
Miscellaneous Functions

Introduction

These functions were placed here because none of the other categories seemed to fit.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Misc. Configuration Options

Name Default Changeable Changelog

ignore_user_abort "0" PHP_INI_ALL

highlight.string "#DD0000" PHP_INI_ALL

highlight.comment "#FF8000" PHP_INI_ALL

highlight.keyword "#007700" PHP_INI_ALL

highlight.bg "#FFFFFF" PHP_INI_ALL Removed in PHP
6.0.0.

highlight.default "#0000BB" PHP_INI_ALL

highlight.html "#000000" PHP_INI_ALL

browscap NULL PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

ignore_user_abort boolean
FALSE by default. If changed to TRUE scripts will not be terminated after a client has
aborted their connection. See also ignore_user_abort().

highlight.bg string highlight.comment string highlight.default string highlight.html
string highlight.keyword string highlight.string string

Colors for Syntax Highlighting mode. Anything that's acceptable in <font
color="??????"> would work.

browscap string
Name (e.g.: browscap.ini) and location of browser capabilities file. See also
get_browser().

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CONNECTION_ABORTED (integer)

CONNECTION_NORMAL (integer)

CONNECTION_TIMEOUT (integer)

__COMPILER_HALT_OFFSET__ (integer)
Added in PHP 5.1.

Misc. Functions

connection_aborted

connection_aborted -- Check whether client disconnected

Description

int connection_aborted (void)

Checks whether the client disconnected.

Return Values

Returns 1 if client disconnected, 0 otherwise.

See Also

• connection_status()
• ignore_user_abort()
• Connection Handling for a complete description of connection handling in PHP.

connection_status

connection_status -- Returns connection status bitfield

Description

int connection_status (void)

Gets the connection status bitfield.

Return Values

Returns the connection status bitfield, which can be used against the CONNECTION_XXX
constants to determine the connection status.

See Also

• connection_aborted()
• ignore_user_abort()
• Connection Handling for a complete description of connection handling in PHP.

connection_timeout

connection_timeout -- Check if the script timed out

Description

int connection_timeout (void)

Determines whether the script timed out.

Return Values

Returns 1 if the script timed out, 0 otherwise.

Notes

Warning

Deprecated

This function is deprecated, and doesn't even exist anymore as of 4.0.5.

See Also

• connection_status()
• Connection Handling for a complete description of connection handling in PHP.

constant

constant -- Returns the value of a constant

Description

mixed constant (string $name)

Return the value of the constant indicated by name.

constant() is useful if you need to retrieve the value of a constant, but do not know its
name. I.e. it is stored in a variable or returned by a function.

This function works also with class constants.

Parameters

name

The constant name.

Return Values

Returns the value of the constant, or NULL if the constant is not defined.

Examples

Example #1 - constant() example

<?php

define("MAXSIZE", 100);

echo MAXSIZE;

echo constant("MAXSIZE"); // same thing as the previous line

interface bar {

 const test = 'foobar!';

}

class foo {

 const test = 'foobar!';

}

$const = 'test';

var_dump(constant('bar::'. $const)); // string(7) "foobar!"

var_dump(constant('foo::'. $const)); // string(7) "foobar!"

?>

See Also

• define()
• defined()
• The section on Constants

define

define -- Defines a named constant

Description

bool define (string $name, mixed $value [, bool $case_insensitive])

Defines a named constant at runtime.

Parameters

name

The name of the constant.

value

The value of the constant; only scalar and null values are allowed. Scalar values are
integer, float, string or boolean values.

case_insensitive

If set to TRUE, the constant will be defined case-insensitive. The default behaviour is
case-sensitive; i.e. CONSTANT and Constant represent different values.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2 - Defining Constants

<?php

define("CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

echo Constant; // outputs "Constant" and issues a notice.

define("GREETING", "Hello you.", true);

echo GREETING; // outputs "Hello you."

echo Greeting; // outputs "Hello you."

?>

See Also

• defined()
• constant()
• The section on Constants

defined

defined -- Checks whether a given named constant exists

Description

bool defined (string $name)

Checks whether the given constant exists and is defined.

Note

If you want to see if a variable exists, use isset() as defined() only applies to constants.
If you want to see if a function exists, use function_exists().

Parameters

name

The constant name.

Return Values

Returns TRUE if the named constant given by name has been defined, FALSE otherwise.

Examples

Example #3 - Checking Constants

<?php

/* Note the use of quotes, this is important. This example is checking

* if the string 'CONSTANT' is the name of a constant named CONSTANT */

if (defined('CONSTANT')) {

 echo CONSTANT;

}

?>

See Also

• define()

• constant()
• get_defined_constants()
• function_exists()
• The section on Constants

die

die -- Equivalent to exit()

Description

This language construct is equivalent to exit().

eval

eval -- Evaluate a string as PHP code

Description

mixed eval (string $code_str)

Evaluates the string given in code_str as PHP code. Among other things, this can be
useful for storing code in a database text field for later execution.

There are some factors to keep in mind when using eval(). Remember that the string
passed must be valid PHP code, including things like terminating statements with a
semicolon so the parser doesn't die on the line after the eval(), and properly escaping
things in code_str. To mix HTML output and PHP code you can use a closing PHP tag to
leave PHP mode.

Also remember that variables given values under eval() will retain these values in the main
script afterwards.

Parameters

code_str

The code string to be evaluated. code_str does not have to contain PHP Opening
tags. A return statement will immediately terminate the evaluation of the string .

Return Values

eval() returns NULL unless return is called in the evaluated code, in which case the value
passed to return is returned. If there is a parse error in the evaluated code, eval() returns
FALSE and execution of the following code continues normally. It is not possible to catch a
parse error in eval() using set_error_handler().

Examples

Example #4 - eval() example - simple text merge

<?php

$string = 'cup';

$name = 'coffee';

$str = 'This is a $string with my $name in it.';

echo $str. "\n";

eval("\$str = \"$str\";");

echo $str. "\n";

?>

The above example will output:

This is a $string with my $name in it.

This is a cup with my coffee in it.

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Tip

As with anything that outputs its result directly to the browser, the output-control
functions can be used to capture the output of this function, and save it in a string (for
example).

Note

In case of a fatal error in the evaluated code, the whole script exits.

See Also

• call_user_func()

exit

exit -- Output a message and terminate the current script

Description

void exit ([string $status])

void exit (int $status)

Terminates execution of the script.

Parameters

status

If status is a string, this function prints the status just before exiting. If status is an
integer, that value will also be used as the exit status. Exit statuses should be in the
range 0 to 254, the exit status 255 is reserved by PHP and shall not be used. The
status 0 is used to terminate the program successfully.

Note

PHP >= 4.2.0 does NOT print the status if it is an integer.

Return Values

No value is returned.

Examples

Example #5 - exit() example

<?php

$filename = '/path/to/data-file';

$file = fopen($filename, 'r')

 or exit("unable to open file ($filename)");

?>

Example #6 - exit() status example

<?php

//exit program normally

exit;

exit();

exit(0);

//exit with an error code

exit(1);

exit(0376); //octal

?>

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Note

This language construct is equivalent to die().

See Also

• register_shutdown_function()

get_browser

get_browser -- Tells what the user's browser is capable of

Description

mixed get_browser ([string $user_agent [, bool $return_array]])

Attempts to determine the capabilities of the user's browser, by looking up the browser's
information in the browscap.ini file.

Parameters

user_agent

The User Agent to be analyzed. By default, the value of HTTP User-Agent header is
used; however, you can alter this (i.e., look up another browser's info) by passing this
parameter. You can bypass this parameter with a NULL value.

return_array

If set to TRUE, this function will return an array instead of an object.

Return Values

The information is returned in an object or an array which will contain various data
elements representing, for instance, the browser's major and minor version numbers and
ID string; TRUE / FALSE values for features such as frames, JavaScript, and cookies; and
so forth.

The cookies value simply means that the browser itself is capable of accepting cookies
and does not mean the user has enabled the browser to accept cookies or not. The only
way to test if cookies are accepted is to set one with setcookie(), reload, and check for the
value.

ChangeLog

Version Description

4.3.2 The optional parameter return_array was
added.

Examples

Example #7 - Listing all information about the users browser

<?php

echo $_SERVER['HTTP_USER_AGENT'] . "\n\n";

$browser = get_browser(null, true);

print_r($browser);

?>

The above example will output something similar to:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7) Gecko/20040803
Firefox/0.9.3

Array

(

 [browser_name_regex] => ^mozilla/5\.0 (windows; .; windows nt 5\.1;
.*rv:.*) gecko/.* firefox/0\.9.*$

 [browser_name_pattern] => Mozilla/5.0 (Windows; ?; Windows NT 5.1; *rv:*)
Gecko/* Firefox/0.9*

 [parent] => Firefox 0.9

 [platform] => WinXP

 [browser] => Firefox

 [version] => 0.9

 [majorver] => 0

 [minorver] => 9

 [css] => 2

 [frames] => 1

 [iframes] => 1

 [tables] => 1

 [cookies] => 1

 [backgroundsounds] =>

 [vbscript] =>

 [javascript] => 1

 [javaapplets] => 1

 [activexcontrols] =>

 [cdf] =>

 [aol] =>

 [beta] => 1

 [win16] =>

 [crawler] =>

 [stripper] =>

 [wap] =>

 [netclr] =>

)

Notes

Note

In order for this to work, your browscap configuration setting in php.ini must point to the
correct location of the browscap.ini file on your system.

browscap.ini is not bundled with PHP, but you may find an up-to-date
» php_browscap.ini file here.

While browscap.ini contains information on many browsers, it relies on user updates to
keep the database current. The format of the file is fairly self-explanatory.

http://browsers.garykeith.com/downloads.asp
http://browsers.garykeith.com/downloads.asp

__halt_compiler

__halt_compiler -- Halts the compiler execution

Description

void __halt_compiler (void)

Halts the execution of the compiler. This can be useful to embed data in PHP scripts, like
the installation files.

Byte position of the data start can be determined by the __COMPILER_HALT_OFFSET__
constant which is defined only if there is a __halt_compiler() presented in the file.

Return Values

No value is returned.

Examples

Example #8 - A __halt_compiler() example

<?php

// open this file

$fp = fopen(__FILE__, 'r');

// seek file pointer to data

fseek($fp, __COMPILER_HALT_OFFSET__);

// and output it

var_dump(stream_get_contents($fp));

// the end of the script execution

__halt_compiler();the installation data (eg. tar, gz, PHP, etc.)

Notes

Note

__halt_compiler() can only be used from the outermost scope.

highlight_file

highlight_file -- Syntax highlighting of a file

Description

mixed highlight_file (string $filename [, bool $return])

Prints out or returns a syntax highlighted version of the code contained in filename using
the colors defined in the built-in syntax highlighter for PHP.

Many servers are configured to automatically highlight files with a phps extension. For
example, example.phps when viewed will show the syntax highlighted source of the file.
To enable this, add this line to the httpd.conf:

AddType application/x-httpd-php-source .phps

Parameters

filename

Path to the PHP file to be highlighted.

return

Set this parameter to TRUE to make this function return the highlighted code.

Return Values

If return is set to TRUE, returns the highlighted code as a string instead of printing it out.
Otherwise, it will return TRUE on success, FALSE on failure.

ChangeLog

Version Description

4.2.1 This function is now also affected by
safe_mode and open_basedir.

4.2.0 The return parameter was added.

Notes

Caution

Care should be taken when using the highlight_file() function to make sure that you do
not inadvertently reveal sensitive information such as passwords or any other type of
information that might create a potential security risk.

Note

This function uses internal output buffering with this parameter so it can not be used
inside an ob_start() callback function.

See Also

• highlight_string()

highlight_string

highlight_string -- Syntax highlighting of a string

Description

mixed highlight_string (string $str [, bool $return])

Outputs or returns a syntax highlighted version of the given PHP code using the colors
defined in the built-in syntax highlighter for PHP.

Parameters

str

The PHP code to be highligthed. This should include the opening tag.

return

Set this parameter to TRUE to make this function return the highlighted code.

Return Values

If return is set to TRUE, returns the highlighted code as a string instead of printing it out.
Otherwise, it will return TRUE on success, FALSE on failure.

ChangeLog

Version Description

4.2.0 The return parameter was added.

Examples

Example #9 - highlight_string() example

<?php

highlight_string('<?php phpinfo(); ?>');

?>

The above example will output (in PHP 4):

<code>

<?php phpinfo();
?>

</code>

The above example will output (in PHP 5):

<code>

<?php phpinfo<span style="color:
#007700">(); ?>

</code>

Notes

Note

This function uses internal output buffering with this parameter so it can not be used
inside an ob_start() callback function.

See Also

• highlight_file()

ignore_user_abort

ignore_user_abort -- Set whether a client disconnect should abort script execution

Description

int ignore_user_abort ([bool $setting])

Sets whether a client disconnect should cause a script to be aborted.

Parameters

setting

If not set, the function will only return the current setting.

Return Values

Returns the previous setting, as a boolean.

Notes

PHP will not detect that the user has aborted the connection until an attempt is made to
send information to the client. Simply using an echo statement does not guarantee that
information is sent, see flush().

See Also

• connection_aborted()
• connection_status()
• Connection Handling for a complete description of connection handling in PHP.

pack

pack -- Pack data into binary string

Description

string pack (string $format [, mixed $args [, mixed $...]])

Pack given arguments into binary string according to format.

The idea for this function was taken from Perl and all formatting codes work the same as in
Perl However, there are some formatting codes that are missing such as Perl's "u" format
code.

Note that the distinction between signed and unsigned values only affects the function
unpack(), where as function pack() gives the same result for signed and unsigned format
codes.

Also note that PHP internally stores integer values as signed values of a
machine-dependent size. If you give it an unsigned integer value too large to be stored
that way it is converted to a float which often yields an undesired result.

Parameters

format

The format string consists of format codes followed by an optional repeater argument.
The repeater argument can be either an integer value or * for repeating to the end of
the input data. For a, A, h, H the repeat count specifies how many characters of one
data argument are taken, for @ it is the absolute position where to put the next data,
for everything else the repeat count specifies how many data arguments are
consumed and packed into the resulting binary string. Currently implemented formats
are:

pack() format characters

Code Description

a NUL-padded string

A SPACE-padded string

h Hex string, low nibble first

H Hex string, high nibble first

c signed char

C unsigned char

s signed short (always 16 bit, machine byte
order)

S unsigned short (always 16 bit, machine byte
order)

n unsigned short (always 16 bit, big endian
byte order)

v unsigned short (always 16 bit, little endian
byte order)

i signed integer (machine dependent size and
byte order)

I unsigned integer (machine dependent size
and byte order)

l signed long (always 32 bit, machine byte
order)

L unsigned long (always 32 bit, machine byte
order)

N unsigned long (always 32 bit, big endian
byte order)

V unsigned long (always 32 bit, little endian
byte order)

f float (machine dependent size and
representation)

d double (machine dependent size and
representation)

x NUL byte

X Back up one byte

@ NUL-fill to absolute position

args

Return Values

Returns a binary string containing data.

Examples

Example #10 - pack() example

<?php

$binarydata = pack("nvc*", 0x1234, 0x5678, 65, 66);

?>

The resulting binary string will be 6 bytes long and contain the byte sequence 0x12, 0x34,
0x78, 0x56, 0x41, 0x42.

See Also

• unpack()

php_check_syntax

php_check_syntax -- Check the PHP syntax of (and execute) the specified file

Description

bool php_check_syntax (string $filename [, string &$error_message])

Performs a syntax (lint) check on the specified filename testing for scripting errors.

This is similar to using php -l from the commandline except that this function will execute (but
not output) the checked filename.

For example, if a function is defined in filename, this defined function will be available to the
file that executed php_check_syntax(), but output from filename will be suppressed.

Note

For technical reasons, this function is deprecated and removed from PHP. Instead, use
php -l somefile.php from the commandline.

Parameters

filename

The name of the file being checked.

error_message

If the error_message parameter is used, it will contain the error message generated by the
syntax check. error_message is passed by reference.

Return Values

Returns TRUE if the lint check passed, and FALSE if the link check failed or if filename
cannot be opened.

ChangeLog

Version Description

5.0.5 This function was removed from PHP.

5.0.3 Calling exit() after php_check_syntax()

resulted in a Segfault.

5.0.1 error_message is passed by reference.

Examples

php -l somefile.php

The above example will output something similar to:

PHP Parse error: unexpected T_STRING in /tmp/somefile.php on line 81

See Also

• include()
• is_readable()

php_strip_whitespace

php_strip_whitespace -- Return source with stripped comments and whitespace

Description

string php_strip_whitespace (string $filename)

Returns the PHP source code in filename with PHP comments and whitespace removed.
This may be useful for determining the amount of actual code in your scripts compared
with the amount of comments. This is similar to using php -w from the commandline.

Parameters

filename

Path to the PHP file.

Return Values

The stripped source code will be returned on success, or an empty string on failure.

Note

This function works as described as of PHP 5.0.1. Before this it would only return an
empty string. For more information on this bug and its prior behavior, see bug report
» #29606.

Examples

Example #11 - php_strip_whitespace() example

<?php

// PHP comment here

/*

* Another PHP comment

*/

echo php_strip_whitespace(__FILE__);

// Newlines are considered whitespace, and are removed too:

do_nothing();

?>

The above example will output:

http://bugs.php.net/29606
http://bugs.php.net/29606

<?php

echo php_strip_whitespace(__FILE__); do_nothing(); ?>

Notice the PHP comments are gone, as are the whitespace and newline after the first
echo statement.

show_source

show_source -- Alias of highlight_file()

Description

This function is an alias of: highlight_file().

sleep

sleep -- Delay execution

Description

int sleep (int $seconds)

Delays the program execution for the given number of seconds.

Parameters

seconds

Halt time in seconds.

Return Values

Returns zero on success, or FALSE on errors.

Errors/Exceptions

If the specified number of seconds is negative, this function will generate a E_WARNING.

Examples

Example #12 - sleep() example

<?php

// current time

echo date('h:i:s') . "\n";

// sleep for 10 seconds

sleep(10);

// wake up !

echo date('h:i:s') . "\n";

?>

This example will output (after 10 seconds)

05:31:23

05:31:33

See Also

usleep(), set_time_limit()

sys_getloadavg

sys_getloadavg -- Gets system load average

Description

array sys_getloadavg (void)

Returns three samples representing the average system load (the number of processes in
the system run queue) over the last 1, 5 and 15 minutes, respectively.

Return Values

Returns an array with three samples (last 1, 5 and 15 minutes).

Examples

Example #13 - A sys_getloadavg() example

<?php

$load = sys_getloadavg();

if ($load[0] > 80) {

 header('HTTP/1.1 503 Too busy, try again later');

 die('Server too busy. Please try again later.');

}

?>

Notes

Note

This function is not implemented on Windows platforms.

time_nanosleep

time_nanosleep -- Delay for a number of seconds and nanoseconds

Description

mixed time_nanosleep (int $seconds, int $nanoseconds)

Delays program execution for the given number of seconds and nanoseconds.

Parameters

seconds

Must be a positive integer.

nanoseconds

Must be a positive integer less than 1 billion.

Return Values

Returns TRUE on success or FALSE on failure.

If the delay was interrupted by a signal, an associative array will be returned with the
components:

• seconds - number of seconds remaining in the delay

• nanoseconds - number of nanoseconds remaining in the delay

Examples

Example #14 - time_nanosleep() example

<?php

// Careful! This won't work as expected if an array is returned

if (time_nanosleep(0, 500000000)) {

 echo "Slept for half a second.\n";

}

// This is better:

if (time_nanosleep(0, 500000000) === true) {

 echo "Slept for half a second.\n";

}

// And this is the best:

$nano = time_nanosleep(2, 100000);

if ($nano === true) {

 echo "Slept for 2 seconds, 100 milliseconds.\n";

} elseif ($nano === false) {

 echo "Sleeping failed.\n";

} elseif (is_array($nano)) {

 $seconds = $nano['seconds'];

 $nanoseconds = $nano['nanoseconds'];

 echo "Interrupted by a signal.\n";

 echo "Time remaining: $seconds seconds, $nanoseconds nanoseconds.";

}

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

sleep(), usleep(), set_time_limit()

time_sleep_until

time_sleep_until -- Make the script sleep until the specified time

Description

bool time_sleep_until (float $timestamp)

Makes the script sleep until the specified timestamp.

Parameters

timestamp

The timestamp when the script should wake.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

If the specified timestamp is in the past, this function will generate a E_WARNING.

Examples

Example #15 - A time_sleep_until() example

<?php

//returns false and generates a warning

var_dump(time_sleep_until(time()-1));

// may only work on faster computers, will sleep up to 0.2 seconds

var_dump(time_sleep_until(time()+0.2));

?>

Notes

Note

All signals will be delivered after the script wakes up.

Note

This function is not implemented on Windows platforms.

See Also

• sleep()
• usleep()
• time_nanosleep()

uniqid

uniqid -- Generate a unique ID

Description

string uniqid ([string $prefix [, bool $more_entropy]])

Gets a prefixed unique identifier based on the current time in microseconds.

Parameters

prefix

Can be useful, for instance, if you generate identifiers simultaneously on several hosts
that might happen to generate the identifier at the same microsecond. With an empty
prefix, the returned string will be 13 characters long. If more_entropy is TRUE, it will
be 23 characters.

more_entropy

If set to TRUE, uniqid() will add additional entropy (using the combined linear
congruential generator) at the end of the return value, which should make the results
more unique.

Return Values

Returns the unique identifier, as a string.

Examples

If you need a unique identifier or token and you intend to give out that token to the user via
the network (i.e. session cookies), it is recommended that you use something along these
lines:

This will create a 32 character identifier (a 128 bit hex number) that is extremely difficult to
predict.

Example #16 - uniqid() Example

<?php

// no prefix

// works only in PHP 5 and later versions

$token = md5(uniqid());

// better, difficult to guess

$better_token = md5(uniqid(rand(), true));

?>

ChangeLog

Version Description

5.0.0 The prefix parameter was made optional.

4.3.1 The limit of 114 characters long for prefix
was raised.

unpack

unpack -- Unpack data from binary string

Description

array unpack (string $format, string $data)

Unpacks from a binary string into an array according to the given format.

unpack() works slightly different from Perl as the unpacked data is stored in an associative
array. To accomplish this you have to name the different format codes and separate them
by a slash /.

Parameters

format

See pack() for an explanation of the format codes.

data

The packed data.

Return Values

Returns an associative array containing unpacked elements of binary string.

Examples

Example #17 - unpack() example

<?php

$array = unpack("c2chars/nint", $binarydata);

?>

The resulting array will contain the entries "chars1", "chars2" and "int".

Notes

Caution

Note that PHP internally stores integral values as signed. If you unpack a large
unsigned long and it is of the same size as PHP internally stored values the result will

be a negative number even though unsigned unpacking was specified.

See Also

• pack()

usleep

usleep -- Delay execution in microseconds

Description

void usleep (int $micro_seconds)

Delays program execution for the given number of micro seconds.

Parameters

micro_seconds

Halt time in micro seconds. A micro second is one millionth of a second.

Return Values

No value is returned.

ChangeLog

Version Description

5.0.0 This function now works on Windows
systems.

Examples

Example #18 - usleep() example

<?php

// Current time

echo date('h:i:s') . "\n";

// wait for 2 seconds

usleep(2000000);

// back!

echo date('h:i:s') . "\n";

?>

The above example will output:

11:13:28

11:13:30

See Also

• sleep()
• set_time_limit()

	Misc.
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Misc. Functions
	connection_aborted
	connection_status
	connection_timeout
	constant
	define
	defined
	die
	eval
	exit
	get_browser
	__halt_compiler
	highlight_file
	highlight_string
	ignore_user_abort
	pack
	php_check_syntax
	php_strip_whitespace
	show_source
	sleep
	sys_getloadavg
	time_nanosleep
	time_sleep_until
	uniqid
	unpack
	usleep

