
Streams

Introduction

Streams were introduced with PHP 4.3.0 as a way of generalizing file, network, data
compression, and other operations which share a common set of functions and uses. In its
simplest definition, a stream is a resource object which exhibits streamable behavior. That
is, it can be read from or written to in a linear fashion, and may be able to fseek() to an
arbitrary locations within the stream.

A wrapper is additional code which tells the stream how to handle specific
protocols/encodings. For example, the http wrapper knows how to translate a URL into an
HTTP/1.0 request for a file on a remote server. There are many wrappers built into PHP by
default (See List of Supported Protocols/Wrappers), and additional, custom wrappers may
be added either within a PHP script using stream_wrapper_register(), or directly from an
extension using the API Reference in Working with streams. Because any variety of
wrapper may be added to PHP, there is no set limit on what can be done with them. To
access the list of currently registered wrappers, use stream_get_wrappers().

A stream is referenced as: scheme:// target

• scheme (string) - The name of the wrapper to be used. Examples include: file, http,
https, ftp, ftps, compress.zlib, compress.bz2, and php. See List of Supported
Protocols/Wrappers for a list of PHP built-in wrappers. If no wrapper is specified, the
function default is used (typically file://).

• target - Depends on the wrapper used. For filesystem related streams this is typically
a path and filename of the desired file. For network related streams this is typically a
hostname, often with a path appended. Again, see List of Supported
Protocols/Wrappers for a description of targets for built-in streams.

Note

Information on using streams within the PHP source code can be found in the Streams
API for PHP Extension Authors reference.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Streams are an integral part of PHP as of version 4.3.0. No steps are required to enable
them.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Stream Classes

User designed wrappers can be registered via stream_wrapper_register(), using the class
definition shown on that manual page.

class php_user_filter is predefined and is an abstract baseclass for use with user defined
filters. See the manual page for stream_filter_register() for details on implementing user
defined filters.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Constant Description

STREAM_FILTER_READ * Used with stream_filter_append() and
stream_filter_prepend() to indicate that the
specified filter should only be applied when
reading

STREAM_FILTER_WRITE * Used with stream_filter_append() and
stream_filter_prepend() to indicate that the
specified filter should only be applied when
writing

STREAM_FILTER_ALL * This constant is equivalent to
STREAM_FILTER_READ |
STREAM_FILTER_WRITE

PSFS_PASS_ON * Return Code indicating that the userspace
filter returned buckets in $out.

PSFS_FEED_ME * Return Code indicating that the userspace
filter did not return buckets in $out (i.e. No
data available).

PSFS_ERR_FATAL * Return Code indicating that the userspace
filter encountered an unrecoverable error
(i.e. Invalid data received).

STREAM_USE_PATH Flag indicating if the stream used the
include path.

STREAM_REPORT_ERRORS Flag indicating if the wrapper is responsible
for raising errors using trigger_error() during
opening of the stream. If this flag is not set,
you should not raise any errors.

STREAM_CLIENT_ASYNC_CONNECT * Open client socket asynchronously. This
option must be used together with the
STREAM_CLIENT_CONNECT flag. Used
with stream_socket_client().

STREAM_CLIENT_CONNECT * Open client socket connection. Client
sockets should always include this flag.
Used with stream_socket_client().

STREAM_CLIENT_PERSISTENT * Client socket opened with
stream_socket_client() should remain
persistent between page loads.

STREAM_SERVER_BIND * Tells a stream created with
stream_socket_server() to bind to the
specified target. Server sockets should
always include this flag.

STREAM_SERVER_LISTEN * Tells a stream created with
stream_socket_server() and bound using
the STREAM_SERVER_BIND flag to start
listening on the socket.
Connection-orientated transports (such as
TCP) must use this flag, otherwise the
server socket will not be enabled. Using this
flag for connect-less transports (such as
UDP) is an error.

STREAM_NOTIFY_RESOLVE * A remote address required for this stream
has been resolved, or the resolution failed.
See severity for an indication of which
happened.

STREAM_NOTIFY_CONNECT A connection with an external resource has
been established.

STREAM_NOTIFY_AUTH_REQUIRED Additional authorization is required to
access the specified resource. Typical
issued with severity level of
STREAM_NOTIFY_SEVERITY_ERR.

STREAM_NOTIFY_MIME_TYPE_IS The mime-type of resource has been
identified, refer to message for a description
of the discovered type.

STREAM_NOTIFY_FILE_SIZE_IS The size of the resource has been
discovered.

STREAM_NOTIFY_REDIRECTED The external resource has redirected the
stream to an alternate location. Refer to
message.

STREAM_NOTIFY_PROGRESS Indicates current progress of the stream
transfer in bytes_transferred and possibly
bytes_max as well.

STREAM_NOTIFY_COMPLETED * There is no more data available on the
stream.

STREAM_NOTIFY_FAILURE A generic error occurred on the stream,
consult message and message_code for

details.

STREAM_NOTIFY_AUTH_RESULT Authorization has been completed (with or
without success).

STREAM_NOTIFY_SEVERITY_INFO Normal, non-error related, notification.

STREAM_NOTIFY_SEVERITY_WARN Non critical error condition. Processing may
continue.

STREAM_NOTIFY_SEVERITY_ERR A critical error occurred. Processing cannot
continue.

STREAM_IPPROTO_ICMP + Provides a ICMP socket.

STREAM_IPPROTO_IP + Provides a IP socket.

STREAM_IPPROTO_RAW + Provides a RAW socket.

STREAM_IPPROTO_TCP + Provides a TCP socket.

STREAM_IPPROTO_UDP + Provides a UDP socket.

STREAM_PF_INET + Internet Protocol Version 4 (IPv4).

STREAM_PF_INET6 + Internet Protocol Version 6 (IPv6).

STREAM_PF_UNIX + Unix system internal protocols.

STREAM_SOCK_DGRAM + Provides datagrams, which are
connectionless messages (UDP, for
example).

STREAM_SOCK_RAW + Provides a raw socket, which provides
access to internal network protocols and
interfaces. Usually this type of socket is just
available to the root user.

STREAM_SOCK_RDM + Provides a RDM (Reliably-delivered
messages) socket.

STREAM_SOCK_SEQPACKET + Provides a sequenced packet stream
socket.

STREAM_SOCK_STREAM + Provides sequenced, two-way byte streams
with a transmission mechanism for
out-of-band data (TCP, for example).

STREAM_SHUT_RD Used with stream_socket_shutdown() to
disable further receptions. Added in PHP
5.2.1.

STREAM_SHUT_WR Used with stream_socket_shutdown() to
disable further transmissions. Added in PHP
5.2.1.

STREAM_SHUT_RDWR Used with stream_socket_shutdown() to
disable further receptions and
transmissions. Added in PHP 5.2.1.

Note

The constants marked with * are just available since PHP 5.0.0.

Note

The constants marked with + are available since PHP 5.1.0 and are meant to be used
with stream_socket_pair(). Please note that some of these constants might not be
available in your system.

Stream Filters

A filter is a final piece of code which may perform operations on data as it is being read
from or written to a stream. Any number of filters may be stacked onto a stream. Custom
filters can be defined in a PHP script using stream_filter_register() or in an extension using
the API Reference in Working with streams. To access the list of currently registered
filters, use stream_get_filters().

Stream Contexts

A context is a set of parameters and wrapper specific options which modify or enhance the
behavior of a stream. Contexts are created using stream_context_create() and can be
passed to most filesystem related stream creation functions (i.e. fopen(), file(),
file_get_contents(), etc...).

Options can be specified when calling stream_context_create(), or later using
stream_context_set_option(). A list of wrapper specific options can be found in the Context
options and parameters chapter.

Parameters can be specified for contexts using the stream_context_set_params() function.

Stream Errors

As with any file or socket related function, an operation on a stream may fail for a variety of
normal reasons (i.e.: Unable to connect to remote host, file not found, etc...). A stream
related call may also fail because the desired stream is not registered on the running
system. See the array returned by stream_get_wrappers() for a list of streams supported
by your installation of PHP. As with most PHP internal functions if a failure occurs an
E_WARNING message will be generated describing the nature of the error.

Examples

Example #1 - Using file_get_contents() to retrieve data from multiple sources

<?php

/* Read local file from /home/bar */

$localfile = file_get_contents("/home/bar/foo.txt");

/* Identical to above, explicitly naming FILE scheme */

$localfile = file_get_contents("file:///home/bar/foo.txt");

/* Read remote file from www.example.com using HTTP */

$httpfile = file_get_contents("http://www.example.com/foo.txt");

/* Read remote file from www.example.com using HTTPS */

$httpsfile = file_get_contents("https://www.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTP */

$ftpfile = file_get_contents("ftp://user:pass@ftp.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTPS */

$ftpsfile = file_get_contents("ftps://user:pass@ftp.example.com/foo.txt");

?>

Example #2 - Making a POST request to an https server

<?php

/* Send POST request to https://secure.example.com/form_action.php

* Include form elements named "foo" and "bar" with dummy values

*/

$sock = fsockopen("ssl://secure.example.com", 443, $errno, $errstr, 30);

if (!$sock) die("$errstr ($errno)\n");

$data = "foo=" . urlencode("Value for Foo") . "&bar=" . urlencode("Value for
Bar");

fwrite($sock, "POST /form_action.php HTTP/1.0\r\n");

fwrite($sock, "Host: secure.example.com\r\n");

fwrite($sock, "Content-type: application/x-www-form-urlencoded\r\n");

fwrite($sock, "Content-length: " . strlen($data) . "\r\n");

fwrite($sock, "Accept: */*\r\n");

fwrite($sock, "\r\n");

fwrite($sock, "$data\r\n");

fwrite($sock, "\r\n");

$headers = "";

while ($str = trim(fgets($sock, 4096)))

$headers .= "$str\n";

echo "\n";

$body = "";

while (!feof($sock))

$body .= fgets($sock, 4096);

fclose($sock);

?>

Example #3 - Writing data to a compressed file

<?php

/* Create a compressed file containing an arbitrarty string

* File can be read back using compress.zlib stream or just

* decompressed from the command line using 'gzip -d foo-bar.txt.gz'

*/

$fp = fopen("compress.zlib://foo-bar.txt.gz", "wb");

if (!$fp) die("Unable to create file.");

fwrite($fp, "This is a test.\n");

fclose($fp);

?>

Stream Functions

stream_bucket_append

stream_bucket_append -- Append bucket to brigade

Description

void stream_bucket_append (resource $brigade, resource $bucket)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_make_writeable

stream_bucket_make_writeable -- Return a bucket object from the brigade for operating
on

Description

object stream_bucket_make_writeable (resource $brigade)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_new

stream_bucket_new -- Create a new bucket for use on the current stream

Description

object stream_bucket_new (resource $stream, string $buffer)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_prepend

stream_bucket_prepend -- Prepend bucket to brigade

Description

void stream_bucket_prepend (resource $brigade, resource $bucket)

Warning

This function is currently not documented; only its argument list is available.

stream_context_create

stream_context_create -- Create a streams context

Description

resource stream_context_create ([array $options [, array $params]])

Creates and returns a stream context with any options supplied in options preset.

Parameters

options

Must be an associative array of associative arrays in the format $arr['wrapper']['option']
= $value. Default to an empty array.

params

Must be an associative array in the format $arr['parameter'] = $value. Refer to
stream_context_set_params() for a listing of standard stream parameters.

Return Values

A stream context resource.

ChangeLog

Version Description

5.3.0 Added the optional params argument.

Examples

Example #4 - Using stream_context_create()

<?php

$opts = array(

 'http'=>array(

 'method'=>"GET",

 'header'=>"Accept-language: en\r\n" .

 "Cookie: foo=bar\r\n"

)

);

$context = stream_context_create($opts);

/* Sends an http request to www.example.com

 with additional headers shown above */

$fp = fopen('http://www.example.com', 'r', false, $context);

fpassthru($fp);

fclose($fp);

?>

See Also

• stream_context_set_option()
• Listing of supported wrappers (List of Supported Protocols/Wrappers)
• Context options (Context options and parameters)

stream_context_get_default

stream_context_get_default -- Retreive the default streams context

Description

resource stream_context_get_default ([array $options])

Returns the default stream context which is used whenever file operations (fopen(),
file_get_contents(), etc...) are called without a context parameter. Options for the default
context can optionally be specified with this function using the same syntax as
stream_context_create().

options must be an associative array of associative arrays in the format
$arr['wrapper']['option'] = $value.

Example #5 - Using stream_context_get_default()

<?php

$default_opts = array(

 'http'=>array(

 'method'=>"GET",

 'header'=>"Accept-language: en\r\n" .

 "Cookie: foo=bar",

 'proxy'=>"tcp://10.54.1.39:8000"

)

);

$alternate_opts = array(

 'http'=>array(

 'method'=>"POST",

 'header'=>"Content-type: application/x-www-form-urlencoded\r\n" .

 "Content-length: " . strlen("baz=bomb"),

 'content'=>"baz=bomb"

)

);

$default = stream_context_get_default($default_opts);

$alternate = stream_context_create($alternate_opts);

/* Sends a regular GET request to proxy server at 10.54.1.39

* For www.example.com using context options specified in $default_opts

*/

readfile('http://www.example.com');

/* Sends a POST request directly to www.example.com

* Using context options specified in $alternate_opts

*/

readfile('http://www.example.com', false, $alternate);

?>

See also stream_context_create(), and Listing of supported wrappers with context options
(List of Supported Protocols/Wrappers).

stream_context_get_options

stream_context_get_options -- Retrieve options for a stream/wrapper/context

Description

array stream_context_get_options (resource $stream_or_context)

Returns an array of options on the specified stream or context.

stream_context_set_option

stream_context_set_option -- Sets an option for a stream/wrapper/context

Description

bool stream_context_set_option (resource $stream_or_context, string $wrapper, string
$option, mixed $value)

bool stream_context_set_option (resource $stream_or_context, array $options)

Sets an option on the specified context. value is set to option for wrapper

stream_context_set_params

stream_context_set_params -- Set parameters for a stream/wrapper/context

Description

bool stream_context_set_params (resource $stream_or_context, array $params)

params should be an associative array of the structure: $params['paramname'] =
"paramvalue";.

Parameters

Parameters Purpose

notification Name of user-defined callback function to
be called whenever a stream triggers a
notification.

options Array of options as in
stream_context_create().

stream_copy_to_stream

stream_copy_to_stream -- Copies data from one stream to another

Description

int stream_copy_to_stream (resource $source, resource $dest [, int $maxlength [, int $
offset]])

Makes a copy of up to maxlength bytes of data from the current position (or from the
offset position, if specified) in source to dest. If maxlength is not specified, all remaining
content in source will be copied.

Parameters

source

The source stream

dest

The destination stream

maxlength

Maximum bytes to copy

offset

The offset where to start to copy data

Return Values

Returns the total count of bytes copied.

ChangeLog

Version Description

5.1.0 Added the offset parameter

Examples

Example #6 - A stream_copy_to_stream() example

<?php

$src = fopen('http://www.example.com', 'r');

$dest1 = fopen('first1k.txt', 'w');

$dest2 = fopen('remainder.txt', 'w');

echo stream_copy_to_stream($src, $dest1, 1024) . " bytes copied to
first1k.txt\n";

echo stream_copy_to_stream($src, $dest2) . " bytes copied to
remainder.txt\n";

?>

See Also

• copy()

stream_encoding

stream_encoding -- Set character set for stream encoding

Description

bool stream_encoding (resource $stream [, string $encoding])

Warning

This function is currently not documented; only its argument list is available.

stream_filter_append

stream_filter_append -- Attach a filter to a stream

Description

resource stream_filter_append (resource $stream, string $filtername [, int $
read_write [, mixed $params]])

Adds filtername to the list of filters attached to stream. This filter will be added with the
specified params to the end of the list and will therefore be called last during stream
operations. To add a filter to the beginning of the list, use stream_filter_prepend().

By default, stream_filter_append() will attach the filter to the read filter chain if the file was
opened for reading (i.e. File Mode: r, and/or +). The filter will also be attached to the write
filter chain if the file was opened for writing (i.e. File Mode: w, a, and/or +).
STREAM_FILTER_READ, STREAM_FILTER_WRITE, and/or STREAM_FILTER_ALL
can also be passed to the read_write parameter to override this behavior.

As of PHP 5.1.0, this function returns a resource which can be used to refer to this filter
instance during a call to stream_filter_remove(). Prior to PHP 5.1.0, this function returns
TRUE on success or FALSE on failure.

Example #7 - Controlling where filters are applied

<?php

/* Open a test file for reading and writing */

$fp = fopen('test.txt', 'w+');

/* Apply the ROT13 filter to the

* write filter chain, but not the

* read filter chain */

stream_filter_append($fp, "string.rot13", STREAM_FILTER_WRITE);

/* Write a simple string to the file

* it will be ROT13 transformed on the

* way out */

fwrite($fp, "This is a test\n");

/* Back up to the beginning of the file */

rewind($fp);

/* Read the contents of the file back out.

* Had the filter been applied to the

* read filter chain as well, we would see

* the text ROT13ed back to its original state */

fpassthru($fp);

fclose($fp);

/* Expected Output

Guvf vf n grfg

*/

?>

Note

When using custom (user) filters

stream_filter_register() must be called first in order to register the desired user filter to
filtername.

Note

Stream data is read from resources (both local and remote) in chunks, with any
unconsumed data kept in internal buffers. When a new filter is appended to a stream,
data in the internal buffers is processed through the new filter at that time. This differs
from the behavior of stream_filter_prepend().

See also stream_filter_register(), stream_filter_prepend(), and stream_get_filters().

stream_filter_prepend

stream_filter_prepend -- Attach a filter to a stream

Description

resource stream_filter_prepend (resource $stream, string $filtername [, int $
read_write [, mixed $params]])

Adds filtername to the list of filters attached to stream. This filter will be added with the
specified params to the beginning of the list and will therefore be called first during stream
operations. To add a filter to the end of the list, use stream_filter_append().

By default, stream_filter_prepend() will attach the filter to the read filter chain if the file was
opened for reading (i.e. File Mode: r, and/or +). The filter will also be attached to the write
filter chain if the file was opened for writing (i.e. File Mode: w, a, and/or +).
STREAM_FILTER_READ, STREAM_FILTER_WRITE, and/or STREAM_FILTER_ALL
can also be passed to the read_write parameter to override this behavior. See
stream_filter_append() for an example of using this parameter.

As of PHP 5.1.0, this function returns a resource which can be used to refer to this filter
instance during a call to stream_filter_remove(). Prior to PHP 5.1.0, this function returns
TRUE on success or FALSE on failure.

Note

When using custom (user) filters

stream_filter_register() must be called first in order to register the desired user filter to
filtername.

Note

Stream data is read from resources (both local and remote) in chunks, with any
unconsumed data kept in internal buffers. When a new filter is prepended to a stream,
data in the internal buffers, which has already been processed through other filters will
not be reprocessed through the new filter at that time. This differs from the behavior of
stream_filter_append().

See also stream_filter_register(), and stream_filter_append().

stream_filter_register

stream_filter_register -- Register a stream filter implemented as a PHP class derived from
php_user_filter

Description

bool stream_filter_register (string $filtername, string $classname)

stream_filter_register() allows you to implement your own filter on any registered stream
used with all the other filesystem functions (such as fopen(), fread() etc.).

To implement a filter, you need to define a class as an extension of php_user_filter with a
number of member functions as defined below. When performing read/write operations on
the stream to which your filter is attached, PHP will pass the data through your filter (and
any other filters attached to that stream) so that the data may be modified as desired. You
must implement the methods exactly as described below - doing otherwise will lead to
undefined behaviour.

stream_filter_register() will return FALSE if the filtername is already defined.

int filter (resource $in, resource $out, int &$consumed, bool $closing)

This method is called whenever data is read from or written to the attached stream (such
as with fread() or fwrite()). in is a resource pointing to a bucket brigade which contains
one or more bucket objects containing data to be filtered. out is a resource pointing to a
second bucket brigade into which your modified buckets should be placed. consumed,
which must always be declared by reference, should be incremented by the length of the
data which your filter reads in and alters. In most cases this means you will increment
consumed by $bucket->datalen for each $bucket. If the stream is in the process of closing
(and therefore this is the last pass through the filterchain), the closing parameter will be
set to TRUE The filter method must return one of three values upon completion.

Return Value Meaning

PSFS_PASS_ON Filter processed successfully with data
available in the out bucket brigade.

PSFS_FEED_ME Filter processed successfully, however no
data was available to return. More data is
required from the stream or prior filter.

PSFS_ERR_FATAL (default) The filter experienced an unrecoverable
error and cannot continue.

bool onCreate (void)

This method is called during instantiation of the filter class object. If your filter allocates or
initializes any other resources (such as a buffer), this is the place to do it. Your
implementation of this method should return FALSE on failure, or TRUE on success.

When your filter is first instantiated, and yourfilter->onCreate() is called, a number of
properties will be available as shown in the table below.

Property Contents

FilterClass->filtername A string containing the name the filter was
instantiated with. Filters may be registered
under multiple names or under wildcards.
Use this property to determine which name
was used.

FilterClass->params The contents of the params parameter
passed to stream_filter_append() or
stream_filter_prepend().

void onClose (void)

This method is called upon filter shutdown (typically, this is also during stream shutdown),
and is executed after the flush method is called. If any resources were allocated or
initialzed during onCreate this would be the time to destroy or dispose of them.

The example below implements a filter named strtoupper on the foo-bar.txt stream which
will capitalize all letter characters written to/read from that stream.

Example #8 - Filter for capitalizing characters on foo-bar.txt stream

<?php

/* Define our filter class */

class strtoupper_filter extends php_user_filter {

 function filter($in, $out, &$consumed, $closing)

 {

 while ($bucket = stream_bucket_make_writeable($in)) {

 $bucket->data = strtoupper($bucket->data);

 $consumed += $bucket->datalen;

 stream_bucket_append($out, $bucket);

 }

 return PSFS_PASS_ON;

 }

}

/* Register our filter with PHP */

stream_filter_register("strtoupper", "strtoupper_filter")

 or die("Failed to register filter");

$fp = fopen("foo-bar.txt", "w");

/* Attach the registered filter to the stream just opened */

stream_filter_append($fp, "strtoupper");

fwrite($fp, "Line1\n");

fwrite($fp, "Word - 2\n");

fwrite($fp, "Easy As 123\n");

fclose($fp);

/* Read the contents back out

*/

readfile("foo-bar.txt");

?>

The above example will output:

LINE1

WORD - 2

EASY AS 123

Example #9 - Registering a generic filter class to match multiple filter names.

<?php

/* Define our filter class */

class string_filter extends php_user_filter {

 var $mode;

 function filter($in, $out, &$consumed, $closing)

 {

 while ($bucket = stream_bucket_make_writeable($in)) {

 if ($this->mode == 1) {

 $bucket->data = strtoupper($bucket->data);

 } elseif ($this->mode == 0) {

 $bucket->data = strtolower($bucket->data);

 }

 $consumed += $bucket->datalen;

 stream_bucket_append($out, $bucket);

 }

 return PSFS_PASS_ON;

 }

 function onCreate()

 {

 if ($this->filtername == 'str.toupper') {

 $this->mode = 1;

 } elseif ($this->filtername == 'str.tolower') {

 $this->mode = 0;

 } else {

 /* Some other str.* filter was asked for,

 report failure so that PHP will keep looking */

 return false;

 }

 return true;

 }

}

/* Register our filter with PHP */

stream_filter_register("str.*", "string_filter")

 or die("Failed to register filter");

$fp = fopen("foo-bar.txt", "w");

/* Attach the registered filter to the stream just opened

 We could alternately bind to str.tolower here */

stream_filter_append($fp, "str.toupper");

fwrite($fp, "Line1\n");

fwrite($fp, "Word - 2\n");

fwrite($fp, "Easy As 123\n");

fclose($fp);

/* Read the contents back out

*/

readfile("foo-bar.txt");

?>

The above example will output:

LINE1

WORD - 2

EASY AS 123

See also stream_wrapper_register(), stream_filter_prepend(), and stream_filter_append().

stream_filter_remove

stream_filter_remove -- Remove a filter from a stream

Description

bool stream_filter_remove (resource $stream_filter)

Removes a stream filter previously added to a stream with stream_filter_prepend() or
stream_filter_append(). Any data remaining in the filter's internal buffer will be flushed
through to the next filter before removing it.

Example #10 - Dynamicly refiltering a stream

<?php

/* Open a test file for reading and writing */

$fp = fopen("test.txt", "rw");

$rot13_filter = stream_filter_append($fp, "string.rot13",
STREAM_FILTER_WRITE);

fwrite($fp, "This is ");

stream_filter_remove($rot13_filter);

fwrite($fp, "a test\n");

rewind($fp);

fpassthru($fp);

fclose($fp);

/* Expected Output

Guvf vf a test

*/

?>

See also stream_filter_register(), stream_filter_append(), and stream_filter_prepend().

stream_get_contents

stream_get_contents -- Reads remainder of a stream into a string

Description

string stream_get_contents (resource $handle [, int $maxlength [, int $offset]])

Identical to file_get_contents(), except that stream_get_contents() operates on an already
open stream resource and returns the remaining contents in a string, up to maxlength
bytes and starting at the specified offset.

Parameters

handle (resource)
A stream resource (e.g. returned from fopen())

maxlength (integer)
The maximum bytes to read. Defaults to -1 (read all the remaining buffer).

offset (integer)
Seek to the specified offset before reading. Added in PHP 5.1.0.

Return Values

Returns a string, or FALSE on failure.

Examples

Example #11 - stream_get_contents() example

<?php

if ($stream = fopen('http://www.example.com', 'r')) {

 // print all the page starting at the offset 10

 echo stream_get_contents($stream, -1, 10);

 fclose($stream);

}

if ($stream = fopen('http://www.example.net', 'r')) {

 // print the first 5 bytes

 echo stream_get_contents($stream, 5);

 fclose($stream);

}

?>

See Also

• fgets()
• fread()
• fpassthru()

Note

This function is binary-safe.

stream_get_filters

stream_get_filters -- Retrieve list of registered filters

Description

array stream_get_filters (void)

Returns an indexed array containing the name of all stream filters available on the running
system.

Example #12 - Using stream_get_filters()

<?php

$streamlist = stream_get_filters();

print_r($streamlist);

?>

Output will be similar to the following. Note: there may be more or fewer filters in your
version of PHP.

Array (

 [0] => string.rot13

 [1] => string.toupper

 [2] => string.tolower

 [3] => string.base64

 [4] => string.quoted-printable

)

See also stream_filter_register(), and stream_get_wrappers().

stream_get_line

stream_get_line -- Gets line from stream resource up to a given delimiter

Description

string stream_get_line (resource $handle, int $length [, string $ending])

Returns a string of up to length bytes read from the file pointed to by handle. Reading
ends when length bytes have been read, when the string specified by ending is found
(which is not included in the return value), or on EOF (whichever comes first).

If an error occurs, returns FALSE.

This function is nearly identical to fgets() except in that it allows end of line delimiters other
than the standard \n, \r, and \r\n, and does not return the delimiter itself.

See also fread(), fgets(), and fgetc().

stream_get_meta_data

stream_get_meta_data -- Retrieves header/meta data from streams/file pointers

Description

array stream_get_meta_data (resource $stream)

Returns information about an existing stream. The stream can be any stream created by
fopen(), fsockopen() and pfsockopen(). The result array contains the following items:

• timed_out (bool) - TRUE if the stream timed out while waiting for data on the last call
to fread() or fgets().

• blocked (bool) - TRUE if the stream is in blocking IO mode. See stream_set_blocking()
.

• eof (bool) - TRUE if the stream has reached end-of-file. Note that for socket streams
this member can be TRUE even when unread_bytes is non-zero. To determine if there
is more data to be read, use feof() instead of reading this item.

• unread_bytes (int) - the number of bytes currently contained in the PHP's own internal
buffer.

Note

You shouldn't use this value in a script.

The following items were added in PHP 4.3.0:

• stream_type (string) - a label describing the underlying implementation of the stream.

• wrapper_type (string) - a label describing the protocol wrapper implementation layered
over the stream. See List of Supported Protocols/Wrappers for more information about
wrappers.

• wrapper_data (mixed) - wrapper specific data attached to this stream. See List of
Supported Protocols/Wrappers for more information about wrappers and their wrapper
data.

• filters (array) - and array containing the names of any filters that have been stacked
onto this stream. Documentation on filters can be found in the Filters appendix.

Note

This function was introduced in PHP 4.3.0, but prior to this version,

socket_get_status() could be used to retrieve the first four items, for socket based
streams only.

In PHP 4.3.0 and later, socket_get_status() is an alias for this function.

Note

This function does NOT work on sockets created by the Socket extension.

The following items were added in PHP 5.0.0:

• mode (string) - the type of access required for this stream (see Table 1 of the fopen()
reference)

• seekable (bool) - whether the current stream can be seeked.

• uri (string) - the URI/filename associated with this stream.

stream_get_transports

stream_get_transports -- Retrieve list of registered socket transports

Description

array stream_get_transports (void)

Returns an indexed array containing the name of all socket transports available on the
running system.

Example #13 - Using stream_get_transports()

<?php

$xportlist = stream_get_transports();

print_r($xportlist);

?>

Output will be similar to the following. Note: there may be more or fewer transports in
your version of PHP.

Array (

 [0] => tcp

 [1] => udp

 [2] => unix

 [3] => udg

)

See also stream_get_filters(), and stream_get_wrappers().

stream_get_wrappers

stream_get_wrappers -- Retrieve list of registered streams

Description

array stream_get_wrappers (void)

Returns an indexed array containing the name of all stream wrappers available on the
running system.

Example #14 - stream_get_wrappers() example

<?php

print_r(stream_get_wrappers());

?>

The above example will output something similar to:

Array

(

 [0] => php

 [1] => file

 [2] => http

 [3] => ftp

 [4] => compress.bzip2

 [5] => compress.zlib

)

Example #15 - Checking for the existence of a stream wrapper

<?php

// check for the existence of the bzip2 stream wrapper

if (in_array('compress.bzip2', stream_get_wrappers())) {

 echo 'compress.bzip2:// support enabled.';

} else {

 echo 'compress.bzip2:// support not enabled.';

}

?>

See also stream_wrapper_register().

stream_notification_callback

stream_notification_callback -- A callback function for the notification context paramater

Description

void stream_notification_callback (int $notification_code, int $severity, string $
message, int $message_code, int $bytes_transferred, int $bytes_max)

A callback function called during an event.

Note

This is not a real function, only a prototype of how the function should be.

Parameters

notification_code

One of the STREAM_NOTIFY_* notification constants.

severity

One of the STREAM_NOTIFY_SEVERITY_* notification constants.

message

Passed if a descriptive message is available for the event.

message_code

Passed if a descriptive message code is available for the event. The meaning of this
value is dependent on the specific wrapper in use.

bytes_transferred

If applicable, the bytes_transferred will be populated.

bytes_max

If applicable, the bytes_max will be populated.

Return Values

No value is returned.

Examples

Example #16 - stream_notification_callback() example

<?php

function stream_notification_callback($notification_code, $severity,
$message, $message_code, $bytes_transferred, $bytes_max) {

 switch($notification_code) {

 case STREAM_NOTIFY_RESOLVE:

 case STREAM_NOTIFY_AUTH_REQUIRED:

 case STREAM_NOTIFY_COMPLETED:

 case STREAM_NOTIFY_FAILURE:

 case STREAM_NOTIFY_AUTH_RESULT:

 var_dump($notification_code, $severity, $message, $message_code,
$bytes_transferred, $bytes_max);

 /* Ignore */

 break;

 case STREAM_NOTIFY_REDIRECTED:

 echo "Being redirected to: ", $message;

 break;

 case STREAM_NOTIFY_CONNECT:

 echo "Conntected...";

 break;

 case STREAM_NOTIFY_FILE_SIZE_IS:

 echo "Got the filesize: ", $bytes_max;

 break;

 case STREAM_NOTIFY_MIME_TYPE_IS:

 echo "Found the mime-type: ", $message;

 break;

 case STREAM_NOTIFY_PROGRESS:

 echo "Made some progress, downloaded ", $bytes_transferred, " so
far";

 break;

 }

 echo "\n";

}

$ctx = stream_context_create(null, array("notification" =>
"stream_notification_callback"));

file_get_contents("http://php.net/contact", false, $ctx);

?>

The above example will output something similar to:

Conntected...

Found the mime-type: text/html; charset=utf-8

Being redirected to: http://no.php.net/contact

Conntected...

Got the filesize: 0

Found the mime-type: text/html; charset=utf-8

Being redirected to: http://no.php.net/contact.php

Conntected...

Got the filesize: 4589

Found the mime-type: text/html;charset=utf-8

Made some progress, downloaded 0 so far

Made some progress, downloaded 0 so far

Made some progress, downloaded 0 so far

Made some progress, downloaded 1440 so far

Made some progress, downloaded 2880 so far

Made some progress, downloaded 4320 so far

Made some progress, downloaded 5760 so far

Made some progress, downloaded 6381 so far

Made some progress, downloaded 7002 so far

Example #17 - Simple progressbar for commandline download client

<?php

function usage($argv) {

 echo "Usage:\n";

 printf("\tphp %s <http://example.com/file> <localfile>\n", $argv[0]);

 exit(1);

}

function stream_notification_callback($notification_code, $severity,
$message, $message_code, $bytes_transferred, $bytes_max) {

 static $filesize = null;

 switch($notification_code) {

 case STREAM_NOTIFY_RESOLVE:

 case STREAM_NOTIFY_AUTH_REQUIRED:

 case STREAM_NOTIFY_COMPLETED:

 case STREAM_NOTIFY_FAILURE:

 case STREAM_NOTIFY_AUTH_RESULT:

 /* Ignore */

 break;

 case STREAM_NOTIFY_REDIRECTED:

 echo "Being redirected to: ", $message, "\n";

 break;

 case STREAM_NOTIFY_CONNECT:

 echo "Conntected...\n";

 break;

 case STREAM_NOTIFY_FILE_SIZE_IS:

 $filesize = $bytes_max;

 echo "Filesize: ", $filesize, "\n";

 break;

 case STREAM_NOTIFY_MIME_TYPE_IS:

 echo "Mime-type: ", $message, "\n";

 break;

 case STREAM_NOTIFY_PROGRESS:

 if ($bytes_transferred > 0) {

 if (!isset($filesize)) {

 printf("\rUnknown filesize.. %2d kb done..",
$bytes_transferred/1024);

 } else {

 $length = (int)(($bytes_transferred/$filesize)*100);

 printf("\r[%-100s] %d%% (%2d/%2d kb)", str_repeat("=",
$length). ">", $length, ($bytes_transferred/1024), $filesize/1024);

 }

 }

 break;

 }

}

isset($argv[1], $argv[2]) or usage($argv);

$ctx = stream_context_create(null, array("notification" =>
"stream_notification_callback"));

$fp = fopen($argv[1], "r", false, $ctx);

if (is_resource($fp) && file_put_contents($argv[2], $fp)) {

 echo "\nDone!\n";

 exit(0);

}

$err = error_get_last();

echo "\nErrrrrorr..\n", $err["message"], "\n";

exit(1);

?>

Executing the example above with: php -n fetch.php
http://no2.php.net/get/php-5-LATEST.tar.bz2/from/this/mirror php-latest.tar.bz2 will
output something similar too:

Conntected...

Mime-type: text/html; charset=utf-8

Being redirected to: http://no2.php.net/distributions/php-5.2.5.tar.bz2

Conntected...

Filesize: 7773024

Mime-type: application/octet-stream

[==>
] 40% (3076/7590 kb)

See Also

• Context parameters

stream_register_wrapper

stream_register_wrapper -- Alias of stream_wrapper_register()

Description

This function is an alias of: stream_wrapper_register().

stream_resolve_include_path

stream_resolve_include_path -- Determine what file will be opened by calls to fopen() with
a relative path

Description

string stream_resolve_include_path (string $filename [, resource $context])

Warning

This function is currently not documented; only its argument list is available.

stream_select

stream_select -- Runs the equivalent of the select() system call on the given arrays of
streams with a timeout specified by tv_sec and tv_usec

Description

int stream_select (array &$read, array &$write, array &$except, int $tv_sec [, int $
tv_usec])

The stream_select() function accepts arrays of streams and waits for them to change
status. Its operation is equivalent to that of the socket_select() function except in that it
acts on streams.

The streams listed in the read array will be watched to see if characters become available
for reading (more precisely, to see if a read will not block - in particular, a stream resource
is also ready on end-of-file, in which case an fread() will return a zero length string).

The streams listed in the write array will be watched to see if a write will not block.

The streams listed in the except array will be watched for high priority exceptional
("out-of-band") data arriving.

Note

When stream_select() returns, the arrays read, write and except are modified to
indicate which stream resource(s) actually changed status.

The tv_sec and tv_usec together form the timeout parameter, tv_sec specifies the
number of seconds while tv_usec the number of microseconds. The timeout is an upper
bound on the amount of time that stream_select() will wait before it returns. If tv_sec and
tv_usec are both set to 0, stream_select() will not wait for data - instead it will return
immediately, indicating the current status of the streams. If tv_sec is NULL
stream_select() can block indefinitely, returning only when an event on one of the watched
streams occurs (or if a signal interrupts the system call).

On success stream_select() returns the number of stream resources contained in the
modified arrays, which may be zero if the timeout expires before anything interesting
happens. On error FALSE is returned and a warning raised (this can happen if the system
call is interrupted by an incoming signal).

Warning

Using a timeout value of 0 allows you to instantaneously poll the status of the streams,
however, it is NOT a good idea to use a 0 timeout value in a loop as it will cause your
script to consume too much CPU time.

It is much better to specify a timeout value of a few seconds, although if you need to
be checking and running other code concurrently, using a timeout value of at least
200000 microseconds will help reduce the CPU usage of your script.

Remember that the timeout value is the maximum time that will elapse;
stream_select() will return as soon as the requested streams are ready for use.

You do not need to pass every array to stream_select(). You can leave it out and use an
empty array or NULL instead. Also do not forget that those arrays are passed by reference
and will be modified after stream_select() returns.

This example checks to see if data has arrived for reading on either $stream1 or $stream2
. Since the timeout value is 0 it will return immediately:
<?php

/* Prepare the read array */

$read = array($stream1, $stream2);

$write = NULL;

$except = NULL;

if (false === ($num_changed_streams = stream_select($read, $write, $except, 0)))
{

 /* Error handling */

} elseif ($num_changed_streams > 0) {

 /* At least on one of the streams something interesting happened */

}

?>

Note

Due to a limitation in the current Zend Engine it is not possible to pass a constant
modifier like NULL directly as a parameter to a function which expects this parameter
to be passed by reference. Instead use a temporary variable or an expression with the
leftmost member being a temporary variable:
<?php

$e = NULL;

stream_select($r, $w, $e, 0);

?>

Note

Be sure to use the === operator when checking for an error. Since the stream_select()
may return 0 the comparison with == would evaluate to TRUE:
<?php

$e = NULL;

if (false === stream_select($r, $w, $e, 0)) {

 echo "stream_select() failed\n";

}

?>

Note

If you read/write to a stream returned in the arrays be aware that they do not
necessarily read/write the full amount of data you have requested. Be prepared to
even only be able to read/write a single byte.

Note

Windows compatibility: stream_select() used on a pipe returned from proc_open() may
cause data loss under Windows 98.

Use of stream_select() on file descriptors returned by proc_open() will fail and return
FALSE under Windows.

See also stream_set_blocking().

stream_set_blocking

stream_set_blocking -- Set blocking/non-blocking mode on a stream

Description

bool stream_set_blocking (resource $stream, int $mode)

If mode is 0, the given stream will be switched to non-blocking mode, and if 1, it will be
switched to blocking mode. This affects calls like fgets() and fread() that read from the
stream. In non-blocking mode an fgets() call will always return right away while in blocking
mode it will wait for data to become available on the stream.

Returns TRUE on success or FALSE on failure.

This function was previously called as set_socket_blocking() and later
socket_set_blocking() but this usage is deprecated.

Note

Prior to PHP 4.3, this function only worked on socket based streams. Since PHP 4.3,
this function works for any stream that supports non-blocking mode (currently, regular
files and socket streams).

See also stream_select().

stream_set_timeout

stream_set_timeout -- Set timeout period on a stream

Description

bool stream_set_timeout (resource $stream, int $seconds [, int $microseconds])

Sets the timeout value on stream, expressed in the sum of seconds and microseconds.
Returns TRUE on success or FALSE on failure.

When the stream times out, the 'timed_out' key of the array returned by
stream_get_meta_data() is set to TRUE, although no error/warning is generated.

Example #18 - stream_set_timeout() example

<?php

$fp = fsockopen("www.example.com", 80);

if (!$fp) {

 echo "Unable to open\n";

} else {

 fwrite($fp, "GET / HTTP/1.0\r\n\r\n");

 stream_set_timeout($fp, 2);

 $res = fread($fp, 2000);

 $info = stream_get_meta_data($fp);

 fclose($fp);

 if ($info['timed_out']) {

 echo 'Connection timed out!';

 } else {

 echo $res;

 }

}

?>

Note

As of PHP 4.3, this function can (potentially) work on any kind of stream. In PHP 4.3,
socket based streams are still the only kind supported in the PHP core, although
streams from other extensions may support this function.

Note

This function doesn't work with advanced operations like stream_socket_recvfrom(),
use stream_select() with timeout parameter instead.

This function was previously called as set_socket_timeout() and later
socket_set_timeout() but this usage is deprecated.

See also fsockopen() and fopen().

stream_set_write_buffer

stream_set_write_buffer -- Sets file buffering on the given stream

Description

int stream_set_write_buffer (resource $stream, int $buffer)

Output using fwrite() is normally buffered at 8K. This means that if there are two processes
wanting to write to the same output stream (a file), each is paused after 8K of data to allow
the other to write. stream_set_write_buffer() sets the buffering for write operations on the
given filepointer stream to buffer bytes. If buffer is 0 then write operations are
unbuffered. This ensures that all writes with fwrite() are completed before other processes
are allowed to write to that output stream.

The function returns 0 on success, or EOF if the request cannot be honored.

The following example demonstrates how to use stream_set_write_buffer() to create an
unbuffered stream.

Example #19 - stream_set_write_buffer() example

<?php

$fp = fopen($file, "w");

if ($fp) {

 stream_set_write_buffer($fp, 0);

 fwrite($fp, $output);

 fclose($fp);

}

?>

See also fopen() and fwrite().

stream_socket_accept

stream_socket_accept -- Accept a connection on a socket created by
stream_socket_server()

Description

resource stream_socket_accept (resource $server_socket [, float $timeout [, string &$
peername]])

Accept a connection on a socket previously created by stream_socket_server(). If timeout
is specified, the default socket accept timeout will be overridden with the time specified in
seconds. The name (address) of the client which connected will be passed back in
peername if included and available from the selected transport.

peername can also be determined later using stream_socket_get_name().

If the call fails, it will return FALSE.

Warning

This function should not be used with UDP server sockets. Instead, use
stream_socket_recvfrom() and stream_socket_sendto().

See also stream_socket_server(), stream_socket_get_name(), stream_set_blocking(),
stream_set_timeout(), fgets(), fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_client

stream_socket_client -- Open Internet or Unix domain socket connection

Description

resource stream_socket_client (string $remote_socket [, int &$errno [, string &$errstr
[, float $timeout [, int $flags [, resource $context]]]]])

Initiates a stream or datagram connection to the destination specified by remote_socket.
The type of socket created is determined by the transport specified using standard URL
formatting: transport://target. For Internet Domain sockets (AF_INET) such as TCP and
UDP, the target portion of the remote_socket parameter should consist of a hostname or
IP address followed by a colon and a port number. For Unix domain sockets, the target
portion should point to the socket file on the filesystem. The optional timeout can be used
to set a timeout in seconds for the connect system call. flags is a bitmask field which may
be set to any combination of connection flags. Currently the selection of connection flags is
limited to STREAM_CLIENT_CONNECT (default),
STREAM_CLIENT_ASYNC_CONNECT and STREAM_CLIENT_PERSISTENT.

Note

If you need to set a timeout for reading/writing data over the socket, use
stream_set_timeout(), as the timeout parameter to stream_socket_client() only
applies while connecting the socket.

Note

The timeout parameter only applies if you are not making an asynchronous connection
attempt.

stream_socket_client() returns a stream resource which may be used together with the
other file functions (such as fgets(), fgetss(), fwrite(), fclose(), and feof()).

If the call fails, it will return FALSE and if the optional errno and errstr arguments are
present they will be set to indicate the actual system level error that occurred in the
system-level connect() call. If the value returned in errno is 0 and the function returned
FALSE, it is an indication that the error occurred before the connect() call. This is most
likely due to a problem initializing the socket. Note that the errno and errstr arguments
will always be passed by reference.

Depending on the environment, the Unix domain or the optional connect timeout may not
be available. A list of available transports can be retrieved using stream_get_transports().
See List of Supported Socket Transports for a list of built in transports.

The stream will by default be opened in blocking mode. You can switch it to non-blocking
mode by using stream_set_blocking().

Example #20 - stream_socket_client() Example

<?php

$fp = stream_socket_client("tcp://www.example.com:80", $errno, $errstr, 30);

if (!$fp) {

 echo "$errstr ($errno)
\n";

} else {

 fwrite($fp, "GET / HTTP/1.0\r\nHost: www.example.com\r\nAccept:
/\r\n\r\n");

 while (!feof($fp)) {

 echo fgets($fp, 1024);

 }

 fclose($fp);

}

?>

The example below shows how to retrieve the day and time from the UDP service
"daytime" (port 13) in your own machine.

Example #21 - Using UDP connection

<?php

$fp = stream_socket_client("udp://127.0.0.1:13", $errno, $errstr);

if (!$fp) {

 echo "ERROR: $errno - $errstr
\n";

} else {

 fwrite($fp, "\n");

 echo fread($fp, 26);

 fclose($fp);

}

?>

Warning

UDP sockets will sometimes appear to have opened without an error, even if the
remote host is unreachable. The error will only become apparent when you read or
write data to/from the socket. The reason for this is because UDP is a "connectionless"
protocol, which means that the operating system does not try to establish a link for the
socket until it actually needs to send or receive data.

Note

When specifying a numerical IPv6 address (e.g. fe80::1), you must enclose the IP in
square brackets?for example, tcp://[fe80::1]:80.

See also stream_socket_server(), stream_set_blocking(), stream_set_timeout(),

stream_select(), fgets(), fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_enable_crypto

stream_socket_enable_crypto -- Turns encryption on/off on an already connected socket

Description

mixed stream_socket_enable_crypto (resource $stream, bool $enable [, int $
crypto_type [, resource $session_stream]])

When called with the crypto_type parameter, stream_socket_enable_crypto() will setup
encryption on the stream using the specified method.

Valid values for crypto_type

• STREAM_CRYPTO_METHOD_SSLv2_CLIENT

• STREAM_CRYPTO_METHOD_SSLv3_CLIENT

• STREAM_CRYPTO_METHOD_SSLv23_CLIENT

• STREAM_CRYPTO_METHOD_TLS_CLIENT

• STREAM_CRYPTO_METHOD_SSLv2_SERVER

• STREAM_CRYPTO_METHOD_SSLv3_SERVER

• STREAM_CRYPTO_METHOD_SSLv23_SERVER

• STREAM_CRYPTO_METHOD_TLS_SERVER

Once the crypto settings are established, cryptography can be turned on and off
dynamically by passing TRUE or FALSE in the enable parameter.

If this stream should be seeded with settings from an already established crypto enabled
stream, pass that stream's resource variable in the fourth parameter.

Returns TRUE on success, FALSE if negotiation has failed or 0 if there isn't enough data
and you should try again (only for non-blocking sockets).

Example #22 - stream_socket_enable_crypto() Example

<?php

$fp = stream_socket_client("tcp://myproto.example.com:31337", $errno,
$errstr, 30);

if (!$fp) {

 die("Unable to connect: $errstr ($errno)");

}

/* Turn on encryption for login phase */

stream_socket_enable_crypto($fp, true, STREAM_CRYPTO_METHOD_SSLv23_CLIENT);

fwrite($fp, "USER god\r\n");

fwrite($fp, "PASS secret\r\n");

/* Turn off encryption for the rest */

stream_socket_enable_crypto($fp, false);

while ($motd = fgets($fp)) {

 echo $motd;

}

fclose($fp);

?>

OpenSSL Functions, and List of Supported Socket Transports

stream_socket_get_name

stream_socket_get_name -- Retrieve the name of the local or remote sockets

Description

string stream_socket_get_name (resource $handle, bool $want_peer)

Returns the local or remote name of a given socket connection. If want_peer is set to
TRUE the remote socket name will be returned, if it is set to FALSE the local socket name
will be returned.

See also stream_socket_accept().

stream_socket_pair

stream_socket_pair -- Creates a pair of connected, indistinguishable socket streams

Description

array stream_socket_pair (int $domain, int $type, int $protocol)

stream_socket_pair() creates a pair of connected, indistinguishable socket streams. This
function is commonly used in IPC (Inter-Process Communication).

Parameters

domain

The protocol family to be used: STREAM_PF_INET, STREAM_PF_INET6 or
STREAM_PF_UNIX

type

The type of communication to be used: STREAM_SOCK_DGRAM,
STREAM_SOCK_RAW, STREAM_SOCK_RDM, STREAM_SOCK_SEQPACKET or
STREAM_SOCK_STREAM

protocol

The protocol to be used: STREAM_IPPROTO_ICMP, STREAM_IPPROTO_IP,
STREAM_IPPROTO_RAW, STREAM_IPPROTO_TCP or STREAM_IPPROTO_UDP

Note

Please consult the Streams constant list for further details on each constant.

Return Values

Returns an array with the two socket resources on success, or FALSE on failure.

Examples

Example #23 - A stream_socket_pair() example

This example shows the basic usage of stream_socket_pair() in Inter-Process
Comunication.

<?php

$sockets = stream_socket_pair(STREAM_PF_UNIX, STREAM_SOCK_STREAM,
STREAM_IPPROTO_IP);

$pid = pcntl_fork();

if ($pid == -1) {

 die('could not fork');

} else if ($pid) {

 /* parent */

 fclose($sockets[0]);

 fwrite($sockets[1], "child PID: $pid\n");

 echo fgets($sockets[1]);

 fclose($sockets[1]);

} else {

 /* child */

 fclose($sockets[1]);

 fwrite($sockets[0], "message from child\n");

 echo fgets($sockets[0]);

 fclose($sockets[0]);

}

?>

The above example will output something similar to:

child PID: 1378

message from child

Notes

Note

This function is not implemented on Windows platforms.

stream_socket_recvfrom

stream_socket_recvfrom -- Receives data from a socket, connected or not

Description

string stream_socket_recvfrom (resource $socket, int $length [, int $flags [, string &$
address]])

The function stream_socket_recvfrom() accepts data from a remote socket up to length
bytes. If address is provided it will be populated with the address of the remote socket.

The value of flags can be any combination of the following:

possible values for flags

STREAM_OOB Process OOB (out-of-band) data.

STREAM_PEEK Retrieve data from the socket, but do not
consume the buffer. Subsequent calls to
fread() or stream_socket_recvfrom() will see
the same data.

Example #24 - stream_socket_recvfrom() Example

<?php

/* Open a server socket to port 1234 on localhost */

$server = stream_socket_server('tcp://127.0.0.1:1234');

/* Accept a connection */

$socket = stream_socket_accept($server);

/* Grab a packet (1500 is a typical MTU size) of OOB data */

echo "Received Out-Of-Band: '" . stream_socket_recvfrom($socket, 1500,
STREAM_OOB) . "'\n";

/* Take a peek at the normal in-band data, but don't comsume it. */

echo "Data: '" . stream_socket_recvfrom($socket, 1500, STREAM_PEEK) . "'\n";

/* Get the exact same packet again, but remove it from the buffer this time.
*/

echo "Data: '" . stream_socket_recvfrom($socket, 1500) . "'\n";

/* Close it up */

fclose($socket);

fclose($server);

?>

Note

If a message received is longer than the length parameter, excess bytes may be
discarded depending on the type of socket the message is received from (such as
UDP).

Note

Calls to stream_socket_recvfrom() on socket-based streams, after calls to
buffer-based stream functions (like fread() or stream_get_line()) read data directly
from the socket and bypass the stream buffer.

See also stream_socket_sendto(), stream_socket_client(), and stream_socket_server().

stream_socket_sendto

stream_socket_sendto -- Sends a message to a socket, whether it is connected or not

Description

int stream_socket_sendto (resource $socket, string $data [, int $flags [, string $
address]])

The function stream_socket_sendto() sends the data specified by data through the socket
specified by socket. The address specified when the socket stream was created will be
used unless an alternate address is specified in address.

The value of flags can be any combination of the following:

possible values for flags

STREAM_OOB Process OOB (out-of-band) data.

Example #25 - stream_socket_sendto() Example

<?php

/* Open a socket to port 1234 on localhost */

$socket = stream_socket_client('tcp://127.0.0.1:1234');

/* Send ordinary data via ordinary channels. */

fwrite($socket, "Normal data transmit.");

/* Send more data out of band. */

stream_socket_sendto($socket, "Out of Band data.", STREAM_OOB);

/* Close it up */

fclose($socket);

?>

See also stream_socket_recvfrom(), stream_socket_client(), and stream_socket_server().

stream_socket_server

stream_socket_server -- Create an Internet or Unix domain server socket

Description

resource stream_socket_server (string $local_socket [, int &$errno [, string &$errstr [,
int $flags [, resource $context]]]])

Creates a stream or datagram socket on the specified local_socket. The type of socket
created is determined by the transport specified using standard URL formatting:
transport://target. For Internet Domain sockets (AF_INET) such as TCP and UDP, the
target portion of the remote_socket parameter should consist of a hostname or IP address
followed by a colon and a port number. For Unix domain sockets, the target portion
should point to the socket file on the filesystem. flags is a bitmask field which may be set
to any combination of socket creation flags. The default value of flags is
STREAM_SERVER_BIND | STREAM_SERVER_LISTEN.

Note

For UDP sockets, you must use STREAM_SERVER_BIND as the flags parameter.

This function only creates a socket, to begin accepting connections use
stream_socket_accept().

If the call fails, it will return FALSE and if the optional errno and errstr arguments are
present they will be set to indicate the actual system level error that occurred in the
system-level socket(), bind(), and listen() calls. If the value returned in errno is 0 and the
function returned FALSE, it is an indication that the error occurred before the bind() call.
This is most likely due to a problem initializing the socket. Note that the errno and errstr
arguments will always be passed by reference.

Depending on the environment, Unix domain sockets may not be available. A list of
available transports can be retrieved using stream_get_transports(). See List of Supported
Socket Transports for a list of bulitin transports.

Example #26 - Using TCP server sockets

<?php

$socket = stream_socket_server("tcp://0.0.0.0:8000", $errno, $errstr);

if (!$socket) {

 echo "$errstr ($errno)
\n";

} else {

 while ($conn = stream_socket_accept($socket)) {

 fwrite($conn, 'The local time is ' . date('n/j/Y g:i a') . "\n");

 fclose($conn);

 }

 fclose($socket);

}

?>

The example below shows how to act as a time server which can respond to time queries
as shown in an example on stream_socket_client().

Note

Most systems require root access to create a server socket on a port below 1024.

Example #27 - Using UDP server sockets

<?php

$socket = stream_socket_server("udp://127.0.0.1:1113", $errno, $errstr,
STREAM_SERVER_BIND);

if (!$socket) {

 die("$errstr ($errno)");

}

do {

 $pkt = stream_socket_recvfrom($socket, 1, 0, $peer);

 echo "$peer\n";

 stream_socket_sendto($socket, date("D M j H:i:s Y\r\n"), 0, $peer);

} while ($pkt !== false);

?>

Note

When specifying a numerical IPv6 address (e.g. fe80::1), you must enclose the IP in
square brackets?for example, tcp://[fe80::1]:80.

See also stream_socket_client(), stream_set_blocking(), stream_set_timeout(), fgets(),
fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_shutdown

stream_socket_shutdown -- Shutdown a full-duplex connection

Description

bool stream_socket_shutdown (resource $stream, int $how)

Shutdowns (partially or not) a full-duplex connection.

Parameters

stream

An open stream (opened with stream_socket_client(), for example)

how

One of the following constants: STREAM_SHUT_RD (disable further receptions),
STREAM_SHUT_WR (disable further transmissions) or STREAM_SHUT_RDWR
(disable further receptions and transmissions).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #28 - A stream_socket_shutdown() example

<?php

$server = stream_socket_server('tcp://127.0.0.1:1337');

$client = stream_socket_client('tcp://127.0.0.1:1337');

var_dump(fputs($client, "hello"));

stream_socket_shutdown($client, STREAM_SHUT_WR);

var_dump(fputs($client, "hello")); // doesn't work now

?>

The above example will output something similar to:

int(5)

Notice: fputs(): send of 5 bytes failed with errno=32 Broken pipe in
test.php on line 9

int(0)

See Also

• fclose()

stream_wrapper_register

stream_wrapper_register -- Register a URL wrapper implemented as a PHP class

Description

bool stream_wrapper_register (string $protocol, string $classname)

stream_wrapper_register() allows you to implement your own protocol handlers and
streams for use with all the other filesystem functions (such as fopen(), fread() etc.).

To implement a wrapper, you need to define a class with a number of member functions,
as defined below. When someone fopens your stream, PHP will create an instance of
classname and then call methods on that instance. You must implement the methods
exactly as described below - doing otherwise will lead to undefined behaviour.

Note

As of PHP 5.0.0 the instance of classname will be populated with a context property
referencing a Context Resource which may be accessed with
stream_context_get_options(). If no context was passed to the stream creation
function, context will be set to NULL.

stream_wrapper_register() will return FALSE if the protocol already has a handler.

bool stream_open (string $path, string $mode, int $options, string $opened_path)

This method is called immediately after your stream object is created. path specifies the
URL that was passed to fopen() and that this object is expected to retrieve. You can use
parse_url() to break it apart.

mode is the mode used to open the file, as detailed for fopen(). You are responsible for
checking that mode is valid for the path requested.

options holds additional flags set by the streams API. It can hold one or more of the
following values OR'd together.

Flag Description

STREAM_USE_PATH If path is relative, search for the resource
using the include_path.

STREAM_REPORT_ERRORS If this flag is set, you are responsible for
raising errors using trigger_error() during
opening of the stream. If this flag is not set,
you should not raise any errors.

If the path is opened successfully, and STREAM_USE_PATH is set in options, you
should set opened_path to the full path of the file/resource that was actually opened.

If the requested resource was opened successfully, you should return TRUE, otherwise
you should return FALSE

void stream_close (void)

This method is called when the stream is closed, using fclose(). You must release any
resources that were locked or allocated by the stream.

string stream_read (int $count)

This method is called in response to fread() and fgets() calls on the stream. You must
return up-to count bytes of data from the current read/write position as a string. If there
are less than count bytes available, return as many as are available. If no more data is
available, return either FALSE or an empty string. You must also update the read/write
position of the stream by the number of bytes that were successfully read.

int stream_write (string $data)

This method is called in response to fwrite() calls on the stream. You should store data
into the underlying storage used by your stream. If there is not enough room, try to store
as many bytes as possible. You should return the number of bytes that were successfully
stored in the stream, or 0 if none could be stored. You must also update the read/write
position of the stream by the number of bytes that were successfully written.

bool stream_eof (void)

This method is called in response to feof() calls on the stream. You should return TRUE if
the read/write position is at the end of the stream and if no more data is available to be
read, or FALSE otherwise.

int stream_tell (void)

This method is called in response to ftell() calls on the stream. You should return the
current read/write position of the stream.

bool stream_seek (int $offset, int $whence)

This method is called in response to fseek() calls on the stream. You should update the
read/write position of the stream according to offset and whence. See fseek() for more
information about these parameters. Return TRUE if the position was updated, FALSE
otherwise.

bool stream_flush (void)

This method is called in response to fflush() calls on the stream. If you have cached data
in your stream but not yet stored it into the underlying storage, you should do so now.
Return TRUE if the cached data was successfully stored (or if there was no data to store),
or FALSE if the data could not be stored.

array stream_stat (void)

This method is called in response to fstat() calls on the stream and should return an array
containing the same values as appropriate for the stream.

bool unlink (string $path)

This method is called in response to unlink() calls on URL paths associated with the
wrapper and should attempt to delete the item specified by path. It should return TRUE on
success or FALSE on failure. In order for the appropriate error message to be returned, do
not define this method if your wrapper does not support unlinking.

Note

Userspace wrapper unlink method is not supported prior to PHP 5.0.0.

bool rename (string $path_from, string $path_to)

This method is called in response to rename() calls on URL paths associated with the
wrapper and should attempt to rename the item specified by path_from to the specification
given by path_to. It should return TRUE on success or FALSE on failure. In order for the
appropriate error message to be returned, do not define this method if your wrapper does
not support renaming.

Note

Userspace wrapper rename method is not supported prior to PHP 5.0.0.

bool mkdir (string $path, int $mode, int $options)

This method is called in response to mkdir() calls on URL paths associated with the
wrapper and should attempt to create the directory specified by path. It should return
TRUE on success or FALSE on failure. In order for the appropriate error message to be
returned, do not define this method if your wrapper does not support creating directories.
Posible values for options include STREAM_REPORT_ERRORS and
STREAM_MKDIR_RECURSIVE.

Note

Userspace wrapper mkdir method is not supported prior to PHP 5.0.0.

bool rmdir (string $path, int $options)

This method is called in response to rmdir() calls on URL paths associated with the
wrapper and should attempt to remove the directory specified by path. It should return
TRUE on success or FALSE on failure. In order for the appropriate error message to be

returned, do not define this method if your wrapper does not support removing directories.
Possible values for options include STREAM_REPORT_ERRORS.

Note

Userspace wrapper rmdir method is not supported prior to PHP 5.0.0.

bool dir_opendir (string $path, int $options)

This method is called immediately when your stream object is created for examining
directory contents with opendir(). path specifies the URL that was passed to opendir() and
that this object is expected to explore. You can use parse_url() to break it apart.

array url_stat (string $path, int $flags)

This method is called in response to stat() calls on the URL paths associated with the
wrapper and should return as many elements in common with the system function as
possible. Unknown or unavailable values should be set to a rational value (usually 0).

flags holds additional flags set by the streams API. It can hold one or more of the
following values OR'd together.

Flag Description

STREAM_URL_STAT_LINK For resources with the ability to link to other
resource (such as an HTTP Location:
forward, or a filesystem symlink). This flag
specified that only information about the link
itself should be returned, not the resource
pointed to by the link. This flag is set in
response to calls to lstat(), is_link(), or
filetype().

STREAM_URL_STAT_QUIET If this flag is set, your wrapper should not
raise any errors. If this flag is not set, you
are responsible for reporting errors using the
trigger_error() function during stating of the
path.

string dir_readdir (void)

This method is called in response to readdir() and should return a string representing the
next filename in the location opened by dir_opendir().

bool dir_rewinddir (void)

This method is called in response to rewinddir() and should reset the output generated by
dir_readdir(). i.e.: The next call to dir_readdir() should return the first entry in the location

returned by dir_opendir().

bool dir_closedir (void)

This method is called in response to closedir(). You should release any resources which
were locked or allocated during the opening and use of the directory stream.

The example below implements a var:// protocol handler that allows read/write access to a
named global variable using standard filesystem stream functions such as fread(). The
var:// protocol implemented below, given the URL "var://foo" will read/write data to/from
$GLOBALS["foo"].

Example #29 - A Stream for reading/writing global variables

<?php

class VariableStream {

 var $position;

 var $varname;

 function stream_open($path, $mode, $options, &$opened_path)

 {

 $url = parse_url($path);

 $this->varname = $url["host"];

 $this->position = 0;

 return true;

 }

 function stream_read($count)

 {

 $ret = substr($GLOBALS[$this->varname], $this->position, $count);

 $this->position += strlen($ret);

 return $ret;

 }

 function stream_write($data)

 {

 $left = substr($GLOBALS[$this->varname], 0, $this->position);

 $right = substr($GLOBALS[$this->varname], $this->position +
strlen($data));

 $GLOBALS[$this->varname] = $left . $data . $right;

 $this->position += strlen($data);

 return strlen($data);

 }

 function stream_tell()

 {

 return $this->position;

 }

 function stream_eof()

 {

 return $this->position >= strlen($GLOBALS[$this->varname]);

 }

 function stream_seek($offset, $whence)

 {

 switch ($whence) {

 case SEEK_SET:

 if ($offset < strlen($GLOBALS[$this->varname]) && $offset >=
0) {

 $this->position = $offset;

 return true;

 } else {

 return false;

 }

 break;

 case SEEK_CUR:

 if ($offset >= 0) {

 $this->position += $offset;

 return true;

 } else {

 return false;

 }

 break;

 case SEEK_END:

 if (strlen($GLOBALS[$this->varname]) + $offset >= 0) {

 $this->position = strlen($GLOBALS[$this->varname]) +
$offset;

 return true;

 } else {

 return false;

 }

 break;

 default:

 return false;

 }

 }

}

stream_wrapper_register("var", "VariableStream")

 or die("Failed to register protocol");

$myvar = "";

$fp = fopen("var://myvar", "r+");

fwrite($fp, "line1\n");

fwrite($fp, "line2\n");

fwrite($fp, "line3\n");

rewind($fp);

while (!feof($fp)) {

 echo fgets($fp);

}

fclose($fp);

var_dump($myvar);

?>

stream_wrapper_restore

stream_wrapper_restore -- Restores a previously unregistered built-in wrapper

Description

bool stream_wrapper_restore (string $protocol)

Restores a built-in wrapper previously unregistered with stream_wrapper_unregister().

Parameters

protocol

Return Values

Returns TRUE on success or FALSE on failure.

stream_wrapper_unregister

stream_wrapper_unregister -- Unregister a URL wrapper

Description

bool stream_wrapper_unregister (string $protocol)

Allows you to disable an already defined stream wrapper. Once the wrapper has been
disabled you may override it with a user-defined wrapper using stream_wrapper_register()
or reenable it later on with stream_wrapper_restore().

Parameters

protocol

Return Values

Returns TRUE on success or FALSE on failure.

	Streams
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Stream Classes

	Predefined Constants
	Stream Filters
	Stream Contexts
	Stream Errors
	Examples
	Stream Functions
	stream_bucket_append
	stream_bucket_make_writeable
	stream_bucket_new
	stream_bucket_prepend
	stream_context_create
	stream_context_get_default
	stream_context_get_options
	stream_context_set_option
	stream_context_set_params
	stream_copy_to_stream
	stream_encoding
	stream_filter_append
	stream_filter_prepend
	stream_filter_register
	stream_filter_remove
	stream_get_contents
	stream_get_filters
	stream_get_line
	stream_get_meta_data
	stream_get_transports
	stream_get_wrappers
	stream_notification_callback
	stream_register_wrapper
	stream_resolve_include_path
	stream_select
	stream_set_blocking
	stream_set_timeout
	stream_set_write_buffer
	stream_socket_accept
	stream_socket_client
	stream_socket_enable_crypto
	stream_socket_get_name
	stream_socket_pair
	stream_socket_recvfrom
	stream_socket_sendto
	stream_socket_server
	stream_socket_shutdown
	stream_wrapper_register
	stream_wrapper_restore
	stream_wrapper_unregister

