
Features

HTTP authentication with PHP

The HTTP Authentication hooks in PHP are only available when it is running as an Apache
module and is hence not available in the CGI version. In an Apache module PHP script, it
is possible to use the header() function to send an "Authentication Required" message to
the client browser causing it to pop up a Username/Password input window. Once the user
has filled in a username and a password, the URL containing the PHP script will be called
again with the predefined variables PHP_AUTH_USER, PHP_AUTH_PW, and
AUTH_TYPE set to the user name, password and authentication type respectively. These
predefined variables are found in the $_SERVER and $HTTP_SERVER_VARS arrays.
Both "Basic" and "Digest" (since PHP 5.1.0) authentication methods are supported. See
the header() function for more information.

Note

PHP Version Note

Superglobals, such as $_SERVER, became available in PHP » 4.1.0.

An example script fragment which would force client authentication on a page is as
follows:

Example #1 - Basic HTTP Authentication example

<?php

if (!isset($_SERVER['PHP_AUTH_USER'])) {

 header('WWW-Authenticate: Basic realm="My Realm"');

 header('HTTP/1.0 401 Unauthorized');

 echo 'Text to send if user hits Cancel button';

 exit;

} else {

 echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

 echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

}

?>

Example #2 - Digest HTTP Authentication example

This example shows you how to implement a simple Digest HTTP authentication
script. For more information read the » RFC 2617.

<?php

$realm = 'Restricted area';

http://www.php.net/releases/4_1_0.php
http://www.faqs.org/rfcs/rfc2617

//user => password

$users = array('admin' => 'mypass', 'guest' => 'guest');

if (empty($_SERVER['PHP_AUTH_DIGEST'])) {

 header('HTTP/1.1 401 Unauthorized');

 header('WWW-Authenticate: Digest realm="'.$realm.

 '",qop="auth",nonce="'.uniqid().'",opaque="'.md5($realm).'"');

 die('Text to send if user hits Cancel button');

}

// analyze the PHP_AUTH_DIGEST variable

if (!($data = http_digest_parse($_SERVER['PHP_AUTH_DIGEST'])) ||

 !isset($users[$data['username']]))

 die('Wrong Credentials!');

// generate the valid response

$A1 = md5($data['username'] . ':' . $realm . ':' .
$users[$data['username']]);

$A2 = md5($_SERVER['REQUEST_METHOD'].':'.$data['uri']);

$valid_response =
md5($A1.':'.$data['nonce'].':'.$data['nc'].':'.$data['cnonce'].':'.$data['qo
p'].':'.$A2);

if ($data['response'] != $valid_response)

 die('Wrong Credentials!');

// ok, valid username & password

echo 'Your are logged in as: ' . $data['username'];

// function to parse the http auth header

function http_digest_parse($txt)

{

 // protect against missing data

 $needed_parts = array('nonce'=>1, 'nc'=>1, 'cnonce'=>1, 'qop'=>1,
'username'=>1, 'uri'=>1, 'response'=>1);

 $data = array();

 preg_match_all('@(\w+)=(?:([\'"])([^\2]+)\2|([^\s,]+))@', $txt, $matches,
PREG_SET_ORDER);

 foreach ($matches as $m) {

 $data[$m[1]] = $m[3] ? $m[3] : $m[4];

 unset($needed_parts[$m[1]]);

 }

 return $needed_parts ? false : $data;

}

?>

Note

Compatibility Note

Please be careful when coding the HTTP header lines. In order to guarantee maximum
compatibility with all clients, the keyword "Basic" should be written with an uppercase
"B", the realm string must be enclosed in double (not single) quotes, and exactly one
space should precede the 401 code in the HTTP/1.0 401 header line. Authentication
parameters have to be comma-separated as seen in the digest example above.

Instead of simply printing out PHP_AUTH_USER and PHP_AUTH_PW, as done in the
above example, you may want to check the username and password for validity. Perhaps
by sending a query to a database, or by looking up the user in a dbm file.

Watch out for buggy Internet Explorer browsers out there. They seem very picky about the
order of the headers. Sending the WWW-Authenticate header before the HTTP/1.0 401
header seems to do the trick for now.

As of PHP 4.3.0, in order to prevent someone from writing a script which reveals the
password for a page that was authenticated through a traditional external mechanism, the
PHP_AUTH variables will not be set if external authentication is enabled for that particular
page and safe mode is enabled. Regardless, REMOTE_USER can be used to identify the
externally-authenticated user. So, you can use $_SERVER['REMOTE_USER'].

Note

Configuration Note

PHP uses the presence of an AuthType directive to determine whether external
authentication is in effect.

Note, however, that the above does not prevent someone who controls a
non-authenticated URL from stealing passwords from authenticated URLs on the same
server.

Both Netscape Navigator and Internet Explorer will clear the local browser window's
authentication cache for the realm upon receiving a server response of 401. This can
effectively "log out" a user, forcing them to re-enter their username and password. Some
people use this to "time out" logins, or provide a "log-out" button.

Example #3 - HTTP Authentication example forcing a new name/password

<?php

function authenticate() {

 header('WWW-Authenticate: Basic realm="Test Authentication System"');

 header('HTTP/1.0 401 Unauthorized');

 echo "You must enter a valid login ID and password to access this
resource\n";

 exit;

}

if (!isset($_SERVER['PHP_AUTH_USER']) ||

 ($_POST['SeenBefore'] == 1 && $_POST['OldAuth'] ==
$_SERVER['PHP_AUTH_USER'])) {

 authenticate();

} else {

 echo "<p>Welcome: {$_SERVER['PHP_AUTH_USER']}
";

 echo "Old: {$_REQUEST['OldAuth']}";

 echo "<form action='{$_SERVER['PHP_SELF']}' METHOD='post'>\n";

 echo "<input type='hidden' name='SeenBefore' value='1' />\n";

 echo "<input type='hidden' name='OldAuth'
value='{$_SERVER['PHP_AUTH_USER']}' />\n";

 echo "<input type='submit' value='Re Authenticate' />\n";

 echo "</form></p>\n";

}

?>

This behavior is not required by the HTTP Basic authentication standard, so you should
never depend on this. Testing with Lynx has shown that Lynx does not clear the
authentication credentials with a 401 server response, so pressing back and then forward
again will open the resource as long as the credential requirements haven't changed. The
user can press the '_' key to clear their authentication information, however.

Also note that until PHP 4.3.3, HTTP Authentication did not work using Microsoft's IIS
server with the CGI version of PHP due to a limitation of IIS. In order to get it to work in
PHP 4.3.3+, you must edit your IIS configuration "Directory Security". Click on "Edit" and
only check "Anonymous Access", all other fields should be left unchecked.

Another limitation is if you're using the IIS module (ISAPI) and PHP 4, you may not use the
PHP_AUTH_* variables but instead, the variable HTTP_AUTHORIZATION is available.
For example, consider the following code: list($user, $pw) = explode(':',
base64_decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));

Note

IIS Note:

For HTTP Authentication to work with IIS, the PHP directive cgi.rfc2616_headers must
be set to 0 (the default value).

Note

If safe mode is enabled, the uid of the script is added to the realm part of the
WWW-Authenticate header.

Cookies

PHP transparently supports HTTP cookies. Cookies are a mechanism for storing data in
the remote browser and thus tracking or identifying return users. You can set cookies
using the setcookie() or setrawcookie() function. Cookies are part of the HTTP header, so
setcookie() must be called before any output is sent to the browser. This is the same
limitation that header() has. You can use the output buffering functions to delay the script
output until you have decided whether or not to set any cookies or send any headers.

Any cookies sent to you from the client will automatically be included into a $_COOKIE
auto-global array if variables_order contains "C". If you wish to assign multiple values to a
single cookie, just add [] to the cookie name.

Depending on register_globals, regular PHP variables can be created from cookies.
However it's not recommended to rely on them as this feature is often turned off for the
sake of security. $HTTP_COOKIE_VARS is also set in earlier versions of PHP when the
track_vars configuration variable is set. (This setting is always on since PHP 4.0.3.)

For more details, including notes on browser bugs, see the setcookie() and setrawcookie()
function.

Sessions

Session support in PHP consists of a way to preserve certain data across subsequent
accesses. This enables you to build more customized applications and increase the
appeal of your web site. All information is in the Session reference section.

Dealing with XForms

» XForms defines a variation on traditional webforms which allows them to be used on a
wider variety of platforms and browsers or even non-traditional media such as PDF
documents.

The first key difference in XForms is how the form is sent to the client. » XForms for HTML
Authors contains a detailed description of how to create XForms, for the purpose of this
tutorial we'll only be looking at a simple example.

Example #4 - A simple XForms search form

<h:html xmlns:h="http://www.w3.org/1999/xhtml"

 xmlns="http://www.w3.org/2002/xforms">

<h:head>

<h:title>Search</h:title>

<model>

 <submission action="http://example.com/search"

 method="post" id="s"/>

</model>

</h:head>

<h:body>

<h:p>

 <input ref="q"><label>Find</label></input>

 <submit submission="s"><label>Go</label></submit>

</h:p>

</h:body>

</h:html>

The above form displays a text input box (named q), and a submit button. When the
submit button is clicked, the form will be sent to the page referred to by action.

Here's where it starts to look different from your web application's point of view. In a
normal HTML form, the data would be sent as application/x-www-form-urlencoded, in the
XForms world however, this information is sent as XML formatted data.

If you're choosing to work with XForms then you probably want that data as XML, in that
case, look in $HTTP_RAW_POST_DATA where you'll find the XML document generated
by the browser which you can pass into your favorite XSLT engine or document parser.

If you're not interested in formatting and just want your data to be loaded into the
traditional $_POST variable, you can instruct the client browser to send it as
application/x-www-form-urlencoded by changing the method attribute to urlencoded-post.

Example #5 - Using an XForm to populate $_POST

<h:html xmlns:h="http://www.w3.org/1999/xhtml"

 xmlns="http://www.w3.org/2002/xforms">

<h:head>

<h:title>Search</h:title>

http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html

<model>

 <submission action="http://example.com/search"

 method="urlencoded-post" id="s"/>

</model>

</h:head>

<h:body>

<h:p>

 <input ref="q"><label>Find</label></input>

 <submit submission="s"><label>Go</label></submit>

</h:p>

</h:body>

</h:html>

Note

As of this writing, many browsers do not support XForms. Check your browser version
if the above examples fails.

Handling file uploads

POST method uploads

This feature lets people upload both text and binary files. With PHP's authentication and
file manipulation functions, you have full control over who is allowed to upload and what is
to be done with the file once it has been uploaded.

PHP is capable of receiving file uploads from any RFC-1867 compliant browser (which
includes Netscape Navigator 3 or later, Microsoft Internet Explorer 3 with a patch from
Microsoft, or later without a patch).

Note

Related Configurations Note

See also the file_uploads, upload_max_filesize, upload_tmp_dir, post_max_size and
max_input_time directives in php.ini

PHP also supports PUT-method file uploads as used by Netscape Composer and W3C's
Amaya clients. See the PUT Method Support for more details.

Example #6 - File Upload Form

A file upload screen can be built by creating a special form which looks something like
this:

<!-- The data encoding type, enctype, MUST be specified as below -->

<form enctype="multipart/form-data" action="__URL__" method="POST">

 <!-- MAX_FILE_SIZE must precede the file input field -->

 <input type="hidden" name="MAX_FILE_SIZE" value="30000" />

 <!-- Name of input element determines name in $_FILES array -->

 Send this file: <input name="userfile" type="file" />

 <input type="submit" value="Send File" />

</form>

The __URL__ in the above example should be replaced, and point to a PHP file.

The MAX_FILE_SIZE hidden field (measured in bytes) must precede the file input
field, and its value is the maximum filesize accepted by PHP. Fooling this setting on
the browser side is quite easy, so never rely on files with a greater size being blocked
by this feature. The PHP settings for maximum-size, however, cannot be fooled. This
form element should always be used as it saves users the trouble of waiting for a big
file being transferred only to find that it was too big and the transfer failed.

Note

Be sure your file upload form has attribute enctype="multipart/form-data" otherwise the
file upload will not work.

The global $_FILES exists as of PHP 4.1.0 (Use $HTTP_POST_FILES instead if using an
earlier version). These arrays will contain all the uploaded file information.

The contents of $_FILES from the example form is as follows. Note that this assumes the
use of the file upload name userfile, as used in the example script above. This can be any
name.
$_FILES['userfile']['name']

The original name of the file on the client machine.

$_FILES['userfile']['type']
The mime type of the file, if the browser provided this information. An example would
be "image/gif". This mime type is however not checked on the PHP side and therefore
don't take its value for granted.

$_FILES['userfile']['size']
The size, in bytes, of the uploaded file.

$_FILES['userfile']['tmp_name']
The temporary filename of the file in which the uploaded file was stored on the server.

$_FILES['userfile']['error']
The error code associated with this file upload. This element was added in PHP 4.2.0

Files will, by default be stored in the server's default temporary directory, unless another
location has been given with the upload_tmp_dir directive in php.ini. The server's default
directory can be changed by setting the environment variable TMPDIR in the environment
in which PHP runs. Setting it using putenv() from within a PHP script will not work. This
environment variable can also be used to make sure that other operations are working on
uploaded files, as well.

Example #7 - Validating file uploads

See also the function entries for is_uploaded_file() and move_uploaded_file() for
further information. The following example will process the file upload that came from a
form.

<?php

// In PHP versions earlier than 4.1.0, $HTTP_POST_FILES should be used
instead

// of $_FILES.

$uploaddir = '/var/www/uploads/';

$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

echo '<pre>';

if (move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)) {

 echo "File is valid, and was successfully uploaded.\n";

} else {

 echo "Possible file upload attack!\n";

}

echo 'Here is some more debugging info:';

print_r($_FILES);

print "</pre>";

?>

The PHP script which receives the uploaded file should implement whatever logic is
necessary for determining what should be done with the uploaded file. You can, for
example, use the $_FILES['userfile']['size'] variable to throw away any files that are either
too small or too big. You could use the $_FILES['userfile']['type'] variable to throw away
any files that didn't match a certain type criteria, but use this only as first of a series of
checks, because this value is completely under the control of the client and not checked
on the PHP side. As of PHP 4.2.0, you could use $_FILES['userfile']['error'] and plan your
logic according to the error codes. Whatever the logic, you should either delete the file
from the temporary directory or move it elsewhere.

If no file is selected for upload in your form, PHP will return $_FILES['userfile']['size'] as 0,
and $_FILES['userfile']['tmp_name'] as none.

The file will be deleted from the temporary directory at the end of the request if it has not
been moved away or renamed.

Example #8 - Uploading array of files

PHP supports HTML array feature even with files.

<form action="" method="post" enctype="multipart/form-data">

<p>Pictures:

<input type="file" name="pictures[]" />

<input type="file" name="pictures[]" />

<input type="file" name="pictures[]" />

<input type="submit" value="Send" />

</p>

</form>

<?php

foreach ($_FILES["pictures"]["error"] as $key => $error) {

 if ($error == UPLOAD_ERR_OK) {

 $tmp_name = $_FILES["pictures"]["tmp_name"][$key];

 $name = $_FILES["pictures"]["name"][$key];

 move_uploaded_file($tmp_name, "data/$name");

 }

}

?>

Error Messages Explained

Since PHP 4.2.0, PHP returns an appropriate error code along with the file array. The error
code can be found in the error segment of the file array that is created during the file
upload by PHP. In other words, the error might be found in $_FILES['userfile']['error'].

UPLOAD_ERR_OK
Value: 0; There is no error, the file uploaded with success.

UPLOAD_ERR_INI_SIZE
Value: 1; The uploaded file exceeds the upload_max_filesize directive in php.ini.

UPLOAD_ERR_FORM_SIZE
Value: 2; The uploaded file exceeds the MAX_FILE_SIZE directive that was specified
in the HTML form.

UPLOAD_ERR_PARTIAL
Value: 3; The uploaded file was only partially uploaded.

UPLOAD_ERR_NO_FILE
Value: 4; No file was uploaded.

UPLOAD_ERR_NO_TMP_DIR
Value: 6; Missing a temporary folder. Introduced in PHP 4.3.10 and PHP 5.0.3.

UPLOAD_ERR_CANT_WRITE
Value: 7; Failed to write file to disk. Introduced in PHP 5.1.0.

UPLOAD_ERR_EXTENSION
Value: 8; File upload stopped by extension. Introduced in PHP 5.2.0.

Note

These became PHP constants in PHP 4.3.0.

Common Pitfalls

The MAX_FILE_SIZE item cannot specify a file size greater than the file size that has
been set in the upload_max_filesize ini-setting. The default is 2 Megabytes.

If a memory limit is enabled, a larger memory_limit may be needed. Make sure you set
memory_limit large enough.

If max_execution_time is set too small, script execution may be exceeded by the value.
Make sure you set max_execution_time large enough.

Note

max_execution_time only affects the execution time of the script itself. Any time spent
on activity that happens outside the execution of the script such as system calls using
system(), the sleep() function, database queries, time taken by the file upload process,
etc. is not included when determining the maximum time that the script has been
running.

Warning

max_input_time sets the maximum time, in seconds, the script is allowed to receive
input; this includes file uploads. For large or multiple files, or users on slower
connections, the default of 60 seconds may be exceeded.

If post_max_size is set too small, large files cannot be uploaded. Make sure you set
post_max_size large enough.

Not validating which file you operate on may mean that users can access sensitive
information in other directories.

Please note that the CERN httpd seems to strip off everything starting at the first
whitespace in the content-type mime header it gets from the client. As long as this is the
case, CERN httpd will not support the file upload feature.

Due to the large amount of directory listing styles we cannot guarantee that files with
exotic names (like containing spaces) are handled properly.

A developer may not mix normal input fields and file upload fields in the same form
variable (by using an input name like foo[]).

Uploading multiple files

Multiple files can be uploaded using different name for input.

It is also possible to upload multiple files simultaneously and have the information
organized automatically in arrays for you. To do so, you need to use the same array
submission syntax in the HTML form as you do with multiple selects and checkboxes:

Example #9 - Uploading multiple files

<form action="file-upload.php" method="post" enctype="multipart/form-data">

 Send these files:

 <input name="userfile[]" type="file" />

 <input name="userfile[]" type="file" />

 <input type="submit" value="Send files" />

</form>

When the above form is submitted, the arrays $_FILES['userfile'],
$_FILES['userfile']['name'], and $_FILES['userfile']['size'] will be initialized (as well as in
$HTTP_POST_FILES for PHP versions prior to 4.1.0). When register_globals is on,
globals for uploaded files are also initialized. Each of these will be a numerically indexed
array of the appropriate values for the submitted files.

For instance, assume that the filenames /home/test/review.html and /home/test/xwp.out
are submitted. In this case, $_FILES['userfile']['name'][0] would contain the value
review.html, and $_FILES['userfile']['name'][1] would contain the value xwp.out. Similarly,
$_FILES['userfile']['size'][0] would contain review.html 's file size, and so forth.

$_FILES['userfile']['name'][0], $_FILES['userfile']['tmp_name'][0],
$_FILES['userfile']['size'][0], and $_FILES['userfile']['type'][0] are also set.

PUT method support

PHP provides support for the HTTP PUT method used by some clients to store files on a
server. PUT requests are much simpler than a file upload using POST requests and they
look something like this:

PUT /path/filename.html HTTP/1.1

This would normally mean that the remote client would like to save the content that follows
as: /path/filename.html in your web tree. It is obviously not a good idea for Apache or PHP
to automatically let everybody overwrite any files in your web tree. So, to handle such a
request you have to first tell your web server that you want a certain PHP script to handle
the request. In Apache you do this with the Script directive. It can be placed almost
anywhere in your Apache configuration file. A common place is inside a <Directory> block
or perhaps inside a <VirtualHost> block. A line like this would do the trick:

Script PUT /put.php

This tells Apache to send all PUT requests for URIs that match the context in which you
put this line to the put.php script. This assumes, of course, that you have PHP enabled for
the .php extension and PHP is active. The destination resource for all PUT requests to this
script has to be the script itself, not a filename the uploaded file should have.

With PHP you would then do something like the following in your put.php. This would copy
the contents of the uploaded file to the file myputfile.ext on the server. You would probably
want to perform some checks and/or authenticate the user before performing this file copy.

Example #10 - Saving HTTP PUT files

<?php

/* PUT data comes in on the stdin stream */

$putdata = fopen("php://input", "r");

/* Open a file for writing */

$fp = fopen("myputfile.ext", "w");

/* Read the data 1 KB at a time

 and write to the file */

while ($data = fread($putdata, 1024))

 fwrite($fp, $data);

/* Close the streams */

fclose($fp);

fclose($putdata);

?>

Using remote files

As long as allow_url_fopen is enabled in php.ini, you can use HTTP and FTP URLs with
most of the functions that take a filename as a parameter. In addition, URLs can be used
with the include(), include_once(), require() and require_once() statements (since PHP
5.2.0, allow_url_include must be enabled for these). See List of Supported
Protocols/Wrappers for more information about the protocols supported by PHP.

Note

In PHP 4.0.3 and older, in order to use URL wrappers, you were required to configure
PHP using the configure option --enable-url-fopen-wrapper.

Note

The Windows versions of PHP earlier than PHP 4.3 did not support remote file
accessing for the following functions: include(), include_once(), require(),
require_once(), and the imagecreatefromXXX functions in the GD Functions
extension.

For example, you can use this to open a file on a remote web server, parse the output for
the data you want, and then use that data in a database query, or simply to output it in a
style matching the rest of your website.

Example #11 - Getting the title of a remote page

<?php

$file = fopen ("http://www.example.com/", "r");

if (!$file) {

 echo "<p>Unable to open remote file.\n";

 exit;

}

while (!feof ($file)) {

 $line = fgets ($file, 1024);

 /* This only works if the title and its tags are on one line */

 if (eregi ("<title>(.*)</title>", $line, $out)) {

 $title = $out[1];

 break;

 }

}

fclose($file);

?>

You can also write to files on an FTP server (provided that you have connected as a user
with the correct access rights). You can only create new files using this method; if you try
to overwrite a file that already exists, the fopen() call will fail.

To connect as a user other than 'anonymous', you need to specify the username (and
possibly password) within the URL, such as
'ftp://user:password@ftp.example.com/path/to/file'. (You can use the same sort of syntax
to access files via HTTP when they require Basic authentication.)

Example #12 - Storing data on a remote server

<?php

$file = fopen ("ftp://ftp.example.com/incoming/outputfile", "w");

if (!$file) {

 echo "<p>Unable to open remote file for writing.\n";

 exit;

}

/* Write the data here. */

fwrite ($file, $_SERVER['HTTP_USER_AGENT'] . "\n");

fclose ($file);

?>

Note

You might get the idea from the example above that you can use this technique to
write to a remote log file. Unfortunately that would not work because the fopen() call
will fail if the remote file already exists. To do distributed logging like that, you should
take a look at syslog().

Connection handling

Internally in PHP a connection status is maintained. There are 3 possible states:

• 0 - NORMAL

• 1 - ABORTED

• 2 - TIMEOUT

When a PHP script is running normally the NORMAL state, is active. If the remote client
disconnects the ABORTED state flag is turned on. A remote client disconnect is usually
caused by the user hitting his STOP button. If the PHP-imposed time limit (see
set_time_limit()) is hit, the TIMEOUT state flag is turned on.

You can decide whether or not you want a client disconnect to cause your script to be
aborted. Sometimes it is handy to always have your scripts run to completion even if there
is no remote browser receiving the output. The default behaviour is however for your script
to be aborted when the remote client disconnects. This behaviour can be set via the
ignore_user_abort php.ini directive as well as through the corresponding php_value
ignore_user_abort Apache .conf directive or with the ignore_user_abort() function. If you
do not tell PHP to ignore a user abort and the user aborts, your script will terminate. The
one exception is if you have registered a shutdown function using
register_shutdown_function(). With a shutdown function, when the remote user hits his
STOP button, the next time your script tries to output something PHP will detect that the
connection has been aborted and the shutdown function is called. This shutdown function
will also get called at the end of your script terminating normally, so to do something
different in case of a client disconnect you can use the connection_aborted() function. This
function will return TRUE if the connection was aborted.

Your script can also be terminated by the built-in script timer. The default timeout is 30
seconds. It can be changed using the max_execution_time php.ini directive or the
corresponding php_value max_execution_time Apache .conf directive as well as with the
set_time_limit() function. When the timer expires the script will be aborted and as with the
above client disconnect case, if a shutdown function has been registered it will be called.
Within this shutdown function you can check to see if a timeout caused the shutdown
function to be called by calling the connection_status() function. This function will return 2
if a timeout caused the shutdown function to be called.

One thing to note is that both the ABORTED and the TIMEOUT states can be active at the
same time. This is possible if you tell PHP to ignore user aborts. PHP will still note the fact
that a user may have broken the connection, but the script will keep running. If it then hits
the time limit it will be aborted and your shutdown function, if any, will be called. At this
point you will find that connection_status() returns 3.

Persistent Database Connections

Persistent connections are links that do not close when the execution of your script ends.
When a persistent connection is requested, PHP checks if there's already an identical
persistent connection (that remained open from earlier) - and if it exists, it uses it. If it does
not exist, it creates the link. An 'identical' connection is a connection that was opened to
the same host, with the same username and the same password (where applicable).

People who aren't thoroughly familiar with the way web servers work and distribute the
load may mistake persistent connects for what they're not. In particular, they do not give
you an ability to open 'user sessions' on the same link, they do not give you an ability to
build up a transaction efficiently, and they don't do a whole lot of other things. In fact, to be
extremely clear about the subject, persistent connections don't give you any functionality
that wasn't possible with their non-persistent brothers.

Why?

This has to do with the way web servers work. There are three ways in which your web
server can utilize PHP to generate web pages.

The first method is to use PHP as a CGI "wrapper". When run this way, an instance of the
PHP interpreter is created and destroyed for every page request (for a PHP page) to your
web server. Because it is destroyed after every request, any resources that it acquires
(such as a link to an SQL database server) are closed when it is destroyed. In this case,
you do not gain anything from trying to use persistent connections -- they simply don't
persist.

The second, and most popular, method is to run PHP as a module in a multiprocess web
server, which currently only includes Apache. A multiprocess server typically has one
process (the parent) which coordinates a set of processes (its children) who actually do
the work of serving up web pages. When a request comes in from a client, it is handed off
to one of the children that is not already serving another client. This means that when the
same client makes a second request to the server, it may be served by a different child
process than the first time. When opening a persistent connection, every following page
requesting SQL services can reuse the same established connection to the SQL server.

The last method is to use PHP as a plug-in for a multithreaded web server. Currently PHP
4 has support for ISAPI, WSAPI, and NSAPI (on Windows), which all allow PHP to be
used as a plug-in on multithreaded servers like Netscape FastTrack (iPlanet), Microsoft's
Internet Information Server (IIS), and O'Reilly's WebSite Pro. The behavior is essentially
the same as for the multiprocess model described before.

If persistent connections don't have any added functionality, what are they good for?

The answer here is extremely simple -- efficiency. Persistent connections are good if the
overhead to create a link to your SQL server is high. Whether or not this overhead is really
high depends on many factors. Like, what kind of database it is, whether or not it sits on
the same computer on which your web server sits, how loaded the machine the SQL
server sits on is and so forth. The bottom line is that if that connection overhead is high,
persistent connections help you considerably. They cause the child process to simply

connect only once for its entire lifespan, instead of every time it processes a page that
requires connecting to the SQL server. This means that for every child that opened a
persistent connection will have its own open persistent connection to the server. For
example, if you had 20 different child processes that ran a script that made a persistent
connection to your SQL server, you'd have 20 different connections to the SQL server, one
from each child.

Note, however, that this can have some drawbacks if you are using a database with
connection limits that are exceeded by persistent child connections. If your database has a
limit of 16 simultaneous connections, and in the course of a busy server session, 17 child
threads attempt to connect, one will not be able to. If there are bugs in your scripts which
do not allow the connections to shut down (such as infinite loops), the database with only
16 connections may be rapidly swamped. Check your database documentation for
information on handling abandoned or idle connections.

Warning

There are a couple of additional caveats to keep in mind when using persistent
connections. One is that when using table locking on a persistent connection, if the
script for whatever reason cannot release the lock, then subsequent scripts using the
same connection will block indefinitely and may require that you either restart the httpd
server or the database server. Another is that when using transactions, a transaction
block will also carry over to the next script which uses that connection if script
execution ends before the transaction block does. In either case, you can use
register_shutdown_function() to register a simple cleanup function to unlock your
tables or roll back your transactions. Better yet, avoid the problem entirely by not using
persistent connections in scripts which use table locks or transactions (you can still use
them elsewhere).

An important summary. Persistent connections were designed to have one-to-one
mapping to regular connections. That means that you should always be able to replace
persistent connections with non-persistent connections, and it won't change the way your
script behaves. It may (and probably will) change the efficiency of the script, but not its
behavior!

See also fbsql_pconnect(), ibase_pconnect(), ifx_pconnect(), ingres_pconnect(),
msql_pconnect(), mssql_pconnect(), mysql_pconnect(), ociplogon(), odbc_pconnect(),
ora_plogon(), pfsockopen(), pg_pconnect(), and sybase_pconnect().

Safe Mode

The PHP safe mode is an attempt to solve the shared-server security problem. It is
architecturally incorrect to try to solve this problem at the PHP level, but since the
alternatives at the web server and OS levels aren't very realistic, many people, especially
ISP's, use safe mode for now.

Warning

Safe Mode was removed in PHP 6.0.0.

Security and Safe Mode

Security and Safe Mode Configuration Directives

Name Default Changeable Changelog

safe_mode "0" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_gid "0" PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_include_
dir

NULL PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_exec_dir "" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_allowed_
env_vars

"PHP_" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_protected
_env_vars

"LD_LIBRARY_PATH
"

PHP_INI_SYSTEM Removed in PHP
6.0.0.

open_basedir NULL PHP_INI_ALL PHP_INI_SYSTEM in
PHP < 6.

disable_functions "" php.ini only Available since PHP
4.0.1.

disable_classes "" php.ini only Available since PHP

4.3.2.

For further details and definition of the PHP_INI_* constants see ini_set().

Here's a short explanation of the configuration directives.

safe_mode boolean
Whether to enable PHP's safe mode.

safe_mode_gid boolean
By default, Safe Mode does a UID compare check when opening files. If you want to
relax this to a GID compare, then turn on safe_mode_gid. Whether to use UID (
FALSE) or GID (TRUE) checking upon file access.

safe_mode_include_dir string
UID / GID checks are bypassed when including files from this directory and its
subdirectories (directory must also be in include_path or full path must including). As of
PHP 4.2.0, this directive can take a colon (semi-colon on Windows) separated path in
a fashion similar to the include_path directive, rather than just a single directory. The
restriction specified is actually a prefix, not a directory name. This means that
"safe_mode_include_dir = /dir/incl" also allows access to "/dir/include" and "/dir/incls" if
they exist. When you want to restrict access to only the specified directory, end with a
slash. For example: "safe_mode_include_dir = /dir/incl/" If the value of this directive is
empty, no files with different UID / GID can be included in PHP 4.2.3 and as of PHP
4.3.3. In earlier versions, all files could be included.

safe_mode_exec_dir string
If PHP is used in safe mode, system() and the other functions executing system
programs refuse to start programs that are not in this directory. You have to use / as
directory separator on all environments including Windows.

safe_mode_allowed_env_vars string
Setting certain environment variables may be a potential security breach. This directive
contains a comma-delimited list of prefixes. In Safe Mode, the user may only alter
environment variables whose names begin with the prefixes supplied here. By default,
users will only be able to set environment variables that begin with PHP_ (e.g.
PHP_FOO=BAR).

Note

If this directive is empty, PHP will let the user modify ANY environment variable!

safe_mode_protected_env_vars string
This directive contains a comma-delimited list of environment variables that the end
user won't be able to change using putenv(). These variables will be protected even if
safe_mode_allowed_env_vars is set to allow to change them.

open_basedir string
Limit the files that can be opened by PHP to the specified directory-tree, including the

file itself. This directive is NOT affected by whether Safe Mode is turned On or Off.
When a script tries to open a file with, for example, fopen() or gzopen(), the location of
the file is checked. When the file is outside the specified directory-tree, PHP will refuse
to open it. All symbolic links are resolved, so it's not possible to avoid this restriction
with a symlink. If the file doesn't exist then the symlink couldn't be resolved and the
filename is compared to (a resolved) open_basedir. The special value. indicates that
the working directory of the script will be used as the base-directory. This is, however,
a little dangerous as the working directory of the script can easily be changed with
chdir(). In httpd.conf, open_basedir can be turned off (e.g. for some virtual hosts) the
same way as any other configuration directive with "php_admin_value open_basedir
none". Under Windows, separate the directories with a semicolon. On all other
systems, separate the directories with a colon. As an Apache module, open_basedir
paths from parent directories are now automatically inherited. The restriction specified
with open_basedir is actually a prefix, not a directory name. This means that
"open_basedir = /dir/incl" also allows access to "/dir/include" and "/dir/incls" if they
exist. When you want to restrict access to only the specified directory, end with a
slash. For example: "open_basedir = /dir/incl/" The default is to allow all files to be
opened.

disable_functions string
This directive allows you to disable certain functions for security reasons. It takes on a
comma-delimited list of function names. disable_functions is not affected by Safe
Mode. This directive must be set in php.ini For example, you cannot set this in
httpd.conf.

disable_classes string
This directive allows you to disable certain classes for security reasons. It takes on a
comma-delimited list of class names. disable_classes is not affected by Safe Mode.
This directive must be set in php.ini For example, you cannot set this in httpd.conf.

Note

Availability note

This directive became available in PHP 4.3.2

See also: register_globals, display_errors, and log_errors.

When safe_mode is on, PHP checks to see if the owner of the current script matches the
owner of the file to be operated on by a file function or its directory. For example:
-rw-rw-r-- 1 rasmus rasmus 33 Jul 1 19:20 script.php

-rw-r--r-- 1 root root 1116 May 26 18:01 /etc/passwd
Running script.php:
<?php

readfile('/etc/passwd');

?>
results in this error when safe mode is enabled:
Warning: SAFE MODE Restriction in effect. The script whose uid is 500 is not

allowed to access /etc/passwd owned by uid 0 in /docroot/script.php on line 2

However, there may be environments where a strict UID check is not appropriate and a
relaxed GID check is sufficient. This is supported by means of the safe_mode_gid switch.
Setting it to On performs the relaxed GID checking, setting it to Off (the default) performs
UID checking.

If instead of safe_mode, you set an open_basedir directory then all file operations will be
limited to files under the specified directory. For example (Apache httpd.conf example):
<Directory /docroot>

 php_admin_value open_basedir /docroot

</Directory>
If you run the same script.php with this open_basedir setting then this is the result:
Warning: open_basedir restriction in effect. File is in wrong directory in

/docroot/script.php on line 2

You can also disable individual functions. Note that the disable_functions directive can not
be used outside of the php.ini file which means that you cannot disable functions on a
per-virtualhost or per-directory basis in your httpd.conf file. If we add this to our php.ini file:
disable_functions = readfile,system
Then we get this output:
Warning: readfile() has been disabled for security reasons in

/docroot/script.php on line 2

Warning

These PHP restrictions are not valid in executed binaries, of course.

Functions restricted/disabled by safe mode

This is a still probably incomplete and possibly incorrect listing of the functions limited by
safe mode.

Safe mode limited functions

Function Limitations

dbmopen() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

dbase_open() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

filepro() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

filepro_rowcount() Checks whether the files or directories being

operated upon have the same UID (owner)
as the script that is being executed.

filepro_retrieve() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

ifx_* sql_safe_mode restrictions, (!= safe mode)

ingres_* sql_safe_mode restrictions, (!= safe mode)

mysql_* sql_safe_mode restrictions, (!= safe mode)

pg_lo_import() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

posix_mkfifo() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

putenv() Obeys the safe_mode_protected_env_vars
and safe_mode_allowed_env_vars
ini-directives. See also the documentation
on putenv()

move_uploaded_file() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

dl() This function is disabled when PHP is
running in safe mode.

backtick operator This function is disabled when PHP is
running in safe mode.

shell_exec() (functional equivalent of
backticks)

This function is disabled when PHP is
running in safe mode.

exec() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

system() You can only execute executables within the
safe_mode_exec_dir. For practical reasons

it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

passthru() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

popen() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

fopen() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

mkdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

rmdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

rename() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

unlink() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

copy() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (on source
and target)

chgrp() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chown() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chmod() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. In
addition, you cannot set the SUID, SGID
and sticky bits

touch() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

symlink() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only the
target is checked)

link() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only the
target is checked)

apache_request_headers() In safe mode, headers beginning with
'authorization' (case-insensitive) will not be
returned.

header() In safe mode, the uid of the script is added
to the realm part of the WWW-Authenticate
header if you set this header (used for HTTP
Authentication).

PHP_AUTH variables In safe mode, the variables
PHP_AUTH_USER, PHP_AUTH_PW, and
AUTH_TYPE are not available in
$_SERVER. Regardless, you can still use
REMOTE_USER for the USER. (note: only
affected since PHP 4.3.0)

highlight_file(), show_source() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only
affected since PHP 4.2.1)

parse_ini_file() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only
affected since PHP 4.2.1)

set_time_limit() Has no effect when PHP is running in safe
mode.

max_execution_time Has no effect when PHP is running in safe
mode.

mail() In safe mode, the fifth parameter is disabled.
(note: only affected since PHP 4.2.3)

All filesystem and stream functions. Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (see the
safe_mode_include_dir php.ini option.

Using PHP from the command line

As of version 4.3.0, PHP supports a new SAPI type (Server Application Programming
Interface) named CLI which means Command Line Interface. As the name implies, this
SAPI type main focus is on developing shell (or desktop as well) applications with PHP.
There are quite a few differences between the CLI SAPI and other SAPI s which are
explained in this chapter. It's worth mentioning that CLI and CGI are different SAPI's
although they do share many of the same behaviors.

The CLI SAPI was released for the first time with PHP 4.2.0, but was still experimental and
had to be explicitly enabled with --enable-cli when running./configure. Since PHP 4.3.0 the
CLI SAPI is no longer experimental and the option --enable-cli is on by default. You may
use --disable-cli to disable it.

As of PHP 4.3.0, the name, location and existence of the CLI/CGI binaries will differ
depending on how PHP is installed on your system. By default when executing make, both
the CGI and CLI are built and placed as sapi/cgi/php and sapi/cli/php respectively, in your
PHP source directory. You will note that both are named php. What happens during make
install depends on your configure line. If a module SAPI is chosen during configure, such
as apxs, or the --disable-cgi option is used, the CLI is copied to {PREFIX}/bin/php during
make install otherwise the CGI is placed there. So, for example, if --with--apxs is in your
configure line then the CLI is copied to {PREFIX}/bin/php during make install. If you want
to override the installation of the CGI binary, use make install-cli after make install.
Alternatively you can specify --disable-cgi in your configure line.

Note

Because both --enable-cli and --enable-cgi are enabled by default, simply having
--enable-cli in your configure line does not necessarily mean the CLI will be copied as
{PREFIX}/bin/php during make install.

The Windows packages between PHP 4.2.0 and PHP 4.2.3 distributed the CLI as
php-cli.exe, living in the same folder as the CGI php.exe. Starting with PHP 4.3.0 the
Windows package distributes the CLI as php.exe in a separate folder named cli, so
cli/php.exe. Starting with PHP 5, the CLI is distributed in the main folder, named php.exe.
The CGI version is distributed as php-cgi.exe.

As of PHP 5, a new php-win.exe file is distributed. This is equal to the CLI version, except
that php-win doesn't output anything and thus provides no console (no "dos box" appears
on the screen). This behavior is similar to php-gtk. You should configure with
--enable-cli-win32.

Note

What SAPI do I have?

From a shell, typing php -v will tell you whether php is CGI or CLI. See also the

function php_sapi_name() and the constant PHP_SAPI.

Note

A Unix man ual page was added in PHP 4.3.2. You may view this by typing man php in
your shell environment.

Remarkable differences of the CLI SAPI compared to other SAPI s:

• Unlike the CGI SAPI, no headers are written to the output. Though the CGI SAPI
provides a way to suppress HTTP headers, there's no equivalent switch to enable
them in the CLI SAPI. CLI is started up in quiet mode by default, though the -q and
--no-header switches are kept for compatibility so that you can use older CGI scripts. It
does not change the working directory to that of the script. (-C and --no-chdir switches
kept for compatibility) Plain text error messages (no HTML formatting).

• There are certain php.ini directives which are overridden by the CLI SAPI because
they do not make sense in shell environments:

Overridden php.ini directives

Directive CLI SAPI default value Comment

html_errors FALSE It can be quite hard to read
the error message in your
shell when it's cluttered with
all those meaningless HTML
tags, therefore this directive
defaults to FALSE.

implicit_flush TRUE It is desired that any output
coming from print(), echo()
and friends is immediately
written to the output and not
cached in any buffer. You
still can use output buffering
if you want to defer or
manipulate standard output.

max_execution_time 0 (unlimited) Due to endless possibilities
of using PHP in shell
environments, the maximum
execution time has been set
to unlimited. Whereas
applications written for the
web are often executed very
quickly, shell application tend
to have a much longer
execution time.

register_argc_argv TRUE Because this setting is TRUE
you will always have access
to argc (number of
arguments passed to the
application) and argv (array
of the actual arguments) in
the CLI SAPI.

As of PHP 4.3.0, the PHP
variables $argc and $argv
are registered and filled in
with the appropriate values
when using the CLI SAPI.
Prior to this version, the
creation of these variables
behaved as they do in CGI
and MODULE versions
which requires the PHP
directive register_globals to
be on. Regardless of version
or register_globals setting,
you can always go through
either $_SERVER or
$HTTP_SERVER_VARS.
Example: $_SERVER['argv']

Note

These directives cannot be initialized with another value from the configuration file
php.ini or a custom one (if specified). This is a limitation because those default values
are applied after all configuration files have been parsed. However, their value can be
changed during runtime (which does not make sense for all of those directives, e.g.
register_argc_argv).

• To ease working in the shell environment, the following constants are defined:

CLI specific Constants

Constant Description

STDIN
An already opened stream to stdin. This
saves opening it with
<?php

$stdin = fopen('php://stdin', 'r');

?>

If you want to read single line from stdin,
you can use
<?php

$line = trim(fgets(STDIN)); // reads
one line from STDIN

fscanf(STDIN, "%d\n", $number); //
reads number from STDIN

?>

STDOUT
An already opened stream to stdout. This
saves opening it with
<?php

$stdout = fopen('php://stdout', 'w');

?>

STDERR
An already opened stream to stderr. This
saves opening it with
<?php

$stderr = fopen('php://stderr', 'w');

?>

Given the above, you don't need to open e.g. a stream for stderr yourself but simply use
the constant instead of the stream resource:
php -r 'fwrite(STDERR, "stderr\n");'
You do not need to explicitly close these streams, as they are closed automatically by PHP
when your script ends.

Note

These constants are not available in case of reading PHP script from stdin.

• The CLI SAPI does not change the current directory to the directory of the executed script!

Example showing the difference to the CGI SAPI:

<?php

// Our simple test application named test.php

echo getcwd(), "\n";

?>

When using the CGI version, the output is:

$ pwd

/tmp

$ php -q another_directory/test.php

/tmp/another_directory

This clearly shows that PHP changes its current directory to the one of the executed script.

Using the CLI SAPI yields:

$ pwd

/tmp

$ php -f another_directory/test.php

/tmp

This allows greater flexibility when writing shell tools in PHP.

Note

The CGI SAPI supports this CLI SAPI behaviour by means of the -C switch when run
from the command line.

The list of command line options provided by the PHP binary can be queried anytime by
running PHP with the -h switch:
Usage: php [options] [-f] <file> [--] [args...]

 php [options] -r <code> [--] [args...]

 php [options] [-B <begin_code>] -R <code> [-E <end_code>] [--] [args...]

 php [options] [-B <begin_code>] -F <file> [-E <end_code>] [--] [args...]

 php [options] -- [args...]

 php [options] -a

 -a Run interactively

 -c <path>|<file> Look for php.ini file in this directory

 -n No php.ini file will be used

 -d foo[=bar] Define INI entry foo with value 'bar'

 -e Generate extended information for debugger/profiler

 -f <file> Parse and execute <file>.

 -h This help

 -i PHP information

 -l Syntax check only (lint)

 -m Show compiled in modules

 -r <code> Run PHP <code> without using script tags <?..?>

 -B <begin_code> Run PHP <begin_code> before processing input lines

 -R <code> Run PHP <code> for every input line

 -F <file> Parse and execute <file> for every input line

 -E <end_code> Run PHP <end_code> after processing all input lines

 -H Hide any passed arguments from external tools.

 -s Display colour syntax highlighted source.

 -v Version number

 -w Display source with stripped comments and whitespace.

 -z <file> Load Zend extension <file>.

 args... Arguments passed to script. Use -- args when first argument

 starts with - or script is read from stdin

 --ini Show configuration file names

 --rf <name> Show information about function <name>.

 --rc <name> Show information about class <name>.

 --re <name> Show information about extension <name>.

 --ri <name> Show configuration for extension <name>.

The CLI SAPI has three different ways of getting the PHP code you want to execute:

• Telling PHP to execute a certain file.

php my_script.php

php -f my_script.php

Both ways (whether using the -f switch or not) execute the file my_script.php. You can
choose any file to execute - your PHP scripts do not have to end with the.php extension
but can have any name or extension you wish.

Note

If you need to pass arguments to your scripts you need to pass -- as the first argument
when using the -f switch.

• Pass the PHP code to execute directly on the command line.

php -r 'print_r(get_defined_constants());'

Special care has to be taken in regards of shell variable substitution and quoting usage.

Note

Read the example carefully, there are no beginning or ending tags! The -r switch
simply does not need them. Using them will lead to a parser error.

• Provide the PHP code to execute via standard input (stdin). This gives the powerful ability
to dynamically create PHP code and feed it to the binary, as shown in this (fictional)
example:

$ some_application | some_filter | php | sort -u >final_output.txt

You cannot combine any of the three ways to execute code.

Like every shell application, the PHP binary accepts a number of arguments but your PHP
script can also receive arguments. The number of arguments which can be passed to your

script is not limited by PHP (the shell has a certain size limit in the number of characters which
can be passed; usually you won't hit this limit). The arguments passed to your script are
available in the global array $argv. The zero index always contains the script name (which is -
in case the PHP code is coming from either standard input or from the command line switch -r
). The second registered global variable is $argc which contains the number of elements in the
$argv array (not the number of arguments passed to the script).

As long as the arguments you want to pass to your script do not start with the - character,
there's nothing special to watch out for. Passing an argument to your script which starts with a
- will cause trouble because PHP itself thinks it has to handle it. To prevent this, use the
argument list separator --. After this separator has been parsed by PHP, every argument
following it is passed untouched to your script.

This will not execute the given code but will show the PHP usage

$ php -r 'var_dump($argv);' -h

Usage: php [options] [-f] <file> [args...]

[...]

This will pass the '-h' argument to your script and prevent PHP from showing it's
usage

$ php -r 'var_dump($argv);' -- -h

array(2) {

 [0]=>

 string(1) "-"

 [1]=>

 string(2) "-h"

}

However, there's another way of using PHP for shell scripting. You can write a script where
the first line starts with #!/usr/bin/php. Following this you can place normal PHP code included
within the PHP starting and end tags. Once you have set the execution attributes of the file
appropriately (e.g. chmod +x test) your script can be executed like a normal shell or perl
script:

Example #13 - Execute PHP script as shell script

#!/usr/bin/php

<?php

var_dump($argv);

?>

Assuming this file is named test in the current directory, we can now do the following:

$ chmod +x test

$./test -h -- foo

array(4) {

 [0]=>

 string(6) "./test"

 [1]=>

 string(2) "-h"

 [2]=>

 string(2) "--"

 [3]=>

 string(3) "foo"

}

As you see, in this case no care needs to be taken when passing parameters which start with -
to your script.

Long options are available since PHP 4.3.3.

Command line options

Option Long Option Description

-a --interactive
Runs PHP interactively. If
you compile PHP with the
Readline extension (which is
not available on Windows),
you'll have a nice shell,
including a completion
feature (e.g. you can start
typing a variable name, hit
the TAB key and PHP
completes its name) and a
typing history that can be
accessed using the arrow
keys. The history is saved in
the ~/.php_history file.

Note

Files included through
auto_prepend_file and
auto_append_file are
parsed in this mode but
with some restrictions -
e.g. functions have to be
defined before called.

Note

Autoloading is not
available if using PHP in
CLI interactive mode.

-c --php-ini
This option can either specify

a directory where to look for
php.ini or specify a custom
INI file (which does not need
to be named php.ini), e.g.:

$ php -c
/custom/directory/
my_script.php

$ php -c
/custom/directory/custom-f
ile.ini my_script.php

If you don't specify this
option, file is searched in
default locations.

-n --no-php-ini
Ignore php.ini at all. This
switch is available since PHP
4.3.0.

-d --define
This option allows you to set
a custom value for any of the
configuration directives
allowed in php.ini. The
syntax is:
-d
configuration_directive[=v
alue]

Examples (lines are wrapped
for layout reasons):

Omitting the value part
will set the given
configuration directive to
"1"

$ php -d
max_execution_time

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(1) "1"

Passing an empty value
part will set the
configuration directive to
""

php -d max_execution_time=

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(0) ""

The configuration
directive will be set to
anything passed after the
'=' character

$ php -d
max_execution_time=20

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(2) "20"

$ php

 -d
max_execution_time=doesntm
akesense

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(15)
"doesntmakesense"

-e --profile-info
Activate the extended
information mode, to be used
by a debugger/profiler.

-f --file
Parses and executes the
given filename to the -f
option. This switch is optional
and can be left out. Only
providing the filename to
execute is sufficient.

Note

To pass arguments to
scripts the first argument
needs to be --, otherwise
PHP will interperate them
as PHP options.

-h and -? --help and --usage With this option, you can get
information about the actual
list of command line options
and some one line
descriptions about what they
do.

-i --info This command line option
calls phpinfo(), and prints out
the results. If PHP is not
working correctly, it is
advisable to use php -i and
see whether any error
messages are printed out
before or in place of the
information tables. Beware
that when using the CGI
mode the output is in HTML
and therefore quite huge.

-l --syntax-check
This option provides a
convenient way to only
perform a syntax check on
the given PHP code. On
success, the text No syntax
errors detected in <filename>
is written to standard output
and the shell return code is 0
. On failure, the text Errors
parsing <filename> in
addition to the internal parser
error message is written to
standard output and the shell
return code is set to 255.

This option won't find fatal
errors (like undefined
functions). Use -f if you
would like to test for fatal
errors too.

Note

This option does not
work together with the -r
option.

-m --modules

Using this option, PHP prints
out the built in (and loaded)
PHP and Zend modules:

$ php -m

[PHP Modules]

xml

tokenizer

standard

session

posix

pcre

overload

mysql

mbstring

ctype

[Zend Modules]

-r --run
This option allows execution
of PHP right from within the
command line. The PHP
start and end tags (<?php
and ?>) are not needed and
will cause a parser error if
present.

Note

Care has to be taken
when using this form of
PHP to not collide with
command line variable
substitution done by the
shell.

Example showing a
parser error

$ php -r "$foo =
get_defined_constants(
);"

Command line code(1) :
Parse error - parse
error, unexpected '='

The problem here is that
the sh/bash performs

variable substitution even
when using double
quotes ". Since the
variable $foo is unlikely
to be defined, it expands
to nothing which results
in the code passed to
PHP for execution
actually reading:

$ php -r " =
get_defined_constants(
);"

The correct way would
be to use single quotes '.
Variables in
single-quoted strings are
not expanded by
sh/bash.

$ php -r '$foo =
get_defined_constants(
); var_dump($foo);'

array(370) {

 ["E_ERROR"]=>

 int(1)

 ["E_WARNING"]=>

 int(2)

 ["E_PARSE"]=>

 int(4)

 ["E_NOTICE"]=>

 int(8)

 ["E_CORE_ERROR"]=>

 [...]

If you are using a shell
different from sh/bash,
you might experience
further issues. Feel free
to open a bug report at
» http://bugs.php.net/.
One can still easily run
into troubles when trying
to get shell variables into
the code or using
backslashes for
escaping. You've been
warned.

http://bugs.php.net/
http://bugs.php.net/

Note

-r is available in the CLI
SAPI and not in the CGI
SAPI.

Note

This option is meant for a
very basic stuff. Thus
some configuration
directives (e.g.
auto_prepend_file and
auto_append_file) are
ignored in this mode.

-B --process-begin
PHP code to execute before
processing stdin. Added in
PHP 5.

-R --process-code
PHP code to execute for
every input line. Added in
PHP 5.

There are two special
variables available in this
mode: $argn and $argi.
$argn will contain the line
PHP is processing at that
moment, while $argi will
contain the line number.

-F --process-file
PHP file to execute for every
input line. Added in PHP 5.

-E --process-end
PHP code to execute after
processing the input. Added
in PHP 5.

Example #14 - Using
the -B, -R and -E
options to count the
number of lines of a
project.

$ find my_proj | php
-B '$l=0;' -R '$l +=
count(@file($argn));'
-E 'echo "Total Lines:
$l\n";'

Total Lines: 37328

-s --syntax-highlight and
--syntax-highlight Display colour syntax

highlighted source.

This option uses the internal
mechanism to parse the file
and produces a HTML
highlighted version of it and
writes it to standard output.
Note that all it does it to
generate a block of <code>
[...] </code> HTML tags, no
HTML headers.

Note

This option does not
work together with the -r
option.

-v --version

Writes the PHP, PHP SAPI,
and Zend version to standard
output, e.g.

$ php -v

PHP 4.3.0 (cli), Copyright
(c) 1997-2002 The PHP
Group

Zend Engine v1.3.0,
Copyright (c) 1998-2002
Zend Technologies

-w --strip
Display source with stripped
comments and whitespace.

Note

This option does not
work together with the -r
option.

-z --zend-extension
Load Zend extension. If only
a filename is given, PHP

tries to load this extension
from the current default
library path on your system
(usually specified
/etc/ld.so.conf on Linux
systems). Passing a filename
with an absolute path
information will not use the
systems library search path.
A relative filename with a
directory information will tell
PHP only to try to load the
extension relative to the
current directory.

--ini
Shows configuration file
names and scanned
directories. Available as of
PHP 5.2.3.

Example #15 - --ini
example

$ php --ini

Configuration File
(php.ini) Path:
/usr/dev/php/5.2/lib

Loaded Configuration
File:
/usr/dev/php/5.2/lib/p
hp.ini

Scan for additional
.ini files in: (none)

Additional .ini files
parsed: (none)

--rf --rfunction
Shows information about the
given function or class
method (e.g. number and
name of the parameters).
Available as of PHP 5.1.2.

This option is only available if
PHP was compiled with
Reflection support.

Example #16 - basic --rf
usage

$ php --rf var_dump

Function [<internal>
public function
var_dump] {

 - Parameters [2] {

 Parameter #0 [
<required> $var]

 Parameter #1 [
<optional> $...]

 }

}

--rc --rclass
Show information about the
given class (list of constants,
properties and methods).
Available as of PHP 5.1.2.

This option is only available if
PHP was compiled with
Reflection support.

Example #17 - --rc
example

$ php --rc Directory

Class [
<internal:standard>
class Directory] {

 - Constants [0] {

 }

 - Static properties
[0] {

 }

 - Static methods [0]
{

 }

 - Properties [0] {

 }

 - Methods [3] {

 Method [<internal>
public method close]
{

 }

 Method [<internal>
public method rewind]
{

 }

 Method [<internal>
public method read] {

 }

 }

}

--re --rextension
Show information about the
given extension (list of
php.ini options, defined
functions, constants and
classes). Available as of
PHP 5.1.2.

This option is only available if

PHP was compiled with
Reflection support.

Example #18 - --re
example

$ php --re json

Extension [
<persistent> extension
#19 json version 1.2.1
] {

 - Functions {

 Function [
<internal> function
json_encode] {

 }

 Function [
<internal> function
json_decode] {

 }

 }

}

--ri --rextinfo
Shows the configuration
information for the given
extension (the same
information that is returned
by phpinfo()). Available as of
PHP 5.2.2. The core
configuration information are
available using "main" as
extension name.

Example #19 - --ri
example

$ php --ri date

date

date/time support =>
enabled

"Olson" Timezone
Database Version =>
2007.5

Timezone Database =>
internal

Default timezone =>
Europe/Oslo

Directive => Local
Value => Master Value

date.timezone =>
Europe/Oslo =>
Europe/Oslo

date.default_latitude
=> 59.22482 =>
59.22482

date.default_longitude
=> 11.018084 =>
11.018084

date.sunset_zenith =>
90.583333 => 90.583333

date.sunrise_zenith =>
90.583333 => 90.583333

The PHP executable can be used to run PHP scripts absolutely independent from the web
server. If you are on a Unix system, you should add a special first line to your PHP script,
and make it executable, so the system will know, what program should run the script. On a
Windows platform you can associate php.exe with the double click option of the.php files,
or you can make a batch file to run the script through PHP. The first line added to the
script to work on Unix won't hurt on Windows, so you can write cross platform programs
this way. A simple example of writing a command line PHP program can be found below.

Example #20 - Script intended to be run from command line (script.php)

#!/usr/bin/php

<?php

if ($argc != 2 || in_array($argv[1], array('--help', '-help', '-h', '-?')))
{

?>

This is a command line PHP script with one option.

 Usage:

 <?php echo $argv[0]; ?> <option>

 <option> can be some word you would like

 to print out. With the --help, -help, -h,

 or -? options, you can get this help.

<?php

} else {

 echo $argv[1];

}

?>

In the script above, we used the special first line to indicate that this file should be run by
PHP. We work with a CLI version here, so there will be no HTTP header printouts. There
are two variables you can use while writing command line applications with PHP: $argc
and $argv. The first is the number of arguments plus one (the name of the script running).
The second is an array containing the arguments, starting with the script name as number
zero ($argv[0]).

In the program above we checked if there are less or more than one arguments. Also if the
argument was --help, -help, -h or -?, we printed out the help message, printing the script
name dynamically. If we received some other argument we echoed that out.

If you would like to run the above script on Unix, you need to make it executable, and
simply call it as script.php echothis or script.php -h. On Windows, you can make a batch
file for this task:

Example #21 - Batch file to run a command line PHP script (script.bat)

@C:\php\php.exe script.php %1 %2 %3 %4

Assuming you named the above program script.php, and you have your CLI php.exe in
C:\php\php.exe this batch file will run it for you with your added options: script.bat echothis
or script.bat -h.

See also the Readline extension documentation for more functions you can use to
enhance your command line applications in PHP.

	Features
	HTTP authentication with PHP
	Cookies
	Sessions
	Dealing with XForms
	Handling file uploads
	POST method uploads
	Error Messages Explained
	Common Pitfalls
	Uploading multiple files
	PUT method support

	Using remote files
	Connection handling
	Persistent Database Connections
	Safe Mode
	Security and Safe Mode
	Functions restricted/disabled by safe mode

	Using PHP from the command line

