
POSIX

Introduction

This module contains an interface to those functions defined in the IEEE 1003.1 (POSIX.1)
standards document which are not accessible through other means.

Warning

Sensitive data can be retrieved with the POSIX functions, e.g. posix_getpwnam() and
friends. None of the POSIX function perform any kind of access checking when safe
mode is enabled. It's therefore strongly advised to disable the POSIX extension at all
(use --disable-posix in your configure line) if you're operating in such an environment.

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

POSIX functions are enabled by default. You can disable POSIX-like functions with
--disable-posix.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

POSIX_F_OK (integer)
Check whether the file exists.

POSIX_R_OK (integer)
Check whether the file exists and has read permissions.

POSIX_W_OK (integer)
Check whether the file exists and has write permissions.

POSIX_X_OK (integer)
Check whether the file exists and has execute permissions.

POSIX_S_IFBLK (integer)
Block special file

POSIX_S_IFCHR (integer)
Character special file

POSIX_S_IFIFO (integer)
FIFO (named pipe) special file

POSIX_S_IFREG (integer)
Normal file

POSIX_S_IFSOCK (integer)
Socket

Note

These constants are available since PHP 5.1.0. Please also note that some of them
may not be available in your system.

POSIX Functions

See Also

The section about Process Control Functions maybe of interest for you.

posix_access

posix_access -- Determine accessibility of a file

Description

bool posix_access (string $file [, int $mode])

posix_access() checks the user's permission of a file.

Parameters

file

The name of the file to be tested.

mode

A mask consisting of one or more of POSIX_F_OK, POSIX_R_OK, POSIX_W_OK
and POSIX_X_OK. Defaults to POSIX_F_OK. POSIX_R_OK, POSIX_W_OK and
POSIX_X_OK request checking whether the file exists and has read, write and
execute permissions, respectively. POSIX_F_OK just requests checking for the
existence of the file.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1 - posix_access() example

This example will check if the $file is readable and writable, otherwise will print an error
message.

<?php

$file = 'some_file';

if (posix_access($file, POSIX_R_OK | POSIX_W_OK)) {

 echo 'The file is readable and writable!';

} else {

 $error = posix_get_last_error();

 echo "Error $error: " . posix_strerror($error);

}

?>

Notes

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

See Also

• posix_get_last_error()
• posix_strerror()

posix_ctermid

posix_ctermid -- Get path name of controlling terminal

Description

string posix_ctermid (void)

Generates a string which is the pathname for the current controlling terminal for the
process. On error this will set errno, which can be checked using posix_get_last_error()

Return Values

Upon successful completion, returns string of the pathname to the current controlling
terminal. Otherwise FALSE is returned and errno is set, which can be checked with
posix_get_last_error().

Examples

Example #2 - posix_ctermid() example

This example will display the path to the current TTY.

<?php

echo "I am running from ".posix_ctermid();

?>

See Also

• posix_ttyname()
• posix_get_last_error()

posix_get_last_error

posix_get_last_error -- Retrieve the error number set by the last posix function that failed

Description

int posix_get_last_error (void)

Retrieve the error number set by the last posix function that failed. The system error
message associated with the errno may be checked with posix_strerror().

Return Values

Returns the errno (error number) set by the last posix function that failed. If no errors exist,
0 is returned.

Examples

Example #3 - posix_get_last_error() example

This example attempt to kill a bogus process id, which will set the last error. We will
then print out the last errno.

<?php

posix_kill(999459,SIGKILL);

echo 'Your error returned was '.posix_get_last_error(); //Your error was ___

?>

See Also

• posix_strerror()

posix_getcwd

posix_getcwd -- Pathname of current directory

Description

string posix_getcwd (void)

Gets the absolute pathname of the script's current working directory. On error, it sets errno
which can be checked using posix_get_last_error()

Return Values

Returns a string of the absolute pathname on success. On error, returns FALSE and sets
errno which can be checked with posix_get_last_error().

Examples

Example #4 - posix_getcwd() example

This example will return the absolute path of the current working directory of the script.

<?php

echo 'My current working directory is '.posix_getcwd();

?>

Notes

Note

This function can fail on

• Read or Search permission was denied

• Pathname no longer exists

posix_getegid

posix_getegid -- Return the effective group ID of the current process

Description

int posix_getegid (void)

Return the numeric effective group ID of the current process.

Return Values

Returns an integer of the effective group ID.

Examples

Example #5 - posix_getegid() example

This example will print out the effective group id, once it is changed with
posix_setegid().

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

Notes

posix_getegid() is different than posix_getgid() because effective group ID can be changed
by a calling process using posix_setegid().

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getgid() get real group id.
• posix_setgid() change the effective group id

posix_geteuid

posix_geteuid -- Return the effective user ID of the current process

Description

int posix_geteuid (void)

Return the numeric effective user ID of the current process. See also posix_getpwuid() for
information on how to convert this into a useable username.

Return Values

Returns the user id, as an integer

Examples

Example #6 - posix_geteuid() example

This example will show the current user id then set the effective user id to a separate
id using posix_seteuid(), then show the difference between the real id and the effective
id.

<?php

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10001

posix_seteuid(10000);

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10000

?>

See Also

• posix_getpwuid() for more information about the user.
• posix_getuid() get real user id.
• posix_setuid() change the effective user id
• POSIX man page GETEUID(2)

posix_getgid

posix_getgid -- Return the real group ID of the current process

Description

int posix_getgid (void)

Return the numeric real group ID of the current process.

Return Values

Returns the real group id, as an integer.

Examples

Example #7 - posix_getgid() example

This example will print out the real group id, even once the effective group id has been
changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getegid() get effective group id.
• posix_setgid() change the effective group id
• POSIX man page GETGID(2)

posix_getgrgid

posix_getgrgid -- Return info about a group by group id

Description

array posix_getgrgid (int $gid)

Gets information about a group provided its id.

Parameters

gid

The group id.

Return Values

The array elements returned are:

The group information array

Element Description

name The name element contains the name of the
group. This is a short, usually less than 16
character "handle" of the group, not the real,
full name.

passwd The passwd element contains the group's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

gid Group ID, should be the same as the gid
parameter used when calling the function,
and hence redundant.

members This consists of an array of string 's for all
the members in the group.

ChangeLog

Version Description

4.2.0 Prior to this version, members was simply
an integer representing the number of
members in the group, and the member
names were returned with numerical
indices.

Examples

Example #8 - Example use of posix_getgrgid()

<?php

$groupid = posix_getegid();

$groupinfo = posix_getgrgid($groupid);

print_r($groupinfo);

?>

The above example will output something similar to:

Array

(

 [name] => toons

 [passwd] => x

 [members] => Array

 (

 [0] => tom

 [1] => jerry

)

 [gid] => 42

)

See Also

• posix_getegid()
• posix_getgrnam()
• filegroup()
• stat()
• safe_mode_gid
• POSIX man page GETGRNAM(3)

posix_getgrnam

posix_getgrnam -- Return info about a group by name

Description

array posix_getgrnam (string $name)

Gets information about a group provided its name.

Parameters

name

The name of the group

Return Values

The array elements returned are:

The group information array

Element Description

name The name element contains the name of the
group. This is a short, usually less than 16
character "handle" of the group, not the real,
full name. This should be the same as the
name parameter used when calling the
function, and hence redundant.

passwd The passwd element contains the group's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

gid Group ID of the group in numeric form.

members This consists of an array of string 's for all
the members in the group.

ChangeLog

Version Description

4.2.0 Prior to this version, members was simply
an integer representing the number of
members in the group, and the member
names were returned with numerical
indices.

Examples

Example #9 - Example use of posix_getgrnam()

<?php

$groupinfo = posix_getgrnam("toons");

print_r($groupinfo);

?>

The above example will output something similar to:

Array

(

 [name] => toons

 [passwd] => x

 [members] => Array

 (

 [0] => tom

 [1] => jerry

)

 [gid] => 42

)

See Also

• posix_getegid()
• posix_getgrgid()
• filegroup()
• stat()
• safe_mode_gid
• POSIX man page GETGRNAM(3)

posix_getgroups

posix_getgroups -- Return the group set of the current process

Description

array posix_getgroups (void)

Gets the group set of the current process.

Return Values

Returns an array of integers containing the numeric group ids of the group set of the
current process.

Examples

Example #10 - Example use of posix_getgroups()

<?php

$groups = posix_getgroups();

print_r($groups);

?>

The above example will output something similar to:

Array

(

 [0] => 4

 [1] => 20

 [2] => 24

 [3] => 25

 [4] => 29

 [5] => 30

 [6] => 33

 [7] => 44

 [8] => 46

 [9] => 104

 [10] => 109

 [11] => 110

 [12] => 1000

)

See Also

• posix_getgrgid()

posix_getlogin

posix_getlogin -- Return login name

Description

string posix_getlogin (void)

Returns the login name of the user owning the current process.

Return Values

Returns the login name of the user, as a string.

Examples

Example #11 - Example use of posix_getlogin()

<?php

echo posix_getlogin(); //apache

?>

See Also

• posix_getpwnam()
• POSIX man page GETLOGIN(3)

posix_getpgid

posix_getpgid -- Get process group id for job control

Description

int posix_getpgid (int $pid)

Returns the process group identifier of the process pid.

Parameters

pid

The process id.

Return Values

Returns the identifier, as an integer.

Examples

Example #12 - Example use of posix_getpgid()

<?php

$pid = posix_getppid();

echo posix_getpgid($pid); //35

?>

Notes

Note

This is a not POSIX function, but is common on BSD and System V systems. If the
system does not support this function, then it will not be included at compile time. This
may be checked with function_exists().

See Also

• posix_getppid()

• man page SETPGID(2)

posix_getpgrp

posix_getpgrp -- Return the current process group identifier

Description

int posix_getpgrp (void)

Return the process group identifier of the current process.

Return Values

Returns the identifier, as an integer.

See Also

• POSIX.1 and the getpgrp(2) manual page on the POSIX system for more information
on process groups.

posix_getpid

posix_getpid -- Return the current process identifier

Description

int posix_getpid (void)

Return the process identifier of the current process.

Return Values

Returns the identifier, as an integer.

Examples

Example #13 - Example use of posix_getpid()

<?php

echo posix_getpid(); //8805

?>

See Also

• posix_kill() to kill a process.
• POSIX man page GETPID(2)

posix_getppid

posix_getppid -- Return the parent process identifier

Description

int posix_getppid (void)

Return the process identifier of the parent process of the current process.

Return Values

Returns the identifier, as an integer.

Examples

Example #14 - Example use of posix_getppid()

<?php

echo posix_getppid(); //8259

?>

posix_getpwnam

posix_getpwnam -- Return info about a user by username

Description

array posix_getpwnam (string $username)

Returns an array of information about the given user.

Parameters

username

An alphanumeric username.

Return Values

The array elements returned are:

The user information array

Element Description

name The name element contains the username
of the user. This is a short, usually less than
16 character "handle" of the user, not the
real, full name. This should be the same as
the username parameter used when calling
the function, and hence redundant.

passwd The passwd element contains the user's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

uid User ID of the user in numeric form.

gid The group ID of the user. Use the function
posix_getgrgid() to resolve the group name
and a list of its members.

gecos GECOS is an obsolete term that refers to
the finger information field on a Honeywell
batch processing system. The field,
however, lives on, and its contents have
been formalized by POSIX. The field
contains a comma separated list containing

the user's full name, office phone, office
number, and home phone number. On most
systems, only the user's full name is
available.

dir This element contains the absolute path to
the home directory of the user.

shell The shell element contains the absolute
path to the executable of the user's default
shell.

Examples

Example #15 - Example use of posix_getpwnam()

<?php

$userinfo = posix_getpwnam("tom");

print_r($userinfo);

?>

The above example will output something similar to:

Array

(

 [name] => tom

 [passwd] => x

 [uid] => 10000

 [gid] => 42

 [geocs] => "tom,,,"

 [dir] => "/home/tom"

 [shell] => "/bin/bash"

)

See Also

• posix_getpwuid()
• POSIX man page GETPWNAM(3)

posix_getpwuid

posix_getpwuid -- Return info about a user by user id

Description

array posix_getpwuid (int $uid)

Returns an array of information about the user referenced by the given user ID.

Parameters

uid

The user identifier.

Return Values

Returns an associative array with the following elements:

The user information array

Element Description

name The name element contains the username
of the user. This is a short, usually less than
16 character "handle" of the user, not the
real, full name.

passwd The passwd element contains the user's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

uid User ID, should be the same as the uid
parameter used when calling the function,
and hence redundant.

gid The group ID of the user. Use the function
posix_getgrgid() to resolve the group name
and a list of its members.

gecos GECOS is an obsolete term that refers to
the finger information field on a Honeywell
batch processing system. The field,
however, lives on, and its contents have
been formalized by POSIX. The field
contains a comma separated list containing

the user's full name, office phone, office
number, and home phone number. On most
systems, only the user's full name is
available.

dir This element contains the absolute path to
the home directory of the user.

shell The shell element contains the absolute
path to the executable of the user's default
shell.

Examples

Example #16 - Example use of posix_getpwuid()

<?php

$userinfo = posix_getpwuid(10000);

print_r($userinfo);

?>

The above example will output something similar to:

Array

(

 [name] => tom

 [passwd] => x

 [uid] => 10000

 [gid] => 42

 [geocs] => "tom,,,"

 [dir] => "/home/tom"

 [shell] => "/bin/bash"

)

See Also

• posix_getpwnam()
• POSIX man page GETPWNAM(3)

posix_getrlimit

posix_getrlimit -- Return info about system resource limits

Description

array posix_getrlimit (void)

posix_getrlimit() returns an array of information about the current resource's soft and hard
limits.

Each resource has an associated soft and hard limit. The soft limit is the value that the
kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft
limit. An unprivileged process may only set its soft limit to a value from 0 to the hard limit,
and irreversibly lower its hard limit.

Return Values

Returns an associative array of elements for each limit that is defined. Each limit has a soft
and a hard limit.

List of possible limits returned

Limit name Limit description

core The maximum size of the core file. When 0,
not core files are created. When core files
are larger than this size, they will be
truncated at this size.

totalmem The maximum size of the memory of the
process, in bytes.

virtualmem The maximum size of the virtual memory for
the process, in bytes.

data The maximum size of the data segment for
the process, in bytes.

stack The maximum size of the process stack, in
bytes.

rss The maximum number of virtual pages
resident in RAM

maxproc The maximum number of processes that
can be created for the real user ID of the
calling process.

memlock The maximum number of bytes of memory
that may be locked into RAM.

cpu The amount of time the process is allowed
to use the CPU.

filesize The maximum size of the data segment for
the process, in bytes.

openfiles One more than the maximum number of
open file descriptors.

Examples

Example #17 - Example use of posix_getrlimit()

<?php

$limits = posix_getrlimit();

print_r($limits);

?>

The above example will output something similar to:

Array

(

 [soft core] => 0

 [hard core] => unlimited

 [soft data] => unlimited

 [hard data] => unlimited

 [soft stack] => 8388608

 [hard stack] => unlimited

 [soft totalmem] => unlimited

 [hard totalmem] => unlimited

 [soft rss] => unlimited

 [hard rss] => unlimited

 [soft maxproc] => unlimited

 [hard maxproc] => unlimited

 [soft memlock] => unlimited

 [hard memlock] => unlimited

 [soft cpu] => unlimited

 [hard cpu] => unlimited

 [soft filesize] => unlimited

 [hard filesize] => unlimited

 [soft openfiles] => 1024

 [hard openfiles] => 1024

)

Notes

Note

This is a not POSIX function, but is common on BSD and System V systems. If the
system does not support this function, then it will not be included at compile time. This
may be checked with function_exists().

See Also

• man page GETRLIMIT(2)

posix_getsid

posix_getsid -- Get the current sid of the process

Description

int posix_getsid (int $pid)

Return the session id of the process pid. The session id of a process is the process group
id of the session leader.

Parameters

pid

The process identifier. If set to 0, the current process is assumed. If an invalid pid is
specified, then FALSE is returned and an error is set which can be checked with
posix_get_last_error().

Return Values

Returns the identifier, as an integer.

Examples

Example #18 - Example use of posix_getsid()

<?php

$pid = posix_getpid();

echo posix_getsid($pid); //8805

?>

See Also

• posix_getpgid()
• posix_setsid()
• POSIX man page GETSID(2)

posix_getuid

posix_getuid -- Return the real user ID of the current process

Description

int posix_getuid (void)

Return the numeric real user ID of the current process.

Return Values

Returns the user id, as an integer

Examples

Example #19 - Example use of posix_getuid()

<?php

echo posix_getuid(); //10000

?>

See Also

• posix_getpwuid() for information on how to convert this into a useable username
• POSIX man page GETUID(2)

posix_initgroups

posix_initgroups -- Calculate the group access list

Description

bool posix_initgroups (string $name, int $base_group_id)

Calculates the group access list for the user specified in name.

Parameters

name

The user to calculate the list for.

base_group_id

Typically the group number from the password file.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• The Unix manual page for initgroups(3).

posix_isatty

posix_isatty -- Determine if a file descriptor is an interactive terminal

Description

bool posix_isatty (int $fd)

Determines if the file descriptor fd refers to a valid terminal type device.

Parameters

fd

The file descriptor.

Return Values

Returns TRUE if fd is an open descriptor connected to a terminal and FALSE otherwise.

See Also

• posix_ttyname()

posix_kill

posix_kill -- Send a signal to a process

Description

bool posix_kill (int $pid, int $sig)

Send the signal sig to the process with the process identifier pid.

Parameters

pid

The process identifier.

sig

One of the PCNTL signals constants.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• The kill(2) manual page of the POSIX system, which contains additional information
about negative process identifiers, the special pid 0, the special pid -1, and the signal
number 0.

posix_mkfifo

posix_mkfifo -- Create a fifo special file (a named pipe)

Description

bool posix_mkfifo (string $pathname, int $mode)

posix_mkfifo() creates a special FIFO file which exists in the file system and acts as a
bidirectional communication endpoint for processes.

Parameters

pathname

Path to the FIFO file.

mode

The second parameter mode has to be given in octal notation (e.g. 0644). The
permission of the newly created FIFO also depends on the setting of the current
umask(). The permissions of the created file are (mode & ~umask).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

posix_mknod

posix_mknod -- Create a special or ordinary file (POSIX.1)

Description

bool posix_mknod (string $pathname, int $mode [, int $major [, int $minor]])

Creates a special or ordinary file.

Parameters

pathname

The file to create

mode

This parameter is constructed by a bitwise OR between file type (one of the following
constants: POSIX_S_IFREG, POSIX_S_IFCHR, POSIX_S_IFBLK, POSIX_S_IFIFO
or POSIX_S_IFSOCK) and permissions.

major

The major device kernel identifier (required to pass when using S_IFCHR or S_IFBLK
).

minor

The minor device kernel identifier (defaults to 0).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #20 - A posix_mknod() example

<?php

$file = '/tmp/tmpfile'; // file name

$type = POSIX_S_IFBLK; // file type

$permissions = 0777; // octal

$major = 1;

$minor = 8; // /dev/random

if (!posix_mknod($file, $type | $permissions, $major, $minor)) {

 die('Error ' . posix_get_last_error() . ': ' .
posix_strerror(posix_get_last_error()));

}

?>

See Also

• posix_mkfifo()

posix_setegid

posix_setegid -- Set the effective GID of the current process

Description

bool posix_setegid (int $gid)

Set the effective group ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

gid

The group id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #21 - posix_setegid() example

This example will print out the effective group id, once changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert a group id into a useable group
name

• posix_getgid() get real group id.
• posix_setgid() change the effective group id

posix_seteuid

posix_seteuid -- Set the effective UID of the current process

Description

bool posix_seteuid (int $uid)

Set the real user ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

uid

The user id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• posix_setgid()

posix_setgid

posix_setgid -- Set the GID of the current process

Description

bool posix_setgid (int $gid)

Set the real group ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function. The
appropriate order of function calls is posix_setgid() first, posix_setuid() last.

Note

If the caller is a super user, this will also set the effective group id.

Parameters

gid

The group id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #22 - posix_setgid() example

This example will print out the effective group id, once it is changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setgid(40);

echo 'My real group id is '.posix_getgid(); //40

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getgid() get real group id.

posix_setpgid

posix_setpgid -- Set process group id for job control

Description

bool posix_setpgid (int $pid, int $pgid)

Let the process pid join the process group pgid.

Parameters

pid

The process id.

pgid

The process group id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• See POSIX.1 and the setsid(2) manual page on the POSIX system for more
informations on process groups and job control.

posix_setsid

posix_setsid -- Make the current process a session leader

Description

int posix_setsid (void)

Make the current process a session leader.

Return Values

Returns the session id, or -1 on errors.

See Also

• The POSIX.1 and the setsid(2) manual page on the POSIX system for more
information on process groups and job control.

posix_setuid

posix_setuid -- Set the UID of the current process

Description

bool posix_setuid (int $uid)

Set the real user ID of the current process. This is a privileged function that needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

uid

The user id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #23 - posix_setuid() example

This example will show the currrent user id and then set it to a different value.

<?php

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10001

posix_setuid(10000);

echo posix_getuid()."\n"; //10000

echo posix_geteuid()."\n"; //10000

?>

See Also

• posix_setgid()
• posix_seteuid()
• posix_getuid()
• posix_geteuid()

posix_strerror

posix_strerror -- Retrieve the system error message associated with the given errno

Description

string posix_strerror (int $errno)

Returns the POSIX system error message associated with the given errno. You may get
the errno parameter by calling posix_get_last_error().

Parameters

errno

A POSIX error number, returned by posix_get_last_error(). If set to 0, then the string
"Success" is returned.

Return Values

Returns the error message, as a string.

Examples

Example #24 - posix_strerror() example

This example will attempt to kill a process which does not exist, then will print out the
corresponding error message.

<?php

posix_kill(50,SIGKILL);

echo posix_strerror(posix_get_last_error())."\n";

?>

The above example will output something similar to:

No such process

See Also

• posix_get_last_error()

posix_times

posix_times -- Get process times

Description

array posix_times (void)

Gets information about the current CPU usage.

Return Values

Returns a hash of strings with information about the current process CPU usage. The
indices of the hash are:

• ticks - the number of clock ticks that have elapsed since reboot.

• utime - user time used by the current process.

• stime - system time used by the current process.

• cutime - user time used by current process and children.

• cstime - system time used by current process and children.

Notes

Warning

This function isn't reliable to use, it may return negative values for high times.

Examples

Example #25 - Example use of posix_times()

<?php

$times = posix_times();

print_r($times);

?>

The above example will output something similar to:

Array

(

 [ticks] => 25814410

 [utime] => 1

 [stime] => 1

 [cutime] => 0

 [cstime] => 0

)

posix_ttyname

posix_ttyname -- Determine terminal device name

Description

string posix_ttyname (int $fd)

Returns a string for the absolute path to the current terminal device that is open on the file
descriptor fd.

Parameters

fd

The file descriptor.

Return Values

On success, returns a string of the absolute path of the fd. On failure, returns FALSE

posix_uname

posix_uname -- Get system name

Description

array posix_uname (void)

Gets information about the system.

Posix requires that assumptions must not be made about the format of the values, e.g. the
assumption that a release may contain three digits or anything else returned by this
function.

Return Values

Returns a hash of strings with information about the system. The indices of the hash are

• sysname - operating system name (e.g. Linux)

• nodename - system name (e.g. valiant)

• release - operating system release (e.g. 2.2.10)

• version - operating system version (e.g. #4 Tue Jul 20 17:01:36 MEST 1999)

• machine - system architecture (e.g. i586)

• domainname - DNS domainname (e.g. example.com)

domainname is a GNU extension and not part of POSIX.1, so this field is only available on
GNU systems or when using the GNU libc.

Examples

Example #26 - Example use of posix_uname()

<?php

$uname=posix_uname();

print_r($uname);

?>

The above example will output something similar to:

Array

(

 [sysname] => Linux

 [nodename] => funbox

 [release] => 2.6.20-15-server

 [version] => #2 SMP Sun Apr 15 07:41:34 UTC 2007

 [machine] => i686

)

	POSIX
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	POSIX Functions
	posix_access
	posix_ctermid
	posix_get_last_error
	posix_getcwd
	posix_getegid
	posix_geteuid
	posix_getgid
	posix_getgrgid
	posix_getgrnam
	posix_getgroups
	posix_getlogin
	posix_getpgid
	posix_getpgrp
	posix_getpid
	posix_getppid
	posix_getpwnam
	posix_getpwuid
	posix_getrlimit
	posix_getsid
	posix_getuid
	posix_initgroups
	posix_isatty
	posix_kill
	posix_mkfifo
	posix_mknod
	posix_setegid
	posix_seteuid
	posix_setgid
	posix_setpgid
	posix_setsid
	posix_setuid
	posix_strerror
	posix_times
	posix_ttyname
	posix_uname

