
Semaphore, Shared Memory and IPC



Introduction

This module provides wrappers for the System V IPC family of functions. It includes 
semaphores, shared memory and inter-process messaging (IPC).

Semaphores may be used to provide exclusive access to resources on the current 
machine, or to limit the number of processes that may simultaneously use a resource.

This module provides also shared memory functions using System V shared memory. 
Shared memory may be used to provide access to global variables. Different 
httpd-daemons and even other programs (such as Perl, C, ...) are able to access this data 
to provide a global data-exchange. Remember, that shared memory is NOT safe against 
simultaneous access. Use semaphores for synchronization.

Limits of Shared Memory by the Unix OS

SHMMAX max size of shared memory, normally 
131072 bytes

SHMMIN minimum size of shared memory, normally 1 
byte

SHMMNI max amount of shared memory segments 
on a system, normally 100

SHMSEG max amount of shared memory segments 
per process, normally 6

The messaging functions may be used to send and receive messages to/from other 
processes. They provide a simple and effective means of exchanging data between 
processes, without the need for setting up an alternative using Unix domain sockets.

Note

This extension is not available on Windows platforms.



Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Support for this functions are not enabled by default. To enable System V semaphore 
support compile PHP with the option --enable-sysvsem. To enable the System V shared 
memory support compile PHP with the option --enable-sysvshm. To enable the System V 
messages support compile PHP with the option --enable-sysvmsg.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Semaphore Configuration Options

Name Default Changeable Changelog

sysvmsg.value "42" PHP_INI_ALL

sysvmsg.string "foobar" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.



Predefined Constants

The constants below are defined by this extension, and will only be available when the 
extension has either been compiled into PHP or dynamically loaded at runtime.

System V message constants

Constant Type Changelog

MSG_IPC_NOWAIT integer

MSG_EAGAIN integer As of 5.2.0

MSG_ENOMSG integer As of 5.2.0

MSG_NOERROR integer

MSG_EXCEPT integer



Semaphore Functions



ftok

ftok -- Convert a pathname and a project identifier to a System V IPC key

Description

int ftok ( string $pathname, string $proj )

The function converts the pathname of an existing accessible file and a project identifier 
into an integer for use with for example shmop_open() and other System V IPC keys.

Parameters

pathname

Path to an accessible file.

proj

Project identifier. This must be a one character string.

Return Values

On success the return value will be the created key value, otherwise -1 is returned.

See Also

• shmop_open()
• sem_get()



msg_get_queue

msg_get_queue -- Create or attach to a message queue

Description

resource msg_get_queue ( int $key [, int $perms ] )

msg_get_queue() returns an id that can be used to access the System V message queue 
with the given key. The first call creates the message queue with the optional perms. A 
second call to msg_get_queue() for the same key will return a different message queue 
identifier, but both identifiers access the same underlying message queue.

Parameters

key

Message queue numeric ID

perms

Queue permissions. Default to 0666. If the message queue already exists, the perms 
will be ignored.

Return Values

Returns a resource handle that can be used to access the System V message queue.

See Also

• msg_remove_queue()
• msg_receive()
• msg_send()
• msg_stat_queue()
• msg_set_queue()



msg_queue_exists

msg_queue_exists -- Check wether a message queue exists

Description

bool msg_queue_exists ( int $key )

Checks wether the message queue key exists.

Parameters

key

Queue key.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()



msg_receive

msg_receive -- Receive a message from a message queue

Description

bool msg_receive ( resource $queue, int $desiredmsgtype, int &$msgtype, int $maxsize, 
mixed &$message [, bool $unserialize [, int $flags [, int &$errorcode ] ] ] )

msg_receive() will receive the first message from the specified queue of the type specified 
by desiredmsgtype.

Parameters

queue

desiredmsgtype

If desiredmsgtype is 0, the message from the front of the queue is returned. If 
desiredmsgtype is greater than 0, then the first message of that type is returned. If 
desiredmsgtype is less than 0, the first message on the queue with the lowest type less 
than or equal to the absolute value of desiredmsgtype will be read. If no messages 
match the criteria, your script will wait until a suitable message arrives on the queue. 
You can prevent the script from blocking by specifying MSG_IPC_NOWAIT in the 
flags parameter.

msgtype

The type of the message that was received will be stored in this parameter.

maxsize

The maximum size of message to be accepted is specified by the maxsize; if the 
message in the queue is larger than this size the function will fail (unless you set flags 
as described below).

message

The received message will be stored in message, unless there were errors receiving 
the message.

unserialize

unserialize defaults to TRUE; if it is set to TRUE, the message is treated as though it 
was serialized using the same mechanism as the session module. The message will 
be unserialized and then returned to your script. This allows you to easily receive 
arrays or complex object structures from other PHP scripts, or if you are using the 
WDDX serializer, from any WDDX compatible source. If unserialize is FALSE, the 
message will be returned as a binary-safe string.

flags

The optional flags allows you to pass flags to the low-level msgrcv system call. It 



defaults to 0, but you may specify one or more of the following values (by adding or 
ORing them together).

Flag values for msg_receive

MSG_IPC_NOWAIT If there are no messages of the 
desiredmsgtype, return immediately and do 
not wait. The function will fail and return an 
integer value corresponding to 
MSG_ENOMSG.

MSG_EXCEPT Using this flag in combination with a 
desiredmsgtype greater than 0 will cause 
the function to receive the first message that 
is not equal to desiredmsgtype.

MSG_NOERROR If the message is longer than maxsize, 
setting this flag will truncate the message to 
maxsize and will not signal an error.

errorcode

If the function fails, the optional errorcode will be set to the value of the system errno 
variable.

Return Values

Returns TRUE on success or FALSE on failure.

Upon successful completion the message queue data structure is updated as follows: 
msg_lrpid is set to the process-ID of the calling process, msg_qnum is decremented by 1 and 
msg_rtime is set to the current time.

See Also

• msg_remove_queue()
• msg_send()
• msg_stat_queue()
• msg_set_queue()



msg_remove_queue

msg_remove_queue -- Destroy a message queue

Description

bool msg_remove_queue ( resource $queue )

msg_remove_queue() destroys the message queue specified by the queue. Only use this 
function when all processes have finished working with the message queue and you need to 
release the system resources held by it.

Parameters

queue

Message queue resource handle

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_get_queue()
• msg_receive()
• msg_stat_queue()
• msg_set_queue()



msg_send

msg_send -- Send a message to a message queue

Description

bool msg_send ( resource $queue, int $msgtype, mixed $message [, bool $serialize [, bool $
blocking [, int &$errorcode ] ] ] )

msg_send() sends a message of type msgtype (which MUST be greater than 0) to the 
message queue specified by queue.

Parameters

queue

msgtype

message

serialize

The optional serialize controls how the message is sent. serialize defaults to TRUE 
which means that the message is serialized using the same mechanism as the session 
module before being sent to the queue. This allows complex arrays and objects to be sent 
to other PHP scripts, or if you are using the WDDX serializer, to any WDDX compatible 
client.

blocking

If the message is too large to fit in the queue, your script will wait until another process 
reads messages from the queue and frees enough space for your message to be sent. 
This is called blocking; you can prevent blocking by setting the optional blocking 
parameter to FALSE, in which case msg_send() will immediately return FALSE if the 
message is too big for the queue, and set the optional errorcode to MSG_EAGAIN, 
indicating that you should try to send your message again a little later on.

errorcode

Return Values

Returns TRUE on success or FALSE on failure.

Upon successful completion the message queue data structure is updated as follows: 
msg_lspid is set to the process-ID of the calling process, msg_qnum is incremented by 1 and 



msg_stime is set to the current time.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()
• msg_set_queue()



msg_set_queue

msg_set_queue -- Set information in the message queue data structure

Description

bool msg_set_queue ( resource $queue, array $data )

msg_set_queue() allows you to change the values of the msg_perm.uid, msg_perm.gid, 
msg_perm.mode and msg_qbytes fields of the underlying message queue data structure.

Changing the data structure will require that PHP be running as the same user that created 
the queue, owns the queue (as determined by the existing msg_perm.xxx fields), or be 
running with root privileges. root privileges are required to raise the msg_qbytes values above 
the system defined limit.

Parameters

queue

Message queue resource handle

data

You specify the values you require by setting the value of the keys that you require in the 
data array.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()
• msg_get_queue()



msg_stat_queue

msg_stat_queue -- Returns information from the message queue data structure

Description

array msg_stat_queue ( resource $queue )

msg_stat_queue() returns the message queue meta data for the message queue specified by 
the queue. This is useful, for example, to determine which process sent the message that was 
just received.

Parameters

queue

Message queue resource handle

Return Values

The return value is an array whose keys and values have the following meanings:

Array structure for msg_stat_queue

msg_perm.uid The uid of the owner of the queue.

msg_perm.gid The gid of the owner of the queue.

msg_perm.mode The file access mode of the queue.

msg_stime The time that the last message was sent to 
the queue.

msg_rtime The time that the last message was 
received from the queue.

msg_ctime The time that the queue was last changed.

msg_qnum The number of messages waiting to be read 
from the queue.

msg_qbytes The number of bytes of space currently 
available in the queue to hold sent 
messages until they are received.

msg_lspid The pid of the process that sent the last 
message to the queue.



msg_lrpid The pid of the process that received the last 
message from the queue.

See Also

• msg_remove_queue()
• msg_receive()
• msg_get_queue()
• msg_set_queue()



sem_acquire

sem_acquire -- Acquire a semaphore

Description

bool sem_acquire ( resource $sem_identifier )

sem_acquire() blocks (if necessary) until the semaphore can be acquired. A process 
attempting to acquire a semaphore which it has already acquired will block forever if 
acquiring the semaphore would cause its maximum number of semaphore to be 
exceeded.

After processing a request, any semaphores acquired by the process but not explicitly 
released will be released automatically and a warning will be generated.

Parameters

sem_identifier

sem_identifier is a semaphore resource, obtained from sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_release()



sem_get

sem_get -- Get a semaphore id

Description

resource sem_get ( int $key [, int $max_acquire [, int $perm [, int $auto_release ] ] ] )

sem_get() returns an id that can be used to access the System V semaphore with the 
given key.

A second call to sem_get() for the same key will return a different semaphore identifier, but 
both identifiers access the same underlying semaphore.

Parameters

key

max_acquire

The number of processes that can acquire the semaphore simultaneously is set to 
max_acquire (defaults to 1).

perm

The semaphore permissions. Defaults to 0666. Actually this value is set only if the 
process finds it is the only process currently attached to the semaphore.

auto_release

Specifies if the semaphore should be automatically released on request shutdown.

Return Values

Returns a positive semaphore identifier on success, or FALSE on error.

ChangeLog

Version Description

4.3.0 The auto_release parameter was added.

See Also



• sem_acquire()
• sem_release()
• ftok()



sem_release

sem_release -- Release a semaphore

Description

bool sem_release ( resource $sem_identifier )

sem_release() releases the semaphore if it is currently acquired by the calling process, 
otherwise a warning is generated.

After releasing the semaphore, sem_acquire() may be called to re-acquire it.

Parameters

sem_identifier

A Semaphore resource handle as returned by sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_acquire()



sem_remove

sem_remove -- Remove a semaphore

Description

bool sem_remove ( resource $sem_identifier )

sem_remove() removes the given semaphore.

After removing the semaphore, it is no more accessible.

Parameters

sem_identifier

A semaphore resource identifier as returned by sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_release()
• sem_acquire()



shm_attach

shm_attach -- Creates or open a shared memory segment

Description

int shm_attach ( int $key [, int $memsize [, int $perm ] ] )

shm_attach() returns an id that can be used to access the System V shared memory with 
the given key, the first call creates the shared memory segment with memsize and the 
optional perm-bits perm.

A second call to shm_attach() for the same key will return a different shared memory 
identifier, but both identifiers access the same underlying shared memory. memsize and 
perm will be ignored.

Parameters

key

A numeric shared memory segment ID

memsize

The memory size. If not provided, default to the sysvshm.init_mem in the php.ini, 
otherwise 10000 bytes.

perm

The optional permission bits. Default to 0666.

Return Values

Returns a shared memory segment identifier.

See Also

• shm_detach()
• ftok()



shm_detach

shm_detach -- Disconnects from shared memory segment

Description

bool shm_detach ( int $shm_identifier )

shm_detach() disconnects from the shared memory given by the shm_identifier created 
by shm_attach(). Remember, that shared memory still exist in the Unix system and the 
data is still present.

Parameters

shm_identifier

A shared memory resource handle as returned by shm_attach()

Return Values

shm_detach() always returns TRUE.

See Also

• shm_attach()
• shm_remove()
• shm_remove_var()



shm_get_var

shm_get_var -- Returns a variable from shared memory

Description

mixed shm_get_var ( int $shm_identifier, int $variable_key )

shm_get_var() returns the variable with a given variable_key, in the given shared 
memory segment. The variable is still present in the shared memory.

Parameters

shm_identifier

Shared memory segment, obtained from shm_attach().

variable_key

The variable key.

Return Values

Returns the variable with the given key.



shm_put_var

shm_put_var -- Inserts or updates a variable in shared memory

Description

bool shm_put_var ( int $shm_identifier, int $variable_key, mixed $variable )

shm_put_var() inserts or updates the variable with the given variable_key.

Warnings ( E_WARNING level) will be issued if shm_identifier is not a valid SysV shared 
memory index or if there was not enough shared memory remaining to complete your 
request.

Parameters

shm_identifier

A shared memory resource handle as returned by shm_attach()

variable_key

The variable key.

variable

The variable. All variable-types are supported.

Return Values

Returns TRUE on success or FALSE on failure.



shm_remove_var

shm_remove_var -- Removes a variable from shared memory

Description

bool shm_remove_var ( int $shm_identifier, int $variable_key )

Removes a variable with a given variable_key and frees the occupied memory.

Parameters

shm_identifier

The shared memory identifier as returned by shm_attach()

variable_key

The variable key.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• shm_remove()



shm_remove

shm_remove -- Removes shared memory from Unix systems

Description

bool shm_remove ( int $shm_identifier )

shm_remove() removes the shared memory shm_identifier. All data will be destroyed.

Parameters

shm_identifier

The shared memory identifier as returned by shm_attach()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• shm_remove_var()


	Semaphore
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Semaphore Functions
	ftok
	msg_get_queue
	msg_queue_exists
	msg_receive
	msg_remove_queue
	msg_send
	msg_set_queue
	msg_stat_queue
	sem_acquire
	sem_get
	sem_release
	sem_remove
	shm_attach
	shm_detach
	shm_get_var
	shm_put_var
	shm_remove_var
	shm_remove



