
SQLite

Introduction

This is an extension for the SQLite Embeddable SQL Database Engine. SQLite is a C
library that implements an embeddable SQL database engine. Programs that link with the
SQLite library can have SQL database access without running a separate RDBMS
process.

SQLite is not a client library used to connect to a big database server. SQLite is the server.
The SQLite library reads and writes directly to and from the database files on disk.

Note

For further information see the SQLite Website (» http://sqlite.org/).

http://sqlite.org/

Installing/Configuring

Requirements

In order to have these functions available, you must compile PHP with SQLite support, or
load the SQLite extension dynamically from your php.ini.

Installation

Read the INSTALL file, which comes with the package. Or just use the PEAR installer with
pecl install sqlite. SQLite itself is already included, You do not need to install any additional
software.

Windows users will enable php_sqlite.dll inside of php.ini in order to use these functions.
The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

In PHP 5, the SQLite extension and the engine itself are bundled and compiled by default.
However, since PHP 5.1.0 you need to manually activate the extension in php.ini (because
it is now bundled as shared). Moreover, since PHP 5.1.0 SQLite depends on PDO it must
be enabled too, by adding the following lines to php.ini (in order):

extension=php_pdo.dll

extension=php_sqlite.dll

On Linux or Unix operating systems, if you build PDO as a shared extension, you must
build SQLite as a shared extension using the --with-sqlite=shared configure option.

SQLite 3 is supported through PDO SQLite.

Note

Windows installation for unprivileged accounts

On Windows operating systems, unprivileged accounts don't have the TMP
environment variable set by default. This will make sqlite create temporary files in the
windows directory, which is not desirable. So, you should set the TMP environment
variable for the web server or the user account the web server is running under. If
Apache is your web server, you can accomplish this via a SetEnv directive in your
httpd.conf file. For example:

SetEnv TMP c:/temp

If you are unable to establish this setting at the server level, you can implement the
setting in your script:

putenv('TMP=C:/temp');

http://www.php.net/downloads.php
http://pecl4win.php.net/

The setting must refer to a directory that the web server has permission to create files
in and subsequently write to and delete the files it created. Otherwise, you may receive
the following error message: malformed database schema - unable to open a
temporary database file for storing temporary tables

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

SQLite Configure Options

Name Default Changeable Changelog

sqlite.assoc_case "0" PHP_INI_ALL Available since PHP
5.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

sqlite.assoc_case int
Whether to use mixed case (0), upper case (1) or lower case (2) hash indexes.
This option is primarily useful when you need compatibility with other database
systems, where the names of the columns are always returned as uppercase or
lowercase, regardless of the case of the actual field names in the database schema.
The SQLite library returns the column names in their natural case (that matches the
case you used in your schema). When sqlite.assoc_case is set to 0 the natural case
will be preserved. When it is set to 1 or 2, PHP will apply case folding on the hash keys
to upper- or lower-case the keys, respectively. Use of this option incurs a slight
performance penalty, but is MUCH faster than performing the case folding yourself
using PHP script.

Resource Types

There are two resources used in the SQLite Interface. The first one is the database
connection, the second one the result set.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The functions sqlite_fetch_array() and sqlite_current() use a constant for the different
types of result arrays. The following constants are defined:
SQLite result type constants
SQLITE_ASSOC (int)

Columns are returned into the array having the field name as the array index.

SQLITE_BOTH (int)
Columns are returned into the array having both a numerical index and the field name
as the array index.

SQLITE_NUM (int)
Columns are returned into the array having a numerical index to the fields. This index
starts with 0, the first field in the result.

A number of functions may return status codes. The following constants are defined:
SQLite status code constants
SQLITE_OK (int)

Successful result.

SQLITE_ERROR (int)
SQL error or missing database.

SQLITE_INTERNAL (int)
An internal logic error in SQLite.

SQLITE_PERM (int)
Access permission denied.

SQLITE_ABORT (int)
Callback routine requested an abort.

SQLITE_BUSY (int)
The database file is locked.

SQLITE_LOCKED (int)
A table in the database is locked.

SQLITE_NOMEM (int)
Memory allocation failed.

SQLITE_READONLY (int)
Attempt to write a readonly database.

SQLITE_INTERRUPT (int)
Operation terminated internally.

SQLITE_IOERR (int)
Disk I/O error occurred.

SQLITE_CORRUPT (int)
The database disk image is malformed.

SQLITE_NOTFOUND (int)
(Internal) Table or record not found.

SQLITE_FULL (int)
Insertion failed because database is full.

SQLITE_CANTOPEN (int)
Unable to open the database file.

SQLITE_PROTOCOL (int)
Database lock protocol error.

SQLITE_EMPTY (int)
(Internal) Database table is empty.

SQLITE_SCHEMA (int)
The database schema changed.

SQLITE_TOOBIG (int)
Too much data for one row of a table.

SQLITE_CONSTRAINT (int)
Abort due to constraint violation.

SQLITE_MISMATCH (int)
Data type mismatch.

SQLITE_MISUSE (int)
Library used incorrectly.

SQLITE_NOLFS (int)
Uses of OS features not supported on host.

SQLITE_AUTH (int)
Authorized failed.

SQLITE_ROW (int)
Internal process has another row ready.

SQLITE_DONE (int)
Internal process has finished executing.

SQLite Functions

Predefined Classes

SQLiteDatabase

Represents an opened SQLite database.

Constructor

• __construct - construct a new SQLiteDatabase object

Methods

• query - Execute a query

• queryExec - Execute a result-less query

• arrayQuery - Execute a query and return the result as an array

• singleQuery - Execute a query and return either an array for one single column or the
value of the first row

• unbufferedQuery - Execute an unbuffered query

• lastInsertRowid - Returns the rowid of the most recently inserted row

• changes - Returns the number of rows changed by the most recent statement

• createAggregate - Register an aggregating UDF for use in SQL statements

• createFunction - Register a UDF for use in SQL statements

• busyTimeout - Sets or disables busy timeout duration

• lastError - Returns the last error code of the most recently encountered error

• fetchColumnTypes - Return an array of column types from a particular table

SQLiteResult

Represents a buffered SQLite result set.

Methods

• fetch - Fetches the next row from the result set as an array

• fetchObject - Fetches the next row from the result set as an object

• fetchSingle - Fetches the first column from the result set as a string

• fetchAll - Fetches all rows from the result set as an array of arrays

• column - Fetches a column from the current row of the result set

• numFields - Returns the number of fields in the result set

• fieldName - Returns the name of a particular field in the result set

• current - Fetches the current row from the result set as an array

• key - Return the current row index

• next - Seek to the next row number

• valid - Returns whether more rows are available

• rewind - Seek to the first row number of the result set

• prev - Seek to the previous row number of the result set

• hasPrev - Returns whether or not a previous row is available

• numRows - Returns the number of rows in the result set

• seek - Seek to a particular row number

SQLiteUnbuffered

Represents an unbuffered SQLite result set. Unbuffered results sets are sequential,
forward-seeking only.

Methods

• fetch - Fetches the next row from the result set as an array

• fetchObject - Fetches the next row from the result set as an object

• fetchSingle - Fetches the first column from the result set as a string

• fetchAll - Fetches all rows from the result set as an array of arrays

• column - Fetches a column from the current row of the result set

• numFields - Returns the number of fields in the result set

• fieldName - Returns the name of a particular field in the result set

• current - Fetches the current row from the result set as an array

• next - Seek to the next row number

• valid - Returns whether more rows are available

sqlite_array_query

SQLiteDatabase->arrayQuery

sqlite_array_query -- SQLiteDatabase->arrayQuery -- Execute a query against a given
database and returns an array

Description

array sqlite_array_query (resource $dbhandle, string $query [, int $result_type [, bool
$decode_binary]])

array sqlite_array_query (string $query, resource $dbhandle [, int $result_type [, bool
$decode_binary]])

Object oriented style (method):

SQLiteDatabase

array arrayQuery (string $query [, int $result_type [, bool $decode_binary]])

sqlite_array_query() executes the given query and returns an array of the entire result set.
It is similar to calling sqlite_query() and then sqlite_fetch_array() for each row in the result
set. sqlite_array_query() is significantly faster than the aforementioned.

Tip

sqlite_array_query() is best suited to queries returning 45 rows or less. If you have
more data than that, it is recommended that you write your scripts to use
sqlite_unbuffered_query() instead for more optimal performance.

Parameters

query

The query to be executed.

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

Returns an array of the entire result set; FALSE otherwise.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #1 - Procedural style

<?php

$dbhandle = sqlite_open('sqlitedb');

$result = sqlite_array_query($dbhandle, 'SELECT name, email FROM users LIMIT
25', SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #2 - Object-oriented style

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$result = $dbhandle->arrayQuery('SELECT name, email FROM users LIMIT 25',
SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_query()
• sqlite_fetch_array()
• sqlite_fetch_string()

sqlite_busy_timeout

SQLiteDatabase->busyTimeout

sqlite_busy_timeout -- SQLiteDatabase->busyTimeout -- Set busy timeout duration, or
disable busy handlers

Description

void sqlite_busy_timeout (resource $dbhandle, int $milliseconds)

Object oriented style (method):

SQLiteDatabase

void busyTimeout (int $milliseconds)

Set the maximum time, in milliseconds, that SQLite will wait for a dbhandle to become
ready for use.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

milliseconds

The number of milliseconds. When set to 0, busy handlers will be disabled and SQLite
will return immediately with a SQLITE_BUSY status code if another process/thread
has the database locked for an update. PHP sets the default busy timeout to be 60
seconds when the database is opened.

Note

There are one thousand (1000) milliseconds in one second.

Return Values

No value is returned.

Examples

Example #3 - Procedural style

<?php

$dbhandle = sqlite_open('sqlitedb');

sqlite_busy_timeout($dbhandle, 10000); // set timeout to 10 seconds

sqlite_busy_timeout($dbhandle, 0); // disable busy handler

?>

Example #4 - Object oriented style

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$dbhandle->busyTimeout(10000); // 10 seconds

$dbhandle->busyTimeout(0); // disable

?>

See Also

• sqlite_open()

sqlite_changes

SQLiteDatabase->changes

sqlite_changes -- SQLiteDatabase->changes -- Returns the number of rows that were
changed by the most recent SQL statement

Description

int sqlite_changes (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int changes (void)

Returns the numbers of rows that were changed by the most recent SQL statement
executed against the dbhandle database handle.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

Examples

Example #5 - Procedural style

<?php

$dbhandle = sqlite_open('mysqlitedb');

$query = sqlite_query($dbhandle, "UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'");

if (!$query) {

 exit('Error in query.');

} else {

 echo 'Number of rows modified: ', sqlite_changes($dbhandle);

}

?>

Example #6 - Object oriented style

<?php

$dbhandle = new SQLiteDatabase('mysqlitedb');

$query = $dbhandle->query("UPDATE users SET email='jDoe@example.com' WHERE
username='jDoe'");

if (!$query) {

 exit('Error in query.');

} else {

 echo 'Number of rows modified: ', $dbhandle->changes();

}

?>

See Also

• sqlite_open()

sqlite_close

sqlite_close -- Closes an open SQLite database

Description

void sqlite_close (resource $dbhandle)

Closes the given database handle. If the database was persistent, it will be closed and
removed from the persistent list.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.

Return Values

No value is returned.

Examples

Example #7 - sqlite_close() example

<?php

$dbhandle = sqlite_open('sqlitedb');

sqlite_close($dbhandle);

?>

See Also

• sqlite_open()
• sqlite_popen()

sqlite_column

SQLiteResult->column

SQLiteUnbuffered->column

sqlite_column -- SQLiteResult->column -- SQLiteUnbuffered->column -- Fetches a column
from the current row of a result set

Description

mixed sqlite_column (resource $result, mixed $index_or_name [, bool $decode_binary
])

SQLiteResult

mixed column (mixed $index_or_name [, bool $decode_binary])

SQLiteUnbuffered

mixed column (mixed $index_or_name [, bool $decode_binary])

Fetches the value of a column named index_or_name (if it is a string), or of the ordinal
column numbered index_or_name (if it is an integer) from the current row of the query
result handle result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

index_or_name

The column index or name to fetch.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()

. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Notes

Note

Use this function when you are iterating a large result set with many columns, or with
columns that contain large amounts of data.

See Also

• sqlite_fetch_string()

sqlite_create_aggregate

SQLiteDatabase->createAggregate

sqlite_create_aggregate -- SQLiteDatabase->createAggregate -- Register an aggregating
UDF for use in SQL statements

Description

void sqlite_create_aggregate (resource $dbhandle, string $function_name, callback $
step_func, callback $finalize_func [, int $num_args])

Object oriented style (method):

SQLiteDatabase

void createAggregate (string $function_name, callback $step_func, callback $
finalize_func [, int $num_args])

sqlite_create_aggregate() is similar to sqlite_create_function() except that it registers
functions that can be used to calculate a result aggregated across all the rows of a query.

The key difference between this function and sqlite_create_function() is that two functions
are required to manage the aggregate; step_func is called for each row of the result set.
Your PHP function should accumulate the result and store it into the aggregation context.
Once all the rows have been processed, finalize_func will be called and it should then
take the data from the aggregation context and return the result. Callback functions should
return a type understood by SQLite (i.e. scalar type).

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

function_name

The name of the function used in SQL statements.

step_func

Callback function called for each row of the result set.

finalize_func

Callback function to aggregate the "stepped" data from each row.

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

No value is returned.

Examples

Example #8 - max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$dbhandle = sqlite_open(':memory:');

sqlite_query($dbhandle, "CREATE TABLE strings(a)");

foreach ($data as $str) {

 $str = sqlite_escape_string($str);

 sqlite_query($dbhandle, "INSERT INTO strings VALUES ('$str')");

}

function max_len_step(&$context, $string)

{

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context)

{

 return $context;

}

sqlite_create_aggregate($dbhandle, 'max_len', 'max_len_step',
'max_len_finalize');

var_dump(sqlite_array_query($dbhandle, 'SELECT max_len(a) from strings'));

?>

In this example, we are creating an aggregating function that will calculate the length of the

longest string in one of the columns of the table. For each row, the max_len_step function
is called and passed a context parameter. The context parameter is just like any other
PHP variable and be set to hold an array or even an object value. In this example, we are
simply using it to hold the maximum length we have seen so far; if the string has a length
longer than the current maximum, we update the context to hold this new maximum length.

After all of the rows have been processed, SQLite calls the max_len_finalize function to
determine the aggregate result. Here, we could perform some kind of calculation based on
the data found in the context. In our simple example though, we have been calculating
the result as the query progressed, so we simply need to return the context value.

Note

The example above will not work correctly if the column contains binary data. Take a
look at the manual page for sqlite_udf_decode_binary() for an explanation of why this
is so, and an example of how to make it respect the binary encoding.

Tip

It is NOT recommended for you to store a copy of the values in the context and then
process them at the end, as you would cause SQLite to use a lot of memory to process
the query - just think of how much memory you would need if a million rows were
stored in memory, each containing a string 32 bytes in length.

Tip

You can use sqlite_create_function() and sqlite_create_aggregate() to override SQLite
native SQL functions.

See Also

• sqlite_create_function()
• sqlite_udf_encode_binary()
• sqlite_udf_decode_binary()

sqlite_create_function

SQLiteDatabase->createFunction

sqlite_create_function -- SQLiteDatabase->createFunction -- Registers a "regular" User
Defined Function for use in SQL statements

Description

void sqlite_create_function (resource $dbhandle, string $function_name, callback $
callback [, int $num_args])

Object oriented style (method):

SQLiteDatabase

void createFunction (string $function_name, callback $callback [, int $num_args])

sqlite_create_function() allows you to register a PHP function with SQLite as an UDF
(User Defined Function), so that it can be called from within your SQL statements.

The UDF can be used in any SQL statement that can call functions, such as SELECT and
UPDATE statements and also in triggers.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

function_name

The name of the function used in SQL statements.

callback

Callback function to handle the defined SQL function.

Note

Callback functions should return a type understood by SQLite (i.e. scalar type).

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

No value is returned.

Examples

Example #9 - sqlite_create_function() example

<?php

function md5_and_reverse($string)

{

 return strrev(md5($string));

}

if ($dbhandle = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 sqlite_create_function($dbhandle, 'md5rev', 'md5_and_reverse', 1);

 $sql = 'SELECT md5rev(filename) FROM files';

 $rows = sqlite_array_query($dbhandle, $sql);

} else {

 echo 'Error opening sqlite db: ' . $sqliteerror;

 exit;

}

?>

In this example, we have a function that calculates the md5 sum of a string, and then
reverses it. When the SQL statement executes, it returns the value of the filename
transformed by our function. The data returned in $rows contains the processed result.

The beauty of this technique is that you do not need to process the result using a foreach()
loop after you have queried for the data.

PHP registers a special function named php when the database is first opened. The php
function can be used to call any PHP function without having to register it first.

Example #10 - Example of using the PHP function

<?php

$rows = sqlite_array_query($dbhandle, "SELECT php('md5', filename) from
files");

?>

This example will call the md5() on each filename column in the database and return
the result into $rows

Note

For performance reasons, PHP will not automatically encode/decode binary data
passed to and from your UDF's. You need to manually encode/decode the parameters
and return values if you need to process binary data in this way. Take a look at
sqlite_udf_encode_binary() and sqlite_udf_decode_binary() for more details.

Tip

It is not recommended to use UDF's to handle processing of binary data, unless high
performance is not a key requirement of your application.

Tip

You can use sqlite_create_function() and sqlite_create_aggregate() to override SQLite
native SQL functions.

See Also

• sqlite_create_aggregate()

sqlite_current

SQLiteResult->current

SQLiteUnbuffered->current

sqlite_current -- SQLiteResult->current -- SQLiteUnbuffered->current -- Fetches the
current row from a result set as an array

Description

array sqlite_current (resource $result [, int $result_type [, bool $decode_binary]])

Object oriented style (method):

SQLiteResult

array current ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array current ([int $result_type [, bool $decode_binary]])

sqlite_current() is identical to sqlite_fetch_array() except that it does not advance to the
next row prior to returning the data; it returns the data from the current position only.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the current row from a result set; FALSE if the current position is
beyond the final row.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

See Also

• sqlite_seek()
• sqlite_next()
• sqlite_fetch_array()

sqlite_error_string

sqlite_error_string -- Returns the textual description of an error code

Description

string sqlite_error_string (int $error_code)

Returns a human readable description of the error_code returned from sqlite_last_error().

Parameters

error_code

The error code being used, which might be passed in from sqlite_last_error().

Return Values

Returns a human readable description of the error_code, as a string.

See Also

• sqlite_last_error()

sqlite_escape_string

sqlite_escape_string -- Escapes a string for use as a query parameter

Description

string sqlite_escape_string (string $item)

sqlite_escape_string() will correctly quote the string specified by item for use in an SQLite
SQL statement. This includes doubling up single-quote characters (') and checking for
binary-unsafe characters in the query string.

Although the encoding makes it safe to insert the data, it will render simple text
comparisons and LIKE clauses in your queries unusable for the columns that contain the
binary data. In practice, this shouldn't be a problem, as your schema should be such that
you don't use such things on binary columns (in fact, it might be better to store binary data
using other means, such as in files).

Parameters

item

The string being quoted. If the item contains a NUL character, or if it begins with a
character whose ordinal value is 0x01, PHP will apply a binary encoding scheme so
that you can safely store and retrieve binary data.

Return Values

Returns an escaped string for use in an SQLite SQL statement.

Notes

Note

Do not use this function to encode the return values from UDF's created using
sqlite_create_function() or sqlite_create_aggregate() - use sqlite_udf_encode_binary()
instead.

Warning

addslashes() should NOT be used to quote your strings for SQLite queries; it will lead
to strange results when retrieving your data.

See Also

• sqlite_udf_encode_binary()

sqlite_exec

SQLiteDatabase->exec

sqlite_exec -- SQLiteDatabase->exec -- Executes a result-less query against a given
database

Description

bool sqlite_exec (resource $dbhandle, string $query [, string &$error_msg])

bool sqlite_exec (string $query, resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

bool queryExec (string $query [, string &$error_msg])

Executes an SQL statement given by the query against a given database handle
(specified by the dbhandle parameter).

Warning

SQLite will execute multiple queries separated by semicolons, so you can use it to
execute a batch of SQL that you have loaded from a file or have embedded in a script.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

This function will return a boolean result; TRUE for success or FALSE for failure. If you
need to run a query that returns rows, see sqlite_query().

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

Examples

Example #11 - Procedural example

<?php

$dbhandle = sqlite_open('mysqlitedb');

$query = sqlite_exec($dbhandle, "UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'", $error);

if (!$query) {

 exit("Error in query: '$error'");

} else {

 echo 'Number of rows modified: ', sqlite_changes($dbhandle);

}

?>

Example #12 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('mysqlitedb');

$query = $dbhandle->queryExec("UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'", $error);

if (!$query) {

 exit("Error in query: '$error'");

} else {

 echo 'Number of rows modified: ', $dbhandle->changes();

}

?>

See Also

• sqlite_query()
• sqlite_unbuffered_query()
• sqlite_array_query()

sqlite_factory

sqlite_factory -- Opens a SQLite database and returns a SQLiteDatabase object

Description

SQLiteDatabase sqlite_factory (string $filename [, int $mode [, string &$error_message]
])

sqlite_factory() behaves similarly to sqlite_open() in that it opens an SQLite database or
attempts to create it if it does not exist. However, a SQLiteDatabase object is returned
rather than a resource. Please see the sqlite_open() reference page for further usage and
caveats.

Parameters

filename

The filename of the SQLite database.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the
database could not be opened if there was an error.

Return Values

Returns a SQLiteDatabase object on success, NULL on error.

Examples

Example #13 - sqlite_factory() example

<?php

$dbhandle = sqlite_factory('sqlitedb');

$dbhandle->query('SELECT user_id, username FROM users');

/* functionally equivalent to: */

$dbhandle = new SQLiteDatabase('sqlitedb');

$dbhandle->query('SELECT user_id, username FROM users');

?>

See Also

• sqlite_open()
• sqlite_popen()

sqlite_fetch_all

SQLiteResult->fetchAll

SQLiteUnbuffered->fetchAll

sqlite_fetch_all -- SQLiteResult->fetchAll -- SQLiteUnbuffered->fetchAll -- Fetches all rows
from a result set as an array of arrays

Description

array sqlite_fetch_all (resource $result [, int $result_type [, bool $decode_binary]])

Object oriented style (method):

SQLiteResult

array fetchAll ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array fetchAll ([int $result_type [, bool $decode_binary]])

sqlite_fetch_all() returns an array of the entire result set from the result resource. It is
similar to calling sqlite_query() (or sqlite_unbuffered_query()) and then
sqlite_fetch_array() for each row in the result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.

SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the remaining rows in a result set. If called right after sqlite_query(), it
returns all rows. If called after sqlite_fetch_array(), it returns the rest. If there are no rows
in a result set, it returns an empty array.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #14 - Procedural example

<?php

$dbhandle = sqlite_open('sqlitedb');

$query = sqlite_query($dbhandle, 'SELECT name, email FROM users LIMIT 25');

$result = sqlite_fetch_all($query, SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #15 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$query = $dbhandle->query('SELECT name, email FROM users LIMIT 25'); //
buffered result set

$query = $dbhandle->unbufferedQuery('SELECT name, email FROM users LIMIT
25'); // unbuffered result set

$result = $query->fetchAll(SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_fetch_array()

sqlite_fetch_array

SQLiteResult->fetch

SQLiteUnbuffered->fetch

sqlite_fetch_array -- SQLiteResult->fetch -- SQLiteUnbuffered->fetch -- Fetches the next
row from a result set as an array

Description

array sqlite_fetch_array (resource $result [, int $result_type [, bool $decode_binary]
])

Object oriented style (method):

SQLiteResult

array fetch ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array fetch ([int $result_type [, bool $decode_binary]])

Fetches the next row from the given result handle. If there are no more rows, returns
FALSE, otherwise returns an associative array representing the row data.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.

SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the next row from a result set; FALSE if the next position is beyond the
final row.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #16 - Procedural example

<?php

$dbhandle = sqlite_open('sqlitedb');

$query = sqlite_query($dbhandle, 'SELECT name, email FROM users LIMIT 25');

while ($entry = sqlite_fetch_array($query, SQLITE_ASSOC)) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #17 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$query = $dbhandle->query('SELECT name, email FROM users LIMIT 25'); //
buffered result set

$query = $dbhandle->unbufferedQuery('SELECT name, email FROM users LIMIT
25'); // unbuffered result set

while ($entry = $query->fetch(SQLITE_ASSOC)) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_array_query()
• sqlite_fetch_string()

sqlite_fetch_column_types

SQLiteDatabase->fetchColumnTypes

sqlite_fetch_column_types -- SQLiteDatabase->fetchColumnTypes -- Return an array of
column types from a particular table

Description

array sqlite_fetch_column_types (string $table_name, resource $dbhandle [, int $
result_type])

Object oriented style (method):

SQLiteDatabase

array fetchColumnTypes (string $table_name [, int $result_type])

sqlite_fetch_column_types() returns an array of column data types from the specified
table_name table.

Parameters

table_name

The table name to query.

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_ASSOC is the default for this function.

Return Values

Returns an array of column data types; FALSE on error.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded

according to the value of the sqlite.assoc_case configuration option.

ChangeLog

Version Description

5.1.0 Added result_type

Examples

Example #18 - Procedural example

<?php

$db = sqlite_open('mysqlitedb');

sqlite_query($db, 'CREATE TABLE foo (bar varchar(10), arf text)');

$cols = sqlite_fetch_column_types('foo', $db, SQLITE_ASSOC);

foreach ($cols as $column => $type) {

 echo "Column: $column Type: $type";

}

?>

Example #19 - Object-oriented example

<?php

$db = new SQLiteDatabase('mysqlitedb');

$db->query('CREATE TABLE foo (bar varchar(10), arf text)');

$cols = $db->fetchColumnTypes('foo', SQLITE_ASSOC);

foreach ($cols as $column => $type) {

 echo "Column: $column Type: $type";

}

?>

The above example will output:

Column: bar Type: VARCHAR

Column: arf Type: TEXT

sqlite_fetch_object

SQLiteResult->fetchObject

SQLiteUnbuffered->fetchObject

sqlite_fetch_object -- SQLiteResult->fetchObject -- SQLiteUnbuffered->fetchObject --
Fetches the next row from a result set as an object

Description

object sqlite_fetch_object (resource $result [, string $class_name [, array $
ctor_params [, bool $decode_binary]]])

Object oriented style (method):

SQLiteResult

object fetchObject ([string $class_name [, array $ctor_params [, bool $decode_binary]]
])

SQLiteUnbuffered

object fetchObject ([string $class_name [, array $ctor_params [, bool $decode_binary]]
])

Warning

This function is currently not documented; only its argument list is available.

sqlite_fetch_single

SQLiteResult->fetchSingle

SQLiteUnbuffered->fetchSingle

sqlite_fetch_single -- SQLiteResult->fetchSingle -- SQLiteUnbuffered->fetchSingle --
Fetches the first column of a result set as a string

Description

string sqlite_fetch_single (resource $result [, bool $decode_binary])

Object oriented style (method):

SQLiteResult

string fetchSingle ([bool $decode_binary])

SQLiteUnbuffered

string fetchSingle ([bool $decode_binary])

sqlite_fetch_single() is identical to sqlite_fetch_array() except that it returns the value of
the first column of the rowset.

This is the most optimal way to retrieve data when you are only interested in the values
from a single column of data.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()

. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Examples

Example #20 - A sqlite_fetch_single() example

<?php

if ($dbhandle = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 $sql = "SELECT id FROM sometable WHERE id = 42";

 $res = sqlite_query($dbhandle, $sql);

 if (sqlite_num_rows($res) > 0) {

 echo sqlite_fetch_single($res); // 42

 }

 sqlite_close($dbhandle);

}

?>

See Also

• sqlite_fetch_array()

sqlite_fetch_string

sqlite_fetch_string -- Alias of sqlite_fetch_single()

Description

This function is an alias of: sqlite_fetch_single().

sqlite_field_name

SQLiteResult->fieldName

SQLiteUnbuffered->fieldName

sqlite_field_name -- SQLiteResult->fieldName -- SQLiteUnbuffered->fieldName -- Returns
the name of a particular field

Description

string sqlite_field_name (resource $result, int $field_index)

Object oriented style (method):

SQLiteResult

string fieldName (int $field_index)

SQLiteUnbuffered

string fieldName (int $field_index)

Given the ordinal column number, field_index, sqlite_field_name() returns the name of
that field in the result set result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

field_index

The ordinal column number in the result set.

Return Values

Returns the name of a field in an SQLite result set, given the ordinal column number;
FALSE on error.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

sqlite_has_more

sqlite_has_more -- Finds whether or not more rows are available

Description

bool sqlite_has_more (resource $result)

Finds whether more rows are available from the given result set.

Parameters

result

The SQLite result resource.

Return Values

Returns TRUE if there are more rows available from the result handle, or FALSE
otherwise.

See Also

• sqlite_num_rows()
• sqlite_changes()

sqlite_has_prev

SQLiteResult->hasPrev

sqlite_has_prev -- SQLiteResult->hasPrev -- Returns whether or not a previous row is
available

Description

bool sqlite_has_prev (resource $result)

Object oriented style (method):

SQLiteResult

bool hasPrev (void)

Find whether there are more previous rows from the given result handle.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE if there are more previous rows available from the result handle, or
FALSE otherwise.

See Also

• sqlite_prev()

• sqlite_has_more()
• sqlite_num_rows()

sqlite_key

SQLiteResult->key

sqlite_key -- SQLiteResult->key -- Returns the current row index

Description

int sqlite_key (resource $result)

Object oriented style (method):

SQLiteResult

int key (void)

sqlite_key() returns the current row index of the buffered result set result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns the current row index of the buffered result set result.

ChangeLog

Version Description

5.0.4 Prior to PHP 5.0.4, sqlite_key() was only

able to be called as a method on a
SQLiteResult object, not procedurally.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_rewind()

sqlite_last_error

SQLiteDatabase->lastError

sqlite_last_error -- SQLiteDatabase->lastError -- Returns the error code of the last error for
a database

Description

int sqlite_last_error (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int lastError (void)

Returns the error code from the last operation performed on dbhandle (the database
handle), or 0 when no error occurred. A human readable description of the error code can
be retrieved using sqlite_error_string().

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

See Also

• sqlite_error_string()

sqlite_last_insert_rowid

SQLiteDatabase->lastInsertRowid

sqlite_last_insert_rowid -- SQLiteDatabase->lastInsertRowid -- Returns the rowid of the
most recently inserted row

Description

int sqlite_last_insert_rowid (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int lastInsertRowid (void)

Returns the rowid of the row that was most recently inserted into the database dbhandle, if
it was created as an auto-increment field.

Tip

You can create auto-increment fields in SQLite by declaring them as INTEGER
PRIMARY KEY in your table schema.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

sqlite_libencoding

sqlite_libencoding -- Returns the encoding of the linked SQLite library

Description

string sqlite_libencoding (void)

The SQLite library may be compiled in either ISO-8859-1 or UTF-8 compatible modes.
This function allows you to determine which encoding scheme is used by your version of
the library.

Warning

The default PHP distribution builds libsqlite in ISO-8859-1 encoding mode. However,
this is a misnomer; rather than handling ISO-8859-1, it operates according to your
current locale settings for string comparisons and sort ordering. So, rather than
ISO-8859-1, you should think of it as being '8-bit' instead.

When compiled with UTF-8 support, sqlite handles encoding and decoding of UTF-8
multi-byte character sequences, but does not yet do a complete job when working with the
data (no normalization is performed for example), and some comparison operations may
still not be carried out correctly.

Warning

It is not recommended that you use PHP in a web-server configuration with a version
of the SQLite library compiled with UTF-8 support, since libsqlite will abort the process
if it detects a problem with the UTF-8 encoding.

See Also

• sqlite_lib_version()

sqlite_libversion

sqlite_libversion -- Returns the version of the linked SQLite library

Description

string sqlite_libversion (void)

Returns the version of the linked SQLite library.

See Also

• sqlite_libencoding()

sqlite_next

SQLiteResult->next

SQLiteUnbuffered->next

sqlite_next -- SQLiteResult->next -- SQLiteUnbuffered->next -- Seek to the next row
number

Description

bool sqlite_next (resource $result)

Object oriented style (method):

SQLiteResult

bool next (void)

SQLiteUnbuffered

bool next (void)

sqlite_next() advances the result handle result to the next row.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Return Values

Returns TRUE on success, or FALSE if there are no more rows.

See Also

• sqlite_seek()
• sqlite_current()
• sqlite_rewind()

sqlite_num_fields

SQLiteResult->numFields

SQLiteUnbuffered->numFields

sqlite_num_fields -- SQLiteResult->numFields -- SQLiteUnbuffered->numFields -- Returns
the number of fields in a result set

Description

int sqlite_num_fields (resource $result)

Object oriented style (method):

SQLiteResult

int numFields (void)

SQLiteUnbuffered

int numFields (void)

Returns the number of fields in the result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

See Also

• sqlite_changes()

• sqlite_num_rows()

sqlite_num_rows

SQLiteResult->numRows

sqlite_num_rows -- SQLiteResult->numRows -- Returns the number of rows in a buffered
result set

Description

int sqlite_num_rows (resource $result)

Object oriented style (method):

SQLiteResult

int numRows (void)

Returns the number of rows in the buffered result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Examples

Example #21 - Procedural example

<?php

$db = sqlite_open('mysqlitedb');

$result = sqlite_query($db, "SELECT * FROM mytable WHERE name='John Doe'");

$rows = sqlite_num_rows($result);

echo "Number of rows: $rows";

?>

Example #22 - Object-oriented example

<?php

$db = new SQLiteDatabase('mysqlitedb');

$result = $db->query("SELECT * FROM mytable WHERE name='John Doe'");

$rows = $result->numRows();

echo "Number of rows: $rows";

?>

See Also

• sqlite_changes()
• sqlite_query()
• sqlite_num_fields()

sqlite_open

sqlite_open -- Opens a SQLite database and create the database if it does not exist

Description

resource sqlite_open (string $filename [, int $mode [, string &$error_message]])

Object oriented style (constructor):

SQLiteDatabase

__construct (string $filename [, int $mode [, string &$error_message]])

Opens a SQLite database or creates the database if it does not exist.

Parameters

filename

The filename of the SQLite database. If the file does not exist, SQLite will attempt to
create it. PHP must have write permissions to the file if data is inserted, the database
schema is modified or to create the database if it does not exist.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the
database could not be opened if there was an error.

Return Values

Returns a resource (database handle) on success, FALSE on error.

Examples

Example #23 - sqlite_open() example

<?php

if ($db = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 sqlite_query($db, 'CREATE TABLE foo (bar varchar(10))');

 sqlite_query($db, "INSERT INTO foo VALUES ('fnord')");

 $result = sqlite_query($db, 'select bar from foo');

 var_dump(sqlite_fetch_array($result));

} else {

 die($sqliteerror);

}

?>

Notes

Tip

On Unix platforms, SQLite is sensitive to scripts that use the fork() system call. If you
do have such a script, it is recommended that you close the handle prior to forking and
then re-open it in the child and/or parent. For more information on this issue, see » The
C language interface to the SQLite library in the section entitled Multi-Threading And
SQLite.

Tip

It is not recommended to work with SQLite databases mounted on NFS partitions.
Since NFS is notoriously bad when it comes to locking you may find that you cannot
even open the database at all, and if it succeeds, the locking behaviour may be
undefined.

Note

Starting with SQLite library version 2.8.2, you can specify:memory: as the filename to
create a database that lives only in the memory of the computer. This is useful mostly
for temporary processing, as the in-memory database will be destroyed when the
process ends. It can also be useful when coupled with the ATTACH DATABASE SQL
statement to load other databases and move and query data between them.

Note

SQLite is safe mode and open_basedir aware.

http://sqlite.org/c_interface.html
http://sqlite.org/c_interface.html

See Also

• sqlite_popen()
• sqlite_close()
• sqlite_factory()

sqlite_popen

sqlite_popen -- Opens a persistent handle to an SQLite database and create the database
if it does not exist

Description

resource sqlite_popen (string $filename [, int $mode [, string &$error_message]])

This function behaves identically to sqlite_open() except that is uses the persistent
resource mechanism of PHP. For information about the meaning of the parameters, read
the sqlite_open() manual page.

sqlite_popen() will first check to see if a persistent handle has already been opened for the
given filename. If it finds one, it returns that handle to your script, otherwise it opens a
fresh handle to the database.

The benefit of this approach is that you don't incur the performance cost of re-reading the
database and index schema on each page hit served by persistent web server SAPI's (any
SAPI except for regular CGI or CLI).

Note

If you use persistent handles and have the database updated by a background
process (perhaps via a crontab), and that process re-creates the database by
overwriting it (either by unlinking and rebuilding, or moving the updated version to
replace the current version), you may experience undefined behaviour when a
persistent handle on the old version of the database is recycled.

To avoid this situation, have your background processes open the same database file
and perform their updates in a transaction.

Parameters

filename

The filename of the SQLite database. If the file does not exist, SQLite will attempt to
create it. PHP must have write permissions to the file if data is inserted, the database
schema is modified or to create the database if it does not exist.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the

database could not be opened if there was an error.

Return Values

Returns a resource (database handle) on success, FALSE on error.

See Also

• sqlite_open()
• sqlite_close()
• sqlite_factory()

sqlite_prev

SQLiteResult->prev

sqlite_prev -- SQLiteResult->prev -- Seek to the previous row number of a result set

Description

bool sqlite_prev (resource $result)

Object oriented style (method):

SQLiteResult

bool prev (void)

sqlite_prev() seeks back the result handle to the previous row.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE on success, or FALSE if there are no more previous rows.

See Also

• sqlite_has_prev()
• sqlite_rewind()
• sqlite_next()

sqlite_query

SQLiteDatabase->query

sqlite_query -- SQLiteDatabase->query -- Executes a query against a given database and
returns a result handle

Description

resource sqlite_query (resource $dbhandle, string $query [, int $result_type [, string &$
error_msg]])

resource sqlite_query (string $query, resource $dbhandle [, int $result_type [, string &$
error_msg]])

Object oriented style (method):

SQLiteDatabase

SQLiteResult query (string $query [, int $result_type [, string &$error_msg]])

Executes an SQL statement given by the query against a given database handle.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

This function will return a result handle or FALSE on failure. For queries that return rows,
the result handle can then be used with functions such as sqlite_fetch_array() and
sqlite_seek().

Regardless of the query type, this function will return FALSE if the query failed.

sqlite_query() returns a buffered, seekable result handle. This is useful for reasonably
small queries where you need to be able to randomly access the rows. Buffered result
handles will allocate memory to hold the entire result and will not return until it has been
fetched. If you only need sequential access to the data, it is recommended that you use
the much higher performance sqlite_unbuffered_query() instead.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

Notes

Warning

SQLite will execute multiple queries separated by semicolons, so you can use it to
execute a batch of SQL that you have loaded from a file or have embedded in a script.
However, this works only when the result of the function is not used - if it is used, only
the first SQL statement would be executed. Function sqlite_exec() will always execute
multiple SQL statements.

When executing multiple queries, the return value of this function will be FALSE if
there was an error, but undefined otherwise (it might be TRUE for success or it might
return a result handle).

See Also

• sqlite_unbuffered_query()
• sqlite_array_query()

sqlite_rewind

SQLiteResult->rewind

sqlite_rewind -- SQLiteResult->rewind -- Seek to the first row number

Description

bool sqlite_rewind (resource $result)

Object oriented style (method):

SQLiteResult

bool rewind (void)

sqlite_rewind() seeks back to the first row in the given result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns FALSE if there are no rows in the result set, TRUE otherwise.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_seek()

sqlite_seek

SQLiteResult->seek

sqlite_seek -- SQLiteResult->seek -- Seek to a particular row number of a buffered result
set

Description

bool sqlite_seek (resource $result, int $rownum)

Object oriented style (method):

SQLiteResult

bool seek (int $rownum)

sqlite_seek() seeks to the row given by the parameter rownum.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

rownum

The ordinal row number to seek to. The row number is zero-based (0 is the first row).

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns FALSE if the row does not exist, TRUE otherwise.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_rewind()

sqlite_single_query

SQLiteDatabase->singleQuery

sqlite_single_query -- SQLiteDatabase->singleQuery -- Executes a query and returns
either an array for one single column or the value of the first row

Description

array sqlite_single_query (resource $db, string $query [, bool $first_row_only [, bool
$decode_binary]])

Object oriented style (method):

SQLiteDatabase

array singleQuery (string $query [, bool $first_row_only [, bool $decode_binary]])

Warning

This function is currently not documented; only its argument list is available.

sqlite_udf_decode_binary

sqlite_udf_decode_binary -- Decode binary data passed as parameters to an UDF

Description

string sqlite_udf_decode_binary (string $data)

Decodes binary data passed as parameters to a UDF.

You must call this function on parameters passed to your UDF if you need them to handle
binary data, as the binary encoding employed by PHP will obscure the content and of the
parameter in its natural, non-coded form.

PHP does not perform this encode/decode operation automatically as it would severely
impact performance if it did.

Parameters

data

The encoded data that will be decoded, data that was applied by either
sqlite_udf_encode_binary() or sqlite_escape_string().

Return Values

The decoded string.

Examples

Example #24 - binary-safe max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$db = sqlite_open(':memory:');

sqlite_query($db, "CREATE TABLE strings(a)");

foreach ($data as $str) {

 $str = sqlite_escape_string($str);

 sqlite_query($db, "INSERT INTO strings VALUES ('$str')");

}

function max_len_step(&$context, $string)

{

 $string = sqlite_udf_decode_binary($string);

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context)

{

 return $context;

}

sqlite_create_aggregate($db, 'max_len', 'max_len_step', 'max_len_finalize');

var_dump(sqlite_array_query($db, 'SELECT max_len(a) from strings'));

?>

See Also

• sqlite_udf_encode_binary()
• sqlite_create_function()
• sqlite_create_aggregate()

sqlite_udf_encode_binary

sqlite_udf_encode_binary -- Encode binary data before returning it from an UDF

Description

string sqlite_udf_encode_binary (string $data)

sqlite_udf_encode_binary() applies a binary encoding to the data so that it can be safely
returned from queries (since the underlying libsqlite API is not binary safe).

If there is a chance that your data might be binary unsafe (e.g.: it contains a NUL byte in
the middle rather than at the end, or if it has and 0x01 byte as the first character) then you
must call this function to encode the return value from your UDF.

PHP does not perform this encode/decode operation automatically as it would severely
impact performance if it did.

Note

Do not use sqlite_escape_string() to quote strings returned from UDF's as it will lead to
double-quoting of the data. Use sqlite_udf_encode_binary() instead!

Parameters

data

The string being encoded.

Return Values

The encoded string.

See Also

• sqlite_udf_decode_binary()
• sqlite_escape_string()
• sqlite_create_function()
• sqlite_create_aggregate()

sqlite_unbuffered_query

SQLiteDatabase->unbufferedQuery

sqlite_unbuffered_query -- SQLiteDatabase->unbufferedQuery -- Execute a query that
does not prefetch and buffer all data

Description

resource sqlite_unbuffered_query (resource $dbhandle, string $query [, int $
result_type [, string &$error_msg]])

resource sqlite_unbuffered_query (string $query, resource $dbhandle [, int $
result_type [, string &$error_msg]])

Object oriented style (method):

SQLiteDatabase

SQLiteUnbuffered unbufferedQuery (string $query [, int $result_type [, string &$
error_msg]])

sqlite_unbuffered_query() is identical to sqlite_query() except that the result that is
returned is a sequential forward-only result set that can only be used to read each row,
one after the other.

This function is ideal for generating things such as HTML tables where you only need to
process one row at a time and don't need to randomly access the row data.

Note

Functions such as sqlite_seek(), sqlite_rewind(), sqlite_next(), sqlite_current(), and
sqlite_num_rows() do not work on result handles returned from
sqlite_unbuffered_query().

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

Returns a result handle or FALSE on failure.

sqlite_unbuffered_query() returns a sequential forward-only result set that can only be
used to read each row, one after the other.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

See Also

• sqlite_query()

sqlite_valid

SQLiteResult->valid

SQLiteUnbuffered->valid

sqlite_valid -- SQLiteResult->valid -- SQLiteUnbuffered->valid -- Returns whether more
rows are available

Description

bool sqlite_valid (resource $result)

Object oriented style (method):

SQLiteResult

bool valid (void)

SQLiteUnbuffered

bool valid (void)

Finds whether more rows are available from the given result handle.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE if there are more rows available from the result handle, or FALSE
otherwise.

See Also

• sqlite_num_rows()
• sqlite_changes()

	SQLite
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SQLite Functions
	Predefined Classes
	SQLiteDatabase
	Constructor
	Methods
	SQLiteResult
	Methods
	SQLiteUnbuffered
	Methods
	sqlite_array_query
	sqlite_busy_timeout
	sqlite_changes
	sqlite_close
	sqlite_column
	sqlite_create_aggregate
	sqlite_create_function
	sqlite_current
	sqlite_error_string
	sqlite_escape_string
	sqlite_exec
	sqlite_factory
	sqlite_fetch_all
	sqlite_fetch_array
	sqlite_fetch_column_types
	sqlite_fetch_object
	sqlite_fetch_single
	sqlite_fetch_string
	sqlite_field_name
	sqlite_has_more
	sqlite_has_prev
	sqlite_key
	sqlite_last_error
	sqlite_last_insert_rowid
	sqlite_libencoding
	sqlite_libversion
	sqlite_next
	sqlite_num_fields
	sqlite_num_rows
	sqlite_open
	sqlite_popen
	sqlite_prev
	sqlite_query
	sqlite_rewind
	sqlite_seek
	sqlite_single_query
	sqlite_udf_decode_binary
	sqlite_udf_encode_binary
	sqlite_unbuffered_query
	sqlite_valid

