runkit

Introduction

The runkit extension provides means to modify constants, user-defined functions, and
user-defined classes. It also provides for custom superglobal variables and embeddable
sub-interpreters via sandboxing.

This package is meant as a feature added replacement for the » classkit package. When
compiled with the --enable-runkit=classkit option to ./configure, it will export classkit
compatible function definitions and constants.

http://pecl.php.net/package/classkit

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

RUNKIT_IMPORT_FUNCTIONS (integer)

specified file.

RUNKIT_IMPORT_CLASS_METHODS (integer)

file.

RUNKIT_IMPORT_CLASS_CONSTS (integer)

specified file. Note that this flag is only meaningful in PHP versions 5.1.0 and above.

RUNKIT_IMPORT_CLASS_PROPS (integer)

the specified file.

RUNKIT_IMPORT_CLASSES (integer)

constants.

RUNKIT_IMPORT_OVERRIDE (integer)

or properties already exist, they should be replaced with the new definitions. If this flag
is not set, then any imported definitions which already exist will be discarded.

RUNKIT_ACC_PUBLIC (integer)

CLASSKIT_ACC_PUBLIC (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
IS enabled.

CLASSKIT_ACC_PROTECTED (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
is enabled.

CLASSKIT_ACC_PRIVATE (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
is enabled.

CLASSKIT_AGGREGATE_OVERRIDE (integer)
PHP 5 specific flag to classkit_import() Only defined when classkit compatibility is
enabled.

RUNKIT_VERSION (string)
Defined to the current version of the runkit package.

CLASSKIT_VERSION (string)
Defined to the current version of the runkit package. Only defined when classkit
compatibility is enabled.

Installing/Configuring

Requirements

Modifying Constants, Functions, Classes, and Methods works with all releases of PHP 4
and PHP 5. No special requirements are necessary.

Custom Superglobals are only available in PHP 4.2.0 or later.

Sandboxing requires PHP 5.1.0 or later, or PHP 5.0.0 with a special TSRM patch applied.
Regardless of which version of PHP is in use it must be compiled with the
--enable-maintainer-zts option. See the README file in the runkit package for additional
information.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:

» http://pecl.php.net/package/runkit.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Runkit Configuration Options

Name Default Changeable Changelog
runkit.superglobal PHP_INI_PERDIR
runkit.internal_overrid |"0" PHP_INI_SYSTEM

e

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://pecl.php.net/
http://pecl.php.net/package/runkit
http://pecl.php.net/package/runkit
http://www.php.net/downloads.php
http://pecl4win.php.net/

runki t. super gl obal string
Comma-separated list of variable names to be treated as superglobals. This value
should be set in the systemwide php.ini file, but may work in perdir configuration
contexts depending on your SAPI.

Example #1 - Custom Superglobals with runkit.superglobal=_FOO, BAR in
php.ini

<?php

function show val ues() {
echo "Foo is $ FOO n";
echo "Bar is $ BARn";
echo "Baz is $ BAZ\n";

}

$ FOO = 'foo';
$ BAR = 'bar';
$ BAZ = 'baz';

/* Displays foo and bar, but not baz */

show val ues();
?>

Resource Types

This extension has no resource types defined.

runkit Functions

Runkit_Sandbox

Runkit_Sandbox -- Runkit Sandbox Class -- PHP Virtual Machine
Description

Instantiating the Runkit_Sandbox class creates a new thread with its own scope and
program stack. Using a set of options passed to the constructor, this environment may be
restricted to a subset of what the primary interpreter can do and provide a safer
environment for executing user supplied code.

Note

class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Constructor

void Runkit_Sandbox::__construct ([array $options])

opt i ons IS an associative array containing any combination of the special ini options listed
below.

saf e_node
If the outer script which is instantiating the Runkit_Sandbox class is configured with
safe_mode = off, then safe_mode may be turned on for the sandbox environment. This
setting can not be used to disable safe_mode when it's already enabled in the outer
script.

saf e_node_gi d
If the outer script which is instantiating the Runkit_Sandbox class is configured with
safe_mode_gid = on, then safe_mode_gid may be turned off for the sandbox
environment. This setting can not be used to enable safe_mode_gid when it's already
disabled in the outer script.

saf e_node_i nclude_dir
If the outer script which is instantiating the Runkit_Sandbox class is configured with a
safe_mode_include_dir, then a new safe_mode_include_dir may be set for sandbox
environments below the currently defined value. safe_mode_include_dir may also be
cleared to indicate that the bypass feature is disabled. If safe_mode_include_dir was
blank in the outer script, but safe_mode was not enabled, then any arbitrary
safe_mode_include_dir may be set while turning safe_mode on.

open_basedir

open_basedi r may be set to any path below the current setting of open_basedir. If
open_basedir is not set within the global scope, then it is assumed to be the root
directory and may be set to any location.

al l ow_url _fopen
Like saf e_node, this setting can only be made more restrictive, in this case by setting it
to FALSE when it is previously set to TRUE

di sabl e_functi ons
Comma separated list of functions to disable within the sandbox sub-interpreter. This
list need not contain the names of the currently disabled functions, they will remain
disabled whether listed here or not.

di sabl e_cl asses
Comma separated list of classes to disable within the sandbox sub-interpreter. This list
need not contain the names of the currently disabled classes, they will remain disabled
whether listed here or not.

runkit. supergl oba
Comma separated list of variables to be treated as superglobals within the sandbox
sub-interpreter. These variables will be used in addition to any variables defined
internally or through the global runkit.superglobal setting.

runkit.internal override
Ini option runkit.internal_override may be disabled (but not re-enabled) within
sandboxes.

Example #2 - Instantiating a restricted sandbox

<?php
$options = array(
'saf e_node' =>true,
' open_basedir' =>'/var/ww users/jdoe/",
"all ow url _fopen' =>'fal se'
"di sabl e_functions' =>' exec, shel | _exec, passt hru, systen ,
' di sabl e_cl asses' =>' nyAppd ass');
$sandbox = new Runkit_Sandbox($opti ons);
/* Non-protected ini settings may set normally */
$sandbox->i ni _set (' htm _errors',true);
?>

Accessing Variables

All variables in the global scope of the sandbox environment are accessible as properties
of the sandbox object. The first thing to note is that because of the way memory between
these two threads is managed, object and resource variables can not currently be
exchanged between interpreters. Additionally, all arrays are deep copied and any
references will be lost. This also means that references between interpreters are not
possible.

Example #3 - Working with variables in a sandbox

<?php

$sandbox = new Runkit_Sandbox();

$sandbox- >f oo = ' bar';

$sandbox- >eval (' echo "$foo\n"; $bar = $foo . "baz";");

echo "{$sandbox->bar}\n";

i f (isset($sandbox->fo00)) unset($sandbox->f00);
$sandbox- >eval (' var _dunp(isset ($fo0));");

?>

The above example will output:

bar
bar baz
bool (fal se)

Calling PHP Functions

Any function defined within the sandbox may be called as a method on the sandbox
object. This also includes a few pseudo-function language constructs: eval(), include(),
include_once(), require(), require_once(), echo(), print(), die(), and exit().

Example #4 - Calling sandbox functions

<?php
$sandbox = new Runki t _Sandbox();

echo $sandbox->str_replace('a','f',"abc');
?>

The above example will output:
fbc

When passing arguments to a sandbox function, the arguments are taken from the outer
instance of PHP. If you wish to pass arguments from the sandbox's scope, be sure to
access them as properties of the sandbox object as illustrated above.

Example #5 - Passing arguments to sandbox functions

<?php

$sandbox = new Runkit_Sandbox();
$foo = 'bar';

$sandbox->foo = 'baz';

echo $sandbox->str _replace('a', $foo,"'a');
echo $sandbox->str_repl ace('a', $sandbox->foo0,"'a');
?>

The above example will output:

bar
baz

Changing Sandbox Settings

As of runkit version 0.5, certain Sandbox settings may be modified on the fly using
ArrayAccess syntax. Some settings, such as acti ve are read-only and meant to provide
status information. Other settings, such as out put _handl er may be set and read much like
a normal array offset. Future settings may be write-only, however no such settings
currently exist.

Sandbox Settings / Status Indicators

Setting Type Purpose Default

active Boolean (Read Only) |TRUE if the Sandbox [TRUE (Initial)
is still in a usable
state, FALSE if the
request is in bailout
due to a call to die(),
exit(), or because of a
fatal error condition.

output_handler Callback When setto avalid [None
callback, all output
generated by the
Sandbox instance will
be processed through
the named function.
Sandbox output
handlers follow the
same calling
conventions as the
system-wide output
handler.

parent_access Boolean May the sandbox use |FALSE
instances of the
Runkit_Sandbox_Par
ent class? Must be
enabled for other
Runkit_Sandbox_Par
ent related settings to
work.

parent_read Boolean May the sandbox FALSE
read variables in its
parent's context?

parent_write

Boolean

May the sandbox
modify variables in its
parent's context?

FALSE

parent_eval

Boolean

May the sandbox
evaluate arbitrary
code in its parent's
context?
DANGEROUS

FALSE

parent_include

Boolean

May the sandbox
include php code files
in its parent's
context?
DANGEROUS

FALSE

parent_echo

Boolean

May the sandbox
echo data in its
parent's context
effectively bypassing
its own
output_handler?

FALSE

parent_call

Boolean

May the sandbox call
functions in its
parent's context?

FALSE

parent_die

Boolean

May the sandbox Kill
its own parent? (And
thus itself)

FALSE

parent_scope

Integer

What scope will
parental property
access look at? 0 ==
Global scope, 1 ==
Calling scope, 2 ==
Scope preceeding
calling scope, 3 ==
The scope before
that, etc..., etc...

0 (Global)

parent_scope

String

When parent_scope
is set to a string
value, it refers to a
named array variable
in the global scope. If
the named variable
does not exist at the
time of access it will
be created as an
empty array. If the
variable exists but it

not an array, a
dummy array will be
created containing a
reference to the
named global
variable.

Runkit_Sandbox_Parent

Runkit_Sandbox_Parent -- Runkit Anti-Sandbox Class

Description

void Runkit_Sandbox_Parent::__construct (void)

Instantiating the Runkit_Sandbox_Parent class from within a sandbox environment created

from the Runkit_Sandbox class provides some (controlled) means for a sandbox child to
access its parent.

Note

class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

In order for any of the Runkit_Sandbox_Parent features to function. Support must be
enabled on a per-sandbox basis by enabling the parent_access flag from the parent's
context.

Example #6 - Working with variables in a sandbox

<?php

$sandbox = new Runkit_Sandbox();
$sandbox[' parent _access'] = true;
?>

Accessing the Parent's Variables

Just as with sandbox variable access, a sandbox parent's variables may be read from and
written to as properties of the Runkit_Sandbox_Parent class. Read access to parental
variables may be enabled with the parent_read setting (in addition to the base
parent_access setting). Write access, in turn, is enabled through the parent_write setting.

Unlike sandbox child variable access, the variable scope is not limited to globals only. By
setting the parent_scope setting to an appropriate integer value, other scopes in the active
call stack may be inspected instead. A value of 0 (Default) will direct variable access at the
global scope. 1 will point variable access at whatever variable scope was active at the time
the current block of sandbox code was executed. Higher values progress back through the
functions that called the functions that led to the sandbox executing code that tried to
access its own parent's variables.

Example #7 - Accessing parental variables

<?php

$php = new Runki t _Sandbox();
$php[' parent _access'] = true;
$php[' parent _read'] = true

$test = "d obal "

$php- >eval (' SPARENT

new Runkit _ Sandbox_Parent;');

$php[' parent _scope'] 0;

one();

$php[' parent _scope'] = 1;
one();

$php[' parent _scope'] = 2;
one();

$php[' parent _scope'] = 3;
one();

$php[' parent _scope'] = 4;
one();

$php[' parent _scope'] = 5;
one();

function one() {

$test = "one()";
two();

}

function two() {
$test = "two()";
three();

}

function three() {
$test = "three()";
$GLOBALS[' php']->eval (' var_dunp($PARENT->test);");

The above example will output:

string(6) "d obal"
string(7) "three()"
string(5) "two()"
string(5) "one()"
string(6) "d obal"
string(6) "d obal"

Calling the Parent's Functions

Just as with sandbox access, a sandbox may access its parents functions providing that

the proper settings have been enabled. Enabling parent_call will allow the sandbox to call
all functions available to the parent scope. Language constructs are each controlled by
their own setting: print() and echo() are enabled with parent_echo. die() and exit() are
enabled with parent_die. eval() is enabled with parent_eval while include(),
include_once(), require(), and require_once() are enabled through parent_include.

runkit_class_adopt

runkit_class_adopt -- Convert a base class to an inherited class, add ancestral methods
when appropriate

Description
bool runkit_class_adopt (string $cl assnane, String $par ent name)

Parameters

cl assnane
Name of class to be adopted

par ent nane
Parent class which child class is extending

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
class nyParent ({
function parent Func() {
echo "Parent Function Qutput\n”;
}
}

class nmyChild {
}

runkit_class_adopt (' myChild', ' nyParent');
myChi | d: : par ent Func() ;
?>

The above example will output:

Parent Function Qut put

See Also

runkit_class_emancipate

runkit_class_emancipate -- Convert an inherited class to a base class, removes any
method whose scope is ancestral

Description
bool runkit_class_emancipate (string $cl assnane)

Parameters

cl assnane
Name of class to emancipate

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass nyParent {
function parent Func () {
echo "Parent Function CQutput\n";
}
}
class nyChild extends nyParent {

}

myChi | d: : par ent Func() ;

runkit _class_emanci pate(' nyChild');
myChi | d: : par ent Func() ;

?>

The above example will output:

Parent Function Qut put
Fatal error: Call to undefined function: parentFunc() in exanple.php on
[ine 12

See Also

runkit_constant_add

runkit_constant_add -- Similar to define(), but allows defining in class definitions as well
Description
bool runkit_constant_add (string $const nane, mixed $val ue)

Parameters
const nane
Name of constant to declare. Either a string to indicate a global constant, or
classname::constname to indicate a class constant.
val ue
NULL, Bool, Long, Double, String, or Resource value to store in the new constant.
Return Values

Returns TRUE on success or FALSE on failure.

See Also

e define()

runkit_constant_redefine

runkit_constant_redefine -- Redefine an already defined constant
Description

bool runkit_constant_redefine (string $const name, mixed $newal ue)
Parameters

const nane

Constant to redefine. Either string indicating global constant, or classname::constname
indicating class constant.

newal ue
New value to assign to constant.

Return Values
Returns TRUE on success or FALSE on failure.

See Also

runkit_constant_remove

runkit_constant_remove -- Remove/Delete an already defined constant
Description
bool runkit_constant_remove (string $const nane)

Parameters

const nane
Name of constant to remove. Either a string indicating a global constant, or
classname::constname indicating a class constant.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

e define()

runkit_function_add

runkit_function_add -- Add a new function, similar to create_function()
Description

bool runkit_function_add (string $f uncnane, string $argli st, string $code)
Parameters

f uncnane
Name of function to be created

argli st
Comma separated argument list

code
Code making up the function

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
"The value of b is $b\n";");

testne(l,2);
?>

The above example will output:

The value of ais 1
The value of bis 2

runkit_function_add('testne',' $a, $b',' echo "The value of a is $a\n";

echo

See Also

e create_function()

runkit_function_copy

runkit_function_copy -- Copy a function to a new function name
Description
bool runkit_function_copy (string $f uncnane, string $t ar get nane)

Parameters

f uncnane
Name of existing function

t ar get nane
Name of new function to copy definition to

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
function original () {
echo "In a function\n";
}
runkit function_copy('original', duplicate');
original ();
duplicate();
?>

The above example will output:

In a function
In a function

See Also

runkit_function_redefine

runkit_function_redefine -- Replace a function definition with a new implementation
Description

bool runkit_function_redefine (string $f uncnane, string $argli st, string $code)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters
f uncnane
Name of function to redefine

argli st
New list of arguments to be accepted by function

code
New code implementation

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
function testme() {
echo "Original Testme | nplenmentation\n”;
}
testme();
runkit _function_redefine('testne','',"echo "New Testne | nplenmentation\n";");
testnme();
?>

The above example will output:

Oiginal Testnme |nplenmentation
New Testne | npl enentation

See Also

runkit_function_remove

runkit_function_remove -- Remove a function definition
Description

bool runkit_function_remove (string $f uncname)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters

f uncnane
Name of function to be deleted

Return Values
Returns TRUE on success or FALSE on failure.

See Also

 runkit_function_add()

runkit_function_rename

runkit_function_rename -- Change a function's name
Description

bool runkit_function_rename (string $f uncnane, string $newnane)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters
f uncnane

Current function name
newnane

New function name

Return Values
Returns TRUE on success or FALSE on failure.

See Also

 runkit_function_add()

runkit_import

runkit_import -- Process a PHP file importing function and class definitions, overwriting
where appropriate

Description
bool runkit_import (string $fil enane [, int $f1ags])
Similar to include() however any code residing outside of a function or class is simply
ignored. Additionally, depending on the value of f1 ags, any functions or classes which
already exist in the currently running environment will be automatically overwritten by their
new definitions.
Parameters
fil ename

Filename to import function and class definitions from
flags

Bitwise OR of the RUNKIT_IMPORT_* family of constants.

Return Values

Returns TRUE on success or FALSE on failure.

runkit_lint_file
runkit_lint_file -- Check the PHP syntax of the specified file

Description

bool runkit_lint_file (string $fil ename)

testing for scripting errors. This is similar to using php -I from the commandline.

Note

class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Parameters

fil ename
File containing PHP Code to be lint checked

Return Values
Returns TRUE on success or FALSE on failure.

See Also

runkit_lint

runkit_lint -- Check the PHP syntax of the specified php code
Description

bool runkit_lint (string $code)

accepts actual code rather than a filename.

Note

class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Parameters

code
PHP Code to be lint checked

Return Values
Returns TRUE on success or FALSE on failure.

See Also

runkit_method add

runkit_method_add -- Dynamically adds a new method to a given class
Description

bool runkit_method_add (string $cl assname, string $net hodnane, string $ar gs, string $
code [, int $flags])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

cl assnane
The class to which this method will be added

met hodnane
The name of the method to add

args
Comma-delimited list of arguments for the newly-created method

code
The code to be evaluated when net hodnane is called

flags
The type of method to create, can be RUNKIT_ACC_PUBLIC,
RUNKIT_ACC_PROTECTED or RUNKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass Exanple {
function foo() {
echo "foo!\n";
}
}

/'l create an Exanpl e object
$e = new Exanpl e();

/1 Add a new public method
runkit_met hod_add(
' Exanpl e',
"add',
"$nunl, S$nun',
"return $numl + $nung;’,
RUNKI T_ACC_PUBLI C

)

/]l add 12 + 4

echo $e->add(12, 4);
?>

The above example will output:

16

See Also

runkit_method _copy

runkit_method_copy -- Copies a method from class to another
Description

bool runkit_method_copy (' string $dd ass, string $dMet hod, string $sCl ass [, string $
sMet hod |)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

dd ass
Destination class for copied method

dMet hod
Destination method name

sd ass
Source class of the method to copy

shMet hod
Name of the method to copy from the source class. If this parameter is omitted, the
value of dmet hod is assumed.

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass Foo {
function exanple() {
return "foo!\n";

}

}

cl ass Bar {
/1 initially, no nethods

}

/1 copy the exanple() nmethod fromthe Foo class to the Bar class, as baz()
runkit _nethod _copy('Bar', 'baz', 'Foo', 'exanple');

/1 output copied function
echo Bar::baz();
?>

The above example will output:

f oo!

See Also

runkit_method redefine

runkit_method_redefine -- Dynamically changes the code of the given method
Description

bool runkit_method_redefine (string $cl assname, string $net hodnane, string $ar gs,
string $code [, int $flags])

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

cl assnane
The class in which to redefine the method

nmet hodnane
The name of the method to redefine

args
Comma-delimited list of arguments for the redefined method

code
The new code to be evaluated when net hodnane is called

flags
The redefined method can be RUNKIT_ACC_PUBLIC, RUNKIT_ACC_PROTECTED
or RUNKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass Exanpl e {
function foo() {
return "foo!\n";
}
}

/'l create an Exanpl e obj ect
$e = new Exanpl e();

/1 output Exanple::foo() (before redefine)
echo "Before: " . $e->foo();

/! Redefine the 'foo' nethod
runkit _nmet hod_redefi ne(

' Exanmpl e',

'foo',

"return "bar!\n";",

RUNKI T_ACC PUBLI C

)

/1 output Exanple::foo() (after redefine)
echo "After: " . $e->foo();

2>

The above example will output:

Bef ore: foo
After: bar!

See Also

runkit_method remove

runkit_method_remove -- Dynamically removes the given method
Description

bool runkit_method_remove (string $cl assnane, string $met hodnane)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

cl assnane
The class in which to remove the method

met hodnane
The name of the method to remove

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass Exanpl e {
function foo() {
return "fool\n";

}

function bar() {
return "bar!\n";

}

/! Renpve the 'foo' nethod
runkit_net hod_renove(

' Exanpl e',

'foo
)
echo inmplode(' ', get _class_nethods(' Exanple'));
?>

The above example will output:

bar

See Also

runkit_method rename

runkit_method_rename -- Dynamically changes the name of the given method
Description

bool runkit_method_rename (string $cl assnane, string $nmet hodnane, string $newnane)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters
cl assnane
The class in which to rename the method

met hodnane
The name of the method to rename

newnane
The new name to give to the renamed method

Return Values
Returns TRUE on success or FALSE on failure.

Examples

<?php
cl ass Exanpl e {
function foo() {
return "fool\n";

}

/! Renanme the 'foo' nethod to 'bar’
runkit _net hod_renane(

' Exanpl e',

'foo'

" bar'

)

/1 output renanmed function
echo Exanpl e::bar();
?>

The above example will output:

f oo!

See Also

runkit_return_value used

runkit_return_value_used -- Determines if the current functions return value will be used
Description

bool runkit_return_value_used (void)

Return Values

Returns TRUE if the function's return value is used by the calling scope, otherwise FALSE

Examples

<?php
function foo() {
var_dunp(runkit_return_val ue_used());

}

foo();
$f = foo();
?>

The above example will output:

bool (fal se)
bool (true)

runkit_sandbox_output_handler

runkit_sandbox_output_handler -- Specify a function to capture and/or process output from
a runkit sandbox

Description

mixed runkit_sandbox_output_handler (object $sandbox [, mixed $cal | back])

Ordinarily, anything output (such as with echo() or print()) will be output as though it were

generated by the sandbox (including errors), can be captured by a function outside of the
sandbox.

Note

class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Note

Deprecated

As of runkit version 0.5, this function is deprecated and is scheduled to be removed
from the package prior to a 1.0 release. The output handler for a given
Runkit_Sandbox instance may be read/set using the array offset syntax shown on the

Parameters

sandbox
Object instance of Runkit_Sandbox class on which to set output handling.

cal | back
Name of a function which expects one parameter. Output generated by sandbox will be
passed to this callback. Anything returned by the callback will be displayed normally. If
this parameter is not passed then output handling will not be changed. If a non-truth
value is passed, output handling will be disabled and will revert to direct display.

Return Values

Returns the name of the previously defined output handler callback, or FALSE if no
handler was previously defined.

Examples

Example #19 - Feeding output to a variable

<?php
function capture_output ($str) {
$G.OBALS[' sandbox_output'] .= $str;

return "'

}

$sandbox_out put = "'

$php = new Runkit_Sandbox();

runkit _sandbox_out put _handl er ($php, 'capture_output');
$php- >echo("Hel l o\ n");

$php->eval (' var _dunp(" Excuse me");"');

$php->die("l lost nyself.");

unset ($php) ;

echo "Sandbox Conpl ete\n\n";

echo $sandbox_out put ;
?>

The above example will output:
Sandbox Conpl et e
Hel | o

string(9) "Excuse ne"
I lost nyself.

runkit_superglobals

runkit_superglobals -- Return numerically indexed array of registered superglobals
Description

array runkit_superglobals (void)

Return Values

Returns a numerically indexed array of the currently registered superglobals. i.e. _GET,
_POST, _REQUEST, _COOKIE, _SESSION, _SERVER, _ENV, _FILES

See Also

» Variable Scope

	runkit
	Introduction
	Predefined Constants
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	runkit Functions
	Runkit_Sandbox
	Runkit_Sandbox_Parent
	runkit_class_adopt
	runkit_class_emancipate
	runkit_constant_add
	runkit_constant_redefine
	runkit_constant_remove
	runkit_function_add
	runkit_function_copy
	runkit_function_redefine
	runkit_function_remove
	runkit_function_rename
	runkit_import
	runkit_lint_file
	runkit_lint
	runkit_method_add
	runkit_method_copy
	runkit_method_redefine
	runkit_method_remove
	runkit_method_rename
	runkit_return_value_used
	runkit_sandbox_output_handler
	runkit_superglobals

