
Error Handling and Logging

Introduction

These are functions dealing with error handling and logging. They allow you to define your
own error handling rules, as well as modify the way the errors can be logged. This allows
you to change and enhance error reporting to suit your needs.

With the logging functions, you can send messages directly to other machines, to an email
(or email to pager gateway!), to system logs, etc., so you can selectively log and monitor
the most important parts of your applications and websites.

The error reporting functions allow you to customize what level and kind of error feedback
is given, ranging from simple notices to customized functions returned during errors.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Errors and Logging Configuration Options

Name Default Changeable Changelog

error_reporting NULL PHP_INI_ALL

display_errors "1" PHP_INI_ALL

display_startup_error
s

"0" PHP_INI_ALL

log_errors "0" PHP_INI_ALL

log_errors_max_len "1024" PHP_INI_ALL Available since PHP
4.3.0.

ignore_repeated_erro
rs

"0" PHP_INI_ALL Available since PHP
4.3.0.

ignore_repeated_sou
rce

"0" PHP_INI_ALL Available since PHP
4.3.0.

report_memleaks "1" PHP_INI_ALL Available since PHP
4.3.0.

track_errors "0" PHP_INI_ALL

html_errors "1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.2.3.

docref_root "" PHP_INI_ALL Available since PHP
4.3.0.

docref_ext "" PHP_INI_ALL Available since PHP
4.3.2.

error_prepend_string NULL PHP_INI_ALL

error_append_string NULL PHP_INI_ALL

error_log NULL PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

error_reporting integer
Set the error reporting level. The parameter is either an integer representing a bit field,
or named constants. The error_reporting levels and constants are described in
Predefined Constants, and in php.ini. To set at runtime, use the error_reporting()
function. See also the display_errors directive. In PHP 4 and PHP 5 the default value is
E_ALL & ~E_NOTICE. This setting does not show E_NOTICE level errors. You may
want to show them during development.

Note

Enabling E_NOTICE during development has some benefits. For debugging
purposes: NOTICE messages will warn you about possible bugs in your code. For
example, use of unassigned values is warned. It is extremely useful to find typos
and to save time for debugging. NOTICE messages will warn you about bad style.
For example, $arr[item] is better to be written as $arr['item'] since PHP tries to treat
"item" as constant. If it is not a constant, PHP assumes it is a string index for the
array.

Note

In PHP 5 a new error level E_STRICT is available. As E_STRICT is not included
within E_ALL you have to explicitly enable this kind of error level. Enabling
E_STRICT during development has some benefits. STRICT messages will help
you to use the latest and greatest suggested method of coding, for example warn
you about using deprecated functions.

Note

PHP Constants outside of PHP

Using PHP Constants outside of PHP, like in httpd.conf, will have no useful

meaning so in such cases the integer values are required. And since error levels
will be added over time, the maximum value (for E_ALL) will likely change. So in
place of E_ALL consider using a larger value to cover all bit fields from now and
well into the future, a numeric value like 2147483647.

display_errors string
This determines whether errors should be printed to the screen as part of the output or
if they should be hidden from the user. Value "stderr" sends the errors to stderr instead
of stdout. The value is available as of PHP 5.2.4. In earlier versions, this directive was
of type boolean.

Note

This is a feature to support your development and should never be used on
production systems (e.g. systems connected to the internet).

Note

Although display_errors may be set at runtime (with ini_set()), it won't have any
affect if the script has fatal errors. This is because the desired runtime action does
not get executed.

display_startup_errors boolean
Even when display_errors is on, errors that occur during PHP's startup sequence are
not displayed. It's strongly recommended to keep display_startup_errors off, except for
debugging.

log_errors boolean
Tells whether script error messages should be logged to the server's error log or
error_log. This option is thus server-specific.

Note

You're strongly advised to use error logging in place of error displaying on
production web sites.

log_errors_max_len integer
Set the maximum length of log_errors in bytes. In error_log information about the
source is added. The default is 1024 and 0 allows to not apply any maximum length at
all. This length is applied to logged errors, displayed errors and also to $php_errormsg.
When an integer is used, the value is measured in bytes. Shorthand notation, as
described in this FAQ, may also be used.

ignore_repeated_errors boolean

Do not log repeated messages. Repeated errors must occur in the same file on the
same line until ignore_repeated_source is set true.

ignore_repeated_source boolean
Ignore source of message when ignoring repeated messages. When this setting is On
you will not log errors with repeated messages from different files or sourcelines.

report_memleaks boolean
If this parameter is set to Off, then memory leaks will not be shown (on stdout or in the
log). This has only effect in a debug compile, and if error_reporting includes
E_WARNING in the allowed list

track_errors boolean
If enabled, the last error message will always be present in the variable $php_errormsg
.

html_errors boolean
Turn off HTML tags in error messages. The new format for HTML errors produces
clickable messages that direct the user to a page describing the error or function in
causing the error. These references are affected by docref_root and docref_ext.

docref_root string
The new error format contains a reference to a page describing the error or function
causing the error. In case of manual pages you can download the manual in your
language and set this ini directive to the URL of your local copy. If your local copy of
the manual can be reached by '/manual/' you can simply use docref_root=/manual/.
Additional you have to set docref_ext to match the fileextensions of your copy
docref_ext=.html. It is possible to use external references. For example you can use
docref_root=http://manual/en/ or
docref_root="http://landonize.it/?how=url&theme=classic&filter=Landon
&url=http%3A%2F%2Fwww.php.net%2F" Most of the time you want the docref_root
value to end with a slash '/'. But see the second example above which does not have
nor need it.

Note

This is a feature to support your development since it makes it easy to lookup a
function description. However it should never be used on production systems (e.g.
systems connected to the internet).

docref_ext string
See docref_root.

Note

The value of docref_ext must begin with a dot '.'.

error_prepend_string string

String to output before an error message.

error_append_string string
String to output after an error message.

error_log string
Name of the file where script errors should be logged. The file should be writable by
the web server's user. If the special value syslog is used, the errors are sent to the
system logger instead. On Unix, this means syslog(3) and on Windows NT it means
the event log. The system logger is not supported on Windows 95. See also: syslog().
If this directive is not set, errors are sent to the SAPI error logger. For example, it is an
error log in Apache or stderr in CLI.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are always available as part of the PHP core.

Note

You may use these constant names in php.ini but not outside of PHP, like in httpd.conf
, where you'd use the bitmask values instead.

Errors and Logging

Value Constant Description Note

1 E_ERROR (integer) Fatal run-time errors.
These indicate errors
that can not be
recovered from, such
as a memory
allocation problem.
Execution of the
script is halted.

2 E_WARNING (
integer)

Run-time warnings
(non-fatal errors).
Execution of the
script is not halted.

4 E_PARSE (integer) Compile-time parse
errors. Parse errors
should only be
generated by the
parser.

8 E_NOTICE (integer) Run-time notices.
Indicate that the
script encountered
something that could
indicate an error, but
could also happen in
the normal course of
running a script.

16 E_CORE_ERROR (
integer)

Fatal errors that
occur during PHP's
initial startup. This is
like an E_ERROR,
except it is generated

since PHP 4

by the core of PHP.

32 E_CORE_WARNING
(integer)

Warnings (non-fatal
errors) that occur
during PHP's initial
startup. This is like an
E_WARNING, except
it is generated by the
core of PHP.

since PHP 4

64 E_COMPILE_ERRO
R (integer)

Fatal compile-time
errors. This is like an
E_ERROR, except it
is generated by the
Zend Scripting
Engine.

since PHP 4

128 E_COMPILE_WARN
ING (integer)

Compile-time
warnings (non-fatal
errors). This is like an
E_WARNING, except
it is generated by the
Zend Scripting
Engine.

since PHP 4

256 E_USER_ERROR (
integer)

User-generated error
message. This is like
an E_ERROR,
except it is generated
in PHP code by using
the PHP function
trigger_error().

since PHP 4

512 E_USER_WARNING
(integer)

User-generated
warning message.
This is like an
E_WARNING, except
it is generated in PHP
code by using the
PHP function
trigger_error().

since PHP 4

1024 E_USER_NOTICE (
integer)

User-generated
notice message. This
is like an E_NOTICE,
except it is generated
in PHP code by using
the PHP function
trigger_error().

since PHP 4

2048 E_STRICT (integer) Run-time notices.
Enable to have PHP

since PHP 5

suggest changes to
your code which will
ensure the best
interoperability and
forward compatibility
of your code.

4096 E_RECOVERABLE_
ERROR (integer)

Catchable fatal error.
It indicates that a
probably dangerous
error occured, but did
not leave the Engine
in an unstable state.
If the error is not
caught by a user
defined handle (see
also
set_error_handler()),
the application aborts
as it was an
E_ERROR.

since PHP 5.2.0

8191 E_ALL (integer) All errors and
warnings, as
supported, except of
level E_STRICT in
PHP < 6.

6143 in PHP 5.2.x
and 2047 previously

The above values (either numerical or symbolic) are used to build up a bitmask that
specifies which errors to report. You can use the bitwise operators to combine these
values or mask out certain types of errors. Note that only '|', '~', '!', '^' and '&' will be
understood within php.ini.

Examples

Below we can see an example of using the error handling capabilities in PHP. We define
an error handling function which logs the information into a file (using an XML format), and
e-mails the developer in case a critical error in the logic happens.

Example #1 - Using error handling in a script

<?php

// we will do our own error handling

error_reporting(0);

// user defined error handling function

function userErrorHandler($errno, $errmsg, $filename, $linenum, $vars)

{

 // timestamp for the error entry

 $dt = date("Y-m-d H:i:s (T)");

 // define an assoc array of error string

 // in reality the only entries we should

 // consider are E_WARNING, E_NOTICE, E_USER_ERROR,

 // E_USER_WARNING and E_USER_NOTICE

 $errortype = array (

 E_ERROR => 'Error',

 E_WARNING => 'Warning',

 E_PARSE => 'Parsing Error',

 E_NOTICE => 'Notice',

 E_CORE_ERROR => 'Core Error',

 E_CORE_WARNING => 'Core Warning',

 E_COMPILE_ERROR => 'Compile Error',

 E_COMPILE_WARNING => 'Compile Warning',

 E_USER_ERROR => 'User Error',

 E_USER_WARNING => 'User Warning',

 E_USER_NOTICE => 'User Notice',

 E_STRICT => 'Runtime Notice',

 E_RECOVERABLE_ERROR => 'Catchable Fatal Error'

);

 // set of errors for which a var trace will be saved

 $user_errors = array(E_USER_ERROR, E_USER_WARNING, E_USER_NOTICE);

 $err = "<errorentry>\n";

 $err .= "\t<datetime>" . $dt . "</datetime>\n";

 $err .= "\t<errornum>" . $errno . "</errornum>\n";

 $err .= "\t<errortype>" . $errortype[$errno] . "</errortype>\n";

 $err .= "\t<errormsg>" . $errmsg . "</errormsg>\n";

 $err .= "\t<scriptname>" . $filename . "</scriptname>\n";

 $err .= "\t<scriptlinenum>" . $linenum . "</scriptlinenum>\n";

 if (in_array($errno, $user_errors)) {

 $err .= "\t<vartrace>" . wddx_serialize_value($vars, "Variables") .
"</vartrace>\n";

 }

 $err .= "</errorentry>\n\n";

 // for testing

 // echo $err;

 // save to the error log, and e-mail me if there is a critical user error

 error_log($err, 3, "/usr/local/php4/error.log");

 if ($errno == E_USER_ERROR) {

 mail("phpdev@example.com", "Critical User Error", $err);

 }

}

function distance($vect1, $vect2)

{

 if (!is_array($vect1) || !is_array($vect2)) {

 trigger_error("Incorrect parameters, arrays expected", E_USER_ERROR);

 return NULL;

 }

 if (count($vect1) != count($vect2)) {

 trigger_error("Vectors need to be of the same size", E_USER_ERROR);

 return NULL;

 }

 for ($i=0; $i<count($vect1); $i++) {

 $c1 = $vect1[$i]; $c2 = $vect2[$i];

 $d = 0.0;

 if (!is_numeric($c1)) {

 trigger_error("Coordinate $i in vector 1 is not a number, using
zero",

 E_USER_WARNING);

 $c1 = 0.0;

 }

 if (!is_numeric($c2)) {

 trigger_error("Coordinate $i in vector 2 is not a number, using
zero",

 E_USER_WARNING);

 $c2 = 0.0;

 }

 $d += $c2*$c2 - $c1*$c1;

 }

 return sqrt($d);

}

$old_error_handler = set_error_handler("userErrorHandler");

// undefined constant, generates a warning

$t = I_AM_NOT_DEFINED;

// define some "vectors"

$a = array(2, 3, "foo");

$b = array(5.5, 4.3, -1.6);

$c = array(1, -3);

// generate a user error

$t1 = distance($c, $b) . "\n";

// generate another user error

$t2 = distance($b, "i am not an array") . "\n";

// generate a warning

$t3 = distance($a, $b) . "\n";

?>

Error Handling Functions

See Also

See also syslog().

debug_backtrace

debug_backtrace -- Generates a backtrace

Description

array debug_backtrace ([bool $provide_object])

debug_backtrace() generates a PHP backtrace.

Return Values

Returns an associative array. The possible returned elements are as follows:

Possible returned elements from debug_backtrace()

Name Type Description

function string The current function name.
See also __FUNCTION__.

line integer The current line number. See
also __LINE__.

file string The current file name. See
also __FILE__.

class string The current class name. See
also __CLASS__

object object The current object.

type string The current call type. If a
method call, "->" is returned.
If a static method call, "::" is
returned. If a function call,
nothing is returned.

args array If inside a function, this lists
the functions arguments. If
inside an included file, this
lists the included file
name(s).

ChangeLog

Version Description

5.2.5 Added the optional parameter
provide_object.

5.1.1 Added the current object as a possible
return element.

Examples

Example #2 - debug_backtrace() example

<?php

// filename: a.php

function a_test($str)

{

 echo "\nHi: $str";

 var_dump(debug_backtrace());

}

a_test('friend');

?>

<?php

// filename: b.php

include_once '/tmp/a.php';

?>

Results similar to the following when executing /tmp/b.php:

Hi: friend

array(2) {

[0]=>

array(4) {

 ["file"] => string(10) "/tmp/a.php"

 ["line"] => int(10)

 ["function"] => string(6) "a_test"

 ["args"]=>

 array(1) {

 [0] => &string(6) "friend"

 }

}

[1]=>

array(4) {

 ["file"] => string(10) "/tmp/b.php"

 ["line"] => int(2)

 ["args"] =>

 array(1) {

 [0] => string(10) "/tmp/a.php"

 }

 ["function"] => string(12) "include_once"

 }

}

See Also

• trigger_error()
• debug_print_backtrace()

debug_print_backtrace

debug_print_backtrace -- Prints a backtrace

Description

void debug_print_backtrace (void)

debug_print_backtrace() prints a PHP backtrace. It prints the function calls,
included/required files and eval() ed stuff.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #3 - debug_print_backtrace() example

<?php

// include.php file

function a() {

 b();

}

function b() {

 c();

}

function c(){

 debug_print_backtrace();

}

a();

?>

<?php

// test.php file

// this is the file you should run

include 'include.php';

?>

The above example will output something similar to:

#0 eval() called at [/tmp/include.php:5]

#1 a() called at [/tmp/include.php:17]

#2 include(/tmp/include.php) called at [/tmp/test.php:3]

#0 c() called at [/tmp/include.php:10]

#1 b() called at [/tmp/include.php:6]

#2 a() called at [/tmp/include.php:17]

#3 include(/tmp/include.php) called at [/tmp/test.php:3]

See Also

• debug_backtrace()

error_get_last

error_get_last -- Get the last occurred error

Description

array error_get_last (void)

Gets information about the last error that occured.

Return Values

Returns an associative array describing the last error with keys "type", "message", "file"
and "line". Returns NULL if there hasn't been an error yet.

Examples

Example #4 - An error_get_last() example

<?php

echo $a;

print_r(error_get_last());

?>

The above example will output something similar to:

Array

(

 [type] => 8

 [message] => Undefined variable: a

 [file] => C:\WWW\index.php

 [line] => 2

)

See Also

• Error constants
• Variable $php_errormsg
• Directive display_errors

error_log

error_log -- Send an error message somewhere

Description

bool error_log (string $message [, int $message_type [, string $destination [, string $
extra_headers]]])

Sends an error message to the web server's error log, a TCP port or to a file.

Parameters

message

The error message that should be logged.

message_type

Says where the error should go. The possible message types are as follows:

error_log() log types

0 message is sent to PHP's system logger,
using the Operating System's system
logging mechanism or a file, depending on
what the error_log configuration directive is
set to. This is the default option.

1 message is sent by email to the address in
the destination parameter. This is the only
message type where the fourth parameter,
extra_headers is used.

2 No longer an option.

3 message is appended to the file destination
. A newline is not automatically added to the
end of the message string.

destination

The destination. Its meaning depends on the message_type parameter as described
above.

extra_headers

The extra headers. It's used when the message_type parameter is set to 1. This message
type uses the same internal function as mail() does.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #5 - error_log() examples

<?php

// Send notification through the server log if we can not

// connect to the database.

if (!Ora_Logon($username, $password)) {

 error_log("Oracle database not available!", 0);

}

// Notify administrator by email if we run out of FOO

if (!($foo = allocate_new_foo())) {

 error_log("Big trouble, we're all out of FOOs!", 1,

 "operator@example.com");

}

// another way to call error_log():

error_log("You messed up!", 3, "/var/tmp/my-errors.log");

?>

error_reporting

error_reporting -- Sets which PHP errors are reported

Description

int error_reporting ([int $level])

The error_reporting() function sets the error_reporting directive at runtime. PHP has many
levels of errors, using this function sets that level for the duration (runtime) of your script.

Parameters

level

The new error_reporting level. It takes on either a bitmask, or named constants. Using
named constants is strongly encouraged to ensure compatibility for future versions. As
error levels are added, the range of integers increases, so older integer-based error levels
will not always behave as expected. The available error level constants are listed below.
The actual meanings of these error levels are described in the predefined constants.

error_reporting() level constants and bit values

value constant

1 E_ERROR

2 E_WARNING

4 E_PARSE

8 E_NOTICE

16 E_CORE_ERROR

32 E_CORE_WARNING

64 E_COMPILE_ERROR

128 E_COMPILE_WARNING

256 E_USER_ERROR

512 E_USER_WARNING

1024 E_USER_NOTICE

6143 E_ALL

2048 E_STRICT

4096 E_RECOVERABLE_ERROR

Return Values

Returns the old error_reporting level.

ChangeLog

Version Description

5.0.0 E_STRICT introduced (not part of E_ALL).

5.2.0 E_RECOVERABLE_ERROR introduced.

6 E_STRICT became part of E_ALL.

Examples

Example #6 - error_reporting() examples

<?php

// Turn off all error reporting

error_reporting(0);

// Report simple running errors

error_reporting(E_ERROR | E_WARNING | E_PARSE);

// Reporting E_NOTICE can be good too (to report uninitialized

// variables or catch variable name misspellings ...)

error_reporting(E_ERROR | E_WARNING | E_PARSE | E_NOTICE);

// Report all errors except E_NOTICE

// This is the default value set in php.ini

error_reporting(E_ALL ^ E_NOTICE);

// Report all PHP errors

error_reporting(E_ALL);

// Same as error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

?>

Notes

Warning

Most of E_STRICT errors are evaluated at the compile time thus such errors are not
reported in the file where error_reporting is enhanced to include E_STRICT errors (and
vice versa).

See Also

• The display_errors directive
• ini_set()

restore_error_handler

restore_error_handler -- Restores the previous error handler function

Description

bool restore_error_handler (void)

Used after changing the error handler function using set_error_handler(), to revert to the
previous error handler (which could be the built-in or a user defined function).

Return Values

This function always returns TRUE.

Examples

Example #7 - restore_error_handler() example

Decide if unserialize() caused an error, then restore the original error handler.

<?php

function unserialize_handler($errno, $errstr)

{

 echo "Invalid serialized value.\n";

}

$serialized = 'foo';

set_error_handler('unserialize_handler');

$original = unserialize($serialized);

restore_error_handler();

?>

The above example will output:

Invalid serialized value.

Notes

Note

Calling restore_error_handler() from the error_handler function is ignored.

See Also

• error_reporting()
• set_error_handler()
• restore_exception_handler()
• trigger_error()

restore_exception_handler

restore_exception_handler -- Restores the previously defined exception handler function

Description

bool restore_exception_handler (void)

Used after changing the exception handler function using set_exception_handler(), to
revert to the previous exception handler (which could be the built-in or a user defined
function).

Return Values

This function always returns TRUE.

See Also

• set_exception_handler()
• set_error_handler()
• restore_error_handler()
• error_reporting()

set_error_handler

set_error_handler -- Sets a user-defined error handler function

Description

mixed set_error_handler (callback $error_handler [, int $error_types])

Sets a user function (error_handler) to handle errors in a script.

This function can be used for defining your own way of handling errors during runtime, for
example in applications in which you need to do cleanup of data/files when a critical error
happens, or when you need to trigger an error under certain conditions (using
trigger_error()).

It is important to remember that the standard PHP error handler is completely bypassed.
error_reporting() settings will have no effect and your error handler will be called
regardless - however you are still able to read the current value of error_reporting and act
appropriately. Of particular note is that this value will be 0 if the statement that caused the
error was prepended by the @ error-control operator.

Also note that it is your responsibility to die() if necessary. If the error-handler function
returns, script execution will continue with the next statement after the one that caused an
error.

The following error types cannot be handled with a user defined function: E_ERROR,
E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR,
E_COMPILE_WARNING, and most of E_STRICT raised in the file where
set_error_handler() is called.

If errors occur before the script is executed (e.g. on file uploads) the custom error handler
cannot be called since it is not registered at that time.

Parameters

error_handler

The user function needs to accept two parameters: the error code, and a string
describing the error. Then there are three optional parameters that may be supplied:
the filename in which the error occurred, the line number in which the error occurred,
and the context in which the error occurred (an array that points to the active symbol
table at the point the error occurred). The function can be shown as:
handler (int $errno, string $errstr [, string $errfile [, int $errline [, array $
errcontext]]])

errno

The first parameter, errno, contains the level of the error raised, as an integer.

errstr

The second parameter, errstr, contains the error message, as a string.

errfile

The third parameter is optional, errfile, which contains the filename that the error
was raised in, as a string.

errline

The fourth parameter is optional, errline, which contains the line number the error
was raised at, as an integer.

errcontext

The fifth parameter is optional, errcontext, which is an array that points to the
active symbol table at the point the error occurred. In other words, errcontext will
contain an array of every variable that existed in the scope the error was triggered
in. User error handler must not modify error context.

If the function returns FALSE then the normal error handler continues.

error_types

Can be used to mask the triggering of the error_handler function just like the
error_reporting ini setting controls which errors are shown. Without this mask set the
error_handler will be called for every error regardless to the setting of the
error_reporting setting.

Return Values

Returns a string containing the previously defined error handler (if any), or NULL on error.
If the previous handler was a class method, this function will return an indexed array with
the class and the method name.

ChangeLog

Version Description

5.2.0 The error handler must return FALSE to
populate $php_errormsg.

5.0.0 The error_types parameter was
introduced.

4.3.0 Instead of a function name, an array
containing an object reference and a
method name can also be supplied as the
error_handler.

4.0.2 Three optional parameters for the
error_handler user function was
introduced. These are the filename, the line
number, and the context.

Examples

Example #8 - Error handling with set_error_handler() and trigger_error()

The example below shows the handling of internal exceptions by triggering errors and
handling them with a user defined function:

<?php

// error handler function

function myErrorHandler($errno, $errstr, $errfile, $errline)

{

 switch ($errno) {

 case E_USER_ERROR:

 echo "My ERROR [$errno] $errstr
\n";

 echo " Fatal error on line $errline in file $errfile";

 echo ", PHP " . PHP_VERSION . " (" . PHP_OS . ")
\n";

 echo "Aborting...
\n";

 exit(1);

 break;

 case E_USER_WARNING:

 echo "My WARNING [$errno] $errstr
\n";

 break;

 case E_USER_NOTICE:

 echo "My NOTICE [$errno] $errstr
\n";

 break;

 default:

 echo "Unknown error type: [$errno] $errstr
\n";

 break;

 }

 /* Don't execute PHP internal error handler */

 return true;

}

// function to test the error handling

function scale_by_log($vect, $scale)

{

 if (!is_numeric($scale) || $scale <= 0) {

 trigger_error("log(x) for x <= 0 is undefined, you used: scale =
$scale", E_USER_ERROR);

 }

 if (!is_array($vect)) {

 trigger_error("Incorrect input vector, array of values expected",
E_USER_WARNING);

 return null;

 }

 $temp = array();

 foreach($vect as $pos => $value) {

 if (!is_numeric($value)) {

 trigger_error("Value at position $pos is not a number, using 0
(zero)", E_USER_NOTICE);

 $value = 0;

 }

 $temp[$pos] = log($scale) * $value;

 }

 return $temp;

}

// set to the user defined error handler

$old_error_handler = set_error_handler("myErrorHandler");

// trigger some errors, first define a mixed array with a non-numeric item

echo "vector a\n";

$a = array(2, 3, "foo", 5.5, 43.3, 21.11);

print_r($a);

// now generate second array

echo "----\nvector b - a notice (b = log(PI) * a)\n";

/* Value at position $pos is not a number, using 0 (zero) */

$b = scale_by_log($a, M_PI);

print_r($b);

// this is trouble, we pass a string instead of an array

echo "----\nvector c - a warning\n";

/* Incorrect input vector, array of values expected */

$c = scale_by_log("not array", 2.3);

var_dump($c); // NULL

// this is a critical error, log of zero or negative number is undefined

echo "----\nvector d - fatal error\n";

/* log(x) for x <= 0 is undefined, you used: scale = $scale" */

$d = scale_by_log($a, -2.5);

var_dump($d); // Never reached

?>

The above example will output something similar to:

vector a

Array

(

 [0] => 2

 [1] => 3

 [2] => foo

 [3] => 5.5

 [4] => 43.3

 [5] => 21.11

)

vector b - a notice (b = log(PI) * a)

My NOTICE [1024] Value at position 2 is not a number, using 0
(zero)

Array

(

 [0] => 2.2894597716988

 [1] => 3.4341896575482

 [2] => 0

 [3] => 6.2960143721717

 [4] => 49.566804057279

 [5] => 24.165247890281

)

vector c - a warning

My WARNING [512] Incorrect input vector, array of values expected

NULL

vector d - fatal error

My ERROR [256] log(x) for x <= 0 is undefined, you used: scale =
-2.5

 Fatal error on line 35 in file trigger_error.php, PHP 5.2.1 (FreeBSD)

Aborting...

See Also

• error_reporting()
• restore_error_handler()
• trigger_error()
• error level constants
• information about the callback type

set_exception_handler

set_exception_handler -- Sets a user-defined exception handler function

Description

string set_exception_handler (callback $exception_handler)

Sets the default exception handler if an exception is not caught within a try/catch block.
Execution will stop after the exception_handler is called.

Parameters

exception_handler

Name of the function to be called when an uncaught exception occurs. This function
must be defined before calling set_exception_handler(). This handler function needs to
accept one parameter, which will be the exception object that was thrown.

Return Values

Returns the name of the previously defined exception handler, or NULL on error. If no
previous handler was defined, NULL is also returned.

Examples

Example #9 - set_exception_handler() example

<?php

function exception_handler($exception) {

 echo "Uncaught exception: " , $exception->getMessage(), "\n";

}

set_exception_handler('exception_handler');

throw new Exception('Uncaught Exception');

echo "Not Executed\n";

?>

See Also

restore_exception_handler(), restore_error_handler(), error_reporting(), information about
the callback type, and PHP 5 Exceptions.

trigger_error

trigger_error -- Generates a user-level error/warning/notice message

Description

bool trigger_error (string $error_msg [, int $error_type])

Used to trigger a user error condition, it can be used by in conjunction with the built-in error
handler, or with a user defined function that has been set as the new error handler (
set_error_handler()).

This function is useful when you need to generate a particular response to an exception at
runtime.

Parameters

error_msg

The designated error message for this error. It's limited to 1024 characters in length.
Any additional characters beyond 1024 will be truncated.

error_type

The designated error type for this error. It only works with the E_USER family of
constants, and will default to E_USER_NOTICE.

Return Values

This function returns FALSE if wrong error_type is specified, TRUE otherwise.

Examples

Example #10 - trigger_error() example

See set_error_handler() for a more extensive example.

<?php

if (assert($divisor == 0)) {

 trigger_error("Cannot divide by zero", E_USER_ERROR);

}

?>

See Also

• error_reporting()
• set_error_handler()
• restore_error_handler()
• The error level constants

user_error

user_error -- Alias of trigger_error()

Description

This function is an alias of: trigger_error().

	Error Handling
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Error Handling Functions
	debug_backtrace
	debug_print_backtrace
	error_get_last
	error_log
	error_reporting
	restore_error_handler
	restore_exception_handler
	set_error_handler
	set_exception_handler
	trigger_error
	user_error

