constants.

Magic constants

PHP provides a large number of predefined constants to any script which it runs. Many of
these constants, however, are created by various extensions, and will only be present
when those extensions are available, either via dynamic loading or because they have

been compiled in.

There are seven magical constants that change depending on where they are used. For
example, the value of __ LINE__ depends on the line that it's used on in your script. These
special constants are case-insensitive and are as follows:

A few "magical" PHP constants

Name

Description

__LINE__

The current line number of the file.

__FILE__

The full path and filename of the file. If used
inside an include, the name of the included
file is returned. Since PHP 4.0.2, _FILE___
always contains an absolute path with
symlinks resolved whereas in older versions
it contained relative path under some
circumstances.

DIR

The directory of the file. If used inside an
include, the directory of the included file is
returned. This is equivalent to
dirname(__FILE_). This directory name
does not have a trailing slash unless it is the
root directory. (Added in PHP 5.3.0.)

_ _FUNCTION__

The function name. (Added in PHP 4.3.0) As
of PHP 5 this constant returns the function
name as it was declared (case-sensitive). In
PHP 4 its value is always lowercased.

__CLASS

The class name. (Added in PHP 4.3.0) As of
PHP 5 this constant returns the class name
as it was declared (case-sensitive). In PHP
4 its value is always lowercased.

__METHOD__

The class method name. (Added in PHP
5.0.0) The method name is returned as it
was declared (case-sensitive).

_ _NAMESPACE__

The name of the current namespace
(case-sensitive). This constant is defined in
compile-time (Added in PHP 5.3.0).

See also get_class(), get_object_vars(), file_exists() and function_exists().

Expressions

Expressions are the most important building stones of PHP. In PHP, almost anything you
write is an expression. The simplest yet most accurate way to define an expression is
"anything that has a value".

The most basic forms of expressions are constants and variables. When you type "$a = 5",
you're assigning '5' into $a. '5', obviously, has the value 5, or in other words '5' is an
expression with the value of 5 (in this case, '5' is an integer constant).

After this assignment, you'd expect $a's value to be 5 as well, so if you wrote $b = $a,
you'd expect it to behave just as if you wrote $b = 5. In other words, $a is an expression
with the value of 5 as well. If everything works right, this is exactly what will happen.

Slightly more complex examples for expressions are functions. For instance, consider the
following function:

<?php
function foo ()

{
}

?>

return 5;

Assuming you're familiar with the concept of functions (if you're not, take a look at the
$c =5, and yoij:r-e--}i-g-]ﬁf: Functions are expressions with the value of their return value.
Since foo() returns 5, the value of the expression 'foo()' is 5. Usually functions don't just
return a static value but compute something.

Of course, values in PHP don't have to be integers, and very often they aren't. PHP

unlike arrays, for instance). PHP also supports two composite (non-scalar) types: arrays
and objects. Each of these value types can be assigned into variables or returned from
functions.

PHP takes expressions much further, in the same way many other languages do. PHP is
an expression-oriented language, in the sense that almost everything is an expression.
Consider the example we've already dealt with, '$a = 5'. It's easy to see that there are two
values involved here, the value of the integer constant '5', and the value of $a which is
being updated to 5 as well. But the truth is that there's one additional value involved here,
and that's the value of the assignment itself. The assignment itself evaluates to the
assigned value, in this case 5. In practice, it means that '$a = 5', regardless of what it
does, is an expression with the value 5. Thus, writing something like '$b = ($a = 5)" is like
writing '$a = 5; $b = 5;' (a semicolon marks the end of a statement). Since assignments
are parsed in a right to left order, you can also write '$b = $a = 5'".

Another good example of expression orientation is pre- and post-increment and

decrement. Users of PHP and many other languages may be familiar with the notation of
statement '$a++' has no value (is not an expression), and thus you can't assign it or use it
in any way. PHP enhances the increment/decrement capabilities by making these
expressions as well, like in C. In PHP, like in C, there are two types of increment -
pre-increment and post-increment. Both pre-increment and post-increment essentially
increment the variable, and the effect on the variable is identical. The difference is with the
value of the increment expression. Pre-increment, which is written '++$variable’, evaluates
to the incremented value (PHP increments the variable before reading its value, thus the
name 'pre-increment'). Post-increment, which is written '$variable++' evaluates to the
original value of $variable, before it was incremented (PHP increments the variable after
reading its value, thus the name 'post-increment’).

evaluate to either FALSE or TRUE. PHP supports > (bigger than), >= (bigger than or
equal to), == (equal), '= (not equal), < (smaller than) and <= (smaller than or equal to). The
language also supports a set of strict equivalence operators: === (equal to and same type)
and !'== (not equal to or not same type). These expressions are most commonly used
inside conditional execution, such as if statements.

The last example of expressions we'll deal with here is combined operator-assignment
expressions. You already know that if you want to increment $a by 1, you can simply write
‘$a++' or '++%a’. But what if you want to add more than one to it, for instance 3? You could
write '$a++' multiple times, but this is obviously not a very efficient or comfortable way. A
much more common practice is to write '$a = $a + 3'. '$a + 3' evaluates to the value of $a
plus 3, and is assigned back into $a, which results in incrementing $a by 3. In PHP, as in
several other languages like C, you can write this in a shorter way, which with time would
become clearer and quicker to understand as well. Adding 3 to the current value of $a can
be written '$a += 3'. This means exactly "take the value of $a, add 3 to it, and assign it
back into $a". In addition to being shorter and clearer, this also results in faster execution.
The value of '$a += 3', like the value of a regular assignment, is the assigned value. Notice
that it is NOT 3, but the combined value of $a plus 3 (this is the value that's assigned into
$a). Any two-place operator can be used in this operator-assignment mode, for example
'$a -= 5' (subtract 5 from the value of $a), '$b *= 7' (multiply the value of $b by 7), etc.

There is one more expression that may seem odd if you haven't seen it in other languages,
the ternary conditional operator:

<?php
$first ? $second : S$third
?>

If the value of the first subexpression is TRUE (non-zero), then the second subexpression
Is evaluated, and that is the result of the conditional expression. Otherwise, the third
subexpression is evaluated, and that is the value.

The following example should help you understand pre- and post-increment and
expressions in general a bit better:

<?php
function doubl e($i)

{
return $i*2
}
$b = $a = 5; /* assign the value five into the variable $a and $b */
$c = $a++; /* post-increnment, assign original value of $a
(5) to $c */
$e = $d = ++$%b; /* pre-increnment, assign the increnented val ue of

$b (6) to $d and $e */

/* at this point, both $d and $e are equal to 6 */

$f = doubl e($d++); [/* assign twi ce the value of $d before
the increment, 2*6 = 12 to $f */

$g = doubl e(++$e); /* assign tw ce the value of $e after
the increment, 2*7 = 14 to $g */

$h = $g += 10; /* first, $g is increnented by 10 and ends with the
val ue of 24. the value of the assignment (24) is
then assigned into $h, and $h ends with the val ue
of 24 as well. */

?>

Some expressions can be considered as statements. In this case, a statement has the
form of 'expr' ;' that is, an expression followed by a semicolon. In '$b=%a=5;', $a=5 is a
valid expression, but it's not a statement by itself. ‘$b=%a=5;' however is a valid statement.

One last thing worth mentioning is the truth value of expressions. In many events, mainly
in conditional execution and loops, you're not interested in the specific value of the

expression, but only care about whether it means TRUE or FALSE. The constants TRUE
and FALSE (case-insensitive) are the two possible boolean values. When necessary, an

details about how.

PHP provides a full and powerful implementation of expressions, and documenting it
entirely goes beyond the scope of this manual. The above examples should give you a
good idea about what expressions are and how you can construct useful expressions.
Throughout the rest of this manual we'll write expr to indicate any valid PHP expression.

Operators

An operator is something that you feed with one or more values (or expressions, in
programming jargon) which yields another value (so that the construction itself becomes
an expression). So you can think of functions or constructions that return a value (like
print) as operators and those that return nothing (like echo) as any other thing.

There are three types of operators. Firstly there is the unary operator which operates on
only one value, for example ! (the negation operator) or ++ (the increment operator). The
second group are termed binary operators; this group contains most of the operators that

The third group is the ternary operator: ?:. It should be used to select between two
expressions depending on a third one, rather than to select two sentences or paths of
execution. Surrounding ternary expressions with parentheses is a very good idea.

Operator Precedence

The precedence of an operator specifies how "tightly" it binds two expressions together.
For example, in the expression 1 + 5 * 3, the answer is 16 and not 18 because the
multiplication ("*") operator has a higher precedence than the addition ("+") operator.
Parentheses may be used to force precedence, if necessary. For instance: (1 +5) * 3
evaluates to 18. If operator precedence is equal, left to right associativity is used.

The following table lists the precedence of operators with the highest-precedence
operators listed at the top of the table. Operators on the same line have equal precedence,
in which case their associativity decides which order to evaluate them in.

Operator Precedence

Associativity Operators Additional Information
non-associative new new

left [array()

non-associative ++ - increment/decrement
non-associative ~ - (int) (float) (string) (array) |types

(object) (bool) @

non-associative instanceof types
right ! logical
left *[% arithmetic

left +-. arithmetic and string

left << >> bitwise
non-associative <<=>>=< comparison
non-associative ==l====I== comparison
left & bitwise and references
left " bitwise

left | bitwise

left && logical

left Il logical

left ?! ternary
right =+=-=%*=/= .= %= &= |="= |assignment

<<= >>=

left and logical

left xor logical

left or logical

left , many uses

Left associativity means that the expression is evaluated from left to right, right
associativity means the opposite.

Example #32 - Associativity

<?php

$a = 3 * 3 %5; // (3 * 3) %5 =4

$a = true 2 0 : true ? 1 : 2; // (true ? 0 : true) 2 1: 2 =2
$a = 1;

$b = 2;

$a = $b += 3; // $a = ($b += 3) -> $a =5, $b =5

?>

Use parentheses to increase readability of the code.

Note

Although = has a lower precedence than most other operators, PHP will still allow
expressions similar to the following: if (!$a = foo()), in which case the return value of
foo() is put into $a.

Arithmetic Operators

Remember basic arithmetic from school? These work just like those.

Arithmetic Operators

Example Name Result

-$a Negation Opposite of $a.

$a + $b Addition Sum of $a and $b.

$a - $b Subtraction Difference of $a and $b.
$a*3b Multiplication Product of $a and $b.
$a/$b Division Quotient of $a and $b.

$a % $b Modulus gsmainder of $a divided by

The division operator (/") returns a float value unless the two operands are integers (or
strings that get converted to integers) and the numbers are evenly divisible, in which case
an integer value will be returned.

Operands of modulus are converted to integers (by stripping the decimal part) before
processing.

Note

Remainder $a % $b is negative for negative $a.

See also the manual page on Math functions.

Assignment Operators

The basic assignment operator is "=". Your first inclination might be to think of this as
"equal to". Don't. It really means that the left operand gets set to the value of the
expression on the rights (that is, "gets set to").

The value of an assignment expression is the value assigned. That is, the value of "$a = 3"
is 3. This allows you to do some tricky things:

<?php

$a = ($b = 4) + 5; // $a is equal to 9 now, and $b has been set to 4.

?>

In addition to the basic assignment operator, there are "combined operators" for all of the

expression and then set its value to the result of that expression. For example:

<?php

$a = 3;

$a += 5; // sets $a to 8, as if we had said: $a = $a + 5;

$b = "Hello "

$b .= "There!"; // sets $b to "Hello There!", just like $b = $b . "There!"
?>

Note that the assignment copies the original variable to the new one (assignment by
value), so changes to one will not affect the other. This may also have relevance if you
need to copy something like a large array inside a tight loop. Assignment by reference is
also supported, using the $var = &$othervar; syntax. '‘Assignment by reference' means that
both variables end up pointing at the same data, and nothing is copied anywhere. To learn

Bitwise Operators

Bitwise operators allow you to turn specific bits within an integer on or off. If both the left-
and right-hand parameters are strings, the bitwise operator will operate on the characters'
ASCII values.

<?php
echo 12 ~ 9; // CQutputs '5

echo "12" ~ "9"; // Qutputs the Backspace character (ascii 8)
[l ("1 (ascii 49)) ™~ ("9 (ascii 57)) = #8

echo "hallo" ~ "hello"; // Qutputs the ascii values #0 #4 #0 #0 #0
/1 "a N 'e' = #4

echo 2 ~ "3"; /] CQutputs 1
12" ((int)"3") ==

echo "2" ~ 3; // CQutputs 1
Il ((int)"2") ~ 3 =1
?>

Bitwise Operators

Example Name Result

$a & $b And Bits that are set in both $a
and $b are set.

$a | $b Or Bits that are set in either $a
or $b are set.

$a”$b Xor Bits that are set in $a or $b
but not both are set.

~ $a Not Bits that are set in $a are not
set, and vice versa.

$a << $b Shift left Shift the bits of $a $b steps
to the left (each step means
"multiply by two")

$a >>3$b Shift right Shift the bits of $a $b steps
to the right (each step means
"divide by two")

Warning

Don't right shift for more than 32 bits on 32 bits systems. Don't left shift in case it
results to number longer than 32 bits.

Comparison Operators

Comparison operators, as their name implies, allow you to compare two values. You may
also be interested in viewing the type comparison tables, as they show examples of
various type related comparisons.

Comparison Operators

Example Name Result

$a ==%$b Equal TRUE if $a is equal to $b.

$a===3%b Identical TRUE if $a is equal to $b,
and they are of the same
type. (introduced in PHP 4)

$a !=%b Not equal TRUE if $a is not equal to

$b.

$a <>3%b Not equal TRUE if $a is not equal to
$b.
$a !l==%b Not identical TRUE if $a is not equal to

$b, or they are not of the
same type. (introduced in
PHP 4)

$a< $b Less than TRUE if $a is strictly less
than $b.

$a > $b Greater than TRUE if $a is strictly greater
than $b.

$a <=$b Less than or equal to TRUE if $a is less than or
equal to $b.

$a >=$b Greater than or equal to TRUE if $a is greater than or
equal to $b.

statement.

<?php

var_dunp(0 == "a"); // 0 == -> true
var_dunp("1" == "01"); // 1 =1 -> true
var_dunp("1" == "1e0"); // 1 == 1 -> true

switch ("a") {
case O:
echo "0";
br eak;
case "a": // never reached because "a" is already matched with O
echo "a";
br eak;

For various types, comparison is done according to the following table (in order).

Comparison with Various Types

Type of Operand 1 Type of Operand 2 Result

null or string string Convert NULL to ",
numerical or lexical
comparison

bool or null anything Convert to bool, FALSE <
TRUE
object object Built-in classes can define its

own comparison, different
classes are uncomparable,
same class - compare
properties the same way as
arrays (PHP 4), PHP 5 has

Translate strings and
resources to numbers, usual
math

Array with fewer members is
smaller, if key from operand
1 is not found in operand 2
then arrays are
uncomparable, otherwise -
compare value by value (see
following example)

anything

anything

object is always greater

Example #33 - Transcription of standard array comparison

<?php

/1l Arrays are conpared |ike this with standard compari son operators

function standard_array_conpare($opl, $op2)
{
if (count($opl) < count($op2)) {
return -1; // $opl < $op2
} elseif (count($opl) > count($op2)) {
return 1; // $opl > $op2
}
foreach ($opl as $key => S$val) {

if (larray_key_exists($key, $op2)) {

return null; // unconparable
} elseif ($val < $op2[$key]) {
return -1;
} elseif ($val > $op2[$key]) {
return 1,
}
}
return 0; // $opl == $op2

Ternary Operator

Another conditional operator is the "?:" (or ternary) operator.

Example #34 - Assigning a default value

<?php
/1 Exanpl e usage for: Ternary Operator
$action = (enpty($ _POST['action'])) ? 'default' : $ POST['action'];

/1 The above is identical to this if/else statenent
if (empty($_POST['action'])) {

$action = 'default';
} else {

$action = $ POST[' action'];
}
?>

The expression (exprl) ? (expr2) : (expr3) evaluates to expr2 if exprl evaluates to TRUE,
and expr3 if exprl evaluates to FALSE.

Note

Please note that the ternary operator is a statement, and that it doesn't evaluate to a
variable, but to the result of a statement. This is important to know if you want to return
a variable by reference. The statement return $var == 42 ? $a : $b; in a
return-by-reference function will therefore not work and a warning is issued in later
PHP versions.

Note

Is is recommended that you avoid "stacking" ternary expressions. PHP's behaviour
when using more than one ternary operator within a single statement is non-obvious:

Example #35 - Non-obvious Ternary Behaviour

<?php
/1 on first glance, the follow ng appears to output 'true
echo (true? true' :false? t':"f");

/'l however, the actual output of the above is 't
/1l this is because ternary expressions are evaluated fromleft to right

/'l the following is a nore obvious version of the same code as above
echo ((true ? "true' : 'false') 2?2 't' : "f');

/'l here, you can see that the first expression is evaluated to 'true'
whi ch

/1 in turn evaluates to (bool)true, thus returning the true branch of the
/'l second ternary expression
?>

Error Control Operators

PHP supports one error control operator: the at sign (@). When prepended to an
expression in PHP, any error messages that might be generated by that expression will b
ijgnored.

check early if you want to use it.

<?php

* Intentional file error */

By _file = @ile ('non_existent_file') or

die ("Failed opening file: error was '$php_errornsg'");

/ this works for any expression, not just functions:
Sval ue = @cache[$key];
/ will not issue a notice if the index $key doesn't exist.

7>

If the track_errors feature is enabled, any error message generated by the expression will

e

0o

Note

the value of something, you can prepend the @ operator to it. For instance, you can

prepend it to variables, function and include() calls, constants, and so forth. You
cannot prepend it to function or class definitions, or conditional structures such as if
and foreach, and so forth.

See also error_reporting() and the manual section for Error Handling and Logging
functions.

Warning

Currently the "@" error-control operator prefix will even disable error reporting for
critical errors that will terminate script execution. Among other things, this means that if
you use "@" to suppress errors from a certain function and either it isn't available or
has been mistyped, the script will die right there with no indication as to why.

Execution Operators

PHP supports one execution operator: backticks ("*). Note that these are not
single-quotes! PHP will attempt to execute the contents of the backticks as a shell
command; the output will be returned (i.e., it won't simply be dumped to output; it can be
assigned to a variable). Use of the backtick operator is identical to shell_exec().

<?php
$output = "Is -al *;
echo "<pre>$out put </ pre>";
?>
Note

The backtick operator is disabled when safe mode is enabled or shell_exec() is
disabled.

See also the manual section on Program Execution functions, popen() proc_open(), and
Using PHP from the commandline.

Incrementing/Decrementing Operators

PHP supports C-style pre- and post-increment and decrement operators.

Note

The increment/decrement operators do not affect boolean values. Decrementing NULL
values has no effect too, but incrementing them results in 1.

Increment/decrement Operators

Example Name Effect

++$a Pre-increment Increments $a by one, then
returns $a.

$a++ Post-increment Returns $a, then increments
$a by one.

--$a Pre-decrement Decrements $a by one, then
returns $a.

$a-- Post-decrement Returns $a, then decrements
$a by one.

Here's a simple example script:

<?php

echo "<h3>Posti ncrenent </ h3>";

$a = 5;

echo "Should be 5: " . $a++ . "
\n";
echo "Should be 6: " . $a . "
\n";

echo "<h3>Prei ncrenent </ h3>";

$a = 5;
echo "Should be 6: " . ++$%a . "
\n"
echo "Should be 6: " . $a . "
\n"

echo "<h3>Post decr enent </ h3>"

$a = 5;
echo "Should be 5: " . $a-- . "
\n"
echo "Should be 4: " . $a . "
\n"

echo "<h3>Predecrenent </ h3>"

$a = 5;

echo "Should be 4: " . --%a . "
\n"
echo "Should be 4: " . $a . "
\n"
?>

PHP follows Perl's convention when dealing with arithmetic operations on character
variables and not C's. For example, in Perl 'Z'+1 turns into 'AA’, while in C 'Z'+1 turns into
[(ord('Z") == 90, ord('[') == 91). Note that character variables can be incremented but not
decremented and even so only plain ASCII characters (a-z and A-Z) are supported.

Example #36 - Arithmetic Operations on Character Variables

<?php

$i =W,

for ($n=0; $n<6; $n++) {
echo ++$i . "\n";

}

2>

The above example will output:

BBEN <

Incrementing or decrementing booleans has no effect.

Logical Operators

Logical Operators

Example Name Result

$a and $b And TRUE if both $a and $b are
TRUE.

$a or $b Or TRUE if either $a or $b is
TRUE.

$a xor $b Xor TRUE if either $a or $b is
TRUE, but not both.

I $a Not TRUE if $a is not TRUE.

$a && $b And TRUE if both $a and $b are
TRUE.

$a || $b Or TRUE if either $a or $b is
TRUE.

The reason for the two different variations of "and" and "or" operators is that they operate

Example #37 - Logical operators illustrated

<?php

/1 foo() will never get called as those operators are short-circuit

$a = (false && foo());

$b = (true || foo());

$c = (false and foo());

$d = (true or foo());

/1 "]|" has a greater precedence than "or"

$e = false || true; // $e will be assigned to (false || true) which is true
$f = false or true; // $f will be assigned to false

var_dunmp($e, $f);

/1l "&&" has a greater precedence than "and"

$g = true && false; // $g will be assigned to (true & false) which is fal se
$h = true and false; // $h will be assigned to true

var _dunp($g, $h);

?>

The above example will output something similar to:

bool (true)
bool (fal se)
bool (fal se)
bool (true)

String Operators

the concatenation of its right and left arguments. The second is the concatenating
assignment operator ('.="), which appends the argument on the right side to the argument

<?php

$a = "Hello "

$b = $a . "World!"; // now $b contains "Hello World!"
$a = "Hello "

$a .= "Wworld!'"; /!l now $a contains "Hello World!"
?>

Array Operators

Array Operators

Example Name Result
$a + $b Union Union of $a and $b.
$a==3%b Equality TRUE if $a and $b have the

same key/value pairs.

$a === $b Identity TRUE if $a and $b have the
same key/value pairs in the
same order and of the same

types.

$a = 3%b Inequality TRUE if $a is not equal to
$b.

$a <>3%b Inequality TRUE if $a is not equal to
$b.

$a !l==%b Non-identity TRUE if $a is not identical to
$b.

The + operator appends elements of remaining keys from the right handed array to the left
handed, whereas duplicated keys are NOT overwritten.

<?php
$a
$b

array("a" => "apple", "b" => "banana");
array("a" => "pear", "b" => "strawberry", "c" => "cherry");

$c = $a + $b; // Union of $a and $b
echo "Union of \$a and \$b: \n";
var _dunp($c);

$c = $b + $a; // Union of $b and $a
echo "Union of \$b and \$a: \n";

var _dunp($c);

?>

When executed, this script will print the following:
Uni on of $a and $b:

array(3) {
["a"]=>
string(5) "apple"
["b"]=>
string(6) "banana"
["c"]=>
string(6) "cherry"
}
Uni on of $b and $a:
array(3) {
["a"]=>
string(4) "pear"
["b"]=>
string(10) "strawberry"
["c"]=>
string(6) "cherry"
}

Elements of arrays are equal for the comparison if they have the same key and value.

Example #38 - Comparing arrays

<?php
$a = array("apple", "banana");
$b = array(1 => "banana", "0" => "apple");

var _dunp($a == $b); // bool (true)
var _dunp($a === $b); // bool (fal se)
?>

See also the manual sections on the Array type and Array functions.

Type Operators

instanceof is used to determine whether a PHP variable is an instantiated object of a
certain class:

Example #39 - Using instanceof with classes

<?php

cl ass Myd ass
{

}

cl ass Not My ass

{
}

$a = new Myd ass;

var _dunp($a i nstanceof Myd ass);
var _dunp($a i nstanceof Not Md ass);
?>

The above example will output:

bool (true)
bool (fal se)

instanceof can also be used to determine whether a variable is an instantiated object of a
class that inherits from a parent class:

Example #40 - Using instanceof with inherited classes

<?php
cl ass Parent d ass

{
}

cl ass MyCl ass extends ParentC ass

{
}

$a = new Myd ass;

var _dunp($a i nstanceof Myd ass);
var _dunp($a i nstanceof Parentd ass);
?>

The above example will output:

bool (true)
bool (true)

Example #41 - Using instanceof to check if object is not an instanceof a class

<?php
class Myd ass

{
}

$a = new Myd ass;
var _dunp(! ($a instanceof stdd ass));
?>

The above example will output:

bool (true)

Lastly, instanceof can also be used to determine whether a variable is an instantiated

Example #42 - Using instanceof for class

<?php

interface Myl nterface
{

}

class My ass inplenments Mylnterface

{
}

$a = new Myd ass;
var _dunp($a i nstanceof Myd ass);

var _dunp($a i nstanceof Mylnterface);
?>

The above example will output:

bool (true)
bool (true)

Although instanceof is usually used with a literal classname, it can also be used with
another object or a string variable:

Example #43 - Using instanceof with other variables

<?php

interface Myl nterface
{

}

class My ass inplenments Mylnterface

{
}

$a
$b
$c

new Myd ass;
new Myd ass;
'Myd ass';

$d = ' Not MyCl ass' ;

var _dunp($a instanceof $b); // $b is an object of class M/ ass
var _dunp($a instanceof $c); // $c is a string ' Md ass

var _dunp($a instanceof $d); // $d is a string 'Not Myd ass

?>

The above example will output:

bool (true)
bool (true)
bool (fal se)

There are a few pitfalls to be aware of. Before PHP version 5.1.0, instanceof would call

error would occur. This can be worked around by using a dynamic class reference, or a
string variable containing the class name:

Example #44 - Avoiding classname lookups and fatal errors with instanceof in
PHP 5.0

<?php

$d = ' Not MyCl ass' ;

var _dunp($a instanceof $d); // no fatal error here
?>

The above example will output:

bool (fal se)

The instanceof operator was introduced in PHP 5. Before this time is_a() was used but
is_a() has since been deprecated in favor of instanceof.

See also get_class() and is_a().

Control Structures

Introduction

Any PHP script is built out of a series of statements. A statement can be an assignment, a
function call, a loop, a conditional statement or even a statement that does nothing (an
empty statement). Statements usually end with a semicolon. In addition, statements can
be grouped into a statement-group by encapsulating a group of statements with curly
braces. A statement-group is a statement by itself as well. The various statement types are
described in this chapter.

if

The if construct is one of the most important features of many languages, PHP included. It
allows for conditional execution of code fragments. PHP features an if structure that is
similar to that of C:

if (expr)
st at ement

value. If expression evaluates to TRUE, PHP will execute statement, and if it evaluates to
FALSE - it'll ignore it. More information about what values evaluate to FALSE can be

The following example would display a is bigger than b if $a is bigger than $b:

<?php
if ($a > $b)

echo "a is bigger than b";
?>

Often you'd want to have more than one statement to be executed conditionally. Of
course, there's no need to wrap each statement with an if clause. Instead, you can group
several statements into a statement group. For example, this code would display a is
bigger than b if $a is bigger than $b, and would then assign the value of $a into $b:

<?php

if ($a > $b) {
echo "a is bigger than b";
$b = $a;

If statements can be nested infinitely within other if statements, which provides you with
complete flexibility for conditional execution of the various parts of your program.

else

Often you'd want to execute a statement if a certain condition is met, and a different
statement if the condition is not met. This is what else is for. else extends an if statement
to execute a statement in case the expression in the if statement evaluates to FALSE. For
example, the following code would display a is bigger than b if $a is bigger than $b, and a
is NOT bigger than b otherwise:

<?php
if ($a > $b) {
echo "a is bigger than b";
} else {
echo "a is NOT bigger than b";

}

?>

The else statement is only executed if the if expression evaluated to FALSE, and if there

elseif / else if

elseif, as its name suggests, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression evaluates to
FALSE. However, unlike else, it will execute that alternative expression only if the elseif
conditional expression evaluates to TRUE. For example, the following code would display
a is bigger than b, a equal to b or a is smaller than b:

<?php
if ($a > $b) {
echo "a is bigger than b";
} elseif ($a == $b) {
echo "a is equal to b";
} else {
echo "a is smaller than b";

}

?>

There may be several elseif s within the same if statement. The first elseif expression (if
any) that evaluates to TRUE would be executed. In PHP, you can also write 'else if' (in two
words) and the behavior would be identical to the one of 'elseif' (in a single word). The
syntactic meaning is slightly different (if you're familiar with C, this is the same behavior)
but the bottom line is that both would result in exactly the same behavior.

The elseif statement is only executed if the preceding if expression and any preceding
elseif expressions evaluated to FALSE, and the current elseif expression evaluated to
TRUE.

Note

Note that elseif and else if will only be considered exactly the same when using curly
brackets as in the above example. When using a colon to define your if / elseif
conditions, you must separate else if into two words, or PHP will fail with a parse error.

<?php
/* Incorrect Method: */
if($a > $b):
echo $a." is greater than ".3$b;

else if($%a == $b): // WIIl not conpile.
echo "The above |ine causes a parse error."
endi f;

/* Correct Method: */
if(%a > $b):
echo $a." is greater than ".3$b;
elseif($a == $b): // Note the conbination of the words.
echo $a." equals ". $b;
el se:
echo $a." is neither greater than or equal to ". $b;
endi f;

?>

Alternative syntax for control structures

PHP offers an alternative syntax for some of its control structures; namely, if, while, for,
foreach, and switch. In each case, the basic form of the alternate syntax is to change the
opening brace to a colon (:) and the closing brace to endif;, endwhile;, endfor;, endforeach;
, or endswitch;, respectively.

<?php if ($a == 5): ?>
Ais equal to 5
<?php endif; ?>

In the above example, the HTML block "A is equal to 5" is nested within an if statement
written in the alternative syntax. The HTML block would be displayed only if $a is equal to
5.

The alternative syntax applies to else and elseif as well. The following is an if structure
with elseif and else in the alternative format:

<?php

if ($a == 5):
echo "a equals 5";
echo " "
elseif ($a == 6):
echo "a equals 6";
echo "ttt 1"
el se:
echo "a is neither 5 nor 6"
endi f;
?>

while

while loops are the simplest type of loop in PHP. They behave just like their C
counterparts. The basic form of a while statement is:

whil e (expr)
st at enent

The meaning of a while statement is simple. It tells PHP to execute the nested
statement(s) repeatedly, as long as the while expression evaluates to TRUE. The value of
the expression is checked each time at the beginning of the loop, so even if this value
changes during the execution of the nested statement(s), execution will not stop until the
end of the iteration (each time PHP runs the statements in the loop is one iteration).
Sometimes, if the while expression evaluates to FALSE from the very beginning, the
nested statement(s) won't even be run once.

Like with the if statement, you can group multiple statements within the same while loop by
surrounding a group of statements with curly braces, or by using the alternate syntax:

whil e (expr):
st at ement

endwhi | e;

The following examples are identical, and both print the numbers 1 through 10:

<?php
/[* exanple 1 */

$i =1,
while ($i <= 10) {
echo $i++; /* the printed value woul d be
$i before the increnent
(post-increnent) */

/* exanple 2 */

$i = 1,
while ($i <= 10):
echo $i;
$i ++;
endwhi | e;
?>

do-while

do-while loops are very similar to while loops, except the truth expression is checked at the
end of each iteration instead of in the beginning. The main difference from regular while
loops is that the first iteration of a do-while loop is guaranteed to run (the truth expression
Is only checked at the end of the iteration), whereas it may not necessarily run with a
regular while loop (the truth expression is checked at the beginning of each iteration, if it
evaluates to FALSE right from the beginning, the loop execution would end immediately).

There is just one syntax for do-while loops:

<?php
$i = 0;
do {
echo $i;
} while ($i > 0);
?>

The above loop would run one time exactly, since after the first iteration, when truth
expression is checked, it evaluates to FALSE ($i is not bigger than 0) and the loop
execution ends.

Advanced C users may be familiar with a different usage of the do-while loop, to allow
stopping execution in the middle of code blocks, by encapsulating them with do-while (0),
and using the break statement. The following code fragment demonstrates this:

<?php
do {
if ($i <5) {
echo "i is not big enough”;
br eak;

}

$i *= $factor;

if ($i < $minimumlimt) {
br eak;

}
echo "i is ok";

/* process i */

} while (0);
?2>

Don't worry if you don't understand this right away or at all. You can code scripts and even
powerful scripts without using this ‘feature’.

for

for loops are the most complex loops in PHP. They behave like their C counterparts. The
syntax of a for loop is:

for (exprl; expr2; expr3)
st at ement

The first expression (exprl) is evaluated (executed) once unconditionally at the beginning
of the loop.

In the beginning of each iteration, expr2 is evaluated. If it evaluates to TRUE, the loop
continues and the nested statement(s) are executed. If it evaluates to FALSE, the
execution of the loop ends.

At the end of each iteration, expr3 is evaluated (executed).

Each of the expressions can be empty or contain multiple expressions separated by
commas. In expr2, all expressions separated by a comma are evaluated but the result is
taken from the last part. expr2 being empty means the loop should be run indefinitely (PHP
implicitly considers it as TRUE, like C). This may not be as useless as you might think,
since often you'd want to end the loop using a conditional break statement instead of using
the for truth expression.

Consider the following examples. All of them display the numbers 1 through 10:

<?php
/[* exanple 1 */

for ($i = 1; $i <= 10; $i++) {
echo $i;

}
/[* exanple 2 */

for ($i =1; ; $i++) {
if ($i > 10) {
br eak;

}

echo $i;

}
/* exanple 3 */

$i = 1;
for (5 ;) {
if ($i > 10) {
br eak;

}

echo $i;
$i ++;

}
/* exanple 4 */

for ($i =1, $j = 0; $i <= 10; $j += $i, print $i, $i++);
?>

Of course, the first example appears to be the nicest one (or perhaps the fourth), but you
may find that being able to use empty expressions in for loops comes in handy in many
occasions.

PHP also supports the alternate "colon syntax" for for loops.

for (exprl; expr2; expr3):
st at ement

endf or;

foreach

PHP 4 introduced a foreach construct, much like Perl and some other languages. This
simply gives an easy way to iterate over arrays. foreach works only on arrays, and will
iIssue an error when you try to use it on a variable with a different data type or an
uninitialized variable. There are two syntaxes; the second is a minor but useful extension
of the first:

foreach (array_expression as $val ue)
st at enent

foreach (array_expression as $key => $val ue)
st at enent

The first form loops over the array given by array_expression. On each loop, the value of
the current element is assigned to $value and the internal array pointer is advanced by
one (so on the next loop, you'll be looking at the next element).

The second form does the same thing, except that the current element's key will be
assigned to the variable $key on each loop.

Note

When foreach first starts executing, the internal array pointer is automatically reset to

the first element of the array. This means that you do not need to call reset() before a
foreach loop.

Note

not the array itself. foreach has some side effects on the array pointer. Don't rely on
the array pointer during or after the foreach without resetting it.

As of PHP 5, you can easily modify array's elements by preceding $value with &. This will

<?php
$arr = array(1, 2, 3, 4);
foreach ($arr as &$val ue) {
$val ue = $value * 2;
}
Il $arr is now array(2, 4, 6, 8)
unset ($value); // break the reference with the [ast el enent
?>

This is possible only if iterated array can be referenced (i.e. is variable).

Warning

Reference of a $value and the last array element remain even after the foreach loop. It
is recommended to destroy it by unset().

Note

foreach does not support the ability to suppress error messages using '@".

You may have noticed that the following are functionally identical:

<?php

$arr = array("one", "tw", "three");

reset ($arr);

while (list(, $value) = each($arr)) {
echo "Val ue: $val ue
\n";

}

foreach ($arr as $val ue) {

echo "Val ue: $val ue
\n";

}

?>
The following are also functionally identical:

<?php

$arr = array("one", "tw", "three");

reset($arr);

while (list($key, $value) = each($arr)) {
echo "Key: $key; Value: $val ue
\n";

}

foreach ($arr as $key => $val ue) {
echo "Key: $key; Value: $val ue
\n";

}

?>

Some more examples to demonstrate usages:

<?php
/* foreach exanple 1. value only */

$a = array(1, 2, 3, 17);

foreach ($a as $v) {
echo "Current value of \$a: $v.\n";

}

/* foreach exanple 2: value (with its manual access notation printed for
illustration) */

$a = array(1, 2, 3, 17);

$i

0; /* for illustrative purposes only */

foreach ($a as $v) {
echo "\$a[$i] => $v.\n";
$i ++;

}

/* foreach exanple 3: key and val ue */

$a = array(
"one" => 1,
n t \I\D” :> 27
"three" => 3,
"seventeen" => 17

)

foreach ($a as $k => $v) {
echo "\ $a[$k] => $v.\n";
}

| * foreach exanple 4: nulti-dinensional arrays */
$a = array();
$a[0][0] = "a";

$a[0][1] = "b";
$a[1][0] = "y";
$a[1][1] = "z";

foreach ($a as $vi1) {
foreach ($vl as $v2) {
echo "$v2\n";

}
}

/* foreach exanple 5: dynamic arrays */

foreach (array(1, 2, 3, 4, 5) as $v) {
echo "$v\in";
}

?>

break

break ends execution of the current for, foreach, while, do-while or switch structure.

break accepts an optional numeric argument which tells it how many nested enclosing
structures are to be broken out of.

<?php
$arr = array('one', 'tw', 'three', 'four', 'stop', 'five');
while (list(, $val) = each($arr)) {
if ($val == "stop') {
br eak; /* You could also wite "break 1;' here. */
}

echo "$val
\n";

}

/* Using the optional argunent. */

$i = 0;
while (++$i) {
switch ($i) {
case 5:
echo "At 5
\n";
break 1; /* Exit only the switch. */
case 10:
echo "At 10; quitting
\n";
break 2; /* Exit the switch and the while. */
defaul t:
br eak;

}

continue

continue is used within looping structures to skip the rest of the current loop iteration and
continue execution at the condition evaluation and then the beginning of the next iteration.

Note

purposes of continue.

continue accepts an optional numeric argument which tells it how many levels of enclosing
loops it should skip to the end of.

<?php
while (list($key, $value) = each($arr)) {
if ('($key %2)) { // skip odd nenbers
conti nue;
}

do_sonet hi ng_odd($val ue);

}

$i = 0;
while ($i++ < 5) {
echo "Quter
\n";
while (1) {
echo " &bsp; M ddl e
\n";
while (1) {
echo " &bsp; | nner
\n"
continue 3;
}

echo "This never gets output.
\n";

}

echo "Neither does this.
\n";

Omitting the semicolon after continue can lead to confusion. Here's an example of what
you shouldn't do.

<?php
for ($i = 0; $i < 5; ++%i) {
if ($i == 2)
conti nue
print "$i\n";
}

2>

One can expect the result to be :

A WKFL O

but this script will output :

2

because the return value of the print() call is int(1), and it will look like the optional numeric
argument mentioned above.

switch

The switch statement is similar to a series of IF statements on the same expression. In
many occasions, you may want to compare the same variable (or expression) with many
different values, and execute a different piece of code depending on which value it equals
to. This is exactly what the switch statement is for.

Note

acts similar to break. If you have a switch inside a loop and wish to continue to the next
iteration of the outer loop, use continue 2.

Note

Note that switch/case does loose comparision.

The following two examples are two different ways to write the same thing, one using a
series of if and elseif statements, and the other using the switch statement:

Example #45 - switch structure

<?php
if ($i == 0) {
echo "i equals 0";
} elseif ($i == 1) {
echo "i equals 1";
} elseif ($i == 2) {
echo "i equals 2";

}

switch ($i) {

case O:
echo "i equals 0";
br eak;

case 1:

echo "i equals 1";
br eak;

case 2:
echo "i equals 2";
br eak;

Example #46 - switch structure allows usage of strings

<?php

switch ($i) {

case "apple":
echo "i is apple";
br eak;

case "bar":
echo "i is bar";
br eak;

case "cake":
echo "i is cake";
br eak;

It is important to understand how the switch statement is executed in order to avoid
mistakes. The switch statement executes line by line (actually, statement by statement). In
the beginning, no code is executed. Only when a case statement is found with a value that
matches the value of the switch expression does PHP begin to execute the statements.
PHP continues to execute the statements until the end of the switch block, or the first time
it sees a break statement. If you don't write a break statement at the end of a case's
statement list, PHP will go on executing the statements of the following case. For example:

<?php
switch ($i) {
case O:

echo "i equals 0";
case 1:

echo "i equals 1";
case 2:

echo "i equal s 2";
}
?>

Here, if $i is equal to 0, PHP would execute all of the echo statements! If $i is equal to 1,
PHP would execute the last two echo statements. You would get the expected behavior ('i
equals 2' would be displayed) only if $i is equal to 2. Thus, it is important not to forget
break statements (even though you may want to avoid supplying them on purpose under
certain circumstances).

In a switch statement, the condition is evaluated only once and the result is compared to

each case statement. In an elseif statement, the condition is evaluated again. If your
condition is more complicated than a simple compare and/or is in a tight loop, a switch
may be faster.

The statement list for a case can also be empty, which simply passes control into the
statement list for the next case.

<?php

switch ($i) {

case O:

case 1:

case 2:
echo "i is less than 3 but not negative";
br eak;

case 3:
echo "i is 3";

}

?>

A special case is the default case. This case matches anything that wasn't matched by the
other cases. For example:

<?php

switch ($i) {

case O:
echo "i equals 0";
br eak;

case 1:
echo "i equals 1";
br eak;

case 2:
echo "i equals 2";
br eak;

defaul t:
echo "i is not equal to O, 1 or 2";

}

?>

The case expression may be any expression that evaluates to a simple type, that is,
integer or floating-point numbers and strings. Arrays or objects cannot be used here
unless they are dereferenced to a simple type.

The alternative syntax for control structures is supported with switches. For more

<?php

switch ($i):

case O:
echo "i equals 0";
br eak;

case 1:
echo "i equals 1";
br eak;

case 2:
echo "i equals 2";
br eak;
defaul t:
echo "i is not equal to O, 1 or 2"
endswi t ch;
?>

declare

The declare construct is used to set execution directives for a block of code. The syntax of
declare is similar to the syntax of other flow control constructs:

declare (directive)
st at enent

The directive section allows the behavior of the declare block to be set. Currently only one

directive)

The statement part of the declare block will be executed -- how it is executed and what
side effects occur during execution may depend on the directive set in the directive block.

The declare construct can also be used in the global scope, affecting all code following it.

<?php
/'l these are the sane:

/'l you can use this:
decl are(ticks=1) {
/'l entire script here

}

/1l or you can use this:
decl are(ticks=1);

/'l entire script here
?>

Ticks

A tick is an event that occurs for every N low-level statements executed by the parser
within the declare block. The value for N is specified using ti cks= N within the declare
blocks's directive section.

The event(s) that occur on each tick are specified using the register_tick_function(). See
the example below for more details. Note that more than one event can occur for each tick.

Example #47 - Profile a section of PHP code

<?php

// A function that records the tine when it is called
function profil e($dunp = FALSE)

{

static $profile;

/1 Return the tines stored in profile, then erase it
if ($dump) {

$temp = $profile;

unset ($profile);

return $tenp;
}

$profile[] = mcrotinme();

}

/1 Set up a tick handler
register_tick _function("profile");

// Initialize the function before the decl are bl ock
profile();

/1 Run a bl ock of code, throw a tick every 2nd statenent
decl are(ticks=2) {
for ($x = 1; $x < 50; ++3x) {
echo simlar_text(md5($x), md5($x*$x)), "
";
}
}

/1 Display the data stored in the profiler
print_r(profile(TRUE));
?>

The example profiles the PHP code within the 'declare’ block, recording the time at which
every second low-level statement in the block was executed. This information can then be
used to find the slow areas within particular segments of code. This process can be
performed using other methods: using ticks is more convenient and easier to implement.

Ticks are well suited for debugging, implementing simple multitasking, background 1/0 and
many other tasks.

See also register_tick_function() and unregister_tick_function().

return

If called from within a function, the return() statement immediately ends execution of the
current function, and returns its argument as the value of the function call. return() will
also end the execution of an eval() statement or script file.

If called from the global scope, then execution of the current script file is ended. If the
current script file was include() ed or require() ed, then control is passed back to the
calling file. Furthermore, if the current script file was include() ed, then the value given to

return() will be returned as the value of the include() call. If return() is called from within
the main script file, then script execution ends. If the current script file was named by the
auto_prepend_file or auto_append_file configuration options in php.ini, then that script
file's execution is ended.

Note

Note that since return() is a language construct and not a function, the parentheses
surrounding its arguments are not required. It is common to leave them out, and you
actually should do so as PHP has less work to do in this case.

Note

You should never use parentheses around your return variable when returning by
reference, as this will not work. You can only return variables by reference, not the
result of a statement. If you use return ($a); then you're not returning a variable, but the
result of the expression ($a) (which is, of course, the value of $a).

require()
The require() statement includes and evaluates the specific file.

require() includes and evaluates a specific file. Detailed information on how this inclusion
works is described in the documentation for include().

require() and include() are identical in every way except how they handle failure. They
both produce a Warning, but require() results in a Fatal Error. In other words, don't
hesitate to use require() if you want a missing file to halt processing of the page. include()
does not behave this way, the script will continue regardless. Be sure to have an
appropriate include_path setting as well.

Example #48 - Basic require() examples

<?php

require 'prepend. php';
require $sonefile;
require ('sonefile.txt');

?>

See the include() documentation for more examples.

Note

Prior to PHP 4.0.2, the following applies: require() will always attempt to read the
target file, even if the line it's on never executes. The conditional statement won't affect
require(). However, if the line on which the require() occurs is not executed, neither
will any of the code in the target file be executed. Similarly, looping structures do not
affect the behaviour of require(). Although the code contained in the target file is still
subject to the loop, the require() itself happens only once.

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also include(), require_once(), include_once(), get_included_files(), eval(), file(),
readfile(), virtual() and include_path.

include()

The include() statement includes and evaluates the specified file.

The documentation below also applies to require(). The two constructs are identical in
every way except how they handle failure. They both produce a Warning, but require()
results in a Fatal Error. In other words, use require() if you want a missing file to halt
processing of the page. include() does not behave this way, the script will continue
regardless. Be sure to have an appropriate include_path setting as well. Be warned that
parse error in included file doesn't cause processing halting in PHP versions prior to PHP
4.3.5. Since this version, it does.

Files for including are first looked for in each include_path entry relative to the current
working directory, and then in the directory of current script. E.g. if your include_path is
libraries, current working directory is /www/, you included include/a.php and there is
include "b.php" in that file, b.php is first looked in /www/libraries/ and then in /www/include/
. If filename begins with./ or../, it is looked only in the current working directory.

the include occurs. Any variables available at that line in the calling file will be available
within the called file, from that point forward. However, all functions and classes defined in
the included file have the global scope.

Example #49 - Basic include() example

vars. php
<?php

$col or
$fruit

'green';
"appl e';

?>

test. php
<?php

echo "A $color $fruit"; // A
i ncl ude 'vars. php';
echo "A $color $fruit"; // A green apple

?>

If the include occurs inside a function within the calling file, then all of the code contained
in the called file will behave as though it had been defined inside that function. So, it will

which are evaluated by the parser before the include occurs.

Example #50 - Including within functions

<?php
function foo()
: gl obal $col or;
i ncl ude 'vars. php';
echo "A $color $fruit";
}
/* vars.php is in the scope of foo() so *

* $fruit is NOT avail abl e outside of this *
* scope. $color is because we declared it *
* as gl obal . */

foo(); /1 A green apple
echo "A $color $fruit"”; /1 A green

?>

When a file is included, parsing drops out of PHP mode and into HTML mode at the
beginning of the target file, and resumes again at the end. For this reason, any code inside

If " URL fopen wrappers " are enabled in PHP (which they are in the default configuration),
you can specify the file to be included using a URL (via HTTP or other supported wrapper -
see List of Supported Protocols/Wrappers for a list of protocols) instead of a local
pathname. If the target server interprets the target file as PHP code, variables may be
passed to the included file using a URL request string as used with HTTP GET. This is not
strictly speaking the same thing as including the file and having it inherit the parent file's
variable scope; the script is actually being run on the remote server and the result is then
being included into the local script.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

Example #51 - include() through HTTP

<?php

[* This exanple assunes that ww. exanpl e.comis configured to parse .php
* files and not .txt files. Also, 'Wrks' here neans that the variabl es
* $f oo and $bar are available within the included file. */

/1 Wn't work; file.txt wasn't handl ed by www. exanpl e. com as PHP
i nclude ' http://ww. exanpl e.conf file.txt?foo=1&bar =2

/1 Won't work; |ooks for a file named 'file.php?foo=1&bar=2" on the
/'l local filesystem
include 'file.php?foo=1&bar=2'

/1 \Wbrks.

i nclude "http://ww. exanpl e. com fil e. php?foo=1&bar =2"
$foo = 1;

$bar = 2;

include "file.txt'; [/ Wrks.

include 'file.php'; [/ Wrks.

?>

Warning

Security warning

Remote file may be processed at the remote server (depending on the file extension
and the fact if the remote server runs PHP or not) but it still has to produce a valid PHP
script because it will be processed at the local server. If the file from the remote server
should be processed there and outputted only, readfile() is much better function to use.
Otherwise, special care should be taken to secure the remote script to produce a valid
and desired code.

See also Remote files, fopen() and file() for related information.

Handling Returns: It is possible to execute a return() statement inside an included file in
order to terminate processing in that file and return to the script which called it. Also, it's
possible to return values from included files. You can take the value of the include call as
you would a normal function. This is not, however, possible when including remote files
file). You can declare the needed variables within those tags and they will be introduced at
whichever point the file was included.

Because include() is a special language construct, parentheses are not needed around its
argument. Take care when comparing return value.

Example #52 - Comparing return value of include
<?php
/1 won't work, evaluated as include(('vars.php') =="OK), i.e. include('")
if (include('vars.php') =="OK) {
echo ' K
}
/'l works
if ((include '"vars.php') == "K') {
echo ' K
}
?>

Example #53 - include() and the return() statement

return. php
<?php
$var = ' PHP';

return $var;

?>

nor et ur n. php
<?php

$var = ' PHP';
?>

testreturns. php
<?php

$foo = include 'return. php';
echo $foo; // prints 'PHP
$bar = include 'noreturn. php';
echo $bar; // prints 1

?>

$bar is the value 1 because the include was successful. Notice the difference between the
above examples. The first uses return() within the included file while the other does not. If
the file can't be included, FALSE is returned and E_ WARNING is issued.

If there are functions defined in the included file, they can be used in the main file
independent if they are before return() or after. If the file is included twice, PHP 5 issues
fatal error because functions were already declared, while PHP 4 doesn't complain about
functions defined after return(). It is recommended to use include_once() instead of
checking if the file was already included and conditionally return inside the included file.

Another way to "include" a PHP file into a variable is to capture the output by using the
Output Control Functions with include(). For example:

Example #54 - Using output buffering to include a PHP file into a string

<?php
$string = get _include_contents('sonefile.php');

function get _include_contents($filenane) {
if (is_file($filenane)) {
ob_start();
i ncl ude $fil enane;
$contents = ob_get _contents();
ob_end_cl ean();
return $contents;

}

return false;

?>

In order to automatically include files within scripts, see also the auto_prepend_file and
auto_append_file configuration options in php.ini.

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See also require(), require_once(), include_once(), get_included_files(), readfile(),
virtual(), and include_path.

require_once()

The require_once() statement includes and evaluates the specified file during the
execution of the script. This is a behavior similar to the require() statement, with the only
difference being that if the code from a file has already been included, it will not be
included again. See the documentation for require() for more information on how this
statement works.

require_once() should be used in cases where the same file might be included and
evaluated more than once during a particular execution of a script, and you want to be
sure that it is included exactly once to avoid problems with function redefinitions, variable
value reassignments, etc.

For examples on using require_once() and include_once(), look at the » PEAR code
included in the latest PHP source code distributions.

Return values are the same as with include(). If the file was already included, this function
returns TRUE

Note

require_once() was added in PHP 4.0.1

Note

Be aware, that the behaviour of require_once() and include_once() may not be what
you expect on a non case sensitive operating system (such as Windows).

Example #55 - require_once() is case insensitive on Windows

<?php
requi re_once "a.php"; // this will include a.php

http://pear.php.net/

require_once "A.php"; // this will include a.php again on Wndows! (PHP 4

only)
?>

This behaviour changed in PHP 5 - the path is normalized first so that
C:\PROGRA~1\A.php is realized the same as C:\Program Files\a.php and the file is
required just once.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also require(), include(), include_once(), get_required_files(), get_included_files(),
readfile(), and virtual().

include_once()

The include_once() statement includes and evaluates the specified file during the
execution of the script. This is a behavior similar to the include() statement, with the only
difference being that if the code from a file has already been included, it will not be
included again. As the name suggests, it will be included just once.

include_once() should be used in cases where the same file might be included and
evaluated more than once during a particular execution of a script, and you want to be
sure that it is included exactly once to avoid problems with function redefinitions, variable
value reassignments, etc.

For more examples on using require_once() and include_once(), look at the » PEAR
code included in the latest PHP source code distributions.

Return values are the same as with include(). If the file was already included, this functig
returns TRUE

Note

include_once() was added in PHP 4.0.1

Note

Be aware, that the behaviour of include_once() and require_once() may not be what

n

http://pear.php.net/

you expect on a non case sensitive operating system (such as Windows).

Example #56 - include_once() is case insensitive on Windows

<?php

i ncl ude_once "a.php"; // this will include a.php

i nclude_once "A.php"; // this will include a.php again on Wndows! (PHP 4
only)

?>

This behaviour changed in PHP 5 - the path is normalized first so that
C:\PROGRA~1\A.php is realized the same as C:\Program Files\a.php and the file is
included just once.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also include(), require(), require_once(), get_required_files(), get_included_files(),
readfile(), and virtual().

Functions

User-defined functions

A function may be defined using syntax such as the following:

Example #57 - Pseudo code to demonstrate function uses

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n)
{

echo "Exanmpl e function.\n";

return $retval

definitions.

Function names follow the same rules as other labels in PHP. A valid function name starts
with a letter or underscore, followed by any number of letters, numbers, or underscores.
As a regular expression, it would be expressed thus: [a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*

Tip

See also the Userland Naming Guide.

Functions need not be defined before they are referenced, except when a function is
conditionally defined as shown in the two examples below.

When a function is defined in a conditional manner such as the two examples shown. Its
definition must be processed prior to being called.

Example #58 - Conditional functions

<?php
$makef oo = true;

/* W can't call foo() fromhere
since it doesn't exist yet,

but we can call bar() */
bar () ;

i f ($makefoo) {
function foo()

{

}
}

/* Now we can safely call foo()
since $nmekefoo evaluated to true */

echo "I don't exist until program execution reaches ne.\n";

if ($makefoo) foo();

function bar ()

{

echo "I exist inmediately upon programstart.\n";

}

?>

Example #59 - Functions within functions

<?php
function foo()
{

function bar ()

{

echo "I don't exist until foo() is called.\n";

}

}

/[* We can't call bar() yet
since it doesn't exist. */

foo();

/* Now we can call bar(),
foo()'s processesing has
made it accessible. */

bar () ;

?>

All functions and classes in PHP have the global scope - they can be called outside a
function even if they were defined inside and vice versa.

PHP does not support function overloading, nor is it possible to undefine or redefine
previously-declared functions.

Note

Function names are case-insensitive, though it is usually good form to call functions as
they appear in their declaration.

also the function references for func_num_args(), func_get_arg(), and func_get_args() for
more information.

It is possible to call recursive functions in PHP. However avoid recursive function/method
calls with over 100-200 recursion levels as it can smash the stack and cause a termination
of the current script.

Example #60 - Recursive functions

<?php
function recursion($a)
{
if ($a < 20) {
echo "$a\n";
recursion($a + 1);

Function arguments

Information may be passed to functions via the argument list, which is a comma-delimited
list of expressions.

references for func_num_args(), func_get_arg(), and func_get_args() for more information.

Example #61 - Passing arrays to functions

<?php
function takes_array($input)
{
echo "$input[0] + Sinput[1] =", $input[O0]+S$input[1];
}
?>

Making arguments be passed by reference

By default, function arguments are passed by value (so that if the value of the argument
within the function is changed, it does not get changed outside of the function). To allow a
function to modify its arguments, they must be passed by reference.

To have an argument to a function always passed by reference, prepend an ampersand
(&) to the argument name in the function definition:

Example #62 - Passing function parameters by reference
<?php
function add_sonme_extra(&$string)
{
$string .= "and sonething extra.';
}
$str = 'This is a string,
add_sone_extra($str);
echo $str; /1 outputs 'This is a string, and sonething extra.'
?>

Default argument values

A function may define C++-style default values for scalar arguments as follows:

Example #63 - Use of default parameters in functions

<?php
function nakecoffee($type = "cappucci no")

{
}

echo makecoffee();

echo makecoffee(null);

echo makecof fee("espresso");
2>

return "Maki ng a cup of $type.\n";

The output from the above snippet is:

Maki ng a cup of cappucci no.
Maki ng a cup of
Maki ng a cup of espresso.

example:

Example #64 - Using non-scalar types as default values

<?php
function makecoffee($types = array("cappuccino"), $coffeeMaker = NULL)

{

$device = is_null ($cof feeMaker) ? "hands" : $cof feeMaker

return "Making a cup of ".join(", ", $types)." with $device.\n";
}
echo makecof fee();
echo makecof fee(array("cappucci no", "lavazza"), "teapot");
?>

The default value must be a constant expression, not (for example) a variable, a class
member or a function call.

Note that when using default arguments, any defaults should be on the right side of any
non-default arguments; otherwise, things will not work as expected. Consider the following
code snippet:

Example #65 - Incorrect usage of default function arguments

<?php
function nakeyogurt ($type = "aci dophilus", $flavour)
{
return "Making a bow of $type $flavour.\n";
}
echo makeyogurt ("raspberry"); /1 won't work as expected
?>

The output of the above example is:

Warning: Mssing argunent 2 in call to makeyogurt() in
/usr/local/etc/httpd/ htdocs/ phptest/functest.htm on line 41
Maki ng a bow of raspberry .

Now, compare the above with this:

Example #66 - Correct usage of default function arguments

<?php
function nmakeyogurt ($fl avour, $type = "aci dophil us")

{
}

return "Making a bow of $type $flavour.\n";

echo makeyogurt ("raspberry"); /1 works as expected
?>

The output of this example is:

Maki ng a bowl of acidophilus raspberry.

Note

As of PHP 5, default values may be passed by reference.

Variable-length argument lists

PHP 4 and above has support for variable-length argument lists in user-defined functions.
This is really quite easy, using the func_num_args(), func_get_arg(), and func_get_args()
functions.

No special syntax is required, and argument lists may still be explicitly provided with
function definitions and will behave as normal.

Returning values

Values are returned by using the optional return statement. Any type may be returned,
including arrays and objects. This causes the function to end its execution immediately
and pass control back to the line from which it was called. See return() for more
information.

Example #67 - Use of return()

<?php
function square($num

{

return $num * $num

}
echo square(4); /1 outputs '16'
?>

A function can not return multiple values, but similar results can be obtained by returning
an array.

Example #68 - Returning an array to get multiple values

<?php
function small _nunbers()

{
}

list ($zero, $one, $two) = small _nunbers();
?>

return array (0, 1, 2);

To return a reference from a function, use the reference operator & in both the function
declaration and when assigning the returned value to a variable:

Example #69 - Returning a reference from a function

<?php
function & eturns_reference()

{
}

$newr ef =& returns_reference();
?>

return $soneref;

Variable functions

PHP supports the concept of variable functions. This means that if a variable name has
parentheses appended to it, PHP will look for a function with the same name as whatever
the variable evaluates to, and will attempt to execute it. Among other things, this can be
used to implement callbacks, function tables, and so forth.

Variable functions won't work with language constructs such as echo(), print(), unset(),
isset(), empty(), include(), require() and the like. Utilize wrapper functions to make use of
any of these constructs as variable functions.

Example #70 - Variable function example

<?php
function foo() {
echo "In foo()
\n";

}
function bar($arg ="'")
{
echo "In bar(); argunment was '$arg'.
\n";
}

/1 This is a wapper function around echo
function echoit($string)

{
echo $string;
}
$func = ' foo'
$func(); /1 This calls foo()
$func = 'bar';

$func('test'); [/ This calls bar()

$func = '"echoit';
$func('test'); [/ This calls echoit()
?>

An object method can also be called with the variable functions syntax.

Example #71 - Variable method example

<?php
cl ass Foo
{
function Variabl e()
{
$nane = 'Bar';
$t hi s->$name(); // This calls the Bar() nethod
}
function Bar ()
{
echo "This is Bar"
}

}

$f oo = new Foo();

$f uncname = "Vari abl e";

$f oo- >$f uncname(); // This calls $foo->Variabl e()

?>

Internal (built-in) functions

PHP comes standard with many functions and constructs. There are also functions that
require specific PHP extensions compiled in, otherwise fatal "undefined function" errors
will appear. For example, to use image functions such as imagecreatetruecolor(), PHP
must be compiled with GD support. Or, to use mysgl_connect(), PHP must be compiled
with MySQL support. There are many core functions that are included in every version of
PHP, such as the string and variable functions. A call to phpinfo() or
get_loaded_extensions() will show which extensions are loaded into PHP. Also note that
many extensions are enabled by default and that the PHP manual is split up by extension.
See the configuration, installation, and individual extension chapters, for information on
how to set up PHP.

Reading and understanding a function's prototype is explained within the manual section
titted how to read a function definition. It's important to realize what a function returns or if
a function works directly on a passed in value. For example, str_replace() will return the
modified string while usort() works on the actual passed in variable itself. Each manual
page also has specific information for each function like information on function
parameters, behavior changes, return values for both success and failure, and availability
information. Knowing these important (yet often subtle) differences is crucial for writing
correct PHP code.

Note

will likely return NULL but this is just a convention, and cannot be relied upon.

See also function_exists(), the function reference, get_extension_funcs(), and dl().

Classes and Objects (PHP 4)

class

A class is a collection of variables and functions working with these variables. Variables
are defined by var and functions by function. A class is defined using the following syntax:

<?php
class Cart {
var $itens; // ltens in our shopping cart
/1 Add $num articles of $artnr to the cart
function add_item($artnr, $num {
$this->items[$artnr] += $num
}

[l Take $num articles of $artnr out of the cart

function renove item($artnr, $num {
if ($this->itens[S$artnr] > $num {

$this->tems[$artnr] -= $num
return true
} elseif ($this->itens[Sartnr] == $nun) {

unset ($this->itens[$artnr]);
return true

} else {
return false;

This defines a class named Cart that consists of an associative array of articles in the cart
and two functions to add and remove items from this cart.

Warning

You can NOT break up a class definition into multiple files. You also can NOT break a
class definition into multiple PHP blocks, unless the break is within a method
declaration. The following will not work:

<?php

class test {
?>

<?php

function test() {
print 'K
}

However, the following is allowed:

<?php
class test {
function test() {
?>
<?php
print 'K

The following cautionary notes are valid for PHP 4.

Caution

The name stdClass is used internally by Zend and is reserved. You cannot have a
class named stdClass in PHP.

Caution

The function names __sleep and __wakeup are magical in PHP classes. You cannot
have functions with these names in any of your classes unless you want the magic
functionality associated with them. See below for more information.

Caution

PHP reserves all function names starting with ___ as magical. It is recommended that
you do not use function names with ___in PHP unless you want some documented
magic functionality.

In PHP 4, only constant initializers for var variables are allowed. To initialize variables with
non-constant values, you need an initialization function which is called automatically when
an object is being constructed from the class. Such a function is called a constructor (see
below).

<?php
class Cart {
/* None of these will work in PHP 4. */
var $todays date = date("Y-md");
var $name = $firstnane;
var $owner = 'Fred ' . 'Jones'
/* Arrays containing constant values will, though. */
var $items = array("VCR', "TV")
}

/* This is how it should be done. */
class Cart {

var $todays_dat e;

var $nane;

var $owner;

var $itens = array("VCR', "TV")

function Cart() {
$thi s->t odays_date = date("Y-md");
$this->name = $GLOBALS[' firstnane'];
/* etc. . . */

Classes are types, that is, they are blueprints for actual variables. You have to create a
variable of the desired type with the new operator.

<?php
$cart = new Cart;
$cart->add_iten("10", 1);

$anot her _cart = new Cart;
$anot her _cart->add_iten("0815", 3);
?>

This creates the objects $cart and $another_cart, both of the class Cart. The function
add_item() of the $cart object is being called to add 1 item of article number 10 to the $cart
. 3 items of article number 0815 are being added to $another_cart.

Both, $cart and $another_cart, have functions add_item(), remove_item() and a variable
items. These are distinct functions and variables. You can think of the objects as
something similar to directories in a filesystem. In a filesystem you can have two different
files README.TXT, as long as they are in different directories. Just like with directories
where you'll have to type the full pathname in order to reach each file from the toplevel
directory, you have to specify the complete name of the function you want to call: in PHP
terms, the toplevel directory would be the global namespace, and the pathname separator
would be ->. Thus, the names $cart->items and $another_cart->items name two different
variables. Note that the variable is named $cart->items, not $cart->$items, that is, a
variable name in PHP has only a single dollar sign.

<?php
/1 correct, single $

$cart->items = array("10" => 1);

/1 invalid, because $cart->%itens becones $cart->""
$cart->$itens = array("10" => 1);

/'l correct, but may or nmay not be what was intended:
/'l $cart->$nyvar becones $cart->itens

$nyvar = 'itens';
$cart->$nyvar = array("10" => 1);
?>

Within a class definition, you do not know under which name the object will be accessible
in your program: at the time the Cart class was written, it was unknown whether the object
would be named $cart, $another_cart, or something else later. Thus, you cannot write
$cart->items within the Cart class itself. Instead, in order to be able to access its own
functions and variables from within a class, one can use the pseudo-variable $this which
can be read as 'my own' or 'current object'. Thus, ' $this->items[$artnr] += $num ' can be
read as 'add $num to the $artnr counter of my own items array' or 'add $num to the $artnr
counter of the items array within the current object'.

Note

The $this pseudo-variable is not usually defined if the method in which it is hosted is
called statically. This is not, however, a strict rule: $this is defined if a method is called
statically from within another object. In this case, the value of $this is that of the calling
object. This is illustrated in the following example:

<?php
class A

{

function foo()
{
if (isset($this)) {
echo '$this is defined (';
echo get class($this);
echo ")\ n";
} else {
echo "\'$this is not defined.\n";
}

}

class B

{

function bar ()

{
}

A foo();

}

$a = new A();
$a->f oo();
A :foo();
$b = new B();
$b- >bar () ;

B: :bar();
?>

The above example will output:

$this is defined (a)
$this is not defined.
$this is defined (b)
$this is not defined.

Note

There are some nice functions to handle classes and objects. You might want to take a
look at the Class/Object Functions.

extends

Often you need classes with similar variables and functions to another existing class. In
fact, it is good practice to define a generic class which can be used in all your projects and
adapt this class for the needs of each of your specific projects. To facilitate this, classes
can be extensions of other classes. The extended or derived class has all variables and
functions of the base class (this is called ‘inheritance' despite the fact that nobody died)
and what you add in the extended definition. It is not possible to subtract from a class, that
IS, to undefine any existing functions or variables. An extended class is always dependent
on a single base class, that is, multiple inheritance is not supported. Classes are extended
using the keyword 'extends'.

<?php
cl ass Naned_Cart extends Cart {
var $owner ;

function set_owner ($nane) ({
$t hi s->owner = $nane;

}

This defines a class Named_Cart that has all variables and functions of Cart plus an
additional variable $owner and an additional function set_owner(). You create a named
cart the usual way and can now set and get the carts owner. You can still use normal cart
functions on named carts:

<?php

$ncart = new Naned Cart; /1l Create a naned cart
$ncart->set_owner("kris"); [// Nane that cart

print $ncart->owner; /1l print the cart owners nane

$ncart->add_item("10", 1); // (inherited functionality fromcart)
?>

This is also called a "parent-child" relationship. You create a class, parent, and use
extends to create a new class based on the parent class: the child class. You can even
use this new child class and create another class based on this child class.

Note

Classes must be defined before they are used! If you want the class Named_Cart to
extend the class Cart, you will have to define the class Cart first. If you want to create
another class called Yellow_named_cart based on the class Named_Cart you have to
define Named_Cart first. To make it short: the order in which the classes are defined is
important.

Constructors

Constructors are functions in a class that are automatically called when you create a new
instance of a class with new. A function becomes a constructor, when it has the same
name as the class. If a class has no constructor, the constructor of the base class will be
called, if it exists.

<?php
class Auto_Cart extends Cart {
function Auto _Cart() {
$t hi s->add_iten("10", 1);
}

This defines a class Auto_Cart that is a Cart plus a constructor which initializes the cart

with one item of article number "10" each time a new Auto_Cart is being made with "new".
Constructors can take arguments and these arguments can be optional, which makes
them much more useful. To be able to still use the class without parameters, all

parameters to constructors should be made optional by providing default values.

<?php
cl ass Constructor_Cart extends Cart ({
function Constructor_Cart($item= "10", $num= 1) {
$this->add item ($item $Snum;
}
}

/'l Shop the sane old boring stuff.
$default _cart = new Constructor_Cart;

/1 Shop for real..
$di fferent _cart = new Constructor_Cart("20", 17);

?>

You also can use the @ operator to mute errors occurring in the constructor, e.g. @new.

<?php
class A

{

function A()

{
}

echo "I amthe constructor of A
\n";

function B()

{

echo "I ama regular function named B in class A
\n"
echo "I amnot a constructor in A
\n"

}

class B extends A

{
}

/1 This will call B() as a constructor
$b = new B;
?>

The function B() in class A will suddenly become a constructor in class B, although it was
never intended to be. PHP 4 does not care if the function is being defined in class B, or if it
has been inherited.

Caution

PHP 4 doesn't call constructors of the base class automatically from a constructor of a
derived class. It is your responsibility to propagate the call to constructors upstream
where appropriate.

Destructors are functions that are called automatically when an object is destroyed, either
with unset() or by simply going out of scope. There are no destructors in PHP. You may
use register_shutdown_function() instead to simulate most effects of destructors.

Scope Resolution Operator (::)

Caution

The following is valid for PHP 4 and later only.

Sometimes it is useful to refer to functions and variables in base classes or to refer to
functions in classes that have not yet any instances. The :: operator is being used for this.

<?php
class A {
function exanple() {
echo "I amthe original function A :exanple().
\n"
}
}

class B extends A {
function exanple() {
echo "I amthe redefined function B::exanple().
\n"
A exanpl e();

}

/1l there is no object of class A

/1 this will print

/1 I amthe original function A :exanple().

A exanpl e();

/'l create an object of class B
$b = new B;

/1 this will print

/1 I amthe redefined function B::exanple().

/1 I amthe original function A :exanple().

$b- >exanpl e() ;

?>

The above example calls the function example() in class A, but there is no object of class
A, so that we cannot write $a->example() or similar. Instead we call example() as a 'class
function’, that is, as a function of the class itself, not any object of that class.

There are class functions, but there are no class variables. In fact, there is no object at all
at the time of the call. Thus, a class function may not use any object variables (but it can
use local and global variables), and it may not use $this at all.

In the above example, class B redefines the function example(). The original definition in
class A is shadowed and no longer available, unless you are referring specifically to the
implementation of example() in class A using the ::-operator. Write A::example() to do this
(in fact, you should be writing parent::example(), as shown in the next section).

In this context, there is a current object and it may have object variables. Thus, when used

from WITHIN an object function, you may use $this and object variables.

parent

You may find yourself writing code that refers to variables and functions in base classes.
This is particularly true if your derived class is a refinement or specialisation of code in
your base class.

Instead of using the literal name of the base class in your code, you should be using the
special name parent, which refers to the name of your base class as given in the extends
declaration of your class. By doing this, you avoid using the name of your base class in
more than one place. Should your inheritance tree change during implementation, the
change is easily made by simply changing the extends declaration of your class.

<?php
class A {
function exanple() {
echo "I am A::exanple() and provide basic functionality.
\n"

}
}

class B extends A {
function exanple() {
echo "I am B::exanple() and provide additional functionality.
\n"
parent::exanpl e();

}
$b = new B;

Il This will call B::exanple(), which will in turn call A :exanple().

$b- >exanpl e() ;
?>

Serializing objects - objects in sessions

serialize() returns a string containing a byte-stream representation of any value that can be
stored in PHP. unserialize() can use this string to recreate the original variable values.
Using serialize to save an object will save all variables in an object. The functions in an
object will not be saved, only the name of the class.

In order to be able to unserialize() an object, the class of that object needs to be defined.
That is, if you have an object $a of class A on pagel.php and serialize this, you'll get a
string that refers to class A and contains all values of variabled contained in $a. If you want
to be able to unserialize this on page2.php, recreating $a of class A, the definition of class
A must be present in page2.php. This can be done for example by storing the class
definition of class A in an include file and including this file in both pagel.php and

page2.php.

<?php
/'l classa.inc:

class A {
var $one = 1;

function show one() {
echo $t hi s->one;

}

/'l pagel. php:
i nclude("classa.inc");

$a = new A

$s = serialize(%a);

Il store $s sonewhere where page2.php can find it.
$fp = fopen("store", "W');

fwite($fp, $s);

fcl ose($fp);

/'l page2. php:

/'l this is needed for the unserialize to work properly.
i nclude("classa.inc");

$s
$a

i npl ode("", @ile("store"));
unserialize($s);

/1 now use the function show one() of the $a object.
$a- >show _one();
?>

If you are using sessions and use session_register() to register objects, these objects are
serialized automatically at the end of each PHP page, and are unserialized automatically
on each of the following pages. This basically means that these objects can show up on
any of your pages once they become part of your session.

It is strongly recommended that you include the class definitions of all such registered
objects on all of your pages, even if you do not actually use these classes on all of your
pages. If you don't and an object is being unserialized without its class definition being
present, it will lose its class association and become an object of class stdClass without
any functions available at all, that is, it will become quite useless.

So if in the example above $a became part of a session by running session_register("a"),
you should include the file classa.inc on all of your pages, not only pagel.php and

page2.php.

The magic functions __sleep and __wakeup

serialize() checks if your class has a function with the magic name __sleep. If so, that
function is being run prior to any serialization. It can clean up the object and is supposed to
return an array with the names of all variables of that object that should be serialized. If the
method doesn't return anything then NULL is serialized and E_NOTICE is issued.

The intended use of __sleep is to commit pending data or perform similar cleanup tasks.
Also, the function is useful if you have very large objects which need not be saved
completely.

Conversely, unserialize() checks for the presence of a function with the magic name
__wakeup. If present, this function can reconstruct any resources that object may have.

The intended use of __ wakeup is to reestablish any database connections that may have

been lost during serialization and perform other reinitialization tasks.

References inside the constructor

Creating references within the constructor can lead to confusing results. This tutorial-like
section helps you to avoid problems.

<?php
cl ass Foo {
function Foo($nane) {

/'l create a reference inside the global array $gl obal ref
gl obal $gl obal ref;
$gl obal ref[] = &$this;
/1l set nane to passed val ue
$t hi s- >set Nane($nane) ;
/1 and put it out
$t hi s- >echoNane() ;

}

function echoNane() ({
echo "
", $this->nane;

}

function set Nane($nane) {
$t hi s->name = $nane;
}

Let us check out if there is a difference between $barl which has been created using the
copy = operator and $bar2 which has been created using the reference =&operator...

<?php

$bar1l = new Foo('set in constructor');
$bar 1- >echoNane() ;

$gl obal ref [0] - >echoNane() ;

/* output:

set in constructor
set in constructor
set in constructor */

$bar2 =& new Foo('set in constructor');
$bar 2- >echoNane() ;
$gl obal ref[1] - >echoNane() ;

/* output:

set in constructor
set in constructor
set in constructor */
?>

Apparently there is no difference, but in fact there is a very significant one: $barl and
$globalref[0] are _NOT _ referenced, they are NOT the same variable. This is because
"new" does not return a reference by default, instead it returns a copy.

Note

There is no performance loss (since PHP 4 and up use reference counting) returning
copies instead of references. On the contrary it is most often better to simply work with
copies instead of references, because creating references takes some time where
creating copies virtually takes no time (unless none of them is a large array or object
and one of them gets changed and the other(s) one(s) subsequently, then it would be
wise to use references to change them all concurrently).

To prove what is written above let us watch the code below.

<?php

/'l now we will change the nane. what do you expect?

/'l you could expect that both $barl and $gl obal ref[0] change their nanes...
$bar 1- >set Nanme(' set from outside');

/1 as nentioned before this is not the case.
$bar 1- >echoNane() ;
$gl obal ref [0] - >echoNane() ;

/* output:
set from outside
set in constructor */

Il let us see what is different with $bar2 and $gl obal ref[1]
$bar 2- >set Nanme(' set from outside');

/1 luckily they are not only equal, they are the sanme variable
/'] thus $bar2->nanme and $gl obal ref[1] ->nane are the sane too
$bar 2- >echoNane() ;

$gl obal ref[1] - >echoNane() ;

/* output:

set from outside
set fromoutside */
?>

Another final example, try to understand it.

<?php
class A {
function A(S$i) {
$t hi s->val ue = $i;
/1l try to figure out why we do not need a reference here
$t his->b = new B($this);
}

function createRef() {
$this->c = new B($this);
}

function echoVal ue() {

echo "
","class ",get_class($this),': ', $this->val ue;
}
}
class B {
function B(&$a) {
$this->a = &$a;
}
function echoVal ue() {
echo "
","class ",get _class($this),': ', $this->a->val ue;
}
}

/1l try to understand why using a sinple copy here would yield
/1 in an undesired result in the *-marked |ine

$a =& new A(10);

$a- >creat eRef () ;

$a- >echoVal ue();

$a- >b- >echoVal ue();

$a- >c- >echoVal ue();
$a->val ue = 11;

$a- >echoVal ue();

$a- >b- >echoVal ue(); // *

$a- >c- >echoVal ue();

?>

The above example will output:

class A: 10
class B: 10
class B: 10
class A 11
class B: 11
class B: 11

Comparing objects

In PHP 4, objects are compared in a very simple manner, namely: Two object instances
are equal if they have the same attributes and values, and are instances of the same
class. Similar rules are applied when comparing two objects using the identity operator (

If we were to execute the code in the example below:

Example #72 - Example of object comparison in PHP 4

<?php

function bool 2str($bool) {

if ($bool === false) {
return ' FALSE ;
} else {
return ' TRUE ;
}
}
function conpareQbj ect s(&Ppol, &$02) {
echo 'ol == 02 : '.bool 2str($0l == $02)."\n";
echo 'ol '= 02 : '.bool2str($%0l != $02)."\n";
echo 'ol === 02 : '.bool 2str($0l === $02)."\n";
echo 'ol !'== 02 : '.bool 2str($ol !== $02)."\n";
}

class Flag {
var $fl ag;

function Flag($flag=true) {
$this->flag = $fl ag;
}

}

cl ass Swi tchabl eFl ag extends Fl ag {

function turnOn() {
$this->flag = true;
}

function turnOif() {
$this->flag = fal se;

}
}
$0 = new Flag():
$p = new Fl ag(fal se);
$q = new Flag();
$r = new Swit chabl eFl ag();

echo "Conpare instances created with the sane paraneters\n”;
conpar eObj ect s($o0, $q);

echo "\ nConpare instances created with different paraneters\n";
conpar eObj ect s($o0, $p);

echo "\ nConpare an instance of a parent class with one froma subcl ass\n";

conpar eObj ect s($o, $r);
?>

The above example will output:

Conpare instances created with the same paraneters
0l == 02 : TRUE

ol !'= 02 : FALSE

0l === 02 : TRUE

ol !'== 02 : FALSE

Conpare instances created with different paraneters
0l == 02 : FALSE

ol '= 02 : TRUE
0l === 02 : FALSE
0ol '== 02 : TRUE

Conpare an instance of a parent class with one froma subcl ass
0ol == 02 : FALSE

ol '=02 : TRUE

0ol === 02 : FALSE

ol '== 02 : TRUE

Which is the output we will expect to obtain given the comparison rules above. Only
instances with the same values for their attributes and from the same class are considered
equal and identical.

Even in the cases where we have object composition, the same comparison rules apply. In
the example below we create a container class that stores an associative array of Flag
objects.

Example #73 - Compound object comparisons in PHP 4

<?php
class FlagSet {
var $set;

function FlagSet($flagArr = array()) {
$t his->set = $flagArr;
}

function addFl ag($nanme, $flag) {
$t hi s->set[$nane] = $fl ag;
}

function renoveFl ag($nane) {
if (array_key_exists($nane, $this->set)) {
unset ($t hi s->set [$nane]);
}

$u = new Fl agSet () ;

$u- >addFl ag(' fl agl', $o);

$u- >addFl ag(' fl ag2', $p);

$v = new Fl agSet (array(' flagl' =>$q, 'flag2' =>$p));
$w = new Fl agSet (array(' fl agl' =>%$q));

echo "\ nConposite objects u(o,p) and v(qg,p)\n";
conpar eQbj ect s($u, $v);

echo "\nu(o,p) and w(g)\n";
conpar eObj ect s($u, $w);
?>

The above example will output:
Conposi te objects u(o,p) and v(q,p)

0l == 02 : TRUE
ol '= 02 : FALSE

0l === 02 : TRUE
ol '== 02 : FALSE

u(o, p) and w(q)
0ol == 02 : FALSE
ol '= 02 : TRUE
0l === 02 : FALSE
ol '== 02 : TRUE

Classes and Objects (PHP 5)

Introduction

In PHP 5 there is a new Object Model. PHP's handling of objects has been completely
rewritten, allowing for better performance and more features.

Tip

See also the Userland Naming Guide.

The Basics

class

Every class definition begins with the keyword class, followed by a class name, which can
be any name that isn't a reserved word in PHP. Followed by a pair of curly braces, which
contains the definition of the classes members and methods. A pseudo-variable, $this is
available when a method is called from within an object context. $this is a reference to the
calling object (usually the object to which the method belongs, but can be another object, if

the following examples:

Example #74 - $this variable in object-oriented language

<?php
class A

{

function foo()
{
if (isset($this)) {
echo "$this is defined (';
echo get cl ass($this);
echo ")\n";
} else {
echo "\'$this is not defined.\n";
}
}
}

class B

{

function bar()

{
}

A :foo();

}

$a = new A();
$a->f oo();

A :foo();

$b = new B();
$b- >bar () ;

B: : bar();

?>

The above example will output:

$this is defined (a)
$this is not defined.
$this is defined (b)
$this is not defined.

Example #75 - Simple Class definition

<?php
cl ass Sinpl eC ass
{
/1l menber decl aration
public $var = 'a default val ue'

/1 nmethod declaration

public function displayVar() {
echo $thi s->var;

}

The default value must be a constant expression, not (for example) a variable, a class
member or a function call.

Example #76 - Class members' default value

<?php
cl ass Sinpl ed ass

{

/1 invalid nmenber decl arations:

public $varl = "hello '."world';
public $var2 = <<<EOD

hell o world

EQD;
public $var3 = 1+2;
public $vard = self::nyStaticMethod();
public $var5 = $nyVar;

/1 valid menber declarations:
public $var6 nyConst ant ;

public $var7 sel f::classConstant;
public $var8 array(true, false);

Note

There are some nice functions to handle classes and objects. You might want to take a
look at the Class/Object Functions.

Unlike heredocs, nowdocs can be used in any static data context.

Example #77 - Static data example

<?php
class foo {
/1 As of PHP 5.3.0
public $bar = <<<' EOT"
bar
EOCT;
}

?>

Note

Nowdoc support was added in PHP 5.3.0.

new

To create an instance of a class, a new object must be created and assigned to a variable.
An object will always be assigned when creating a new object unless the object has a

instantiation (and in some cases this is a requirement).

Example #78 - Creating an instance

<?php
$i nstance = new Sinpl ed ass();
?>

In the class context, it is possible to create a new object by new self and new parent.

When assigning an already created instance of a class to a new variable, the new variable
will access the same instance as the object that was assigned. This behaviour is the same
when passing instances to a function. A copy of an already created object can be made by

Example #79 - Object Assignment

<?php
$assigned = $instance;
$reference =& $instance;

$i nstance->var = '$assigned wi Il have this val ue'
$instance = null; // $instance and $reference becone nul
var _dunp($i nst ance) ;

var _dunp($reference);

var _dunp($assi gned) ;
2>

The above example will output:

NUL L
NUL L
obj ect (Si npl ed ass) #1 (1) {
["var"]=>
string(30) "$assigned will have this val ue"
}
extends

A class can inherit methods and members of another class by using the extends keyword
in the declaration. It is not possible to extend multiple classes, a class can only inherit one
base class.

The inherited methods and members can be overridden, unless the parent class has

Example #80 - Simple Class Inheritance

<?php
cl ass ExtendCd ass extends SinpleC ass
{
/1l Redefine the parent nethod
function displayVar()
{
echo "Extending class\n";
parent: : di splayVvar ();

}

$ext ended = new Extendd ass();
$ext ended- >di spl ayVar () ;
?>

The above example will output:

Ext endi ng cl ass
a default val ue

Autoloading Objects

Many developers writing object-oriented applications create one PHP source file per-class
definition. One of the biggest annoyances is having to write a long list of needed includes
at the beginning of each script (one for each class).

In PHP 5, this is no longer necessary. You may define an __autoload function which is
automatically called in case you are trying to use a class/interface which hasn't been
defined yet. By calling this function the scripting engine is given a last chance to load the
class before PHP fails with an error.

Note

results in a fatal error.

Note

Autoloading is not available if using PHP in CLI interactive mode.

Note

If the class name is used e.g. in call_user_func() then it can contain some dangerous
characters such as../. It is recommended to not use the user-input in such functions or
at least verify the input in __autoload().

Example #81 - Autoload example

This example attempts to load the classes MyClass1 and MyClass2 from the files
MyClassl1.php and MyClass2.php respectively.

<?php

function _ autol oad($cl ass_nane) {
requi re_once $class _nanme . '.php';

}

$obj = new Myd assl();

$obj 2 = new My ass2();

?>

Example #82 - Autoload other example

This example attempts to load the interface ITest.
<?php

function __ autol oad($nane) {
var _dunmp($nane) ;

}

class Foo inplenents | Test {

}

/*
string(5) "ITest"

Fatal error: Interface 'I Test' not found in ..
*/
?>

Constructors and Destructors

Constructor

PHP 5 allows developers to declare constructor methods for classes. Classes which have
a constructor method call this method on each newly-created object, so it is suitable for
any initialization that the object may need before it is used.

Note

Parent constructors are not called implicitly if the child class defines a constructor. In
order to run a parent constructor, a call to parent::___construct() within the child
constructor is required.

Example #83 - using new unified constructors

<?php
cl ass BaseCd ass {
function _ construct() {
print "In BaseC ass constructor\n";

}
}

cl ass SubCd ass extends BaseC ass {
function _ construct() {
parent:: construct();
print "In SubC ass constructor\n";

$obj = new Based ass();
$obj = new Subd ass();
?>

For backwards compatibility, if PHP 5 cannot find a __construct() function for a given
class, it will search for the old-style constructor function, by the name of the class.
Effectively, it means that the only case that would have compatibility issues is if the class
had a method named ___construct() which was used for different semantics.

Destructor
void __destruct (void)

PHP 5 introduces a destructor concept similar to that of other object-oriented languages,
such as C++. The destructor method will be called as soon as all references to a particular
object are removed or when the object is explicitly destroyed or in any order in shutdown
sequence.

Example #84 - Destructor Example

<?php
cl ass MyDestructabl eC ass {
function _ _construct() {
print "In constructor\n";
$t hi s->nane = "MyDestruct abl e ass”;

}

function __destruct() {
print "Destroying " . $this->nane . "\n";
}
}

$obj = new MyDestructabl eCl ass();
?>

Like constructors, parent destructors will not be called implicitly by the engine. In order to
run a parent destructor, one would have to explicitly call parent::__destruct() in the
destructor body.

Note

Destructors called during the script shutdown have HTTP headers already sent. The
working directory in the script shutdown phase can be different with some SAPIs (e.g.

Apache).

Note

Attempting to throw an exception from a destructor (called in the time of script
termination) causes a fatal error.

Visibility

The visibility of a property or method can be defined by prefixing the declaration with the

keywords: public, protected or private. Public declared items can be accessed everywhere.

Protected limits access to inherited and parent classes (and to the class that defines the
item). Private limits visibility only to the class that defines the item.

Members Visibility

Class members must be defined with public, private, or protected.

Example #85 - Member declaration

<?php

/**

* Define Myd ass

*/

cl ass Myd ass

{
public $public = "Public';
protected $protected = 'Protected
private $private = 'Private';

function printHello()

{
echo $this->public;
echo $this->protected;
echo $this->private;

}

}

$obj = new MyCl ass();

echo $obj->public; // Wrks

echo $obj->protected; // Fatal Error

echo $obj->private; // Fatal Error

$obj ->printHello(); // Shows Public, Protected and Private

/**

* Define MyCl ass2

*/

class MyC ass2 extends MyC ass

/1 W can redeclare the public and protected nethod, but not private
protected $protected = ' Protected2

function printHello()

{
echo $t hi s->publi c;
echo $t hi s->prot ect ed;
echo $this->private;

}

}

$obj 2 = new Myd ass2();

echo $obj 2->public; // Wrks

echo $obj 2->private; // Undefined

echo $obj 2->protected; // Fatal Error

$obj 2->printHello(); // Shows Public, Protected2, Undefined

?>

Note

The PHP 4 method of declaring a variable with the var keyword is still supported for
compatibility reasons (as a synonym for the public keyword). In PHP 5 before 5.1.3, its
usage would generate an E_STRICT warning.

Method Visibility

Class methods must be defined with public, private, or protected. Methods without any
declaration are defined as public.

Example #86 - Method Declaration

<?php

/**

* Define My ass

*/

class Myd ass

{
/1 Declare a public constructor
public function __construct() { }

/'l Declare a public method
public function MyPublic() { }

/1l Declare a protected nethod
protected function M/Protected() { }

/1 Declare a private nethod
private function MPrivate() { }

/1 This is public
function Foo()

{
$t hi s->MyPublic();
$t hi s- >MyPr ot ect ed() ;
$this->M/Private();

}

}

$mycl ass = new MyCl ass;

$nycl ass->MyPublic(); // Wrks

$nycl ass->MyProtected(); // Fatal Error

$nycl ass->MyPrivate(); // Fatal Error

$nmycl ass->Foo(); // Public, Protected and Private work

/**
* Define Myd ass2
*/
cl ass Myd ass2 extends Myd ass
{
/1 This is public
function Foo2()

{
$t hi s->MyPublic();
$t hi s- >MyPr ot ect ed() ;
$this->WPrivate(); // Fatal Error
}

}

$nycl ass2 = new MyCl ass2
$nycl ass2->MyPublic(); // Wrks
$mycl ass2- >Foo2(); // Public and Protected work, not Private

cl ass Bar

{

public function test() {
$this->testPrivate();
$t hi s->t est Public();

}

public function testPublic() {
echo "Bar::testPublic\n";
}

private function testPrivate() {
echo "Bar::testPrivate\n";
}

}

cl ass Foo extends Bar

{
public function testPublic() {

echo "Foo::testPublic\n";
}

private function testPrivate() {
echo "Foo::testPrivate\n";
}

}

$nmyFoo = new foo();

$nyFoo->test(); // Bar::testPrivate
/1 Foo::testPublic

?>

Scope Resolution Operator (::)

The Scope Resolution Operator (also called Paamayim Nekudotayim) or in simpler terms,

members or methods of a class.
When referencing these items from outside the class definition, use the name of the class.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Paamayim Nekudotayim would, at first, seem like a strange choice for naming a
double-colon. However, while writing the Zend Engine 0.5 (which powers PHP 3), that's
what the Zend team decided to call it. It actually does mean double-colon - in Hebrew!

Example #87 -:: from outside the class definition

<?php
class Myd ass {
const CONST_VALUE = ' A constant val ue';

}

$cl assname = ' MyCl ass' ;
echo $cl assnane: : CONST_VALUE; // As of PHP 5.3.0

echo MyCl ass: : CONST_VALUE;
?>

Two special keywords self and parent are used to access members or methods from
inside the class definition.

Example #88 -:: from inside the class definition

<?php
class Ot herC ass extends Myd ass

{

public static $ny_static = '"static var';

public static function doubl eCol on() {
echo parent::CONST_VALUE . "\n";
echo self::$ny_static . "\n";

}

$cl assnane = ' &t herd ass'
echo $cl assnane: : doubl eCol on(); // As of PHP 5.3.0

O her d ass: : doubl eCol on();
?>

When an extending class overrides the parents definition of a method, PHP will not call the
parent's method. It's up to the extended class on whether or not the parent's method is

definitions.

Example #89 - Calling a parent's method

<?php
cl ass Myd ass
{
protected function nyFunc() {
echo "Myd ass::nyFunc()\n";

}
}
class Ot herC ass extends Myd ass
{
/1 Override parent's definition
public function nyFunc()
{
/1 But still call the parent function
parent::nyFunc();
echo "Qt herd ass:: myFunc()\n";
}
}

$class = new O herd ass();

$cl ass->myFunc();
?>

Static Keyword

Declaring class members or methods as static makes them accessible without needing an
instantiation of the class. A member declared as static can not be accessed with an
instantiated class object (though a static method can).

method will be treated as if it was declared as public.

Because static methods are callable without an instance of the object created, the pseudo
variable $this is not available inside the method declared as static.

Static properties cannot be accessed through the object using the arrow operator ->.

Calling non-static methods statically generates an E_STRICT level warning.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Example #90 - Static member example

<?php
cl ass Foo

{
public static $ny_static = 'foo';

public function staticValue() {
return self::$my_static;

}

}

cl ass Bar extends Foo

{
public function fooStatic() {

return parent:: $ny_static;

}

}

print Foo::$my_static . "\n";

$f oo = new Foo();
print $foo->staticValue() . "\n";
print $foo->ny_static . "\n"; /1 Undefined "Property" my_static

print $foo::$nmy_static . "\n";
$cl assnane = ' Foo';
print $classnane:: $ny_static . "\n"; // As of PHP 5.3.0

print Bar::$my_static . "\n";
$bar = new Bar ();

print $bar->fooStatic() . "\n";
?>

Example #91 - Static method example

<?php
cl ass Foo {
public static function aStaticMethod() {

/1
}
}
Foo: : aStati cMet hod();
$cl assnanme = ' Foo';

$cl assnane: : aStati cMethod(); // As of PHP 5.3.0
?>

Class Constants

It is possible to define constant values on a per-class basis remaining the same and
unchangeable. Constants differ from normal variables in that you don't use the $symbol to
declare or use them.

The value must be a constant expression, not (for example) a variable, a class member,
result of a mathematical operation or a function call.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Example #92 - Defining and using a constant

<?php
cl ass Myd ass

{

const constant = 'constant val ue';

functi on showConstant () {
echo self::constant . "\n";

}
}

echo MyCl ass::constant . "\n";

$cl assname = "MyCl ass”;
echo $cl assnane: :constant . "\n"; // As of PHP 5.3.0

$cl ass = new MyCl ass();
$cl ass- >showConst ant () ;

echo $cl ass::constant."\n"; // As of PHP 5.3.0
?>

Example #93 - Static data example

<?php
class foo {
/1 As of PHP 5.3.0
const bar = <<<' EQOT"
bar
ECT;
}

?>

Unlike heredocs, nowdocs can be used in any static data context.

Note

Nowdoc support was added in PHP 5.3.0.

Class Abstraction

PHP 5 introduces abstract classes and methods. It is not allowed to create an instance of
a class that has been defined as abstract. Any class that contains at least one abstract
method must also be abstract. Methods defined as abstract simply declare the method's

signature they cannot define the implementation.

When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must be defined by the child; additionally, these methods must be defined with

protected, the function implementation must be defined as either protected or public, but

not private.

Example #94 - Abstract class example

<?php

abstract class Abstractd ass

{
/1 Force Extending class to define this nethod
abstract protected function getVal ue();
abstract protected function prefixVal ue($prefix);

/1 Common net hod
public function printQut() {
print $this->getValue() . "\n";
}
}

cl ass ConcreteC assl extends AbstractdC ass
{
protected function getValue() {
return "ConcreteC assl”;

}

public function prefixValue($prefix) {
return "{$prefix}Concreted assl";
}
}

cl ass ConcreteC ass2 extends AbstractC ass
{
public function getValue() {
return "ConcreteC ass2";

}

public function prefixValue($prefix) {
return "{$prefix}Concreted ass2"
}
}

$cl assl = new Concret ed assl;
$cl assl->printQut();
echo $cl assl->prefixValue(' FOO ") ."\n";

$cl ass2 = new Concret eC ass?2;
$cl ass2->printQut();

echo $cl ass2->prefixValue(' FOO ") ."\n";
?>

The above example will output:

ConcreteCl assl
FOO Concreted assl
Concr et eCl ass2
FOO Concret eC ass2

Old code that has no user-defined classes or functions named 'abstract' should run without
modifications.

Object Interfaces

Object interfaces allow you to create code which specifies which methods a class must
implement, without having to define how these methods are handled.

Interfaces are defined using the interface keyword, in the same way as a standard class,
but without any of the methods having their contents defined.

All methods declared in an interface must be public, this is the nature of an interface.

implements

To implement an interface, the implements operator is used. All methods in the interface
must be implemented within a class; failure to do so will result in a fatal error. Classes may
implement more than one interface if desired by separating each interface with a comma.

Note

A class cannot implement two interfaces that share function names, since it would
cause ambiguity.

Examples

Example #95 - Interface example

<?php
/1 Declare the interface 'i Tenplate
interface i Tenpl ate
{
public function setVariabl e($nanme, $var);
public function getH n ($tenplate);

}

/1 1mplenent the interface

/1 This will work
class Tenpl ate inplenents i Tenpl ate

{
private $vars = array();
public function setVariabl e($nanme, $var)
{
$t hi s- >var s[$nane] = $var;
}
public function getH m ($tenpl ate)
{
f oreach($t hi s->vars as $nane => $val ue) {
$template = str_replace('{'" . $nane . '}', $value, S$tenplate);
}
return $tenpl ate
}
}

/1 This will not work

/1 Fatal error: Class BadTenpl ate contains 1 abstract methods
/1 and nust therefore be declared abstract (iTenplate::getH)
cl ass BadTenpl ate i npl enents i Tenpl ate

{
private $vars = array();
public function setVariabl e($nanme, $var)
{
$t hi s- >var s[$nane] = $var;
}
}
?>

Overloading

Overloading in PHP provides means to dynamically "create” members and methods.
These dynamic entities are processed via magic methods one can establish in a class for
various action types.

The overloading methods are invoked when interacting with members or methods that

use the terms "inaccessible members" and "inaccessible methods" to refer to this
combination of declaration and visibility.

All overloading methods must be defined as public.

Note

Note

PHP's interpretation of "overloading” is different than most object oriented languages.
Overloading traditionally provides the ability to have multiple methods with the same
name but different quantities and types of arguments.

ChangelLog

Version Description

5.1.0 Added __isset() and __unset().
5.3.0 Added __callStatic().

Member overloading

bool __isset (string $nane)

void __unset (string $nane)

__set() is run when writing data to inaccessible members.

__get() is utilized for reading data from inaccessible members.

__isset() is triggered by calling isset() or empty() on inaccessible members.
__unset() is invoked when unset() is used on inaccessible members.

The $name argument is the name of the member being interacted with. The __set()
method's $value argument specifies the value the $name 'ed member should be set to.

Member overloading only works in object context. These magic methods will not be

Example #96 - overloading with __get, _set, _isset and __unset example

<?php
cl ass Menber Test {
/** Location for overl oaded data. */

private $data = array();

/** COverl oading not used on decl ared nmenbers.

public $declared = 1

/** COverloading not triggered when accessed inside the class.

private $hidden = 2;

public function __ set($nane, $val ue) {

echo "Setting '$nane' to ' $value' \n";

$t hi s- >dat a[$nane] = $val ue;

}

public function _ get($nane) {
echo "Getting '$nane'\n";

if (array_key_exists($nane, $this->data)) {

return $this->data[$nane];

}

$trace = debug_backtrace();
trigger_error(

"Undefined property: ' $nanme .
"in' . S$trace[O]['file"]
"'online ' . $trace[O]['line'],
E_USER_NOTI CE) ;
return null;
}
/[** As of PHP 5.1.0 */
public function _ isset($nane) {
echo "Is '$nane' set?\n";
return isset($this->datal $nane]);
}

/** As of PHP 5.1.0 */

public function _ unset($nane) {
echo "Unsetting '$name'\n";
unset ($t hi s- >dat a[$nane]) ;

/** Not a nagic nmethod, just here for exanple.

public function getH dden() {

echo "' hidden' visible here so _ get() not

return $this->hidden;

echo "<pre>\n";
$obj = new Menber Test;

$obj->a = 1;
echo $obj->a . "\n";

var _dunp(i sset ($obj->a));
unset ($obj - >a) ;
var _dunp(i sset ($obj->a));

echo $obj->declared . "\n";

*/

*/

used\ n";

*/

echo $obj - >get Hi dden() . "\n";
echo $obj - >hidden . "\n";
?>

The above example will output:

Setting 'a' to '1'
Cetting 'a'

1

Is "a' set?

bool (true)
Unsetting "a

Is "a' set?

bool (fal se)

1

"hidden' visible here so __get() not used
2

Cetting 'hidden'

Notice: Undefined property: hidden in <file> on line 64 in <file> on |ine
28

Method overloading

__call() is triggered when invoking inaccessible methods in an object context.
__callstatic() is triggered when invoking inaccessible methods in a static context.

The $name argument is the name of the method being called. The $arguments argument
is an enumerated array containing the parameters passed to the $name 'ed method.

Example #97 - overloading instantiated methods with __call and ___ callStatic

<?php
cl ass Met hodTest {
public function __call ($name, $argunents) {
/1 Note: value of $nane is case sensitive
echo "Cal ling object nethod '$nane
i npl ode(', ', $argunents). "\n";
}

/** As of PHP 5.3.0 */
public static function __ call Static($nane, $argunents) {
/1 Note: value of $nane is case sensitive
echo "Calling static nmethod ' $nane
i npl ode(', ', $argunents). "\n";

$obj = new Met hodTest ;
$obj ->runTest (' i n object context');

Met hodTest: :runTest('in static context'); // As of PHP 5.3.0
?>

The above example will output:

Calling object nmethod 'runTest' in object context
Calling static nmethod 'runTest' in static context

Object Iteration

PHP 5 provides a way for objects to be defined so it is possible to iterate through a list of

for the iteration.

Example #98 - Simple Object Iteration

<?php

class Myd ass

{
public $varl = 'value 1';
public $var2 = 'value 2';
public $var3 = 'value 3';

protected $protected
private $private

"protected var'
"private var';

function iterateVisible() {
echo "MyCl ass::iterateVisible:\n";
foreach($this as $key => $val ue) {
print "$key => $val ue\n";

}
}

$cl ass = new MyCl ass();

foreach($cl ass as $key => $val ue) {
print "$key => $val ue\n";

}

echo "\ n";

$cl ass->iterateVisible();

?>
The above example will output:

varl => value 1
var2 => value 2
var3 => value 3

MyCl ass: :iterateVisible:
varl => value 1

var2 => val ue 2

var3 => value 3

protected => protected var
private => private var

named Iterator. This allows the object to decide what and how the object will be iterated.

Example #99 - Object Iteration implementing Iterator

<?php
class Mylterator inplenents Iterator

{

private $var = array();

public function _ construct ($array)
{
if (is_array($array)) {
$this->var = $array;

}

public function rew nd() {
echo "rew ndi ng\n";
reset ($t hi s->var);

public function current() {
$var = current ($this->var);
echo "current: $var\n”;
return $var;

public function key() {
$var = key($this->var);
echo "key: $var\n";
return $var;

public function next() {
$var = next ($this->var);
echo "next: $var\n";
return $var;

public function valid() {
$var = $this->current() !== fal se;
echo "valid: {$var}\n";
return $var;

}

$val ues = array(1, 2, 3);
$it = new Myl terator($val ues);

foreach ($it as $a => $h) {
print "$a: $b\n";
}

?>
The above example will output:

rew ndi ng
current: 1
valid: 1
current: 1
key: O

0. 1

next: 2
current: 2
valid: 1
current: 2
key: 1

1. 2

next: 3
current: 3
valid: 1
current: 3
key: 2

2. 3

next :
current:
val i d:

You can also define your class so that it doesn't have to define all the Iterator functions by
simply implementing the PHP 5 IteratorAggregate interface.

Example #100 - Object Iteration implementing IteratorAggregate

<?php
class MyColl ection inplenments IteratorAggregate
{
private $itens
private $count

array();
0;

/'l Required definition of interface IteratorAggregate
public function getlterator() {
return new Myl terator($this->itens);

}

public function add($val ue) {
$t hi s->i t ens[$t hi s- >count ++] = $val ue;
}

}

$coll = new MyCol l ection();
$col | ->add(' val ue 1');
$col | ->add(' val ue 2');
$col | ->add("' val ue 3");

foreach ($coll as $key => $val) {

echo "key/value: [$key -> $val]\n\n";

}

?>
The above example will output:

rew ndi ng

current: value 1

valid: 1

current: value 1

key: O

key/value: [0 -> val ue 1]

next: value 2

current: value 2

valid: 1

current: value 2

key: 1

key/value: [1 -> value 2]

next: value 3

current: value 3

valid: 1

current: value 3

key: 2

key/value: [2 -> value 3]

next :
current:
val i d:

Note

For more examples of iterators, see the SPL Extension.

Patterns

Patterns are ways to describe best practices and good designs. They show a flexible

solution to common programming problems.

Factory

The Factory pattern allows for the instantiation of objects at runtime. It is called a Factory
Pattern since it is responsible for "manufacturing” an object. A Parameterized Factory
receives the name of the class to instantiate as argument.

Example #101 - Parameterized Factory Method

<?php
cl ass Exanpl e

/1 The paraneterized factory nethod
public static function factory($type)

{
if (include_once 'Drivers/' . $type . '.php') {
$cl assnane = 'Driver_' . $type
return new $cl assnane;
} else {
t hrow new Exception (' Driver not found');
}
}
}
?>

Defining this method in a class allows drivers to be loaded on the fly. If the Example
class was a database abstraction class, loading a MySQL and SQLite driver could be
done as follows:

<?php
/1 Load a MySQ. Driver
$nysql = Exanple::factory(' MySQ');

/1 Load a SQLite Driver
$sqlite = Exanple::factory('SQite');
?>

Singleton

The Singleton pattern applies to situations in which there needs to be a single instance of
a class. The most common example of this is a database connection. Implementing this
pattern allows a programmer to make this single instance easily accessible by many other
objects.

Example #102 - Singleton Function

<?php
cl ass Exanpl e
{

// Hold an instance of the cl ass
private static $instance;

/1l A private constructor; prevents direct creation of object
private function __ construct()

{
}

/1 The singleton nethod
public static function singleton()

{

echo '|I am constructed'

if (lisset(self::S$instance)) {
$c = CLASS
sel f::$i nstance = new $c;

return self::$instance;

}

/1 Exanpl e nethod
public function bark()

{
}

echo 'Wof!";

/1l Prevent users to clone the instance
public function _ clone()

{
}

trigger _error('Clone is not allowed.', E USER ERROR);

}

?>

This allows a single instance of the Example class to be retrieved.

<?php
/1 This would fail because the constructor is private
$test = new Exanpl e;

/1 This will always retrieve a single instance of the class
$test = Exanple::singleton();
$t est - >bar k() ;

/1 This will issue an E_USER ERROR.
$t est _clone = clone $test;

72>

Magic Methods

functions with these names in any of your classes unless you want the magic functionality
associated with them.

Caution

PHP reserves all function names starting with ___ as magical. It is recommended that
you do not use function names with ___in PHP unless you want some documented
magic functionality.

__sleep and __wakeup

serialize() checks if your class has a function with the magic name __sleep. If so, that

function is executed prior to any serialization. It can clean up the object and is supposed to
return an array with the names of all variables of that object that should be serialized. If the
method doesn't return anything then NULL is serialized and E_NOTICE is issued.

The intended use of __sleep is to commit pending data or perform similar cleanup tasks.
Also, the function is useful if you have very large objects which do not need to be saved
completely.

Conversely, unserialize() checks for the presence of a function with the magic name
__wakeup. If present, this function can reconstruct any resources that the object may
have.

The intended use of __ wakeup is to reestablish any database connections that may have
been lost during serialization and perform other reinitialization tasks.

Example #103 - Sleep and wakeup

<?php
cl ass Connection {
protected $link;
private $server, $usernane, $password, $db

public function _ construct($server, $usernane, $password, $db)

{
$t hi s->server = $server;
$t hi s->usernane = $user nane;
$t hi s- >password = $passwor d;
$t hi s->db = $db;
$t hi s->connect () ;

}

private function connect ()
{
$t his->link = nysqgl _connect ($t hi s->server, $this->usernane,
$t hi s- >password) ;
nysql _sel ect _db($t hi s->db, $this->link);

}
public function __sleep()
{
return array('server', 'usernane', 'password', 'db');
}
public function __wakeup()
{
$t hi s->connect () ;
}
}
?>
__toString

The __toString method allows a class to decide how it will react when it is converted to a

string.

Example #104 - Simple example

<?php
/1 Declare a sinple class
cl ass TestC ass

{
public $foo;

public function _ construct ($foo) {
$t hi s->f oo = $foo;

}

public function __toString() {
return $this->foo;

}
}

$class = new Testd ass(' Hell 0');
echo $cl ass;
?>

The above example will output:

Hel |l o

It is worth noting that before PHP 5.2.0 the __toString method was only called when it was
directly combined with echo() or print(). Since PHP 5.2.0, it is called in any string context
(e.g. in printf() with %s modifier) but not in other types contexts (e.g. with %d modifier).
Since PHP 5.2.0, converting objects without __toString method to string would cause
E_RECOVERABLE_ERROR.

__set_state

The only parameter of this method is an array containing exported properties in the form
array(‘property' => value, ...).

Example #105 - Using __set_state (since PHP 5.1.0)

<?php

class A

{
public $vari;

public $var2;

public static function __set state($an_array) // As of PHP 5.1.0

{
$obj = new A

$an_array['varl'];
$an_array['var2'];

$obj - >var 1
$obj - >var 2
return $obj;

}

}

$a = new A

$a->varl = 5;

$a->var2 = 'foo';

eval (' $b = var_export($a, true) . ';"); [/ $b = A:_set state(array(
/1 "varl' => b5,
/1 "var2' => 'foo'

1))
var _dunmp($b);

?>
The above example will output:

object (A #2 (2) {
["varl"]=>
int(5)
["var2"]=>
string(3) "foo"
}

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from overriding a method
by prefixing the definition with final. If the class itself is being defined final then it cannot be
extended.

Example #106 - Final methods example

<?php
cl ass BaseCd ass {
public function test() {
echo "BaseC ass::test() called\n";

}

final public function noreTesting() {
echo "Based ass::noreTesting() called\n";

}
}

class Chil dC ass extends BaseC ass {
public function noreTesting() {
echo "Childd ass::noreTesting() called\n";

}
}

// Results in Fatal error: Cannot override final nethod

BaseC ass:: noreTesting()
?>

Example #107 - Final class example

<?php
final class BaseCd ass {
public function test() {
echo "BaseC ass::test() called\n";

}

/1l Here it doesn't matter if you specify the function as final or not
final public function noreTesting() {
echo "BaseC ass::noreTesting() called\n";

}
}

class Chil dC ass extends BaseC ass {

}

/!l Results in Fatal error: Class ChildC ass may not inherit fromfinal class
(Based ass)

?>

Object cloning

Creating a copy of an object with fully replicated properties is not always the wanted
behavior. A good example of the need for copy constructors, is if you have an object which
represents a GTK window and the object holds the resource of this GTK window, when
you create a duplicate you might want to create a new window with the same properties
and have the new object hold the resource of the new window. Another example is if your
object holds a reference to another object which it uses and when you replicate the parent
object you want to create a new instance of this other object so that the replica has its own
separate copy.

An object copy is created by using the clone keyword (which calls the object's __ clone()
method if possible). An object's __ clone() method cannot be called directly.

$copy_of object = clone $object;

When an object is cloned, PHP 5 will perform a shallow copy of all of the object's
properties. Any properties that are references to other variables, will remain references. If
a __ clone() method is defined, then the newly created object's __ clone() method will be
called, to allow any necessary properties that need to be changed.

Example #108 - Cloning an object

<?php

cl ass SubObj ect

{
static $instances = 0;
public $instance;

public function _ construct() {
$t hi s->i nstance = ++sel f:: $i nst ances;

}

public function __clone() {
$t hi s->i nstance = ++sel f:: $i nst ances;

}
}
cl ass Myd oneabl e
{
public $object1;
public $object2;
function _ clone()
{
/1 Force a copy of this->object, otherw se
/1 it will point to same object.
$t hi s->o0bj ectl = clone $this->objectl;
}
}

$obj = new Myd oneabl e();

$obj - >obj ect 1
$obj - >obj ect 2

new SubQbj ect ();
new SubQbj ect () ;

$obj 2 = cl one $obj;
print("Original Object:\n");

print_r($obj);

print("C oned Object:\n");
print_r($obj2);

?>
The above example will output:

Original Object:
MyCl oneabl e bj ect

(
[obj ect 1] => SubObject bject
(
[instance] => 1
)
[obj ect2] => SubCbj ect bject
(
[instance] => 2
)
)

Cl oned bj ect:
MyCl oneabl e (bj ect
(
[obj ect 1] => SubCbj ect bject
(

[instance] => 3

)

[obj ect2] => SubObject Object
(

)

[instance] => 2

Comparing objects

In PHP 5, object comparison is more complicated than in PHP 4 and more in accordance
to what one will expect from an Object Oriented Language (not that PHP 5 is such a
language).

When using the comparison operator (==), object variables are compared in a simple
manner, namely: Two object instances are equal if they have the same attributes and
values, and are instances of the same class.

On the other hand, when using the identity operator (===, object variables are identical if
and only if they refer to the same instance of the same class.

An example will clarify these rules.

Example #109 - Example of object comparison in PHP 5

<?php
function bool 2str ($bool)
{
if ($bool === false) {
return ' FALSE' ;
} else {
return ' TRUE ;
}
}
function conpareQoj ect s(&Ppol, &3$02)
{
echo 'ol == 02 : ' . bool 2str($ol == $02) . "\n";
echo "ol !'= 02 : ' . bool 2str($ol !'= $02) . "\n";
echo 'ol === 02 : ' . bool 2str($0l === $02) . "\n";
echo 'ol !'==02 : ' . bool 2str($ol !== $02) . "\n";
}

cl ass Fl ag
public $fl ag;

function Flag($flag = true) {
$this->flag = $fl ag;
}
}

class O herFl ag

{

public $fl ag;

function GtherFlag($flag = true) {
$this->flag = $fl ag;

}
}
$0 = new Fl ag();
$p = new Fl ag();
$q = $o;
$r = new Ot herFl ag();

echo "Two instances of the sane class\n";
conpar eObj ect s($o0, $p);

echo "\ nTwo references to the sane instance\n";
conpar eObj ect s($o0, 3$q);

echo "\ nlnstances of two different classes\n";
conpar eObj ect s($o0, $r);
?>

The above example will output:

Two i nstances of the sane cl ass
0l == 02 : TRUE

ol '= 02 : FALSE

0l === 02 : FALSE

ol '== 02 : TRUE

Two references to the sane instance
0l == 02 : TRUE

ol '= 02 : FALSE

0l === 02 : TRUE

ol !'== 02 : FALSE

I nstances of two different cl asses
0l == 02 : FALSE
ol '= 02 : TRUE

0l === 02 : FALSE
0l '== 02 : TRUE
Note

Extensions can define own rules for their objects comparison.

Reflection

Table of Contents

* |ntroduction

Introduction

PHP 5 comes with a complete reflection API that adds the ability to reverse-engineer
classes, interfaces, functions and methods as well as extensions. Additionally, the

reflection API also offers ways of retrieving doc comments for functions, classes and
methods.

The reflection API is an object-oriented extension to the Zend Engine, consisting of the
following classes:

<?php
cl ass

Ref | ecti

interface Refl

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
?>

Ref | ecti
Ref | ecti

Ref | ecti
Ref | ecti

Refl ecti
Refl ecti
Refl ecti
Refl ecti

on { }

ector { }

onException extends Exception { }

onFunction extends Refl ectionFunctionAbstract inplenents Reflector

onParaneter inplenments Reflector { }
onMet hod extends ReflectionFuncti onAbstract inplenments Reflector {

onC ass inplenments Reflector { }

onObj ect extends ReflectionC ass { }
onProperty inplenments Reflector { }
onExt ensi on inplenments Reflector { }

Note

For details on these classes, have a look at the next chapters.

If we were to execute the code in the example below:

Example #110 - Basic usage of the reflection API

72>

<?php
Ref |l ecti on:: export (new Refl ectionCl ass(' Exception'));

The above example will output:

Class [<internal > class Exception] {

- Constants [0] {

}

- Static properties [0] {

- Static nethods [0] {

- Properties
Property
Property
Property
Property
Property
Property

— e —

[6] {

<def aul t
<def aul t
<def aul t
<def aul t
<def aul t
<def aul t

- Methods [9] {
Method [<internal > fina

}

Met hod [<i

nt er nal

> protected $nessage]
> private $string]
> protected $code]
> protected $file]
> protected $line]
> private $trace |

private method _ clone] {

ctor> public nmethod __ _construct] {

- Parameters [2] {
Parameter #0 [
Paranmeter #1 [

}
}

Met hod [<i

Met hod [<i

Met hod [<i

Met hod [<i

Met hod [<i

Met hod [<i

Met hod [<i

nt er nal >

nt er nal >

nt er nal >

nt er nal >

nt er nal >

nt er nal >

<optional > $nessage |

<opti onal > $code]

fi

fi

fi

fi

fi

fi

na

na

na

na

na

na

public
public
public
public
public
public

met hod

met hod

met hod

met hod

met hod

met hod

get Message | {

get Code] {

getFile] {

getLine] {

get Trace | {

get TraceAsString] {

nternal > public method __toString] {

Reflector

Reflector is an interface implemented by all exportable Reflection classes.

<?php
interface Refl ector

{
public string __toString()

public static string export()

ReflectionException

specific methods or properties are introduced.

ReflectionFunction

The ReflectionFunction class lets you reverse-engineer functions.

<?php
class ReflectionFunction extends Reflecti onFuncti onAbstract inplenents Refl ector

{

final private _ clone()

public void _ _construct(string nane)
public string __toString()
public static string export(string name, bool return)
public string getNane()
public bool islnternal ()
public bool isDisabled()
public bool isUserDefined()
public string getFil eNane()
public int getStartLine()
public int getEndLi ne()
public string get DocComment ()
public array getStaticVariabl es()
public mxed invoke([m xed args [, ...]])
public m xed invokeArgs(array args)
public bool returnsReference()
public ReflectionParameter[] getParaneters()
public int getNunber Of Paraneters()
public int getNunber OF Requi r edPar anet ers()
}
?>

Parent class ReflectionFunctionAbstract has the same methods except invoke(),
invokeArgs(), export() and isDisabled().

Note

getNumberOfParameters() and getNumberOfRequiredParameters() were added in
PHP 5.0.3, while invokeArgs() was added in PHP 5.1.0.

To introspect a function, you will first have to create an instance of the ReflectionFunction
class. You can then call any of the above methods on this instance.

Example #111 - Using the ReflectionFunction class

<?php

/**

* A sinple counter

*

* @eturn i nt
*/

function counter()
{

static $c = O;
return $c++;

}

/1 Create an instance of the ReflectionFunction class
$f unc = new Refl ecti onFunction(' counter');

/1 Print out basic infornmation
printf(
"===> The % function '%'\n".
declared in %\n".
lines % to %\ n",
$func->isinternal () ? "internal' : 'user-defined
$f unc- >get Nane(),
$f unc- >get Fi | eNane(),
$f unc->get St art Li ne(),
$f unc- >get Endl i ne()

)

/1 Print docunentation comment
printf("---> Docunmentation:\n %\n", var_export ($func->get DocComrent (), 1));

/1 Print static variables if existant
if ($statics = $func->getStaticVariables())
{

}

printf("---> Static variables: %\n", var_export($statics, 1));

/1 1nvoke the function
printf("---> Invokation results in: ");
var _dunmp($f unc- >i nvoke());

/1 you may prefer to use the export() nethod
echo "\ nRefl ecti onFunction::export() results:\n";
echo Refl ectionFunction::export('counter');

?>

Note

The method invoke() accepts a variable number of arguments which are passed to the
function just as in call_user_func().

ReflectionParameter

The ReflectionParameter class retrieves information about a function's or method's
parameters.

<?php
cl ass Refl ectionParaneter inplenments Reflector

{

final private _ clone()

public void __ construct(string function, string paraneter)
public string __toString()
public static string export(m xed function, m xed paraneter, bool return)
public string getNane()
publ i ¢ bool isPassedByReference()
public ReflectionC ass getDecl aringC ass()
public ReflectionC ass getC ass()
public bool isArray()
publ i c bool allowsNull ()
publ i ¢ bool isPassedByReference()
publ i c bool isOptional ()
publ i ¢ bool isDefaultVal ueAvail abl e()
public m xed get Def aul t Val ue()
public int getPosition()
}
?>
Note

getDefaultValue(), isDefaultValueAvailable() and isOptional() were added in PHP
5.0.3, while isArray() was added in PHP 5.1.0. getDeclaringFunction() and
getPosition() were added in PHP 5.2.3.

To introspect function parameters, you will first have to create an instance of the
ReflectionFunction or ReflectionMethod classes and then use their getParameters()
method to retrieve an array of parameters.

Example #112 - Using the ReflectionParameter class

<?php

function foo(%a, $b, $c) { }

function bar(Exception $a, &b, $c) { }

function baz(ReflectionFunction $a, $b =1, $c = null) { }

function abc() { }

/1l Create an instance of ReflectionFunction with the
/1 paraneter given fromthe command |ine.
$reflect = new Refl ectionFunction($argv[1]);

echo $reflect;

foreach ($reflect->getParaneters() as $i => $param {

printf(

"-- Parameter #%: 9% {\n".

Class: %\n".
" Al ows NULL: 9%\ n".
Passed to by reference: %\n".
I's optional ?: 9%\n".
"I\n",
$i, // $param >get Position() can be used fromPHP 5.2.3
$par am >get Nane(),
var _export ($param >get Cl ass(), 1),
var _export ($param >allowsNul |l (), 1),
var _export ($param >i sPassedByRef erence(), 1),
$param >i sQptional () ? 'yes' 'no

ReflectionClass

The ReflectionClass class lets you reverse-engineer classes and interfaces.

<?php
class ReflectionC ass inplenents Reflector

{

final private cl one()

public void __ construct(string nane)

public string __toString()

public static string export(m xed class, bool return)
public string getNane()

public bool islnternal ()

public bool isUserDefined()

public bool islnstantiable()

public bool hasConstant(string nane)

public bool hasMethod(string nane)

public bool hasProperty(string nane)

public string getFil eNane()

public int getStartLine()

public int getEndLine()

public string get DocComment ()

public ReflectionMethod get Constructor()
public ReflectionMethod get Met hod(string nane)
public ReflectionMethod[] get Met hods()

public ReflectionProperty getProperty(string nane)
public ReflectionProperty[] getProperties()
public array get Constants()

public m xed get Constant(string nane)

public ReflectionC ass[] getlnterfaces()

public bool islnterface()
public bool isAbstract()
public bool isFinal ()
public int getMdifiers()
public bool islnstance(stdclass object)
public stdclass new nstance(mnm xed args)
public stdclass newl nstanceArgs(array args)
public ReflectionC ass getParentd ass()
public bool isSubclassO (ReflectionC ass cl ass)
public array getStaticProperties()
public m xed getStaticPropertyVal ue(string name [, m xed default])
public void setStaticPropertyVal ue(string nane, mxed val ue)
public array getDefaultProperties()
public bool islterateable()
public bool inplenmentslnterface(string nane)
public ReflectionExtension getExtension()
public string getExtensi onNane()
}
?>
Note

hasConstant(), hasMethod(), hasProperty(), getStaticPropertyValue() and
setStaticPropertyValue() were added in PHP 5.1.0, while newlInstanceArgs() was
added in PHP 5.1.3.

To introspect a class, you will first have to create an instance of the ReflectionClass class.

You can then call any of the above methods on this instance.

Example #113 - Using the ReflectionClass class

<?php
interface Serializable

{
}

11

cl ass Obj ect

{
}

/**

11

* A counter class
*/
class Counter extends Object inplenents Serializable

{
const START = O;

private static $c = Counter:: START;

/**

* | nvoke counter

*

* @ccess public

* @eturn int
*/
public function count() {
return self:: $c++;
}

/1 Create an instance of the ReflectionC ass cl ass
$class = new Refl ectionC ass(' Counter');

/1 Print out basic information

printf(
"===> The %%% % '%' [extends %s]\n"

declared in %\n"

! l[ines % to %\ n"

" having the nodifiers %l [%]\n",
$class->islnternal () ? "internal' : 'user-defined

$cl ass->i sAbstract () ? ' abstract' : ,
$class->isFinal () ? ' final' : '",
$class->islnterface() ? 'interface' : 'class',
$cl ass- >get Nane(),

var _export ($cl ass->get Parent C ass(), 1),

$cl ass->get Fi | eNane(),

$cl ass->get StartLine(),

$cl ass->get Endl i ne(),

$cl ass->get Modi fiers(),

i mpl ode(' ', Reflection::getMdifierNanmes($class->getMdifiers()))
);
/1 Print docunentation coment
printf("---> Docunentation:\n %\n", var_export($cl ass->get DocConment (),
1));

/1 Print which interfaces are inplenmented by this class
printf("---> Inplements:\n %\n", var_export($class->getlnterfaces(), 1));

/1 Print class constants
printf("---> Constants: % \n", var_export($cl ass->get Constants(), 1));

/1 Print class properties
printf("---> Properties: %\n", var_export($cl ass->getProperties(), 1));

/1 Print class nethods
printf("---> Methods: %\n", var_export($cl ass->get Met hods(), 1));

/1 1f this class is instantiable, create an instance
if ($class->islnstantiable()) {
$counter = $cl ass->newl nst ance();

echo '---> $counter is instance? ';

echo $cl ass->i sl nstance($counter) ? 'yes' no';
echo "\n---> new Cbject() is instance? ";
echo $cl ass->i sl nstance(new Chject()) ? 'yes

no' ;

Note

The method newlInstance() accepts a variable number of arguments which are passed
to the function just as in call_user_func().

Note

$class = new ReflectionClass('Foo'); $class->isInstance($arg) is equivalent to $arg
instanceof Foo or is_a($arg, 'Foo").

ReflectionObject

The ReflectionObject class lets you reverse-engineer objects.

<?php
cl ass Refl ectionCbject extends ReflectionC ass
{
final private _ clone()
public void _ _construct(m xed obj ect)
public string __toString()
public static string export(m xed object, bool return)

ReflectionMethod

The ReflectionMethod class lets you reverse-engineer class methods.

<?php
class Refl ectionMet hod extends Refl ectionFunctionAbstract inplenents Reflector

{

public void _ construct(m xed class, string nane)

public string __toString()

public static string export(m xed class, string name, bool return)
public m xed invoke(stdclass object [, nmixed args [, ...]])
public m xed invokeArgs(stdcl ass object, array args)

public bool isFinal ()

public bool isAbstract()

public bool isPublic()

public bool isPrivate()

public bool isProtected()

public bool isStatic()

public bool isConstructor()

public bool isDestructor()

public int getMdifiers()

public ReflectionC ass getDecl ari ngd ass()

/1 Inherited from Refl ecti onFuncti onAbstract
final private _ clone()

public string getNane()

public bool islnternal ()

public bool isUserDefined()

public string getFil eNane()

public int getStartLine()

public int getEndLine()

public string get DocComment ()

public array getStaticVariabl es()

public bool returnsReference()

public ReflectionParaneter[] getParaneters()

public int getNunmber Of Paraneters()

public int getNunber Of Requi r edPar anet ers()
}
?>

To introspect a method, you will first have to create an instance of the ReflectionMethod
class. You can then call any of the above methods on this instance.

Example #114 - Using the ReflectionMethod class

<?php
cl ass Counter

{

private static $c = 0;

*

/
I ncrenent counter

@i nal

@tatic

* @ccess public
* @eturn int

* X kX X

*/
final public static function increnent()
{
return ++sel f:: $c;
}

}

/1 Create an instance of the ReflectionMethod class
$net hod = new Refl ecti onMet hod(' Counter', 'increnent');

/1 Print out basic information
printf(
"===> The %% %% % %% nmethod '%' (which is %)\n"
" declared in %\n"
lines % to %\ n"
having the nodifiers %l[%]\n",
$nmet hod->i slnternal () ? "internal' : 'user-defined
$nmet hod- >i sAbstract () ? ' abstract' : '"',
$met hod->isFinal () ? ' final' : '",
$met hod- >i sPublic() ? ' public' : "',
$net hod- >i sPrivate() ? ' private' : '',
$net hod- >i sProtected() ? ' protected : '',
$nmet hod->i sStatic() ? ' static' : '",

$nmet hod- >get Nane(),

$nmet hod- >i sConstructor() ? 'the constructor' : 'a regular nethod',
$nmet hod- >get Fi | eNane(),

$met hod- >get Start Li ne(),

$et hod- >get Endl i ne(),

$net hod- >get Modi fi ers(),

i mpl ode(' ', Reflection::getMdifierNanmes($nethod->getMdifiers()))
);
/1 Print docunentation coment
printf("---> Docunentation:\n %\n", var_export ($net hod->get DocConment (),
1));

// Print static variables if existant
if ($statics= $nethod->get StaticVariables()) {

printf("---> Static variables: %\n", var export($statics, 1));
}
/1 1 nvoke the method
printf("---> Invokation results in: ");
var _dunmp($net hod- >i nvoke(NULL)) ;
?>
Note

Trying to invoke private, protected or abstract methods will result in an exception being
thrown from the invoke() method.

Note

For static methods as seen above, you should pass NULL as the first argument to
invoke(). For non-static methods, pass an instance of the class.

ReflectionProperty

The ReflectionProperty class lets you reverse-engineer class properties.

<?php
class ReflectionProperty inplenents Reflector

{

final private _ clone()

public void _ construct(m xed class, string nane)

public string __toString()

public static string export(m xed class, string name, bool return)
public string getNane()

public bool isPublic()

public bool isPrivate()

public bool isProtected()

public bool isStatic()

public bool isDefault()

public int getMdifiers()

public m xed getVal ue(stdcl ass object)

public void setVal ue(stdcl ass object, m xed val ue)
public ReflectionC ass getDecl ari ngd ass()

public string get DocComment ()

Note

getDocComment() was added in PHP 5.1.0.

To introspect a property, you will first have to create an instance of the ReflectionProperty
class. You can then call any of the above methods on this instance.

Example #115 - Using the ReflectionProperty class

<?php
class String
{
public $length = 5;
}
/1 Create an instance of the ReflectionProperty class
$prop = new Refl ectionProperty('String', '"length');

/1 Print out basic infornmation
printf(
"===> The¥%% %% property '%' (which was %)\n"
havi ng the nodifiers %\n",

$prop->i sPublic() ? ' public' : ',

$prop->i sPrivate() ? ' private' : '',

$prop->i sProtected() ? ' protected : '',

$prop->i sStatic() ? ' static' : ',

$pr op- >get Nane(),

$prop->i sDefault() ? 'declared at conpile-tine' : 'created at
run-time',

var _export (Refl ection:: get ModifierNanmes($prop->get Modifiers()), 1)
)

/1 Create an instance of String
$obj = new String();

/1 Get current val ue
printf("---> Value is: ");
var _dunp($pr op- >get Val ue($obj));

/'l Change val ue

$pr op- >set Val ue($obj, 10);

printf("---> Setting value to 10, new value is: ");
var _dunp($pr op- >get Val ue($obj));

/1 Dunp object
var _dunp($obj);

?>

Note

Trying to get or set private or protected class property's values will result in an
exception being thrown.

ReflectionExtension

The ReflectionExtension class lets you reverse-engineer extensions. You can retrieve all
loaded extensions at runtime using the get_loaded_extensions().

<?php
cl ass Refl ectionExtension inplenments Reflector {
final private _ clone()

public void _ _construct(string nane)
public string __toString()
public static string export(string name, bool return)
public string getNane()
public string getVersion()
public ReflectionFunction[] getFunctions()
public array getConstants()
public array getlI N Entries()
public ReflectionC ass[] getC asses()
public array getC assNanes()
public string info()

}

?>

To introspect an extension, you will first have to create an instance of the
ReflectionExtension class. You can then call any of the above methods on this instance.

Example #116 - Using the ReflectionExtension class

<?php
/1l Create an instance of the ReflectionProperty class
$ext = new Refl ecti onExtension('standard');

// Print out basic information

printf(
" Name ;%\ n"
"Ver si on ;%\ n"
"Functions D[] %s\n"
"Constants D[] %s\n"
"IN entries : [%] %\n"
"Cl asses D [%] %s\n",
$ext - >get Nane(),
$ext - >get Version() ? $ext->getVersion() : 'NO VERSION ,

si zeof ($ext - >get Functions()),
var_export ($ext - >get Functions(), 1),

si zeof ($ext - >get Constants()),
var _export ($ext - >get Constants(), 1),

si zeof ($ext->get I Nl Entries()),
var _export ($ext->getI NlEntries(), 1),

si zeof ($ext - >get G assNanes()),
var _export ($ext - >get G assNanmes(), 1)

Extending the reflection classes

In case you want to create specialized versions of the built-in classes (say, for creating
colorized HTML when being exported, having easy-access member variables instead of
methods or having utility methods), you may go ahead and extend them.

Example #117 - Extending the built-in classes

<?php

/**

* My Reflection_Method class

*/

class My_Refl ection_Method extends Reflecti onMet hod

{
public $visibility = array();

public function _ construct($o, $m
{
parent:: _construct ($o, $m;
$this->visibility =
Ref | ection: : get Modi fi er Names($t hi s->get Modi fiers());
}
}

/**
* Denp class #1
*
*/
class T {
protected function x() {}

}

/**

* Denp cl ass #2

*

*/

class U extends T {
function x() {}

}

/1 Print out information
var _dunp(new My_Reflection_Method('U, "x"));
?>

Note

Caution: If you're overwriting the constructor, remember to call the parent's constructor
_before_any code you insert. Failing to do so will result in the following: Fatal error:
Internal error: Failed to retrieve the reflection object

Type Hinting

PHP 5 introduces Type Hinting. Functions are now able to force parameters to be objects
(by specifying the name of the class in the function prototype) or arrays (since PHP 5.1).

for any later call.

Example #118 - Type Hinting examples

<?php
/1 An exanpl e cl ass
cl ass Myd ass

{
/**
* Atest function
*
* First paranmeter nust be an object of type Otherd ass
*/
public function test(Qherd ass $othercl ass) {
echo %ot hercl ass->var;
}
/**
* Anot her test function
*
* First parameter nmust be an array
*/
public function test_array(array $input_array) {
print_r($input_array);
}
}

/1 Anot her exanple class
class Ot herd ass {

public $var = "Hello World';
}

?>
Failing to satisfy the type hint results in a catchable fatal error.

<?php

// An instance of each cl ass
$nmycl ass = new MyCl ass;

$ot hercl ass = new Ot her d ass;

/1 Fatal Error: Argument 1 nust be an object of class O herd ass

$nycl ass->test (' hello');

/1 Fatal Error: Argunment 1 nust be an instance of O herd ass
$f oo = new stdd ass;
$mycl ass- >t est ($f 00) ;

/1 Fatal Error: Argument 1 must not be nul
$nycl ass->test (null);

/1 Works: Prints Hello World
$nycl ass- >t est ($ot hercl ass) ;

/1 Fatal Error: Argument 1 must be an array
$nycl ass->test_array('a string');

/1 Works: Prints the array
$nycl ass->test _array(array('a', 'b', 'c'));
?>

Type hinting also works with functions:

<?php
/'l An exanpl e cl ass
class Myd ass {
public $var = '"Hello World';

}

/**

* A test function
*

* First paraneter nust be an object of type Myd ass
*/
function MyFunction (MyCl ass $foo) {

echo $foo->var;

}

[l \Works

$nmycl ass = new MyCl ass;
MyFuncti on($nycl ass) ;
?>

Type hinting allowing NULL value:
<?php

/* Accepting NULL val ue */
function test(stdC ass $obj = NULL) {

}

test (NULL) ;
test (new stdd ass);

?>

Late Static Bindings

As of PHP 5.3.0, PHP implements a feature called late static bindings which can be used
to reference the called class in a context of static inheritance.

This feature was named "late static bindings" with an internal perspective in mind. "Late
binding" comes from the fact that static:: will no longer be resolved using the class where
the method is defined but it will rather be computed using runtime information. It was also
called a "static binding" as it can be used for (but is not limited to) static method calls.

Limitations of self::

Static references to the current class like self:: or _ CLASS _ are resolved using the class
in which the function belongs, as in where it was defined:

Example #119 - self:: usage

<?php
class A {
public static function who() {
echo _ CLASS ;
}
public static function test() {
sel f::who();
}
}

class B extends A {
public static function who() {
echo _ CLASS ;

}
}

B::test();
?>

The above example will output:

A

Late Static Bindings' usage

Late static bindings tries to solve that limitation by introducing a keyword that references
the class that was initially called at runtime. Basically, a keyword that would allow you to
reference B from test() in the previous example. It was decided not to introduce a new
keyword but rather use static that was already reserved.

Example #120 - static:: simple usage

<?php
class A {
public static function who() {
echo _ CLASS ;
}

public static function test() {
static::who(); // Here comes Late Static Bindings
}
}

class B extends A {
public static function who() {

echo _ CLASS ;
}
}
B::test();
?>

The above example will output:

B

Note

static:: does not work like $this for static methods! $this-> follows the rules of
inheritance while static:: doesn't. This difference is detailed later on this manual page.

Example #121 - static:: usage in a non-static context

<?php
class TestChild extends TestParent {
public function _ construct() {
static::who();
}

public function test() {
$0 = new Test Parent();
}

public static function who() {
echo __CLASS _."\n";
}
}

cl ass TestParent {
public function _ construct() {
static::who();
}

public static function who() {

echo CLASS ."\n";
}
}
$0 = new Test Chi l d;
$o->test();

?>
The above example will output:

Test Chi |l d
Test Par ent

Note

Late static bindings' resolution will stop at a fully resolved static call with no fallback.

Example #122 - Fully resolved static calls

<?php
class A {
public static function foo() {
static::who();
}

public static function who() {
echo _ CLASS ."\n"
}
}

class B extends A {
public static function test() {
A::foo();
}

public static function who() {
echo _ CLASS ."\n"

}
}

B::test();
?>

The above example will output:

A

Edge cases

There are lots of different ways to trigger a method call in PHP, like callbacks or magic
methods. As late static bindings base their resolution on runtime information, it might give

unexpected results in so-called edge cases.

Example #123 - Late static bindings inside magic methods

<?php
class A {

protected static function who() {
echo _ CLASS ."\n";

}

public function __ get($var) {
return static::who();

}
}

class B extends A {

protected static function who() {
echo _ CLASS ."\n";

}
}
$b = new B;
$b- >f oo
?>

The above example will output:

B

Namespaces

Namespaces overview

Namespaces in PHP are designed to solve scoping problem in large PHP libraries. In
PHP, all class definitions are global. Thus, when a library author creates various utility or
public API classes for the library, he must be aware of the possibility that other libraries
with similar functionality would exist and thus choose unique names so that these libraries
could be used together. Usually it is solved by prefixing the class names with an unique
string - e.g., database classes would have prefix My_Library DB, etc. As the library grows,
prefixes add up, leading to the very long names.

The namespaces allow the developer to manage naming scopes without using the long
names each time the class is referred to, and solve the problem of shared globals space
without making code unreadable.

Namespaces are available in PHP as of PHP 5.3.0. This section is experimental and
subject to changes.

Namespace definition

The namespace is declared using namespace keyword, which should be at the very
beginning of the file. Example:

Example #124 - Defining namespace

<?php
nanespace MyProject::DB

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }

72>

Same namespace name can be used in multiple files.
Namespace can contain class, constant and function definitions, but no free code.
Namespace definition does the following:

* Inside namespace, all class, function and constant names in definitions are
automatically prefixed with namespace name. The class name is always the full name,
i.e. in the example above the class is called MyProject::DB::Connection.

» Constant definitions create constant which is composed of namespace name and
constant name. Like class constants, namespace constant can only contains static

values.
» Unqualified class name (i.e., name not containing::) is resolved at runtime following
this procedure:

» Class is looked up inside the current namespace (i.e. prefixing the name with the

» Class is looked up inside the global namespace without attempting to autoload.
» Autoloading for name in current namespace is attempted.

 If previous failed, lookup fails.

« Unqualified function name (i.e., name not containing::) is looked up at runtime first in
the current namespace and then in the global space.

» Unqualified constant names are looked up first at current namespace and then among
globally defined constants.

See also the full name resolution rules.

Using namespaces

Every class and function in a namespace can be referred to by the full name - e.g.
MyProject::DB::Connection or MyProject::DB::connect - at any time.

Example #125 - Using namespaced name

<?php
require ' MyProj ect/ Db/ Connecti on. php';
$x = new MyProj ect::DB:: Connection;
MyPr oj ect:: DB:: connect();

?>

Namespaces can be imported into current context (global or namespace) using the use
operator. The syntax for the operator is:

<?php
[* ... *
use Sone:: Nane as O her nane;

/1 The sinplified form of use:
use Foo: : Bar;
[/ which is the sane as

use Foo::Bar as Bar;
?>

The imported name works as follows: every time that the compiler encounters the local
name Othername (as stand-alone name or as prefix to the longer name separated by::)
the imported name Some::Name is substituted instead.

use can be used only in global scope, not inside function or class. Imported names have

effect from the point of import to the end of the current file. It is recommended to put
imports at the beginning of the file to avoid confusion.

Example #126 - Importing and accessing namespace

<?php
require ' MyProj ect/ Db/ Connecti on. php';
use MyProject::DB
use MyProject::DB::Connection as DbConnection

$x = new MyProject::DB:: Connection();
$y = new DB:: connection();
$z = new DbConnection();
DB: : connect () ;
?>
Note

The import operation is compile-time only, all local names are converted to their full
equivalents by the compiler. Note that it won't translate names in strings, so callbacks
can't rely on import rules.

Global space

Without any namespace definition, all class and function definitions are placed into the
global space - as it was in PHP before namespaces were supported. Prefixing a name with
.- will specify that the name is required from the global space even in the context of the
namespace.

Example #127 - Using global space specification

<?php
namespace A :B::C

[* This function is A :B::C :fopen */
function fopen() {
[* .00
$f = ::fopen(...); /I call global fopen
return $f;

?>

__ _NAMESPACE__

The compile-time constant _ NAMESPACE___is defined to the name of the current
namespace. Outside namespace this constant has the value of empty string. This constant
is useful when one needs to compose full name for local namespaced names.

Example #128 - Using _ NAMESPACE___

<?php
nanmespace A :B::C

function foo() {
/1l do stuff

}

set _error_handl er(__NAVESPACE . "::fo0");
?>

Name resolution rules

Names are resolved following these resolution rules:

« All qualified names are translated during compilation according to current import rules.

In example, if the namespace A::B::C is imported, acallto C:.: D:: e() is translated to
A:B:C:D:e().

» Unqgualified class names are translated during compilation according to current import
rules (full name substituted for short imported name). In example, if the namespace
A::B::Cis imported, new C() is translated to new A :B:: C().

* Inside namespace, calls to unqualified functions that are defined in the current
namespace (and are known at the time the call is parsed) are interpreted as calls to
these namespace functions, at compile time.

* Inside namespace (say A::B), calls to unqualified functions that are not defined in
current namespace are resolved at run-time. Here is how a call to function foo() is
resolved:

* Itlooks for a function from the current namespace: A::B::foo().
 lttries to find and call the internal function foo().
To call a user defined function in the global namespace,::foo() has to be used.

* Inside namespace (say A::B), calls to unqualified class names are resolved at
run-time. Here is how a call to new C() is resolved:

* Itlooks for a class from the current namespace: A::B::C.
 lttries to find and call the internal class C.
* |t attemts to autoload A::B::C.

To reference a user defined class in the global namespace, new :: C() has to be used.

Calls to qualified functions are resolved at run-time. Here is how a call to A::B::foo() is
resolved:
It looks for a function foo() in the namespace A::B.

» Itlooks for a class A::B and call its static method foo(). It will autoload the class if
necessary.

Qualified class names are resolved in compile-time as class from corresponding
namespace. For example, new A : B:: ¢() refers to class C from namespace A::B.

Example #129 - Name resolutions illustrated

<?php
nanmespace A,

// function calls

foo(); /1 first tries to call "foo" defined in nanespace "A"
/1 then calls internal function "foo"

c:foo(); /1 calls function "foo" defined in global scope

/1 class references

new B(); I/ first tries to create object of class "B" defined in
nanmespace "A"
/1 then creates object of internal class "B"

new ::B(); // creates object of class "B" defined in global scope
/1 static nethods/ nanespace functions from another nanespace

B::foo(); /1 first tries to call function "foo" from nanespace "A: :B"
/1 then calls nmethod "foo" of internal class "B"

c:B::foo(); // first tries to call function "foo" from nanmespace "B"
/1 then calls nmethod "foo" of class "B" from gl obal scope

/1 static nethods/nanmespace functions of current nanespace

A foo(); /1 first tries to call function "foo" from nanespace "A: : A"
/1 then tries to call method "foo" of class "A" from nanespace
e
/1 then tries to call function "foo" from nanmespace "A"
/1 then calls method "foo" of internal class "A"

c:A:foo(); // first tries to call function "foo" from nanmespace "A"
/1 then calls nmethod "foo" of class "A" from gl obal scope
?>

Exceptions

PHP 5 has an exception model similar to that of other programming languages. An
exception can be throw n, and caught (" catch ed") within PHP. Code may be surrounded
in a try block, to facilitate the catching of potential exceptions. Each try must have at least
one corresponding catch block. Multiple catch blocks can be used to catch different
classes of exeptions. Normal execution (when no exception is thrown within the try block,
or when a catch matching the thrown exception's class is not present) will continue after
that last catch block defined in sequence. Exceptions can be throw n (or re-thrown) within
a catch block.

When an exception is thrown, code following the statement will not be executed, and PHP
will attempt to find the first matching catch block. If an exception is not caught, a PHP Fatal
Error will be issued with an " Uncaught Exception ... " message, unless a handler has been
defined with set_exception_handler().

Example #130 - Throwing an Exception

<?php
function inverse($x) {
if (I$x) {
t hrow new Exception(' Division by zero.");

}
el se return 1/ $x;
}
try {
echo inverse(5) . "\n";
echo inverse(0) . "\n";
} catch (Exception $e) {
echo ' Caught exception: ', $e->getMessage(), "\n";
}

/1 Continue execution
echo "Hello Wrld';
?>

The above example will output:

0.2
Caught exception: Division by zero.
Hello World

Example #131 - Nested Exception

<?php
cl ass MyException extends Exception { }

class Test {
public function testing() {

try {

try {
t hrow new MyException('foo!");

} catch (MyException $e) {
/* rethrow it */
t hrow $e;

}
} catch (Exception $e) {

var _dunp($e- >get Message());
}

}

$f oo = new Test;
$f oo->testing();

?>
The above example will output:

string(4) "foo!"

Extending Exceptions

A User defined Exception class can be defined by extending the built-in Exception class.
The members and properties below, show what is accessible within the child class that
derives from the built-in Exception class.

Example #132 - The Built in Exception class
<?php
cl ass Exception
{
protected $nmessage = ' Unknown exception'; /1l exception nessage
protected $code = O; [l user defined exception
code
protected $file; /1 source filenane of
exception
protected $line; /] source line of exception
function __construct($nessage = null, $code = 0);
final function getMessage(); /1 message of exception
final function getCode(); /1 code of exception
final function getFile(); [l source fil enane
final function getLine(); [l source line
final function getTrace(); /1 an array of the
backtrace()
final function getTraceAsString(); /1 formated string of trace
[* Overrideable */
function _ toString(); /1 formated string for
di spl ay
}
?>

when the object is presented as a string.

Example #133 - Extending the Exception class

<?php

/**

* Define a custom exception class

*/

cl ass MyExcepti on extends Exception

{
/'l Redefine the exception so nessage isn't optiona
public function __construct ($nessage, $code = 0) {

/'l sone code

/'l make sure everything is assigned properly
parent::__construct ($nessage, $code);

}

/1 custom string representation of object
public function __toString() {

return _ CLASS . ": [{$this->code}]: {$this->nmessage}\n";
}

public function custonfunction() {
echo "A Custom function for this type of exception\n";

}
}
/**
* Create a class to test the exception
*/
cl ass Test Exception
{
public $var;
const THROW NONE = 0;
const THROW CUSTOM = 1;
const THROW DEFAULT = 2;

function __construct($aval ue = sel f:: THRON.NONE) {

switch ($aval ue) {
case sel f:: THRON CUSTOM
/1 throw cust om exception
t hrow new MyException('1 is an invalid paraneter', 5);
br eak;

case sel f:: THROW DEFAULT:
/1 throw default one.
t hrow new Exception('2 isnt allowed as a paraneter', 6);
br eak;

defaul t:
/1 No exception, object will be created.

$t hi s->var = $aval ue;

br eak;
}

}
}
/]l Example 1
try {

$0 = new Test Excepti on(Test Excepti on: : THRON CUSTOM ;
} catch (MyException $e) { /1 WII be caught

echo "Caught my exception\n", $e;
$e- >cust onfunction();
} catch (Exception $e) { /1 Ski pped
echo "Caught Default Exception\n", $e;
}

// Continue execution
var _dunmp($o);
echo "\ n\n";

/'l Example 2
try {
$0 = new Test Excepti on(Test Excepti on: : THROW DEFAULT) ;
} catch (MyException $e) { /1 Doesn't match this type

echo "Caught my exception\n", $e;
$e- >cust onfunction();

} catch (Exception $e) { /1 WII be caught
echo "Caught Default Exception\n", $e;

}

// Continue execution
var _dunmp($o);
echo "\ n\n";

/1l Exanple 3
try {

$0 = new Test Excepti on(Test Excepti on: : THRON CUSTOM ;
} catch (Exception $e) { /1 WII be caught

echo "Default Exception caught\n", $e;
}

/1 Continue execution
var _dunmp($o);
echo "\ n\n";

/1l Example 4

try {
$0 = new Test Exception();

} catch (Exception $e) { /1 Ski pped, no exception
echo "Default Exception caught\n", $e;

}

/1 Continue execution
var _dunmp($o);

echo "\n\n";

?>

References Explained

What References Are

References in PHP are a means to access the same variable content by different names.
They are not like C pointers; instead, they are symbol table aliases. Note that in PHP,
variable name and variable content are different, so the same content can have different
names. The most close analogy is with Unix filenames and files - variable names are
directory entries, while variable contents is the file itself. References can be thought of as
hardlinking in Unix filesystem.

What References Do

PHP references allow you to make two variables to refer to the same content. Meaning,
when you do:

<?php
$a =& $b;

?>

it means that $a and $b point to the same content.

Note

$a and $b are completely equal here, that's not $a is pointing to $b or vice versa, that's
$a and $b pointing to the same place.

Note

If array with references is copied, its values are not dereferenced. This is valid also for
arrays passed by value to functions.

Note

If you assign, pass or return an undefined variable by reference, it will get created.

Example #134 - Using references with undefined variables

<?php
function foo(&var) { }

foo($a); // $a is "created" and assigned to nul

$b = array();
foo($b['b']);
var _dunp(array_key_exists('b', $b)); // bool (true)

$c = new Stdd ass;

foo($c->d);

var _dunmp(property_exists($c, 'd")); // bool (true)
?>

The same syntax can be used with functions, that return references, and with new
operator (in PHP 4.0.4 and later):

<?php

Bbar =& new foocl ass();
5f oo =& find_var ($bar);
7>

and produces E_STRICT level message.

Note

Not using the &operator causes a copy of the object to be made. If you use $this in the
class it will operate on the current instance of the class. The assignment without &will
copy the instance (i.e. the object) and $this will operate on the copy, which is not
always what is desired. Usually you want to have a single instance to work with, due to
performance and memory consumption issues.

While you can use the @ operator to mute any errors in the constructor when using it
as @new, this does not work when using the &new statement. This is a limitation of
the Zend Engine and will therefore result in a parser error.

Warning

If you assign a reference to a variable declared global inside a function, the reference
will be visible only inside the function. You can avoid this by using the $GLOBALS
array.

Example #135 - Referencing global variables inside function

<?php
$var 1l

"Exanpl e vari abl e";
$var2 = "";

function gl obal references($use gl obal s)
{
gl obal $varl, $var2
if (!$use_globals) {
$var2 =& $varl; // visible only inside the function

} else {
$GLOBALS["var2"] =& $varl; // visible also in global context
}

}

gl obal _references(false);

echo "var2 is set to '$var2'\n"; // var2 is set to '

gl obal _references(true);

echo "var2 is set to "$var2'\n"; // var2 is set to 'Exanple variable
?>

Think about global $var; as a shortcut to $var =& $GLOBALS['var';. Thus assigning
other reference to $var only changes the local variable's reference.

Note

references are modified too.

Example #136 - References and foreach statement

<?php
$ref = 0;
$row =& $ref

foreach (array(1, 2, 3) as $row) {
/1 do sonething
}
echo $ref; // 3 - last elenent of the iterated array
?>

The second thing references do is to pass variables by-reference. This is done by making
@ local variable in a function and a variable in the calling scope reference to the same
content. Example:

<?php
function foo(&$pvar)
{

$var ++;

}

$a=>5;
foo(%a);
?>

will make $a to be 6. This happens because in the function foo the variable $var refers to

What References Are Not

As said before, references aren't pointers. That means, the following construct won't do
what you expect:

<?php
function foo(&$var)

{

}
f oo($bar);
?>

$var =& $GLOBALS["baz"];

What happens is that $var in foo will be bound with $bar in caller, but then it will be
re-bound with $GLOBALS["baz"]. There's no way to bind $bar in the calling scope to
something else using the reference mechanism, since $bar is not available in the function
foo (it is represented by $var, but $var has only variable contents and not name-to-value

variables selected by the function.

Passing by Reference

You can pass variable to function by reference, so that function could modify its
arguments. The syntax is as follows:

<?php
function foo(&var)

{
}

$a=5;

foo($%$a);

/]l $a is 6 here
?>

$var ++;

Note that there's no reference sign on function call - only on function definition. Function
definition alone is enough to correctly pass the argument by reference. In recent versions
of PHP you will get a warning saying that "Call-time pass-by-reference" is deprecated
when you use a & in foo(&$a);.

The following things can be passed by reference:

» Variable, i.e. foo($a)
« New statement, i.e. foo(hew foobar())

+ Reference, returned from a function, i.e.:

<?php
function &bar()
{
$a = 5;
return $a

foo(bar());
?>

Any other expression should not be passed by reference, as the result is undefined. For
example, the following examples of passing by reference are invalid:

<?php
function bar() // Note the nmissing &

{
$a = 5;
return $a;

foo(bar()); // Produces fatal error since PHP 5.0.5

foo($a = 5); // Expression, not variable

foo(5); // Produces fatal error
?>

These requirements are for PHP 4.0.4 and later.

Returning References

Returning by-reference is useful when you want to use a function to find which variable a
reference should be bound to. Do not use return-by-reference to increase performance,
the engine is smart enough to optimize this on its own. Only return references when you
have a valid technical reason to do it! To return references, use this syntax:

<?php
class foo {
public $value = 42;

public function &getVal ue() {
return $this->val ue;
}

}

$obj = new f oo0;

$nyVal ue = &$obj->getValue(); // $nyValue is a reference to $obj->val ue, which
is 42.

$obj - >val ue = 2;

echo $nyVal ue; /'l prints the new val ue of $obj->value, i.e. 2
?>

In this example, the property of the object returned by the getValue function would be set,
not the copy, as it would be without using reference syntax.

Note

Unlike parameter passing, here you have to use &in both places - to indicate that you
return by-reference, not a copy as usual, and to indicate that reference binding, rather

than usual assignment, should be done for $myValue.

Note

If you try to return a reference from a function with the syntax: return ($this->value);
this will not work as you are attempting to return the result of an expression, and not a
variable, by reference. You can only return variables by reference from a function -
nothing else. E_NOTICE error is issued since PHP 4.4.0 and PHP 5.1.0 if the code
tries to return a dynamic expression or a result of the new operator.

Unsetting References

When you unset the reference, you just break the binding between variable name and
variable content. This does not mean that variable content will be destroyed. For example:

<?php
$a = 1;
$b =& $%a;

unset ($a) ;
?>

won't unset $b, just $a.

Again, it might be useful to think about this as analogous to Unix unlink call.

Spotting References

Many syntax constructs in PHP are implemented via referencing mechanisms, so
everything told above about reference binding also apply to these constructs. Some
constructs, like passing and returning by-reference, are mentioned above. Other
constructs that use references are:

global References

When you declare variable as global $var you are in fact creating reference to a global
variable. That means, this is the same as:

<?php
$var =& $G.OBALS["var"];
?>

That means, for example, that unsetting $var won't unset global variable.

$this

In an object method, $this is always a reference to the caller object.

Predefined variables

PHP provides a large number of predefined variables to all scripts. The variables represent

last retrieved headers.

See also the FAQ titled " How does register_globals affect me? "

Superglobals

Superglobals -- Superglobals are built-in variables that are always available in all scopes
Description

Several predefined variables in PHP are "superglobals”, which means they are available in
all scopes throughout a script. There is no need to do global $variable; to access them
within functions or methods.

These superglobal variables are:

+ $GLOBALS

ChangelLog

Version Description

4.1.0 Superglobals were introduced to PHP.

Notes

Note

Variable availability

By default, all of the superglobals are available but there are directives that affect this
availability. For further information, refer to the documentation for variables_order.

Note

Dealing with register_globals

If the deprecated register_globals directive is set to on then the variables within will
also be made available in the global scope of the script. For example, $ POST['foo']
would also exist as $foo.

For related information, see the FAQ titled " How does register_globals affect me? "

Note

Variable variables

e The variables_order directive
» The filter extension

$GLOBALS

$GLOBALS -- References all variables available in global scope

Description

the global scope of the script. The variable names are the keys of the array.

Examples

Example #137 - $GLOBALS example

<?php

function test() {
$foo = "local variable";
echo '$foo in global scope: ' . $GOBALS "foo"] . "\n";
echo "$foo in current scope: ' . $foo . "\n";

}

$f oo = "Exanple content";
test();
?>

The above example will output something similar to:

$foo in global scope: Exanple content
$foo in current scope: |ocal variable

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

Note

Variable availability

in PHP.

$_SERVER

$HTTP_SERVER_VARS [deprecated]

$ SERVER -- $HTTP_SERVER_VARS [deprecated] -- Server and execution environment
information

Description

$ SERVER is an array containing information such as headers, paths, and script
locations. The entries in this array are created by the web server. There is no guarantee
that every web server will provide any of these; servers may omit some, or provide others
not listed here. That said, a large number of these variables are accounted for in the » CGI
1.1 specification, so you should be able to expect those.

(Note that $HTTP_SERVER_VARS and $_SERVER are different variables and that PHP
handles them as such)

You may or may not find any of the following elements in $_SERVER. Note that few, if
any, of these will be available (or indeed have any meaning) if running PHP on the
command line.

'PHP_SELF"
The filename of the currently executing script, relative to the document root. For
instance, $_SERVER['PHP_SELF'] in a script at the address
http://lexample.com/test.php/foo.bar would be /test.php/foo.bar. The __FILE___ constant
contains the full path and filename of the current (i.e. included) file. If PHP is running
as a command-line processor this variable contains the script name since PHP 4.3.0.
Previously it was not available.

Array of arguments passed to the script. When the script is run on the command line,
this gives C-style access to the command line parameters. When called via the GET
method, this will contain the query string.

command line).

' GATEWAY_INTERFACE'
What revision of the CGl specification the server is using; i.e. ' CGI/1.1".

'SERVER_ADDR'
The IP address of the server under which the current script is executing.

' SERVER_NAME '

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

The name of the server host under which the current script is executing. If the script is
running on a virtual host, this will be the value defined for that virtual host.

'SERVER_SOFTWARE"
Server identification string, given in the headers when responding to requests.

'SERVER_PROTOCOL'
Name and revision of the information protocol via which the page was requested; i.e.'
HTTP/1.0 '

'REQUEST_METHOD''
Which request method was used to access the page; i.e.' GET',' HEAD ', ' POST ', '
PUT .

Note

PHP script is terminated after sending headers (it means after producing any
output without output buffering) if the request method was HEAD.

'REQUEST_TIME'
The timestamp of the start of the request. Available since PHP 5.1.0.

'QUERY_STRING'
The query string, if any, via which the page was accessed.

' DOCUMENT_ROOT
The document root directory under which the current script is executing, as defined in
the server's configuration file.

"HTTP_ACCEPT"'
Contents of the Accept: header from the current request, if there is one.

'"HTTP_ACCEPT_CHARSET"
Contents of the Accept-Charset: header from the current request, if there is one.
Example: ' is0-8859-1,*,utf-8 .

"HTTP_ACCEPT_ENCODING'
Contents of the Accept-Encoding: header from the current request, if there is one.
Example: ' gzip .

"HTTP_ACCEPT_LANGUAGE"
Contents of the Accept-Language: header from the current request, if there is one.
Example: "en .

"HTTP_CONNECTION
Contents of the Connection: header from the current request, if there is one. Example: '
Keep-Alive .

"HTTP_HOST"
Contents of the Host: header from the current request, if there is one.

'HTTP_REFERER'
The address of the page (if any) which referred the user agent to the current page.
This is set by the user agent. Not all user agents will set this, and some provide the
ability to modify HTTP_REFERER as a feature. In short, it cannot really be trusted.

"HTTP_USER_AGENT"
Contents of the User-Agent: header from the current request, if there is one. This is a
string denoting the user agent being which is accessing the page. A typical example is:
Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586). Among other things, you can use this value
with get_browser() to tailor your page's output to the capabilities of the user agent.

"HTTPS'
Set to a non-empty value if the script was queried through the HTTPS protocol. Note
that when using ISAPI with IIS, the value will be off if the request was not made
through the HTTPS protocol.

'REMOTE_ADDR''
The IP address from which the user is viewing the current page.

'REMOTE_HOST
The Host name from which the user is viewing the current page. The reverse dns
lookup is based off the REMOTE_ADDR of the user.

Note

Your web server must be configured to create this variable. For example in Apache
you'll need HostnameLookups On inside httpd.conf for it to exist. See also
gethostbyaddr().

'REMOTE_PORT
The port being used on the user's machine to communicate with the web server.

' SCRIPT_FILENAME '
The absolute pathname of the currently executing script.

Note

If a script is executed with the CLI, as a relative path, such as file.php or../file.php,
$ SERVER['SCRIPT_FILENAME' will contain the relative path specified by the
user.

' SERVER_ADMIN'
The value given to the SERVER_ADMIN (for Apache) directive in the web server
configuration file. If the script is running on a virtual host, this will be the value defined
for that virtual host.

'SERVER_PORT"
The port on the server machine being used by the web server for communication. For

default setups, this will be ' 80 '; using SSL, for instance, will change this to whatever
your defined secure HTTP port is.

' SERVER_SIGNATURE"
String containing the server version and virtual host name which are added to
server-generated pages, if enabled.

'PATH_TRANSLATED'
Filesystem- (not document root-) based path to the current script, after the server has
done any virtual-to-real mapping.

Note

As of PHP 4.3.2, PATH_TRANSLATED is no longer set implicitly under the Apache|
2 SAPI in contrast to the situation in Apache 1, where it's set to the same value as
the SCRIPT_FILENAME server variable when it's not populated by Apache. This
change was made to comply with the CGI specification that PATH_TRANSLATED
should only exist if PATH_INFO is defined.

Apache 2 users may use AcceptPathIinfo = On inside httpd.conf to define
PATH_INFO.

' SCRIPT_NAME*
Contains the current script's path. This is useful for pages which need to point to

(i.e. included) file.

' REQUEST_URI"
The URI which was given in order to access this page; for instance, ' /index.html .

'PHP_AUTH_DIGEST
When running under Apache as module doing Digest HTTP authentication this variable
is set to the 'Authorization' header sent by the client (which you should then use to
make the appropriate validation).

'PHP_AUTH_USER'
When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP
authentication this variable is set to the username provided by the user.

'PHP_AUTH_PW'
When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP
authentication this variable is set to the password provided by the user.

"AUTH_TYPE'

When running under Apache as module doing HTTP authenticated this variable is set
to the authentication type.

ChangelLog

Version Description

4.1.0 Introduced $ SERVER that the deprecated
$HTTP_SERVER_VARS.

Examples

Example #138 - $ SERVER example

<?php
echo $_SERVER[' SERVER NAME'];
?>

www. exanpl e. com

The above example will output something similar to:

Notes

Note

access it within functions or methods.

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to

See Also

* The filter extension

$ GET

$HTTP_GET_VARS [deprecated]

$ GET -- SHTTP_GET_VARS [deprecated] -- HTTP GET variables
Description

An associative array of variables passed to the current script via the HTTP GET method.

that SHTTP_GET_VARS and $_GET are different variables and that PHP handles them as
such)

Changelog

Version Description

4.1.0 Introduced $_GET that deprecated
$HTTP_GET_VARS.

Examples

Example #139 - $ GET example

<?php
echo "Hello ' . htnlspecial chars($_GET["nanme"]) . '!'
?>

Assuming the user entered http://example.com/?name=Hannes

The above example will output something similar to:

Hel | o Hannes!

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

» Handling external variables

e The filter extension

$ POST

$HTTP_POST_VARS [deprecated]

$ POST -- SHTTP_POST_VARS [deprecated] -- HTTP POST variables
Description

An associative array of variables passed to the current script via the HTTP POST method.

that SHTTP_POST_VARS and $_POST are different variables and that PHP handles them
as such)

Changelog

Version Description

4.1.0 Introduced $ POST that deprecated
$HTTP_POST_VARS.

Examples

Example #140 - $_POST example

<?php
echo "Hello ' . htnlspecial chars($_POST["nane"]) . "'
?>

Assuming the user POSTed name=Hannes

The above example will output something similar to:

Hel | o Hannes!

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

» Handling external variables

e The filter extension

$_FILES

$HTTP_POST_FILES [deprecated]

$ _FILES -- SHTTP_POST_FILES [deprecated] -- HTTP File Upload variables

Description

that SHTTP_POST_FILES and $_FILES are different variables and that PHP handles
them as such)

Changelog
Version Description
4.1.0 Introduced $_FILES that deprecated
$HTTP_POST_FILES.
Notes
Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

* move_uploaded_file()
» Handling File Uploads

$ REQUEST

$ REQUEST -- HTTP Request variables

Description

ChangelLog

Version Description

5.3.0 Introduced request_order. This directive
affects the contents of $ REQUEST.

4.3.0 $_FILES information was removed from
$ REQUEST.

4.1.0 Introduced $_REQUEST.

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

Note

Note

Variables provided to the script via the GET, POST, and COOKIE input mechanisms,
and which therefore cannot be trusted. The presence and order of variable inclusion in
this array is defined according to the PHP variables_order configuration directive.

See Also

* import_request_variables()
» Handling external variables

* The filter extension

$ SESSION

$HTTP_SESSION_VARS [deprecated]

$_SESSION -- $HTTP_SESSION_VARS [deprecated] -- Session variables
Description

An associative array containing session variables available to the current script. See the
Session functions documentation for more information on how this is used.

(Note that $HTTP_SESSION_VARS and $_SESSION are different variables and that PHP
handles them as such)

ChangelLog
Version Description
4.1.0 Introduced $_SESSION that the deprecated
$HTTP_SESSION_VARS.
Notes
Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

e session_start()

$_ENV

$HTTP_ENV_VARS [deprecated]

$ _ENV -- SHTTP_ENV_VARS [deprecated] -- Environment variables

Description

These variables are imported into PHP's global namespace from the environment under
which the PHP parser is running. Many are provided by the shell under which PHP is
running and different systems are likely running different kinds of shells, a definitive list is
impossible. Please see your shell's documentation for a list of defined environment
variables.

Other environment variables include the CGI variables, placed there regardless of whether
PHP is running as a server module or CGI processor.

that SHTTP_ENV_VARS and $_ENV are different variables and that PHP handles them as
such)

Changelog

Version Description

4.1.0 Introduced $_ENV that deprecated
$HTTP_ENV_VARS.

Examples

Example #141 - $ ENV example

<?php
echo 'My usernane is ' .$ ENV["USER'] . "!'
?>

Assuming "bjori" executes this script

The above example will output something similar to:

My usernanme is bjori!

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

» getenv()
* The filter extension

$ COOKIE

$HTTP_COOKIE_VARS [deprecated]

$ COOKIE -- $HTTP_COOKIE_VARS [deprecated] -- HTTP Cookies

Description

(Note that SHTTP_COOKIE_VARS and $_COOKIE are different variables and that PHP
handles them as such)

Changelog

Version Description

4.1.0 Introduced $ COOKIE that deprecated
$HTTP_COOKIE_VARS.

Examples

Example #142 - $ COOKIE example

<?php
echo "Hello ' . htm special chars($_COXI E["nanme"]) . "I
?>

Assuming the "name" cookie has been set earlier

The above example will output something similar to:

Hel | o Hannes!

Notes

Note

This is a 'superglobal’, or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

« setcookie()
» Handling external variables

* The filter extension

$php_errormsg

$php_errormsg -- The previous error message
Description

$php_errormsg is a variable containing the text of the last error message generated by
PHP. This variable will only be available within the scope in which the error occurred, and
only if the track_errors configuration option is turned on (it defaults to off).

Note

This variable is only available when track_errors is enabled in php.ini.

Warning

If a user defined error handler is set $php_erromsg is only set if the error handler
returns FALSE

Examples

Example #143 - $php_errormsg example

<?php

@trpos();

echo $php_errornsg;
?>

The above example will output something similar to:

Wong paraneter count for strpos()

SHTTP_RAW_POST_DATA

$HTTP_RAW_POST_DATA -- Raw POST data
Description

$HTTP_RAW_POST DATA contains the raw POST data. See
always_populate_raw_post_data

$http_response_header

$http_response_header -- HTTP response headers

Description

HTTP wrapper, $http_response_header will be populated with the HTTP response
headers.

Examples

Example #144 - $http_response_header example

<?php
file _get _contents("http://exanple.com);

var _dunp($http_response_header);
?>

The above example will output something similar to:

array(9) {

[0] =>

string(15) "HTTP/ 1.1 200 K"

[1]=>

string(35) "Date: Sat, 12 Apr 2008 17:30:38 GVI"
[2]=>

string(29) "Server: Apache/2.2.3 (Cent0S)"

[3]=>

string(44) "Last-Mdified: Tue, 15 Nov 2005 13:24:10 GvI"
[4]=>

string(27) "ETag: "280100-1b6-80bfd280""

[5]=>

string(20) "Accept-Ranges: bytes"

[6]=>

string(19) "Content-Length: 438"

[7]=>

string(17) "Connection: close"

[8]=>

string(38) "Content-Type: text/htm; charset=UTF-8"

$argc

$argc -- The number of arguments passed to script
Description

Contains the number of arguments passed to the current script when running from the
command line.

Note

The script's filename is always passed as an argument to the script, therefore the
minimum value of $argc is 1.

Note

This variable is only available when register_argc_argv is enabled.

Examples

Example #145 - $argc example

<?php
var _dump($ar gc) ;
?>

When executing the example with: php script.php argl arg2 arg3
The above example will output something similar to:

i nt (4)

$argv

$argv -- Array of arguments passed to script

Description

command line.

Note

The first argument is always the current script's filename, therefore $argv[0] is the
script's name.

Note

This variable is only available when register_argc_argv is enabled.

Examples

Example #146 - $argv example

<?php
var _dunp($argv);
2>

When executing the example with: php script.php argl arg2 arg3

The above example will output something similar to:

array(4) {

[0] =>

string(10) "script.php"
[1]=>

string(4) "argl"

[2]=>

string(4) "arg2"

[3]=>

string(4) "arg3"

Predefined Exceptions

Exception

Introduction

Exception is the base class for all Exceptions.

Class synopsis

Exception

Exception {
[* Properties */
protected string message;
private string string;
protected int code;
protected string file;
protected int line;
private array trace;
[* Methods */
public Exception::___construct ([string $message [, int $code]])
final public string Exception::getMessage (void)
final public int Exception::getCode (void)
final public string Exception::getFile (void)
final public string Exception::getLine (void)
final public array Exception::getTrace (void)
final public string Exception::getTraceAsString (void)

public string Exception::__toString (void)

final private string Exception::___clone (void)

Properties

message
The exception message

string
Internal Exception name

code
The Exception code

file
The filename where the exception was thrown

line
The line where the exception was thrown

trace
The stack trace

Exception:: _construct

Exception::__construct -- Construct the exception

Description

public Exception::___construct ([string $message [, int $code]])
Constructs the Exception.

Parameters
nmessage
The Exception message to throw.

code
The Exception code.

Exception::getMessage

Exception::getMessage -- Gets the Exception message
Description

final public string Exception::getMessage (void)
Returns the Exception message.

Parameters

This function has no parameters.

Return Values

Returns the Exception message as a string.

Examples

<?php

try {
t hrow new Exception("Sonme error message");

} catch(Exception $e) {
echo $e->get Message();

}

?>
The above example will output something similar to:

Sonme error nessage

Exception::getCode

Exception::getCode -- Gets the Exception code
Description

final public int Exception::getCode (void)
Returns the Exception code.

Parameters

This function has no parameters.

Return Values

<?php
try {

t hrow new Exception("Some error message", 30);
} catch(Exception $e) {

echo "The exception code is: " . $e->get Code();

}

?>
The above example will output something similar to:

The exception code is: 30

Exception::getFile

Exception::getFile -- Gets the file in which the exception occurred
Description

final public string Exception::getFile (void)

Get the name of the file the exception was thrown from.
Parameters

This function has no parameters.

Return Values

Returns the filename in which the exception was thrown.

Examples

<?php

try {
t hrow new Exception

} catch(Exception $e) {
echo $e->getFile();

}

?>
The above example will output something similar to:

/' home/ bj ori/tnp/ex. php

Exception::getLine

Exception::getLine -- Gets the line in which the exception occurred
Description

final public string Exception::getLine (void)

Returns line number where the exception was thrown.
Parameters

This function has no parameters.

Return Values

Returns the line number where the exception was thrown.

Examples

<?php
try {
t hrow new Exception("Sonme error message");
} catch(Exception $e) {
echo "The exception was thrown on line: " . $e->getLine();

}

?>
The above example will output something similar to:

The exception was thrown on line: 3

Exception::getTrace

Exception::getTrace -- Gets the stack trace
Description

final public array Exception::getTrace (void)

Returns the Exception stack trace.
Parameters
This function has no parameters.

Return Values

<?php
function test() {
t hrow new Exception

}

try {
test();

} catch(Exception $e) {
var _dunp($e->get Trace());
}

?>

array(1) {

[0] =>

array(4) {
["file"]=>
string(22) "/hone/bjori/tnp/ex.php"
["I'ine"]=>
int(7)
["function"]=>
string(4) "test"
["args"]=>
array(0) {
}

The above example will output something similar to:

Exception::getTraceAsString

Exception::getTraceAsString -- Gets the stack trace as a string
Description

final public string Exception::getTraceAsString (void)

Returns the Exception stack trace as a string.
Parameters

This function has no parameters.

Return Values

Returns the Exception stack trace as a string.

Examples

<?php
function test() {
t hrow new Excepti on;

}

try {
test();

} catch(Exception $e) {
echo $e->get TraceAsString();

}

?>
The above example will output something similar to:

#0 / honme/ bjori/tnp/ex. php(7): test()
#1 {mai n}

Exception:: _toString

Exception::__toString -- String representation of the exception
Description

public string Exception::__toString (void)

Parameters

This function has no parameters.

Return Values

<?php
try {

t hrow new Exception("Sonme error message");
} catch(Exception $e) {

echo $e;

}

?>
The above example will output something similar to:

exception 'Exception' with nessage ' Sone error nessage' in
/ hore/ bj ori / t np/ ex. php: 3

Stack trace:

#0 {mai n}

Exception:: clone

Exception::__clone -- Clone the exception
Description

final private string Exception::___clone (void)

Tries to clone the Exception, which results in Fatal error.
Parameters

This function has no parameters.

Return Values

No value is returned.

Errors/Exceptions

Exceptions are not clonable.

ErrorException

Introduction

An Error Exception.

Class synopsis

ErrorException

ErrorException extends Exception {
[* Properties */
protected int severity;
[* Methods */

public ErrorException::__construct ([string $nessage [, int $code [, int $severity |,
string $filename [,int $lineno]]]]])

final public int ErrorException::getSeverity (void)

* Inherited methods */

final public string Exception::getMessage (void)

final public int Exception::getCode (void)

final public string Exception::getFile (void)

final public string Exception::getLine (void)

final public array Exception::getTrace (void)

final public string Exception::getTraceAsString (void)
public string Exception::___toString (void)

final private string Exception::___clone (void)

Properties

severity
The severity of the exception

Examples

Example #154 - Turn all error messages into ErrorException.

<?php
function exception_error_handl er($errno, $errstr, $errfile, Serrline) {
t hrow new Error Exception($errstr, 0, $errno, $errfile, S$errline);

}

set _error_handl er ("exception_error_handler");

/* Trigger exception */
strpos();
?>

The above example will output something similar to:

Fatal error: Uncaught exception 'ErrorException' w th nessage ' Wong
paranmeter count for strpos()' in /hone/bjori/tnmp/ex.php:8

Stack trace:

#0 [internal function]: exception_error_handler(2, 'Wong paraneter...',

"/ hone/ bjori/php...", 8, Array)
#1 /[hone/ bj ori/ php/ cl eandocs/test. php(8): strpos()
#2 {mai n}

thrown in /hone/bjori/tnp/ex.php on line 8

ErrorException:: _construct

ErrorException::___construct -- Construct the exception
Description

public ErrorException::__construct ([string $nessage [, int $code [, int $severity |,
string $filenanme [,int $lineno]]]]])

Constructs the Exception.

Parameters

nmessage
The Exception message to throw.

code
The Exception code.

severity
The severity level of the exception.

fil ename
The filename where the exception is thrown.

i neno
The line number where the exception is thrown.

ErrorException::getSeverity

ErrorException::getSeverity -- Gets the exception severity
Description

final public int ErrorException::getSeverity (void)

Returns the severity of the exception.
Parameters

This function has no parameters.

Return Values

Returns the severity level of the exception.

Examples

Example #155 - ErrorException() example

<?php
try {

t hrow new Error Exception("Exception nmessage", 0, 75);
} catch(ErrorException $e) {

echo "This exception severity is: " . $e->getSeverity();

}

?>
The above example will output something similar to:

Thi s exception severity is: 75

Context options and parameters

PHP offers various context options and parameters which can be used with all filesystem
and stream wrappers. The context is created with stream_context_create(). Options are
set with stream_context_set_option() and parameters with stream_context_set_params().

Socket context options

Socket context options -- Socket context option listing
Description

Socket context options are available for all wrappers that work over sockets, like tcp, http
and ftp.

Options

bi ndt o
Used to specify the IP address (either IPv4 or IPv6) and/or the port number that PHP
will use to access the network. The syntax is ip:port. Setting the IP or the port to O will
let the system choose the IP and/or port.

Note

As FTP creates two socket connections during normal operation, the port number
cannot be specified using this option.

ChangelLog

Version Description
5.1.0 Added bindto.
Examples

Example #156 - Basic bi ndt o usage example

<?php
/1 connect to the internet using the '192.168.0.100" IP
$opts = array(
"socket' => array(
"bindto' => '192.168.0.100: 0",

),

/1 connect to the internet using the '192.168.0.100' |IP and port '7000

$opts = array(
"socket' => array(
"bindto' => '192.168.0.100: 7000’
),
)

/1 connect to the internet using port '7000
$opts = array(
"socket' => array(
"bindto" =>'0:7000",
),
)

/'l create the context...
$cont ext = stream context create($opts);

// ...and use it to fetch the data

echo file_get_contents(' http://ww.exanpl e.comn,

?>

fal se, $context);

HTTP context options

HTTP context options -- HTTP context option listing
Description
Context options for http:// and https:// transports.

Options

GET, POST, or any other HTTP method supported by the remote server. Defaults to
GET.

Additional headers to be sent during request. Values in this option will override other
values (such as User-agent:, Host:, and Authentication:).

Value to send with User-Agent: header. This value will only be used if user-agent is not
specified in the header context option above. By default the user_agent php.ini setting
Is used.

Additional data to be sent after the headers. Typically used with POST or PUT
requests.

When set to TRUE, the entire URI will be used when constructing the request. (i.e.
GET http://lwww.example.com/path/to/file.ntml HTTP/1.0). While this is a non-standard
request format, some proxy servers require it. Defaults to FALSE.

The max number of redirects to follow. Value 1 or less means that no redirects are
followed. Defaults to 20.

HTTP protocol version. Defaults to 1.0.

ti neout float

Fetch the content even on failure status codes. Defaults to FALSE

ChangelLog

Version Description

5.3.0 Added ignore_errors.

521 Added tineout .

5.1.0 Addgd HTTPS proxying through HTTP 5.1.0
proxies.

5.1.0 Added protocol _version.

Examples

Example #157 - Fetch a page and send POST data

<?php
$postdata = http build query(
array(
'varl' => 'sone content',
"var2' => 'doh'

)

$opts = array(' http' =>

array(
"method" =>'POST',
"header' => 'Content-type: application/x-ww-formurlencoded'

"content' => $postdata
);
$context = stream context create($opts);

$result = file get _contents(' http://exanple.conlsubmt.php', false
$cont ext) ;

?>

Notes

Note

Underlying socket stream context options

Additional context options may be supported by the underlying transport For http://
streams, refer to context options for the tcp:// transport. For https:// streams, refer to
context options for the ssl:// transport.

See Also

FTP context options

FTP context options -- FTP context option listing
Description
Context options for ftp:// and ftps:// transports.

Options

overwr ite boolean

Allow overwriting of already existing files on remote server. Applies to write mode
(uploading) only. Defaults to FALSE.

File offset at which to begin transfer. Applies to read mode (downloading) only.
Defaults to 0 (Beginning of File).

Proxy FTP request via http proxy server. Applies to file read operations only. Ex:
tcp://squid.example.com:8000.

ChangelLog
Version Description
5.1.0 Added proxy.
5.0.0 Added overwite and resune_pos.
Notes
Note

Underlying socket stream context options

Additional context options may be supported by the underlying transport For ftp://
streams, refer to context options for the tcp:// transport. For ftps:// streams, refer to
context options for the ssl:// transport.

See Also

SSL context options

SSL context options -- SSL context option listing
Description
Context options for ssl:// and tls:// transports.

Options

Location of Certificate Authority file on local filesystem which should be used with the
verify_peer context option to authenticate the identity of the remote peer.

If cafile is not specified or if the certificate is not found there, the directory pointed to by
capath is searched for a suitable certificate. capath must be a correctly hashed
certificate directory.

Path to local certificate file on filesystem. It must be a PEM encoded file which contains
your certificate and private key. It can optionally contain the certificate chain of issuers.

Common Name we are expecting. PHP will perform limited wildcard matching. If the
Common Name does not match this, the connection attempt will fail.

Sets the list of available ciphers. The format of the string is described in » ciphers(1).
Defaults to DEFAULT.

If set to TRUE a peer_certificate context option will be created containing the peer
certificate.

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

If set to TRUE a peer_certificate_chain context option will be created containing the
certificate chain.

ChangelLog
Version Description
5.0.0 Added capture_peer _cert,
capt ure_peer _chai n and ci phers.
Notes
Note

Because ssl:// is the underlying transport for the https:// and ftps:// wrappers, any
context options which apply to ssl:// also apply to https:// and ftps://.

See Also

CURL context options

CURL context options -- CURL context option listing
Description

CURL context options are available when the CURL extension was compiled using the
--with-curlwrappers configure option.

Options

GET, POST, or any other HTTP method supported by the remote server. Defaults to
GET.

Additional headers to be sent during request. Values in this option will override other
values (such as User-agent:, Host:, and Authentication:).

Value to send with User-Agent: header. By default the user_agent php.ini setting is
used.

Additional data to be sent after the headers. This option is not used for GET or HEAD
requests.

The max number of redirects to follow. Value 1 or less means that no redirects are
followed. Defaults to 20.

Verify the host. Defaults to FALSE

Note

This option is available for both the http and ftp protocol wrappers.

Require verification of SSL certificate used. Defaults to FALSE

Note

This option is available for both the http and ftp protocol wrappers.

Examples

Example #158 - Fetch a page and send POST data

<?php

$postdata = http_build_query(
array(
‘varl' => 'sone content',
"var2' => 'doh'
)
)

$opts = array(' http' =>
array(
"nmethod' =>'POST',
"header' => 'Content-type: application/x-ww~fornurlencoded
‘content' => $postdata
)
)

$context = stream context create($opts);

$result = file_get _contents('http://exanple.con subnmt.php', false
$cont ext) ;

?>

See Also

Context parameters

Context parameters -- Context parameter listing
Description

These parameters can be set on a context using the stream_context_set _params()
function.

Options

notification callback

stream_notification_callback() for more details.

	Language Reference
	Basic syntax
	Escaping from HTML
	Instruction separation
	Comments

	Types
	Introduction
	Booleans
	Syntax
	Converting to boolean

	Integers
	Syntax
	Integer overflow
	Converting to integer
	From booleans
	From floating point numbers
	From strings
	From other types

	Floating point numbers
	Converting to float

	Strings
	Syntax
	Single quoted
	Double quoted
	Heredoc
	Nowdoc
	Variable parsing
	Simple syntax
	Complex (curly) syntax
	String access and modification by character
	Useful functions and operators
	Converting to string
	String conversion to numbers

	Arrays
	Syntax
	Specifying with array
	Creating/modifying with square bracket syntax
	Useful functions
	Array do's and don'ts
	Why is $foo[bar] wrong?
	So why is it bad then?
	Converting to array
	Comparing
	Examples

	Objects
	Object Initialization
	Converting to object

	Resources
	Converting to resource
	Freeing resources

	NULL
	Syntax

	Pseudo-types and variables used in this documentation
	mixed
	number
	callback
	void
	...

	Type Juggling
	Type Casting

	Variables
	Basics
	Predefined variables
	Variable scope
	The global keyword
	Using static variables
	References with global and static variables

	Variable variables
	Variables From External Sources
	HTML Forms (GET and POST)
	IMAGE SUBMIT variable names
	HTTP Cookies
	Dots in incoming variable names
	Determining variable types

	Constants
	Syntax
	Magic constants

	Expressions
	Operators
	Operator Precedence
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Comparison Operators
	Ternary Operator

	Error Control Operators
	Execution Operators
	Incrementing/Decrementing Operators
	Logical Operators
	String Operators
	Array Operators
	Type Operators

	Control Structures
	Introduction
	if
	else
	elseif/else if
	Alternative syntax for control structures
	while
	do-while
	for
	foreach
	break
	continue
	switch
	declare
	Ticks

	return
	require
	include
	require_once
	include_once

	Functions
	User-defined functions
	Function arguments
	Making arguments be passed by reference
	Default argument values
	Variable-length argument lists

	Returning values
	Variable functions
	Internal (built-in) functions

	Classes and Objects (PHP 4)
	class
	extends
	Constructors
	Scope Resolution Operator (::)
	parent
	Serializing objects - objects in sessions
	The magic functions __sleep and __wakeup
	References inside the constructor
	Comparing objects

	Classes and Objects (PHP 5)
	Introduction
	The Basics
	class
	new
	extends

	Autoloading Objects
	Constructors and Destructors
	Constructor
	Destructor

	Visibility
	Members Visibility
	Method Visibility

	Scope Resolution Operator (::)
	Static Keyword
	Class Constants
	Class Abstraction
	Object Interfaces
	implements
	Examples

	Overloading
	ChangeLog
	Member overloading
	Method overloading

	Object Iteration
	Patterns
	Factory
	Singleton

	Magic Methods
	__sleep and __wakeup
	__toString
	__set_state

	Final Keyword
	Object cloning
	Comparing objects
	Reflection
	Table of Contents
	Introduction
	Reflector
	ReflectionException
	ReflectionFunction
	ReflectionParameter
	ReflectionClass
	ReflectionObject
	ReflectionMethod
	ReflectionProperty
	ReflectionExtension
	Extending the reflection classes

	Type Hinting
	Late Static Bindings
	Limitations of self::
	Late Static Bindings' usage
	Edge cases

	Namespaces
	Namespaces overview
	Namespace definition
	Using namespaces
	Global space
	__NAMESPACE__
	Name resolution rules

	Exceptions
	Extending Exceptions

	References Explained
	What References Are
	What References Do
	What References Are Not
	Passing by Reference
	Returning References
	Unsetting References
	Spotting References
	global References
	$this

	Predefined variables
	Superglobals
	$GLOBALS
	$_SERVER
	$_GET
	$_POST
	$_FILES
	$_REQUEST
	$_SESSION
	$_ENV
	$_COOKIE
	$php_errormsg
	$HTTP_RAW_POST_DATA
	$http_response_header
	$argc
	$argv

	Predefined Exceptions
	Exception
	Introduction
	Class synopsis
	Properties
	Exception::__construct
	Exception::getMessage
	Exception::getCode
	Exception::getFile
	Exception::getLine
	Exception::getTrace
	Exception::getTraceAsString
	Exception::__toString
	Exception::__clone

	ErrorException
	Introduction
	Class synopsis
	Properties
	Examples
	ErrorException::__construct
	ErrorException::getSeverity

	Context options and parameters
	Socket context options
	HTTP context options
	FTP context options
	SSL context options
	CURL context options
	Context parameters

