
Filesystem

Introduction

No external libraries are needed to build this extension, but if you want PHP to support
LFS (large files) on Linux, then you need to have a recent glibc and you need compile
PHP with the following compiler flags: -D_LARGEFILE_SOURCE
-D_FILE_OFFSET_BITS=64.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Filesystem and Streams Configuration Options

Name Default Changeable Changelog

allow_url_fopen "1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.3.4.
PHP_INI_SYSTEM in
PHP < 6. Available
since PHP 4.0.4.

allow_url_include "0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 5. Available
since PHP 5.2.0.

user_agent NULL PHP_INI_ALL Available since PHP
4.3.0.

default_socket_timeo
ut

"60" PHP_INI_ALL Available since PHP
4.3.0.

from "" PHP_INI_ALL

auto_detect_line_end
ings

"0" PHP_INI_ALL Available since PHP
4.3.0.

Here's a short explanation of the configuration directives.

allow_url_fopen boolean
This option enables the URL-aware fopen wrappers that enable accessing URL object
like files. Default wrappers are provided for the access of remote files using the ftp or
http protocol, some extensions like zlib may register additional wrappers.

Note

This setting can only be set in php.ini due to security reasons.

Note

This option was introduced immediately after the release of version 4.0.3. For
versions up to and including 4.0.3 you can only disable this feature at compile time
by using the configuration switch --disable-url-fopen-wrapper.

Warning

On Windows versions prior to PHP 4.3.0, the following functions do not support
remote file accessing: include(), include_once(), require(), require_once() and
the imagecreatefromXXX functions in the GD Functions extension.

allow_url_include boolean
This option allows the use of URL-aware fopen wrappers with the following functions:
include(), include_once(), require(), require_once().

Note

This setting requires allow_url_fopen to be on.

user_agent string
Define the user agent for PHP to send.

default_socket_timeout integer
Default timeout (in seconds) for socket based streams.

Note

This configuration option was introduced in PHP 4.3.0

from string
Define the anonymous ftp password (your email address).

auto_detect_line_endings boolean
When turned on, PHP will examine the data read by fgets() and file() to see if it is using
Unix, MS-Dos or Macintosh line-ending conventions. This enables PHP to interoperate
with Macintosh systems, but defaults to Off, as there is a very small performance
penalty when detecting the EOL conventions for the first line, and also because people
using carriage-returns as item separators under Unix systems would experience
non-backwards-compatible behaviour.

Note

This configuration option was introduced in PHP 4.3.0

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

GLOB_BRACE (integer)

GLOB_ONLYDIR (integer)

GLOB_MARK (integer)

GLOB_NOSORT (integer)

GLOB_NOCHECK (integer)

GLOB_NOESCAPE (integer)

PATHINFO_DIRNAME (integer)

PATHINFO_BASENAME (integer)

PATHINFO_EXTENSION (integer)

PATHINFO_FILENAME (integer)
Since PHP 5.2.0.

FILE_USE_INCLUDE_PATH (integer)
Search for filename in include_path (since PHP 5).

FILE_APPEND (integer)
Append content to existing file.

FILE_IGNORE_NEW_LINES (integer)
Strip EOL characters (since PHP 5).

FILE_SKIP_EMPTY_LINES (integer)
Skip empty lines (since PHP 5).

FILE_BINARY (integer)
Binary mode (since PHP 6).

FILE_TEXT (integer)
Text mode (since PHP 6).

Filesystem Functions

See Also

For related functions, see also the Directory and Program Execution sections.

For a list and explanation of the various URL wrappers that can be used as remote files,
see also List of Supported Protocols/Wrappers.

basename

basename -- Returns filename component of path

Description

string basename (string $path [, string $suffix])

Given a string containing a path to a file, this function will return the base name of the file.

Parameters

path

A path. On Windows, both slash (/) and backslash (\) are used as directory
separator character. In other environments, it is the forward slash (/).

suffix

If the filename ends in suffix this will also be cut off.

Return Values

Returns the base name of the given path.

ChangeLog

Version Description

4.1.0 The suffix parameter was added

Examples

Example #1 - basename() example

<?php

$path = "/home/httpd/html/index.php";

$file = basename($path); // $file is set to "index.php"

$file = basename($path, ".php"); // $file is set to "index"

?>

See Also

• dirname()
• pathinfo()

chgrp

chgrp -- Changes file group

Description

bool chgrp (string $filename, mixed $group)

Attempts to change the group of the file filename to group.

Only the superuser may change the group of a file arbitrarily; other users may change the
group of a file to any group of which that user is a member.

Parameters

filename

Path to the file.

group

A group name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

See Also

• chown()

• chmod()

chmod

chmod -- Changes file mode

Description

bool chmod (string $filename, int $mode)

Attempts to change the mode of the specified file to that given in mode.

Parameters

filename

Path to the file.

mode

Note that mode is not automatically assumed to be an octal value, so strings (such as
"g+w") will not work properly. To ensure the expected operation, you need to prefix
mode with a zero (0):

<?php

chmod("/somedir/somefile", 755); // decimal; probably incorrect

chmod("/somedir/somefile", "u+rwx,go+rx"); // string; incorrect

chmod("/somedir/somefile", 0755); // octal; correct value of mode

?>

The mode parameter consists of three octal number components specifying access
restrictions for the owner, the user group in which the owner is in, and to everybody
else in this order. One component can be computed by adding up the needed
permissions for that target user base. Number 1 means that you grant execute rights,
number 2 means that you make the file writeable, number 4 means that you make the
file readable. Add up these numbers to specify needed rights. You can also read more
about modes on Unix systems with 'man 1 chmod' and 'man 2 chmod'.

<?php

// Read and write for owner, nothing for everybody else

chmod("/somedir/somefile", 0600);

// Read and write for owner, read for everybody else

chmod("/somedir/somefile", 0644);

// Everything for owner, read and execute for others

chmod("/somedir/somefile", 0755);

// Everything for owner, read and execute for owner's group

chmod("/somedir/somefile", 0750);

?>

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The current user is the user under which PHP runs. It is probably not the same user
you use for normal shell or FTP access. The mode can be changed only by user who
owns the file on most systems.

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories you are about
to operate on have the same UID (owner) as the script that is being executed. In
addition, you cannot set the SUID, SGID and sticky bits.

See Also

• chown()
• chgrp()

chown

chown -- Changes file owner

Description

bool chown (string $filename, mixed $user)

Attempts to change the owner of the file filename to user user. Only the superuser may
change the owner of a file.

Parameters

filename

Path to the file.

user

A user name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

See Also

• chmod()

clearstatcache

clearstatcache -- Clears file status cache

Description

void clearstatcache (void)

When you use stat(), lstat(), or any of the other functions listed in the affected functions list
(below), PHP caches the information those functions return in order to provide faster
performance. However, in certain cases, you may want to clear the cached information.
For instance, if the same file is being checked multiple times within a single script, and that
file is in danger of being removed or changed during that script's operation, you may elect
to clear the status cache. In these cases, you can use the clearstatcache() function to
clear the information that PHP caches about a file.

You should also note that PHP doesn't cache information about non-existent files. So, if
you call file_exists() on a file that doesn't exist, it will return FALSE until you create the file.
If you create the file, it will return TRUE even if you then delete the file. However unlink()
clears the cache automatically.

Note

This function caches information about specific filenames, so you only need to call
clearstatcache() if you are performing multiple operations on the same filename and
require the information about that particular file to not be cached.

Affected functions include stat(), lstat(), file_exists(), is_writable(), is_readable(),
is_executable(), is_file(), is_dir(), is_link(), filectime(), fileatime(), filemtime(), fileinode(),
filegroup(), fileowner(), filesize(), filetype(), and fileperms().

Return Values

No value is returned.

copy

copy -- Copies file

Description

bool copy (string $source, string $dest [, resource $context])

Makes a copy of the file source to dest.

If you wish to move a file, use the rename() function.

Parameters

source

Path to the source file.

dest

The destination path. If dest is a URL, the copy operation may fail if the wrapper does
not support overwriting of existing files.

Warning

If the destination file already exists, it will be overwritten.

context

A valid context resource created with stream_context_create().

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.3.0 Added context support.

4.3.0 Both source and dest may now be URLs if
the "fopen wrappers" have been enabled.
See fopen() for more details.

Examples

Example #2 - copy() example

<?php

$file = 'example.txt';

$newfile = 'example.txt.bak';

if (!copy($file, $newfile)) {

 echo "failed to copy $file...\n";

}

?>

See Also

• move_uploaded_file()
• rename()
• The section of the manual about handling file uploads

delete

delete -- See unlink() or unset()

Description

void delete (void)

This is a dummy manual entry to satisfy those people who are looking for unlink() or
unset() in the wrong place.

Return Values

No value is returned.

See Also

• unlink() to delete files
• unset() to delete variables

dirname

dirname -- Returns directory name component of path

Description

string dirname (string $path)

Given a string containing a path to a file, this function will return the name of the directory.

Parameters

path

A path. On Windows, both slash (/) and backslash (\) are used as directory
separator character. In other environments, it is the forward slash (/).

Return Values

Returns the name of the directory. If there are no slashes in path, a dot ('. ') is returned,
indicating the current directory. Otherwise, the returned string is path with any trailing
/component removed.

ChangeLog

Version Description

5.0.0 dirname() is now binary safe

4.0.3 dirname() was fixed to be POSIX-compliant.

Examples

Example #3 - dirname() example

<?php

$path = "/etc/passwd";

$file = dirname($path); // $file is set to "/etc"

?>

Notes

Note

Since PHP 4.3.0, you will often get a slash or a dot back from dirname() in situations
where the older functionality would have given you the empty string.

Check the following change example:

<?php

//before PHP 4.3.0

dirname('c:/'); // returned '.'

//after PHP 4.3.0

dirname('c:/x'); // returns 'c:\'

dirname('c:/Temp/x'); // returns 'c:/Temp'

dirname('/x'); // returns '\'

?>

See Also

• basename()
• pathinfo()
• realpath()

disk_free_space

disk_free_space -- Returns available space in directory

Description

float disk_free_space (string $directory)

Given a string containing a directory, this function will return the number of bytes available
on the corresponding filesystem or disk partition.

Parameters

directory

A directory of the filesystem or disk partition.

Note

Given a file name instead of a directory, the behaviour of the function is
unspecified and may differ between operating systems and PHP versions.

Return Values

Returns the number of available bytes as a float.

Examples

Example #4 - disk_free_space() example

<?php

// $df contains the number of bytes available on "/"

$df = disk_free_space("/");

// On Windows:

disk_free_space("C:");

disk_free_space("D:");

?>

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

See Also

• disk_total_space()

disk_total_space

disk_total_space -- Returns the total size of a directory

Description

float disk_total_space (string $directory)

Given a string containing a directory, this function will return the total number of bytes on
the corresponding filesystem or disk partition.

Parameters

directory

A directory of the filesystem or disk partition.

Return Values

Returns the total number of bytes as a float.

Examples

Example #5 - disk_total_space() example

<?php

// $df contains the total number of bytes available on "/"

$df = disk_total_space("/");

// On Windows:

disk_total_space("C:");

disk_total_space("D:");

?>

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

See Also

• disk_free_space()

diskfreespace

diskfreespace -- Alias of disk_free_space()

Description

This function is an alias of: disk_free_space().

fclose

fclose -- Closes an open file pointer

Description

bool fclose (resource $handle)

The file pointed to by handle is closed.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #6 - A simple fclose() example

<?php

$handle = fopen('somefile.txt', 'r');

fclose($handle);

?>

See Also

• fopen()
• fsockopen()

feof

feof -- Tests for end-of-file on a file pointer

Description

bool feof (resource $handle)

Tests for end-of-file on a file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns TRUE if the file pointer is at EOF or an error occurs (including socket timeout);
otherwise returns FALSE.

Notes

Warning

If a connection opened by fsockopen() wasn't closed by the server, feof() will wait until
a timeout has been reached to return TRUE. The default timeout value is 60 seconds.
You may use stream_set_timeout() to change this value.

Warning

If passed file pointer is not valid you may get an infinite loop, because EOF fails to
return TRUE.

Example #7 - feof() example with an invalid file pointer

<?php

// if file can not be read or doesn't exist fopen function returns FALSE

$file = @fopen("no_such_file", "r");

// FALSE from fopen will issue warning and result in infinite loop here

while (!feof($file)) {

}

fclose($file);

?>

fflush

fflush -- Flushes the output to a file

Description

bool fflush (resource $handle)

This function forces a write of all buffered output to the resource pointed to by the file
handle.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns TRUE on success or FALSE on failure.

fgetc

fgetc -- Gets character from file pointer

Description

string fgetc (resource $handle)

Gets a character from the given file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns a string containing a single character read from the file pointed to by handle.
Returns FALSE on EOF.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #8 - A fgetc() example

<?php

$fp = fopen('somefile.txt', 'r');

if (!$fp) {

 echo 'Could not open file somefile.txt';

}

while (false !== ($char = fgetc($fp))) {

 echo "$char\n";

}

?>

Notes

Note

This function is binary-safe.

See Also

• fread()
• fopen()
• popen()
• fsockopen()
• fgets()

fgetcsv

fgetcsv -- Gets line from file pointer and parse for CSV fields

Description

array fgetcsv (resource $handle [, int $length [, string $delimiter [, string $enclosure [,
string $escape]]]])

Similar to fgets() except that fgetcsv() parses the line it reads for fields in CSV format and
returns an array containing the fields read.

Parameters

handle

A valid file pointer to a file successfully opened by fopen(), popen(), or fsockopen().

length

Must be greater than the longest line (in characters) to be found in the CSV file
(allowing for trailing line-end characters). It became optional in PHP 5. Omitting this
parameter (or setting it to 0 in PHP 5.0.4 and later) the maximum line length is not
limited, which is slightly slower.

delimiter

Set the field delimiter (one character only). Defaults as a comma.

enclosure

Set the field enclosure character (one character only). Defaults as a double quotation
mark.

escape

Set the escape character (one character only). Defaults as a backslash (\)

Return Values

Returns an indexed array containing the fields read.

Note

A blank line in a CSV file will be returned as an array comprising a single null field, and
will not be treated as an error.

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

fgetcsv() returns FALSE on error, including end of file.

ChangeLog

Version Description

5.3.0 The escape parameter was added

4.3.5 fgetcsv() is now binary safe

4.3.0 The enclosure parameter was added

Examples

Example #9 - Read and print the entire contents of a CSV file

<?php

$row = 1;

$handle = fopen("test.csv", "r");

while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {

 $num = count($data);

 echo "<p> $num fields in line $row:
</p>\n";

 $row++;

 for ($c=0; $c < $num; $c++) {

 echo $data[$c] . "
\n";

 }

}

fclose($handle);

?>

Notes

Note

Locale setting is taken into account by this function. If LANG is e.g. en_US.UTF-8, files
in one-byte encoding are read wrong by this function.

See Also

• str_getcsv()
• explode()
• file()
• pack()
• fputcsv()

fgets

fgets -- Gets line from file pointer

Description

string fgets (resource $handle [, int $length])

Gets a line from file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

length

Reading ends when length - 1 bytes have been read, on a newline (which is included
in the return value), or on EOF (whichever comes first). If no length is specified, it will
keep reading from the stream until it reaches the end of the line.

Note

Until PHP 4.3.0, omitting it would assume 1024 as the line length. If the majority of
the lines in the file are all larger than 8KB, it is more resource efficient for your
script to specify the maximum line length.

Return Values

Returns a string of up to length - 1 bytes read from the file pointed to by handle.

If an error occurs, returns FALSE.

ChangeLog

Version Description

4.3.0 fgets() is now binary safe

4.2.0 The length parameter became optional

Examples

Example #10 - Reading a file line by line

<?php

$handle = @fopen("/tmp/inputfile.txt", "r");

if ($handle) {

 while (!feof($handle)) {

 $buffer = fgets($handle, 4096);

 echo $buffer;

 }

 fclose($handle);

}

?>

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

Note

People used to the 'C' semantics of fgets() should note the difference in how EOF is
returned.

See Also

• fgetss()
• fread()
• fgetc()
• stream_get_line()
• fopen()
• popen()
• fsockopen()
• stream_set_timeout()

fgetss

fgetss -- Gets line from file pointer and strip HTML tags

Description

string fgetss (resource $handle [, int $length [, string $allowable_tags]])

Identical to fgets(), except that fgetss() attempts to strip any HTML and PHP tags from the
text it reads.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

length

Length of the data to be retrieved.

allowable_tags

You can use the optional third parameter to specify tags which should not be stripped.

Return Values

Returns a string of up to length - 1 bytes read from the file pointed to by handle, with all
HTML and PHP code striped.

If an error occurs, returns FALSE.

ChangeLog

Version Description

5.0.0 The length parameter is optional

3.0.13 and 4.0.0 The allowable_tags parameter was added,

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

See Also

• fgets()
• fopen()
• popen()
• fsockopen()
• strip_tags()

file_exists

file_exists -- Checks whether a file or directory exists

Description

bool file_exists (string $filename)

Checks whether a file or directory exists.

Parameters

filename

Path to the file or directory. On windows, use //computername/share/filename or
\\computername\share\filename to check files on network shares.

Return Values

Returns TRUE if the file or directory specified by filename exists; FALSE otherwise.

Note

This function will return FALSE for symlinks pointing to non-existing files.

Warning

This function returns FALSE for files inaccessible due to safe mode restrictions.
However these files still can be included if they are located in safe_mode_include_dir.

Note

The check is done using the real UID/GID instead of the effective one.

Examples

Example #11 - Testing whether a file exists

<?php

$filename = '/path/to/foo.txt';

if (file_exists($filename)) {

 echo "The file $filename exists";

} else {

 echo "The file $filename does not exist";

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• is_writable()
• is_file()
• file()

file_get_contents

file_get_contents -- Reads entire file into a string

Description

string file_get_contents (string $filename [, int $flags [, resource $context [, int $
offset [, int $maxlen]]]])

This function is similar to file(), except that file_get_contents() returns the file in a string,
starting at the specified offset up to maxlen bytes. On failure, file_get_contents() will
return FALSE.

file_get_contents() is the preferred way to read the contents of a file into a string. It will use
memory mapping techniques if supported by your OS to enhance performance.

Note

If you're opening a URI with special characters, such as spaces, you need to encode
the URI with urlencode().

Parameters

filename

Name of the file to read.

flags

Warning

For all versions prior to PHP 6, this parameter is called use_include_path and is a
bool. The flags parameter is only available since PHP 6. If you use an older
version and want to search for filename in the include path, this parameter must
be TRUE. Since PHP 6, you have to use the FILE_USE_INCLUDE_PATH flag
instead.

The value of flags can be any combination of the following flags (with some
restrictions), joined with the binary OR (|) operator.

Available flags

Flag Description

FILE_USE_INCLUDE_PATH Search for filename in the include directory.
See include_path for more information.

FILE_TEXT If unicode semantics are enabled, the
default encoding of the read data is UTF-8.
You can specify a different encoding by
creating a custom context or by changing
the default using
stream_default_encoding(). This flag
cannot be used with FILE_BINARY.

FILE_BINARY With this flag, the file is read in binary mode.
This is the default setting and cannot be
used with FILE_TEXT.

context

A valid context resource created with stream_context_create(). If you don't need to use a
custom context, you can skip this parameter by NULL.

offset

The offset where the reading starts.

maxlen

Maximum length of data read.

Return Values

The function returns the read data or FALSE on failure.

ChangeLog

Version Description

5.0.0 Added context support.

5.1.0 Added the offset and maxlen parameters.

6.0.0 The use_include_path parameter was
replaced by the flags parameter.

Notes

Note

This function is binary-safe.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

See Also

• file()
• fgets()
• fread()
• readfile()
• file_put_contents()
• stream_get_contents()
• stream_context_create()

file_put_contents

file_put_contents -- Write a string to a file

Description

int file_put_contents (string $filename, mixed $data [, int $flags [, resource $context]
])

This function is identical to calling fopen(), fwrite() and fclose() successively to write data to
a file.

If filename does not exist, the file is created. Otherwise, the existing file is overwritten,
unless the FILE_APPEND flags is set.

Parameters

filename

Path to the file where to write the data.

data

The data to write. Can be either a string, an array or a stream resource (explained
above). If data is a stream resource, the remaining buffer of that stream will be copied
to the specified file. This is similar with using stream_copy_to_stream(). You can also
specify the data parameter as a single dimension array. This is equivalent to
file_put_contents($filename, implode('', $array)).

flags

The value of flags can be any combination of the following flags (with some
restrictions), joined with the binary OR (|) operator.

Available flags

Flag Description

FILE_USE_INCLUDE_PATH Search for filename in the include directory.
See include_path for more information.

FILE_APPEND If file filename already exists, append the
data to the file instead of overwriting it.

LOCK_EX Acquire an exclusive lock on the file while
proceeding to the writing.

FILE_TEXT data is written in text mode. If unicode
semantics are enabled, the default encoding
is UTF-8. You can specify a different
encoding by creating a custom context or by

using the stream_default_encoding() to
change the default. This flag cannot be used
with FILE_BINARY. This flag is only
available since PHP 6.

FILE_BINARY data will be written in binary mode. This is
the default setting and cannot be used with
FILE_TEXT. This flag is only available since
PHP 6.

context

A valid context resource created with stream_context_create().

Return Values

The function returns the number of bytes that were written to the file, or FALSE on failure.

ChangeLog

Version Description

5.0.0 Added context support

5.1.0 Added support for LOCK_EX and the ability
to pass a stream resource to the data
parameter

6.0.0 Added support for the FILE_TEXT and
FILE_BINARY flags

Notes

Note

This function is binary-safe.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

See Also

• fopen()
• fwrite()
• file_get_contents()
• stream_context_create()

file

file -- Reads entire file into an array

Description

array file (string $filename [, int $flags [, resource $context]])

Reads an entire file into an array.

Note

You can use file_get_contents() to return the contents of a file as a string.

Parameters

filename

Path to the file.

Tip

A URL can be used as a filename with this function if the fopen wrappers have
been enabled. See fopen() for more details on how to specify the filename and List
of Supported Protocols/Wrappers for a list of supported URL protocols.

flags

The optional parameter flags can be one, or more, of the following constants:
FILE_USE_INCLUDE_PATH

Search for the file in the include_path.

FILE_IGNORE_NEW_LINES
Do not add newline at the end of each array element

FILE_SKIP_EMPTY_LINES
Skip empty lines

FILE_TEXT
The content is returned in UTF-8 encoding. You can specify a different encoding by
creating a custom context. This flag cannot be used with FILE_BINARY. This flag
is only available since PHP 6.

FILE_BINARY
The content is read as binary data. This is the default setting and cannot be used
with FILE_TEXT. This flag is only available since PHP 6.

context

A context resource created with the stream_context_create() function.

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns the file in an array. Each element of the array corresponds to a line in the file, with
the newline still attached. Upon failure, file() returns FALSE.

Note

Each line in the resulting array will include the line ending, unless
FILE_IGNORE_NEW_LINES is used, so you still need to use rtrim() if you do not want
the line ending present.

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

ChangeLog

Version Description

6.0.0 Added support for the FILE_TEXT and
FILE_BINARY flags.

5.0.0 The context parameter was added

5.0.0 Prior to PHP 5.0.0 the flags parameter only
covered include_path and was enabled with
1

4.3.0 file() became binary safe

Examples

Example #12 - file() example

<?php

// Get a file into an array. In this example we'll go through HTTP to get

// the HTML source of a URL.

$lines = file('http://www.example.com/');

// Loop through our array, show HTML source as HTML source; and line numbers
too.

foreach ($lines as $line_num => $line) {

 echo "Line #{$line_num} : " . htmlspecialchars($line) . "
\n";

}

// Another example, let's get a web page into a string. See also
file_get_contents().

$html = implode('', file('http://www.example.com/'));

// Using the optional flags parameter since PHP 5

$trimmed = file('somefile.txt', FILE_IGNORE_NEW_LINES |
FILE_SKIP_EMPTY_LINES);

?>

Notes

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

See Also

• readfile()
• fopen()
• fsockopen()
• popen()
• file_get_contents()
• include()
• stream_context_create()

fileatime

fileatime -- Gets last access time of file

Description

int fileatime (string $filename)

Gets the last access time of the given file.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last accessed, or FALSE in case of an error. The time is
returned as a Unix timestamp.

Examples

Example #13 - fileatime() example

<?php

// outputs e.g. somefile.txt was last accessed: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last accessed: " . date("F d Y H:i:s.",
fileatime($filename));

}

?>

Notes

Note

The atime of a file is supposed to change whenever the data blocks of a file are being
read. This can be costly performance-wise when an application regularly accesses a
very large number of files or directories.

Some Unix filesystems can be mounted with atime updates disabled to increase the
performance of such applications; USENET news spools are a common example. On
such filesystems this function will be useless.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filemtime()
• fileinode()
• date()

filectime

filectime -- Gets inode change time of file

Description

int filectime (string $filename)

Gets the inode change time of a file.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last changed, or FALSE in case of an error. The time is
returned as a Unix timestamp.

Examples

Example #14 - A filectime() example

<?php

// outputs e.g. somefile.txt was last changed: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last changed: " . date("F d Y H:i:s.",
filectime($filename));

}

?>

Notes

Note

Note: In most Unix filesystems, a file is considered changed when its inode data is
changed; that is, when the permissions, owner, group, or other metadata from the
inode is updated. See also filemtime() (which is what you want to use when you want

to create "Last Modified" footers on web pages) and fileatime().

Note

Note also that in some Unix texts the ctime of a file is referred to as being the creation
time of the file. This is wrong. There is no creation time for Unix files in most Unix
filesystems.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filemtime()

filegroup

filegroup -- Gets file group

Description

int filegroup (string $filename)

Gets the file group. The group ID is returned in numerical format, use posix_getgrgid() to
resolve it to a group name.

Parameters

filename

Path to the file.

Return Values

Returns the group ID of the file, or FALSE in case of an error. The group ID is returned in
numerical format, use posix_getgrgid() to resolve it to a group name. Upon failure, FALSE
is returned.

Errors/Exceptions

Upon failure, an E_WARNING is emitted.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• fileowner()
• safe_mode_gid

fileinode

fileinode -- Gets file inode

Description

int fileinode (string $filename)

Gets the file inode.

Parameters

filename

Path to the file.

Return Values

Returns the inode number of the file, or FALSE in case of an error.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

filemtime

filemtime -- Gets file modification time

Description

int filemtime (string $filename)

This function returns the time when the data blocks of a file were being written to, that is,
the time when the content of the file was changed.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last modified, or FALSE in case of an error. The time is
returned as a Unix timestamp, which is suitable for the date() function.

Examples

Example #15 - filemtime() example

<?php

// outputs e.g. somefile.txt was last modified: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last modified: " . date ("F d Y H:i:s.",
filemtime($filename));

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filectime()
• stat()
• touch()
• getlastmod()

fileowner

fileowner -- Gets file owner

Description

int fileowner (string $filename)

Gets the file owner.

Parameters

filename

Path to the file.

Return Values

Returns the user ID of the owner of the file, or FALSE in case of an error. The user ID is
returned in numerical format, use posix_getpwuid() to resolve it to a username.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

fileperms

fileperms -- Gets file permissions

Description

int fileperms (string $filename)

Gets permissions for the given file.

Parameters

filename

Path to the file.

Return Values

Returns the permissions on the file, or FALSE in case of an error.

Examples

Example #16 - Display permissions as an octal value

<?php

echo substr(sprintf('%o', fileperms('/tmp')), -4);

echo substr(sprintf('%o', fileperms('/etc/passwd')), -4);

?>

The above example will output:

1777

0644

Example #17 - Display full permissions

<?php

$perms = fileperms('/etc/passwd');

if (($perms & 0xC000) == 0xC000) {

 // Socket

 $info = 's';

} elseif (($perms & 0xA000) == 0xA000) {

 // Symbolic Link

 $info = 'l';

} elseif (($perms & 0x8000) == 0x8000) {

 // Regular

 $info = '-';

} elseif (($perms & 0x6000) == 0x6000) {

 // Block special

 $info = 'b';

} elseif (($perms & 0x4000) == 0x4000) {

 // Directory

 $info = 'd';

} elseif (($perms & 0x2000) == 0x2000) {

 // Character special

 $info = 'c';

} elseif (($perms & 0x1000) == 0x1000) {

 // FIFO pipe

 $info = 'p';

} else {

 // Unknown

 $info = 'u';

}

// Owner

$info .= (($perms & 0x0100) ? 'r' : '-');

$info .= (($perms & 0x0080) ? 'w' : '-');

$info .= (($perms & 0x0040) ?

 (($perms & 0x0800) ? 's' : 'x') :

 (($perms & 0x0800) ? 'S' : '-'));

// Group

$info .= (($perms & 0x0020) ? 'r' : '-');

$info .= (($perms & 0x0010) ? 'w' : '-');

$info .= (($perms & 0x0008) ?

 (($perms & 0x0400) ? 's' : 'x') :

 (($perms & 0x0400) ? 'S' : '-'));

// World

$info .= (($perms & 0x0004) ? 'r' : '-');

$info .= (($perms & 0x0002) ? 'w' : '-');

$info .= (($perms & 0x0001) ?

 (($perms & 0x0200) ? 't' : 'x') :

 (($perms & 0x0200) ? 'T' : '-'));

echo $info;

?>

The above example will output:

-rw-r--r--

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• stat()

filesize

filesize -- Gets file size

Description

int filesize (string $filename)

Gets the size for the given file.

Parameters

filename

Path to the file.

Return Values

Returns the size of the file in bytes, or FALSE (and generates an error of level
E_WARNING) in case of an error.

Note

Because PHP's integer type is signed and many platforms use 32bit integers, filesize()
may return unexpected results for files which are larger than 2GB. For files between
2GB and 4GB in size this can usually be overcome by using sprintf("%u", filesize($file))
.

Examples

Example #18 - filesize() example

<?php

// outputs e.g. somefile.txt: 1024 bytes

$filename = 'somefile.txt';

echo $filename . ': ' . filesize($filename) . ' bytes';

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• file_exists()

filetype

filetype -- Gets file type

Description

string filetype (string $filename)

Returns the type of the given file.

Parameters

filename

Path to the file.

Return Values

Returns the type of the file. Possible values are fifo, char, dir, block, link, file, socket and
unknown.

Returns FALSE if an error occurs. filetype() will also produce an E_NOTICE message if
the stat call fails or if the file type is unknown.

Examples

Example #19 - filetype() example

<?php

echo filetype('/etc/passwd'); // file

echo filetype('/etc/'); // dir

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_file()
• is_link()
• file_exists()
• stat()
• mime_content_type()

flock

flock -- Portable advisory file locking

Description

bool flock (resource $handle, int $operation [, int &$wouldblock])

flock() allows you to perform a simple reader/writer model which can be used on virtually
every platform (including most Unix derivatives and even Windows).

The lock is released also by fclose() (which is also called automatically when script
finished).

PHP supports a portable way of locking complete files in an advisory way (which means all
accessing programs have to use the same way of locking or it will not work).

Parameters

handle

An open file pointer.

operation

operation is one of the following:

• LOCK_SH to acquire a shared lock (reader).

• LOCK_EX to acquire an exclusive lock (writer).

• LOCK_UN to release a lock (shared or exclusive).

• LOCK_NB if you don't want flock() to block while locking. (not supported on
Windows)

wouldblock

The optional third argument is set to TRUE if the lock would block (EWOULDBLOCK
errno condition).

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.0.1 The LOCK_XXX constants were added.
Prior to that you must use 1 for LOCK_SH,
2 for LOCK_EX, 3 for LOCK_UN and 4 for
LOCK_NB

Examples

Example #20 - flock() example

<?php

$fp = fopen("/tmp/lock.txt", "w+");

if (flock($fp, LOCK_EX)) { // do an exclusive lock

 fwrite($fp, "Write something here\n");

 flock($fp, LOCK_UN); // release the lock

} else {

 echo "Couldn't lock the file !";

}

fclose($fp);

?>

Notes

Note

flock() locks mandatory under Windows.

Note

Because flock() requires a file pointer, you may have to use a special lock file to
protect access to a file that you intend to truncate by opening it in write mode (with a
"w" or "w+" argument to fopen()).

Warning

flock() will not work on NFS and many other networked file systems. Check your
operating system documentation for more details.

On some operating systems flock() is implemented at the process level. When using a
multithreaded server API like ISAPI you may not be able to rely on flock() to protect
files against other PHP scripts running in parallel threads of the same server instance!

flock() is not supported on antiquated filesystems like FAT and its derivates and will
therefore always return FALSE under this environments (this is especially true for
Windows 98 users).

fnmatch

fnmatch -- Match filename against a pattern

Description

bool fnmatch (string $pattern, string $string [, int $flags])

fnmatch() checks if the passed string would match the given shell wildcard pattern.

Parameters

pattern

The shell wildcard pattern.

string

The tested string. This function is especially useful for filenames, but may also be used
on regular strings. The average user may be used to shell patterns or at least in their
simplest form to '?' and '*' wildcards so using fnmatch() instead of ereg() or
preg_match() for frontend search expression input may be way more convenient for
non-programming users.

flags

See the Unix manpage on fnmatch(3) for flag names (as long as they are not
documented here).

Return Values

Returns TRUE if there is a match, FALSE otherwise.

Examples

Example #21 - Checking a color name against a shell wildcard pattern

<?php

if (fnmatch("*gr[ae]y", $color)) {

 echo "some form of gray ...";

}

?>

Notes

Warning

For now this function is not available on Windows or other non-POSIX compliant
systems.

See Also

• glob()
• ereg()
• preg_match()
• sscanf()
• printf()
• sprintf()

fopen

fopen -- Opens file or URL

Description

resource fopen (string $filename, string $mode [, bool $use_include_path [, resource $
context]])

fopen() binds a named resource, specified by filename, to a stream.

Parameters

filename

If filename is of the form "scheme://...", it is assumed to be a URL and PHP will
search for a protocol handler (also known as a wrapper) for that scheme. If no
wrappers for that protocol are registered, PHP will emit a notice to help you track
potential problems in your script and then continue as though filename specifies a
regular file. If PHP has decided that filename specifies a local file, then it will try to
open a stream on that file. The file must be accessible to PHP, so you need to ensure
that the file access permissions allow this access. If you have enabled safe mode, or
open_basedir further restrictions may apply. If PHP has decided that filename
specifies a registered protocol, and that protocol is registered as a network URL, PHP
will check to make sure that allow_url_fopen is enabled. If it is switched off, PHP will
emit a warning and the fopen call will fail.

Note

The list of supported protocols can be found in List of Supported
Protocols/Wrappers. Some protocols (also referred to as wrappers) support
context and/or php.ini options. Refer to the specific page for the protocol in use for
a list of options which can be set. (e.g. php.ini value user_agent used by the http
wrapper).

On the Windows platform, be careful to escape any backslashes used in the path to
the file, or use forward slashes.

<?php

$handle = fopen("c:\\data\\info.txt", "r");

?>

mode

The mode parameter specifies the type of access you require to the stream. It may be
any of the following:

A list of possible modes for fopen() using mode

mode Description

'r' Open for reading only; place the file pointer
at the beginning of the file.

'r+' Open for reading and writing; place the file
pointer at the beginning of the file.

'w' Open for writing only; place the file pointer
at the beginning of the file and truncate the
file to zero length. If the file does not exist,
attempt to create it.

'w+' Open for reading and writing; place the file
pointer at the beginning of the file and
truncate the file to zero length. If the file
does not exist, attempt to create it.

'a' Open for writing only; place the file pointer
at the end of the file. If the file does not
exist, attempt to create it.

'a+' Open for reading and writing; place the file
pointer at the end of the file. If the file does
not exist, attempt to create it.

'x' Create and open for writing only; place the
file pointer at the beginning of the file. If the
file already exists, the fopen() call will fail by
returning FALSE and generating an error of
level E_WARNING. If the file does not exist,
attempt to create it. This is equivalent to
specifying O_EXCL|O_CREAT flags for the
underlying open(2) system call.

'x+' Create and open for reading and writing;
place the file pointer at the beginning of the
file. If the file already exists, the fopen() call
will fail by returning FALSE and generating
an error of level E_WARNING. If the file
does not exist, attempt to create it. This is
equivalent to specifying O_EXCL|O_CREAT
flags for the underlying open(2) system call.

Note

Different operating system families have different line-ending conventions. When you
write a text file and want to insert a line break, you need to use the correct line-ending
character(s) for your operating system. Unix based systems use \n as the line ending
character, Windows based systems use \r\n as the line ending characters and

Macintosh based systems use \r as the line ending character.

If you use the wrong line ending characters when writing your files, you might find that
other applications that open those files will "look funny".

Windows offers a text-mode translation flag ('t') which will transparently translate \n to
\r\n when working with the file. In contrast, you can also use 'b' to force binary mode,
which will not translate your data. To use these flags, specify either 'b' or 't' as the last
character of the mode parameter.

The default translation mode depends on the SAPI and version of PHP that you are
using, so you are encouraged to always specify the appropriate flag for portability
reasons. You should use the 't' mode if you are working with plain-text files and you
use \n to delimit your line endings in your script, but expect your files to be readable
with applications such as notepad. You should use the 'b' in all other cases.

If you do not specify the 'b' flag when working with binary files, you may experience
strange problems with your data, including broken image files and strange problems
with \r\n characters.

Note

For portability, it is strongly recommended that you always use the 'b' flag when
opening files with fopen().

Note

Again, for portability, it is also strongly recommended that you re-write code that uses
or relies upon the 't' mode so that it uses the correct line endings and 'b' mode instead.

use_include_path

The optional third use_include_path parameter can be set to '1' or TRUE if you want to
search for the file in the include_path, too.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns a file pointer resource on success, or FALSE on error.

Errors/Exceptions

If the open fails, the function an error of level E_WARNING is generated. You may use @ to
suppress this warning.

ChangeLog

Version Description

4.3.2 As of PHP 4.3.2, the default mode is set to
binary for all platforms that distinguish
between binary and text mode. If you are
having problems with your scripts after
upgrading, try using the 't' flag as a
workaround until you have made your script
more portable as mentioned below

4.3.2 The 'x' and 'x+' option was added

Examples

Example #22 - fopen() examples

<?php

$handle = fopen("/home/rasmus/file.txt", "r");

$handle = fopen("/home/rasmus/file.gif", "wb");

$handle = fopen("http://www.example.com/", "r");

$handle = fopen("ftp://user:password@example.com/somefile.txt", "w");

?>

Notes

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

If you are experiencing problems with reading and writing to files and you're using the
server module version of PHP, remember to make sure that the files and directories you're
using are accessible to the server process.

See Also

• List of Supported Protocols/Wrappers
• fclose()
• fgets()
• fread()
• fwrite()
• fsockopen()
• file()
• file_exists()
• is_readable()
• stream_set_timeout()
• popen()
• stream_context_create()

fpassthru

fpassthru -- Output all remaining data on a file pointer

Description

int fpassthru (resource $handle)

Reads to EOF on the given file pointer from the current position and writes the results to
the output buffer.

You may need to call rewind() to reset the file pointer to the beginning of the file if you
have already written data to the file.

If you just want to dump the contents of a file to the output buffer, without first modifying it
or seeking to a particular offset, you may want to use the readfile(), which saves you the
fopen() call.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

If an error occurs, fpassthru() returns FALSE. Otherwise, fpassthru() returns the number of
characters read from handle and passed through to the output.

Examples

Example #23 - Using fpassthru() with binary files

<?php

// open the file in a binary mode

$name = './img/ok.png';

$fp = fopen($name, 'rb');

// send the right headers

header("Content-Type: image/png");

header("Content-Length: " . filesize($name));

// dump the picture and stop the script

fpassthru($fp);

exit;

?>

Notes

Note

When using fpassthru() on a binary file on Windows systems, you should make sure to
open the file in binary mode by appending a b to the mode used in the call to fopen().

You are encouraged to use the b flag when dealing with binary files, even if your
system does not require it, so that your scripts will be more portable.

See Also

• readfile()
• fopen()
• popen()
• fsockopen()

fputcsv

fputcsv -- Format line as CSV and write to file pointer

Description

int fputcsv (resource $handle, array $fields [, string $delimiter [, string $enclosure]]
)

fputcsv() formats a line (passed as a fields array) as CSV and write it (terminated by a
newline) to the specified file handle.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

fields

An array of values.

delimiter

The optional delimiter parameter sets the field delimiter (one character only).
Defaults as a comma:,.

enclosure

The optional enclosure parameter sets the field enclosure (one character only) and
defaults to a double quotation mark: ".

Return Values

Returns the length of the written string, or FALSE on failure.

Examples

Example #24 - fputcsv() example

<?php

$list = array (

 'aaa,bbb,ccc,dddd',

 '123,456,789',

 '"aaa","bbb"'

);

$fp = fopen('file.csv', 'w');

foreach ($list as $line) {

 fputcsv($fp, split(',', $line));

}

fclose($fp);

?>

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

See Also

• fgetcsv()

fputs

fputs -- Alias of fwrite()

Description

This function is an alias of: fwrite().

fread

fread -- Binary-safe file read

Description

string fread (resource $handle, int $length)

fread() reads up to length bytes from the file pointer referenced by handle. Reading stops
as soon as one of the following conditions is met:

• length bytes have been read

• EOF (end of file) is reached

• a packet becomes available (for network streams)

• 8192 bytes have been read (after opening userspace stream)

Parameters

handle

A file system pointer resource that is typically created using fopen().

length

Up to length number of bytes read.

Return Values

Returns the read string or FALSE in case of error.

Examples

Example #25 - A simple fread() example

<?php

// get contents of a file into a string

$filename = "/usr/local/something.txt";

$handle = fopen($filename, "r");

$contents = fread($handle, filesize($filename));

fclose($handle);

?>

Example #26 - Binary fread() example

Warning

On systems which differentiate between binary and text files (i.e. Windows) the file
must be opened with 'b' included in fopen() mode parameter.

<?php

$filename = "c:\\files\\somepic.gif";

$handle = fopen($filename, "rb");

$contents = fread($handle, filesize($filename));

fclose($handle);

?>

Example #27 - Remote fread() examples

Warning

When reading from anything that is not a regular local file, such as streams
returned when reading remote files or from popen() and fsockopen(), reading will
stop after a packet is available. This means that you should collect the data
together in chunks as shown in the examples below.

<?php

// For PHP 5 and up

$handle = fopen("http://www.example.com/", "rb");

$contents = stream_get_contents($handle);

fclose($handle);

?>

<?php

$handle = fopen("http://www.example.com/", "rb");

$contents = '';

while (!feof($handle)) {

 $contents .= fread($handle, 8192);

}

fclose($handle);

?>

Notes

Note

If you just want to get the contents of a file into a string, use file_get_contents() as it
has much better performance than the code above.

See Also

• fwrite()
• fopen()
• fsockopen()
• popen()
• fgets()
• fgetss()
• fscanf()
• file()
• fpassthru()

fscanf

fscanf -- Parses input from a file according to a format

Description

mixed fscanf (resource $handle, string $format [, mixed &$...])

The function fscanf() is similar to sscanf(), but it takes its input from a file associated with
handle and interprets the input according to the specified format, which is described in the
documentation for sprintf().

Any whitespace in the format string matches any whitespace in the input stream. This
means that even a tab \t in the format string can match a single space character in the
input stream.

Parameters

handle

A file system pointer resource that is typically created using fopen().

format

The specified format as described in the sprintf() documentation.

...

The optional assigned values.

Return Values

If only two parameters were passed to this function, the values parsed will be returned as
an array. Otherwise, if optional parameters are passed, the function will return the number
of assigned values. The optional parameters must be passed by reference.

ChangeLog

Version Description

4.3.0 Before this time, the maximum number of
characters read from the file was 512 (or up
to the first \n, whichever came first). But
now, arbitrarily long lines will be read and
scanned.

Examples

Example #28 - fscanf() Example

<?php

$handle = fopen("users.txt", "r");

while ($userinfo = fscanf($handle, "%s\t%s\t%s\n")) {

 list ($name, $profession, $countrycode) = $userinfo;

 //... do something with the values

}

fclose($handle);

?>

Example #29 - Contents of users.txt

javier argonaut pe

hiroshi sculptor jp

robert slacker us

luigi florist it

See Also

• fread()
• fgets()
• fgetss()
• sscanf()
• printf()
• sprintf()

fseek

fseek -- Seeks on a file pointer

Description

int fseek (resource $handle, int $offset [, int $whence])

Sets the file position indicator for the file referenced by handle. The new position,
measured in bytes from the beginning of the file, is obtained by adding offset to the
position specified by whence.

Parameters

handle

A file system pointer resource that is typically created using fopen().

offset

The offset. To move to a position before the end-of-file, you need to pass a negative
value in offset.

whence

whence values are:

• SEEK_SET - Set position equal to offset bytes.
• SEEK_CUR - Set position to current location plus offset.
• SEEK_END - Set position to end-of-file plus offset.

If whence is not specified, it is assumed to be SEEK_SET.

Return Values

Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not
considered an error.

Examples

Example #30 - fseek() example

<?php

$fp = fopen('somefile.txt', 'r');

// read some data

$data = fgets($fp, 4096);

// move back to the beginning of the file

// same as rewind($fp);

fseek($fp, 0);

?>

Notes

Note

If you have opened the file in append ("a" or "a+") mode, any data you write to the file
will always be appended, regardless of the file position.

Note

May not be used on file pointers returned by fopen() if they use the "http://" or "ftp://"
formats. fseek() gives also undefined results for append-only streams (opened with "a"
flag).

See Also

• ftell()
• rewind()

fstat

fstat -- Gets information about a file using an open file pointer

Description

array fstat (resource $handle)

Gathers the statistics of the file opened by the file pointer handle. This function is similar
to the stat() function except that it operates on an open file pointer instead of a filename.

Parameters

handle

A file system pointer resource that is typically created using fopen().

Return Values

Returns an array with the statistics of the file; the format of the array is described in detail
on the stat() manual page.

Examples

Example #31 - fstat() example

<?php

// open a file

$fp = fopen("/etc/passwd", "r");

// gather statistics

$fstat = fstat($fp);

// close the file

fclose($fp);

// print only the associative part

print_r(array_slice($fstat, 13));

?>

The above example will output something similar to:

Array

(

 [dev] => 771

 [ino] => 488704

 [mode] => 33188

 [nlink] => 1

 [uid] => 0

 [gid] => 0

 [rdev] => 0

 [size] => 1114

 [atime] => 1061067181

 [mtime] => 1056136526

 [ctime] => 1056136526

 [blksize] => 4096

 [blocks] => 8

)

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

ftell

ftell -- Tells file pointer read/write position

Description

int ftell (resource $handle)

Tells the file pointer read/write position.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or popen(). ftell() gives undefined results for append-only streams (opened with "a"
flag).

Return Values

Returns the position of the file pointer referenced by handle; i.e., its offset into the file
stream.

If an error occurs, returns FALSE.

Examples

Example #32 - ftell() example

<?php

// opens a file and read some data

$fp = fopen("/etc/passwd", "r");

$data = fgets($fp, 12);

// where are we ?

echo ftell($fp); // 11

fclose($fp);

?>

See Also

• fopen()
• popen()
• fseek()
• rewind()

ftruncate

ftruncate -- Truncates a file to a given length

Description

bool ftruncate (resource $handle, int $size)

Takes the filepointer, handle, and truncates the file to length, size.

Parameters

handle

The file pointer.

Note

The handle must be open for writing.

size

The size to truncate to.

Note

If size is larger than the file it is extended with null bytes.

If size is smaller than the extra data will be lost.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

PHP 4.3.3 Prior to this release ftruncate() returned an
integer value of 1 on success, instead of
boolean TRUE.

Notes

Note

The file pointer is not changed.

See Also

• fopen()
• fseek()

fwrite

fwrite -- Binary-safe file write

Description

int fwrite (resource $handle, string $string [, int $length])

fwrite() writes the contents of string to the file stream pointed to by handle.

Parameters

handle

A file system pointer resource that is typically created using fopen().

string

The string that is to be written.

length

If the length argument is given, writing will stop after length bytes have been written
or the end of string is reached, whichever comes first. Note that if the length
argument is given, then the magic_quotes_runtime configuration option will be ignored
and no slashes will be stripped from string.

Return Values

fwrite() returns the number of bytes written, or FALSE on error.

Notes

Note

On systems which differentiate between binary and text files (i.e. Windows) the file
must be opened with 'b' included in fopen() mode parameter.

Note

If handle was fopen() ed in append mode, fwrite() s are atomic (unless the size of
string exceeds the filesystem's block size, on some platforms, and as long as the file
is on a local filesystem). That is, there is no need to flock() a resource before calling
fwrite(); all of the data will be written without interruption.

Note

If writing twice to the file pointer, then the data will be appended to the end of the file
content, meaning that the example below wouldn't work as expected:
<?php

$fp = fopen('data.txt', 'w');

fwrite($fp, '1');

fwrite($fp, '23');

fclose($fp);

// the content of 'data.txt' is now 123 and not 23!

?>

Examples

Example #33 - A simple fwrite() example

<?php

$filename = 'test.txt';

$somecontent = "Add this to the file\n";

// Let's make sure the file exists and is writable first.

if (is_writable($filename)) {

 // In our example we're opening $filename in append mode.

 // The file pointer is at the bottom of the file hence

 // that's where $somecontent will go when we fwrite() it.

 if (!$handle = fopen($filename, 'a')) {

 echo "Cannot open file ($filename)";

 exit;

 }

 // Write $somecontent to our opened file.

 if (fwrite($handle, $somecontent) === FALSE) {

 echo "Cannot write to file ($filename)";

 exit;

 }

 echo "Success, wrote ($somecontent) to file ($filename)";

 fclose($handle);

} else {

 echo "The file $filename is not writable";

}

?>

See Also

• fread()
• fopen()
• fsockopen()
• popen()
• file_get_contents()

glob

glob -- Find pathnames matching a pattern

Description

array glob (string $pattern [, int $flags])

The glob() function searches for all the pathnames matching pattern according to the
rules used by the libc glob() function, which is similar to the rules used by common shells.

Parameters

pattern

The pattern. No tilde expansion or parameter substitution is done.

flags

Valid flags:

• GLOB_MARK - Adds a slash to each item returned

• GLOB_NOSORT - Return files as they appear in the directory (no sorting)

• GLOB_NOCHECK - Return the search pattern if no files matching it were found

• GLOB_NOESCAPE - Backslashes do not quote metacharacters

• GLOB_BRACE - Expands {a,b,c} to match 'a', 'b', or 'c'

• GLOB_ONLYDIR - Return only directory entries which match the pattern

• GLOB_ERR - Stop on read errors (like unreadable directories), by default errors
are ignored.

Return Values

Returns an array containing the matched files/directories, an empty array if no file matched
or FALSE on error.

Note

On some systems it is impossible to distinguish between empty match and an error.

ChangeLog

Version Description

5.1.0 GLOB_ERR was added

4.3.3 GLOB_ONLYDIR became available on
Windows and other systems not using the
GNU C library

Examples

Example #34 - Convenient way how glob() can replace opendir() and friends.

<?php

foreach (glob("*.txt") as $filename) {

 echo "$filename size " . filesize($filename) . "\n";

}

?>

The above example will output something similar to:

funclist.txt size 44686

funcsummary.txt size 267625

quickref.txt size 137820

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

This function isn't available on some systems (e.g. old Sun OS).

Note

The GLOB_BRACE flag is not available on some non GNU systems, like Solaris.

See Also

• opendir()
• readdir()
• closedir()
• fnmatch()

is_dir

is_dir -- Tells whether the filename is a directory

Description

bool is_dir (string $filename)

Tells whether the given filename is a directory.

Parameters

filename

Path to the file. If filename is a relative filename, it will be checked relative to the
current working directory.

Return Values

Returns TRUE if the filename exists and is a directory, FALSE otherwise.

Examples

Example #35 - is_dir() example

<?php

var_dump(is_dir('a_file.txt'));

var_dump(is_dir('bogus_dir/abc'));

var_dump(is_dir('..')); //one dir up

?>

The above example will output:

bool(false)

bool(false)

bool(true)

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• chdir()
• dir
• opendir()
• is_file()
• is_link()

is_executable

is_executable -- Tells whether the filename is executable

Description

bool is_executable (string $filename)

Tells whether the filename is executable.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is executable, or FALSE on error.

ChangeLog

Version Description

5.0.0 is_executable() became available with
Windows

Examples

Example #36 - is_executable() example

<?php

$file = '/home/vincent/somefile.sh';

if (is_executable($file)) {

 echo $file.' is executable';

} else {

 echo $file.' is not executable';

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_file()
• is_link()

is_file

is_file -- Tells whether the filename is a regular file

Description

bool is_file (string $filename)

Tells whether the given file is a regular file.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is a regular file, FALSE otherwise.

Examples

Example #37 - is_file() example

<?php

var_dump(is_file('a_file.txt')) . "\n";

var_dump(is_file('/usr/bin/')) . "\n";

?>

The above example will output:

bool(true)

bool(false)

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_link()

is_link

is_link -- Tells whether the filename is a symbolic link

Description

bool is_link (string $filename)

Tells whether the given file is a symbolic link.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is a symbolic link, FALSE otherwise.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_file()
• readlink()

is_readable

is_readable -- Tells whether the filename is readable

Description

bool is_readable (string $filename)

Tells whether the filename is readable.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the file or directory specified by filename exists and is readable, FALSE
otherwise.

Examples

Example #38 - is_readable() example

<?php

$filename = 'test.txt';

if (is_readable($filename)) {

 echo 'The file is readable';

} else {

 echo 'The file is not readable';

}

?>

Notes

Keep in mind that PHP may be accessing the file as the user id that the web server runs
as (often 'nobody'). Safe mode limitations are not taken into account before PHP 5.1.5.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

Note

The check is done using the real UID/GID instead of the effective one.

See Also

• is_writable()
• file_exists()
• fgets()

is_uploaded_file

is_uploaded_file -- Tells whether the file was uploaded via HTTP POST

Description

bool is_uploaded_file (string $filename)

Returns TRUE if the file named by filename was uploaded via HTTP POST. This is useful
to help ensure that a malicious user hasn't tried to trick the script into working on files upon
which it should not be working--for instance, /etc/passwd.

This sort of check is especially important if there is any chance that anything done with
uploaded files could reveal their contents to the user, or even to other users on the same
system.

For proper working, the function is_uploaded_file() needs an argument like
$_FILES['userfile']['tmp_name'], - the name of the uploaded file on the clients machine
$_FILES['userfile']['name'] does not work.

Parameters

filename

The filename being checked.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #39 - is_uploaded_file() example

<?php

if (is_uploaded_file($_FILES['userfile']['tmp_name'])) {

 echo "File ". $_FILES['userfile']['name'] ." uploaded successfully.\n";

 echo "Displaying contents\n";

 readfile($_FILES['userfile']['tmp_name']);

} else {

 echo "Possible file upload attack: ";

 echo "filename '". $_FILES['userfile']['tmp_name'] . "'.";

}

?>

See Also

• move_uploaded_file()
• See Handling file uploads for a simple usage example.

is_writable

is_writable -- Tells whether the filename is writable

Description

bool is_writable (string $filename)

Returns TRUE if the filename exists and is writable. The filename argument may be a
directory name allowing you to check if a directory is writable.

Keep in mind that PHP may be accessing the file as the user id that the web server runs
as (often 'nobody'). Safe mode limitations are not taken into account.

Parameters

filename

The filename being checked.

Return Values

Returns TRUE if the filename exists and is writable.

Examples

Example #40 - is_writable() example

<?php

$filename = 'test.txt';

if (is_writable($filename)) {

 echo 'The file is writable';

} else {

 echo 'The file is not writable';

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• file_exists()
• fwrite()

is_writeable

is_writeable -- Alias of is_writable()

Description

This function is an alias of: is_writable().

lchgrp

lchgrp -- Changes group ownership of symlink

Description

bool lchgrp (string $filename, mixed $group)

Attempts to change the group of the symlink filename to group.

Only the superuser may change the group of a symlink arbitrarily; other users may change
the group of a symlink to any group of which that user is a member.

Parameters

filename

Path to the symlink.

group

The group specified by name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is not implemented on Windows platforms.

See Also

• chgrp()
• lchown()
• chown()
• chmod()

lchown

lchown -- Changes user ownership of symlink

Description

bool lchown (string $filename, mixed $user)

Attempts to change the owner of the symlink filename to user user.

Only the superuser may change the owner of a symlink.

Parameters

filename

Path to the file.

user

User name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is not implemented on Windows platforms.

See Also

• chgrp()
• lchgrp()
• chgrp()
• chmod()

link

link -- Create a hard link

Description

bool link (string $target, string $link)

link() creates a hard link.

Parameters

target

Target of the link.

link

The link name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

This function is not implemented on Windows platforms.

See Also

• symlink()
• readlink()
• linkinfo()

linkinfo

linkinfo -- Gets information about a link

Description

int linkinfo (string $path)

Gets information about a link.

This function is used to verify if a link (pointed to by path) really exists (using the same
method as the S_ISLNK macro defined in stat.h).

Parameters

path

Path to the link.

Return Values

linkinfo() returns the st_dev field of the Unix C stat structure returned by the lstat system
call. Returns 0 or FALSE in case of error.

Examples

Example #41 - linkinfo() example

<?php

echo linkinfo('/vmlinuz'); // 835

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

• symlink()
• link()
• readlink()

lstat

lstat -- Gives information about a file or symbolic link

Description

array lstat (string $filename)

Gathers the statistics of the file or symbolic link named by filename.

Parameters

filename

Path to a file or a symbolic link.

Return Values

See the manual page for stat() for information on the structure of the array that lstat()
returns. This function is identical to the stat() function except that if the filename
parameter is a symbolic link, the status of the symbolic link is returned, not the status of
the file pointed to by the symbolic link.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

mkdir

mkdir -- Makes directory

Description

bool mkdir (string $pathname [, int $mode [, bool $recursive [, resource $context]]])

Attempts to create the directory specified by pathname.

Parameters

pathname

The directory path.

mode

The mode is 0777 by default, which means the widest possible access. For more
information on modes, read the details on the chmod() page.

Note

mode is ignored on Windows.

Note that you probably want to specify the mode as an octal number, which means it
should have a leading zero. The mode is also modified by the current umask, which
you can change using umask().

recursive

Default to FALSE.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The recursive parameter was added

5.0.0 As of PHP 5.0.0 mkdir() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support mkdir()

4.2.0 The mode parameter became optional.

Examples

Example #42 - mkdir() example

<?php

mkdir("/path/to/my/dir", 0700);

?>

Notes

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

See Also

• rmdir()

move_uploaded_file

move_uploaded_file -- Moves an uploaded file to a new location

Description

bool move_uploaded_file (string $filename, string $destination)

This function checks to ensure that the file designated by filename is a valid upload file
(meaning that it was uploaded via PHP's HTTP POST upload mechanism). If the file is
valid, it will be moved to the filename given by destination.

This sort of check is especially important if there is any chance that anything done with
uploaded files could reveal their contents to the user, or even to other users on the same
system.

Parameters

filename

The filename of the uploaded file.

destination

The destination of the moved file.

Return Values

If filename is not a valid upload file, then no action will occur, and move_uploaded_file()
will return FALSE.

If filename is a valid upload file, but cannot be moved for some reason, no action will
occur, and move_uploaded_file() will return FALSE. Additionally, a warning will be issued.

Notes

Note

move_uploaded_file() is both safe mode and open_basedir aware. However,
restrictions are placed only on the destination path as to allow the moving of
uploaded files in which filename may conflict with such restrictions.
move_uploaded_file() ensures the safety of this operation by allowing only those files
uploaded through PHP to be moved.

Warning

If the destination file already exists, it will be overwritten.

See Also

• is_uploaded_file()
• See Handling file uploads for a simple usage example

parse_ini_file

parse_ini_file -- Parse a configuration file

Description

array parse_ini_file (string $filename [, bool $process_sections])

parse_ini_file() loads in the ini file specified in filename, and returns the settings in it in an
associative array.

The structure of the ini file is the same as the php.ini 's.

Parameters

filename

The filename of the ini file being parsed.

process_sections

By setting the last process_sections parameter to TRUE, you get a multidimensional
array, with the section names and settings included. The default for process_sections
is FALSE

Return Values

The settings are returned as an associative array.

ChangeLog

Version Description

5.2.4 Keys and section names consisting of
numbers are now evaluated as PHP
integers thus numbers starting by 0 are
evaluated as octals and numbers starting by
0x are evaluated as hexadecimals.

5.0.0 Values enclosed in double quotes can
contain new lines.

4.2.1 This function is now affected by safe mode
and open_basedir.

Examples

Example #43 - Contents of sample.ini

; This is a sample configuration file

; Comments start with ';', as in php.ini

[first_section]

one = 1

five = 5

animal = BIRD

[second_section]

path = "/usr/local/bin"

URL = "http://www.example.com/~username"

Example #44 - parse_ini_file() example

Constants may also be parsed in the ini file so if you define a constant as an ini value
before running parse_ini_file(), it will be integrated into the results. Only ini values are
evaluated. For example:

<?php

define('BIRD', 'Dodo bird');

// Parse without sections

$ini_array = parse_ini_file("sample.ini");

print_r($ini_array);

// Parse with sections

$ini_array = parse_ini_file("sample.ini", true);

print_r($ini_array);

?>

The above example will output something similar to:

Array

(

 [one] => 1

 [five] => 5

 [animal] => Dodo bird

 [path] => /usr/local/bin

 [URL] => http://www.example.com/~username

)

Array

(

 [first_section] => Array

 (

 [one] => 1

 [five] => 5

 [animal] = Dodo bird

)

 [second_section] => Array

 (

 [path] => /usr/local/bin

 [URL] => http://www.example.com/~username

)

)

Notes

Note

This function has nothing to do with the php.ini file. It is already processed, the time
you run your script. This function can be used to read in your own application's
configuration files.

Note

If a value in the ini file contains any non-alphanumeric characters it needs to be
enclosed in double-quotes (").

Note

There are reserved words which must not be used as keys for ini files. These include:
null, yes, no, true, and false. Values null, no and false results in "", yes and true results
in "1". Characters {}|&~![()" must not be used anywhere in the key and have a special
meaning in the value.

pathinfo

pathinfo -- Returns information about a file path

Description

mixed pathinfo (string $path [, int $options])

pathinfo() returns an associative array containing information about path.

Parameters

path

The path being checked.

options

You can specify which elements are returned with optional parameter options. It
composes from PATHINFO_DIRNAME, PATHINFO_BASENAME,
PATHINFO_EXTENSION and PATHINFO_FILENAME. It defaults to return all
elements.

Return Values

The following associative array elements are returned: dirname, basename, extension (if
any), and filename.

If options is used, this function will return a string if not all elements are requested.

ChangeLog

Version Description

5.2.0 The PATHINFO_FILENAME constant was
added.

Examples

Example #45 - pathinfo() Example

<?php

$path_parts = pathinfo('/www/htdocs/index.html');

echo $path_parts['dirname'], "\n";

echo $path_parts['basename'], "\n";

echo $path_parts['extension'], "\n";

echo $path_parts['filename'], "\n"; // since PHP 5.2.0

?>

The above example will output:

/www/htdocs

index.html

html

index

Notes

Note

For information on retrieving the current path info, read the section on predefined
reserved variables.

See Also

• dirname()
• basename()
• parse_url()
• realpath()

pclose

pclose -- Closes process file pointer

Description

int pclose (resource $handle)

Closes a file pointer to a pipe opened by popen().

Parameters

handle

The file pointer must be valid, and must have been returned by a successful call to
popen().

Return Values

Returns the termination status of the process that was run.

See Also

• popen()

popen

popen -- Opens process file pointer

Description

resource popen (string $command, string $mode)

Opens a pipe to a process executed by forking the command given by command.

Parameters

command

The command

mode

The mode

Return Values

Returns a file pointer identical to that returned by fopen(), except that it is unidirectional
(may only be used for reading or writing) and must be closed with pclose(). This pointer
may be used with fgets(), fgetss(), and fwrite().

If an error occurs, returns FALSE.

Examples

Example #46 - popen() example

<?php

$handle = popen("/bin/ls", "r");

?>

If the command to be executed could not be found, a valid resource is returned. This may
seem odd, but makes sense; it allows you to access any error message returned by the
shell:

Example #47 - popen() example

<?php

error_reporting(E_ALL);

/* Add redirection so we can get stderr. */

$handle = popen('/path/to/spooge 2>&1', 'r');

echo "'$handle'; " . gettype($handle) . "\n";

$read = fread($handle, 2096);

echo $read;

pclose($handle);

?>

Notes

Note

If you're looking for bi-directional support (two-way), use proc_open().

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• pclose()
• fopen()
• proc_open()

readfile

readfile -- Outputs a file

Description

int readfile (string $filename [, bool $use_include_path [, resource $context]])

Reads a file and writes it to the output buffer.

Parameters

filename

The filename being read.

use_include_path

You can use the optional second parameter and set it to TRUE, if you want to search
for the file in the include_path, too.

context

A context stream resource.

Return Values

Returns the number of bytes read from the file. If an error occurs, FALSE is returned and
unless the function was called as @ readfile(), an error message is printed.

Notes

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

See Also

• fpassthru()
• file()
• fopen()
• include()
• require()
• virtual()
• file_get_contents()
• List of Supported Protocols/Wrappers

readlink

readlink -- Returns the target of a symbolic link

Description

string readlink (string $path)

readlink() does the same as the readlink C function.

Parameters

path

The symbolic link path.

Return Values

Returns the contents of the symbolic link path or FALSE on error.

Examples

Example #48 - readlink() example

<?php

// output e.g. /boot/vmlinux-2.4.20-xfs

echo readlink('/vmlinuz');

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

• is_link()

• symlink()
• linkinfo()

realpath

realpath -- Returns canonicalized absolute pathname

Description

string realpath (string $path)

realpath() expands all symbolic links and resolves references to '/./', '/../' and extra '/'
characters in the input path. and return the canonicalized absolute pathname.

Parameters

path

The path being checked.

Return Values

Returns the canonicalized absolute pathname on success. The resulting path will have no
symbolic link, '/./' or '/../' components.

realpath() returns FALSE on failure, e.g. if the file does not exist. On BSD systems
realpath() doesn't fail if only the last path component doesn't exist, while other systems
will return FALSE.

Examples

Example #49 - realpath() example

<?php

chdir('/var/www/');

echo realpath('./../../etc/passwd');

?>

The above example will output:

/etc/passwd

Example #50 - realpath() on Windows

On windows realpath() will change unix style paths to windows style.

<?php

echo realpath('/windows/system32');

?>

The above example will output:

C:\WINDOWS\System32

See Also

• basename()
• dirname()
• pathinfo()

rename

rename -- Renames a file or directory

Description

bool rename (string $oldname, string $newname [, resource $context])

Attempts to rename oldname to newname.

Parameters

oldname

Note

The old name. The wrapper used in oldname must match the wrapper used in
newname.

newname

The new name.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 rename() can now also be used with some
URL wrappers. Refer to List of Supported

Protocols/Wrappers for a listing of which
wrappers support rename().

4.3.3 rename() is now able to rename files across
partitions on *nix based systems.

Examples

Example #51 - Example with rename()

<?php

rename("/tmp/tmp_file.txt", "/home/user/login/docs/my_file.txt");

?>

See Also

• copy()
• unlink()
• move_uploaded_file()

rewind

rewind -- Rewind the position of a file pointer

Description

bool rewind (resource $handle)

Sets the file position indicator for handle to the beginning of the file stream.

Note

If you have opened the file in append ("a" or "a+") mode, any data you write to the file
will always be appended, regardless of the file position.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fseek()
• ftell()

rmdir

rmdir -- Removes directory

Description

bool rmdir (string $dirname [, resource $context])

Attempts to remove the directory named by dirname. The directory must be empty, and
the relevant permissions must permit this.

Parameters

dirname

Path to the directory.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 As of PHP 5.0.0 rmdir() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support rmdir().

Notes

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

See Also

• mkdir()
• unlink()

set_file_buffer

set_file_buffer -- Alias of stream_set_write_buffer()

Description

This function is an alias of: stream_set_write_buffer().

stat

stat -- Gives information about a file

Description

array stat (string $filename)

Gathers the statistics of the file named by filename. If filename is a symbolic link,
statistics are from the file itself, not the symlink.

lstat() is identical to stat() except it would instead be based off the symlinks status.

Parameters

filename

Path to the file.

Return Values

stat() and fstat() result format

Numeric Associative (since PHP
4.0.6)

Description

0 dev device number

1 ino inode number

2 mode inode protection mode

3 nlink number of links

4 uid userid of owner

5 gid groupid of owner

6 rdev device type, if inode device *

7 size size in bytes

8 atime time of last access (Unix
timestamp)

9 mtime time of last modification

(Unix timestamp)

10 ctime time of last inode change
(Unix timestamp)

11 blksize blocksize of filesystem IO *

12 blocks number of blocks allocated *

* Only valid on systems supporting the st_blksize type - other systems (e.g. Windows)
return -1.

In case of error, stat() returns FALSE.

Errors/Exceptions

Upon failure, an E_WARNING is emitted.

ChangeLog

Version Description

4.0.6 In addition to returning these attributes in a
numeric array, they can be accessed with
associative indices, as noted next to each
parameter

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• lstat()
• fstat()
• filemtime()
• filegroup()

symlink

symlink -- Creates a symbolic link

Description

bool symlink (string $target, string $link)

symlink() creates a symbolic link to the existing target with the specified name link.

Parameters

target

Target of the link.

link

The link name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is not implemented on Windows platforms.

See Also

• link() to create hard links
• readlink() along with linkinfo()

tempnam

tempnam -- Create file with unique file name

Description

string tempnam (string $dir, string $prefix)

Creates a file with a unique filename, with access permission set to 0600, in the specified
directory. If the directory does not exist, tempnam() may generate a file in the system's
temporary directory, and return the name of that.

Parameters

dir

The directory where the temporary filename will be created.

prefix

The prefix of the generated temporary filename.

Return Values

Returns the new temporary filename, or FALSE on failure.

ChangeLog

Version Description

4.0.6 Prior to PHP 4.0.6, the behaviour of the
tempnam() function was system dependent.
On Windows the TMP environment variable
will override the dir parameter, on Linux
the TMPDIR environment variable has
precedence, while SVR4 will always use
your dir parameter if the directory it points
to exists. Consult your system
documentation on the tempnam(3) function
if in doubt.

4.0.3 This function's behavior changed in 4.0.3.
The temporary file is also created to avoid a
race condition where the file might appear in
the filesystem between the time the string
was generated and before the script gets

around to creating the file. Note, that you
need to remove the file in case you need it
no more, it is not done automatically.

Examples

Example #52 - tempnam() example

<?php

$tmpfname = tempnam("/tmp", "FOO");

$handle = fopen($tmpfname, "w");

fwrite($handle, "writing to tempfile");

fclose($handle);

// do here something

unlink($tmpfname);

?>

Notes

Note

If PHP cannot create a file in the specified dir parameter, it falls back on the system
default.

See Also

• tmpfile()
• sys_get_temp_dir()
• unlink()

tmpfile

tmpfile -- Creates a temporary file

Description

resource tmpfile (void)

Creates a temporary file with a unique name in read-write (w+) mode and returns a file
handle .

The file is automatically removed when closed (using fclose()), or when the script ends.

For details, consult your system documentation on the tmpfile(3) function, as well as the
stdio.h header file.

Return Values

Returns a file handle, similar to the one returned by fopen(), for the new file, or FALSE on
failure.

Examples

Example #53 - tmpfile() example

<?php

$temp = tmpfile();

fwrite($temp, "writing to tempfile");

fseek($temp, 0);

echo fread($temp, 1024);

fclose($temp); // this removes the file

?>

The above example will output:

writing to tempfile

See Also

• tempnam()
• sys_get_temp_dir()

touch

touch -- Sets access and modification time of file

Description

bool touch (string $filename [, int $time [, int $atime]])

Attempts to set the access and modification times of the file named in the filename
parameter to the value given in time. Note that the access time is always modified,
regardless of the number of parameters.

If the file does not exist, it will be created.

Parameters

filename

The name of the file being touched.

time

The touch time. If time is not supplied, the current system time is used.

atime

If present, the access time of the given filename is set to the value of atime

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #54 - touch() example

<?php

if (touch($FileName)) {

 echo "$FileName modification time has been changed to present time";

} else {

 echo "Sorry, could not change modification time of $FileName";

}

?>

Notes

Warning

It is not currently possible to change the modification time of a directory with this
function under Windows.

umask

umask -- Changes the current umask

Description

int umask ([int $mask])

umask() sets PHP's umask to mask & 0777 and returns the old umask. When PHP is being
used as a server module, the umask is restored when each request is finished.

Parameters

mask

The new umask.

Return Values

umask() without arguments simply returns the current umask otherwise the old umask is
returned.

Examples

Example #55 - umask() example

<?php

$old = umask(0);

chmod("/path/some_dir/some_file.txt", 0755);

umask($old);

// Checking

if ($old != umask()) {

 die('An error occured while changing back the umask');

}

?>

Notes

Note

Avoid using this function in multithreaded webservers. It is better to change the file
permissions with chmod() after creating the file. Using umask() can lead to unexpected
behavior of concurrently running scripts and the webserver itself because they all use

the same umask.

unlink

unlink -- Deletes a file

Description

bool unlink (string $filename [, resource $context])

Deletes filename. Similar to the Unix C unlink() function.

Parameters

filename

Path to the file.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 As of PHP 5.0.0 unlink() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support unlink().

See Also

• rmdir() for removing directories

	Filesystem
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Filesystem Functions
	basename
	chgrp
	chmod
	chown
	clearstatcache
	copy
	delete
	dirname
	disk_free_space
	disk_total_space
	diskfreespace
	fclose
	feof
	fflush
	fgetc
	fgetcsv
	fgets
	fgetss
	file_exists
	file_get_contents
	file_put_contents
	file
	fileatime
	filectime
	filegroup
	fileinode
	filemtime
	fileowner
	fileperms
	filesize
	filetype
	flock
	fnmatch
	fopen
	fpassthru
	fputcsv
	fputs
	fread
	fscanf
	fseek
	fstat
	ftell
	ftruncate
	fwrite
	glob
	is_dir
	is_executable
	is_file
	is_link
	is_readable
	is_uploaded_file
	is_writable
	is_writeable
	lchgrp
	lchown
	link
	linkinfo
	lstat
	mkdir
	move_uploaded_file
	parse_ini_file
	pathinfo
	pclose
	popen
	readfile
	readlink
	realpath
	rename
	rewind
	rmdir
	set_file_buffer
	stat
	symlink
	tempnam
	tmpfile
	touch
	umask
	unlink

