
PHP at the Core: A Hacker's Guide to the Zend
Engine

Preface

The Zend API has evolved considerably over time, as PHP has become a more robust and
widespread language. With the introduction of PHP 5 came the Zend Engine 2 (ZE2). ZE2
came with an almost entirely new Object-Oriented Programming (OOP) model, as well as
improvements in most aspects of the API. PHP 6, which is still under active development
at the time of this writing, introduces the Zend Engine 3 (ZE3), which brings full Unicode
support to the language.

Warning

This documentation is still under heavy development. The original Zend documentation
is preserved in its entirety in the Zend Engine 1 section for those who need it before
this documentation is completed.

This section of the manual is devoted to ZE2. While PHP 4.4 is still in widespread use, the
differences in how extensions are written in ZE1 are small; a short reference to them is
given in an appendix to this section. ZE3's API may yet change significantly, and is
covered in another appendix. It will be more fully documented when PHP 6 enters a beta
testing stage.

The documentation in this section is current as of PHP 5.2.5, the most recent stable
release at the time of this writing. Notable differences in the minor PHP 5 releases (5.0
through 5.3) are given as appropriate.

The "counter" Extension - A Continuing Example

Preface

Throughout this Zend documentation, references are made to an example module in order
to illustrate various concepts. The "counter" extension is this example, a fictional yet
functional Zend module which strives to use as much of the Zend API as is reasonably
possible. This short chapter describes the userland interface to the completed extension.

Note

"counter" serves no practical purpose whatsoever, as the functionality it provides is far
more effectively implemented by appropriate userland code.

Installing/Configuring

Introduction

The "counter" extension provides any number of counters to PHP code using it which reset
at times determined by the caller.

There are three interfaces to "counter": basic, extended, and objective. The basic interface
provides a single counter controlled by INI settings and function calls. The extended
interface provides an arbitrary number of named counter resources which may optionally
persist beyond the lifetime of a single PHP request. The objective interface combines both
the basic and extended interfaces into a Counter class.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Counter configuration options

Name Default Changeable Changelog

counter.reset_time COUNTER_RESET_
PER_REQUEST

PHP_INI_ALL

counter.save_path "" PHP_INI_ALL

counter.initial_value "0" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

counter.reset_time integer
counter.reset_time tells "counter" to reset the counter used by the basic interface. It
may be any of the COUNTER_RESET_* constants (see below).

counter.save_path string
Tells "counter" where to save data that has to persist between invocations of PHP (i.e.
any counter that has COUNTER_RESET_NEVER or COUNTER_FLAG_SAVE). A file
will be created at this path, which must be readable and writeable to whatever user
PHP is running as.

counter.initial_value integer
Sets the initial value of the counter used by the basic interface whenever it is reset.

Resource Types

The "counter" extension defines one resource type, a counter.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

COUNTER_FLAG_PERSIST (integer)
A counter with this flag will be created as a persistent resource.

COUNTER_FLAG_SAVE (integer)
A counter with this flag will be saved between invocations of PHP.

COUNTER_FLAG_NO_OVERWRITE (integer)
This flag causes counter_create() to avoid overwriting an existing named counter with
a new one.

COUNTER_META_NAME (string)
Pass this constant to get the name of a counter resource or object.

COUNTER_META_IS_PERISTENT (string)
Pass this constant to determine whether a counter resource or object is persistent (has
the COUNTER_FLAG_PERSIST flag).

COUNTER_RESET_NEVER (integer)
The counter will never be reset.

COUNTER_RESET_PER_LOAD (integer)
The counter will be reset on each invocation of PHP.

COUNTER_RESET_PER_REQUEST (integer)
The counter will be reset on each request.

Examples

Basic interface

The basic interface provides three simple functions, illustrated here:

Example #1 - "counter"'s basic interface

<?php

$starting_counter_value = counter_get();

counter_bump(1);

$second_counter_value = counter_get();

counter_reset();

$final_counter_value = counter_get();

printf("%3d %3d %3d", $starting_counter_value, $second_counter_value,
$final_counter_value);

?>

The above example will output:

0 1 0

The basic interface also provides a number of INI settings, documented below.

Extended interface

The extended interface provides a small suite of functions that allow the user to define an
arbitrary number of named counters with unique settings. The basic interface can be used
in parallel with the extended interface.

Example #2 - "counter"'s extended interface

<?php

function print_counter_info($counter)

{

 if (is_resource($counter)) {

 printf("Counter's name is '%s' and is%s persistent. Its current value
is %d.\n",

 counter_get_meta($counter, COUNTER_META_NAME),

 counter_get_meta($counter, COUNTER_META_IS_PERSISTENT) ? '' : '
not',

 counter_get_value($counter));

 } else {

 print "Not a valid counter!\n";

 }

}

if (($counter_one = counter_get_named("one")) === NULL) {

 $counter_one = counter_create("one", 0, COUNTER_FLAG_PERSIST);

}

counter_bump_value($counter_one, 2);

$counter_two = counter_create("two", 5);

$counter_three = counter_get_named("three");

$counter_four = counter_create("four", 2, COUNTER_FLAG_PERSIST |
COUNTER_FLAG_SAVE | COUNTER_FLAG_NO_OVERWRITE);

counter_bump_value($counter_four, 1);

print_counter_info($counter_one);

print_counter_info($counter_two);

print_counter_info($counter_three);

print_counter_info($counter_four);

?>

When run once, the above example outputs:

Counter's name is 'one' and is persistent. Its current value is 2.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 3.

If run a second time within the same instance of PHP, it outputs:

Counter's name is 'one' and is persistent. Its current value is 4.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 4.

If then run a third time in a different instance of PHP, it outputs:

Counter's name is 'one' and is persistent. Its current value is 2.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 5.

Objective interface

The objective interface provides an object-oriented way to access the extended interfaces.
The following example shows how the above one would be implemented using the
objective interface. The output of this example is exactly the same, except that instead of
printing "Not a valid counter!", this will instead issue a PHP warning that the variable
$counter_three is not an object. This example shows that it is possible to subclass the
Counter class defined by the extension, as well as that the counter's value is maintained
using an instance variable rather than method access.

Example #3 - "counter"'s objective interface

<?php

class MyCounter extends Counter

{

 public function printCounterInfo() {

 printf("Counter's name is '%s' and is%s persistent. Its current value
is %d.\n",

 $this->getMeta(COUNTER_META_NAME),

 $this->getMeta(COUNTER_META_IS_PERSISTENT) ? '' : ' not',

 $this->value);

 }

}

Counter::setCounterClass("MyCounter");

if (($counter_one = Counter::getNamed("one")) === NULL) {

 $counter_one = new Counter("one", 0, COUNTER_FLAG_PERSIST);

}

$counter_one->bumpValue(2); // we aren't allowed to "set" the value directly

$counter_two = new Counter("two", 5);

$counter_three = Counter::getNamed("three");

$counter_four = new Counter("four", 2, COUNTER_FLAG_PERSIST |
COUNTER_FLAG_SAVE | COUNTER_FLAG_NO_OVERWRITE);

$counter_four->bumpValue(1);

$counter_one->printCounterInfo();

$counter_two->printCounterInfo();

$counter_three->printCounterInfo();

$counter_four->printCounterInfo();

?>

The Counter class

Introduction

Represents a single counter object.

Class synopsis

Counter

Counter {

Counter::__construct (string $name [, integer $initial_value [, integer $flags]])

integer Counter::getValue (void)

void Counter::bumpValue (integer $offset)

void Counter::resetValue (void)

mixed Counter::getMeta (integer $attribute)

static Counter Counter::getNamed (string $name)

static void Counter::setCounterClass (string $name)
}

Counter::__construct

Counter::__construct -- Creates an instance of a Counter which maintains a single numeric
value.

Description

Counter::__construct (string $name [, integer $initial_value [, integer $flags]])

Creates an instance of a Counter which maintains a single numeric value.

Parameters

name
The new counter's name.

initial_value
The initial value of the counter. Defaults to zero (0).

flags
Flags for the new counter, chosen from the COUNTER_FLAG_* constants.

Return Values

Returns a Counter object on success.

Errors/Exceptions

Counter::__construct() throws an Exception if something goes wrong.

Counter::getValue

Counter::getValue -- Get the current value of a counter.

Description

integer Counter::getValue (void)

Counter::getValue() returns the current value of a counter.

Return Values

Counter::getValue() returns an integer.

See Also

• Counter::bumpValue()
• Counter::resetValue()

Counter::bumpValue

Counter::bumpValue -- Change the current value of a counter.

Description

void Counter::bumpValue (integer $offset)

Counter::bumpValue() updates the current value of a counter.

Parameters

offset

The amount by which to change the counter's value. Can be negative.

See Also

• Counter::getValue()
• Counter::resetValue()

Counter::resetValue

Counter::resetValue -- Reset the current value of a counter.

Description

void Counter::resetValue (void)

Counter::resetValue() resets the current value of a counter to its original initial value.

See Also

• Counter::getValue()
• Counter::bumpValue()

Counter::getMeta

Counter::getMeta -- Return a piece of metainformation about a counter.

Description

mixed Counter::getMeta (integer $attribute)

Counter::getMeta() returns metainformation about a counter.

Parameters

attribute

The metainformation to retrieve.

Return Values

Counter::getMeta() returns values of varying types based on which metainformation was
requested.

Counter::getNamed

Counter::getNamed -- Retrieve an existing named counter.

Description

static Counter Counter::getNamed (string $name)

Counter::getNamed() returns an existing counter by name if that name exists, or NULL
otherwise. This is a static function.

Parameters

name

The counter name to search for.

Return Values

Counter::getNamed() returns an existing counter by name if that name exists, or NULL
otherwise.

Counter::setCounterClass

Counter::setCounterClass -- Set the class returned by Counter::getNamed.

Description

static void Counter::setCounterClass (string $name)

Counter::setCounterClass() changes the class of objects returned by Counter::getNamed()
. The class being set must not have a public constructor and must be a subclass of
Counter. If these conditions are not met, a fatal error is raised. This is a static function.

Parameters

name

The name of the class to use.

The basic interface

counter_get

counter_get -- Get the current value of the basic counter.

Description

integer counter_get (void)

counter_get() returns the current value of the basic interface's counter.

Return Values

counter_get() returns an integer.

See Also

• counter_bump()
• counter_reset()

counter_bump

counter_bump -- Update the current value of the basic counter.

Description

void counter_bump (integer $offset)

counter_bump() updates the current value of the basic interface's counter.

Parameters

offset

The amount by which to change the counter's value. Can be negative.

See Also

• counter_get()
• counter_reset()

counter_reset

counter_reset -- Reset the current value of the basic counter.

Description

void counter_reset (void)

counter_reset() resets the current value of the basic interface's counter to its original initial
value.

See Also

• counter_get()
• counter_bump()

The extended interface

counter_create

counter_create -- Creates a counter which maintains a single numeric value.

Description

resource counter_create (string $name [, integer $initial_value [, integer $flags]])

Creates a counter which maintains a single numeric value.

Parameters

name
The new counter's name.

initial_value
The initial value of the counter. Defaults to zero (0).

flags
Flags for the new counter, chosen from the COUNTER_FLAG_* constants.

Return Values

Returns a counter resource.

counter_get_value

counter_get_value -- Get the current value of a counter resource.

Description

integer counter_get_value (resource $counter)

counter_get_value() returns the current value of a counter resource.

Parameters

counter

The counter resource to operate on.

Return Values

counter_get_value() returns an integer.

See Also

• counter_bump_value()
• counter_reset_value()

counter_bump_value

counter_bump_value -- Change the current value of a counter resource.

Description

void counter_bump_value (resource $counter, integer $offset)

counter_bump_value() updates the current value of a counter resource.

Parameters

counter

The counter resource to operate on.

offset

The amount by which to change the counter's value. Can be negative.

See Also

• counter_get_value()
• counter_reset_value()

counter_reset_value

counter_reset_value -- Reset the current value of a counter resource.

Description

void counter_reset_value (resource $counter)

counter_reset_value() resets the current value of a counter resource to its original initial
value.

Parameters

counter

The counter resource to operate on.

See Also

• counter_get_value()
• counter_bump_value()

counter_get_meta

counter_get_meta -- Return a piece of metainformation about a counter resource.

Description

mixed counter_get_meta (resource $counter, integer $attribute)

counter_get_meta() returns metainformation about a counter resource.

Parameters

counter

The counter resource to operate on.

attribute

The metainformation to retrieve.

Return Values

counter_get_meta() returns values of varying types based on which metainformation was
requested.

counter_get_named

counter_get_named -- Retrieve an existing named counter as a resource.

Description

resource Counter::getNamed (string $name)

counter_get_named() returns an existing counter by name if that name exists, or NULL
otherwise.

Parameters

name

The counter name to search for.

Return Values

counter_get_name() returns an existing counter by name if that name exists, or NULL
otherwise.

The PHP 5 build system

With all the functionality and flexibility available in PHP 5, it is no surprise that it consists of
several thousand files and over one million lines of source code. Equally unsurprising is
the necessity of a build system to manage so much data. This section describes how to
set PHP up for extension development, the layout of an extension within the PHP source
tree, and how to interface your extension with the build system.

Building PHP for extension development

In a typical PHP installation, the need for high performance almost always results in
optimization at the cost of debugging facilities. This is a reasonable tradeoff for production
use, but when developing an extension it falls short. What we need is a build of PHP which
will give us some hints what has gone wrong when something does.

The Zend Engine provides a memory manager which is capable of tracking memory leaks
in extensions and providing detailed debugging information. This tracking is disabled by
default, as is thread-safety. To turn them on, pass the --enable-debug and
--enable-maintainer-zts options to configure, along with whatever options you typically use.
For instructions on building PHP from source, see the instructions at General Installation
Considerations. A typical configure line might look like this:
$./configure --prefix=/where/to/install/php --enable-debug
--enable-maintainer-zts --enable-cgi --enable-cli --with-mysql=/path/to/mysql

The ext_skel script

A Zend extension is composed of several files common to all extensions. As the details of
many of those files are similar from extension to extension, it can be laborous to duplicate
the content for each one. Fortunately, there is a script which can do all of the initial setup
for you. It's called ext_skel, and it's been distributed with PHP since 4.0.

Running ext_skel with no parameters produces this output in PHP 5.2.2:
php-5.2.2/ext$./ext_skel

./ext_skel --extname=module [--proto=file] [--stubs=file] [--xml[=file]]

 [--skel=dir] [--full-xml] [--no-help]

 --extname=module module is the name of your extension

 --proto=file file contains prototypes of functions to create

 --stubs=file generate only function stubs in file

 --xml generate xml documentation to be added to phpdoc-cvs

 --skel=dir path to the skeleton directory

 --full-xml generate xml documentation for a self-contained extension

 (not yet implemented)

 --no-help don't try to be nice and create comments in the code

 and helper functions to test if the module compiled
Generally, when developing a new extension the only parameters you will be interested in
are --extname and --no-help. Unless you are already experienced with the structure of an
extension, you will not want to use --no-help; specifying it causes ext_skel to leave out

many helpful comments in the files it generates.

This leaves you with --extname, which tells ext_skel what the name of your extension is.
This "name" is an all-lowercase identifier containing only letters and underscores which is
unique among everything in the ext/ folder of your PHP distribution.

The --proto option is intended to allow the developer to specify a header file from which a
set of PHP functions will be created, ostensibly for the purpose of developing an extension
based on a library, but it often functions poorly with most modern header files. A test run
on the zlib.h header resulted in a very large number of empty and nonsense prototypes in
the ext_skel output files. The --xml and --full-xml options are entirely nonfunctional thus far.
The --skel option can be used to specify a modified set of skeleton files to work from, a
topic which is beyond the scope of this section.

Talking to the UNIX build system: config.m4

The config.m4 file for an extension tells the UNIX build system what configure options your
extension supports, what external libraries and includes you require, and what source files
are to be compiled as part of it. A reference to all the commonly used autoconf macros,
both PHP-specific and those built into autoconf, is given in the Zend Engine 2 API
reference section.

Tip

When developing a PHP extension, it is strongly recommended that autoconf version
2.13 be installed, despite the newer releases which are available. Version 2.13 is
recognized as a common denominator of autoconf availability, usability, and user base.
Using later versions will sometimes produce cosmetic differences from the expected
output of configure.

Example #4 - An example config.m4 file

dnl Id

dnl config.m4 for extension example
PHP_ARG_WITH(example, for example
support,

[--with-example[=FILE] Include example support. File is the optional
path to example-config])

PHP_ARG_ENABLE(example-debug, whether to enable debugging support in
example,

[--enable-example-debug example: Enable debugging support in
example], no, no)

PHP_ARG_WITH(example-extra, for extra libraries for example,

[--with-example-extra=DIR example: Location of extra libraries for
example], no, no)

dnl Check whether the extension is enabled at all

if test "$PHP_EXAMPLE" != "no"; then

 dnl Check for example-config. First try any path that was given to us, then

look in $PATH

 AC_MSG_CHECKING([for example-config])

 EXAMPLE_CONFIG="example-config"

 if test "$PHP_EXAMPLE" != "yes"; then

 EXAMPLE_PATH=$PHP_EXAMPLE

 else

 EXAMPLE_PATH=`$php_shtool path $EXAMPLE_CONFIG`

 fi

 dnl If a usable example-config was found, use it

 if test -f "$EXAMPLE_PATH" && test -x "$EXAMPLE_PATH" && $EXAMPLE_PATH
--version > /dev/null 2>&1; then

 AC_MSG_RESULT([$EXAMPLE_PATH])

 EXAMPLE_LIB_NAME=`$EXAMPLE_PATH --libname`

 EXAMPLE_INCDIRS=`$EXAMPLE_PATH --incdirs`

 EXAMPLE_LIBS=`$EXAMPLE_PATH --libs`

 dnl Check that the library works properly

 PHP_CHECK_LIBRARY($EXAMPLE_LIB_NAME, example_critical_function,

 [

 dnl Add the necessary include dirs

 PHP_EVAL_INCLINE($EXAMPLE_INCDIRS)

 dnl Add the necessary libraries and library dirs

 PHP_EVAL_LIBLINE($EXAMPLE_LIBS, EXAMPLE_SHARED_LIBADD)

],[

 dnl Bail out

 AC_MSG_ERROR([example library not found. Check config.log for more
information.])

],[$EXAMPLE_LIBS]

)

 else

 dnl No usable example-config, bail

 AC_MSG_RESULT([not found])

 AC_MSG_ERROR([Please check your example installation.])

 fi

 dnl Check whether to enable debugging

 if test "$PHP_EXAMPLE_DEBUG" != "no"; then

 dnl Yes, so set the C macro

 AC_DEFINE(USE_EXAMPLE_DEBUG,1,[Include debugging support in example])

 fi

 dnl Check for the extra support

 if test "$PHP_EXAMPLE_EXTRA" != "no"; then

 if test "$PHP_EXAMPLE_EXTRA" == "yes"; then

 AC_MSG_ERROR([You must specify a path when using --with-example-extra])

 fi

 PHP_CHECK_LIBRARY(example-extra, example_critical_extra_function,

 [

 dnl Add the neccessary paths

 PHP_ADD_INCLUDE($PHP_EXAMPLE_EXTRA/include)

 PHP_ADD_LIBRARY_WITH_PATH(example-extra, $PHP_EXAMPLE_EXTRA/lib,
EXAMPLE_SHARED_LIBADD)

 AC_DEFINE(HAVE_EXAMPLEEXTRALIB,1,[Whether example-extra support is
present and requested])

 EXAMPLE_SOURCES="$EXAMPLE_SOURCES example_extra.c"

],[

 AC_MSG_ERROR([example-extra lib not found. See config.log for more
information.])

],[-L$PHP_EXAMPLE_EXTRA/lib]

)

 fi

 dnl Finally, tell the build system about the extension and what files are
needed

 PHP_NEW_EXTENSION(example, example.c $EXAMPLE_SOURCES, $ext_shared)

 PHP_SUBST(EXAMPLE_SHARED_LIBADD)

fi

A short introduction to autoconf syntax

config.m4 files are written using the GNU autoconf syntax. It can be described in a nutshell
as shell scripting augmented by a powerful macro language. Comments are delimited by
the string dnl, and strings are quoted using left and right brackets (e.g. [and]). Quoting of
strings can be nested as many times as needed. A full reference to the syntax can be
found in the autoconf manual at.

PHP_ARG_*: Giving users the option

The very first thing seen in the example config.m4 above, aside from a couple of
comments, are three lines using PHP_ARG_WITH() and PHP_ARG_ENABLE(). These
provide configure with the options and help text seen when running./configure --help. As
the names suggest, the difference between the two is whether they create a --with-* option
or an --enable-* option. Every extension should provide at least one or the other with the
extension name, so that users can choose whether or not to build the extension into PHP.
By convention, PHP_ARG_WITH() is used for an option which takes a parameter, such as
the location of a library or program required by an extension, while PHP_ARG_ENABLE()
is used for an option which represents a simple flag.

Example #5 - Sample configure output

$./configure --help

...

 --with-example[=FILE] Include example support. FILE is the optional
path to example-config

 --enable-example-debug example: Enable debugging support in example

 --with-example-extra=DIR example: Location of extra libraries for
example

...

$./configure --with-example=/some/library/path/example-config
--disable-example-debug --with-example-extra=/another/library/path

...

checking for example support... yes

checking whether to enable debugging support in example... no

checking for extra libraries for example... /another/library/path

...

Note

Regardless of the order in which options are specified on the command line when
configure is called, the checks will be run in the order they are specified in config.m4.

Processing the user's choices

Now that config.m4 can provide the user with some choices of what to do, it's time to act
upon those choices. In the example above, the obvious default for all three options, if any
of them are unspecified, is "no". As a matter of convention, it is best to use this as the
default for the option which enables the extension, as it will be overridden by phpize for
extensions built separately, and should not clutter the extension space by default when
being built into PHP. The code to process the three options is by far the most complicated.

Handling the --with-example[=FILE] option

The first check made of the --with-example[=FILE] option is whether it was set at all. As
this option controls the inclusion of the entire extension, if it was unspecified, given in the
negative form (--without-example), or given the value "no", nothing else is done at all. In
the example above, it is specified with the value /some/library/path/example-config, so the
first test succeeds.

Next, the code calls AC_MSG_CHECKING(), an autoconf macro which outputs a standard
"checking for something" line, and checks whether the user gave an explicit path to the
fictional example-config. In this example, PHP_EXAMPLE got the value
/some/library/path/example-config, which is now copied into the EXAMPLE_PATH
variable. Had the user specified only --with-example, the code would have executed
$php_shtool path $EXAMPLE_CONFIG, which would try to guess the location of
example-config using the user's current PATH. Either way, the next step is to check
whether the chosen EXAMPLE_PATH is a regular file, is executable, and can be run
successfully. If so, AC_MSG_RESULT() is called, which completes the output line started
by AC_MSG_CHECKING(). Otherwise, AC_MSG_ERROR() is called, which prints the
given message and halts configure immediately.

The code now determines some site-specific configuration information by running
example-config several times. The next call is to PHP_CHECK_LIBRARY(), a macro
provided by the PHP buildsystem as a wrapper around autoconf 's AC_CHECK_LIB().
PHP_CHECK_LIBRARY() attempts to compile, link, and run a program which calls the
symbol specified by the second parameter in the library specified by the first, using the
string given in the fifth as extra linker options. If the attempt succeeds, the script given in
the third parameter is run. This script tells the PHP buildsystem to extract include paths,
library paths, and library names from the raw option strings example-config provided. If the
attempt fails, the script in the fourth parameter is run instead. In this case,
AC_MSG_ERROR() is called to stop processing.

Handling the --enable-example-debug option

Processing the --enable-example-debug is much simpler. A simple check for its truth value
is performed. If that check succeeds, AC_DEFINE() is called to make the C macro
USE_EXAMPLE_DEBUG available to the source of the extension. The third parameter is
a comment string for config.h; it is safe to leave this empty, and often is.

Handling the --with-example-extra=DIR option

For the sake of this example, the fictional "extra" functionality requested by the
--with-example-extra=DIR option does not share the fictional example-config program, nor
does it have any default paths to search. Therefore, the user is required to provide the
installation prefix of the necessary library. This setup is somewhat unlikely in a real-world
extension, but is considered illustrative.

The code begins in a now-familiar way by checking the truth value of
PHP_EXAMPLE_EXTRA. If a negative form was provided, no further processing is done;
the user did not request extra functionality. If a positive form was provided without a
parameter, AC_MSG_ERROR() is called to halt processing. The next step is another
invocation of PHP_CHECK_LIBRARY(). This time, since there is no set of predefined
compiler options provided, PHP_ADD_INCLUDE() and
PHP_ADD_LIBRARY_WITH_PATH() are used to construct the necessary include paths,
library paths, and library flags for the extra functionality. AC_DEFINE() is also called to
indicate to the code that the extra functionality was both requested and available, and a
variable is set to tell later code that there are extra source files to build. If the check fails,
the familiar AC_MSG_ERROR() is called. A different way to handle the failure would have
been to call AC_MSG_WARNING() instead, e.g.:

AC_MSG_WARNING([example-extra lib not found. example will be built without extra
functionality.])

In this case, configure would print a warning message rather than an error, and continue
processing. Which way such failures are handled is a design decision left to the extension
developer.

Telling the buildsystem what was decided

With all the necessary includes and libraries specified, with all the options processed and
macros defined, one more thing remains to be done: The build system must be told to
build the extension itself, and which files are to be used for that. To do this, the
PHP_NEW_EXTENSION() macro is called. The first parameter is the name of the
extension, which is the same as the name of the directory containing it. The second
parameter is the list of all source files which are part of the extension. See
PHP_ADD_BUILD_DIR() for information about adding source files in subdirectories to the
build process. The third parameter should always be $ext_shared, a value which was
determined by configure when PHP_ARG_WITH() was called for --with-example[=FILE].
The fourth parameter specifies a "SAPI class", and is only useful for extensions which
require the CGI or CLI SAPIs specifically. It should be left empty in all other cases. The
fifth parameter specifies a list of flags to be added to CFLAGS while building the
extension; the sixth is a boolean value which, if "yes", will force the entire extension to be

built using $CXX instead of $CC. All parameters after the third are optional. Finally,
PHP_SUBST() is called to enable shared builds of the extension. See Extension FAQs for
more information on disabling support for building an extension in shared mode.

The counter extension's config.m4 file

The counter extension previously documented has a much simpler config.m4 file than that
described above, as it doesn't make use of many buildsystem features. This is a preferred
method of operation for any extension that doesn't use an external or bundled library.

Example #6 - counter's config.m4 file

dnlId

dnl config.m4 for extension counter

PHP_ARG_ENABLE(counter, for counter support,

[--enable-counter Include counter support])

dnl Check whether the extension is enabled at all

if test "$PHP_COUNTER" != "no"; then

 dnl Finally, tell the build system about the extension and what files are
needed

 PHP_NEW_EXTENSION(counter, counter.c counter_util.c, $ext_shared)

 PHP_SUBST(COUNTER_SHARED_LIBADD)

fi

Talking to the Windows build system: config.w32

An extension's config.w32 file is similar in usage to the config.m4 file, with two critical
differences: first, it is used for Windows builds, and second, it is written in JavaScript. This
section makes no attempt to cover JavaScript syntax. For the moment, this section is
incomplete in lieu of a Win32 testbed, and an experimental-only port of the example
config.m4 is the only example provided.

Example #7 - An example config.w32 file

// Id

// vim:ft=javascript
ARG_WITH("example", "for example support", "no");

ARG_ENABLE("example-debug", "for debugging support in example", "no")

ARG_WITH("example-extra", "for extra functionality in example", "no")

if (PHP_EXAMPLE != "no") {

 if (CHECK_LIB("libexample.lib", "example", PHP_EXAMPLE) &&

 CHECK_HEADER_ADD_INCLUDE("example.h", "CFLAGS_EXAMPLE", PHP_EXAMPLE +
"\\include")) {

 if (PHP_EXAMPLE_DEBUG != "no") {

 AC_DEFINE('USE_EXAMPLE_DEBUG', 1, 'Debug support in example');

 }

 if (PHP_EXAMPLE_EXTRA != "no" &&

 CHECK_LIB("libexample-extra.lib", "example", PHP_EXAMPLE) &&

 CHECK_HEADER_ADD_INCLUDE("example-extra.h", "CFLAGS_EXAMPLE",
PHP_EXAMPLE + ";" + PHP_PHP_BUILD + "\\include") {

 AC_DEFINE('HAVE_EXAMPLEEXTRA', 1, 'Extra functionality in
example');

 HAVE_EXTRA = 1;

 } else {

 WARNING("extra example functionality not enabled, lib not found"
);

 }

 EXTENSION("example", "example.c");

 if (HAVE_EXTRA == 1) {

 ADD_SOURCES("example-extra.c");

 }

 } else {

 WARNING("example not enabled; libraries not found");

 }

}

The counter extension's config.w32 file

The counter extension previously documented has a much simpler config.w32 file than
that described above, as it doesn't make use of many buildsystem features.

Example #8 - counter's config.w32 file

// Id

// vim:ft=javascript
ARG_ENABLE("counter", "for counter support", "no");

if (PHP_COUNTER != "no") {

	EXTENSION("counter", "counter.c");

	ADD_SOURCE("counter-util.c");

}

Extension structure

Many extension-writing guides focus on simple examples first and ignore the requirements
of more complex implementations until later. Often such guides must repeat themselves
over and over in order to describe these new features. This section describes extension
structure from the perspective of a mature, practical implementation, in order to prepare
users for needs and issues they will almost always encounter in the process of extension
development.

Files which make up an extension

Whether created by hand, using ext_skel, or by an alternate extension generator, such as
» CodeGen, all extensions will have at least four files:

config.m4
UNIX build system configuration (see Talking to the UNIX build system: config.m4)

config.w32
Windows buildsystem configuration (see Talking to the Windows build system:
config.w32)

php_counter.h
When building an extension as static module into the PHP binary the build system
expects a header file with php_ prepended to the extension name which includes a
declaration for a pointer to the extension's module structure. This file usually contains
additional macros, prototypes, and globals, just like any header.

counter.c
Main extension source file. By convention, the name of this file is the extension name,
but this is not a requirement. This file contains the module structure declaration, INI
entries, management functions, userspace functions, and other requirements of an
extension.

The buildsystem files are discussed elsewhere; this section concentrates on the rest.
These four files make up the bare minimum for an extension, which may also contain any
number of headers, source files, unit tests, and other support files. The list of files in the
counter extension might look like this:

Example #9 - Files in the counter extension, in no particular order

ext/

counter/

 .cvsignore

 config.m4

 config.w32

 counter_util.h

 counter_util.c

 php_counter.h

 counter.c

http://codegenerators.php-baustelle.de/
http://codegenerators.php-baustelle.de/

 package.xml

 CREDITS

 tests/

 critical_function_001.phpt

 critical_function_002.phpt

 optional_function_001.phpt

 optional_function_002.phpt

Non-source files

The.cvsignore file is used for extensions which are checked into one of the PHP CVS
repositories (usually » PECL); the one generated by ext_skel contains:

.deps

*.lo

*.la

These lines tell CVS to ignore interim files generated by the PHP buildsystem. This is only
a convenience, and can be omitted completely without ill effect.

The CREDITS file lists the contributors and/or maintainers of the extension in plain text
format. The main purpose of this file is generating the credits information for bundled
extensions as used by phpcredits(). By convention the first line of the file should hold the
name of the extension, the second a comma separated list of contributors. The
contributors are usually ordered by the chronological order of their contributions. In a
» PECL package, this information is already maintained in package.xml, for example. This
is another file which can be omitted without ill effect.

The package.xml file is specific to » PECL -based extensions; it is a metainformation file
which gives details about an extension's dependencies, authors, installation requirements,
and other tidbits. In an extension not being hosted in » PECL, this file is extraneous.

Basic constructs

C is a very low-level language by modern definitions. This means that it has no built-in
support for many features that PHP takes for granted, such as reflection, dynamic module
loading, bounds checking, threadsafe data management and various useful data
structures including linked lists and hash tables. At the same time, C is a common
denominator of language support and functionality. Given enough work, none of these
concepts are impossible; the Zend Engine uses them all.

A lot of effort has gone into making the Zend API both extensible and understandable, but
C forces certain necessary declarations upon any extension that to an inexperienced eye
seem redundant or plain unnecessary. All of those constructs, detailed in this section, are
"write once and forget" in Zend Engine 2 and 3. Here are some excerpts from the
pregenerated php_counter.h and counter.c files created by PHP 5.3's ext_skel, showing
the pregenerated declarations:

http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/

Note

The astute reader will notice that there are several delcarations in the real files that
aren't shown here. Those declaractions are specific to various Zend subsystems and
are discussed elsewhere as appropriate.

extern zend_module_entry counter_module_entry;

#define phpext_counter_ptr &counter_module_entry

#ifdef PHP_WIN32

#	define PHP_COUNTER_API __declspec(dllexport)

#elif defined(__GNUC__) && __GNUC__ >= 4

#	define PHP_COUNTER_API __attribute__ ((visibility("default")))

#else

#	define PHP_COUNTER_API

#endif

#ifdef ZTS

#include "TSRM.h"

#endif

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "php.h"

#include "php_ini.h"

#include "ext/standard/info.h"

#include "php_counter.h"

/* ... */

#ifdef COMPILE_DL_COUNTER

ZEND_GET_MODULE(counter)

#endif

• The lines concerning counter_module_entry declare a global variable, and a macroed
pointer to it, which contains the zend_module_entry for the extension. Despite the later
discussion regarding the drawbacks of "true" globals, this usage is intentional; Zend
takes precautions to avoid misusing this variable.

• PHP_COUNTER_API is declared for use by non-PHP functions the module intends to
export for the use of other modules. The counter extension doesn't declare any of
these, and in the final version of the header file, this macro has been removed. The
PHPAPI macro is declared identically elsewhere and is used by the standard
extension to make the phpinfo() utility functions available to other extensions.

• The include of TSRM.h is skipped if PHP, or the extension, isn't being compiled with
thread-safety, since in that case TSRM isn't used.

• A standard list of includes, especially the extension's own php_counter.h, is given.
config.h gives the extension access to determinations made by configure. php.h is the
gateway to the entire PHP and Zend APIs. php_ini.h adds the APIs for runtime
configuration (INI) entries. Not all extensions will use this. Finally, ext/standard/info.h

imports the aforementioned phpinfo() utility API.

• COMPILE_DL_COUNTER will only be defined by configure if the counter extension is
both enabled and wants to be built as a dynamically loadable module instead of being
statically linked into PHP. ZEND_GET_MODULE defines a tiny function which Zend
can use to get the extension's zend_module_entry at runtime.

Note

The astute reader who has peeked into main/php_config.h after trying to build with
the counter module enabled statically may have noticed that there is also a
HAVE_COUNTER constant defined that the source code doesn't check for.
There's a simple reason this check isn't done: It's unnecessary. If the extension
isn't enabled, the source file will never be compiled.

The zend_module structure

The main source file of a PHP extension contains several new constructs for a C
programmer. The most important of these, the one touched first when starting a new
extension, is the zend_module structure. This structure contains a wealth of information
that tells the Zend Engine about the extension's dependencies, version, callbacks, and
other critical data. The structure has mutated considerably over time; this section will focus
on the structure as it has appeared since PHP 5.2, and will identify the very few parts
which have changed in PHP 5.3.

The zend_module declaration from counter.c looks like this before any code has been
written. The example file was generated by ext_skel --extname=counter, with some
obsolete constructs removed:

Example #10 - zend_module declaration in the counter extension

/* {{{ counter_module_entry

*/

zend_module_entry counter_module_entry = {

 STANDARD_MODULE_HEADER,

 "counter",

 counter_functions,

 PHP_MINIT(counter),

 PHP_MSHUTDOWN(counter),

 PHP_RINIT(counter), /* Replace with NULL if there's nothing to do
at request start */

 PHP_RSHUTDOWN(counter), /* Replace with NULL if there's nothing to do
at request end */

 PHP_MINFO(counter),

 "0.1", /* Replace with version number for your extension */

 STANDARD_MODULE_PROPERTIES

};

/* }}} */

This may look a bit daunting at first glance, but most of it is very simple to understand.
Here's the declaration of zend_module from zend_modules.h in PHP 5.3:

Example #11 - zend_module definition in PHP 5.3

struct _zend_module_entry {

 unsigned short size;

 unsigned int zend_api;

 unsigned char zend_debug;

 unsigned char zts;

 const struct _zend_ini_entry *ini_entry;

 const struct _zend_module_dep *deps;

 const char *name;

 const struct _zend_function_entry *functions;

 int (*module_startup_func)(INIT_FUNC_ARGS);

 int (*module_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 int (*request_startup_func)(INIT_FUNC_ARGS);

 int (*request_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 void (*info_func)(ZEND_MODULE_INFO_FUNC_ARGS);

 const char *version;

 size_t globals_size;

#ifdef ZTS

 ts_rsrc_id* globals_id_ptr;

#else

 void* globals_ptr;

#endif

 void (*globals_ctor)(void *global TSRMLS_DC);

 void (*globals_dtor)(void *global TSRMLS_DC);

 int (*post_deactivate_func)(void);

 int module_started;

 unsigned char type;

 void *handle;

 int module_number;

};

Many of these fields will never be touched by an extension writer. There are a number of
standard macros that set them to their proper values automatically. The macro
STANDARD_MODULE_HEADER fills in everything up to the deps field. Alternatively, the
STANDARD_MODULE_HEADER_EX will leave the deps field empty for the developer's
use. The developer is always responsible for everything from name to version. After that,
the STANDARD_MODULE_PROPERTIES macro will fill in the rest of the structure, or the
STANDARD_MODULE_PROPERTIES_EX macro can be used to leave the extension
globals and post-deactivation function fields unfilled. Most modern extensions will make
use of module globals.

Note

This table gives the values that each field would have if the developer were to fill in the
structure entirely by hand, without recourse to any of the shortcut macros. This is not
recommended. The "correct" values for many fields may change. Use the macros
whenever possible.

Module structure field values

Field Value Description

size [1] [2] [3] sizeof(zend_module_entry) The size in bytes of the
structure.

zend_api [1] [2] [3] ZEND_MODULE_API_NO The version of the Zend API
this module was compiled
against.

zend_debug [1] [2] [3] ZEND_DEBUG A flag indicating whether the
module was compiled with
debugging turned on.

zts [1] [2] [3] USING_ZTS A flag indicating whether the
module was compiled with
ZTS (TSRM) enabled (see
Memory management).

ini_entry [1] [3] NULL This pointer is used internally
by Zend to keep a non-local
reference to any INI entries
declared for the module.

deps [3] NULL A pointer to a list of
dependencies for the
module.

name "mymodule" The name of the module.
This is the short name, such
as "spl" or "standard".

functions mymodule_functions A pointer to the module's
function table, which Zend
uses to expose functions in
the module to user space.

module_startup_func PHP_MINIT(mymodule) A callback function that Zend
will call the first time a
module is loaded into a
particular instance of PHP.

module_shutdown_func PHP_MSHUTDOWN(mymod
ule)

A callback function that Zend
will call the when a module is
unloaded from a particular
instance of PHP, typically
during final shutdown.

request_startup_func PHP_RINIT(mymodule) A callback function that Zend
will call at the beginning of
each request.

request_shutdown_func PHP_RSHUTDOWN(mymod
ule)

A callback function that Zend
will call at the end of each
request.

info_func PHP_MINFO(mymodule) A callback function that Zend
will call when the phpinfo()
function is called.

version NO_VERSION_YET A string giving the version of
the module, as specified by
the module developer. It is
recommended that the
version number be either in
the format expected by
version_compare() (e.g.
"1.0.5-dev"), or a CVS or
SVN revision number (e.g.
"Rev").

globals_size [1] [4] [5] [6] sizeof(zend_mymodule_glob
als)

The size of the data structure
containing the module's
globals, if any.

globals_id_ptr [1] [4] [5] [6]
[7]

&mymodule_globals_id Only one of these two fields
will exist, depending upon
whether the USING_ZTS
constant is TRUE. The
former is an index into
TSRM's allocation table for
the module's globals, and the
latter is a pointer directly to
the globals.

globals_ptr [1] [4] [5] [6] [8] &mymodule_globals

globals_ctor [4] [5] [6] PHP_GINIT(mymodule) This funtion is called to
initialize a module's globals
before any
module_startup_func.

globals_dtor [4] [5] [6] PHP_GSHUTDOWN(mymod
ule)

This funtion is called to
deallocate a module's
globals after any
module_shutdown_func.

post_deactivate_func [4] ZEND_MODULE_POST_ZE
ND_DEACTIVATE_N(mymo
dule)

This function is called by
Zend after request shutdown.
It is rarely used.

module_started [1] [9] [4] 0 These fields are used for
Zend's internal tracking
information.

type [1] [9] [4] 0

handle [1] [9] [4] NULL

module_number [1] [9] [4] 0

[1] This field is not intended for use by module developers.
[2] This field is filled in by STANDARD_MODULE_HEADER_EX.
[3] This field is filled in by STANDARD_MODULE_HEADER.
[4] This field is filled in by STANDARD_MODULE_PROPERTIES.
[5] This field is filled in by NO_MODULE_GLOBALS.
[6] This field is filled in by PHP_MODULE_GLOBALS.
[7] This field only exists when USING_ZTS is TRUE.
[8] This field only exists when USING_ZTS is FALSE.
[9] This field is filled in by STANDARD_MODULE_PROPERTIES_EX.

Filling in the structure in a practical situation

With all these fields to play with, it can be confusing to know which to use for what
purpose. Here is the zend_module definition from the "counter" example extension after
updating it to its final form.

Example #12 - Counter extension module definition

/* {{{ counter_module_entry

*/

zend_module_entry counter_module_entry = {

 STANDARD_MODULE_HEADER,

 "counter",

 counter_functions,

 PHP_MINIT(counter),

 PHP_MSHUTDOWN(counter),

 PHP_RINIT(counter),

 PHP_RSHUTDOWN(counter),

 PHP_MINFO(counter),

 NO_VERSION_YET,

 PHP_MODULE_GLOBALS(counter),

 PHP_GINIT(counter),

 PHP_GSHUTDOWN(counter),

 NULL,

 STANDARD_MODULE_PROPERTIES_EX

};

/* }}} */

• STANDARD_MODULE_HEADER is used since this module doesn't define any
dependencies.

• "counter" is the extension's name, and is used to define the various callback functions

the module passes to Zend. "counter" uses module, globals, and request functions at
startup and shutdown times, and provides information to phpinfo(), so all seven
callbacks are defined.

• It is assumed that there is a variable of type zend_function_entry * named
counter_functions earlier in the file that contains the module definition, listing the
functions the module exports to userspace.

• NO_VERSION_YET is a particularly nice way of telling Zend the module doesn't have
a version. It might have been more correct to place "1.0" here instead in a real module.

• "counter" uses per-module globals, so PHP_MODULE_GLOBALS is used

• This module has no post-deactivate function, so NULL is used.

• Since this module does use globals, STANDARD_MODULE_PROPERTIES_EX is
used to finish the structure.

What's changed between 5.2 and 5.3?

Nothing. The only differences in the zend_module structure between PHP 5.2 and PHP
5.3 are a few const keywords.

Extension globals

Introduction to globals in a PHP extension

In a language such as C, a "global" variable is a variable that can be accessed from any
function without any extra declaration. These traditional globals have a few drawbacks:

• Barring any special options passed to the compiler, a global varaible can be accessed
and changed by any piece of code anywhere in the program, whether or not that code
should be doing so.

• A typical global variable is not thread safe.

• The names of global variables are as global as the variables themselves.

A PHP extension's globals are more properly called the "extension state", since most
modules must remember what they're doing between function calls. The "counter"
extension is a perfect example of this need: The basic interface calls for a counter with a
persistant value. A programmer new to Zend and PHP might do something like this in
counter.c to store that value:

Example #13 - The wrong way to store the basic counter interface's value

/* ... */

static long basic_counter_value;

/* ... */

PHP_FUNCTION(counter_get)

{

 RETURN_LONG(basic_counter_value);

}

On the surface this appears a viable solution, and indeed in a simple test it would function
correctly. However, there are a number of situations in which more than one copy of PHP
is running in the same thread, which means more than one instance of the counter
module. Suddenly these multiple threads are sharing the same counter value, which is
clearly undesireable. Another problem shows itself when considering that another
extension might someday happen to have a global with the same name, and due to the
rules of C scoping, this has the potential to cause a compile failure, or worse, a runtime
error. Something more elaborate is needed, and so exists Zend's support for threadsafe
per-module globals.

Declaring module globals

Whether a module uses only a single global or dozens, they must be defined in a
structure, and that structure must be declared. There are some macros that assist with
doing so in a way that avoids name conflicts between modules:
ZEND_BEGIN_MODULE_GLOBALS(), ZEND_END_MODULE_GLOBALS(), and
ZEND_DECLARE_MODULE_GLOBALS(). All three take as a parameter the short name
of the module, which in the case of the counter module is simply "counter". Here is the
global structure declaration from php_counter.h:

Example #14 - The counter module's globals

ZEND_BEGIN_MODULE_GLOBALS(counter)

 long basic_counter_value;

ZEND_END_MODULE_GLOBALS(counter)

And this is the declaration from counter.c:

Example #15 - The counter module's global structure declaration

ZEND_DECLARE_MODULE_GLOBALS(counter)

Accessing module globals

As discussed above, per-module globals are declared inside a C structure whose name is
obscured by Zend macros. As a result, the ideal way to access members of this structure
is by the use of further macros. Accordingly, most if not all extensions which have globals
have a declaration like this somewhere in their header file:

Example #16 - Accessor macros for per-module globals

#ifdef ZTS

#define COUNTER_G(v) TSRMG(counter_globals_id, zend_counter_globals *, v)

#else

#define COUNTER_G(v) (counter_globals.v)

#endif

Note

This could have been generalized into a macro of its own by the Zend API, but as of
PHP 5.3 (and PHP 6 at the time of this writing), that hasn't happened. The global
accessor construct is written into the header by ext_skel and thus is generally left
alone by extension writers, unless they wish to change the name of the accessor
macro.

Note

COUNTER_G was the name given to the macro by ext_skel, but it's not necessary for
it to have that name and could just as easily be called FOO instead.

Any code in the counter extension that accesses a global must thus wrap it in the macro
COUNTER_G.

Warning

Any function which accesses globals must either be declared by Zend macros, have
TSRMLS_DC as its last argument, or call the macro TSRMLS_FETCH before
accessing the globals. See the TSRM documentation for more information.

Life cycle of an extension

Testing an extension

Memory management

Working with variables

Writing functions

PHP is also known as a Glue language, and extending it, can be easily done with those
extensions generators. When you use ext_skel and a prototype file to generate the C
function stubs, you will notice that all of the exported functions created have a simple
prototype such as the following: PHP_FUNCTION(func_name)

Working with classes and objects

Working with resources

Working with INI settings

Working with streams

Note

Information on using streams within the PHP source code can be found in the Streams
API for PHP Extension Authors reference.

PDO Driver How-To

The purpose of this How-To is to provide a basic understanding of the steps required to
write a database driver that interfaces with the PDO layer. Please note that this is still an
evolving API and as such, subject to change. This document was prepared based on
version 0.3 of PDO. The learning curve is steep; expect to spend a lot of time on the
prerequisites.

Prerequisites

The following is list of prerequisites and assumptions needed for writing a PDO database
driver:

• A working target database, examples, demos, etc. working as per vendor
specifications;

• A working development environment:

• Linux: standard development tools, gcc, ld, make, autoconf, automake, etc.,
versions dependent on distribution;

• Other Unix: standard development tools supplied by vendor plus the GNU
development tool set;

• Win32: Visual Studio compiler suite;

• A working PHP environment version 5.0.3 or higher with a working PEAR extension
version 1.3.5 or higher;

• A working PDO environment (can be installed using 'sudo pecl install PDO'), including
the headers which will be needed to access the PDO type definitions and function
declarations;

• A good working knowledge of the C programming language;

• A good working knowledge of the way to write a PHP extension; George
Schlossnagle's Advanced PHP Programming (published by Developer's Library,
chapters 21 and 22) is recommended;

• Finally, a familiarity with the Zend API that forms the heart of PHP, in particular paying
attention to the memory management aspects.

Preparation and Housekeeping

Source directory layout

The source directory for a typical PDO driver is laid out as follows, where SKEL represents

a shortened form of the name of the database that the driver is going to connect to. Even
though SKEL is presented here in uppercase (for clarity), the convention is to use
lowercase characters.

pdo_SKEL/

 config.m4 # unix build script

 config.w32 # win32 build script

 CREDITS

 package.xml # meta information about the package

 pdo_SKEL.c # standard PHP extension glue

 php_pdo_SKEL.h

 php_pdo_SKEL_int.h # driver private header

 SKEL_dbh.c # contains the implementation of the PDO driver
interface

 SKEL_stmt.c # contains the implementation of the PDO statement
interface

 tests/

The contents of these files are defined later in this document.

Creating a skeleton

The easiest way to get started is to use the ext_skel shell script found in the PHP build
tree in the ext directory. This will build a skeleton directory containing a lot of the files listed
above. It can be build by executing the following command from within the ext directory:

./ext_skel --extname=pdo_SKEL

This will generate a directory called pdo_SKEL containing the skeleton files that you can
then modify. This directory should then be moved out of the php extension directory . PDO
is a PECL extension and should not be included in the standard extension directory. As
long as you have PHP and PDO installed, you should be able to build from any directory.

Standard Includes

Build Specific Headers

The header file config.h is generated by the configure process for the platform for the
which the driver is being built. If this header is present, the HAVE_CONFIG_H compiler
variable is set. This variable should be tested for and if set, the file config.h should be
included in the compilation unit.

PHP Headers

The following standard public php headers should be included in each source module:

• php.h

• php_ini.h

• ext/standard/info.h

PDO Interface Headers

The following standard public PDO header files are also included in each source module:

pdo/php_pdo.h
This header file contains definitions of the initialization and shutdown functions in the
main driver as well as definitions of global PDO variables.

pdo/php_pdo_driver.h
This header contains the types and API contracts that are used to write a PDO driver.
It also contains method signature for calling back into the PDO layer and
registering/unregistering your driver with PDO. Most importantly, this header file
contains the type definitions for PDO database handles and statements. The two main
structures a driver has to deal with, pdo_dbh_t and pdo_stmt_t, are described in more
detail in Appendix A and B.

Driver Specific Headers

The typical PDO driver has two header files that are specific to the database
implementation. This does not preclude the use of more depending on the implementation.
The following two headers are, by convention, standard:

php_pdo_SKEL.h
This header file is virtually an exact duplicate in functionality and content of the
previously defined pdo/php_pdo.h that has been specifically tailored for your database.
If your driver requires the use of global variables they should be defined using the
ZEND_BEGIN_MODULE_GLOBALS and ZEND_END_MODULE_GLOBALS macros.
Macros are then used to access these variables. This macro is usually named
PDO_SKEL_G(v) where v is global variable to be accessed. Consult the Zend
programmer documentation for more information.

php_pdo_SKEL_int.h
This header file typically contains type definitions and function declarations specific to
the driver implementation. It also should contain the db specific definitions of a
pdo_SKEL_handle and pdo_SKEL_stmt structures. These are the names of the
private data structures that are then referenced by the driver_data members of the
handle and statement structures.

Optional Headers

Depending on the implementation details for a particular driver it may be necessary to
include the following header:

#include <zend_exceptions.h>

Fleshing out your skeleton

Major Structures and Attributes

The major structures, pdo_dbh_t and pdo_stmt_t are defined and explained in Appendix A
and B respectively. Database and Statement attributes are defined in Appendix C. Error
handling is explained in Appendix D.

pdo_SKEL.c: PHP extension glue

function entries

static function_entry pdo_SKEL_functions[] = {

 { NULL, NULL, NULL }

};

This structure is used to register functions into the global php function namespace. PDO
drivers should try to avoid doing this, so it is recommended that you leave this structure
initialized to NULL, as shown in the synopsis above.

Module entry

/* {{{ pdo_SKEL_module_entry */

#if ZEND_EXTENSION_API_NO >= 220050617

static zend_module_dep pdo_SKEL_deps[] = {

 ZEND_MOD_REQUIRED("pdo")

 {NULL, NULL, NULL}

};

#endif

/* }}} */

zend_module_entry pdo_SKEL_module_entry = {

#if ZEND_EXTENSION_API_NO >= 220050617

 STANDARD_MODULE_HEADER_EX, NULL,

 pdo_SKEL_deps,

#else

 STANDARD_MODULE_HEADER,

#endif

 "pdo_SKEL",

 pdo_SKEL_functions,

 PHP_MINIT(pdo_SKEL),

 PHP_MSHUTDOWN(pdo_SKEL),

 NULL,

 NULL,

 PHP_MINFO(pdo_SKEL),

 PHP_PDO_<DB>_MODULE_VERSION,

 STANDARD_MODULE_PROPERTIES

};

/* }}} */

#ifdef COMPILE_DL_PDO_<DB>

ZEND_GET_MODULE(pdo_db)

#endif

A structure of type zend_module_entry called pdo_SKEL_module_entry must be declared
and should include reference to the pdo_SKEL_functions table defined previously.

Standard PHP Module Extension Functions

PHP_MINIT_FUNCTION

/* {{{ PHP_MINIT_FUNCTION */

PHP_MINIT_FUNCTION(pdo_SKEL)

{

 return php_pdo_register_driver(&pdo_SKEL_driver);

}

/* }}} */

This standard PHP extension function should be used to register your driver with the PDO
layer. This is done by calling the php_pdo_register_driver() function passing a pointer to
a structure of type pdo_driver_t typically named pdo_SKEL_driver. A pdo_driver_t
contains a header that is generated using the PDO_DRIVER_HEADER(SKEL) macro and
pdo_SKEL_handle_factory() function pointer. The actual function is described during the
discussion of the SKEL_dbh.c unit.

PHP_MSHUTDOWN_FUNCTION

/* {{{ PHP_MSHUTDOWN_FUNCTION */

PHP_MSHUTDOWN_FUNCTION(pdo_SKEL)

{

 php_pdo_unregister_driver(&pdo_SKEL_driver);

 return SUCCESS;

}

/* }}} */

This standard PHP extension function is used to unregister your driver from the PDO layer.
This is done by calling the php_pdo_unregister_driver() function, passing the same
pdo_SKEL_driver structure that was passed in the init function above.

PHP_MINFO_FUNCTION

This is again a standard PHP extension function. Its purpose is to display information
regarding the module when the phpinfo() is called from a script. The convention is to
display the version of the module and also what version of the db you are dependent on,
along with any other configuration style information that might be relevant.

SKEL_driver.c: Driver implementation

This unit implements all of the database handling methods that support the PDO database
handle object. It also contains the error fetching routines. All of these functions will typically
need to access the global variable pool. Therefore, it is necessary to use the Zend macro

TSRMLS_DC macro at the end of each of these statements. Consult the Zend
programmer documentation for more information on this macro.

pdo_SKEL_error

static int pdo_SKEL_error(pdo_dbh_t *dbh,

 pdo_stmt_t *stmt, const char *file, int line TSRMLS_DC)

The purpose of this function is to be used as a generic error handling function within the
driver. It is called by the driver when an error occurs within the driver. If an error occurs
that is not related to SQLSTATE, the driver should set either dbh->error_code or
stmt->error_code to an SQLSTATE that most closely matches the error or the generic
SQLSTATE error "HY000". The file pdo_sqlstate.c in the PDO source contains a table of
commonly used SQLSTATE codes that the PDO code explicitly recognizes. This setting of
the error code should be done prior to calling this function.; This function should set the
global pdo_err variable to the error found in either the dbh or the stmt (if the variable stmt
is not NULL).

dbh
Pointer to the database handle initialized by the handle factory

stmt
Pointer to the current statement or NULL. If NULL, the error is derived by error code
found in the dbh.

file
The source file where the error occurred or NULL if not available.

line
The line number within the source file if available.

If the dbh member methods is NULL (which implies that the error is being raised from
within the PDO constructor), this function should call the zend_throw_exception_ex()
function otherwise it should return the error code. This function is usually called using a
helper macro that customizes the calling sequence for either database handling errors or
statement handling errors.

Example #17 - Example macros for invoking pdo_SKEL_error

#define pdo_SKEL_drv_error(what) \

 pdo_SKEL_error(dbh, NULL, what, __FILE__, __LINE__ TSRMLS_CC)

#define pdo_SKEL_drv_error(what) \

 pdo_SKEL_error(dbh, NULL, what, __FILE__, __LINE__ TSRMLS_CC)

For more info on error handling, see Error handling.

Note

Despite being documented here, the PDO driver interface does not specify that this

function be present; it is merely a convenient way to handle errors, and it just happens
to be equally convenient for the majority of database client library APIs to structure
your driver implementation in this way.

pdo_SKEL_fetch_error_func

static int pdo_SKEL_fetch_error_func(pdo_dbh_t *dbh, pdo_stmt_t *stmt,

 zval *info TSRMLS_DC)

The purpose of this function is to obtain additional information about the last error that was
triggered. This includes the driver specific error code and a human readable string. It may
also include additional information if appropriate. This function is called as a result of the
PHP script calling the PDO::errorInfo() method.

dbh
Pointer to the database handle initialized by the handle factory

stmt
Pointer to the most current statement or NULL. If NULL, the error translated is derived
by error code found in the dbh.

info
A hash table containing error codes and messages.

The error_func should return two pieces of information as successive array elements. The
first item is expected to be a numeric error code, the second item is a descriptive string.
The best way to set this item is by using add_next_index. Note that the type of the first
argument need not be long; use whichever type most closely matches the error code
returned by the underlying database API.

/* now add the error information. */

/* These need to be added in a specific order */

add_next_index_long(info, error_code); /* driver specific error code */

add_next_index_string(info, message, 0); /* readable error message */

This function should return 1 if information is available, 0 if the driver does not have
additional info.

SKEL_handle_closer

static int SKEL_handle_closer(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to close an open database.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to close
the open database. PDO ignores the return value from this function.

SKEL_handle_preparer

static int SKEL_handle_preparer(pdo_dbh_t *dbh, const char *sql,

long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)

This function will be called by PDO in response to PDO::query() and PDO::prepare() calls
from the PHP script. The purpose of the function is to prepare raw SQL for execution,
storing whatever state is appropriate into the stmt that is passed in.

dbh
Pointer to the database handle initialized by the handle factory

sql
Pointer to a character string containing the SQL statement to be prepared.

sql_len
The length of the SQL statement.

Stmt
Pointer to the returned statement or NULL if an error occurs.

driver_options
Any driver specific/defined options.

This function is essentially the constructor for a stmt object. This function is responsible for
processing statement options, and setting driver-specific option fields in the pdo_stmt_t
structure.

PDO does not process any statement options on the driver's behalf before calling the
preparer function. It is your responsibility to process them before you return, raising an
error for any unknown options that are passed.

One very important responsibility of this function is the processing of SQL statement
parameters. At the time of this call, PDO does not know if your driver supports binding
parameters into prepared statements, nor does it know if it supports named or positional
parameter naming conventions.

Your driver is responsible for setting stmt->supports_placeholders as appropriate for the
underlying database. This may involve some run-time determination on the part of your
driver, if this setting depends on the version of the database server to which it is
connected. If your driver doesn't directly support both named and positional parameter
conventions, you should use the pdo_parse_params() API to have PDO rewrite the query
to take advantage of the support provided by your database.

Example #18 - Using pdo_parse_params

int ret;

 char *nsql = NULL;

 int nsql_len = 0;

 /* before we prepare, we need to peek at the query; if it uses named
parameters,

 * we want PDO to rewrite them for us */

 stmt->supports_placeholders = PDO_PLACEHOLDER_POSITIONAL;

 ret = pdo_parse_params(stmt, (char*)sql, sql_len, &nsql, &nsql_len
TSRMLS_CC);

 if (ret == 1) {

 /* query was re-written */

 sql = nsql;

 } else if (ret == -1) {

 /* couldn't grok it */

 strcpy(dbh->error_code, stmt->error_code);

 return 0;

 }

 /* now proceed to prepare the query in "sql" */

Possible values for supports_placeholders are: PDO_PLACEHOLDER_NAMED,
PDO_PLACEHOLDER_POSITIONAL and PDO_PLACEHOLDER_NONE. If the driver
doesn't support prepare statements at all, then this function should simply allocate any
state that it might need, and then return:

Example #19 - Implementing preparer for drivers that don't support native
prepared statements

static int SKEL_handle_preparer(pdo_dbh_t *dbh, const char *sql,

 long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)

{

 pdo_SKEL_db_handle *H = (pdo_SKEL_db_handle *)dbh->driver_data;

 pdo_SKEL_stmt *S = ecalloc(1, sizeof(pdo_SKEL_stmt));

 S->H = H;

 stmt->driver_data = S;

 stmt->methods = &SKEL_stmt_methods;

 stmt->supports_placeholders = PDO_PLACEHOLDER_NONE;

 return 1;

}

This function returns 1 on success or 0 on failure.

SKEL_handle_doer

static long SKEL_handle_doer(pdo_dbh_t *dbh, const char *sql, long sql_len
TSRMLS_DC)

This function will be called by PDO to execute a raw SQL statement. No pdo_stmt_t is
created.

dbh
Pointer to the database handle initialized by the handle factory

sql

Pointer to a character string containing the SQL statement to be prepared.

sql_len
The length of the SQL statement.

This function returns 1 on success or 0 on failure.

SKEL_handle_quoter

static int SKEL_handle_quoter(pdo_dbh_t *dbh, const char *unquoted,

 int unquoted_len, char **quoted, int quoted_len, enum pdo_param_type param_type
TSRMLS_DC)

This function will be called by PDO to turn an unquoted string into a quoted string for use
in a query.

dbh
Pointer to the database handle initialized by the handle factory

unquoted
Pointer to a character string containing the string to be quoted.

unquoted_len
The length of the string to be quoted.

quoted
Pointer to the address where a pointer to the newly quoted string will be returned.

quoted_len
The length of the new string.

param_type
A driver specific hint for driver that have alternate quoting styles

This function is called in response to a call to PDO::quote() or when the driver has set
supports_placeholder to PDO_PLACEHOLDER_NONE. The purpose is to quote a
parameter when building SQL statements.

If your driver does not support native prepared statements, implementation of this function
is required.

This function returns 1 if the quoting process reformatted the string, and 0 if it was not
necessary to change the string. The original string will be used unchanged with a 0 return.

SKEL_handle_begin

static int SKEL_handle_begin(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to begin a database transaction.

dbh

Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to begin
a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_commit

static int SKEL_handle_commit(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to end a database transaction.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to
commit a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_rollback

static int SKEL_handle_rollback(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to rollback a database transaction.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to
rollback a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_get_attribute

static int SKEL_handle_get_attribute(pdo_dbh_t *dbh, long attr, zval
*return_value TSRMLS_DC)

This function will be called by PDO to retrieve a database attribute.

dbh
Pointer to the database handle initialized by the handle factory

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

return_value
The returned value for the attribute.

It is up to the driver to decide which attributes will be supported for a particular
implementation. It is not necessary for a driver to supply this function. PDO driver handles
the PDO_ATTR_PERSISTENT, PDO_ATTR_CASE, PDO_ATTR_ORACLE_NULLS, and
PDO_ATTR_ERRMODE attributes directly.

This function returns 1 on success or 0 on failure.

SKEL_handle_set_attribute

static int SKEL_handle_set_attribute(pdo_dbh_t *dbh, long attr, zval *val
TSRMLS_DC)

This function will be called by PDO to set a database attribute, usually in response to a
script calling PDO::setAttribute().

dbh
Pointer to the database handle initialized by the handle factory

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

val
The new value for the attribute.

It is up to the driver to decide which attributes will be supported for a particular
implementation. It is not necessary for a driver to provide this function if it does not need to
support additional attributes. The PDO driver handles the PDO_ATTR_CASE,
PDO_ATTR_ORACLE_NULLS, and PDO_ATTR_ERRMODE attributes directly.

This function returns 1 on success or 0 on failure.

SKEL_handle_last_id

static char * SKEL_handle_last_id(pdo_dbh_t *dbh, const char *name, unsigned int
len TSRMLS_DC)

This function will be called by PDO to retrieve the ID of the last inserted row.

dbh
Pointer to the database handle initialized by the handle factory

name
string representing a table or sequence name.

len
the length of the name parameter.

This function returns a character string containing the id of the last inserted row on
success or NULL on failure. This is an optional function.

SKEL_check_liveness

static int SKEL_check_liveness(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to test whether or not a persistent connection to a
database is alive and ready for use.

dbh
Pointer to the database handle initialized by the handle factory

This function returns 1 if the database connection is alive and ready for use, otherwise it
should return 0 to indicate failure or lack of support.

Note

This is an optional function.

SKEL_get_driver_methods

static function_entry *SKEL_get_driver_methods(pdo_dbh_t *dbh, int kind
TSRMLS_DC)

This function will be called by PDO in response to a call to any method that is not a part of
either the PDO or PDOStatement classes. It's purpose is to allow the driver to provide
additional driver specific methods to those classes.

dbh
Pointer to the database handle initialized by the handle factory

kind
One of the following:
PDO_DBH_DRIVER_METHOD_KIND_DBH

Set when the method call was attempted on an instance of the PDO class. The
driver should return a pointer a function_entry table for any methods it wants to add
to that class, or NULL if there are none.

PDO_DBH_DRIVER_METHOD_KIND_STMT
Set when the method call was attempted on an instance of the PDOStatement
class. The driver should return a pointer to a function_entry table for any methods it
wants to add to that class, or NULL if there are none.

This function returns a pointer to the function_entry table requested, or NULL there are no
driver specific methods.

SKEL_handle_factory

static int SKEL_handle_factory(pdo_dbh_t *dbh, zval *driver_options TSRMLS_DC)

This function will be called by PDO to create a database handle. For most databases this
involves establishing a connection to the database. In some cases, a persistent connection
may be requested, in other cases connection pooling may be requested. All of these are

database/driver dependent.

dbh
Pointer to the database handle initialized by the handle factory

driver_options
An array of driver options, keyed by integer option number. See Database and
Statement Attributes Table for a list of possible attributes.

This function should fill in the passed database handle structure with its driver specific
information on success and return 1, otherwise it should return 0 to indicate failure.

PDO processes the AUTOCOMMIT and PERSISTENT driver options before calling the
handle_factory. It is the handle factory's responsibility to process other options.

Driver method table

A static structure of type pdo_dbh_methods named SKEL_methods must be declared and
initialized to the function pointers for each defined function. If a function is not supported or
not implemented the value for that function pointer should be set to NULL.

pdo_SKEL_driver

A structure of type pdo_driver_t named pdo_SKEL_driver should be declared. The
PDO_DRIVER_HEADER(SKEL) macro should be used to declare the header and the
function pointer to the handle factory function should set.

SKEL_statement.c: Statement implementation

This unit implements all of the database statement handling methods that support the PDO
statement object.

SKEL_stmt_dtor

static int SKEL_stmt_dtor(pdo_stmt_t *stmt TSRMLS_DC)

This function will be called by PDO to destroy a previously constructed statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

This should do whatever is necessary to free up any driver specific storage allocated for
the statement. The return value from this function is ignored.

SKEL_stmt_execute

static int SKEL_stmt_execute(pdo_stmt_t *stmt TSRMLS_DC)

This function will be called by PDO to execute the prepared SQL statement in the passed
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_fetch

static int SKEL_stmt_fetch(pdo_stmt_t *stmt, enum pdo_fetch_orientation ori,

 long offset TSRMLS_DC)

This function will be called by PDO to fetch a row from a previously executed statement
object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

ori
One of PDO_FETCH_ORI_xxx which will determine which row will be fetched.

offset
If ori is set to PDO_FETCH_ORI_ABS or PDO_FETCH_ORI_REL, offset represents
the row desired or the row relative to the current position, respectively. Otherwise, this
value is ignored.

The results of this fetch are driver dependent and the data is usually stored in the
driver_data member of the pdo_stmt_t object. The ori and offset parameters are only
meaningful if the statement represents a scrollable cursor. This function returns 1 for
success or 0 in the event of failure.

SKEL_stmt_param_hook

static int SKEL_stmt_param_hook(pdo_stmt_t *stmt,

 struct pdo_bound_param_data *param, enum pdo_param_event event_type TSRMLS_DC)

This function will be called by PDO for handling of both bound parameters and bound
columns.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

param
The structure describing either a statement parameter or a bound column.

event_type
The type of event to occur for this parameter, one of the following:
PDO_PARAM_EVT_ALLOC

Called when PDO allocates the binding. Occurs as part of
PDOStatement::bindParam(), PDOStatement::bindValue() or as part of an implicit

bind when calling PDOStatement::execute(). This is your opportunity to take some
action at this point; drivers that implement native prepared statements will typically
want to query the parameter information, reconcile the type with that requested by
the script, allocate an appropriately sized buffer and then bind the parameter to
that buffer. You should not rely on the type or value of the zval at
param->parameter at this point in time.

PDO_PARAM_EVT_FREE
Called once per parameter as part of cleanup. You should release any resources
associated with that parameter now.

PDO_PARAM_EXEC_PRE
Called once for each parameter immediately before calling SKEL_stmt_execute;
take this opportunity to make any final adjustments ready for execution. In
particular, you should note that variables bound via PDOStatement::bindParam()
are only legal to touch now, and not any sooner.

PDO_PARAM_EXEC_POST
Called once for each parameter immediately after calling SKEL_stmt_execute; take
this opportunity to make any post-execution actions that might be required by your
driver.

PDO_PARAM_FETCH_PRE
Called once for each parameter immediately prior to calling SKEL_stmt_fetch.

PDO_PARAM_FETCH_POST
Called once for each parameter immediately after calling SKEL_stmt_fetch.

This hook will be called for each bound parameter and bound column in the statement. For
ALLOC and FREE events, a single call will be made for each parameter or column. The
param structure contains a driver_data field that the driver can use to store implementation
specific information about each of the parameters.

For all other events, PDO may call you multiple times as the script issues
PDOStatement::execute() and PDOStatement::fetch() calls.

If this is a bound parameter, the is_param flag in the param structure is set, otherwise the
param structure refers to a bound column.

This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_describe_col

static int SKEL_stmt_describe_col(pdo_stmt_t *stmt, int colno TSRMLS_DC)

This function will be called by PDO to query information about a particular column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number to be queried.

The driver should populate the pdo_stmt_t member columns(colno) with the appropriate
information. This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_get_col_data

static int SKEL_stmt_get_col_data(pdo_stmt_t *stmt, int colno,

 char **ptr, unsigned long *len, int *caller_frees TSRMLS_DC)

This function will be called by PDO to retrieve data from the specified column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number to be queried.

ptr
Pointer to the retrieved data.

len
The length of the data pointed to by ptr.

caller_frees
If set, ptr should point to emalloc'd memory and the main PDO driver will free it as
soon as it is done with it. Otherwise, it will be the responsibility of the driver to free any
allocated memory as a result of this call.

The driver should return the resultant data and length of that data in the ptr and len
variables respectively. It should be noted that the main PDO driver expects the driver to
manage the lifetime of the data. This function returns 1 for success or 0 in the event of
failure.

SKEL_stmt_set_attr

static int SKEL_stmt_set_attr(pdo_stmt_t *stmt, long attr, zval *val TSRMLS_DC)

This function will be called by PDO to allow the setting of driver specific attributes for a
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

val

The new value for the attribute.

This function is driver dependent and allows the driver the capability to set database
specific attributes for a statement. This function returns 1 for success or 0 in the event of
failure. This is an optional function. If the driver does not support additional settable
attributes, it can be NULLed in the method table. The PDO driver does not handle any
settable attributes on the database driver's behalf.

SKEL_stmt_get_attr

static int SKEL_stmt_get_attr(pdo_stmt_t *stmt, long attr, zval

 *return_value TSRMLS_DC)

This function will be called by PDO to allow the retrieval of driver specific attributes for a
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

return_value
The returned value for the attribute.

This function is driver dependent and allows the driver the capability to retrieve a
previously set database specific attribute for a statement. This function returns 1 for
success or 0 in the event of failure. This is an optional function. If the driver does not
support additional gettable attributes, it can be NULLed in the method table. The PDO
driver does not handle any settable attributes on the database driver's behalf.

SKEL_stmt_get_col_meta

static int SKEL_stmt_get_col_meta(pdo_stmt_t *stmt, int colno,

 zval *return_value TSRMLS_DC)

Warning

This function is not well defined and is subject to change.

This function will be called by PDO to retrieve meta data from the specified column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number for which data is to be retrieved.

return_value
Holds the returned meta data.

The driver author should consult the documentation for this function that can be found in
the php_pdo_driver.h header as this will be the most current. This function returns 1 for
success or 0 in the event of failure. The database driver does not need to provide this
function.

Statement handling method table

A static structure of type pdo_stmt_methods named SKEL_stmt_methods should be
declared and initialized to the function pointers for each defined function. If a function is
not supported or not implemented the value for that function pointer should be set to
NULL.

Building

The build process is designed to work with PEAR (see for more information about PEAR).
There are two files that are used to assist in configuring your package for building. The first
is config.m4 which is the autoconf configuration file for all platforms except Win32. The
second is config.w32 which is a build configuration file for use on Win32. Skeleton files for
these are built for you when you first set up your project. You then need to customize them
to fit the needs of your project. Once you've customized your config files, you can build
your driver using the following sequence of commands:

Before first build:

$ sudo pecl install PDO

For each build:

$ cd pdo_SKEL

$ phpize

$./configure

$ make

$ sudo make install

The process can then be repeated as necessary during the development process.

Testing

PDO has a set of "core" tests that all drivers should pass before being released. They're
designed to run from the PHP source distribution, so running the tests for your driver
requires moving things around a bit. The suggested procedure is to obtain the latest PHP
5.1 snapshot and perform the following step:

$ cp -r pdo_SKEL /path/to/php-5.1/ext

This will allow the test harness to run your tests. The next thing you need to do is create a
test that will redirect into the PDO common core tests. The convention is to name this file

common.phpt; it should be placed in the tests subdirectory that was created by ext_skel
when you created your extension skeleton. The content of this file should look something
like the following:

--TEST--

SKEL

--SKIPIF--

<?php # vim:ft=php

if (!extension_loaded('pdo_SKEL')) print 'skip'; ?>

--REDIRECTTEST--

if (false !== getenv('PDO_SKEL_TEST_DSN')) {

user set them from their shell

 $config['ENV']['PDOTEST_DSN'] = getenv('PDO_SKEL_TEST_DSN');

 $config['ENV']['PDOTEST_USER'] = getenv('PDO_SKEL_TEST_USER');

 $config['ENV']['PDOTEST_PASS'] = getenv('PDO_SKEL_TEST_PASS');

 if (false !== getenv('PDO_SKEL_TEST_ATTR')) {

 $config['ENV']['PDOTEST_ATTR'] = getenv('PDO_SKEL_TEST_ATTR');

 }

 return $config;

}

return array(

 'ENV' => array(

 'PDOTEST_DSN' => 'SKEL:dsn',

 'PDOTEST_USER' => 'username',

 'PDOTEST_PASS' => 'password'

),

 'TESTS' => 'ext/pdo/tests'

);

This will cause the common core tests to be run, passing the values of PDOTEST_DSN,
PDOTEST_USER and PDOTEST_PASS to the PDO constructor as the dsn, username
and password parameters. It will first check the environment, so that appropriate values
can be passed in when the test harness is run, rather than hard-coding the database
credentials into the test file.

The test harness can be invoked as follows:

$ cd /path/to/php-5.1

$ make TESTS=ext/pdo_SKEL/tests PDO_SKEL_TEST_DSN="skel:dsn" \

PDO_SKEL_TEST_USER=user PDO_SKEL_TEST_PASS=pass test

Packaging and distribution

Creating a package

PDO drivers are released via PECL; all the usual rules for PECL extensions apply.
Packaging is accomplished by creating a valid package.xml file and then running:

$ pecl package

This will create a tarball named PDO_SKEL-X.Y.Z.tgz.

Before releasing the package, you should test that it builds correctly; if you've made a
mistake in your config.m4 or package.xml files, the package may not function correctly.

You can test the build, without installing anything, using the following invocation:

$ pecl build package.xml

Once this is proven to work, you can test installation:

$ pecl package

$ sudo pecl install PDO_SKEL-X.Y.X.tgz

Full details about package.xml can be found in the PEAR Programmer's documentation ().

Releasing the package

A PDO driver is released via the PHP Extension Community Library (PECL). Information
about PECL can be found at » http://pecl.php.net/index.php.

pdo_dbh_t definition

All fields should be treated as read-only by the driver, unless explicitly stated otherwise.

pdo_dbh_t

/* represents a connection to a database */

struct _pdo_dbh_t {

 /* driver specific methods */

 struct pdo_dbh_methods *methods; [1]
 /* driver specific data */

 void *driver_data; [2]

 /* credentials */

 char *username, *password; [3]

 /* if true, then data stored and pointed at by this handle must all be

 * persistently allocated */

 unsigned is_persistent:1; [4]

 /* if true, driver should act as though a COMMIT were executed between

 * each executed statement; otherwise, COMMIT must be carried out manually

 * */

 unsigned auto_commit:1; [5]

 /* if true, the driver requires that memory be allocated explicitly for

 * the columns that are returned */

 unsigned alloc_own_columns:1; [6]

 /* if true, commit or rollBack is allowed to be called */

 unsigned in_txn:1;

 /* max length a single character can become after correct quoting */

 unsigned max_escaped_char_length:3; [7]

 /* data source string used to open this handle */

 const char *data_source; [8]

http://pecl.php.net/index.php

 unsigned long data_source_len;

 /* the global error code. */

 pdo_error_type error_code; [9]

 enum pdo_case_conversion native_case [10], desired_case;

};

[1] The driver must set this during SKEL_handle_factory().
[2] This item is for use by the driver; the intended usage is to store a pointer (during
SKEL_handle_factory()) to whatever instance data is required to maintain a connection
to the database.
[3] The username and password that were passed into the PDO constructor. The driver
should use these values when it initiates a connection to the database.
[4] If this is set to 1, then any data that is referenced by the dbh, including whatever
structure your driver allocates, MUST be allocated persistently. This is easy to achieve;
rather than using the usual emalloc() simply use pemalloc() and pass the value of this
flag as the last parameter. Failure to use the appropriate kind of memory can lead to
serious memory faults, resulting (in the best case) a hard crash, and in the worst case, an
exploitable memory problem. If, for whatever reason, your driver is not suitable to run
persistently, you MUST check this flag in your SKEL_handle_factory() and raise an
appropriate error.
[5] You should check this value in your SKEL_handle_doer() and SKEL_stmt_execute()
functions; if it evaluates to true, you must attempt to commit the query now. Most database
implementations offer an auto-commit mode that handles this automatically.
[6] If your database client library API operates by fetching data into a caller-supplied
buffer, you should set this flag to 1 during your SKEL_handle_factory(). When set, PDO
will call your SKEL_stmt_describer() earlier than it would otherwise. This early call allows
you to determine those buffer sizes and issue appropriate calls to the database client
library. If your database client library API simply returns pointers to its own internal buffers
for you to copy after each fetch call, you should leave this value set to 0.
[7] If your driver doesn't support native prepared statements (supports_placeholders is
set to PDO_PLACEHOLDER_NONE), you must set this value to the maximum length
that can be taken up by a single character when it is quoted by your
SKEL_handle_quoter() function. This value is used to calculate the amount of buffer
space required when PDO executes the statement.
[8] This holds the value of the DSN that was passed into the PDO constructor. If your
driver implementation needed to modify the DSN for whatever reason, it should update this
member during SKEL_handle_factory(). Modifying this member should be avoided. If you
do change it, you must ensure that data_source_len is also correct.
[9] Whenever an error occurs during a call to one of your driver methods, you should set
this member to the SQLSTATE code that best describes the error and return an error. In
this HOW-TO, the suggested practice is to call SKEL_handle_error() when an error is
detected, and have it set the error code.
[10] Your driver should set this during SKEL_handle_factory(); the value should reflect
how the database returns the names of the columns in result sets. If the name matches
the case that was used in the query, set it to PDO_CASE_NATURAL (this is actually the
default). If the column names are always returned in upper case, set it to
PDO_CASE_UPPER. If the column names are always returned in lower case, set it to
PDO_CASE_LOWER. The value you set is used to determine if PDO should perform case
folding when the user sets the PDO_ATTR_CASE attribute.

pdo_stmt_t definition

All fields should be treated as read-only unless explicitly stated otherwise.

pdo_stmt_t

/* represents a prepared statement */

struct _pdo_stmt_t {

 /* driver specifics */

 struct pdo_stmt_methods *methods; [1]
 void *driver_data; [2]

 /* if true, we've already successfully executed this statement at least

 * once */

 unsigned executed:1; [3]
 /* if true, the statement supports placeholders and can implement

 * bindParam() for its prepared statements, if false, PDO should

 * emulate prepare and bind on its behalf */

 unsigned supports_placeholders:2; [4]

 /* the number of columns in the result set; not valid until after

 * the statement has been executed at least once. In some cases, might

 * not be valid until fetch (at the driver level) has been called at least
once.

 * */

 int column_count; [5]
 struct pdo_column_data *columns; [6]

 /* points at the dbh that this statement was prepared on */

 pdo_dbh_t *dbh;

 /* keep track of bound input parameters. Some drivers support

 * input/output parameters, but you can't rely on that working */

 HashTable *bound_params;

 /* When rewriting from named to positional, this maps positions to names */

 HashTable *bound_param_map;

 /* keep track of PHP variables bound to named (or positional) columns

 * in the result set */

 HashTable *bound_columns;

 /* not always meaningful */

 long row_count;

 /* used to hold the statement's current query */

 char *query_string;

 int query_stringlen;

 /* the copy of the query with expanded binds ONLY for emulated-prepare
drivers */

 char *active_query_string;

 int active_query_stringlen;

 /* the cursor specific error code. */

 pdo_error_type error_code;

 /* used by the query parser for driver specific

 * parameter naming (see pgsql driver for example) */

 const char *named_rewrite_template;

};

[1] The driver must set this during SKEL_handle_preparer().
[2] This item is for use by the driver; the intended usage is to store a pointer (during
SKEL_handle_factory()) to whatever instance data is required to maintain a connection
to the database.
[3] This is set by PDO after the statement has been executed for the first time. Your driver
can inspect this value to determine if it can skip one-time actions as an optimization.
[4] Discussed in more detail in SKEL_handle_preparer.
[5] Your driver is responsible for setting this field to the number of columns available in a
result set. This is usually set during SKEL_stmt_execute() but with some database
implementations, the column count may not be available until SKEL_stmt_fetch() has
been called at least once. Drivers that implement SKEL_stmt_next_rowset() should
update the column count when a new rowset is available.
[6] PDO will allocate this field based on the value that you set for the column count. You
are responsible for populating each column during SKEL_stmt_describe(). You must set
the precision, maxlen, name, namelen and param_type members for each column. The
name is expected to be allocated using emalloc(); PDO will call efree() at the appropriate
time.

Constants

Database and Statement Attributes Table

Attribute Valid value(s)

PDO_ATTR_AUTOCOMMIT BOOL

TRUE if autocommit is set, FALSE
otherwise.

dbh->auto_commit contains value.
Processed by PDO directly.

PDO_ATTR_PREFETCH LONG

Value of the prefetch size in drivers that
support it.

PDO_ATTR_TIMEOUT LONG

How long to wait for a db operation before
timing out.

PDO_ATTR_ERRMODE LONG

Processed and handled by PDO

PDO_ATTR_SERVER_VERSION STRING

The "human-readable" string representing
the Server/Version this driver is currently
connected to.

PDO_ATTR_CLIENT_VERSION STRING

The "human-readable" string representing
the Client/Version this driver supports.

PDO_ATTR_SERVER_INFO STRING

The "human-readable" description of the
Server.

PDO_ATTR_CONNECTION_STATUS LONG

Values not yet defined

PDO_ATTR_CASE LONG

Processed and handled by PDO.

PDO_ATTR_CURSOR_NAME STRING

String representing the name for a database
cursor for use in "where current in <name>"
SQL statements.

PDO_ATTR_CURSOR LONG

PDO_CURSOR_FWDONLY
Forward only cursor

PDO_CURSOR_SCROLL
Scrollable cursor

The values for the attributes above are all defined in terms of the Zend API. The Zend API
contains macros that can be used to convert a *zval to a value. These macros are defined
in the Zend header file, zend_API.h in the Zend directory of your PHP build directory.
Some of these attributes can be used with the statement attribute handlers such as the
PDO_ATTR_CURSOR and PDO_ATTR_CURSOR_NAME. See the statement attribute
handling functions for more information.

Error handling

Error handling is implemented using a hand-shaking protocol between PDO and the
database driver code. The database driver code signals PDO that an error has occurred
via a failure (0) return from any of the interface functions. If a zero is returned, set the
field error_code in the control block appropriate to the context (either the pdo_dbh_t or
pdo_stmt_t block). In practice, it is probably a good idea to set the field in both blocks to
the same value to ensure the correct one is getting used.

The error_mode field is a six-byte field containing a 5 character ASCIIZ SQLSTATE
identifier code. This code drives the error message process. The SQLSTATE code is used
to look up an error message in the internal PDO error message table (see pdo_sqlstate.c
for a list of error codes and their messages). If the code is not known to PDO, a default
"Unknown Message" value will be used.

In addition to the SQLSTATE code and error message, PDO will call the driver-specific
fetch_err() routine to obtain supplemental data for the particular error condition. This
routine is passed an array into which the driver may place additional information. This
array has slot positions assigned to particular types of supplemental info:

• A native error code. This will frequently be an error code obtained from the database
API.

• A descriptive string. This string can contain any additional information related to the
failure. Database drivers typically include information such as an error message, code
location of the failure, and any additional descriptive information the driver developer
feels worthy of inclusion. It is generally a good idea to include all diagnostic information
obtainable from the database interface at the time of the failure. For driver-detected
errors (such as memory allocation problems), the driver developer can define whatever
error information that seems appropriate.

Extension FAQs

Zend Engine 2 API reference

Zend Engine 1

Zend Engine 1 is the internal engine used by PHP for the entire version 4 release line. It is
no longer considered active, but PHP 4 is still in widespread use, so the old ZE1
documentation is preserved here exactly as it was.

Old introduction

If you are about to begin developing PHP or Zend extensions, you need to prepare
yourself for the programming environment provided by the various APIs. This part of the
documentation tries to introduce the APIs provided by the different PHP and Zend Engine
versions available. Since most of the information available here is somewhat outdated,
you'll want to read various files found in the PHP source, files such as
README.SELF-CONTAINED-EXTENSIONS and README.EXT_SKEL in addition to the
manual.

Streams API for PHP Extension Authors

Note

The functions in this chapter are for use in the PHP source code and are not PHP
functions. Information on userland stream functions can be found in the Stream
Reference.

Overview

The PHP Streams API introduces a unified approach to the handling of files and sockets in
PHP extension. Using a single API with standard functions for common operations, the
streams API allows your extension to access files, sockets, URLs, memory and
script-defined objects. Streams is a run-time extensible API that allows dynamically loaded
modules (and scripts!) to register new streams.

The aim of the Streams API is to make it comfortable for developers to open files, URLs
and other streamable data sources with a unified API that is easy to understand. The API
is more or less based on the ANSI C stdio family of functions (with identical semantics for
most of the main functions), so C programmers will have a feeling of familiarity with
streams.

The streams API operates on a couple of different levels: at the base level, the API defines
php_stream objects to represent streamable data sources. On a slightly higher level, the
API defines php_stream_wrapper objects which "wrap" around the lower level API to
provide support for retrieving data and meta-data from URLs. An additional context

parameter, accepted by most stream creation functions, is passed to the wrapper's
stream_opener method to fine-tune the behavior of the wrapper.

Any stream, once opened, can also have any number of filters applied to it, which process
data as it is read from/written to the stream.

Streams can be cast (converted) into other types of file-handles, so that they can be used
with third-party libraries without a great deal of trouble. This allows those libraries to
access data directly from URL sources. If your system has the fopencookie() or
funopen() function, you can even pass any PHP stream to any library that uses ANSI
stdio!

Streams Basics

Using streams is very much like using ANSI stdio functions. The main difference is in how
you obtain the stream handle to begin with. In most cases, you will use
php_stream_open_wrapper() to obtain the stream handle. This function works very much
like fopen, as can be seen from the example below:

Example #20 - simple stream example that displays the PHP home page

php_stream * stream = php_stream_open_wrapper("http://www.php.net", "rb",
REPORT_ERRORS, NULL);

if (stream) {

 while(!php_stream_eof(stream)) {

 char buf[1024];

 if (php_stream_gets(stream, buf, sizeof(buf))) {

 printf(buf);

 } else {

 break;

 }

 }

 php_stream_close(stream);

}

The table below shows the Streams equivalents of the more common ANSI stdio
functions. Unless noted otherwise, the semantics of the functions are identical.

ANSI stdio equivalent functions in the Streams API

ANSI Stdio Function PHP Streams Function Notes

fopen php_stream_open_wrapper Streams includes additional
parameters

fclose php_stream_close

fgets php_stream_gets

fread php_stream_read The nmemb parameter is
assumed to have a value of
1, so the prototype looks
more like read(2)

fwrite php_stream_write The nmemb parameter is
assumed to have a value of
1, so the prototype looks
more like write(2)

fseek php_stream_seek

ftell php_stream_tell

rewind php_stream_rewind

feof php_stream_eof

fgetc php_stream_getc

fputc php_stream_putc

fflush php_stream_flush

puts php_stream_puts Same semantics as puts,
NOT fputs

fstat php_stream_stat Streams has a richer stat
structure

Streams as Resources

All streams are registered as resources when they are created. This ensures that they will
be properly cleaned up even if there is some fatal error. All of the filesystem functions in
PHP operate on streams resources - that means that your extensions can accept regular
PHP file pointers as parameters to, and return streams from their functions. The streams
API makes this process as painless as possible:

Example #21 - How to accept a stream as a parameter

PHP_FUNCTION(example_write_hello)

{

 zval *zstream;

 php_stream *stream;

 if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r",
&zstream))

 return;

 php_stream_from_zval(stream, &zstream);

 /* you can now use the stream. However, you do not "own" the

 stream, the script does. That means you MUST NOT close the

 stream, because it will cause PHP to crash! */

 php_stream_write(stream, "hello\n");

 RETURN_TRUE();

}

Example #22 - How to return a stream from a function

PHP_FUNCTION(example_open_php_home_page)

{

 php_stream *stream;

 stream = php_stream_open_wrapper("http://www.php.net", "rb",
REPORT_ERRORS, NULL);

 php_stream_to_zval(stream, return_value);

 /* after this point, the stream is "owned" by the script.

 If you close it now, you will crash PHP! */

}

Since streams are automatically cleaned up, it's tempting to think that we can get away
with being sloppy programmers and not bother to close the streams when we are done
with them. Although such an approach might work, it is not a good idea for a number of
reasons: streams hold locks on system resources while they are open, so leaving a file
open after you have finished with it could prevent other processes from accessing it. If a
script deals with a large number of files, the accumulation of the resources used, both in
terms of memory and the sheer number of open files, can cause web server requests to
fail. Sounds bad, doesn't it? The streams API includes some magic that helps you to keep
your code clean - if a stream is not closed by your code when it should be, you will find
some helpful debugging information in you web server error log.

Note

Always use a debug build of PHP when developing an extension (--enable-debug
when running configure), as a lot of effort has been made to warn you about memory
and stream leaks.

In some cases, it is useful to keep a stream open for the duration of a request, to act as a
log or trace file for example. Writing the code to safely clean up such a stream is not
difficult, but it's several lines of code that are not strictly needed. To save yourself the

trouble of writing the code, you can mark a stream as being OK for auto cleanup. What this
means is that the streams API will not emit a warning when it is time to auto-cleanup a
stream. To do this, you can use php_stream_auto_cleanup().

Streams open options

These constants affect the operation of stream factory functions.
IGNORE_PATH

This is the default option for streams; it requests that the include_path is not to be
searched for the requested file.

USE_PATH
Requests that the include_path is to be searched for the requested file.

IGNORE_URL
Requests that registered URL wrappers are to be ignored when opening the stream.
Other non-URL wrappers will be taken into consideration when decoding the path.
There is no opposite form for this flag; the streams API will use all registered wrappers
by default.

IGNORE_URL_WIN
On Windows systems, this is equivalent to IGNORE_URL. On all other systems, this
flag has no effect.

ENFORCE_SAFE_MODE
Requests that the underlying stream implementation perform safe_mode checks on
the file before opening the file. Omitting this flag will skip safe_mode checks and allow
opening of any file that the PHP process has rights to access.

REPORT_ERRORS
If this flag is set, and there was an error during the opening of the file or URL, the
streams API will call the php_error function for you. This is useful because the path
may contain username/password information that should not be displayed in the
browser output (it would be a security risk to do so). When the streams API raises the
error, it first strips username/password information from the path, making the error
message safe to display in the browser.

STREAM_MUST_SEEK
This flag is useful when your extension really must be able to randomly seek around in
a stream. Some streams may not be seekable in their native form, so this flag asks the
streams API to check to see if the stream does support seeking. If it does not, it will
copy the stream into temporary storage (which may be a temporary file or a memory
stream) which does support seeking. Please note that this flag is not useful when you
want to seek the stream and write to it, because the stream you are accessing might
not be bound to the actual resource you requested.

Note

If the requested resource is network based, this flag will cause the opener to block
until the whole contents have been downloaded.

STREAM_WILL_CAST
If your extension is using a third-party library that expects a FILE* or file descriptor, you
can use this flag to request the streams API to open the resource but avoid buffering.
You can then use php_stream_cast() to retrieve the FILE* or file descriptor that the
library requires. The is particularly useful when accessing HTTP URLs where the start
of the actual stream data is found after an indeterminate offset into the stream. Since
this option disables buffering at the streams API level, you may experience lower
performance when using streams functions on the stream; this is deemed acceptable
because you have told streams that you will be using the functions to match the
underlying stream implementation. Only use this option when you are sure you need it.

Zend API: Hacking the Core of PHP

Introduction

Those who know don't talk.

Those who talk don't know.

Sometimes, PHP "as is" simply isn't enough. Although these cases are rare for the
average user, professional applications will soon lead PHP to the edge of its capabilities,
in terms of either speed or functionality. New functionality cannot always be implemented
natively due to language restrictions and inconveniences that arise when having to carry
around a huge library of default code appended to every single script, so another method
needs to be found for overcoming these eventual lacks in PHP.

As soon as this point is reached, it's time to touch the heart of PHP and take a look at its
core, the C code that makes PHP go.

Warning

This information is currently rather outdated, parts of it only cover early stages of the
ZendEngine 1.0 API as it was used in early versions of PHP 4.

More recent information may be found in the various README files that come with the
PHP source and the » Internals section on the Zend website.

Overview

"Extending PHP" is easier said than done. PHP has evolved to a full-fledged tool
consisting of a few megabytes of source code, and to hack a system like this quite a few
things have to be learned and considered. When structuring this chapter, we finally
decided on the "learn by doing" approach. This is not the most scientific and professional
approach, but the method that's the most fun and gives the best end results. In the

http://devzone.zend.com/public/view/tag/Extension

following sections, you'll learn quickly how to get the most basic extensions to work almost
instantly. After that, you'll learn about Zend's advanced API functionality. The alternative
would have been to try to impart the functionality, design, tips, tricks, etc. as a whole, all at
once, thus giving a complete look at the big picture before doing anything practical.
Although this is the "better" method, as no dirty hacks have to be made, it can be very
frustrating as well as energy- and time-consuming, which is why we've decided on the
direct approach.

Note that even though this chapter tries to impart as much knowledge as possible about
the inner workings of PHP, it's impossible to really give a complete guide to extending PHP
that works 100% of the time in all cases. PHP is such a huge and complex package that its
inner workings can only be understood if you make yourself familiar with it by practicing, so
we encourage you to work with the source.

What Is Zend? and What Is PHP?

The name Zend refers to the language engine, PHP's core. The term PHP refers to the
complete system as it appears from the outside. This might sound a bit confusing at first,
but it's not that complicated (see below). To implement a Web script interpreter, you need
three parts:

• The interpreter part analyzes the input code, translates it, and executes it.

• The functionality part implements the functionality of the language (its functions, etc.).

• The interface part talks to the Web server, etc.

Zend takes part 1 completely and a bit of part 2; PHP takes parts 2 and 3. Together they
form the complete PHP package. Zend itself really forms only the language core,
implementing PHP at its very basics with some predefined functions. PHP contains all the
modules that actually create the language's outstanding capabilities. The internal structure
of PHP.

The following sections discuss where PHP can be extended and how it's done.

Extension Possibilities

As shown above, PHP can be extended primarily at three points: external modules, built-in
modules, and the Zend engine. The following sections discuss these options.

External Modules

External modules can be loaded at script runtime using the function dl(). This function
loads a shared object from disk and makes its functionality available to the script to which
it's being bound. After the script is terminated, the external module is discarded from
memory. This method has both advantages and disadvantages, as described in the
following table:

Advantages Disadvantages

External modules don't require recompiling
of PHP.

The shared objects need to be loaded every
time a script is being executed (every hit),
which is very slow.

The size of PHP remains small by
"outsourcing" certain functionality.

External additional files clutter up the disk.

Every script that wants to use an external
module's functionality has to specifically
include a call to dl(), or the extension tag in
php.ini needs to be modified (which is not
always a suitable solution).

To sum up, external modules are great for third-party products, small additions to PHP that
are rarely used, or just for testing purposes. To develop additional functionality quickly,
external modules provide the best results. For frequent usage, larger implementations, and
complex code, the disadvantages outweigh the advantages.

Third parties might consider using the extension tag in php.ini to create additional external
modules to PHP. These external modules are completely detached from the main
package, which is a very handy feature in commercial environments. Commercial
distributors can simply ship disks or archives containing only their additional modules,
without the need to create fixed and solid PHP binaries that don't allow other modules to
be bound to them.

Built-in Modules

Built-in modules are compiled directly into PHP and carried around with every PHP
process; their functionality is instantly available to every script that's being run. Like
external modules, built-in modules have advantages and disadvantages, as described in
the following table:

Advantages Disadvantages

No need to load the module specifically; the
functionality is instantly available.

Changes to built-in modules require
recompiling of PHP.

No external files clutter up the disk;
everything resides in the PHP binary.

The PHP binary grows and consumes more
memory.

Built-in modules are best when you have a solid library of functions that remains relatively
unchanged, requires better than poor-to-average performance, or is used frequently by
many scripts on your site. The need to recompile PHP is quickly compensated by the
benefit in speed and ease of use. However, built-in modules are not ideal when rapid
development of small additions is required.

The Zend Engine

Of course, extensions can also be implemented directly in the Zend engine. This strategy
is good if you need a change in the language behavior or require special functions to be
built directly into the language core. In general, however, modifications to the Zend engine
should be avoided. Changes here result in incompatibilities with the rest of the world, and
hardly anyone will ever adapt to specially patched Zend engines. Modifications can't be
detached from the main PHP sources and are overridden with the next update using the
"official" source repositories. Therefore, this method is generally considered bad practice
and, due to its rarity, is not covered in this book.

Source Layout

Note

Prior to working through the rest of this chapter, you should retrieve clean, unmodified
source trees of your favorite Web server. We're working with Apache (available at
» http://www.apache.org/) and, of course, with PHP (available at » http://www.php.net/
- does it need to be said?).

Make sure that you can compile a working PHP environment by yourself! We won't go
into this issue here, however, as you should already have this most basic ability when
studying this chapter.

Before we start discussing code issues, you should familiarize yourself with the source
tree to be able to quickly navigate through PHP's files. This is a must-have ability to
implement and debug extensions.

The following table describes the contents of the major directories.

Directory Contents

php-src Main PHP source files and main header
files; here you'll find all of PHP's API
definitions, macros, etc. (important).
Everything else is below this directory.

php-src/ext Repository for dynamic and built-in modules;
by default, these are the "official" PHP
modules that have been integrated into the
main source tree. From PHP 4.0, it's
possible to compile these standard
extensions as dynamic loadable modules (at
least, those that support it).

php-src/main This directory contains the main php macros
and definitions. (important)

php-src/pear Directory for the PHP Extension and
Application Repository. This directory

http://www.apache.org/
http://www.apache.org/
http://www.php.net/

contains core PEAR files.

php-src/sapi Contains the code for the different server
abstraction layers.

TSRM Location of the "Thread Safe Resource
Manager" (TSRM) for Zend and PHP.

ZendEngine2 Location of the Zend Engine files; here you'll
find all of Zend's API definitions, macros,
etc. (important).

Discussing all the files included in the PHP package is beyond the scope of this chapter.
However, you should take a close look at the following files:

• php-src/main/php.h, located in the main PHP directory. This file contains most of
PHP's macro and API definitions.

• php-src/Zend/zend.h, located in the main Zend directory. This file contains most of
Zend's macros and definitions.

• php-src/Zend/zend_API.h, also located in the Zend directory, which defines Zend's
API.

You should also follow some sub-inclusions from these files; for example, the ones relating
to the Zend executor, the PHP initialization file support, and such. After reading these files,
take the time to navigate around the package a little to see the interdependencies of all
files and modules - how they relate to each other and especially how they make use of
each other. This also helps you to adapt to the coding style in which PHP is authored. To
extend PHP, you should quickly adapt to this style.

Extension Conventions

Zend is built using certain conventions; to avoid breaking its standards, you should follow
the rules described in the following sections.

Macros

For almost every important task, Zend ships predefined macros that are extremely handy.
The tables and figures in the following sections describe most of the basic functions,
structures, and macros. The macro definitions can be found mainly in zend.h and
zend_API.h. We suggest that you take a close look at these files after having studied this
chapter. (Although you can go ahead and read them now, not everything will make sense
to you yet.)

Memory Management

Resource management is a crucial issue, especially in server software. One of the most
valuable resources is memory, and memory management should be handled with extreme

care. Memory management has been partially abstracted in Zend, and you should stick to
this abstraction for obvious reasons: Due to the abstraction, Zend gets full control over all
memory allocations. Zend is able to determine whether a block is in use, automatically
freeing unused blocks and blocks with lost references, and thus prevent memory leaks.
The functions to be used are described in the following table:

Function Description

emalloc() Serves as replacement for malloc().

efree() Serves as replacement for free().

estrdup() Serves as replacement for strdup().

estrndup() Serves as replacement for strndup(). Faster
than estrdup() and binary-safe. This is the
recommended function to use if you know
the string length prior to duplicating it.

ecalloc() Serves as replacement for calloc().

erealloc() Serves as replacement for realloc().

emalloc(), estrdup(), estrndup(), ecalloc(), and erealloc() allocate internal memory;
efree() frees these previously allocated blocks. Memory handled by the e*() functions is
considered local to the current process and is discarded as soon as the script executed by
this process is terminated.

Warning

To allocate resident memory that survives termination of the current script, you can
use malloc() and free(). This should only be done with extreme care, however, and
only in conjunction with demands of the Zend API; otherwise, you risk memory leaks.

Zend also features a thread-safe resource manager to provide better native support for
multithreaded Web servers. This requires you to allocate local structures for all of your
global variables to allow concurrent threads to be run. Because the thread-safe mode of
Zend was not finished back when this was written, it is not yet extensively covered here.

Directory and File Functions

The following directory and file functions should be used in Zend modules. They behave
exactly like their C counterparts, but provide virtual working directory support on the thread
level.

Zend Function Regular C Function

V_GETCWD() getcwd()

V_FOPEN() fopen()

V_OPEN() open()

V_CHDIR() chdir()

V_GETWD() getwd()

V_CHDIR_FILE() Takes a file path as an argument and
changes the current working directory to that
file's directory.

V_STAT() stat()

V_LSTAT() lstat()

String Handling

Strings are handled a bit differently by the Zend engine than other values such as integers,
Booleans, etc., which don't require additional memory allocation for storing their values. If
you want to return a string from a function, introduce a new string variable to the symbol
table, or do something similar, you have to make sure that the memory the string will be
occupying has previously been allocated, using the aforementioned e*() functions for
allocation. (This might not make much sense to you yet; just keep it somewhere in your
head for now - we'll get back to it shortly.)

Complex Types

Complex types such as arrays and objects require different treatment. Zend features a
single API for these types - they're stored using hash tables.

Note

To reduce complexity in the following source examples, we're only working with simple
types such as integers at first. A discussion about creating more advanced types
follows later in this chapter.

PHP's Automatic Build System

PHP 4 features an automatic build system that's very flexible. All modules reside in a
subdirectory of the ext directory. In addition to its own sources, each module consists of a
config.m4 file, for extension configuration. (for example, see
» http://www.gnu.org/software/m4/manual/m4.html)

All these stub files are generated automatically, along with.cvsignore, by a little shell script
named ext_skel that resides in the ext directory. As argument it takes the name of the
module that you want to create. The shell script then creates a directory of the same

http://www.gnu.org/software/m4/manual/m4.html
http://www.gnu.org/software/m4/manual/m4.html

name, along with the appropriate stub files.

Step by step, the process looks like this:
:~/cvs/php4/ext:> ./ext_skel --extname=my_module

Creating directory my_module

Creating basic files: config.m4 .cvsignore my_module.c php_my_module.h CREDITS
EXPERIMENTAL tests/001.phpt my_module.php [done].

To use your new extension, you will have to execute the following steps:

1. $ cd ..

2. $ vi ext/my_module/config.m4

3. $./buildconf

4. $./configure --[with|enable]-my_module

5. $ make

6. $./php -f ext/my_module/my_module.php

7. $ vi ext/my_module/my_module.c

8. $ make

Repeat steps 3-6 until you are satisfied with ext/my_module/config.m4 and

step 6 confirms that your module is compiled into PHP. Then, start writing

code and repeat the last two steps as often as necessary.
This instruction creates the aforementioned files. To include the new module in the
automatic configuration and build process, you have to run buildconf, which regenerates
the configure script by searching through the ext directory and including all found
config.m4 files.

The default config.m4 shown in The default config.m4. is a bit more complex:

Example #23 - The default config.m4.

dnl $Id: build.xml,v 1.3 2007/11/01 16:40:36 rquadling Exp $

dnl config.m4 for extension my_module

dnl Comments in this file start with the string 'dnl'.

dnl Remove where necessary. This file will not work

dnl without editing.

dnl If your extension references something external, use with:

dnl PHP_ARG_WITH(my_module, for my_module support,

dnl Make sure that the comment is aligned:

dnl [--with-my_module Include my_module support])

dnl Otherwise use enable:

dnl PHP_ARG_ENABLE(my_module, whether to enable my_module support,

dnl Make sure that the comment is aligned:

dnl [--enable-my_module Enable my_module support])

if test "$PHP_MY_MODULE" != "no"; then

 dnl Write more examples of tests here...

 dnl # --with-my_module -> check with-path

 dnl SEARCH_PATH="/usr/local /usr" # you might want to change this

 dnl SEARCH_FOR="/include/my_module.h" # you most likely want to change
this

 dnl if test -r $PHP_MY_MODULE/; then # path given as parameter

 dnl MY_MODULE_DIR=$PHP_MY_MODULE

 dnl else # search default path list

 dnl AC_MSG_CHECKING([for my_module files in default path])

 dnl for i in $SEARCH_PATH ; do

 dnl if test -r $i/$SEARCH_FOR; then

 dnl MY_MODULE_DIR=$i

 dnl AC_MSG_RESULT(found in $i)

 dnl fi

 dnl done

 dnl fi

 dnl

 dnl if test -z "$MY_MODULE_DIR"; then

 dnl AC_MSG_RESULT([not found])

 dnl AC_MSG_ERROR([Please reinstall the my_module distribution])

 dnl fi

 dnl # --with-my_module -> add include path

 dnl PHP_ADD_INCLUDE($MY_MODULE_DIR/include)

 dnl # --with-my_module -> chech for lib and symbol presence

 dnl LIBNAME=my_module # you may want to change this

 dnl LIBSYMBOL=my_module # you most likely want to change this

 dnl PHP_CHECK_LIBRARY($LIBNAME,$LIBSYMBOL,

 dnl [

 dnl PHP_ADD_LIBRARY_WITH_PATH($LIBNAME, $MY_MODULE_DIR/lib,
MY_MODULE_SHARED_LIBADD)

 dnl AC_DEFINE(HAVE_MY_MODULELIB,1,[])

 dnl],[

 dnl AC_MSG_ERROR([wrong my_module lib version or lib not found])

 dnl],[

 dnl -L$MY_MODULE_DIR/lib -lm -ldl

 dnl])

 dnl

 dnl PHP_SUBST(MY_MODULE_SHARED_LIBADD)

 PHP_NEW_EXTENSION(my_module, my_module.c, $ext_shared)

fi

If you're unfamiliar with M4 files (now is certainly a good time to get familiar), this might be
a bit confusing at first; but it's actually quite easy.

Note: Everything prefixed with dnl is treated as a comment and is not parsed.

The config.m4 file is responsible for parsing the command-line options passed to configure
at configuration time. This means that it has to check for required external files and do
similar configuration and setup tasks.

The default file creates two configuration directives in the configure script:
--with-my_module and --enable-my_module. Use the first option when referring external
files (such as the --with-apache directive that refers to the Apache directory). Use the
second option when the user simply has to decide whether to enable your extension.
Regardless of which option you use, you should uncomment the other, unnecessary one;
that is, if you're using --enable-my_module, you should remove support for
--with-my_module, and vice versa.

By default, the config.m4 file created by ext_skel accepts both directives and automatically
enables your extension. Enabling the extension is done by using the PHP_EXTENSION
macro. To change the default behavior to include your module into the PHP binary when
desired by the user (by explicitly specifying --enable-my_module or --with-my_module),
change the test for $PHP_MY_MODULE to == "yes":
if test "$PHP_MY_MODULE" == "yes"; then dnl

 Action.. PHP_EXTENSION(my_module, $ext_shared)

 fi
This would require you to use --enable-my_module each time when reconfiguring and
recompiling PHP.

Note: Be sure to run buildconf every time you change config.m4 !

We'll go into more details on the M4 macros available to your configuration scripts later in
this chapter. For now, we'll simply use the default files.

Creating Extensions

We'll start with the creation of a very simple extension at first, which basically does nothing
more than implement a function that returns the integer it receives as parameter. A simple
extension. shows the source.

Example #24 - A simple extension.

/* include standard header */

#include "php.h"

/* declaration of functions to be exported */

ZEND_FUNCTION(first_module);

/* compiled function list so Zend knows what's in this module */

zend_function_entry firstmod_functions[] =

{

 ZEND_FE(first_module, NULL)

 {NULL, NULL, NULL}

};

/* compiled module information */

zend_module_entry firstmod_module_entry =

{

 STANDARD_MODULE_HEADER,

 "First Module",

 firstmod_functions,

 NULL,

 NULL,

 NULL,

 NULL,

 NULL,

 NO_VERSION_YET,

 STANDARD_MODULE_PROPERTIES

};

/* implement standard "stub" routine to introduce ourselves to Zend */

#if COMPILE_DL_FIRST_MODULE

ZEND_GET_MODULE(firstmod)

#endif

/* implement function that is meant to be made available to PHP */

ZEND_FUNCTION(first_module)

{

 long parameter;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &parameter)
== FAILURE) {

 return;

 }

 RETURN_LONG(parameter);

}

This code contains a complete PHP module. We'll explain the source code in detail shortly,
but first we'd like to discuss the build process. (This will allow the impatient to experiment
before we dive into API discussions.)

Note

The example source makes use of some features introduced with the Zend version
used in PHP 4.1.0 and above, it won't compile with older PHP 4.0.x versions.

Compiling Modules

There are basically two ways to compile modules:

• Use the provided "make" mechanism in the ext directory, which also allows building of
dynamic loadable modules.

• Compile the sources manually.

The first method should definitely be favored, since, as of PHP 4.0, this has been
standardized into a sophisticated build process. The fact that it is so sophisticated is also
its drawback, unfortunately - it's hard to understand at first. We'll provide a more detailed
introduction to this later in the chapter, but first let's work with the default files.

The second method is good for those who (for some reason) don't have the full PHP
source tree available, don't have access to all files, or just like to juggle with their
keyboard. These cases should be extremely rare, but for the sake of completeness we'll
also describe this method.

Compiling Using Make

To compile the sample sources using the standard mechanism, copy all their
subdirectories to the ext directory of your PHP source tree. Then run buildconf, which will
create an updated configure script containing appropriate options for the new extension.
By default, all the sample sources are disabled, so you don't have to fear breaking your
build process.

After you run buildconf, configure --help shows the following additional modules:

--enable-array_experiments BOOK: Enables array experiments

 --enable-call_userland BOOK: Enables userland module

 --enable-cross_conversion BOOK: Enables cross-conversion module

 --enable-first_module BOOK: Enables first module

 --enable-infoprint BOOK: Enables infoprint module

 --enable-reference_test BOOK: Enables reference test module

 --enable-resource_test BOOK: Enables resource test module

 --enable-variable_creation BOOK: Enables variable-creation module

The module shown earlier in A simple extension. can be enabled with
--enable-first_module or --enable-first_module=yes.

Compiling Manually

To compile your modules manually, you need the following commands:

Action Command

Compiling cc -fpic
-DCOMPILE_DL_FIRST_MODULE=1
-I/usr/local/include -I. -I.. -I../Zend -c -o
<your_object_file> <your_c_file>

Linking cc -shared -L/usr/local/lib -rdynamic -o
<your_module_file> <your_object_file(s)>

The command to compile the module simply instructs the compiler to generate
position-independent code (-fpic shouldn't be omitted) and additionally defines the
constant COMPILE_DL_FIRST_MODULE to tell the module code that it's compiled as a
dynamically loadable module (the test module above checks for this; we'll discuss it
shortly). After these options, it specifies a number of standard include paths that should be
used as the minimal set to compile the source files.

Note: All include paths in the example are relative to the directory ext. If you're compiling
from another directory, change the pathnames accordingly. Required items are the PHP
directory, the Zend directory, and (if necessary), the directory in which your module
resides.

The link command is also a plain vanilla command instructing linkage as a dynamic
module.

You can include optimization options in the compilation command, although these have
been omitted in this example (but some are included in the makefile template described in
an earlier section).

Note: Compiling and linking manually as a static module into the PHP binary involves very
long instructions and thus is not discussed here. (It's not very efficient to type all those
commands.)

Using Extensions

Depending on the build process you selected, you should either end up with a new PHP
binary to be linked into your Web server (or run as CGI), or with an .so (shared object) file.
If you compiled the example file first_module.c as a shared object, your result file should
be first_module.so. To use it, you first have to copy it to a place from which it's accessible
to PHP. For a simple test procedure, you can copy it to your htdocs directory and try it with
the source in A test file for first_module.so.. If you compiled it into the PHP binary, omit the
call to dl(), as the module's functionality is instantly available to your scripts.

Warning

For security reasons, you should not put your dynamic modules into publicly
accessible directories. Even though it can be done and it simplifies testing, you should
put them into a separate directory in production environments.

Example #25 - A test file for first_module.so.

<?php

// remove next comment if necessary

// dl("first_module.so");

$param = 2;

$return = first_module($param);

print("We sent '$param' and got '$return'");

?>

Calling this PHP file should output the following:
We sent '2' and got '2'

If required, the dynamic loadable module is loaded by calling the dl() function. This
function looks for the specified shared object, loads it, and makes its functions available to
PHP. The module exports the function first_module(), which accepts a single parameter,
converts it to an integer, and returns the result of the conversion.

If you've gotten this far, congratulations! You just built your first extension to PHP.

Troubleshooting

Actually, not much troubleshooting can be done when compiling static or dynamic
modules. The only problem that could arise is that the compiler will complain about
missing definitions or something similar. In this case, make sure that all header files are
available and that you specified their path correctly in the compilation command. To be
sure that everything is located correctly, extract a clean PHP source tree and use the
automatic build in the ext directory with the fresh files; this will guarantee a safe

compilation environment. If this fails, try manual compilation.

PHP might also complain about missing functions in your module. (This shouldn't happen
with the sample sources if you didn't modify them.) If the names of external functions
you're trying to access from your module are misspelled, they'll remain as "unlinked
symbols" in the symbol table. During dynamic loading and linkage by PHP, they won't
resolve because of the typing errors - there are no corresponding symbols in the main
binary. Look for incorrect declarations in your module file or incorrectly written external
references. Note that this problem is specific to dynamic loadable modules; it doesn't occur
with static modules. Errors in static modules show up at compile time.

Source Discussion

Now that you've got a safe build environment and you're able to include the modules into
PHP files, it's time to discuss how everything works.

Module Structure

All PHP modules follow a common structure:

• Header file inclusions (to include all required macros, API definitions, etc.)

• C declaration of exported functions (required to declare the Zend function block)

• Declaration of the Zend function block

• Declaration of the Zend module block

• Implementation of get_module()

• Implementation of all exported functions

Header File Inclusions

The only header file you really have to include for your modules is php.h, located in the
PHP directory. This file makes all macros and API definitions required to build new
modules available to your code.

Tip: It's good practice to create a separate header file for your module that contains
module-specific definitions. This header file should contain all the forward definitions for
exported functions and include php.h. If you created your module using ext_skel you
already have such a header file prepared.

Declaring Exported Functions

To declare functions that are to be exported (i.e., made available to PHP as new native
functions), Zend provides a set of macros. A sample declaration looks like this:
ZEND_FUNCTION (my_function);

ZEND_FUNCTION declares a new C function that complies with Zend's internal API. This
means that the function is of type void and accepts
INTERNAL_FUNCTION_PARAMETERS (another macro) as parameters. Additionally, it
prefixes the function name with zif. The immediately expanded version of the above
definitions would look like this:
void zif_my_function (INTERNAL_FUNCTION_PARAMETERS);
Expanding INTERNAL_FUNCTION_PARAMETERS results in the following:
void zif_my_function(int ht

 , zval * return_value

 , zval * this_ptr

 , int return_value_used

 , zend_executor_globals * executor_globals

);

Since the interpreter and executor core have been separated from the main PHP package,
a second API defining macros and function sets has evolved: the Zend API. As the Zend
API now handles quite a few of the responsibilities that previously belonged to PHP, a lot
of PHP functions have been reduced to macros aliasing to calls into the Zend API. The
recommended practice is to use the Zend API wherever possible, as the old API is only
preserved for compatibility reasons. For example, the types zval and pval are identical.
zval is Zend's definition; pval is PHP's definition (actually, pval is an alias for zval now). As
the macro INTERNAL_FUNCTION_PARAMETERS is a Zend macro, the above
declaration contains zval. When writing code, you should always use zval to conform to
the new Zend API.

The parameter list of this declaration is very important; you should keep these parameters
in mind (see Zend's Parameters to Functions Called from PHP for descriptions).

Zend's Parameters to Functions Called from PHP

Parameter Description

ht The number of arguments passed to the
Zend function. You should not touch this
directly, but instead use
ZEND_NUM_ARGS() to obtain the value.

return_value This variable is used to pass any return
values of your function back to PHP. Access
to this variable is best done using the
predefined macros. For a description of
these see below.

this_ptr Using this variable, you can gain access to
the object in which your function is
contained, if it's used within an object. Use
the function getThis() to obtain this pointer.

return_value_used This flag indicates whether an eventual
return value from this function will actually
be used by the calling script. 0 indicates that
the return value is not used; 1 indicates that

the caller expects a return value. Evaluation
of this flag can be done to verify correct
usage of the function as well as speed
optimizations in case returning a value
requires expensive operations (for an
example, see how array.c makes use of
this).

executor_globals This variable points to global settings of the
Zend engine. You'll find this useful when
creating new variables, for example (more
about this later). The executor globals can
also be introduced to your function by using
the macro TSRMLS_FETCH().

Declaration of the Zend Function Block

Now that you have declared the functions to be exported, you also have to introduce them
to Zend. Introducing the list of functions is done by using an array of zend_function_entry.
This array consecutively contains all functions that are to be made available externally,
with the function's name as it should appear in PHP and its name as defined in the C
source. Internally, zend_function_entry is defined as shown in Internal declaration of
zend_function_entry..

Example #26 - Internal declaration of zend_function_entry.

typedef struct _zend_function_entry {

 char *fname;

 void (*handler)(INTERNAL_FUNCTION_PARAMETERS);

 unsigned char *func_arg_types;

} zend_function_entry;

Entry Description

fname Denotes the function name as seen in PHP
(for example, fopen, mysql_connect, or, in
our example, first_module).

handler Pointer to the C function responsible for
handling calls to this function. For example,
see the standard macro
INTERNAL_FUNCTION_PARAMETERS
discussed earlier.

func_arg_types Allows you to mark certain parameters so
that they're forced to be passed by
reference. You usually should set this to

NULL.

In the example above, the declaration looks like this:
zend_function_entry firstmod_functions[] =

{

 ZEND_FE(first_module, NULL)

 {NULL, NULL, NULL}

};
You can see that the last entry in the list always has to be {NULL, NULL, NULL}. This marker
has to be set for Zend to know when the end of the list of exported functions is reached.

Note

You cannot use the predefined macros for the end marker, as these would try to refer to a
function named "NULL"!

The macro ZEND_FE (short for 'Zend Function Entry') simply expands to a structure entry in
zend_function_entry. Note that these macros introduce a special naming scheme to your
functions - your C functions will be prefixed with zif_, meaning that ZEND_FE(first_module)
will refer to a C function zif_first_module(). If you want to mix macro usage with hand-coded
entries (not a good practice), keep this in mind.

Tip: Compilation errors that refer to functions named zif_*() relate to functions defined with
ZEND_FE.

Macros for Defining Functions shows a list of all the macros that you can use to define
functions.

Macros for Defining Functions

Macro Name Description

ZEND_FE(name, arg_types) Defines a function entry of the name name
in zend_function_entry. Requires a
corresponding C function. arg_types needs
to be set to NULL. This function uses
automatic C function name generation by
prefixing the PHP function name with zif_.
For example, ZEND_FE("first_module",
NULL) introduces a function first_module()
to PHP and links it to the C function
zif_first_module(). Use in conjunction with
ZEND_FUNCTION.

ZEND_NAMED_FE(php_name, name,
arg_types)

Defines a function that will be available to
PHP by the name php_name and links it to
the corresponding C function name.
arg_types needs to be set to NULL. Use this
function if you don't want the automatic

name prefixing introduced by ZEND_FE.
Use in conjunction with
ZEND_NAMED_FUNCTION.

ZEND_FALIAS(name, alias, arg_types) Defines an alias named alias for name.
arg_types needs to be set to NULL. Doesn't
require a corresponding C function; refers to
the alias target instead.

PHP_FE(name, arg_types) Old PHP API equivalent of ZEND_FE.

PHP_NAMED_FE(runtime_name, name,
arg_types)

Old PHP API equivalent of
ZEND_NAMED_FE.

Note: You can't use ZEND_FE in conjunction with PHP_FUNCTION, or PHP_FE in
conjunction with ZEND_FUNCTION. However, it's perfectly legal to mix ZEND_FE and
ZEND_FUNCTION with PHP_FE and PHP_FUNCTION when staying with the same
macro set for each function to be declared. But mixing is not recommended; instead,
you're advised to use the ZEND_* macros only.

Declaration of the Zend Module Block

This block is stored in the structure zend_module_entry and contains all necessary
information to describe the contents of this module to Zend. You can see the internal
definition of this module in Internal declaration of zend_module_entry..

Example #27 - Internal declaration of zend_module_entry.

typedef struct _zend_module_entry zend_module_entry;

 struct _zend_module_entry {

 unsigned short size;

 unsigned int zend_api;

 unsigned char zend_debug;

 unsigned char zts;

 char *name;

 zend_function_entry *functions;

 int (*module_startup_func)(INIT_FUNC_ARGS);

 int (*module_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 int (*request_startup_func)(INIT_FUNC_ARGS);

 int (*request_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 void (*info_func)(ZEND_MODULE_INFO_FUNC_ARGS);

 char *version;

[Rest of the structure is not interesting here]

};

Entry Description

size, zend_api, zend_debug and zts Usually filled with the

"STANDARD_MODULE_HEADER", which
fills these four members with the size of the
whole zend_module_entry, the
ZEND_MODULE_API_NO, whether it is a
debug build or normal build (
ZEND_DEBUG) and if ZTS is enabled (
USING_ZTS).

name Contains the module name (for example,
"File functions", "Socket functions", "Crypt",
etc.). This name will show up in phpinfo(), in
the section "Additional Modules."

functions Points to the Zend function block, discussed
in the preceding section.

module_startup_func This function is called once upon module
initialization and can be used to do one-time
initialization steps (such as initial memory
allocation, etc.). To indicate a failure during
initialization, return FAILURE; otherwise,
SUCCESS. To mark this field as unused,
use NULL. To declare a function, use the
macro ZEND_MINIT.

module_shutdown_func This function is called once upon module
shutdown and can be used to do one-time
deinitialization steps (such as memory
deallocation). This is the counterpart to
module_startup_func(). To indicate a
failure during deinitialization, return
FAILURE; otherwise, SUCCESS. To mark
this field as unused, use NULL. To declare a
function, use the macro
ZEND_MSHUTDOWN.

request_startup_func This function is called once upon every page
request and can be used to do one-time
initialization steps that are required to
process a request. To indicate a failure
here, return FAILURE; otherwise,
SUCCESS. Note: As dynamic loadable
modules are loaded only on page requests,
the request startup function is called right
after the module startup function (both
initialization events happen at the same
time). To mark this field as unused, use
NULL. To declare a function, use the macro
ZEND_RINIT.

request_shutdown_func This function is called once after every page
request and works as counterpart to

request_startup_func(). To indicate a
failure here, return FAILURE; otherwise,
SUCCESS. Note: As dynamic loadable
modules are loaded only on page requests,
the request shutdown function is
immediately followed by a call to the module
shutdown handler (both deinitialization
events happen at the same time). To mark
this field as unused, use NULL. To declare a
function, use the macro
ZEND_RSHUTDOWN.

info_func When phpinfo() is called in a script, Zend
cycles through all loaded modules and calls
this function. Every module then has the
chance to print its own "footprint" into the
output page. Generally this is used to dump
environmental or statistical information. To
mark this field as unused, use NULL. To
declare a function, use the macro
ZEND_MINFO.

version The version of the module. You can use
NO_VERSION_YET if you don't want to
give the module a version number yet, but
we really recommend that you add a version
string here. Such a version string can look
like this (in chronological order): "2.5-dev",
"2.5RC1", "2.5" or "2.5pl3".

Remaining structure elements These are used internally and can be
prefilled by using the macro
STANDARD_MODULE_PROPERTIES_EX.
You should not assign any values to them.
Use
STANDARD_MODULE_PROPERTIES_EX
only if you use global startup and shutdown
functions; otherwise, use
STANDARD_MODULE_PROPERTIES
directly.

In our example, this structure is implemented as follows:
zend_module_entry firstmod_module_entry =

{

 STANDARD_MODULE_HEADER,

 "First Module",

 firstmod_functions,

 NULL, NULL, NULL, NULL, NULL,

 NO_VERSION_YET,

 STANDARD_MODULE_PROPERTIES,

};

This is basically the easiest and most minimal set of values you could ever use. The module
name is set to First Module, then the function list is referenced, after which all startup and
shutdown functions are marked as being unused.

For reference purposes, you can find a list of the macros involved in declared startup and
shutdown functions in Macros to Declare Startup and Shutdown Functions. These are not
used in our basic example yet, but will be demonstrated later on. You should make use of
these macros to declare your startup and shutdown functions, as these require special
arguments to be passed (INIT_FUNC_ARGS and SHUTDOWN_FUNC_ARGS), which are
automatically included into the function declaration when using the predefined macros. If you
declare your functions manually and the PHP developers decide that a change in the
argument list is necessary, you'll have to change your module sources to remain compatible.

Macros to Declare Startup and Shutdown Functions

Macro Description

ZEND_MINIT(module) Declares a function for module startup. The
generated name will be
zend_minit_<module> (for example,
zend_minit_first_module). Use in
conjunction with ZEND_MINIT_FUNCTION.

ZEND_MSHUTDOWN(module) Declares a function for module shutdown.
The generated name will be
zend_mshutdown_<module> (for example,
zend_mshutdown_first_module). Use in
conjunction with
ZEND_MSHUTDOWN_FUNCTION.

ZEND_RINIT(module) Declares a function for request startup. The
generated name will be
zend_rinit_<module> (for example,
zend_rinit_first_module). Use in conjunction
with ZEND_RINIT_FUNCTION.

ZEND_RSHUTDOWN(module) Declares a function for request shutdown.
The generated name will be
zend_rshutdown_<module> (for example,
zend_rshutdown_first_module). Use in
conjunction with
ZEND_RSHUTDOWN_FUNCTION.

ZEND_MINFO(module) Declares a function for printing module
information, used when phpinfo() is called.
The generated name will be
zend_info_<module> (for example,
zend_info_first_module). Use in conjunction
with ZEND_MINFO_FUNCTION.

Creation of get_module()

This function is special to all dynamic loadable modules. Take a look at the creation via the
ZEND_GET_MODULE macro first:

#if COMPILE_DL_FIRSTMOD

 ZEND_GET_MODULE(firstmod)

#endif

The function implementation is surrounded by a conditional compilation statement. This is
needed since the function get_module() is only required if your module is built as a
dynamic extension. By specifying a definition of COMPILE_DL_FIRSTMOD in the compiler
command (see above for a discussion of the compilation instructions required to build a
dynamic extension), you can instruct your module whether you intend to build it as a
dynamic extension or as a built-in module. If you want a built-in module, the
implementation of get_module() is simply left out.

get_module() is called by Zend at load time of the module. You can think of it as being
invoked by the dl() call in your script. Its purpose is to pass the module information block
back to Zend in order to inform the engine about the module contents.

If you don't implement a get_module() function in your dynamic loadable module, Zend
will compliment you with an error message when trying to access it.

Implementation of All Exported Functions

Implementing the exported functions is the final step. The example function in first_module
looks like this:
ZEND_FUNCTION(first_module)

{

 long parameter;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &parameter) ==
FAILURE) {

 return;

 }

 RETURN_LONG(parameter);

}
The function declaration is done using ZEND_FUNCTION, which corresponds to
ZEND_FE in the function entry table (discussed earlier).

After the declaration, code for checking and retrieving the function's arguments, argument
conversion, and return value generation follows (more on this later).

Summary

That's it, basically - there's nothing more to implementing PHP modules. Built-in modules
are structured similarly to dynamic modules, so, equipped with the information presented
in the previous sections, you'll be able to fight the odds when encountering PHP module
source files.

Now, in the following sections, read on about how to make use of PHP's internals to build
powerful extensions.

Accepting Arguments

One of the most important issues for language extensions is accepting and dealing with
data passed via arguments. Most extensions are built to deal with specific input data (or
require parameters to perform their specific actions), and function arguments are the only
real way to exchange data between the PHP level and the C level. Of course, there's also
the possibility of exchanging data using predefined global values (which is also discussed
later), but this should be avoided by all means, as it's extremely bad practice.

PHP doesn't make use of any formal function declarations; this is why call syntax is always
completely dynamic and never checked for errors. Checking for correct call syntax is left to
the user code. For example, it's possible to call a function using only one argument at one
time and four arguments the next time - both invocations are syntactically absolutely
correct.

Determining the Number of Arguments

Since PHP doesn't have formal function definitions with support for call syntax checking,
and since PHP features variable arguments, sometimes you need to find out with how
many arguments your function has been called. You can use the ZEND_NUM_ARGS
macro in this case. In previous versions of PHP, this macro retrieved the number of
arguments with which the function has been called based on the function's hash table
entry, ht, which is passed in the INTERNAL_FUNCTION_PARAMETERS list. As ht itself
now contains the number of arguments that have been passed to the function,
ZEND_NUM_ARGS has been stripped down to a dummy macro (see its definition in
zend_API.h). But it's still good practice to use it, to remain compatible with future changes
in the call interface. Note: The old PHP equivalent of this macro is ARG_COUNT.

The following code checks for the correct number of arguments:

if(ZEND_NUM_ARGS() != 2) WRONG_PARAM_COUNT;

If the function is not called with two arguments, it exits with an error message. The code
snippet above makes use of the tool macro WRONG_PARAM_COUNT, which can be
used to generate a standard error message like:"Warning: Wrong parameter count for
firstmodule() in /home/www/htdocs/firstmod.php on line 5"

This macro prints a default error message and then returns to the caller. Its definition can
also be found in zend_API.h and looks like this:
ZEND_API void wrong_param_count(void);

#define WRONG_PARAM_COUNT { wrong_param_count(); return; }
As you can see, it calls an internal function named wrong_param_count() that's
responsible for printing the warning. For details on generating customized error messages,
see the later section "Printing Information."

Retrieving Arguments

Note

New parameter parsing API

This chapter documents the new Zend parameter parsing API introduced by Andrei
Zmievski. It was introduced in the development stage between PHP 4.0.6 and 4.1.0 .

Parsing parameters is a very common operation and it may get a bit tedious. It would also
be nice to have standardized error checking and error messages. Since PHP 4.1.0, there
is a way to do just that by using the new parameter parsing API. It greatly simplifies the
process of receiving parameters, but it has a drawback in that it can't be used for functions
that expect variable number of parameters. But since the vast majority of functions do not
fall into those categories, this parsing API is recommended as the new standard way.

The prototype for parameter parsing function looks like this:
int zend_parse_parameters(int num_args TSRMLS_DC, char *type_spec, ...);
The first argument to this function is supposed to be the number of actual parameters
passed to your function, so ZEND_NUM_ARGS() can be used for that. The second
parameter should always be TSRMLS_CC macro. The third argument is a string that
specifies the number and types of arguments your function is expecting, similar to how
printf format string specifies the number and format of the output values it should operate
on. And finally the rest of the arguments are pointers to variables which should receive the
values from the parameters.

zend_parse_parameters() also performs type conversions whenever possible, so that
you always receive the data in the format you asked for. Any type of scalar can be
converted to another one, but conversions between complex types (arrays, objects, and
resources) and scalar types are not allowed.

If the parameters could be obtained successfully and there were no errors during type
conversion, the function will return SUCCESS, otherwise it will return FAILURE. The
function will output informative error messages, if the number of received parameters does
not match the requested number, or if type conversion could not be performed.

Here are some sample error messages:

 Warning - ini_get_all() requires at most 1 parameter, 2 given

 Warning - wddx_deserialize() expects parameter 1 to be string, array given

Of course each error message is accompanied by the filename and line number on which
it occurs.

Here is the full list of type specifiers:

• l - long

• d - double

• s - string (with possible null bytes) and its length

• b - boolean

• r - resource, stored in zval*

• a - array, stored in zval*

• o - object (of any class), stored in zval*

• O - object (of class specified by class entry), stored in zval*

• z - the actual zval*

The following characters also have a meaning in the specifier string:

• | - indicates that the remaining parameters are optional. The storage variables
corresponding to these parameters should be initialized to default values by the
extension, since they will not be touched by the parsing function if the parameters are
not passed.

• / - the parsing function will call SEPARATE_ZVAL_IF_NOT_REF() on the parameter it
follows, to provide a copy of the parameter, unless it's a reference.

• ! - the parameter it follows can be of specified type or NULL (only applies to a, o, O, r,
and z). If NULL value is passed by the user, the storage pointer will be set to NULL.

The best way to illustrate the usage of this function is through examples:
/* Gets a long, a string and its length, and a zval. */

long l;

char *s;

int s_len;

zval *param;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

 "lsz", &l, &s, &s_len, ¶m) == FAILURE) {

 return;

}

/* Gets an object of class specified by my_ce, and an optional double. */

zval *obj;

double d = 0.5;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

 "O|d", &obj, my_ce, &d) == FAILURE) {

 return;

}

/* Gets an object or null, and an array.

 If null is passed for object, obj will be set to NULL. */

zval *obj;

zval *arr;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "O!a", &obj, &arr) ==
FAILURE) {

 return;

}

/* Gets a separated array. */

zval *arr;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "a/", &arr) == FAILURE) {

 return;

}

/* Get only the first three parameters (useful for varargs functions). */

zval *z;

zend_bool b;

zval *r;

if (zend_parse_parameters(3, "zbr!", &z, &b, &r) == FAILURE) {

 return;

}

Note that in the last example we pass 3 for the number of received parameters, instead of
ZEND_NUM_ARGS(). What this lets us do is receive the least number of parameters if our
function expects a variable number of them. Of course, if you want to operate on the rest
of the parameters, you will have to use zend_get_parameters_array_ex() to obtain them.

The parsing function has an extended version that allows for an additional flags argument
that controls its actions.
int zend_parse_parameters_ex(int flags, int num_args TSRMLS_DC, char *type_spec,
...);

The only flag you can pass currently is ZEND_PARSE_PARAMS_QUIET, which instructs
the function to not output any error messages during its operation. This is useful for
functions that expect several sets of completely different arguments, but you will have to
output your own error messages.

For example, here is how you would get either a set of three longs or a string:
long l1, l2, l3;

char *s;

if (zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,

 ZEND_NUM_ARGS() TSRMLS_CC,

 "lll", &l1, &l2, &l3) == SUCCESS) {

 /* manipulate longs */

} else if (zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,

 ZEND_NUM_ARGS(), "s", &s, &s_len) == SUCCESS)
{

 /* manipulate string */

} else {

 php_error(E_WARNING, "%s() takes either three long values or a string as
argument",

 get_active_function_name(TSRMLS_C));

 return;

}

With all the abovementioned ways of receiving function parameters you should have a
good handle on this process. For even more example, look through the source code for
extensions that are shipped with PHP - they illustrate every conceivable situation.

Old way of retrieving arguments (deprecated)

Note

Deprecated parameter parsing API

This API is deprecated and superseded by the new ZEND parameter parsing API.

After having checked the number of arguments, you need to get access to the arguments
themselves. This is done with the help of zend_get_parameters_ex():
zval **parameter;

if(zend_get_parameters_ex(1, ¶meter) != SUCCESS)

 WRONG_PARAM_COUNT;
All arguments are stored in a zval container, which needs to be pointed to twice. The
snippet above tries to retrieve one argument and make it available to us via the parameter
pointer.

zend_get_parameters_ex() accepts at least two arguments. The first argument is the
number of arguments to retrieve (which should match the number of arguments with which
the function has been called; this is why it's important to check for correct call syntax). The
second argument (and all following arguments) are pointers to pointers to pointers to zval
s. (Confusing, isn't it?) All these pointers are required because Zend works internally with
**zval; to adjust a local **zval in our function, zend_get_parameters_ex() requires a
pointer to it.

The return value of zend_get_parameters_ex() can either be SUCCESS or FAILURE,
indicating (unsurprisingly) success or failure of the argument processing. A failure is most
likely related to an incorrect number of arguments being specified, in which case you
should exit with WRONG_PARAM_COUNT.

To retrieve more than one argument, you can use a similar snippet:
zval **param1, **param2, **param3, **param4;

if(zend_get_parameters_ex(4, ¶m1, ¶m2, ¶m3, ¶m4) != SUCCESS)

 WRONG_PARAM_COUNT;

zend_get_parameters_ex() only checks whether you're trying to retrieve too many
parameters. If the function is called with five arguments, but you're only retrieving three of
them with zend_get_parameters_ex(), you won't get an error but will get the first three
parameters instead. Subsequent calls of zend_get_parameters_ex() won't retrieve the
remaining arguments, but will get the same arguments again.

Dealing with a Variable Number of Arguments/Optional Parameters

If your function is meant to accept a variable number of arguments, the snippets just
described are sometimes suboptimal solutions. You have to create a line calling
zend_get_parameters_ex() for every possible number of arguments, which is often
unsatisfying.

For this case, you can use the function zend_get_parameters_array_ex(), which accepts
the number of parameters to retrieve and an array in which to store them:
zval **parameter_array[4];

/* get the number of arguments */

argument_count = ZEND_NUM_ARGS();

/* see if it satisfies our minimal request (2 arguments) */

/* and our maximal acceptance (4 arguments) */

if(argument_count < 2 || argument_count > 4)

 WRONG_PARAM_COUNT;

/* argument count is correct, now retrieve arguments */

if(zend_get_parameters_array_ex(argument_count, parameter_array) != SUCCESS)

 WRONG_PARAM_COUNT;
First, the number of arguments is checked to make sure that it's in the accepted range.
After that, zend_get_parameters_array_ex() is used to fill parameter_array with valid
pointers to the argument values.

A very clever implementation of this can be found in the code handling PHP's fsockopen()
located in ext/standard/fsock.c, as shown in PHP's implementation of variable arguments
in fsockopen().. Don't worry if you don't know all the functions used in this source yet; we'll
get to them shortly.

Example #28 - PHP's implementation of variable arguments in fsockopen().

pval **args[5];

int *sock=emalloc(sizeof(int));

int *sockp;

int arg_count=ARG_COUNT(ht);

int socketd = -1;

unsigned char udp = 0;

struct timeval timeout = { 60, 0 };

unsigned short portno;

unsigned long conv;

char *key = NULL;

FLS_FETCH();

if (arg_count > 5 || arg_count < 2 ||
zend_get_parameters_array_ex(arg_count,args)==FAILURE) {

 CLOSE_SOCK(1);

 WRONG_PARAM_COUNT;

}

switch(arg_count) {

 case 5:

 convert_to_double_ex(args[4]);

 conv = (unsigned long) (Z_DVAL_PP(args[4]) * 1000000.0);

 timeout.tv_sec = conv / 1000000;

 timeout.tv_usec = conv % 1000000;

 /* fall-through */

 case 4:

 if (!PZVAL_IS_REF(*args[3])) {

 php_error(E_WARNING,"error string argument to fsockopen not
passed by reference");

 }

 pval_copy_constructor(*args[3]);

 ZVAL_EMPTY_STRING(*args[3]);

 /* fall-through */

 case 3:

 if (!PZVAL_IS_REF(*args[2])) {

 php_error(E_WARNING,"error argument to fsockopen not passed by
reference");

 return;

 }

 ZVAL_LONG(*args[2], 0);

 break;

}

convert_to_string_ex(args[0]);

convert_to_long_ex(args[1]);

portno = (unsigned short) Z_LVAL_P(args[1]);

key = emalloc(Z_STRLEN_P(args[0]) + 10);

fsockopen() accepts two, three, four, or five parameters. After the obligatory variable
declarations, the function checks for the correct range of arguments. Then it uses a
fall-through mechanism in a switch() statement to deal with all arguments. The switch()
statement starts with the maximum number of arguments being passed (five). After that, it
automatically processes the case of four arguments being passed, then three, by omitting
the otherwise obligatory break keyword in all stages. After having processed the last case,
it exits the switch() statement and does the minimal argument processing needed if the
function is invoked with only two arguments.

This multiple-stage type of processing, similar to a stairway, allows convenient processing
of a variable number of arguments.

Accessing Arguments

To access arguments, it's necessary for each argument to have a clearly defined type.
Again, PHP's extremely dynamic nature introduces some quirks. Because PHP never does
any kind of type checking, it's possible for a caller to pass any kind of data to your
functions, whether you want it or not. If you expect an integer, for example, the caller might
pass an array, and vice versa - PHP simply won't notice.

To work around this, you have to use a set of API functions to force a type conversion on
every argument that's being passed (see Argument Conversion Functions).

Note: All conversion functions expect a **zval as parameter.

Argument Conversion Functions

Function Description

convert_to_boolean_ex() Forces conversion to a Boolean type.
Boolean values remain untouched. Longs,
doubles, and strings containing 0 as well as
NULL values will result in Boolean 0
(FALSE). Arrays and objects are converted
based on the number of entries or
properties, respectively, that they have.
Empty arrays and objects are converted to
FALSE; otherwise, to TRUE. All other
values result in a Boolean 1 (TRUE).

convert_to_long_ex() Forces conversion to a long, the default
integer type. NULL values, Booleans,
resources, and of course longs remain

untouched. Doubles are truncated. Strings
containing an integer are converted to their
corresponding numeric representation,
otherwise resulting in 0. Arrays and objects
are converted to 0 if empty, 1 otherwise.

convert_to_double_ex() Forces conversion to a double, the default
floating-point type. NULL values, Booleans,
resources, longs, and of course doubles
remain untouched. Strings containing a
number are converted to their corresponding
numeric representation, otherwise resulting
in 0.0. Arrays and objects are converted to
0.0 if empty, 1.0 otherwise.

convert_to_string_ex() Forces conversion to a string. Strings
remain untouched. NULL values are
converted to an empty string. Booleans
containing TRUE are converted to "1",
otherwise resulting in an empty string.
Longs and doubles are converted to their
corresponding string representation. Arrays
are converted to the string "Array" and
objects to the string "Object".

convert_to_array_ex(value) Forces conversion to an array. Arrays
remain untouched. Objects are converted to
an array by assigning all their properties to
the array table. All property names are used
as keys, property contents as values. NULL
values are converted to an empty array. All
other values are converted to an array that
contains the specific source value in the
element with the key 0.

convert_to_object_ex(value) Forces conversion to an object. Objects
remain untouched. NULL values are
converted to an empty object. Arrays are
converted to objects by introducing their
keys as properties into the objects and their
values as corresponding property contents
in the object. All other types result in an
object with the property scalar, having the
corresponding source value as content.

convert_to_null_ex(value) Forces the type to become a NULL value,
meaning empty.

Note

You can find a demonstration of the behavior in cross_conversion.php on the
accompanying CD-ROM.

Cross-conversion behavior of PHP.

Using these functions on your arguments will ensure type safety for all data that's passed
to you. If the supplied type doesn't match the required type, PHP forces dummy contents
on the resulting value (empty strings, arrays, or objects, 0 for numeric values, FALSE for
Booleans) to ensure a defined state.

Following is a quote from the sample module discussed previously, which makes use of
the conversion functions:
zval **parameter;

if((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, ¶meter) != SUCCESS))

{

 WRONG_PARAM_COUNT;

}

convert_to_long_ex(parameter);

RETURN_LONG(Z_LVAL_P(parameter));
After retrieving the parameter pointer, the parameter value is converted to a long (an
integer), which also forms the return value of this function. Understanding access to the
contents of the value requires a short discussion of the zval type, whose definition is
shown in PHP/Zend zval type definition..

Example #29 - PHP/Zend zval type definition.

typedef pval zval;

typedef struct _zval_struct zval;

typedef union _zvalue_value {

 long lval; /* long value */

 double dval; /* double value */

 struct {

 char *val;

 int len;

 } str;

 HashTable *ht; /* hash table value */

 struct {

 zend_class_entry *ce;

 HashTable *properties;

 } obj;

} zvalue_value;

struct _zval_struct {

 /* Variable information */

 zvalue_value value; /* value */

 unsigned char type; /* active type */

 unsigned char is_ref;

 short refcount;

};

Actually, pval (defined in php.h) is only an alias of zval (defined in zend.h), which in turn
refers to _zval_struct. This is a most interesting structure. _zval_struct is the "master"
structure, containing the value structure, type, and reference information. The substructure
zvalue_value is a union that contains the variable's contents. Depending on the variable's
type, you'll have to access different members of this union. For a description of both
structures, see Zend zval Structure, Zend zvalue_value Structure and Zend Variable Type
Constants.

Zend zval Structure

Entry Description

value Union containing this variable's contents.
See Zend zvalue_value Structure for a
description.

type Contains this variable's type. For a list of
available types, see Zend Variable Type
Constants.

is_ref 0 means that this variable is not a reference;
1 means that this variable is a reference to
another variable.

refcount The number of references that exist for this
variable. For every new reference to the
value stored in this variable, this counter is
increased by 1. For every lost reference, this
counter is decreased by 1. When the
reference counter reaches 0, no references
exist to this value anymore, which causes
automatic freeing of the value.

Zend zvalue_value Structure

Entry Description

lval Use this property if the variable is of the type
IS_LONG, IS_BOOLEAN, or
IS_RESOURCE.

dval Use this property if the variable is of the type
IS_DOUBLE.

str This structure can be used to access

variables of the type IS_STRING. The
member len contains the string length; the
member val points to the string itself. Zend
uses C strings; thus, the string length
contains a trailing 0x00.

ht This entry points to the variable's hash table
entry if the variable is an array.

obj Use this property if the variable is of the type
IS_OBJECT.

Zend Variable Type Constants

Constant Description

IS_NULL Denotes a NULL (empty) value.

IS_LONG A long (integer) value.

IS_DOUBLE A double (floating point) value.

IS_STRING A string.

IS_ARRAY Denotes an array.

IS_OBJECT An object.

IS_BOOL A Boolean value.

IS_RESOURCE A resource (for a discussion of resources,
see the appropriate section below).

IS_CONSTANT A constant (defined) value.

To access a long you access zval.value.lval, to access a double you use zval.value.dval,
and so on. Because all values are stored in a union, trying to access data with incorrect
union members results in meaningless output.

Accessing arrays and objects is a bit more complicated and is discussed later.

Dealing with Arguments Passed by Reference

If your function accepts arguments passed by reference that you intend to modify, you
need to take some precautions.

What we didn't say yet is that under the circumstances presented so far, you don't have
write access to any zval containers designating function parameters that have been

passed to you. Of course, you can change any zval containers that you created within your
function, but you mustn't change any zval s that refer to Zend-internal data!

We've only discussed the so-called *_ex() API so far. You may have noticed that the API
functions we've used are called zend_get_parameters_ex() instead of
zend_get_parameters(), convert_to_long_ex() instead of convert_to_long(), etc. The
*_ex() functions form the so-called new "extended" Zend API. They give a minor speed
increase over the old API, but as a tradeoff are only meant for providing read-only access.

Because Zend works internally with references, different variables may reference the
same value. Write access to a zval container requires this container to contain an isolated
value, meaning a value that's not referenced by any other containers. If a zval container
were referenced by other containers and you changed the referenced zval, you would
automatically change the contents of the other containers referencing this zval (because
they'd simply point to the changed value and thus change their own value as well).

zend_get_parameters_ex() doesn't care about this situation, but simply returns a pointer
to the desired zval containers, whether they consist of references or not. Its corresponding
function in the traditional API, zend_get_parameters(), immediately checks for referenced
values. If it finds a reference, it creates a new, isolated zval container; copies the
referenced data into this newly allocated space; and then returns a pointer to the new,
isolated value.

This action is called zval separation (or pval separation). Because the *_ex() API doesn't
perform zval separation, it's considerably faster, while at the same time disabling write
access.

To change parameters, however, write access is required. Zend deals with this situation in
a special way: Whenever a parameter to a function is passed by reference, it performs
automatic zval separation. This means that whenever you're calling a function like this in
PHP, Zend will automatically ensure that $parameter is being passed as an isolated value,
rendering it to a write-safe state:
my_function(&$parameter);

But this is not the case with regular parameters! All other parameters that are not passed
by reference are in a read-only state.

This requires you to make sure that you're really working with a reference - otherwise you
might produce unwanted results. To check for a parameter being passed by reference, you
can use the macro PZVAL_IS_REF. This macro accepts a zval* to check if it is a reference
or not. Examples are given in in Testing for referenced parameter passing..

Example #30 - Testing for referenced parameter passing.

zval *parameter;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z", ¶meter) ==
FAILURE)

 return;

/* check for parameter being passed by reference */

if (!PZVAL_IS_REF(parameter)) {

{

 zend_error(E_WARNING, "Parameter wasn't passed by reference");

 RETURN_NULL();

}

/* make changes to the parameter */

ZVAL_LONG(parameter, 10);

Assuring Write Safety for Other Parameters

You might run into a situation in which you need write access to a parameter that's
retrieved with zend_get_parameters_ex() but not passed by reference. For this case, you
can use the macro SEPARATE_ZVAL, which does a zval separation on the provided
container. The newly generated zval is detached from internal data and has only a local
scope, meaning that it can be changed or destroyed without implying global changes in the
script context:
zval **parameter;

/* retrieve parameter */

zend_get_parameters_ex(1, ¶meter);

/* at this stage, <parameter> still is connected */

/* to Zend's internal data buffers */

/* make <parameter> write-safe */

SEPARATE_ZVAL(parameter);

/* now we can safely modify <parameter> */

/* without implying global changes */
SEPARATE_ZVAL uses emalloc() to allocate the new zval container, which means that
even if you don't deallocate this memory yourself, it will be destroyed automatically upon
script termination. However, doing a lot of calls to this macro without freeing the resulting
containers will clutter up your RAM.

Note: As you can easily work around the lack of write access in the "traditional" API (with
zend_get_parameters() and so on), this API seems to be obsolete, and is not discussed
further in this chapter.

Creating Variables

When exchanging data from your own extensions with PHP scripts, one of the most
important issues is the creation of variables. This section shows you how to deal with the
variable types that PHP supports.

Overview

To create new variables that can be seen "from the outside" by the executing script, you
need to allocate a new zval container, fill this container with meaningful values, and then

introduce it to Zend's internal symbol table. This basic process is common to all variable
creations:

zval *new_variable;

/* allocate and initialize new container */

MAKE_STD_ZVAL(new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol table
*/

ZEND_SET_SYMBOL(EG(active_symbol_table), "new_variable_name", new_variable);

/* the variable is now accessible to the script by using $new_variable_name */

The macro MAKE_STD_ZVAL allocates a new zval container using ALLOC_ZVAL and
initializes it using INIT_ZVAL. As implemented in Zend at the time of this writing, initializing
means setting the reference count to 1 and clearing the is_ref flag, but this process could
be extended later - this is why it's a good idea to keep using MAKE_STD_ZVAL instead of
only using ALLOC_ZVAL. If you want to optimize for speed (and you don't have to
explicitly initialize the zval container here), you can use ALLOC_ZVAL, but this isn't
recommended because it doesn't ensure data integrity.

ZEND_SET_SYMBOL takes care of introducing the new variable to Zend's symbol table.
This macro checks whether the value already exists in the symbol table and converts the
new symbol to a reference if so (with automatic deallocation of the old zval container). This
is the preferred method if speed is not a crucial issue and you'd like to keep memory
usage low.

Note that ZEND_SET_SYMBOL makes use of the Zend executor globals via the macro
EG. By specifying EG(active_symbol_table), you get access to the currently active symbol
table, dealing with the active, local scope. The local scope may differ depending on
whether the function was invoked from within a function.

If you need to optimize for speed and don't care about optimal memory usage, you can
omit the check for an existing variable with the same value and instead force insertion into
the symbol table by using zend_hash_update():
zval *new_variable;

/* allocate and initialize new container */

MAKE_STD_ZVAL(new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol table
*/

zend_hash_update(

 EG(active_symbol_table),

 "new_variable_name",

 strlen("new_variable_name") + 1,

 &new_variable,

 sizeof(zval *),

 NULL

);
This is actually the standard method used in most modules.

The variables generated with the snippet above will always be of local scope, so they
reside in the context in which the function has been called. To create new variables in the
global scope, use the same method but refer to another symbol table:
zval *new_variable;

// allocate and initialize new container

MAKE_STD_ZVAL(new_variable);

//

// set type and variable contents here

//

// introduce this variable by the name "new_variable_name" into the global
symbol table

ZEND_SET_SYMBOL(&EG(symbol_table), "new_variable_name", new_variable);
The macro ZEND_SET_SYMBOL is now being called with a reference to the main, global
symbol table by referring EG(symbol_table).

Note: The active_symbol_table variable is a pointer, but symbol_table is not. This is why
you have to use EG(active_symbol_table) and &EG(symbol_table) as parameters to
ZEND_SET_SYMBOL - it requires a pointer.

Similarly, to get a more efficient version, you can hardcode the symbol table update:
zval *new_variable;

// allocate and initialize new container

MAKE_STD_ZVAL(new_variable);

//

// set type and variable contents here

//

// introduce this variable by the name "new_variable_name" into the global
symbol table

zend_hash_update(

 &EG(symbol_table),

 "new_variable_name",

 strlen("new_variable_name") + 1,

 &new_variable,

 sizeof(zval *),

 NULL

);
Creating variables with different scopes. shows a sample source that creates two variables
- local_variable with a local scope and global_variable with a global scope (see Figure
9.7). The full example can be found on the CD-ROM.

Note: You can see that the global variable is actually not accessible from within the
function. This is because it's not imported into the local scope using global
$global_variable; in the PHP source.

Example #31 - Creating variables with different scopes.

ZEND_FUNCTION(variable_creation)

{

 zval *new_var1, *new_var2;

 MAKE_STD_ZVAL(new_var1);

 MAKE_STD_ZVAL(new_var2);

 ZVAL_LONG(new_var1, 10);

 ZVAL_LONG(new_var2, 5);

 ZEND_SET_SYMBOL(EG(active_symbol_table), "local_variable", new_var1);

 ZEND_SET_SYMBOL(&EG(symbol_table), "global_variable", new_var2);

 RETURN_NULL();

}

Longs (Integers)

Now let's get to the assignment of data to variables, starting with longs. Longs are PHP's
integers and are very simple to store. Looking at the zval.value container structure
discussed earlier in this chapter, you can see that the long data type is directly contained
in the union, namely in the lval field. The corresponding type value for longs is IS_LONG
(see Creation of a long.).

Example #32 - Creation of a long.

zval *new_long;

MAKE_STD_ZVAL(new_long);

new_long->type = IS_LONG;

new_long->value.lval = 10;

Alternatively, you can use the macro ZVAL_LONG:
zval *new_long;

MAKE_STD_ZVAL(new_long);

ZVAL_LONG(new_long, 10);

Doubles (Floats)

Doubles are PHP's floats and are as easy to assign as longs, because their value is also
contained directly in the union. The member in the zval.value container is dval; the
corresponding type is IS_DOUBLE.
zval *new_double;

MAKE_STD_ZVAL(new_double);

new_double->type = IS_DOUBLE;

new_double->value.dval = 3.45;
Alternatively, you can use the macro ZVAL_DOUBLE:
zval *new_double;

MAKE_STD_ZVAL(new_double);

ZVAL_DOUBLE(new_double, 3.45);

Strings

Strings need slightly more effort. As mentioned earlier, all strings that will be associated
with Zend's internal data structures need to be allocated using Zend's own
memory-management functions. Referencing of static strings or strings allocated with
standard routines is not allowed. To assign strings, you have to access the structure str in
the zval.value container. The corresponding type is IS_STRING:
zval *new_string;

char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);

new_string->type = IS_STRING;

new_string->value.str.len = strlen(string_contents);

new_string->value.str.val = estrdup(string_contents);

 </programlisting>

 Note the usage of Zend's <function>estrdup</function> here.

 Of course, you can also use the predefined macro

 <literal>ZVAL_STRING</literal>:

 <programlisting>

zval *new_string;

char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);

ZVAL_STRING(new_string, string_contents, 1);
ZVAL_STRING accepts a third parameter that indicates whether the supplied string
contents should be duplicated (using estrdup()). Setting this parameter to 1 causes the
string to be duplicated; 0 simply uses the supplied pointer for the variable contents. This is
most useful if you want to create a new variable referring to a string that's already
allocated in Zend internal memory.

If you want to truncate the string at a certain position or you already know its length, you
can use ZVAL_STRINGL(zval, string, length, duplicate), which accepts an explicit string
length to be set for the new string. This macro is faster than ZVAL_STRING and also
binary-safe.

To create empty strings, set the string length to 0 and use empty_string as contents:
new_string->type = IS_STRING;

new_string->value.str.len = 0;

new_string->value.str.val = empty_string;
Of course, there's a macro for this as well (ZVAL_EMPTY_STRING):
MAKE_STD_ZVAL(new_string);

ZVAL_EMPTY_STRING(new_string);

Booleans

Booleans are created just like longs, but have the type IS_BOOL. Allowed values in lval
are 0 and 1:
zval *new_bool;

MAKE_STD_ZVAL(new_bool);

new_bool->type = IS_BOOL;

new_bool->value.lval = 1;
The corresponding macros for this type are ZVAL_BOOL (allowing specification of the
value) as well as ZVAL_TRUE and ZVAL_FALSE (which explicitly set the value to TRUE
and FALSE, respectively).

Arrays

Arrays are stored using Zend's internal hash tables, which can be accessed using the
zend_hash_*() API. For every array that you want to create, you need a new hash table
handle, which will be stored in the ht member of the zval.value container.

There's a whole API solely for the creation of arrays, which is extremely handy. To start a
new array, you call array_init().
zval *new_array;

MAKE_STD_ZVAL(new_array);

array_init(new_array);
array_init() always returns SUCCESS.

To add new elements to the array, you can use numerous functions, depending on what
you want to do. Zend's API for Associative Arrays, Zend's API for Indexed Arrays, Part 1
and Zend's API for Indexed Arrays, Part 2 describe these functions. All functions return
FAILURE on failure and SUCCESS on success.

Zend's API for Associative Arrays

Function Description

add_assoc_long(zval *array, char *key,
long n);()

Adds an element of type long.

add_assoc_unset(zval *array, char
*key);()

Adds an unset element.

add_assoc_bool(zval *array, char *key,
int b);()

Adds a Boolean element.

add_assoc_resource(zval *array, char
*key, int r);()

Adds a resource to the array.

add_assoc_double(zval *array, char *key,
double d);()

Adds a floating-point value.

add_assoc_string(zval *array, char *key,
char *str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_assoc_stringl(zval *array, char *key,
char *str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. Otherwise, behaves like
add_assoc_string().

add_assoc_zval(zval *array, char *key,
zval *value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

Zend's API for Indexed Arrays, Part 1

Function Description

add_index_long(zval *array, uint idx, long
n);()

Adds an element of type long.

add_index_unset(zval *array, uint idx);() Adds an unset element.

add_index_bool(zval *array, uint idx, int
b);()

Adds a Boolean element.

add_index_resource(zval *array, uint idx,
int r);()

Adds a resource to the array.

add_index_double(zval *array, uint idx,
double d);()

Adds a floating-point value.

add_index_string(zval *array, uint idx,
char *str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_index_stringl(zval *array, uint idx,
char *str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

add_index_zval(zval *array, uint idx, zval
*value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

Zend's API for Indexed Arrays, Part 2

Function Description

add_next_index_long(zval *array, long
n);()

Adds an element of type long.

add_next_index_unset(zval *array);() Adds an unset element.

add_next_index_bool(zval *array, int b);() Adds a Boolean element.

add_next_index_resource(zval *array, int
r);()

Adds a resource to the array.

add_next_index_double(zval *array,
double d);()

Adds a floating-point value.

add_next_index_string(zval *array, char
*str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_next_index_stringl(zval *array, char
*str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

add_next_index_zval(zval *array, zval
*value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

All these functions provide a handy abstraction to Zend's internal hash API. Of course, you
can also use the hash functions directly - for example, if you already have a zval container
allocated that you want to insert into an array. This is done using zend_hash_update() for
associative arrays (see Adding an element to an associative array.) and
zend_hash_index_update() for indexed arrays (see Adding an element to an indexed
array.):

Example #33 - Adding an element to an associative array.

zval *new_array, *new_element;

char *key = "element_key";

MAKE_STD_ZVAL(new_array);

MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_update(new_array->value.ht, key, strlen(key) + 1, (void
*)&new_element, sizeof(zval *), NULL) == FAILURE)

{

 // do error handling here

}

Example #34 - Adding an element to an indexed array.

zval *new_array, *new_element;

int key = 2;

MAKE_STD_ZVAL(new_array);

MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_index_update(new_array->value.ht, key, (void
*)&new_element, sizeof(zval *), NULL) == FAILURE)

{

 // do error handling here

}

To emulate the functionality of add_next_index_*(), you can use this:

zend_hash_next_index_insert(ht, zval **new_element, sizeof(zval *), NULL)

Note: To return arrays from a function, use array_init() and all following actions on the
predefined variable return_value (given as argument to your exported function; see the
earlier discussion of the call interface). You do not have to use MAKE_STD_ZVAL on this.

Tip: To avoid having to write new_array->value.ht every time, you can use
HASH_OF(new_array), which is also recommended for compatibility and style reasons.

Objects

Since objects can be converted to arrays (and vice versa), you might have already
guessed that they have a lot of similarities to arrays in PHP. Objects are maintained with
the same hash functions, but there's a different API for creating them.

To initialize an object, you use the function object_init():
zval *new_object;

MAKE_STD_ZVAL(new_object);

if(object_init(new_object) != SUCCESS)

{

 // do error handling here

}
You can use the functions described in Zend's API for Object Creation to add members to
your object.

Zend's API for Object Creation

Function Description

add_property_long(zval *object, char
*key, long l);()

Adds a long to the object.

add_property_unset(zval *object, char
*key);()

Adds an unset property to the object.

add_property_bool(zval *object, char
*key, int b);()

Adds a Boolean to the object.

add_property_resource(zval *object, char
*key, long r);()

Adds a resource to the object.

add_property_double(zval *object, char
*key, double d);()

Adds a double to the object.

add_property_string(zval *object, char
*key, char *str, int duplicate);()

Adds a string to the object.

add_property_stringl(zval *object, char
*key, char *str, uint length, int
duplicate);()

Adds a string of the specified length to the
object. This function is faster than
add_property_string() and also
binary-safe.

add_property_zval(zval *obect, char *key,
zval *container):()

Adds a zval container to the object. This is
useful if you have to add properties which
aren't simple types like integers or strings
but arrays or other objects.

Resources

Resources are a special kind of data type in PHP. The term resources doesn't really refer
to any special kind of data, but to an abstraction method for maintaining any kind of
information. Resources are kept in a special resource list within Zend. Each entry in the list
has a correspondending type definition that denotes the kind of resource to which it refers.
Zend then internally manages all references to this resource. Access to a resource is
never possible directly - only via a provided API. As soon as all references to a specific
resource are lost, a corresponding shutdown function is called.

For example, resources are used to store database links and file descriptors. The de facto
standard implementation can be found in the MySQL module, but other modules such as
the Oracle module also make use of resources.

Note

In fact, a resource can be a pointer to anything you need to handle in your functions
(e.g. pointer to a structure) and the user only has to pass a single resource variable to
your function.

To create a new resource you need to register a resource destruction handler for it. Since
you can store any kind of data as a resource, Zend needs to know how to free this
resource if its not longer needed. This works by registering your own resource destruction
handler to Zend which in turn gets called by Zend whenever your resource can be freed
(whether manually or automatically). Registering your resource handler within Zend
returns you the resource type handle for that resource. This handle is needed whenever
you want to access a resource of this type later and is most of time stored in a global static
variable within your extension. There is no need to worry about thread safety here
because you only register your resource handler once during module initialization.

The Zend function to register your resource handler is defined as:
ZEND_API int zend_register_list_destructors_ex(rsrc_dtor_func_t ld,
rsrc_dtor_func_t pld, char *type_name, int module_number);

There are two different kinds of resource destruction handlers you can pass to this
function: a handler for normal resources and a handler for persistent resources. Persistent
resources are for example used for database connection. When registering a resource,
either of these handlers must be given. For the other handler just pass NULL.

zend_register_list_destructors_ex() accepts the following parameters:

ld Normal resource destruction handler
callback

pld Pesistent resource destruction handler
callback

type_name A string specifying the name of your
resource. It's always a good thing to specify
a unique name within PHP for the resource
type so when the user for example calls
var_dump($resource); he also gets the
name of the resource.

module_number The module_number is automatically
available in your PHP_MINIT_FUNCTION
function and therefore you just pass it over.

The return value is a unique integer ID for your resource type.

The resource destruction handler (either normal or persistent resources) has the following
prototype:
void resource_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC);
The passed rsrc is a pointer to the following structure:
typedef struct _zend_rsrc_list_entry {

 void *ptr;

 int type;

 int refcount;

} zend_rsrc_list_entry;
The member void *ptr is the actual pointer to your resource.

Now we know how to start things, we define our own resource we want register within
Zend. It is only a simple structure with two integer members:
typedef struct {

 int resource_link;

 int resource_type;

} my_resource;
Our resource destruction handler is probably going to look something like this:
void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

 // You most likely cast the void pointer to your structure type

 my_resource *my_rsrc = (my_resource *) rsrc->ptr;

 // Now do whatever needs to be done with you resource. Closing

 // Files, Sockets, freeing additional memory, etc.

 // Also, don't forget to actually free the memory for your resource too!

 do_whatever_needs_to_be_done_with_the_resource(my_rsrc);

}

Note

One important thing to mention: If your resource is a rather complex structure which
also contains pointers to memory you allocated during runtime you have to free them
before freeing the resource itself!

Now that we have defined

• what our resource is and

• our resource destruction handler

we can go on and do the rest of the steps:

• create a global variable within the extension holding the resource ID so it can be
accessed from every function which needs it

• define the resource name

• write the resource destruction handler

• and finally register the handler

// Somewhere in your extension, define the variable for your registered
resources.

 // If you wondered what 'le' stands for: it simply means 'list entry'.

 static int le_myresource;

 // It's nice to define your resource name somewhere

 #define le_myresource_name "My type of resource"

 [...]

 // Now actually define our resource destruction handler

 void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

 my_resource *my_rsrc = (my_resource *) rsrc->ptr;

 do_whatever_needs_to_be_done_with_the_resource(my_rsrc);

 }

 [...]

 PHP_MINIT_FUNCTION(my_extension) {

 // Note that 'module_number' is already provided through the

 // PHP_MINIT_FUNCTION() function definition.

 le_myresource = zend_register_list_destructors_ex(my_destruction_handler,
NULL, le_myresource_name, module_number);

 // You can register additional resources, initialize

 // your global vars, constants, whatever.

 }

To actually register a new resource you use can either use the zend_register_resource()
function or the ZEND_REGISTER_RESOURE() macro, both defined in zend_list.h .
Although the arguments for both map 1:1 it's a good idea to always use macros to be
upwards compatible:
int ZEND_REGISTER_RESOURCE(zval *rsrc_result, void *rsrc_pointer, int
rsrc_type);

rsrc_result This is an already initialized zval * container.

rsrc_pointer Your resource pointer you want to store.

rsrc_type The type which you received when you
registered the resource destruction handler.
If you followed the naming scheme this
would be le_myresource.

The return value is a unique integer identifier for that resource.

What is really going on when you register a new resource is it gets inserted in an internal
list in Zend and the result is just stored in the given zval * container:
rsrc_id = zend_list_insert(rsrc_pointer, rsrc_type);

 if (rsrc_result) {

 rsrc_result->value.lval = rsrc_id;

 rsrc_result->type = IS_RESOURCE;

 }

 return rsrc_id;
The returned rsrc_id uniquely identifies the newly registered resource. You can use the
macro RETURN_RESOURE to return it to the user:
 RETURN_RESOURCE(rsrc_id)

Note

It is common practice that if you want to return the resource immediately to the user
you specify the return_value as the zval * container.

Zend now keeps track of all references to this resource. As soon as all references to the
resource are lost, the destructor that you previously registered for this resource is called.
The nice thing about this setup is that you don't have to worry about memory leakages

introduced by allocations in your module - just register all memory allocations that your
calling script will refer to as resources. As soon as the script decides it doesn't need them
anymore, Zend will find out and tell you.

Now that the user got his resource, at some point he is passing it back to one of your
functions. The value.lval inside the zval * container contains the key to your resource and
thus can be used to fetch the resource with the following macro:
ZEND_FETCH_RESOURCE:
ZEND_FETCH_RESOURCE(rsrc, rsrc_type, rsrc_id, default_rsrc_id,
resource_type_name, resource_type)

rsrc This is your pointer which will point to your
previously registered resource.

rsrc_type This is the typecast argument for your
pointer, e.g. myresource *.

rsrc_id This is the address of the zval * container
the user passed to your function, e.g.
&z_resource if zval *z_resource is given.

default_rsrc_id This integer specifies the default resource
ID if no resource could be fetched or -1.

resource_type_name This is the name of the requested resource.
It's a string and is used when the resource
can't be found or is invalid to form a
meaningful error message.

resource_type The resource_type you got back when
registering the resource destruction handler.
In our example this was le_myresource.

This macro has no return value. It is for the developers convenience and takes care of
TSRMLS arguments passing and also does check if the resource could be fetched. It
throws a warning message and returns the current PHP function with NULL if there was a
problem retrieving the resource.

To force removal of a resource from the list, use the function zend_list_delete(). You can
also force the reference count to increase if you know that you're creating another
reference for a previously allocated value (for example, if you're automatically reusing a
default database link). For this case, use the function zend_list_addref(). To search for
previously allocated resource entries, use zend_list_find(). The complete API can be
found in zend_list.h.

Macros for Automatic Global Variable Creation

In addition to the macros discussed earlier, a few macros allow easy creation of simple
global variables. These are nice to know in case you want to introduce global flags, for
example. This is somewhat bad practice, but Table Macros for Global Variable Creation

describes macros that do exactly this task. They don't need any zval allocation; you simply
have to supply a variable name and value.

Macros for Global Variable Creation

Macro Description

SET_VAR_STRING(name, value) Creates a new string.

SET_VAR_STRINGL(name, value, length) Creates a new string of the specified length.
This macro is faster than
SET_VAR_STRING and also binary-safe.

SET_VAR_LONG(name, value) Creates a new long.

SET_VAR_DOUBLE(name, value) Creates a new double.

Creating Constants

Zend supports the creation of true constants (as opposed to regular variables). Constants
are accessed without the typical dollar sign ($) prefix and are available in all scopes.
Examples include TRUE and FALSE, to name just two.

To create your own constants, you can use the macros in Macros for Creating Constants.
All the macros create a constant with the specified name and value.

You can also specify flags for each constant:

• CONST_CS - This constant's name is to be treated as case sensitive.

• CONST_PERSISTENT - This constant is persistent and won't be "forgotten" when the
current process carrying this constant shuts down.

To use the flags, combine them using a inary OR:
// register a new constant of type "long"

 REGISTER_LONG_CONSTANT("NEW_MEANINGFUL_CONSTANT", 324, CONST_CS |

 CONST_PERSISTENT);
There are two types of macros - REGISTER_*_CONSTANT and
REGISTER_MAIN_*_CONSTANT. The first type creates constants bound to the current
module. These constants are dumped from the symbol table as soon as the module that
registered the constant is unloaded from memory. The second type creates constants that
remain in the symbol table independently of the module.

Macros for Creating Constants

Macro Description

REGISTER_LONG_CONSTANT(name,
value, flags)

Registers a new constant of type long.

REGISTER_MAIN_LONG_CONSTANT(na
me, value, flags)

REGISTER_DOUBLE_CONSTANT(name,
value, flags)
REGISTER_MAIN_DOUBLE_CONSTANT(
name, value, flags)

Registers a new constant of type double.

REGISTER_STRING_CONSTANT(name,
value, flags)
REGISTER_MAIN_STRING_CONSTANT(n
ame, value, flags)

Registers a new constant of type string. The
specified string must reside in Zend's
internal memory.

REGISTER_STRINGL_CONSTANT(name,
value, length, flags)
REGISTER_MAIN_STRINGL_CONSTANT(
name, value, length, flags)

Registers a new constant of type string. The
string length is explicitly set to length. The
specified string must reside in Zend's
internal memory.

Duplicating Variable Contents: The Copy Constructor

Sooner or later, you may need to assign the contents of one zval container to another.
This is easier said than done, since the zval container doesn't contain only type
information, but also references to places in Zend's internal data. For example, depending
on their size, arrays and objects may be nested with lots of hash table entries. By
assigning one zval to another, you avoid duplicating the hash table entries, using only a
reference to them (at most).

To copy this complex kind of data, use the copy constructor. Copy constructors are
typically defined in languages that support operator overloading, with the express purpose
of copying complex types. If you define an object in such a language, you have the
possibility of overloading the "=" operator, which is usually responsible for assigning the
contents of the rvalue (result of the evaluation of the right side of the operator) to the lvalue
(same for the left side).

Overloading means assigning a different meaning to this operator, and is usually used to
assign a function call to an operator. Whenever this operator would be used on such an
object in a program, this function would be called with the lvalue and rvalue as parameters.
Equipped with that information, it can perform the operation it intends the "=" operator to
have (usually an extended form of copying).

This same form of "extended copying" is also necessary for PHP's zval containers. Again,
in the case of an array, this extended copying would imply re-creation of all hash table
entries relating to this array. For strings, proper memory allocation would have to be
assured, and so on.

Zend ships with such a function, called zend_copy_ctor() (the previous PHP equivalent
was pval_copy_constructor()).

A most useful demonstration is a function that accepts a complex type as argument,
modifies it, and then returns the argument:

zval *parameter;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z", &parameter) ==
FAILURE)

 return;

}

// do modifications to the parameter here

// now we want to return the modified container:

*return_value = *parameter;

zval_copy_ctor(return_value);

The first part of the function is plain-vanilla argument retrieval. After the (left out)
modifications, however, it gets interesting: The container of parameter is assigned to the
(predefined) return_value container. Now, in order to effectively duplicate its contents, the
copy constructor is called. The copy constructor works directly with the supplied argument,
and the standard return values are FAILURE on failure and SUCCESS on success.

If you omit the call to the copy constructor in this example, both parameter and
return_value would point to the same internal data, meaning that return_value would be an
illegal additional reference to the same data structures. Whenever changes occurred in the
data that parameter points to, return_value might be affected. Thus, in order to create
separate copies, the copy constructor must be used.

The copy constructor's counterpart in the Zend API, the destructor zval_dtor(), does the
opposite of the constructor.

Returning Values

Returning values from your functions to PHP was described briefly in an earlier section;
this section gives the details. Return values are passed via the return_value variable,
which is passed to your functions as argument. The return_value argument consists of a
zval container (see the earlier discussion of the call interface) that you can freely modify.
The container itself is already allocated, so you don't have to run MAKE_STD_ZVAL on it.
Instead, you can access its members directly.

To make returning values from functions easier and to prevent hassles with accessing the
internal structures of the zval container, a set of predefined macros is available (as usual).
These macros automatically set the correspondent type and value, as described in
Predefined Macros for Returning Values from a Function and Predefined Macros for
Setting the Return Value of a Function.

Note

The macros in Predefined Macros for Returning Values from a Function automatically
return from your function, those in Predefined Macros for Setting the Return Value of a
Function only set the return value; they don't return from your function.

Predefined Macros for Returning Values from a Function

Macro Description

RETURN_RESOURCE(resource) Returns a resource.

RETURN_BOOL(bool) Returns a Boolean.

RETURN_NULL() Returns nothing (a NULL value).

RETURN_LONG(long) Returns a long.

RETURN_DOUBLE(double) Returns a double.

RETURN_STRING(string, duplicate) Returns a string. The duplicate flag indicates
whether the string should be duplicated
using estrdup().

RETURN_STRINGL(string, length,
duplicate)

Returns a string of the specified length;
otherwise, behaves like RETURN_STRING.
This macro is faster and binary-safe,
however.

RETURN_EMPTY_STRING() Returns an empty string.

RETURN_FALSE Returns Boolean false.

RETURN_TRUE Returns Boolean true.

Predefined Macros for Setting the Return Value of a Function

Macro Description

RETVAL_RESOURCE(resource) Sets the return value to the specified
resource.

RETVAL_BOOL(bool) Sets the return value to the specified
Boolean value.

RETVAL_NULL Sets the return value to NULL.

RETVAL_LONG(long) Sets the return value to the specified long.

RETVAL_DOUBLE(double) Sets the return value to the specified
double.

RETVAL_STRING(string, duplicate) Sets the return value to the specified string
and duplicates it to Zend internal memory if
desired (see also RETURN_STRING).

RETVAL_STRINGL(string, length, duplicate) Sets the return value to the specified string
and forces the length to become length (see

also RETVAL_STRING). This macro is
faster and binary-safe, and should be used
whenever the string length is known.

RETVAL_EMPTY_STRING Sets the return value to an empty string.

RETVAL_FALSE Sets the return value to Boolean false.

RETVAL_TRUE Sets the return value to Boolean true.

Complex types such as arrays and objects can be returned by using array_init() and
object_init(), as well as the corresponding hash functions on return_value. Since these
types cannot be constructed of trivial information, there are no predefined macros for
them.

Printing Information

Often it's necessary to print messages to the output stream from your module, just as
print() would be used within a script. PHP offers functions for most generic tasks, such as
printing warning messages, generating output for phpinfo(), and so on. The following
sections provide more details. Examples of these functions can be found on the CD-ROM.

zend_printf()

zend_printf() works like the standard printf(), except that it prints to Zend's output stream.

zend_error()

zend_error() can be used to generate error messages. This function accepts two
arguments; the first is the error type (see zend_errors.h), and the second is the error
message.
zend_error(E_WARNING, "This function has been called with empty arguments");
Zend's Predefined Error Messages. shows a list of possible values (see below). These
values are also referred to in php.ini. Depending on which error type you choose, your
messages will be logged.

Zend's Predefined Error Messages.

Error Description

E_ERROR Signals an error and terminates execution of
the script immediately.

E_WARNING Signals a generic warning. Execution
continues.

E_PARSE Signals a parser error. Execution continues.

E_NOTICE Signals a notice. Execution continues. Note
that by default the display of this type of
error messages is turned off in php.ini.

E_CORE_ERROR Internal error by the core; shouldn't be used
by user-written modules.

E_COMPILE_ERROR Internal error by the compiler; shouldn't be
used by user-written modules.

E_COMPILE_WARNING Internal warning by the compiler; shouldn't
be used by user-written modules.

Display of warning messages in the browser.

Including Output in phpinfo()

After creating a real module, you'll want to show information about the module in phpinfo()
(in addition to the module name, which appears in the module list by default). PHP allows
you to create your own section in the phpinfo() output with the ZEND_MINFO() function.
This function should be placed in the module descriptor block (discussed earlier) and is
always called whenever a script calls phpinfo().

PHP automatically prints a section in phpinfo() for you if you specify the ZEND_MINFO
function, including the module name in the heading. Everything else must be formatted
and printed by you.

Typically, you can print an HTML table header using php_info_print_table_start() and
then use the standard functions php_info_print_table_header() and
php_info_print_table_row(). As arguments, both take the number of columns (as
integers) and the column contents (as strings). Source code and screenshot for output in
phpinfo. shows a source example and its output. To print the table footer, use
php_info_print_table_end().

Example #35 - Source code and screenshot for output in phpinfo().

php_info_print_table_start();

php_info_print_table_header(2, "First column", "Second column");

php_info_print_table_row(2, "Entry in first row", "Another entry");

php_info_print_table_row(2, "Just to fill", "another row here");

php_info_print_table_end();

Execution Information

You can also print execution information, such as the current file being executed. The

name of the function currently being executed can be retrieved using the function
get_active_function_name(). This function returns a pointer to the function name and
doesn't accept any arguments. To retrieve the name of the file currently being executed,
use zend_get_executed_filename(). This function accesses the executor globals, which
are passed to it using the TSRMLS_C macro. The executor globals are automatically
available to every function that's called directly by Zend (they're part of the
INTERNAL_FUNCTION_PARAMETERS described earlier in this chapter). If you want to
access the executor globals in another function that doesn't have them available
automatically, call the macro TSRMLS_FETCH() once in that function; this will introduce
them to your local scope.

Finally, the line number currently being executed can be retrieved using the function
zend_get_executed_lineno(). This function also requires the executor globals as
arguments. For examples of these functions, see Printing execution information..

Example #36 - Printing execution information.

zend_printf("The name of the current function is %s
",
get_active_function_name(TSRMLS_C));

zend_printf("The file currently executed is %s
",
zend_get_executed_filename(TSRMLS_C));

zend_printf("The current line being executed is %i
",
zend_get_executed_lineno(TSRMLS_C));

Startup and Shutdown Functions

Startup and shutdown functions can be used for one-time initialization and deinitialization
of your modules. As discussed earlier in this chapter (see the description of the Zend
module descriptor block), there are module, and request startup and shutdown events.

The module startup and shutdown functions are called whenever a module is loaded and
needs initialization; the request startup and shutdown functions are called every time a
request is processed (meaning that a file is being executed).

For dynamic extensions, module and request startup/shutdown events happen at the
same time.

Declaration and implementation of these functions can be done with macros; see the
earlier section "Declaration of the Zend Module Block" for details.

Calling User Functions

You can call user functions from your own modules, which is very handy when
implementing callbacks; for example, for array walking, searching, or simply for
event-based programs.

User functions can be called with the function call_user_function_ex(). It requires a hash

value for the function table you want to access, a pointer to an object (if you want to call a
method), the function name, return value, number of arguments, argument array, and a
flag indicating whether you want to perform zval separation.

ZEND_API int call_user_function_ex(HashTable *function_table, zval *object,

zval *function_name, zval **retval_ptr_ptr,

int param_count, zval **params[],

int no_separation);

Note that you don't have to specify both function_table and object; either will do. If you
want to call a method, you have to supply the object that contains this method, in which
case call_user_function() automatically sets the function table to this object's function
table. Otherwise, you only need to specify function_table and can set object to NULL.

Usually, the default function table is the "root" function table containing all function entries.
This function table is part of the compiler globals and can be accessed using the macro
CG. To introduce the compiler globals to your function, call the macro TSRMLS_FETCH
once.

The function name is specified in a zval container. This might be a bit surprising at first, but
is quite a logical step, since most of the time you'll accept function names as parameters
from calling functions within your script, which in turn are contained in zval containers
again. Thus, you only have to pass your arguments through to this function. This zval must
be of type IS_STRING.

The next argument consists of a pointer to the return value. You don't have to allocate
memory for this container; the function will do so by itself. However, you have to destroy
this container (using zval_dtor()) afterward!

Next is the parameter count as integer and an array containing all necessary parameters.
The last argument specifies whether the function should perform zval separation - this
should always be set to 0. If set to 1, the function consumes less memory but fails if any of
the parameters need separation.

Calling user functions. shows a small demonstration of calling a user function. The code
calls a function that's supplied to it as argument and directly passes this function's return
value through as its own return value. Note the use of the constructor and destructor calls
at the end - it might not be necessary to do it this way here (since they should be separate
values, the assignment might be safe), but this is bulletproof.

Example #37 - Calling user functions.

zval **function_name;

zval *retval;

if((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, &function_name) !=
SUCCESS))

{

 WRONG_PARAM_COUNT;

}

if((*function_name)->type != IS_STRING)

{

 zend_error(E_ERROR, "Function requires string argument");

}

TSRMSLS_FETCH();

if(call_user_function_ex(CG(function_table), NULL, *function_name, &retval,
0, NULL, 0) != SUCCESS)

{

 zend_error(E_ERROR, "Function call failed");

}

zend_printf("We have %i as type\n", retval->type);

*return_value = *retval;

zval_copy_ctor(return_value);

zval_ptr_dtor(&retval);

<?php

dl("call_userland.so");

function test_function()

{

 echo "We are in the test function!\n";

 return 'hello';

}

$return_value = call_userland("test_function");

echo "Return value: '$return_value'";

?>

The above example will output:

We are in the test function!

We have 3 as type

Return value: 'hello'

Initialization File Support

PHP 4 features a redesigned initialization file support. It's now possible to specify default
initialization entries directly in your code, read and change these values at runtime, and
create message handlers for change notifications.

To create an .ini section in your own module, use the macros PHP_INI_BEGIN() to mark
the beginning of such a section and PHP_INI_END() to mark its end. In between you can
use PHP_INI_ENTRY() to create entries.
PHP_INI_BEGIN()

PHP_INI_ENTRY("first_ini_entry", "has_string_value", PHP_INI_ALL, NULL)

PHP_INI_ENTRY("second_ini_entry", "2", PHP_INI_SYSTEM,
OnChangeSecond)

PHP_INI_ENTRY("third_ini_entry", "xyz", PHP_INI_USER, NULL)

PHP_INI_END()
The PHP_INI_ENTRY() macro accepts four parameters: the entry name, the entry value,
its change permissions, and a pointer to a change-notification handler. Both entry name

and value must be specified as strings, regardless of whether they really are strings or
integers.

The permissions are grouped into three sections: PHP_INI_SYSTEM allows a change only
directly in the php.ini file; PHP_INI_USER allows a change to be overridden by a user at
runtime using additional configuration files, such as.htaccess; and PHP_INI_ALL allows
changes to be made without restrictions. There's also a fourth level, PHP_INI_PERDIR, for
which we couldn't verify its behavior yet.

The fourth parameter consists of a pointer to a change-notification handler. Whenever one
of these initialization entries is changed, this handler is called. Such a handler can be
declared using the PHP_INI_MH macro:
PHP_INI_MH(OnChangeSecond); // handler for ini-entry
"second_ini_entry"

// specify ini-entries here

PHP_INI_MH(OnChangeSecond)

{

 zend_printf("Message caught, our ini entry has been changed to %s
",
new_value);

 return(SUCCESS);

}
The new value is given to the change handler as string in the variable new_value. When
looking at the definition of PHP_INI_MH, you actually have a few parameters to use:
#define PHP_INI_MH(name) int name(php_ini_entry *entry, char *new_value,

 uint new_value_length, void *mh_arg1,

 void *mh_arg2, void *mh_arg3)
All these definitions can be found in php_ini.h. Your message handler will have access to a
structure that contains the full entry, the new value, its length, and three optional
arguments. These optional arguments can be specified with the additional macros
PHP_INI_ENTRY1 (allowing one additional argument), PHP_INI_ENTRY2 (allowing two
additional arguments), and PHP_INI_ENTRY3 (allowing three additional arguments).

The change-notification handlers should be used to cache initialization entries locally for
faster access or to perform certain tasks that are required if a value changes. For example,
if a constant connection to a certain host is required by a module and someone changes
the hostname, automatically terminate the old connection and attempt a new one.

Access to initialization entries can also be handled with the macros shown in Macros to
Access Initialization Entries in PHP.

Macros to Access Initialization Entries in PHP

Macro Description

INI_INT(name) Returns the current value of entry name as
integer (long).

INI_FLT(name) Returns the current value of entry name as

float (double).

INI_STR(name) Returns the current value of entry name as
string. Note: This string is not duplicated, but
instead points to internal data. Further
access requires duplication to local memory.

INI_BOOL(name) Returns the current value of entry name as
Boolean (defined as zend_bool, which
currently means unsigned char).

INI_ORIG_INT(name) Returns the original value of entry name as
integer (long).

INI_ORIG_FLT(name) Returns the original value of entry name as
float (double).

INI_ORIG_STR(name) Returns the original value of entry name as
string. Note: This string is not duplicated, but
instead points to internal data. Further
access requires duplication to local memory.

INI_ORIG_BOOL(name) Returns the original value of entry name as
Boolean (defined as zend_bool, which
currently means unsigned char).

Finally, you have to introduce your initialization entries to PHP. This can be done in the
module startup and shutdown functions, using the macros REGISTER_INI_ENTRIES()
and UNREGISTER_INI_ENTRIES():
ZEND_MINIT_FUNCTION(mymodule)

{

 REGISTER_INI_ENTRIES();

}

ZEND_MSHUTDOWN_FUNCTION(mymodule)

{

 UNREGISTER_INI_ENTRIES();

}

Where to Go from Here

You've learned a lot about PHP. You now know how to create dynamic loadable modules
and statically linked extensions. You've learned how PHP and Zend deal with internal
storage of variables and how you can create and access these variables. You know quite
a set of tool functions that do a lot of routine tasks such as printing informational texts,
automatically introducing variables to the symbol table, and so on.

Even though this chapter often had a mostly "referential" character, we hope that it gave
you insight on how to start writing your own extensions. For the sake of space, we had to
leave out a lot; we suggest that you take the time to study the header files and some
modules (especially the ones in the ext/standard directory and the MySQL module, as
these implement commonly known functionality). This will give you an idea of how other
people have used the API functions - particularly those that didn't make it into this chapter.

Reference: Some Configuration Macros

config.m4

The file config.m4 is processed by buildconf and must contain all the instructions to be
executed during configuration. For example, these can include tests for required external
files, such as header files, libraries, and so on. PHP defines a set of macros that can be
used in this process, the most useful of which are described in M4 Macros for config.m4.

M4 Macros for config.m4

Macro Description

AC_MSG_CHECKING(message) Prints a "checking <message>" text during
configure.

AC_MSG_RESULT(value) Gives the result to AC_MSG_CHECKING;
should specify either yes or no as value.

AC_MSG_ERROR(message) Prints message as error message during
configure and aborts the script.

AC_DEFINE(name,value,description) Adds #define to php_config.h with the value
of value and a comment that says
description (this is useful for conditional
compilation of your module).

AC_ADD_INCLUDE(path) Adds a compiler include path; for example,
used if the module needs to add search
paths for header files.

AC_ADD_LIBRARY_WITH_PATH(libraryna
me,librarypath)

Specifies an additional library to link.

AC_ARG_WITH(modulename,description,u
nconditionaltest,conditionaltest)

Quite a powerful macro, adding the module
with description to the configure --help
output. PHP checks whether the option
--with-<modulename> is given to the
configure script. If so, it runs the script
unconditionaltest (for example,
--with-myext=yes), in which case the value
of the option is contained in the variable

$withval. Otherwise, it executes
conditionaltest.

PHP_EXTENSION(modulename, [shared]) This macro is a must to call for PHP to
configure your extension. You can supply a
second argument in addition to your module
name, indicating whether you intend
compilation as a shared module. This will
result in a definition at compile time for your
source as COMPILE_DL_<modulename>.

API Macros

A set of macros was introduced into Zend's API that simplify access to zval containers
(see API Macros for Accessing zval Containers).

API Macros for Accessing zval Containers

Macro Refers to

Z_LVAL(zval) (zval).value.lval

Z_DVAL(zval) (zval).value.dval

Z_STRVAL(zval) (zval).value.str.val

Z_STRLEN(zval) (zval).value.str.len

Z_ARRVAL(zval) (zval).value.ht

Z_LVAL_P(zval) (*zval).value.lval

Z_DVAL_P(zval) (*zval).value.dval

Z_STRVAL_P(zval_p) (*zval).value.str.val

Z_STRLEN_P(zval_p) (*zval).value.str.len

Z_ARRVAL_P(zval_p) (*zval).value.ht

Z_LVAL_PP(zval_pp) (**zval).value.lval

Z_DVAL_PP(zval_pp) (**zval).value.dval

Z_STRVAL_PP(zval_pp) (**zval).value.str.val

Z_STRLEN_PP(zval_pp) (**zval).value.str.len

Z_ARRVAL_PP(zval_pp) (**zval).value.ht

TSRM API

The future: PHP 6 and Zend Engine 3

	PHP at the Core: A Hacker's Guide to the Zend Engine
	Preface
	The "counter" Extension - A Continuing Example
	Installing/Configuring
	Introduction
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic interface
	Extended interface
	Objective interface

	Counter
	Introduction
	Class synopsis
	Counter::__construct
	Counter::getValue
	Counter::bumpValue
	Counter::resetValue
	Counter::getMeta
	Counter::getNamed
	Counter::setCounterClass

	Basic
	counter_get
	counter_bump
	counter_reset

	Extended
	counter_create
	counter_get_value
	counter_bump_value
	counter_reset_value
	counter_get_meta
	counter_get_named

	The PHP 5 build system
	Building PHP for extension development
	The ext_skel script
	Talking to the UNIX build system: config.m4
	A short introduction to autoconf syntax
	PHP_ARG_*: Giving users the option
	Processing the user's choices
	Handling the --with-example[=FILE] option
	Handling the --enable-example-debug option
	Handling the --with-example-extra=DIR option
	Telling the buildsystem what was decided
	The counter extension's config.m4 file

	Talking to the Windows build system: config.w32
	The counter extension's config.w32 file

	Extension structure
	Files which make up an extension
	Non-source files
	Basic constructs
	The zend_module structure
	Filling in the structure in a practical situation
	What's changed between 5.2 and 5.3?

	Extension globals
	Introduction to globals in a PHP extension
	Declaring module globals
	Accessing module globals

	Life cycle of an extension
	Testing an extension

	Memory management
	Working with variables
	Writing functions
	Working with classes and objects
	Working with resources
	Working with INI settings
	Working with streams
	PDO Driver How-To
	Prerequisites
	Preparation and Housekeeping
	Source directory layout
	Creating a skeleton
	Standard Includes
	Build Specific Headers
	PHP Headers
	PDO Interface Headers
	Driver Specific Headers
	Optional Headers

	Fleshing out your skeleton
	Major Structures and Attributes
	pdo_SKEL.c: PHP extension glue
	function entries
	Module entry
	Standard PHP Module Extension Functions
	PHP_MINIT_FUNCTION
	PHP_MSHUTDOWN_FUNCTION
	PHP_MINFO_FUNCTION
	SKEL_driver.c: Driver implementation
	pdo_SKEL_error
	pdo_SKEL_fetch_error_func
	SKEL_handle_closer
	SKEL_handle_preparer
	SKEL_handle_doer
	SKEL_handle_quoter
	SKEL_handle_begin
	SKEL_handle_commit
	SKEL_handle_rollback
	SKEL_handle_get_attribute
	SKEL_handle_set_attribute
	SKEL_handle_last_id
	SKEL_check_liveness
	SKEL_get_driver_methods
	SKEL_handle_factory
	Driver method table
	pdo_SKEL_driver
	SKEL_statement.c: Statement implementation
	SKEL_stmt_dtor
	SKEL_stmt_execute
	SKEL_stmt_fetch
	SKEL_stmt_param_hook
	SKEL_stmt_describe_col
	SKEL_stmt_get_col_data
	SKEL_stmt_set_attr
	SKEL_stmt_get_attr
	SKEL_stmt_get_col_meta
	Statement handling method table

	Building
	Testing
	Packaging and distribution
	Creating a package
	Releasing the package

	pdo_dbh_t definition
	pdo_stmt_t definition
	Constants
	Error handling

	Extension FAQs
	Zend Engine 2 API reference
	Zend Engine 1
	Old introduction
	Streams API for PHP Extension Authors
	Overview
	Streams Basics
	Streams as Resources
	Streams open options

	Zend API: Hacking the Core of PHP
	Introduction
	Overview
	What Is Zend? and What Is PHP?
	Extension Possibilities
	External Modules
	Built-in Modules
	The Zend Engine
	Source Layout
	Extension Conventions
	Macros
	Memory Management
	Directory and File Functions
	String Handling
	Complex Types
	PHP's Automatic Build System
	Creating Extensions
	Compiling Modules
	Using Extensions
	Troubleshooting
	Source Discussion
	Module Structure
	Header File Inclusions
	Declaring Exported Functions
	Declaration of the Zend Function Block
	Declaration of the Zend Module Block
	Creation of get_module
	Implementation of All Exported Functions
	Summary
	Accepting Arguments
	Determining the Number of Arguments
	Retrieving Arguments
	Old way of retrieving arguments (deprecated)
	Dealing with a Variable Number of Arguments/Optional Parameters
	Accessing Arguments
	Dealing with Arguments Passed by Reference
	Assuring Write Safety for Other Parameters
	Creating Variables
	Overview
	Longs (Integers)
	Doubles (Floats)
	Strings
	Booleans
	Arrays
	Objects
	Resources
	Macros for Automatic Global Variable Creation
	Creating Constants
	Duplicating Variable Contents: The Copy Constructor
	Returning Values
	Printing Information
	zend_printf
	zend_error
	Including Output in phpinfo
	Execution Information
	Startup and Shutdown Functions
	Calling User Functions
	Initialization File Support
	Where to Go from Here
	Reference: Some Configuration Macros
	config.m4
	API Macros

	TSRM API

	The future: PHP 6 and Zend Engine 3

