
Direct IO

Introduction

PHP supports the direct io functions as described in the Posix Standard (Section 6) for
performing I/O functions at a lower level than the C-Language stream I/O functions (
fopen(), fread(),..). The use of the DIO functions should be considered only when direct
control of a device is needed. In all other cases, the standard filesystem functions are
more than adequate.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

This extension is only available on Windows Platforms as of PHP 5.0.0

http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To get these functions to work, you have to configure PHP with --enable-dio.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

One resource type is defined by this extension: a file descriptor returned by dio_open().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

F_DUPFD (integer)

F_GETFD (integer)

F_GETFL (integer)

F_GETLK (integer)

F_GETOWN (integer)

F_RDLCK (integer)

F_SETFL (integer)

F_SETLK (integer)

F_SETLKW (integer)

F_SETOWN (integer)

F_UNLCK (integer)

F_WRLCK (integer)

O_APPEND (integer)

O_ASYNC (integer)

O_CREAT (integer)

O_EXCL (integer)

O_NDELAY (integer)

O_NOCTTY (integer)

O_NONBLOCK (integer)

O_RDONLY (integer)

O_RDWR (integer)

O_SYNC (integer)

O_TRUNC (integer)

O_WRONLY (integer)

S_IRGRP (integer)

S_IROTH (integer)

S_IRUSR (integer)

S_IRWXG (integer)

S_IRWXO (integer)

S_IRWXU (integer)

S_IWGRP (integer)

S_IWOTH (integer)

S_IWUSR (integer)

S_IXGRP (integer)

S_IXOTH (integer)

S_IXUSR (integer)

Direct IO Functions

dio_close

dio_close -- Closes the file descriptor given by fd

Description

void dio_close (resource $fd)

The function dio_close() closes the file descriptor fd.

Parameters

fd

The file descriptor returned by dio_open().

Return Values

No value is returned.

Examples

Example #1 - Closing an open file descriptor

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

dio_close($fd);

?>

See Also

• dio_open()

dio_fcntl

dio_fcntl -- Performs a c library fcntl on fd

Description

mixed dio_fcntl (resource $fd, int $cmd [, mixed $args])

The dio_fcntl() function performs the operation specified by cmd on the file descriptor fd.
Some commands require additional arguments args to be supplied.

Parameters

fd

The file descriptor returned by dio_open().

cmd

Can be one of the following operations:

• F_SETLK - Lock is set or cleared. If the lock is held by someone else dio_fcntl()
returns -1.

• F_SETLKW - like F_SETLK, but in case the lock is held by someone else,
dio_fcntl() waits until the lock is released.

• F_GETLK - dio_fcntl() returns an associative array (as described above) if
someone else prevents lock. If there is no obstruction key "type" will set to
F_UNLCK.

• F_DUPFD - finds the lowest numbered available file descriptor greater than or
equal to args and returns them.

• F_SETFL - Sets the file descriptors flags to the value specified by args, which can
be O_APPEND, O_NONBLOCK or O_ASYNC. To use O_ASYNC you will need to
use the PCNTL extension.

args

args is an associative array, when cmd is F_SETLK or F_SETLLW, with the following
keys:

• "start" - offset where lock begins

• "length" - size of locked area. zero means to end of file

• "wenth" - Where l_start is relative to: can be SEEK_SET, SEEK_END and
SEEK_CUR

• "type" - type of lock: can be F_RDLCK (read lock), F_WRLCK (write lock) or
F_UNLCK (unlock)

Return Values

Returns the result of the C call.

Examples

Example #2 - Setting and clearing a lock

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

if (dio_fcntl($fd, F_SETLK, Array("type"=>F_WRLCK)) == -1) {

 // the file descriptor appears locked

 echo "The lock can not be cleared. It is held by someone else.";

} else {

 echo "Lock succesfully set/cleared";

}

dio_close($fd);

?>

Notes

Note

This function is not implemented on Windows platforms.

dio_open

dio_open -- Opens a new filename with specified permissions of flags and creation
permissions of mode

Description

resource dio_open (string $filename, int $flags [, int $mode])

dio_open() opens a file and returns a new file descriptor for it.

Parameters

filename

The opened file.

flags

The flags parameter can also include any combination of the following flags:

• O_CREAT - creates the file, if it doesn't already exist.

• O_EXCL - if both, O_CREAT and O_EXCL are set, dio_open() fails, if the file
already exists.

• O_TRUNC - if the file exists, and its opened for write access, the file will be
truncated to zero length.

• O_APPEND - write operations write data at the end of the file.

• O_NONBLOCK - sets non blocking mode.

mode

If flags is O_CREAT, mode will set the mode of the file (creation permissions).

• O_RDONLY - opens the file for read access.

• O_WRONLY - opens the file for write access.

• O_RDWR - opens the file for both reading and writing.

Return Values

A file descriptor or FALSE on error.

Examples

Example #3 - Opening a file descriptor

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR | O_NOCTTY | O_NONBLOCK);

dio_close($fd);

?>

See Also

• dio_close()

dio_read

dio_read -- Reads bytes from a file descriptor

Description

string dio_read (resource $fd [, int $len])

The function dio_read() reads and returns len bytes from file with descriptor fd.

Parameters

fd

The file descriptor returned by dio_open().

len

The number of bytes to read. If not specified, dio_read() reads 1K sized block.

Return Values

The bytes read from fd.

See Also

• dio_write()

dio_seek

dio_seek -- Seeks to pos on fd from whence

Description

int dio_seek (resource $fd, int $pos [, int $whence])

The function dio_seek() is used to change the file position of the given file descriptor.

Parameters

fd

The file descriptor returned by dio_open().

pos

The new position.

whence

Specifies how the position pos should be interpreted:

• SEEK_SET (default) - specifies that pos is specified from the beginning of the file.

• SEEK_CUR - Specifies that pos is a count of characters from the current file
position. This count may be positive or negative.

• SEEK_END - Specifies that pos is a count of characters from the end of the file. A
negative count specifies a position within the current extent of the file; a positive
count specifies a position past the current end. If you set the position past the
current end, and actually write data, you will extend the file with zeros up to that
position.

Return Values

Examples

Example #4 - Positioning in a file

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

dio_seek($fd, 10, SEEK_SET);

// position is now at 10 characters from the start of the file

dio_seek($fd, -2, SEEK_CUR);

// position is now at 8 characters from the start of the file

dio_seek($fd, -5, SEEK_END);

// position is now at 5 characters from the end of the file

dio_seek($fd, 10, SEEK_END);

// position is now at 10 characters past the end of the file.

// The 10 characters between the end of the file and the current

// position are filled with zeros.

dio_close($fd);

?>

dio_stat

dio_stat -- Gets stat information about the file descriptor fd

Description

array dio_stat (resource $fd)

dio_stat() returns information about the given file descriptor.

Parameters

fd

The file descriptor returned by dio_open().

Return Values

Returns an associative array with the following keys:

• "device" - device

• "inode" - inode

• "mode" - mode

• "nlink" - number of hard links

• "uid" - user id

• "gid" - group id

• "device_type" - device type (if inode device)

• "size" - total size in bytes

• "blocksize" - blocksize

• "blocks" - number of blocks allocated

• "atime" - time of last access

• "mtime" - time of last modification

• "ctime" - time of last change

On error dio_stat() returns NULL.

dio_tcsetattr

dio_tcsetattr -- Sets terminal attributes and baud rate for a serial port

Description

bool dio_tcsetattr (resource $fd, array $options)

dio_tcsetattr() sets the terminal attributes and baud rate of the open fd.

Parameters

fd

The file descriptor returned by dio_open().

options

The currently available options are:

• 'baud' - baud rate of the port - can be 38400,19200,9600,4800,2400,1800,
1200,600,300,200,150,134,110,75 or 50, default value is 9600.

• 'bits' - data bits - can be 8,7,6 or 5. Default value is 8.

• 'stop' - stop bits - can be 1 or 2. Default value is 1.

• 'parity' - can be 0,1 or 2. Default value is 0.

Return Values

No value is returned.

Examples

Example #5 - Setting the baud rate on a serial port

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR | O_NOCTTY | O_NONBLOCK);

dio_fcntl($fd, F_SETFL, O_SYNC);

dio_tcsetattr($fd, array(

 'baud' => 9600,

 'bits' => 8,

 'stop' => 1,

 'parity' => 0

));

while (1) {

 $data = dio_read($fd, 256);

 if ($data) {

 echo $data;

 }

}

?>

Notes

Note

This function is not implemented on Windows platforms.

dio_truncate

dio_truncate -- Truncates file descriptor fd to offset bytes

Description

bool dio_truncate (resource $fd, int $offset)

dio_truncate() truncates a file to at most offset bytes in size.

If the file previously was larger than this size, the extra data is lost. If the file previously
was shorter, it is unspecified whether the file is left unchanged or is extended. In the latter
case the extended part reads as zero bytes.

Parameters

fd

The file descriptor returned by dio_open().

offset

The offset in bytes.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is not implemented on Windows platforms.

dio_write

dio_write -- Writes data to fd with optional truncation at length

Description

int dio_write (resource $fd, string $data [, int $len])

dio_write() writes up to len bytes from data to file fd.

Parameters

fd

The file descriptor returned by dio_open().

data

The written data.

len

The length of data to write in bytes. If not specified, the function writes all the data to
the specified file.

Return Values

Returns the number of bytes written to fd.

See Also

• dio_read()

	Direct IO
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Direct IO Functions
	dio_close
	dio_fcntl
	dio_open
	dio_read
	dio_seek
	dio_stat
	dio_tcsetattr
	dio_truncate
	dio_write

