
OpenSSL

Introduction

This module uses the functions of » OpenSSL for generation and verification of signatures
and for sealing (encrypting) and opening (decrypting) data. OpenSSL offers many features
that this module currently doesn't support. Some of these may be added in the future.

http://www.openssl.org/

Installing/Configuring

Requirements

In order to use the OpenSSL functions you need to install the » OpenSSL package. PHP
between versions 4.0.5 and 4.3.1 will work with OpenSSL >= 0.9.5. Other versions (PHP
<=4.0.4 and >= 4.3.2) require OpenSSL >= 0.9.6.

Warning

You are strongly encouraged to use the most recent OpenSSL version, otherwise your
web server could be vulnerable to attack.

Installation

To use PHP's OpenSSL support you must also compile PHP --with-openssl[=DIR].

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: libeay32.dll

Additionally, if you are planning to use the key generation and certificate signing
functions, you will need to install a valid openssl.cnf file on your system. As of PHP
4.3.0, we include a sample configuration file in our win32 binary distributions. PHP
4.3.x and 4.4.x has the file in the openssl directory. PHP 5.x and 6.x has the file in the
extras/openssl directory. If you are either using PHP 4.2.x or missing the file, you can
obtain it from » the OpenSSL binaries page or by downloading a recent PHP release.
Be aware that Windows Explorer hides the.cnf extension by default and says the file
Type is SpeedDial.

PHP will search for the openssl.cnf using the following logic:

• the OPENSSL_CONF environmental variable, if set, will be used as the path
(including filename) of the configuration file.

• the SSLEAY_CONF environmental variable, if set, will be used as the path
(including filename) of the configuration file.

http://www.openssl.org/
http://www.openssl.org/related/binaries.html

• The file openssl.cnf will be assumed to be found in the default certificate area, as
configured at the time that the openssl DLL was compiled. This is usually means
that the default filename is c:\usr\local\ssl\openssl.cnf.

In your installation, you need to decide whether to install the configuration file at
c:\usr\local\ssl\openssl.cnf or whether to install it someplace else and use
environmental variables (possibly on a per-virtual-host basis) to locate the
configuration file. Note that it is possible to override the default path from the script
using the configargs of the functions that require a configuration file.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Purpose checking flags

X509_PURPOSE_SSL_CLIENT (integer)

X509_PURPOSE_SSL_SERVER (integer)

X509_PURPOSE_NS_SSL_SERVER (integer)

X509_PURPOSE_SMIME_SIGN (integer)

X509_PURPOSE_SMIME_ENCRYPT (integer)

X509_PURPOSE_CRL_SIGN (integer)

X509_PURPOSE_ANY (integer)

Padding flags

OPENSSL_PKCS1_PADDING (integer)

OPENSSL_SSLV23_PADDING (integer)

OPENSSL_NO_PADDING (integer)

OPENSSL_PKCS1_OAEP_PADDING (integer)

Key types

OPENSSL_KEYTYPE_RSA (integer)

OPENSSL_KEYTYPE_DSA (integer)

OPENSSL_KEYTYPE_DH (integer)

PKCS7 Flags/Constants

The S/MIME functions make use of flags which are specified using a bitfield which can
include one or more of the following values:

PKCS7 CONSTANTS

Constant Description

PKCS7_TEXT Adds text/plain content type headers to
encrypted/signed message. If decrypting or
verifying, it strips those headers from the
output - if the decrypted or verified message
is not of MIME type text/plain then an error
will occur.

PKCS7_BINARY Normally the input message is converted to
"canonical" format which is effectively using
CR and LF as end of line: as required by the
S/MIME specification. When this options is
present, no translation occurs. This is useful
when handling binary data which may not be
in MIME format.

PKCS7_NOINTERN When verifying a message, certificates (if
any) included in the message are normally
searched for the signing certificate. With this
option only the certificates specified in the
extracerts parameter of
openssl_pkcs7_verify() are used. The
supplied certificates can still be used as
untrusted CAs however.

PKCS7_NOVERIFY Do not verify the signers certificate of a
signed message.

PKCS7_NOCHAIN Do not chain verification of signers
certificates: that is don't use the certificates
in the signed message as untrusted CAs.

PKCS7_NOCERTS When signing a message the signer's
certificate is normally included - with this
option it is excluded. This will reduce the
size of the signed message but the verifier
must have a copy of the signers certificate

available locally (passed using the
extracerts to openssl_pkcs7_verify() for
example).

PKCS7_NOATTR Normally when a message is signed, a set
of attributes are included which include the
signing time and the supported symmetric
algorithms. With this option they are not
included.

PKCS7_DETACHED When signing a message, use cleartext
signing with the MIME type multipart/signed.
This is the default if you do not specify any
flags to openssl_pkcs7_sign(). If you turn
this option off, the message will be signed
using opaque signing, which is more
resistant to translation by mail relays but
cannot be read by mail agents that do not
support S/MIME.

PKCS7_NOSIGS Don't try and verify the signatures on a
message

Note

These constants were added in 4.0.6.

Signature Algorithms

OPENSSL_ALGO_SHA1 (integer)
Used as default algorithm by openssl_sign() and openssl_verify().

OPENSSL_ALGO_MD5 (integer)

OPENSSL_ALGO_MD4 (integer)

OPENSSL_ALGO_MD2 (integer)

Note

These constants were added in 5.0.0.

Ciphers

OPENSSL_CIPHER_RC2_40 (integer)

OPENSSL_CIPHER_RC2_128 (integer)

OPENSSL_CIPHER_RC2_64 (integer)

OPENSSL_CIPHER_DES (integer)

OPENSSL_CIPHER_3DES (integer)

Note

These constants were added in 4.3.0.

Version constants

OPENSSL_VERSION_TEXT (string)

OPENSSL_VERSION_NUMBER (integer)

Note

These constants were added in 5.2.0.

Key/Certificate parameters

Quite a few of the openssl functions require a key or a certificate parameter. PHP 4.0.5
and earlier have to use a key or certificate resource returned by one of the
openssl_get_xxx functions. Later versions may use one of the following methods:

• Certificates

• An X.509 resource returned from openssl_x509_read()

• A string having the format file://path/to/cert.pem; the named file must contain a
PEM encoded certificate

• A string containing the content of a certificate, PEM encoded

• Public/Private Keys

• A key resource returned from openssl_get_publickey() or openssl_get_privatekey()

• For public keys only: an X.509 resource

• A string having the format file://path/to/file.pem - the named file must contain a
PEM encoded certificate/private key (it may contain both)

• A string containing the content of a certificate/key, PEM encoded

• For private keys, you may also use the syntax array($key, $passphrase) where
$key represents a key specified using the file:// or textual content notation above,
and $passphrase represents a string containing the passphrase for that private key

Certificate Verification

When calling a function that will verify a signature/certificate, the cainfo parameter is an
array containing file and directory names that specify the locations of trusted CA files. If a
directory is specified, then it must be a correctly formed hashed directory as the openssl
command would use.

OpenSSL Functions

openssl_csr_export_to_file

openssl_csr_export_to_file -- Exports a CSR to a file

Description

bool openssl_csr_export_to_file (resource $csr, string $outfilename [, bool $notext])

openssl_csr_export_to_file() takes the Certificate Signing Request represented by csr
and saves it as ascii-armoured text into the file named by outfilename.

Parameters

csr

outfilename

Path to the output file.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_csr_export()
• openssl_csr_new()
• openssl_csr_sign()

openssl_csr_export

openssl_csr_export -- Exports a CSR as a string

Description

bool openssl_csr_export (resource $csr, string &$out [, bool $notext])

openssl_csr_export() takes the Certificate Signing Request represented by csr and stores
it as ascii-armoured text into out, which is passed by reference.

Parameters

csr

out

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_csr_export_to_file()
• openssl_csr_new()
• openssl_csr_sign()

openssl_csr_get_public_key

openssl_csr_get_public_key -- Returns the public key of a CERT

Description

resource openssl_csr_get_public_key (mixed $csr [, bool $use_shortnames])

Warning

This function is currently not documented; only its argument list is available.

openssl_csr_get_subject

openssl_csr_get_subject -- Returns the subject of a CERT

Description

array openssl_csr_get_subject (mixed $csr [, bool $use_shortnames])

Warning

This function is currently not documented; only its argument list is available.

openssl_csr_new

openssl_csr_new -- Generates a CSR

Description

mixed openssl_csr_new (array $dn, resource &$privkey [, array $configargs [, array $
extraattribs]])

openssl_csr_new() generates a new CSR (Certificate Signing Request) based on the
information provided by dn, which represents the Distinguished Name to be used in the
certificate.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

dn

The Distinguished Name to be used in the certificate.

privkey

privkey should be set to a private key that was previously generated by
openssl_pkey_new() (or otherwise obtained from the other openssl_pkey family of
functions). The corresponding public portion of the key will be used to sign the CSR.

configargs

By default, the information in your system openssl.conf is used to initialize the request;
you can specify a configuration file section by setting the config_section_section key of
configargs. You can also specify an alternative openssl configuration file by setting
the value of the config key to the path of the file you want to use. The following keys, if
present in configargs behave as their equivalents in the openssl.conf, as listed in the
table below.

Configuration overrides

configargs key type openssl.conf equivalent description

digest_alg string default_md Selects which digest method
to use

x509_extensions string x509_extensions Selects which extensions
should be used when
creating an x509 certificate

req_extensions string req_extensions Selects which extensions
should be used when
creating a CSR

private_key_bits integer default_bits Specifies how many bits
should be used to generate a
private key

private_key_type integer none Specifies the type of private
key to create. This can be
one of
OPENSSL_KEYTYPE_DSA,
OPENSSL_KEYTYPE_DH
or
OPENSSL_KEYTYPE_RSA.
The default value is
OPENSSL_KEYTYPE_RSA
which is currently the only
supported key type.

encrypt_key boolean encrypt_key Should an exported key (with
passphrase) be encrypted?

extraattribs

extraattribs is used to specify additional configuration options for the CSR. Both dn and
extraattribs are associative arrays whose keys are converted to OIDs and applied to the
relevant part of the request.

Return Values

Returns the CSR.

Examples

Example #1 - Creating a self-signed-certificate

<?php

// Fill in data for the distinguished name to be used in the cert

// You must change the values of these keys to match your name and

// company, or more precisely, the name and company of the person/site

// that you are generating the certificate for.

// For SSL certificates, the commonName is usually the domain name of

// that will be using the certificate, but for S/MIME certificates,

// the commonName will be the name of the individual who will use the

// certificate.

$dn = array(

 "countryName" => "UK",

 "stateOrProvinceName" => "Somerset",

 "localityName" => "Glastonbury",

 "organizationName" => "The Brain Room Limited",

 "organizationalUnitName" => "PHP Documentation Team",

 "commonName" => "Wez Furlong",

 "emailAddress" => "wez@example.com"

);

// Generate a new private (and public) key pair

$privkey = openssl_pkey_new();

// Generate a certificate signing request

$csr = openssl_csr_new($dn, $privkey);

// You will usually want to create a self-signed certificate at this

// point until your CA fulfills your request.

// This creates a self-signed cert that is valid for 365 days

$sscert = openssl_csr_sign($csr, null, $privkey, 365);

// Now you will want to preserve your private key, CSR and self-signed

// cert so that they can be installed into your web server, mail server

// or mail client (depending on the intended use of the certificate).

// This example shows how to get those things into variables, but you

// can also store them directly into files.

// Typically, you will send the CSR on to your CA who will then issue

// you with the "real" certificate.

openssl_csr_export($csr, $csrout) and var_dump($csrout);

openssl_x509_export($sscert, $certout) and var_dump($certout);

openssl_pkey_export($privkey, $pkeyout, "mypassword") and var_dump($pkeyout);

// Show any errors that occurred here

while (($e = openssl_error_string()) !== false) {

 echo $e . "\n";

}

?>

openssl_csr_sign

openssl_csr_sign -- Sign a CSR with another certificate (or itself) and generate a certificate

Description

resource openssl_csr_sign (mixed $csr, mixed $cacert, mixed $priv_key, int $days [,
array $configargs [, int $serial]])

openssl_csr_sign() generates an x509 certificate resource from the given CSR.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly. See
the notes under the installation section for more information.

Parameters

csr

A CSR previously generated by openssl_csr_new(). It can also be the path to a PEM
encoded CSR when specified as file://path/to/csr or an exported string generated by
openssl_csr_export().

cacert

The generated certificate will be signed by cacert. If cacert is NULL, the generated
certificate will be a self-signed certificate.

priv_key

priv_key is the private key that corresponds to cacert.

days

days specifies the length of time for which the generated certificate will be valid, in days.

configargs

You can finetune the CSR signing by configargs. See openssl_csr_new() for more
information about configargs.

serial

An optional the serial number of issued certificate. If not specified it will default to 0.

Return Values

Returns an x509 certificate resource on success, FALSE on failure.

ChangeLog

Version Description

4.3.3 The serial parameter was added.

Examples

Example #2 - openssl_csr_sign() example - signing a CSR (how to implement your
own CA)

<?php

// Let's assume that this script is set to receive a CSR that has

// been pasted into a textarea from another page

$csrdata = $_POST["CSR"];

// We will sign the request using our own "certificate authority"

// certificate. You can use any certificate to sign another, but

// the process is worthless unless the signing certificate is trusted

// by the software/users that will deal with the newly signed certificate

// We need our CA cert and its private key

$cacert = "file://path/to/ca.crt";

$privkey = array("file://path/to/ca.key", "your_ca_key_passphrase");

$userscert = openssl_csr_sign($csrdata, $cacert, $privkey, 365);

// Now display the generated certificate so that the user can

// copy and paste it into their local configuration (such as a file

// to hold the certificate for their SSL server)

openssl_x509_export($usercert, $certout);

echo $certout;

// Show any errors that occurred here

while (($e = openssl_error_string()) !== false) {

 echo $e . "\n";

}

?>

openssl_error_string

openssl_error_string -- Return openSSL error message

Description

string openssl_error_string (void)

openssl_error_string() returns the last error from the openSSL library. Error messages are
stacked, so this function should be called multiple times to collect all of the information.

Return Values

Returns an error message string, or FALSE if there are no more error messages to return.

Examples

Example #3 - openssl_error_string() example

<?php

// lets assume you just called an openssl function that failed

while ($msg = openssl_error_string())

 echo $msg . "
\n";

?>

openssl_free_key

openssl_free_key -- Free key resource

Description

void openssl_free_key (resource $key_identifier)

openssl_free_key() frees the key associated with the specified key_identifier from
memory.

Parameters

key_identifier

Return Values

No value is returned.

openssl_get_privatekey

openssl_get_privatekey -- Alias of openssl_pkey_get_private()

Description

This function is an alias of: openssl_pkey_get_private().

openssl_get_publickey

openssl_get_publickey -- Alias of openssl_pkey_get_public()

Description

This function is an alias of: openssl_pkey_get_public().

openssl_open

openssl_open -- Open sealed data

Description

bool openssl_open (string $sealed_data, string &$open_data, string $env_key, mixed $
priv_key_id)

openssl_open() opens (decrypts) sealed_data using the private key associated with the
key identifier priv_key_id and the envelope key env_key, and fills open_data with the
decrypted data. The envelope key is generated when the data are sealed and can only be
used by one specific private key. See openssl_seal() for more information.

Parameters

sealed_data

open_data

If the call is successful the opened data is returned in this parameter.

env_key

priv_key_id

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #4 - openssl_open() example

<?php

// $sealed and $env_key are assumed to contain the sealed data

// and our envelope key, both given to us by the sealer.

// fetch private key from file and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/key.pem", "r");

$priv_key = fread($fp, 8192);

fclose($fp);

$pkeyid = openssl_get_privatekey($priv_key);

// decrypt the data and store it in $open

if (openssl_open($sealed, $open, $env_key, $pkeyid)) {

 echo "here is the opened data: ", $open;

} else {

 echo "failed to open data";

}

// free the private key from memory

openssl_free_key($pkeyid);

?>

See Also

• openssl_seal()

openssl_pkcs12_export_to_file

openssl_pkcs12_export_to_file -- Exports a PKCS#12 Compatible Certificate Store File

Description

bool openssl_pkcs12_export_to_file (mixed $x509, string $filename, mixed $priv_key,
string $pass [, array $args])

openssl_pkcs12_export_to_file() stores x509 into a file named by filename in a PKCS#12
file format.

Parameters

x509

filename

Path to the output file.

priv_key

Private key component of PKCS#12 file.

pass

Encryption password for unlocking the PKCS#12 file.

args

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs12_export

openssl_pkcs12_export -- Exports a PKCS#12 Compatible Certificate Store File to
variable.

Description

bool openssl_pkcs12_export (mixed $x509, string &$out, mixed $priv_key, string $
pass [, array $args])

openssl_pkcs12_export() stores x509 into a string named by out in a PKCS#12 file
format.

Parameters

x509

out

On success, this will hold the PKCS#12.

priv_key

Private key component of PKCS#12 file.

pass

Encryption password for unlocking the PKCS#12 file.

args

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs12_read

openssl_pkcs12_read -- Parse a PKCS#12 Certificate Store into an array

Description

bool openssl_pkcs12_read (mixed $PKCS12, array &$certs, string $pass)

openssl_pkcs12_read() parses the PKCS#12 certificate store supplied by PKCS12 into a
array named certs.

Parameters

PKCS12

certs

On success, this will hold the Certificate Store Data.

pass

Encryption password for unlocking the PKCS#12 file.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs7_decrypt

openssl_pkcs7_decrypt -- Decrypts an S/MIME encrypted message

Description

bool openssl_pkcs7_decrypt (string $infilename, string $outfilename, mixed $
recipcert [, mixed $recipkey])

Decrypts the S/MIME encrypted message contained in the file specified by infilename
using the certificate and its associated private key specified by recipcert and recipkey.

Parameters

infilename

outfilename

The decrypted message is written to the file specified by outfilename.

recipcert

recipkey

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #5 - openssl_pkcs7_decrypt() example

<?php

// $cert and $key are assumed to contain your personal certificate and
private

// key pair, and that you are the recipient of an S/MIME message

$infilename = "encrypted.msg"; // this file holds your encrypted message

$outfilename = "decrypted.msg"; // make sure you can write to this file

if (openssl_pkcs7_decrypt($infilename, $outfilename, $cert, $key)) {

 echo "decrypted!";

} else {

 echo "failed to decrypt!";

}

?>

openssl_pkcs7_encrypt

openssl_pkcs7_encrypt -- Encrypt an S/MIME message

Description

bool openssl_pkcs7_encrypt (string $infile, string $outfile, mixed $recipcerts,
array $headers [, int $flags [, int $cipherid]])

openssl_pkcs7_encrypt() takes the contents of the file named infile and encrypts them
using an RC2 40-bit cipher so that they can only be read by the intended recipients
specified by recipcerts.

Parameters

infile

outfile

recipcerts

Either a lone X.509 certificate, or an array of X.509 certificates.

headers

headers is an array of headers that will be prepended to the data after it has been
encrypted. headers can be either an associative array keyed by header name, or an
indexed array, where each element contains a single header line.

flags

flags can be used to specify options that affect the encoding process - see PKCS7
constants.

cipherid

Cipher can be selected with cipherid.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The cipherid parameter was added.

Examples

Example #6 - openssl_pkcs7_encrypt() example

<?php

// the message you want to encrypt and send to your secret agent

// in the field, known as nighthawk. You have his certificate

// in the file nighthawk.pem

$data = <<<EOD

Nighthawk,

Top secret, for your eyes only!

The enemy is closing in! Meet me at the cafe at 8.30am

to collect your forged passport!

HQ

EOD;

// load key

$key = file_get_contents("nighthawk.pem");

// save message to file

$fp = fopen("msg.txt", "w");

fwrite($fp, $data);

fclose($fp);

// encrypt it

if (openssl_pkcs7_encrypt("msg.txt", "enc.txt", $key,

 array("To" => "nighthawk@example.com", // keyed syntax

 "From: HQ <hq@example.com>", // indexed syntax

 "Subject" => "Eyes only"))) {

 // message encrypted - send it!

 exec(ini_get("sendmail_path") . " < enc.txt");

}

?>

openssl_pkcs7_sign

openssl_pkcs7_sign -- Sign an S/MIME message

Description

bool openssl_pkcs7_sign (string $infilename, string $outfilename, mixed $signcert,
mixed $privkey, array $headers [, int $flags [, string $extracerts]])

openssl_pkcs7_sign() takes the contents of the file named infilename and signs them
using the certificate and its matching private key specified by signcert and privkey
parameters.

Parameters

infilename

outfilename

signcert

privkey

headers

headers is an array of headers that will be prepended to the data after it has been
signed (see openssl_pkcs7_encrypt() for more information about the format of this
parameter.

flags

flags can be used to alter the output - see PKCS7 constants - if not specified, it
defaults to PKCS7_DETACHED.

extracerts

extracerts specifies the name of a file containing a bunch of extra certificates to
include in the signature which can for example be used to help the recipient to verify
the certificate that you used.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #7 - openssl_pkcs7_sign() example

<?php

// the message you want to sign so that recipient can be sure it was you
that

// sent it

$data = <<<EOD

You have my authorization to spend $10,000 on dinner expenses.

The CEO

EOD;

// save message to file

$fp = fopen("msg.txt", "w");

fwrite($fp, $data);

fclose($fp);

// encrypt it

if (openssl_pkcs7_sign("msg.txt", "signed.txt", "mycert.pem",

 array("file://mycert.pem", "mypassphrase"),

 array("To" => "joes@example.com", // keyed syntax

 "From: HQ <ceo@example.com>", // indexed syntax

 "Subject" => "Eyes only")

)) {

 // message signed - send it!

 exec(ini_get("sendmail_path") . " < signed.txt");

}

?>

openssl_pkcs7_verify

openssl_pkcs7_verify -- Verifies the signature of an S/MIME signed message

Description

mixed openssl_pkcs7_verify (string $filename, int $flags [, string $outfilename [,
array $cainfo [, string $extracerts [, string $content]]]])

openssl_pkcs7_verify() reads the S/MIME message contained in the given file and
examines the digital signature.

Parameters

filename

Path to the message.

flags

flags can be used to affect how the signature is verified - see PKCS7 constants for
more information.

outfilename

If the outfilename is specified, it should be a string holding the name of a file into
which the certificates of the persons that signed the messages will be stored in PEM
format.

cainfo

If the cainfo is specified, it should hold information about the trusted CA certificates to
use in the verification process - see certificate verification for more information about
this parameter.

extracerts

If the extracerts is specified, it is the filename of a file containing a bunch of
certificates to use as untrusted CAs.

content

You can specify a filename with content that will be filled with the verified data, but
with the signature information stripped.

Return Values

Returns TRUE if the signature is verified, FALSE if it is not correct (the message has been
tampered with, or the signing certificate is invalid), or -1 on error.

ChangeLog

Version Description

5.1.0 The content parameter was added.

openssl_pkey_export_to_file

openssl_pkey_export_to_file -- Gets an exportable representation of a key into a file

Description

bool openssl_pkey_export_to_file (mixed $key, string $outfilename [, string $
passphrase [, array $configargs]])

openssl_pkey_export_to_file() saves an ascii-armoured (PEM encoded) rendition of key
into the file named by outfilename.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

key

outfilename

Path to the output file.

passphrase

The key can be optionally protected by a passphrase.

configargs

configargs can be used to fine-tune the export process by specifying and/or overriding
options for the openssl configuration file. See openssl_csr_new() for more information
about configargs.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkey_export

openssl_pkey_export -- Gets an exportable representation of a key into a string

Description

bool openssl_pkey_export (mixed $key, string &$out [, string $passphrase [, array $
configargs]])

openssl_pkey_export() exports key as a PEM encoded string and stores it into out (which
is passed by reference).

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

key

out

passphrase

The key is optionally protected by passphrase.

configargs

configargs can be used to fine-tune the export process by specifying and/or overriding
options for the openssl configuration file. See openssl_csr_new() for more information
about configargs.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkey_free

openssl_pkey_free -- Frees a private key

Description

void openssl_pkey_free (resource $key)

This function frees a private key created by openssl_pkey_new().

Parameters

key

Resource holding the key.

Return Values

No value is returned.

openssl_pkey_get_details

openssl_pkey_get_details -- Returns an array with the key details

Description

array openssl_pkey_get_details (resource $key)

This function returns the key details (bits, key, type).

Parameters

key

Resource holding the key.

Return Values

Returns an array with the key details in success or FALSE in failure. Returned array has
indexes bits (number of bits), key (string representation of the public key) and type (type of
the key which is one of OPENSSL_KEYTYPE_RSA, OPENSSL_KEYTYPE_DSA,
OPENSSL_KEYTYPE_DH, OPENSSL_KEYTYPE_EC or -1 meaning unknown).

openssl_pkey_get_private

openssl_pkey_get_private -- Get a private key

Description

resource openssl_pkey_get_private (mixed $key [, string $passphrase])

openssl_get_privatekey() parses key and prepares it for use by other functions.

Parameters

key

key can be one of the following:

• a string having the format file://path/to/file.pem. The named file must contain a
PEM encoded certificate/private key (it may contain both).

• A PEM formatted private key.

passphrase

The optional parameter passphrase must be used if the specified key is encrypted
(protected by a passphrase).

Return Values

Returns a positive key resource identifier on success, or FALSE on error.

openssl_pkey_get_public

openssl_pkey_get_public -- Extract public key from certificate and prepare it for use

Description

resource openssl_pkey_get_public (mixed $certificate)

openssl_get_publickey() extracts the public key from certificate and prepares it for use
by other functions.

Parameters

certificate

certificate can be one of the following:

• an X.509 certificate resource

• a string having the format file://path/to/file.pem. The named file must contain a
PEM encoded certificate/private key (it may contain both).

• A PEM formatted private key.

Return Values

Returns a positive key resource identifier on success, or FALSE on error.

openssl_pkey_new

openssl_pkey_new -- Generates a new private key

Description

resource openssl_pkey_new ([array $configargs])

openssl_pkey_new() generates a new private and public key pair. The public component
of the key can be obtained using openssl_pkey_get_public().

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

configargs

You can finetune the key generation (such as specifying the number of bits) using
configargs. See openssl_csr_new() for more information about configargs.

Return Values

Returns a resource identifier for the pkey on success, or FALSE on error.

openssl_private_decrypt

openssl_private_decrypt -- Decrypts data with private key

Description

bool openssl_private_decrypt (string $data, string &$decrypted, mixed $key [, int $
padding])

openssl_private_decrypt() decrypts data that was previous encrypted via
openssl_public_encrypt() and stores the result into decrypted.

You can use this function e.g. to decrypt data which were supposed only to you.

Parameters

data

decrypted

key

key must be the private key corresponding that was used to encrypt the data.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be one of
OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_public_encrypt()
• openssl_public_decrypt()

openssl_private_encrypt

openssl_private_encrypt -- Encrypts data with private key

Description

bool openssl_private_encrypt (string $data, string &$crypted, mixed $key [, int $
padding])

openssl_private_encrypt() encrypts data with private key and stores the result into
crypted. Encrypted data can be decrypted via openssl_public_decrypt().

This function can be used e.g. to sign data (or its hash) to prove that it is not written by
someone else.

Parameters

data

crypted

key

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_public_encrypt()
• openssl_public_decrypt()

openssl_public_decrypt

openssl_public_decrypt -- Decrypts data with public key

Description

bool openssl_public_decrypt (string $data, string &$decrypted, mixed $key [, int $
padding])

openssl_public_decrypt() decrypts data that was previous encrypted via
openssl_private_encrypt() and stores the result into decrypted.

You can use this function e.g. to check if the message was written by the owner of the
private key.

Parameters

data

decrypted

key

key must be the public key corresponding that was used to encrypt the data.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_private_encrypt()
• openssl_private_decrypt()

openssl_public_encrypt

openssl_public_encrypt -- Encrypts data with public key

Description

bool openssl_public_encrypt (string $data, string &$crypted, mixed $key [, int $
padding])

openssl_public_encrypt() encrypts data with public key and stores the result into crypted.
Encrypted data can be decrypted via openssl_private_decrypt().

This function can be used e.g. to encrypt message which can be then read only by owner
of the private key. It can be also used to store secure data in database.

Parameters

data

crypted

This will hold the result of the encryption.

key

The public key.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be one of
OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_private_encrypt()
• openssl_private_decrypt()

openssl_seal

openssl_seal -- Seal (encrypt) data

Description

int openssl_seal (string $data, string &$sealed_data, array &$env_keys, array $
pub_key_ids)

openssl_seal() seals (encrypts) data by using RC4 with a randomly generated secret key.
The key is encrypted with each of the public keys associated with the identifiers in
pub_key_ids and each encrypted key is returned in env_keys. This means that one can
send sealed data to multiple recipients (provided one has obtained their public keys). Each
recipient must receive both the sealed data and the envelope key that was encrypted with
the recipient's public key.

Parameters

data

sealed_data

env_keys

pub_key_ids

Return Values

Returns the length of the sealed data on success, or FALSE on error. If successful the
sealed data is returned in sealed_data, and the envelope keys in env_keys.

Examples

Example #8 - openssl_seal() example

<?php

// $data is assumed to contain the data to be sealed

// fetch public keys for our recipients, and ready them

$fp = fopen("/src/openssl-0.9.6/demos/maurice/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pk1 = openssl_get_publickey($cert);

// Repeat for second recipient

$fp = fopen("/src/openssl-0.9.6/demos/sign/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pk2 = openssl_get_publickey($cert);

// seal message, only owners of $pk1 and $pk2 can decrypt $sealed with keys

// $ekeys[0] and $ekeys[1] respectively.

openssl_seal($data, $sealed, $ekeys, array($pk1, $pk2));

// free the keys from memory

openssl_free_key($pk1);

openssl_free_key($pk2);

?>

See Also

• openssl_open()

openssl_sign

openssl_sign -- Generate signature

Description

bool openssl_sign (string $data, string &$signature, mixed $priv_key_id [, int $
signature_alg])

openssl_sign() computes a signature for the specified data by using SHA1 for hashing
followed by encryption using the private key associated with priv_key_id. Note that the
data itself is not encrypted.

Parameters

data

signature

If the call was successful the signature is returned in signature.

priv_key_id

signature_alg

Defaults to OPENSSL_ALGO_SHA1. For more information see the list of Signature
Algorithms.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The signature_alg parameter was added.

Examples

Example #9 - openssl_sign() example

<?php

// $data is assumed to contain the data to be signed

// fetch private key from file and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/key.pem", "r");

$priv_key = fread($fp, 8192);

fclose($fp);

$pkeyid = openssl_get_privatekey($priv_key);

// compute signature

openssl_sign($data, $signature, $pkeyid);

// free the key from memory

openssl_free_key($pkeyid);

?>

See Also

• openssl_verify()

openssl_verify

openssl_verify -- Verify signature

Description

int openssl_verify (string $data, string $signature, mixed $pub_key_id [, int $
signature_alg])

openssl_verify() verifies that the signature is correct for the specified data using the
public key associated with pub_key_id. This must be the public key corresponding to the
private key used for signing.

Parameters

data

signature

pub_key_id

signature_alg

Defaults to OPENSSL_ALGO_SHA1. For more information see the list of Signature
Algorithms.

Return Values

Returns 1 if the signature is correct, 0 if it is incorrect, and -1 on error.

ChangeLog

Version Description

5.0.0 The signature_alg parameter was added.

Examples

Example #10 - openssl_verify() example

<?php

// $data and $signature are assumed to contain the data and the signature

// fetch public key from certificate and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pubkeyid = openssl_get_publickey($cert);

// state whether signature is okay or not

$ok = openssl_verify($data, $signature, $pubkeyid);

if ($ok == 1) {

 echo "good";

} elseif ($ok == 0) {

 echo "bad";

} else {

 echo "ugly, error checking signature";

}

// free the key from memory

openssl_free_key($pubkeyid);

?>

See Also

• openssl_sign()

openssl_x509_check_private_key

openssl_x509_check_private_key -- Checks if a private key corresponds to a certificate

Description

bool openssl_x509_check_private_key (mixed $cert, mixed $key)

Checks whether the given key is the private key that corresponds to cert.

Parameters

cert

The certificate.

key

The private key.

Return Values

Returns TRUE if key is the private key that corresponds to cert, or FALSE otherwise.

openssl_x509_checkpurpose

openssl_x509_checkpurpose -- Verifies if a certificate can be used for a particular purpose

Description

int openssl_x509_checkpurpose (mixed $x509cert, int $purpose [, array $cainfo [,
string $untrustedfile]])

openssl_x509_checkpurpose() examines a certificate to see if it can be used for the
specified purpose.

Parameters

x509cert

The examined certificate.

purpose

openssl_x509_checkpurpose() purposes

Constant Description

X509_PURPOSE_SSL_CLIENT Can the certificate be used for the client side
of an SSL connection?

X509_PURPOSE_SSL_SERVER Can the certificate be used for the server
side of an SSL connection?

X509_PURPOSE_NS_SSL_SERVER Can the cert be used for Netscape SSL
server?

X509_PURPOSE_SMIME_SIGN Can the cert be used to sign S/MIME email?

X509_PURPOSE_SMIME_ENCRYPT Can the cert be used to encrypt S/MIME
email?

X509_PURPOSE_CRL_SIGN Can the cert be used to sign a certificate
revocation list (CRL)?

X509_PURPOSE_ANY Can the cert be used for Any/All purposes?

These options are not bitfields - you may specify one only!

cainfo

cainfo should be an array of trusted CA files/dirs as described in Certificate Verification. It
defaults to an empty array.

untrustedfile

If specified, this should be the name of a PEM encoded file holding certificates that can be
used to help verify the certificate, although no trust in placed in the certificates that come
from that file.

Return Values

Returns TRUE if the certificate can be used for the intended purpose, FALSE if it cannot, or -1
on error.

openssl_x509_export_to_file

openssl_x509_export_to_file -- Exports a certificate to file

Description

bool openssl_x509_export_to_file (mixed $x509, string $outfilename [, bool $notext])

openssl_x509_export_to_file() stores x509 into a file named by outfilename in a PEM
encoded format.

Parameters

x509

outfilename

Path to the output file.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_x509_export

openssl_x509_export -- Exports a certificate as a string

Description

bool openssl_x509_export (mixed $x509, string &$output [, bool $notext])

openssl_x509_export() stores x509 into a string named by output in a PEM encoded format.

Parameters

x509

output

On success, this will hold the PEM.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_x509_free

openssl_x509_free -- Free certificate resource

Description

void openssl_x509_free (resource $x509cert)

openssl_x509_free() frees the certificate associated with the specified x509cert resource from
memory.

Parameters

x509cert

Return Values

No value is returned.

openssl_x509_parse

openssl_x509_parse -- Parse an X509 certificate and return the information as an array

Description

array openssl_x509_parse (mixed $x509cert [, bool $shortnames])

openssl_x509_parse() returns information about the supplied x509cert, including fields such
as subject name, issuer name, purposes, valid from and valid to dates etc.

Parameters

x509cert

shortnames

shortnames controls how the data is indexed in the array - if shortnames is TRUE (the
default) then fields will be indexed with the short name form, otherwise, the long name
form will be used - e.g.: CN is the shortname form of commonName.

Return Values

The structure of the returned data is (deliberately) not yet documented, as it is still subject to
change.

openssl_x509_read

openssl_x509_read -- Parse an X.509 certificate and return a resource identifier for it

Description

resource openssl_x509_read (mixed $x509certdata)

openssl_x509_read() parses the certificate supplied by x509certdata and returns a resource
identifier for it.

Parameters

x509certdata

Return Values

Returns a resource identifier on success, or FALSE on failure.

	OpenSSL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Purpose checking flags
	Padding flags
	Key types
	PKCS7 Flags/Constants
	Signature Algorithms
	Ciphers
	Version constants

	Key/Certificate parameters
	Certificate Verification
	OpenSSL Functions
	openssl_csr_export_to_file
	openssl_csr_export
	openssl_csr_get_public_key
	openssl_csr_get_subject
	openssl_csr_new
	openssl_csr_sign
	openssl_error_string
	openssl_free_key
	openssl_get_privatekey
	openssl_get_publickey
	openssl_open
	openssl_pkcs12_export_to_file
	openssl_pkcs12_export
	openssl_pkcs12_read
	openssl_pkcs7_decrypt
	openssl_pkcs7_encrypt
	openssl_pkcs7_sign
	openssl_pkcs7_verify
	openssl_pkey_export_to_file
	openssl_pkey_export
	openssl_pkey_free
	openssl_pkey_get_details
	openssl_pkey_get_private
	openssl_pkey_get_public
	openssl_pkey_new
	openssl_private_decrypt
	openssl_private_encrypt
	openssl_public_decrypt
	openssl_public_encrypt
	openssl_seal
	openssl_sign
	openssl_verify
	openssl_x509_check_private_key
	openssl_x509_checkpurpose
	openssl_x509_export_to_file
	openssl_x509_export
	openssl_x509_free
	openssl_x509_parse
	openssl_x509_read

