
PHP Data Objects

Introduction

The PHP Data Objects (PDO) extension defines a lightweight, consistent interface for
accessing databases in PHP. Each database driver that implements the PDO interface
can expose database-specific features as regular extension functions. Note that you
cannot perform any database functions using the PDO extension by itself; you must use a
database-specific PDO driver to access a database server.

PDO provides a data-access abstraction layer, which means that, regardless of which
database you're using, you use the same functions to issue queries and fetch data. PDO
does not provide a database abstraction; it doesn't rewrite SQL or emulate missing
features. You should use a full-blown abstraction layer if you need that facility.

PDO ships with PHP 5.1, and is available as a PECL extension for PHP 5.0; PDO requires
the new OO features in the core of PHP 5, and so will not run with earlier versions of PHP.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

PHP 5.1 and up on Unix systems
1. If you're running a PHP 5.1 release, PDO and PDO_SQLITE is included in the

distribution; it will be automatically enabled when you run configure. It is recommended
that you build PDO as a shared extension, as this will allow you to take advantage of
updates that are made available via PECL. The recommended configure line for
building PHP with PDO support should enable zlib support (for the pecl installer) as
well. You may also need to enable the PDO driver for your database of choice; consult
the documentation for database-specific PDO drivers to find out more about that, but
note that if you build PDO as a shared extension, you must build the PDO drivers as
shared extensions. SQLite extension depends on PDO so if PDO is built as a shared
extension, SQLite needs to be built the same way.
./configure --with-zlib --enable-pdo=shared --with-pdo-sqlite=shared
--with-sqlite=shared

2. After installing PDO as a shared module, you must edit your php.ini file so that the
PDO extension will be loaded automatically when PHP runs. You will also need to
enable any database specific drivers there too; make sure that they are listed after the
pdo.so line, as PDO must be initialized before the database-specific extensions can be
loaded. If you built PDO and the database-specific extensions statically, you can skip
this step.
extension=pdo.so

3. Having PDO as a shared module will allow you to run pecl upgrade pdo as new
versions of PDO are published, without forcing you to rebuild the whole of PHP. Note
that if you do this, you also need to upgrade your database specific PDO drivers at the
same time.

PHP 5.0.0 and up on Unix systems
1. PDO is available as a PECL extension from » http://pecl.php.net/package/pdo.

Installation can be performed via the pecl tool; this is enabled by default when you
configure PHP. You should ensure that PHP was configured --with-zlib in order for pecl
to be able to handle the compressed package files.

2. Run the following command to download, build, and install the latest stable version of
PDO:
pecl install pdo

3. The pecl command automatically installs the PDO module into your PHP extensions

http://pecl.php.net/package/pdo

directory. To enable the PDO extension on Linux or Unix operating systems, you must
add the following line to php.ini:
extension=pdo.so
For more information about building PECL packages, consult the PECL installation
section of the manual.

Windows users running PHP 5.1.0 and up
1. PDO and all the major drivers ship with PHP as shared extensions, and simply need to

be activated by editing the php.ini file:
extension=php_pdo.dll

2. Next, choose the other database-specific DLL files and either use dl() to load them at
runtime, or enable them in php.ini below php_pdo.dll. For example:
extension=php_pdo.dll

extension=php_pdo_firebird.dll

extension=php_pdo_informix.dll

extension=php_pdo_mssql.dll

extension=php_pdo_mysql.dll

extension=php_pdo_oci.dll

extension=php_pdo_oci8.dll

extension=php_pdo_odbc.dll

extension=php_pdo_pgsql.dll

extension=php_pdo_sqlite.dll
These DLLs should exist in the system's extension_dir. Note that PDO_INFORMIX is
only available as a PECL extension.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PDO Configuration Options

Name Default Changeable Changelog

pdo.dsn.* php.ini only

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

pdo.dsn.* string
Defines DSN alias. See PDO::__construct() for thorough explanation.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Warning

PDO uses class constants since PHP 5.1. Prior releases use global constants in the
form PDO_PARAM_BOOL.

PDO::PARAM_BOOL (integer)
Represents a boolean data type.

PDO::PARAM_NULL (integer)
Represents the SQL NULL data type.

PDO::PARAM_INT (integer)
Represents the SQL INTEGER data type.

PDO::PARAM_STR (integer)
Represents the SQL CHAR, VARCHAR, or other string data type.

PDO::PARAM_LOB (integer)
Represents the SQL large object data type.

PDO::PARAM_STMT (integer)
Represents a recordset type. Not currently supported by any drivers.

PDO::PARAM_INPUT_OUTPUT (integer)
Specifies that the parameter is an INOUT parameter for a stored procedure. You must
bitwise-OR this value with an explicit PDO::PARAM_* data type.

PDO::FETCH_LAZY (integer)
Specifies that the fetch method shall return each row as an object with variable names
that correspond to the column names returned in the result set. PDO::FETCH_LAZY
creates the object variable names as they are accessed.

PDO::FETCH_ASSOC (integer)
Specifies that the fetch method shall return each row as an array indexed by column
name as returned in the corresponding result set. If the result set contains multiple
columns with the same name, PDO::FETCH_ASSOC returns only a single value per
column name.

PDO::FETCH_NAMED (integer)
Specifies that the fetch method shall return each row as an array indexed by column
name as returned in the corresponding result set. If the result set contains multiple
columns with the same name, PDO::FETCH_NAMED returns an array of values per
column name.

PDO::FETCH_NUM (integer)
Specifies that the fetch method shall return each row as an array indexed by column
number as returned in the corresponding result set, starting at column 0.

PDO::FETCH_BOTH (integer)
Specifies that the fetch method shall return each row as an array indexed by both
column name and number as returned in the corresponding result set, starting at
column 0.

PDO::FETCH_OBJ (integer)
Specifies that the fetch method shall return each row as an object with property names
that correspond to the column names returned in the result set.

PDO::FETCH_BOUND (integer)
Specifies that the fetch method shall return TRUE and assign the values of the
columns in the result set to the PHP variables to which they were bound with the
PDOStatement::bindParam() or PDOStatement::bindColumn() methods.

PDO::FETCH_COLUMN (integer)
Specifies that the fetch method shall return only a single requested column from the
next row in the result set.

PDO::FETCH_CLASS (integer)
Specifies that the fetch method shall return a new instance of the requested class,
mapping the columns to named properties in the class.

PDO::FETCH_INTO (integer)
Specifies that the fetch method shall update an existing instance of the requested
class, mapping the columns to named properties in the class.

PDO::FETCH_FUNC (integer)

PDO::FETCH_GROUP (integer)

PDO::FETCH_UNIQUE (integer)

PDO::FETCH_KEY_PAIR (integer)
Fetch into an array where the 1st column is a key and all subsequent columns are
values

PDO::FETCH_CLASSTYPE (integer)

PDO::FETCH_SERIALIZE (integer)
As PDO::FETCH_INTO but object is provided as a serialized string. Available since
PHP 5.1.0.

PDO::FETCH_PROPS_LATE (integer)
Available since PHP 5.2.0

PDO::ATTR_AUTOCOMMIT (integer)
If this value is FALSE, PDO attempts to disable autocommit so that the connection
begins a transaction.

PDO::ATTR_PREFETCH (integer)
Setting the prefetch size allows you to balance speed against memory usage for your
application. Not all database/driver combinations support setting of the prefetch size. A
larger prefetch size results in increased performance at the cost of higher memory
usage.

PDO::ATTR_TIMEOUT (integer)
Sets the timeout value in seconds for communications with the database.

PDO::ATTR_ERRMODE (integer)
See the Errors and error handling section for more information about this attribute.

PDO::ATTR_SERVER_VERSION (integer)
This is a read only attribute; it will return information about the version of the database
server to which PDO is connected.

PDO::ATTR_CLIENT_VERSION (integer)
This is a read only attribute; it will return information about the version of the client
libraries that the PDO driver is using.

PDO::ATTR_SERVER_INFO (integer)
This is a read only attribute; it will return some meta information about the database
server to which PDO is connected.

PDO::ATTR_CONNECTION_STATUS (integer)

PDO::ATTR_CASE (integer)
Force column names to a specific case specified by the PDO::CASE_* constants.

PDO::ATTR_CURSOR_NAME (integer)
Get or set the name to use for a cursor. Most useful when using scrollable cursors and
positioned updates.

PDO::ATTR_CURSOR (integer)
Selects the cursor type. PDO currently supports either PDO::CURSOR_FWDONLY
and PDO::CURSOR_SCROLL. Stick with PDO::CURSOR_FWDONLY unless you
know that you need a scrollable cursor.

PDO::ATTR_DRIVER_NAME (string)
Returns the name of the driver.

Example #1 - using PDO::ATTR_DRIVER_NAME

<?php

if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {

 echo "Running on mysql; doing something mysql specific here\n";

}

?>

PDO::ATTR_ORACLE_NULLS (integer)
Convert empty strings to SQL NULL values on data fetches.

PDO::ATTR_PERSISTENT (integer)
Request a persistent connection, rather than creating a new connection. See
Connections and Connection management for more information on this attribute.

PDO::ATTR_STATEMENT_CLASS (integer)

PDO::ATTR_FETCH_CATALOG_NAMES (integer)
Prepend the containing catalog name to each column name returned in the result set.
The catalog name and column name are separated by a decimal (.) character. Support
of this attribute is at the driver level; it may not be supported by your driver.

PDO::ATTR_FETCH_TABLE_NAMES (integer)
Prepend the containing table name to each column name returned in the result set.
The table name and column name are separated by a decimal (.) character. Support of
this attribute is at the driver level; it may not be supported by your driver.

PDO::ATTR_STRINGIFY_FETCHES (integer)

PDO::ATTR_MAX_COLUMN_LEN (integer)

PDO::ATTR_DEFAULT_FETCH_MODE (integer)
Available since PHP 5.2.0

PDO::ATTR_EMULATE_PREPARES (integer)
Available since PHP 5.1.3.

PDO::ERRMODE_SILENT (integer)
Do not raise an error or exception if an error occurs. The developer is expected to
explicitly check for errors. This is the default mode. See Errors and error handling for
more information about this attribute.

PDO::ERRMODE_WARNING (integer)
Issue a PHP E_WARNING message if an error occurs. See Errors and error handling
for more information about this attribute.

PDO::ERRMODE_EXCEPTION (integer)
Throw a PDOException if an error occurs. See Errors and error handling for more
information about this attribute.

PDO::CASE_NATURAL (integer)
Leave column names as returned by the database driver.

PDO::CASE_LOWER (integer)
Force column names to lower case.

PDO::CASE_UPPER (integer)
Force column names to upper case.

PDO::NULL_NATURAL (integer)

PDO::NULL_EMPTY_STRING (integer)

PDO::NULL_TO_STRING (integer)

PDO::FETCH_ORI_NEXT (integer)
Fetch the next row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_PRIOR (integer)
Fetch the previous row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_FIRST (integer)
Fetch the first row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_LAST (integer)
Fetch the last row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_ABS (integer)
Fetch the requested row by row number from the result set. Valid only for scrollable
cursors.

PDO::FETCH_ORI_REL (integer)
Fetch the requested row by relative position from the current position of the cursor in
the result set. Valid only for scrollable cursors.

PDO::CURSOR_FWDONLY (integer)
Create a PDOStatement object with a forward-only cursor. This is the default cursor
choice, as it is the fastest and most common data access pattern in PHP.

PDO::CURSOR_SCROLL (integer)
Create a PDOStatement object with a scrollable cursor. Pass the PDO::FETCH_ORI_*
constants to control the rows fetched from the result set.

PDO::ERR_NONE (string)
Corresponds to SQLSTATE '00000', meaning that the SQL statement was successfully
issued with no errors or warnings. This constant is for your convenience when
checking PDO::errorCode() or PDOStatement::errorCode() to determine if an error
occurred. You will usually know if this is the case by examining the return code from
the method that raised the error condition anyway.

PDO::PARAM_EVT_ALLOC (integer)
Allocation event

PDO::PARAM_EVT_FREE (integer)
Deallocation event

PDO::PARAM_EVT_EXEC_PRE (integer)
Event triggered prior to execution of a prepared statement.

PDO::PARAM_EVT_EXEC_POST (integer)
Event triggered subsequent to execution of a prepared statement.

PDO::PARAM_EVT_FETCH_PRE (integer)
Event triggered prior to fetching a result from a resultset.

PDO::PARAM_EVT_FETCH_POST (integer)
Event triggered subsequent to fetching a result from a resultset.

PDO::PARAM_EVT_NORMALIZE (integer)
Event triggered during bound parameter registration allowing the driver to normalize
the parameter name.

Connections and Connection management

Connections are established by creating instances of the PDO base class. It doesn't
matter which driver you want to use; you always use the PDO class name. The constructor
accepts parameters for specifying the database source (known as the DSN) and optionally
for the username and password (if any).

Example #2 - Connecting to MySQL

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

?>

If there are any connection errors, a PDOException object will be thrown. You may catch
the exception if you want to handle the error condition, or you may opt to leave it for an
application global exception handler that you set up via set_exception_handler().

Example #3 - Handling connection errors

<?php

try {

 $dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

 foreach($dbh->query('SELECT * from FOO') as $row) {

 print_r($row);

 }

 $dbh = null;

} catch (PDOException $e) {

 print "Error!: " . $e->getMessage() . "
";

 die();

}

?>

Warning

If your application does not catch the exception thrown from the PDO constructor, the
default action taken by the zend engine is to terminate the script and display a back
trace. This back trace will likely reveal the full database connection details, including
the username and password. It is your responsibility to catch this exception, either
explicitly (via a catch statement) or implicitly via set_exception_handler().

Upon successful connection to the database, an instance of the PDO class is returned to
your script. The connection remains active for the lifetime of that PDO object. To close the

connection, you need to destroy the object by ensuring that all remaining references to it
are deleted--you do this by assigning NULL to the variable that holds the object. If you
don't do this explicitly, PHP will automatically close the connection when your script ends.

Example #4 - Closing a connection

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

// use the connection here

// and now we're done; close it

$dbh = null;

?>

Many web applications will benefit from making persistent connections to database
servers. Persistent connections are not closed at the end of the script, but are cached and
re-used when another script requests a connection using the same credentials. The
persistent connection cache allows you to avoid the overhead of establishing a new
connection every time a script needs to talk to a database, resulting in a faster web
application.

Example #5 - Persistent connections

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass, array(

 PDO::ATTR_PERSISTENT => true

));

?>

Note

If you wish to use persistent connections, you must set PDO::ATTR_PERSISTENT in
the array of driver options passed to the PDO constructor. If setting this attribute with
PDO::setAttribute() after instantiation of the object, the driver will not use persistent
connections.

Note

If you're using the PDO ODBC driver and your ODBC libraries support ODBC
Connection Pooling (unixODBC and Windows are two that do; there may be more),
then it's recommended that you don't use persistent PDO connections, and instead
leave the connection caching to the ODBC Connection Pooling layer. The ODBC

Connection Pool is shared with other modules in the process; if PDO is told to cache
the connection, then that connection would never be returned to the ODBC connection
pool, resulting in additional connections being created to service those other modules.

Transactions and auto-commit

Now that you're connected via PDO, you must understand how PDO manages
transactions before you start issuing queries. If you've never encountered transactions
before, they offer 4 major features: Atomicity, Consistency, Isolation and Durability (ACID).
In layman's terms, any work carried out in a transaction, even if it is carried out in stages,
is guaranteed to be applied to the database safely, and without interference from other
connections, when it is committed. Transactional work can also be automatically undone at
your request (provided you haven't already committed it), which makes error handling in
your scripts easier.

Transactions are typically implemented by "saving-up" your batch of changes to be applied
all at once; this has the nice side effect of drastically improving the efficiency of those
updates. In other words, transactions can make your scripts faster and potentially more
robust (you still need to use them correctly to reap that benefit).

Unfortunately, not every database supports transactions, so PDO needs to run in what is
known as "auto-commit" mode when you first open the connection. Auto-commit mode
means that every query that you run has its own implicit transaction, if the database
supports it, or no transaction if the database doesn't support transactions. If you need a
transaction, you must use the PDO::beginTransaction() method to initiate one. If the
underlying driver does not support transactions, a PDOException will be thrown
(regardless of your error handling settings: this is always a serious error condition). Once
you are in a transaction, you may use PDO::commit() or PDO::rollBack() to finish it,
depending on the success of the code you run during the transaction.

When the script ends or when a connection is about to be closed, if you have an
outstanding transaction, PDO will automatically roll it back. This is a safety measure to
help avoid inconsistency in the cases where the script terminates unexpectedly--if you
didn't explicitly commit the transaction, then it is assumed that something went awry, so
the rollback is performed for the safety of your data.

Warning

The automatic rollback only happens if you initiate the transaction via
PDO::beginTransaction(). If you manually issue a query that begins a transaction PDO
has no way of knowing about it and thus cannot roll it back if something bad happens.

Example #6 - Executing a batch in a transaction

In the following sample, let's assume that we are creating a set of entries for a new
employee, who has been assigned an ID number of 23. In addition to entering the
basic data for that person, we also need to record their salary. It's pretty simple to
make two separate updates, but by enclosing them within the PDO::beginTransaction()
and PDO::commit() calls, we are guaranteeing that no one else will be able to see
those changes until they are complete. If something goes wrong, the catch block rolls

back all changes made since the transaction was started, and then prints out an error
message.

<?php

try {

 $dbh = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2',

 array(PDO::ATTR_PERSISTENT => true));

 echo "Connected\n";

 $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $dbh->beginTransaction();

 $dbh->exec("insert into staff (id, first, last) values (23, 'Joe',
'Bloggs')");

 $dbh->exec("insert into salarychange (id, amount, changedate)

 values (23, 50000, NOW())");

 $dbh->commit();

} catch (Exception $e) {

 $dbh->rollBack();

 echo "Failed: " . $e->getMessage();

}

?>

You're not limited to making updates in a transaction; you can also issue complex queries
to extract data, and possibly use that information to build up more updates and queries;
while the transaction is active, you are guaranteed that no one else can make changes
while you are in the middle of your work. In truth, this isn't 100% correct, but it is a
good-enough introduction, if you've never heard of transactions before.

Prepared statements and stored procedures

Many of the more mature databases support the concept of prepared statements. What
are they? You can think of them as a kind of compiled template for the SQL that you want
to run, that can be customized using variable parameters. Prepared statements offer two
major benefits:

• The query only needs to be parsed (or prepared) once, but can be executed multiple
times with the same or different parameters. When the query is prepared, the database
will analyze, compile and optimize it's plan for executing the query. For complex
queries this process can take up enough time that it will noticeably slow down your
application if you need to repeat the same query many times with different parameters.
By using a prepared statement you avoid repeating the analyze/compile/optimize
cycle. In short, prepared statements use fewer resources and thus run faster.

• The parameters to prepared statements don't need to be quoted; the driver handles it
for you. If your application exclusively uses prepared statements, you can be sure that
no SQL injection will occur. (However, if you're still building up other parts of the query
based on untrusted input, you're still at risk).

Prepared statements are so useful that they are the only feature that PDO will emulate for
drivers that don't support them. This ensures that you will be able to use the same data
access paradigm regardless of the capabilities of the database.

Example #7 - Repeated inserts using prepared statements

This example performs an INSERT query by substituting a name and a value for the
named placeholders.

<?php

$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (:name,
:value)");

$stmt->bindParam(':name', $name);

$stmt->bindParam(':value', $value);

// insert one row

$name = 'one';

$value = 1;

$stmt->execute();

// insert another row with different values

$name = 'two';

$value = 2;

$stmt->execute();

?>

Example #8 - Repeated inserts using prepared statements

This example performs an INSERT query by substituting a name and a value for the
positional ? placeholders.

<?php

$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (?, ?)");

$stmt->bindParam(1, $name);

$stmt->bindParam(2, $value);

// insert one row

$name = 'one';

$value = 1;

$stmt->execute();

// insert another row with different values

$name = 'two';

$value = 2;

$stmt->execute();

?>

Example #9 - Fetching data using prepared statements

This example fetches data based on a key value supplied by a form. The user input is
automatically quoted, so there is no risk of a SQL injection attack.

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name = ?");

if ($stmt->execute(array($_GET['name']))) {

 while ($row = $stmt->fetch()) {

 print_r($row);

 }

}

?>

If the database driver supports it, you may also bind parameters for output as well as input.
Output parameters are typically used to retrieve values from stored procedures. Output
parameters are slightly more complex to use than input parameters, in that you must know
how large a given parameter might be when you bind it. If the value turns out to be larger
than the size you suggested, an error is raised.

Example #10 - Calling a stored procedure with an output parameter

<?php

$stmt = $dbh->prepare("CALL sp_returns_string(?)");

$stmt->bindParam(1, $return_value, PDO::PARAM_STR, 4000);

// call the stored procedure

$stmt->execute();

print "procedure returned $return_value\n";

?>

You may also specify parameters that hold values both input and output; the syntax is
similar to output parameters. In this next example, the string 'hello' is passed into the
stored procedure, and when it returns, hello is replaced with the return value of the
procedure.

Example #11 - Calling a stored procedure with an input/output parameter

<?php

$stmt = $dbh->prepare("CALL sp_takes_string_returns_string(?)");

$value = 'hello';

$stmt->bindParam(1, $value, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 4000);

// call the stored procedure

$stmt->execute();

print "procedure returned $value\n";

?>

Example #12 - Invalid use of placeholder

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE '%?%'");

$stmt->execute(array($_GET['name']));

// placeholder must be used in the place of the whole value

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE ?");

$stmt->execute(array("%$_GET[name]%"));

?>

Errors and error handling

PDO offers you a choice of 3 different error handling strategies, to fit your style of
application development.

• PDO::ERRMODE_SILENT This is the default mode. PDO will simply set the error
code for you to inspect using the PDO::errorCode() and PDO::errorInfo() methods on
both the statement and database objects; if the error resulted from a call on a
statement object, you would invoke the PDOStatement::errorCode() or
PDOStatement::errorInfo() method on that object. If the error resulted from a call on
the database object, you would invoke those methods on the database object instead.

• PDO::ERRMODE_WARNING In addition to setting the error code, PDO will emit a
traditional E_WARNING message. This setting is useful during debugging/testing, if
you just want to see what problems occurred without interrupting the flow of the
application.

• PDO::ERRMODE_EXCEPTION In addition to setting the error code, PDO will throw a
PDOException and set its properties to reflect the error code and error information.
This setting is also useful during debugging, as it will effectively "blow up" the script at
the point of the error, very quickly pointing a finger at potential problem areas in your
code (remember: transactions are automatically rolled back if the exception causes the
script to terminate). Exception mode is also useful because you can structure your
error handling more clearly than with traditional PHP-style warnings, and with less
code/nesting than by running in silent mode and explicitly checking the return value of
each database call. See Exceptions for more information about Exceptions in PHP.

PDO standardizes on using SQL-92 SQLSTATE error code strings; individual PDO drivers
are responsible for mapping their native codes to the appropriate SQLSTATE codes. The
PDO::errorCode() method returns a single SQLSTATE code. If you need more specific
information about an error, PDO also offers an PDO::errorInfo() method which returns an
array containing the SQLSTATE code, the driver specific error code and driver specific
error string.

Large Objects (LOBs)

At some point in your application, you might find that you need to store "large" data in your
database. Large typically means "around 4kb or more", although some databases can
happily handle up to 32kb before data becomes "large". Large objects can be either textual
or binary in nature. PDO allows you to work with this large data type by using the
PDO::PARAM_LOB type code in your PDOStatement::bindParam() or
PDOStatement::bindColumn() calls. PDO::PARAM_LOB tells PDO to map the data as a
stream, so that you can manipulate it using the PHP Streams API.

Example #13 - Displaying an image from a database

This example binds the LOB into the variable named $lob and then sends it to the
browser using fpassthru(). Since the LOB is represented as a stream, functions such
as fgets(), fread() and stream_get_contents() can be used on it.

<?php

$db = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2');

$stmt = $db->prepare("select contenttype, imagedata from images where
id=?");

$stmt->execute(array($_GET['id']));

$stmt->bindColumn(1, $type, PDO::PARAM_STR, 256);

$stmt->bindColumn(2, $lob, PDO::PARAM_LOB);

$stmt->fetch(PDO::FETCH_BOUND);

header("Content-Type: $type");

fpassthru($lob);

?>

Example #14 - Inserting an image into a database

This example opens up a file and passes the file handle to PDO to insert it as a LOB.
PDO will do its best to get the contents of the file up to the database in the most
efficient manner possible.

<?php

$db = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2');

$stmt = $db->prepare("insert into images (id, contenttype, imagedata) values
(?, ?, ?)");

$id = get_new_id(); // some function to allocate a new ID

// assume that we are running as part of a file upload form

// You can find more information in the PHP documentation

$fp = fopen($_FILES['file']['tmp_name'], 'rb');

$stmt->bindParam(1, $id);

$stmt->bindParam(2, $_FILES['file']['type']);

$stmt->bindParam(3, $fp, PDO::PARAM_LOB);

$db->beginTransaction();

$stmt->execute();

$db->commit();

?>

Example #15 - Inserting an image into a database: Oracle

Oracle requires a slightly different syntax for inserting a lob from a file. It's also
essential that you perform the insert under a transaction, otherwise your newly inserted
LOB will be committed with a zero-length as part of the implicit commit that happens
when the query is executed:

<?php

$db = new PDO('oci:', 'scott', 'tiger');

$stmt = $db->prepare("insert into images (id, contenttype, imagedata) " .

"VALUES (?, ?, EMPTY_BLOB()) RETURNING imagedata INTO ?");

$id = get_new_id(); // some function to allocate a new ID

// assume that we are running as part of a file upload form

// You can find more information in the PHP documentation

$fp = fopen($_FILES['file']['tmp_name'], 'rb');

$stmt->bindParam(1, $id);

$stmt->bindParam(2, $_FILES['file']['type']);

$stmt->bindParam(3, $fp, PDO::PARAM_LOB);

$stmt->beginTransaction();

$stmt->execute();

$stmt->commit();

?>

The PDO class

Introduction

Represents a connection between PHP and a database server.

Class synopsis

PDO

PDO {

PDO::__construct (string $dsn [, string $username [, string $password [, array $
driver_options]]])

bool PDO::beginTransaction (void)

bool PDO::commit (void)

string PDO::errorCode (void)

array PDO::errorInfo (void)

int PDO::exec (string $statement)

mixed PDO::getAttribute (int $attribute)

array PDO::getAvailableDrivers (void)

string PDO::lastInsertId ([string $name])

PDOStatement PDO::prepare (string $statement [, array $driver_options])

PDOStatement PDO::query (string $statement)

string PDO::quote (string $string [, int $parameter_type])

bool PDO::rollBack (void)

bool PDO::setAttribute (int $attribute, mixed $value)
}

PDO::beginTransaction

PDO::beginTransaction -- Initiates a transaction

Description

bool PDO::beginTransaction (void)

Turns off autocommit mode. While autocommit mode is turned off, changes made to the
database via the PDO object instance are not committed until you end the transaction by
calling PDO::commit(). Calling PDO::rollBack() will roll back all changes to the database
and return the connection to autocommit mode.

Some databases, including MySQL, automatically issue an implicit COMMIT when a
database definition language (DDL) statement such as DROP TABLE or CREATE TABLE
is issued within a transaction. The implicit COMMIT will prevent you from rolling back any
other changes within the transaction boundary.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #16 - Roll back a transaction

The following example begins a transaction and issues two statements that modify the
database before rolling back the changes. On MySQL, however, the DROP TABLE
statement automatically commits the transaction so that none of the changes in the
transaction are rolled back.

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = 'hamburger'");

/* Recognize mistake and roll back changes */

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::commit()
• PDO::rollBack()

PDO::commit

PDO::commit -- Commits a transaction

Description

bool PDO::commit (void)

Commits a transaction, returning the database connection to autocommit mode until the
next call to PDO::beginTransaction() starts a new transaction.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #17 - Commit a transaction

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema */

$sth = $dbh->exec("DROP TABLE fruit");

/* Commit the changes */

$dbh->commit();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::beginTransaction()
• PDO::rollBack()

PDO::__construct

PDO::__construct -- Creates a PDO instance representing a connection to a database

Description

PDO::__construct (string $dsn [, string $username [, string $password [, array $
driver_options]]])

Creates a PDO instance to represent a connection to the requested database.

Parameters

dsn
The Data Source Name, or DSN, contains the information required to connect to the
database. In general, a DSN consists of the PDO driver name, followed by a colon,
followed by the PDO driver-specific connection syntax. Further information is available
from the PDO driver-specific documentation. The dsn parameter supports three
different methods of specifying the arguments required to create a database
connection:
Driver invocation

dsn contains the full DSN.

URI invocation
dsn consists of uri: followed by a URI that defines the location of a file containing
the DSN string. The URI can specify a local file or a remote URL.
uri:file:///path/to/dsnfile

Aliasing
dsn consists of a name name that maps to pdo.dsn. name in php.ini defining the
DSN string.

Note

The alias must be defined in php.ini, and not.htaccess or httpd.conf

username
The user name for the DSN string. This parameter is optional for some PDO drivers.

password
The password for the DSN string. This parameter is optional for some PDO drivers.

driver_options
A key=>value array of driver-specific connection options.

Return Values

Returns a PDO object on success.

Errors/Exceptions

PDO::__construct() throws a PDOException if the attempt to connect to the requested
database fails.

Examples

Example #18 - Create a PDO instance via driver invocation

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = 'mysql:dbname=testdb;host=127.0.0.1';

$user = 'dbuser';

$password = 'dbpass';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

Example #19 - Create a PDO instance via URI invocation

The following example assumes that the file /usr/local/dbconnect exists with file
permissions that enable PHP to read the file. The file contains the PDO DSN to
connect to a DB2 database through the PDO_ODBC driver:

odbc:DSN=SAMPLE;UID=john;PWD=mypass

The PHP script can then create a database connection by simply passing the uri:
parameter and pointing to the file URI:

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = 'uri:file:///usr/local/dbconnect';

$user = '';

$password = '';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

Example #20 - Create a PDO instance using an alias

The following example assumes that php.ini contains the following entry to enable a
connection to a MySQL database using only the alias mydb:

[PDO]

pdo.dsn.mydb="mysql:dbname=testdb;host=localhost"

<?php

/* Connect to an ODBC database using an alias */

$dsn = 'mydb';

$user = '';

$password = '';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

PDO::errorCode

PDO::errorCode -- Fetch the SQLSTATE associated with the last operation on the
database handle

Description

string PDO::errorCode (void)

Return Values

Returns a SQLSTATE, a five-character alphanumeric identifier defined in the ANSI
SQL-92 standard. Briefly, an SQLSTATE consists of a two-character class value followed
by a three-character subclass value. A class value of 01 indicates a warning and is
accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values other than
'01', except for the class 'IM', indicate an error. The class 'IM' is specific to warnings and
errors that derive from the implementation of PDO (or perhaps ODBC, if you're using the
ODBC driver) itself. The subclass value '000' in any class indicates that there is no
subclass for that SQLSTATE.

PDO::errorCode() only retrieves error codes for operations performed directly on the
database handle. If you create a PDOStatement object through PDO::prepare() or
PDO::query() and invoke an error on the statement handle, PDO::errorCode() will not
reflect that error. You must call PDOStatement::errorCode() to return the error code for an
operation performed on a particular statement handle.

Examples

Example #21 - Retrieving a SQLSTATE code

<?php

/* Provoke an error -- the BONES table does not exist */

$dbh->exec("INSERT INTO bones(skull) VALUES ('lucy')");

echo "\nPDO::errorCode(): ";

print $dbh->errorCode();

?>

The above example will output:

PDO::errorCode(): 42S02

See Also

• PDO::errorInfo()
• PDOStatement::errorCode()
• PDOStatement::errorInfo()

PDO::errorInfo

PDO::errorInfo -- Fetch extended error information associated with the last operation on
the database handle

Description

array PDO::errorInfo (void)

Return Values

PDO::errorInfo() returns an array of error information about the last operation performed by
this database handle. The array consists of the following fields:

Element Information

0 SQLSTATE error code (a five-character
alphanumeric identifier defined in the ANSI
SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

PDO::errorInfo() only retrieves error information for operations performed directly on the
database handle. If you create a PDOStatement object through PDO::prepare() or
PDO::query() and invoke an error on the statement handle, PDO::errorInfo() will not reflect
the error from the statement handle. You must call PDOStatement::errorInfo() to return the
error information for an operation performed on a particular statement handle.

Examples

Example #22 - Displaying errorInfo() fields for a PDO_ODBC connection to a DB2
database

<?php

/* Provoke an error -- bogus SQL syntax */

$stmt = $dbh->prepare('bogus sql');

if (!$stmt) {

 echo "\nPDO::errorInfo():\n";

 print_r($dbh->errorInfo());

}

?>

The above example will output:

PDO::errorInfo():

Array

(

 [0] => HY000

 [1] => 1

 [2] => near "bogus": syntax error

)

See Also

• PDO::errorCode()
• PDOStatement::errorCode()
• PDOStatement::errorInfo()

PDO::exec

PDO::exec -- Execute an SQL statement and return the number of affected rows

Description

int PDO::exec (string $statement)

PDO::exec() executes an SQL statement in a single function call, returning the number of
rows affected by the statement.

PDO::exec() does not return results from a SELECT statement. For a SELECT statement
that you only need to issue once during your program, consider issuing PDO::query(). For
a statement that you need to issue multiple times, prepare a PDOStatement object with
PDO::prepare() and issue the statement with PDOStatement::execute().

Parameters

statement

The SQL statement to prepare and execute.

Return Values

PDO::exec() returns the number of rows that were modified or deleted by the SQL
statement you issued. If no rows were affected, PDO::exec() returns 0.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

The following example incorrectly relies on the return value of PDO::exec(), wherein a
statement that affected 0 rows results in a call to die():
<?php

$db->exec() or die($db->errorInfo());

?>

Examples

Example #23 - Issuing a DELETE statement

Count the number of rows deleted by a DELETE statement with no WHERE clause.

<?php

$dbh = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

/* Delete all rows from the FRUIT table */

$count = $dbh->exec("DELETE FROM fruit WHERE colour = 'red'");

/* Return number of rows that were deleted */

print("Deleted $count rows.\n");

?>

The above example will output:

Deleted 1 rows.

See Also

• PDO::prepare()
• PDO::query()
• PDOStatement::execute()

PDO::getAttribute

PDO::getAttribute -- Retrieve a database connection attribute

Description

mixed PDO::getAttribute (int $attribute)

This function returns the value of a database connection attribute. To retrieve
PDOStatement attributes, refer to PDOStatement::getAttribute().

Note that some database/driver combinations may not support all of the database
connection attributes.

Parameters

attribute

One of the PDO::ATTR_* constants. The constants that apply to database connections
are as follows:

• PDO::ATTR_AUTOCOMMIT
• PDO::ATTR_CASE
• PDO::ATTR_CLIENT_VERSION
• PDO::ATTR_CONNECTION_STATUS
• PDO::ATTR_DRIVER_NAME
• PDO::ATTR_ERRMODE
• PDO::ATTR_ORACLE_NULLS
• PDO::ATTR_PERSISTENT
• PDO::ATTR_PREFETCH
• PDO::ATTR_SERVER_INFO
• PDO::ATTR_SERVER_VERSION
• PDO::ATTR_TIMEOUT

Return Values

A successful call returns the value of the requested PDO attribute. An unsuccessful call
returns null.

Examples

Example #24 - Retrieving database connection attributes

<?php

$conn = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

$attributes = array(

 "AUTOCOMMIT", "ERRMODE", "CASE", "CLIENT_VERSION", "CONNECTION_STATUS",

 "ORACLE_NULLS", "PERSISTENT", "PREFETCH", "SERVER_INFO",
"SERVER_VERSION",

 "TIMEOUT"

);

foreach ($attributes as $val) {

 echo "PDO::ATTR_$val: ";

 echo $conn->getAttribute(constant("PDO::ATTR_$val")) . "\n";

}

?>

See Also

• PDO::setAttribute()
• PDOStatement::getAttribute()
• PDOStatement::setAttribute()

PDO::getAvailableDrivers

PDO::getAvailableDrivers -- Return an array of available PDO drivers

Description

array PDO::getAvailableDrivers (void)

This function returns all currently available PDO drivers which can be used in DSN
parameter of PDO::__construct(). This is a static method.

Return Values

PDO::getAvailableDrivers() returns an array of PDO driver names. If no drivers are
available, it returns an empty array.

Examples

Example #25 - A PDO::getAvailableDrivers() example

<?php

print_r(PDO::getAvailableDrivers());

?>

The above example will output something similar to:

Array

(

 [0] => mysql

 [1] => sqlite

)

PDO::lastInsertId

PDO::lastInsertId -- Returns the ID of the last inserted row or sequence value

Description

string PDO::lastInsertId ([string $name])

Returns the ID of the last inserted row, or the last value from a sequence object,
depending on the underlying driver. For example, PDO_PGSQL() requires you to specify
the name of a sequence object for the name parameter.

Note

This method may not return a meaningful or consistent result across different PDO
drivers, because the underlying database may not even support the notion of
auto-increment fields or sequences.

Parameters

name

Name of the sequence object from which the ID should be returned.

Return Values

If a sequence name was not specified for the name parameter, PDO::lastInsertId() returns
a string representing the row ID of the last row that was inserted into the database.

If a sequence name was specified for the name parameter, PDO::lastInsertId() returns a
string representing the last value retrieved from the specified sequence object.

If the PDO driver does not support this capability, PDO::lastInsertId() triggers an IM001
SQLSTATE.

PDO::prepare

PDO::prepare -- Prepares a statement for execution and returns a statement object

Description

PDOStatement PDO::prepare (string $statement [, array $driver_options])

Prepares an SQL statement to be executed by the PDOStatement::execute() method. The
SQL statement can contain zero or more named (:name) or question mark (?) parameter
markers for which real values will be substituted when the statement is executed. You
cannot use both named and question mark parameter markers within the same SQL
statement; pick one or the other parameter style.

You must include a unique parameter marker for each value you wish to pass in to the
statement when you call PDOStatement::execute(). You cannot use a named parameter
marker of the same name twice in a prepared statement. You cannot bind multiple values
to a single named parameter in, for example, the IN() clause of an SQL statement.

Calling PDO::prepare() and PDOStatement::execute() for statements that will be issued
multiple times with different parameter values optimizes the performance of your
application by allowing the driver to negotiate client and/or server side caching of the query
plan and meta information, and helps to prevent SQL injection attacks by eliminating the
need to manually quote the parameters.

PDO will emulate prepared statements/bound parameters for drivers that do not natively
support them, and can also rewrite named or question mark style parameter markers to
something more appropriate, if the driver supports one style but not the other.

Parameters

statement

This must be a valid SQL statement for the target database server.

driver_options

This array holds one or more key=>value pairs to set attribute values for the
PDOStatement object that this method returns. You would most commonly use this to
set the PDO::ATTR_CURSOR value to PDO::CURSOR_SCROLL to request a
scrollable cursor. Some drivers have driver specific options that may be set at
prepare-time.

Return Values

If the database server successfully prepares the statement, PDO::prepare() returns a
PDOStatement object. If the database server cannot successfully prepare the statement,
PDO::prepare() returns FALSE.

Examples

Example #26 - Prepare an SQL statement with named parameters

<?php

/* Execute a prepared statement by passing an array of values */

$sql = 'SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour';

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_FWDONLY));

$sth->execute(array(':calories' => 150, ':colour' => 'red'));

$red = $sth->fetchAll();

$sth->execute(array('calories' => 175, 'colour' => 'yellow'));

$yellow = $sth->fetchAll();

?>

Example #27 - Prepare an SQL statement with question mark parameters

<?php

/* Execute a prepared statement by passing an array of values */

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->execute(array(150, 'red'));

$red = $sth->fetchAll();

$sth->execute(array(175, 'yellow'));

$yellow = $sth->fetchAll();

?>

See Also

• PDO::exec()
• PDO::query()
• PDOStatement::execute()

PDO::query

PDO::query -- Executes an SQL statement, returning a result set as a PDOStatement
object

Description

PDOStatement PDO::query (string $statement)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_COLUMN, int $colno)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_CLASS, string $
classname, array $ctorargs)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_INTO, object $object)

PDO::query() executes an SQL statement in a single function call, returning the result set
(if any) returned by the statement as a PDOStatement object.

For a query that you need to issue multiple times, you will realize better performance if you
prepare a PDOStatement object using PDO::prepare() and issue the statement with
multiple calls to PDOStatement::execute().

If you do not fetch all of the data in a result set before issuing your next call to
PDO::query(), your call may fail. Call PDOStatement::closeCursor() to release the
database resources associated with the PDOStatement object before issuing your next
call to PDO::query().

Note

Although this function is only documented as having a single parameter, you may pass
additional arguments to this function. They will be treated as though you called
PDOStatement::setFetchMode() on the resultant statement object.

Parameters

statement

The SQL statement to prepare and execute.

Return Values

PDO::query() returns a PDOStatement object.

Examples

Example #28 - Demonstrate PDO::query

A nice feature of PDO::query() is that it enables you to iterate over the rowset returned
by a successfully executed SELECT statement.

<?php

function getFruit($conn) {

 $sql = 'SELECT name, colour, calories FROM fruit ORDER BY name';

 foreach ($conn->query($sql) as $row) {

 print $row['NAME'] . "\t";

 print $row['COLOUR'] . "\t";

 print $row['CALORIES'] . "\n";

 }

}

?>

The above example will output:

apple red 150

banana yellow 250

kiwi brown 75

lemon yellow 25

orange orange 300

pear green 150

watermelon pink 90

See Also

• PDO::exec()
• PDO::prepare()
• PDOStatement::execute()

PDO::quote

PDO::quote -- Quotes a string for use in a query.

Description

string PDO::quote (string $string [, int $parameter_type])

PDO::quote() places quotes around the input string (if required) and escapes special
characters within the input string, using a quoting style appropriate to the underlying driver.

If you are using this function to build SQL statements, you are strongly recommended to
use PDO::prepare() to prepare SQL statements with bound parameters instead of using
PDO::quote() to interpolate user input into a SQL statement. Prepared statements with
bound parameters are not only more portable, more convenient, immune to SQL injection,
but are often much faster to execute than interpolated queries, as both the server and
client side can cache a compiled form of the query.

Not all PDO drivers implement this method (notably PDO_ODBC). Consider using
prepared statements instead.

Parameters

string

The string to be quoted.

parameter_type

Provides a data type hint for drivers that have alternate quoting styles. The default
value is PDO::PARAM_STR.

Return Values

Returns a quoted string that is theoretically safe to pass into an SQL statement. Returns
FALSE if the driver does not support quoting in this way.

Examples

Example #29 - Quoting a normal string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Simple string */

$string = 'Nice';

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Nice

Quoted string: 'Nice'

Example #30 - Quoting a dangerous string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Dangerous string */

$string = 'Naughty \' string';

print "Unquoted string: $string\n";

print "Quoted string:" . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Naughty ' string

Quoted string: 'Naughty '' string'

Example #31 - Quoting a complex string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Complex string */

$string = "Co'mpl''ex \"st'\"ring";

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Co'mpl''ex "st'"ring

Quoted string: 'Co''mpl''''ex "st''"ring'

See Also

• PDO::prepare()
• PDOStatement::execute()

PDO::rollBack

PDO::rollBack -- Rolls back a transaction

Description

bool PDO::rollBack (void)

Rolls back the current transaction, as initiated by PDO::beginTransaction(). It is an error to
call this method if no transaction is active.

If the database was set to autocommit mode, this function will restore autocommit mode
after it has rolled back the transaction.

Some databases, including MySQL, automatically issue an implicit COMMIT when a
database definition language (DDL) statement such as DROP TABLE or CREATE TABLE
is issued within a transaction. The implicit COMMIT will prevent you from rolling back any
other changes within the transaction boundary.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #32 - Roll back a transaction

The following example begins a transaction and issues two statements that modify the
database before rolling back the changes. On MySQL, however, the DROP TABLE
statement automatically commits the transaction so that none of the changes in the
transaction are rolled back.

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = 'hamburger'");

/* Recognize mistake and roll back changes */

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::beginTransaction()
• PDO::commit()

PDO::setAttribute

PDO::setAttribute -- Set an attribute

Description

bool PDO::setAttribute (int $attribute, mixed $value)

Sets an attribute on the database handle. Some of the available generic attributes are
listed below; some drivers may make use of additional driver specific attributes.

• PDO::ATTR_CASE: Force column names to a specific case.

• PDO::CASE_LOWER: Force column names to lower case.

• PDO::CASE_NATURAL: Leave column names as returned by the database driver.

• PDO::CASE_UPPER: Force column names to upper case.

• PDO::ATTR_ERRMODE: Error reporting.

• PDO::ERRMODE_SILENT: Just set error codes.

• PDO::ERRMODE_WARNING: Raise E_WARNING.

• PDO::ERRMODE_EXCEPTION: Throw exceptions.

• PDO::ATTR_ORACLE_NULLS (available with all drivers, not just Oracle): Conversion
of NULL and empty strings.

• PDO::NULL_NATURAL: No conversion.

• PDO::NULL_EMPTY_STRING: Empty string is converted to NULL.

• PDO::NULL_TO_STRING: NULL is converted to an empty string.

• PDO::ATTR_STRINGIFY_FETCHES: Convert numeric values to strings when
fetching. Requires bool.

• PDO::ATTR_STATEMENT_CLASS: Set user-supplied statement class derived from
PDOStatement. Cannot be used with persistent PDO instances. Requires array(string
classname, array(mixed constructor_args)).

• PDO::ATTR_AUTOCOMMIT (available in OCI, Firebird and MySQL): Whether to
autocommit every single statement.

• PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (available in MySQL): Use buffered
queries.

Return Values

Returns TRUE on success or FALSE on failure.

The PDOStatement class

Introduction

Represents a prepared statement and, after the statement is executed, an associated
result set.

Class synopsis

PDOStatement

PDOStatement implements Traversable {

bool PDOStatement::bindColumn (mixed $column, mixed &$param [, int $type [, int
$maxlen [, mixed $driverdata]]])

bool PDOStatement::bindParam (mixed $parameter, mixed &$variable [, int $
data_type [, int $length [, mixed $driver_options]]])

bool PDOStatement::bindValue (mixed $parameter, mixed $value [, int $data_type
])

bool PDOStatement::closeCursor (void)

int PDOStatement::columnCount (void)

string PDOStatement::errorCode (void)

array PDOStatement::errorInfo (void)

bool PDOStatement::execute ([array $input_parameters])

mixed PDOStatement::fetch ([int $fetch_style [, int $cursor_orientation [, int $
cursor_offset]]])

array PDOStatement::fetchAll ([int $fetch_style [, int $column_index [, array $
ctor_args]]])

string PDOStatement::fetchColumn ([int $column_number])

mixed PDOStatement::fetchObject ([string $class_name [, array $ctor_args]])

mixed PDOStatement::getAttribute (int $attribute)

array PDOStatement::getColumnMeta (int $column)

bool PDOStatement::nextRowset (void)

int PDOStatement::rowCount (void)

bool PDOStatement::setAttribute (int $attribute, mixed $value)

bool PDOStatement::setFetchMode (int $mode)
}

PDOStatement->bindColumn

PDOStatement->bindColumn -- Bind a column to a PHP variable

Description

bool PDOStatement::bindColumn (mixed $column, mixed &$param [, int $type [, int $
maxlen [, mixed $driverdata]]])

PDOStatement::bindColumn() arranges to have a particular variable bound to a given
column in the result-set from a query. Each call to PDOStatement::fetch() or
PDOStatement::fetchAll() will update all the variables that are bound to columns.

Note

Since information about the columns is not always available to PDO until the statement
is executed, portable applications should call this function after
PDOStatement::execute().

Parameters

column

Number of the column (1-indexed) or name of the column in the result set. If using the
column name, be aware that the name should match the case of the column, as
returned by the driver.

param

Name of the PHP variable to which the column will be bound.

type

Data type of the parameter, specified by the PDO::PARAM_* constants.

maxlen

A hint for pre-allocation.

driverdata

Optional parameter(s) for the driver.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #33 - Binding result set output to PHP variables

Binding columns in the result set to PHP variables is an effective way to make the data
contained in each row immediately available to your application. The following example
demonstrates how PDO allows you to bind and retrieve columns with a variety of
options and with intelligent defaults.

<?php

function readData($dbh) {

 $sql = 'SELECT name, colour, calories FROM fruit';

 try {

 $stmt = $dbh->prepare($sql);

 $stmt->execute();

 /* Bind by column number */

 $stmt->bindColumn(1, $name);

 $stmt->bindColumn(2, $colour);

 /* Bind by column name */

 $stmt->bindColumn('calories', $cals);

 while ($row = $stmt->fetch(PDO::FETCH_BOUND)) {

 $data = $name . "\t" . $colour . "\t" . $cals . "\n";

 print $data;

 }

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

readData($dbh);

?>

The above example will output:

apple red 150

banana yellow 175

kiwi green 75

orange orange 150

mango red 200

strawberry red 25

See Also

• PDOStatement::execute()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()

PDOStatement->bindParam

PDOStatement->bindParam -- Binds a parameter to the specified variable name

Description

bool PDOStatement::bindParam (mixed $parameter, mixed &$variable [, int $
data_type [, int $length [, mixed $driver_options]]])

Binds a PHP variable to a corresponding named or question mark placeholder in the SQL
statement that was use to prepare the statement. Unlike PDOStatement::bindValue(), the
variable is bound as a reference and will only be evaluated at the time that
PDOStatement::execute() is called.

Most parameters are input parameters, that is, parameters that are used in a read-only
fashion to build up the query. Some drivers support the invocation of stored procedures
that return data as output parameters, and some also as input/output parameters that both
send in data and are updated to receive it.

Parameters

parameter

Parameter identifier. For a prepared statement using named placeholders, this will be
a parameter name of the form:name. For a prepared statement using question mark
placeholders, this will be the 1-indexed position of the parameter.

variable

Name of the PHP variable to bind to the SQL statement parameter.

data_type

Explicit data type for the parameter using the PDO::PARAM_* constants. Defaults to
PHP native type. To return an INOUT parameter from a stored procedure, use the
bitwise OR operator to set the PDO::PARAM_INPUT_OUTPUT bits for the data_type
parameter.

length

Length of the data type. To indicate that a parameter is an OUT parameter from a
stored procedure, you must explicitly set the length.

driver_options

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #34 - Execute a prepared statement with named placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindParam(':calories', $calories, PDO::PARAM_INT);

$sth->bindParam(':colour', $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #35 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #36 - Call a stored procedure with an INOUT parameter

<?php

/* Call a stored procedure with an INOUT parameter */

$colour = 'red';

$sth = $dbh->prepare('CALL puree_fruit(?)');

$sth->bindParam(1, $colour, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 12);

$sth->execute();

print("After pureeing fruit, the colour is: $colour");

?>

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::bindValue()

PDOStatement->bindValue

PDOStatement->bindValue -- Binds a value to a parameter

Description

bool PDOStatement::bindValue (mixed $parameter, mixed $value [, int $data_type])

Binds a value to a corresponding named or question mark placeholder in the SQL
statement that was use to prepare the statement.

Parameters

parameter

Parameter identifier. For a prepared statement using named placeholders, this will be
a parameter name of the form:name. For a prepared statement using question mark
placeholders, this will be the 1-indexed position of the parameter.

value

The value to bind to the parameter.

data_type

Explicit data type for the parameter using the PDO::PARAM_* constants. Defaults to
PHP native type.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #37 - Execute a prepared statement with named placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindValue(':calories', $calories, PDO::PARAM_INT);

$sth->bindValue(':colour', $colour, PDO::PARAM_STR);

$sth->execute();

?>

Example #38 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindValue(1, $calories, PDO::PARAM_INT);

$sth->bindValue(2, $colour, PDO::PARAM_STR);

$sth->execute();

?>

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::bindParam()

PDOStatement->closeCursor

PDOStatement->closeCursor -- Closes the cursor, enabling the statement to be executed
again.

Description

bool PDOStatement::closeCursor (void)

PDOStatement::closeCursor() frees up the connection to the server so that other SQL
statements may be issued, but leaves the statement in a state that enables it to be
executed again.

This method is useful for database drivers that do not support executing a PDOStatement
object when a previously executed PDOStatement object still has unfetched rows. If your
database driver suffers from this limitation, the problem may manifest itself in an
out-of-sequence error.

PDOStatement::closeCursor() is implemented either as an optional driver specific method
(allowing for maximum efficiency), or as the generic PDO fallback if no driver specific
function is installed. The PDO generic fallback is semantically the same as writing the
following code in your PHP script:
<?php

do {

 while ($stmt->fetch())

 ;

 if (!$stmt->nextRowset())

 break;

} while (true);

?>

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #39 - A PDOStatement::closeCursor() example

In the following example, the $stmt PDOStatement object returns multiple rows but the
application fetches only the first row, leaving the PDOStatement object in a state of
having unfetched rows. To ensure that the application will work with all database
drivers, the author inserts a call to PDOStatement::closeCursor() on $stmt before
executing the $otherStmt PDOStatement object.

<?php

/* Create a PDOStatement object */

$stmt = $dbh->prepare('SELECT foo FROM bar');

/* Create a second PDOStatement object */

$otherStmt = $dbh->prepare('SELECT foobaz FROM foobar');

/* Execute the first statement */

$stmt->execute();

/* Fetch only the first row from the results */

$stmt->fetch();

/* The following call to closeCursor() may be required by some drivers */

$stmt->closeCursor();

/* Now we can execute the second statement */

$otherStmt->execute();

?>

See Also

• PDOStatement::execute()

PDOStatement->columnCount

PDOStatement->columnCount -- Returns the number of columns in the result set

Description

int PDOStatement::columnCount (void)

Use PDOStatement::columnCount() to return the number of columns in the result set
represented by the PDOStatement object.

If the PDOStatement object was returned from PDO::query(), the column count is
immediately available.

If the PDOStatement object was returned from PDO::prepare(), an accurate column count
will not be available until you invoke PDOStatement::execute().

Return Values

Returns the number of columns in the result set represented by the PDOStatement object.
If there is no result set, PDOStatement::columnCount() returns 0.

Examples

Example #40 - Counting columns

This example demonstrates how PDOStatement::columnCount() operates with and
without a result set.

<?php

$dbh = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

/* Count the number of columns in the (non-existent) result set */

$colcount = $sth->columnCount();

print("Before execute(), result set has $colcount columns (should be 0)\n");

$sth->execute();

/* Count the number of columns in the result set */

$colcount = $sth->columnCount();

print("After execute(), result set has $colcount columns (should be 2)\n");

?>

The above example will output:

Before execute(), result set has 0 columns (should be 0)

After execute(), result set has 2 columns (should be 2)

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::rowCount()

PDOStatement->errorCode

PDOStatement->errorCode -- Fetch the SQLSTATE associated with the last operation on
the statement handle

Description

string PDOStatement::errorCode (void)

Return Values

Identical to PDO::errorCode(), except that PDOStatement::errorCode() only retrieves error
codes for operations performed with PDOStatement objects.

Examples

Example #41 - Retrieving a SQLSTATE code

<?php

/* Provoke an error -- the BONES table does not exist */

$err = $dbh->prepare('SELECT skull FROM bones');

$err->execute();

echo "\nPDOStatement::errorCode(): ";

print $err->errorCode();

?>

The above example will output:

PDOStatement::errorCode(): 42S02

See Also

• PDO::errorCode()
• PDO::errorInfo()
• PDOStatement::errorInfo()

PDOStatement->errorInfo

PDOStatement->errorInfo -- Fetch extended error information associated with the last
operation on the statement handle

Description

array PDOStatement::errorInfo (void)

Return Values

PDOStatement::errorInfo() returns an array of error information about the last operation
performed by this statement handle. The array consists of the following fields:

Element Information

0 SQLSTATE error code (a five-character
alphanumeric identifier defined in the ANSI
SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

Examples

Example #42 - Displaying errorInfo() fields for a PDO_ODBC connection to a DB2
database

<?php

/* Provoke an error -- the BONES table does not exist */

$sth = $dbh->prepare('SELECT skull FROM bones');

$sth->execute();

echo "\nPDOStatement::errorInfo():\n";

$arr = $sth->errorInfo();

print_r($arr);

?>

The above example will output:

PDOStatement::errorInfo():

Array

(

 [0] => 42S02

 [1] => -204

 [2] => [IBM][CLI Driver][DB2/LINUX] SQL0204N "DANIELS.BONES" is an

undefined name. SQLSTATE=42704

)

See Also

• PDO::errorCode()
• PDO::errorInfo()
• PDOStatement::errorCode()

PDOStatement->execute

PDOStatement->execute -- Executes a prepared statement

Description

bool PDOStatement::execute ([array $input_parameters])

Execute the prepared statement. If the prepared statement included parameter markers,
you must either:

• call PDOStatement::bindParam() to bind PHP variables to the parameter markers:
bound variables pass their value as input and receive the output value, if any, of their
associated parameter markers

• or pass an array of input-only parameter values

Parameters

input_parameters

An array of values with as many elements as there are bound parameters in the SQL
statement being executed. You cannot bind multiple values to a single parameter; for
example, you cannot bind two values to a single named parameter in an IN() clause.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #43 - Execute a prepared statement with bound variables

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindParam(':calories', $calories, PDO::PARAM_INT);

$sth->bindParam(':colour', $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #44 - Execute a prepared statement with an array of insert values
(named parameters)

<?php

/* Execute a prepared statement by passing an array of insert values */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->execute(array(':calories' => $calories, ':colour' => $colour));

?>

Example #45 - Execute a prepared statement with an array of insert values
(placeholders)

<?php

/* Execute a prepared statement by passing an array of insert values */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->execute(array($calories, $colour));

?>

Example #46 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

See Also

• PDO::prepare()
• PDOStatement::bindParam()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()

PDOStatement->fetch

PDOStatement->fetch -- Fetches the next row from a result set

Description

mixed PDOStatement::fetch ([int $fetch_style [, int $cursor_orientation [, int $
cursor_offset]]])

Fetches a row from a result set associated with a PDOStatement object. The fetch_style
parameter determines how PDO returns the row.

Parameters

fetch_style

Controls how the next row will be returned to the caller. This value must be one of the
PDO::FETCH_* constants, defaulting to PDO::FETCH_BOTH.

• PDO::FETCH_ASSOC: returns an array indexed by column name as returned in
your result set

• PDO::FETCH_BOTH (default): returns an array indexed by both column name and
0-indexed column number as returned in your result set

• PDO::FETCH_BOUND: returns TRUE and assigns the values of the columns in
your result set to the PHP variables to which they were bound with the
PDOStatement::bindColumn() method

• PDO::FETCH_CLASS: returns a new instance of the requested class, mapping the
columns of the result set to named properties in the class. If fetch_style includes
PDO::FETCH_CLASSTYPE (e.g. PDO::FETCH_CLASS |
PDO::FETCH_CLASSTYPE) then the name of the class is determined from a
value of the first column.

• PDO::FETCH_INTO: updates an existing instance of the requested class, mapping
the columns of the result set to named properties in the class

• PDO::FETCH_LAZY: combines PDO::FETCH_BOTH and PDO::FETCH_OBJ,
creating the object variable names as they are accessed

• PDO::FETCH_NUM: returns an array indexed by column number as returned in
your result set, starting at column 0

• PDO::FETCH_OBJ: returns an anonymous object with property names that
correspond to the column names returned in your result set

cursor_orientation

For a PDOStatement object representing a scrollable cursor, this value determines
which row will be returned to the caller. This value must be one of the
PDO::FETCH_ORI_* constants, defaulting to PDO::FETCH_ORI_NEXT. To request a

scrollable cursor for your PDOStatement object, you must set the
PDO::ATTR_CURSOR attribute to PDO::CURSOR_SCROLL when you prepare the
SQL statement with PDO::prepare().

offset

For a PDOStatement object representing a scrollable cursor for which the
cursor_orientation parameter is set to PDO::FETCH_ORI_ABS, this value specifies the
absolute number of the row in the result set that shall be fetched. For a PDOStatement
object representing a scrollable cursor for which the cursor_orientation parameter is
set to PDO::FETCH_ORI_REL, this value specifies the row to fetch relative to the
cursor position before PDOStatement::fetch() was called.

Return Values

The return value of this function on success depends on the fetch type. In all cases,
FALSE is returned on failure.

Examples

Example #47 - Fetching rows using different fetch styles

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Exercise PDOStatement::fetch styles */

print("PDO::FETCH_ASSOC: ");

print("Return next row as an array indexed by column name\n");

$result = $sth->fetch(PDO::FETCH_ASSOC);

print_r($result);

print("\n");

print("PDO::FETCH_BOTH: ");

print("Return next row as an array indexed by both column name and
number\n");

$result = $sth->fetch(PDO::FETCH_BOTH);

print_r($result);

print("\n");

print("PDO::FETCH_LAZY: ");

print("Return next row as an anonymous object with column names as
properties\n");

$result = $sth->fetch(PDO::FETCH_LAZY);

print_r($result);

print("\n");

print("PDO::FETCH_OBJ: ");

print("Return next row as an anonymous object with column names as
properties\n");

$result = $sth->fetch(PDO::FETCH_OBJ);

print $result->NAME;

print("\n");

?>

The above example will output:

PDO::FETCH_ASSOC: Return next row as an array indexed by column name

Array

(

 [NAME] => apple

 [COLOUR] => red

)

PDO::FETCH_BOTH: Return next row as an array indexed by both column name and
number

Array

(

 [NAME] => banana

 [0] => banana

 [COLOUR] => yellow

 [1] => yellow

)

PDO::FETCH_LAZY: Return next row as an anonymous object with column names as
properties

PDORow Object

(

 [NAME] => orange

 [COLOUR] => orange

)

PDO::FETCH_OBJ: Return next row as an anonymous object with column names as
properties

kiwi

Example #48 - Fetching rows with a scrollable cursor

<?php

function readDataForwards($dbh) {

 $sql = 'SELECT hand, won, bet FROM mynumbers ORDER BY BET';

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR =>
PDO::CURSOR_SCROLL));

 $stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT)) {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

 }

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

function readDataBackwards($dbh) {

 $sql = 'SELECT hand, won, bet FROM mynumbers ORDER BY bet';

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR =>
PDO::CURSOR_SCROLL));

 $stmt->execute();

 $row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_LAST);

 do {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

 } while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_PRIOR));

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

print "Reading forwards:\n";

readDataForwards($conn);

print "Reading backwards:\n";

readDataBackwards($conn);

?>

The above example will output:

Reading forwards:

21 10 5

16 0 5

19 20 10

Reading backwards:

19 20 10

16 0 5

21 10 5

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()
• PDOStatement::fetchObject()
• PDOStatement::setFetchMode()

PDOStatement->fetchAll

PDOStatement->fetchAll -- Returns an array containing all of the result set rows

Description

array PDOStatement::fetchAll ([int $fetch_style [, int $column_index [, array $
ctor_args]]])

Parameters

fetch_style

Controls the contents of the returned array as documented in PDOStatement::fetch().
Defaults to PDO::FETCH_BOTH. To return an array consisting of all values of a single
column from the result set, specify PDO::FETCH_COLUMN. You can specify which
column you want with the column-index parameter. To fetch only the unique values of
a single column from the result set, bitwise-OR PDO::FETCH_COLUMN with
PDO::FETCH_UNIQUE. To return an associative array grouped by the values of a
specified column, bitwise-OR PDO::FETCH_COLUMN with PDO::FETCH_GROUP.

column_index

Returns the indicated 0-indexed column when the value of fetch_style is
PDO::FETCH_COLUMN. Defaults to 0.

ctor_args

Arguments of custom class constructor.

Return Values

PDOStatement::fetchAll() returns an array containing all of the remaining rows in the result
set. The array represents each row as either an array of column values or an object with
properties corresponding to each column name.

Using this method to fetch large result sets will result in a heavy demand on system and
possibly network resources. Rather than retrieving all of the data and manipulating it in
PHP, consider using the database server to manipulate the result sets. For example, use
the WHERE and SORT BY clauses in SQL to restrict results before retrieving and
processing them with PHP.

Examples

Example #49 - Fetch all remaining rows in a result set

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the remaining rows in the result set */

print("Fetch all of the remaining rows in the result set:\n");

$result = $sth->fetchAll();

print_r($result);

?>

The above example will output:

Fetch all of the remaining rows in the result set:

Array

(

 [0] => Array

 (

 [NAME] => pear

 [0] => pear

 [COLOUR] => green

 [1] => green

)

 [1] => Array

 (

 [NAME] => watermelon

 [0] => watermelon

 [COLOUR] => pink

 [1] => pink

)

)

Example #50 - Fetching all values of a single column from a result set

The following example demonstrates how to return all of the values of a single column
from a result set, even though the SQL statement itself may return multiple columns
per row.

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the values of the first column */

$result = $sth->fetchAll(PDO::FETCH_COLUMN, 0);

var_dump($result);

?>

The above example will output:

Array(3)

(

 [0] =>

 string(5) => apple

 [1] =>

 string(4) => pear

 [2] =>

 string(10) => watermelon

)

Example #51 - Grouping all values by a single column

The following example demonstrates how to return an associative array grouped by
the values of the specified column in the result set. The array contains three keys:
values apple and pear are returned as arrays that contain two different colours, while
watermelon is returned as an array that contains only one colour.

<?php

$insert = $dbh->prepare("INSERT INTO fruit(name, colour) VALUES (?, ?)");

$insert->execute('apple', 'green');

$insert->execute('pear', 'yellow');

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Group values by the first column */

var_dump($sth->fetchAll(PDO::FETCH_COLUMN|PDO::FETCH_GROUP));

?>

The above example will output:

array(3) {

 ["apple"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(3) "red"

 }

 ["pear"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(6) "yellow"

 }

 ["watermelon"]=>

 array(1) {

 [0]=>

 string(5) "green"

 }

}

See Also

• PDO::query()
• PDOStatement::fetch()
• PDOStatement::fetchColumn()
• PDO::prepare()

• PDOStatement::setFetchMode()

PDOStatement->fetchColumn

PDOStatement->fetchColumn -- Returns a single column from the next row of a result set

Description

string PDOStatement::fetchColumn ([int $column_number])

Returns a single column from the next row of a result set or FALSE if there are no more
rows.

Parameters

column_number

0-indexed number of the column you wish to retrieve from the row. If no value is
supplied, PDOStatement::fetchColumn() fetches the first column.

Return Values

PDOStatement::fetchColumn() returns a single column in the next row of a result set.

Warning

There is no way to return another column from the same row if you use
PDOStatement::fetchColumn() to retrieve data.

Examples

Example #52 - Return first column of the next row

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch the first column from the next row in the result set */

print("Fetch the first column from the next row in the result set:\n");

$result = $sth->fetchColumn();

print("name = $result\n");

print("Fetch the second column from the next row in the result set:\n");

$result = $sth->fetchColumn(1);

print("colour = $result\n");

?>

The above example will output:

Fetch the first column from the next row in the result set:

name = lemon

Fetch the second column from the next row in the result set:

colour = red

See Also

• PDO::query()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDO::prepare()
• PDOStatement::setFetchMode()

PDOStatement->fetchObject

PDOStatement->fetchObject -- Fetches the next row and returns it as an object.

Description

mixed PDOStatement::fetchObject ([string $class_name [, array $ctor_args]])

Fetches the next row and returns it as an object. This function is an alternative to
PDOStatement::fetch() with PDO::FETCH_CLASS or PDO::FETCH_OBJ style.

Parameters

class_name

Name of the created class, defaults to stdClass.

ctor_args

Elements of this array are passed to the constructor.

Return Values

Returns an instance of the required class with property names that correspond to the
column names or FALSE in case of an error.

See Also

• PDOStatement::fetch()

PDOStatement->getAttribute

PDOStatement->getAttribute -- Retrieve a statement attribute

Description

mixed PDOStatement::getAttribute (int $attribute)

Gets an attribute of the statement. Currently, no generic attributes exist but only driver
specific:

• PDO::ATTR_CURSOR_NAME (Firebird and ODBC specific): Get the name of cursor
for UPDATE ... WHERE CURRENT OF.

Return Values

Returns the attribute value.

See Also

• PDO::getAttribute()
• PDO::setAttribute()
• PDOStatement::setAttribute()

PDOStatement->getColumnMeta

PDOStatement->getColumnMeta -- Returns metadata for a column in a result set

Description

array PDOStatement::getColumnMeta (int $column)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Retrieves the metadata for a 0-indexed column in a result set as an associative array.

Warning

Not all PDO drivers support PDOStatement::getColumnMeta().

Parameters

column

The 0-indexed column in the result set.

Return Values

Returns an associative array containing the following values representing the metadata for
a single column:

Column metadata

Name Value

native_type The PHP native type used to represent the
column value.

driver:decl_type The SQL type used to represent the column
value in the database. If the column in the
result set is the result of a function, this
value is not returned by
PDOStatement::getColumnMeta().

flags Any flags set for this column.

name The name of this column as returned by the
database.

table The name of this column's table as returned
by the database.

len The length of this column. Normally -1 for
types other than floating point decimals.

precision The numeric precision of this column.
Normally 0 for types other than floating point
decimals.

pdo_type The type of this column as represented by
the PDO::PARAM_* constants.

Returns FALSE if the requested column does not exist in the result set, or if no result set
exists.

ChangeLog

Version Description

5.2.3 table field

Examples

Example #53 - Retrieving column metadata

The following example shows the results of retrieving the metadata for a single column
generated by a function (COUNT) in a PDO_SQLITE driver.

<?php

$select = $DB->query('SELECT COUNT(*) FROM fruit');

$meta = $select->getColumnMeta(0);

var_dump($meta);

?>

The above example will output:

array(6) {

 ["native_type"]=>

 string(7) "integer"

 ["flags"]=>

 array(0) {

 }

 ["name"]=>

 string(8) "COUNT(*)"

 ["len"]=>

 int(-1)

 ["precision"]=>

 int(0)

 ["pdo_type"]=>

 int(2)

}

See Also

• PDOStatement::columnCount()
• PDOStatement::rowCount()

PDOStatement->nextRowset

PDOStatement->nextRowset -- Advances to the next rowset in a multi-rowset statement
handle

Description

bool PDOStatement::nextRowset (void)

Some database servers support stored procedures that return more than one rowset (also
known as a result set). PDOStatement::nextRowset() enables you to access the second
and subsequent rowsets associated with a PDOStatement object. Each rowset can have a
different set of columns from the preceding rowset.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #54 - Fetching multiple rowsets returned from a stored procedure

The following example shows how to call a stored procedure, MULTIPLE_ROWSETS,
that returns three rowsets. We use a do / while loop to loop over the
PDOStatement::nextRowset() method, which returns false and terminates the loop
when no more rowsets can be returned.

<?php

$sql = 'CALL multiple_rowsets()';

$stmt = $conn->query($sql);

$i = 1;

do {

 $rowset = $stmt->fetch(PDO::FETCH_NUM);

 if ($rowset) {

 printResultSet($rowset, $i);

 }

 $i++;

} while ($stmt->nextRowset());

function printResultSet(&$rowset, $i) {

 print "Result set $i:\n";

 foreach ($rowset as $row) {

 foreach ($row as $col) {

 print $col . "\t";

 }

 print "\n";

 }

 print "\n";

}

?>

The above example will output:

Result set 1:

apple red

banana yellow

Result set 2:

orange orange 150

banana yellow 175

Result set 3:

lime green

apple red

banana yellow

See Also

• PDOStatement::columnCount()
• PDOStatement::execute()
• PDOStatement::getColumnMeta()
• PDO::query()

PDOStatement->rowCount

PDOStatement->rowCount -- Returns the number of rows affected by the last SQL
statement

Description

int PDOStatement::rowCount (void)

PDOStatement::rowCount() returns the number of rows affected by the last DELETE,
INSERT, or UPDATE statement executed by the corresponding PDOStatement object.

If the last SQL statement executed by the associated PDOStatement was a SELECT
statement, some databases may return the number of rows returned by that statement.
However, this behaviour is not guaranteed for all databases and should not be relied on for
portable applications.

Return Values

Returns the number of rows.

Examples

Example #55 - Return the number of deleted rows

PDOStatement::rowCount() returns the number of rows affected by a DELETE,
INSERT, or UPDATE statement.

<?php

/* Delete all rows from the FRUIT table */

$del = $dbh->prepare('DELETE FROM fruit');

$del->execute();

/* Return number of rows that were deleted */

print("Return number of rows that were deleted:\n");

$count = $del->rowCount();

print("Deleted $count rows.\n");

?>

The above example will output:

Deleted 9 rows.

Example #56 - Counting rows returned by a SELECT statement

For most databases, PDOStatement::rowCount() does not return the number of rows
affected by a SELECT statement. Instead, use PDO::query() to issue a SELECT

COUNT(*) statement with the same predicates as your intended SELECT statement,
then use PDOStatement::fetchColumn() to retrieve the number of rows that will be
returned. Your application can then perform the correct action.

<?php

$sql = "SELECT COUNT(*) FROM fruit WHERE calories > 100";

if ($res = $conn->query($sql)) {

 /* Check the number of rows that match the SELECT statement */

 if ($res->fetchColumn() > 0) {

 /* Issue the real SELECT statement and work with the results */

 $sql = "SELECT name FROM fruit WHERE calories > 100";

 foreach ($conn->query($sql) as $row) {

 print "Name: " . $row['NAME'] . "\n";

 }

 }

 /* No rows matched -- do something else */

 else {

 print "No rows matched the query.";

 }

}

$res = null;

$conn = null;

?>

The above example will output:

apple

banana

orange

pear

See Also

• PDOStatement::columnCount()
• PDOStatement::fetchColumn()
• PDO::query()

PDOStatement->setAttribute

PDOStatement->setAttribute -- Set a statement attribute

Description

bool PDOStatement::setAttribute (int $attribute, mixed $value)

Sets an attribute on the statement. Currently, no generic attributes are set but only driver
specific:

• PDO::ATTR_CURSOR_NAME (Firebird and ODBC specific): Set the name of cursor
for UPDATE ... WHERE CURRENT OF.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• PDO::getAttribute()
• PDO::setAttribute()
• PDOStatement::getAttribute()

PDOStatement->setFetchMode

PDOStatement->setFetchMode -- Set the default fetch mode for this statement

Description

bool PDOStatement::setFetchMode (int $mode)

bool PDOStatement::setFetchMode (int $PDO::FETCH_COLUMN, int $colno)

bool PDOStatement::setFetchMode (int $PDO::FETCH_CLASS, string $classname, array $
ctorargs)

bool PDOStatement::setFetchMode (int $PDO::FETCH_INTO, object $object)

Parameters

mode

The fetch mode must be one of the PDO::FETCH_* constants.

Return Values

Returns 1 on success or FALSE on failure.

Examples

Example #57 - Setting the fetch mode

The following example demonstrates how PDOStatement::setFetchMode() changes
the default fetch mode for a PDOStatement object.

<?php

$sql = 'SELECT name, colour, calories FROM fruit';

try {

 $stmt = $dbh->query($sql);

 $result = $stmt->setFetchMode(PDO::FETCH_NUM);

 while ($row = $stmt->fetch()) {

 print $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 }

}

catch (PDOException $e) {

 print $e->getMessage();

}

?>

The above example will output:

apple red 150

banana yellow 250

orange orange 300

kiwi brown 75

lemon yellow 25

pear green 150

watermelon pink 90

PDO Drivers

The following drivers currently implement the PDO interface:

Driver name Supported databases

PDO_DBLIB FreeTDS / Microsoft SQL Server / Sybase

PDO_FIREBIRD Firebird/Interbase 6

PDO_IBM IBM DB2

PDO_INFORMIX IBM Informix Dynamic Server

PDO_MYSQL MySQL 3.x/4.x/5.x

PDO_OCI Oracle Call Interface

PDO_ODBC ODBC v3 (IBM DB2, unixODBC and win32
ODBC)

PDO_PGSQL PostgreSQL

PDO_SQLITE SQLite 3 and SQLite 2

Microsoft SQL Server and Sybase Functions
(PDO_DBLIB)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_DBLIB is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to Microsoft SQL Server and Sybase databases through the FreeTDS
libary.

On Windows, you should use the PDO_ODBC driver to connect to Microsoft SQL Server
and Sybase databases, as the native Windows DB-LIB is ancient, thread un-safe and no
longer supported by Microsoft.

PDO_DBLIB DSN

PDO_DBLIB DSN -- Connecting to Microsoft SQL Server and Sybase databases

Description

The PDO_DBLIB Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is sybase: if PDO_DBLIB was linked against the FreeTDS libraries,
mssql: if PDO_DBLIB was linked against the Microsoft SQL Server libraries, or dblib:
if linked against any other variety of DB-lib.

host
The hostname on which the database server resides.

dbname
The name of the database.

Examples

Example #58 - PDO_DBLIB DSN examples

The following examples show a PDO_DBLIB DSN for connecting to Microsoft SQL
Server and Sybase databases:
mssql:host=localhost;dbname=testdb

sybase:host=localhost;dbname=testdb

dblib:host=localhost;dbname=testdb

Firebird/Interbase Functions (PDO_FIREBIRD)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_FIREBIRD is a driver that implements the PHP Data Objects (PDO) interface to
enable access from PHP to Firebird and Interbase databases.

PDO_FIREBIRD DSN

PDO_FIREBIRD DSN -- Connecting to Firebird and Interbase databases

Description

The PDO_FIREBIRD Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is firebird:.

DataSource
The hostname on which the database server resides.

Port
The port number for the server on which the database is running.

Database
The name of the database.

User
The name of the user that will connect to the database.

Password
The password for the user.

Examples

Example #59 - PDO_FIREBIRD DSN examples

The following example shows a PDO_FIREBIRD DSN for connecting to Firebird and
Interbase databases:
firebird:User=john;Password=mypass;Database=DATABASE.GDE;DataSource=localhos
t;Port=3050

IBM Functions (PDO_IBM)

Introduction

PDO_IBM is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to IBM databases.

Installation

To build the PDO_IBM extension, the DB2 Client v9.1 or later must be installed on the
same system as PHP. The DB2 Client can be downloaded from the IBM » Application
Development Site.

Note

Note

The DB2 Client v9.1 or later supports direct access to DB2 for Linux, UNIX, and
Windows v8 and v9.1 servers.

The DB2 Client v9.1 also supports access to DB2 UDB for i5 and DB2 UDB for z/OS
servers using the separately purchased » DB2 Connect product.

PDO_IBM is a » PECL extension, so follow the instructions in Installation of PECL
extensions to install the PDO_IBM extension. Issue the configure command to point to the
location of your DB2 Client header files and libraries as follows:
bash$./configure --with-pdo-ibm=/path/to/sqllib[,shared]
The configure command defaults to the value of the DB2DIR environment variable.

http://www.ibm.com/software/data/db2/ad
http://www.ibm.com/software/data/db2/ad
http://www.ibm.com/software/data/db2/db2connect
http://pecl.php.net/

PDO_IBM DSN

PDO_IBM DSN -- Connecting to IBM databases

Description

The PDO_IBM Data Source Name (DSN) is based on the IBM CLI DSN. The major
components of the PDO_IBM DSN are:
DSN prefix

The DSN prefix is ibm:.

DSN
The DSN can be any of the following:

• a) Data source setup using db2cli.ini or odbc.ini

• b) Catalogued database name i.e. database alias in the DB2 client catalog

• c) Complete connection string in the following format: DRIVER={IBM DB2 ODBC
DRIVER};DATABASE= database;HOSTNAME= hostname;PORT= port
;PROTOCOL=TCPIP;UID= username;PWD= password; where the parameters represent
the following values:
database

The name of the database.

hostname

The hostname or IP address of the database server.

port

The TCP/IP port on which the database is listening for requests.

username

The username with which you are connecting to the database.

password

The password with which you are connecting to the database.

Examples

Example #60 - PDO_IBM DSN example using db2cli.ini

The following example shows a PDO_IBM DSN for connecting to an DB2 database
cataloged as DB2_9 in db2cli.ini:
$db = new PDO("ibm:DSN=DB2_9", "", "");

[DB2_9]

Database=testdb

Protocol=tcpip

Hostname=11.22.33.444

Servicename=56789

Example #61 - PDO_IBM DSN example using a connection string

The following example shows a PDO_IBM DSN for connecting to an DB2 database
named testdb using the DB2 CLI connection string syntax.
$db = new PDO("ibm:DRIVER={IBM DB2 ODBC DRIVER};DATABASE=testdb;" .

 "HOSTNAME=11.22.33.444;PORT=56789;PROTOCOL=TCPIP;", "testuser", "tespass");

Informix Functions (PDO_INFORMIX)

Introduction

PDO_INFORMIX is a driver that implements the PHP Data Objects (PDO) interface to
enable access from PHP to Informix databases.

Installation

To build the PDO_INFORMIX extension, the Informix Client SDK 2.81 UC1 or higher must
be installed on the same system as PHP. The Informix Client SDK is available from the
» IBM Informix Support Site.

PDO_INFORMIX is a » PECL extension, so follow the instructions in Installation of PECL
extensions to install the PDO_INFORMIX extension. Issue the configure command to point
to the location of your Informix Client SDK header files and libraries as follows:
bash$./configure --with-pdo-informix=/path/to/SDK[,shared]
The configure command defaults to the value of the INFORMIXDIR environment variable.

Scrollable cursors

PDO_INFORMIX supports scrollable cursors; however, they are not enabled by default. To
enable scrollable cursor support, you must either set
ENABLESCROLLABLECURSORS=1 in the corresponding ODBC connection settings in
odbc.ini or pass the EnableScrollableCursors=1 clause in the DSN connection string.

http://www-306.ibm.com/software/data/informix/tools/csdk/
http://www-306.ibm.com/software/data/informix/tools/csdk/
http://pecl.php.net/

PDO_INFORMIX DSN

PDO_INFORMIX DSN -- Connecting to Informix databases

Description

The PDO_INFORMIX Data Source Name (DSN) is based on the Informix ODBC DSN
string. Details on configuring an Informix ODBC DSN are available from the » Informix
Dynamic Server Information Center. The major components of the PDO_INFORMIX DSN
are:
DSN prefix

The DSN prefix is informix:.

DSN
The DSN can be either a data source setup using odbc.ini or a complete » connection
string.

Examples

Example #62 - PDO_INFORMIX DSN example using odbc.ini

The following example shows a PDO_INFORMIX DSN for connecting to an Informix
database cataloged as Infdrv33 in odbc.ini:
$db = new PDO("informix:DSN=Infdrv33", "", "");

[ODBC Data Sources]

Infdrv33=INFORMIX 3.3 32-BIT

[Infdrv33]

Driver=/opt/informix/csdk_2.81.UC1G2/lib/cli/iclis09b.so

Description=INFORMIX 3.3 32-BIT

Database=common_db

LogonID=testuser

pwd=testpass

Servername=ids_server

DB_LOCALE=en_US.819

OPTIMIZEAUTOCOMMIT=1

ENABLESCROLLABLECURSORS=1

Example #63 - PDO_INFORMIX DSN example using a connection string

The following example shows a PDO_INFORMIX DSN for connecting to an Informix
database named common_db using the Informix connection string syntax.
$db = new PDO("informix:host=host.domain.com; service=9800;

 database=common_db; server=ids_server; protocol=onsoctcp;

 EnableScrollableCursors=1", "testuser", "tespass");

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v10/topic/com.ibm.odbc.doc/odbc66.htm#sii02998361
http://publib.boulder.ibm.com/infocenter/idshelp/v10/topic/com.ibm.odbc.doc/odbc66.htm#sii02998361

MySQL Functions (PDO_MYSQL)

Introduction

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to MySQL 3.x, 4.x and 5.x databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL
4.1 and higher. If you're using an older version of the mysql client libraries, PDO will
emulate them for you.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions.
When writing transactional database code using a table type that does not support
transactions, MySQL will pretend that a transaction was initiated successfully. In
addition, any DDL queries issued will implicitly commit any pending transactions.

Predefined Constants

The constants below are defined by this driver, and will only be available when the
extension has been either compiled into PHP or dynamically loaded at runtime. In addition,
these driver-specific constants should only be used if you are using this driver. Using
mysql-specific attributes with the postgres driver may result in unexpected behaviour.
PDO::getAttribute() may be used to obtain the PDO_ATTR_DRIVER_NAME attribute to
check the driver, if your code can run against multiple drivers.

PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (integer)
If this attribute is set to TRUE on a PDOStatement, the MySQL driver will use the
buffered versions of the MySQL API. If you're writing portable code, you should use
PDOStatement::fetchAll() instead.

Example #64 - Forcing queries to be buffered in mysql

<?php

if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {

 $stmt = $db->prepare('select * from foo',

 array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));

} else {

 die("my application only works with mysql; I should use
\$stmt->fetchAll() instead");

}

?>

PDO::MYSQL_ATTR_LOCAL_INFILE (integer)
Enable LOAD LOCAL INFILE.

PDO::MYSQL_ATTR_INIT_COMMAND (integer)
Command to execute when connecting to the MySQL server. Will automatically be
re-executed when reconnecting.

PDO::MYSQL_ATTR_READ_DEFAULT_FILE (integer)
Read options from the named option file instead of from my.cnf.

PDO::MYSQL_ATTR_READ_DEFAULT_GROUP (integer)
Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

PDO::MYSQL_ATTR_MAX_BUFFER_SIZE (integer)
Maximum buffer size. Defaults to 1 MiB.

PDO::MYSQL_ATTR_DIRECT_QUERY (integer)
Perform direct queries, don't use prepared statements.

PDO_MYSQL DSN

PDO_MYSQL DSN -- Connecting to MySQL databases

Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is mysql:.

host
The hostname on which the database server resides.

port
The port number where the database server is listening.

dbname
The name of the database.

unix_socket
The MySQL Unix socket (shouldn't be used with host or port).

Examples

Example #65 - PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL
databases:
mysql:host=localhost;dbname=testdb
More complete examples:
mysql:host=localhost;port=3307;dbname=testdb

mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

Oracle Functions (PDO_OCI)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_OCI is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to Oracle databases through the OCI library.

PDO_OCI DSN

PDO_OCI DSN -- Connecting to Oracle databases

Description

The PDO_OCI Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is oci:.

dbname (Oracle Instant Client)
The URI for the Oracle Instant Client connection takes the form of dbname=// hostname:
port-number / database. If you are connecting to a database defined in tnsnames.ora,
use only the name of the database: dbname= database.

charset
The client-side character set for the current environment handle.

Examples

Example #66 - PDO_OCI DSN examples

The following examples show a PDO_OCI DSN for connecting to Oracle databases:
// Connect to a database defined in tnsnames.ora

oci:dbname=mydb

// Connect using the Oracle Instant Client

oci:dbname=//localhost:1521/mydb

ODBC and DB2 Functions (PDO_ODBC)

Introduction

PDO_ODBC is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to databases through ODBC drivers or through the IBM DB2 Call Level
Interface (DB2 CLI) library. PDO_ODBC currently supports three different "flavours" of
database drivers:
ibm-db2

Supports access to IBM DB2 Universal Database, Cloudscape, and Apache Derby
servers through the free DB2 client.

unixODBC
Supports access to database servers through the unixODBC driver manager and the
database's own ODBC drivers.

generic
Offers a compile option for ODBC driver managers that are not explicitly supported by
PDO_ODBC.

On Windows, PDO_ODBC is built into the PHP core by default. It is linked against the
Windows ODBC Driver Manager so that PHP can connect to any database cataloged as a
System DSN, and is the recommended driver for connecting to Microsoft SQL Server
databases.

Installation

PDO_ODBC on UNIX systems
1. As of PHP 5.1, PDO_ODBC is included in the PHP source. You can compile the

PDO_ODBC extension as either a static or shared module using the following
configure commands.
ibm_db2

./configure --with-pdo-odbc=ibm-db2,/opt/IBM/db2/V8.1/
To build PDO_ODBC with the ibm-db2 flavour, you have to have previously
installed the DB2 application development headers on the same machine on which
you are compiling PDO_ODBC. The DB2 application development headers are an
installable option in the DB2 servers, and are also available as part of the DB2
Application Development Client freely available for download from the IBM DB2
Universal Database » support site. If you do not supply a location for the DB2
libraries and headers to the configure command, PDO_ODBC defaults to
/home/db2inst1/sqllib.

unixODBC

http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html

./configure --with-pdo-odbc=unixODBC,/usr/local
If you do not supply a location for the unixODBC libraries and headers to the
configure command, PDO_ODBC defaults to /usr/local.

generic

./configure --with-pdo-odbc=generic,/usr/local,libname,ldflags,cflags

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PDO_ODBC Configuration Options

Name Default Changeable Changelog

pdo_odbc.connection
_pooling

"strict" PHP_INI_ALL Available since PHP
5.1.0.

pdo_odbc.db2_instan
ce_name

NULL PHP_INI_SYSTEM Available since PHP
5.1.1. Removed in
PHP 6.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

pdo_odbc.connection_pooling string
Whether to pool ODBC connections. Can be one of "strict", "relaxed" or "off" (equals to
""). The parameter describes how strict the connection manager should be when
matching connection parameters to existing pooled connections. strict is the
recommend default, and will result in the use of cached connections only when all the
connection parameters match exactly. relaxed will result in the use of cached
connections when similar connection parameters are used. This can result in
increased use of the cache, at the risk of bleeding connection information between (for
example) virtual hosts. This setting can only be changed from the php.ini file, and
affects the entire process; any other modules loaded into the process that use the
same ODBC libraries will be affected too, including the Unified ODBC extension.

Warning

relaxed matching should not be used on a shared server, for security reasons.

Tip

Leave this setting at the default strict setting unless you have good reason to
change it.

pdo_odbc.db2_instance_name string
If you compile PDO_ODBC using the db2 flavour, this setting sets the value of the
DB2INSTANCE environment variable on Linux and UNIX operating systems to the
specified name of the DB2 instance. This enables PDO_ODBC to resolve the location
of the DB2 libraries and make cataloged connections to DB2 databases. This setting
can only be changed from the php.ini file, and affects the entire process; any other
modules loaded into the process that use the same ODBC libraries will be affected too,
including the Unified ODBC extension. This setting has no effect on Windows.

PDO_ODBC DSN

PDO_ODBC DSN -- Connecting to ODBC or DB2 databases

Description

The PDO_ODBC Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is odbc:. If you are connecting to a database cataloged in the ODBC
driver manager or the DB2 catalog, you can append the cataloged name of the
database to the DSN.

DSN
The name of the database as cataloged in the ODBC driver manager or the DB2
catalog. Alternately, you can provide a complete ODBC connection string to connect to
a database as described at » http://www.connectionstrings.com/.

UID
The name of the user for the connection. If you specify the user name in the DSN,
PDO ignores the value of the user name argument in the PDO constructor.

PWD
The password of the user for the connection. If you specify the password in the DSN,
PDO ignores the value of the password argument in the PDO constructor.

Examples

Example #67 - PDO_ODBC DSN example (ODBC driver manager)

The following example shows a PDO_ODBC DSN for connecting to an ODBC
database cataloged as testdb in the ODBC driver manager:
odbc:testdb

Example #68 - PDO_ODBC DSN example (IBM DB2 uncataloged connection)

The following example shows a PDO_ODBC DSN for connecting to an IBM DB2
database named SAMPLE using the full ODBC DSN syntax:
odbc:DRIVER={IBM DB2 ODBC
DRIVER};HOSTNAME=localhost;PORT=50000;DATABASE=SAMPLE;PROTOCOL=TCPIP;UID=db2
inst1;PWD=ibmdb2;

http://www.connectionstrings.com/

Example #69 - PDO_ODBC DSN example (Microsoft Access uncataloged
connection)

The following example shows a PDO_ODBC DSN for connecting to a Microsoft
Access database stored at C:\db.mdb using the full ODBC DSN syntax:
odbc:Driver={Microsoft Access Driver (*.mdb)};Dbq=C:\\db.mdb;Uid=Admin

PostgreSQL Functions (PDO_PGSQL)

Introduction

PDO_PGSQL is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to PostgreSQL databases.

Resource Types

This extension defines a stream resource returned by PDO::pgsqlLOBOpen().

PDO_PGSQL DSN

PDO_PGSQL DSN -- Connecting to PostgreSQL databases

Description

The PDO_PGSQL Data Source Name (DSN) is composed of the following elements,
delimited by spaces:
DSN prefix

The DSN prefix is pgsql:.

host
The hostname on which the database server resides.

port
The port on which the database server is running.

dbname
The name of the database.

user
The name of the user for the connection. If you specify the user name in the DSN,
PDO ignores the value of the user name argument in the PDO constructor.

password
The password of the user for the connection. If you specify the password in the DSN,
PDO ignores the value of the password argument in the PDO constructor.

Note

The bytea fields are returned as streams.

Examples

Example #70 - PDO_PGSQL DSN examples

The following example shows a PDO_PGSQL DSN for connecting to a PostgreSQL
database:
pgsql:host=localhost port=5432 dbname=testdb user=bruce password=mypass

PDO::pgsqlLOBCreate

PDO::pgsqlLOBCreate -- Creates a new large object

Description

string PDO::pgsqlLOBCreate (void)

PDO::pgsqlLOBCreate() creates a large object and returns the OID of that object. You
may then open a stream on the object using PDO::pgsqlLOBOpen() to read or write data
to it. The OID can be stored in columns of type OID and be used to reference the large
object, without causing the row to grow arbitrarily large. The large object will continue to
live in the database until it is removed by calling PDO::pgsqlLOBUnlink().

Large objects can be up to 2GB in size, but are cumbersome to use; you need to ensure
that PDO::pgsqlLOBUnlink() is called prior to deleting the last row that references its OID
from your database. In addition, large objects have no access controls. As an alternative,
try the bytea column type; recent versions of PostgreSQL allow bytea columns of up to
1GB in size and transparently manage the storage for optimal row size.

Note

This function must be called within a transaction.

Parameters

PDO::pgsqlLOBCreate() takes no parameters.

Return Values

Returns the OID of the newly created large object on success, or FALSE on failure.

Examples

Example #71 - A PDO::pgsqlLOBCreate() example

This example creates a new large object and copies the contents of a file into it. The
OID is then stored into a table.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$oid = $db->pgsqlLOBCreate();

$stream = $db->pgsqlLOBOpen($oid, 'w');

$local = fopen($filename, 'rb');

stream_copy_to_stream($local, $stream);

$local = null;

$stream = null;

$stmt = $db->prepare("INSERT INTO BLOBS (ident, oid) VALUES (?, ?)");

$stmt->execute(array($some_id, $oid));

$db->commit();

?>

See Also

• PDO::pgsqlLOBOpen()
• PDO::pgsqlLOBUnlink()
• pg_lo_create()

PDO::pgsqlLOBOpen

PDO::pgsqlLOBOpen -- Opens an existing large object stream

Description

resource PDO::pgsqlLOBOpen (string $oid [, string $mode])

PDO::pgsqlLOBOpen() opens a stream to access the data referenced by oid. If mode is r,
the stream is opened for reading, if mode is w, then the stream will be opened for writing.
You can use all the usual filesystem functions, such as fread(), fwrite() and fgets() to
manipulate the contents of the stream.

Note

This function, and all manipulations of the large object, must be called and carried out
within a transaction.

Parameters

oid

A large object identifier.

mode

If mode is r, open the stream for reading. If mode is w, open the stream for writing.

Return Values

Returns a stream resource on success, or FALSE on failure.

Examples

Example #72 - A PDO::pgsqlLOBOpen() example

Following on from the PDO::pgsqlLOBCreate() example, this code snippet retrieves
the large object from the database and outputs it to the browser.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$stmt = $db->prepare("select oid from BLOBS where ident = ?");

$stmt->execute(array($some_id));

$stmt->bindColumn('oid', $lob, PDO::PARAM_LOB);

$stmt->fetch(PDO::FETCH_BOUND);

fpassthru($lob);

?>

See Also

• PDO::pgsqlLOBCreate()
• PDO::pgsqlLOBUnlink()
• pg_lo_open()

PDO::pgsqlLOBUnlink

PDO::pgsqlLOBUnlink -- Deletes the large object

Description

bool PDO::pgsqlLOBUnlink (string $oid)

Deletes a large object from the database identified by OID.

Note

This function must be called within a transaction.

Parameters

oid

A large object identifier

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #73 - A PDO::pgsqlLOBUnlink() example

This example unlinks a large object from the database prior to deleting the row that
references it from the blobs table we've been using in our PDO::pgsqlLOBCreate() and
PDO::pgsqlLOBOpen() examples.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$db->pgsqlLOBUnlink($oid);

$stmt = $db->prepare("DELETE FROM BLOBS where ident = ?");

$stmt->execute(array($some_id));

$db->commit();

?>

See Also

• PDO::pgsqlLOBOpen()
• PDO::pgsqlLOBCreate()

SQLite Functions (PDO_SQLITE)

Introduction

PDO_SQLITE is a driver that implements the PHP Data Objects (PDO) interface to enable
access to SQLite 3 databases.

In PHP 5.1, the SQLite extension also provides a driver for SQLite 2 databases; while it is
not technically a part of the PDO_SQLITE driver, it behaves similarly, so it is documented
alongside it. The SQLite 2 driver for PDO is provided primarily to make it easier to import
legacy sqlite 2 database files into an application that uses the faster, more efficient sqlite 3
driver. As a result, the SQLite 2 driver is not as feature-rich as the SQLite 3 driver.

PDO_SQLITE DSN

PDO_SQLITE DSN -- Connecting to SQLite databases

Description

The PDO_SQLITE Data Source Name (DSN) is composed of the following elements:
DSN prefix (SQLite 3)

The DSN prefix is sqlite:.

• To access a database on disk, append the absolute path to the DSN prefix.

• To create a database in memory, append:memory: to the DSN prefix.

DSN prefix (SQLite 2)
The SQLite extension in PHP 5.1 provides a PDO driver that supports accessing and
creating SQLite 2 databases. This enables you to access databases you may have
created with the SQLite extension in previous versions of PHP.

Note

The sqlite2 driver is only available in PHP 5.1.x if you have enabled both PDO and
ext/sqlite. It is not currently available via PECL.

The DSN prefix for connecting to SQLite 2 databases is sqlite2:.

• To access a database on disk, append the absolute path to the DSN prefix.

• To create a database in memory, append:memory: to the DSN prefix.

Examples

Example #74 - PDO_SQLITE DSN examples

The following examples show PDO_SQLITE DSN for connecting to SQLite databases:
sqlite:/opt/databases/mydb.sq3

sqlite::memory:

sqlite2:/opt/databases/mydb.sq2

sqlite2::memory:

PDO->sqliteCreateAggregate()

PDO->sqliteCreateAggregate() -- Registers an aggregating User Defined Function for use
in SQL statements

Description

PDO

bool sqliteCreateAggregate (string $function_name, callback $step_func, callback $
finalize_func [, int $num_args])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method is similar to PDO->sqliteCreateFunction() except that it registers functions
that can be used to calculate a result aggregated across all the rows of a query.

The key difference between this method and PDO->sqliteCreateFunction() is that two
functions are required to manage the aggregate.

Parameters

function_name

The name of the function used in SQL statements.

step_func

Callback function called for each row of the result set. Your PHP function should
accumulate the result and store it in the aggregation context. This function need to be
defined as:
step (mixed $context, int $rownumber, mixed $value1 [, mixed $value2 [, mixed $..]
])
context will be NULL for the first row; on subsequent rows it will have the value that
was previously returned from the step function; you should use this to maintain the
aggregate state. rownumber will hold the current row number.

finalize_func

Callback function to aggregate the "stepped" data from each row. Once all the rows
have been processed, this function will be called and it should then take the data from

the aggregation context and return the result. Callback functions should return a type
understood by SQLite (i.e. scalar type). This function need to be defined as:
fini (mixed $context, int $rownumber)
context will hold the return value from the very last call to the step function. rownumber
will hold the number of rows over which the aggregate was performed. The return
value of this function will be used as the return value for the aggregate.

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #75 - max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$db = new PDO('sqlite::memory:');

$db->exec("CREATE TABLE strings(a)");

$insert = $db->prepare('INSERT INTO strings VALUES (?)');

foreach ($data as $str) {

 $insert->execute(array($str));

}

$insert = null;

function max_len_step(&$context, $rownumber, $string)

{

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context, $rownumber)

{

 return $context;

}

$db->sqliteCreateAggregate('max_len', 'max_len_step', 'max_len_finalize');

var_dump($db->query('SELECT max_len(a) from strings')->fetchAll());

?>

In this example, we are creating an aggregating function that will calculate the length of the
longest string in one of the columns of the table. For each row, the max_len_step function
is called and passed a context parameter. The context parameter is just like any other
PHP variable and be set to hold an array or even an object value. In this example, we are
simply using it to hold the maximum length we have seen so far; if the string has a length
longer than the current maximum, we update the context to hold this new maximum length.

After all of the rows have been processed, SQLite calls the max_len_finalize function to
determine the aggregate result. Here, we could perform some kind of calculation based on
the data found in the context. In our simple example though, we have been calculating
the result as the query progressed, so we simply need to return the context value.

Tip

It is NOT recommended for you to store a copy of the values in the context and then
process them at the end, as you would cause SQLite to use a lot of memory to process
the query - just think of how much memory you would need if a million rows were
stored in memory, each containing a string 32 bytes in length.

Tip

You can use PDO->sqliteCreateFunction() and PDO->sqliteCreateAggregate() to
override SQLite native SQL functions.

Note

This method is not available with the SQLite2 driver. Use the old style sqlite API for
that instead.

See Also

• PDO->sqliteCreateFunction()
• sqlite_create_function()
• sqlite_create_aggregate()

PDO->sqliteCreateFunction()

PDO->sqliteCreateFunction() -- Registers a User Defined Function for use in SQL
statements

Description

PDO

bool sqliteCreateFunction (string $function_name, callback $callback [, int $num_args]
)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method allows you to register a PHP function with SQLite as an UDF (User Defined
Function), so that it can be called from within your SQL statements.

The UDF can be used in any SQL statement that can call functions, such as SELECT and
UPDATE statements and also in triggers.

Parameters

function_name

The name of the function used in SQL statements.

callback

Callback function to handle the defined SQL function.

Note

Callback functions should return a type understood by SQLite (i.e. scalar type).

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #76 - PDO::sqliteCreateFunction() example

<?php

function md5_and_reverse($string)

{

 return strrev(md5($string));

}

$db = new PDO('sqlite:sqlitedb');

$db->sqliteCreateFunction('md5rev', 'md5_and_reverse', 1);

$rows = $db->query('SELECT md5rev(filename) FROM files')->fetchAll();

?>

In this example, we have a function that calculates the md5 sum of a string, and then
reverses it. When the SQL statement executes, it returns the value of the filename
transformed by our function. The data returned in $rows contains the processed result.

The beauty of this technique is that you do not need to process the result using a foreach()
loop after you have queried for the data.

Tip

You can use PDO->sqliteCreateFunction() and PDO->sqliteCreateAggregate() to
override SQLite native SQL functions.

Note

This method is not available with the SQLite2 driver. Use the old style sqlite API for
that instead.

See Also

• PDO->sqliteCreateAggregate()
• sqlite_create_function()
• sqlite_create_aggregate()

	PDO
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Connections and Connection management
	Transactions and auto-commit
	Prepared statements and stored procedures
	Errors and error handling
	Large Objects (LOBs)
	PDO
	Introduction
	Class synopsis
	PDO::beginTransaction
	PDO::commit
	PDO::__construct
	PDO::errorCode
	PDO::errorInfo
	PDO::exec
	PDO::getAttribute
	PDO::getAvailableDrivers
	PDO::lastInsertId
	PDO::prepare
	PDO::query
	PDO::quote
	PDO::rollBack
	PDO::setAttribute

	PDOStatement
	Introduction
	Class synopsis
	PDOStatement->bindColumn
	PDOStatement->bindParam
	PDOStatement->bindValue
	PDOStatement->closeCursor
	PDOStatement->columnCount
	PDOStatement->errorCode
	PDOStatement->errorInfo
	PDOStatement->execute
	PDOStatement->fetch
	PDOStatement->fetchAll
	PDOStatement->fetchColumn
	PDOStatement->fetchObject
	PDOStatement->getAttribute
	PDOStatement->getColumnMeta
	PDOStatement->nextRowset
	PDOStatement->rowCount
	PDOStatement->setAttribute
	PDOStatement->setFetchMode

	PDO Drivers
	MS SQL Server (PDO)
	Introduction
	PDO_DBLIB DSN

	Firebird/Interbase (PDO)
	Introduction
	PDO_FIREBIRD DSN

	IBM (PDO)
	Introduction
	Installation
	PDO_IBM DSN

	Informix (PDO)
	Introduction
	Installation
	Scrollable cursors
	PDO_INFORMIX DSN

	MySQL (PDO)
	Introduction
	Predefined Constants
	PDO_MYSQL DSN

	Oracle (PDO)
	Introduction
	PDO_OCI DSN

	ODBC and DB2 (PDO)
	Introduction
	Installation
	Runtime Configuration
	PDO_ODBC DSN

	PostgreSQL (PDO)
	Introduction
	Resource Types
	PDO_PGSQL DSN
	PDO::pgsqlLOBCreate
	PDO::pgsqlLOBOpen
	PDO::pgsqlLOBUnlink

	SQLite (PDO)
	Introduction
	PDO_SQLITE DSN
	PDO->sqliteCreateAggregate()
	PDO->sqliteCreateFunction()

