
SDO XML Data Access Service

Introduction

In order to use the XML Data Access Service for Service Data Objects, you will need to
understand some of the concepts behind SDO: the data graph, the data object, XPath and
property expressions, and so on. If you are not familiar with these ideas, you might want to
look first at the section on SDO.

The job of the XML DAS is to move data between the application and an XML data source,
which can be either a file or a URL. SDOs are always created and maintained according to
a model which defines type names and what property names each type may have. For
data which is from XML, this SDO model is built from a schema file written in XML schema
language (an xsd file). This schema file is usually passed to the create method when the
XMLDAS is initialised. The » SDO 2.0 specification defines the mapping between XML
types and SDO types. There are a number of small limitations in the PHP support - not
everything which is in the specification can be done - and these limitations are
summarised in a later section.

http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/

Installing/Configuring

Requirements

The SDO XML Data Access Service requires PHP 5.1.0 or higher. It is packaged with the
SDO extension and requires SDO to have been installed. See the SDO installation
instructions for the details of how to do this.

Installation

The XML Data Access Service is packaged and installed as part of the SDO extension.
Please Refer SDO installation instructions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Several of the following examples are based on the letter example described in the SDO
documentation. The examples assume the XML Schema for the letter is contained in a file
letter.xsd and the letter instance is in the file letter.xml. These two files are reproduced
here:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:letter="http://letterSchema"

 targetNamespace="http://letterSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 <xsd:sequence>

 <xsd:element name="date" minOccurs="0" type="xsd:string"/>

 <xsd:element name="firstName" minOccurs="0" type="xsd:string"/>

 <xsd:element name="lastName" minOccurs="0" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

<letter:letters xmlns:letter="http://letterSchema">

 <date>March 1, 2005</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Casy</firstName>

 <lastName>Crocodile</lastName>

 Please buy more shark repellent.

 Your premium is past due.

</letter:letters>

Example #1 - Loading, altering, and saving an XML document

The following example shows how an XML document can be loaded from a file,
altered, and written back.

<?php

/**

* Load, update, and save an XML document

*/

try {

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 $document = $xmldas->loadFile("letter.xml");

 $root_data_object = $document->getRootDataObject();

 $root_data_object->date = "September 03, 2004";

 $root_data_object->firstName = "Anantoju";

 $root_data_object->lastName = "Madhu";

 $xmldas->saveFile($document, "letter-out.xml");

 echo "New file has been written:\n";

 print file_get_contents("letter-out.xml");

} catch (SDO_Exception $e) {

 print($e->getMessage());

}

?>

An instance of the XML DAS is first obtained from the SDO_DAS_XML::create()
method, which is a static method of the SDO_DAS_XML class. The location of the xsd
is passed as a parameter. Once we have an instance of the XML DAS initialised with a
given schema, we can use it to load the instance document using the loadFile()
method. There is also a loadString() method if you want to load an XML instance
document from a string. If the instance document loads successfully, you will be
returned an object of type SDO_DAS_XML_Document, on which you can call the
getRootDataObject() method to get the SDO data object which is the root of the SDO
data graph. You can then use SDO operations to change the graph. In this example
we alter the date, firstName, and lastName properties. Then we use the saveFile()
method to write the changed document back to the file system. The saveFile method
has an optional extra integer argument which if specified will cause the XML DAS to
format the XML, using the integer as the amount to indent by at each change in level
on the document.

This will write the following to letter-out.xml.

<?xml version="1.0" encoding="UTF-8"?>

<FormLetter xmlns="http://letterSchema" xsi:type="FormLetter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <date>September 03, 2004</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Anantoju</firstName>

 <lastName>Madhu</lastName>

 Please buy more shark repellent.

 Your premium is past due.

</FormLetter>

Example #2 - Creating a new XML document

The previous example loaded the document from a file. This example shows how to
create an SDO data graph in memory. In this example it is then saved to an XML
string. Furthermore, because the letter contains both structured and unstructured
content, it uses the Sequence API as well assignments to properties to construct the
data graph.

<?php

/**

* Create an XML document from scratch

*/

try {

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 try {

 $doc = $xmldas->createDocument();

 $rdo = $doc->getRootDataObject();

 $seq = $rdo->getSequence();

 $seq->insert("April 09, 2005", NULL, 'date');

 $seq->insert("Acme Inc. ", NULL, NULL);

 $seq->insert("United Kingdom. ");

 $seq->insert("Dear", NULL, NULL);

 $seq->insert("Tarun", NULL, "firstName");

 $seq->insert("Nayaraaa", NULL, "lastName");

 $rdo->lastName = "Nayar";

 $seq->insert("Please note that your order number ");

 $seq->insert(12345);

 $seq->insert(" has been dispatched today. Thanks for your business
with us.");

 print($xmldas->saveString($doc));

 } catch (SDO_Exception $e) {

 print($e);

 }

} catch (SDO_Exception $e) {

 print("Problem creating an XML document: " . $e->getMessage());

}

?>

The createDocument() method on the XML DAS returns a document object with a single
root data object corresponding to an empty document element. The element name of the
document element is known from the schema file. If there is any ambiguity about what the
document element is, as there can be when more than one schema has been loaded into
the same XML DAS, the element name and the namespace URI can be passed to the
createDocument() method.

This will emit the following output (line breaks have been inserted for readability):

<?xml version="1.0" encoding="UTF-8"?>

<FormLetter xmlns="http://letterSchema" xsi:type="FormLetter"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<date>April 09, 2005</date>

Acme Inc. United Kingdom.

Dear

<firstName>Tarun</firstName>

<lastName>Nayar</lastName>

Please note that your order number 12345 has been

dispatched today. Thanks for your business with us.

</FormLetter>

Example #3 - Setting XML document properties

This third example shows you how to set the XML version and encoding on the
document object. These will be used when the XML is written out. If no XML
declaration is wanted at all (perhaps you want to generate the XML as a string to
embed in something) then you can use the setXMLDeclaration() method to suppress
it.

<?php

/**

* Illustrate the calls that control the XML declaration

*/

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 $document = $xmldas->loadFile("letter.xml");

 $document->setXMLVersion("1.1");

 $document->setEncoding("ISO-8859-1");

 print($xmldas->saveString($document));

?>

The XML version and encoding are set in the XML declaration at the top of the XML
document.

<?xml version="1.1" encoding="ISO-8859-1"?>

.../...

Example #4 - Using an open type

This fourth example illustrates the use of an SDO open type and the use of the
createDataObject() method. For this example we use the following two schema:

<schema

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="jungle">

 <complexType>

 <sequence>

 <any minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

</schema>

Note the presence of the any element in the definition. This first schema defines the
jungle complex type as containing a sequence of any other type. The other types that
the example will use are defined in a second schema file:

<schema xmlns= "http://www.w3.org/2001/XMLSchema">

 <complexType name="snakeType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "length" type="positiveInteger" />

 </sequence>

 </complexType>

 <complexType name="bearType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "weight" type="positiveInteger" />

 </sequence>

 </complexType>

 <complexType name="pantherType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "colour" type="string" />

 </sequence>

 </complexType>

</schema>

Here is the example PHP code that uses these two schema files:

<?php

/**

* Illustrate open types and the use of the addTypes() method

*/

$xmldas = SDO_DAS_XML::create();

$xmldas->addTypes("jungle.xsd"); // this is an open type i.e. the xsd
specifies it can contain "any" type

$xmldas->addTypes('animalTypes.xsd');

$baloo = $xmldas->createDataObject('','bearType');

$baloo->name = "Baloo";

$baloo->weight = 800;

$bagheera = $xmldas->createDataObject('','pantherType');

$bagheera->name = "Bagheera";

$bagheera->colour = 'inky black';

$kaa = $xmldas->createDataObject('','snakeType');

$kaa->name = "Kaa";

$kaa->length = 25;

$document = $xmldas->createDocument();

$do = $document->getRootDataObject();

$do->bear = $baloo;

$do->panther = $bagheera;

$do->snake = $kaa;

print($xmldas->saveString($document,2));

?>

These two schema files are loaded into the XML DAS with first the create() and
addTypes() methods. The createDataObject() method is used to create three
separate data objects. In each case the namespaceURI and typename of the type are
passed to the createDataObject() method: in this example the namespace URI is
blank because no namespace is used in the schema. Once the three data objects -
representing a bear, a panther and a snake - have been created, a document object is
created with the createDocument() method. In this case there is no ambiguity about
what the document element of the document should be - as the second schema file
only defines complex types, the document element can only be the global jungle
element defined in the first schema. This document will have a single root data object
corresponding to an empty document element jungle. As this is an open type,
properties can be added at will. When the first assignment is made to $do->bear, a
property bear is added to the root data object: likewise for the next two assignments.
When the document is written out by the saveString() method, the resulting document
is:

<?xml version="1.0" encoding="UTF-8"?>

<jungle xsi:type="jungle"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <bear xsi:type="bearType">

 <name>Baloo</name>

 <weight>800</weight>

 </bear>

 <panther xsi:type="pantherType">

 <name>Bagheera</name>

 <colour>inky black</colour>

 </panther>

 <snake xsi:type="snakeType">

 <name>Kaa</name>

 <length>25</length>

 </snake>

</jungle>

Example #5 - Finding out what you can from the document

This example is intended to illustrate how you can find the element name and
namespace of the document element from the XML Document object, and the SDO
type and namespace from the root data object of the XML data object, and how they
relate to one another. This can be difficult to understand because there are four
method calls: two can be made against the Document object, and two that can be
made against any data object including the root data object. Because of the rules that
define how the SDO model is derived from the XML model, when the data object
concerned is the root object that represents the document object for the document,
only three possible values can come back from these four method calls.

The two method calls that can be made against the document are
getRootElementName() and getRootEelementURI(). These return the element name
and namespace of the document element, respectively.

The two method calls that can be made against any data object are getTypeName()
and getTypeNamespaceURI(). These return the SDO type name and type
namespace of the data object, respectively.

Always, calling getRootElementURI() on the document object will return the same
value as calling getNamespaceURI() on the root data object. Essentially, the
information is all derived from the first few lines of the schema file, where there are
three distinct pieces of information. For illustration, here again are the first few lines of
the letter.xsd that we used above.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:letter="http://letterSchema"

 targetNamespace="http://letterSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 .../...

The three important values are:

• letters, the name of the document element

• FormLetter, the name of the complex type of the document element. This is also
the name of the SDO type of the root data object.

• http://letterSchema, the namespace to which the document element belongs. This
is also the namespaceURI of the SDO type of the root data object.

It is part of the XML-SDO mapping rules that when the SDO model is built from the
schema file, the typename and namespaceURI of the SDO types for the root element
are taken from those of the complex type of the document element, where it exists.
Hence in this example the typename of the root data object is FormLetter. In the event
that there is no separate complex type definition for the document element, when the
the type is defined inline and is anonymous, the SDO type name will be the same as
the element name.

The following program loads the letter document and checks the return values from
each of the four calls.

<?php

/**

* Finding out what you can about the document and document element

* This can be quite hard to understand because there are four calls

* Two calls are made against the document

* Two calls are made against the root data object and its model

* Because of the SDO-XML mapping rules and how the SDO model is derived

* from the XML model, only three possible values can come back from these
four calls.

* Always, $document->getRootElementURI() == (type of root data
object)->namespaceURI

* Essentially, it all comes form the first few lines of the xsd:

* <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

* xmlns:letter="http://letterSchema"

* targetNamespace="http://letterSchema">

* <xsd:element name="letters" type="letter:FormLetter"/>

*/

$xmldas = SDO_DAS_XML::create("letter.xsd");

$document = $xmldas->loadFile("letter.xml");

$root_do = $document->getRootDataObject();

/**

* The "root element name" is the element name of the document element

* in this case 'letters'

* This matches the 'name' attribute of the document element in the xsd and
matches

* the element name from the xml

*/

echo "The document element name is " . $document->getRootElementName() .
"\n";

assert($document->getRootElementName() == 'letters'); // a property of the
document

/**

* The "root element URI" is the namespace part of the element name of the
document element

* in this case 'http://letterSchema' since 'letters' is in that namespace

* This is taken from the xsd and matches the namespace picked up from the
xml

*/

echo "The document element is in the namespace " .
$document->getRootElementURI() . "\n";

assert($document->getRootElementURI() == 'http://letterSchema'); // a
property of the document

/**

* The type name is taken from the SDO model

* The XML-SDO mapping rules make this either:

* The name of the complexType if there is one (in this case there is)

* The document element name if there no complexType

* This is taken from the xsd

*/

echo "The type name of the root data object is " . $root_do->getTypeName() .
"\n";

assert($root_do->getTypeName() == 'FormLetter');

/**

* The type's namespaceURI is taken from the SDO model

* The XML-SDO mapping rules ensure that this will always be the same as

* the namepace URI of the document element

*/

echo "The namespaceURI of the root data object is " .
$root_do->getTypeNamespaceURI() . "\n";

assert($root_do->getTypeNamespaceURI() == 'http://letterSchema');

?>

The output from this program is as follows:

The document element name is letters

The document element is in the namespace http://letterSchema

The type name of the root data object is FormLetter

The namespaceURI of the root data object is http://letterSchema

Example #6 - Printing the SDO model

The XML DAS provides a simple means to see what types and properties have been
loaded. The php "print" or "echo" instruction will print out the types and properties.

<?php

/**

* Illustrate printing out the model

*/

$xmldas = SDO_DAS_XML::create("letter.xsd");

print $xmldas;

?>

The output from this program is as follows:

object(SDO_XML_DAS)#1 {

18 types have been defined. The types and their properties are::

1. commonj.sdo:BigDecimal

2. commonj.sdo:BigInteger

3. commonj.sdo:Boolean

4. commonj.sdo:Byte

5. commonj.sdo:Bytes

6. commonj.sdo:ChangeSummary

7. commonj.sdo:Character

8. commonj.sdo:DataObject

9. commonj.sdo:Date

10. commonj.sdo:Double

11. commonj.sdo:Float

12. commonj.sdo:Integer

13. commonj.sdo:Long

14. commonj.sdo:Short

15. commonj.sdo:String

16. commonj.sdo:URI

17. http://letterSchema:FormLetter

 - date (commonj.sdo:String)

 - firstName (commonj.sdo:String)

 - lastName (commonj.sdo:String)

18. http://letterSchema:RootType

 - letters (http://letterSchema:FormLetter)

SDO DAS XML Functions

Predefined Classes

The XML DAS provides two main classes. The first is SDO_DAS_XML which is the main
class used to fetch the data from the XML source and used to write the data back. The
second is the SDO_DAS_XML_Document class, which represents the data in the XML
document.

There are also some exception classes which can be thrown if errors are found when
looking for or parsing the xsd or xml files.

SDO_DAS_XML

This is the main class of the XML DAS, which is used fetch the data from the xml source
and also used to write the data back. Other than the methods to load and save xml files,

Methods

• create This is a static method available in the SDO_DAS_XML class. Used to
construct an SDO_DAS_XML object.

• addTypes Works in much the same way as create() but used to add the contents of a
second or subsequent schema file to an XML DAS that has already been created.

• createDataObject Can be used to construct an SDO data object of a given type.

• createDocument Can be used to construct an XML Document object from scratch.

• loadFile Loads the xml instance document from a file. This file can be at local file
system or it can be on a remote host.

• loadString same as the above method. Loads the xml instance which is available as
string.

• saveFile save SDO_DAS_XML_Document object as a xml file.

• saveString save SDO_DAS_XML_Document object as a xml string.

SDO_DAS_XML_Document

This class can be used to get to the name and namespace of the document element, and
to get to the root data object of the document. Lastly, it can also be used to set the XML
version and encoding of a document on output.

Methods

• getRootDataObject gets the root DataObject.

• getRootElementName gets the root DataObject's name.

• getRootElementURI gets the root DataObject's URI.

• setEncoding sets the encoding string with the given value.

• setXMLDeclaraion to set/unset the xml declaration.

• setXMLVersion sets the xml version with the given value.

SDO_DAS_XML_ParserException

Is a subclass of SDO_Exception. Thrown for any parser errors while loading the xsd/xml
file.

SDO_DAS_XML_FileException

Is a subclass of SDO_Exception. Thrown by any of the methods that load data from a file,
when the file cannot be found.

Limitations compared with SDO 2.0 specification

The » SDO 2.0 specification defines the mapping between XML types and SDO types.
With Java SDO, this mapping is implemented by the XMLHelper. With SDO for PHP, this
mapping is implemented by the XML Data Access Service. The XML DAS implements the
mapping described in the SDO 2.0 specification with some restrictions. A detailed list is of
the limitations is:

XML Simple Types
1. Simple Type with sdoJava:instanceClass - no PHP equivalent provided.

2. Simple Type with sdoJava:extendedInstanceClass - no PHP equivalent provided.

3. Simple Type with list of itemType.

4. Simple Type with union.

XML Complex Types
1. Complex Type with sdo:aliasName - no PHP support for SDO Type aliases.

XSD Attribute
1. Attribute with sdo:aliasName - no PHP support for SDO property aliases.

2. Attribute with default value - no PHP support for SDO property defaults.

3. Attribute with fixed value - no PHP support for SDO read-only properties or default

http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/

values.

4. Attribute referencing a DataObject with sdo:propertyType - no support for
sdo:propertyType="...".

5. Attribute with bi-directional property to a DataObject with sdo:oppositeProperty and
sdo:propertyType - no PHP support for SDO opposite.

XSD Elements
1. Element with sdo:aliasName - no PHP support for SDO property aliases.

2. Element with substitution group.

XSD Elements with Simple Type
1. Element of SimpleType with default - no PHP support for SDO defaults

2. Element of SimpleType with fixed value - no PHP support for SDO read-only properties
or default values.

3. Element of SimpleType with sdo:string - no support for sdo:string="true".

4. Element referencing a DataObject with sdo:propertyType - no support for
sdo:propertyType="..."

5. Element with bi-directional reference to a DataObject with sdo:oppositeProperty and
sdo:propertyType - no PHP support for SDO opposite.

SDO_DAS_XML_Document::getRootDataObject

SDO_DAS_XML_Document::getRootDataObject -- Returns the root SDO_DataObject

Description

SDO_DataObject SDO_DAS_XML_Document::getRootDataObject (void)

Returns the root SDO_DataObject.

Parameters

Return Values

Returns the root SDO_DataObject.

SDO_DAS_XML_Document::getRootElementName

SDO_DAS_XML_Document::getRootElementName -- Returns root element's name

Description

string SDO_DAS_XML_Document::getRootElementName (void)

Returns root element's name.

Parameters

Return Values

Returns root element's name.

SDO_DAS_XML_Document::getRootElementURI

SDO_DAS_XML_Document::getRootElementURI -- Returns root element's URI string

Description

string SDO_DAS_XML_Document::getRootElementURI (void)

Returns root element's URI string.

Parameters

Return Values

Returns root element's URI string.

SDO_DAS_XML_Document::setEncoding

SDO_DAS_XML_Document::setEncoding -- Sets the given string as encoding

Description

void SDO_DAS_XML_Document::setEncoding (string $encoding)

Sets the given string as encoding.

Parameters

encoding

Encoding string.

Return Values

None.

SDO_DAS_XML_Document::setXMLDeclaration

SDO_DAS_XML_Document::setXMLDeclaration -- Sets the xml declaration

Description

void SDO_DAS_XML_Document::setXMLDeclaration (bool $xmlDeclatation)

Controls whether an XML declaration will be generated at the start of the XML document.
Set to true to generate the XML declaration, or false to suppress it.

Parameters

xmlDeclatation

Boolean value to set the XML declaration.

Return Values

None.

SDO_DAS_XML_Document::setXMLVersion

SDO_DAS_XML_Document::setXMLVersion -- Sets the given string as xml version

Description

void SDO_DAS_XML_Document::setXMLVersion (string $xmlVersion)

Sets the given string as xml version.

Parameters

xmlVersion

xml version string.

Return Values

None.

SDO_DAS_XML::addTypes

SDO_DAS_XML::addTypes -- To load a second or subsequent schema file to a
SDO_DAS_XML object

Description

void SDO_DAS_XML::addTypes (string $xsd_file)

Load a second or subsequent schema file to an XML DAS that has already been created
with the static method create(). Although the file may be any valid schema file, a likely
reason for using this method is to add a schema file containing definitions of extra complex
types, hence the name. See Example 4 of the parent document for an example.

Parameters

xsd_file

Path to XSD Schema file.

Return Values

None if successful, otherwise throws an exception as described below.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::create

SDO_DAS_XML::create -- To create SDO_DAS_XML object for a given schema file

Description

SDO_DAS_XML SDO_DAS_XML::create ([mixed $xsd_file [, string $key]])

This is the only static method of SDO_DAS_XML class. Used to instantiate
SDO_DAS_XML object.

Parameters

xsd_file

Path to XSD Schema file. This is optional. If omitted a DAS will be created that only
has the SDO base types defined. Schema files can then be loaded with the
addTypes() method. Can be string or array of values.

key

Return Values

Returns SDO_DAS_XML object on success otherwise throws an exception as described
below.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::createDataObject

SDO_DAS_XML::createDataObject -- Creates SDO_DataObject for a given namespace
URI and type name

Description

SDO_DataObject SDO_DAS_XML::createDataObject (string $namespace_uri, string $
type_name)

Creates SDO_DataObject for a given namespace URI and type name. The type should be
defined in the underlying model otherwise SDO_TypeNotFoundException will be thrown.

Parameters

namespace_uri

Namespace URI of the type name.

type_name

Type Name.

Return Values

Returns SDO_DataObject on success.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML::createDocument

SDO_DAS_XML::createDocument -- Creates an XML Document object from scratch,
without the need to load a document from a file or string.

Description

SDO_DAS_XML_Document SDO_DAS_XML::createDocument ([string $
document_element_name])

SDO_DAS_XML_Document SDO_DAS_XML::createDocument (string $
document_element_namespace_URI, string $document_element_name [, SDO_DataObject $
dataobject])

Creates an XML Document object. This will contain just one empty root element on which
none of the properties will have been set. The purpose of this call is to allow an application
to create an XML document from scratch without the need to load a document from a file
or string. The document that is created will be as if a document had been loaded that
contained just a single empty document element with no attributes set or elements within
it.

createDocument() may need to be told what the document element is. This will not be
necessary in simple cases. When there is no ambiguity then no parameter need be
passed to the method. However it is possible to load more than one schema file into the
same XML DAS and in this case there may be more than one possible document element
defined: furthermore it is even possible that there are two possible document elements that
differ only in the namespace. To cope with these cases it is possible to specify either the
document element name, or both the document element name and namespace to the
method.

Parameters

document_element_name

The name of the document element. Only needed if there is more than one possibility.

document_element_namespace_URI

The namespace part of the document element name. Only needed if there is more
than one possible document element with the same name.

dataobject

Return Values

Returns an SDO_XML_DAS_Document object on success.

Errors/Exceptions

SDO_UnsupportedOperationException

Thrown if an element name or element name and namespace URI is passed, but not
found in the underlying model.

SDO_DAS_XML::loadFile

SDO_DAS_XML::loadFile -- Returns SDO_DAS_XML_Document object for a given path
to xml instance document

Description

SDO_XMLDocument SDO_DAS_XML::loadFile (string $xml_file)

Constructs the tree of SDO_DataObjects from the given address to xml instance
document. Returns SDO_DAS_XML_Document Object. Use
SDO_DAS_XML_Document::getRootDataObject method to get root data object.

Parameters

xml_file

Path to Instance document. This can be a path to a local file or it can be a URL.

Return Values

Returns SDO_DAS_XML_Document object on Success or throws exception as described.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined by the underlying model.

SDO_PropertyNotFoundException

Thrown if a property within a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::loadString

SDO_DAS_XML::loadString -- Returns SDO_DAS_XML_Document for a given xml
instance string

Description

SDO_DAS_XML_Document SDO_DAS_XML::loadString (string $xml_string)

Constructs the tree of SDO_DataObjects from the given xml instance string. Returns
SDO_DAS_XML_Document Object. Use SDO_DAS_XML_Document::getRootDataObject
method to get root data object.

Parameters

xml_string

xml string.

Return Values

Returns SDO_DAS_XML_Document object on Success or throws exception as described.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined by the underlying model.

SDO_PropertyNotFoundException

Thrown if the a property within a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML::saveFile

SDO_DAS_XML::saveFile -- Saves the SDO_DAS_XML_Document object to a file

Description

void SDO_DAS_XML::saveFile (SDO_XMLDocument $xdoc, string $xml_file [, int $
indent])

Saves the SDO_DAS_XML_Document object to a file.

Parameters

xdoc

SDO_DAS_XML_Document object.

xml_file

xml file.

indent

Optional argument to specify that the xml should be formatted. A non-negative integer
is the amount to indent each level of the xml. So, the integer 2, for example, will indent
the xml so that each contained element is two spaces further to the right than its
containing element. The integer 0 will cause the xml to be completely left-aligned. The
integer -1 means no formatting - the xml will come out on one long line.

Return Values

None.

Errors/Exceptions

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::saveString

SDO_DAS_XML::saveString -- Saves the SDO_DAS_XML_Document object to a string

Description

string SDO_DAS_XML::saveString (SDO_XMLDocument $xdoc [, int $indent])

Saves the SDO_DAS_XML_Document object to string.

Parameters

xdoc

SDO_DAS_XML_Document object.

indent

Optional argument to specify that the xml should be formatted. A non-negative integer
is the amount to indent each level of the xml. So, the integer 2, for example, will indent
the xml so that each contained element is two spaces further to the right than its
containing element. The integer 0 will cause the xml to be completely left-aligned. The
integer -1 means no formatting - the xml will come out on one long line.

Return Values

xml string.

	SDO DAS XML
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	SDO DAS XML Functions
	Predefined Classes
	SDO_DAS_XML
	Methods
	SDO_DAS_XML_Document
	Methods
	SDO_DAS_XML_ParserException
	SDO_DAS_XML_FileException
	Limitations compared with SDO 2.0 specification
	SDO_DAS_XML_Document::getRootDataObject
	SDO_DAS_XML_Document::getRootElementName
	SDO_DAS_XML_Document::getRootElementURI
	SDO_DAS_XML_Document::setEncoding
	SDO_DAS_XML_Document::setXMLDeclaration
	SDO_DAS_XML_Document::setXMLVersion
	SDO_DAS_XML::addTypes
	SDO_DAS_XML::create
	SDO_DAS_XML::createDataObject
	SDO_DAS_XML::createDocument
	SDO_DAS_XML::loadFile
	SDO_DAS_XML::loadString
	SDO_DAS_XML::saveFile
	SDO_DAS_XML::saveString

