
Multibyte String

Introduction

While there are many languages in which every necessary character can be represented
by a one-to-one mapping to an 8-bit value, there are also several languages which require
so many characters for written communication that they cannot be contained within the
range a mere byte can code (A byte is made up of eight bits. Each bit can contain only two
distinct values, one or zero. Because of this, a byte can only represent 256 unique values
(two to the power of eight)). Multibyte character encoding schemes were developed to
express more than 256 characters in the regular bytewise coding system.

When you manipulate (trim, split, splice, etc.) strings encoded in a multibyte encoding, you
need to use special functions since two or more consecutive bytes may represent a single
character in such encoding schemes. Otherwise, if you apply a non-multibyte-aware string
function to the string, it probably fails to detect the beginning or ending of the multibyte
character and ends up with a corrupted garbage string that most likely loses its original
meaning.

mbstring provides multibyte specific string functions that help you deal with multibyte
encodings in PHP. In addition to that, mbstring handles character encoding conversion
between the possible encoding pairs. mbstring is designed to handle Unicode-based
encodings such as UTF-8 and UCS-2 and many single-byte encodings for convenience
(listed below).

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

mbstring is a non-default extension. This means it is not enabled by default. You must
explicitly enable the module with the configure option. See the Install section for details.

The following configure options are related to the mbstring module.

• --enable-mbstring: Enable mbstring functions. This option is required to use mbstring
functions. libmbfl is necesarry for mbstring. libmbfl is bundled with mbstring. If libmbfl is
already installed on the system, --with-libmbfl[=DIR] can be specified to use the
installed library. As of PHP 4.3.0, mbstring extension provides enhanced support for
Simplified Chinese, Traditional Chinese, Korean, and Russian in addition to Japanese.
For PHP 4.3.3 or before, To enable that feature, you will have to supply either one of
the following options to the LANG parameter of --enable-mbstring=LANG;
--enable-mbstring=cn for Simplified Chinese support, --enable-mbstring=tw for
Traditional Chinese support, --enable-mbstring=kr for Korean support,
--enable-mbstring=ru for Russian support, and --enable-mbstring=ja for Japanese
support (default). To enable all supported encoding, use --enable-mbstring=all.

Note

As of PHP 4.3.4, all supported encoding by libmbfl is enabled with
--enable-mbstring.

• --enable-mbstr-enc-trans: Enable HTTP input character encoding conversion using
mbstring conversion engine. If this feature is enabled, HTTP input character encoding
may be converted to mbstring.internal_encoding automatically.

Note

As of PHP 4.3.0, the option --enable-mbstr-enc-trans was eliminated and replaced
with the runtime setting mbstring.encoding_translation. HTTP input character
encoding conversion is enabled when this is set to On (the default is Off).

• --disable-mbregex: Disable regular expression functions with multibyte character
support.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

mbstring configuration options

Name Default Changeable Changelog

mbstring.language "neutral" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.detect_orde
r

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.http_input "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.http_output "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.internal_enc
oding

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.script_enco
ding

NULL PHP_INI_ALL Available since PHP
4.3.0.

mbstring.substitute_c
haracter

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.func_overlo
ad

"0" PHP_INI_PERDIR PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.2.0.

mbstring.encoding_tr
anslation

"0" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.strict_detect
ion

"0" PHP_INI_ALL Available since PHP
5.1.2.

For the definition of the PHP_INI_* constants, please refer to ini_set().

Here's a short explanation of the configuration directives.

mbstring.language string
The default national language setting (NLS) used in mbstring. Note that this option
automagically defines mbstring.internal_encoding and mbstring.internal_encoding
should be placed after mbstring.language in php.ini

mbstring.encoding_translation boolean
Enables the transparent character encoding filter for the incoming HTTP queries,
which performs detection and conversion of the input encoding to the internal
character encoding.

mbstring.internal_encoding string
Defines the default internal character encoding.

mbstring.http_input string
Defines the default HTTP input character encoding.

mbstring.http_output string
Defines the default HTTP output character encoding.

mbstring.detect_order string
Defines default character code detection order. See also mb_detect_order().

mbstring.substitute_character string
Defines character to substitute for invalid character encoding.

mbstring.func_overload string
Overloads a set of single byte functions by the mbstring counterparts. See Function
overloading for more information.

mbstring.strict_detection boolean
Enables the strict encoding detection.

According to the » HTML 4.01 specification, Web browsers are allowed to encode a form
being submitted with a character encoding different from the one used for the page. See
mb_http_input() to detect character encoding used by browsers.

Although popular browsers are capable of giving a reasonably accurate guess to the
character encoding of a given HTML document, it would be better to set the charset
parameter in the Content-Type HTTP header to the appropriate value by header() or
default_charset ini setting.

Example #1 - php.ini setting examples

; Set default language

mbstring.language = Neutral; Set default language to Neutral(UTF-8)
(default)

mbstring.language = English; Set default language to English

mbstring.language = Japanese; Set default language to Japanese

;; Set default internal encoding

;; Note: Make sure to use character encoding works with PHP

mbstring.internal_encoding = UTF-8 ; Set internal encoding to UTF-8

;; HTTP input encoding translation is enabled.

mbstring.encoding_translation = On

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accept-charset

;; Set default HTTP input character encoding

;; Note: Script cannot change http_input setting.

mbstring.http_input = pass ; No conversion.

mbstring.http_input = auto ; Set HTTP input to auto

 ; "auto" is expanded to
"ASCII,JIS,UTF-8,EUC-JP,SJIS"

mbstring.http_input = SJIS ; Set HTTP2 input to SJIS

mbstring.http_input = UTF-8,SJIS,EUC-JP ; Specify order

;; Set default HTTP output character encoding

mbstring.http_output = pass ; No conversion

mbstring.http_output = UTF-8 ; Set HTTP output encoding to UTF-8

;; Set default character encoding detection order

mbstring.detect_order = auto ; Set detect order to auto

mbstring.detect_order = ASCII,JIS,UTF-8,SJIS,EUC-JP ; Specify order

;; Set default substitute character

mbstring.substitute_character = 12307 ; Specify Unicode value

mbstring.substitute_character = none ; Do not print character

mbstring.substitute_character = long ; Long Example: U+3000,JIS+7E7E

Example #2 - php.ini setting for EUC-JP users

;; Disable Output Buffering

output_buffering = Off

;; Set HTTP header charset

default_charset = EUC-JP

;; Set default language to Japanese

mbstring.language = Japanese

;; HTTP input encoding translation is enabled.

mbstring.encoding_translation = On

;; Set HTTP input encoding conversion to auto

mbstring.http_input = auto

;; Convert HTTP output to EUC-JP

mbstring.http_output = EUC-JP

;; Set internal encoding to EUC-JP

mbstring.internal_encoding = EUC-JP

;; Do not print invalid characters

mbstring.substitute_character = none

Example #3 - php.ini setting for SJIS users

;; Enable Output Buffering

output_buffering = On

;; Set mb_output_handler to enable output conversion

output_handler = mb_output_handler

;; Set HTTP header charset

default_charset = Shift_JIS

;; Set default language to Japanese

mbstring.language = Japanese

;; Set http input encoding conversion to auto

mbstring.http_input = auto

;; Convert to SJIS

mbstring.http_output = SJIS

;; Set internal encoding to EUC-JP

mbstring.internal_encoding = EUC-JP

;; Do not print invalid characters

mbstring.substitute_character = none

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MB_OVERLOAD_MAIL (integer)

MB_OVERLOAD_STRING (integer)

MB_OVERLOAD_REGEX (integer)

MB_CASE_UPPER (integer)

MB_CASE_LOWER (integer)

MB_CASE_TITLE (integer)

Summaries of supported encodings

Summaries of supported encodings
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: ISO 10646
Description: The Universal Character Set with 31-bit code space, standardized as UCS-4
by ISO/IEC 10646. It is kept synchronized with the latest version of the Unicode code map.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: UCS-4
Description: See above.
Additional note: In contrast to UCS-4, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: UCS-4
Description: See above.
Additional note: In contrast to UCS-4, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: The Universal Character Set with 16-bit code space, standardized as UCS-2
by ISO/IEC 10646. It is kept synchronized with the latest version of the unicode code map.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: See above.
Additional note: In contrast to UCS-2, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: See above.
Additional note: In contrast to UCS-2, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-32
Underlying character set: Unicode
Description: Unicode Transformation Format of 32-bit unit width, whose encoding space
refers to the Unicode's codeset standard. This encoding scheme wasn't identical to UCS-4
because the code space of Unicode were limited to a 21-bit value.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: UTF-32BE
Underlying character set: Unicode
Description: See above
Additional note: In contrast to UTF-32, strings are always assumed to be in big endian
form.

Name in the IANA character set registry: UTF-32LE
Underlying character set: Unicode
Description: See above
Additional note: In contrast to UTF-32, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-16
Underlying character set: Unicode
Description: Unicode Transformation Format of 16-bit unit width. It's worth a note that
UTF-16 is no longer the same specification as UCS-2 because the surrogate mechanism
has been introduced since Unicode 2.0 and UTF-16 now refers to a 21-bit code space.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: UTF-16BE
Underlying character set: Unicode
Description: See above.
Additional note: In contrast to UTF-16, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: UTF-16LE
Underlying character set: Unicode
Description: See above.
Additional note: In contrast to UTF-16, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-8
Underlying character set: Unicode / UCS
Description: Unicode Transformation Format of 8-bit unit width.
Additional note: none
Name in the IANA character set registry: UTF-7
Underlying character set: Unicode
Description: A mail-safe transformation format of Unicode, specified in » RFC2152.
Additional note: none
Name in the IANA character set registry: (none)
Underlying character set: Unicode
Description: A variant of UTF-7 which is specialized for use in the » IMAP protocol.
Additional note: none
Name in the IANA character set registry: US-ASCII (preferred MIME name) / iso-ir-6 /
ANSI_X3.4-1986 / ISO_646.irv:1991 / ASCII / ISO646-US / us / IBM367 / CP367 / csASCII
Underlying character set: ASCII / ISO 646
Description: American Standard Code for Information Interchange is a commonly-used
7-bit encoding. Also standardized as an international standard, ISO 646.
Additional note: (none)
Name in the IANA character set registry: EUC-JP (preferred MIME name) /
Extended_UNIX_Code_Packed_Format_for_Japanese / csEUCPkdFmtJapanese
Underlying character set: Compound of US-ASCII / JIS X0201:1997 (hankaku kana part)
/ JIS X0208:1990 / JIS X0212:1990
Description: As you see the name is derived from an abbreviation of Extended UNIX
Code Packed Format for Japanese, this encoding is mostly used on UNIX or alike
platforms. The original encoding scheme, Extended UNIX Code, is designed on the basis
of ISO 2022.
Additional note: The character set referred to by EUC-JP is different to IBM932 / CP932,
which are used by OS/2® and Microsoft® Windows®. For information interchange with
those platforms, use EUCJP-WIN instead.

http://www.faqs.org/rfcs/rfc2152
http://www.faqs.org/rfcs/rfc3501

Name in the IANA character set registry: Shift_JIS (preferred MIME name) / MS_Kanji /
csShift_JIS
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997
Description: Shift_JIS was developed in early 80's, at the time personal Japanese word
processors were brought into the market, in order to maintain compatiblities with the
legacy encoding scheme JIS X 0201:1976. According to the IANA definition the codeset of
Shift_JIS is slightly different to IBM932 / CP932. However, the names "SJIS" / "Shift_JIS"
are often wrongly used to refer to these codesets.
Additional note: For the CP932 codemap, use SJIS-WIN instead.
Name in the IANA character set registry: (none)
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997 / IBM
extensions / NEC extensions
Description: While this "encoding" uses the same encoding scheme as EUC-JP, the
underlying character set is different. That is, some code points map to different characters
than EUC-JP.
Additional note: none
Name in the IANA character set registry: Windows-31J / csWindows31J
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997 / IBM
extensions / NEC extensions
Description: While this "encoding" uses the same encoding scheme as Shift_JIS, the
underlying character set is different. That means some code points map to different
characters than Shift_JIS.
Additional note: (none)
Name in the IANA character set registry: ISO-2022-JP (preferred MIME name) /
csISO2022JP
Underlying character set: US-ASCII / JIS X0201:1976 / JIS X0208:1978 / JIS
X0208:1983
Description: » RFC1468
Additional note: (none)
Name in the IANA character set registry: JIS
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-1
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-2
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-3
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-4
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-5
Underlying character set:
Description:

http://www.faqs.org/rfcs/rfc1468

Additional note:
Name in the IANA character set registry: ISO-8859-6
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-7
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-8
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-9
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-10
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-13
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-14
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-15
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte2be
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte2le
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte4be
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte4le
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: BASE64
Underlying character set:
Description:

Additional note:
Name in the IANA character set registry: HTML-ENTITIES
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: 7bit
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: 8bit
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-CN
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP936
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: HZ
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-TW
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP950
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: BIG-5
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-KR
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: UHC (CP949)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-2022-KR
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: Windows-1251 (CP1251)
Underlying character set:
Description:

Additional note:
Name in the IANA character set registry: Windows-1252 (CP1252)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP866 (IBM866)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: KOI8-R
Underlying character set:
Description:
Additional note:

Basics of Japanese multi-byte encodings

Japanese characters can only be represented by multibyte encodings, and multiple
encoding standards are used depending on platform and text purpose. To make matters
worse, these encoding standards differ slightly from one another. In order to create a web
application which would be usable in a Japanese environment, a developer has to keep
these complexities in mind to ensure that the proper character encodings are used.

• Storage for a character can be up to six bytes

• Most Japanese multibyte characters appear twice as wide as single-byte characters.
These characters are called "zen-kaku" in Japanese, which means "full width". Other,
narrower, characters are called "han-kaku", which means "half width". The graphical
properties of the characters, however, depends upon the type faces used to display
them.

• Some character encodings use shift(escape) sequences defined in ISO-2022 to switch
the code map of the specific code area (00h to 7fh).

• ISO-2022-JP should be used in SMTP/NNTP, and headers and entities should be
reencoded as per RFC requirements. Although those are not requisites, it's still a good
idea because several popular user agents cannot recognize any other encoding
methods.

• Web pages created for mobile phone services such as » i-mode, » Vodafone live!, or
» EZweb are supposed to use Shift_JIS.

http://www.nttdocomo.com/corebiz/services/imode/
http://www.vodafone.jp/english/live/
http://www.au.kddi.com/english/ezweb/
http://www.au.kddi.com/english/ezweb/

HTTP Input and Output

HTTP input/output character encoding conversion may convert binary data also. Users are
supposed to control character encoding conversion if binary data is used for HTTP
input/output.

Note

In PHP 4.3.2 or earlier versions, there was a limitation in this functionality that mbstring
does not perform character encoding conversion in POST data if the enctype attribute
in the form element is set to multipart/form-data. So you have to convert the incoming
data by yourself in this case if necessary.

Beginning with PHP 4.3.3, if enctype for HTML form is set to multipart/form-data and
mbstring.encoding_translation is set to On in php.ini the POST'ed variables and the
names of uploaded files will be converted to the internal character encoding as well.
However, the conversion isn't applied to the query keys.

• HTTP Input There is no way to control HTTP input character conversion from a PHP
script. To disable HTTP input character conversion, it has to be done in php.ini.

Example #4 - Disable HTTP input conversion in php.ini

;; Disable HTTP Input conversion

mbstring.http_input = pass

;; Disable HTTP Input conversion (PHP 4.3.0 or higher)

mbstring.encoding_translation = Off

When using PHP as an Apache module, it is possible to override those settings in
each Virtual Host directive in httpd.conf or per directory with.htaccess. Refer to the
Configuration section and Apache Manual for details.

• HTTP Output There are several ways to enable output character encoding conversion.
One is using php.ini, another is using ob_start() with mb_output_handler() as the
ob_start callback function.

Example #5 - php.ini setting example

;; Enable output character encoding conversion for all PHP pages

;; Enable Output Buffering

output_buffering = On

;; Set mb_output_handler to enable output conversion

output_handler = mb_output_handler

Example #6 - Script example

<?php

// Enable output character encoding conversion only for this page

// Set HTTP output character encoding to SJIS

mb_http_output('SJIS');

// Start buffering and specify "mb_output_handler" as

// callback function

ob_start('mb_output_handler');

?>

Supported Character Encodings

Currently the following character encodings are supported by the mbstring module. Any of
those Character encodings can be specified in the encoding parameter of mbstring
functions.

The following character encodings are supported in this PHP extension:

• UCS-4

• UCS-4BE

• UCS-4LE

• UCS-2

• UCS-2BE

• UCS-2LE

• UTF-32

• UTF-32BE

• UTF-32LE

• UTF-16

• UTF-16BE

• UTF-16LE

• UTF-7

• UTF7-IMAP

• UTF-8

• ASCII

• EUC-JP

• SJIS

• eucJP-win

• SJIS-win

• ISO-2022-JP

• JIS

• ISO-8859-1

• ISO-8859-2

• ISO-8859-3

• ISO-8859-4

• ISO-8859-5

• ISO-8859-6

• ISO-8859-7

• ISO-8859-8

• ISO-8859-9

• ISO-8859-10

• ISO-8859-13

• ISO-8859-14

• ISO-8859-15

• byte2be

• byte2le

• byte4be

• byte4le

• BASE64

• HTML-ENTITIES

• 7bit

• 8bit

• EUC-CN

• CP936

• HZ

• EUC-TW

• CP950

• BIG-5

• EUC-KR

• UHC (CP949)

• ISO-2022-KR

• Windows-1251 (CP1251)

• Windows-1252 (CP1252)

• CP866 (IBM866)

• KOI8-R

Any php.ini entry which accepts an encoding name can also use the values " auto " and "
pass ". mbstring functions which accept an encoding name can also use the value " auto ".

If " pass " is set, no character encoding conversion is performed.

If " auto " is set, it is expanded to the list of encodings defined per the NLS. For instance, if
the NLS is set to Japanese, the value is assumed to be " ASCII,JIS,UTF-8,EUC-JP,SJIS ".

See also mb_detect_order()

Function Overloading Feature

You might often find it difficult to get an existing PHP application to work in a given
multibyte environment. This happens because most PHP applications out there are written
with the standard string functions such as substr(), which are known to not properly handle
multibyte-encoded strings.

mbstring supports a 'function overloading' feature which enables you to add multibyte
awareness to such an application without code modification by overloading multibyte
counterparts on the standard string functions. For example, mb_substr() is called instead
of substr() if function overloading is enabled. This feature makes it easy to port
applications that only support single-byte encodings to a multibyte environment in many
cases.

To use function overloading, set mbstring.func_overload in php.ini to a positive value that
represents a combination of bitmasks specifying the categories of functions to be
overloaded. It should be set to 1 to overload the mail() function. 2 for string functions, 4 for
regular expression functions. For example, if it is set to 7, mail, strings and regular
expression functions will be overloaded. The list of overloaded functions are shown below.

Functions to be overloaded

value of
mbstring.func_overload

original function overloaded function

1 mail() mb_send_mail()

2 strlen() mb_strlen()

2 strpos() mb_strpos()

2 strrpos() mb_strrpos()

2 substr() mb_substr()

2 strtolower() mb_strtolower()

2 strtoupper() mb_strtoupper()

2 substr_count() mb_substr_count()

4 ereg() mb_ereg()

4 eregi() mb_eregi()

4 ereg_replace() mb_ereg_replace()

4 eregi_replace() mb_eregi_replace()

4 split() mb_split()

Note

It is not recommended to use the function overloading option in the per-directory
context, because it's not confirmed yet to be stable enough in a production
environment and may lead to undefined behaviour.

PHP Character Encoding Requirements

Encodings of the following types are safely used with PHP.

• A singlebyte encoding,

• which has ASCII-compatible (ISO646 compatible) mappings for the characters in
range of 00h to 7fh.

• A multibyte encoding,

• which has ASCII-compatible mappings for the characters in range of 00h to 7fh.

• which don't use ISO2022 escape sequences.

• which don't use a value from 00h to 7fh in any of the compounded bytes that
represents a single character.

These are examples of character encodings that are unlikely to work with PHP.

JIS, SJIS, ISO-2022-JP, BIG-5

Although PHP scripts written in any of those encodings might not work, especially in the
case where encoded strings appear as identifiers or literals in the script, you can almost
avoid using these encodings by setting up the mbstring 's transparent encoding filter
function for incoming HTTP queries.

Note

It's highly discouraged to use SJIS, BIG5, CP936, CP949 and GB18030 for the internal
encoding unless you are familiar with the parser, the scanner and the character
encoding.

Note

If you are connecting to a database with PHP, it is recommended that you use the
same character encoding for both the database and the internal encoding for ease of
use and better performance.

If you are using PostgreSQL, the character encoding used in the database and the one
used in PHP may differ as it supports automatic character set conversion between the
backend and the frontend.

Multibyte String Functions

References

Multibyte character encoding schemes and their related issues are fairly complicated, and
are beyond the scope of this documentation. Please refer to the following URLs and other
resources for further information regarding these topics.

• Unicode materials » http://www.unicode.org/

• Japanese/Korean/Chinese character information
» http://examples.oreilly.com/cjkvinfo/doc/cjk.inf

http://www.unicode.org/
http://examples.oreilly.com/cjkvinfo/doc/cjk.inf
http://examples.oreilly.com/cjkvinfo/doc/cjk.inf

mb_check_encoding

mb_check_encoding -- Check if the string is valid for the specified encoding

Description

bool mb_check_encoding ([string $var [, string $encoding]])

Checks if the specified byte stream is valid for the specified encoding. It is useful to
prevent so-called "Invalid Encoding Attack".

Parameters

var

The byte stream to check. If it is omitted, this function checks all the input from the
beginning of the request.

encoding

The expected encoding.

Return Values

Returns TRUE on success or FALSE on failure.

mb_convert_case

mb_convert_case -- Perform case folding on a string

Description

string mb_convert_case (string $str, int $mode [, string $encoding])

Performs case folding on a string, converted in the way specified by mode.

Parameters

str

The string being converted.

mode

The mode of the conversion. It can be one of MB_CASE_UPPER,
MB_CASE_LOWER, or MB_CASE_TITLE.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

A case folded version of string converted in the way specified by mode.

Unicode

By contrast to the standard case folding functions such as strtolower() and strtoupper(),
case folding is performed on the basis of the Unicode character properties. Thus the
behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as A-umlaut (Ä).

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

Examples

Example #7 - mb_convert_case() example

<?php

$str = "mary had a Little lamb and she loved it so";

$str = mb_convert_case($str, MB_CASE_UPPER, "UTF-8");

echo $str; // Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

$str = mb_convert_case($str, MB_CASE_TITLE, "UTF-8");

echo $str; // Prints Mary Had A Little Lamb And She Loved It So

?>

See Also

• mb_strtolower()
• mb_strtoupper()
• strtolower()
• strtoupper()
• ucfirst()
• ucwords()

mb_convert_encoding

mb_convert_encoding -- Convert character encoding

Description

string mb_convert_encoding (string $str, string $to_encoding [, mixed $from_encoding
])

Converts the character encoding of string str to to_encoding from optionally
from_encoding.

Parameters

str

The string being encoded.

to_encoding

The type of encoding that str is being converted to.

from_encoding

Is specified by character code names before conversion. It is either an array, or a
comma separated enumerated list. If from_encoding is not specified, the internal
encoding will be used. " auto " may be used, which expands to
"ASCII,JIS,UTF-8,EUC-JP,SJIS".

Return Values

The encoded string.

Examples

Example #8 - mb_convert_encoding() example

<?php

/* Convert internal character encoding to SJIS */

$str = mb_convert_encoding($str, "SJIS");

/* Convert EUC-JP to UTF-7 */

$str = mb_convert_encoding($str, "UTF-7", "EUC-JP");

/* Auto detect encoding from JIS, eucjp-win, sjis-win, then convert str to
UCS-2LE */

$str = mb_convert_encoding($str, "UCS-2LE", "JIS, eucjp-win, sjis-win");

/* "auto" is expanded to "ASCII,JIS,UTF-8,EUC-JP,SJIS" */

$str = mb_convert_encoding($str, "EUC-JP", "auto");

?>

See Also

• mb_detect_order()

mb_convert_kana

mb_convert_kana -- Convert "kana" one from another ("zen-kaku", "han-kaku" and more)

Description

string mb_convert_kana (string $str [, string $option [, string $encoding]])

Performs a "han-kaku" - "zen-kaku" conversion for string str. This function is only useful
for Japanese.

Parameters

str

The string being converted.

option

The conversion option. The default value is "KV". Specify with a combination of
following options. The default value is KV.

Applicable Conversion Options

Option Meaning

r Convert "zen-kaku" alphabets to "han-kaku"

R Convert "han-kaku" alphabets to "zen-kaku"

n Convert "zen-kaku" numbers to "han-kaku"

N Convert "han-kaku" numbers to "zen-kaku"

a Convert "zen-kaku" alphabets and numbers
to "han-kaku"

A Convert "han-kaku" alphabets and numbers
to "zen-kaku" (Characters included in "a",
"A" options are U+0021 - U+007E excluding
U+0022, U+0027, U+005C, U+007E)

s Convert "zen-kaku" space to "han-kaku"
(U+3000 -> U+0020)

S Convert "han-kaku" space to "zen-kaku"
(U+0020 -> U+3000)

k Convert "zen-kaku kata-kana" to "han-kaku
kata-kana"

K Convert "han-kaku kata-kana" to "zen-kaku
kata-kana"

h Convert "zen-kaku hira-gana" to "han-kaku
kata-kana"

H Convert "han-kaku kata-kana" to "zen-kaku
hira-gana"

c Convert "zen-kaku kata-kana" to "zen-kaku
hira-gana"

C Convert "zen-kaku hira-gana" to "zen-kaku
kata-kana"

V Collapse voiced sound notation and convert
them into a character. Use with "K","H"

encoding

The encoding parameter is the character encoding. If it is omitted, the internal character
encoding value will be used.

Return Values

The converted string.

Examples

Example #9 - mb_convert_kana() example

<?php

/* Convert all "kana" to "zen-kaku" "kata-kana" */

$str = mb_convert_kana($str, "KVC");

/* Convert "han-kaku" "kata-kana" to "zen-kaku" "kata-kana"

 and "zen-kaku" alpha-numeric to "han-kaku" */

$str = mb_convert_kana($str, "KVa");

?>

mb_convert_variables

mb_convert_variables -- Convert character code in variable(s)

Description

string mb_convert_variables (string $to_encoding, mixed $from_encoding, mixed &$vars [,
mixed &$...])

Converts character encoding of variables vars in encoding from_encoding to encoding
to_encoding.

mb_convert_variables() join strings in Array or Object to detect encoding, since encoding
detection tends to fail for short strings. Therefore, it is impossible to mix encoding in single
array or object.

Parameters

to_encoding

The encoding that the string is being converted to.

from_encoding

from_encoding is specified as an array or comma separated string, it tries to detect
encoding from from-coding. When from_encoding is omitted, detect_order is used.

vars

vars is the reference to the variable being converted. String, Array and Object are
accepted. mb_convert_variables() assumes all parameters have the same encoding.

...

Additional vars.

Return Values

The character encoding before conversion for success, or FALSE for failure.

Examples

Example #10 - mb_convert_variables() example

<?php

/* Convert variables $post1, $post2 to internal encoding */

$interenc = mb_internal_encoding();

$inputenc = mb_convert_variables($interenc, "ASCII,UTF-8,SJIS-win", $post1,
$post2);

?>

mb_decode_mimeheader

mb_decode_mimeheader -- Decode string in MIME header field

Description

string mb_decode_mimeheader (string $str)

Decodes encoded-word string str in MIME header.

Parameters

str

The string being decoded.

Return Values

The decoded string in internal character encoding.

See Also

• mb_encode_mimeheader()

mb_decode_numericentity

mb_decode_numericentity -- Decode HTML numeric string reference to character

Description

string mb_decode_numericentity (string $str, array $convmap [, string $encoding])

Convert numeric string reference of string str in a specified block to character.

Parameters

str

The string being decoded.

convmap

convmap is an array that specifies the code area to convert.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal character
encoding value will be used.

Return Values

The converted string.

Examples

Example #11 - convmap example

$convmap = array (

 int start_code1, int end_code1, int offset1, int mask1,

 int start_code2, int end_code2, int offset2, int mask2,

 int start_codeN, int end_codeN, int offsetN, int maskN);

// Specify Unicode value for start_codeN and end_codeN

// Add offsetN to value and take bit-wise 'AND' with maskN,

// then convert value to numeric string reference.

See Also

• mb_encode_numericentity()

mb_detect_encoding

mb_detect_encoding -- Detect character encoding

Description

string mb_detect_encoding (string $str [, mixed $encoding_list [, bool $strict]])

Detects character encoding in string str.

Parameters

str

The string being detected.

encoding_list

encoding_list is list of character encoding. Encoding order may be specified by array or
comma separated list string. If encoding_list is omitted, detect_order is used.

strict

strict specifies whether to use the strict encoding detection or not. Default is FALSE.

Return Values

The detected character encoding.

Examples

Example #12 - mb_detect_encoding() example

<?php

/* Detect character encoding with current detect_order */

echo mb_detect_encoding($str);

/* "auto" is expanded to "ASCII,JIS,UTF-8,EUC-JP,SJIS" */

echo mb_detect_encoding($str, "auto");

/* Specify encoding_list character encoding by comma separated list */

echo mb_detect_encoding($str, "JIS, eucjp-win, sjis-win");

/* Use array to specify encoding_list */

$ary[] = "ASCII";

$ary[] = "JIS";

$ary[] = "EUC-JP";

echo mb_detect_encoding($str, $ary);

?>

See Also

• mb_detect_order()

mb_detect_order

mb_detect_order -- Set/Get character encoding detection order

Description

mixed mb_detect_order ([mixed $encoding_list])

Sets the automatic character encoding detection order to encoding_list.

Parameters

encoding_list

encoding_list is an array or comma separated list of character encoding. ("auto" is
expanded to "ASCII, JIS, UTF-8, EUC-JP, SJIS") If encoding_list is omitted, it returns
the current character encoding detection order as array. This setting affects
mb_detect_encoding() and mb_send_mail(). mbstring currently implements the following
encoding detection filters. If there is an invalid byte sequence for the following encodings,
encoding detection will fail. UTF-8, UTF-7, ASCII, EUC-JP, SJIS, eucJP-win, SJIS-win, JIS
, ISO-2022-JP For ISO-8859-*, mbstring always detects as ISO-8859-*. For UTF-16,
UTF-32, UCS2 and UCS4, encoding detection will fail always.

Example #13 - Useless detect order example

; Always detect as ISO-8859-1

detect_order = ISO-8859-1, UTF-8

; Always detect as UTF-8, since ASCII/UTF-7 values are

; valid for UTF-8

detect_order = UTF-8, ASCII, UTF-7

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #14 - mb_detect_order() examples

<?php

/* Set detection order by enumerated list */

mb_detect_order("eucjp-win,sjis-win,UTF-8");

/* Set detection order by array */

$ary[] = "ASCII";

$ary[] = "JIS";

$ary[] = "EUC-JP";

mb_detect_order($ary);

/* Display current detection order */

echo implode(", ", mb_detect_order());

?>

See Also

• mb_internal_encoding()
• mb_http_input()
• mb_http_output()
• mb_send_mail()

mb_encode_mimeheader

mb_encode_mimeheader -- Encode string for MIME header

Description

string mb_encode_mimeheader (string $str [, string $charset [, string $transfer_encoding
[, string $linefeed [, int $indent]]]])

Encodes a given string str by the MIME header encoding scheme.

Parameters

str

The string being encoded.

charset

charset specifies the name of the character set in which str is represented in. The default
value is determined by the current NLS setting (mbstring.language).

transfer_encoding

transfer_encoding specifies the scheme of MIME encoding. It should be either "B"
(Base64) or "Q" (Quoted-Printable). Falls back to "B" if not given.

linefeed

linefeed specifies the EOL (end-of-line) marker with which mb_encode_mimeheader()
performs line-folding (a » RFC term, the act of breaking a line longer than a certain length
into multiple lines. The length is currently hard-coded to 74 characters). Falls back to "\r\n"
(CRLF) if not given.

indent

Return Values

A converted version of the string represented in ASCII.

ChangeLog

Version Description

5.0.0 The indent parameter was added.

http://www.faqs.org/rfcs/rfc2822

Examples

Example #15 - mb_encode_mimeheader() example

<?php

$name = ""; // kanji

$mbox = "kru";

$doma = "gtinn.mon";

$addr = mb_encode_mimeheader($name, "UTF-7", "Q") . " <" . $mbox . "@" .
$doma . ">";

echo $addr;

?>

Notes

Note

This function isn't designed to break lines at higher-level contextual break points (word
boundaries, etc.). This behaviour may clutter up the original string with unexpected
spaces.

See Also

• mb_decode_mimeheader()

mb_encode_numericentity

mb_encode_numericentity -- Encode character to HTML numeric string reference

Description

string mb_encode_numericentity (string $str, array $convmap [, string $encoding])

Converts specified character codes in string str from HTML numeric character reference
to character code.

Parameters

str

The string being encoded.

convmap

convmap is array specifies code area to convert.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The converted string.

Examples

Example #16 - convmap example

$convmap = array (

int start_code1, int end_code1, int offset1, int mask1,

int start_code2, int end_code2, int offset2, int mask2,

........

int start_codeN, int end_codeN, int offsetN, int maskN);

// Specify Unicode value for start_codeN and end_codeN

// Add offsetN to value and take bit-wise 'AND' with maskN, then

// it converts value to numeric string reference.

Examples

Example #17 - mb_encode_numericentity() example

<?php

/* Convert Left side of ISO-8859-1 to HTML numeric character reference */

$convmap = array(0x80, 0xff, 0, 0xff);

$str = mb_encode_numericentity($str, $convmap, "ISO-8859-1");

/* Convert user defined SJIS-win code in block 95-104 to numeric

 string reference */

$convmap = array(

 0xe000, 0xe03e, 0x1040, 0xffff,

 0xe03f, 0xe0bb, 0x1041, 0xffff,

 0xe0bc, 0xe0fa, 0x1084, 0xffff,

 0xe0fb, 0xe177, 0x1085, 0xffff,

 0xe178, 0xe1b6, 0x10c8, 0xffff,

 0xe1b7, 0xe233, 0x10c9, 0xffff,

 0xe234, 0xe272, 0x110c, 0xffff,

 0xe273, 0xe2ef, 0x110d, 0xffff,

 0xe2f0, 0xe32e, 0x1150, 0xffff,

 0xe32f, 0xe3ab, 0x1151, 0xffff);

$str = mb_encode_numericentity($str, $convmap, "sjis-win");

?>

See Also

• mb_decode_numericentity()

mb_ereg_match

mb_ereg_match -- Regular expression match for multibyte string

Description

bool mb_ereg_match (string $pattern, string $string [, string $option])

A regular expression match for a multibyte string

Parameters

pattern

The regular expression pattern.

string

The string being evaluated.

option

Return Values

Returns TRUE if string matches the regular expression pattern, FALSE if not.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_ereg_replace

mb_ereg_replace -- Replace regular expression with multibyte support

Description

string mb_ereg_replace (string $pattern, string $replacement, string $string [, string $
option])

Scans string for matches to pattern, then replaces the matched text with replacement

Parameters

pattern

The regular expression pattern. Multibyte characters may be used in pattern.

replacement

The replacement text.

string

The string being checked.

option

Matching condition can be set by option parameter. If i is specified for this parameter,
the case will be ignored. If x is specified, white space will be ignored. If m is specified,
match will be executed in multiline mode and line break will be included in '.'. If p is
specified, match will be executed in POSIX mode, line break will be considered as
normal character. If e is specified, replacement string will be evaluated as PHP
expression.

Return Values

The resultant string on success, or FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_eregi_replace()

mb_ereg_search_getpos

mb_ereg_search_getpos -- Returns start point for next regular expression match

Description

int mb_ereg_search_getpos (void)

Returns the start point for the next regular expression match.

Parameters

This function has no parameters.

Return Values

mb_ereg_search_getpos() returns the point to start regular expression match for
mb_ereg_search(), mb_ereg_search_pos(), mb_ereg_search_regs(). The position is
represented by bytes from the head of string.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_setpos()

mb_ereg_search_getregs

mb_ereg_search_getregs -- Retrieve the result from the last multibyte regular expression
match

Description

array mb_ereg_search_getregs (void)

Retrieve the result from the last multibyte regular expression match

Parameters

This function has no parameters.

Return Values

An array including the sub-string of matched part by last mb_ereg_search(),
mb_ereg_search_pos(), mb_ereg_search_regs(). If there are some matches, the first
element will have the matched sub-string, the second element will have the first part
grouped with brackets, the third element will have the second part grouped with brackets,
and so on. It returns FALSE on error;

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_init

mb_ereg_search_init -- Setup string and regular expression for a multibyte regular
expression match

Description

bool mb_ereg_search_init (string $string [, string $pattern [, string $option]])

mb_ereg_search_init() sets string and pattern for a multibyte regular expression. These
values are used for mb_ereg_search(), mb_ereg_search_pos(), and
mb_ereg_search_regs().

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_regs()

mb_ereg_search_pos

mb_ereg_search_pos -- Returns position and length of a matched part of the multibyte
regular expression for a predefined multibyte string

Description

array mb_ereg_search_pos ([string $pattern [, string $option]])

Returns position and length of a matched part of the multibyte regular expression for a
predefined multibyte string

The string for match is specified by mb_ereg_search_init(). If it is not specified, the
previous one will be used.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

An array including the position of a matched part for a multibyte regular expression. The
first element of the array will be the beginning of matched part, the second element will be
length (bytes) of matched part. It returns FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_regs

mb_ereg_search_regs -- Returns the matched part of a multibyte regular expression

Description

array mb_ereg_search_regs ([string $pattern [, string $option]])

Returns the matched part of a multibyte regular expression.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

mb_ereg_search_regs() executes the multibyte regular expression match, and if there are
some matched part, it returns an array including substring of matched part as first element,
the first grouped part with brackets as second element, the second grouped part as third
element, and so on. It returns FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_setpos

mb_ereg_search_setpos -- Set start point of next regular expression match

Description

bool mb_ereg_search_setpos (int $position)

mb_ereg_search_setpos() sets the starting point of a match for mb_ereg_search().

Parameters

position

The position to set.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search

mb_ereg_search -- Multibyte regular expression match for predefined multibyte string

Description

bool mb_ereg_search ([string $pattern [, string $option]])

Performs a multibyte regular expression match for a predefined multibyte string.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

mb_ereg_search() returns TRUE if the multibyte string matches with the regular
expression, or FALSE otherwise. The string for matching is set by mb_ereg_search_init().
If pattern is not specified, the previous one is used.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg

mb_ereg -- Regular expression match with multibyte support

Description

int mb_ereg (string $pattern, string $string [, array $regs])

Executes the regular expression match with multibyte support.

Parameters

pattern

The search pattern.

string

The search string.

regs

Contains a substring of the matched string.

Return Values

Executes the regular expression match with multibyte support, and returns 1 if matches
are found. If the optional regs parameter was specified, the function returns the byte
length of matched part, and the array regs will contain the substring of matched string.
The function returns 1 if it matches with the empty string. If no matches are found or an
error happens, FALSE will be returned.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_eregi()

mb_eregi_replace

mb_eregi_replace -- Replace regular expression with multibyte support ignoring case

Description

string mb_eregi_replace (string $pattern, string $replace, string $string [, string $
option])

Scans string for matches to pattern, then replaces the matched text with replacement.

Parameters

pattern

The regular expression pattern. Multibyte characters may be used. The case will be
ignored.

replace

The replacement text.

string

The searched string.

option

option has the same meaning as in mb_ereg_replace().

Return Values

The resultant string or FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_replace()

mb_eregi

mb_eregi -- Regular expression match ignoring case with multibyte support

Description

int mb_eregi (string $pattern, string $string [, array $regs])

Executes the case insensitive regular expression match with multibyte support.

Parameters

pattern

The regular expression pattern.

string

The string being searched.

regs

Contains a substring of the matched string.

Return Values

Executes the regular expression match with multibyte support, and returns 1 if matches
are found. If the optional regs parameter was specified, the function returns the byte
length of matched part, and the array regs will contain the substring of matched string.
The function returns 1 if it matches with the empty string. If no matches are found or an
error happens, FALSE will be returned.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_get_info

mb_get_info -- Get internal settings of mbstring

Description

mixed mb_get_info ([string $type])

mb_get_info() returns the internal setting parameters of mbstring.

Parameters

type

If type isn't specified or is specified to "all", an array having the elements
"internal_encoding", "http_output", "http_input", "func_overload", "mail_charset",
"mail_header_encoding", "mail_body_encoding" will be returned. If type is specified
as "http_output", "http_input", "internal_encoding", "func_overload", the specified
setting parameter will be returned.

Return Values

An array of type information if type is not specified, otherwise a specific type.

ChangeLog

Version Description

5.1.3 The element types "mail_charset",
"mail_header_encoding", and
"mail_body_encoding" were made available.

See Also

• mb_regex_encoding()
• mb_http_output()

mb_http_input

mb_http_input -- Detect HTTP input character encoding

Description

mixed mb_http_input ([string $type])

Detects the HTTP input character encoding.

Parameters

type

Input string specifies the input type. "G" for GET, "P" for POST, "C" for COOKIE, "S"
for string, "L" for list, and "I" for the whole list (will return array). If type is omitted, it
returns the last input type processed.

Return Values

The character encoding name, as per the type. If mb_http_input() does not process
specified HTTP input, it returns FALSE.

See Also

• mb_internal_encoding()
• mb_http_output()
• mb_detect_order()

mb_http_output

mb_http_output -- Set/Get HTTP output character encoding

Description

mixed mb_http_output ([string $encoding])

Set/Get the HTTP output character encoding. Output after this function is converted to
encoding.

Parameters

encoding

If encoding is set, mb_http_output() sets the HTTP output character encoding to
encoding. If encoding is omitted, mb_http_output() returns the current HTTP output
character encoding.

Return Values

If encoding is omitted, mb_http_output() returns the current HTTP output character
encoding. Otherwise, Returns TRUE on success or FALSE on failure.

See Also

• mb_internal_encoding()
• mb_http_input()
• mb_detect_order()

mb_internal_encoding

mb_internal_encoding -- Set/Get internal character encoding

Description

mixed mb_internal_encoding ([string $encoding])

Set/Get the internal character encoding

Parameters

encoding

encoding is the character encoding name used for the HTTP input character encoding
conversion, HTTP output character encoding conversion, and the default character
encoding for string functions defined by the mbstring module.

Return Values

If encoding is set, then Returns TRUE on success or FALSE on failure. If encoding is
omitted, then the current character encoding name is returned.

Examples

Example #18 - mb_internal_encoding() example

<?php

/* Set internal character encoding to UTF-8 */

mb_internal_encoding("UTF-8");

/* Display current internal character encoding */

echo mb_internal_encoding();

?>

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_http_input()
• mb_http_output()
• mb_detect_order()

mb_language

mb_language -- Set/Get current language

Description

mixed mb_language ([string $language])

Set/Get the current language.

Parameters

language

Used for encoding e-mail messages. Valid languages are "Japanese",
"ja","English","en" and "uni" (UTF-8). mb_send_mail() uses this setting to encode
e-mail. Language and its setting is ISO-2022-JP/Base64 for Japanese, UTF-8/Base64
for uni, ISO-8859-1/quoted printable for English.

Return Values

If language is set and language is valid, it returns TRUE. Otherwise, it returns FALSE.
When language is omitted, it returns the language name as a string. If no language is set
previously, it then returns FALSE.

See Also

• mb_send_mail()

mb_list_encodings

mb_list_encodings -- Returns an array of all supported encodings

Description

array mb_list_encodings (void)

Returns an array containing all supported encodings.

Parameters

This function has no parameters.

Return Values

Returns a numerically indexed array.

Errors/Exceptions

This function does not emit any errors.

Examples

Example #19 - mb_list_encodings() example

<?php

print_r(mb_list_encodings());

?>

The above example will output something similar to:

Array

(

 [0] => pass

 [1] => auto

 [2] => wchar

 [3] => byte2be

 [4] => byte2le

 [5] => byte4be

 [6] => byte4le

 [7] => BASE64

 [8] => UUENCODE

 [9] => HTML-ENTITIES

 [10] => Quoted-Printable

 [11] => 7bit

 [12] => 8bit

 [13] => UCS-4

 [14] => UCS-4BE

 [15] => UCS-4LE

 [16] => UCS-2

 [17] => UCS-2BE

 [18] => UCS-2LE

 [19] => UTF-32

 [20] => UTF-32BE

 [21] => UTF-32LE

 [22] => UTF-16

 [23] => UTF-16BE

 [24] => UTF-16LE

 [25] => UTF-8

 [26] => UTF-7

 [27] => UTF7-IMAP

 [28] => ASCII

 [29] => EUC-JP

 [30] => SJIS

 [31] => eucJP-win

 [32] => SJIS-win

 [33] => JIS

 [34] => ISO-2022-JP

 [35] => Windows-1252

 [36] => ISO-8859-1

 [37] => ISO-8859-2

 [38] => ISO-8859-3

 [39] => ISO-8859-4

 [40] => ISO-8859-5

 [41] => ISO-8859-6

 [42] => ISO-8859-7

 [43] => ISO-8859-8

 [44] => ISO-8859-9

 [45] => ISO-8859-10

 [46] => ISO-8859-13

 [47] => ISO-8859-14

 [48] => ISO-8859-15

 [49] => EUC-CN

 [50] => CP936

 [51] => HZ

 [52] => EUC-TW

 [53] => BIG-5

 [54] => EUC-KR

 [55] => UHC

 [56] => ISO-2022-KR

 [57] => Windows-1251

 [58] => CP866

 [59] => KOI8-R

)

mb_output_handler

mb_output_handler -- Callback function converts character encoding in output buffer

Description

string mb_output_handler (string $contents, int $status)

mb_output_handler() is ob_start() callback function. mb_output_handler() converts
characters in the output buffer from internal character encoding to HTTP output character
encoding.

Parameters

contents

The contents of the output buffer.

status

The status of the output buffer.

Return Values

The converted string.

ChangeLog

Version Description

4.1.0
This handler now adds the charset HTTP
header when the following conditions are
met:

• Does not set Content-Type, using
header().

• The default MIME type begins with text/.

• The mbstring.http_input setting is
something other than pass.

Examples

Example #20 - mb_output_handler() example

<?php

mb_http_output("UTF-8");

ob_start("mb_output_handler");

?>

Notes

Note

If you want to output some binary data such as image from PHP script with PHP 4.3.0
or later, Content-Type: header must be send using header() before any binary data
was send to client (e.g. header("Content-Type: image/png")). If Content-Type: header
was send, output character encoding conversion will not be performed.

Note that if 'Content-Type: text/*' was send using header(), the sending data is
regarded as text, encoding conversion will be performed using character encoding
settings.

If you want to output some binary data such as image from PHP script with PHP 4.2.x
or earlier, you must set output encoding to "pass" using mb_http_output().

See Also

• ob_start()

mb_parse_str

mb_parse_str -- Parse GET/POST/COOKIE data and set global variable

Description

bool mb_parse_str (string $encoded_string [, array &$result])

Parses GET/POST/COOKIE data and sets global variables. Since PHP does not provide
raw POST/COOKIE data, it can only be used for GET data for now. It parses URL
encoded data, detects encoding, converts coding to internal encoding and set values to
the result array or global variables.

Parameters

encoded_string

The URL encoded data.

result

An array containing decoded and character encoded converted values.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mb_detect_order()
• mb_internal_encoding()

mb_preferred_mime_name

mb_preferred_mime_name -- Get MIME charset string

Description

string mb_preferred_mime_name (string $encoding)

Get a MIME charset string for a specific encoding.

Parameters

encoding

The encoding being checked.

Return Values

The MIME charset string for character encoding encoding.

Examples

Example #21 - mb_preferred_mime_string() example

<?php

$outputenc = "sjis-win";

mb_http_output($outputenc);

ob_start("mb_output_handler");

header("Content-Type: text/html; charset=" .
mb_preferred_mime_name($outputenc));

?>

mb_regex_encoding

mb_regex_encoding -- Returns current encoding for multibyte regex as string

Description

mixed mb_regex_encoding ([string $encoding])

Returns the current encoding for a multibyte regex as a string.

Parameters

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the character encoding used by multibyte regex functions.

See Also

• mb_internal_encoding()
• mb_ereg()

mb_regex_set_options

mb_regex_set_options -- Set/Get the default options for mbregex functions

Description

string mb_regex_set_options ([string $options])

Sets the default options described by options for multibyte regex functions.

Parameters

options

The options to set.

Return Values

The previous options. If options is omitted, it returns the string that describes the current
options.

See Also

• mb_split()
• mb_ereg()
• mb_eregi()

mb_send_mail

mb_send_mail -- Send encoded mail

Description

bool mb_send_mail (string $to, string $subject, string $message [, string $
additional_headers [, string $additional_parameter]])

Sends email. Headers and messages are converted and encoded according to the
mb_language() setting. It's a wrapper function for mail(), so see also mail() for details.

Parameters

to

The mail addresses being sent to. Multiple recipients may be specified by putting a
comma between each address in to. This parameter is not automatically encoded.

subject

The subject of the mail.

message

The message of the mail.

additional_headers

additional_headers is inserted at the end of the header. This is typically used to add
extra headers. Multiple extra headers are separated with a newline ("\n").

additional_parameter

additional_parameter is a MTA command line parameter. It is useful when setting the
correct Return-Path header when using sendmail.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The Content-Type and
Content-Transfer-Encoding headers may be
redefined as of PHP 5.0.0. Before this time,
the values defined by mb_language() are
always used.

See Also

• mail()
• mb_encode_mimeheade()
• mb_language()

mb_split

mb_split -- Split multibyte string using regular expression

Description

array mb_split (string $pattern, string $string [, int $limit])

Split a multibyte string using regular expression pattern and returns the result as an
array.

Parameters

pattern

The regular expression pattern.

string

The string being split.

limit

If optional parameter limit is specified, it will be split in limit elements as maximum.

Return Values

The result as an array.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_strcut

mb_strcut -- Get part of string

Description

string mb_strcut (string $str, int $start [, int $length [, string $encoding]])

mb_strcut() performs equivalent operation as mb_substr() with different method. If start
position is multi-byte character's second byte or larger, it starts from first byte of multi-byte
character.

It subtracts string from str that is shorter than length AND character that is not part of
multi-byte string or not being middle of shift sequence.

Parameters

str

The string being cut.

start

The position that begins the cut.

length

The string being decoded.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

mb_strcut() returns the portion of str specified by the start and length parameters.

See Also

• mb_substr()
• mb_internal_encoding()

mb_strimwidth

mb_strimwidth -- Get truncated string with specified width

Description

string mb_strimwidth (string $str, int $start, int $width [, string $trimmarker [, string $
encoding]])

Truncates string str to specified width.

Parameters

str

The string being decoded.

start

The start position offset. Number of characters from the beginning of string. (First
character is 0)

width

The width of the desired trim.

trimmarker

A string that is added to the end of string when string is truncated.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The truncated string. If trimmarker is set, trimmarker is appended to the return value.

Examples

Example #22 - mb_strimwidth() example

<?php

$str = mb_strimwidth($str, 0, 40, "..>");

?>

See Also

• mb_strwidth()
• mb_internal_encoding()

mb_stripos

mb_stripos -- Finds position of first occurrence of a string within another, case insensitive

Description

int mb_stripos (string $haystack, string $needle [, int $offset [, string $encoding]])

mb_stripos() returns the numeric position of the first occurrence of needle in the haystack
string. Unlike mb_strpos(), mb_stripos() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the position of the first occurrence of needle

needle

The string to find in haystack

offset

The position in haystack to start searching

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Return the numeric position of the first occurrence of needle in the haystack string, or
FALSE if needle is not found.

See Also

• stripos()
• strpos()
• mb_strpos()

mb_stristr

mb_stristr -- Finds first occurrence of a string within another, case insensitive

Description

string mb_stristr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_stristr() finds the first occurrence of needle in haystack and returns the portion of
haystack. Unlike mb_strstr(), mb_stristr() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the first occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the first occurrence of needle. If set to FALSE, it
returns all of haystack from the first occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack, or FALSE if needle is not found.

See Also

• stristr()
• strstr()
• mb_strstr()

mb_strlen

mb_strlen -- Get string length

Description

int mb_strlen (string $str [, string $encoding])

Gets the length of a string.

Parameters

str

The string being checked for length.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the number of characters in string str having character encoding encoding. A
multi-byte character is counted as 1.

See Also

• mb_internal_encoding()
• strlen()

mb_strpos

mb_strpos -- Find position of first occurrence of string in a string

Description

int mb_strpos (string $haystack, string $needle [, int $offset [, string $encoding]])

Finds position of the first occurrence of a string in a string.

Performs a multi-byte safe strpos() operation based on number of characters. The first
character's position is 0, the second character position is 1, and so on.

Parameters

haystack

The string being checked.

needle

The position counted from the beginning of haystack.

offset

The search offset. If it is not specified, 0 is used.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the numeric position of the first occurrence of needle in the haystack string. If
needle is not found, it returns FALSE.

See Also

• mb_()
• mb_internal_encoding()
• strpos()

mb_strrchr

mb_strrchr -- Finds the last occurrence of a character in a string within another

Description

string mb_strrchr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strrchr() finds the last occurrence of needle in haystack and returns the portion of
haystack. If needle is not found, it returns FALSE.

Parameters

haystack

The string from which to get the last occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the last occurrence of needle. If set to FALSE, it
returns all of haystack from the last occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack. or FALSE if needle is not found.

See Also

• strrchr()
• mb_strstr()
• mb_strrichr()

mb_strrichr

mb_strrichr -- Finds the last occurrence of a character in a string within another, case
insensitive

Description

string mb_strrichr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strrichr() finds the last occurrence of needle in haystack and returns the portion of
haystack. Unlike mb_strrchr(), mb_strrichr() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the last occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the last occurrence of needle. If set to FALSE, it
returns all of haystack from the last occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack. or FALSE if needle is not found.

See Also

• mb_stristr()
• mb_strrchr()

mb_strripos

mb_strripos -- Finds position of last occurrence of a string within another, case insensitive

Description

int mb_strripos (string $haystack, string $needle [, int $offset [, string $encoding]])

mb_strripos() performs multi-byte safe strripos() operation based on number of characters.
needle position is counted from the beginning of haystack. First character's position is 0.
Second character position is 1. Unlike mb_strrpos(), mb_strripos() is case-insensitive.

Parameters

haystack

The string from which to get the position of the last occurrence of needle

needle

The string to find in haystack

offset

The position in haystack to start searching

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Return the numeric position of the last occurrence of needle in the haystack string, or
FALSE if needle is not found.

See Also

• strripos()
• strrpos()
• mb_strrpos()

mb_strrpos

mb_strrpos -- Find position of last occurrence of a string in a string

Description

int mb_strrpos (string $haystack, string $needle [, int $offset [, string $encoding]])

Performs a multibyte safe strrpos() operation based on the number of characters. needle
position is counted from the beginning of haystack. First character's position is 0. Second
character position is 1.

Parameters

haystack

The string being checked, for the last occurrence of needle

needle

The string to find in haystack.

offset

May be specified to begin searching an arbitrary number of characters into the string.
Negative values will stop searching at an arbitrary point prior to the end of the string.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the numeric position of the last occurrence of needle in the haystack string. If
needle is not found, it returns FALSE.

ChangeLog

Version Description

5.2.0 Added the optional parameter offset.

Notes

Note

The encoding parameter was moved from the third position to the fourth in PHP 5.2.0.
For backward compatibility, encoding can be specified as the third parameter, but
doing so is deprecated and will be removed in the future.

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_strpos()
• mb_internal_encoding()
• strrpos()

mb_strstr

mb_strstr -- Finds first occurrence of a string within another

Description

string mb_strstr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strstr() finds the first occurrence of needle in haystack and returns the portion of
haystack. If needle is not found, it returns FALSE.

Parameters

haystack

The string from which to get the first occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the first occurrence of needle. If set to FALSE, it
returns all of haystack from the first occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack, or FALSE if needle is not found.

See Also

• stristr()
• strstr()
• mb_stristr()

mb_strtolower

mb_strtolower -- Make a string lowercase

Description

string mb_strtolower (string $str [, string $encoding])

Returns str with all alphabetic characters converted to lowercase.

Parameters

str

The string being lowercased.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

str with all alphabetic characters converted to lowercase.

Unicode

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

By contrast to strtolower(), 'alphabetic' is determined by the Unicode character properties.
Thus the behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as A-umlaut (Ä).

Examples

Example #23 - mb_strtolower() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = mb_strtolower($str);

echo $str; // Prints mary had a little lamb and she loved it so

?>

See Also

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

• mb_strtoupper()
• mb_convert_case()
• strtolower()

mb_strtoupper

mb_strtoupper -- Make a string uppercase

Description

string mb_strtoupper (string $str [, string $encoding])

Returns str with all alphabetic characters converted to uppercase.

Parameters

str

The string being uppercased.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

str with all alphabetic characters converted to uppercase.

Unicode

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

By contrast to strtoupper(), 'alphabetic' is determined by the Unicode character properties.
Thus the behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as a-umlaut (ä).

Examples

Example #24 - mb_strtoupper() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = mb_strtoupper($str);

echo $str; // Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

?>

See Also

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

• mb_strtolower()
• mb_convert_case()
• strtoupper()

mb_strwidth

mb_strwidth -- Return width of string

Description

int mb_strwidth (string $str [, string $encoding])

Returns the width of string str.

Multi-byte characters are usually twice the width of single byte characters.

Characters width

Chars Width

U+0000 - U+0019 0

U+0020 - U+1FFF 1

U+2000 - U+FF60 2

U+FF61 - U+FF9F 1

U+FFA0 - 2

Parameters

str

The string being decoded.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The width of string str.

See Also

• mb_strimwidth()
• mb_internal_encoding()

mb_substitute_character

mb_substitute_character -- Set/Get substitution character

Description

mixed mb_substitute_character ([mixed $substrchar])

Specifies a substitution character when input character encoding is invalid or character
code does not exist in output character encoding. Invalid characters may be substituted
NULL (no output), string or integer value (Unicode character code value).

This setting affects mb_convert_encoding(), mb_convert_variables(), mb_output_handler()
, and mb_send_mail().

Parameters

substrchar

Specify the Unicode value as an integer, or as one of the following string s:

• "none" : no output

• "long" : Output character code value (Example: U+3000,JIS+7E7E)

Return Values

If substchar is set, it returns TRUE for success, otherwise returns FALSE. If substchar is
not set, it returns the Unicode value, or " none " or " long ".

Examples

Example #25 - mb_substitute_character() example

<?php

/* Set with Unicode U+3013 (GETA MARK) */

mb_substitute_character(0x3013);

/* Set hex format */

mb_substitute_character("long");

/* Display current setting */

echo mb_substitute_character();

?>

mb_substr_count

mb_substr_count -- Count the number of substring occurrences

Description

int mb_substr_count (string $haystack, string $needle [, string $encoding])

Counts the number of times the needle substring occurs in the haystack string.

Parameters

haystack

The string being checked.

needle

The string being found.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The number of times the needle substring occurs in the haystack string.

Examples

Example #26 - mb_substr_count() example

<?php

echo mb_substr_count("This is a test", "is"); // prints out 2

?>

See Also

• mb_strpos()
• mb_substr()
• substr_count()

mb_substr

mb_substr -- Get part of string

Description

string mb_substr (string $str, int $start [, int $length [, string $encoding]])

Performs a multi-byte safe substr() operation based on number of characters. Position is
counted from the beginning of str. First character's position is 0. Second character
position is 1, and so on.

Parameters

str

The string being checked.

start

The first position used in str.

length

The maximum length of the returned string.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

mb_substr() returns the portion of str specified by the start and length parameters.

See Also

• mb_strcut()
• mb_internal_encoding()

	Multibyte String
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Summaries of supported encodings
	Basics of Japanese multi-byte encodings
	HTTP Input and Output
	Supported Character Encodings
	Function Overloading Feature
	PHP Character Encoding Requirements
	Multibyte String Functions
	mb_check_encoding
	mb_convert_case
	mb_convert_encoding
	mb_convert_kana
	mb_convert_variables
	mb_decode_mimeheader
	mb_decode_numericentity
	mb_detect_encoding
	mb_detect_order
	mb_encode_mimeheader
	mb_encode_numericentity
	mb_ereg_match
	mb_ereg_replace
	mb_ereg_search_getpos
	mb_ereg_search_getregs
	mb_ereg_search_init
	mb_ereg_search_pos
	mb_ereg_search_regs
	mb_ereg_search_setpos
	mb_ereg_search
	mb_ereg
	mb_eregi_replace
	mb_eregi
	mb_get_info
	mb_http_input
	mb_http_output
	mb_internal_encoding
	mb_language
	mb_list_encodings
	mb_output_handler
	mb_parse_str
	mb_preferred_mime_name
	mb_regex_encoding
	mb_regex_set_options
	mb_send_mail
	mb_split
	mb_strcut
	mb_strimwidth
	mb_stripos
	mb_stristr
	mb_strlen
	mb_strpos
	mb_strrchr
	mb_strrichr
	mb_strripos
	mb_strrpos
	mb_strstr
	mb_strtolower
	mb_strtoupper
	mb_strwidth
	mb_substitute_character
	mb_substr_count
	mb_substr

