
PHP Manual

PHP Manual

by
Mehdi Achour
Friedhelm Betz
Antony Dovgal
Nuno Lopes
Hannes Magnusson
Georg Richter
Damien Seguy
Jakub Vrana
And several others

2008-07-01

Edited By Philip Olson

© 1997-2008 the PHP Documentation Group

Copyright

Copyright © 1997 - 2008 by the PHP Documentation Group. This material may be
distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later. A copy of the Open Publication License is distributed with this
manual, the latest version is presently available at » http://www.opencontent.org/openpub/.

Distribution of substantively modified versions of this document is prohibited without the
explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is
prohibited unless prior permission is obtained from the copyright holder.

In case you are interested in redistribution or republishing of this document in whole or in
part, either modified or unmodified, and you have questions, please contact the copyright
holders at » doc-license@lists.php.net. Note that this address is mapped to a publicly
archived mailing list.

The Zend Engine 1 section of the documentation is based on an initial contribution by
Zend Technologies.

http://www.opencontent.org/openpub/
mailto:doc-license@lists.php.net

Preface

PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open Source
general-purpose scripting language that is especially suited for Web development and can
be embedded into HTML. Its syntax draws upon C, Java, and Perl, and is easy to learn.
The main goal of the language is to allow web developers to write dynamically generated
web pages quickly, but you can do much more with PHP.

This manual consists primarily of a function reference, but also contains a language
reference, explanations of some of PHP's major features, and other supplemental
information.

You can download this manual in several formats at
» http://www.php.net/download-docs.php. More information about how this manual is
developed can be found in the 'About the manual' appendix. If you are interested in the
history of PHP, visit the relevant appendix.

Authors and Contributors

We highlight the currently most active people on front page of the manual, but there are
many more contributors who currently help in our work or have provided a great amount of
help to the project in the past. There are a lot of unnamed people who help out with user
notes on manual pages, which continually get included in the references, the work of
whom we are also very thankful for. All of the lists provided below are in alphabetical
order.

Authors and Editors

The following contributors should be recognized for the impact they have made and/or
continue to make by adding content to the manual: Bill Abt, Jouni Ahto, Alexander
Aulbach, Daniel Beckham, Stig Bakken, Jesus M. Castagnetto, Ron Chmara, Sean
Coates, John Coggeshall, Simone Cortesi, Markus Fischer, Wez Furlong, Sara Golemon,
Rui Hirokawa, Brad House, Pierre-Alain Joye, Etienne Kneuss, Moriyoshi Koizumi,
Rasmus Lerdorf, Andrew Lindeman, Stanislav Malyshev, Rafael Martinez, Rick McGuire,
Yasuo Ohgaki, Derick Rethans, Rob Richards, Sander Roobol, Egon Schmid, Thomas
Schoefbeck, Sascha Schumann, Dan Scott, Masahiro Takagi, Michael Wallner, Lars
Torben Wilson, Jim Winstead, Jeroen van Wolffelaar and Andrei Zmievski.

The following contributors have done significant work editing the manual: Stig Bakken,
Gabor Hojtsy, Hartmut Holzgraefe and Egon Schmid.

User Note Maintainers

http://www.php.net/download-docs.php
http://www.php.net/download-docs.php

The currently most active maintainers are: Friedhelm Betz, Etienne Kneuss, Nuno Lopes,
Hannes Magnusson, Felipe Pena and Maciek Sokolewicz.

These people have also put a lot of effort into managing user notes: Mehdi Achour, Daniel
Beckham, Friedhelm Betz, Victor Boivie, Jesus M. Castagnetto, Nicolas Chaillan, Ron
Chmara, Sean Coates, James Cox, Vincent Gevers, Sara Golemon, Zak Greant, Szabolcs
Heilig, Oliver Hinckel, Hartmut Holzgraefe, Rasmus Lerdorf, Matthew Li, Andrew
Lindeman, Aidan Lister, Maxim Maletsky, Bobby Matthis, James Moore, Philip Olson,
Sebastian Picklum, Derick Rethans, Sander Roobol, Damien Seguy, Jason Sheets, Tom
Sommer, Jani Taskinen, Yasuo Ohgaki, Jakub Vrana, Lars Torben Wilson, Jim Winstead,
Jared Wyles and Jeroen van Wolffelaar.

Getting Started

Introduction

What is PHP?

PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a widely-used open source
general-purpose scripting language that is especially suited for web development and can
be embedded into HTML.

Nice, but what does that mean? An example:

Example #1 - An introductory example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <?php

 echo "Hi, I'm a PHP script!";

 ?>

 </body>

</html>

Instead of lots of commands to output HTML (as seen in C or Perl), PHP pages contain
HTML with embedded code that does "something" (in this case, output "Hi, I'm a PHP
script!"). The PHP code is enclosed in special start and end processing instructions <?php
and ?> that allow you to jump into and out of "PHP mode."

What distinguishes PHP from something like client-side JavaScript is that the code is
executed on the server, generating HTML which is then sent to the client. The client would
receive the results of running that script, but would not know what the underlying code
was. You can even configure your web server to process all your HTML files with PHP,
and then there's really no way that users can tell what you have up your sleeve.

The best things in using PHP are that it is extremely simple for a newcomer, but offers
many advanced features for a professional programmer. Don't be afraid reading the long
list of PHP's features. You can jump in, in a short time, and start writing simple scripts in a
few hours.

Although PHP's development is focused on server-side scripting, you can do much more
with it. Read on, and see more in the What can PHP do? section, or go right to the
introductory tutorial if you are only interested in web programming.

What can PHP do?

Anything. PHP is mainly focused on server-side scripting, so you can do anything any
other CGI program can do, such as collect form data, generate dynamic page content, or
send and receive cookies. But PHP can do much more.

There are three main areas where PHP scripts are used.

• Server-side scripting. This is the most traditional and main target field for PHP. You
need three things to make this work. The PHP parser (CGI or server module), a web
server and a web browser. You need to run the web server, with a connected PHP
installation. You can access the PHP program output with a web browser, viewing the
PHP page through the server. All these can run on your home machine if you are just
experimenting with PHP programming. See the installation instructions section for
more information.

• Command line scripting. You can make a PHP script to run it without any server or
browser. You only need the PHP parser to use it this way. This type of usage is ideal
for scripts regularly executed using cron (on *nix or Linux) or Task Scheduler (on
Windows). These scripts can also be used for simple text processing tasks. See the
section about Command line usage of PHP for more information.

• Writing desktop applications. PHP is probably not the very best language to create a
desktop application with a graphical user interface, but if you know PHP very well, and
would like to use some advanced PHP features in your client-side applications you can
also use PHP-GTK to write such programs. You also have the ability to write
cross-platform applications this way. PHP-GTK is an extension to PHP, not available in
the main distribution. If you are interested in PHP-GTK, visit » its own website.

PHP can be used on all major operating systems, including Linux, many Unix variants
(including HP-UX, Solaris and OpenBSD), Microsoft Windows, Mac OS X, RISC OS, and
probably others. PHP has also support for most of the web servers today. This includes
Apache, Microsoft Internet Information Server, Personal Web Server, Netscape and
iPlanet servers, Oreilly Website Pro server, Caudium, Xitami, OmniHTTPd, and many
others. For the majority of the servers PHP has a module, for the others supporting the
CGI standard, PHP can work as a CGI processor.

So with PHP, you have the freedom of choosing an operating system and a web server.
Furthermore, you also have the choice of using procedural programming or object oriented
programming, or a mixture of them. Although not every standard OOP feature is
implemented in PHP 4, many code libraries and large applications (including the PEAR
library) are written only using OOP code. PHP 5 fixes the OOP related weaknesses of
PHP 4, and introduces a complete object model.

With PHP you are not limited to output HTML. PHP's abilities includes outputting images,
PDF files and even Flash movies (using libswf and Ming) generated on the fly. You can
also output easily any text, such as XHTML and any other XML file. PHP can autogenerate
these files, and save them in the file system, instead of printing it out, forming a
server-side cache for your dynamic content.

http://gtk.php.net/

One of the strongest and most significant features in PHP is its support for a wide range of
databases. Writing a database-enabled web page is incredibly simple. The following
databases are currently supported:

• Adabas D
• dBase
• Empress
• FilePro (read-only)
• Hyperwave
• IBM DB2
• Informix
• Ingres
• InterBase
• FrontBase
• mSQL
• Direct MS-SQL
• MySQL
• ODBC
• Oracle (OCI7 and OCI8)
• Ovrimos
• PostgreSQL
• SQLite
• Solid
• Sybase
• Velocis
• Unix dbm

We also have a database abstraction extension (named PDO) allowing you to
transparently use any database supported by that extension. Additionally PHP supports
ODBC, the Open Database Connection standard, so you can connect to any other
database supporting this world standard.

PHP also has support for talking to other services using protocols such as LDAP, IMAP,
SNMP, NNTP, POP3, HTTP, COM (on Windows) and countless others. You can also
open raw network sockets and interact using any other protocol. PHP has support for the
WDDX complex data exchange between virtually all Web programming languages. Talking
about interconnection, PHP has support for instantiation of Java objects and using them
transparently as PHP objects. You can also use our CORBA extension to access remote
objects.

PHP has extremely useful text processing features, from the POSIX Extended or Perl
regular expressions to parsing XML documents. For parsing and accessing XML
documents, PHP 4 supports the SAX and DOM standards, and you can also use the XSLT
extension to transform XML documents. PHP 5 standardizes all the XML extensions on
the solid base of libxml2 and extends the feature set adding SimpleXML and XMLReader
support.

At last but not least, we have many other interesting extensions, the mnoGoSearch search
engine functions, the IRC Gateway functions, many compression utilities (gzip, bz2, zip),
calendar conversion, translation...

As you can see this page is not enough to list all the features and benefits PHP can offer.
Read on in the sections about installing PHP, and see the function reference part for
explanation of the extensions mentioned here.

A simple tutorial

Here we would like to show the very basics of PHP in a short, simple tutorial. This text only
deals with dynamic web page creation with PHP, though PHP is not only capable of
creating web pages. See the section titled What can PHP do for more information.

PHP-enabled web pages are treated just like regular HTML pages and you can create and
edit them the same way you normally create regular HTML pages.

What do I need?

In this tutorial we assume that your server has activated support for PHP and that all files
ending in.php are handled by PHP. On most servers, this is the default extension for PHP
files, but ask your server administrator to be sure. If your server supports PHP, then you
do not need to do anything. Just create your.php files, put them in your web directory and
the server will automatically parse them for you. There is no need to compile anything nor
do you need to install any extra tools. Think of these PHP-enabled files as simple HTML
files with a whole new family of magical tags that let you do all sorts of things. Most web
hosts offer PHP support, but if your host does not, consider reading the » PHP Links
section for resources on finding PHP enabled web hosts.

Let us say you want to save precious bandwidth and develop locally. In this case, you will
want to install a web server, such as » Apache, and of course » PHP. You will most likely
want to install a database as well, such as » MySQL.

You can either install these individually or choose a simpler way. Our manual has
installation instructions for PHP (assuming you already have some web server set up). In
case you have problems with installing PHP yourself, we would suggest you ask your
questions on our » installation mailing list. If you choose to go on the simpler route, then
» locate a pre-configured package for your operating system, which automatically installs
all of these with just a few mouse clicks. It is easy to setup a web server with PHP support
on any operating system, including MacOSX, Linux and Windows. On Linux, you may find
» rpmfind and » PBone helpful for locating RPMs. You may also want to visit » apt-get to
find packages for Debian.

Your first PHP-enabled page

Create a file named hello.php and put it in your web server's root directory (
DOCUMENT_ROOT) with the following content:

Example #2 - Our first PHP script: hello.php

<html>

<head>

http://www.php.net/links.php
http://www.apache.org/
http://www.php.net/downloads.php
http://dev.mysql.com/doc/
http://www.php.net/mailing-lists.php
http://www.hotscripts.com/PHP/Software_and_Servers/Installation_Kits/
http://www.hotscripts.com/PHP/Software_and_Servers/Installation_Kits/
http://www.rpmfind.net/
http://www.rpmfind.net/
http://rpm.pbone.net/
http://www.apt-get.org/

 <title>PHP Test</title>

</head>

<body>

<?php echo '<p>Hello World</p>'; ?>

</body>

</html>

Use your browser to access the file with your web server's URL, ending with the
"/hello.php" file reference. When developing locally this URL will be something like
http://localhost/hello.php or http://127.0.0.1/hello.php but this depends on the web
server's configuration. If everything is configured correctly, this file will be parsed by
PHP and the following output will be sent to your browser:

<html>

<head>

 <title>PHP Test</title>

</head>

<body>

<p>Hello World</p>

</body>

</html>

This program is extremely simple and you really did not need to use PHP to create a page
like this. All it does is display: Hello World using the PHP echo() statement. Note that the
file does not need to be executable or special in any way. The server finds out that this file
needs to be interpreted by PHP because you used the ".php" extension, which the server
is configured to pass on to PHP. Think of this as a normal HTML file which happens to
have a set of special tags available to you that do a lot of interesting things.

If you tried this example and it did not output anything, it prompted for download, or you
see the whole file as text, chances are that the server you are on does not have PHP
enabled, or is not configured properly. Ask your administrator to enable it for you using the
Installation chapter of the manual. If you are developing locally, also read the installation
chapter to make sure everything is configured properly. Make sure that you access the file
via http with the server providing you the output. If you just call up the file from your file
system, then it will not be parsed by PHP. If the problems persist anyway, do not hesitate
to use one of the many » PHP support options.

The point of the example is to show the special PHP tag format. In this example we used
<?php to indicate the start of a PHP tag. Then we put the PHP statement and left PHP
mode by adding the closing tag, ?>. You may jump in and out of PHP mode in an HTML
file like this anywhere you want. For more details, read the manual section on the basic
PHP syntax.

Note

A Note on Line Feeds

Line feeds have little meaning in HTML, however it is still a good idea to make your
HTML look nice and clean by putting line feeds in. A linefeed that follows immediately
after a closing ?> will be removed by PHP. This can be extremely useful when you are

http://www.php.net/support.php

putting in many blocks of PHP or include files containing PHP that aren't supposed to
output anything. At the same time it can be a bit confusing. You can put a space after
the closing ?> to force a space and a line feed to be output, or you can put an explicit
line feed in the last echo/print from within your PHP block.

Note

A Note on Text Editors

There are many text editors and Integrated Development Environments (IDEs) that you
can use to create, edit and manage PHP files. A partial list of these tools is maintained
at » PHP Editors List. If you wish to recommend an editor, please visit the above page
and ask the page maintainer to add the editor to the list. Having an editor with syntax
highlighting can be helpful.

Note

A Note on Word Processors

Word processors such as StarOffice Writer, Microsoft Word and Abiword are not
optimal for editing PHP files. If you wish to use one for this test script, you must ensure
that you save the file as plain text or PHP will not be able to read and execute the
script.

Note

A Note on Windows Notepad

If you are writing your PHP scripts using Windows Notepad, you will need to ensure
that your files are saved with the .php extension. (Notepad adds a .txt extension to files
automatically unless you take one of the following steps to prevent it.) When you save
the file and are prompted to provide a name for the file, place the filename in quotes
(i.e. " hello.php "). Alternatively, you can click on the 'Text Documents' drop-down
menu in the 'Save' dialog box and change the setting to "All Files". You can then enter
your filename without quotes.

Now that you have successfully created a working PHP script, it is time to create the most
famous PHP script! Make a call to the phpinfo() function and you will see a lot of useful
information about your system and setup such as available predefined variables, loaded
PHP modules, and configuration settings. Take some time and review this important
information.

http://www.thelinuxconsultancy.co.uk/phpeditors.php

Example #3 - Get system information from PHP

<?php phpinfo(); ?>

Something Useful

Let us do something more useful now. We are going to check what sort of browser the
visitor is using. For that, we check the user agent string the browser sends as part of the
HTTP request. This information is stored in a variable. Variables always start with a
dollar-sign in PHP. The variable we are interested in right now is
$_SERVER['HTTP_USER_AGENT'].

Note

$_SERVER is a special reserved PHP variable that contains all web server
information. It is known as a superglobal. See the related manual page on
superglobals for more information. These special variables were introduced in PHP
» 4.1.0. Before this time, we used the older $HTTP_*_VARS arrays instead, such as
$HTTP_SERVER_VARS. Although deprecated, these older variables still exist. (See
also the note on old code.)

To display this variable, you can simply do:

Example #4 - Printing a variable (Array element)

<?php

echo $_SERVER['HTTP_USER_AGENT'];

?>

A sample output of this script may be:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

There are many types of variables available in PHP. In the above example we printed an
Array element. Arrays can be very useful.

$_SERVER is just one variable that PHP automatically makes available to you. A list can
be seen in the Reserved Variables section of the manual or you can get a complete list of
them by looking at the output of the phpinfo() function used in the example in the previous
section.

http://www.php.net/releases/4_1_0.php
http://www.php.net/releases/4_1_0.php

You can put multiple PHP statements inside a PHP tag and create little blocks of code that
do more than just a single echo. For example, if you want to check for Internet Explorer
you can do this:

Example #5 - Example using control structures and functions

<?php

if (strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE') !== FALSE) {

 echo 'You are using Internet Explorer.
';

}

?>

A sample output of this script may be:

You are using Internet Explorer.

Here we introduce a couple of new concepts. We have an if statement. If you are familiar
with the basic syntax used by the C language, this should look logical to you. Otherwise,
you should probably pick up an introductory PHP book and read the first couple of
chapters, or read the Language Reference part of the manual.

The second concept we introduced was the strpos() function call. strpos() is a function built
into PHP which searches a string for another string. In this case we are looking for 'MSIE'
(so-called needle) inside $_SERVER['HTTP_USER_AGENT'] (so-called haystack). If the
needle is found inside the haystack, the function returns the position of the needle relative
to the start of the haystack. Otherwise, it returns FALSE. If it does not return FALSE, the if
expression evaluates to TRUE and the code within its {braces} is executed. Otherwise, the
code is not run. Feel free to create similar examples, with if, else, and other functions such
as strtoupper() and strlen(). Each related manual page contains examples too. If you are
unsure how to use functions, you will want to read both the manual page on how to read a
function definition and the section about PHP functions.

We can take this a step further and show how you can jump in and out of PHP mode even
in the middle of a PHP block:

Example #6 - Mixing both HTML and PHP modes

<?php

if (strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE') !== FALSE) {

?>

<h3>strpos() must have returned non-false</h3>

<p>You are using Internet Explorer</p>

<?php

} else {

?>

<h3>strpos() must have returned false</h3>

<p>You are not using Internet Explorer</p>

<?php

}

?>

A sample output of this script may be:

<h3>strpos() must have returned non-false</h3>

<p>You are using Internet Explorer</p>

Instead of using a PHP echo statement to output something, we jumped out of PHP mode
and just sent straight HTML. The important and powerful point to note here is that the
logical flow of the script remains intact. Only one of the HTML blocks will end up getting
sent to the viewer depending on the result of strpos(). In other words, it depends on
whether the string MSIE was found or not.

Dealing with Forms

One of the most powerful features of PHP is the way it handles HTML forms. The basic
concept that is important to understand is that any form element will automatically be
available to your PHP scripts. Please read the manual section on Variables from external
sources for more information and examples on using forms with PHP. Here is an example
HTML form:

Example #7 - A simple HTML form

<form action="action.php" method="post">

<p>Your name: <input type="text" name="name" /></p>

<p>Your age: <input type="text" name="age" /></p>

<p><input type="submit" /></p>

</form>

There is nothing special about this form. It is a straight HTML form with no special tags of
any kind. When the user fills in this form and hits the submit button, the action.php page is
called. In this file you would write something like this:

Example #8 - Printing data from our form

Hi <?php echo htmlspecialchars($_POST['name']); ?>.

You are <?php echo (int)$_POST['age']; ?> years old.

A sample output of this script may be:

Hi Joe. You are 22 years old.

Apart from the htmlspecialchars() and (int) parts, it should be obvious what this does.
htmlspecialchars() makes sure any characters that are special in html are properly
encoded so people can't inject HTML tags or Javascript into your page. For the age field,
since we know it is a number, we can just convert it to an integer which will automatically
get rid of any stray characters. You can also have PHP do this for you automatically by
using the filter extension. The $_POST['name'] and $_POST['age'] variables are
automatically set for you by PHP. Earlier we used the $_SERVER superglobal; above we
just introduced the $_POST superglobal which contains all POST data. Notice how the
method of our form is POST. If we used the method GET then our form information would
live in the $_GET superglobal instead. You may also use the $_REQUEST superglobal, if
you do not care about the source of your request data. It contains the merged information
of GET, POST and COOKIE data. Also see the import_request_variables() function.

You can also deal with XForms input in PHP, although you will find yourself comfortable
with the well supported HTML forms for quite some time. While working with XForms is not
for beginners, you might be interested in them. We also have a short introduction to
handling data received from XForms in our features section.

Using old code with new versions of PHP

Now that PHP has grown to be a popular scripting language, there are a lot of public
repositories and libraries containing code you can reuse. The PHP developers have
largely tried to preserve backwards compatibility, so a script written for an older version will
run (ideally) without changes in a newer version of PHP. In practice, some changes will
usually be needed.

Two of the most important recent changes that affect old code are:

• The deprecation of the old $HTTP_*_VARS arrays (which need to be indicated as
global when used inside a function or method). The following superglobal arrays were
introduced in PHP » 4.1.0. They are: $_GET, $_POST, $_COOKIE, $_SERVER,
$_FILES, $_ENV, $_REQUEST, and $_SESSION. The older $HTTP_*_VARS arrays,
such as $HTTP_POST_VARS, also exist. As of PHP 5.0.0, the long PHP predefined
variable arrays may be disabled with the register_long_arrays directive.

• External variables are no longer registered in the global scope by default. In other
words, as of PHP » 4.2.0 the PHP directive register_globals is off by default in php.ini.
The preferred method of accessing these values is via the superglobal arrays
mentioned above. Older scripts, books, and tutorials may rely on this directive being
on. If it were on, for example, one could use $id from the URL
http://www.example.com/foo.php?id=42. Whether on or off, $_GET['id'] is available.

For more details on these changes, see the section on predefined variables and links
therein.

What's next?

With your new knowledge you should be able to understand most of the manual and also

http://www.php.net/releases/4_1_0.php
http://www.php.net/releases/4_2_0.php

the various example scripts available in the example archives. You can also find other
examples on the php.net websites in the links section: » http://www.php.net/links.php.

To view various slide presentations that show more of what PHP can do, see the PHP
Conference Material Site: » http://talks.php.net/

http://www.php.net/links.php
http://talks.php.net/

Installation and Configuration

General Installation Considerations

Before starting the installation, first you need to know what do you want to use PHP for.
There are three main fields you can use PHP, as described in the What can PHP do?
section:

• Websites and web applications (server-side scripting)

• Command line scripting

• Desktop (GUI) applications

For the first and most common form, you need three things: PHP itself, a web server and a
web browser. You probably already have a web browser, and depending on your operating
system setup, you may also have a web server (e.g. Apache on Linux and MacOS X; IIS
on Windows). You may also rent webspace at a company. This way, you don't need to set
up anything on your own, only write your PHP scripts, upload it to the server you rent, and
see the results in your browser.

In case of setting up the server and PHP on your own, you have two choices for the
method of connecting PHP to the server. For many servers PHP has a direct module
interface (also called SAPI). These servers include Apache, Microsoft Internet Information
Server, Netscape and iPlanet servers. Many other servers have support for ISAPI, the
Microsoft module interface (OmniHTTPd for example). If PHP has no module support for
your web server, you can always use it as a CGI or FastCGI processor. This means you
set up your server to use the CGI executable of PHP to process all PHP file requests on
the server.

If you are also interested to use PHP for command line scripting (e.g. write scripts
autogenerating some images for you offline, or processing text files depending on some
arguments you pass to them), you always need the command line executable. For more
information, read the section about writing command line PHP applications. In this case,
you need no server and no browser.

With PHP you can also write desktop GUI applications using the PHP-GTK extension. This
is a completely different approach than writing web pages, as you do not output any
HTML, but manage windows and objects within them. For more information about
PHP-GTK, please » visit the site dedicated to this extension. PHP-GTK is not included in
the official PHP distribution.

From now on, this section deals with setting up PHP for web servers on Unix and Windows
with server module interfaces and CGI executables. You will also find information on the
command line executable in the following sections.

PHP source code and binary distributions for Windows can be found at
» http://www.php.net/downloads.php. We recommend you to choose a » mirror nearest to
you for downloading the distributions.

http://gtk.php.net/
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://www.php.net/mirrors.php

Installation on Unix systems

This section will guide you through the general configuration and installation of PHP on
Unix systems. Be sure to investigate any sections specific to your platform or web server
before you begin the process.

As our manual outlines in the General Installation Considerations section, we are mainly
dealing with web centric setups of PHP in this section, although we will cover setting up
PHP for command line usage as well.

There are several ways to install PHP for the Unix platform, either with a compile and
configure process, or through various pre-packaged methods. This documentation is
mainly focused around the process of compiling and configuring PHP. Many Unix like
systems have some sort of package installation system. This can assist in setting up a
standard configuration, but if you need to have a different set of features (such as a secure
server, or a different database driver), you may need to build PHP and/or your web server.
If you are unfamiliar with building and compiling your own software, it is worth checking to
see whether somebody has already built a packaged version of PHP with the features you
need.

Prerequisite knowledge and software for compiling:

• Basic Unix skills (being able to operate "make" and a C compiler)

• An ANSI C compiler

• flex: Version 2.5.4

• bison: Version 1.28 (preferred), 1.35, or 1.75

• A web server

• Any module specific components (such as gd, pdf libs, etc.)

The initial PHP setup and configuration process is controlled by the use of the command
line options of the configure script. You could get a list of all available options along with
short explanations running./configure --help. Our manual documents the different options
separately. You will find the core options in the appendix, while the different extension
specific options are descibed on the reference pages.

When PHP is configured, you are ready to build the module and/or executables. The
command make should take care of this. If it fails and you can't figure out why, see the
Problems section.

Apache 1.3.x on Unix systems

This section contains notes and hints specific to Apache installs of PHP on Unix platforms.
We also have instructions and notes for Apache 2 on a separate page.

You can select arguments to add to the configure on line 10 below from the list of core
configure options and from extension specific options described at the respective places in
the manual. The version numbers have been omitted here, to ensure the instructions are
not incorrect. You will need to replace the 'xxx' here with the correct values from your files.

Example #9 - Installation Instructions (Apache Shared Module Version) for PHP

1. gunzip apache_xxx.tar.gz

2. tar -xvf apache_xxx.tar

3. gunzip php-xxx.tar.gz

4. tar -xvf php-xxx.tar

5. cd apache_xxx

6. ./configure --prefix=/www --enable-module=so

7. make

8. make install

9. cd ../php-xxx

10. Now, configure your PHP. This is where you customize your PHP

 with various options, like which extensions will be enabled. Do a

 ./configure --help for a list of available options. In our example

 we'll do a simple configure with Apache 1 and MySQL support. Your

 path to apxs may differ from our example.

 ./configure --with-mysql --with-apxs=/www/bin/apxs

11. make

12. make install

 If you decide to change your configure options after installation,

 you only need to repeat the last three steps. You only need to

 restart apache for the new module to take effect. A recompile of

 Apache is not needed.

 Note that unless told otherwise, 'make install' will also install PEAR,

 various PHP tools such as phpize, install the PHP CLI, and more.

13. Setup your php.ini file:

 cp php.ini-dist /usr/local/lib/php.ini

 You may edit your .ini file to set PHP options. If you prefer your

 php.ini in another location, use --with-config-file-path=/some/path in

 step 10.

 If you instead choose php.ini-recommended, be certain to read the list

 of changes within, as they affect how PHP behaves.

14. Edit your httpd.conf to load the PHP module. The path on the right hand

 side of the LoadModule statement must point to the path of the PHP

 module on your system. The make install from above may have already

 added this for you, but be sure to check.

 For PHP 4:

 LoadModule php4_module libexec/libphp4.so

 For PHP 5:

 LoadModule php5_module libexec/libphp5.so

15. And in the AddModule section of httpd.conf, somewhere under the

 ClearModuleList, add this:

 For PHP 4:

 AddModule mod_php4.c

 For PHP 5:

 AddModule mod_php5.c

16. Tell Apache to parse certain extensions as PHP. For example,

 let's have Apache parse the .php extension as PHP. You could

 have any extension(s) parse as PHP by simply adding more, with

 each separated by a space. We'll add .phtml to demonstrate.

 AddType application/x-httpd-php .php .phtml

 It's also common to setup the .phps extension to show highlighted PHP

 source, this can be done with:

 AddType application/x-httpd-php-source .phps

17. Use your normal procedure for starting the Apache server. (You must

 stop and restart the server, not just cause the server to reload by

 using a HUP or USR1 signal.)

Alternatively, to install PHP as a static object:

Example #10 - Installation Instructions (Static Module Installation for Apache) for
PHP

1. gunzip -c apache_1.3.x.tar.gz | tar xf -

2. cd apache_1.3.x

3. ./configure

4. cd ..

5. gunzip -c php-5.x.y.tar.gz | tar xf -

6. cd php-5.x.y

7. ./configure --with-mysql --with-apache=../apache_1.3.x

8. make

9. make install

10. cd ../apache_1.3.x

11. ./configure --prefix=/www --activate-module=src/modules/php5/libphp5.a

 (The above line is correct! Yes, we know libphp5.a does not exist at this

 stage. It isn't supposed to. It will be created.)

12. make

 (you should now have an httpd binary which you can copy to your Apache
bin dir if

 it is your first install then you need to "make install" as well)

13. cd ../php-5.x.y

14. cp php.ini-dist /usr/local/lib/php.ini

15. You can edit /usr/local/lib/php.ini file to set PHP options.

 Edit your httpd.conf or srm.conf file and add:

 AddType application/x-httpd-php .php

Note

Replace php-5 by php-4 and php5 by php4 in PHP 4.

Depending on your Apache install and Unix variant, there are many possible ways to stop
and restart the server. Below are some typical lines used in restarting the server, for
different apache/unix installations. You should replace /path/to/ with the path to these
applications on your systems.

Example #11 - Example commands for restarting Apache

1. Several Linux and SysV variants:

/etc/rc.d/init.d/httpd restart

2. Using apachectl scripts:

/path/to/apachectl stop

/path/to/apachectl start

3. httpdctl and httpsdctl (Using OpenSSL), similar to apachectl:

/path/to/httpsdctl stop

/path/to/httpsdctl start

4. Using mod_ssl, or another SSL server, you may want to manually

stop and start:

/path/to/apachectl stop

/path/to/apachectl startssl

The locations of the apachectl and http(s)dctl binaries often vary. If your system has locate
or whereis or which commands, these can assist you in finding your server control
programs.

Different examples of compiling PHP for apache are as follows:

./configure --with-apxs --with-pgsql

This will create a libphp5.so (or libphp4.so in PHP 4) shared library that is loaded into
Apache using a LoadModule line in Apache's httpd.conf file. The PostgreSQL support is
embedded into this library.

./configure --with-apxs --with-pgsql=shared

This will create a libphp4.so shared library for Apache, but it will also create a pgsql.so
shared library that is loaded into PHP either by using the extension directive in php.ini file
or by loading it explicitly in a script using the dl() function.

./configure --with-apache=/path/to/apache_source --with-pgsql

This will create a libmodphp5.a library, a mod_php5.c and some accompanying files and
copy this into the src/modules/php5 directory in the Apache source tree. Then you compile
Apache using --activate-module=src/modules/php5/libphp5.a and the Apache build system
will create libphp5.a and link it statically into the httpd binary (replace php5 by php4 in PHP
4). The PostgreSQL support is included directly into this httpd binary, so the final result
here is a single httpd binary that includes all of Apache and all of PHP.

./configure --with-apache=/path/to/apache_source --with-pgsql=shared

Same as before, except instead of including PostgreSQL support directly into the final
httpd you will get a pgsql.so shared library that you can load into PHP from either the
php.ini file or directly using dl().

When choosing to build PHP in different ways, you should consider the advantages and
drawbacks of each method. Building as a shared object will mean that you can compile
apache separately, and don't have to recompile everything as you add to, or change, PHP.
Building PHP into apache (static method) means that PHP will load and run faster. For
more information, see the Apache » web page on DSO support.

Note

Apache's default httpd.conf currently ships with a section that looks like this:

User nobody

Group "#-1"

Unless you change that to "Group nogroup" or something like that ("Group daemon" is
also very common) PHP will not be able to open files.

Note

Make sure you specify the installed version of apxs when using

http://httpd.apache.org/docs/1.3/dso.html

--with-apxs=/path/to/apxs. You must NOT use the apxs version that is in the apache
sources but the one that is actually installed on your system.

Apache 2.0 on Unix systems

This section contains notes and hints specific to Apache 2.0 installs of PHP on Unix
systems.

Warning

We do not recommend using a threaded MPM in production with Apache 2. Use the
prefork MPM instead, or use Apache 1. For information on why, read the related FAQ
entry on using Apache2 with a threaded MPM

You are highly encouraged to take a look at the » Apache Documentation to get a basic
understanding of the Apache 2.0 Server.

Note

PHP and Apache 2.0.x compatibility notes

The following versions of PHP are known to work with the most recent version of
Apache 2.0.x:

• PHP 4.3.0 or later available at » http://www.php.net/downloads.php.

• the latest stable development version. Get the source code
» http://snaps.php.net/php5-latest.tar.gz or download binaries for Windows
» http://snaps.php.net/win32/php5-win32-latest.zip.

• a prerelease version downloadable from » http://qa.php.net/.

• you have always the option to obtain PHP through » anonymous CVS.

These versions of PHP are compatible to Apache 2.0.40 and later.

Apache 2.0 SAPI -support started with PHP 4.2.0. PHP 4.2.3 works with Apache
2.0.39, don't use any other version of Apache with PHP 4.2.3. However, the
recommended setup is to use PHP 4.3.0 or later with the most recent version of
Apache2.

All mentioned versions of PHP will work still with Apache 1.3.x.

Download the most recent version of » Apache 2.0 and a fitting PHP version from the
above mentioned places. This quick guide covers only the basics to get started with
Apache 2.0 and PHP. For more information read the » Apache Documentation. The
version numbers have been omitted here, to ensure the instructions are not incorrect. You

http://httpd.apache.org/docs/2.0/
http://www.php.net/downloads.php
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/win32/php5-win32-latest.zip
http://snaps.php.net/win32/php5-win32-latest.zip
http://qa.php.net/
http://www.php.net/anoncvs.php
http://www.apache.org/
http://httpd.apache.org/docs/2.0/

will need to replace the 'NN' here with the correct values from your files.

Example #12 - Installation Instructions (Apache 2 Shared Module Version)

1. gzip -d httpd-2_0_NN.tar.gz

2. tar xvf httpd-2_0_NN.tar

3. gunzip php-NN.tar.gz

4. tar -xvf php-NN.tar

5. cd httpd-2_0_NN

6. ./configure --enable-so

7. make

8. make install

 Now you have Apache 2.0.NN available under /usr/local/apache2,

 configured with loadable module support and the standard MPM prefork.

 To test the installation use your normal procedure for starting

 the Apache server, e.g.:

 /usr/local/apache2/bin/apachectl start

 and stop the server to go on with the configuration for PHP:

 /usr/local/apache2/bin/apachectl stop.

9. cd ../php-NN

10. Now, configure your PHP. This is where you customize your PHP

 with various options, like which extensions will be enabled. Do a

 ./configure --help for a list of available options. In our example

 we'll do a simple configure with Apache 2 and MySQL support. Your

 path to apxs may differ, in fact, the binary may even be named apxs2 on

 your system.

 ./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql

11. make

12. make install

 If you decide to change your configure options after installation,

 you only need to repeat the last three steps. You only need to

 restart apache for the new module to take effect. A recompile of

 Apache is not needed.

 Note that unless told otherwise, 'make install' will also install PEAR,

 various PHP tools such as phpize, install the PHP CLI, and more.

13. Setup your php.ini

 cp php.ini-dist /usr/local/lib/php.ini

 You may edit your .ini file to set PHP options. If you prefer having

 php.ini in another location, use --with-config-file-path=/some/path in

 step 10.

 If you instead choose php.ini-recommended, be certain to read the list

 of changes within, as they affect how PHP behaves.

14. Edit your httpd.conf to load the PHP module. The path on the right hand

 side of the LoadModule statement must point to the path of the PHP

 module on your system. The make install from above may have already

 added this for you, but be sure to check.

 For PHP 4:

 LoadModule php4_module modules/libphp4.so

 For PHP 5:

 LoadModule php5_module modules/libphp5.so

15. Tell Apache to parse certain extensions as PHP. For example, let's have

 Apache parse .php files as PHP. Instead of only using the Apache AddType

 directive, we want to avoid potentially dangerous uploads and created

 files such as exploit.php.jpg from being executed as PHP. Using this

 example, you could have any extension(s) parse as PHP by simply adding

 them. We'll add .phtml to demonstrate.

 <FilesMatch \.php$>

 SetHandler application/x-httpd-php

 </FilesMatch>

 Or, if we wanted to allow .php, .php2, .php3, .php4, .php5, .php6, and

 .phtml files to be executed as PHP, but nothing else, we'd use this:

 <FilesMatch "\.ph(p[2-6]?|tml)$">

 SetHandler application/x-httpd-php

 </FilesMatch>

 And to allow .phps files to be executed as PHP source files, add this:

 <FilesMatch "\.phps$">

 SetHandler application/x-httpd-php-source

 </FilesMatch>

16. Use your normal procedure for starting the Apache server, e.g.:

 /usr/local/apache2/bin/apachectl start

 - OR -

 service httpd restart

Following the steps above you will have a running Apache2 web server with support for
PHP as a SAPI module. Of course there are many more configuration options available
Apache and PHP. For more information type./configure --help in the corresponding source
tree. If you wish to build a multithreaded version of Apache2, you must overwrite the
standard MPM-Module prefork either with worker or perchild. To do so append to your
configure line in step 6 above either the option --with-mpm=worker or --with-mpm=perchild.
Before doing so, please beware the consequences and have at least a fair understand of
what the implications. For more information, read the Apache documentation regarding
» MPM-Modules.

Note

If you want to use content negotiation, read the Apache MultiViews FAQ.

http://httpd.apache.org/docs/2.0/mpm.html
http://httpd.apache.org/docs/2.0/mpm.html

Note

To build a multithreaded version of Apache your system must support threads. This
also implies to build PHP with experimental Zend Thread Safety (ZTS). Therefore not
all extensions might be available. The recommended setup is to build Apache with the
standard prefork MPM-Module.

Lighttpd 1.4 on Unix systems

This section contains notes and hints specific to Lighttpd 1.4 installs of PHP on Unix
systems.

Please use the » Lighttpd trac to learn how to install Lighttpd properly before continuing.

Fastcgi is the preferred SAPI to connect PHP and Lighttpd. Fastcgi is automagically
enabled in php-cgi in PHP5.3, but for older versions configure php with --enable-fastcgi. To
confirm that PHP has fastcgi enabled, php -v should contain PHP 5.2.5 (cgi-fcgi) Before
PHP 5.2.3, fastcgi was enabled on the php binary (there was no php-cgi).

Letting Lighttpd spawn php processes

To configure Lighttpd to connect to php and spawn fastcgi processes, edit lighttpd.conf.
Sockets are preferred to connect to fastcgi processes on the local system.

Example #13 - Partial lighttpd.conf

server.modules += ("mod_fastcgi")

fastcgi.server = (".php" =>

 ((

 "socket" => "/tmp/php.socket",

 "bin-path" => "/usr/local/bin/php-cgi",

 "bin-environment" => (

 "PHP_FCGI_CHILDREN" => "16",

 "PHP_FCGI_MAX_REQUESTS" => "10000"

)

 "min-procs" => 1,

 "max-procs" => 1,

 "idle-timeout" => 20

))

)

The bin-path directive allows lighttpd to spawn fastcgi processes dynamically. PHP will
spawn children according to the PHP_FCGI_CHILDREN environment variable. The
"bin-environment" directive sets the environment for the spawned processes. PHP will kill
a child process after the number of requests specified by PHP_FCGI_MAX_REQUESTS is
reached. The directives "min-procs" and "max-procs" should generally be avoided with
PHP. PHP manages its own children and opcode caches like APC will only share among

http://trac.lighttpd.net/trac/

children managed by PHP. If "min-procs" is set to something greater than 1, the total
number of php responders will be multiplied PHP_FCGI_CHILDREN (2 min-procs * 16
children gives 32 responders).

Spawning with spawn-fcgi

Lighttpd provides a program called spawn-fcgi to ease the process of spawning fastcgi
processes easier.

Spawning php-cgi

It is possible to spawn processes without spawn-fcgi, though a bit of heavy-lifting is
required. Setting the PHP_FCGI_CHILDREN environment var controls how many children
PHP will spawn to handle incoming requests. Setting PHP_FCGI_MAX_REQUESTS will
determine how long (in requests) each child will live. Here's a simple bash script to help
spawn php responders.

Example #14 - Spawning FastCGI Responders

#!/bin/sh

Location of the php-cgi binary

PHP=/usr/local/bin/php-cgi

PID File location

PHP_PID=/tmp/php.pid

Binding to an address

#FCGI_BIND_ADDRESS=10.0.1.1:10000

Binding to a domain socket

FCGI_BIND_ADDRESS=/tmp/php.sock

PHP_FCGI_CHILDREN=16

PHP_FCGI_MAX_REQUESTS=10000

env -i PHP_FCGI_CHILDREN=$PHP_FCGI_CHILDREN \

 PHP_FCGI_MAX_REQUESTS=$PHP_FCGI_MAX_REQUESTS \

 $PHP -b $FCGI_BIND_ADDRESS &

echo $! > "$PHP_PID"

Connecting to remote FCGI instances

Fastcgi instances can be spawned on multiple remote machines in order to scale
applications.

Example #15 - Connecting to remote php-fastcgi instances

fastcgi.server = (".php" =>

 (("host" => "10.0.0.2", "port" => 1030),

 ("host" => "10.0.0.3", "port" => 1030))

)

Caudium

PHP can be built as a Pike module for the » Caudium webserver. Follow the simple
instructions below to install PHP for Caudium.

Example #16 - Caudium Installation Instructions

1. Make sure you have Caudium installed prior to attempting to

 install PHP 4. For PHP 4 to work correctly, you will need Pike

 7.0.268 or newer. For the sake of this example we assume that

 Caudium is installed in /opt/caudium/server/.

2. Change directory to php-x.y.z (where x.y.z is the version number).

3. ./configure --with-caudium=/opt/caudium/server

4. make

5. make install

6. Restart Caudium if it's currently running.

7. Log into the graphical configuration interface and go to the

 virtual server where you want to add PHP 4 support.

8. Click Add Module and locate and then add the PHP 4 Script Support
module.

9. If the documentation says that the 'PHP 4 interpreter isn't

 available', make sure that you restarted the server. If you did

 check /opt/caudium/logs/debug/default.1 for any errors related to

 <filename>PHP4.so</filename>. Also make sure that

 <filename>caudium/server/lib/[pike-version]/PHP4.so</filename>

 is present.

10. Configure the PHP Script Support module if needed.

You can of course compile your Caudium module with support for the various extensions
available in PHP 4. See the reference pages for extension specific configure options.

Note

When compiling PHP 4 with MySQL support you must make sure that the normal
MySQL client code is used. Otherwise there might be conflicts if your Pike already has
MySQL support. You do this by specifying a MySQL install directory the --with-mysql
option.

fhttpd related notes

To build PHP as an fhttpd module, answer "yes" to "Build as an fhttpd module?" (the
--with-fhttpd = DIR option to configure) and specify the fhttpd source base directory. The
default directory is /usr/local/src/fhttpd. If you are running fhttpd, building PHP as a module
will give better performance, more control and remote execution capability.

http://caudium.net/

Note

Support for fhttpd is no longer available as of PHP 4.3.0.

Sun, iPlanet and Netscape servers on Sun Solaris

This section contains notes and hints specific to Sun Java System Web Server, Sun ONE
Web Server, iPlanet and Netscape server installs of PHP on Sun Solaris.

From PHP 4.3.3 on you can use PHP scripts with the NSAPI module to generate custom
directory listings and error pages. Additional functions for Apache compatibility are also
available. For support in current web servers read the note about subrequests.

You can find more information about setting up PHP for the Netscape Enterprise Server
(NES) here: » http://benoit.noss.free.fr/php/install-php4.html

To build PHP with Sun JSWS/Sun ONE WS/iPlanet/Netscape web servers, enter the
proper install directory for the --with-nsapi=[DIR] option. The default directory is usually
/opt/netscape/suitespot/. Please also read /php-xxx-version/sapi/nsapi/nsapi-readme.txt.

• Install the following packages from » http://www.sunfreeware.com/ or another
download site:

• autoconf-2.13
• automake-1.4
• bison-1_25-sol26-sparc-local
• flex-2_5_4a-sol26-sparc-local
• gcc-2_95_2-sol26-sparc-local
• gzip-1.2.4-sol26-sparc-local
• m4-1_4-sol26-sparc-local
• make-3_76_1-sol26-sparc-local
• mysql-3.23.24-beta (if you want mysql support)
• perl-5_005_03-sol26-sparc-local
• tar-1.13 (GNU tar)

• Make sure your path includes the proper directories
PATH=.:/usr/local/bin:/usr/sbin:/usr/bin:/usr/ccs/bin and make it available to your
system export PATH.

• gunzip php-x.x.x.tar.gz (if you have a .gz dist, otherwise go to 4).

• tar xvf php-x.x.x.tar

• Change to your extracted PHP directory: cd ../php-x.x.x

• For the following step, make sure /opt/netscape/suitespot/ is where your netscape
server is installed. Otherwise, change to the correct path and run:
./configure --with-mysql=/usr/local/mysql \

http://benoit.noss.free.fr/php/install-php4.html
http://www.sunfreeware.com/

--with-nsapi=/opt/netscape/suitespot/ \

--enable-libgcc

• Run make followed by make install.

After performing the base install and reading the appropriate readme file, you may need to
perform some additional configuration steps.

Configuration Instructions for Sun/iPlanet/Netscape

Firstly you may need to add some paths to the LD_LIBRARY_PATH environment for the
server to find all the shared libs. This can best done in the start script for your web server.
The start script is often located in: /path/to/server/https-servername/start. You may also
need to edit the configuration files that are located in:
/path/to/server/https-servername/config/.

• Add the following line to mime.types (you can do that by the administration server):
type=magnus-internal/x-httpd-php exts=php

• Edit magnus.conf (for servers >= 6) or obj.conf (for servers < 6) and add the following,
shlib will vary depending on your system, it will be something like
/opt/netscape/suitespot/bin/libphp4.so. You should place the following lines after mime
types init.
Init fn="load-modules" funcs="php4_init,php4_execute,php4_auth_trans"
shlib="/opt/netscape/suitespot/bin/libphp4.so"

Init fn="php4_init" LateInit="yes" errorString="Failed to initialize PHP!"
[php_ini="/path/to/php.ini"]
(PHP >= 4.3.3) The php_ini parameter is optional but with it you can place your php.ini
in your web server config directory.

• Configure the default object in obj.conf (for virtual server classes [version 6.0+] in their
vserver.obj.conf):
<Object name="default">

.

.

.

.#NOTE this next line should happen after all 'ObjectType' and before all
'AddLog' lines

Service fn="php4_execute" type="magnus-internal/x-httpd-php" [inikey=value
inikey=value ...]

.

.

</Object>
(PHP >= 4.3.3) As additional parameters you can add some special php.ini -values, for
example you can set a docroot="/path/to/docroot" specific to the context php4_execute
is called. For boolean ini-keys please use 0/1 as value, not "On","Off",... (this will not
work correctly), e.g. zlib.output_compression=1 instead of
zlib.output_compression="On"

• This is only needed if you want to configure a directory that only consists of PHP
scripts (same like a cgi-bin directory):
<Object name="x-httpd-php">

ObjectType fn="force-type" type="magnus-internal/x-httpd-php"

Service fn=php4_execute [inikey=value inikey=value ...]

</Object>
After that you can configure a directory in the Administration server and assign it the
style x-httpd-php. All files in it will get executed as PHP. This is nice to hide PHP usage
by renaming files to.html.

• Setup of authentication: PHP authentication cannot be used with any other
authentication. ALL AUTHENTICATION IS PASSED TO YOUR PHP SCRIPT. To
configure PHP Authentication for the entire server, add the following line to your
default object:
<Object name="default">

AuthTrans fn=php4_auth_trans

.

.

.

</Object>

• To use PHP Authentication on a single directory, add the following:
<Object ppath="d:\path\to\authenticated\dir*">

AuthTrans fn=php4_auth_trans

</Object>

Note

The stacksize that PHP uses depends on the configuration of the web server. If you
get crashes with very large PHP scripts, it is recommended to raise it with the Admin
Server (in the section "MAGNUS EDITOR").

CGI environment and recommended modifications in php.ini

Important when writing PHP scripts is the fact that Sun JSWS/Sun ONE
WS/iPlanet/Netscape is a multithreaded web server. Because of that all requests are
running in the same process space (the space of the web server itself) and this space has
only one environment. If you want to get CGI variables like PATH_INFO, HTTP_HOST etc.
it is not the correct way to try this in the old PHP way with getenv() or a similar way
(register globals to environment, $_ENV). You would only get the environment of the
running web server without any valid CGI variables!

Note

Why are there (invalid) CGI variables in the environment?

Answer: This is because you started the web server process from the admin server
which runs the startup script of the web server, you wanted to start, as a CGI script (a
CGI script inside of the admin server!). This is why the environment of the started web
server has some CGI environment variables in it. You can test this by starting the web

server not from the administration server. Use the command line as root user and start
it manually - you will see there are no CGI-like environment variables.

Simply change your scripts to get CGI variables in the correct way for PHP 4.x by using
the superglobal $_SERVER. If you have older scripts which use $HTTP_HOST, etc., you
should turn on register_globals in php.ini and change the variable order too (important:
remove "E" from it, because you do not need the environment here):
variables_order = "GPCS"

register_globals = On

Special use for error pages or self-made directory listings (PHP >= 4.3.3)

You can use PHP to generate the error pages for "404 Not Found" or similar. Add the
following line to the object in obj.conf for every error page you want to overwrite:
Error fn="php4_execute" code=XXX script="/path/to/script.php" [inikey=value
inikey=value...]
where XXX is the HTTP error code. Please delete any other Error directives which could
interfere with yours. If you want to place a page for all errors that could exist, leave the
code parameter out. Your script can get the HTTP status code with
$_SERVER['ERROR_TYPE'].

Another possibility is to generate self-made directory listings. Just create a PHP script
which displays a directory listing and replace the corresponding default Service line for
type="magnus-internal/directory" in obj.conf with the following:
Service fn="php4_execute" type="magnus-internal/directory"
script="/path/to/script.php" [inikey=value inikey=value...]
For both error and directory listing pages the original URI and translated URI are in the
variables $_SERVER['PATH_INFO'] and $_SERVER['PATH_TRANSLATED'].

Note about nsapi_virtual() and subrequests (PHP >= 4.3.3)

The NSAPI module now supports the nsapi_virtual() function (alias: virtual()) to make
subrequests on the web server and insert the result in the web page. This function uses
some undocumented features from the NSAPI library. On Unix the module automatically
looks for the needed functions and uses them if available. If not, nsapi_virtual() is disabled.

Note

But be warned: Support for nsapi_virtual() is EXPERIMENTAL!!!

CGI and command line setups

The default is to build PHP as a CGI program. This creates a command line interpreter,
which can be used for CGI processing, or for non-web-related PHP scripting. If you are
running a web server PHP has module support for, you should generally go for that
solution for performance reasons. However, the CGI version enables users to run different

PHP-enabled pages under different user-ids.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

As of PHP 4.3.0, some important additions have happened to PHP. A new SAPI named
CLI also exists and it has the same name as the CGI binary. What is installed at
{PREFIX}/bin/php depends on your configure line and this is described in detail in the
manual section named Using PHP from the command line. For further details please read
that section of the manual.

Testing

If you have built PHP as a CGI program, you may test your build by typing make test. It is
always a good idea to test your build. This way you may catch a problem with PHP on your
platform early instead of having to struggle with it later.

Using Variables

Some server supplied environment variables are not defined in the current » CGI/1.1
specification. Only the following variables are defined there: AUTH_TYPE,
CONTENT_LENGTH, CONTENT_TYPE, GATEWAY_INTERFACE, PATH_INFO,
PATH_TRANSLATED, QUERY_STRING, REMOTE_ADDR, REMOTE_HOST,
REMOTE_IDENT, REMOTE_USER, REQUEST_METHOD, SCRIPT_NAME,
SERVER_NAME, SERVER_PORT, SERVER_PROTOCOL, and SERVER_SOFTWARE.
Everything else should be treated as 'vendor extensions'.

HP-UX specific installation notes

This section contains notes and hints specific to installing PHP on HP-UX systems.

There are two main options for installing PHP on HP-UX systems. Either compile it, or
install a pre-compiled binary.

Official pre-compiled packages are located here: » http://software.hp.com/

Until this manual section is rewritten, the documentation about compiling PHP (and related
extensions) on HP-UX systems has been removed. For now, consider reading the
following external resource: » Building Apache and PHP on HP-UX 11.11

OpenBSD installation notes

This section contains notes and hints specific to installing PHP on » OpenBSD 3.6.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://software.hp.com/
http://www.tekwire.net/joomla/building/apache/comp_apache_hpux11.11.htm
http://www.openbsd.org/

Using Binary Packages

Using binary packages to install PHP on OpenBSD is the recommended and simplest
method. The core package has been separated from the various modules, and each can
be installed and removed independently from the others. The files you need can be found
on your OpenBSD CD or on the FTP site.

The main package you need to install is php4-core-4.3.8.tgz, which contains the basic
engine (plus gettext and iconv). Next, take a look at the module packages, such as
php4-mysql-4.3.8.tgz or php4-imap-4.3.8.tgz. You need to use the phpxs command to
activate and deactivate these modules in your php.ini.

Example #17 - OpenBSD Package Install Example

pkg_add php4-core-4.3.8.tgz

/usr/local/sbin/phpxs -s

cp /usr/local/share/doc/php4/php.ini-recommended /var/www/conf/php.ini

 (add in mysql)

pkg_add php4-mysql-4.3.8.tgz

/usr/local/sbin/phpxs -a mysql

 (add in imap)

pkg_add php4-imap-4.3.8.tgz

/usr/local/sbin/phpxs -a imap

 (remove mysql as a test)

pkg_delete php4-mysql-4.3.8

/usr/local/sbin/phpxs -r mysql

 (install the PEAR libraries)

pkg_add php4-pear-4.3.8.tgz

Read the » packages(7) manual page for more information about binary packages on
OpenBSD.

Using Ports

You can also compile up PHP from source using the » ports tree. However, this is only
recommended for users familiar with OpenBSD. The PHP 4 port is split into two
sub-directories: core and extensions. The extensions directory generates sub-packages
for all of the supported PHP modules. If you find you do not want to create some of these
modules, use the no_* FLAVOR. For example, to skip building the imap module, set the
FLAVOR to no_imap.

Common Problems

• The default install of Apache runs inside a » chroot(2) jail, which will restrict PHP
scripts to accessing files under /var/www. You will therefore need to create a
/var/www/tmp directory for PHP session files to be stored, or use an alternative
session backend. In addition, database sockets need to be placed inside the jail or
listen on the localhost interface. If you use network functions, some files from /etc such
as /etc/resolv.conf and /etc/services will need to be moved into /var/www/etc. The

http://www.openbsd.org/cgi-bin/man.cgi?query=packages
http://www.openbsd.org/ports.html
http://www.openbsd.org/cgi-bin/man.cgi?query=chroot

OpenBSD PEAR package automatically installs into the correct chroot directories, so
no special modification is needed there. More information on the OpenBSD Apache is
available in the » OpenBSD FAQ.

• The OpenBSD 3.6 package for the » gd extension requires XFree86 to be installed. If
you do not wish to use some of the font features that require X11, install the
php4-gd-4.3.8-no_x11.tgz package instead.

Older Releases

Older releases of OpenBSD used the FLAVORS system to compile up a statically linked
PHP. Since it is hard to generate binary packages using this method, it is now deprecated.
You can still use the old stable ports trees if you wish, but they are unsupported by the
OpenBSD team. If you have any comments about this, the current maintainer for the port
is Anil Madhavapeddy (avsm at openbsd dot org).

Solaris specific installation tips

This section contains notes and hints specific to installing PHP on Solaris systems.

Required software

Solaris installs often lack C compilers and their related tools. Read this FAQ for
information on why using GNU versions for some of these tools is necessary. The required
software is as follows:

• gcc (recommended, other C compilers may work)

• make

• flex

• bison

• m4

• autoconf

• automake

• perl

• gzip

• tar

• GNU sed

In addition, you will need to install (and possibly compile) any additional software specific
to your configuration, such as Oracle or MySQL.

Using Packages

http://www.openbsd.org/faq/faq10.html#httpdchroot
http://www.libgd.org/

You can simplify the Solaris install process by using pkgadd to install most of your needed
components.

Debian GNU/Linux installation notes

This section contains notes and hints specific to installing PHP on » Debian GNU/Linux.

Using APT

While you can just download the PHP source and compile it yourself, using Debian's
packaging system is the simplest and cleanest method of installing PHP. If you are not
familiar with building software on Linux, this is the way to go.

The first decision you need to make is whether you want to install Apache 1.3.x or Apache
2.x. The corresponding PHP packages are respectively named libapache-mod-php* and
libapache2-mod-php*. The steps given below will use Apache 1.3.x. Please note that, as
of this writing, there is no official Debian packages of PHP 5. Then the steps given below
will install PHP 4.

PHP is available in Debian as CGI or CLI flavour too, named respectively php4-cgi and
php4-cli. If you need them, you'll just have to reproduce the following steps with the good
package names. Another special package you'd want to install is php4-pear. It contains a
minimal PEAR installation and the pear commandline utility.

If you need more recent packages of PHP than the Debian's stable ones or if some PHP
modules lacks the Debian official repository, perhaps you should take a look at
» http://www.apt-get.org/. One of the results found should be » Dotdeb. This unofficial
repository is maintained by » Guillaume Plessis and contains Debian packages of the most
recent versions of PHP 4 and PHP 5. To use it, just add the to following two lines to your
/etc/apt/sources.lists and run apt-get update:

Example #18 - The two Dotdeb related lines

deb http://packages.dotdeb.org stable all

deb-src http://packages.dotdeb.org stable all

The last thing to consider is whether your list of packages is up to date. If you have not
updated it recently, you need to run apt-get update before anything else. This way, you will
be using the most recent stable version of the Apache and PHP packages.

Now that everything is in place, you can use the following example to install Apache and
PHP:

Example #19 - Debian Install Example with Apache 1.3

apt-get install libapache-mod-php4

http://www.debian.org/
http://www.apt-get.org/
http://www.apt-get.org/
http://www.dotdeb.org/
mailto:gui@php.net

APT will automatically install the PHP 4 module for Apache 1.3, and all its dependencies
and then activate it. If you're not asked to restart Apache during the install process, you'll
have to do it manually :

Example #20 - Stopping and starting Apache once PHP 4 is installed

/etc/init.d/apache stop

/etc/init.d/apache start

Better control on configuration

In the last section, PHP was installed with only core modules. This may not be what you
want and you will soon discover that you need more activated modules, like MySQL,
cURL, GD, etc.

When you compile PHP from source yourself, you need to activate modules via the
configure command. With APT, you just have to install additional packages. They're all
named 'php4-*' (or 'php5-*' if you installed PHP 5 from a third party repository).

Example #21 - Getting the list of PHP additional packages

dpkg -l 'php4-*'

As you can see from the last output, there's a lot of PHP modules that you can install
(excluding the php4-cgi, php4-cli or php4-pear special packages). Look at them closely
and choose what you need. If you choose a module and you do not have the proper
libraries, APT will automatically install all the dependencies for you.

If you choose to add the MySQL, cURL and GD support to PHP the command will look
something like this:

Example #22 - Install PHP with MySQL, cURL and GD

apt-get install php4-mysql php4-curl php4-gd

APT will automatically add the appropriate lines to your different php.ini (
/etc/php4/apache/php.ini, /etc/php4/cgi/php.ini, etc).

Example #23 - These lines activate MySQL, cURL and GD into PHP

extension=mysql.so

extension=curl.so

extension=gd.so

You'll only have to stop/start Apache as previously to activate the modules.

Common Problems

• If you see the PHP source instead of the result the script should produce, APT has
probably not included /etc/apache/conf.d/php4 in your Apache 1.3 configuration.
Please ensure that the following line is present in your /etc/apache/httpd.conf file then
stop/start Apache:

Example #24 - This line activates PHP 4 into Apache

Include /etc/apache/conf.d/

• If you installed an additional module and if its functions are not available in your
scripts, please ensure that the appropriate line is present in your php.ini, as seen
before. APT may fail during the installation of the additional module, due to a confusing
debconf configuration.

Installation on Mac OS X

This section contains notes and hints specific to installing PHP on Mac OS X. There are
two slightly different versions of Mac OS X, Client and Server, our manual deals with
installing PHP on both systems. Note that PHP is not available for MacOS 9 and earlier
versions.

Using Packages

There are a few pre-packaged and pre-compiled versions of PHP for Mac OS X. This can
help in setting up a standard configuration, but if you need to have a different set of
features (such as a secure server, or a different database driver), you may need to build
PHP and/or your web server yourself. If you are unfamiliar with building and compiling your
own software, it's worth checking whether somebody has already built a packaged version
of PHP with the features you need.

The following resources offer easy to install packages and precompiled binaries for PHP
on Mac OS:

• MacPorts: » http://www.macports.org/

• Entropy: » http://www.entropy.ch/software/macosx/php/

• Fink: » http://fink.sourceforge.net/

Using the bundled PHP

PHP has come standard with Macs since OS X version 10.0.0. Enabling PHP with the
default web server requires uncommenting a few lines in the Apache configuration file
httpd.conf whereas the CGI and/or CLI are enabled by default (easily accessible via the
Terminal program).

Enabling PHP using the instructions below is meant for quickly setting up a local
development environment. It's highly recommended to always upgrade PHP to the newest
version. Like most live software, newer versions are created to fix bugs and add features
and PHP being is no different. See the appropriate MAC OS X installation documentation
for further details. The following instructions are geared towards a beginner with details
provided for getting a default setup to work. All users are encouraged to compile, or install
a new packaged version.

The standard installation type is using mod_php, and enabling the bundled mod_php on
Mac OS X for the Apache web server (the default web server, that is accessible via
System Preferences) involves the following steps:

http://www.macports.org/
http://www.entropy.ch/software/macosx/php/
http://fink.sourceforge.net/

• Locate and open the Apache configuration file. By default, the location is as follows:
/etc/httpd/httpd.conf Using Finder or Spotlight to find this file may prove difficult as by
default it's private and owned by the root user.

Note

One way to open this is by using a Unix based text editor in the Terminal, for
example nano, and because the file is owned by root we'll use the sudo command
to open it (as root) so for example type the following into the Terminal Application
(after, it will prompt for a password): sudo nano /etc/httpd/httpd.conf

Noteworthy nano commands: ^w (search), ^o (save), and ^x (exit) where ^
represents the Ctrl key.

• With a text editor, uncomment the lines (by removing the #) that look similar to the
following (these two lines are often not together, locate them both in the file):
LoadModule php4_module libexec/httpd/libphp4.so

AddModule mod_php4.c
Notice the location/path. When building PHP in the future, the above files should be
replaced or commented out.

• Be sure the desired extensions will parse as PHP (examples: .php .html and .inc) Due
to the following statement already existing in httpd.conf (as of Mac Panther), once PHP
is enabled the.php files will automatically parse as PHP.
<IfModule mod_php4.c>

 # If php is turned on, we respect .php and .phps files.

 AddType application/x-httpd-php .php

 AddType application/x-httpd-php-source .phps

 # Since most users will want index.php to work we

 # also automatically enable index.php

 <IfModule mod_dir.c>

 DirectoryIndex index.html index.php

 </IfModule>

</IfModule>

• Be sure the DirectoryIndex loads the desired default index file This is also set in
httpd.conf. Typically index.php and index.html are used. By default index.php is
enabled because it's also in the PHP check shown above. Adjust accordingly.

• Set the php.ini location or use the default A typical default location on Mac OS X is
/usr/local/php/php.ini and a call to phpinfo() will reveal this information. If a php.ini is
not used, PHP will use all default values. See also the related FAQ on finding php.ini.

• Locate or set the DocumentRoot This is the root directory for all the web files. Files in
this directory are served from the web server so the PHP files will parse as PHP before
outputting them to the browser. A typical default path is
/Library/WebServer/Documents but this can be set to anything in httpd.conf.
Alternatively, the default DocumentRoot for individual users is
/Users/yourusername/Sites

• Create a phpinfo() file The phpinfo() function will display information about PHP.
Consider creating a file in the DocumentRoot with the following PHP code:

<?php phpinfo(); ?>

• Restart Apache, and load the PHP file created above To restart, either execute sudo
apachectl graceful in the shell or stop/start the "Personal Web Server" option in the OS
X System Preferences. By default, loading local files in the browser will have an URL
like so: http://localhost/info.php Or using the DocumentRoot in the user directory is
another option and would end up looking like: http://localhost/~yourusername/info.php

The CLI (or CGI in older versions) is appropriately named php and likely exists as
/usr/bin/php. Open up the terminal, read the command line section of the PHP manual,
and execute php -v to check the PHP version of this PHP binary. A call to phpinfo() will
also reveal this information.

Compiling for OS X Server

Mac OS X Server install

• Get the latest distributions of Apache and PHP.

• Untar them, and run the configure program on Apache like so.
./configure --exec-prefix=/usr \

--localstatedir=/var \

--mandir=/usr/share/man \

--libexecdir=/System/Library/Apache/Modules \

--iconsdir=/System/Library/Apache/Icons \

--includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/Header
s \

--enable-shared=max \

--enable-module=most \

--target=apache

• If you want the compiler to do some optimization, you may also want to add this line:
setenv OPTIM=-O2

• Next, go to the PHP 4 source directory and configure it.
./configure --prefix=/usr \

 --sysconfdir=/etc \

 --localstatedir=/var \

 --mandir=/usr/share/man \

 --with-xml \

 --with-apache=/src/apache_1.3.12
If you have any other additions (MySQL, GD, etc.), be sure to add them here. For the
--with-apache string, put in the path to your apache source directory, for example
/src/apache_1.3.12.

• Type make and make install. This will add a directory to your Apache source directory
under src/modules/php4.

• Now, reconfigure Apache to build in PHP 4.

./configure --exec-prefix=/usr \

--localstatedir=/var \

--mandir=/usr/share/man \

--libexecdir=/System/Library/Apache/Modules \

--iconsdir=/System/Library/Apache/Icons \

--includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/Header
s \

--enable-shared=max \

--enable-module=most \

--target=apache \

--activate-module=src/modules/php4/libphp4.a
You may get a message telling you that libmodphp4.a is out of date. If so, go to the
src/modules/php4 directory inside your Apache source directory and run this
command: ranlib libmodphp4.a. Then go back to the root of the Apache source
directory and run the above configure command again. That'll bring the link table up to
date. Run make and make install again.

• Copy and rename the php.ini-dist file to your bin directory from your PHP 4 source
directory: cp php.ini-dist /usr/local/bin/php.ini or (if your don't have a local directory)
cp php.ini-dist /usr/bin/php.ini.

Compiling for MacOS X Client

The following instructions will help you install a PHP module for the Apache web server
included in MacOS X. This version includes support for the MySQL and PostgreSQL
databases. These instructions are graciously provided by » Marc Liyanage.

Warning

Be careful when you do this, you could screw up your Apache web server!

Do this to install:

• Open a terminal window.

• Type wget http://www.diax.ch/users/liyanage/software/macosx/libphp4.so.gz,
wait for the download to finish.

• Type gunzip libphp4.so.gz.

• Type sudo apxs -i -a -n php4 libphp4.so

• Now type sudo open -a TextEdit /etc/httpd/httpd.conf. TextEdit will open with the
web server configuration file. Locate these two lines towards the end of the file: (Use
the Find command)
#AddType application/x-httpd-php .php

#AddType application/x-httpd-php-source .phps
Remove the two hash marks (#), then save the file and quit TextEdit.

• Finally, type sudo apachectl graceful to restart the web server.

http://www.entropy.ch/software/macosx/

PHP should now be up and running. You can test it by dropping a file into your Sites folder
which is called test.php. Into that file, write this line: <?php phpinfo() ?>.

Now open up 127.0.0.1/~your_username/test.php in your web browser. You should see a
status table with information about the PHP module.

Installation on Windows systems

This section applies to Windows 98/Me and Windows NT/2000/XP/2003. PHP will not work
on 16 bit platforms such as Windows 3.1 and sometimes we refer to the supported
Windows platforms as Win32. Windows 95 is no longer supported as of PHP 4.3.0.

Note

Windows 98 is no longer supported as of PHP 5.3.0.

Note

Windows 95 is no longer supported as of PHP 4.3.0.

There are two main ways to install PHP for Windows: either manually or by using the
installer.

If you have Microsoft Visual Studio, you can also build PHP from the original source code.

Once you have PHP installed on your Windows system, you may also want to load various
extensions for added functionality.

Warning

There are several all-in-one installers over the Internet, but none of those are endorsed
by PHP.net, as we believe that using one of the official windows packages from
» http://www.php.net/downloads.php is the best choice to have your system secure
and optimized.

Windows Installer (PHP 5.2 and later)

The Windows PHP installer for later versions of PHP is built using MSI technology using
the Wix Toolkit (» http://wix.sourceforge.net/). It will install and configure PHP and all the
built-in and PECL extensions, as well as configure many of the popular web servers such
as IIS, Apache, and Xitami.

First, install your selected HTTP (web) server on your system, and make sure that it works.
Then proceed with one of the following install types.

Normal Install

http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://wix.sourceforge.net/

Run the MSI installer and follow the instructions provided by the installation wizard. You
will be prompted to select the Web Server you wish to configure first, along with any
configuration details needed.

You will then be prompted to select which features and extensions you wish to install and
enable. By selecting "Will be installed on local hard drive" in the drop-down menu for each
item you can trigger whether to install the feature or not. By selecting "Entire feature will be
installed on local hard drive", you will be able to install all sub-features of the included
feature (for example by selecting this options for the feature "PDO" you will install all PDO
Drivers).

Warning

It is not recommended to install all extensions by default, since many other them
require dependencies from outside PHP in order to function properly. Instead, use the
Installation Repair Mode that can be triggered thru the 'Add/Remove Programs' control
panel to enable or disable extensions and features after installation.

The installer then sets up PHP to be used in Windows and the php.ini file, and configures
certain web servers to use PHP. The installer will currently configure IIS, Apache, Xitami,
and Sambar Server; if you are using a different web server you'll need to configure it
manually.

Silent Install

The installer also supports a silent mode, which is helpful for Systems Administrators to
deploy PHP easily. To use silent mode:
msiexec.exe /i php-VERSION-win32-install.msi /q

You can control the install directory by passing it as a parameter to the install. For
example, to install to e:\php:
msiexec.exe /i php-VERSION-win32-install.msi /q INSTALLDIR=e:\php
You can also use the same syntax to specify the Apache Configuration Directory
(APACHEDIR), the Sambar Server directory (SAMBARDIR), and the Xitami Server
directory (XITAMIDIR).

You can also specify what features to install. For example, to install the mysqli extension
and the CGI executable:
msiexec.exe /i php-VERSION-win32-install.msi /q ADDLOCAL=cgi,ext_php_mysqli

The current list of Features to install is as follows:
MainExecutable - php.exe executable

ScriptExecutable - php-win.exe executable

ext_php_* - the various extensions (for example: ext_php_mysql for MySQL)

apache13 - Apache 1.3 module

apache20 - Apache 2.0 module

apache22 - Apache 2,2 module

apacheCGI - Apache CGI executable

iis4ISAPI - IIS ISAPI module

iis4CGI - IIS CGI executable

NSAPI - Sun/iPlanet/Netscape server module

Xitami - Xitami CGI executable

Sambar - Sambar Server ISAPI module

CGI - php-cgi.exe executable

PEAR - PEAR installer

Manual - PHP Manual in CHM Format

For more information on installing MSI installers from the command line, visit
» http://msdn.microsoft.com/en-us/library/aa367988.aspx

Upgrading PHP with the Install

To upgrade, run the installer either graphically or from the command line as normal. The
installer will read your current install options, remove your old installation, and reinstall
PHP with the same options as before. It is recommended that you use this method of
keeping PHP updated instead of manually replacing the files in the installation directory.

Windows Installer (PHP 5.1.0 and earlier)

The Windows PHP installer is available from the downloads page at
» http://www.php.net/downloads.php. This installs the CGI version of PHP and for IIS,
PWS, and Xitami, it configures the web server as well. The installer does not include any
extra external PHP extensions (php_*.dll) as you'll only find those in the Windows Zip
Package and PECL downloads.

Note

While the Windows installer is an easy way to make PHP work, it is restricted in many
aspects as, for example, the automatic setup of extensions is not supported. Use of
the installer isn't the preferred method for installing PHP.

First, install your selected HTTP (web) server on your system, and make sure that it works.

Run the executable installer and follow the instructions provided by the installation wizard.
Two types of installation are supported - standard, which provides sensible defaults for all
the settings it can, and advanced, which asks questions as it goes along.

The installation wizard gathers enough information to set up the php.ini file, and configure
certain web servers to use PHP. One of the web servers the PHP installer does not
configure for is Apache, so you'll need to configure it manually.

Once the installation has completed, the installer will inform you if you need to restart your
system, restart the server, or just start using PHP.

http://msdn.microsoft.com/en-us/library/aa367988.aspx
http://msdn.microsoft.com/en-us/library/aa367988.aspx
http://www.php.net/downloads.php
http://www.php.net/downloads.php

Warning

Be aware, that this setup of PHP is not secure. If you would like to have a secure PHP
setup, you'd better go on the manual way, and set every option carefully. This
automatically working setup gives you an instantly working PHP installation, but it is
not meant to be used on online servers.

Manual Installation Steps

This install guide will help you manually install and configure PHP with a web server on
Microsoft Windows. To get started you'll need to download the zip binary distribution from
the downloads page at » http://www.php.net/downloads.php.

Although there are many all-in-one installation kits, and we also distribute a PHP installer
for Microsoft Windows, we recommend you take the time to setup PHP yourself as this will
provide you with a better understanding of the system, and enables you to install PHP
extensions easily when needed.

Note

Upgrading from a previous PHP version

Previous editions of the manual suggest moving various ini and DLL files into your
SYSTEM (i.e. C:\WINDOWS) folder and while this simplifies the installation procedure
it makes upgrading difficult. We advise you remove all of these files (like php.ini and
PHP related DLLs from the Windows SYSTEM folder) before moving on with a new
PHP installation. Be sure to backup these files as you might break the entire system.
The old php.ini might be useful in setting up the new PHP as well. And as you'll soon
learn, the preferred method for installing PHP is to keep all PHP related files in one
directory and have this directory available to your systems PATH.

Note

MDAC requirements

If you use Microsoft Windows 98/NT4 download the latest version of the Microsoft Data
Access Components (MDAC) for your platform. MDAC is available at
» http://msdn.microsoft.com/data/. This requirement exists because ODBC is built into
the distributed Windows binaries.

The following steps should be completed on all installations before any server specific
instructions are performed:

Extract the distribution file into a directory of your choice. If you are installing PHP 4,

http://www.php.net/downloads.php
http://msdn.microsoft.com/data/
http://msdn.microsoft.com/data/

extract to C:\, as the zip file expands to a foldername like php-4.3.7-Win32. If you are
installing PHP 5, extract to C:\php as the zip file doesn't expand as in PHP 4. You may
choose a different location but do not have spaces in the path (like C:\Program Files\PHP)
as some web servers will crash if you do.

The directory structure extracted from the zip is different for PHP versions 4 and 5 and
look like as follows:

Example #25 - PHP 4 package structure

c:\php

 |

 +--cli

 | |

 | |-php.exe -- CLI executable - ONLY for command line scripting

 |

 +--dlls -- support DLLs required by some extensions

 | |

 | |-expat.dll

 | |

 | |-fdftk.dll

 | |

 | |-...

 |

 +--extensions -- extension DLLs for PHP

 | |

 | |-php_bz2.dll

 | |

 | |-php_cpdf.dll

 | |

 | |-..

 |

 +--mibs -- support files for SNMP

 |

 +--openssl -- support files for Openssl

 |

 +--pdf-related -- support files for PDF

 |

 +--sapi -- SAPI (server module support) DLLs

 | |

 | |-php4apache.dll

 | |

 | |-php4apache2.dll

 | |

 | |-..

 |

 +--PEAR -- initial copy of PEAR

 |

 |

 |-go-pear.bat -- PEAR setup script

 |

 |-..

 |

 |-php.exe -- CGI executable

 |

 |-..

 |

 |-php.ini-dist -- default php.ini settings

 |

 |-php.ini-recommended -- recommended php.ini settings

 |

 |-php4ts.dll -- core PHP DLL

 |

 |-...

Or:

Example #26 - PHP 5 package structure

c:\php

 |

 +--dev

 | |

 | |-php5ts.lib

 |

 +--ext -- extension DLLs for PHP

 | |

 | |-php_bz2.dll

 | |

 | |-php_cpdf.dll

 | |

 | |-..

 |

 +--extras

 | |

 | +--mibs -- support files for SNMP

 | |

 | +--openssl -- support files for Openssl

 | |

 | +--pdf-related -- support files for PDF

 | |

 | |-mime.magic

 |

 +--pear -- initial copy of PEAR

 |

 |

 |-go-pear.bat -- PEAR setup script

 |

 |-fdftk.dll

 |

 |-..

 |

 |-php-cgi.exe -- CGI executable

 |

 |-php-win.exe -- executes scripts without an opened command
prompt

 |

 |-php.exe -- CLI executable - ONLY for command line scripting

 |

 |-..

 |

 |-php.ini-dist -- default php.ini settings

 |

 |-php.ini-recommended -- recommended php.ini settings

 |

 |-php5activescript.dll

 |

 |-php5apache.dll

 |

 |-php5apache2.dll

 |

 |-..

 |

 |-php5ts.dll -- core PHP DLL

 |

 |-...

Notice the differences and similarities. Both PHP 4 and PHP 5 have a CGI executable, a
CLI executable, and server modules, but they are located in different folders and/or have
different names. While PHP 4 packages have the server modules in the sapi folder, PHP 5
distributions have no such directory and instead they're in the PHP folder root. The
supporting DLLs for the PHP 5 extensions are also not in a seperate directory.

Note

In PHP 4, you should move all files located in the dll and sapi folders to the main folder
(e.g. C:\php).

Here is a list of server modules shipped with PHP 4 and PHP 5:

• sapi/php4activescript.dll (php5activescript.dll) - ActiveScript engine, allowing you to
embed PHP in your Windows applications.

• sapi/php4apache.dll (php5apache.dll) - Apache 1.3.x module.

• sapi/php4apache2.dll (php5apache2.dll) - Apache 2.0.x module.

• sapi/php5apache2_2.dll - Apache 2.2.x module.

• sapi/php4isapi.dll (php5isapi.dll) - ISAPI Module for ISAPI compliant web servers like
IIS 4.0/PWS 4.0 or newer.

• sapi/php4nsapi.dll (php5nsapi.dll) - Sun/iPlanet/Netscape server module.

• sapi/php4pi3web.dll (no equivalent in PHP 5) - Pi3Web server module.

Server modules provide significantly better performance and additional functionality
compared to the CGI binary. The CLI version is designed to let you use PHP for command
line scripting. More information about CLI is available in the chapter about using PHP from
the command line.

Warning

The SAPI modules have been significantly improved as of the 4.1 release, however, in
older systems you may encounter server errors or other server modules failing, such
as ASP.

The CGI and CLI binaries, and the web server modules all require the php4ts.dll (
php5ts.dll) file to be available to them. You have to make sure that this file can be found
by your PHP installation. The search order for this DLL is as follows:

• The same directory from where php.exe is called, or in case you use a SAPI module,
the web server's directory (e.g. C:\Program Files\Apache Group\Apache2\bin).

• Any directory in your Windows PATH environment variable.

To make php4ts.dll / php5ts.dll available you have three options: copy the file to the
Windows system directory, copy the file to the web server's directory, or add your PHP
directory, C:\php to the PATH. For better maintenance, we advise you to follow the last
option, add C:\php to the PATH, because it will be simpler to upgrade PHP in the future.
Read more about how to add your PHP directory to PATH in the corresponding FAQ entry
(and then don't forget to restart the computer - logoff isn't enough).

The next step is to set up a valid configuration file for PHP, php.ini. There are two ini files
distributed in the zip file, php.ini-dist and php.ini-recommended. We advise you to use
php.ini-recommended, because we optimized the default settings in this file for
performance, and security. Read this well documented file carefully because it has
changes from php.ini-dist that will drastically affect your setup. Some examples are
display_errors being off and magic_quotes_gpc being off. In addition to reading these,
study the ini settings and set every element manually yourself. If you would like to achieve
the best security, then this is the way for you, although PHP works fine with these default
ini files. Copy your chosen ini-file to a directory that PHP is able to find and rename it to
php.ini. PHP searches for php.ini in the locations described in The configuration file
section.

If you are running Apache 2, the simpler option is to use the PHPIniDir directive (read the
installation on Apache 2 page), otherwise your best option is to set the PHPRC
environment variable. This process is explained in the following FAQ entry.

Note

If you're using NTFS on Windows NT, 2000, XP or 2003, make sure that the user
running the web server has read permissions to your php.ini (e.g. make it readable by
Everyone).

The following steps are optional:

• Edit your new php.ini file. If you plan to use OmniHTTPd, do not follow the next step.
Set the doc_root to point to your web servers document_root. For example:

doc_root = c:\inetpub\wwwroot // for IIS/PWS

doc_root = c:\apache\htdocs // for Apache

• Choose the extensions you would like to load when PHP starts. See the section about

Windows extensions, about how to set up one, and what is already built in. Note that
on a new installation it is advisable to first get PHP working and tested without any
extensions before enabling them in php.ini.

• On PWS and IIS, you can set the browscap configuration setting to point to:
c:\windows\system\inetsrv\browscap.ini on Windows 9x/Me,
c:\winnt\system32\inetsrv\browscap.ini on NT/2000, and
c:\windows\system32\inetsrv\browscap.ini on XP. For an up-to-date browscap.ini, read
the following FAQ.

PHP is now setup on your system. The next step is to choose a web server, and enable it
to run PHP. Choose a web server from the table of contents.

ActiveScript

This section contains notes specific to the ActiveScript installation.

ActiveScript is a Windows only SAPI that enables you to use PHP script in any
ActiveScript compliant host, like Windows Script Host, ASP/ASP.NET, Windows Script
Components or Microsoft Scriptlet control.

As of PHP 5.0.1, ActiveScript has been moved to the » PECL repository. The DLL for this
PECL extension may be downloaded from either the » PHP Downloads page or from
» http://pecl4win.php.net/

Note

You should read the manual installation steps first!

After installing PHP, you should download the ActiveScript DLL (php5activescript.dll) and
place it in the main PHP folder (e.g. C:\php).

After having all the files needed, you must register the DLL on your system. To achieve
this, open a Command Prompt window (located in the Start Menu). Then go to your PHP
directory by typing something like cd C:\php. To register the DLL just type regsvr32
php5activescript.dll.

To test if ActiveScript is working, create a new file, named test.wsf (the extension is very
important) and type:
<job id="test">

<script language="PHPScript">

 $WScript->Echo("Hello World!");

</script>

</job>
Save and double-click on the file. If you receive a little window saying "Hello World!" you're
done.

http://pecl.php.net/
http://www.php.net/downloads.php
http://pecl4win.php.net/
http://pecl4win.php.net/

Note

In PHP 4, the engine was named 'ActivePHP', so if you are using PHP 4, you should
replace 'PHPScript' with 'ActivePHP' in the above example.

Note

ActiveScript doesn't use the default php.ini file. Instead, it will look only in the same
directory as the .exe that caused it to load. You should create php-activescript.ini and
place it in that folder, if you wish to load extensions, etc.

Microsoft IIS / PWS

This section contains notes and hints specific to IIS (Microsoft Internet Information Server).

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

General considerations for all installations of PHP with IIS or PWS

• First, read the Manual Installation Instructions. Do not skip this step as it provides
crucial information for installing PHP on Windows.

• CGI users must set the cgi.force_redirect PHP directive to 0 inside php.ini. Read the
faq on cgi.force_redirect for important details. Also, CGI users may want to set the
cgi.redirect_status_env directive. When using directives, be sure these directives aren't
commented out inside php.ini.

• The PHP 4 CGI is named php.exe while in PHP 5 it's php-cgi.exe. In PHP 5, php.exe is
the CLI, and not the CGI.

• Modify the Windows PATH environment variable to include the PHP directory. This
way the PHP DLL files and PHP executables can all remain in the PHP directory
without cluttering up the Windows system directory. For more details, see the FAQ on
Setting the PATH.

• The IIS user (usually IUSR_MACHINENAME) needs permission to read various files
and directories, such as php.ini, docroot, and the session tmp directory.

• Be sure the extension_dir and doc_root PHP directives are appropriately set in php.ini.
These directives depend on the system that PHP is being installed on. In PHP 4, the
extension_dir is extensions while with PHP 5 it's ext. So, an example PHP 5

extensions_dir value is "c:\php\ext" and an example IIS doc_root value is
"c:\Inetpub\wwwroot".

• PHP extension DLL files, such as php_mysql.dll and php_curl.dll, are found in the zip
package of the PHP download (not the PHP installer). In PHP 5, many extensions are
part of PECL and can be downloaded in the "Collection of PECL modules" package.
Files such as php_zip.dll and php_ssh2.dll. » Download PHP files here.

• When defining the executable, the 'check that file exists' box may also be checked. For
a small performance penalty, the IIS (or PWS) will check that the script file exists and
sort out authentication before firing up PHP. This means that the web server will
provide sensible 404 style error messages instead of CGI errors complaining that PHP
did not output any data.

• The PHP executable is distributed as a 32bit application. If you are running a 64bit
version of Windows you will either need to rebuild the binary yourself, or make sure IIS
is configured to also run 32bit extensions. You can usually turn this on by using the IIS
Administration script as follows: Cscript.exe adsutil.vbs SET
W3SVC/AppPools/Enable32bitAppOnWin64 1

Windows NT/200x/XP and IIS 4 or newer

PHP may be installed as a CGI binary, or with the ISAPI module. In either case, you need
to start the Microsoft Management Console (may appear as 'Internet Services Manager',
either in your Windows NT 4.0 Option Pack branch or the Control Panel=>Administrative
Tools under Windows 2000/XP). Then right click on your Web server node (this will most
probably appear as 'Default Web Server'), and select 'Properties'.

If you want to use the CGI binary, do the following:

• Under 'Home Directory', 'Virtual Directory', or 'Directory', do the following:

• Change the Execute Permissions to 'Scripts only'

• Click on the 'Configuration' button, and choose the Application Mappings tab. Click
Add and set the Executable path to the appropriate CGI file. An example PHP 5 value
is: C:\php\php-cgi.exe Supply.php as the extension. Leave 'Method exclusions' blank,
and check the 'Script engine' checkbox. Now, click OK a few times.

• Set up the appropriate security. (This is done in Internet Service Manager), and if your
NT Server uses NTFS file system, add execute rights for I_USR_ to the directory that
contains php.exe / php-cgi.exe.

To use the ISAPI module, do the following:

• If you don't want to perform HTTP Authentication using PHP, you can (and should)
skip this step. Under ISAPI Filters, add a new ISAPI filter. Use PHP as the filter name,
and supply a path to the php4isapi.dll / php5isapi.dll.

• Under 'Home Directory', 'Virtual Directory', or 'Directory', do the following:

• Change the Execute Permissions to 'Scripts only'

http://www.php.net/downloads.php

• Click on the 'Configuration' button, and choose the Application Mappings tab. Click
Add and set the Executable path to the appropriate ISAPI DLL. An example PHP 5
value is: C:\php\php5isapi.dll Supply.php as the extension. Leave 'Method exclusions'
blank, and check the 'Script engine' checkbox. Now, click OK a few times.

• Stop IIS completely (NET STOP iisadmin)

• Start IIS again (NET START w3svc)

With IIS 6 (2003 Server), open up the IIS Manager, go to Web Service Extensions, choose
"Add a new Web service extension", enter in a name such as PHP, choose the Add button
and for the value browse to either the ISAPI file (php4isapi.dll or php5isapi.dll) or CGI (
php.exe or php-cgi.exe) then check "Set extension status to Allowed" and click OK.

In order to use index.php as a default content page, do the following: From within the
Documents tab, choose Add. Type in index.php and click OK. Adjust the order by choosing
Move Up or Move Down. This is similar to setting DirectoryIndex with Apache.

The steps above must be repeated for each extension that is to be associated with PHP
scripts..php is the most common although.php3 may be required for legacy applications.

If you experience 100% CPU usage after some time, turn off the IIS setting Cache ISAPI
Application.

Windows and PWS 4

PWS 4 does not support ISAPI, only PHP CGI should be used.

• Edit the enclosed pws-php4cgi.reg / pws-php5cgi.reg file (look into the SAPI folder for
PHP 4, or in the main folder for PHP 5) to reflect the location of your php.exe /
php-cgi.exe. Backslashes should be escaped, for example:
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\w3svc\parameters\S
cript Map] ".php"="C:\\php\\php.exe" (change to C:\\php\\php-cgi.exe if you are using
PHP 5) Now merge this registery file into your system; you may do this by
double-clicking it.

• In the PWS Manager, right click on a given directory you want to add PHP support to,
and select Properties. Check the 'Execute' checkbox, and confirm.

Windows and PWS/IIS 3

The recommended method for configuring these servers is to use the REG file included
with the distribution (pws-php4cgi.reg in the SAPI folder for PHP 4, or pws-php5cgi.reg in
the main folder for PHP 5). You may want to edit this file and make sure the extensions
and PHP install directories match your configuration. Or you can follow the steps below to
do it manually.

Warning

These steps involve working directly with the Windows registry. One error here can
leave your system in an unstable state. We highly recommend that you back up your
registry first. The PHP Development team will not be held responsible if you damage
your registry.

• Run Regedit.

• Navigate to: HKEY_LOCAL_MACHINE /System /CurrentControlSet /Services /W3Svc
/Parameters /ScriptMap.

• On the edit menu select: New->String Value.

• Type in the extension you wish to use for your php scripts. For example.php

• Double click on the new string value and enter the path to php.exe in the value data
field. ex: C:\php\php.exe "%s" %s for PHP 4, or C:\php\php-cgi.exe "%s" %s for PHP
5.

• Repeat these steps for each extension you wish to associate with PHP scripts.

The following steps do not affect the web server installation and only apply if you want
your PHP scripts to be executed when they are run from the command line (ex. run
C:\myscripts\test.php) or by double clicking on them in a directory viewer window. You
may wish to skip these steps as you might prefer the PHP files to load into a text editor
when you double click on them.

• Navigate to: HKEY_CLASSES_ROOT

• On the edit menu select: New->Key.

• Name the key to the extension you setup in the previous section. ex:.php

• Highlight the new key and in the right side pane, double click the "default value" and
enter phpfile.

• Repeat the last step for each extension you set up in the previous section.

• Now create another New->Key under HKEY_CLASSES_ROOT and name it phpfile.

• Highlight the new key phpfile and in the right side pane, double click the "default value"
and enter PHP Script.

• Right click on the phpfile key and select New->Key, name it Shell.

• Right click on the Shell key and select New->Key, name it open.

• Right click on the open key and select New->Key, name it command.

• Highlight the new key command and in the right side pane, double click the "default
value" and enter the path to php.exe. ex: c:\php\php.exe -q %1. (don't forget the %1).

• Exit Regedit.

• If using PWS on Windows, reboot to reload the registry.

PWS and IIS 3 users now have a fully operational system. IIS 3 users can use a nifty
» tool from Steven Genusa to configure their script maps.

Apache 1.3.x on Microsoft Windows

This section contains notes and hints specific to Apache 1.3.x installs of PHP on Microsoft
Windows systems. There are also instructions and notes for Apache 2 on a separate page.

Note

Please read the manual installation steps first!

There are two ways to set up PHP to work with Apache 1.3.x on Windows. One is to use
the CGI binary (php.exe for PHP 4 and php-cgi.exe for PHP 5), the other is to use the
Apache Module DLL. In either case you need to edit your httpd.conf to configure Apache
to work with PHP, and then restart the server.

It is worth noting here that now the SAPI module has been made more stable under
Windows, we recommend it's use above the CGI binary, since it is more transparent and
secure.

Although there can be a few variations of configuring PHP under Apache, these are simple
enough to be used by the newcomer. Please consult the Apache Documentation for
further configuration directives.

After changing the configuration file, remember to restart the server, for example, NET
STOP APACHE followed by NET START APACHE, if you run Apache as a Windows
Service, or use your regular shortcuts.

Note

Remember that when adding path values in the Apache configuration files on
Windows, all backslashes such as c:\directory\file.ext must be converted to forward
slashes: c:/directory/file.ext. A trailing slash may also be necessary for directories.

Installing as an Apache module

You should add the following lines to your Apache httpd.conf file:

http://www.genusa.com/iis/iiscfg.html
http://www.genusa.com/iis/iiscfg.html

Example #27 - PHP as an Apache 1.3.x module

This assumes PHP is installed to c:\php. Adjust the path if this is not the case.

For PHP 4:

Add to the end of the LoadModule section

Don't forget to copy this file from the sapi directory!

LoadModule php4_module "C:/php/php4apache.dll"

Add to the end of the AddModule section

AddModule mod_php4.c

For PHP 5:

Add to the end of the LoadModule section

LoadModule php5_module "C:/php/php5apache.dll"

Add to the end of the AddModule section

AddModule mod_php5.c

For both:

Add this line inside the <IfModule mod_mime.c> conditional brace

AddType application/x-httpd-php .php

For syntax highlighted .phps files, also add

AddType application/x-httpd-php-source .phps

Installing as a CGI binary

If you unzipped the PHP package to C:\php\ as described in the Manual Installation Steps
section, you need to insert these lines to your Apache configuration file to set up the CGI
binary:

Example #28 - PHP and Apache 1.3.x as CGI

ScriptAlias /php/ "c:/php/"

AddType application/x-httpd-php .php

For PHP 4

Action application/x-httpd-php "/php/php.exe"

For PHP 5

Action application/x-httpd-php "/php/php-cgi.exe"

specify the directory where php.ini is

SetEnv PHPRC C:/php

Note that the second line in the list above can be found in the actual versions of httpd.conf,
but it is commented out. Remember also to substitute the c:/php/ for your actual path to
PHP.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

If you would like to present PHP source files syntax highlighted, there is no such
convenient option as with the module version of PHP. If you chose to configure Apache to
use PHP as a CGI binary, you will need to use the highlight_file() function. To do this
simply create a PHP script file and add this code: <?php
highlight_file('some_php_script.php'); ?>.

Apache 2.0.x on Microsoft Windows

This section contains notes and hints specific to Apache 2.0.x installs of PHP on Microsoft
Windows systems. We also have instructions and notes for Apache 1.3.x users on a
separate page.

Note

You should read the manual installation steps first!

Note

Apache 2.2.x Support

Users of Apache 2.2.x may use the documentation below except the appropriate DLL
file is named php5apache2_2.dll and it only exists as of PHP 5.2.0. See also
» http://snaps.php.net/

Warning

We do not recommend using a threaded MPM in production with Apache 2. Use the
prefork MPM instead, or use Apache 1. For information on why, read the related FAQ
entry on using Apache2 with a threaded MPM

You are highly encouraged to take a look at the » Apache Documentation to get a basic
understanding of the Apache 2.0.x Server. Also consider to read the » Windows specific
notes for Apache 2.0.x before reading on here.

http://snaps.php.net/
http://snaps.php.net/
http://httpd.apache.org/docs/2.0/
http://httpd.apache.org/docs/2.0/platform/windows.html
http://httpd.apache.org/docs/2.0/platform/windows.html

Note

PHP and Apache 2.0.x compatibility notes

The following versions of PHP are known to work with the most recent version of
Apache 2.0.x:

• PHP 4.3.0 or later available at » http://www.php.net/downloads.php.

• the latest stable development version. Get the source code
» http://snaps.php.net/php5-latest.tar.gz or download binaries for Windows
» http://snaps.php.net/win32/php5-win32-latest.zip.

• a prerelease version downloadable from » http://qa.php.net/.

• you have always the option to obtain PHP through » anonymous CVS.

These versions of PHP are compatible to Apache 2.0.40 and later.

Apache 2.0 SAPI -support started with PHP 4.2.0. PHP 4.2.3 works with Apache
2.0.39, don't use any other version of Apache with PHP 4.2.3. However, the
recommended setup is to use PHP 4.3.0 or later with the most recent version of
Apache2.

All mentioned versions of PHP will work still with Apache 1.3.x.

Warning

Apache 2.0.x is designed to run on Windows NT 4.0, Windows 2000 or Windows XP.
At this time, support for Windows 9x is incomplete. Apache 2.0.x is not expected to
work on those platforms at this time.

Download the most recent version of » Apache 2.0.x and a fitting PHP version. Follow the
Manual Installation Steps and come back to go on with the integration of PHP and Apache.

There are two ways to set up PHP to work with Apache 2.0.x on Windows. One is to use
the CGI binary the other is to use the Apache module DLL. In either case you need to edit
your httpd.conf to configure Apache to work with PHP and then restart the server.

Note

Remember that when adding path values in the Apache configuration files on
Windows, all backslashes such as c:\directory\file.ext must be converted to forward
slashes: c:/directory/file.ext. A trailing slash may also be necessary for directories.

Installing as a CGI binary

http://www.php.net/downloads.php
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/php5-latest.tar.gz
http://snaps.php.net/win32/php5-win32-latest.zip
http://snaps.php.net/win32/php5-win32-latest.zip
http://qa.php.net/
http://www.php.net/anoncvs.php
http://www.apache.org/

You need to insert these three lines to your Apache httpd.conf configuration file to set up
the CGI binary:

Example #29 - PHP and Apache 2.0 as CGI

ScriptAlias /php/ "c:/php/"

AddType application/x-httpd-php .php

For PHP 4

Action application/x-httpd-php "/php/php.exe"

For PHP 5

Action application/x-httpd-php "/php/php-cgi.exe"

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

Installing as an Apache module

You need to insert these two lines to your Apache httpd.conf configuration file to set up the
PHP module for Apache 2.0:

Example #30 - PHP and Apache 2.0 as Module

For PHP 4 do something like this:

LoadModule php4_module "c:/php/php4apache2.dll"

Don't forget to copy the php4apache2.dll file from the sapi directory!

AddType application/x-httpd-php .php

For PHP 5 do something like this:

LoadModule php5_module "c:/php/php5apache2.dll"

AddType application/x-httpd-php .php

configure the path to php.ini

PHPIniDir "C:/php"

Note

Remember to substitute your actual path to PHP for the c:/php/ in the above examples.
Take care to use either php4apache2.dll or php5apache2.dll in your LoadModule
directive and not php4apache.dll or php5apache.dll as the latter ones are designed to
run with Apache 1.3.x.

Note

If you want to use content negotiation, read related FAQ.

Warning

Don't mix up your installation with DLL files from different PHP versions. You have the
only choice to use the DLL's and extensions that ship with your downloaded PHP
version.

Sun, iPlanet and Netscape servers on Microsoft Windows

This section contains notes and hints specific to Sun Java System Web Server, Sun ONE
Web Server, iPlanet and Netscape server installs of PHP on Windows.

From PHP 4.3.3 on you can use PHP scripts with the NSAPI module to generate custom
directory listings and error pages. Additional functions for Apache compatibility are also
available. For support in current web servers read the note about subrequests.

CGI setup on Sun, iPlanet and Netscape servers

To install PHP as a CGI handler, do the following:

• Copy php4ts.dll to your systemroot (the directory where you installed Windows)

• Make a file association from the command line. Type the following two lines:
assoc .php=PHPScript

ftype PHPScript=c:\php\php.exe %1 %*

• In the Netscape Enterprise Administration Server create a dummy shellcgi directory
and remove it just after (this step creates 5 important lines in obj.conf and allow the
web server to handle shellcgi scripts).

• In the Netscape Enterprise Administration Server create a new mime type (Category:
type, Content-Type: magnus-internal/shellcgi, File Suffix:php).

• Do it for each web server instance you want PHP to run

More details about setting up PHP as a CGI executable can be found here:
» http://benoit.noss.free.fr/php/install-php.html

NSAPI setup on Sun, iPlanet and Netscape servers

To install PHP with NSAPI, do the following:

http://benoit.noss.free.fr/php/install-php.html
http://benoit.noss.free.fr/php/install-php.html

• Copy php4ts.dll to your systemroot (the directory where you installed Windows)

• Make a file association from the command line. Type the following two lines:
assoc .php=PHPScript

ftype PHPScript=c:\php\php.exe %1 %*

• In the Netscape Enterprise Administration Server create a new mime type (Category:
type, Content-Type: magnus-internal/x-httpd-php, File Suffix: php).

• Edit magnus.conf (for servers >= 6) or obj.conf (for servers < 6) and add the following:
You should place the lines after mime types init.
Init fn="load-modules" funcs="php4_init,php4_execute,php4_auth_trans"
shlib="c:/php/sapi/php4nsapi.dll"

Init fn="php4_init" LateInit="yes" errorString="Failed to initialise PHP!"
[php_ini="c:/path/to/php.ini"]
(PHP >= 4.3.3) The php_ini parameter is optional but with it you can place your php.ini
in your web server configuration directory.

• Configure the default object in obj.conf (for virtual server classes [Sun Web Server
6.0+] in their vserver.obj.conf): In the <Object name="default"> section, place this line
necessarily after all 'ObjectType' and before all 'AddLog' lines:
Service fn="php4_execute" type="magnus-internal/x-httpd-php" [inikey=value
inikey=value ...]
(PHP >= 4.3.3) As additional parameters you can add some special php.ini -values, for
example you can set a docroot="/path/to/docroot" specific to the context php4_execute
is called. For boolean ini-keys please use 0/1 as value, not "On","Off",... (this will not
work correctly), e.g. zlib.output_compression=1 instead of
zlib.output_compression="On"

• This is only needed if you want to configure a directory that only consists of PHP
scripts (same like a cgi-bin directory):
<Object name="x-httpd-php">

ObjectType fn="force-type" type="magnus-internal/x-httpd-php"

Service fn=php4_execute [inikey=value inikey=value ...]

</Object>
After that you can configure a directory in the Administration server and assign it the
style x-httpd-php. All files in it will get executed as PHP. This is nice to hide PHP usage
by renaming files to.html.

• Restart your web service and apply changes

• Do it for each web server instance you want PHP to run

Note

More details about setting up PHP as an NSAPI filter can be found here:
» http://benoit.noss.free.fr/php/install-php4.html

Note

The stacksize that PHP uses depends on the configuration of the web server. If you
get crashes with very large PHP scripts, it is recommended to raise it with the Admin
Server (in the section "MAGNUS EDITOR").

http://benoit.noss.free.fr/php/install-php4.html
http://benoit.noss.free.fr/php/install-php4.html

CGI environment and recommended modifications in php.ini

Important when writing PHP scripts is the fact that Sun JSWS/Sun ONE
WS/iPlanet/Netscape is a multithreaded web server. Because of that all requests are
running in the same process space (the space of the web server itself) and this space has
only one environment. If you want to get CGI variables like PATH_INFO, HTTP_HOST etc.
it is not the correct way to try this in the old PHP way with getenv() or a similar way
(register globals to environment, $_ENV). You would only get the environment of the
running web server without any valid CGI variables!

Note

Why are there (invalid) CGI variables in the environment?

Answer: This is because you started the web server process from the admin server
which runs the startup script of the web server, you wanted to start, as a CGI script (a
CGI script inside of the admin server!). This is why the environment of the started web
server has some CGI environment variables in it. You can test this by starting the web
server not from the administration server. Use the command line as root user and start
it manually - you will see there are no CGI-like environment variables.

Simply change your scripts to get CGI variables in the correct way for PHP 4.x by using
the superglobal $_SERVER. If you have older scripts which use $HTTP_HOST, etc., you
should turn on register_globals in php.ini and change the variable order too (important:
remove "E" from it, because you do not need the environment here):
variables_order = "GPCS"

register_globals = On

Special use for error pages or self-made directory listings (PHP >= 4.3.3)

You can use PHP to generate the error pages for "404 Not Found" or similar. Add the
following line to the object in obj.conf for every error page you want to overwrite:
Error fn="php4_execute" code=XXX script="/path/to/script.php" [inikey=value
inikey=value...]
where XXX is the HTTP error code. Please delete any other Error directives which could
interfere with yours. If you want to place a page for all errors that could exist, leave the
code parameter out. Your script can get the HTTP status code with
$_SERVER['ERROR_TYPE'].

Another possibility is to generate self-made directory listings. Just create a PHP script
which displays a directory listing and replace the corresponding default Service line for
type="magnus-internal/directory" in obj.conf with the following:
Service fn="php4_execute" type="magnus-internal/directory"
script="/path/to/script.php" [inikey=value inikey=value...]
For both error and directory listing pages the original URI and translated URI are in the
variables $_SERVER['PATH_INFO'] and $_SERVER['PATH_TRANSLATED'].

Note about nsapi_virtual() and subrequests (PHP >= 4.3.3)

The NSAPI module now supports the nsapi_virtual() function (alias: virtual()) to make
subrequests on the web server and insert the result in the web page. The problem is, that
this function uses some undocumented features from the NSAPI library.

Under Unix this is not a problem, because the module automatically looks for the needed
functions and uses them if available. If not, nsapi_virtual() is disabled.

Under Windows limitations in the DLL handling need the use of a automatic detection of
the most recent ns-httpdXX.dll file. This is tested for servers till version 6.1. If a newer
version of the Sun server is used, the detection fails and nsapi_virtual() is disabled.

If this is the case, try the following: Add the following parameter to php4_init in
magnus.conf / obj.conf:
Init fn=php4_init ... server_lib="ns-httpdXX.dll"
where XX is the correct DLL version number. To get it, look in the server-root for the
correct DLL name. The DLL with the biggest filesize is the right one.

You can check the status by using the phpinfo() function.

Note

But be warned: Support for nsapi_virtual() is EXPERIMENTAL!!!

OmniHTTPd Server

This section contains notes and hints specific to » OmniHTTPd on Windows.

Note

You should read the manual installation steps first!

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read
our CGI security section to learn how to defend yourself from such attacks.

You need to complete the following steps to make PHP work with OmniHTTPd. This is a
CGI executable setup. SAPI is supported by OmniHTTPd, but some tests have shown that
it is not so stable to use PHP as an ISAPI module.

Note

Important for CGI users

http://www.omnicron.ca/

Read the faq on cgi.force_redirect for important details. This directive needs to be set
to 0.

• Install OmniHTTPd server.

• Right click on the blue OmniHTTPd icon in the system tray and select Properties

• Click on Web Server Global Settings

• On the 'External' tab, enter: virtual = .php | actual = c:\php\php.exe (use php-cgi.exe if
installing PHP 5), and use the Add button.

• On the Mime tab, enter: virtual = wwwserver/stdcgi | actual = .php, and use the Add
button.

• Click OK

Repeat steps 2 - 6 for each extension you want to associate with PHP.

Note

Some OmniHTTPd packages come with built in PHP support. You can choose at setup
time to do a custom setup, and uncheck the PHP component. We recommend you to
use the latest PHP binaries. Some OmniHTTPd servers come with PHP 4 beta
distributions, so you should choose not to set up the built in support, but install your
own. If the server is already on your machine, use the Replace button in Step 4 and 5
to set the new, correct information.

Sambar Server on Microsoft Windows

This section contains notes and hints specific to the » Sambar Server for Windows.

Note

You should read the manual installation steps first!

This list describes how to set up the ISAPI module to work with the Sambar server on
Windows.

• Find the file called mappings.ini (in the config directory) in the Sambar install directory.

• Open mappings.ini and add the following line under [ISAPI]:

http://www.sambar.com/

Example #31 - ISAPI configuration of Sambar

#for PHP 4

*.php = c:\php\php4isapi.dll

#for PHP 5

*.php = c:\php\php5isapi.dll

(This line assumes that PHP was installed in c:\php.)

• Now restart the Sambar server for the changes to take effect.

Note

If you intend to use PHP to communicate with resources which are held on a different
computer on your network, then you will need to alter the account used by the Sambar
Server Service. The default account used for the Sambar Server Service is
LocalSystem which will not have access to remote resources. The account can be
amended by using the Services option from within the Windows Control Panel
Administation Tools.

Xitami on Microsoft Windows

This section contains notes and hints specific to » Xitami on Windows.

Note

You should read the manual installation steps first!

This list describes how to set up the PHP CGI binary to work with Xitami on Windows.

Note

Important for CGI users

Read the faq on cgi.force_redirect for important details. This directive needs to be set
to 0. If you want to use $_SERVER['PHP_SELF'] you have to enable the
cgi.fix_pathinfo directive.

Warning

A server deployed in CGI mode is open to several possible vulnerabilities. Please read

http://www.xitami.com/

our CGI security section to learn how to defend yourself from such attacks.

• Make sure the web server is running, and point your browser to xitamis admin console
(usually http://127.0.0.1/admin), and click on Configuration.

• Navigate to the Filters, and put the extension which PHP should parse (i.e. .php) into
the field File extensions (.xxx).

• In Filter command or script put the path and name of your PHP CGI executable i.e.
C:\php\php.exe for PHP 4, or C:\php\php-cgi.exe for PHP 5.

• Press the 'Save' icon.

• Restart the server to reflect changes.

Building from source

This chapter teaches how to compile PHP from sources on windows, using Microsoft's
tools. To compile PHP with cygwin, please refer to Installation on Unix systems.

Quick Guide to Building On Windows

This step-by-step quick-start guide was written in March of 2008, running Windows XP
Service Pack 2 with all the latest updates and building PHP 5.2.5 and PHP 5.3.
Experiences using different tools may differ.

• Download and install:

• » Microsoft Visual C++ 2008 Express Edition

• » Windows SDK for Windows Server 2008 and .NET Framework 3.5

• Copy C:\Program Files\Microsoft SDKs\Windows\v6.1\Include\WinResrc.h to
C:\Program Files\Microsoft SDKs\Windows\v6.1\Include\winres.h.

• Create the directory C:\work.

• Download » the Windows build tools and unzip the contents into C:\work.

• Create the directory C:\usr\local\lib. Copy the C:\work\win32build\bin\bison.simple into
the new directory.

• Download » the Windows DNS resolver library and unzip the contents into C:\work.

• Open C:\work\bindlib_w32\bindlib.dsw. If and when asked whether to update the
project, choose Yes. Choose either Debug or Release configuration in the top toolbar,
then choose Build => Build Solution.

http://www.microsoft.com/express/download/
http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC
http://www.php.net/extra/win32build.zip
http://www.php.net/extra/bindlib_w32.zip

• Obtain a copy of the PHP source and extract it into the C:\work directory. At this point,
that directory should look something like this:
+-C:\work

| +-bindlib_w32

| | +-Debug

| | | +-resolv.lib

| | | +-...

| | +-...

| +-win32build

| | +-bin

| | +-include

| | +-lib

| +-php-5.2.5

| | +-build

| | +-win32

| | +-...

• Open a shell using the Visual Studio 2008 Command Prompt shortcut in the Start
menu.

• Execute the command:
C:\Program Files\Microsoft Visual Studio 9.0\VC> set
"PATH=C:\work\win32build\bin;%PATH%"

C:\Program Files\Microsoft Visual Studio 9.0\VC>

• Enter the C:\work\php-5.2.5 directory.

• Run cscript /nologo win32\build\buildconf.js.

• Run cscript /nologo configure.js --disable-all --enable-cli --enable-cgi
--enable-object-out-dir=.. --disable-ipv6. To enable debugging, add --enable-debug to
the end.

• Run nmake.

• If all went well, there will now be a working PHP CLI executable at
C:\work\Debug_TS\php.exe, or C:\work\Release_TS\php.exe.

Build Environment

To compile and build PHP you need a Microsoft Development Environment. The following
environments are supported:

• Microsoft Visual C++ 6.0 (official)

• Microsoft Visual C++ .NET

• Microsoft Visual C++ 2005, Windows Platform SDK and .NET Framework SDK
(current)

While VC6 (Microsoft Visual C++ 6.0) is used to perform official Windows builds, it can no
longer be downloaded from Microsoft's website. New users seeking to build PHP for free
must use Microsoft Visual C++ 2005 Express Edition and its auxiliary components.

Setting up Microsoft Visual C++ 2005 Express

Note

Combined, these components are very large and will require over one gigabyte of disk
space.

Setting up Microsoft Visual C++ 2005 Express is rather involved, and requires the
installation of three separate packages and various compatibility changes. Be sure to keep
track of the paths in which these programs are installed into. Download and install the
following programs:

• » Microsoft Visual C++ 2005 Express

• » Microsoft Windows Server 2005 Platform SDK

• » .NET Framework 2.0 Software Development Kit

There are a few post-installation steps:

• » MSVC 2005 Express must be configured to use Windows Platform SDK. It is not
necessary to perform step two, as PHP does not use the graphical user interface.

• Windows Platform SDK contains a file named WinResrc.h usually in Include folder
inside the SDK's installation directory. This needs to be copied and renamed to
winres.h, the name PHP uses for the file.

Finally, when using MSVC 2005 Express from the command line, several environment
variables must be set up. vsvars32.bat usually found in C:\Program Files\Microsoft Visual
Studio 8\Common7\Tools (search for the file if otherwise) contains these declarations. The
PATH, INCLUDE and LIB environment variables need the corresponding bin, include and
lib directories of the two newly installed SDKs added to them.

Note

The .NET SDK paths may already be present in the vsvars32.bat file, as this SDK
installs itself into the same directory as Microsoft Visual C++ 2005 Express.

Libraries

To extract the downloaded files you will also need a ZIP extraction utility. Windows XP and
newer already include this functionality built-in.

Before you get started, you have to download:

http://msdn.microsoft.com/vstudio/express/visualc/
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB
http://www.microsoft.com/downloads/details.aspx?FamilyId=FE6F2099-B7B4-4F47-A244-C96D69C35DEC
http://msdn2.microsoft.com/en-us/library/ms235626(VS.80).aspx

• the win32 buildtools from the PHP site at » http://www.php.net/extra/win32build.zip.

• the source code for the DNS name resolver used by PHP from
» http://www.php.net/extra/bindlib_w32.zip. This is a replacement for the resolv.lib
library included in win32build.zip.

• If you plan to compile PHP as a Apache module you will also need the » Apache
sources.

Finally, you are going to need the source to PHP itself. You can get the latest development
version using » anonymous CVS, a » snapshot or the most recent released » source
tarball.

Putting it all together

After downloading the required packages you have to extract them in a proper place:

• Create a working directory where all files end up after extracting, e.g: C:\work.

• Create the directory win32build under your working directory (C:\work) and unzip
win32build.zip into it.

• Create the directory bindlib_w32 under your working directory (C:\work) and unzip
bindlib_w32.zip into it.

• Extract the downloaded PHP source code into your working directory (C:\work).

• Build the libraries you are going to need (or download the binaries if available) and
place the headers and libs in the C:\work\win32build\include and C:\work\win32build\lib
directories, respectively.

• If you don't have cygwin installed with bison and flex, you also need to make the
C:\work\win32build\bin directory available in the PATH, so that thoses tools can be
found by the configure script.

Following this steps your directory structure looks like this:
+--C:\work

| |

| +--bindlib_w32

| | |

| | +--arpa

| | |

| | +--conf

| | |

| | +--...

| |

| +--php-5.x.x

| | |

| | +--build

| | |

| | +--...

| | |

| | +--win32

| | |

| | +--...

| |

| +--win32build

http://www.php.net/extra/win32build.zip
http://www.php.net/extra/bindlib_w32.zip
http://www.php.net/extra/bindlib_w32.zip
http://www.apache.org/dist/httpd/
http://www.apache.org/dist/httpd/
http://www.php.net/anoncvs.php
http://snaps.php.net/
http://www.php.net/downloads.php

| | |

| | +--bin

| | |

| | +--include

| | |

| | +--lib

If you aren't using » Cygwin, you must also create the directories C:\usr\local\lib and then
copy bison.simple from C:\work\win32build\bin to C:\usr\local\lib.

Note

If you want to use PEAR and the comfortable command line installer, the CLI-SAPI is
mandatory. For more information about PEAR and the installer read the documentation
at the » PEAR website.

Build resolv.lib

You must build the resolv.lib library. Decide whether you want to have debug symbols
available (bindlib - Win32 Debug) or not (bindlib - Win32 Release), but please remember
the choice you made, because the debug build will only link with PHP when it is also built
in debug mode. Build the appropriate configuration:

• For GUI users, launch VC++, by double-clicking in C:\work\bindlib_w32\bindlib.dsw.
Then select Build=>Rebuild All.

• For command line users, make sure that you either have the C++ environment
variables registered, or have run vcvars.bat, and then execute one of the following
commands:

• msdev bindlib.dsp /MAKE "bindlib - Win32 Debug"

• msdev bindlib.dsp /MAKE "bindlib - Win32 Release"

At this point, you should have a usable resolv.lib in either your C:\work\bindlib_w32\Debug
or Release subdirectories. Copy this file into your C:\work\win32build\lib directory over the
file by the same name found in there.

Building PHP using the new build system [PHP >=5 only]

This chapter explains how to compile PHP >=5 using the new build system, which is
CLI-based and very similar with the main PHP's Unix build system.

Note

This build system isn't available in PHP 4. Please refer to Building PHP using DSW
files [PHP 4] instead.

http://www.cygwin.com/
http://pear.php.net/manual/

Before starting, be sure you have read Putting it all together and you have built all needed
libraries, like » Libxml or » ICU (needed for PHP >= 6).

First you should open a Visual Studio Command Prompt, which should be available under
the Start menu. A regular Command Prompt window shouldn't work, as probably it doesn't
have the necessary environment variables set. Then type something like cd
C:\work\php-5.x.x to enter in the PHP source dir. Now you are ready to start configuring
PHP.

The second step is running the buildconf batch file to make the configure script, by
scanning the folder for config.w32 files. By default this command will also search in the
following directories: pecl; ..\pecl; pecl\rpc; ..\pecl\rpc. Since PHP 5.1.0, you can change
this behaviour by using the --add-modules-dir argument (e.g. cscript /nologo
win32/build/buildconf.js --add-modules-dir=../php-gtk2 --add-modules-dir=../pecl).

The third step is configuring. To view the list of the available configuration options type
cscript /nologo configure.js --help. After choosing the options that you will enable/disable,
type something like: cscript /nologo configure.js --disable-foo --enable-fun-ext. Using
--enable-foo=shared will attempt to build the 'foo' extension as a shared, dynamically
loadable module.

The last step is compiling. To achieve this just issue the command nmake. The generated
files (e.g. .exe and .dll) will be placed in either Release_TS or Debug_TS directories (if
built with Thread safety), or in the Release or Debug directories otherwise.

Optionally you may also run PHP's test suite, by typing nmake test. If you want to run just
a specific test, you may use the 'TESTS' variable (e.g. nmake /D TESTS=ext/sqlite/tests
test - will only run sqlite's tests). To delete the files that were created during the
compilation, you can use the nmake clean command.

A very useful configure option to build snapshots is --enable-snapshot-build, which add a
new compiling mode (nmake build-snap). This tries to build every extension available (as
shared, by default), but it will ignore build errors in individual extensions or SAPI.

Building PHP using DSW files [PHP 4]

Compiling PHP using the DSW files isn't supported as of PHP 5, as a much more flexible
system was made available. Anyway, you can still use them, but keep in mind that they
are not maintained very often, so you can have compiling problems. To compile PHP 4 for
windows, this is the only available way though.

Configure MVC ++

The first step is to configure MVC++ to prepare for compiling. Launch Microsoft Visual
C++, and from the menu select Tools => Options. In the dialog, select the directories tab.
Sequentially change the dropdown to Executables, Includes, and Library files. Your entries
should look like this:

• Executable files: C:\work\win32build\bin, Cygwin users: C:\cygwin\bin

http://www.xmlsoft.org/
http://icu.sourceforge.net/

• Include files: C:\work\win32build\include

• Library files: C:\work\win32build\lib

Compiling

The best way to get started is to build the CGI version:

• For GUI users, launch VC++, and then select File => Open Workspace and select
C:\work\php-4.x.x\win32\php4ts.dsw. Then select Build=>Set Active Configuration and
select the desired configuration, either php4ts - Win32 Debug_TS or php4ts - Win32
Release_TS. Finally select Build=>Rebuild All.

• For command line users, make sure that you either have the C++ environment
variables registered, or have run vcvars.bat, and then execute one of the following
commands from the C:\work\php-4.x.x\win32 directory:

• msdev php4ts.dsp /MAKE "php4ts - Win32 Debug_TS"

• msdev php4ts.dsp /MAKE "php4ts - Win32 Release_TS"

• At this point, you should have a usable php.exe in either your
C:\work\php-4.x.x\Debug_TS or Release_TS subdirectories.

It is possible to do minor customization to the build process by editing the
main/config.win32.h file. For example you can change the default location of php.ini, the
built-in extensions, and the default location for your extensions.

Next you may want to build the CLI version which is designed to use PHP from the
command line. The steps are the same as for building the CGI version, except you have to
select the php4ts_cli - Win32 Debug_TS or php4ts_cli - Win32 Release_TS project file.
After a successful compiling run you will find the php.exe in either the directory
Release_TS\cli\ or Debug_TS\cli\.

In order to build the SAPI module (php4isapi.dll) for integrating PHP with Microsoft IIS,
set your active configuration to php4isapi-whatever-config and build the desired dll.

Installation of extensions on Windows

After installing PHP and a web server on Windows, you will probably want to install some
extensions for added functionality. You can choose which extensions you would like to
load when PHP starts by modifying your php.ini. You can also load a module dynamically
in your script using dl().

The DLLs for PHP extensions are prefixed with php_.

Many extensions are built into the Windows version of PHP. This means additional DLL

files, and the extension directive, are not used to load these extensions. The Windows
PHP Extensions table lists extensions that require, or used to require, additional PHP DLL
files. Here's a list of built in extensions:

In PHP 4 (updated PHP 4.3.11): BCMath, Caledar, COM, Ctype, FTP, MySQL, ODBC,
Overload, PCRE, Session, Tokenizer, WDDX, XML and Zlib

In PHP 5 (updated PHP 5.0.4), the following changes exist. Built in: DOM, LibXML, Iconv,
SimpleXML, SPL and SQLite. And the following are no longer built in: MySQL and
Overload.

The default location PHP searches for extensions is C:\php4\extensions in PHP 4 and
C:\php5 in PHP 5. To change this setting to reflect your setup of PHP edit your php.ini file:

• You will need to change the extension_dir setting to point to the directory where your
extensions lives, or where you have placed your php_*.dll files. For example:

extension_dir = C:\php\extensions

• Enable the extension(s) in php.ini you want to use by uncommenting the
extension=php_*.dll lines in php.ini. This is done by deleting the leading ; from the
extension you want to load.

Example #32 - Enable Bzip2 extension for PHP-Windows

// change the following line from ...

;extension=php_bz2.dll

// ... to

extension=php_bz2.dll

• Some of the extensions need extra DLLs to work. Couple of them can be found in the
distribution package, in the C:\php\dlls\ folder in PHP 4 or in the main folder in PHP 5,
but some, for example Oracle (php_oci8.dll) require DLLs which are not bundled with
the distribution package. If you are installing PHP 4, copy the bundled DLLs from
C:\php\dlls folder to the main C:\php folder. Don't forget to include C:\php in the system
PATH (this process is explained in a separate FAQ entry).

• Some of these DLLs are not bundled with the PHP distribution. See each extensions
documentation page for details. Also, read the manual section titled Installation of
PECL extensions for details on PECL. An increasingly large number of PHP
extensions are found in PECL, and these extensions require a separate download.

Note

If you are running a server module version of PHP remember to restart your web
server to reflect your changes to php.ini.

The following table describes some of the extensions available and required additional
dlls.

PHP Extensions

Extension Description Notes

php_bz2.dll bzip2 compression functions None

php_calendar.dll Calendar conversion
functions

Built in since PHP 4.0.3

php_crack.dll Crack functions None

php_ctype.dll ctype family functions Built in since PHP 4.3.0

php_curl.dll CURL, Client URL library
functions

Requires: libeay32.dll,
ssleay32.dll (bundled)

php_dba.dll DBA: DataBase (dbm-style)
Abstraction layer functions

None

php_dbase.dll dBase functions None

php_dbx.dll dbx functions

php_domxml.dll DOM XML functions PHP <= 4.2.0 requires:
libxml2.dll (bundled) PHP >=
4.3.0 requires: iconv.dll
(bundled)

php_dotnet.dll .NET functions PHP <= 4.1.1

php_exif.dll EXIF functions php_mbstring.dll. And,
php_exif.dll must be loaded
after php_mbstring.dll in
php.ini.

php_fbsql.dll FrontBase functions PHP <= 4.2.0

php_fdf.dll FDF: Forms Data Format
functions.

Requires: fdftk.dll (bundled)

php_filepro.dll filePro functions Read-only access

php_ftp.dll FTP functions Built-in since PHP 4.0.3

php_gd.dll GD library image functions Removed in PHP 4.3.2. Also
note that truecolor functions
are not available in GD1,
instead, use php_gd2.dll.

php_gd2.dll GD library image functions GD2

php_gettext.dll Gettext functions PHP <= 4.2.0 requires
gnu_gettext.dll (bundled),
PHP >= 4.2.3 requires
libintl-1.dll, iconv.dll
(bundled).

php_hyperwave.dll HyperWave functions None

php_iconv.dll ICONV characterset
conversion

Requires: iconv-1.3.dll
(bundled), PHP >=4.2.1
iconv.dll

php_ifx.dll Informix functions Requires: Informix libraries

php_iisfunc.dll IIS management functions None

php_imap.dll IMAP POP3 and NNTP
functions

None

php_ingres.dll Ingres II functions Requires: Ingres II libraries

php_interbase.dll InterBase functions Requires: gds32.dll
(bundled)

php_java.dll Java functions PHP <= 4.0.6 requires:
jvm.dll (bundled)

php_ldap.dll LDAP functions PHP <= 4.2.0 requires
libsasl.dll (bundled), PHP >=
4.3.0 requires libeay32.dll,
ssleay32.dll (bundled)

php_mbstring.dll Multi-Byte String functions None

php_mcrypt.dll Mcrypt Encryption functions Requires: libmcrypt.dll

php_mhash.dll Mhash functions PHP >= 4.3.0 requires:
libmhash.dll (bundled)

php_mime_magic.dll Mimetype functions Requires: magic.mime
(bundled)

php_ming.dll Ming functions for Flash None

php_msql.dll mSQL functions Requires: msql.dll (bundled)

php_mssql.dll MSSQL functions Requires: ntwdblib.dll
(bundled)

php_mysql.dll MySQL functions PHP >= 5.0.0, requires

libmysql.dll (bundled)

php_mysqli.dll MySQLi functions PHP >= 5.0.0, requires
libmysql.dll (libmysqli.dll in
PHP <= 5.0.2) (bundled)

php_oci8.dll Oracle 8 functions Requires: Oracle 8.1+ client
libraries

php_openssl.dll OpenSSL functions Requires: libeay32.dll
(bundled)

php_overload.dll Object overloading functions Built in since PHP 4.3.0

php_pdf.dll PDF functions None

php_pgsql.dll PostgreSQL functions None

php_printer.dll Printer functions None

php_shmop.dll Shared Memory functions None

php_snmp.dll SNMP get and walk
functions

NT only!

php_soap.dll SOAP functions PHP >= 5.0.0

php_sockets.dll Socket functions None

php_sybase_ct.dll Sybase functions Requires: Sybase client
libraries

php_tidy.dll Tidy functions PHP >= 5.0.0

php_tokenizer.dll Tokenizer functions Built in since PHP 4.3.0

php_w32api.dll W32api functions None

php_xmlrpc.dll XML-RPC functions PHP >= 4.2.1 requires:
iconv.dll (bundled)

php_xslt.dll XSLT functions PHP <= 4.2.0 requires
sablot.dll, expat.dll (bundled).
PHP >= 4.2.1 requires
sablot.dll, expat.dll, iconv.dll
(bundled).

php_yaz.dll YAZ functions Requires: yaz.dll (bundled)

php_zip.dll Zip File functions Read only access

php_zlib.dll ZLib compression functions Built in since PHP 4.3.0

Installation of PECL extensions

Introduction to PECL Installations

» PECL is a repository of PHP extensions that are made available to you via the » PEAR
packaging system. This section of the manual is intended to demonstrate how to obtain
and install PECL extensions.

These instructions assume /your/phpsrcdir/ is the path to the PHP source distribution, and
that extname is the name of the PECL extension. Adjust accordingly. These instructions
also assume a familiarity with the » pear command. The information in the PEAR manual
for the pear command also applies to the pecl command.

To be useful, a shared extension must be built, installed, and loaded. The methods
described below provide you with various instructions on how to build and install the
extensions, but they do not automatically load them. Extensions can be loaded by adding
an extension directive. To this php.ini file, or through the use of the dl() function.

When building PHP modules, it's important to have known-good versions of the required
tools (autoconf, automake, libtool, etc.) See the » Anonymous CVS Instructions for details
on the required tools, and required versions.

Downloading PECL extensions

There are several options for downloading PECL extensions, such as:

• » http://pecl.php.net/ The PECL web site contains information about the different
extensions that are offered by the PHP Development Team. The information available
here includes: ChangeLog, release notes, requirements and other similar details.

• pecl download extname PECL extensions that have releases listed on the PECL web
site are available for download and installation using the » pecl command. Specific
revisions may also be specified.

• CVS Most PECL extensions also reside in CVS. A web-based view may be seen at
» http://cvs.php.net/pecl/. To download straight from CVS, the following sequence of
commands may be used. Note that phpfi is the password for user cvsread:

$ cvs -d:pserver:cvsread@cvs.php.net:/repository login

$ cvs -d:pserver:cvsread@cvs.php.net:/repository co pecl/extname

• Windows downloads Windows users may find compiled PECL binaries by downloading
the Collection of PECL modules from the » PHP Downloads page, or by retrieving a
» PECL Snapshot or an extension DLL on » PECL4WIN. To compile PHP under
Windows, read the appropriate chapter.

http://pecl.php.net/
http://pear.php.net/
http://pear.php.net/manual/en/installation.php
http://www.php.net/anoncvs.php
http://pecl.php.net/
http://pear.php.net/manual/en/installation.php
http://cvs.php.net/pecl/
http://cvs.php.net/pecl/
http://www.php.net/downloads.php
http://snaps.php.net/
http://snaps.php.net/
http://pecl4win.php.net/

PECL for Windows users

As with any other PHP extension DLL, installation is as simple as copying the PECL
extension DLLs into the extension_dir folder and loading them from php.ini. For example,
add the following line to your php.ini:

extension=php_extname.dll

After doing this, restart the web service.

Compiling shared PECL extensions with the pecl command

PECL makes it easy to create shared PHP extensions. Using the » pecl command, do the
following:

$ pecl install extname

This will download the source for extname, compile, and install extname.so into your
extension_dir. extname.so may then be loaded via php.ini

By default, the pecl command will not install packages that are marked with the alpha or
beta state. If no stable packages are available, you may install a beta package using the
following command:

$ pecl install extname-beta

You may also install a specific version using this variant:

$ pecl install extname-0.1

Note

After enabling the extension in php.ini, restarting the web service is required for the
changes to be picked up.

http://pear.php.net/manual/en/installation.php

Compiling shared PECL extensions with phpize

Sometimes, using the pecl installer is not an option. This could be because you're behind a
firewall, or it could be because the extension you want to install is not available as a PECL
compatible package, such as unreleased extensions from CVS. If you need to build such
an extension, you can use the lower-level build tools to perform the build manually.

The phpize command is used to prepare the build environment for a PHP extension. In the
following sample, the sources for an extension are in a directory named extname:

$ cd extname

$ phpize

$./configure

$ make

make install

A successful install will have created extname.so and put it into the PHP extensions
directory. You'll need to and adjust php.ini and add an extension=extname.so line before
you can use the extension.

If the system is missing the phpize command, and precompiled packages (like RPM's) are
used, be sure to also install the appropriate devel version of the PHP package as they
often include the phpize command along with the appropriate header files to build PHP
and its extensions.

Execute phpize --help to display additional usage information.

Compiling PECL extensions statically into PHP

You might find that you need to build a PECL extension statically into your PHP binary. To
do this, you'll need to place the extension source under the php-src/ext/ directory and tell
the PHP build system to regenerate its configure script.

$ cd /your/phpsrcdir/ext

$ pecl download extname

$ gzip -d < extname.tgz | tar -xvf -

$ mv extname-x.x.x extname

This will result in the following directory:

 /your/phpsrcdir/ext/extname

From here, force PHP to rebuild the configure script, and then build PHP as normal:

$ cd /your/phpsrcdir

$ rm configure

$./buildconf --force

$./configure --help

$./configure --with-extname --enable-someotherext --with-foobar

$ make

$ make install

Note

To run the 'buildconf' script you need autoconf 2.13 and automake 1.4+ (newer
versions of autoconf may work, but are not supported).

Whether --enable-extname or --with-extname is used depends on the extension. Typically
an extension that does not require external libraries uses --enable. To be sure, run the
following after buildconf:

$./configure --help | grep extname

Problems?

Read the FAQ

Some problems are more common than others. The most common ones are listed in the
PHP FAQ, part of this manual.

Other problems

If you are still stuck, someone on the PHP installation mailing list may be able to help you.
You should check out the archive first, in case someone already answered someone else
who had the same problem as you. The archives are available from the support page on
» http://www.php.net/support.php. To subscribe to the PHP installation mailing list, send an
empty mail to » php-install-subscribe@lists.php.net. The mailing list address is
» php-install@lists.php.net.

If you want to get help on the mailing list, please try to be precise and give the necessary
details about your environment (which operating system, what PHP version, what web
server, if you are running PHP as CGI or a server module, safe mode, etc...), and
preferably enough code to make others able to reproduce and test your problem.

Bug reports

If you think you have found a bug in PHP, please report it. The PHP developers probably
don't know about it, and unless you report it, chances are it won't be fixed. You can report
bugs using the bug-tracking system at » http://bugs.php.net/. Please do not send bug
reports in mailing list or personal letters. The bug system is also suitable to submit feature
requests.

Read the » How to report a bug document before submitting any bug reports!

http://www.php.net/support.php
http://www.php.net/support.php
mailto:php-install-subscribe@lists.php.net
mailto:php-install@lists.php.net
mailto:php-install@lists.php.net
http://bugs.php.net/
http://bugs.php.net/how-to-report.php

Runtime Configuration

The configuration file

The configuration file (php.ini) is read when PHP starts up. For the server module
versions of PHP, this happens only once when the web server is started. For the CGI and
CLI version, it happens on every invocation.

php.ini is searched in these locations (in order):

• SAPI module specific location (PHPIniDir directive in Apache 2, -c command line
option in CGI and CLI, php_ini parameter in NSAPI, PHP_INI_PATH environment
variable in THTTPD)

• The PHPRC environment variable. Before PHP 5.2.0 this was checked after the
registry key mentioned below.

• As of PHP 5.2.0, the following registry locations are searched in order:
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y.z\IniFilePath,
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y\IniFilePath and
HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x\IniFilePath, where x, y and z mean the
PHP major, minor and release versions.

• HKEY_LOCAL_MACHINE\SOFTWARE\PHP\IniFilePath (Windows Registry location)

• Current working directory (except CLI)

• The web server's directory (for SAPI modules), or directory of PHP (otherwise in
Windows)

• Windows directory (C:\windows or C:\winnt) (for Windows), or --with-config-file-path
compile time option

If php-SAPI.ini exists (where SAPI is used SAPI, so the filename is e.g. php-cli.ini or
php-apache.ini), it's used instead of php.ini. SAPI name can be determined by
php_sapi_name().

Note

The Apache web server changes the directory to root at startup causing PHP to
attempt to read php.ini from the root filesystem if it exists.

The php.ini directives handled by extensions are documented respectively on the pages of
the extensions themselves. The list of the core directives is available in the appendix.
Probably not all PHP directives are documented in the manual though. For a complete list
of directives available in your PHP version, please read your well commented php.ini file.
Alternatively, you may find the » the latest php.ini from CVS helpful too.

http://cvs.php.net/viewvc.cgi/php-src/php.ini-dist?view=co

Example #33 - php.ini example

; any text on a line after an unquoted semicolon (;) is ignored

[php] ; section markers (text within square brackets) are also ignored

; Boolean values can be set to either:

; true, on, yes

; or false, off, no, none

register_globals = off

track_errors = yes

; you can enclose strings in double-quotes

include_path = ".:/usr/local/lib/php"

; backslashes are treated the same as any other character

include_path = ".;c:\php\lib"

Since PHP 5.1.0, it is possible to refer to existing .ini variables from within .ini files.
Example: open_basedir = ${open_basedir} ":/new/dir".

How to change configuration settings

Running PHP as an Apache module

When using PHP as an Apache module, you can also change the configuration settings
using directives in Apache configuration files (e.g. httpd.conf) and.htaccess files. You will
need "AllowOverride Options" or "AllowOverride All" privileges to do so.

There are several Apache directives that allow you to change the PHP configuration from
within the Apache configuration files. For a listing of which directives are PHP_INI_ALL,
PHP_INI_PERDIR, or PHP_INI_SYSTEM, have a look at the List of php.ini directives
appendix.

php_value name value

Sets the value of the specified directive. Can be used only with PHP_INI_ALL and
PHP_INI_PERDIR type directives. To clear a previously set value use none as the
value.

Note

Don't use php_value to set boolean values. php_flag (see below) should be used
instead.

php_flag name on|off

Used to set a boolean configuration directive. Can be used only with PHP_INI_ALL
and PHP_INI_PERDIR type directives.

php_admin_value name value

Sets the value of the specified directive. This can not be used in.htaccess files. Any
directive type set with php_admin_value can not be overridden by.htaccess. To clear a
previously set value use none as the value.

php_admin_flag name on|off

Used to set a boolean configuration directive. This can not be used in.htaccess files.
Any directive type set with php_admin_flag can not be overridden by.htaccess.

Example #34 - Apache configuration example

<IfModule mod_php5.c>

 php_value include_path ".:/usr/local/lib/php"

 php_admin_flag safe_mode on

</IfModule>

<IfModule mod_php4.c>

 php_value include_path ".:/usr/local/lib/php"

 php_admin_flag safe_mode on

</IfModule>

Caution

PHP constants do not exist outside of PHP. For example, in httpd.conf you can not use
PHP constants such as E_ALL or E_NOTICE to set the error_reporting directive as
they will have no meaning and will evaluate to 0. Use the associated bitmask values
instead. These constants can be used in php.ini

Changing PHP configuration via the Windows registry

When running PHP on Windows, the configuration values can be modified on a
per-directory basis using the Windows registry. The configuration values are stored in the
registry key HKLM\SOFTWARE\PHP\Per Directory Values, in the sub-keys corresponding
to the path names. For example, configuration values for the directory c:\inetpub\wwwroot
would be stored in the key HKLM\SOFTWARE\PHP\Per Directory
Values\c\inetpub\wwwroot. The settings for the directory would be active for any script
running from this directory or any subdirectory of it. The values under the key should have
the name of the PHP configuration directive and the string value. PHP constants in the
values are not parsed. However, only configuration values changeable in PHP_INI_USER
can be set this way, PHP_INI_PERDIR values can not.

Other interfaces to PHP

Regardless of how you run PHP, you can change certain values at runtime of your scripts
through ini_set(). See the documentation on the ini_set() page for more information.

If you are interested in a complete list of configuration settings on your system with their
current values, you can execute the phpinfo() function, and review the resulting page. You
can also access the values of individual configuration directives at runtime using ini_get()
or get_cfg_var().

Language Reference

Basic syntax

Escaping from HTML

When PHP parses a file, it looks for opening and closing tags, which tell PHP to start and
stop interpreting the code between them. Parsing in this manner allows php to be
embedded in all sorts of different documents, as everything outside of a pair of opening
and closing tags is ignored by the PHP parser. Most of the time you will see php
embedded in HTML documents, as in this example.

<p>This is going to be ignored.</p>

<?php echo 'While this is going to be parsed.'; ?>

<p>This will also be ignored.</p>

You can also use more advanced structures:

Example #35 - Advanced escaping

<?php

if ($expression) {

 ?>

 This is true.

 <?php

} else {

 ?>

 This is false.

 <?php

}

?>

This works as expected, because when PHP hits the ?> closing tags, it simply starts
outputting whatever it finds (except for an immediately following newline - see instruction
separation) until it hits another opening tag. The example given here is contrived, of
course, but for outputting large blocks of text, dropping out of PHP parsing mode is
generally more efficient than sending all of the text through echo() or print().

There are four different pairs of opening and closing tags which can be used in php. Two
of those, <?php ?> and <script language="php"> </script>, are always available. The other
two are short tags and ASP style tags, and can be turned on and off from the php.ini
configuration file. As such, while some people find short tags and ASP style tags
convenient, they are less portable, and generally not recommended.

Note

Also note that if you are embedding PHP within XML or XHTML you will need to use
the <?php ?> tags to remain compliant with standards.

Example #36 - PHP Opening and Closing Tags

1. <?php echo 'if you want to serve XHTML or XML documents, do like this';
?>

2. <script language="php">

 echo 'some editors (like FrontPage) don\'t

 like processing instructions';

 </script>

3. <? echo 'this is the simplest, an SGML processing instruction'; ?>

 <?= expression ?> This is a shortcut for "<? echo expression ?>"

4. <% echo 'You may optionally use ASP-style tags'; %>

 <%= $variable; # This is a shortcut for "<% echo . . ." %>

While the tags seen in examples one and two are both always available, example one is
the most commonly used, and recommended, of the two.

Short tags (example three) are only available when they are enabled via the
short_open_tag php.ini configuration file directive, or if php was configured with the
--enable-short-tags option.

ASP style tags (example four) are only available when they are enabled via the asp_tags
php.ini configuration file directive.

Note

Using short tags should be avoided when developing applications or libraries that are
meant for redistribution, or deployment on PHP servers which are not under your
control, because short tags may not be supported on the target server. For portable,
redistributable code, be sure not to use short tags.

Instruction separation

As in C or Perl, PHP requires instructions to be terminated with a semicolon at the end of
each statement. The closing tag of a block of PHP code automatically implies a semicolon;
you do not need to have a semicolon terminating the last line of a PHP block. The closing
tag for the block will include the immediately trailing newline if one is present.

<?php

 echo 'This is a test';

?>

<?php echo 'This is a test' ?>

<?php echo 'We omitted the last closing tag';

Note

The closing tag of a PHP block at the end of a file is optional, and in some cases
omitting it is helpful when using include() or require(), so unwanted whitespace will
not occur at the end of files, and you will still be able to add headers to the response
later. It is also handy if you use output buffering, and would not like to see added
unwanted whitespace at the end of the parts generated by the included files.

Comments

PHP supports 'C', 'C++' and Unix shell-style (Perl style) comments. For example:

<?php

 echo 'This is a test'; // This is a one-line c++ style comment

 /* This is a multi line comment

 yet another line of comment */

 echo 'This is yet another test';

 echo 'One Final Test'; # This is a one-line shell-style comment

?>

The "one-line" comment styles only comment to the end of the line or the current block of
PHP code, whichever comes first. This means that HTML code after // ... ?> or # ... ?>
WILL be printed: ?> breaks out of PHP mode and returns to HTML mode, and // or #
cannot influence that. If the asp_tags configuration directive is enabled, it behaves the
same with // %> and # %>. However, the </script> tag doesn't break out of PHP mode in a
one-line comment.

<h1>This is an <?php # echo 'simple';?> example.</h1>

<p>The header above will say 'This is an example'.</p>

'C' style comments end at the first */ encountered. Make sure you don't nest 'C' style
comments. It is easy to make this mistake if you are trying to comment out a large block of
code.

<?php

/*

 echo 'This is a test'; /* This comment will cause a problem */

*/

?>

Types

Introduction

PHP supports eight primitive types.

Four scalar types:

• boolean

• integer

• float (floating-point number, aka double)

• string

Two compound types:

• array

• object

And finally two special types:

• resource

• NULL

This manual also introduces some pseudo-types for readability reasons:

• mixed

• number

• callback

And the pseudo-variable $....

Some references to the type "double" may remain in the manual. Consider double the
same as float; the two names exist only for historic reasons.

The type of a variable is not usually set by the programmer; rather, it is decided at runtime
by PHP depending on the context in which that variable is used.

Note

To check the type and value of an expression, use the var_dump() function.

To get a human-readable representation of a type for debugging, use the gettype()
function. To check for a certain type, do not use gettype(), but rather the is_ type
functions. Some examples:

<?php

$a_bool = TRUE; // a boolean

$a_str = "foo"; // a string

$a_str2 = 'foo'; // a string

$an_int = 12; // an integer

echo gettype($a_bool); // prints out: boolean

echo gettype($a_str); // prints out: string

// If this is an integer, increment it by four

if (is_int($an_int)) {

 $an_int += 4;

}

// If $bool is a string, print it out

// (does not print out anything)

if (is_string($a_bool)) {

 echo "String: $a_bool";

}

?>

To forcibly convert a variable to a certain type, either cast the variable or use the settype()
function on it.

Note that a variable may be evaluated with different values in certain situations, depending
on what type it is at the time. For more information, see the section on Type Juggling. The
type comparison tables may also be useful, as they show examples of various type-related
comparisons.

Booleans

This is the simplest type. A boolean expresses a truth value. It can be either TRUE or
FALSE.

Note

The boolean type was introduced in PHP 4.

Syntax

To specify a boolean literal, use the keywords TRUE or FALSE. Both are case-insensitive.

<?php

$foo = True; // assign the value TRUE to $foo

?>

Typically, some kind of operator which returns a boolean value, and the value is passed on
to a control structure.

<?php

// == is an operator which test

// equality and returns a boolean

if ($action == "show_version") {

 echo "The version is 1.23";

}

// this is not necessary...

if ($show_separators == TRUE) {

 echo "<hr>\n";

}

// ...because instead, this can be used:

if ($show_separators) {

 echo "<hr>\n";

}

?>

Converting to boolean

To explicitly convert a value to boolean, use the (bool) or (boolean) casts. However, in
most cases the cast is unncecessary, since a value will be automatically converted if an
operator, function or control structure requires a boolean argument.

See also Type Juggling.

When converting to boolean, the following values are considered FALSE:

• the boolean FALSE itself

• the integer 0 (zero)

• the float 0.0 (zero)

• the empty string, and the string "0"

• an array with zero elements

• an object with zero member variables (PHP 4 only)

• the special type NULL (including unset variables)

• SimpleXML objects created from empty tags

Every other value is considered TRUE (including any resource).

Warning

-1 is considered TRUE, like any other non-zero (whether negative or positive) number!

<?php

var_dump((bool) ""); // bool(false)

var_dump((bool) 1); // bool(true)

var_dump((bool) -2); // bool(true)

var_dump((bool) "foo"); // bool(true)

var_dump((bool) 2.3e5); // bool(true)

var_dump((bool) array(12)); // bool(true)

var_dump((bool) array()); // bool(false)

var_dump((bool) "false"); // bool(true)

?>

Integers

An integer is a number of the set Z = {..., -2, -1, 0, 1, 2, ...}.

See also:

• Arbitrary length integer / GMP

• Floating point numbers

• Arbitrary precision / BCMath

Syntax

Integer s can be specified in decimal (base 10), hexadecimal (base 16), or octal (base 8)
notation, optionally preceded by a sign (- or +).

To use octal notation, precede the number with a 0 (zero). To use hexadecimal notation
precede the number with 0x.

Example #37 - Integer literals

<?php

$a = 1234; // decimal number

$a = -123; // a negative number

$a = 0123; // octal number (equivalent to 83 decimal)

$a = 0x1A; // hexadecimal number (equivalent to 26 decimal)

?>

Formally, the structure for integer literals is:

decimal : [1-9][0-9]*

 | 0

hexadecimal : 0[xX][0-9a-fA-F]+

octal : 0[0-7]+

integer : [+-]?decimal

 | [+-]?hexadecimal

 | [+-]?octal

The size of an integer is platform-dependent, although a maximum value of about two
billion is the usual value (that's 32 bits signed). PHP does not support unsigned integer s.
Integer size can be determined using the constant PHP_INT_SIZE, and maximum value
using the constant PHP_INT_MAX since PHP 4.4.0 and PHP 5.0.5.

Warning

If an invalid digit is given in an octal integer (i.e. 8 or 9), the rest of the number is
ignored.

Example #38 - Octal weirdness

<?php

var_dump(01090); // 010 octal = 8 decimal

?>

Integer overflow

If PHP encounters a number beyond the bounds of the integer type, it will be interpreted
as a float instead. Also, an operation which results in a number beyond the bounds of the
integer type will return a float instead.

<?php

$large_number = 2147483647;

var_dump($large_number);

// output: int(2147483647)

$large_number = 2147483648;

var_dump($large_number);

// output: float(2147483648)

// it's true also for hexadecimal specified integers between 2^31 and 2^32-1:

var_dump(0xffffffff);

// output: float(4294967295)

// this doesn't go for hexadecimal specified integers above 2^32-1:

var_dump(0x100000000);

// output: int(2147483647)

$million = 1000000;

$large_number = 50000 * $million;

var_dump($large_number);

// output: float(50000000000)

?>

Warning

Unfortunately, there was a bug in PHP which caused this to not always work correctly
when negative numbers were involved. For example, the result of -50000 * $million is
-429496728. However, when both operands were positive, there was no problem.

This was fixed in PHP 4.1.0.

There is no integer division operator in PHP. 1/2 yields the float 0.5. The value can be
casted to an integer to round it downwards, or the round() function provides finer control
over rounding.

<?php

var_dump(25/7); // float(3.5714285714286)

var_dump((int) (25/7)); // int(3)

var_dump(round(25/7)); // float(4)

?>

Converting to integer

To explicitly convert a value to integer, use either the (int) or (integer) casts. However, in
most cases the cast is not needed, since a value will be automatically converted if an
operator, function or control structure requires an integer argument. A value can also be
converted to integer with the intval() function.

See also: type-juggling.

From booleans

FALSE will yield 0 (zero), and TRUE will yield 1 (one).

From floating point numbers

When converting from float to integer, the number will be rounded towards zero.

If the float is beyond the boundaries of integer (usually +/- 2.15e+9 = 2^31), the result is
undefined, since the float doesn't have enough precision to give an exact integer result. No
warning, not even a notice will be issued when this happens!

Warning

Never cast an unknown fraction to integer, as this can sometimes lead to unexpected
results.

<?php

echo (int) ((0.1+0.7) * 10); // echoes 7!

?>

See also the warning about float precision.

From strings

See String conversion to numbers

From other types

Caution

The behaviour of converting to integer is undefined for other types. Do not rely on any
observed behaviour, as it can change without notice.

Floating point numbers

Floating point numbers (also known as "floats", "doubles", or "real numbers") can be
specified using any of the following syntaxes:

<?php

$a = 1.234;

$b = 1.2e3;

$c = 7E-10;

?>

Formally:

LNUM [0-9]+

DNUM ([0-9]*[\.]{LNUM}) | ({LNUM}[\.][0-9]*)

EXPONENT_DNUM (({LNUM} | {DNUM}) [eE][+-]? {LNUM})

The size of a float is platform-dependent, although a maximum of ~1.8e308 with a
precision of roughly 14 decimal digits is a common value (the 64 bit IEEE format).

Warning

Floating point precision

It is typical that simple decimal fractions like 0.1 or 0.7 cannot be converted into their
internal binary counterparts without a small loss of precision. This can lead to
confusing results: for example, floor((0.1+0.7)*10) will usually return 7 instead of the
expected 8, since the internal representation will be something like 7.9.

This is due to the fact that it is impossible to express some fractions in decimal
notation with a finite number of digits. For instance, 1/3 in decimal form becomes 0.3.

So never trust floating number results to the last digit, and never compare floating point
numbers for equality. If higher precision is necessary, the arbitrary precision math
functions and gmp functions are available.

Converting to float

For information on converting string s to float, see String conversion to numbers. For
values of other types, the conversion is performed by converting the value to integer first
and then to float. See Converting to integer for more information. As of PHP 5, a notice is
thrown if an object is converted to float.

Strings

A string is series of characters. Before PHP 6, a character is the same as a byte. That is,
there are exactly 256 different characters possible. This also implies that PHP has no
native support of Unicode. See utf8_encode() and utf8_decode() for some basic Unicode
functionality.

Note

It is no problem for a string to become very large. PHP imposes no boundary on the
size of a string; the only limit is the available memory of the computer on which PHP is
running.

Syntax

A string literal can be specified in four different ways:

• single quoted

• double quoted

• heredoc syntax

• nowdoc syntax (since PHP 5.3.0)

Single quoted

The simplest way to specify a string is to enclose it in single quotes (the character ').

To specify a literal single quote, escape it with a backslash (\). To specify a literal
backslash before a single quote, or at the end of the string, double it (\\). Note that
attempting to escape any other character will print the backslash too.

Note

Unlike the two other syntaxes, variables and escape sequences for special characters
will not be expanded when they occur in single quoted string s.

<?php

echo 'this is a simple string';

echo 'You can also have embedded newlines in

strings this way as it is

okay to do';

// Outputs: Arnold once said: "I'll be back"

echo 'Arnold once said: "I\'ll be back"';

// Outputs: You deleted C:*.*?

echo 'You deleted C:*.*?';

// Outputs: You deleted C:*.*?

echo 'You deleted C:*.*?';

// Outputs: This will not expand: \n a newline

echo 'This will not expand: \n a newline';

// Outputs: Variables do not $expand $either

echo 'Variables do not $expand $either';

?>

Double quoted

If the string is enclosed in double-quotes ("), PHP will interpret more escape sequences for

special characters:

Escaped characters

Sequence Meaning

\n linefeed (LF or 0x0A (10) in ASCII)

\r carriage return (CR or 0x0D (13) in ASCII)

\t horizontal tab (HT or 0x09 (9) in ASCII)

\v vertical tab (VT or 0x0B (11) in ASCII) (since
PHP 5.2.5)

\f form feed (FF or 0x0C (12) in ASCII) (since
PHP 5.2.5)

\\ backslash

\$ dollar sign

\" double-quote

\[0-7]{1,3} the sequence of characters matching the
regular expression is a character in octal
notation

\x[0-9A-Fa-f]{1,2} the sequence of characters matching the
regular expression is a character in
hexadecimal notation

As in single quoted string s, escaping any other character will result in the backslash being
printed too. Before PHP 5.1.1, the backslash in \{$var} was not been printed.

The most important feature of double-quoted string s is the fact that variable names will be
expanded. See string parsing for details.

Heredoc

A third way to delimit string s is the heredoc syntax: <<<. After this operator, an identifier is
provided, then a newline. The string itself follows, and then the same identifier again to
close the quotation.

The closing identifier must begin in the first column of the line. Also, the identifier must
follow the same naming rules as any other label in PHP: it must contain only alphanumeric
characters and underscores, and must start with a non-digit character or underscore.

Warning

It is very important to note that the line with the closing identifier must contain no other
characters, except possibly a semicolon (;). That means especially that the identifier
may not be indented, and there may not be any spaces or tabs before or after the
semicolon. It's also important to realize that the first character before the closing
identifier must be a newline as defined by the local operating system. This is \n on
UNIX systems, including Mac OS X. The closing delimiter (possibly followed by a
semicolon) must also be followed by a newline.

If this rule is broken and the closing identifier is not "clean", it will not be considered a
closing identifier, and PHP will continue looking for one. If a proper closing identifier is
not found before the end of the current file, a parse error will result at the last line.

Heredocs can not be used for initializing class members. Use nowdocs instead.

Example #39 - Invalid example

<?php

class foo {

 public $bar = <<<EOT

bar

EOT;

}

?>

Heredoc text behaves just like a double-quoted string, without the double quotes. This
means that quotes in a heredoc do not need to be escaped, but the escape codes listed
above can still be used. Variables are expanded, but the same care must be taken when
expressing complex variables inside a heredoc as with string s.

Example #40 - Heredoc string quoting example

<?php

$str = <<<EOD

Example of string

spanning multiple lines

using heredoc syntax.

EOD;

/* More complex example, with variables. */

class foo

{

 var $foo;

 var $bar;

 function foo()

 {

 $this->foo = 'Foo';

 $this->bar = array('Bar1', 'Bar2', 'Bar3');

 }

}

$foo = new foo();

$name = 'MyName';

echo <<<EOT

My name is "$name". I am printing some $foo->foo.

Now, I am printing some {$foo->bar[1]}.

This should print a capital 'A': \x41

EOT;

?>

The above example will output:

My name is "MyName". I am printing some Foo.

Now, I am printing some Bar2.

This should print a capital 'A': A

Note

Heredoc support was added in PHP 4.

Nowdoc

Nowdocs are to single-quoted strings what heredocs are to double-quoted strings. A
nowdoc is specified similarly to a heredoc, but no parsing is done inside a nowdoc. The
construct is ideal for embedding PHP code or other large blocks of text without the need
for escaping. It shares some features in common with the SGML <![CDATA[]]> construct,
in that it declares a block of text which is not for parsing.

A nowdoc is identified with the same <<< seqeuence used for heredocs, but the identifier
which follows is enclosed in single quotes, e.g. <<<'EOT'. All the rules for heredoc
identifiers also apply to nowdoc identifiers, especially those regarding the appearance of
the closing identifier.

Example #41 - Nowdoc string quoting example

<?php

$str = <<<'EOD'

Example of string

spanning multiple lines

using nowdoc syntax.

EOD;

/* More complex example, with variables. */

class foo

{

 public $foo;

 public $bar;

 function foo()

 {

 $this->foo = 'Foo';

 $this->bar = array('Bar1', 'Bar2', 'Bar3');

 }

}

$foo = new foo();

$name = 'MyName';

echo <<<'EOT'

My name is "$name". I am printing some $foo->foo.

Now, I am printing some {$foo->bar[1]}.

This should not print a capital 'A': \x41

EOT;

?>

The above example will output:

My name is "$name". I am printing some $foo->foo.

Now, I am printing some {$foo->bar[1]}.

This should not print a capital 'A': \x41

Note

Unlike heredocs, nowdocs can be used in any static data context. The typical example
is initializing class members or constants:

Example #42 - Static data example

<?php

class foo {

 public $bar = <<<'EOT'

bar

EOT;

}

?>

Note

Nowdoc support was added in PHP 5.3.0.

Variable parsing

When a string is specified in double quotes or with heredoc, variables are parsed within it.

There are two types of syntax: a simple one and a complex one. The simple syntax is the
most common and convenient. It provides a way to embed a variable, an array value, or

an object property in a string with a minimum of effort.

The complex syntax was introduced in PHP 4, and can be recognised by the curly braces
surrounding the expression.

Simple syntax

If a dollar sign ($) is encountered, the parser will greedily take as many tokens as possible
to form a valid variable name. Enclose the variable name in curly braces to explicitly
specify the end of the name.

<?php

$beer = 'Heineken';

echo "$beer's taste is great"; // works; "'" is an invalid character for
variable names

echo "He drank some $beers"; // won't work; 's' is a valid character for
variable names

echo "He drank some ${beer}s"; // works

echo "He drank some {$beer}s"; // works

?>

Similarly, an array index or an object property can be parsed. With array indices, the
closing square bracket (]) marks the end of the index. The same rules apply to object
properties as to simple variables.

<?php

// These examples are specific to using arrays inside of strings.

// When outside of a string, always quote array string keys and do not use

// {braces}.

// Show all errors

error_reporting(E_ALL);

$fruits = array('strawberry' => 'red', 'banana' => 'yellow');

// Works, but note that this works differently outside a string

echo "A banana is $fruits[banana].";

// Works

echo "A banana is {$fruits['banana']}.";

// Works, but PHP looks for a constant named banana first, as described below.

echo "A banana is {$fruits[banana]}.";

// Won't work, use braces. This results in a parse error.

echo "A banana is $fruits['banana'].";

// Works

echo "A banana is " . $fruits['banana'] . ".";

// Works

echo "This square is $square->width meters broad.";

// Won't work. For a solution, see the complex syntax.

echo "This square is $square->width00 centimeters broad.";

?>

For anything more complex, you should use the complex syntax.

Complex (curly) syntax

This isn't called complex because the syntax is complex, but because it allows for the use
of complex expressions.

In fact, any value in the namespace can be included in a string with this syntax. Simply
write the expression the same way as it would appeared outside the string, and then wrap
it in { and }. Since { can not be escaped, this syntax will only be recognised when the $
immediately follows the {. Use {\$to get a literal {$. Some examples to make it clear:

<?php

// Show all errors

error_reporting(E_ALL);

$great = 'fantastic';

// Won't work, outputs: This is { fantastic}

echo "This is { $great}";

// Works, outputs: This is fantastic

echo "This is {$great}";

echo "This is ${great}";

// Works

echo "This square is {$square->width}00 centimeters broad.";

// Works

echo "This works: {$arr[4][3]}";

// This is wrong for the same reason as $foo[bar] is wrong outside a string.

// In other words, it will still work, but only because PHP first looks for a

// constant named foo; an error of level E_NOTICE (undefined constant) will be

// thrown.

echo "This is wrong: {$arr[foo][3]}";

// Works. When using multi-dimensional arrays, always use braces around arrays

// when inside of strings

echo "This works: {$arr['foo'][3]}";

// Works.

echo "This works: " . $arr['foo'][3];

echo "This works too: {$obj->values[3]->name}";

echo "This is the value of the var named $name: {${$name}}";

echo "This is the value of the var named by the return value of getName():
{${getName()}}";

echo "This is the value of the var named by the return value of
\$object->getName(): {${$object->getName()}}";

?>

Note

Functions and method calls inside {$} work since PHP 5.

String access and modification by character

Characters within string s may be accessed and modified by specifying the zero-based
offset of the desired character after the string using square array brackets, as in $str[42].
Think of a string as an array of characters for this purpose.

Note

String s may also be accessed using braces, as in $str{42}, for the same purpose.
However, this syntax is deprecated as of PHP 6. Use square brackets instead.

Example #43 - Some string examples

<?php

// Get the first character of a string

$str = 'This is a test.';

$first = $str[0];

// Get the third character of a string

$third = $str[2];

// Get the last character of a string.

$str = 'This is still a test.';

$last = $str[strlen($str)-1];

// Modify the last character of a string

$str = 'Look at the sea';

$str[strlen($str)-1] = 'e';

?>

Note

Accessing variables of other types using [] or {} silently returns NULL.

Useful functions and operators

String s may be concatenated using the '.' (dot) operator. Note that the '+' (addition)
operator will not work for this. See String operators for more information.

There are a number of useful functions for string manipulation.

See the string functions section for general functions, and the regular expression functions
or the Perl-compatible regular expression functions for advanced find & replace
functionality.

There are also functions for URL strings, and functions to encrypt/decrypt strings (mcrypt
and mhash).

Finally, see also the character type functions.

Converting to string

A value can be converted to a string using the (string) cast or the strval() function. String
conversion is automatically done in the scope of an expression where a string is needed.
This happens when using the echo() or print() functions, or when a variable is compared to
a string. The sections on Types and Type Juggling will make the following clearer. See
also the settype() function.

A boolean TRUE value is converted to the string "1". Boolean FALSE is converted to ""
(the empty string). This allows conversion back and forth between boolean and string
values.

An integer or float is converted to a string representing the number textually (including the
exponent part for float s). Floating point numbers can be converted using exponential
notation (4.1E+6).

Note

The decimal point character is defined in the script's locale (category LC_NUMERIC).
See the setlocale() function.

Array s are always converted to the string "Array"; because of this, echo() and print() can
not by themselves show the contents of an array. To view a single element, use a
construction such as echo $arr['foo']. See below for tips on viewing the entire contents.

Object s in PHP 4 are always converted to the string "Object". To print the values of object
members for debugging reasons, read the paragraphs below. To get an object's class
name, use the get_class() function. As of PHP 5, the __toString method is used when
applicable.

Resource s are always converted to string s with the structure "Resource id #1", where 1 is
the unique number assigned to the resource by PHP at runtime. Do not rely upon this
structure; it is subject to change. To get a resource 's type, use the get_resource_type()
function.

NULL is always converted to an empty string.

As stated above, directly converting an array, object, or resource to a string does not
provide any useful information about the value beyond its type. See the functions print_r()
and var_dump() for more effective means of inspecting the contents of these types.

Most PHP values can also be converted to string s for permanent storage. This method is
called serialization, and is performed by the serialize() function. If the PHP engine was
built with WDDX support, PHP values can also be serialized as well-formed XML text.

String conversion to numbers

When a string is evaluated in a numeric context, the resulting value and type are
determined as follows.

The string will be evaluated as a float if it contains any of the characters '.', 'e', or 'E'.
Otherwise, it will be evaluated as an integer.

The value is given by the initial portion of the string. If the string starts with valid numeric
data, this will be the value used. Otherwise, the value will be 0 (zero). Valid numeric data
is an optional sign, followed by one or more digits (optionally containing a decimal point),
followed by an optional exponent. The exponent is an 'e' or 'E' followed by one or more
digits.

<?php

$foo = 1 + "10.5"; // $foo is float (11.5)

$foo = 1 + "-1.3e3"; // $foo is float (-1299)

$foo = 1 + "bob-1.3e3"; // $foo is integer (1)

$foo = 1 + "bob3"; // $foo is integer (1)

$foo = 1 + "10 Small Pigs"; // $foo is integer (11)

$foo = 4 + "10.2 Little Piggies"; // $foo is float (14.2)

$foo = "10.0 pigs " + 1; // $foo is float (11)

$foo = "10.0 pigs " + 1.0; // $foo is float (11)

?>

For more information on this conversion, see the Unix manual page for strtod(3).

To test any of the examples in this section, cut and paste the examples and insert the
following line to see what's going on:

<?php

echo "\$foo==$foo; type is " . gettype ($foo) . "
\n";

?>

Do not expect to get the code of one character by converting it to integer, as is done in C.
Use the ord() and chr() functions to convert between ASCII codes and characters.

Arrays

An array in PHP is actually an ordered map. A map is a type that associates values to
keys. This type is optimized for several different uses; it can be treated as an array, list
(vector), hash table (an implementation of a map), dictionary, collection, stack, queue, and
probably more. As array values can be other array s, trees and multidimensional array s
are also possible.

Explanation of those data structures is beyond the scope of this manual, but at least one
example is provided for each of them. For more information, look towards the considerable
literature that exists about this broad topic.

Syntax

Specifying with array()

An array can be created by the array() language construct. It takes as parameters any
number of comma-separated key => value pairs.

array(key => value
 , ...

)

// key may only be an integer or string
// value may be any value of any type

<?php

$arr = array("foo" => "bar", 12 => true);

echo $arr["foo"]; // bar

echo $arr[12]; // 1

?>

A key may be either an integer or a string. If a key is the standard representation of an
integer, it will be interpreted as such (i.e. "8" will be interpreted as 8, while "08" will be
interpreted as "08"). Float s in key are truncated to integer. The indexed and associative
array types are the same type in PHP, which can both contain integer and string indices.

A value can be any PHP type.

<?php

$arr = array("somearray" => array(6 => 5, 13 => 9, "a" => 42));

echo $arr["somearray"][6]; // 5

echo $arr["somearray"][13]; // 9

echo $arr["somearray"]["a"]; // 42

?>

If a key is not specified for a value, the maximum of the integer indices is taken and the
new key will be that value plus 1. If a key that already has an assigned value is specified,
that value will be overwritten.

<?php

// This array is the same as ...

array(5 => 43, 32, 56, "b" => 12);

// ...this array

array(5 => 43, 6 => 32, 7 => 56, "b" => 12);

?>

Warning

Before PHP 4.3.0, appending to an array in which the current maximum key was
negative would create a new key as described above. Since PHP 4.3.0, the new key
will be 0.

Using TRUE as key will evaluate to integer 1 as a key. Using FALSE as key will evaluate
to integer 0 as a key. Using NULL as a key will evaluate to the empty string. Using the
empty string as a key will create (or overwrite) a key with the empty string and its value; it
is not the same as using empty brackets.

Array s and object s can not be used as keys. Doing so will result in a warning: Illegal
offset type.

Creating/modifying with square bracket syntax

An existing array can be modified by explicitly setting values in it.

This is done by assigning values to the array, specifying the key in brackets. The key can
also be omitted, resulting in an empty pair of brackets ([]).

$arr[key] = value;

$arr[] = value;

// key may be an integer or string
// value may be any value of any type

If $arr doesn't exist yet, it will be created, so this is also an alternative way to create an
array. To change a certain value, assign a new value to that element using its key. To
remove a key/value pair, call the unset() function on it.

<?php

$arr = array(5 => 1, 12 => 2);

$arr[] = 56; // This is the same as $arr[13] = 56;

 // at this point of the script

$arr["x"] = 42; // This adds a new element to

 // the array with key "x"

unset($arr[5]); // This removes the element from the array

unset($arr); // This deletes the whole array

?>

Note

As mentioned above, if no key is specified, the maximum of the existing integer indices
is taken, and the new key will be that maximum value plus 1. If no integer indices exist
yet, the key will be 0 (zero). If a key that already has a value is specified, that value will
be overwritten.

Note that the maximum integer key used for this need not currently exist in the array. It
need only have existed in the array at some time since the last time the array was
re-indexed. The following example illustrates:

<?php

// Create a simple array.

$array = array(1, 2, 3, 4, 5);

print_r($array);

// Now delete every item, but leave the array itself intact:

foreach ($array as $i => $value) {

 unset($array[$i]);

}

print_r($array);

// Append an item (note that the new key is 5, instead of 0).

$array[] = 6;

print_r($array);

// Re-index:

$array = array_values($array);

$array[] = 7;

print_r($array);

?>

The above example will output:

Array

(

 [0] => 1

 [1] => 2

 [2] => 3

 [3] => 4

 [4] => 5

)

Array

(

)

Array

(

 [5] => 6

)

Array

(

 [0] => 6

 [1] => 7

)

Useful functions

There are quite a few useful functions for working with arrays. See the array functions
section.

Note

The unset() function allows removing keys from an array. Be aware that the array will
not be reindexed. If a true "remove and shift" behavior is desired, the array can be
reindexed using the array_values() function.

<?php

$a = array(1 => 'one', 2 => 'two', 3 => 'three');

unset($a[2]);

/* will produce an array that would have been defined as

 $a = array(1 => 'one', 3 => 'three');

 and NOT

 $a = array(1 => 'one', 2 =>'three');

*/

$b = array_values($a);

// Now $b is array(0 => 'one', 1 =>'three')

?>

The foreach control structure exists specifically for array s. It provides an easy way to
traverse an array.

Array do's and don'ts

Why is $foo[bar] wrong?

Always use quotes around a string literal array index. For example, $foo['bar'] is correct,
while $foo[bar] is not. But why? It is common to encounter this kind of syntax in old scripts:

<?php

$foo[bar] = 'enemy';

echo $foo[bar];

// etc

?>

This is wrong, but it works. The reason is that this code has an undefined constant (bar)

rather than a string ('bar' - notice the quotes). PHP may in future define constants which,
unfortunately for such code, have the same name. It works because PHP automatically
converts a bare string (an unquoted string which does not correspond to any known
symbol) into a string which contains the bare string. For instance, if there is no defined
constant named bar, then PHP will substitute in the string 'bar' and use that.

Note

This does not mean to always quote the key. Do not quote keys which are constants or
variables, as this will prevent PHP from interpreting them.

<?php

error_reporting(E_ALL);

ini_set('display_errors', true);

ini_set('html_errors', false);

// Simple array:

$array = array(1, 2);

$count = count($array);

for ($i = 0; $i < $count; $i++) {

 echo "\nChecking $i: \n";

 echo "Bad: " . $array['$i'] . "\n";

 echo "Good: " . $array[$i] . "\n";

 echo "Bad: {$array['$i']}\n";

 echo "Good: {$array[$i]}\n";

}

?>

The above example will output:

Checking 0:

Notice: Undefined index: $i in /path/to/script.html on line 9

Bad:

Good: 1

Notice: Undefined index: $i in /path/to/script.html on line 11

Bad:

Good: 1

Checking 1:

Notice: Undefined index: $i in /path/to/script.html on line 9

Bad:

Good: 2

Notice: Undefined index: $i in /path/to/script.html on line 11

Bad:

Good: 2

More examples to demonstrate this behaviour:

<?php

// Show all errors

error_reporting(E_ALL);

$arr = array('fruit' => 'apple', 'veggie' => 'carrot');

// Correct

print $arr['fruit']; // apple

print $arr['veggie']; // carrot

// Incorrect. This works but also throws a PHP error of level E_NOTICE because

// of an undefined constant named fruit

//

// Notice: Use of undefined constant fruit - assumed 'fruit' in...

print $arr[fruit]; // apple

// This defines a constant to demonstrate what's going on. The value 'veggie'

// is assigned to a constant named fruit.

define('fruit', 'veggie');

// Notice the difference now

print $arr['fruit']; // apple

print $arr[fruit]; // carrot

// The following is okay, as it's inside a string. Constants are not looked for

// within strings, so no E_NOTICE occurs here

print "Hello $arr[fruit]"; // Hello apple

// With one exception: braces surrounding arrays within strings allows constants

// to be interpreted

print "Hello {$arr[fruit]}"; // Hello carrot

print "Hello {$arr['fruit']}"; // Hello apple

// This will not work, and will result in a parse error, such as:

// Parse error: parse error, expecting T_STRING' or T_VARIABLE' or T_NUM_STRING'

// This of course applies to using superglobals in strings as well

print "Hello $arr['fruit']";

print "Hello $_GET['foo']";

// Concatenation is another option

print "Hello " . $arr['fruit']; // Hello apple

?>

When error_reporting is set to show E_NOTICE level errors (by setting it to E_ALL, for
example), such uses will become immediately visible. By default, error_reporting is set not
to show notices.

As stated in the syntax section, what's inside the square brackets (' [' and '] ') must be an
expression. This means that code like this works:

<?php

echo $arr[somefunc($bar)];

?>

This is an example of using a function return value as the array index. PHP also knows
about constants:

<?php

$error_descriptions[E_ERROR] = "A fatal error has occured";

$error_descriptions[E_WARNING] = "PHP issued a warning";

$error_descriptions[E_NOTICE] = "This is just an informal notice";

?>

Note that E_ERROR is also a valid identifier, just like bar in the first example. But the last
example is in fact the same as writing:

<?php

$error_descriptions[1] = "A fatal error has occured";

$error_descriptions[2] = "PHP issued a warning";

$error_descriptions[8] = "This is just an informal notice";

?>

because E_ERROR equals 1, etc.

So why is it bad then?

At some point in the future, the PHP team might want to add another constant or keyword,
or a constant in other code may interfere. For example, it is already wrong to use the
words empty and default this way, since they are reserved keywords.

Note

To reiterate, inside a double-quoted string, it's valid to not surround array indexes with
quotes so "$foo[bar]" is valid. See the above examples for details on why as well as
the section on variable parsing in strings.

Converting to array

For any of the types: integer, float, string, boolean and resource, converting a value to an
array results in an array with a single element with index zero and the value of the scalar
which was converted. In other words, (array)$scalarValue is exactly the same as
array($scalarValue).

If an object is converted to an array, the result is an array whose elements are the object 's
properties. The keys are the member variable names, with a few notable exceptions:
private variables have the class name prepended to the variable name; protected variables
have a '*' prepended to the variable name. These prepended values have null bytes on
either side. This can result in some unexpected behaviour:

<?php

class A {

 private $A; // This will become '\0A\0A'

}

class B extends A {

 private $A; // This will become '\0B\0A'

 public $AA; // This will become 'AA'

}

var_dump((array) new B());

?>

The above will appear to have two keys named 'AA', although one of them is actually
named '\0A\0A'.

Converting NULL to an array results in an empty array.

Comparing

It is possible to compare arrays with the array_diff() function and with array operators.

Examples

The array type in PHP is very versatile. Here are some examples:

<?php

// this

$a = array('color' => 'red',

 'taste' => 'sweet',

 'shape' => 'round',

 'name' => 'apple',

 4 // key will be 0

);

// is completely equivalent with

$a['color'] = 'red';

$a['taste'] = 'sweet';

$a['shape'] = 'round';

$a['name'] = 'apple';

$a[] = 4; // key will be 0

$b[] = 'a';

$b[] = 'b';

$b[] = 'c';

// will result in the array array(0 => 'a' , 1 => 'b' , 2 => 'c'),

// or simply array('a', 'b', 'c')

?>

Example #44 - Using array()

<?php

// Array as (property-)map

$map = array('version' => 4,

 'OS' => 'Linux',

 'lang' => 'english',

 'short_tags' => true

);

// strictly numerical keys

$array = array(7,

 8,

 0,

 156,

 -10

);

// this is the same as array(0 => 7, 1 => 8, ...)

$switching = array(10, // key = 0

 5 => 6,

 3 => 7,

 'a' => 4,

 11, // key = 6 (maximum of integer-indices was 5)

 '8' => 2, // key = 8 (integer!)

 '02' => 77, // key = '02'

 0 => 12 // the value 10 will be overwritten by 12

);

// empty array

$empty = array();

?>

Example #45 - Collection

<?php

$colors = array('red', 'blue', 'green', 'yellow');

foreach ($colors as $color) {

 echo "Do you like $color?\n";

}

?>

The above example will output:

Do you like red?

Do you like blue?

Do you like green?

Do you like yellow?

Changing the values of the array directly is possible since PHP 5 by passing them by
reference. Before that, a workaround is necessary:

Example #46 - Collection

<?php

// PHP 5

foreach ($colors as &$color) {

 $color = strtoupper($color);

}

unset($color); /* ensure that following writes to

$color will not modify the last array element */

// Workaround for older versions

foreach ($colors as $key => $color) {

 $colors[$key] = strtoupper($color);

}

print_r($colors);

?>

The above example will output:

Array

(

 [0] => RED

 [1] => BLUE

 [2] => GREEN

 [3] => YELLOW

)

This example creates a one-based array.

Example #47 - One-based index

<?php

$firstquarter = array(1 => 'January', 'February', 'March');

print_r($firstquarter);

?>

The above example will output:

Array

(

 [1] => 'January'

 [2] => 'February'

 [3] => 'March'

)

Example #48 - Filling an array

<?php

// fill an array with all items from a directory

$handle = opendir('.');

while (false !== ($file = readdir($handle))) {

 $files[] = $file;

}

closedir($handle);

?>

Array s are ordered. The order can be changed using various sorting functions. See the
array functions section for more information. The count() function can be used to count the

number of items in an array.

Example #49 - Sorting an array

<?php

sort($files);

print_r($files);

?>

Because the value of an array can be anything, it can also be another array. This enables
the creation of recursive and multi-dimensional array s.

Example #50 - Recursive and multi-dimensional arrays

<?php

$fruits = array ("fruits" => array ("a" => "orange",

 "b" => "banana",

 "c" => "apple"

),

 "numbers" => array (1,

 2,

 3,

 4,

 5,

 6

),

 "holes" => array ("first",

 5 => "second",

 "third"

)

);

// Some examples to address values in the array above

echo $fruits["holes"][5]; // prints "second"

echo $fruits["fruits"]["a"]; // prints "orange"

unset($fruits["holes"][0]); // remove "first"

// Create a new multi-dimensional array

$juices["apple"]["green"] = "good";

?>

Array assignment always involves value copying. It also means that the internal array
pointer used by current() and similar functions is reset. Use the reference operator to copy
an array by reference.

<?php

$arr1 = array(2, 3);

$arr2 = $arr1;

$arr2[] = 4; // $arr2 is changed,

 // $arr1 is still array(2, 3)

$arr3 = &$arr1;

$arr3[] = 4; // now $arr1 and $arr3 are the same

?>

Objects

Object Initialization

To create a new object, use the new statement to instantiate a class:

<?php

class foo

{

 function do_foo()

 {

 echo "Doing foo.";

 }

}

$bar = new foo;

$bar->do_foo();

?>

For a full discussion, see the Classes and Objects chapter.

Converting to object

If an object is converted to an object, it is not modified. If a value of any other type is
converted to an object, a new instance of the stdClass built-in class is created. If the value
was NULL, the new instance will be empty. Array s convert to an object with properties
named by keys, and corresponding values. For any other value, a member variable named
scalar will contain the value.

<?php

$obj = (object) 'ciao';

echo $obj->scalar; // outputs 'ciao'

?>

Resources

A resource is a special variable, holding a reference to an external resource. Resources
are created and used by special functions. See the appendix for a listing of all these
functions and the corresponding resource types.

Note

The resource type was introduced in PHP 4

See also the get_resource_type() function.

Converting to resource

As resource variables hold special handlers to opened files, database connections, image
canvas areas and the like, converting to a resource makes no sense.

Freeing resources

Thanks to the reference-counting system introduced with PHP 4's Zend Engine, a
resource with no more references to it is detected automatically, and it is freed by the
garbage collector. For this reason, it is rarely necessary to free the memory manually.

Note

Persistent database links are an exception to this rule. They are not destroyed by the
garbage collector. See the persistent connections section for more information.

NULL

The special NULL value represents a variable with no value. NULL is the only possible
value of type NULL.

Note

The null type was introduced in PHP 4.

A variable is considered to be null if:

• it has been assigned the constant NULL.

• it has not been set to any value yet.

• it has been unset().

Syntax

There is only one value of type null, and that is the case-insensitive keyword NULL.

<?php

$var = NULL;

?>

See also the functions is_null() and unset().

Pseudo-types and variables used in this documentation

mixed

mixed indicates that a parameter may accept multiple (but not necessarily all) types.

gettype() for example will accept all PHP types, while str_replace() will accept string s and
array s.

number

number indicates that a parameter can be either integer or float.

callback

Some functions like call_user_func() or usort() accept user-defined callback functions as a
parameter. Callback functions can not only be simple functions, but also object methods,
including static class methods.

A PHP function is passed by its name as a string. Any built-in or user-defined function can
be used, except language constructs such as: array(), echo(), empty(), eval(), exit(), isset()
, list(), print() or unset().

A method of an instantiated object is passed as an array containing an object at index 0
and the method name at index 1.

Static class methods can also be passed without instantiating an object of that class by
passing the class name instead of an object at index 0.

Apart from common user-defined function, create_function() can also be used to create an
anonymous callback function.

Example #51 - Callback function examples

<?php

// An example callback function

function my_callback_function() {

 echo 'hello world!';

}

// An example callback method

class MyClass {

 static function myCallbackMethod() {

 echo 'Hello World!';

 }

}

// Type 1: Simple callback

call_user_func('my_callback_function');

// Type 2: Static class method call

call_user_func(array('MyClass', 'myCallbackMethod'));

// Type 3: Object method call

$obj = new MyClass();

call_user_func(array($obj, 'myCallbackMethod'));

// Type 4: Static class method call (As of PHP 5.2.3)

call_user_func('MyClass::myCallbackMethod');

// Type 5: Relative static class method call (As of PHP 5.3.0)

class A {

 public static function who() {

 echo "A\n";

 }

}

class B extends A {

 public static function who() {

 echo "B\n";

 }

}

call_user_func(array('B', 'parent::who')); // A

?>

Note

In PHP4, it was necessary to use a reference to create a callback that points to the
actual object, and not a copy of it. For more details, see References Explained.

void

void as a return type means that the return value is useless. void in a parameter list means
that the function doesn't accept any parameters.

...

$... in function prototypes means and so on. This variable name is used when a function

can take an endless number of arguments.

Type Juggling

PHP does not require (or support) explicit type definition in variable declaration; a
variable's type is determined by the context in which the variable is used. That is to say, if
a string value is assigned to variable $var, $var becomes a string. If an integer value is
then assigned to $var, it becomes an integer.

An example of PHP's automatic type conversion is the addition operator '+'. If either
operand is a float, then both operands are evaluated as float s, and the result will be a float
. Otherwise, the operands will be interpreted as integer s, and the result will also be an
integer. Note that this does not change the types of the operands themselves; the only
change is in how the operands are evaluated and what the type of the expression itself is.

<?php

$foo = "0"; // $foo is string (ASCII 48)

$foo += 2; // $foo is now an integer (2)

$foo = $foo + 1.3; // $foo is now a float (3.3)

$foo = 5 + "10 Little Piggies"; // $foo is integer (15)

$foo = 5 + "10 Small Pigs"; // $foo is integer (15)

?>

If the last two examples above seem odd, see String conversion to numbers.

To force a variable to be evaluated as a certain type, see the section on Type casting. To
change the type of a variable, see the settype() function.

To test any of the examples in this section, use the var_dump() function.

Note

The behaviour of an automatic conversion to array is currently undefined.

Also, because PHP supports indexing into string s via offsets using the same syntax as
array indexing, the following example holds true for all PHP versions:

<?php

$a = 'car'; // $a is a string

$a[0] = 'b'; // $a is still a string

echo $a; // bar

?>

See the section titled String access by character for more information.

Type Casting

Type casting in PHP works much as it does in C: the name of the desired type is written in
parentheses before the variable which is to be cast.

<?php

$foo = 10; // $foo is an integer

$bar = (boolean) $foo; // $bar is a boolean

?>

The casts allowed are:

• (int), (integer) - cast to integer

• (bool), (boolean) - cast to boolean

• (float), (double), (real) - cast to float

• (string) - cast to string

• (binary) - cast to binary string (PHP 6)

• (array) - cast to array

• (object) - cast to object

(binary) casting and b prefix forward support was added in PHP 5.2.1

Note that tabs and spaces are allowed inside the parentheses, so the following are
functionally equivalent:

<?php

$foo = (int) $bar;

$foo = (int) $bar;

?>

Casting literal string s and variables to binary string s:

<?php

$binary = (binary)$string;

$binary = b"binary string";

?>

Note

Instead of casting a variable to a string, it is also possible to enclose the variable in
double quotes.

<?php

$foo = 10; // $foo is an integer

$str = "$foo"; // $str is a string

$fst = (string) $foo; // $fst is also a string

// This prints out that "they are the same"

if ($fst === $str) {

 echo "they are the same";

}

?>

It may not be obvious exactly what will happen when casting between certain types. For
more information, see these sections:

• Converting to boolean

• Converting to integer

• Converting to float

• Converting to string

• Converting to array

• Converting to object

• Converting to resource

• The type comparison tables

Variables

Basics

Variables in PHP are represented by a dollar sign followed by the name of the variable.
The variable name is case-sensitive.

Variable names follow the same rules as other labels in PHP. A valid variable name starts
with a letter or underscore, followed by any number of letters, numbers, or underscores.
As a regular expression, it would be expressed thus:
'[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*'

Note

For our purposes here, a letter is a-z, A-Z, and the ASCII characters from 127 through
255 (0x7f-0xff).

Note

$this is a special variable that can't be assigned.

Tip

See also the Userland Naming Guide.

For information on variable related functions, see the Variable Functions Reference.

<?php

$var = 'Bob';

$Var = 'Joe';

echo "$var, $Var"; // outputs "Bob, Joe"

$4site = 'not yet'; // invalid; starts with a number

$_4site = 'not yet'; // valid; starts with an underscore

$täyte = 'mansikka'; // valid; 'ä' is (Extended) ASCII 228.

?>

By default, variables are always assigned by value. That is to say, when you assign an
expression to a variable, the entire value of the original expression is copied into the
destination variable. This means, for instance, that after assigning one variable's value to

another, changing one of those variables will have no effect on the other. For more
information on this kind of assignment, see the chapter on Expressions.

PHP also offers another way to assign values to variables: assign by reference. This
means that the new variable simply references (in other words, "becomes an alias for" or
"points to") the original variable. Changes to the new variable affect the original, and vice
versa.

To assign by reference, simply prepend an ampersand (&) to the beginning of the variable
which is being assigned (the source variable). For instance, the following code snippet
outputs 'My name is Bob' twice:

<?php

$foo = 'Bob'; // Assign the value 'Bob' to $foo

$bar = &$foo; // Reference $foo via $bar.

$bar = "My name is $bar"; // Alter $bar...

echo $bar;

echo $foo; // $foo is altered too.

?>

One important thing to note is that only named variables may be assigned by reference.

<?php

$foo = 25;

$bar = &$foo; // This is a valid assignment.

$bar = &(24 * 7); // Invalid; references an unnamed expression.

function test()

{

 return 25;

}

$bar = &test(); // Invalid.

?>

It is not necessary to initialize variables in PHP however it is a very good practice.
Uninitialized variables have a default value of their type - FALSE, zero, empty string or an
empty array.

Example #52 - Default values of uninitialized variables

<?php

echo ($unset_bool ? "true" : "false"); // false

$unset_int += 25; // 0 + 25 => 25

echo $unset_string . "abc"; // "" . "abc" => "abc"

$unset_array[3] = "def"; // array() + array(3 => "def") => array(3 => "def")

?>

Relying on the default value of an uninitialized variable is problematic in the case of
including one file into another which uses the same variable name. It is also a major
security risk with register_globals turned on. E_NOTICE level error is issued in case of
working with uninitialized variables, however not in the case of appending elements to the
uninitialized array. isset() language construct can be used to detect if a variable has been
already initialized.

Predefined variables

PHP provides a large number of predefined variables to any script which it runs. Many of
these variables, however, cannot be fully documented as they are dependent upon which
server is running, the version and setup of the server, and other factors. Some of these
variables will not be available when PHP is run on the command line. For a listing of these
variables, please see the section on Reserved Predefined Variables.

Warning

In PHP 4.2.0 and later, the default value for the PHP directive register_globals is off.
This is a major change in PHP. Having register_globals off affects the set of predefined
variables available in the global scope. For example, to get DOCUMENT_ROOT you'll
use $_SERVER['DOCUMENT_ROOT'] instead of $DOCUMENT_ROOT, or
$_GET['id'] from the URL http://www.example.com/test.php?id=3 instead of $id, or
$_ENV['HOME'] instead of $HOME.

For related information on this change, read the configuration entry for register_globals
, the security chapter on Using Register Globals, as well as the PHP » 4.1.0 and
» 4.2.0 Release Announcements.

Using the available PHP Reserved Predefined Variables, like the superglobal arrays, is
preferred.

From version 4.1.0 onward, PHP provides an additional set of predefined arrays containing
variables from the web server (if applicable), the environment, and user input. These new
arrays are rather special in that they are automatically global--i.e., automatically available
in every scope. For this reason, they are often known as "superglobals". (There is no
mechanism in PHP for user-defined superglobals.) The superglobals are listed below;
however, for a listing of their contents and further discussion on PHP predefined variables
and their natures, please see the section Reserved Predefined Variables. Also, you'll
notice how the older predefined variables ($HTTP_*_VARS) still exist. As of PHP 5.0.0,
the long PHP predefined variable arrays may be disabled with the register_long_arrays
directive.

Note

Variable variables

Superglobals cannot be used as variable variables inside functions or class methods.

http://www.php.net/releases/4_1_0.php
http://www.php.net/releases/4_2_0.php
http://www.php.net/releases/4_2_0.php

Note

Even though both the superglobal and HTTP_*_VARS can exist at the same time; they
are not identical, so modifying one will not change the other.

If certain variables in variables_order are not set, their appropriate PHP predefined arrays
are also left empty.

Variable scope

The scope of a variable is the context within which it is defined. For the most part all PHP
variables only have a single scope. This single scope spans included and required files as
well. For example:

<?php

$a = 1;

include 'b.inc';

?>

Here the $a variable will be available within the included b.inc script. However, within
user-defined functions a local function scope is introduced. Any variable used inside a
function is by default limited to the local function scope. For example:

<?php

$a = 1; /* global scope */

function Test()

{

 echo $a; /* reference to local scope variable */

}

Test();

?>

This script will not produce any output because the echo statement refers to a local
version of the $a variable, and it has not been assigned a value within this scope. You may
notice that this is a little bit different from the C language in that global variables in C are
automatically available to functions unless specifically overridden by a local definition. This
can cause some problems in that people may inadvertently change a global variable. In
PHP global variables must be declared global inside a function if they are going to be used
in that function.

The global keyword

First, an example use of global:

Example #53 - Using global

<?php

$a = 1;

$b = 2;

function Sum()

{

 global $a, $b;

 $b = $a + $b;

}

Sum();

echo $b;

?>

The above script will output "3". By declaring $a and $b global within the function, all
references to either variable will refer to the global version. There is no limit to the number
of global variables that can be manipulated by a function.

A second way to access variables from the global scope is to use the special PHP-defined
$GLOBALS array. The previous example can be rewritten as:

Example #54 - Using $GLOBALS instead of global

<?php

$a = 1;

$b = 2;

function Sum()

{

 $GLOBALS['b'] = $GLOBALS['a'] + $GLOBALS['b'];

}

Sum();

echo $b;

?>

The $GLOBALS array is an associative array with the name of the global variable being
the key and the contents of that variable being the value of the array element. Notice how
$GLOBALS exists in any scope, this is because $GLOBALS is a superglobal. Here's an
example demonstrating the power of superglobals:

Example #55 - Example demonstrating superglobals and scope

<?php

function test_global()

{

 // Most predefined variables aren't "super" and require

 // 'global' to be available to the functions local scope.

 global $HTTP_POST_VARS;

 echo $HTTP_POST_VARS['name'];

 // Superglobals are available in any scope and do

 // not require 'global'. Superglobals are available

 // as of PHP 4.1.0, and HTTP_POST_VARS is now

 // deemed deprecated.

 echo $_POST['name'];

}

?>

Using static variables

Another important feature of variable scoping is the static variable. A static variable exists
only in a local function scope, but it does not lose its value when program execution leaves
this scope. Consider the following example:

Example #56 - Example demonstrating need for static variables

<?php

function Test()

{

 $a = 0;

 echo $a;

 $a++;

}

?>

This function is quite useless since every time it is called it sets $a to 0 and prints "0". The
$a ++ which increments the variable serves no purpose since as soon as the function exits
the $a variable disappears. To make a useful counting function which will not lose track of
the current count, the $a variable is declared static:

Example #57 - Example use of static variables

<?php

function Test()

{

 static $a = 0;

 echo $a;

 $a++;

}

?>

Now, every time the Test() function is called it will print the value of $a and increment it.

Static variables also provide one way to deal with recursive functions. A recursive function
is one which calls itself. Care must be taken when writing a recursive function because it is
possible to make it recurse indefinitely. You must make sure you have an adequate way of
terminating the recursion. The following simple function recursively counts to 10, using the
static variable $count to know when to stop:

Example #58 - Static variables with recursive functions

<?php

function Test()

{

 static $count = 0;

 $count++;

 echo $count;

 if ($count < 10) {

 Test();

 }

 $count--;

}

?>

Note

Static variables may be declared as seen in the examples above. Trying to assign
values to these variables which are the result of expressions will cause a parse error.

Example #59 - Declaring static variables

<?php

function foo(){

 static $int = 0; // correct

 static $int = 1+2; // wrong (as it is an expression)

 static $int = sqrt(121); // wrong (as it is an expression too)

 $int++;

 echo $int;

}

?>

References with global and static variables

The Zend Engine 1, driving PHP 4, implements the static and global modifier for variables
in terms of references. For example, a true global variable imported inside a function
scope with the global statement actually creates a reference to the global variable. This
can lead to unexpected behaviour which the following example addresses:

<?php

function test_global_ref() {

 global $obj;

 $obj = &new stdclass;

}

function test_global_noref() {

 global $obj;

 $obj = new stdclass;

}

test_global_ref();

var_dump($obj);

test_global_noref();

var_dump($obj);

?>

Executing this example will result in the following output:

NULL

object(stdClass)(0) {

}

A similar behaviour applies to the static statement. References are not stored statically:

<?php

function &get_instance_ref() {

 static $obj;

 echo 'Static object: ';

 var_dump($obj);

 if (!isset($obj)) {

 // Assign a reference to the static variable

 $obj = &new stdclass;

 }

 $obj->property++;

 return $obj;

}

function &get_instance_noref() {

 static $obj;

 echo 'Static object: ';

 var_dump($obj);

 if (!isset($obj)) {

 // Assign the object to the static variable

 $obj = new stdclass;

 }

 $obj->property++;

 return $obj;

}

$obj1 = get_instance_ref();

$still_obj1 = get_instance_ref();

echo "\n";

$obj2 = get_instance_noref();

$still_obj2 = get_instance_noref();

?>

Executing this example will result in the following output:

Static object: NULL

Static object: NULL

Static object: NULL

Static object: object(stdClass)(1) {

 ["property"]=>

 int(1)

}

This example demonstrates that when assigning a reference to a static variable, it's not
remembered when you call the &get_instance_ref() function a second time.

Variable variables

Sometimes it is convenient to be able to have variable variable names. That is, a variable
name which can be set and used dynamically. A normal variable is set with a statement
such as:

<?php

$a = 'hello';

?>

A variable variable takes the value of a variable and treats that as the name of a variable.
In the above example, hello, can be used as the name of a variable by using two dollar
signs. i.e.

<?php

$$a = 'world';

?>

At this point two variables have been defined and stored in the PHP symbol tree: $a with
contents "hello" and $hello with contents "world". Therefore, this statement:

<?php

echo "$a ${$a}";

?>

produces the exact same output as:

<?php

echo "$a $hello";

?>

i.e. they both produce: hello world.

In order to use variable variables with arrays, you have to resolve an ambiguity problem.
That is, if you write $$a[1] then the parser needs to know if you meant to use $a[1] as a
variable, or if you wanted $$a as the variable and then the [1] index from that variable. The
syntax for resolving this ambiguity is: ${$a[1]} for the first case and ${$a}[1] for the second.

Warning

Please note that variable variables cannot be used with PHP's Superglobal arrays
within functions or class methods. The variable $this is also a special variable that
cannot be referenced dynamically.

Variables From External Sources

HTML Forms (GET and POST)

When a form is submitted to a PHP script, the information from that form is automatically
made available to the script. There are many ways to access this information, for example:

Example #60 - A simple HTML form

<form action="foo.php" method="post">

 Name: <input type="text" name="username" />

 Email: <input type="text" name="email" />

 <input type="submit" name="submit" value="Submit me!" />

</form>

Depending on your particular setup and personal preferences, there are many ways to
access data from your HTML forms. Some examples are:

Example #61 - Accessing data from a simple POST HTML form

<?php

// Available since PHP 4.1.0

 echo $_POST['username'];

 echo $_REQUEST['username'];

 import_request_variables('p', 'p_');

 echo $p_username;

// Unavailable since PHP 6. As of PHP 5.0.0, these long predefined

// variables can be disabled with the register_long_arrays directive.

 echo $HTTP_POST_VARS['username'];

// Available if the PHP directive register_globals = on. As of

// PHP 4.2.0 the default value of register_globals = off.

// Using/relying on this method is not preferred.

 echo $username;

?>

Using a GET form is similar except you'll use the appropriate GET predefined variable
instead. GET also applies to the QUERY_STRING (the information after the '?' in a URL).
So, for example, http://www.example.com/test.php?id=3 contains GET data which is
accessible with $_GET['id']. See also $_REQUEST and import_request_variables().

Note

Superglobal arrays, like $_POST and $_GET, became available in PHP 4.1.0

As shown, before PHP 4.2.0 the default value for register_globals was on. The PHP
community is encouraging all to not rely on this directive as it's preferred to assume it's off
and code accordingly.

Note

The magic_quotes_gpc configuration directive affects Get, Post and Cookie values. If
turned on, value (It's "PHP!") will automagically become (It\'s \"PHP!\"). Escaping is
needed for DB insertion. See also addslashes(), stripslashes() and
magic_quotes_sybase.

PHP also understands arrays in the context of form variables (see the related faq). You
may, for example, group related variables together, or use this feature to retrieve values
from a multiple select input. For example, let's post a form to itself and upon submission
display the data:

Example #62 - More complex form variables

<?php

if ($_POST) {

 echo '<pre>';

 echo htmlspecialchars(print_r($_POST, true));

 echo '</pre>';

}

?>

<form action="" method="post">

 Name: <input type="text" name="personal[name]" />

 Email: <input type="text" name="personal[email]" />

 Beer:

 <select multiple name="beer[]">

 <option value="warthog">Warthog</option>

 <option value="guinness">Guinness</option>

 <option value="stuttgarter">Stuttgarter Schwabenbräu</option>

 </select>

 <input type="submit" value="submit me!" />

</form>

IMAGE SUBMIT variable names

When submitting a form, it is possible to use an image instead of the standard submit
button with a tag like:

<input type="image" src="image.gif" name="sub" />

When the user clicks somewhere on the image, the accompanying form will be transmitted
to the server with two additional variables, sub_x and sub_y. These contain the
coordinates of the user click within the image. The experienced may note that the actual
variable names sent by the browser contains a period rather than an underscore, but PHP
converts the period to an underscore automatically.

HTTP Cookies

PHP transparently supports HTTP cookies as defined by » Netscape's Spec. Cookies are
a mechanism for storing data in the remote browser and thus tracking or identifying return
users. You can set cookies using the setcookie() function. Cookies are part of the HTTP
header, so the SetCookie function must be called before any output is sent to the browser.
This is the same restriction as for the header() function. Cookie data is then available in
the appropriate cookie data arrays, such as $_COOKIE, $HTTP_COOKIE_VARS as well
as in $_REQUEST. See the setcookie() manual page for more details and examples.

If you wish to assign multiple values to a single cookie variable, you may assign it as an
array. For example:

http://wp.netscape.com/newsref/std/cookie_spec.html

<?php

 setcookie("MyCookie[foo]", 'Testing 1', time()+3600);

 setcookie("MyCookie[bar]", 'Testing 2', time()+3600);

?>

That will create two separate cookies although MyCookie will now be a single array in your
script. If you want to set just one cookie with multiple values, consider using serialize() or
explode() on the value first.

Note that a cookie will replace a previous cookie by the same name in your browser unless
the path or domain is different. So, for a shopping cart application you may want to keep a
counter and pass this along. i.e.

Example #63 - A setcookie() example

<?php

if (isset($_COOKIE['count'])) {

 $count = $_COOKIE['count'] + 1;

} else {

 $count = 1;

}

setcookie('count', $count, time()+3600);

setcookie("Cart[$count]", $item, time()+3600);

?>

Dots in incoming variable names

Typically, PHP does not alter the names of variables when they are passed into a script.
However, it should be noted that the dot (period, full stop) is not a valid character in a PHP
variable name. For the reason, look at it:
<?php

$varname.ext; /* invalid variable name */

?>
Now, what the parser sees is a variable named $varname, followed by the string
concatenation operator, followed by the barestring (i.e. unquoted string which doesn't
match any known key or reserved words) 'ext'. Obviously, this doesn't have the intended
result.

For this reason, it is important to note that PHP will automatically replace any dots in
incoming variable names with underscores.

Determining variable types

Because PHP determines the types of variables and converts them (generally) as needed,
it is not always obvious what type a given variable is at any one time. PHP includes
several functions which find out what type a variable is, such as: gettype(), is_array(),
is_float(), is_int(), is_object(), and is_string(). See also the chapter on Types.

Constants

A constant is an identifier (name) for a simple value. As the name suggests, that value
cannot change during the execution of the script (except for magic constants, which aren't
actually constants). A constant is case-sensitive by default. By convention, constant
identifiers are always uppercase.

The name of a constant follows the same rules as any label in PHP. A valid constant name
starts with a letter or underscore, followed by any number of letters, numbers, or
underscores. As a regular expression, it would be expressed thusly:
[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*

Tip

See also the Userland Naming Guide.

Example #64 - Valid and invalid constant names

<?php

// Valid constant names

define("FOO", "something");

define("FOO2", "something else");

define("FOO_BAR", "something more");

// Invalid constant names

define("2FOO", "something");

// This is valid, but should be avoided:

// PHP may one day provide a magical constant

// that will break your script

define("__FOO__", "something");

?>

Note

For our purposes here, a letter is a-z, A-Z, and the ASCII characters from 127 through
255 (0x7f-0xff).

Like superglobals, the scope of a constant is global. You can access constants anywhere
in your script without regard to scope. For more information on scope, read the manual
section on variable scope.

Syntax

You can define a constant by using the define() -function. Once a constant is defined, it
can never be changed or undefined.

Only scalar data (boolean, integer, float and string) can be contained in constants. Do not
define resource constants.

You can get the value of a constant by simply specifying its name. Unlike with variables,
you should not prepend a constant with a $. You can also use the function constant() to
read a constant's value if you wish to obtain the constant's name dynamically. Use
get_defined_constants() to get a list of all defined constants.

Note

Constants and (global) variables are in a different namespace. This implies that for
example TRUE and $TRUE are generally different.

If you use an undefined constant, PHP assumes that you mean the name of the constant
itself, just as if you called it as a string (CONSTANT vs "CONSTANT"). An error of level
E_NOTICE will be issued when this happens. See also the manual entry on why $foo[bar]
is wrong (unless you first define() bar as a constant). If you simply want to check if a
constant is set, use the defined() function.

These are the differences between constants and variables:

• Constants do not have a dollar sign ($) before them;

• Constants may only be defined using the define() function, not by simple assignment;

• Constants may be defined and accessed anywhere without regard to variable scoping
rules;

• Constants may not be redefined or undefined once they have been set; and

• Constants may only evaluate to scalar values.

Example #65 - Defining Constants

<?php

define("CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

echo Constant; // outputs "Constant" and issues a notice.

?>

See also Class Constants.

Magic constants

PHP provides a large number of predefined constants to any script which it runs. Many of
these constants, however, are created by various extensions, and will only be present
when those extensions are available, either via dynamic loading or because they have
been compiled in.

There are seven magical constants that change depending on where they are used. For
example, the value of __LINE__ depends on the line that it's used on in your script. These
special constants are case-insensitive and are as follows:

A few "magical" PHP constants

Name Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used
inside an include, the name of the included
file is returned. Since PHP 4.0.2, __FILE__
always contains an absolute path with
symlinks resolved whereas in older versions
it contained relative path under some
circumstances.

__DIR__ The directory of the file. If used inside an
include, the directory of the included file is
returned. This is equivalent to
dirname(__FILE__). This directory name
does not have a trailing slash unless it is the
root directory. (Added in PHP 5.3.0.)

__FUNCTION__ The function name. (Added in PHP 4.3.0) As
of PHP 5 this constant returns the function
name as it was declared (case-sensitive). In
PHP 4 its value is always lowercased.

__CLASS__ The class name. (Added in PHP 4.3.0) As of
PHP 5 this constant returns the class name
as it was declared (case-sensitive). In PHP
4 its value is always lowercased.

__METHOD__ The class method name. (Added in PHP
5.0.0) The method name is returned as it
was declared (case-sensitive).

__NAMESPACE__ The name of the current namespace
(case-sensitive). This constant is defined in
compile-time (Added in PHP 5.3.0).

See also get_class(), get_object_vars(), file_exists() and function_exists().

Expressions

Expressions are the most important building stones of PHP. In PHP, almost anything you
write is an expression. The simplest yet most accurate way to define an expression is
"anything that has a value".

The most basic forms of expressions are constants and variables. When you type "$a = 5",
you're assigning '5' into $a. '5', obviously, has the value 5, or in other words '5' is an
expression with the value of 5 (in this case, '5' is an integer constant).

After this assignment, you'd expect $a's value to be 5 as well, so if you wrote $b = $a,
you'd expect it to behave just as if you wrote $b = 5. In other words, $a is an expression
with the value of 5 as well. If everything works right, this is exactly what will happen.

Slightly more complex examples for expressions are functions. For instance, consider the
following function:

<?php

function foo ()

{

 return 5;

}

?>

Assuming you're familiar with the concept of functions (if you're not, take a look at the
chapter about functions), you'd assume that typing $c = foo() is essentially just like writing
$c = 5, and you're right. Functions are expressions with the value of their return value.
Since foo() returns 5, the value of the expression 'foo()' is 5. Usually functions don't just
return a static value but compute something.

Of course, values in PHP don't have to be integers, and very often they aren't. PHP
supports four scalar value types: integer values, floating point values (float), string values
and boolean values (scalar values are values that you can't 'break' into smaller pieces,
unlike arrays, for instance). PHP also supports two composite (non-scalar) types: arrays
and objects. Each of these value types can be assigned into variables or returned from
functions.

PHP takes expressions much further, in the same way many other languages do. PHP is
an expression-oriented language, in the sense that almost everything is an expression.
Consider the example we've already dealt with, '$a = 5'. It's easy to see that there are two
values involved here, the value of the integer constant '5', and the value of $a which is
being updated to 5 as well. But the truth is that there's one additional value involved here,
and that's the value of the assignment itself. The assignment itself evaluates to the
assigned value, in this case 5. In practice, it means that '$a = 5', regardless of what it
does, is an expression with the value 5. Thus, writing something like '$b = ($a = 5)' is like
writing '$a = 5; $b = 5;' (a semicolon marks the end of a statement). Since assignments
are parsed in a right to left order, you can also write '$b = $a = 5'.

Another good example of expression orientation is pre- and post-increment and

decrement. Users of PHP and many other languages may be familiar with the notation of
variable++ and variable--. These are increment and decrement operators. In PHP/FI 2, the
statement '$a++' has no value (is not an expression), and thus you can't assign it or use it
in any way. PHP enhances the increment/decrement capabilities by making these
expressions as well, like in C. In PHP, like in C, there are two types of increment -
pre-increment and post-increment. Both pre-increment and post-increment essentially
increment the variable, and the effect on the variable is identical. The difference is with the
value of the increment expression. Pre-increment, which is written '++$variable', evaluates
to the incremented value (PHP increments the variable before reading its value, thus the
name 'pre-increment'). Post-increment, which is written '$variable++' evaluates to the
original value of $variable, before it was incremented (PHP increments the variable after
reading its value, thus the name 'post-increment').

A very common type of expressions are comparison expressions. These expressions
evaluate to either FALSE or TRUE. PHP supports > (bigger than), >= (bigger than or
equal to), == (equal), != (not equal), < (smaller than) and <= (smaller than or equal to). The
language also supports a set of strict equivalence operators: === (equal to and same type)
and !== (not equal to or not same type). These expressions are most commonly used
inside conditional execution, such as if statements.

The last example of expressions we'll deal with here is combined operator-assignment
expressions. You already know that if you want to increment $a by 1, you can simply write
'$a++' or '++$a'. But what if you want to add more than one to it, for instance 3? You could
write '$a++' multiple times, but this is obviously not a very efficient or comfortable way. A
much more common practice is to write '$a = $a + 3'. '$a + 3' evaluates to the value of $a
plus 3, and is assigned back into $a, which results in incrementing $a by 3. In PHP, as in
several other languages like C, you can write this in a shorter way, which with time would
become clearer and quicker to understand as well. Adding 3 to the current value of $a can
be written '$a += 3'. This means exactly "take the value of $a, add 3 to it, and assign it
back into $a". In addition to being shorter and clearer, this also results in faster execution.
The value of '$a += 3', like the value of a regular assignment, is the assigned value. Notice
that it is NOT 3, but the combined value of $a plus 3 (this is the value that's assigned into
$a). Any two-place operator can be used in this operator-assignment mode, for example
'$a -= 5' (subtract 5 from the value of $a), '$b *= 7' (multiply the value of $b by 7), etc.

There is one more expression that may seem odd if you haven't seen it in other languages,
the ternary conditional operator:

<?php

$first ? $second : $third

?>

If the value of the first subexpression is TRUE (non-zero), then the second subexpression
is evaluated, and that is the result of the conditional expression. Otherwise, the third
subexpression is evaluated, and that is the value.

The following example should help you understand pre- and post-increment and
expressions in general a bit better:

<?php

function double($i)

{

 return $i*2;

}

$b = $a = 5; /* assign the value five into the variable $a and $b */

$c = $a++; /* post-increment, assign original value of $a

 (5) to $c */

$e = $d = ++$b; /* pre-increment, assign the incremented value of

 $b (6) to $d and $e */

/* at this point, both $d and $e are equal to 6 */

$f = double($d++); /* assign twice the value of $d before

 the increment, 2*6 = 12 to $f */

$g = double(++$e); /* assign twice the value of $e after

 the increment, 2*7 = 14 to $g */

$h = $g += 10; /* first, $g is incremented by 10 and ends with the

 value of 24. the value of the assignment (24) is

 then assigned into $h, and $h ends with the value

 of 24 as well. */

?>

Some expressions can be considered as statements. In this case, a statement has the
form of 'expr' ';' that is, an expression followed by a semicolon. In '$b=$a=5;', $a=5 is a
valid expression, but it's not a statement by itself. '$b=$a=5;' however is a valid statement.

One last thing worth mentioning is the truth value of expressions. In many events, mainly
in conditional execution and loops, you're not interested in the specific value of the
expression, but only care about whether it means TRUE or FALSE. The constants TRUE
and FALSE (case-insensitive) are the two possible boolean values. When necessary, an
expression is automatically converted to boolean. See the section about type-casting for
details about how.

PHP provides a full and powerful implementation of expressions, and documenting it
entirely goes beyond the scope of this manual. The above examples should give you a
good idea about what expressions are and how you can construct useful expressions.
Throughout the rest of this manual we'll write expr to indicate any valid PHP expression.

Operators

An operator is something that you feed with one or more values (or expressions, in
programming jargon) which yields another value (so that the construction itself becomes
an expression). So you can think of functions or constructions that return a value (like
print) as operators and those that return nothing (like echo) as any other thing.

There are three types of operators. Firstly there is the unary operator which operates on
only one value, for example ! (the negation operator) or ++ (the increment operator). The
second group are termed binary operators; this group contains most of the operators that
PHP supports, and a list follows below in the section Operator Precedence.

The third group is the ternary operator: ?:. It should be used to select between two
expressions depending on a third one, rather than to select two sentences or paths of
execution. Surrounding ternary expressions with parentheses is a very good idea.

Operator Precedence

The precedence of an operator specifies how "tightly" it binds two expressions together.
For example, in the expression 1 + 5 * 3, the answer is 16 and not 18 because the
multiplication ("*") operator has a higher precedence than the addition ("+") operator.
Parentheses may be used to force precedence, if necessary. For instance: (1 + 5) * 3
evaluates to 18. If operator precedence is equal, left to right associativity is used.

The following table lists the precedence of operators with the highest-precedence
operators listed at the top of the table. Operators on the same line have equal precedence,
in which case their associativity decides which order to evaluate them in.

Operator Precedence

Associativity Operators Additional Information

non-associative new new

left [array()

non-associative ++ -- increment/decrement

non-associative ~ - (int) (float) (string) (array)
(object) (bool) @

types

non-associative instanceof types

right ! logical

left * / % arithmetic

left + - . arithmetic and string

left << >> bitwise

non-associative < <= > >= <> comparison

non-associative == != === !== comparison

left & bitwise and references

left ^ bitwise

left | bitwise

left && logical

left || logical

left ? : ternary

right = += -= *= /= .= %= &= |= ^=
<<= >>=

assignment

left and logical

left xor logical

left or logical

left , many uses

Left associativity means that the expression is evaluated from left to right, right
associativity means the opposite.

Example #66 - Associativity

<?php

$a = 3 * 3 % 5; // (3 * 3) % 5 = 4

$a = true ? 0 : true ? 1 : 2; // (true ? 0 : true) ? 1 : 2 = 2

$a = 1;

$b = 2;

$a = $b += 3; // $a = ($b += 3) -> $a = 5, $b = 5

?>

Use parentheses to increase readability of the code.

Note

Although = has a lower precedence than most other operators, PHP will still allow
expressions similar to the following: if (!$a = foo()), in which case the return value of
foo() is put into $a.

Arithmetic Operators

Remember basic arithmetic from school? These work just like those.

Arithmetic Operators

Example Name Result

-$a Negation Opposite of $a.

$a + $b Addition Sum of $a and $b.

$a - $b Subtraction Difference of $a and $b.

$a * $b Multiplication Product of $a and $b.

$a / $b Division Quotient of $a and $b.

$a % $b Modulus Remainder of $a divided by
$b.

The division operator ("/") returns a float value unless the two operands are integers (or
strings that get converted to integers) and the numbers are evenly divisible, in which case
an integer value will be returned.

Operands of modulus are converted to integers (by stripping the decimal part) before
processing.

Note

Remainder $a % $b is negative for negative $a.

See also the manual page on Math functions.

Assignment Operators

The basic assignment operator is "=". Your first inclination might be to think of this as
"equal to". Don't. It really means that the left operand gets set to the value of the
expression on the rights (that is, "gets set to").

The value of an assignment expression is the value assigned. That is, the value of "$a = 3"
is 3. This allows you to do some tricky things:

<?php

$a = ($b = 4) + 5; // $a is equal to 9 now, and $b has been set to 4.

?>

In addition to the basic assignment operator, there are "combined operators" for all of the
binary arithmetic, array union and string operators that allow you to use a value in an
expression and then set its value to the result of that expression. For example:

<?php

$a = 3;

$a += 5; // sets $a to 8, as if we had said: $a = $a + 5;

$b = "Hello ";

$b .= "There!"; // sets $b to "Hello There!", just like $b = $b . "There!";

?>

Note that the assignment copies the original variable to the new one (assignment by
value), so changes to one will not affect the other. This may also have relevance if you
need to copy something like a large array inside a tight loop. Assignment by reference is
also supported, using the $var = &$othervar; syntax. 'Assignment by reference' means that
both variables end up pointing at the same data, and nothing is copied anywhere. To learn
more about references, please read References explained. As of PHP 5, objects are
assigned by reference unless explicitly told otherwise with the new clone keyword.

Bitwise Operators

Bitwise operators allow you to turn specific bits within an integer on or off. If both the left-
and right-hand parameters are strings, the bitwise operator will operate on the characters'
ASCII values.

<?php

echo 12 ^ 9; // Outputs '5'

echo "12" ^ "9"; // Outputs the Backspace character (ascii 8)

 // ('1' (ascii 49)) ^ ('9' (ascii 57)) = #8

echo "hallo" ^ "hello"; // Outputs the ascii values #0 #4 #0 #0 #0

 // 'a' ^ 'e' = #4

echo 2 ^ "3"; // Outputs 1

 // 2 ^ ((int)"3") == 1

echo "2" ^ 3; // Outputs 1

 // ((int)"2") ^ 3 == 1

?>

Bitwise Operators

Example Name Result

$a & $b And Bits that are set in both $a
and $b are set.

$a | $b Or Bits that are set in either $a
or $b are set.

$a ^ $b Xor Bits that are set in $a or $b
but not both are set.

~ $a Not Bits that are set in $a are not
set, and vice versa.

$a << $b Shift left Shift the bits of $a $b steps
to the left (each step means
"multiply by two")

$a >> $b Shift right Shift the bits of $a $b steps
to the right (each step means
"divide by two")

Warning

Don't right shift for more than 32 bits on 32 bits systems. Don't left shift in case it
results to number longer than 32 bits.

Comparison Operators

Comparison operators, as their name implies, allow you to compare two values. You may
also be interested in viewing the type comparison tables, as they show examples of
various type related comparisons.

Comparison Operators

Example Name Result

$a == $b Equal TRUE if $a is equal to $b.

$a === $b Identical TRUE if $a is equal to $b,
and they are of the same
type. (introduced in PHP 4)

$a != $b Not equal TRUE if $a is not equal to

$b.

$a <> $b Not equal TRUE if $a is not equal to
$b.

$a !== $b Not identical TRUE if $a is not equal to
$b, or they are not of the
same type. (introduced in
PHP 4)

$a < $b Less than TRUE if $a is strictly less
than $b.

$a > $b Greater than TRUE if $a is strictly greater
than $b.

$a <= $b Less than or equal to TRUE if $a is less than or
equal to $b.

$a >= $b Greater than or equal to TRUE if $a is greater than or
equal to $b.

If you compare an integer with a string, the string is converted to a number. If you compare
two numerical strings, they are compared as integers. These rules also apply to the switch
statement.

<?php

var_dump(0 == "a"); // 0 == 0 -> true

var_dump("1" == "01"); // 1 == 1 -> true

var_dump("1" == "1e0"); // 1 == 1 -> true

switch ("a") {

case 0:

 echo "0";

 break;

case "a": // never reached because "a" is already matched with 0

 echo "a";

 break;

}

?>

For various types, comparison is done according to the following table (in order).

Comparison with Various Types

Type of Operand 1 Type of Operand 2 Result

null or string string Convert NULL to "",
numerical or lexical
comparison

bool or null anything Convert to bool, FALSE <
TRUE

object object Built-in classes can define its
own comparison, different
classes are uncomparable,
same class - compare
properties the same way as
arrays (PHP 4), PHP 5 has
its own explanation

string, resource or number string, resource or number Translate strings and
resources to numbers, usual
math

array array Array with fewer members is
smaller, if key from operand
1 is not found in operand 2
then arrays are
uncomparable, otherwise -
compare value by value (see
following example)

array anything array is always greater

object anything object is always greater

Example #67 - Transcription of standard array comparison

<?php

// Arrays are compared like this with standard comparison operators

function standard_array_compare($op1, $op2)

{

 if (count($op1) < count($op2)) {

 return -1; // $op1 < $op2

 } elseif (count($op1) > count($op2)) {

 return 1; // $op1 > $op2

 }

 foreach ($op1 as $key => $val) {

 if (!array_key_exists($key, $op2)) {

 return null; // uncomparable

 } elseif ($val < $op2[$key]) {

 return -1;

 } elseif ($val > $op2[$key]) {

 return 1;

 }

 }

 return 0; // $op1 == $op2

}

?>

See also strcasecmp(), strcmp(), Array operators, and the manual section on Types.

Ternary Operator

Another conditional operator is the "?:" (or ternary) operator.

Example #68 - Assigning a default value

<?php

// Example usage for: Ternary Operator

$action = (empty($_POST['action'])) ? 'default' : $_POST['action'];

// The above is identical to this if/else statement

if (empty($_POST['action'])) {

 $action = 'default';

} else {

 $action = $_POST['action'];

}

?>

The expression (expr1) ? (expr2) : (expr3) evaluates to expr2 if expr1 evaluates to TRUE,
and expr3 if expr1 evaluates to FALSE.

Note

Please note that the ternary operator is a statement, and that it doesn't evaluate to a
variable, but to the result of a statement. This is important to know if you want to return
a variable by reference. The statement return $var == 42 ? $a : $b; in a
return-by-reference function will therefore not work and a warning is issued in later
PHP versions.

Note

Is is recommended that you avoid "stacking" ternary expressions. PHP's behaviour
when using more than one ternary operator within a single statement is non-obvious:

Example #69 - Non-obvious Ternary Behaviour

<?php

// on first glance, the following appears to output 'true'

echo (true?'true':false?'t':'f');

// however, the actual output of the above is 't'

// this is because ternary expressions are evaluated from left to right

// the following is a more obvious version of the same code as above

echo ((true ? 'true' : 'false') ? 't' : 'f');

// here, you can see that the first expression is evaluated to 'true',
which

// in turn evaluates to (bool)true, thus returning the true branch of the

// second ternary expression.

?>

Error Control Operators

PHP supports one error control operator: the at sign (@). When prepended to an
expression in PHP, any error messages that might be generated by that expression will be
ignored.

If the track_errors feature is enabled, any error message generated by the expression will
be saved in the variable $php_errormsg. This variable will be overwritten on each error, so
check early if you want to use it.

<?php

/* Intentional file error */

$my_file = @file ('non_existent_file') or

 die ("Failed opening file: error was '$php_errormsg'");

// this works for any expression, not just functions:

$value = @$cache[$key];

// will not issue a notice if the index $key doesn't exist.

?>

Note

The @-operator works only on expressions. A simple rule of thumb is: if you can take
the value of something, you can prepend the @ operator to it. For instance, you can
prepend it to variables, function and include() calls, constants, and so forth. You
cannot prepend it to function or class definitions, or conditional structures such as if
and foreach, and so forth.

See also error_reporting() and the manual section for Error Handling and Logging
functions.

Warning

Currently the "@" error-control operator prefix will even disable error reporting for
critical errors that will terminate script execution. Among other things, this means that if
you use "@" to suppress errors from a certain function and either it isn't available or
has been mistyped, the script will die right there with no indication as to why.

Execution Operators

PHP supports one execution operator: backticks (``). Note that these are not
single-quotes! PHP will attempt to execute the contents of the backticks as a shell
command; the output will be returned (i.e., it won't simply be dumped to output; it can be
assigned to a variable). Use of the backtick operator is identical to shell_exec().

<?php

$output = `ls -al`;

echo "<pre>$output</pre>";

?>

Note

The backtick operator is disabled when safe mode is enabled or shell_exec() is
disabled.

See also the manual section on Program Execution functions, popen() proc_open(), and
Using PHP from the commandline.

Incrementing/Decrementing Operators

PHP supports C-style pre- and post-increment and decrement operators.

Note

The increment/decrement operators do not affect boolean values. Decrementing NULL
values has no effect too, but incrementing them results in 1.

Increment/decrement Operators

Example Name Effect

++$a Pre-increment Increments $a by one, then
returns $a.

$a++ Post-increment Returns $a, then increments
$a by one.

--$a Pre-decrement Decrements $a by one, then
returns $a.

$a-- Post-decrement Returns $a, then decrements
$a by one.

Here's a simple example script:

<?php

echo "<h3>Postincrement</h3>";

$a = 5;

echo "Should be 5: " . $a++ . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Preincrement</h3>";

$a = 5;

echo "Should be 6: " . ++$a . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Postdecrement</h3>";

$a = 5;

echo "Should be 5: " . $a-- . "
\n";

echo "Should be 4: " . $a . "
\n";

echo "<h3>Predecrement</h3>";

$a = 5;

echo "Should be 4: " . --$a . "
\n";

echo "Should be 4: " . $a . "
\n";

?>

PHP follows Perl's convention when dealing with arithmetic operations on character
variables and not C's. For example, in Perl 'Z'+1 turns into 'AA', while in C 'Z'+1 turns into
'[' (ord('Z') == 90, ord('[') == 91). Note that character variables can be incremented but not
decremented and even so only plain ASCII characters (a-z and A-Z) are supported.

Example #70 - Arithmetic Operations on Character Variables

<?php

$i = 'W';

for ($n=0; $n<6; $n++) {

 echo ++$i . "\n";

}

?>

The above example will output:

X

Y

Z

AA

AB

AC

Incrementing or decrementing booleans has no effect.

Logical Operators

Logical Operators

Example Name Result

$a and $b And TRUE if both $a and $b are
TRUE.

$a or $b Or TRUE if either $a or $b is
TRUE.

$a xor $b Xor TRUE if either $a or $b is
TRUE, but not both.

! $a Not TRUE if $a is not TRUE.

$a && $b And TRUE if both $a and $b are
TRUE.

$a || $b Or TRUE if either $a or $b is
TRUE.

The reason for the two different variations of "and" and "or" operators is that they operate
at different precedences. (See Operator Precedence.)

Example #71 - Logical operators illustrated

<?php

// foo() will never get called as those operators are short-circuit

$a = (false && foo());

$b = (true || foo());

$c = (false and foo());

$d = (true or foo());

// "||" has a greater precedence than "or"

$e = false || true; // $e will be assigned to (false || true) which is true

$f = false or true; // $f will be assigned to false

var_dump($e, $f);

// "&&" has a greater precedence than "and"

$g = true && false; // $g will be assigned to (true && false) which is false

$h = true and false; // $h will be assigned to true

var_dump($g, $h);

?>

The above example will output something similar to:

bool(true)

bool(false)

bool(false)

bool(true)

String Operators

There are two string operators. The first is the concatenation operator ('.'), which returns
the concatenation of its right and left arguments. The second is the concatenating
assignment operator ('.='), which appends the argument on the right side to the argument
on the left side. Please read Assignment Operators for more information.

<?php

$a = "Hello ";

$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";

$a .= "World!"; // now $a contains "Hello World!"

?>

See also the manual sections on the String type and String functions.

Array Operators

Array Operators

Example Name Result

$a + $b Union Union of $a and $b.

$a == $b Equality TRUE if $a and $b have the
same key/value pairs.

$a === $b Identity TRUE if $a and $b have the
same key/value pairs in the
same order and of the same
types.

$a != $b Inequality TRUE if $a is not equal to
$b.

$a <> $b Inequality TRUE if $a is not equal to
$b.

$a !== $b Non-identity TRUE if $a is not identical to
$b.

The + operator appends elements of remaining keys from the right handed array to the left
handed, whereas duplicated keys are NOT overwritten.

<?php

$a = array("a" => "apple", "b" => "banana");

$b = array("a" => "pear", "b" => "strawberry", "c" => "cherry");

$c = $a + $b; // Union of $a and $b

echo "Union of \$a and \$b: \n";

var_dump($c);

$c = $b + $a; // Union of $b and $a

echo "Union of \$b and \$a: \n";

var_dump($c);

?>

When executed, this script will print the following:
Union of $a and $b:

array(3) {

 ["a"]=>

 string(5) "apple"

 ["b"]=>

 string(6) "banana"

 ["c"]=>

 string(6) "cherry"

}

Union of $b and $a:

array(3) {

 ["a"]=>

 string(4) "pear"

 ["b"]=>

 string(10) "strawberry"

 ["c"]=>

 string(6) "cherry"

}

Elements of arrays are equal for the comparison if they have the same key and value.

Example #72 - Comparing arrays

<?php

$a = array("apple", "banana");

$b = array(1 => "banana", "0" => "apple");

var_dump($a == $b); // bool(true)

var_dump($a === $b); // bool(false)

?>

See also the manual sections on the Array type and Array functions.

Type Operators

instanceof is used to determine whether a PHP variable is an instantiated object of a
certain class:

Example #73 - Using instanceof with classes

<?php

class MyClass

{

}

class NotMyClass

{

}

$a = new MyClass;

var_dump($a instanceof MyClass);

var_dump($a instanceof NotMyClass);

?>

The above example will output:

bool(true)

bool(false)

instanceof can also be used to determine whether a variable is an instantiated object of a
class that inherits from a parent class:

Example #74 - Using instanceof with inherited classes

<?php

class ParentClass

{

}

class MyClass extends ParentClass

{

}

$a = new MyClass;

var_dump($a instanceof MyClass);

var_dump($a instanceof ParentClass);

?>

The above example will output:

bool(true)

bool(true)

To check if an object is not an instanceof a class, the logical not operator can be used.

Example #75 - Using instanceof to check if object is not an instanceof a class

<?php

class MyClass

{

}

$a = new MyClass;

var_dump(!($a instanceof stdClass));

?>

The above example will output:

bool(true)

Lastly, instanceof can also be used to determine whether a variable is an instantiated
object of a class that implements an interface:

Example #76 - Using instanceof for class

<?php

interface MyInterface

{

}

class MyClass implements MyInterface

{

}

$a = new MyClass;

var_dump($a instanceof MyClass);

var_dump($a instanceof MyInterface);

?>

The above example will output:

bool(true)

bool(true)

Although instanceof is usually used with a literal classname, it can also be used with
another object or a string variable:

Example #77 - Using instanceof with other variables

<?php

interface MyInterface

{

}

class MyClass implements MyInterface

{

}

$a = new MyClass;

$b = new MyClass;

$c = 'MyClass';

$d = 'NotMyClass';

var_dump($a instanceof $b); // $b is an object of class MyClass

var_dump($a instanceof $c); // $c is a string 'MyClass'

var_dump($a instanceof $d); // $d is a string 'NotMyClass'

?>

The above example will output:

bool(true)

bool(true)

bool(false)

There are a few pitfalls to be aware of. Before PHP version 5.1.0, instanceof would call
__autoload() if the class name did not exist. In addition, if the class was not loaded, a fatal
error would occur. This can be worked around by using a dynamic class reference, or a
string variable containing the class name:

Example #78 - Avoiding classname lookups and fatal errors with instanceof in
PHP 5.0

<?php

$d = 'NotMyClass';

var_dump($a instanceof $d); // no fatal error here

?>

The above example will output:

bool(false)

The instanceof operator was introduced in PHP 5. Before this time is_a() was used but
is_a() has since been deprecated in favor of instanceof.

See also get_class() and is_a().

Control Structures

Introduction

Any PHP script is built out of a series of statements. A statement can be an assignment, a
function call, a loop, a conditional statement or even a statement that does nothing (an
empty statement). Statements usually end with a semicolon. In addition, statements can
be grouped into a statement-group by encapsulating a group of statements with curly
braces. A statement-group is a statement by itself as well. The various statement types are
described in this chapter.

if

The if construct is one of the most important features of many languages, PHP included. It
allows for conditional execution of code fragments. PHP features an if structure that is
similar to that of C:

if (expr)

 statement

As described in the section about expressions, expression is evaluated to its Boolean
value. If expression evaluates to TRUE, PHP will execute statement, and if it evaluates to
FALSE - it'll ignore it. More information about what values evaluate to FALSE can be
found in the 'Converting to boolean' section.

The following example would display a is bigger than b if $a is bigger than $b:

<?php

if ($a > $b)

 echo "a is bigger than b";

?>

Often you'd want to have more than one statement to be executed conditionally. Of
course, there's no need to wrap each statement with an if clause. Instead, you can group
several statements into a statement group. For example, this code would display a is
bigger than b if $a is bigger than $b, and would then assign the value of $a into $b:

<?php

if ($a > $b) {

 echo "a is bigger than b";

 $b = $a;

}

?>

If statements can be nested infinitely within other if statements, which provides you with
complete flexibility for conditional execution of the various parts of your program.

else

Often you'd want to execute a statement if a certain condition is met, and a different
statement if the condition is not met. This is what else is for. else extends an if statement
to execute a statement in case the expression in the if statement evaluates to FALSE. For
example, the following code would display a is bigger than b if $a is bigger than $b, and a
is NOT bigger than b otherwise:

<?php

if ($a > $b) {

 echo "a is bigger than b";

} else {

 echo "a is NOT bigger than b";

}

?>

The else statement is only executed if the if expression evaluated to FALSE, and if there
were any elseif expressions - only if they evaluated to FALSE as well (see elseif).

elseif / else if

elseif, as its name suggests, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression evaluates to
FALSE. However, unlike else, it will execute that alternative expression only if the elseif
conditional expression evaluates to TRUE. For example, the following code would display
a is bigger than b, a equal to b or a is smaller than b:

<?php

if ($a > $b) {

 echo "a is bigger than b";

} elseif ($a == $b) {

 echo "a is equal to b";

} else {

 echo "a is smaller than b";

}

?>

There may be several elseif s within the same if statement. The first elseif expression (if
any) that evaluates to TRUE would be executed. In PHP, you can also write 'else if' (in two
words) and the behavior would be identical to the one of 'elseif' (in a single word). The
syntactic meaning is slightly different (if you're familiar with C, this is the same behavior)
but the bottom line is that both would result in exactly the same behavior.

The elseif statement is only executed if the preceding if expression and any preceding
elseif expressions evaluated to FALSE, and the current elseif expression evaluated to
TRUE.

Note

Note that elseif and else if will only be considered exactly the same when using curly
brackets as in the above example. When using a colon to define your if / elseif
conditions, you must separate else if into two words, or PHP will fail with a parse error.

<?php

/* Incorrect Method: */

if($a > $b):

 echo $a." is greater than ".$b;

else if($a == $b): // Will not compile.

 echo "The above line causes a parse error.";

endif;

/* Correct Method: */

if($a > $b):

 echo $a." is greater than ".$b;

elseif($a == $b): // Note the combination of the words.

 echo $a." equals ".$b;

else:

 echo $a." is neither greater than or equal to ".$b;

endif;

?>

Alternative syntax for control structures

PHP offers an alternative syntax for some of its control structures; namely, if, while, for,
foreach, and switch. In each case, the basic form of the alternate syntax is to change the
opening brace to a colon (:) and the closing brace to endif;, endwhile;, endfor;, endforeach;
, or endswitch;, respectively.

<?php if ($a == 5): ?>

A is equal to 5

<?php endif; ?>

In the above example, the HTML block "A is equal to 5" is nested within an if statement
written in the alternative syntax. The HTML block would be displayed only if $a is equal to
5.

The alternative syntax applies to else and elseif as well. The following is an if structure
with elseif and else in the alternative format:

<?php

if ($a == 5):

 echo "a equals 5";

 echo "...";

elseif ($a == 6):

 echo "a equals 6";

 echo "!!!";

else:

 echo "a is neither 5 nor 6";

endif;

?>

See also while, for, and if for further examples.

while

while loops are the simplest type of loop in PHP. They behave just like their C
counterparts. The basic form of a while statement is:

while (expr)

 statement

The meaning of a while statement is simple. It tells PHP to execute the nested
statement(s) repeatedly, as long as the while expression evaluates to TRUE. The value of
the expression is checked each time at the beginning of the loop, so even if this value
changes during the execution of the nested statement(s), execution will not stop until the
end of the iteration (each time PHP runs the statements in the loop is one iteration).
Sometimes, if the while expression evaluates to FALSE from the very beginning, the
nested statement(s) won't even be run once.

Like with the if statement, you can group multiple statements within the same while loop by
surrounding a group of statements with curly braces, or by using the alternate syntax:

while (expr):

 statement

 ...

endwhile;

The following examples are identical, and both print the numbers 1 through 10:

<?php

/* example 1 */

$i = 1;

while ($i <= 10) {

 echo $i++; /* the printed value would be

 $i before the increment

 (post-increment) */

}

/* example 2 */

$i = 1;

while ($i <= 10):

 echo $i;

 $i++;

endwhile;

?>

do-while

do-while loops are very similar to while loops, except the truth expression is checked at the
end of each iteration instead of in the beginning. The main difference from regular while
loops is that the first iteration of a do-while loop is guaranteed to run (the truth expression
is only checked at the end of the iteration), whereas it may not necessarily run with a
regular while loop (the truth expression is checked at the beginning of each iteration, if it
evaluates to FALSE right from the beginning, the loop execution would end immediately).

There is just one syntax for do-while loops:

<?php

$i = 0;

do {

 echo $i;

} while ($i > 0);

?>

The above loop would run one time exactly, since after the first iteration, when truth
expression is checked, it evaluates to FALSE ($i is not bigger than 0) and the loop
execution ends.

Advanced C users may be familiar with a different usage of the do-while loop, to allow
stopping execution in the middle of code blocks, by encapsulating them with do-while (0),
and using the break statement. The following code fragment demonstrates this:

<?php

do {

 if ($i < 5) {

 echo "i is not big enough";

 break;

 }

 $i *= $factor;

 if ($i < $minimum_limit) {

 break;

 }

 echo "i is ok";

 /* process i */

} while (0);

?>

Don't worry if you don't understand this right away or at all. You can code scripts and even
powerful scripts without using this 'feature'.

for

for loops are the most complex loops in PHP. They behave like their C counterparts. The
syntax of a for loop is:

for (expr1; expr2; expr3)

 statement

The first expression (expr1) is evaluated (executed) once unconditionally at the beginning
of the loop.

In the beginning of each iteration, expr2 is evaluated. If it evaluates to TRUE, the loop
continues and the nested statement(s) are executed. If it evaluates to FALSE, the
execution of the loop ends.

At the end of each iteration, expr3 is evaluated (executed).

Each of the expressions can be empty or contain multiple expressions separated by
commas. In expr2, all expressions separated by a comma are evaluated but the result is
taken from the last part. expr2 being empty means the loop should be run indefinitely (PHP
implicitly considers it as TRUE, like C). This may not be as useless as you might think,
since often you'd want to end the loop using a conditional break statement instead of using
the for truth expression.

Consider the following examples. All of them display the numbers 1 through 10:

<?php

/* example 1 */

for ($i = 1; $i <= 10; $i++) {

 echo $i;

}

/* example 2 */

for ($i = 1; ; $i++) {

 if ($i > 10) {

 break;

 }

 echo $i;

}

/* example 3 */

$i = 1;

for (; ;) {

 if ($i > 10) {

 break;

 }

 echo $i;

 $i++;

}

/* example 4 */

for ($i = 1, $j = 0; $i <= 10; $j += $i, print $i, $i++);

?>

Of course, the first example appears to be the nicest one (or perhaps the fourth), but you
may find that being able to use empty expressions in for loops comes in handy in many
occasions.

PHP also supports the alternate "colon syntax" for for loops.

for (expr1; expr2; expr3):

 statement

 ...

endfor;

foreach

PHP 4 introduced a foreach construct, much like Perl and some other languages. This
simply gives an easy way to iterate over arrays. foreach works only on arrays, and will
issue an error when you try to use it on a variable with a different data type or an
uninitialized variable. There are two syntaxes; the second is a minor but useful extension
of the first:

foreach (array_expression as $value)

 statement

foreach (array_expression as $key => $value)

 statement

The first form loops over the array given by array_expression. On each loop, the value of
the current element is assigned to $value and the internal array pointer is advanced by
one (so on the next loop, you'll be looking at the next element).

The second form does the same thing, except that the current element's key will be
assigned to the variable $key on each loop.

As of PHP 5, it is possible to iterate objects too.

Note

When foreach first starts executing, the internal array pointer is automatically reset to

the first element of the array. This means that you do not need to call reset() before a
foreach loop.

Note

Unless the array is referenced, foreach operates on a copy of the specified array and
not the array itself. foreach has some side effects on the array pointer. Don't rely on
the array pointer during or after the foreach without resetting it.

As of PHP 5, you can easily modify array's elements by preceding $value with &. This will
assign reference instead of copying the value.

<?php

$arr = array(1, 2, 3, 4);

foreach ($arr as &$value) {

 $value = $value * 2;

}

// $arr is now array(2, 4, 6, 8)

unset($value); // break the reference with the last element

?>

This is possible only if iterated array can be referenced (i.e. is variable).

Warning

Reference of a $value and the last array element remain even after the foreach loop. It
is recommended to destroy it by unset().

Note

foreach does not support the ability to suppress error messages using '@'.

You may have noticed that the following are functionally identical:

<?php

$arr = array("one", "two", "three");

reset($arr);

while (list(, $value) = each($arr)) {

 echo "Value: $value
\n";

}

foreach ($arr as $value) {

 echo "Value: $value
\n";

}

?>

The following are also functionally identical:

<?php

$arr = array("one", "two", "three");

reset($arr);

while (list($key, $value) = each($arr)) {

 echo "Key: $key; Value: $value
\n";

}

foreach ($arr as $key => $value) {

 echo "Key: $key; Value: $value
\n";

}

?>

Some more examples to demonstrate usages:

<?php

/* foreach example 1: value only */

$a = array(1, 2, 3, 17);

foreach ($a as $v) {

 echo "Current value of \$a: $v.\n";

}

/* foreach example 2: value (with its manual access notation printed for
illustration) */

$a = array(1, 2, 3, 17);

$i = 0; /* for illustrative purposes only */

foreach ($a as $v) {

 echo "\$a[$i] => $v.\n";

 $i++;

}

/* foreach example 3: key and value */

$a = array(

 "one" => 1,

 "two" => 2,

 "three" => 3,

 "seventeen" => 17

);

foreach ($a as $k => $v) {

 echo "\$a[$k] => $v.\n";

}

/* foreach example 4: multi-dimensional arrays */

$a = array();

$a[0][0] = "a";

$a[0][1] = "b";

$a[1][0] = "y";

$a[1][1] = "z";

foreach ($a as $v1) {

 foreach ($v1 as $v2) {

 echo "$v2\n";

 }

}

/* foreach example 5: dynamic arrays */

foreach (array(1, 2, 3, 4, 5) as $v) {

 echo "$v\n";

}

?>

break

break ends execution of the current for, foreach, while, do-while or switch structure.

break accepts an optional numeric argument which tells it how many nested enclosing
structures are to be broken out of.

<?php

$arr = array('one', 'two', 'three', 'four', 'stop', 'five');

while (list(, $val) = each($arr)) {

 if ($val == 'stop') {

 break; /* You could also write 'break 1;' here. */

 }

 echo "$val
\n";

}

/* Using the optional argument. */

$i = 0;

while (++$i) {

 switch ($i) {

 case 5:

 echo "At 5
\n";

 break 1; /* Exit only the switch. */

 case 10:

 echo "At 10; quitting
\n";

 break 2; /* Exit the switch and the while. */

 default:

 break;

 }

}

?>

continue

continue is used within looping structures to skip the rest of the current loop iteration and
continue execution at the condition evaluation and then the beginning of the next iteration.

Note

Note that in PHP the switch statement is considered a looping structure for the
purposes of continue.

continue accepts an optional numeric argument which tells it how many levels of enclosing
loops it should skip to the end of.

<?php

while (list($key, $value) = each($arr)) {

 if (!($key % 2)) { // skip odd members

 continue;

 }

 do_something_odd($value);

}

$i = 0;

while ($i++ < 5) {

 echo "Outer
\n";

 while (1) {

 echo " Middle
\n";

 while (1) {

 echo " Inner
\n";

 continue 3;

 }

 echo "This never gets output.
\n";

 }

 echo "Neither does this.
\n";

}

?>

Omitting the semicolon after continue can lead to confusion. Here's an example of what
you shouldn't do.

<?php

 for ($i = 0; $i < 5; ++$i) {

 if ($i == 2)

 continue

 print "$i\n";

 }

?>

One can expect the result to be :

0

1

3

4

but this script will output :

2

because the return value of the print() call is int(1), and it will look like the optional numeric
argument mentioned above.

switch

The switch statement is similar to a series of IF statements on the same expression. In
many occasions, you may want to compare the same variable (or expression) with many
different values, and execute a different piece of code depending on which value it equals
to. This is exactly what the switch statement is for.

Note

Note that unlike some other languages, the continue statement applies to switch and
acts similar to break. If you have a switch inside a loop and wish to continue to the next
iteration of the outer loop, use continue 2.

Note

Note that switch/case does loose comparision.

The following two examples are two different ways to write the same thing, one using a
series of if and elseif statements, and the other using the switch statement:

Example #79 - switch structure

<?php

if ($i == 0) {

 echo "i equals 0";

} elseif ($i == 1) {

 echo "i equals 1";

} elseif ($i == 2) {

 echo "i equals 2";

}

switch ($i) {

case 0:

 echo "i equals 0";

 break;

case 1:

 echo "i equals 1";

 break;

case 2:

 echo "i equals 2";

 break;

}

?>

Example #80 - switch structure allows usage of strings

<?php

switch ($i) {

case "apple":

 echo "i is apple";

 break;

case "bar":

 echo "i is bar";

 break;

case "cake":

 echo "i is cake";

 break;

}

?>

It is important to understand how the switch statement is executed in order to avoid
mistakes. The switch statement executes line by line (actually, statement by statement). In
the beginning, no code is executed. Only when a case statement is found with a value that
matches the value of the switch expression does PHP begin to execute the statements.
PHP continues to execute the statements until the end of the switch block, or the first time
it sees a break statement. If you don't write a break statement at the end of a case's
statement list, PHP will go on executing the statements of the following case. For example:

<?php

switch ($i) {

case 0:

 echo "i equals 0";

case 1:

 echo "i equals 1";

case 2:

 echo "i equals 2";

}

?>

Here, if $i is equal to 0, PHP would execute all of the echo statements! If $i is equal to 1,
PHP would execute the last two echo statements. You would get the expected behavior ('i
equals 2' would be displayed) only if $i is equal to 2. Thus, it is important not to forget
break statements (even though you may want to avoid supplying them on purpose under
certain circumstances).

In a switch statement, the condition is evaluated only once and the result is compared to

each case statement. In an elseif statement, the condition is evaluated again. If your
condition is more complicated than a simple compare and/or is in a tight loop, a switch
may be faster.

The statement list for a case can also be empty, which simply passes control into the
statement list for the next case.

<?php

switch ($i) {

case 0:

case 1:

case 2:

 echo "i is less than 3 but not negative";

 break;

case 3:

 echo "i is 3";

}

?>

A special case is the default case. This case matches anything that wasn't matched by the
other cases. For example:

<?php

switch ($i) {

case 0:

 echo "i equals 0";

 break;

case 1:

 echo "i equals 1";

 break;

case 2:

 echo "i equals 2";

 break;

default:

 echo "i is not equal to 0, 1 or 2";

}

?>

The case expression may be any expression that evaluates to a simple type, that is,
integer or floating-point numbers and strings. Arrays or objects cannot be used here
unless they are dereferenced to a simple type.

The alternative syntax for control structures is supported with switches. For more
information, see Alternative syntax for control structures.

<?php

switch ($i):

case 0:

 echo "i equals 0";

 break;

case 1:

 echo "i equals 1";

 break;

case 2:

 echo "i equals 2";

 break;

default:

 echo "i is not equal to 0, 1 or 2";

endswitch;

?>

declare

The declare construct is used to set execution directives for a block of code. The syntax of
declare is similar to the syntax of other flow control constructs:

declare (directive)

 statement

The directive section allows the behavior of the declare block to be set. Currently only one
directive is recognized: the ticks directive. (See below for more information on the ticks
directive)

The statement part of the declare block will be executed -- how it is executed and what
side effects occur during execution may depend on the directive set in the directive block.

The declare construct can also be used in the global scope, affecting all code following it.

<?php

// these are the same:

// you can use this:

declare(ticks=1) {

 // entire script here

}

// or you can use this:

declare(ticks=1);

// entire script here

?>

Ticks

A tick is an event that occurs for every N low-level statements executed by the parser
within the declare block. The value for N is specified using ticks= N within the declare
blocks's directive section.

The event(s) that occur on each tick are specified using the register_tick_function(). See
the example below for more details. Note that more than one event can occur for each tick.

Example #81 - Profile a section of PHP code

<?php

// A function that records the time when it is called

function profile($dump = FALSE)

{

 static $profile;

 // Return the times stored in profile, then erase it

 if ($dump) {

 $temp = $profile;

 unset($profile);

 return $temp;

 }

 $profile[] = microtime();

}

// Set up a tick handler

register_tick_function("profile");

// Initialize the function before the declare block

profile();

// Run a block of code, throw a tick every 2nd statement

declare(ticks=2) {

 for ($x = 1; $x < 50; ++$x) {

 echo similar_text(md5($x), md5($x*$x)), "
;";

 }

}

// Display the data stored in the profiler

print_r(profile(TRUE));

?>

The example profiles the PHP code within the 'declare' block, recording the time at which
every second low-level statement in the block was executed. This information can then be
used to find the slow areas within particular segments of code. This process can be
performed using other methods: using ticks is more convenient and easier to implement.

Ticks are well suited for debugging, implementing simple multitasking, background I/O and
many other tasks.

See also register_tick_function() and unregister_tick_function().

return

If called from within a function, the return() statement immediately ends execution of the
current function, and returns its argument as the value of the function call. return() will
also end the execution of an eval() statement or script file.

If called from the global scope, then execution of the current script file is ended. If the
current script file was include() ed or require() ed, then control is passed back to the
calling file. Furthermore, if the current script file was include() ed, then the value given to

return() will be returned as the value of the include() call. If return() is called from within
the main script file, then script execution ends. If the current script file was named by the
auto_prepend_file or auto_append_file configuration options in php.ini, then that script
file's execution is ended.

For more information, see Returning values.

Note

Note that since return() is a language construct and not a function, the parentheses
surrounding its arguments are not required. It is common to leave them out, and you
actually should do so as PHP has less work to do in this case.

Note

You should never use parentheses around your return variable when returning by
reference, as this will not work. You can only return variables by reference, not the
result of a statement. If you use return ($a); then you're not returning a variable, but the
result of the expression ($a) (which is, of course, the value of $a).

require()

The require() statement includes and evaluates the specific file.

require() includes and evaluates a specific file. Detailed information on how this inclusion
works is described in the documentation for include().

require() and include() are identical in every way except how they handle failure. They
both produce a Warning, but require() results in a Fatal Error. In other words, don't
hesitate to use require() if you want a missing file to halt processing of the page. include()
does not behave this way, the script will continue regardless. Be sure to have an
appropriate include_path setting as well.

Example #82 - Basic require() examples

<?php

require 'prepend.php';

require $somefile;

require ('somefile.txt');

?>

See the include() documentation for more examples.

Note

Prior to PHP 4.0.2, the following applies: require() will always attempt to read the
target file, even if the line it's on never executes. The conditional statement won't affect
require(). However, if the line on which the require() occurs is not executed, neither
will any of the code in the target file be executed. Similarly, looping structures do not
affect the behaviour of require(). Although the code contained in the target file is still
subject to the loop, the require() itself happens only once.

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also include(), require_once(), include_once(), get_included_files(), eval(), file(),
readfile(), virtual() and include_path.

include()

The include() statement includes and evaluates the specified file.

The documentation below also applies to require(). The two constructs are identical in
every way except how they handle failure. They both produce a Warning, but require()
results in a Fatal Error. In other words, use require() if you want a missing file to halt
processing of the page. include() does not behave this way, the script will continue
regardless. Be sure to have an appropriate include_path setting as well. Be warned that
parse error in included file doesn't cause processing halting in PHP versions prior to PHP
4.3.5. Since this version, it does.

Files for including are first looked for in each include_path entry relative to the current
working directory, and then in the directory of current script. E.g. if your include_path is
libraries, current working directory is /www/, you included include/a.php and there is
include "b.php" in that file, b.php is first looked in /www/libraries/ and then in /www/include/
. If filename begins with./ or../, it is looked only in the current working directory.

When a file is included, the code it contains inherits the variable scope of the line on which
the include occurs. Any variables available at that line in the calling file will be available
within the called file, from that point forward. However, all functions and classes defined in
the included file have the global scope.

Example #83 - Basic include() example

vars.php

<?php

$color = 'green';

$fruit = 'apple';

?>

test.php

<?php

echo "A $color $fruit"; // A

include 'vars.php';

echo "A $color $fruit"; // A green apple

?>

If the include occurs inside a function within the calling file, then all of the code contained
in the called file will behave as though it had been defined inside that function. So, it will
follow the variable scope of that function. An exception to this rule are magic constants
which are evaluated by the parser before the include occurs.

Example #84 - Including within functions

<?php

function foo()

{

 global $color;

 include 'vars.php';

 echo "A $color $fruit";

}

/* vars.php is in the scope of foo() so *

* $fruit is NOT available outside of this *

* scope. $color is because we declared it *

* as global. */

foo(); // A green apple

echo "A $color $fruit"; // A green

?>

When a file is included, parsing drops out of PHP mode and into HTML mode at the
beginning of the target file, and resumes again at the end. For this reason, any code inside
the target file which should be executed as PHP code must be enclosed within valid PHP
start and end tags.

If " URL fopen wrappers " are enabled in PHP (which they are in the default configuration),
you can specify the file to be included using a URL (via HTTP or other supported wrapper -
see List of Supported Protocols/Wrappers for a list of protocols) instead of a local
pathname. If the target server interprets the target file as PHP code, variables may be
passed to the included file using a URL request string as used with HTTP GET. This is not
strictly speaking the same thing as including the file and having it inherit the parent file's
variable scope; the script is actually being run on the remote server and the result is then
being included into the local script.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

Example #85 - include() through HTTP

<?php

/* This example assumes that www.example.com is configured to parse .php

* files and not .txt files. Also, 'Works' here means that the variables

* $foo and $bar are available within the included file. */

// Won't work; file.txt wasn't handled by www.example.com as PHP

include 'http://www.example.com/file.txt?foo=1&bar=2';

// Won't work; looks for a file named 'file.php?foo=1&bar=2' on the

// local filesystem.

include 'file.php?foo=1&bar=2';

// Works.

include 'http://www.example.com/file.php?foo=1&bar=2';

$foo = 1;

$bar = 2;

include 'file.txt'; // Works.

include 'file.php'; // Works.

?>

Warning

Security warning

Remote file may be processed at the remote server (depending on the file extension
and the fact if the remote server runs PHP or not) but it still has to produce a valid PHP
script because it will be processed at the local server. If the file from the remote server
should be processed there and outputted only, readfile() is much better function to use.
Otherwise, special care should be taken to secure the remote script to produce a valid
and desired code.

See also Remote files, fopen() and file() for related information.

Handling Returns: It is possible to execute a return() statement inside an included file in
order to terminate processing in that file and return to the script which called it. Also, it's
possible to return values from included files. You can take the value of the include call as
you would a normal function. This is not, however, possible when including remote files
unless the output of the remote file has valid PHP start and end tags (as with any local
file). You can declare the needed variables within those tags and they will be introduced at
whichever point the file was included.

Because include() is a special language construct, parentheses are not needed around its
argument. Take care when comparing return value.

Example #86 - Comparing return value of include

<?php

// won't work, evaluated as include(('vars.php') == 'OK'), i.e. include('')

if (include('vars.php') == 'OK') {

 echo 'OK';

}

// works

if ((include 'vars.php') == 'OK') {

 echo 'OK';

}

?>

Example #87 - include() and the return() statement

return.php

<?php

$var = 'PHP';

return $var;

?>

noreturn.php

<?php

$var = 'PHP';

?>

testreturns.php

<?php

$foo = include 'return.php';

echo $foo; // prints 'PHP'

$bar = include 'noreturn.php';

echo $bar; // prints 1

?>

$bar is the value 1 because the include was successful. Notice the difference between the
above examples. The first uses return() within the included file while the other does not. If
the file can't be included, FALSE is returned and E_WARNING is issued.

If there are functions defined in the included file, they can be used in the main file
independent if they are before return() or after. If the file is included twice, PHP 5 issues
fatal error because functions were already declared, while PHP 4 doesn't complain about
functions defined after return(). It is recommended to use include_once() instead of
checking if the file was already included and conditionally return inside the included file.

Another way to "include" a PHP file into a variable is to capture the output by using the
Output Control Functions with include(). For example:

Example #88 - Using output buffering to include a PHP file into a string

<?php

$string = get_include_contents('somefile.php');

function get_include_contents($filename) {

 if (is_file($filename)) {

 ob_start();

 include $filename;

 $contents = ob_get_contents();

 ob_end_clean();

 return $contents;

 }

 return false;

}

?>

In order to automatically include files within scripts, see also the auto_prepend_file and
auto_append_file configuration options in php.ini.

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See also require(), require_once(), include_once(), get_included_files(), readfile(),
virtual(), and include_path.

require_once()

The require_once() statement includes and evaluates the specified file during the
execution of the script. This is a behavior similar to the require() statement, with the only
difference being that if the code from a file has already been included, it will not be
included again. See the documentation for require() for more information on how this
statement works.

require_once() should be used in cases where the same file might be included and
evaluated more than once during a particular execution of a script, and you want to be
sure that it is included exactly once to avoid problems with function redefinitions, variable
value reassignments, etc.

For examples on using require_once() and include_once(), look at the » PEAR code
included in the latest PHP source code distributions.

Return values are the same as with include(). If the file was already included, this function
returns TRUE

Note

require_once() was added in PHP 4.0.1

Note

Be aware, that the behaviour of require_once() and include_once() may not be what
you expect on a non case sensitive operating system (such as Windows).

Example #89 - require_once() is case insensitive on Windows

<?php

require_once "a.php"; // this will include a.php

http://pear.php.net/

require_once "A.php"; // this will include a.php again on Windows! (PHP 4
only)

?>

This behaviour changed in PHP 5 - the path is normalized first so that
C:\PROGRA~1\A.php is realized the same as C:\Program Files\a.php and the file is
required just once.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also require(), include(), include_once(), get_required_files(), get_included_files(),
readfile(), and virtual().

include_once()

The include_once() statement includes and evaluates the specified file during the
execution of the script. This is a behavior similar to the include() statement, with the only
difference being that if the code from a file has already been included, it will not be
included again. As the name suggests, it will be included just once.

include_once() should be used in cases where the same file might be included and
evaluated more than once during a particular execution of a script, and you want to be
sure that it is included exactly once to avoid problems with function redefinitions, variable
value reassignments, etc.

For more examples on using require_once() and include_once(), look at the » PEAR
code included in the latest PHP source code distributions.

Return values are the same as with include(). If the file was already included, this function
returns TRUE

Note

include_once() was added in PHP 4.0.1

Note

Be aware, that the behaviour of include_once() and require_once() may not be what

http://pear.php.net/

you expect on a non case sensitive operating system (such as Windows).

Example #90 - include_once() is case insensitive on Windows

<?php

include_once "a.php"; // this will include a.php

include_once "A.php"; // this will include a.php again on Windows! (PHP 4
only)

?>

This behaviour changed in PHP 5 - the path is normalized first so that
C:\PROGRA~1\A.php is realized the same as C:\Program Files\a.php and the file is
included just once.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

See also include(), require(), require_once(), get_required_files(), get_included_files(),
readfile(), and virtual().

Functions

User-defined functions

A function may be defined using syntax such as the following:

Example #91 - Pseudo code to demonstrate function uses

<?php

function foo($arg_1, $arg_2, /* ..., */ $arg_n)

{

 echo "Example function.\n";

 return $retval;

}

?>

Any valid PHP code may appear inside a function, even other functions and class
definitions.

Function names follow the same rules as other labels in PHP. A valid function name starts
with a letter or underscore, followed by any number of letters, numbers, or underscores.
As a regular expression, it would be expressed thus: [a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*
.

Tip

See also the Userland Naming Guide.

Functions need not be defined before they are referenced, except when a function is
conditionally defined as shown in the two examples below.

When a function is defined in a conditional manner such as the two examples shown. Its
definition must be processed prior to being called.

Example #92 - Conditional functions

<?php

$makefoo = true;

/* We can't call foo() from here

 since it doesn't exist yet,

 but we can call bar() */

bar();

if ($makefoo) {

 function foo()

 {

 echo "I don't exist until program execution reaches me.\n";

 }

}

/* Now we can safely call foo()

 since $makefoo evaluated to true */

if ($makefoo) foo();

function bar()

{

 echo "I exist immediately upon program start.\n";

}

?>

Example #93 - Functions within functions

<?php

function foo()

{

 function bar()

 {

 echo "I don't exist until foo() is called.\n";

 }

}

/* We can't call bar() yet

 since it doesn't exist. */

foo();

/* Now we can call bar(),

 foo()'s processesing has

 made it accessible. */

bar();

?>

All functions and classes in PHP have the global scope - they can be called outside a
function even if they were defined inside and vice versa.

PHP does not support function overloading, nor is it possible to undefine or redefine
previously-declared functions.

Note

Function names are case-insensitive, though it is usually good form to call functions as
they appear in their declaration.

Both variable number of arguments and default arguments are supported in functions. See
also the function references for func_num_args(), func_get_arg(), and func_get_args() for
more information.

It is possible to call recursive functions in PHP. However avoid recursive function/method
calls with over 100-200 recursion levels as it can smash the stack and cause a termination
of the current script.

Example #94 - Recursive functions

<?php

function recursion($a)

{

 if ($a < 20) {

 echo "$a\n";

 recursion($a + 1);

 }

}

?>

Function arguments

Information may be passed to functions via the argument list, which is a comma-delimited
list of expressions.

PHP supports passing arguments by value (the default), passing by reference, and default
argument values. Variable-length argument lists are also supported, see also the function
references for func_num_args(), func_get_arg(), and func_get_args() for more information.

Example #95 - Passing arrays to functions

<?php

function takes_array($input)

{

 echo "$input[0] + $input[1] = ", $input[0]+$input[1];

}

?>

Making arguments be passed by reference

By default, function arguments are passed by value (so that if the value of the argument
within the function is changed, it does not get changed outside of the function). To allow a
function to modify its arguments, they must be passed by reference.

To have an argument to a function always passed by reference, prepend an ampersand
(&) to the argument name in the function definition:

Example #96 - Passing function parameters by reference

<?php

function add_some_extra(&$string)

{

 $string .= 'and something extra.';

}

$str = 'This is a string, ';

add_some_extra($str);

echo $str; // outputs 'This is a string, and something extra.'

?>

Default argument values

A function may define C++-style default values for scalar arguments as follows:

Example #97 - Use of default parameters in functions

<?php

function makecoffee($type = "cappuccino")

{

 return "Making a cup of $type.\n";

}

echo makecoffee();

echo makecoffee(null);

echo makecoffee("espresso");

?>

The output from the above snippet is:

Making a cup of cappuccino.

Making a cup of .

Making a cup of espresso.

PHP also allows the use of array s and the special type NULL as default values, for

example:

Example #98 - Using non-scalar types as default values

<?php

function makecoffee($types = array("cappuccino"), $coffeeMaker = NULL)

{

 $device = is_null($coffeeMaker) ? "hands" : $coffeeMaker;

 return "Making a cup of ".join(", ", $types)." with $device.\n";

}

echo makecoffee();

echo makecoffee(array("cappuccino", "lavazza"), "teapot");

?>

The default value must be a constant expression, not (for example) a variable, a class
member or a function call.

Note that when using default arguments, any defaults should be on the right side of any
non-default arguments; otherwise, things will not work as expected. Consider the following
code snippet:

Example #99 - Incorrect usage of default function arguments

<?php

function makeyogurt($type = "acidophilus", $flavour)

{

 return "Making a bowl of $type $flavour.\n";

}

echo makeyogurt("raspberry"); // won't work as expected

?>

The output of the above example is:

Warning: Missing argument 2 in call to makeyogurt() in

/usr/local/etc/httpd/htdocs/phptest/functest.html on line 41

Making a bowl of raspberry .

Now, compare the above with this:

Example #100 - Correct usage of default function arguments

<?php

function makeyogurt($flavour, $type = "acidophilus")

{

 return "Making a bowl of $type $flavour.\n";

}

echo makeyogurt("raspberry"); // works as expected

?>

The output of this example is:

Making a bowl of acidophilus raspberry.

Note

As of PHP 5, default values may be passed by reference.

Variable-length argument lists

PHP 4 and above has support for variable-length argument lists in user-defined functions.
This is really quite easy, using the func_num_args(), func_get_arg(), and func_get_args()
functions.

No special syntax is required, and argument lists may still be explicitly provided with
function definitions and will behave as normal.

Returning values

Values are returned by using the optional return statement. Any type may be returned,
including arrays and objects. This causes the function to end its execution immediately
and pass control back to the line from which it was called. See return() for more
information.

Example #101 - Use of return()

<?php

function square($num)

{

 return $num * $num;

}

echo square(4); // outputs '16'.

?>

A function can not return multiple values, but similar results can be obtained by returning
an array.

Example #102 - Returning an array to get multiple values

<?php

function small_numbers()

{

 return array (0, 1, 2);

}

list ($zero, $one, $two) = small_numbers();

?>

To return a reference from a function, use the reference operator & in both the function
declaration and when assigning the returned value to a variable:

Example #103 - Returning a reference from a function

<?php

function &returns_reference()

{

 return $someref;

}

$newref =& returns_reference();

?>

For more information on references, please check out References Explained.

Variable functions

PHP supports the concept of variable functions. This means that if a variable name has
parentheses appended to it, PHP will look for a function with the same name as whatever
the variable evaluates to, and will attempt to execute it. Among other things, this can be
used to implement callbacks, function tables, and so forth.

Variable functions won't work with language constructs such as echo(), print(), unset(),
isset(), empty(), include(), require() and the like. Utilize wrapper functions to make use of
any of these constructs as variable functions.

Example #104 - Variable function example

<?php

function foo() {

 echo "In foo()
\n";

}

function bar($arg = '')

{

 echo "In bar(); argument was '$arg'.
\n";

}

// This is a wrapper function around echo

function echoit($string)

{

 echo $string;

}

$func = 'foo';

$func(); // This calls foo()

$func = 'bar';

$func('test'); // This calls bar()

$func = 'echoit';

$func('test'); // This calls echoit()

?>

An object method can also be called with the variable functions syntax.

Example #105 - Variable method example

<?php

class Foo

{

 function Variable()

 {

 $name = 'Bar';

 $this->$name(); // This calls the Bar() method

 }

 function Bar()

 {

 echo "This is Bar";

 }

}

$foo = new Foo();

$funcname = "Variable";

$foo->$funcname(); // This calls $foo->Variable()

?>

See also call_user_func(), variable variables and function_exists().

Internal (built-in) functions

PHP comes standard with many functions and constructs. There are also functions that
require specific PHP extensions compiled in, otherwise fatal "undefined function" errors
will appear. For example, to use image functions such as imagecreatetruecolor(), PHP
must be compiled with GD support. Or, to use mysql_connect(), PHP must be compiled
with MySQL support. There are many core functions that are included in every version of
PHP, such as the string and variable functions. A call to phpinfo() or
get_loaded_extensions() will show which extensions are loaded into PHP. Also note that
many extensions are enabled by default and that the PHP manual is split up by extension.
See the configuration, installation, and individual extension chapters, for information on
how to set up PHP.

Reading and understanding a function's prototype is explained within the manual section
titled how to read a function definition. It's important to realize what a function returns or if
a function works directly on a passed in value. For example, str_replace() will return the
modified string while usort() works on the actual passed in variable itself. Each manual
page also has specific information for each function like information on function
parameters, behavior changes, return values for both success and failure, and availability
information. Knowing these important (yet often subtle) differences is crucial for writing
correct PHP code.

Note

If the parameters given to a function are not what it expects, such as passing an array
where a string is expected, the return value of the function is undefined. In this case it
will likely return NULL but this is just a convention, and cannot be relied upon.

See also function_exists(), the function reference, get_extension_funcs(), and dl().

Classes and Objects (PHP 4)

class

A class is a collection of variables and functions working with these variables. Variables
are defined by var and functions by function. A class is defined using the following syntax:

<?php

class Cart {

 var $items; // Items in our shopping cart

 // Add $num articles of $artnr to the cart

 function add_item($artnr, $num) {

 $this->items[$artnr] += $num;

 }

 // Take $num articles of $artnr out of the cart

 function remove_item($artnr, $num) {

 if ($this->items[$artnr] > $num) {

 $this->items[$artnr] -= $num;

 return true;

 } elseif ($this->items[$artnr] == $num) {

 unset($this->items[$artnr]);

 return true;

 } else {

 return false;

 }

 }

}

?>

This defines a class named Cart that consists of an associative array of articles in the cart
and two functions to add and remove items from this cart.

Warning

You can NOT break up a class definition into multiple files. You also can NOT break a
class definition into multiple PHP blocks, unless the break is within a method
declaration. The following will not work:

<?php

class test {

?>

<?php

 function test() {

 print 'OK';

 }

}

?>

However, the following is allowed:

<?php

class test {

 function test() {

 ?>

 <?php

 print 'OK';

 }

}

?>

The following cautionary notes are valid for PHP 4.

Caution

The name stdClass is used internally by Zend and is reserved. You cannot have a
class named stdClass in PHP.

Caution

The function names __sleep and __wakeup are magical in PHP classes. You cannot
have functions with these names in any of your classes unless you want the magic
functionality associated with them. See below for more information.

Caution

PHP reserves all function names starting with __ as magical. It is recommended that
you do not use function names with __ in PHP unless you want some documented
magic functionality.

In PHP 4, only constant initializers for var variables are allowed. To initialize variables with
non-constant values, you need an initialization function which is called automatically when
an object is being constructed from the class. Such a function is called a constructor (see
below).

<?php

class Cart {

 /* None of these will work in PHP 4. */

 var $todays_date = date("Y-m-d");

 var $name = $firstname;

 var $owner = 'Fred ' . 'Jones';

 /* Arrays containing constant values will, though. */

 var $items = array("VCR", "TV");

}

/* This is how it should be done. */

class Cart {

 var $todays_date;

 var $name;

 var $owner;

 var $items = array("VCR", "TV");

 function Cart() {

 $this->todays_date = date("Y-m-d");

 $this->name = $GLOBALS['firstname'];

 /* etc. . . */

 }

}

?>

Classes are types, that is, they are blueprints for actual variables. You have to create a
variable of the desired type with the new operator.

<?php

$cart = new Cart;

$cart->add_item("10", 1);

$another_cart = new Cart;

$another_cart->add_item("0815", 3);

?>

This creates the objects $cart and $another_cart, both of the class Cart. The function
add_item() of the $cart object is being called to add 1 item of article number 10 to the $cart
. 3 items of article number 0815 are being added to $another_cart.

Both, $cart and $another_cart, have functions add_item(), remove_item() and a variable
items. These are distinct functions and variables. You can think of the objects as
something similar to directories in a filesystem. In a filesystem you can have two different
files README.TXT, as long as they are in different directories. Just like with directories
where you'll have to type the full pathname in order to reach each file from the toplevel
directory, you have to specify the complete name of the function you want to call: in PHP
terms, the toplevel directory would be the global namespace, and the pathname separator
would be ->. Thus, the names $cart->items and $another_cart->items name two different
variables. Note that the variable is named $cart->items, not $cart->$items, that is, a
variable name in PHP has only a single dollar sign.

<?php

// correct, single $

$cart->items = array("10" => 1);

// invalid, because $cart->$items becomes $cart->""

$cart->$items = array("10" => 1);

// correct, but may or may not be what was intended:

// $cart->$myvar becomes $cart->items

$myvar = 'items';

$cart->$myvar = array("10" => 1);

?>

Within a class definition, you do not know under which name the object will be accessible
in your program: at the time the Cart class was written, it was unknown whether the object
would be named $cart, $another_cart, or something else later. Thus, you cannot write
$cart->items within the Cart class itself. Instead, in order to be able to access its own
functions and variables from within a class, one can use the pseudo-variable $this which
can be read as 'my own' or 'current object'. Thus, ' $this->items[$artnr] += $num ' can be
read as 'add $num to the $artnr counter of my own items array' or 'add $num to the $artnr
counter of the items array within the current object'.

Note

The $this pseudo-variable is not usually defined if the method in which it is hosted is
called statically. This is not, however, a strict rule: $this is defined if a method is called
statically from within another object. In this case, the value of $this is that of the calling
object. This is illustrated in the following example:

<?php

class A

{

 function foo()

 {

 if (isset($this)) {

 echo '$this is defined (';

 echo get_class($this);

 echo ")\n";

 } else {

 echo "\$this is not defined.\n";

 }

 }

}

class B

{

 function bar()

 {

 A::foo();

 }

}

$a = new A();

$a->foo();

A::foo();

$b = new B();

$b->bar();

B::bar();

?>

The above example will output:

$this is defined (a)

$this is not defined.

$this is defined (b)

$this is not defined.

Note

There are some nice functions to handle classes and objects. You might want to take a
look at the Class/Object Functions.

extends

Often you need classes with similar variables and functions to another existing class. In
fact, it is good practice to define a generic class which can be used in all your projects and
adapt this class for the needs of each of your specific projects. To facilitate this, classes
can be extensions of other classes. The extended or derived class has all variables and
functions of the base class (this is called 'inheritance' despite the fact that nobody died)
and what you add in the extended definition. It is not possible to subtract from a class, that
is, to undefine any existing functions or variables. An extended class is always dependent
on a single base class, that is, multiple inheritance is not supported. Classes are extended
using the keyword 'extends'.

<?php

class Named_Cart extends Cart {

 var $owner;

 function set_owner ($name) {

 $this->owner = $name;

 }

}

?>

This defines a class Named_Cart that has all variables and functions of Cart plus an
additional variable $owner and an additional function set_owner(). You create a named
cart the usual way and can now set and get the carts owner. You can still use normal cart
functions on named carts:

<?php

$ncart = new Named_Cart; // Create a named cart

$ncart->set_owner("kris"); // Name that cart

print $ncart->owner; // print the cart owners name

$ncart->add_item("10", 1); // (inherited functionality from cart)

?>

This is also called a "parent-child" relationship. You create a class, parent, and use
extends to create a new class based on the parent class: the child class. You can even
use this new child class and create another class based on this child class.

Note

Classes must be defined before they are used! If you want the class Named_Cart to
extend the class Cart, you will have to define the class Cart first. If you want to create
another class called Yellow_named_cart based on the class Named_Cart you have to
define Named_Cart first. To make it short: the order in which the classes are defined is
important.

Constructors

Constructors are functions in a class that are automatically called when you create a new
instance of a class with new. A function becomes a constructor, when it has the same
name as the class. If a class has no constructor, the constructor of the base class will be
called, if it exists.

<?php

class Auto_Cart extends Cart {

 function Auto_Cart() {

 $this->add_item("10", 1);

 }

}

?>

This defines a class Auto_Cart that is a Cart plus a constructor which initializes the cart
with one item of article number "10" each time a new Auto_Cart is being made with "new".
Constructors can take arguments and these arguments can be optional, which makes
them much more useful. To be able to still use the class without parameters, all
parameters to constructors should be made optional by providing default values.

<?php

class Constructor_Cart extends Cart {

 function Constructor_Cart($item = "10", $num = 1) {

 $this->add_item ($item, $num);

 }

}

// Shop the same old boring stuff.

$default_cart = new Constructor_Cart;

// Shop for real...

$different_cart = new Constructor_Cart("20", 17);

?>

You also can use the @ operator to mute errors occurring in the constructor, e.g. @new.

<?php

class A

{

 function A()

 {

 echo "I am the constructor of A.
\n";

 }

 function B()

 {

 echo "I am a regular function named B in class A.
\n";

 echo "I am not a constructor in A.
\n";

 }

}

class B extends A

{

}

// This will call B() as a constructor

$b = new B;

?>

The function B() in class A will suddenly become a constructor in class B, although it was
never intended to be. PHP 4 does not care if the function is being defined in class B, or if it
has been inherited.

Caution

PHP 4 doesn't call constructors of the base class automatically from a constructor of a
derived class. It is your responsibility to propagate the call to constructors upstream
where appropriate.

Destructors are functions that are called automatically when an object is destroyed, either
with unset() or by simply going out of scope. There are no destructors in PHP. You may
use register_shutdown_function() instead to simulate most effects of destructors.

Scope Resolution Operator (::)

Caution

The following is valid for PHP 4 and later only.

Sometimes it is useful to refer to functions and variables in base classes or to refer to
functions in classes that have not yet any instances. The :: operator is being used for this.

<?php

class A {

 function example() {

 echo "I am the original function A::example().
\n";

 }

}

class B extends A {

 function example() {

 echo "I am the redefined function B::example().
\n";

 A::example();

 }

}

// there is no object of class A.

// this will print

// I am the original function A::example().

A::example();

// create an object of class B.

$b = new B;

// this will print

// I am the redefined function B::example().

// I am the original function A::example().

$b->example();

?>

The above example calls the function example() in class A, but there is no object of class
A, so that we cannot write $a->example() or similar. Instead we call example() as a 'class
function', that is, as a function of the class itself, not any object of that class.

There are class functions, but there are no class variables. In fact, there is no object at all
at the time of the call. Thus, a class function may not use any object variables (but it can
use local and global variables), and it may not use $this at all.

In the above example, class B redefines the function example(). The original definition in
class A is shadowed and no longer available, unless you are referring specifically to the
implementation of example() in class A using the ::-operator. Write A::example() to do this
(in fact, you should be writing parent::example(), as shown in the next section).

In this context, there is a current object and it may have object variables. Thus, when used
from WITHIN an object function, you may use $this and object variables.

parent

You may find yourself writing code that refers to variables and functions in base classes.
This is particularly true if your derived class is a refinement or specialisation of code in
your base class.

Instead of using the literal name of the base class in your code, you should be using the
special name parent, which refers to the name of your base class as given in the extends
declaration of your class. By doing this, you avoid using the name of your base class in
more than one place. Should your inheritance tree change during implementation, the
change is easily made by simply changing the extends declaration of your class.

<?php

class A {

 function example() {

 echo "I am A::example() and provide basic functionality.
\n";

 }

}

class B extends A {

 function example() {

 echo "I am B::example() and provide additional functionality.
\n";

 parent::example();

 }

}

$b = new B;

// This will call B::example(), which will in turn call A::example().

$b->example();

?>

Serializing objects - objects in sessions

serialize() returns a string containing a byte-stream representation of any value that can be
stored in PHP. unserialize() can use this string to recreate the original variable values.
Using serialize to save an object will save all variables in an object. The functions in an
object will not be saved, only the name of the class.

In order to be able to unserialize() an object, the class of that object needs to be defined.
That is, if you have an object $a of class A on page1.php and serialize this, you'll get a
string that refers to class A and contains all values of variabled contained in $a. If you want
to be able to unserialize this on page2.php, recreating $a of class A, the definition of class
A must be present in page2.php. This can be done for example by storing the class
definition of class A in an include file and including this file in both page1.php and
page2.php.

<?php

// classa.inc:

 class A {

 var $one = 1;

 function show_one() {

 echo $this->one;

 }

 }

// page1.php:

 include("classa.inc");

 $a = new A;

 $s = serialize($a);

 // store $s somewhere where page2.php can find it.

 $fp = fopen("store", "w");

 fwrite($fp, $s);

 fclose($fp);

// page2.php:

 // this is needed for the unserialize to work properly.

 include("classa.inc");

 $s = implode("", @file("store"));

 $a = unserialize($s);

 // now use the function show_one() of the $a object.

 $a->show_one();

?>

If you are using sessions and use session_register() to register objects, these objects are
serialized automatically at the end of each PHP page, and are unserialized automatically
on each of the following pages. This basically means that these objects can show up on
any of your pages once they become part of your session.

It is strongly recommended that you include the class definitions of all such registered
objects on all of your pages, even if you do not actually use these classes on all of your
pages. If you don't and an object is being unserialized without its class definition being
present, it will lose its class association and become an object of class stdClass without
any functions available at all, that is, it will become quite useless.

So if in the example above $a became part of a session by running session_register("a"),
you should include the file classa.inc on all of your pages, not only page1.php and
page2.php.

The magic functions __sleep and __wakeup

serialize() checks if your class has a function with the magic name __sleep. If so, that
function is being run prior to any serialization. It can clean up the object and is supposed to
return an array with the names of all variables of that object that should be serialized. If the
method doesn't return anything then NULL is serialized and E_NOTICE is issued.

The intended use of __sleep is to commit pending data or perform similar cleanup tasks.
Also, the function is useful if you have very large objects which need not be saved
completely.

Conversely, unserialize() checks for the presence of a function with the magic name
__wakeup. If present, this function can reconstruct any resources that object may have.

The intended use of __wakeup is to reestablish any database connections that may have

been lost during serialization and perform other reinitialization tasks.

References inside the constructor

Creating references within the constructor can lead to confusing results. This tutorial-like
section helps you to avoid problems.

<?php

class Foo {

 function Foo($name) {

 // create a reference inside the global array $globalref

 global $globalref;

 $globalref[] = &$this;

 // set name to passed value

 $this->setName($name);

 // and put it out

 $this->echoName();

 }

 function echoName() {

 echo "
", $this->name;

 }

 function setName($name) {

 $this->name = $name;

 }

}

?>

Let us check out if there is a difference between $bar1 which has been created using the
copy = operator and $bar2 which has been created using the reference =&operator...

<?php

$bar1 = new Foo('set in constructor');

$bar1->echoName();

$globalref[0]->echoName();

/* output:

set in constructor

set in constructor

set in constructor */

$bar2 =& new Foo('set in constructor');

$bar2->echoName();

$globalref[1]->echoName();

/* output:

set in constructor

set in constructor

set in constructor */

?>

Apparently there is no difference, but in fact there is a very significant one: $bar1 and
$globalref[0] are _NOT_ referenced, they are NOT the same variable. This is because
"new" does not return a reference by default, instead it returns a copy.

Note

There is no performance loss (since PHP 4 and up use reference counting) returning
copies instead of references. On the contrary it is most often better to simply work with
copies instead of references, because creating references takes some time where
creating copies virtually takes no time (unless none of them is a large array or object
and one of them gets changed and the other(s) one(s) subsequently, then it would be
wise to use references to change them all concurrently).

To prove what is written above let us watch the code below.

<?php

// now we will change the name. what do you expect?

// you could expect that both $bar1 and $globalref[0] change their names...

$bar1->setName('set from outside');

// as mentioned before this is not the case.

$bar1->echoName();

$globalref[0]->echoName();

/* output:

set from outside

set in constructor */

// let us see what is different with $bar2 and $globalref[1]

$bar2->setName('set from outside');

// luckily they are not only equal, they are the same variable

// thus $bar2->name and $globalref[1]->name are the same too

$bar2->echoName();

$globalref[1]->echoName();

/* output:

set from outside

set from outside */

?>

Another final example, try to understand it.

<?php

class A {

 function A($i) {

 $this->value = $i;

 // try to figure out why we do not need a reference here

 $this->b = new B($this);

 }

 function createRef() {

 $this->c = new B($this);

 }

 function echoValue() {

 echo "
","class ",get_class($this),': ',$this->value;

 }

}

class B {

 function B(&$a) {

 $this->a = &$a;

 }

 function echoValue() {

 echo "
","class ",get_class($this),': ',$this->a->value;

 }

}

// try to understand why using a simple copy here would yield

// in an undesired result in the *-marked line

$a =& new A(10);

$a->createRef();

$a->echoValue();

$a->b->echoValue();

$a->c->echoValue();

$a->value = 11;

$a->echoValue();

$a->b->echoValue(); // *

$a->c->echoValue();

?>

The above example will output:

class A: 10

class B: 10

class B: 10

class A: 11

class B: 11

class B: 11

Comparing objects

In PHP 4, objects are compared in a very simple manner, namely: Two object instances
are equal if they have the same attributes and values, and are instances of the same
class. Similar rules are applied when comparing two objects using the identity operator (
===).

If we were to execute the code in the example below:

Example #106 - Example of object comparison in PHP 4

<?php

function bool2str($bool) {

 if ($bool === false) {

 return 'FALSE';

 } else {

 return 'TRUE';

 }

}

function compareObjects(&$o1, &$o2) {

 echo 'o1 == o2 : '.bool2str($o1 == $o2)."\n";

 echo 'o1 != o2 : '.bool2str($o1 != $o2)."\n";

 echo 'o1 === o2 : '.bool2str($o1 === $o2)."\n";

 echo 'o1 !== o2 : '.bool2str($o1 !== $o2)."\n";

}

class Flag {

 var $flag;

 function Flag($flag=true) {

 $this->flag = $flag;

 }

}

class SwitchableFlag extends Flag {

 function turnOn() {

 $this->flag = true;

 }

 function turnOff() {

 $this->flag = false;

 }

}

$o = new Flag();

$p = new Flag(false);

$q = new Flag();

$r = new SwitchableFlag();

echo "Compare instances created with the same parameters\n";

compareObjects($o, $q);

echo "\nCompare instances created with different parameters\n";

compareObjects($o, $p);

echo "\nCompare an instance of a parent class with one from a subclass\n";

compareObjects($o, $r);

?>

The above example will output:

Compare instances created with the same parameters

o1 == o2 : TRUE

o1 != o2 : FALSE

o1 === o2 : TRUE

o1 !== o2 : FALSE

Compare instances created with different parameters

o1 == o2 : FALSE

o1 != o2 : TRUE

o1 === o2 : FALSE

o1 !== o2 : TRUE

Compare an instance of a parent class with one from a subclass

o1 == o2 : FALSE

o1 != o2 : TRUE

o1 === o2 : FALSE

o1 !== o2 : TRUE

Which is the output we will expect to obtain given the comparison rules above. Only
instances with the same values for their attributes and from the same class are considered
equal and identical.

Even in the cases where we have object composition, the same comparison rules apply. In
the example below we create a container class that stores an associative array of Flag
objects.

Example #107 - Compound object comparisons in PHP 4

<?php

class FlagSet {

 var $set;

 function FlagSet($flagArr = array()) {

 $this->set = $flagArr;

 }

 function addFlag($name, $flag) {

 $this->set[$name] = $flag;

 }

 function removeFlag($name) {

 if (array_key_exists($name, $this->set)) {

 unset($this->set[$name]);

 }

 }

}

$u = new FlagSet();

$u->addFlag('flag1', $o);

$u->addFlag('flag2', $p);

$v = new FlagSet(array('flag1'=>$q, 'flag2'=>$p));

$w = new FlagSet(array('flag1'=>$q));

echo "\nComposite objects u(o,p) and v(q,p)\n";

compareObjects($u, $v);

echo "\nu(o,p) and w(q)\n";

compareObjects($u, $w);

?>

The above example will output:

Composite objects u(o,p) and v(q,p)

o1 == o2 : TRUE

o1 != o2 : FALSE

o1 === o2 : TRUE

o1 !== o2 : FALSE

u(o,p) and w(q)

o1 == o2 : FALSE

o1 != o2 : TRUE

o1 === o2 : FALSE

o1 !== o2 : TRUE

Classes and Objects (PHP 5)

Introduction

In PHP 5 there is a new Object Model. PHP's handling of objects has been completely
rewritten, allowing for better performance and more features.

Tip

See also the Userland Naming Guide.

The Basics

class

Every class definition begins with the keyword class, followed by a class name, which can
be any name that isn't a reserved word in PHP. Followed by a pair of curly braces, which
contains the definition of the classes members and methods. A pseudo-variable, $this is
available when a method is called from within an object context. $this is a reference to the
calling object (usually the object to which the method belongs, but can be another object, if
the method is called statically from the context of a secondary object). This is illustrated in
the following examples:

Example #108 - $this variable in object-oriented language

<?php

class A

{

 function foo()

 {

 if (isset($this)) {

 echo '$this is defined (';

 echo get_class($this);

 echo ")\n";

 } else {

 echo "\$this is not defined.\n";

 }

 }

}

class B

{

 function bar()

 {

 A::foo();

 }

}

$a = new A();

$a->foo();

A::foo();

$b = new B();

$b->bar();

B::bar();

?>

The above example will output:

$this is defined (a)

$this is not defined.

$this is defined (b)

$this is not defined.

Example #109 - Simple Class definition

<?php

class SimpleClass

{

 // member declaration

 public $var = 'a default value';

 // method declaration

 public function displayVar() {

 echo $this->var;

 }

}

?>

The default value must be a constant expression, not (for example) a variable, a class
member or a function call.

Example #110 - Class members' default value

<?php

class SimpleClass

{

 // invalid member declarations:

 public $var1 = 'hello '.'world';

 public $var2 = <<<EOD

hello world

EOD;

 public $var3 = 1+2;

 public $var4 = self::myStaticMethod();

 public $var5 = $myVar;

 // valid member declarations:

 public $var6 = myConstant;

 public $var7 = self::classConstant;

 public $var8 = array(true, false);

}

?>

Note

There are some nice functions to handle classes and objects. You might want to take a
look at the Class/Object Functions.

Unlike heredocs, nowdocs can be used in any static data context.

Example #111 - Static data example

<?php

class foo {

 // As of PHP 5.3.0

 public $bar = <<<'EOT'

bar

EOT;

}

?>

Note

Nowdoc support was added in PHP 5.3.0.

new

To create an instance of a class, a new object must be created and assigned to a variable.
An object will always be assigned when creating a new object unless the object has a
constructor defined that throws an exception on error. Classes should be defined before
instantiation (and in some cases this is a requirement).

Example #112 - Creating an instance

<?php

$instance = new SimpleClass();

?>

In the class context, it is possible to create a new object by new self and new parent.

When assigning an already created instance of a class to a new variable, the new variable
will access the same instance as the object that was assigned. This behaviour is the same
when passing instances to a function. A copy of an already created object can be made by

cloning it.

Example #113 - Object Assignment

<?php

$assigned = $instance;

$reference =& $instance;

$instance->var = '$assigned will have this value';

$instance = null; // $instance and $reference become null

var_dump($instance);

var_dump($reference);

var_dump($assigned);

?>

The above example will output:

NULL

NULL

object(SimpleClass)#1 (1) {

 ["var"]=>

 string(30) "$assigned will have this value"

}

extends

A class can inherit methods and members of another class by using the extends keyword
in the declaration. It is not possible to extend multiple classes, a class can only inherit one
base class.

The inherited methods and members can be overridden, unless the parent class has
defined a method as final, by redeclaring them with the same name defined in the parent
class. It is possible to access the overridden methods or static members by referencing
them with parent::

Example #114 - Simple Class Inheritance

<?php

class ExtendClass extends SimpleClass

{

 // Redefine the parent method

 function displayVar()

 {

 echo "Extending class\n";

 parent::displayVar();

 }

}

$extended = new ExtendClass();

$extended->displayVar();

?>

The above example will output:

Extending class

a default value

Autoloading Objects

Many developers writing object-oriented applications create one PHP source file per-class
definition. One of the biggest annoyances is having to write a long list of needed includes
at the beginning of each script (one for each class).

In PHP 5, this is no longer necessary. You may define an __autoload function which is
automatically called in case you are trying to use a class/interface which hasn't been
defined yet. By calling this function the scripting engine is given a last chance to load the
class before PHP fails with an error.

Note

Exceptions thrown in __autoload function cannot be caught in the catch block and
results in a fatal error.

Note

Autoloading is not available if using PHP in CLI interactive mode.

Note

If the class name is used e.g. in call_user_func() then it can contain some dangerous
characters such as../. It is recommended to not use the user-input in such functions or
at least verify the input in __autoload().

Example #115 - Autoload example

This example attempts to load the classes MyClass1 and MyClass2 from the files
MyClass1.php and MyClass2.php respectively.

<?php

function __autoload($class_name) {

 require_once $class_name . '.php';

}

$obj = new MyClass1();

$obj2 = new MyClass2();

?>

Example #116 - Autoload other example

This example attempts to load the interface ITest.

<?php

function __autoload($name) {

 var_dump($name);

}

class Foo implements ITest {

}

/*

string(5) "ITest"

Fatal error: Interface 'ITest' not found in ...

*/

?>

Constructors and Destructors

Constructor

void __construct ([mixed $args [, $...]])

PHP 5 allows developers to declare constructor methods for classes. Classes which have
a constructor method call this method on each newly-created object, so it is suitable for
any initialization that the object may need before it is used.

Note

Parent constructors are not called implicitly if the child class defines a constructor. In
order to run a parent constructor, a call to parent::__construct() within the child
constructor is required.

Example #117 - using new unified constructors

<?php

class BaseClass {

 function __construct() {

 print "In BaseClass constructor\n";

 }

}

class SubClass extends BaseClass {

 function __construct() {

 parent::__construct();

 print "In SubClass constructor\n";

 }

}

$obj = new BaseClass();

$obj = new SubClass();

?>

For backwards compatibility, if PHP 5 cannot find a __construct() function for a given
class, it will search for the old-style constructor function, by the name of the class.
Effectively, it means that the only case that would have compatibility issues is if the class
had a method named __construct() which was used for different semantics.

Destructor

void __destruct (void)

PHP 5 introduces a destructor concept similar to that of other object-oriented languages,
such as C++. The destructor method will be called as soon as all references to a particular
object are removed or when the object is explicitly destroyed or in any order in shutdown
sequence.

Example #118 - Destructor Example

<?php

class MyDestructableClass {

 function __construct() {

 print "In constructor\n";

 $this->name = "MyDestructableClass";

 }

 function __destruct() {

 print "Destroying " . $this->name . "\n";

 }

}

$obj = new MyDestructableClass();

?>

Like constructors, parent destructors will not be called implicitly by the engine. In order to
run a parent destructor, one would have to explicitly call parent::__destruct() in the
destructor body.

Note

Destructors called during the script shutdown have HTTP headers already sent. The
working directory in the script shutdown phase can be different with some SAPIs (e.g.

Apache).

Note

Attempting to throw an exception from a destructor (called in the time of script
termination) causes a fatal error.

Visibility

The visibility of a property or method can be defined by prefixing the declaration with the
keywords: public, protected or private. Public declared items can be accessed everywhere.
Protected limits access to inherited and parent classes (and to the class that defines the
item). Private limits visibility only to the class that defines the item.

Members Visibility

Class members must be defined with public, private, or protected.

Example #119 - Member declaration

<?php

/**

* Define MyClass

*/

class MyClass

{

 public $public = 'Public';

 protected $protected = 'Protected';

 private $private = 'Private';

 function printHello()

 {

 echo $this->public;

 echo $this->protected;

 echo $this->private;

 }

}

$obj = new MyClass();

echo $obj->public; // Works

echo $obj->protected; // Fatal Error

echo $obj->private; // Fatal Error

$obj->printHello(); // Shows Public, Protected and Private

/**

* Define MyClass2

*/

class MyClass2 extends MyClass

{

 // We can redeclare the public and protected method, but not private

 protected $protected = 'Protected2';

 function printHello()

 {

 echo $this->public;

 echo $this->protected;

 echo $this->private;

 }

}

$obj2 = new MyClass2();

echo $obj2->public; // Works

echo $obj2->private; // Undefined

echo $obj2->protected; // Fatal Error

$obj2->printHello(); // Shows Public, Protected2, Undefined

?>

Note

The PHP 4 method of declaring a variable with the var keyword is still supported for
compatibility reasons (as a synonym for the public keyword). In PHP 5 before 5.1.3, its
usage would generate an E_STRICT warning.

Method Visibility

Class methods must be defined with public, private, or protected. Methods without any
declaration are defined as public.

Example #120 - Method Declaration

<?php

/**

* Define MyClass

*/

class MyClass

{

 // Declare a public constructor

 public function __construct() { }

 // Declare a public method

 public function MyPublic() { }

 // Declare a protected method

 protected function MyProtected() { }

 // Declare a private method

 private function MyPrivate() { }

 // This is public

 function Foo()

 {

 $this->MyPublic();

 $this->MyProtected();

 $this->MyPrivate();

 }

}

$myclass = new MyClass;

$myclass->MyPublic(); // Works

$myclass->MyProtected(); // Fatal Error

$myclass->MyPrivate(); // Fatal Error

$myclass->Foo(); // Public, Protected and Private work

/**

* Define MyClass2

*/

class MyClass2 extends MyClass

{

 // This is public

 function Foo2()

 {

 $this->MyPublic();

 $this->MyProtected();

 $this->MyPrivate(); // Fatal Error

 }

}

$myclass2 = new MyClass2;

$myclass2->MyPublic(); // Works

$myclass2->Foo2(); // Public and Protected work, not Private

class Bar

{

 public function test() {

 $this->testPrivate();

 $this->testPublic();

 }

 public function testPublic() {

 echo "Bar::testPublic\n";

 }

 private function testPrivate() {

 echo "Bar::testPrivate\n";

 }

}

class Foo extends Bar

{

 public function testPublic() {

 echo "Foo::testPublic\n";

 }

 private function testPrivate() {

 echo "Foo::testPrivate\n";

 }

}

$myFoo = new foo();

$myFoo->test(); // Bar::testPrivate

 // Foo::testPublic

?>

Scope Resolution Operator (::)

The Scope Resolution Operator (also called Paamayim Nekudotayim) or in simpler terms,
the double colon, is a token that allows access to static, constant, and overridden
members or methods of a class.

When referencing these items from outside the class definition, use the name of the class.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Paamayim Nekudotayim would, at first, seem like a strange choice for naming a
double-colon. However, while writing the Zend Engine 0.5 (which powers PHP 3), that's
what the Zend team decided to call it. It actually does mean double-colon - in Hebrew!

Example #121 -:: from outside the class definition

<?php

class MyClass {

 const CONST_VALUE = 'A constant value';

}

$classname = 'MyClass';

echo $classname::CONST_VALUE; // As of PHP 5.3.0

echo MyClass::CONST_VALUE;

?>

Two special keywords self and parent are used to access members or methods from
inside the class definition.

Example #122 -:: from inside the class definition

<?php

class OtherClass extends MyClass

{

 public static $my_static = 'static var';

 public static function doubleColon() {

 echo parent::CONST_VALUE . "\n";

 echo self::$my_static . "\n";

 }

}

$classname = 'OtherClass';

echo $classname::doubleColon(); // As of PHP 5.3.0

OtherClass::doubleColon();

?>

When an extending class overrides the parents definition of a method, PHP will not call the
parent's method. It's up to the extended class on whether or not the parent's method is
called. This also applies to Constructors and Destructors, Overloading, and Magic method
definitions.

Example #123 - Calling a parent's method

<?php

class MyClass

{

 protected function myFunc() {

 echo "MyClass::myFunc()\n";

 }

}

class OtherClass extends MyClass

{

 // Override parent's definition

 public function myFunc()

 {

 // But still call the parent function

 parent::myFunc();

 echo "OtherClass::myFunc()\n";

 }

}

$class = new OtherClass();

$class->myFunc();

?>

Static Keyword

Declaring class members or methods as static makes them accessible without needing an
instantiation of the class. A member declared as static can not be accessed with an
instantiated class object (though a static method can).

For compatibility with PHP 4, if no visibility declaration is used, then the member or
method will be treated as if it was declared as public.

Because static methods are callable without an instance of the object created, the pseudo
variable $this is not available inside the method declared as static.

Static properties cannot be accessed through the object using the arrow operator ->.

Calling non-static methods statically generates an E_STRICT level warning.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Example #124 - Static member example

<?php

class Foo

{

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

}

class Bar extends Foo

{

 public function fooStatic() {

 return parent::$my_static;

 }

}

print Foo::$my_static . "\n";

$foo = new Foo();

print $foo->staticValue() . "\n";

print $foo->my_static . "\n"; // Undefined "Property" my_static

print $foo::$my_static . "\n";

$classname = 'Foo';

print $classname::$my_static . "\n"; // As of PHP 5.3.0

print Bar::$my_static . "\n";

$bar = new Bar();

print $bar->fooStatic() . "\n";

?>

Example #125 - Static method example

<?php

class Foo {

 public static function aStaticMethod() {

 // ...

 }

}

Foo::aStaticMethod();

$classname = 'Foo';

$classname::aStaticMethod(); // As of PHP 5.3.0

?>

Class Constants

It is possible to define constant values on a per-class basis remaining the same and
unchangeable. Constants differ from normal variables in that you don't use the $symbol to
declare or use them.

The value must be a constant expression, not (for example) a variable, a class member,
result of a mathematical operation or a function call.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value
can not be a keyword (e.g. self, parent and static).

Example #126 - Defining and using a constant

<?php

class MyClass

{

 const constant = 'constant value';

 function showConstant() {

 echo self::constant . "\n";

 }

}

echo MyClass::constant . "\n";

$classname = "MyClass";

echo $classname::constant . "\n"; // As of PHP 5.3.0

$class = new MyClass();

$class->showConstant();

echo $class::constant."\n"; // As of PHP 5.3.0

?>

Example #127 - Static data example

<?php

class foo {

 // As of PHP 5.3.0

 const bar = <<<'EOT'

bar

EOT;

}

?>

Unlike heredocs, nowdocs can be used in any static data context.

Note

Nowdoc support was added in PHP 5.3.0.

Class Abstraction

PHP 5 introduces abstract classes and methods. It is not allowed to create an instance of
a class that has been defined as abstract. Any class that contains at least one abstract
method must also be abstract. Methods defined as abstract simply declare the method's
signature they cannot define the implementation.

When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must be defined by the child; additionally, these methods must be defined with
the same (or a less restricted) visibility. For example, if the abstract method is defined as
protected, the function implementation must be defined as either protected or public, but
not private.

Example #128 - Abstract class example

<?php

abstract class AbstractClass

{

 // Force Extending class to define this method

 abstract protected function getValue();

 abstract protected function prefixValue($prefix);

 // Common method

 public function printOut() {

 print $this->getValue() . "\n";

 }

}

class ConcreteClass1 extends AbstractClass

{

 protected function getValue() {

 return "ConcreteClass1";

 }

 public function prefixValue($prefix) {

 return "{$prefix}ConcreteClass1";

 }

}

class ConcreteClass2 extends AbstractClass

{

 public function getValue() {

 return "ConcreteClass2";

 }

 public function prefixValue($prefix) {

 return "{$prefix}ConcreteClass2";

 }

}

$class1 = new ConcreteClass1;

$class1->printOut();

echo $class1->prefixValue('FOO_') ."\n";

$class2 = new ConcreteClass2;

$class2->printOut();

echo $class2->prefixValue('FOO_') ."\n";

?>

The above example will output:

ConcreteClass1

FOO_ConcreteClass1

ConcreteClass2

FOO_ConcreteClass2

Old code that has no user-defined classes or functions named 'abstract' should run without
modifications.

Object Interfaces

Object interfaces allow you to create code which specifies which methods a class must
implement, without having to define how these methods are handled.

Interfaces are defined using the interface keyword, in the same way as a standard class,
but without any of the methods having their contents defined.

All methods declared in an interface must be public, this is the nature of an interface.

implements

To implement an interface, the implements operator is used. All methods in the interface
must be implemented within a class; failure to do so will result in a fatal error. Classes may
implement more than one interface if desired by separating each interface with a comma.

Note

A class cannot implement two interfaces that share function names, since it would
cause ambiguity.

Examples

Example #129 - Interface example

<?php

// Declare the interface 'iTemplate'

interface iTemplate

{

 public function setVariable($name, $var);

 public function getHtml($template);

}

// Implement the interface

// This will work

class Template implements iTemplate

{

 private $vars = array();

 public function setVariable($name, $var)

 {

 $this->vars[$name] = $var;

 }

 public function getHtml($template)

 {

 foreach($this->vars as $name => $value) {

 $template = str_replace('{' . $name . '}', $value, $template);

 }

 return $template;

 }

}

// This will not work

// Fatal error: Class BadTemplate contains 1 abstract methods

// and must therefore be declared abstract (iTemplate::getHtml)

class BadTemplate implements iTemplate

{

 private $vars = array();

 public function setVariable($name, $var)

 {

 $this->vars[$name] = $var;

 }

}

?>

See also the instanceof operator.

Overloading

Overloading in PHP provides means to dynamically "create" members and methods.
These dynamic entities are processed via magic methods one can establish in a class for
various action types.

The overloading methods are invoked when interacting with members or methods that
have not been declared or are not visible in the current scope. The rest of this section will
use the terms "inaccessible members" and "inaccessible methods" to refer to this
combination of declaration and visibility.

All overloading methods must be defined as public.

Note

None of the arguments of these magic methods can be passed by reference.

Note

PHP's interpretation of "overloading" is different than most object oriented languages.
Overloading traditionally provides the ability to have multiple methods with the same
name but different quantities and types of arguments.

ChangeLog

Version Description

5.1.0 Added __isset() and __unset().

5.3.0 Added __callStatic().

Member overloading

void __set (string $name, mixed $value)

mixed __get (string $name)

bool __isset (string $name)

void __unset (string $name)

__set() is run when writing data to inaccessible members.

__get() is utilized for reading data from inaccessible members.

__isset() is triggered by calling isset() or empty() on inaccessible members.

__unset() is invoked when unset() is used on inaccessible members.

The $name argument is the name of the member being interacted with. The __set()
method's $value argument specifies the value the $name 'ed member should be set to.

Member overloading only works in object context. These magic methods will not be
triggered in static context. Therefore these methods can not be declared static.

Example #130 - overloading with __get, __set, __isset and __unset example

<?php

class MemberTest {

 /** Location for overloaded data. */

 private $data = array();

 /** Overloading not used on declared members. */

 public $declared = 1;

 /** Overloading not triggered when accessed inside the class. */

 private $hidden = 2;

 public function __set($name, $value) {

 echo "Setting '$name' to '$value'\n";

 $this->data[$name] = $value;

 }

 public function __get($name) {

 echo "Getting '$name'\n";

 if (array_key_exists($name, $this->data)) {

 return $this->data[$name];

 }

 $trace = debug_backtrace();

 trigger_error(

 'Undefined property: ' . $name .

 ' in ' . $trace[0]['file'] .

 ' on line ' . $trace[0]['line'],

 E_USER_NOTICE);

 return null;

 }

 /** As of PHP 5.1.0 */

 public function __isset($name) {

 echo "Is '$name' set?\n";

 return isset($this->data[$name]);

 }

 /** As of PHP 5.1.0 */

 public function __unset($name) {

 echo "Unsetting '$name'\n";

 unset($this->data[$name]);

 }

 /** Not a magic method, just here for example. */

 public function getHidden() {

 echo "'hidden' visible here so __get() not used\n";

 return $this->hidden;

 }

}

echo "<pre>\n";

$obj = new MemberTest;

$obj->a = 1;

echo $obj->a . "\n";

var_dump(isset($obj->a));

unset($obj->a);

var_dump(isset($obj->a));

echo $obj->declared . "\n";

echo $obj->getHidden() . "\n";

echo $obj->hidden . "\n";

?>

The above example will output:

Setting 'a' to '1'

Getting 'a'

1

Is 'a' set?

bool(true)

Unsetting 'a'

Is 'a' set?

bool(false)

1

'hidden' visible here so __get() not used

2

Getting 'hidden'

Notice: Undefined property: hidden in <file> on line 64 in <file> on line
28

Method overloading

mixed __call (string $name, array $arguments)

mixed __callStatic (string $name, array $arguments)

__call() is triggered when invoking inaccessible methods in an object context.

__callStatic() is triggered when invoking inaccessible methods in a static context.

The $name argument is the name of the method being called. The $arguments argument
is an enumerated array containing the parameters passed to the $name 'ed method.

Example #131 - overloading instantiated methods with __call and ___callStatic

<?php

class MethodTest {

 public function __call($name, $arguments) {

 // Note: value of $name is case sensitive.

 echo "Calling object method '$name' "

 . implode(', ', $arguments). "\n";

 }

 /** As of PHP 5.3.0 */

 public static function __callStatic($name, $arguments) {

 // Note: value of $name is case sensitive.

 echo "Calling static method '$name' "

 . implode(', ', $arguments). "\n";

 }

}

$obj = new MethodTest;

$obj->runTest('in object context');

MethodTest::runTest('in static context'); // As of PHP 5.3.0

?>

The above example will output:

Calling object method 'runTest' in object context

Calling static method 'runTest' in static context

Object Iteration

PHP 5 provides a way for objects to be defined so it is possible to iterate through a list of
items, with, for example a foreach statement. By default, all visible properties will be used
for the iteration.

Example #132 - Simple Object Iteration

<?php

class MyClass

{

 public $var1 = 'value 1';

 public $var2 = 'value 2';

 public $var3 = 'value 3';

 protected $protected = 'protected var';

 private $private = 'private var';

 function iterateVisible() {

 echo "MyClass::iterateVisible:\n";

 foreach($this as $key => $value) {

 print "$key => $value\n";

 }

 }

}

$class = new MyClass();

foreach($class as $key => $value) {

 print "$key => $value\n";

}

echo "\n";

$class->iterateVisible();

?>

The above example will output:

var1 => value 1

var2 => value 2

var3 => value 3

MyClass::iterateVisible:

var1 => value 1

var2 => value 2

var3 => value 3

protected => protected var

private => private var

As the output shows, the foreach iterated through all visible variables that can be
accessed. To take it a step further you can implement one of PHP 5's internal interface
named Iterator. This allows the object to decide what and how the object will be iterated.

Example #133 - Object Iteration implementing Iterator

<?php

class MyIterator implements Iterator

{

 private $var = array();

 public function __construct($array)

 {

 if (is_array($array)) {

 $this->var = $array;

 }

 }

 public function rewind() {

 echo "rewinding\n";

 reset($this->var);

 }

 public function current() {

 $var = current($this->var);

 echo "current: $var\n";

 return $var;

 }

 public function key() {

 $var = key($this->var);

 echo "key: $var\n";

 return $var;

 }

 public function next() {

 $var = next($this->var);

 echo "next: $var\n";

 return $var;

 }

 public function valid() {

 $var = $this->current() !== false;

 echo "valid: {$var}\n";

 return $var;

 }

}

$values = array(1,2,3);

$it = new MyIterator($values);

foreach ($it as $a => $b) {

 print "$a: $b\n";

}

?>

The above example will output:

rewinding

current: 1

valid: 1

current: 1

key: 0

0: 1

next: 2

current: 2

valid: 1

current: 2

key: 1

1: 2

next: 3

current: 3

valid: 1

current: 3

key: 2

2: 3

next:

current:

valid:

You can also define your class so that it doesn't have to define all the Iterator functions by
simply implementing the PHP 5 IteratorAggregate interface.

Example #134 - Object Iteration implementing IteratorAggregate

<?php

class MyCollection implements IteratorAggregate

{

 private $items = array();

 private $count = 0;

 // Required definition of interface IteratorAggregate

 public function getIterator() {

 return new MyIterator($this->items);

 }

 public function add($value) {

 $this->items[$this->count++] = $value;

 }

}

$coll = new MyCollection();

$coll->add('value 1');

$coll->add('value 2');

$coll->add('value 3');

foreach ($coll as $key => $val) {

 echo "key/value: [$key -> $val]\n\n";

}

?>

The above example will output:

rewinding

current: value 1

valid: 1

current: value 1

key: 0

key/value: [0 -> value 1]

next: value 2

current: value 2

valid: 1

current: value 2

key: 1

key/value: [1 -> value 2]

next: value 3

current: value 3

valid: 1

current: value 3

key: 2

key/value: [2 -> value 3]

next:

current:

valid:

Note

For more examples of iterators, see the SPL Extension.

Patterns

Patterns are ways to describe best practices and good designs. They show a flexible
solution to common programming problems.

Factory

The Factory pattern allows for the instantiation of objects at runtime. It is called a Factory
Pattern since it is responsible for "manufacturing" an object. A Parameterized Factory
receives the name of the class to instantiate as argument.

Example #135 - Parameterized Factory Method

<?php

class Example

{

 // The parameterized factory method

 public static function factory($type)

 {

 if (include_once 'Drivers/' . $type . '.php') {

 $classname = 'Driver_' . $type;

 return new $classname;

 } else {

 throw new Exception ('Driver not found');

 }

 }

}

?>

Defining this method in a class allows drivers to be loaded on the fly. If the Example
class was a database abstraction class, loading a MySQL and SQLite driver could be
done as follows:

<?php

// Load a MySQL Driver

$mysql = Example::factory('MySQL');

// Load a SQLite Driver

$sqlite = Example::factory('SQLite');

?>

Singleton

The Singleton pattern applies to situations in which there needs to be a single instance of
a class. The most common example of this is a database connection. Implementing this
pattern allows a programmer to make this single instance easily accessible by many other
objects.

Example #136 - Singleton Function

<?php

class Example

{

 // Hold an instance of the class

 private static $instance;

 // A private constructor; prevents direct creation of object

 private function __construct()

 {

 echo 'I am constructed';

 }

 // The singleton method

 public static function singleton()

 {

 if (!isset(self::$instance)) {

 $c = __CLASS__;

 self::$instance = new $c;

 }

 return self::$instance;

 }

 // Example method

 public function bark()

 {

 echo 'Woof!';

 }

 // Prevent users to clone the instance

 public function __clone()

 {

 trigger_error('Clone is not allowed.', E_USER_ERROR);

 }

}

?>

This allows a single instance of the Example class to be retrieved.

<?php

// This would fail because the constructor is private

$test = new Example;

// This will always retrieve a single instance of the class

$test = Example::singleton();

$test->bark();

// This will issue an E_USER_ERROR.

$test_clone = clone $test;

?>

Magic Methods

The function names __construct, __destruct (see Constructors and Destructors), __call,
__callStatic, __get, __set, __isset, __unset (see Overloading), __sleep, __wakeup,
__toString, __set_state and __clone are magical in PHP classes. You cannot have
functions with these names in any of your classes unless you want the magic functionality
associated with them.

Caution

PHP reserves all function names starting with __ as magical. It is recommended that
you do not use function names with __ in PHP unless you want some documented
magic functionality.

__sleep and __wakeup

serialize() checks if your class has a function with the magic name __sleep. If so, that

function is executed prior to any serialization. It can clean up the object and is supposed to
return an array with the names of all variables of that object that should be serialized. If the
method doesn't return anything then NULL is serialized and E_NOTICE is issued.

The intended use of __sleep is to commit pending data or perform similar cleanup tasks.
Also, the function is useful if you have very large objects which do not need to be saved
completely.

Conversely, unserialize() checks for the presence of a function with the magic name
__wakeup. If present, this function can reconstruct any resources that the object may
have.

The intended use of __wakeup is to reestablish any database connections that may have
been lost during serialization and perform other reinitialization tasks.

Example #137 - Sleep and wakeup

<?php

class Connection {

 protected $link;

 private $server, $username, $password, $db;

 public function __construct($server, $username, $password, $db)

 {

 $this->server = $server;

 $this->username = $username;

 $this->password = $password;

 $this->db = $db;

 $this->connect();

 }

 private function connect()

 {

 $this->link = mysql_connect($this->server, $this->username,
$this->password);

 mysql_select_db($this->db, $this->link);

 }

 public function __sleep()

 {

 return array('server', 'username', 'password', 'db');

 }

 public function __wakeup()

 {

 $this->connect();

 }

}

?>

__toString

The __toString method allows a class to decide how it will react when it is converted to a

string.

Example #138 - Simple example

<?php

// Declare a simple class

class TestClass

{

 public $foo;

 public function __construct($foo) {

 $this->foo = $foo;

 }

 public function __toString() {

 return $this->foo;

 }

}

$class = new TestClass('Hello');

echo $class;

?>

The above example will output:

Hello

It is worth noting that before PHP 5.2.0 the __toString method was only called when it was
directly combined with echo() or print(). Since PHP 5.2.0, it is called in any string context
(e.g. in printf() with %s modifier) but not in other types contexts (e.g. with %d modifier).
Since PHP 5.2.0, converting objects without __toString method to string would cause
E_RECOVERABLE_ERROR.

__set_state

This static method is called for classes exported by var_export() since PHP 5.1.0.

The only parameter of this method is an array containing exported properties in the form
array('property' => value, ...).

Example #139 - Using __set_state (since PHP 5.1.0)

<?php

class A

{

 public $var1;

 public $var2;

 public static function __set_state($an_array) // As of PHP 5.1.0

 {

 $obj = new A;

 $obj->var1 = $an_array['var1'];

 $obj->var2 = $an_array['var2'];

 return $obj;

 }

}

$a = new A;

$a->var1 = 5;

$a->var2 = 'foo';

eval('$b = ' . var_export($a, true) . ';'); // $b = A::__set_state(array(

 // 'var1' => 5,

 // 'var2' => 'foo',

 //));

var_dump($b);

?>

The above example will output:

object(A)#2 (2) {

 ["var1"]=>

 int(5)

 ["var2"]=>

 string(3) "foo"

}

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from overriding a method
by prefixing the definition with final. If the class itself is being defined final then it cannot be
extended.

Example #140 - Final methods example

<?php

class BaseClass {

 public function test() {

 echo "BaseClass::test() called\n";

 }

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called\n";

 }

}

class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called\n";

 }

}

// Results in Fatal error: Cannot override final method
BaseClass::moreTesting()

?>

Example #141 - Final class example

<?php

final class BaseClass {

 public function test() {

 echo "BaseClass::test() called\n";

 }

 // Here it doesn't matter if you specify the function as final or not

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called\n";

 }

}

class ChildClass extends BaseClass {

}

// Results in Fatal error: Class ChildClass may not inherit from final class
(BaseClass)

?>

Object cloning

Creating a copy of an object with fully replicated properties is not always the wanted
behavior. A good example of the need for copy constructors, is if you have an object which
represents a GTK window and the object holds the resource of this GTK window, when
you create a duplicate you might want to create a new window with the same properties
and have the new object hold the resource of the new window. Another example is if your
object holds a reference to another object which it uses and when you replicate the parent
object you want to create a new instance of this other object so that the replica has its own
separate copy.

An object copy is created by using the clone keyword (which calls the object's __clone()
method if possible). An object's __clone() method cannot be called directly.

$copy_of_object = clone $object;

When an object is cloned, PHP 5 will perform a shallow copy of all of the object's
properties. Any properties that are references to other variables, will remain references. If
a __clone() method is defined, then the newly created object's __clone() method will be
called, to allow any necessary properties that need to be changed.

Example #142 - Cloning an object

<?php

class SubObject

{

 static $instances = 0;

 public $instance;

 public function __construct() {

 $this->instance = ++self::$instances;

 }

 public function __clone() {

 $this->instance = ++self::$instances;

 }

}

class MyCloneable

{

 public $object1;

 public $object2;

 function __clone()

 {

 // Force a copy of this->object, otherwise

 // it will point to same object.

 $this->object1 = clone $this->object1;

 }

}

$obj = new MyCloneable();

$obj->object1 = new SubObject();

$obj->object2 = new SubObject();

$obj2 = clone $obj;

print("Original Object:\n");

print_r($obj);

print("Cloned Object:\n");

print_r($obj2);

?>

The above example will output:

Original Object:

MyCloneable Object

(

 [object1] => SubObject Object

 (

 [instance] => 1

)

 [object2] => SubObject Object

 (

 [instance] => 2

)

)

Cloned Object:

MyCloneable Object

(

 [object1] => SubObject Object

 (

 [instance] => 3

)

 [object2] => SubObject Object

 (

 [instance] => 2

)

)

Comparing objects

In PHP 5, object comparison is more complicated than in PHP 4 and more in accordance
to what one will expect from an Object Oriented Language (not that PHP 5 is such a
language).

When using the comparison operator (==), object variables are compared in a simple
manner, namely: Two object instances are equal if they have the same attributes and
values, and are instances of the same class.

On the other hand, when using the identity operator (===), object variables are identical if
and only if they refer to the same instance of the same class.

An example will clarify these rules.

Example #143 - Example of object comparison in PHP 5

<?php

function bool2str($bool)

{

 if ($bool === false) {

 return 'FALSE';

 } else {

 return 'TRUE';

 }

}

function compareObjects(&$o1, &$o2)

{

 echo 'o1 == o2 : ' . bool2str($o1 == $o2) . "\n";

 echo 'o1 != o2 : ' . bool2str($o1 != $o2) . "\n";

 echo 'o1 === o2 : ' . bool2str($o1 === $o2) . "\n";

 echo 'o1 !== o2 : ' . bool2str($o1 !== $o2) . "\n";

}

class Flag

{

 public $flag;

 function Flag($flag = true) {

 $this->flag = $flag;

 }

}

class OtherFlag

{

 public $flag;

 function OtherFlag($flag = true) {

 $this->flag = $flag;

 }

}

$o = new Flag();

$p = new Flag();

$q = $o;

$r = new OtherFlag();

echo "Two instances of the same class\n";

compareObjects($o, $p);

echo "\nTwo references to the same instance\n";

compareObjects($o, $q);

echo "\nInstances of two different classes\n";

compareObjects($o, $r);

?>

The above example will output:

Two instances of the same class

o1 == o2 : TRUE

o1 != o2 : FALSE

o1 === o2 : FALSE

o1 !== o2 : TRUE

Two references to the same instance

o1 == o2 : TRUE

o1 != o2 : FALSE

o1 === o2 : TRUE

o1 !== o2 : FALSE

Instances of two different classes

o1 == o2 : FALSE

o1 != o2 : TRUE

o1 === o2 : FALSE

o1 !== o2 : TRUE

Note

Extensions can define own rules for their objects comparison.

Reflection

Table of Contents

• Introduction
• The Reflector interface
• The ReflectionException class
• The ReflectionFunction class
• The ReflectionParameter class
• The ReflectionClass class
• The ReflectionObject class
• The ReflectionMethod class
• The ReflectionProperty class
• The ReflectionExtension class
• Extending the reflection classes

Introduction

PHP 5 comes with a complete reflection API that adds the ability to reverse-engineer
classes, interfaces, functions and methods as well as extensions. Additionally, the
reflection API also offers ways of retrieving doc comments for functions, classes and
methods.

The reflection API is an object-oriented extension to the Zend Engine, consisting of the
following classes:

<?php

class Reflection { }

interface Reflector { }

class ReflectionException extends Exception { }

class ReflectionFunction extends ReflectionFunctionAbstract implements Reflector
{ }

class ReflectionParameter implements Reflector { }

class ReflectionMethod extends ReflectionFunctionAbstract implements Reflector {
}

class ReflectionClass implements Reflector { }

class ReflectionObject extends ReflectionClass { }

class ReflectionProperty implements Reflector { }

class ReflectionExtension implements Reflector { }

?>

Note

For details on these classes, have a look at the next chapters.

If we were to execute the code in the example below:

Example #144 - Basic usage of the reflection API

<?php

Reflection::export(new ReflectionClass('Exception'));

?>

The above example will output:

Class [<internal> class Exception] {

 - Constants [0] {

 }

 - Static properties [0] {

 }

 - Static methods [0] {

 }

 - Properties [6] {

 Property [<default> protected $message]

 Property [<default> private $string]

 Property [<default> protected $code]

 Property [<default> protected $file]

 Property [<default> protected $line]

 Property [<default> private $trace]

 }

 - Methods [9] {

 Method [<internal> final private method __clone] {

 }

 Method [<internal, ctor> public method __construct] {

 - Parameters [2] {

 Parameter #0 [<optional> $message]

 Parameter #1 [<optional> $code]

 }

 }

 Method [<internal> final public method getMessage] {

 }

 Method [<internal> final public method getCode] {

 }

 Method [<internal> final public method getFile] {

 }

 Method [<internal> final public method getLine] {

 }

 Method [<internal> final public method getTrace] {

 }

 Method [<internal> final public method getTraceAsString] {

 }

 Method [<internal> public method __toString] {

 }

 }

}

Reflector

Reflector is an interface implemented by all exportable Reflection classes.

<?php

interface Reflector

{

 public string __toString()

 public static string export()

}

?>

ReflectionException

ReflectionException extends the standard Exception and is thrown by Reflection API. No
specific methods or properties are introduced.

ReflectionFunction

The ReflectionFunction class lets you reverse-engineer functions.

<?php

class ReflectionFunction extends ReflectionFunctionAbstract implements Reflector

{

 final private __clone()

 public void __construct(string name)

 public string __toString()

 public static string export(string name, bool return)

 public string getName()

 public bool isInternal()

 public bool isDisabled()

 public bool isUserDefined()

 public string getFileName()

 public int getStartLine()

 public int getEndLine()

 public string getDocComment()

 public array getStaticVariables()

 public mixed invoke([mixed args [, ...]])

 public mixed invokeArgs(array args)

 public bool returnsReference()

 public ReflectionParameter[] getParameters()

 public int getNumberOfParameters()

 public int getNumberOfRequiredParameters()

}

?>

Parent class ReflectionFunctionAbstract has the same methods except invoke(),
invokeArgs(), export() and isDisabled().

Note

getNumberOfParameters() and getNumberOfRequiredParameters() were added in
PHP 5.0.3, while invokeArgs() was added in PHP 5.1.0.

To introspect a function, you will first have to create an instance of the ReflectionFunction
class. You can then call any of the above methods on this instance.

Example #145 - Using the ReflectionFunction class

<?php

/**

* A simple counter

*

* @return int

*/

function counter()

{

 static $c = 0;

 return $c++;

}

// Create an instance of the ReflectionFunction class

$func = new ReflectionFunction('counter');

// Print out basic information

printf(

 "===> The %s function '%s'\n".

 " declared in %s\n".

 " lines %d to %d\n",

 $func->isInternal() ? 'internal' : 'user-defined',

 $func->getName(),

 $func->getFileName(),

 $func->getStartLine(),

 $func->getEndline()

);

// Print documentation comment

printf("---> Documentation:\n %s\n", var_export($func->getDocComment(), 1));

// Print static variables if existant

if ($statics = $func->getStaticVariables())

{

 printf("---> Static variables: %s\n", var_export($statics, 1));

}

// Invoke the function

printf("---> Invokation results in: ");

var_dump($func->invoke());

// you may prefer to use the export() method

echo "\nReflectionFunction::export() results:\n";

echo ReflectionFunction::export('counter');

?>

Note

The method invoke() accepts a variable number of arguments which are passed to the
function just as in call_user_func().

ReflectionParameter

The ReflectionParameter class retrieves information about a function's or method's
parameters.

<?php

class ReflectionParameter implements Reflector

{

 final private __clone()

 public void __construct(string function, string parameter)

 public string __toString()

 public static string export(mixed function, mixed parameter, bool return)

 public string getName()

 public bool isPassedByReference()

 public ReflectionClass getDeclaringClass()

 public ReflectionClass getClass()

 public bool isArray()

 public bool allowsNull()

 public bool isPassedByReference()

 public bool isOptional()

 public bool isDefaultValueAvailable()

 public mixed getDefaultValue()

 public int getPosition()

}

?>

Note

getDefaultValue(), isDefaultValueAvailable() and isOptional() were added in PHP
5.0.3, while isArray() was added in PHP 5.1.0. getDeclaringFunction() and
getPosition() were added in PHP 5.2.3.

To introspect function parameters, you will first have to create an instance of the
ReflectionFunction or ReflectionMethod classes and then use their getParameters()
method to retrieve an array of parameters.

Example #146 - Using the ReflectionParameter class

<?php

function foo($a, $b, $c) { }

function bar(Exception $a, &$b, $c) { }

function baz(ReflectionFunction $a, $b = 1, $c = null) { }

function abc() { }

// Create an instance of ReflectionFunction with the

// parameter given from the command line.

$reflect = new ReflectionFunction($argv[1]);

echo $reflect;

foreach ($reflect->getParameters() as $i => $param) {

 printf(

 "-- Parameter #%d: %s {\n".

 " Class: %s\n".

 " Allows NULL: %s\n".

 " Passed to by reference: %s\n".

 " Is optional?: %s\n".

 "}\n",

 $i, // $param->getPosition() can be used from PHP 5.2.3

 $param->getName(),

 var_export($param->getClass(), 1),

 var_export($param->allowsNull(), 1),

 var_export($param->isPassedByReference(), 1),

 $param->isOptional() ? 'yes' : 'no'

);

}

?>

ReflectionClass

The ReflectionClass class lets you reverse-engineer classes and interfaces.

<?php

class ReflectionClass implements Reflector

{

 final private __clone()

 public void __construct(string name)

 public string __toString()

 public static string export(mixed class, bool return)

 public string getName()

 public bool isInternal()

 public bool isUserDefined()

 public bool isInstantiable()

 public bool hasConstant(string name)

 public bool hasMethod(string name)

 public bool hasProperty(string name)

 public string getFileName()

 public int getStartLine()

 public int getEndLine()

 public string getDocComment()

 public ReflectionMethod getConstructor()

 public ReflectionMethod getMethod(string name)

 public ReflectionMethod[] getMethods()

 public ReflectionProperty getProperty(string name)

 public ReflectionProperty[] getProperties()

 public array getConstants()

 public mixed getConstant(string name)

 public ReflectionClass[] getInterfaces()

 public bool isInterface()

 public bool isAbstract()

 public bool isFinal()

 public int getModifiers()

 public bool isInstance(stdclass object)

 public stdclass newInstance(mixed args)

 public stdclass newInstanceArgs(array args)

 public ReflectionClass getParentClass()

 public bool isSubclassOf(ReflectionClass class)

 public array getStaticProperties()

 public mixed getStaticPropertyValue(string name [, mixed default])

 public void setStaticPropertyValue(string name, mixed value)

 public array getDefaultProperties()

 public bool isIterateable()

 public bool implementsInterface(string name)

 public ReflectionExtension getExtension()

 public string getExtensionName()

}

?>

Note

hasConstant(), hasMethod(), hasProperty(), getStaticPropertyValue() and
setStaticPropertyValue() were added in PHP 5.1.0, while newInstanceArgs() was
added in PHP 5.1.3.

To introspect a class, you will first have to create an instance of the ReflectionClass class.
You can then call any of the above methods on this instance.

Example #147 - Using the ReflectionClass class

<?php

interface Serializable

{

 // ...

}

class Object

{

 // ...

}

/**

* A counter class

*/

class Counter extends Object implements Serializable

{

 const START = 0;

 private static $c = Counter::START;

 /**

 * Invoke counter

 *

 * @access public

 * @return int

 */

 public function count() {

 return self::$c++;

 }

}

// Create an instance of the ReflectionClass class

$class = new ReflectionClass('Counter');

// Print out basic information

printf(

 "===> The %s%s%s %s '%s' [extends %s]\n" .

 " declared in %s\n" .

 " lines %d to %d\n" .

 " having the modifiers %d [%s]\n",

 $class->isInternal() ? 'internal' : 'user-defined',

 $class->isAbstract() ? ' abstract' : '',

 $class->isFinal() ? ' final' : '',

 $class->isInterface() ? 'interface' : 'class',

 $class->getName(),

 var_export($class->getParentClass(), 1),

 $class->getFileName(),

 $class->getStartLine(),

 $class->getEndline(),

 $class->getModifiers(),

 implode(' ', Reflection::getModifierNames($class->getModifiers()))

);

// Print documentation comment

printf("---> Documentation:\n %s\n", var_export($class->getDocComment(),
1));

// Print which interfaces are implemented by this class

printf("---> Implements:\n %s\n", var_export($class->getInterfaces(), 1));

// Print class constants

printf("---> Constants: %s\n", var_export($class->getConstants(), 1));

// Print class properties

printf("---> Properties: %s\n", var_export($class->getProperties(), 1));

// Print class methods

printf("---> Methods: %s\n", var_export($class->getMethods(), 1));

// If this class is instantiable, create an instance

if ($class->isInstantiable()) {

 $counter = $class->newInstance();

 echo '---> $counter is instance? ';

 echo $class->isInstance($counter) ? 'yes' : 'no';

 echo "\n---> new Object() is instance? ";

 echo $class->isInstance(new Object()) ? 'yes' : 'no';

}

?>

Note

The method newInstance() accepts a variable number of arguments which are passed
to the function just as in call_user_func().

Note

$class = new ReflectionClass('Foo'); $class->isInstance($arg) is equivalent to $arg
instanceof Foo or is_a($arg, 'Foo').

ReflectionObject

The ReflectionObject class lets you reverse-engineer objects.

<?php

class ReflectionObject extends ReflectionClass

{

 final private __clone()

 public void __construct(mixed object)

 public string __toString()

 public static string export(mixed object, bool return)

}

?>

ReflectionMethod

The ReflectionMethod class lets you reverse-engineer class methods.

<?php

class ReflectionMethod extends ReflectionFunctionAbstract implements Reflector

{

 public void __construct(mixed class, string name)

 public string __toString()

 public static string export(mixed class, string name, bool return)

 public mixed invoke(stdclass object [, mixed args [, ...]])

 public mixed invokeArgs(stdclass object, array args)

 public bool isFinal()

 public bool isAbstract()

 public bool isPublic()

 public bool isPrivate()

 public bool isProtected()

 public bool isStatic()

 public bool isConstructor()

 public bool isDestructor()

 public int getModifiers()

 public ReflectionClass getDeclaringClass()

 // Inherited from ReflectionFunctionAbstract

 final private __clone()

 public string getName()

 public bool isInternal()

 public bool isUserDefined()

 public string getFileName()

 public int getStartLine()

 public int getEndLine()

 public string getDocComment()

 public array getStaticVariables()

 public bool returnsReference()

 public ReflectionParameter[] getParameters()

 public int getNumberOfParameters()

 public int getNumberOfRequiredParameters()

}

?>

To introspect a method, you will first have to create an instance of the ReflectionMethod
class. You can then call any of the above methods on this instance.

Example #148 - Using the ReflectionMethod class

<?php

class Counter

{

 private static $c = 0;

 /**

 * Increment counter

 *

 * @final

 * @static

 * @access public

 * @return int

 */

 final public static function increment()

 {

 return ++self::$c;

 }

}

// Create an instance of the ReflectionMethod class

$method = new ReflectionMethod('Counter', 'increment');

// Print out basic information

printf(

 "===> The %s%s%s%s%s%s%s method '%s' (which is %s)\n" .

 " declared in %s\n" .

 " lines %d to %d\n" .

 " having the modifiers %d[%s]\n",

 $method->isInternal() ? 'internal' : 'user-defined',

 $method->isAbstract() ? ' abstract' : '',

 $method->isFinal() ? ' final' : '',

 $method->isPublic() ? ' public' : '',

 $method->isPrivate() ? ' private' : '',

 $method->isProtected() ? ' protected' : '',

 $method->isStatic() ? ' static' : '',

 $method->getName(),

 $method->isConstructor() ? 'the constructor' : 'a regular method',

 $method->getFileName(),

 $method->getStartLine(),

 $method->getEndline(),

 $method->getModifiers(),

 implode(' ', Reflection::getModifierNames($method->getModifiers()))

);

// Print documentation comment

printf("---> Documentation:\n %s\n", var_export($method->getDocComment(),
1));

// Print static variables if existant

if ($statics= $method->getStaticVariables()) {

 printf("---> Static variables: %s\n", var_export($statics, 1));

}

// Invoke the method

printf("---> Invokation results in: ");

var_dump($method->invoke(NULL));

?>

Note

Trying to invoke private, protected or abstract methods will result in an exception being
thrown from the invoke() method.

Note

For static methods as seen above, you should pass NULL as the first argument to
invoke(). For non-static methods, pass an instance of the class.

ReflectionProperty

The ReflectionProperty class lets you reverse-engineer class properties.

<?php

class ReflectionProperty implements Reflector

{

 final private __clone()

 public void __construct(mixed class, string name)

 public string __toString()

 public static string export(mixed class, string name, bool return)

 public string getName()

 public bool isPublic()

 public bool isPrivate()

 public bool isProtected()

 public bool isStatic()

 public bool isDefault()

 public int getModifiers()

 public mixed getValue(stdclass object)

 public void setValue(stdclass object, mixed value)

 public ReflectionClass getDeclaringClass()

 public string getDocComment()

}

?>

Note

getDocComment() was added in PHP 5.1.0.

To introspect a property, you will first have to create an instance of the ReflectionProperty
class. You can then call any of the above methods on this instance.

Example #149 - Using the ReflectionProperty class

<?php

class String

{

 public $length = 5;

}

// Create an instance of the ReflectionProperty class

$prop = new ReflectionProperty('String', 'length');

// Print out basic information

printf(

 "===> The%s%s%s%s property '%s' (which was %s)\n" .

 " having the modifiers %s\n",

 $prop->isPublic() ? ' public' : '',

 $prop->isPrivate() ? ' private' : '',

 $prop->isProtected() ? ' protected' : '',

 $prop->isStatic() ? ' static' : '',

 $prop->getName(),

 $prop->isDefault() ? 'declared at compile-time' : 'created at
run-time',

 var_export(Reflection::getModifierNames($prop->getModifiers()), 1)

);

// Create an instance of String

$obj= new String();

// Get current value

printf("---> Value is: ");

var_dump($prop->getValue($obj));

// Change value

$prop->setValue($obj, 10);

printf("---> Setting value to 10, new value is: ");

var_dump($prop->getValue($obj));

// Dump object

var_dump($obj);

?>

Note

Trying to get or set private or protected class property's values will result in an
exception being thrown.

ReflectionExtension

The ReflectionExtension class lets you reverse-engineer extensions. You can retrieve all
loaded extensions at runtime using the get_loaded_extensions().

<?php

class ReflectionExtension implements Reflector {

 final private __clone()

 public void __construct(string name)

 public string __toString()

 public static string export(string name, bool return)

 public string getName()

 public string getVersion()

 public ReflectionFunction[] getFunctions()

 public array getConstants()

 public array getINIEntries()

 public ReflectionClass[] getClasses()

 public array getClassNames()

 public string info()

}

?>

To introspect an extension, you will first have to create an instance of the
ReflectionExtension class. You can then call any of the above methods on this instance.

Example #150 - Using the ReflectionExtension class

<?php

// Create an instance of the ReflectionProperty class

$ext = new ReflectionExtension('standard');

// Print out basic information

printf(

 "Name : %s\n" .

 "Version : %s\n" .

 "Functions : [%d] %s\n" .

 "Constants : [%d] %s\n" .

 "INI entries : [%d] %s\n" .

 "Classes : [%d] %s\n",

 $ext->getName(),

 $ext->getVersion() ? $ext->getVersion() : 'NO_VERSION',

 sizeof($ext->getFunctions()),

 var_export($ext->getFunctions(), 1),

 sizeof($ext->getConstants()),

 var_export($ext->getConstants(), 1),

 sizeof($ext->getINIEntries()),

 var_export($ext->getINIEntries(), 1),

 sizeof($ext->getClassNames()),

 var_export($ext->getClassNames(), 1)

);

?>

Extending the reflection classes

In case you want to create specialized versions of the built-in classes (say, for creating
colorized HTML when being exported, having easy-access member variables instead of
methods or having utility methods), you may go ahead and extend them.

Example #151 - Extending the built-in classes

<?php

/**

* My Reflection_Method class

*/

class My_Reflection_Method extends ReflectionMethod

{

 public $visibility = array();

 public function __construct($o, $m)

 {

 parent::__construct($o, $m);

 $this->visibility =
Reflection::getModifierNames($this->getModifiers());

 }

}

/**

* Demo class #1

*

*/

class T {

 protected function x() {}

}

/**

* Demo class #2

*

*/

class U extends T {

 function x() {}

}

// Print out information

var_dump(new My_Reflection_Method('U', 'x'));

?>

Note

Caution: If you're overwriting the constructor, remember to call the parent's constructor
before any code you insert. Failing to do so will result in the following: Fatal error:
Internal error: Failed to retrieve the reflection object

Type Hinting

PHP 5 introduces Type Hinting. Functions are now able to force parameters to be objects
(by specifying the name of the class in the function prototype) or arrays (since PHP 5.1).
However, if NULL is used as the default parameter value, it will be allowed as an argument
for any later call.

Example #152 - Type Hinting examples

<?php

// An example class

class MyClass

{

 /**

 * A test function

 *

 * First parameter must be an object of type OtherClass

 */

 public function test(OtherClass $otherclass) {

 echo $otherclass->var;

 }

 /**

 * Another test function

 *

 * First parameter must be an array

 */

 public function test_array(array $input_array) {

 print_r($input_array);

 }

}

// Another example class

class OtherClass {

 public $var = 'Hello World';

}

?>

Failing to satisfy the type hint results in a catchable fatal error.

<?php

// An instance of each class

$myclass = new MyClass;

$otherclass = new OtherClass;

// Fatal Error: Argument 1 must be an object of class OtherClass

$myclass->test('hello');

// Fatal Error: Argument 1 must be an instance of OtherClass

$foo = new stdClass;

$myclass->test($foo);

// Fatal Error: Argument 1 must not be null

$myclass->test(null);

// Works: Prints Hello World

$myclass->test($otherclass);

// Fatal Error: Argument 1 must be an array

$myclass->test_array('a string');

// Works: Prints the array

$myclass->test_array(array('a', 'b', 'c'));

?>

Type hinting also works with functions:

<?php

// An example class

class MyClass {

 public $var = 'Hello World';

}

/**

* A test function

*

* First parameter must be an object of type MyClass

*/

function MyFunction (MyClass $foo) {

 echo $foo->var;

}

// Works

$myclass = new MyClass;

MyFunction($myclass);

?>

Type hinting allowing NULL value:

<?php

/* Accepting NULL value */

function test(stdClass $obj = NULL) {

}

test(NULL);

test(new stdClass);

?>

Type Hints can only be of the object and array (since PHP 5.1) type. Traditional type
hinting with int and string isn't supported.

Late Static Bindings

As of PHP 5.3.0, PHP implements a feature called late static bindings which can be used
to reference the called class in a context of static inheritance.

This feature was named "late static bindings" with an internal perspective in mind. "Late
binding" comes from the fact that static:: will no longer be resolved using the class where
the method is defined but it will rather be computed using runtime information. It was also
called a "static binding" as it can be used for (but is not limited to) static method calls.

Limitations of self::

Static references to the current class like self:: or __CLASS__ are resolved using the class
in which the function belongs, as in where it was defined:

Example #153 - self:: usage

<?php

class A {

 public static function who() {

 echo __CLASS__;

 }

 public static function test() {

 self::who();

 }

}

class B extends A {

 public static function who() {

 echo __CLASS__;

 }

}

B::test();

?>

The above example will output:

A

Late Static Bindings' usage

Late static bindings tries to solve that limitation by introducing a keyword that references
the class that was initially called at runtime. Basically, a keyword that would allow you to
reference B from test() in the previous example. It was decided not to introduce a new
keyword but rather use static that was already reserved.

Example #154 - static:: simple usage

<?php

class A {

 public static function who() {

 echo __CLASS__;

 }

 public static function test() {

 static::who(); // Here comes Late Static Bindings

 }

}

class B extends A {

 public static function who() {

 echo __CLASS__;

 }

}

B::test();

?>

The above example will output:

B

Note

static:: does not work like $this for static methods! $this-> follows the rules of
inheritance while static:: doesn't. This difference is detailed later on this manual page.

Example #155 - static:: usage in a non-static context

<?php

class TestChild extends TestParent {

 public function __construct() {

 static::who();

 }

 public function test() {

 $o = new TestParent();

 }

 public static function who() {

 echo __CLASS__."\n";

 }

}

class TestParent {

 public function __construct() {

 static::who();

 }

 public static function who() {

 echo __CLASS__."\n";

 }

}

$o = new TestChild;

$o->test();

?>

The above example will output:

TestChild

TestParent

Note

Late static bindings' resolution will stop at a fully resolved static call with no fallback.

Example #156 - Fully resolved static calls

<?php

class A {

 public static function foo() {

 static::who();

 }

 public static function who() {

 echo __CLASS__."\n";

 }

}

class B extends A {

 public static function test() {

 A::foo();

 }

 public static function who() {

 echo __CLASS__."\n";

 }

}

B::test();

?>

The above example will output:

A

Edge cases

There are lots of different ways to trigger a method call in PHP, like callbacks or magic
methods. As late static bindings base their resolution on runtime information, it might give

unexpected results in so-called edge cases.

Example #157 - Late static bindings inside magic methods

<?php

class A {

 protected static function who() {

 echo __CLASS__."\n";

 }

 public function __get($var) {

 return static::who();

 }

}

class B extends A {

 protected static function who() {

 echo __CLASS__."\n";

 }

}

$b = new B;

$b->foo;

?>

The above example will output:

B

Namespaces

Namespaces overview

Namespaces in PHP are designed to solve scoping problem in large PHP libraries. In
PHP, all class definitions are global. Thus, when a library author creates various utility or
public API classes for the library, he must be aware of the possibility that other libraries
with similar functionality would exist and thus choose unique names so that these libraries
could be used together. Usually it is solved by prefixing the class names with an unique
string - e.g., database classes would have prefix My_Library_DB, etc. As the library grows,
prefixes add up, leading to the very long names.

The namespaces allow the developer to manage naming scopes without using the long
names each time the class is referred to, and solve the problem of shared globals space
without making code unreadable.

Namespaces are available in PHP as of PHP 5.3.0. This section is experimental and
subject to changes.

Namespace definition

The namespace is declared using namespace keyword, which should be at the very
beginning of the file. Example:

Example #158 - Defining namespace

<?php

 namespace MyProject::DB;

 const CONNECT_OK = 1;

 class Connection { /* ... */ }

 function connect() { /* ... */ }

?>

Same namespace name can be used in multiple files.

Namespace can contain class, constant and function definitions, but no free code.

Namespace definition does the following:

• Inside namespace, all class, function and constant names in definitions are
automatically prefixed with namespace name. The class name is always the full name,
i.e. in the example above the class is called MyProject::DB::Connection.

• Constant definitions create constant which is composed of namespace name and
constant name. Like class constants, namespace constant can only contains static

values.

• Unqualified class name (i.e., name not containing::) is resolved at runtime following
this procedure:

• Class is looked up inside the current namespace (i.e. prefixing the name with the
current namespace name) without attempting to autoload.

• Class is looked up inside the global namespace without attempting to autoload.

• Autoloading for name in current namespace is attempted.

• If previous failed, lookup fails.

• Unqualified function name (i.e., name not containing::) is looked up at runtime first in
the current namespace and then in the global space.

• Unqualified constant names are looked up first at current namespace and then among
globally defined constants.

See also the full name resolution rules.

Using namespaces

Every class and function in a namespace can be referred to by the full name - e.g.
MyProject::DB::Connection or MyProject::DB::connect - at any time.

Example #159 - Using namespaced name

<?php

 require 'MyProject/Db/Connection.php';

 $x = new MyProject::DB::Connection;

 MyProject::DB::connect();

?>

Namespaces can be imported into current context (global or namespace) using the use
operator. The syntax for the operator is:

<?php

/* ... */

use Some::Name as Othername;

// The simplified form of use:

use Foo::Bar;

// which is the same as :

use Foo::Bar as Bar;

?>

The imported name works as follows: every time that the compiler encounters the local
name Othername (as stand-alone name or as prefix to the longer name separated by::)
the imported name Some::Name is substituted instead.

use can be used only in global scope, not inside function or class. Imported names have

effect from the point of import to the end of the current file. It is recommended to put
imports at the beginning of the file to avoid confusion.

Example #160 - Importing and accessing namespace

<?php

 require 'MyProject/Db/Connection.php';

 use MyProject::DB;

 use MyProject::DB::Connection as DbConnection;

 $x = new MyProject::DB::Connection();

 $y = new DB::connection();

 $z = new DbConnection();

 DB::connect();

?>

Note

The import operation is compile-time only, all local names are converted to their full
equivalents by the compiler. Note that it won't translate names in strings, so callbacks
can't rely on import rules.

Global space

Without any namespace definition, all class and function definitions are placed into the
global space - as it was in PHP before namespaces were supported. Prefixing a name with
:: will specify that the name is required from the global space even in the context of the
namespace.

Example #161 - Using global space specification

<?php

 namespace A::B::C;

/* This function is A::B::C::fopen */

 function fopen() {

 /* ... */

 $f = ::fopen(...); // call global fopen

 return $f;

 }

?>

__NAMESPACE__

The compile-time constant __NAMESPACE__ is defined to the name of the current
namespace. Outside namespace this constant has the value of empty string. This constant
is useful when one needs to compose full name for local namespaced names.

Example #162 - Using __NAMESPACE__

<?php

namespace A::B::C;

function foo() {

// do stuff

}

set_error_handler(__NAMESPACE__ . "::foo");

?>

Name resolution rules

Names are resolved following these resolution rules:

• All qualified names are translated during compilation according to current import rules.
In example, if the namespace A::B::C is imported, a call to C::D::e() is translated to
A::B::C::D::e().

• Unqualified class names are translated during compilation according to current import
rules (full name substituted for short imported name). In example, if the namespace
A::B::C is imported, new C() is translated to new A::B::C().

• Inside namespace, calls to unqualified functions that are defined in the current
namespace (and are known at the time the call is parsed) are interpreted as calls to
these namespace functions, at compile time.

• Inside namespace (say A::B), calls to unqualified functions that are not defined in
current namespace are resolved at run-time. Here is how a call to function foo() is
resolved:

• It looks for a function from the current namespace: A::B::foo().

• It tries to find and call the internal function foo().

To call a user defined function in the global namespace,::foo() has to be used.

• Inside namespace (say A::B), calls to unqualified class names are resolved at
run-time. Here is how a call to new C() is resolved:

• It looks for a class from the current namespace: A::B::C.

• It tries to find and call the internal class C.

• It attemts to autoload A::B::C.

To reference a user defined class in the global namespace, new ::C() has to be used.

• Calls to qualified functions are resolved at run-time. Here is how a call to A::B::foo() is
resolved:

• It looks for a function foo() in the namespace A::B.

• It looks for a class A::B and call its static method foo(). It will autoload the class if
necessary.

• Qualified class names are resolved in compile-time as class from corresponding
namespace. For example, new A::B::C() refers to class C from namespace A::B.

Example #163 - Name resolutions illustrated

<?php

namespace A;

// function calls

foo(); // first tries to call "foo" defined in namespace "A"

 // then calls internal function "foo"

::foo(); // calls function "foo" defined in global scope

// class references

new B(); // first tries to create object of class "B" defined in
namespace "A"

 // then creates object of internal class "B"

new ::B(); // creates object of class "B" defined in global scope

// static methods/namespace functions from another namespace

B::foo(); // first tries to call function "foo" from namespace "A::B"

 // then calls method "foo" of internal class "B"

::B::foo(); // first tries to call function "foo" from namespace "B"

 // then calls method "foo" of class "B" from global scope

// static methods/namespace functions of current namespace

A::foo(); // first tries to call function "foo" from namespace "A::A"

 // then tries to call method "foo" of class "A" from namespace
"A"

 // then tries to call function "foo" from namespace "A"

 // then calls method "foo" of internal class "A"

::A::foo(); // first tries to call function "foo" from namespace "A"

 // then calls method "foo" of class "A" from global scope

?>

Exceptions

PHP 5 has an exception model similar to that of other programming languages. An
exception can be throw n, and caught (" catch ed") within PHP. Code may be surrounded
in a try block, to facilitate the catching of potential exceptions. Each try must have at least
one corresponding catch block. Multiple catch blocks can be used to catch different
classes of exeptions. Normal execution (when no exception is thrown within the try block,
or when a catch matching the thrown exception's class is not present) will continue after
that last catch block defined in sequence. Exceptions can be throw n (or re-thrown) within
a catch block.

When an exception is thrown, code following the statement will not be executed, and PHP
will attempt to find the first matching catch block. If an exception is not caught, a PHP Fatal
Error will be issued with an " Uncaught Exception ... " message, unless a handler has been
defined with set_exception_handler().

Example #164 - Throwing an Exception

<?php

function inverse($x) {

 if (!$x) {

 throw new Exception('Division by zero.');

 }

 else return 1/$x;

}

try {

 echo inverse(5) . "\n";

 echo inverse(0) . "\n";

} catch (Exception $e) {

 echo 'Caught exception: ', $e->getMessage(), "\n";

}

// Continue execution

echo 'Hello World';

?>

The above example will output:

0.2

Caught exception: Division by zero.

Hello World

Example #165 - Nested Exception

<?php

class MyException extends Exception { }

class Test {

 public function testing() {

 try {

 try {

 throw new MyException('foo!');

 } catch (MyException $e) {

 /* rethrow it */

 throw $e;

 }

 } catch (Exception $e) {

 var_dump($e->getMessage());

 }

 }

}

$foo = new Test;

$foo->testing();

?>

The above example will output:

string(4) "foo!"

Extending Exceptions

A User defined Exception class can be defined by extending the built-in Exception class.
The members and properties below, show what is accessible within the child class that
derives from the built-in Exception class.

Example #166 - The Built in Exception class

<?php

class Exception

{

 protected $message = 'Unknown exception'; // exception message

 protected $code = 0; // user defined exception
code

 protected $file; // source filename of
exception

 protected $line; // source line of exception

 function __construct($message = null, $code = 0);

 final function getMessage(); // message of exception

 final function getCode(); // code of exception

 final function getFile(); // source filename

 final function getLine(); // source line

 final function getTrace(); // an array of the
backtrace()

 final function getTraceAsString(); // formated string of trace

 /* Overrideable */

 function __toString(); // formated string for
display

}

?>

If a class extends the built-in Exception class and re-defines the constructor, it is highly
recomended that it also call parent::__construct() to ensure all available data has been
properly assigned. The __toString() method can be overriden to provide a custom output
when the object is presented as a string.

Example #167 - Extending the Exception class

<?php

/**

* Define a custom exception class

*/

class MyException extends Exception

{

 // Redefine the exception so message isn't optional

 public function __construct($message, $code = 0) {

 // some code

 // make sure everything is assigned properly

 parent::__construct($message, $code);

 }

 // custom string representation of object

 public function __toString() {

 return __CLASS__ . ": [{$this->code}]: {$this->message}\n";

 }

 public function customFunction() {

 echo "A Custom function for this type of exception\n";

 }

}

/**

* Create a class to test the exception

*/

class TestException

{

 public $var;

 const THROW_NONE = 0;

 const THROW_CUSTOM = 1;

 const THROW_DEFAULT = 2;

 function __construct($avalue = self::THROW_NONE) {

 switch ($avalue) {

 case self::THROW_CUSTOM:

 // throw custom exception

 throw new MyException('1 is an invalid parameter', 5);

 break;

 case self::THROW_DEFAULT:

 // throw default one.

 throw new Exception('2 isnt allowed as a parameter', 6);

 break;

 default:

 // No exception, object will be created.

 $this->var = $avalue;

 break;

 }

 }

}

// Example 1

try {

 $o = new TestException(TestException::THROW_CUSTOM);

} catch (MyException $e) { // Will be caught

 echo "Caught my exception\n", $e;

 $e->customFunction();

} catch (Exception $e) { // Skipped

 echo "Caught Default Exception\n", $e;

}

// Continue execution

var_dump($o);

echo "\n\n";

// Example 2

try {

 $o = new TestException(TestException::THROW_DEFAULT);

} catch (MyException $e) { // Doesn't match this type

 echo "Caught my exception\n", $e;

 $e->customFunction();

} catch (Exception $e) { // Will be caught

 echo "Caught Default Exception\n", $e;

}

// Continue execution

var_dump($o);

echo "\n\n";

// Example 3

try {

 $o = new TestException(TestException::THROW_CUSTOM);

} catch (Exception $e) { // Will be caught

 echo "Default Exception caught\n", $e;

}

// Continue execution

var_dump($o);

echo "\n\n";

// Example 4

try {

 $o = new TestException();

} catch (Exception $e) { // Skipped, no exception

 echo "Default Exception caught\n", $e;

}

// Continue execution

var_dump($o);

echo "\n\n";

?>

References Explained

What References Are

References in PHP are a means to access the same variable content by different names.
They are not like C pointers; instead, they are symbol table aliases. Note that in PHP,
variable name and variable content are different, so the same content can have different
names. The most close analogy is with Unix filenames and files - variable names are
directory entries, while variable contents is the file itself. References can be thought of as
hardlinking in Unix filesystem.

What References Do

PHP references allow you to make two variables to refer to the same content. Meaning,
when you do:

<?php

$a =& $b;

?>

it means that $a and $b point to the same content.

Note

$a and $b are completely equal here, that's not $a is pointing to $b or vice versa, that's
$a and $b pointing to the same place.

Note

If array with references is copied, its values are not dereferenced. This is valid also for
arrays passed by value to functions.

Note

If you assign, pass or return an undefined variable by reference, it will get created.

Example #168 - Using references with undefined variables

<?php

function foo(&$var) { }

foo($a); // $a is "created" and assigned to null

$b = array();

foo($b['b']);

var_dump(array_key_exists('b', $b)); // bool(true)

$c = new StdClass;

foo($c->d);

var_dump(property_exists($c, 'd')); // bool(true)

?>

The same syntax can be used with functions, that return references, and with new
operator (in PHP 4.0.4 and later):

<?php

$bar =& new fooclass();

$foo =& find_var($bar);

?>

Since PHP 5, new return reference automatically so using =&in this context is deprecated
and produces E_STRICT level message.

Note

Not using the &operator causes a copy of the object to be made. If you use $this in the
class it will operate on the current instance of the class. The assignment without &will
copy the instance (i.e. the object) and $this will operate on the copy, which is not
always what is desired. Usually you want to have a single instance to work with, due to
performance and memory consumption issues.

While you can use the @ operator to mute any errors in the constructor when using it
as @new, this does not work when using the &new statement. This is a limitation of
the Zend Engine and will therefore result in a parser error.

Warning

If you assign a reference to a variable declared global inside a function, the reference
will be visible only inside the function. You can avoid this by using the $GLOBALS
array.

Example #169 - Referencing global variables inside function

<?php

$var1 = "Example variable";

$var2 = "";

function global_references($use_globals)

{

 global $var1, $var2;

 if (!$use_globals) {

 $var2 =& $var1; // visible only inside the function

 } else {

 $GLOBALS["var2"] =& $var1; // visible also in global context

 }

}

global_references(false);

echo "var2 is set to '$var2'\n"; // var2 is set to ''

global_references(true);

echo "var2 is set to '$var2'\n"; // var2 is set to 'Example variable'

?>

Think about global $var; as a shortcut to $var =& $GLOBALS['var'];. Thus assigning
other reference to $var only changes the local variable's reference.

Note

If you assign a value to a variable with references in a foreach statement, the
references are modified too.

Example #170 - References and foreach statement

<?php

$ref = 0;

$row =& $ref;

foreach (array(1, 2, 3) as $row) {

 // do something

}

echo $ref; // 3 - last element of the iterated array

?>

The second thing references do is to pass variables by-reference. This is done by making
a local variable in a function and a variable in the calling scope reference to the same
content. Example:

<?php

function foo(&$var)

{

 $var++;

}

$a=5;

foo($a);

?>

will make $a to be 6. This happens because in the function foo the variable $var refers to
the same content as $a. See also more detailed explanations about passing by reference.

The third thing reference can do is return by reference.

What References Are Not

As said before, references aren't pointers. That means, the following construct won't do
what you expect:

<?php

function foo(&$var)

{

 $var =& $GLOBALS["baz"];

}

foo($bar);

?>

What happens is that $var in foo will be bound with $bar in caller, but then it will be
re-bound with $GLOBALS["baz"]. There's no way to bind $bar in the calling scope to
something else using the reference mechanism, since $bar is not available in the function
foo (it is represented by $var, but $var has only variable contents and not name-to-value
binding in the calling symbol table). You can use returning references to reference
variables selected by the function.

Passing by Reference

You can pass variable to function by reference, so that function could modify its
arguments. The syntax is as follows:

<?php

function foo(&$var)

{

 $var++;

}

$a=5;

foo($a);

// $a is 6 here

?>

Note that there's no reference sign on function call - only on function definition. Function
definition alone is enough to correctly pass the argument by reference. In recent versions
of PHP you will get a warning saying that "Call-time pass-by-reference" is deprecated
when you use a & in foo(&$a);.

The following things can be passed by reference:

• Variable, i.e. foo($a)

• New statement, i.e. foo(new foobar())

• Reference, returned from a function, i.e.:

<?php

function &bar()

{

 $a = 5;

 return $a;

}

foo(bar());

?>

See also explanations about returning by reference.

Any other expression should not be passed by reference, as the result is undefined. For
example, the following examples of passing by reference are invalid:

<?php

function bar() // Note the missing &

{

 $a = 5;

 return $a;

}

foo(bar()); // Produces fatal error since PHP 5.0.5

foo($a = 5); // Expression, not variable

foo(5); // Produces fatal error

?>

These requirements are for PHP 4.0.4 and later.

Returning References

Returning by-reference is useful when you want to use a function to find which variable a
reference should be bound to. Do not use return-by-reference to increase performance,
the engine is smart enough to optimize this on its own. Only return references when you
have a valid technical reason to do it! To return references, use this syntax:

<?php

class foo {

 public $value = 42;

 public function &getValue() {

 return $this->value;

 }

}

$obj = new foo;

$myValue = &$obj->getValue(); // $myValue is a reference to $obj->value, which
is 42.

$obj->value = 2;

echo $myValue; // prints the new value of $obj->value, i.e. 2.

?>

In this example, the property of the object returned by the getValue function would be set,
not the copy, as it would be without using reference syntax.

Note

Unlike parameter passing, here you have to use &in both places - to indicate that you
return by-reference, not a copy as usual, and to indicate that reference binding, rather

than usual assignment, should be done for $myValue.

Note

If you try to return a reference from a function with the syntax: return ($this->value);
this will not work as you are attempting to return the result of an expression, and not a
variable, by reference. You can only return variables by reference from a function -
nothing else. E_NOTICE error is issued since PHP 4.4.0 and PHP 5.1.0 if the code
tries to return a dynamic expression or a result of the new operator.

Unsetting References

When you unset the reference, you just break the binding between variable name and
variable content. This does not mean that variable content will be destroyed. For example:

<?php

$a = 1;

$b =& $a;

unset($a);

?>

won't unset $b, just $a.

Again, it might be useful to think about this as analogous to Unix unlink call.

Spotting References

Many syntax constructs in PHP are implemented via referencing mechanisms, so
everything told above about reference binding also apply to these constructs. Some
constructs, like passing and returning by-reference, are mentioned above. Other
constructs that use references are:

global References

When you declare variable as global $var you are in fact creating reference to a global
variable. That means, this is the same as:

<?php

$var =& $GLOBALS["var"];

?>

That means, for example, that unsetting $var won't unset global variable.

$this

In an object method, $this is always a reference to the caller object.

Predefined variables

PHP provides a large number of predefined variables to all scripts. The variables represent
everything from external variables to built-in environment variables, last error messages to
last retrieved headers.

See also the FAQ titled " How does register_globals affect me? "

Superglobals

Superglobals -- Superglobals are built-in variables that are always available in all scopes

Description

Several predefined variables in PHP are "superglobals", which means they are available in
all scopes throughout a script. There is no need to do global $variable; to access them
within functions or methods.

These superglobal variables are:

• $GLOBALS
• $_SERVER
• $_GET
• $_POST
• $_FILES
• $_COOKIE
• $_SESSION
• $_REQUEST
• $_ENV

ChangeLog

Version Description

4.1.0 Superglobals were introduced to PHP.

Notes

Note

Variable availability

By default, all of the superglobals are available but there are directives that affect this
availability. For further information, refer to the documentation for variables_order.

Note

Dealing with register_globals

If the deprecated register_globals directive is set to on then the variables within will
also be made available in the global scope of the script. For example, $_POST['foo']
would also exist as $foo.

For related information, see the FAQ titled " How does register_globals affect me? "

Note

Variable variables

Superglobals cannot be used as variable variables inside functions or class methods.

See Also

• variable scope
• The variables_order directive
• The filter extension

$GLOBALS

$GLOBALS -- References all variables available in global scope

Description

An associative array containing references to all variables which are currently defined in
the global scope of the script. The variable names are the keys of the array.

Examples

Example #171 - $GLOBALS example

<?php

function test() {

 $foo = "local variable";

 echo '$foo in global scope: ' . $GLOBALS["foo"] . "\n";

 echo '$foo in current scope: ' . $foo . "\n";

}

$foo = "Example content";

test();

?>

The above example will output something similar to:

$foo in global scope: Example content

$foo in current scope: local variable

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

Note

Variable availability

Unlike all of the other superglobals, $GLOBALS has essentially always been available
in PHP.

$_SERVER

$HTTP_SERVER_VARS [deprecated]

$_SERVER -- $HTTP_SERVER_VARS [deprecated] -- Server and execution environment
information

Description

$_SERVER is an array containing information such as headers, paths, and script
locations. The entries in this array are created by the web server. There is no guarantee
that every web server will provide any of these; servers may omit some, or provide others
not listed here. That said, a large number of these variables are accounted for in the » CGI
1.1 specification, so you should be able to expect those.

$HTTP_SERVER_VARS contains the same initial information, but is not a superglobal.
(Note that $HTTP_SERVER_VARS and $_SERVER are different variables and that PHP
handles them as such)

You may or may not find any of the following elements in $_SERVER. Note that few, if
any, of these will be available (or indeed have any meaning) if running PHP on the
command line.

' PHP_SELF '
The filename of the currently executing script, relative to the document root. For
instance, $_SERVER['PHP_SELF'] in a script at the address
http://example.com/test.php/foo.bar would be /test.php/foo.bar. The __FILE__ constant
contains the full path and filename of the current (i.e. included) file. If PHP is running
as a command-line processor this variable contains the script name since PHP 4.3.0.
Previously it was not available.

' $argv '
Array of arguments passed to the script. When the script is run on the command line,
this gives C-style access to the command line parameters. When called via the GET
method, this will contain the query string.

' $argc '
Contains the number of command line parameters passed to the script (if run on the
command line).

' GATEWAY_INTERFACE '
What revision of the CGI specification the server is using; i.e. ' CGI/1.1 '.

' SERVER_ADDR '
The IP address of the server under which the current script is executing.

' SERVER_NAME '

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

The name of the server host under which the current script is executing. If the script is
running on a virtual host, this will be the value defined for that virtual host.

' SERVER_SOFTWARE '
Server identification string, given in the headers when responding to requests.

' SERVER_PROTOCOL '
Name and revision of the information protocol via which the page was requested; i.e. '
HTTP/1.0 ';

' REQUEST_METHOD '
Which request method was used to access the page; i.e. ' GET ', ' HEAD ', ' POST ', '
PUT '.

Note

PHP script is terminated after sending headers (it means after producing any
output without output buffering) if the request method was HEAD.

' REQUEST_TIME '
The timestamp of the start of the request. Available since PHP 5.1.0.

' QUERY_STRING '
The query string, if any, via which the page was accessed.

' DOCUMENT_ROOT '
The document root directory under which the current script is executing, as defined in
the server's configuration file.

' HTTP_ACCEPT '
Contents of the Accept: header from the current request, if there is one.

' HTTP_ACCEPT_CHARSET '
Contents of the Accept-Charset: header from the current request, if there is one.
Example: ' iso-8859-1,*,utf-8 '.

' HTTP_ACCEPT_ENCODING '
Contents of the Accept-Encoding: header from the current request, if there is one.
Example: ' gzip '.

' HTTP_ACCEPT_LANGUAGE '
Contents of the Accept-Language: header from the current request, if there is one.
Example: ' en '.

' HTTP_CONNECTION '
Contents of the Connection: header from the current request, if there is one. Example: '
Keep-Alive '.

' HTTP_HOST '
Contents of the Host: header from the current request, if there is one.

' HTTP_REFERER '
The address of the page (if any) which referred the user agent to the current page.
This is set by the user agent. Not all user agents will set this, and some provide the
ability to modify HTTP_REFERER as a feature. In short, it cannot really be trusted.

' HTTP_USER_AGENT '
Contents of the User-Agent: header from the current request, if there is one. This is a
string denoting the user agent being which is accessing the page. A typical example is:
Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586). Among other things, you can use this value
with get_browser() to tailor your page's output to the capabilities of the user agent.

' HTTPS '
Set to a non-empty value if the script was queried through the HTTPS protocol. Note
that when using ISAPI with IIS, the value will be off if the request was not made
through the HTTPS protocol.

' REMOTE_ADDR '
The IP address from which the user is viewing the current page.

' REMOTE_HOST '
The Host name from which the user is viewing the current page. The reverse dns
lookup is based off the REMOTE_ADDR of the user.

Note

Your web server must be configured to create this variable. For example in Apache
you'll need HostnameLookups On inside httpd.conf for it to exist. See also
gethostbyaddr().

' REMOTE_PORT '
The port being used on the user's machine to communicate with the web server.

' SCRIPT_FILENAME '
The absolute pathname of the currently executing script.

Note

If a script is executed with the CLI, as a relative path, such as file.php or../file.php,
$_SERVER['SCRIPT_FILENAME'] will contain the relative path specified by the
user.

' SERVER_ADMIN '
The value given to the SERVER_ADMIN (for Apache) directive in the web server
configuration file. If the script is running on a virtual host, this will be the value defined
for that virtual host.

' SERVER_PORT '
The port on the server machine being used by the web server for communication. For

default setups, this will be ' 80 '; using SSL, for instance, will change this to whatever
your defined secure HTTP port is.

' SERVER_SIGNATURE '
String containing the server version and virtual host name which are added to
server-generated pages, if enabled.

' PATH_TRANSLATED '
Filesystem- (not document root-) based path to the current script, after the server has
done any virtual-to-real mapping.

Note

As of PHP 4.3.2, PATH_TRANSLATED is no longer set implicitly under the Apache
2 SAPI in contrast to the situation in Apache 1, where it's set to the same value as
the SCRIPT_FILENAME server variable when it's not populated by Apache. This
change was made to comply with the CGI specification that PATH_TRANSLATED
should only exist if PATH_INFO is defined.

Apache 2 users may use AcceptPathInfo = On inside httpd.conf to define
PATH_INFO.

' SCRIPT_NAME '
Contains the current script's path. This is useful for pages which need to point to
themselves. The __FILE__ constant contains the full path and filename of the current
(i.e. included) file.

' REQUEST_URI '
The URI which was given in order to access this page; for instance, ' /index.html '.

' PHP_AUTH_DIGEST '
When running under Apache as module doing Digest HTTP authentication this variable
is set to the 'Authorization' header sent by the client (which you should then use to
make the appropriate validation).

' PHP_AUTH_USER '
When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP
authentication this variable is set to the username provided by the user.

' PHP_AUTH_PW '
When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP
authentication this variable is set to the password provided by the user.

' AUTH_TYPE '
When running under Apache as module doing HTTP authenticated this variable is set
to the authentication type.

ChangeLog

Version Description

4.1.0 Introduced $_SERVER that the deprecated
$HTTP_SERVER_VARS.

Examples

Example #172 - $_SERVER example

<?php

echo $_SERVER['SERVER_NAME'];

?>

The above example will output something similar to:

www.example.com

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• The filter extension

$_GET

$HTTP_GET_VARS [deprecated]

$_GET -- $HTTP_GET_VARS [deprecated] -- HTTP GET variables

Description

An associative array of variables passed to the current script via the HTTP GET method.

$HTTP_GET_VARS contains the same initial information, but is not a superglobal. (Note
that $HTTP_GET_VARS and $_GET are different variables and that PHP handles them as
such)

ChangeLog

Version Description

4.1.0 Introduced $_GET that deprecated
$HTTP_GET_VARS.

Examples

Example #173 - $_GET example

<?php

echo 'Hello ' . htmlspecialchars($_GET["name"]) . '!';

?>

Assuming the user entered http://example.com/?name=Hannes

The above example will output something similar to:

Hello Hannes!

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• Handling external variables
• The filter extension

$_POST

$HTTP_POST_VARS [deprecated]

$_POST -- $HTTP_POST_VARS [deprecated] -- HTTP POST variables

Description

An associative array of variables passed to the current script via the HTTP POST method.

$HTTP_POST_VARS contains the same initial information, but is not a superglobal. (Note
that $HTTP_POST_VARS and $_POST are different variables and that PHP handles them
as such)

ChangeLog

Version Description

4.1.0 Introduced $_POST that deprecated
$HTTP_POST_VARS.

Examples

Example #174 - $_POST example

<?php

echo 'Hello ' . htmlspecialchars($_POST["name"]) . '!';

?>

Assuming the user POSTed name=Hannes

The above example will output something similar to:

Hello Hannes!

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• Handling external variables
• The filter extension

$_FILES

$HTTP_POST_FILES [deprecated]

$_FILES -- $HTTP_POST_FILES [deprecated] -- HTTP File Upload variables

Description

An associative array of items uploaded to the current script via the HTTP POST method.

$HTTP_POST_FILES contains the same initial information, but is not a superglobal. (Note
that $HTTP_POST_FILES and $_FILES are different variables and that PHP handles
them as such)

ChangeLog

Version Description

4.1.0 Introduced $_FILES that deprecated
$HTTP_POST_FILES.

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• move_uploaded_file()
• Handling File Uploads

$_REQUEST

$_REQUEST -- HTTP Request variables

Description

An associative array that by default contains the contents of $_GET, $_POST and
$_COOKIE.

ChangeLog

Version Description

5.3.0 Introduced request_order. This directive
affects the contents of $_REQUEST.

4.3.0 $_FILES information was removed from
$_REQUEST.

4.1.0 Introduced $_REQUEST.

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

Note

When running on the command line, this will not include the argv and argc entries;
these are present in the $_SERVER array.

Note

Variables provided to the script via the GET, POST, and COOKIE input mechanisms,
and which therefore cannot be trusted. The presence and order of variable inclusion in
this array is defined according to the PHP variables_order configuration directive.

See Also

• import_request_variables()
• Handling external variables
• The filter extension

$_SESSION

$HTTP_SESSION_VARS [deprecated]

$_SESSION -- $HTTP_SESSION_VARS [deprecated] -- Session variables

Description

An associative array containing session variables available to the current script. See the
Session functions documentation for more information on how this is used.

$HTTP_SESSION_VARS contains the same initial information, but is not a superglobal.
(Note that $HTTP_SESSION_VARS and $_SESSION are different variables and that PHP
handles them as such)

ChangeLog

Version Description

4.1.0 Introduced $_SESSION that the deprecated
$HTTP_SESSION_VARS.

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• session_start()

$_ENV

$HTTP_ENV_VARS [deprecated]

$_ENV -- $HTTP_ENV_VARS [deprecated] -- Environment variables

Description

An associative array of variables passed to the current script via the environment method.

These variables are imported into PHP's global namespace from the environment under
which the PHP parser is running. Many are provided by the shell under which PHP is
running and different systems are likely running different kinds of shells, a definitive list is
impossible. Please see your shell's documentation for a list of defined environment
variables.

Other environment variables include the CGI variables, placed there regardless of whether
PHP is running as a server module or CGI processor.

$HTTP_ENV_VARS contains the same initial information, but is not a superglobal. (Note
that $HTTP_ENV_VARS and $_ENV are different variables and that PHP handles them as
such)

ChangeLog

Version Description

4.1.0 Introduced $_ENV that deprecated
$HTTP_ENV_VARS.

Examples

Example #175 - $_ENV example

<?php

echo 'My username is ' .$_ENV["USER"] . '!';

?>

Assuming "bjori" executes this script

The above example will output something similar to:

My username is bjori!

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• getenv()
• The filter extension

$_COOKIE

$HTTP_COOKIE_VARS [deprecated]

$_COOKIE -- $HTTP_COOKIE_VARS [deprecated] -- HTTP Cookies

Description

An associative array of variables passed to the current script via HTTP Cookies.

$HTTP_COOKIE_VARS contains the same initial information, but is not a superglobal.
(Note that $HTTP_COOKIE_VARS and $_COOKIE are different variables and that PHP
handles them as such)

ChangeLog

Version Description

4.1.0 Introduced $_COOKIE that deprecated
$HTTP_COOKIE_VARS.

Examples

Example #176 - $_COOKIE example

<?php

echo 'Hello ' . htmlspecialchars($_COOKIE["name"]) . '!';

?>

Assuming the "name" cookie has been set earlier

The above example will output something similar to:

Hello Hannes!

Notes

Note

This is a 'superglobal', or automatic global, variable. This simply means that it is
available in all scopes throughout a script. There is no need to do global $variable; to
access it within functions or methods.

See Also

• setcookie()
• Handling external variables
• The filter extension

$php_errormsg

$php_errormsg -- The previous error message

Description

$php_errormsg is a variable containing the text of the last error message generated by
PHP. This variable will only be available within the scope in which the error occurred, and
only if the track_errors configuration option is turned on (it defaults to off).

Note

This variable is only available when track_errors is enabled in php.ini.

Warning

If a user defined error handler is set $php_erromsg is only set if the error handler
returns FALSE

Examples

Example #177 - $php_errormsg example

<?php

@strpos();

echo $php_errormsg;

?>

The above example will output something similar to:

Wrong parameter count for strpos()

$HTTP_RAW_POST_DATA

$HTTP_RAW_POST_DATA -- Raw POST data

Description

$HTTP_RAW_POST_DATA contains the raw POST data. See
always_populate_raw_post_data

$http_response_header

$http_response_header -- HTTP response headers

Description

The $http_response_header array is similar to the get_headers() function. When using the
HTTP wrapper, $http_response_header will be populated with the HTTP response
headers.

Examples

Example #178 - $http_response_header example

<?php

file_get_contents("http://example.com");

var_dump($http_response_header);

?>

The above example will output something similar to:

array(9) {

 [0]=>

 string(15) "HTTP/1.1 200 OK"

 [1]=>

 string(35) "Date: Sat, 12 Apr 2008 17:30:38 GMT"

 [2]=>

 string(29) "Server: Apache/2.2.3 (CentOS)"

 [3]=>

 string(44) "Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT"

 [4]=>

 string(27) "ETag: "280100-1b6-80bfd280""

 [5]=>

 string(20) "Accept-Ranges: bytes"

 [6]=>

 string(19) "Content-Length: 438"

 [7]=>

 string(17) "Connection: close"

 [8]=>

 string(38) "Content-Type: text/html; charset=UTF-8"

}

$argc

$argc -- The number of arguments passed to script

Description

Contains the number of arguments passed to the current script when running from the
command line.

Note

The script's filename is always passed as an argument to the script, therefore the
minimum value of $argc is 1.

Note

This variable is only available when register_argc_argv is enabled.

Examples

Example #179 - $argc example

<?php

var_dump($argc);

?>

When executing the example with: php script.php arg1 arg2 arg3

The above example will output something similar to:

int(4)

$argv

$argv -- Array of arguments passed to script

Description

Contains an array of all the arguments passed to the script when running from the
command line.

Note

The first argument is always the current script's filename, therefore $argv[0] is the
script's name.

Note

This variable is only available when register_argc_argv is enabled.

Examples

Example #180 - $argv example

<?php

var_dump($argv);

?>

When executing the example with: php script.php arg1 arg2 arg3

The above example will output something similar to:

array(4) {

 [0]=>

 string(10) "script.php"

 [1]=>

 string(4) "arg1"

 [2]=>

 string(4) "arg2"

 [3]=>

 string(4) "arg3"

}

Predefined Exceptions

Exception

Introduction

Exception is the base class for all Exceptions.

Class synopsis

Exception

Exception {

/* Properties */

protected string message;

private string string;

protected int code;

protected string file;

protected int line;

private array trace;

/* Methods */

public Exception::__construct ([string $message [, int $code]])

final public string Exception::getMessage (void)

final public int Exception::getCode (void)

final public string Exception::getFile (void)

final public string Exception::getLine (void)

final public array Exception::getTrace (void)

final public string Exception::getTraceAsString (void)

public string Exception::__toString (void)

final private string Exception::__clone (void)
}

Properties

message
The exception message

string
Internal Exception name

code
The Exception code

file
The filename where the exception was thrown

line
The line where the exception was thrown

trace
The stack trace

Exception::__construct

Exception::__construct -- Construct the exception

Description

public Exception::__construct ([string $message [, int $code]])

Constructs the Exception.

Parameters

message

The Exception message to throw.

code

The Exception code.

Exception::getMessage

Exception::getMessage -- Gets the Exception message

Description

final public string Exception::getMessage (void)

Returns the Exception message.

Parameters

This function has no parameters.

Return Values

Returns the Exception message as a string.

Examples

Example #181 - Exception::getMessage() example

<?php

try {

 throw new Exception("Some error message");

} catch(Exception $e) {

 echo $e->getMessage();

}

?>

The above example will output something similar to:

Some error message

Exception::getCode

Exception::getCode -- Gets the Exception code

Description

final public int Exception::getCode (void)

Returns the Exception code.

Parameters

This function has no parameters.

Return Values

Returns the Exception code as a integer.

Examples

Example #182 - Exception::getCode() example

<?php

try {

 throw new Exception("Some error message", 30);

} catch(Exception $e) {

 echo "The exception code is: " . $e->getCode();

}

?>

The above example will output something similar to:

The exception code is: 30

Exception::getFile

Exception::getFile -- Gets the file in which the exception occurred

Description

final public string Exception::getFile (void)

Get the name of the file the exception was thrown from.

Parameters

This function has no parameters.

Return Values

Returns the filename in which the exception was thrown.

Examples

Example #183 - Exception::getFile() example

<?php

try {

 throw new Exception;

} catch(Exception $e) {

 echo $e->getFile();

}

?>

The above example will output something similar to:

/home/bjori/tmp/ex.php

Exception::getLine

Exception::getLine -- Gets the line in which the exception occurred

Description

final public string Exception::getLine (void)

Returns line number where the exception was thrown.

Parameters

This function has no parameters.

Return Values

Returns the line number where the exception was thrown.

Examples

Example #184 - Exception::getLine() example

<?php

try {

 throw new Exception("Some error message");

} catch(Exception $e) {

 echo "The exception was thrown on line: " . $e->getLine();

}

?>

The above example will output something similar to:

The exception was thrown on line: 3

Exception::getTrace

Exception::getTrace -- Gets the stack trace

Description

final public array Exception::getTrace (void)

Returns the Exception stack trace.

Parameters

This function has no parameters.

Return Values

Returns the Exception stack trace as an array.

Examples

Example #185 - Exception::getTrace() example

<?php

function test() {

throw new Exception;

}

try {

test();

} catch(Exception $e) {

var_dump($e->getTrace());

}

?>

The above example will output something similar to:

array(1) {

 [0]=>

 array(4) {

 ["file"]=>

 string(22) "/home/bjori/tmp/ex.php"

 ["line"]=>

 int(7)

 ["function"]=>

 string(4) "test"

 ["args"]=>

 array(0) {

 }

 }

}

Exception::getTraceAsString

Exception::getTraceAsString -- Gets the stack trace as a string

Description

final public string Exception::getTraceAsString (void)

Returns the Exception stack trace as a string.

Parameters

This function has no parameters.

Return Values

Returns the Exception stack trace as a string.

Examples

Example #186 - Exception::getTraceAsString() example

<?php

function test() {

 throw new Exception;

}

try {

 test();

} catch(Exception $e) {

 echo $e->getTraceAsString();

}

?>

The above example will output something similar to:

#0 /home/bjori/tmp/ex.php(7): test()

#1 {main}

Exception::__toString

Exception::__toString -- String representation of the exception

Description

public string Exception::__toString (void)

Returns the string representation of the exception.

Parameters

This function has no parameters.

Return Values

Returns the string representation of the exception.

Examples

Example #187 - Exception::__toString() example

<?php

try {

 throw new Exception("Some error message");

} catch(Exception $e) {

 echo $e;

}

?>

The above example will output something similar to:

exception 'Exception' with message 'Some error message' in
/home/bjori/tmp/ex.php:3

Stack trace:

#0 {main}

Exception::__clone

Exception::__clone -- Clone the exception

Description

final private string Exception::__clone (void)

Tries to clone the Exception, which results in Fatal error.

Parameters

This function has no parameters.

Return Values

No value is returned.

Errors/Exceptions

Exceptions are not clonable.

ErrorException

Introduction

An Error Exception.

Class synopsis

ErrorException

ErrorException extends Exception {

/* Properties */

protected int severity;

/* Methods */

public ErrorException::__construct ([string $message [, int $code [, int $severity [,
string $filename [, int $lineno]]]]])

final public int ErrorException::getSeverity (void)

/* Inherited methods */

final public string Exception::getMessage (void)

final public int Exception::getCode (void)

final public string Exception::getFile (void)

final public string Exception::getLine (void)

final public array Exception::getTrace (void)

final public string Exception::getTraceAsString (void)

public string Exception::__toString (void)

final private string Exception::__clone (void)
}

Properties

severity
The severity of the exception

Examples

Example #188 - Turn all error messages into ErrorException.

<?php

function exception_error_handler($errno, $errstr, $errfile, $errline) {

throw new ErrorException($errstr, 0, $errno, $errfile, $errline);

}

set_error_handler("exception_error_handler");

/* Trigger exception */

strpos();

?>

The above example will output something similar to:

Fatal error: Uncaught exception 'ErrorException' with message 'Wrong
parameter count for strpos()' in /home/bjori/tmp/ex.php:8

Stack trace:

#0 [internal function]: exception_error_handler(2, 'Wrong parameter...',
'/home/bjori/php...', 8, Array)

#1 /home/bjori/php/cleandocs/test.php(8): strpos()

#2 {main}

 thrown in /home/bjori/tmp/ex.php on line 8

ErrorException::__construct

ErrorException::__construct -- Construct the exception

Description

public ErrorException::__construct ([string $message [, int $code [, int $severity [,
string $filename [, int $lineno]]]]])

Constructs the Exception.

Parameters

message

The Exception message to throw.

code

The Exception code.

severity

The severity level of the exception.

filename

The filename where the exception is thrown.

lineno

The line number where the exception is thrown.

ErrorException::getSeverity

ErrorException::getSeverity -- Gets the exception severity

Description

final public int ErrorException::getSeverity (void)

Returns the severity of the exception.

Parameters

This function has no parameters.

Return Values

Returns the severity level of the exception.

Examples

Example #189 - ErrorException() example

<?php

try {

 throw new ErrorException("Exception message", 0, 75);

} catch(ErrorException $e) {

 echo "This exception severity is: " . $e->getSeverity();

}

?>

The above example will output something similar to:

This exception severity is: 75

Context options and parameters

PHP offers various context options and parameters which can be used with all filesystem
and stream wrappers. The context is created with stream_context_create(). Options are
set with stream_context_set_option() and parameters with stream_context_set_params().

Socket context options

Socket context options -- Socket context option listing

Description

Socket context options are available for all wrappers that work over sockets, like tcp, http
and ftp.

Options

bindto

Used to specify the IP address (either IPv4 or IPv6) and/or the port number that PHP
will use to access the network. The syntax is ip:port. Setting the IP or the port to 0 will
let the system choose the IP and/or port.

Note

As FTP creates two socket connections during normal operation, the port number
cannot be specified using this option.

ChangeLog

Version Description

5.1.0 Added bindto.

Examples

Example #190 - Basic bindto usage example

<?php

// connect to the internet using the '192.168.0.100' IP

$opts = array(

 'socket' => array(

 'bindto' => '192.168.0.100:0',

),

);

// connect to the internet using the '192.168.0.100' IP and port '7000'

$opts = array(

 'socket' => array(

 'bindto' => '192.168.0.100:7000',

),

);

// connect to the internet using port '7000'

$opts = array(

 'socket' => array(

 'bindto' => '0:7000',

),

);

// create the context...

$context = stream_context_create($opts);

// ...and use it to fetch the data

echo file_get_contents('http://www.example.com', false, $context);

?>

HTTP context options

HTTP context options -- HTTP context option listing

Description

Context options for http:// and https:// transports.

Options

method string
GET, POST, or any other HTTP method supported by the remote server. Defaults to
GET.

header string
Additional headers to be sent during request. Values in this option will override other
values (such as User-agent:, Host:, and Authentication:).

user_agent string
Value to send with User-Agent: header. This value will only be used if user-agent is not
specified in the header context option above. By default the user_agent php.ini setting
is used.

content string
Additional data to be sent after the headers. Typically used with POST or PUT
requests.

proxy string
URI specifying address of proxy server. (e.g. tcp://proxy.example.com:5100).

request_fulluri boolean
When set to TRUE, the entire URI will be used when constructing the request. (i.e.
GET http://www.example.com/path/to/file.html HTTP/1.0). While this is a non-standard
request format, some proxy servers require it. Defaults to FALSE.

max_redirects integer
The max number of redirects to follow. Value 1 or less means that no redirects are
followed. Defaults to 20.

protocol_version float
HTTP protocol version. Defaults to 1.0.

timeout float
Read timeout in seconds, specified by a float (e.g. 10.5). By default the
default_socket_timeout php.ini setting is used.

ignore_errors boolean
Fetch the content even on failure status codes. Defaults to FALSE

ChangeLog

Version Description

5.3.0 Added ignore_errors.

5.2.1 Added timeout.

5.1.0 Added HTTPS proxying through HTTP
proxies.

5.1.0 Added max_redirects.

5.1.0 Added protocol_version.

Examples

Example #191 - Fetch a page and send POST data

<?php

$postdata = http_build_query(

 array(

 'var1' => 'some content',

 'var2' => 'doh'

)

);

$opts = array('http' =>

 array(

 'method' => 'POST',

 'header' => 'Content-type: application/x-www-form-urlencoded',

 'content' => $postdata

)

);

$context = stream_context_create($opts);

$result = file_get_contents('http://example.com/submit.php', false,
$context);

?>

Notes

Note

Underlying socket stream context options

Additional context options may be supported by the underlying transport For http://
streams, refer to context options for the tcp:// transport. For https:// streams, refer to
context options for the ssl:// transport.

See Also

• Socket context options
• SSL context options

FTP context options

FTP context options -- FTP context option listing

Description

Context options for ftp:// and ftps:// transports.

Options

overwrite boolean
Allow overwriting of already existing files on remote server. Applies to write mode
(uploading) only. Defaults to FALSE.

resume_pos integer
File offset at which to begin transfer. Applies to read mode (downloading) only.
Defaults to 0 (Beginning of File).

proxy string
Proxy FTP request via http proxy server. Applies to file read operations only. Ex:
tcp://squid.example.com:8000.

ChangeLog

Version Description

5.1.0 Added proxy.

5.0.0 Added overwrite and resume_pos.

Notes

Note

Underlying socket stream context options

Additional context options may be supported by the underlying transport For ftp://
streams, refer to context options for the tcp:// transport. For ftps:// streams, refer to
context options for the ssl:// transport.

See Also

• Socket context options
• SSL context options

SSL context options

SSL context options -- SSL context option listing

Description

Context options for ssl:// and tls:// transports.

Options

verify_peer boolean
Require verification of SSL certificate used. Defaults to FALSE.

allow_self_signed boolean
Allow self-signed certificates. Defaults to FALSE

cafile string
Location of Certificate Authority file on local filesystem which should be used with the
verify_peer context option to authenticate the identity of the remote peer.

capath string
If cafile is not specified or if the certificate is not found there, the directory pointed to by
capath is searched for a suitable certificate. capath must be a correctly hashed
certificate directory.

local_cert string
Path to local certificate file on filesystem. It must be a PEM encoded file which contains
your certificate and private key. It can optionally contain the certificate chain of issuers.

passphrase string
Passphrase with which your local_cert file was encoded.

CN_match string
Common Name we are expecting. PHP will perform limited wildcard matching. If the
Common Name does not match this, the connection attempt will fail.

verify_depth integer
Abort if the certificate chain is too deep. Defaults to no verification.

ciphers string
Sets the list of available ciphers. The format of the string is described in » ciphers(1).
Defaults to DEFAULT.

capture_peer_cert boolean
If set to TRUE a peer_certificate context option will be created containing the peer
certificate.

capture_peer_chain boolean

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

If set to TRUE a peer_certificate_chain context option will be created containing the
certificate chain.

ChangeLog

Version Description

5.0.0 Added capture_peer_cert,
capture_peer_chain and ciphers.

Notes

Note

Because ssl:// is the underlying transport for the https:// and ftps:// wrappers, any
context options which apply to ssl:// also apply to https:// and ftps://.

See Also

• Socket context options

CURL context options

CURL context options -- CURL context option listing

Description

CURL context options are available when the CURL extension was compiled using the
--with-curlwrappers configure option.

Options

method string
GET, POST, or any other HTTP method supported by the remote server. Defaults to
GET.

header string
Additional headers to be sent during request. Values in this option will override other
values (such as User-agent:, Host:, and Authentication:).

user_agent string
Value to send with User-Agent: header. By default the user_agent php.ini setting is
used.

content string
Additional data to be sent after the headers. This option is not used for GET or HEAD
requests.

proxy string
URI specifying address of proxy server. (e.g. tcp://proxy.example.com:5100).

max_redirects integer
The max number of redirects to follow. Value 1 or less means that no redirects are
followed. Defaults to 20.

curl_verify_ssl_host boolean
Verify the host. Defaults to FALSE

Note

This option is available for both the http and ftp protocol wrappers.

curl_verify_ssl_peer boolean
Require verification of SSL certificate used. Defaults to FALSE

Note

This option is available for both the http and ftp protocol wrappers.

Examples

Example #192 - Fetch a page and send POST data

<?php

$postdata = http_build_query(

 array(

 'var1' => 'some content',

 'var2' => 'doh'

)

);

$opts = array('http' =>

 array(

 'method' => 'POST',

 'header' => 'Content-type: application/x-www-form-urlencoded',

 'content' => $postdata

)

);

$context = stream_context_create($opts);

$result = file_get_contents('http://example.com/submit.php', false,
$context);

?>

See Also

• Socket context options

Context parameters

Context parameters -- Context parameter listing

Description

These parameters can be set on a context using the stream_context_set_params()
function.

Options

notification callback
A callback to be called when an event occurs on a stream. See
stream_notification_callback() for more details.

Security

Introduction

PHP is a powerful language and the interpreter, whether included in a web server as a
module or executed as a separate CGI binary, is able to access files, execute commands
and open network connections on the server. These properties make anything run on a
web server insecure by default. PHP is designed specifically to be a more secure
language for writing CGI programs than Perl or C, and with correct selection of
compile-time and runtime configuration options, and proper coding practices, it can give
you exactly the combination of freedom and security you need.

As there are many different ways of utilizing PHP, there are many configuration options
controlling its behaviour. A large selection of options guarantees you can use PHP for a lot
of purposes, but it also means there are combinations of these options and server
configurations that result in an insecure setup.

The configuration flexibility of PHP is equally rivalled by the code flexibility. PHP can be
used to build complete server applications, with all the power of a shell user, or it can be
used for simple server-side includes with little risk in a tightly controlled environment. How
you build that environment, and how secure it is, is largely up to the PHP developer.

This chapter starts with some general security advice, explains the different configuration
option combinations and the situations they can be safely used, and describes different
considerations in coding for different levels of security.

General considerations

A completely secure system is a virtual impossibility, so an approach often used in the
security profession is one of balancing risk and usability. If every variable submitted by a
user required two forms of biometric validation (such as a retinal scan and a fingerprint),
you would have an extremely high level of accountability. It would also take half an hour to
fill out a fairly complex form, which would tend to encourage users to find ways of
bypassing the security.

The best security is often unobtrusive enough to suit the requirements without the user
being prevented from accomplishing their work, or over-burdening the code author with
excessive complexity. Indeed, some security attacks are merely exploits of this kind of
overly built security, which tends to erode over time.

A phrase worth remembering: A system is only as good as the weakest link in a chain. If
all transactions are heavily logged based on time, location, transaction type, etc. but the
user is only verified based on a single cookie, the validity of tying the users to the
transaction log is severely weakened.

When testing, keep in mind that you will not be able to test all possibilities for even the
simplest of pages. The input you may expect will be completely unrelated to the input
given by a disgruntled employee, a cracker with months of time on their hands, or a
housecat walking across the keyboard. This is why it's best to look at the code from a
logical perspective, to discern where unexpected data can be introduced, and then follow
how it is modified, reduced, or amplified.

The Internet is filled with people trying to make a name for themselves by breaking your
code, crashing your site, posting inappropriate content, and otherwise making your day
interesting. It doesn't matter if you have a small or large site, you are a target by simply
being online, by having a server that can be connected to. Many cracking programs do not
discern by size, they simply trawl massive IP blocks looking for victims. Try not to become
one.

Installed as CGI binary

Possible attacks

Using PHP as a CGI binary is an option for setups that for some reason do not wish to
integrate PHP as a module into server software (like Apache), or will use PHP with
different kinds of CGI wrappers to create safe chroot and setuid environments for scripts.
This setup usually involves installing executable PHP binary to the web server cgi-bin
directory. CERT advisory » CA-96.11 recommends against placing any interpreters into
cgi-bin. Even if the PHP binary can be used as a standalone interpreter, PHP is designed
to prevent the attacks this setup makes possible:

• Accessing system files: http://my.host/cgi-bin/php?/etc/passwd The query information
in a URL after the question mark (?) is passed as command line arguments to the
interpreter by the CGI interface. Usually interpreters open and execute the file
specified as the first argument on the command line. When invoked as a CGI binary,
PHP refuses to interpret the command line arguments.

• Accessing any web document on server: http://my.host/cgi-bin/php/secret/doc.html The
path information part of the URL after the PHP binary name, /secret/doc.html is
conventionally used to specify the name of the file to be opened and interpreted by the
CGI program. Usually some web server configuration directives (Apache: Action) are
used to redirect requests to documents like http://my.host/secret/script.php to the PHP
interpreter. With this setup, the web server first checks the access permissions to the
directory /secret, and after that creates the redirected request
http://my.host/cgi-bin/php/secret/script.php. Unfortunately, if the request is originally
given in this form, no access checks are made by web server for file /secret/script.php,
but only for the /cgi-bin/php file. This way any user able to access /cgi-bin/php is able
to access any protected document on the web server. In PHP, compile-time
configuration option --enable-force-cgi-redirect and runtime configuration directives
doc_root and user_dir can be used to prevent this attack, if the server document tree
has any directories with access restrictions. See below for full the explanation of the
different combinations.

Case 1: only public files served

If your server does not have any content that is not restricted by password or ip based
access control, there is no need for these configuration options. If your web server does
not allow you to do redirects, or the server does not have a way to communicate to the
PHP binary that the request is a safely redirected request, you can specify the option
--enable-force-cgi-redirect to the configure script. You still have to make sure your PHP
scripts do not rely on one or another way of calling the script, neither by directly
http://my.host/cgi-bin/php/dir/script.php nor by redirection http://my.host/dir/script.php.

Redirection can be configured in Apache by using AddHandler and Action directives (see
below).

http://www.cert.org/advisories/CA-1996-11.html

Case 2: using --enable-force-cgi-redirect

This compile-time option prevents anyone from calling PHP directly with a URL like
http://my.host/cgi-bin/php/secretdir/script.php. Instead, PHP will only parse in this mode if it
has gone through a web server redirect rule.

Usually the redirection in the Apache configuration is done with the following directives:

Action php-script /cgi-bin/php

AddHandler php-script .php

This option has only been tested with the Apache web server, and relies on Apache to set
the non-standard CGI environment variable REDIRECT_STATUS on redirected requests.
If your web server does not support any way of telling if the request is direct or redirected,
you cannot use this option and you must use one of the other ways of running the CGI
version documented here.

Case 3: setting doc_root or user_dir

To include active content, like scripts and executables, in the web server document
directories is sometimes considered an insecure practice. If, because of some
configuration mistake, the scripts are not executed but displayed as regular HTML
documents, this may result in leakage of intellectual property or security information like
passwords. Therefore many sysadmins will prefer setting up another directory structure for
scripts that are accessible only through the PHP CGI, and therefore always interpreted
and not displayed as such.

Also if the method for making sure the requests are not redirected, as described in the
previous section, is not available, it is necessary to set up a script doc_root that is different
from web document root.

You can set the PHP script document root by the configuration directive doc_root in the
configuration file, or you can set the environment variable PHP_DOCUMENT_ROOT. If it
is set, the CGI version of PHP will always construct the file name to open with this
doc_root and the path information in the request, so you can be sure no script is executed
outside this directory (except for user_dir below).

Another option usable here is user_dir. When user_dir is unset, only thing controlling the
opened file name is doc_root. Opening a URL like http://my.host/~user/doc.php does not
result in opening a file under users home directory, but a file called ~user/doc.php under
doc_root (yes, a directory name starting with a tilde [~]).

If user_dir is set to for example public_php, a request like http://my.host/~user/doc.php will
open a file called doc.php under the directory named public_php under the home directory
of the user. If the home of the user is /home/user, the file executed is
/home/user/public_php/doc.php.

user_dir expansion happens regardless of the doc_root setting, so you can control the
document root and user directory access separately.

Case 4: PHP parser outside of web tree

A very secure option is to put the PHP parser binary somewhere outside of the web tree of
files. In /usr/local/bin, for example. The only real downside to this option is that you will
now have to put a line similar to:

#!/usr/local/bin/php

as the first line of any file containing PHP tags. You will also need to make the file
executable. That is, treat it exactly as you would treat any other CGI script written in Perl
or sh or any other common scripting language which uses the #! shell-escape mechanism
for launching itself.

To get PHP to handle PATH_INFO and PATH_TRANSLATED information correctly with
this setup, the PHP parser should be compiled with the --enable-discard-path configure
option.

Installed as an Apache module

When PHP is used as an Apache module it inherits Apache's user permissions (typically
those of the "nobody" user). This has several impacts on security and authorization. For
example, if you are using PHP to access a database, unless that database has built-in
access control, you will have to make the database accessible to the "nobody" user. This
means a malicious script could access and modify the database, even without a username
and password. It's entirely possible that a web spider could stumble across a database
administrator's web page, and drop all of your databases. You can protect against this with
Apache authorization, or you can design your own access model using LDAP,.htaccess
files, etc. and include that code as part of your PHP scripts.

Often, once security is established to the point where the PHP user (in this case, the
apache user) has very little risk attached to it, it is discovered that PHP is now prevented
from writing any files to user directories. Or perhaps it has been prevented from accessing
or changing databases. It has equally been secured from writing good and bad files, or
entering good and bad database transactions.

A frequent security mistake made at this point is to allow apache root permissions, or to
escalate apache's abilities in some other way.

Escalating the Apache user's permissions to root is extremely dangerous and may
compromise the entire system, so sudo'ing, chroot'ing, or otherwise running as root should
not be considered by those who are not security professionals.

There are some simpler solutions. By using open_basedir you can control and restrict
what directories are allowed to be used for PHP. You can also set up apache-only areas,
to restrict all web based activity to non-user, or non-system, files.

Filesystem Security

PHP is subject to the security built into most server systems with respect to permissions
on a file and directory basis. This allows you to control which files in the filesystem may be
read. Care should be taken with any files which are world readable to ensure that they are
safe for reading by all users who have access to that filesystem.

Since PHP was designed to allow user level access to the filesystem, it's entirely possible
to write a PHP script that will allow you to read system files such as /etc/passwd, modify
your ethernet connections, send massive printer jobs out, etc. This has some obvious
implications, in that you need to ensure that the files that you read from and write to are
the appropriate ones.

Consider the following script, where a user indicates that they'd like to delete a file in their
home directory. This assumes a situation where a PHP web interface is regularly used for
file management, so the Apache user is allowed to delete files in the user home
directories.

Example #193 - Poor variable checking leads to....

<?php

// remove a file from the user's home directory

$username = $_POST['user_submitted_name'];

$userfile = $_POST['user_submitted_filename'];

$homedir = "/home/$username";

unlink("$homedir/$userfile");

echo "The file has been deleted!";

?>

Since the username and the filename are postable from a user form, they can submit a
username and a filename belonging to someone else, and delete it even if they're not
supposed to be allowed to do so. In this case, you'd want to use some other form of
authentication. Consider what could happen if the variables submitted were "../etc/" and
"passwd". The code would then effectively read:

Example #194 -... A filesystem attack

<?php

// removes a file from anywhere on the hard drive that

// the PHP user has access to. If PHP has root access:

$username = $_POST['user_submitted_name']; // "../etc"

$userfile = $_POST['user_submitted_filename']; // "passwd"

$homedir = "/home/$username"; // "/home/../etc"

unlink("$homedir/$userfile"); // "/home/../etc/passwd"

echo "The file has been deleted!";

?>

There are two important measures you should take to prevent these issues.

• Only allow limited permissions to the PHP web user binary.

• Check all variables which are submitted.

Here is an improved script:

Example #195 - More secure file name checking

<?php

// removes a file from the hard drive that

// the PHP user has access to.

$username = $_SERVER['REMOTE_USER']; // using an authentication mechanisim

$userfile = basename($_POST['user_submitted_filename']);

$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (file_exists($filepath) && unlink($filepath)) {

 $logstring = "Deleted $filepath\n";

} else {

 $logstring = "Failed to delete $filepath\n";

}

$fp = fopen("/home/logging/filedelete.log", "a");

fwrite($fp, $lo gstring);

fclose($fp);

echo htmlentities($logstring, ENT_QUOTES);

?>

However, even this is not without its flaws. If your authentication system allowed users to
create their own user logins, and a user chose the login "../etc/", the system is once again
exposed. For this reason, you may prefer to write a more customized check:

Example #196 - More secure file name checking

<?php

$username = $_SERVER['REMOTE_USER']; // using an authentication
mechanisim

$userfile = $_POST['user_submitted_filename'];

$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (!ctype_alnum($username) || !preg_match('/^(?:[a-z0-9_-]|\.(?!\.))+$/iD',
$userfile)) {

 die("Bad username/filename");

}

//etc...

?>

Depending on your operating system, there are a wide variety of files which you should be
concerned about, including device entries (/dev/ or COM1), configuration files (/etc/ files

and the .ini files), well known file storage areas (/home/, My Documents), etc. For this
reason, it's usually easier to create a policy where you forbid everything except for what
you explicitly allow.

Null bytes related issues

As PHP uses the underlying C functions for filesystem related operations, it may handle
null bytes in a quite unexpected way. As null bytes denote the end of a string in C, strings
containing them won't be considered entirely but rather only until a null byte occurs. The
following example shows a vulnerable code that demonstrates this problem:

Example #197 - Script vulnerable to null bytes

<?php

$file = $_GET['file']; // "../../etc/passwd\0"

if (file_exists('/home/wwwrun/'.$file.'.php')) {

 // file_exists will return true as the file /home/wwwrun/../../etc/passwd
exists

 include '/home/wwwrun/'.$file.'.php';

 // the file /etc/passwd will be included

}

?>

Therefore, any tainted string that is used in a filesystem operation should always be
validated properly. Here is a better version of the previous example:

Example #198 - Correctly validating the input

<?php

$file = $_GET['file'];

// Whitelisting possible values

switch ($file) {

 case 'main':

 case 'foo':

 case 'bar':

 include '/home/wwwrun/include/'.$file.'.php';

 break;

 default:

 include '/home/wwwrun/include/main.php';

}

?>

Database Security

Nowadays, databases are cardinal components of any web based application by enabling
websites to provide varying dynamic content. Since very sensitive or secret information
can be stored in a database, you should strongly consider protecting your databases.

To retrieve or to store any information you need to connect to the database, send a
legitimate query, fetch the result, and close the connection. Nowadays, the commonly
used query language in this interaction is the Structured Query Language (SQL). See how
an attacker can tamper with an SQL query.

As you can surmise, PHP cannot protect your database by itself. The following sections
aim to be an introduction into the very basics of how to access and manipulate databases
within PHP scripts.

Keep in mind this simple rule: defense in depth. The more places you take action to
increase the protection of your database, the less probability of an attacker succeeding in
exposing or abusing any stored information. Good design of the database schema and the
application deals with your greatest fears.

Designing Databases

The first step is always to create the database, unless you want to use one from a third
party. When a database is created, it is assigned to an owner, who executed the creation
statement. Usually, only the owner (or a superuser) can do anything with the objects in
that database, and in order to allow other users to use it, privileges must be granted.

Applications should never connect to the database as its owner or a superuser, because
these users can execute any query at will, for example, modifying the schema (e.g.
dropping tables) or deleting its entire content.

You may create different database users for every aspect of your application with very
limited rights to database objects. The most required privileges should be granted only,
and avoid that the same user can interact with the database in different use cases. This
means that if intruders gain access to your database using your applications credentials,
they can only effect as many changes as your application can.

You are encouraged not to implement all the business logic in the web application (i.e.
your script), instead do it in the database schema using views, triggers or rules. If the
system evolves, new ports will be intended to open to the database, and you have to
re-implement the logic in each separate database client. Over and above, triggers can be
used to transparently and automatically handle fields, which often provides insight when
debugging problems with your application or tracing back transactions.

Connecting to Database

You may want to establish the connections over SSL to encrypt client/server

communications for increased security, or you can use ssh to encrypt the network
connection between clients and the database server. If either of these is used, then
monitoring your traffic and gaining information about your database will be difficult for a
would-be attacker.

Encrypted Storage Model

SSL/SSH protects data travelling from the client to the server, SSL/SSH does not protect
the persistent data stored in a database. SSL is an on-the-wire protocol.

Once an attacker gains access to your database directly (bypassing the webserver), the
stored sensitive data may be exposed or misused, unless the information is protected by
the database itself. Encrypting the data is a good way to mitigate this threat, but very few
databases offer this type of data encryption.

The easiest way to work around this problem is to first create your own encryption
package, and then use it from within your PHP scripts. PHP can assist you in this with
several extensions, such as Mcrypt and Mhash, covering a wide variety of encryption
algorithms. The script encrypts the data before inserting it into the database, and decrypts
it when retrieving. See the references for further examples of how encryption works.

In case of truly hidden data, if its raw representation is not needed (i.e. not be displayed),
hashing may also be taken into consideration. The well-known example for the hashing is
storing the MD5 hash of a password in a database, instead of the password itself. See
also crypt() and md5().

Example #199 - Using hashed password field

<?php

// storing password hash

$query = sprintf("INSERT INTO users(name,pwd) VALUES('%s','%s');",

 pg_escape_string($username), md5($password));

$result = pg_query($connection, $query);

// querying if user submitted the right password

$query = sprintf("SELECT 1 FROM users WHERE name='%s' AND pwd='%s';",

 pg_escape_string($username), md5($password));

$result = pg_query($connection, $query);

if (pg_num_rows($result) > 0) {

 echo 'Welcome, $username!';

} else {

 echo 'Authentication failed for $username.';

}

?>

SQL Injection

Many web developers are unaware of how SQL queries can be tampered with, and
assume that an SQL query is a trusted command. It means that SQL queries are able to
circumvent access controls, thereby bypassing standard authentication and authorization
checks, and sometimes SQL queries even may allow access to host operating system
level commands.

Direct SQL Command Injection is a technique where an attacker creates or alters existing
SQL commands to expose hidden data, or to override valuable ones, or even to execute
dangerous system level commands on the database host. This is accomplished by the
application taking user input and combining it with static parameters to build a SQL query.
The following examples are based on true stories, unfortunately.

Owing to the lack of input validation and connecting to the database on behalf of a
superuser or the one who can create users, the attacker may create a superuser in your
database.

Example #200 - Splitting the result set into pages ... and making superusers
(PostgreSQL)

<?php

$offset = $argv[0]; // beware, no input validation!

$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET
$offset;";

$result = pg_query($conn, $query);

?>

Normal users click on the 'next', 'prev' links where the $offset is encoded into the URL. The
script expects that the incoming $offset is a decimal number. However, what if someone
tries to break in by appending a urlencode() 'd form of the following to the URL

0;

insert into pg_shadow(usename,usesysid,usesuper,usecatupd,passwd)

 select 'crack', usesysid, 't','t','crack'

 from pg_shadow where usename='postgres';

--

If it happened, then the script would present a superuser access to him. Note that 0; is to
supply a valid offset to the original query and to terminate it.

Note

It is common technique to force the SQL parser to ignore the rest of the query written
by the developer with -- which is the comment sign in SQL.

A feasible way to gain passwords is to circumvent your search result pages. The only thing
the attacker needs to do is to see if there are any submitted variables used in SQL
statements which are not handled properly. These filters can be set commonly in a
preceding form to customize WHERE, ORDER BY, LIMIT and OFFSET clauses in
SELECT statements. If your database supports the UNION construct, the attacker may try
to append an entire query to the original one to list passwords from an arbitrary table.

Using encrypted password fields is strongly encouraged.

Example #201 - Listing out articles ... and some passwords (any database
server)

<?php

$query = "SELECT id, name, inserted, size FROM products

 WHERE size = '$size'

 ORDER BY $order LIMIT $limit, $offset;";

$result = odbc_exec($conn, $query);

?>

The static part of the query can be combined with another SELECT statement which
reveals all passwords:

'

union select '1', concat(uname||'-'||passwd) as name, '1971-01-01', '0' from
usertable;

--

If this query (playing with the ' and --) were assigned to one of the variables used in
$query, the query beast awakened.

SQL UPDATE's are also susceptible to attack. These queries are also threatened by
chopping and appending an entirely new query to it. But the attacker might fiddle with the
SET clause. In this case some schema information must be possessed to manipulate the
query successfully. This can be acquired by examining the form variable names, or just
simply brute forcing. There are not so many naming conventions for fields storing
passwords or usernames.

Example #202 - From resetting a password ... to gaining more privileges (any
database server)

<?php

$query = "UPDATE usertable SET pwd='$pwd' WHERE uid='$uid';";

?>

But a malicious user sumbits the value ' or uid like'%admin%'; -- to $uid to change the
admin's password, or simply sets $pwd to "hehehe', admin='yes', trusted=100 " (with a
trailing space) to gain more privileges. Then, the query will be twisted:

<?php

// $uid == ' or uid like'%admin%'; --

$query = "UPDATE usertable SET pwd='...' WHERE uid='' or uid like '%admin%';
--";

// $pwd == "hehehe', admin='yes', trusted=100 "

$query = "UPDATE usertable SET pwd='hehehe', admin='yes', trusted=100 WHERE

...;";

?>

A frightening example how operating system level commands can be accessed on some
database hosts.

Example #203 - Attacking the database hosts operating system (MSSQL Server)

<?php

$query = "SELECT * FROM products WHERE id LIKE '%$prod%'";

$result = mssql_query($query);

?>

If attacker submits the value a%' exec master..xp_cmdshell 'net user test testpass /ADD' --
to $prod, then the $query will be:

<?php

$query = "SELECT * FROM products

 WHERE id LIKE '%a%'

 exec master..xp_cmdshell 'net user test testpass /ADD'--";

$result = mssql_query($query);

?>

MSSQL Server executes the SQL statements in the batch including a command to add a
new user to the local accounts database. If this application were running as sa and the
MSSQLSERVER service is running with sufficient privileges, the attacker would now have
an account with which to access this machine.

Note

Some of the examples above is tied to a specific database server. This does not mean
that a similar attack is impossible against other products. Your database server may be
similarly vulnerable in another manner.

Avoiding techniques

You may plead that the attacker must possess a piece of information about the database
schema in most examples. You are right, but you never know when and how it can be
taken out, and if it happens, your database may be exposed. If you are using an open
source, or publicly available database handling package, which may belong to a content
management system or forum, the intruders easily produce a copy of a piece of your code.
It may be also a security risk if it is a poorly designed one.

These attacks are mainly based on exploiting the code not being written with security in
mind. Never trust any kind of input, especially that which comes from the client side, even
though it comes from a select box, a hidden input field or a cookie. The first example
shows that such a blameless query can cause disasters.

• Never connect to the database as a superuser or as the database owner. Use always

customized users with very limited privileges.

• Check if the given input has the expected data type. PHP has a wide range of input
validating functions, from the simplest ones found in Variable Functions and in
Character Type Functions (e.g. is_numeric(), ctype_digit() respectively) and onwards
to the Perl compatible Regular Expressions support.

• If the application waits for numerical input, consider verifying data with is_numeric(), or
silently change its type using settype(), or use its numeric representation by sprintf().

Example #204 - A more secure way to compose a query for paging

<?php

settype($offset, 'integer');

$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET
$offset;";

// please note %d in the format string, using %s would be meaningless

$query = sprintf("SELECT id, name FROM products ORDER BY name LIMIT 20
OFFSET %d;",

 $offset);

?>

• Quote each non numeric user supplied value that is passed to the database with the
database-specific string escape function (e.g. mysql_real_escape_string(),
sql_escape_string(), etc.). If a database-specific string escape mechanism is not
available, the addslashes() and str_replace() functions may be useful (depending on
database type). See the first example. As the example shows, adding quotes to the
static part of the query is not enough, making this query easily crackable.

• Do not print out any database specific information, especially about the schema, by fair
means or foul. See also Error Reporting and Error Handling and Logging Functions.

• You may use stored procedures and previously defined cursors to abstract data
access so that users do not directly access tables or views, but this solution has
another impacts.

Besides these, you benefit from logging queries either within your script or by the database
itself, if it supports logging. Obviously, the logging is unable to prevent any harmful
attempt, but it can be helpful to trace back which application has been circumvented. The
log is not useful by itself, but through the information it contains. More detail is generally
better than less.

Error Reporting

With PHP security, there are two sides to error reporting. One is beneficial to increasing
security, the other is detrimental.

A standard attack tactic involves profiling a system by feeding it improper data, and
checking for the kinds, and contexts, of the errors which are returned. This allows the
system cracker to probe for information about the server, to determine possible
weaknesses. For example, if an attacker had gleaned information about a page based on
a prior form submission, they may attempt to override variables, or modify them:

Example #205 - Attacking Variables with a custom HTML page

<form method="post"
action="attacktarget?username=badfoo&password=badfoo">

<input type="hidden" name="username" value="badfoo" />

<input type="hidden" name="password" value="badfoo" />

</form>

The PHP errors which are normally returned can be quite helpful to a developer who is
trying to debug a script, indicating such things as the function or file that failed, the PHP
file it failed in, and the line number which the failure occurred in. This is all information that
can be exploited. It is not uncommon for a php developer to use show_source(),
highlight_string(), or highlight_file() as a debugging measure, but in a live site, this can
expose hidden variables, unchecked syntax, and other dangerous information. Especially
dangerous is running code from known sources with built-in debugging handlers, or using
common debugging techniques. If the attacker can determine what general technique you
are using, they may try to brute-force a page, by sending various common debugging
strings:

Example #206 - Exploiting common debugging variables

<form method="post"
action="attacktarget?errors=Y&showerrors=1&debug=1">

<input type="hidden" name="errors" value="Y" />

<input type="hidden" name="showerrors" value="1" />

<input type="hidden" name="debug" value="1" />

</form>

Regardless of the method of error handling, the ability to probe a system for errors leads to
providing an attacker with more information.

For example, the very style of a generic PHP error indicates a system is running PHP. If
the attacker was looking at an .html page, and wanted to probe for the back-end (to look
for known weaknesses in the system), by feeding it the wrong data they may be able to
determine that a system was built with PHP.

A function error can indicate whether a system may be running a specific database engine,
or give clues as to how a web page or programmed or designed. This allows for deeper
investigation into open database ports, or to look for specific bugs or weaknesses in a web
page. By feeding different pieces of bad data, for example, an attacker can determine the
order of authentication in a script, (from the line number errors) as well as probe for
exploits that may be exploited in different locations in the script.

A filesystem or general PHP error can indicate what permissions the web server has, as
well as the structure and organization of files on the web server. Developer written error
code can aggravate this problem, leading to easy exploitation of formerly "hidden"
information.

There are three major solutions to this issue. The first is to scrutinize all functions, and
attempt to compensate for the bulk of the errors. The second is to disable error reporting
entirely on the running code. The third is to use PHP's custom error handling functions to
create your own error handler. Depending on your security policy, you may find all three to
be applicable to your situation.

One way of catching this issue ahead of time is to make use of PHP's own
error_reporting(), to help you secure your code and find variable usage that may be
dangerous. By testing your code, prior to deployment, with E_ALL, you can quickly find
areas where your variables may be open to poisoning or modification in other ways. Once
you are ready for deployment, you should either disable error reporting completely by
setting error_reporting() to 0, or turn off the error display using the php.ini option
display_errors, to insulate your code from probing. If you choose to do the latter, you
should also define the path to your log file using the error_log ini directive, and turn
log_errors on.

Example #207 - Finding dangerous variables with E_ALL

<?php

if ($username) { // Not initialized or checked before usage

 $good_login = 1;

}

if ($good_login == 1) { // If above test fails, not initialized or checked
before usage

 readfile ("/highly/sensitive/data/index.html");

}

?>

Using Register Globals

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on this
feature is highly discouraged.

Perhaps the most controversial change in PHP is when the default value for the PHP
directive register_globals went from ON to OFF in PHP » 4.2.0. Reliance on this directive
was quite common and many people didn't even know it existed and assumed it's just how
PHP works. This page will explain how one can write insecure code with this directive but
keep in mind that the directive itself isn't insecure but rather it's the misuse of it.

When on, register_globals will inject your scripts with all sorts of variables, like request
variables from HTML forms. This coupled with the fact that PHP doesn't require variable
initialization means writing insecure code is that much easier. It was a difficult decision, but
the PHP community decided to disable this directive by default. When on, people use
variables yet really don't know for sure where they come from and can only assume.
Internal variables that are defined in the script itself get mixed up with request data sent by
users and disabling register_globals changes this. Let's demonstrate with an example
misuse of register_globals:

Example #208 - Example misuse with register_globals = on

<?php

// define $authorized = true only if user is authenticated

if (authenticated_user()) {

 $authorized = true;

}

// Because we didn't first initialize $authorized as false, this might be

// defined through register_globals, like from GET auth.php?authorized=1

// So, anyone can be seen as authenticated!

if ($authorized) {

 include "/highly/sensitive/data.php";

}

?>

When register_globals = on, our logic above may be compromised. When off, $authorized
can't be set via request so it'll be fine, although it really is generally a good programming
practice to initialize variables first. For example, in our example above we might have first
done $authorized = false. Doing this first means our above code would work with
register_globals on or off as users by default would be unauthorized.

Another example is that of sessions. When register_globals = on, we could also use
$username in our example below but again you must realize that $username could also

http://www.php.net/releases/4_2_0.php

come from other means, such as GET (through the URL).

Example #209 - Example use of sessions with register_globals on or off

<?php

// We wouldn't know where $username came from but do know $_SESSION is

// for session data

if (isset($_SESSION['username'])) {

 echo "Hello {$_SESSION['username']}";

} else {

 echo "Hello Guest
";

 echo "Would you like to login?";

}

?>

It's even possible to take preventative measures to warn when forging is being attempted.
If you know ahead of time exactly where a variable should be coming from, you can check
to see if the submitted data is coming from an inappropriate kind of submission. While it
doesn't guarantee that data has not been forged, it does require an attacker to guess the
right kind of forging. If you don't care where the request data comes from, you can use
$_REQUEST as it contains a mix of GET, POST and COOKIE data. See also the manual
section on using variables from external sources.

Example #210 - Detecting simple variable poisoning

<?php

if (isset($_COOKIE['MAGIC_COOKIE'])) {

 // MAGIC_COOKIE comes from a cookie.

 // Be sure to validate the cookie data!

} elseif (isset($_GET['MAGIC_COOKIE']) || isset($_POST['MAGIC_COOKIE'])) {

 mail("admin@example.com", "Possible breakin attempt",
$_SERVER['REMOTE_ADDR']);

 echo "Security violation, admin has been alerted.";

 exit;

} else {

 // MAGIC_COOKIE isn't set through this REQUEST

}

?>

Of course, simply turning off register_globals does not mean your code is secure. For
every piece of data that is submitted, it should also be checked in other ways. Always
validate your user data and initialize your variables! To check for uninitialized variables you
may turn up error_reporting() to show E_NOTICE level errors.

For information about emulating register_globals being On or Off, see this FAQ.

Note

Superglobals: availability note

Superglobal arrays such as $_GET, $_POST, and $_SERVER, etc. are available as of
PHP 4.1.0. For more information, read the manual section on superglobals

User Submitted Data

The greatest weakness in many PHP programs is not inherent in the language itself, but
merely an issue of code not being written with security in mind. For this reason, you should
always take the time to consider the implications of a given piece of code, to ascertain the
possible damage if an unexpected variable is submitted to it.

Example #211 - Dangerous Variable Usage

<?php

// remove a file from the user's home directory... or maybe

// somebody else's?

unlink ($evil_var);

// Write logging of their access... or maybe an /etc/passwd entry?

fwrite ($fp, $evil_var);

// Execute something trivial.. or rm -rf *?

system ($evil_var);

exec ($evil_var);

?>

You should always carefully examine your code to make sure that any variables being
submitted from a web browser are being properly checked, and ask yourself the following
questions:

• Will this script only affect the intended files?

• Can unusual or undesirable data be acted upon?

• Can this script be used in unintended ways?

• Can this be used in conjunction with other scripts in a negative manner?

• Will any transactions be adequately logged?

By adequately asking these questions while writing the script, rather than later, you
prevent an unfortunate re-write when you need to increase your security. By starting out
with this mindset, you won't guarantee the security of your system, but you can help
improve it.

You may also want to consider turning off register_globals, magic_quotes, or other
convenience settings which may confuse you as to the validity, source, or value of a given
variable. Working with PHP in error_reporting(E_ALL) mode can also help warn you about
variables being used before they are checked or initialized (so you can prevent unusual
data from being operated upon).

Magic Quotes

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on this
feature is highly discouraged.

Magic Quotes is a process that automagically escapes incoming data to the PHP script.
It's preferred to code with magic quotes off and to instead escape the data at runtime, as
needed.

What are Magic Quotes

When on, all ' (single-quote), " (double quote), \ (backslash) and NULL characters are
escaped with a backslash automatically. This is identical to what addslashes() does.

There are three magic quote directives:

• magic_quotes_gpc Affects HTTP Request data (GET, POST, and COOKIE). Cannot
be set at runtime, and defaults to on in PHP. See also get_magic_quotes_gpc().

• magic_quotes_runtime If enabled, most functions that return data from an external
source, including databases and text files, will have quotes escaped with a backslash.
Can be set at runtime, and defaults to off in PHP. See also
set_magic_quotes_runtime() and get_magic_quotes_runtime().

• magic_quotes_sybase If enabled, a single-quote is escaped with a single-quote
instead of a backslash. If on, it completely overrides magic_quotes_gpc. Having both
directives enabled means only single quotes are escaped as ''. Double quotes,
backslashes and NULL's will remain untouched and unescaped. See also ini_get() for
retrieving its value.

Why use Magic Quotes

• Useful for beginners Magic quotes are implemented in PHP to help code written by
beginners from being dangerous. Although SQL Injection is still possible with magic
quotes on, the risk is reduced.

• Convenience For inserting data into a database, magic quotes essentially runs
addslashes() on all Get, Post, and Cookie data, and does so automagically.

Why not to use Magic Quotes

• Portability Assuming it to be on, or off, affects portability. Use get_magic_quotes_gpc()
to check for this, and code accordingly.

• Performance Because not every piece of escaped data is inserted into a database,
there is a performance loss for escaping all this data. Simply calling on the escaping
functions (like addslashes()) at runtime is more efficient. Although php.ini-dist enables
these directives by default, php.ini-recommended disables it. This recommendation is
mainly due to performance reasons.

• Inconvenience Because not all data needs escaping, it's often annoying to see
escaped data where it shouldn't be. For example, emailing from a form, and seeing a
bunch of \' within the email. To fix, this may require excessive use of stripslashes().

Disabling Magic Quotes

The magic_quotes_gpc directive may only be disabled at the system level, and not at
runtime. In otherwords, use of ini_set() is not an option.

Example #212 - Disabling magic quotes server side

An example that sets the value of these directives to Off in php.ini. For additional
details, read the manual section titled How to change configuration settings.

; Magic quotes

;

; Magic quotes for incoming GET/POST/Cookie data.

magic_quotes_gpc = Off

; Magic quotes for runtime-generated data, e.g. data from SQL, from exec(),
etc.

magic_quotes_runtime = Off

; Use Sybase-style magic quotes (escape ' with '' instead of \').

magic_quotes_sybase = Off

If access to the server configuration is unavailable, use of.htaccess is also an option.
For example:

php_flag magic_quotes_gpc Off

In the interest of writing portable code (code that works in any environment), like if setting
at the server level is not possible, here's an example to disable magic_quotes_gpc at
runtime. This method is inefficient so it's preferred to instead set the appropriate directives
elsewhere.

Example #213 - Disabling magic quotes at runtime

<?php

if (get_magic_quotes_gpc()) {

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

?>

Hiding PHP

In general, security by obscurity is one of the weakest forms of security. But in some
cases, every little bit of extra security is desirable.

A few simple techniques can help to hide PHP, possibly slowing down an attacker who is
attempting to discover weaknesses in your system. By setting expose_php = off in your
php.ini file, you reduce the amount of information available to them.

Another tactic is to configure web servers such as apache to parse different filetypes
through PHP, either with an.htaccess directive, or in the apache configuration file itself.
You can then use misleading file extensions:

Example #214 - Hiding PHP as another language

Make PHP code look like other code types

AddType application/x-httpd-php .asp .py .pl

Or obscure it completely:

Example #215 - Using unknown types for PHP extensions

Make PHP code look like unknown types

AddType application/x-httpd-php .bop .foo .133t

Or hide it as HTML code, which has a slight performance hit because all HTML will be
parsed through the PHP engine:

Example #216 - Using HTML types for PHP extensions

Make all PHP code look like HTML

AddType application/x-httpd-php .htm .html

For this to work effectively, you must rename your PHP files with the above extensions.
While it is a form of security through obscurity, it's a minor preventative measure with few
drawbacks.

Keeping Current

PHP, like any other large system, is under constant scrutiny and improvement. Each new
version will often include both major and minor changes to enhance security and repair
any flaws, configuration mishaps, and other issues that will affect the overall security and
stability of your system.

Like other system-level scripting languages and programs, the best approach is to update
often, and maintain awareness of the latest versions and their changes.

Features

HTTP authentication with PHP

The HTTP Authentication hooks in PHP are only available when it is running as an Apache
module and is hence not available in the CGI version. In an Apache module PHP script, it
is possible to use the header() function to send an "Authentication Required" message to
the client browser causing it to pop up a Username/Password input window. Once the user
has filled in a username and a password, the URL containing the PHP script will be called
again with the predefined variables PHP_AUTH_USER, PHP_AUTH_PW, and
AUTH_TYPE set to the user name, password and authentication type respectively. These
predefined variables are found in the $_SERVER and $HTTP_SERVER_VARS arrays.
Both "Basic" and "Digest" (since PHP 5.1.0) authentication methods are supported. See
the header() function for more information.

Note

PHP Version Note

Superglobals, such as $_SERVER, became available in PHP » 4.1.0.

An example script fragment which would force client authentication on a page is as
follows:

Example #217 - Basic HTTP Authentication example

<?php

if (!isset($_SERVER['PHP_AUTH_USER'])) {

 header('WWW-Authenticate: Basic realm="My Realm"');

 header('HTTP/1.0 401 Unauthorized');

 echo 'Text to send if user hits Cancel button';

 exit;

} else {

 echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

 echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

}

?>

Example #218 - Digest HTTP Authentication example

This example shows you how to implement a simple Digest HTTP authentication
script. For more information read the » RFC 2617.

<?php

$realm = 'Restricted area';

http://www.php.net/releases/4_1_0.php
http://www.faqs.org/rfcs/rfc2617

//user => password

$users = array('admin' => 'mypass', 'guest' => 'guest');

if (empty($_SERVER['PHP_AUTH_DIGEST'])) {

 header('HTTP/1.1 401 Unauthorized');

 header('WWW-Authenticate: Digest realm="'.$realm.

 '",qop="auth",nonce="'.uniqid().'",opaque="'.md5($realm).'"');

 die('Text to send if user hits Cancel button');

}

// analyze the PHP_AUTH_DIGEST variable

if (!($data = http_digest_parse($_SERVER['PHP_AUTH_DIGEST'])) ||

 !isset($users[$data['username']]))

 die('Wrong Credentials!');

// generate the valid response

$A1 = md5($data['username'] . ':' . $realm . ':' .
$users[$data['username']]);

$A2 = md5($_SERVER['REQUEST_METHOD'].':'.$data['uri']);

$valid_response =
md5($A1.':'.$data['nonce'].':'.$data['nc'].':'.$data['cnonce'].':'.$data['qo
p'].':'.$A2);

if ($data['response'] != $valid_response)

 die('Wrong Credentials!');

// ok, valid username & password

echo 'Your are logged in as: ' . $data['username'];

// function to parse the http auth header

function http_digest_parse($txt)

{

 // protect against missing data

 $needed_parts = array('nonce'=>1, 'nc'=>1, 'cnonce'=>1, 'qop'=>1,
'username'=>1, 'uri'=>1, 'response'=>1);

 $data = array();

 preg_match_all('@(\w+)=(?:([\'"])([^\2]+)\2|([^\s,]+))@', $txt, $matches,
PREG_SET_ORDER);

 foreach ($matches as $m) {

 $data[$m[1]] = $m[3] ? $m[3] : $m[4];

 unset($needed_parts[$m[1]]);

 }

 return $needed_parts ? false : $data;

}

?>

Note

Compatibility Note

Please be careful when coding the HTTP header lines. In order to guarantee maximum
compatibility with all clients, the keyword "Basic" should be written with an uppercase
"B", the realm string must be enclosed in double (not single) quotes, and exactly one
space should precede the 401 code in the HTTP/1.0 401 header line. Authentication
parameters have to be comma-separated as seen in the digest example above.

Instead of simply printing out PHP_AUTH_USER and PHP_AUTH_PW, as done in the
above example, you may want to check the username and password for validity. Perhaps
by sending a query to a database, or by looking up the user in a dbm file.

Watch out for buggy Internet Explorer browsers out there. They seem very picky about the
order of the headers. Sending the WWW-Authenticate header before the HTTP/1.0 401
header seems to do the trick for now.

As of PHP 4.3.0, in order to prevent someone from writing a script which reveals the
password for a page that was authenticated through a traditional external mechanism, the
PHP_AUTH variables will not be set if external authentication is enabled for that particular
page and safe mode is enabled. Regardless, REMOTE_USER can be used to identify the
externally-authenticated user. So, you can use $_SERVER['REMOTE_USER'].

Note

Configuration Note

PHP uses the presence of an AuthType directive to determine whether external
authentication is in effect.

Note, however, that the above does not prevent someone who controls a
non-authenticated URL from stealing passwords from authenticated URLs on the same
server.

Both Netscape Navigator and Internet Explorer will clear the local browser window's
authentication cache for the realm upon receiving a server response of 401. This can
effectively "log out" a user, forcing them to re-enter their username and password. Some
people use this to "time out" logins, or provide a "log-out" button.

Example #219 - HTTP Authentication example forcing a new name/password

<?php

function authenticate() {

 header('WWW-Authenticate: Basic realm="Test Authentication System"');

 header('HTTP/1.0 401 Unauthorized');

 echo "You must enter a valid login ID and password to access this
resource\n";

 exit;

}

if (!isset($_SERVER['PHP_AUTH_USER']) ||

 ($_POST['SeenBefore'] == 1 && $_POST['OldAuth'] ==
$_SERVER['PHP_AUTH_USER'])) {

 authenticate();

} else {

 echo "<p>Welcome: {$_SERVER['PHP_AUTH_USER']}
";

 echo "Old: {$_REQUEST['OldAuth']}";

 echo "<form action='{$_SERVER['PHP_SELF']}' METHOD='post'>\n";

 echo "<input type='hidden' name='SeenBefore' value='1' />\n";

 echo "<input type='hidden' name='OldAuth'
value='{$_SERVER['PHP_AUTH_USER']}' />\n";

 echo "<input type='submit' value='Re Authenticate' />\n";

 echo "</form></p>\n";

}

?>

This behavior is not required by the HTTP Basic authentication standard, so you should
never depend on this. Testing with Lynx has shown that Lynx does not clear the
authentication credentials with a 401 server response, so pressing back and then forward
again will open the resource as long as the credential requirements haven't changed. The
user can press the '_' key to clear their authentication information, however.

Also note that until PHP 4.3.3, HTTP Authentication did not work using Microsoft's IIS
server with the CGI version of PHP due to a limitation of IIS. In order to get it to work in
PHP 4.3.3+, you must edit your IIS configuration "Directory Security". Click on "Edit" and
only check "Anonymous Access", all other fields should be left unchecked.

Another limitation is if you're using the IIS module (ISAPI) and PHP 4, you may not use the
PHP_AUTH_* variables but instead, the variable HTTP_AUTHORIZATION is available.
For example, consider the following code: list($user, $pw) = explode(':',
base64_decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));

Note

IIS Note:

For HTTP Authentication to work with IIS, the PHP directive cgi.rfc2616_headers must
be set to 0 (the default value).

Note

If safe mode is enabled, the uid of the script is added to the realm part of the
WWW-Authenticate header.

Cookies

PHP transparently supports HTTP cookies. Cookies are a mechanism for storing data in
the remote browser and thus tracking or identifying return users. You can set cookies
using the setcookie() or setrawcookie() function. Cookies are part of the HTTP header, so
setcookie() must be called before any output is sent to the browser. This is the same
limitation that header() has. You can use the output buffering functions to delay the script
output until you have decided whether or not to set any cookies or send any headers.

Any cookies sent to you from the client will automatically be included into a $_COOKIE
auto-global array if variables_order contains "C". If you wish to assign multiple values to a
single cookie, just add [] to the cookie name.

Depending on register_globals, regular PHP variables can be created from cookies.
However it's not recommended to rely on them as this feature is often turned off for the
sake of security. $HTTP_COOKIE_VARS is also set in earlier versions of PHP when the
track_vars configuration variable is set. (This setting is always on since PHP 4.0.3.)

For more details, including notes on browser bugs, see the setcookie() and setrawcookie()
function.

Sessions

Session support in PHP consists of a way to preserve certain data across subsequent
accesses. This enables you to build more customized applications and increase the
appeal of your web site. All information is in the Session reference section.

Dealing with XForms

» XForms defines a variation on traditional webforms which allows them to be used on a
wider variety of platforms and browsers or even non-traditional media such as PDF
documents.

The first key difference in XForms is how the form is sent to the client. » XForms for HTML
Authors contains a detailed description of how to create XForms, for the purpose of this
tutorial we'll only be looking at a simple example.

Example #220 - A simple XForms search form

<h:html xmlns:h="http://www.w3.org/1999/xhtml"

 xmlns="http://www.w3.org/2002/xforms">

<h:head>

<h:title>Search</h:title>

<model>

 <submission action="http://example.com/search"

 method="post" id="s"/>

</model>

</h:head>

<h:body>

<h:p>

 <input ref="q"><label>Find</label></input>

 <submit submission="s"><label>Go</label></submit>

</h:p>

</h:body>

</h:html>

The above form displays a text input box (named q), and a submit button. When the
submit button is clicked, the form will be sent to the page referred to by action.

Here's where it starts to look different from your web application's point of view. In a
normal HTML form, the data would be sent as application/x-www-form-urlencoded, in the
XForms world however, this information is sent as XML formatted data.

If you're choosing to work with XForms then you probably want that data as XML, in that
case, look in $HTTP_RAW_POST_DATA where you'll find the XML document generated
by the browser which you can pass into your favorite XSLT engine or document parser.

If you're not interested in formatting and just want your data to be loaded into the
traditional $_POST variable, you can instruct the client browser to send it as
application/x-www-form-urlencoded by changing the method attribute to urlencoded-post.

Example #221 - Using an XForm to populate $_POST

<h:html xmlns:h="http://www.w3.org/1999/xhtml"

 xmlns="http://www.w3.org/2002/xforms">

<h:head>

<h:title>Search</h:title>

http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html

<model>

 <submission action="http://example.com/search"

 method="urlencoded-post" id="s"/>

</model>

</h:head>

<h:body>

<h:p>

 <input ref="q"><label>Find</label></input>

 <submit submission="s"><label>Go</label></submit>

</h:p>

</h:body>

</h:html>

Note

As of this writing, many browsers do not support XForms. Check your browser version
if the above examples fails.

Handling file uploads

POST method uploads

This feature lets people upload both text and binary files. With PHP's authentication and
file manipulation functions, you have full control over who is allowed to upload and what is
to be done with the file once it has been uploaded.

PHP is capable of receiving file uploads from any RFC-1867 compliant browser (which
includes Netscape Navigator 3 or later, Microsoft Internet Explorer 3 with a patch from
Microsoft, or later without a patch).

Note

Related Configurations Note

See also the file_uploads, upload_max_filesize, upload_tmp_dir, post_max_size and
max_input_time directives in php.ini

PHP also supports PUT-method file uploads as used by Netscape Composer and W3C's
Amaya clients. See the PUT Method Support for more details.

Example #222 - File Upload Form

A file upload screen can be built by creating a special form which looks something like
this:

<!-- The data encoding type, enctype, MUST be specified as below -->

<form enctype="multipart/form-data" action="__URL__" method="POST">

 <!-- MAX_FILE_SIZE must precede the file input field -->

 <input type="hidden" name="MAX_FILE_SIZE" value="30000" />

 <!-- Name of input element determines name in $_FILES array -->

 Send this file: <input name="userfile" type="file" />

 <input type="submit" value="Send File" />

</form>

The __URL__ in the above example should be replaced, and point to a PHP file.

The MAX_FILE_SIZE hidden field (measured in bytes) must precede the file input
field, and its value is the maximum filesize accepted by PHP. Fooling this setting on
the browser side is quite easy, so never rely on files with a greater size being blocked
by this feature. The PHP settings for maximum-size, however, cannot be fooled. This
form element should always be used as it saves users the trouble of waiting for a big
file being transferred only to find that it was too big and the transfer failed.

Note

Be sure your file upload form has attribute enctype="multipart/form-data" otherwise the
file upload will not work.

The global $_FILES exists as of PHP 4.1.0 (Use $HTTP_POST_FILES instead if using an
earlier version). These arrays will contain all the uploaded file information.

The contents of $_FILES from the example form is as follows. Note that this assumes the
use of the file upload name userfile, as used in the example script above. This can be any
name.
$_FILES['userfile']['name']

The original name of the file on the client machine.

$_FILES['userfile']['type']
The mime type of the file, if the browser provided this information. An example would
be "image/gif". This mime type is however not checked on the PHP side and therefore
don't take its value for granted.

$_FILES['userfile']['size']
The size, in bytes, of the uploaded file.

$_FILES['userfile']['tmp_name']
The temporary filename of the file in which the uploaded file was stored on the server.

$_FILES['userfile']['error']
The error code associated with this file upload. This element was added in PHP 4.2.0

Files will, by default be stored in the server's default temporary directory, unless another
location has been given with the upload_tmp_dir directive in php.ini. The server's default
directory can be changed by setting the environment variable TMPDIR in the environment
in which PHP runs. Setting it using putenv() from within a PHP script will not work. This
environment variable can also be used to make sure that other operations are working on
uploaded files, as well.

Example #223 - Validating file uploads

See also the function entries for is_uploaded_file() and move_uploaded_file() for
further information. The following example will process the file upload that came from a
form.

<?php

// In PHP versions earlier than 4.1.0, $HTTP_POST_FILES should be used
instead

// of $_FILES.

$uploaddir = '/var/www/uploads/';

$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

echo '<pre>';

if (move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)) {

 echo "File is valid, and was successfully uploaded.\n";

} else {

 echo "Possible file upload attack!\n";

}

echo 'Here is some more debugging info:';

print_r($_FILES);

print "</pre>";

?>

The PHP script which receives the uploaded file should implement whatever logic is
necessary for determining what should be done with the uploaded file. You can, for
example, use the $_FILES['userfile']['size'] variable to throw away any files that are either
too small or too big. You could use the $_FILES['userfile']['type'] variable to throw away
any files that didn't match a certain type criteria, but use this only as first of a series of
checks, because this value is completely under the control of the client and not checked
on the PHP side. As of PHP 4.2.0, you could use $_FILES['userfile']['error'] and plan your
logic according to the error codes. Whatever the logic, you should either delete the file
from the temporary directory or move it elsewhere.

If no file is selected for upload in your form, PHP will return $_FILES['userfile']['size'] as 0,
and $_FILES['userfile']['tmp_name'] as none.

The file will be deleted from the temporary directory at the end of the request if it has not
been moved away or renamed.

Example #224 - Uploading array of files

PHP supports HTML array feature even with files.

<form action="" method="post" enctype="multipart/form-data">

<p>Pictures:

<input type="file" name="pictures[]" />

<input type="file" name="pictures[]" />

<input type="file" name="pictures[]" />

<input type="submit" value="Send" />

</p>

</form>

<?php

foreach ($_FILES["pictures"]["error"] as $key => $error) {

 if ($error == UPLOAD_ERR_OK) {

 $tmp_name = $_FILES["pictures"]["tmp_name"][$key];

 $name = $_FILES["pictures"]["name"][$key];

 move_uploaded_file($tmp_name, "data/$name");

 }

}

?>

Error Messages Explained

Since PHP 4.2.0, PHP returns an appropriate error code along with the file array. The error
code can be found in the error segment of the file array that is created during the file
upload by PHP. In other words, the error might be found in $_FILES['userfile']['error'].

UPLOAD_ERR_OK
Value: 0; There is no error, the file uploaded with success.

UPLOAD_ERR_INI_SIZE
Value: 1; The uploaded file exceeds the upload_max_filesize directive in php.ini.

UPLOAD_ERR_FORM_SIZE
Value: 2; The uploaded file exceeds the MAX_FILE_SIZE directive that was specified
in the HTML form.

UPLOAD_ERR_PARTIAL
Value: 3; The uploaded file was only partially uploaded.

UPLOAD_ERR_NO_FILE
Value: 4; No file was uploaded.

UPLOAD_ERR_NO_TMP_DIR
Value: 6; Missing a temporary folder. Introduced in PHP 4.3.10 and PHP 5.0.3.

UPLOAD_ERR_CANT_WRITE
Value: 7; Failed to write file to disk. Introduced in PHP 5.1.0.

UPLOAD_ERR_EXTENSION
Value: 8; File upload stopped by extension. Introduced in PHP 5.2.0.

Note

These became PHP constants in PHP 4.3.0.

Common Pitfalls

The MAX_FILE_SIZE item cannot specify a file size greater than the file size that has
been set in the upload_max_filesize ini-setting. The default is 2 Megabytes.

If a memory limit is enabled, a larger memory_limit may be needed. Make sure you set
memory_limit large enough.

If max_execution_time is set too small, script execution may be exceeded by the value.
Make sure you set max_execution_time large enough.

Note

max_execution_time only affects the execution time of the script itself. Any time spent
on activity that happens outside the execution of the script such as system calls using
system(), the sleep() function, database queries, time taken by the file upload process,
etc. is not included when determining the maximum time that the script has been
running.

Warning

max_input_time sets the maximum time, in seconds, the script is allowed to receive
input; this includes file uploads. For large or multiple files, or users on slower
connections, the default of 60 seconds may be exceeded.

If post_max_size is set too small, large files cannot be uploaded. Make sure you set
post_max_size large enough.

Not validating which file you operate on may mean that users can access sensitive
information in other directories.

Please note that the CERN httpd seems to strip off everything starting at the first
whitespace in the content-type mime header it gets from the client. As long as this is the
case, CERN httpd will not support the file upload feature.

Due to the large amount of directory listing styles we cannot guarantee that files with
exotic names (like containing spaces) are handled properly.

A developer may not mix normal input fields and file upload fields in the same form
variable (by using an input name like foo[]).

Uploading multiple files

Multiple files can be uploaded using different name for input.

It is also possible to upload multiple files simultaneously and have the information
organized automatically in arrays for you. To do so, you need to use the same array
submission syntax in the HTML form as you do with multiple selects and checkboxes:

Example #225 - Uploading multiple files

<form action="file-upload.php" method="post" enctype="multipart/form-data">

 Send these files:

 <input name="userfile[]" type="file" />

 <input name="userfile[]" type="file" />

 <input type="submit" value="Send files" />

</form>

When the above form is submitted, the arrays $_FILES['userfile'],
$_FILES['userfile']['name'], and $_FILES['userfile']['size'] will be initialized (as well as in
$HTTP_POST_FILES for PHP versions prior to 4.1.0). When register_globals is on,
globals for uploaded files are also initialized. Each of these will be a numerically indexed
array of the appropriate values for the submitted files.

For instance, assume that the filenames /home/test/review.html and /home/test/xwp.out
are submitted. In this case, $_FILES['userfile']['name'][0] would contain the value
review.html, and $_FILES['userfile']['name'][1] would contain the value xwp.out. Similarly,
$_FILES['userfile']['size'][0] would contain review.html 's file size, and so forth.

$_FILES['userfile']['name'][0], $_FILES['userfile']['tmp_name'][0],
$_FILES['userfile']['size'][0], and $_FILES['userfile']['type'][0] are also set.

PUT method support

PHP provides support for the HTTP PUT method used by some clients to store files on a
server. PUT requests are much simpler than a file upload using POST requests and they
look something like this:

PUT /path/filename.html HTTP/1.1

This would normally mean that the remote client would like to save the content that follows
as: /path/filename.html in your web tree. It is obviously not a good idea for Apache or PHP
to automatically let everybody overwrite any files in your web tree. So, to handle such a
request you have to first tell your web server that you want a certain PHP script to handle
the request. In Apache you do this with the Script directive. It can be placed almost
anywhere in your Apache configuration file. A common place is inside a <Directory> block
or perhaps inside a <VirtualHost> block. A line like this would do the trick:

Script PUT /put.php

This tells Apache to send all PUT requests for URIs that match the context in which you
put this line to the put.php script. This assumes, of course, that you have PHP enabled for
the .php extension and PHP is active. The destination resource for all PUT requests to this
script has to be the script itself, not a filename the uploaded file should have.

With PHP you would then do something like the following in your put.php. This would copy
the contents of the uploaded file to the file myputfile.ext on the server. You would probably
want to perform some checks and/or authenticate the user before performing this file copy.

Example #226 - Saving HTTP PUT files

<?php

/* PUT data comes in on the stdin stream */

$putdata = fopen("php://input", "r");

/* Open a file for writing */

$fp = fopen("myputfile.ext", "w");

/* Read the data 1 KB at a time

 and write to the file */

while ($data = fread($putdata, 1024))

 fwrite($fp, $data);

/* Close the streams */

fclose($fp);

fclose($putdata);

?>

Using remote files

As long as allow_url_fopen is enabled in php.ini, you can use HTTP and FTP URLs with
most of the functions that take a filename as a parameter. In addition, URLs can be used
with the include(), include_once(), require() and require_once() statements (since PHP
5.2.0, allow_url_include must be enabled for these). See List of Supported
Protocols/Wrappers for more information about the protocols supported by PHP.

Note

In PHP 4.0.3 and older, in order to use URL wrappers, you were required to configure
PHP using the configure option --enable-url-fopen-wrapper.

Note

The Windows versions of PHP earlier than PHP 4.3 did not support remote file
accessing for the following functions: include(), include_once(), require(),
require_once(), and the imagecreatefromXXX functions in the GD Functions
extension.

For example, you can use this to open a file on a remote web server, parse the output for
the data you want, and then use that data in a database query, or simply to output it in a
style matching the rest of your website.

Example #227 - Getting the title of a remote page

<?php

$file = fopen ("http://www.example.com/", "r");

if (!$file) {

 echo "<p>Unable to open remote file.\n";

 exit;

}

while (!feof ($file)) {

 $line = fgets ($file, 1024);

 /* This only works if the title and its tags are on one line */

 if (eregi ("<title>(.*)</title>", $line, $out)) {

 $title = $out[1];

 break;

 }

}

fclose($file);

?>

You can also write to files on an FTP server (provided that you have connected as a user
with the correct access rights). You can only create new files using this method; if you try
to overwrite a file that already exists, the fopen() call will fail.

To connect as a user other than 'anonymous', you need to specify the username (and
possibly password) within the URL, such as
'ftp://user:password@ftp.example.com/path/to/file'. (You can use the same sort of syntax
to access files via HTTP when they require Basic authentication.)

Example #228 - Storing data on a remote server

<?php

$file = fopen ("ftp://ftp.example.com/incoming/outputfile", "w");

if (!$file) {

 echo "<p>Unable to open remote file for writing.\n";

 exit;

}

/* Write the data here. */

fwrite ($file, $_SERVER['HTTP_USER_AGENT'] . "\n");

fclose ($file);

?>

Note

You might get the idea from the example above that you can use this technique to
write to a remote log file. Unfortunately that would not work because the fopen() call
will fail if the remote file already exists. To do distributed logging like that, you should
take a look at syslog().

Connection handling

Internally in PHP a connection status is maintained. There are 3 possible states:

• 0 - NORMAL

• 1 - ABORTED

• 2 - TIMEOUT

When a PHP script is running normally the NORMAL state, is active. If the remote client
disconnects the ABORTED state flag is turned on. A remote client disconnect is usually
caused by the user hitting his STOP button. If the PHP-imposed time limit (see
set_time_limit()) is hit, the TIMEOUT state flag is turned on.

You can decide whether or not you want a client disconnect to cause your script to be
aborted. Sometimes it is handy to always have your scripts run to completion even if there
is no remote browser receiving the output. The default behaviour is however for your script
to be aborted when the remote client disconnects. This behaviour can be set via the
ignore_user_abort php.ini directive as well as through the corresponding php_value
ignore_user_abort Apache .conf directive or with the ignore_user_abort() function. If you
do not tell PHP to ignore a user abort and the user aborts, your script will terminate. The
one exception is if you have registered a shutdown function using
register_shutdown_function(). With a shutdown function, when the remote user hits his
STOP button, the next time your script tries to output something PHP will detect that the
connection has been aborted and the shutdown function is called. This shutdown function
will also get called at the end of your script terminating normally, so to do something
different in case of a client disconnect you can use the connection_aborted() function. This
function will return TRUE if the connection was aborted.

Your script can also be terminated by the built-in script timer. The default timeout is 30
seconds. It can be changed using the max_execution_time php.ini directive or the
corresponding php_value max_execution_time Apache .conf directive as well as with the
set_time_limit() function. When the timer expires the script will be aborted and as with the
above client disconnect case, if a shutdown function has been registered it will be called.
Within this shutdown function you can check to see if a timeout caused the shutdown
function to be called by calling the connection_status() function. This function will return 2
if a timeout caused the shutdown function to be called.

One thing to note is that both the ABORTED and the TIMEOUT states can be active at the
same time. This is possible if you tell PHP to ignore user aborts. PHP will still note the fact
that a user may have broken the connection, but the script will keep running. If it then hits
the time limit it will be aborted and your shutdown function, if any, will be called. At this
point you will find that connection_status() returns 3.

Persistent Database Connections

Persistent connections are links that do not close when the execution of your script ends.
When a persistent connection is requested, PHP checks if there's already an identical
persistent connection (that remained open from earlier) - and if it exists, it uses it. If it does
not exist, it creates the link. An 'identical' connection is a connection that was opened to
the same host, with the same username and the same password (where applicable).

People who aren't thoroughly familiar with the way web servers work and distribute the
load may mistake persistent connects for what they're not. In particular, they do not give
you an ability to open 'user sessions' on the same link, they do not give you an ability to
build up a transaction efficiently, and they don't do a whole lot of other things. In fact, to be
extremely clear about the subject, persistent connections don't give you any functionality
that wasn't possible with their non-persistent brothers.

Why?

This has to do with the way web servers work. There are three ways in which your web
server can utilize PHP to generate web pages.

The first method is to use PHP as a CGI "wrapper". When run this way, an instance of the
PHP interpreter is created and destroyed for every page request (for a PHP page) to your
web server. Because it is destroyed after every request, any resources that it acquires
(such as a link to an SQL database server) are closed when it is destroyed. In this case,
you do not gain anything from trying to use persistent connections -- they simply don't
persist.

The second, and most popular, method is to run PHP as a module in a multiprocess web
server, which currently only includes Apache. A multiprocess server typically has one
process (the parent) which coordinates a set of processes (its children) who actually do
the work of serving up web pages. When a request comes in from a client, it is handed off
to one of the children that is not already serving another client. This means that when the
same client makes a second request to the server, it may be served by a different child
process than the first time. When opening a persistent connection, every following page
requesting SQL services can reuse the same established connection to the SQL server.

The last method is to use PHP as a plug-in for a multithreaded web server. Currently PHP
4 has support for ISAPI, WSAPI, and NSAPI (on Windows), which all allow PHP to be
used as a plug-in on multithreaded servers like Netscape FastTrack (iPlanet), Microsoft's
Internet Information Server (IIS), and O'Reilly's WebSite Pro. The behavior is essentially
the same as for the multiprocess model described before.

If persistent connections don't have any added functionality, what are they good for?

The answer here is extremely simple -- efficiency. Persistent connections are good if the
overhead to create a link to your SQL server is high. Whether or not this overhead is really
high depends on many factors. Like, what kind of database it is, whether or not it sits on
the same computer on which your web server sits, how loaded the machine the SQL
server sits on is and so forth. The bottom line is that if that connection overhead is high,
persistent connections help you considerably. They cause the child process to simply

connect only once for its entire lifespan, instead of every time it processes a page that
requires connecting to the SQL server. This means that for every child that opened a
persistent connection will have its own open persistent connection to the server. For
example, if you had 20 different child processes that ran a script that made a persistent
connection to your SQL server, you'd have 20 different connections to the SQL server, one
from each child.

Note, however, that this can have some drawbacks if you are using a database with
connection limits that are exceeded by persistent child connections. If your database has a
limit of 16 simultaneous connections, and in the course of a busy server session, 17 child
threads attempt to connect, one will not be able to. If there are bugs in your scripts which
do not allow the connections to shut down (such as infinite loops), the database with only
16 connections may be rapidly swamped. Check your database documentation for
information on handling abandoned or idle connections.

Warning

There are a couple of additional caveats to keep in mind when using persistent
connections. One is that when using table locking on a persistent connection, if the
script for whatever reason cannot release the lock, then subsequent scripts using the
same connection will block indefinitely and may require that you either restart the httpd
server or the database server. Another is that when using transactions, a transaction
block will also carry over to the next script which uses that connection if script
execution ends before the transaction block does. In either case, you can use
register_shutdown_function() to register a simple cleanup function to unlock your
tables or roll back your transactions. Better yet, avoid the problem entirely by not using
persistent connections in scripts which use table locks or transactions (you can still use
them elsewhere).

An important summary. Persistent connections were designed to have one-to-one
mapping to regular connections. That means that you should always be able to replace
persistent connections with non-persistent connections, and it won't change the way your
script behaves. It may (and probably will) change the efficiency of the script, but not its
behavior!

See also fbsql_pconnect(), ibase_pconnect(), ifx_pconnect(), ingres_pconnect(),
msql_pconnect(), mssql_pconnect(), mysql_pconnect(), ociplogon(), odbc_pconnect(),
ora_plogon(), pfsockopen(), pg_pconnect(), and sybase_pconnect().

Safe Mode

The PHP safe mode is an attempt to solve the shared-server security problem. It is
architecturally incorrect to try to solve this problem at the PHP level, but since the
alternatives at the web server and OS levels aren't very realistic, many people, especially
ISP's, use safe mode for now.

Warning

Safe Mode was removed in PHP 6.0.0.

Security and Safe Mode

Security and Safe Mode Configuration Directives

Name Default Changeable Changelog

safe_mode "0" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_gid "0" PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_include_
dir

NULL PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_exec_dir "" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_allowed_
env_vars

"PHP_" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_protected
_env_vars

"LD_LIBRARY_PATH
"

PHP_INI_SYSTEM Removed in PHP
6.0.0.

open_basedir NULL PHP_INI_ALL PHP_INI_SYSTEM in
PHP < 6.

disable_functions "" php.ini only Available since PHP
4.0.1.

disable_classes "" php.ini only Available since PHP

4.3.2.

For further details and definition of the PHP_INI_* constants see ini_set().

Here's a short explanation of the configuration directives.

safe_mode boolean
Whether to enable PHP's safe mode.

safe_mode_gid boolean
By default, Safe Mode does a UID compare check when opening files. If you want to
relax this to a GID compare, then turn on safe_mode_gid. Whether to use UID (
FALSE) or GID (TRUE) checking upon file access.

safe_mode_include_dir string
UID / GID checks are bypassed when including files from this directory and its
subdirectories (directory must also be in include_path or full path must including). As of
PHP 4.2.0, this directive can take a colon (semi-colon on Windows) separated path in
a fashion similar to the include_path directive, rather than just a single directory. The
restriction specified is actually a prefix, not a directory name. This means that
"safe_mode_include_dir = /dir/incl" also allows access to "/dir/include" and "/dir/incls" if
they exist. When you want to restrict access to only the specified directory, end with a
slash. For example: "safe_mode_include_dir = /dir/incl/" If the value of this directive is
empty, no files with different UID / GID can be included in PHP 4.2.3 and as of PHP
4.3.3. In earlier versions, all files could be included.

safe_mode_exec_dir string
If PHP is used in safe mode, system() and the other functions executing system
programs refuse to start programs that are not in this directory. You have to use / as
directory separator on all environments including Windows.

safe_mode_allowed_env_vars string
Setting certain environment variables may be a potential security breach. This directive
contains a comma-delimited list of prefixes. In Safe Mode, the user may only alter
environment variables whose names begin with the prefixes supplied here. By default,
users will only be able to set environment variables that begin with PHP_ (e.g.
PHP_FOO=BAR).

Note

If this directive is empty, PHP will let the user modify ANY environment variable!

safe_mode_protected_env_vars string
This directive contains a comma-delimited list of environment variables that the end
user won't be able to change using putenv(). These variables will be protected even if
safe_mode_allowed_env_vars is set to allow to change them.

open_basedir string
Limit the files that can be opened by PHP to the specified directory-tree, including the

file itself. This directive is NOT affected by whether Safe Mode is turned On or Off.
When a script tries to open a file with, for example, fopen() or gzopen(), the location of
the file is checked. When the file is outside the specified directory-tree, PHP will refuse
to open it. All symbolic links are resolved, so it's not possible to avoid this restriction
with a symlink. If the file doesn't exist then the symlink couldn't be resolved and the
filename is compared to (a resolved) open_basedir. The special value. indicates that
the working directory of the script will be used as the base-directory. This is, however,
a little dangerous as the working directory of the script can easily be changed with
chdir(). In httpd.conf, open_basedir can be turned off (e.g. for some virtual hosts) the
same way as any other configuration directive with "php_admin_value open_basedir
none". Under Windows, separate the directories with a semicolon. On all other
systems, separate the directories with a colon. As an Apache module, open_basedir
paths from parent directories are now automatically inherited. The restriction specified
with open_basedir is actually a prefix, not a directory name. This means that
"open_basedir = /dir/incl" also allows access to "/dir/include" and "/dir/incls" if they
exist. When you want to restrict access to only the specified directory, end with a
slash. For example: "open_basedir = /dir/incl/" The default is to allow all files to be
opened.

disable_functions string
This directive allows you to disable certain functions for security reasons. It takes on a
comma-delimited list of function names. disable_functions is not affected by Safe
Mode. This directive must be set in php.ini For example, you cannot set this in
httpd.conf.

disable_classes string
This directive allows you to disable certain classes for security reasons. It takes on a
comma-delimited list of class names. disable_classes is not affected by Safe Mode.
This directive must be set in php.ini For example, you cannot set this in httpd.conf.

Note

Availability note

This directive became available in PHP 4.3.2

See also: register_globals, display_errors, and log_errors.

When safe_mode is on, PHP checks to see if the owner of the current script matches the
owner of the file to be operated on by a file function or its directory. For example:
-rw-rw-r-- 1 rasmus rasmus 33 Jul 1 19:20 script.php

-rw-r--r-- 1 root root 1116 May 26 18:01 /etc/passwd
Running script.php:
<?php

readfile('/etc/passwd');

?>
results in this error when safe mode is enabled:
Warning: SAFE MODE Restriction in effect. The script whose uid is 500 is not

allowed to access /etc/passwd owned by uid 0 in /docroot/script.php on line 2

However, there may be environments where a strict UID check is not appropriate and a
relaxed GID check is sufficient. This is supported by means of the safe_mode_gid switch.
Setting it to On performs the relaxed GID checking, setting it to Off (the default) performs
UID checking.

If instead of safe_mode, you set an open_basedir directory then all file operations will be
limited to files under the specified directory. For example (Apache httpd.conf example):
<Directory /docroot>

 php_admin_value open_basedir /docroot

</Directory>
If you run the same script.php with this open_basedir setting then this is the result:
Warning: open_basedir restriction in effect. File is in wrong directory in

/docroot/script.php on line 2

You can also disable individual functions. Note that the disable_functions directive can not
be used outside of the php.ini file which means that you cannot disable functions on a
per-virtualhost or per-directory basis in your httpd.conf file. If we add this to our php.ini file:
disable_functions = readfile,system
Then we get this output:
Warning: readfile() has been disabled for security reasons in

/docroot/script.php on line 2

Warning

These PHP restrictions are not valid in executed binaries, of course.

Functions restricted/disabled by safe mode

This is a still probably incomplete and possibly incorrect listing of the functions limited by
safe mode.

Safe mode limited functions

Function Limitations

dbmopen() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

dbase_open() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

filepro() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

filepro_rowcount() Checks whether the files or directories being

operated upon have the same UID (owner)
as the script that is being executed.

filepro_retrieve() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

ifx_* sql_safe_mode restrictions, (!= safe mode)

ingres_* sql_safe_mode restrictions, (!= safe mode)

mysql_* sql_safe_mode restrictions, (!= safe mode)

pg_lo_import() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

posix_mkfifo() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

putenv() Obeys the safe_mode_protected_env_vars
and safe_mode_allowed_env_vars
ini-directives. See also the documentation
on putenv()

move_uploaded_file() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

dl() This function is disabled when PHP is
running in safe mode.

backtick operator This function is disabled when PHP is
running in safe mode.

shell_exec() (functional equivalent of
backticks)

This function is disabled when PHP is
running in safe mode.

exec() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

system() You can only execute executables within the
safe_mode_exec_dir. For practical reasons

it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

passthru() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

popen() You can only execute executables within the
safe_mode_exec_dir. For practical reasons
it's currently not allowed to have..
components in the path to the executable.
escapeshellcmd() is executed on the
argument of this function.

fopen() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

mkdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

rmdir() Checks whether the directory in which the
script is operating has the same UID
(owner) as the script that is being executed.

rename() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

unlink() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

copy() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (on source
and target)

chgrp() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chown() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed.

chmod() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. In
addition, you cannot set the SUID, SGID
and sticky bits

touch() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed.

symlink() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only the
target is checked)

link() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only the
target is checked)

apache_request_headers() In safe mode, headers beginning with
'authorization' (case-insensitive) will not be
returned.

header() In safe mode, the uid of the script is added
to the realm part of the WWW-Authenticate
header if you set this header (used for HTTP
Authentication).

PHP_AUTH variables In safe mode, the variables
PHP_AUTH_USER, PHP_AUTH_PW, and
AUTH_TYPE are not available in
$_SERVER. Regardless, you can still use
REMOTE_USER for the USER. (note: only
affected since PHP 4.3.0)

highlight_file(), show_source() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only
affected since PHP 4.2.1)

parse_ini_file() Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (note: only
affected since PHP 4.2.1)

set_time_limit() Has no effect when PHP is running in safe
mode.

max_execution_time Has no effect when PHP is running in safe
mode.

mail() In safe mode, the fifth parameter is disabled.
(note: only affected since PHP 4.2.3)

All filesystem and stream functions. Checks whether the files or directories being
operated upon have the same UID (owner)
as the script that is being executed. Checks
whether the directory in which the script is
operating has the same UID (owner) as the
script that is being executed. (see the
safe_mode_include_dir php.ini option.

Using PHP from the command line

As of version 4.3.0, PHP supports a new SAPI type (Server Application Programming
Interface) named CLI which means Command Line Interface. As the name implies, this
SAPI type main focus is on developing shell (or desktop as well) applications with PHP.
There are quite a few differences between the CLI SAPI and other SAPI s which are
explained in this chapter. It's worth mentioning that CLI and CGI are different SAPI's
although they do share many of the same behaviors.

The CLI SAPI was released for the first time with PHP 4.2.0, but was still experimental and
had to be explicitly enabled with --enable-cli when running./configure. Since PHP 4.3.0 the
CLI SAPI is no longer experimental and the option --enable-cli is on by default. You may
use --disable-cli to disable it.

As of PHP 4.3.0, the name, location and existence of the CLI/CGI binaries will differ
depending on how PHP is installed on your system. By default when executing make, both
the CGI and CLI are built and placed as sapi/cgi/php and sapi/cli/php respectively, in your
PHP source directory. You will note that both are named php. What happens during make
install depends on your configure line. If a module SAPI is chosen during configure, such
as apxs, or the --disable-cgi option is used, the CLI is copied to {PREFIX}/bin/php during
make install otherwise the CGI is placed there. So, for example, if --with--apxs is in your
configure line then the CLI is copied to {PREFIX}/bin/php during make install. If you want
to override the installation of the CGI binary, use make install-cli after make install.
Alternatively you can specify --disable-cgi in your configure line.

Note

Because both --enable-cli and --enable-cgi are enabled by default, simply having
--enable-cli in your configure line does not necessarily mean the CLI will be copied as
{PREFIX}/bin/php during make install.

The Windows packages between PHP 4.2.0 and PHP 4.2.3 distributed the CLI as
php-cli.exe, living in the same folder as the CGI php.exe. Starting with PHP 4.3.0 the
Windows package distributes the CLI as php.exe in a separate folder named cli, so
cli/php.exe. Starting with PHP 5, the CLI is distributed in the main folder, named php.exe.
The CGI version is distributed as php-cgi.exe.

As of PHP 5, a new php-win.exe file is distributed. This is equal to the CLI version, except
that php-win doesn't output anything and thus provides no console (no "dos box" appears
on the screen). This behavior is similar to php-gtk. You should configure with
--enable-cli-win32.

Note

What SAPI do I have?

From a shell, typing php -v will tell you whether php is CGI or CLI. See also the

function php_sapi_name() and the constant PHP_SAPI.

Note

A Unix man ual page was added in PHP 4.3.2. You may view this by typing man php in
your shell environment.

Remarkable differences of the CLI SAPI compared to other SAPI s:

• Unlike the CGI SAPI, no headers are written to the output. Though the CGI SAPI
provides a way to suppress HTTP headers, there's no equivalent switch to enable
them in the CLI SAPI. CLI is started up in quiet mode by default, though the -q and
--no-header switches are kept for compatibility so that you can use older CGI scripts. It
does not change the working directory to that of the script. (-C and --no-chdir switches
kept for compatibility) Plain text error messages (no HTML formatting).

• There are certain php.ini directives which are overridden by the CLI SAPI because
they do not make sense in shell environments:

Overridden php.ini directives

Directive CLI SAPI default value Comment

html_errors FALSE It can be quite hard to read
the error message in your
shell when it's cluttered with
all those meaningless HTML
tags, therefore this directive
defaults to FALSE.

implicit_flush TRUE It is desired that any output
coming from print(), echo()
and friends is immediately
written to the output and not
cached in any buffer. You
still can use output buffering
if you want to defer or
manipulate standard output.

max_execution_time 0 (unlimited) Due to endless possibilities
of using PHP in shell
environments, the maximum
execution time has been set
to unlimited. Whereas
applications written for the
web are often executed very
quickly, shell application tend
to have a much longer
execution time.

register_argc_argv TRUE Because this setting is TRUE
you will always have access
to argc (number of
arguments passed to the
application) and argv (array
of the actual arguments) in
the CLI SAPI.

As of PHP 4.3.0, the PHP
variables $argc and $argv
are registered and filled in
with the appropriate values
when using the CLI SAPI.
Prior to this version, the
creation of these variables
behaved as they do in CGI
and MODULE versions
which requires the PHP
directive register_globals to
be on. Regardless of version
or register_globals setting,
you can always go through
either $_SERVER or
$HTTP_SERVER_VARS.
Example: $_SERVER['argv']

Note

These directives cannot be initialized with another value from the configuration file
php.ini or a custom one (if specified). This is a limitation because those default values
are applied after all configuration files have been parsed. However, their value can be
changed during runtime (which does not make sense for all of those directives, e.g.
register_argc_argv).

• To ease working in the shell environment, the following constants are defined:

CLI specific Constants

Constant Description

STDIN
An already opened stream to stdin. This
saves opening it with
<?php

$stdin = fopen('php://stdin', 'r');

?>

If you want to read single line from stdin,
you can use
<?php

$line = trim(fgets(STDIN)); // reads
one line from STDIN

fscanf(STDIN, "%d\n", $number); //
reads number from STDIN

?>

STDOUT
An already opened stream to stdout. This
saves opening it with
<?php

$stdout = fopen('php://stdout', 'w');

?>

STDERR
An already opened stream to stderr. This
saves opening it with
<?php

$stderr = fopen('php://stderr', 'w');

?>

Given the above, you don't need to open e.g. a stream for stderr yourself but simply use
the constant instead of the stream resource:
php -r 'fwrite(STDERR, "stderr\n");'
You do not need to explicitly close these streams, as they are closed automatically by PHP
when your script ends.

Note

These constants are not available in case of reading PHP script from stdin.

• The CLI SAPI does not change the current directory to the directory of the executed script!

Example showing the difference to the CGI SAPI:

<?php

// Our simple test application named test.php

echo getcwd(), "\n";

?>

When using the CGI version, the output is:

$ pwd

/tmp

$ php -q another_directory/test.php

/tmp/another_directory

This clearly shows that PHP changes its current directory to the one of the executed script.

Using the CLI SAPI yields:

$ pwd

/tmp

$ php -f another_directory/test.php

/tmp

This allows greater flexibility when writing shell tools in PHP.

Note

The CGI SAPI supports this CLI SAPI behaviour by means of the -C switch when run
from the command line.

The list of command line options provided by the PHP binary can be queried anytime by
running PHP with the -h switch:
Usage: php [options] [-f] <file> [--] [args...]

 php [options] -r <code> [--] [args...]

 php [options] [-B <begin_code>] -R <code> [-E <end_code>] [--] [args...]

 php [options] [-B <begin_code>] -F <file> [-E <end_code>] [--] [args...]

 php [options] -- [args...]

 php [options] -a

 -a Run interactively

 -c <path>|<file> Look for php.ini file in this directory

 -n No php.ini file will be used

 -d foo[=bar] Define INI entry foo with value 'bar'

 -e Generate extended information for debugger/profiler

 -f <file> Parse and execute <file>.

 -h This help

 -i PHP information

 -l Syntax check only (lint)

 -m Show compiled in modules

 -r <code> Run PHP <code> without using script tags <?..?>

 -B <begin_code> Run PHP <begin_code> before processing input lines

 -R <code> Run PHP <code> for every input line

 -F <file> Parse and execute <file> for every input line

 -E <end_code> Run PHP <end_code> after processing all input lines

 -H Hide any passed arguments from external tools.

 -s Display colour syntax highlighted source.

 -v Version number

 -w Display source with stripped comments and whitespace.

 -z <file> Load Zend extension <file>.

 args... Arguments passed to script. Use -- args when first argument

 starts with - or script is read from stdin

 --ini Show configuration file names

 --rf <name> Show information about function <name>.

 --rc <name> Show information about class <name>.

 --re <name> Show information about extension <name>.

 --ri <name> Show configuration for extension <name>.

The CLI SAPI has three different ways of getting the PHP code you want to execute:

• Telling PHP to execute a certain file.

php my_script.php

php -f my_script.php

Both ways (whether using the -f switch or not) execute the file my_script.php. You can
choose any file to execute - your PHP scripts do not have to end with the.php extension
but can have any name or extension you wish.

Note

If you need to pass arguments to your scripts you need to pass -- as the first argument
when using the -f switch.

• Pass the PHP code to execute directly on the command line.

php -r 'print_r(get_defined_constants());'

Special care has to be taken in regards of shell variable substitution and quoting usage.

Note

Read the example carefully, there are no beginning or ending tags! The -r switch
simply does not need them. Using them will lead to a parser error.

• Provide the PHP code to execute via standard input (stdin). This gives the powerful ability
to dynamically create PHP code and feed it to the binary, as shown in this (fictional)
example:

$ some_application | some_filter | php | sort -u >final_output.txt

You cannot combine any of the three ways to execute code.

Like every shell application, the PHP binary accepts a number of arguments but your PHP
script can also receive arguments. The number of arguments which can be passed to your

script is not limited by PHP (the shell has a certain size limit in the number of characters which
can be passed; usually you won't hit this limit). The arguments passed to your script are
available in the global array $argv. The zero index always contains the script name (which is -
in case the PHP code is coming from either standard input or from the command line switch -r
). The second registered global variable is $argc which contains the number of elements in the
$argv array (not the number of arguments passed to the script).

As long as the arguments you want to pass to your script do not start with the - character,
there's nothing special to watch out for. Passing an argument to your script which starts with a
- will cause trouble because PHP itself thinks it has to handle it. To prevent this, use the
argument list separator --. After this separator has been parsed by PHP, every argument
following it is passed untouched to your script.

This will not execute the given code but will show the PHP usage

$ php -r 'var_dump($argv);' -h

Usage: php [options] [-f] <file> [args...]

[...]

This will pass the '-h' argument to your script and prevent PHP from showing it's
usage

$ php -r 'var_dump($argv);' -- -h

array(2) {

 [0]=>

 string(1) "-"

 [1]=>

 string(2) "-h"

}

However, there's another way of using PHP for shell scripting. You can write a script where
the first line starts with #!/usr/bin/php. Following this you can place normal PHP code included
within the PHP starting and end tags. Once you have set the execution attributes of the file
appropriately (e.g. chmod +x test) your script can be executed like a normal shell or perl
script:

Example #229 - Execute PHP script as shell script

#!/usr/bin/php

<?php

var_dump($argv);

?>

Assuming this file is named test in the current directory, we can now do the following:

$ chmod +x test

$./test -h -- foo

array(4) {

 [0]=>

 string(6) "./test"

 [1]=>

 string(2) "-h"

 [2]=>

 string(2) "--"

 [3]=>

 string(3) "foo"

}

As you see, in this case no care needs to be taken when passing parameters which start with -
to your script.

Long options are available since PHP 4.3.3.

Command line options

Option Long Option Description

-a --interactive
Runs PHP interactively. If
you compile PHP with the
Readline extension (which is
not available on Windows),
you'll have a nice shell,
including a completion
feature (e.g. you can start
typing a variable name, hit
the TAB key and PHP
completes its name) and a
typing history that can be
accessed using the arrow
keys. The history is saved in
the ~/.php_history file.

Note

Files included through
auto_prepend_file and
auto_append_file are
parsed in this mode but
with some restrictions -
e.g. functions have to be
defined before called.

Note

Autoloading is not
available if using PHP in
CLI interactive mode.

-c --php-ini
This option can either specify

a directory where to look for
php.ini or specify a custom
INI file (which does not need
to be named php.ini), e.g.:

$ php -c
/custom/directory/
my_script.php

$ php -c
/custom/directory/custom-f
ile.ini my_script.php

If you don't specify this
option, file is searched in
default locations.

-n --no-php-ini
Ignore php.ini at all. This
switch is available since PHP
4.3.0.

-d --define
This option allows you to set
a custom value for any of the
configuration directives
allowed in php.ini. The
syntax is:
-d
configuration_directive[=v
alue]

Examples (lines are wrapped
for layout reasons):

Omitting the value part
will set the given
configuration directive to
"1"

$ php -d
max_execution_time

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(1) "1"

Passing an empty value
part will set the
configuration directive to
""

php -d max_execution_time=

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(0) ""

The configuration
directive will be set to
anything passed after the
'=' character

$ php -d
max_execution_time=20

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(2) "20"

$ php

 -d
max_execution_time=doesntm
akesense

 -r '$foo =
ini_get("max_execution_tim
e"); var_dump($foo);'

string(15)
"doesntmakesense"

-e --profile-info
Activate the extended
information mode, to be used
by a debugger/profiler.

-f --file
Parses and executes the
given filename to the -f
option. This switch is optional
and can be left out. Only
providing the filename to
execute is sufficient.

Note

To pass arguments to
scripts the first argument
needs to be --, otherwise
PHP will interperate them
as PHP options.

-h and -? --help and --usage With this option, you can get
information about the actual
list of command line options
and some one line
descriptions about what they
do.

-i --info This command line option
calls phpinfo(), and prints out
the results. If PHP is not
working correctly, it is
advisable to use php -i and
see whether any error
messages are printed out
before or in place of the
information tables. Beware
that when using the CGI
mode the output is in HTML
and therefore quite huge.

-l --syntax-check
This option provides a
convenient way to only
perform a syntax check on
the given PHP code. On
success, the text No syntax
errors detected in <filename>
is written to standard output
and the shell return code is 0
. On failure, the text Errors
parsing <filename> in
addition to the internal parser
error message is written to
standard output and the shell
return code is set to 255.

This option won't find fatal
errors (like undefined
functions). Use -f if you
would like to test for fatal
errors too.

Note

This option does not
work together with the -r
option.

-m --modules

Using this option, PHP prints
out the built in (and loaded)
PHP and Zend modules:

$ php -m

[PHP Modules]

xml

tokenizer

standard

session

posix

pcre

overload

mysql

mbstring

ctype

[Zend Modules]

-r --run
This option allows execution
of PHP right from within the
command line. The PHP
start and end tags (<?php
and ?>) are not needed and
will cause a parser error if
present.

Note

Care has to be taken
when using this form of
PHP to not collide with
command line variable
substitution done by the
shell.

Example showing a
parser error

$ php -r "$foo =
get_defined_constants(
);"

Command line code(1) :
Parse error - parse
error, unexpected '='

The problem here is that
the sh/bash performs

variable substitution even
when using double
quotes ". Since the
variable $foo is unlikely
to be defined, it expands
to nothing which results
in the code passed to
PHP for execution
actually reading:

$ php -r " =
get_defined_constants(
);"

The correct way would
be to use single quotes '.
Variables in
single-quoted strings are
not expanded by
sh/bash.

$ php -r '$foo =
get_defined_constants(
); var_dump($foo);'

array(370) {

 ["E_ERROR"]=>

 int(1)

 ["E_WARNING"]=>

 int(2)

 ["E_PARSE"]=>

 int(4)

 ["E_NOTICE"]=>

 int(8)

 ["E_CORE_ERROR"]=>

 [...]

If you are using a shell
different from sh/bash,
you might experience
further issues. Feel free
to open a bug report at
» http://bugs.php.net/.
One can still easily run
into troubles when trying
to get shell variables into
the code or using
backslashes for
escaping. You've been
warned.

http://bugs.php.net/
http://bugs.php.net/

Note

-r is available in the CLI
SAPI and not in the CGI
SAPI.

Note

This option is meant for a
very basic stuff. Thus
some configuration
directives (e.g.
auto_prepend_file and
auto_append_file) are
ignored in this mode.

-B --process-begin
PHP code to execute before
processing stdin. Added in
PHP 5.

-R --process-code
PHP code to execute for
every input line. Added in
PHP 5.

There are two special
variables available in this
mode: $argn and $argi.
$argn will contain the line
PHP is processing at that
moment, while $argi will
contain the line number.

-F --process-file
PHP file to execute for every
input line. Added in PHP 5.

-E --process-end
PHP code to execute after
processing the input. Added
in PHP 5.

Example #230 - Using
the -B, -R and -E
options to count the
number of lines of a
project.

$ find my_proj | php
-B '$l=0;' -R '$l +=
count(@file($argn));'
-E 'echo "Total Lines:
$l\n";'

Total Lines: 37328

-s --syntax-highlight and
--syntax-highlight Display colour syntax

highlighted source.

This option uses the internal
mechanism to parse the file
and produces a HTML
highlighted version of it and
writes it to standard output.
Note that all it does it to
generate a block of <code>
[...] </code> HTML tags, no
HTML headers.

Note

This option does not
work together with the -r
option.

-v --version

Writes the PHP, PHP SAPI,
and Zend version to standard
output, e.g.

$ php -v

PHP 4.3.0 (cli), Copyright
(c) 1997-2002 The PHP
Group

Zend Engine v1.3.0,
Copyright (c) 1998-2002
Zend Technologies

-w --strip
Display source with stripped
comments and whitespace.

Note

This option does not
work together with the -r
option.

-z --zend-extension
Load Zend extension. If only
a filename is given, PHP

tries to load this extension
from the current default
library path on your system
(usually specified
/etc/ld.so.conf on Linux
systems). Passing a filename
with an absolute path
information will not use the
systems library search path.
A relative filename with a
directory information will tell
PHP only to try to load the
extension relative to the
current directory.

--ini
Shows configuration file
names and scanned
directories. Available as of
PHP 5.2.3.

Example #231 - --ini
example

$ php --ini

Configuration File
(php.ini) Path:
/usr/dev/php/5.2/lib

Loaded Configuration
File:
/usr/dev/php/5.2/lib/p
hp.ini

Scan for additional
.ini files in: (none)

Additional .ini files
parsed: (none)

--rf --rfunction
Shows information about the
given function or class
method (e.g. number and
name of the parameters).
Available as of PHP 5.1.2.

This option is only available if
PHP was compiled with
Reflection support.

Example #232 - basic
--rf usage

$ php --rf var_dump

Function [<internal>
public function
var_dump] {

 - Parameters [2] {

 Parameter #0 [
<required> $var]

 Parameter #1 [
<optional> $...]

 }

}

--rc --rclass
Show information about the
given class (list of constants,
properties and methods).
Available as of PHP 5.1.2.

This option is only available if
PHP was compiled with
Reflection support.

Example #233 - --rc
example

$ php --rc Directory

Class [
<internal:standard>
class Directory] {

 - Constants [0] {

 }

 - Static properties
[0] {

 }

 - Static methods [0]
{

 }

 - Properties [0] {

 }

 - Methods [3] {

 Method [<internal>
public method close]
{

 }

 Method [<internal>
public method rewind]
{

 }

 Method [<internal>
public method read] {

 }

 }

}

--re --rextension
Show information about the
given extension (list of
php.ini options, defined
functions, constants and
classes). Available as of
PHP 5.1.2.

This option is only available if

PHP was compiled with
Reflection support.

Example #234 - --re
example

$ php --re json

Extension [
<persistent> extension
#19 json version 1.2.1
] {

 - Functions {

 Function [
<internal> function
json_encode] {

 }

 Function [
<internal> function
json_decode] {

 }

 }

}

--ri --rextinfo
Shows the configuration
information for the given
extension (the same
information that is returned
by phpinfo()). Available as of
PHP 5.2.2. The core
configuration information are
available using "main" as
extension name.

Example #235 - --ri
example

$ php --ri date

date

date/time support =>
enabled

"Olson" Timezone
Database Version =>
2007.5

Timezone Database =>
internal

Default timezone =>
Europe/Oslo

Directive => Local
Value => Master Value

date.timezone =>
Europe/Oslo =>
Europe/Oslo

date.default_latitude
=> 59.22482 =>
59.22482

date.default_longitude
=> 11.018084 =>
11.018084

date.sunset_zenith =>
90.583333 => 90.583333

date.sunrise_zenith =>
90.583333 => 90.583333

The PHP executable can be used to run PHP scripts absolutely independent from the web
server. If you are on a Unix system, you should add a special first line to your PHP script,
and make it executable, so the system will know, what program should run the script. On a
Windows platform you can associate php.exe with the double click option of the.php files,
or you can make a batch file to run the script through PHP. The first line added to the
script to work on Unix won't hurt on Windows, so you can write cross platform programs
this way. A simple example of writing a command line PHP program can be found below.

Example #236 - Script intended to be run from command line (script.php)

#!/usr/bin/php

<?php

if ($argc != 2 || in_array($argv[1], array('--help', '-help', '-h', '-?')))
{

?>

This is a command line PHP script with one option.

 Usage:

 <?php echo $argv[0]; ?> <option>

 <option> can be some word you would like

 to print out. With the --help, -help, -h,

 or -? options, you can get this help.

<?php

} else {

 echo $argv[1];

}

?>

In the script above, we used the special first line to indicate that this file should be run by
PHP. We work with a CLI version here, so there will be no HTTP header printouts. There
are two variables you can use while writing command line applications with PHP: $argc
and $argv. The first is the number of arguments plus one (the name of the script running).
The second is an array containing the arguments, starting with the script name as number
zero ($argv[0]).

In the program above we checked if there are less or more than one arguments. Also if the
argument was --help, -help, -h or -?, we printed out the help message, printing the script
name dynamically. If we received some other argument we echoed that out.

If you would like to run the above script on Unix, you need to make it executable, and
simply call it as script.php echothis or script.php -h. On Windows, you can make a batch
file for this task:

Example #237 - Batch file to run a command line PHP script (script.bat)

@C:\php\php.exe script.php %1 %2 %3 %4

Assuming you named the above program script.php, and you have your CLI php.exe in
C:\php\php.exe this batch file will run it for you with your added options: script.bat echothis
or script.bat -h.

See also the Readline extension documentation for more functions you can use to
enhance your command line applications in PHP.

Function Reference

Affecting PHP's Behaviour

Alternative PHP Cache

Introduction

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. It was
conceived of to provide a free, open, and robust framework for caching and optimizing
PHP intermediate code.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/apc.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Note

On Windows, APC needs a temp path to exist, and be writable by the web server. It
checks TMP, TEMP, USERPROFILE environment variables in that order and finally
tries the WINDOWS directory if none of those are set.

Note

For more in-depth, highly technical implementation details, see the
» developer-supplied TECHNOTES file.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Although the default APC settings are fine for many installations, serious users should
consider tuning the following parameters.

There are two main decisions you have to make. First, how much shared memory do you
want to set aside for APC, and second, whether you want APC to check if a file has been
modified on every request. The two ini directives involved here are apc.shm_size and
apc.stat. Read the sections on these two directives carefully below.

Once you have a running server, you should copy the apc.php script that comes with the

http://pecl.php.net/
http://pecl.php.net/package/apc
http://pecl.php.net/package/apc
http://www.php.net/downloads.php
http://pecl4win.php.net/
http://cvs.php.net/viewvc.cgi/pecl/apc/TECHNOTES.txt?view=co
http://cvs.php.net/viewvc.cgi/pecl/apc/TECHNOTES.txt?view=co

extension to somewhere in your docroot and load it up in your browser. It provides you
with a detailed look at what is happening in your cache. If you have GD enabled in PHP, it
will even have pretty graphs. First thing to check is of course that it is actually caching
files. Assuming it is working you should then pay close attention to the Cache full count
number on the left. That tells you the number of times the cache has filled up and has had
to forcefully clean up any entries not accessed within the last apc.ttl seconds. You should
configure your cache to minimize this number. If you are constantly filling your cache, the
resulting cache churn is going to hurt performance. You should either set more memory
aside for APC, or use apc.filters to cache fewer scripts.

APC configuration options

Name Default Changeable Changelog

apc.enabled "1" PHP_INI_SYSTEM PHP_INI_SYSTEM in
APC 2. PHP_INI_ALL
in APC <= 3.0.12.

apc.shm_segments "1" PHP_INI_SYSTEM

apc.shm_size "30" PHP_INI_SYSTEM

apc.optimization "0" PHP_INI_ALL PHP_INI_SYSTEM in
APC 2. Removed in
APC 3.0.13.

apc.num_files_hint "1000" PHP_INI_SYSTEM

apc.user_entries_hint "4096" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.user_ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.gc_ttl "3600" PHP_INI_SYSTEM

apc.cache_by_defaul
t

"1" PHP_INI_ALL PHP_INI_SYSTEM in
APC <= 3.0.12.
Available since APC
3.0.0.

apc.filters NULL PHP_INI_SYSTEM

apc.mmap_file_mask NULL PHP_INI_SYSTEM

apc.slam_defense "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.file_update_prote
ction

"2" PHP_INI_SYSTEM Available since APC
3.0.6.

apc.enable_cli "0" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.max_file_size "1M" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.stat "1" PHP_INI_SYSTEM Available since APC
3.0.10.

apc.write_lock "1" PHP_INI_SYSTEM Available since APC
3.0.11.

apc.report_autofilter "0" PHP_INI_SYSTEM Available since APC
3.0.11.

apc.include_once_ov
erride

"0" PHP_INI_SYSTEM Available since APC
3.0.12.

apc.rfc1867 "0" PHP_INI_SYSTEM Available since APC
3.0.13.

apc.rfc1867_prefix "upload_" PHP_INI_SYSTEM

apc.rfc1867_name "APC_UPLOAD_PR
OGRESS"

PHP_INI_SYSTEM

apc.rfc1867_freq "0" PHP_INI_SYSTEM

apc.localcache "0" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.localcache.size "512" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.coredump_unma
p

"0" PHP_INI_SYSTEM Available since APC
3.0.16.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

apc.enabled boolean
apc.enabled can be set to 0 to disable APC. This is primarily useful when APC is
statically compiled into PHP, since there is no other way to disable it (when compiled
as a DSO, the extension line in php.ini can just be commented-out).

apc.shm_segments integer
The number of shared memory segments to allocate for the compiler cache. If APC is

running out of shared memory but you have already set apc.shm_size as high as your
system allows, you can try raising this value.

apc.shm_size integer
The size of each shared memory segment in MB. By default, some systems (including
most BSD variants) have very low limits on the size of a shared memory segment.

apc.optimization integer
The optimization level. Zero disables the optimizer, and higher values use more
aggressive optimizations. Expect very modest speed improvements. This is
experimental.

apc.num_files_hint integer
A "hint" about the number of distinct source files that will be included or requested on
your web server. Set to zero or omit if you're not sure; this setting is mainly useful for
sites that have many thousands of source files.

apc.user_entries_hint integer
Just like apc.num_files_hint, a "hint" about the number of distinct user cache variables
to store. Set to zero or omit if not sure.

apc.ttl integer
The number of seconds a cache entry is allowed to idle in a slot in case this cache
entry slot is needed by another entry. Leaving this at zero means that your cache could
potentially fill up with stale entries while newer entries won't be cached.

apc.user_ttl integer
The number of seconds a user cache entry is allowed to idle in a slot in case this
cache entry slot is needed by another entry. Leaving this at zero means that your
cache could potentially fill up with stale entries while newer entries won't be cached.

apc.gc_ttl integer
The number of seconds that a cache entry may remain on the garbage-collection list.
This value provides a fail-safe in the event that a server process dies while executing a
cached source file; if that source file is modified, the memory allocated for the old
version will not be reclaimed until this TTL reached. Set to zero to disable this feature.

apc.cache_by_default boolean
On by default, but can be set to off and used in conjunction with positive apc.filters so
that files are only cached if matched by a positive filter.

apc.filters string
A comma-separated list of POSIX extended regular expressions. If any pattern
matches the source filename, the file will not be cached. Note that the filename used
for matching is the one passed to include/require, not the absolute path. If the first
character of the expression is a + then the expression will be additive in the sense that
any files matched by the expression will be cached, and if the first character is a - then
anything matched will not be cached. The - case is the default, so it can be left off.

apc.mmap_file_mask string
If compiled with MMAP support by using --enable-mmap this is the mktemp-style
file_mask to pass to the mmap module for determing whether your mmap'ed memory

region is going to be file-backed or shared memory backed. For straight file-backed
mmap, set it to something like /tmp/apc.XXXXXX (exactly 6 X s). To use POSIX-style
shm_open/mmap put a.shm somewhere in your mask. e.g. /apc.shm.XXXXXX You
can also set it to /dev/zero to use your kernel's /dev/zero interface to anonymous
mmap'ed memory. Leaving it undefined will force an anonymous mmap.

apc.slam_defense integer
On very busy servers whenever you start the server or modify files you can create a
race of many processes all trying to cache the same file at the same time. This option
sets the percentage of processes that will skip trying to cache an uncached file. Or
think of it as the probability of a single process to skip caching. For example, setting
apc.slam_defense to 75 would mean that there is a 75% chance that the process will
not cache an uncached file. So, the higher the setting the greater the defense against
cache slams. Setting this to 0 disables this feature. Deprecated by apc.write_lock.

apc.file_update_protection integer
When you modify a file on a live web server you really should do so in an atomic
manner. That is, write to a temporary file and rename (mv) the file into its permanent
position when it is ready. Many text editors, cp, tar and other such programs don't do
this. This means that there is a chance that a file is accessed (and cached) while it is
still being written to. This apc.file_update_protection setting puts a delay on caching
brand new files. The default is 2 seconds which means that if the modification
timestamp (mtime) on a file shows that it is less than 2 seconds old when it is
accessed, it will not be cached. The unfortunate person who accessed this half-written
file will still see weirdness, but at least it won't persist. If you are certain you always
atomically update your files by using something like rsync which does this correctly,
you can turn this protection off by setting it to 0. If you have a system that is flooded
with io causing some update procedure to take longer than 2 seconds, you may want
to increase this a bit.

apc.enable_cli integer
Mostly for testing and debugging. Setting this enables APC for the CLI version of PHP.
Normally you wouldn't want to create, populate and tear down the APC cache on every
CLI request, but for various test scenarios it is handy to be able to enable APC for the
CLI version of APC easily.

apc.max_file_size integer
Prevent files larger than this value from getting cached. Defaults to 1M.

apc.stat integer
Be careful if you change this setting. The default is for this to be On which means that
APC will stat (check) the script on each request to see if it has been modified. If it has
been modified it will recompile and cache the new version. If you turn this setting off, it
will not check. That means that in order to have changes become active you need to
restart your web server. On a production server where you rarely change the code,
turning stats off can produce a significant performance boost. For included/required
files this option applies as well, but note that if you are using relative path includes (any
path that doesn't start with / on Unix) APC has to check in order to uniquely identify the
file. If you use absolute path includes APC can skip the stat and use that absolute path
as the unique identifier for the file.

apc.write_lock boolean

On busy servers when you first start up the server, or when many files are modified,
you can end up with all your processes trying to compile and cache the same files.
With write_lock enabled, only one process at a time will try to compile an uncached
script while the other processes will run uncached instead of sitting around waiting on
a lock.

apc.report_autofilter boolean
Logs any scripts that were automatically excluded from being cached due to early/late
binding issues.

apc.include_once_override boolean
Optimize include_once() and require_once() calls and avoid the expensive system
calls used.

apc.rfc1867 boolean
RFC1867 File Upload Progress hook handler is only available if you compiled APC
against PHP 5.2.0 or later. When enabled, any file uploads which includes a field
called APC_UPLOAD_PROGRESS before the file field in an upload form will cause
APC to automatically create an upload_ key user cache entry where key is the value of
the APC_UPLOAD_PROGRESS form entry. Note that the file upload tracking is not
threadsafe at this point, so new uploads that happen while a previous one is still going
will disable the tracking for the previous.

Example #238 - An apc.rfc1867 example

<?php

print_r(apc_fetch("upload_$_POST[APC_UPLOAD_PROGRESS]"));

?>

The above example will output something similar to:

Array

(

 [total] => 1142543

 [current] => 1142543

 [rate] => 1828068.8

 [filename] => test

 [name] => file

 [temp_filename] => /tmp/php8F

 [cancel_upload] => 0

 [done] => 1

)

apc.rfc1867_prefix string
Key prefix to use for the user cache entry generated by rfc1867 upload progress
functionality.

apc.rfc1867_name string
Specify the hidden form entry name that activates APC upload progress and specifies
the user cache key suffix.

apc.rfc1867_freq string

The frequency that updates should be made to the user cache entry for upload
progress. This can take the form of a percentage of the total file size or a size in bytes
optionally suffixed with 'k', 'm', or 'g' for kilobytes, megabytes, or gigabytes respectively
(case insensitive). A setting of 0 updates as often as possible, which may cause slower
uploads.

apc.localcache boolean
This enables a lock-free local process shadow-cache which reduces lock contention
when the cache is being written to.

apc.localcache.size integer
The size of the local process shadow-cache, should be set to a sufficently large value,
approximately half of apc.num_files_hint.

apc.coredump_unmap boolean
Enables APC handling of signals, such as SIGSEGV, that write core files when
signaled. When these signals are received, APC will attempt to unmap the shared
memory segment in order to exclude it from the core file. This setting may improve
system stability when fatal signals are received and a large APC shared memory
segment is configured.

Warning

This feature is potentially dangerous. Unmapping the shared memory segment in a
fatal signal handler may cause undefined behaviour if a fatal error occurs.

Note

Although some kernels may provide a facility to ignore various types of shared
memory when generating a core dump file, these implementations may also ignore
important shared memory segments such as the Apache scoreboard.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

APC Functions

apc_add

apc_add -- Cache a variable in the data store

Description

bool apc_add (string $key, mixed $var [, int $ttl])

Caches a variable in the data store, only if it's not already stored.

Note

Unlike many other mechanisms in PHP, variables stored using apc_add() will persist
between requests (until the value is removed from the cache).

Parameters

key

Store the variable using this name. key s are cache-unique, so attempting to use
apc_add() to store data with a key that already exists will not overwrite the existing
data, and will instead return FALSE. (This is the only difference between apc_add()
and apc_store().)

var

The variable to store

ttl

Time To Live; store var in the cache for ttl seconds. After the ttl has passed, the
stored variable will be expunged from the cache (on the next request). If no ttl is
supplied (or if the ttl is 0), the value will persist until it is removed from the cache
manually, or otherwise fails to exist in the cache (clear, restart, etc.).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #239 - A apc_add() example

<?php

$bar = 'BAR';

apc_add('foo', $bar);

var_dump(apc_fetch('foo'));

echo "\n";

$bar = 'NEVER GETS SET';

apc_add('foo', $bar);

var_dump(apc_fetch('foo'));

echo "\n";

?>

The above example will output:

string(3) "BAR"

string(3) "BAR"

See Also

• apc_store()
• apc_fetch()
• apc_delete()

apc_cache_info

apc_cache_info -- Retrieves cached information from APC's data store

Description

array apc_cache_info ([string $cache_type [, bool $limited]])

Retrieves cached information and meta-data from APC's data store.

Return Values

Array of cached data (and meta-data), or FALSE on failure

Note

apc_cache_info() will raise a warning if it is unable to retrieve APC cache data. This
typically occurs when APC is not enabled.

Parameters

cache_type

If cache_type is " user ", information about the user cache will be returned. If
cache_type is " filehits ", information about which files have been served from the
bytecode cache for the current request will be returned. This feature must be enabled
at compile time using --enable-filehits. If an invalid or no cache_type is specified,
information about the system cache (cached files) will be returned.

limited

If limited is TRUE, the return value will exclude the individual list of cache entries.
This is usefull when trying to optimize calls for statistics gathering.

ChangeLog

Version Description

3.0.11 The limited parameter was introduced.

3.0.16 The " filehits " option for the cache_type
parameter was introduced.

Examples

Example #240 - A apc_cache_info() example

<?php

print_r(apc_cache_info());

?>

The above example will output something similar to:

Array

(

 [num_slots] => 2000

 [ttl] => 0

 [num_hits] => 9

 [num_misses] => 3

 [start_time] => 1123958803

 [cache_list] => Array

 (

 [0] => Array

 (

 [filename] => /path/to/apc_test.php

 [device] => 29954

 [inode] => 1130511

 [type] => file

 [num_hits] => 1

 [mtime] => 1123960686

 [creation_time] => 1123960696

 [deletion_time] => 0

 [access_time] => 1123962864

 [ref_count] => 1

 [mem_size] => 677

)

 [1] => Array (...iterates for each cached file)

)

See Also

• APC configuration directives

apc_clear_cache

apc_clear_cache -- Clears the APC cache

Description

bool apc_clear_cache ([string $cache_type])

Clears the user/system cache.

Return Values

Returns TRUE on success or FALSE on failure.

Parameters

cache_type

If cache_type is " user ", the user cache will be cleared; otherwise, the system cache
(cached files) will be cleared.

See Also

• apc_cache_info()

apc_compile_file

apc_compile_file -- Stores a file in the bytecode cache, bypassing all filters.

Description

bool apc_compile_file (string $filename)

Stores a file in the bytecode cache, bypassing all filters.

Parameters

filename

Full or relative path to a PHP file that will be compiled and stored in the bytecode
cache.

Return Values

Returns TRUE on success or FALSE on failure.

apc_define_constants

apc_define_constants -- Defines a set of constants for retrieval and mass-definition

Description

bool apc_define_constants (string $key, array $constants [, bool $case_sensitive])

define() is notoriously slow. Since the main benefit of APC is to increase the performance
of scripts/applications, this mechanism is provided to streamline the process of mass
constant definition. However, this function does not perform as well as anticipated.

For a better-performing solution, try the » hidef extension from PECL.

Note

To remove a set of stored constants (without clearing the entire cache), an empty array
may be passed as the constants parameter, effectively clearing the stored value(s).

Parameters

key

The key serves as the name of the constant set being stored. This key is used to
retrieve the stored constants in apc_load_constants().

constants

An associative array of constant_name => value pairs. The constant_name must follow
the normal constant naming rules. value must evaluate to a scalar value.

case_sensitive

The default behaviour for constants is to be declared case-sensitive; i.e. CONSTANT
and Constant represent different values. If this parameter evaluates to FALSE the
constants will be declared as case-insensitive symbols.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

http://pecl.php.net/package/hidef

Example #241 - apc_define_constants() example

<?php

$constants = array(

 'ONE' => 1,

 'TWO' => 2,

 'THREE' => 3,

);

apc_define_constants('numbers', $constants);

echo ONE, TWO, THREE;

?>

The above example will output:

123

See Also

• apc_load_constants()
• define()
• constant()
• Or the PHP constants reference

apc_delete

apc_delete -- Removes a stored variable from the cache

Description

bool apc_delete (string $key)

Removes a stored variable from the cache.

Parameters

key

The key used to store the value (with apc_store()).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #242 - A apc_delete() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

apc_delete('foo');

// this is obviously useless in this form

?>

See Also

• apc_store()
• apc_fetch()

apc_fetch

apc_fetch -- Fetch a stored variable from the cache

Description

mixed apc_fetch (string $key)

Fetchs a stored variable from the cache.

Parameters

key

The key used to store the value (with apc_store()).

Return Values

The stored variable on success; FALSE on failure

Examples

Example #243 - A apc_fetch() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

var_dump(apc_fetch('foo'));

?>

The above example will output:

string(3) "BAR"

See Also

• apc_store()
• apc_delete()

apc_load_constants

apc_load_constants -- Loads a set of constants from the cache

Description

bool apc_load_constants (string $key [, bool $case_sensitive])

Loads a set of constants from the cache.

Parameters

key

The name of the constant set (that was stored with apc_define_constants()) to be
retrieved.

case_sensitive

The default behaviour for constants is to be declared case-sensitive; i.e. CONSTANT
and Constant represent different values. If this parameter evaluates to FALSE the
constants will be declared as case-insensitive symbols.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #244 - apc_load_constants() example

<?php

$constants = array(

 'ONE' => 1,

 'TWO' => 2,

 'THREE' => 3,

);

apc_define_constants('numbers', $constants);

apc_load_constants('numbers');

echo ONE, TWO, THREE;

?>

The above example will output:

123

See Also

• apc_define_constants()
• define()
• constant()
• Or the PHP constants reference

apc_sma_info

apc_sma_info -- Retrieves APC's Shared Memory Allocation information

Description

array apc_sma_info ([bool $limited])

Retrieves APC's Shared Memory Allocation information.

Parameters

limited

When set to FALSE (default) apc_sma_info() will return a detailed information about
each segment.

Return Values

Array of Shared Memory Allocation data; FALSE on failure.

Examples

Example #245 - A apc_sma_info() example

<?php

print_r(apc_sma_info());

?>

The above example will output something similar to:

Array

(

 [num_seg] => 1

 [seg_size] => 31457280

 [avail_mem] => 31448408

 [block_lists] => Array

 (

 [0] => Array

 (

 [0] => Array

 (

 [size] => 31448408

 [offset] => 8864

)

)

)

)

See Also

• APC configuration directives

apc_store

apc_store -- Cache a variable in the data store

Description

bool apc_store (string $key, mixed $var [, int $ttl])

Cache a variable in the data store.

Note

Unlike many other mechanisms in PHP, variables stored using apc_store() will persist
between requests (until the value is removed from the cache).

Parameters

key

Store the variable using this name. key s are cache-unique, so storing a second value
with the same key will overwrite the original value.

var

The variable to store

ttl

Time To Live; store var in the cache for ttl seconds. After the ttl has passed, the
stored variable will be expunged from the cache (on the next request). If no ttl is
supplied (or if the ttl is 0), the value will persist until it is removed from the cache
manually, or otherwise fails to exist in the cache (clear, restart, etc.).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #246 - A apc_store() example

<?php

$bar = 'BAR';

apc_store('foo', $bar);

var_dump(apc_fetch('foo'));

?>

The above example will output:

string(3) "BAR"

See Also

• apc_add()
• apc_fetch()
• apc_delete()

Advanced PHP debugger

Introduction

APD is the Advanced PHP Debugger. It was written to provide profiling and debugging
capabilities for PHP code, as well as to provide the ability to print out a full stack
backtrace. APD supports interactive debugging, but by default it writes data to trace files. It
also offers event based logging so that varying levels of information (including function
calls, arguments passed, timings, etc.) can be turned on or off for individual scripts.

Caution

APD is a Zend Extension, modifying the way the internals of PHP handle function calls,
and thus may or may not be compatible with other Zend Extensions (for example Zend
Optimizer).

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

APD is currently available as a PECL extension from » http://pecl.php.net/package/apd.
Make sure you have installed the CGI version of PHP and it is available in your current
path along with the phpize script.

Run the following command to download, build, and install the latest stable version of
APD:
pear install apd

This automatically installs the APD Zend module into your PHP extensions directory. It is
not mandatory to keep it there; you can store the module in any directory PHP can read as
long as you set the zend_extension parameter accordingly.

Windows users will enable php_apd.dll inside of php.ini in order to use these functions.
The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

In your INI file, add the following lines:

zend_extension = /absolute/path/to/apd.so

apd.dumpdir = /absolute/path/to/trace/directory

apd.statement_tracing = 0

Depending on your PHP build, the zend_extension directive can be one of the following:

zend_extension (non ZTS, non debug build)

zend_extension_ts (ZTS, non debug build)

zend_extension_debug (non ZTS, debug build)

zend_extension_debug_ts (ZTS, debug build)

Building on Win32

To build APD under Windows you need a working PHP compilation environment as
described on http://php.net/ -- basically, it requires you to have Microsoft Visual C++,
win32build.zip, bison/flex, and some know how to get it to work. Also ensure that adp.dsp

http://pecl.php.net/package/apd
http://www.php.net/downloads.php
http://pecl4win.php.net/

has DOS line endings; if it has unix line endings, Microsoft Visual C++ will complain about
it.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

APD Configuration Options

Name Default Changeable Changelog

apd.dumpdir NULL PHP_INI_ALL

apd.statement_tracin
g

"0" PHP_INI_ALL Available since apd
0.9.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

apd.dumpdir string
Sets the directory in which APD writes profile dump files. You can specify an absolute
path or a relative path. You can specify a different directory as an argument to
apd_set_pprof_trace().

apd.statement_tracing boolean
Specfies whether or not to do per-line tracings. Turning this on (1) will impact the
performance of your application.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

APD constants

Constant Value Description

FUNCTION_TRACE (
integer)

1

ARGS_TRACE (integer) 2

ASSIGNMENT_TRACE (
integer)

4

STATEMENT_TRACE (
integer)

8

MEMORY_TRACE (integer
)

16

TIMING_TRACE (integer) 32

SUMMARY_TRACE (
integer)

64

ERROR_TRACE (integer) 128

PROF_TRACE (integer) 256

APD_VERSION (string) example: 1.0.2-dev

Examples

How to use PHP-APD in your scripts

1. As the first line of your PHP script, call the apd_set_pprof_trace() function to start the
trace:
apd_set_pprof_trace();
You can insert the line anywhere in your script, but if you do not start tracing at the
beginning of your script you discard profile data that might otherwise lead you to a
performance bottleneck.

2. Now run your script. The dump output will be written to apd.dumpdir/pprof_pid.ext.

Tip

If you're running the CGI version of PHP, you will need to add the '-e' flag to enable
extended information for apd to work properly. For example: php -e -f script.php

3. To display formatted profile data, issue the pprofp command with the sort and display
options of your choice. The formatted output will look something like:
bash-2.05b$ pprofp -R /tmp/pprof.22141.0

Trace for /home/dan/testapd.php

Total Elapsed Time = 0.00

Total System Time = 0.00

Total User Time = 0.00

Real User System secs/ cumm

%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Memory
Usage Name

--

100.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0009 0
main

56.9 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0005 0.0005 0
apd_set_pprof_trace

28.0 0.00 0.00 0.00 0.00 0.00 0.00 10 0.0000 0.0000 0
preg_replace

14.3 0.00 0.00 0.00 0.00 0.00 0.00 10 0.0000 0.0000 0
str_replace
The -R option used in this example sorts the profile table by the amount of real time
the script spent executing a given function. The "cumm call" column reveals how many
times each function was called, and the "s/call" column reveals how many seconds
each call to the function required, on average.

4. To generate a calltree file that you can import into the KCacheGrind profile analysis
application, issue the pprof2calltree comand.

APD Functions

Contact information

If you have comments, bugfixes, enhancements or want to help developing this beast, you
can send an mail to » apd@mail.communityconnect.com. Any help is very welcome.

mailto:apd@mail.communityconnect.com

apd_breakpoint

apd_breakpoint -- Stops the interpreter and waits on a CR from the socket

Description

bool apd_breakpoint (int $debug_level)

This can be used to stop the running of your script, and await responses on the connected
socket. To step the program, just send enter (a blank line), or enter a php command to be
executed.

Parameters

debug_level

An integer which is formed by adding together the XXX_TRACE constants. It is not
recommended to use MEMORY_TRACE. It is very slow and does not appear to be
accurate. ASSIGNMENT_TRACE is not implemented yet. To turn on all functional
traces (TIMING, FUNCTIONS, ARGS SUMMARY (like strace -c)) use the value 99

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #247 - Typical session using tcplisten

bash#tcplisten localhost 7777

APD - Advanced PHP Debugger Trace File

Process Pid (6118)

Trace Begun at Sun Mar 10 23:13:12 2002

(0.000000): apd_set_session_trace called at
/home/alan/Projects/project2/test.

php:5

(0.074824): apd_set_session_trace_socket() at
/home/alan/Projects/project2/tes

t.php:5 returned. Elapsed (0.074824)

(0.074918): apd_breakpoint() /home/alan/Projects/project2/test.php:7

 ++ argv[0] $(??) = 9

apd_breakpoint() at /home/alan/Projects/project2/test.php:7 returned.
Elapsed (

-2089521468.1073275368)

>\n

statement: /home/alan/Projects/project2/test.php:8

>\n

statement: /home/alan/Projects/project2/test.php:8

>\n

statement: /home/alan/Projects/project2/test.php:10

>apd_echo($i);

EXEC: apd_echo($i);

0

>apd_echo(serialize(apd_get_active_symbols()));

EXEC: apd_echo(serialize(apd_get_active_symbols()));

a:47:{i:0;s:4:"PWD";i:1;s:10:"COLORFGBG";i:2;s:11:"XAUTHORITY";i:3;s:14:"

COLORTERM_BCE";i:4;s:9:"WINDOWID";i:5;s:14:"ETERM_VERSION";i:6;s:16:"SE

SSION_MANAGER";i:7;s:4:"PS1";i:8;s:11:"GDMSESSION";i:9;s:5:"USER";i:10;s:5:"

MAIL";i:11;s:7:"OLDPWD";i:12;s:5:"LANG";i:13;s:10:"COLORTERM";i:14;s:8:"DISP

LAY";i:15;s:8:"LOGNAME";i:16;s:6:"

>apd_echo(system('ls /home/mydir'));

........

>apd_continue(0);

apd_callstack

apd_callstack -- Returns the current call stack as an array

Description

array apd_callstack (void)

Returns the current call stack as an array

Return Values

An array containing the current call stack.

Examples

Example #248 - apd_callstack() example

<?php

print_r(apd_callstack());

?>

apd_clunk

apd_clunk -- Throw a warning and a callstack

Description

void apd_clunk (string $warning [, string $delimiter])

Behaves like perl's Carp::cluck. Throw a warning and a callstack.

Parameters

warning

The warning to throw.

delimiter

The delimiter. Default to
.

Return Values

No value is returned.

Examples

Example #249 - apd_clunk() example

<?php

apd_clunk("Some Warning", "
");

?>

See Also

• apd_croak()

apd_continue

apd_continue -- Restarts the interpreter

Description

bool apd_continue (int $debug_level)

Usually sent via the socket to restart the interpreter.

Parameters

debug_level

An integer which is formed by adding together the XXX_TRACE constants. It is not
recommended to use MEMORY_TRACE. It is very slow and does not appear to be
accurate. ASSIGNMENT_TRACE is not implemented yet. To turn on all functional
traces (TIMING, FUNCTIONS, ARGS SUMMARY (like strace -c)) use the value 99

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #250 - apd_continue() example

<?php

apd_continue(0);

?>

apd_croak

apd_croak -- Throw an error, a callstack and then exit

Description

void apd_croak (string $warning [, string $delimiter])

Behaves like perl's Carp::croak. Throw an error, a callstack and then exit.

Parameters

warning

The warning to throw.

delimiter

The delimiter. Default to
.

Return Values

No value is returned.

Examples

Example #251 - apd_croak() example

<?php

apd_croak("Some Warning","<P>");

?>

See Also

• apd_clunk()

apd_dump_function_table

apd_dump_function_table -- Outputs the current function table

Description

void apd_dump_function_table (void)

Outputs the current function table.

Return Values

No value is returned.

Examples

Example #252 - apd_dump_function_table() example

<?php

apd_dump_function_table();

?>

apd_dump_persistent_resources

apd_dump_persistent_resources -- Return all persistent resources as an array

Description

array apd_dump_persistent_resources (void)

Return all persistent resources as an array.

Return Values

An array containing the current call stack.

Examples

Example #253 - apd_dump_persistent_resources() example

<?php

print_r(apd_dump_persistent_resources());

?>

See Also

• apd_dump_regular()

apd_dump_regular_resources

apd_dump_regular_resources -- Return all current regular resources as an array

Description

array apd_dump_regular_resources (void)

Return all current regular resources as an array.

Return Values

An array containing the current regular resources.

Examples

Example #254 - apd_dump_regular_resources() example

<?php

print_r(apd_dump_regular_resources());

?>

See Also

• apd_dump_persistent_resources()

apd_echo

apd_echo -- Echo to the debugging socket

Description

bool apd_echo (string $output)

Usually sent via the socket to request information about the running script.

Parameters

output

The debugged variable.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #255 - apd_echo() example

<?php

apd_echo($i);

?>

apd_get_active_symbols

apd_get_active_symbols -- Get an array of the current variables names in the local scope

Description

array apd_get_active_symbols (void)

Returns the names of all the variables defined in the active scope, (not their values).

Return Values

A multidimensional array with all the variables.

Examples

Example #256 - apd_get_active_symbols() example

<?php

apd_echo(apd_get_active_symbols());

?>

apd_set_pprof_trace

apd_set_pprof_trace -- Starts the session debugging

Description

string apd_set_pprof_trace ([string $dump_directory [, string $fragment]])

Starts debugging to pprof_{process_id} in the dump directory.

Parameters

dump_directory

The directory in which the profile dump file is written. If not set, the apd.dumpdir setting
from the php.ini file is used.

fragment

Return Values

Returns path of the destination file.

Examples

Example #257 - apd_set_pprof_trace() example

<?php

apd_set_pprof_trace();

?>

See Also

• apd_set_session_trace()

apd_set_session_trace

apd_set_session_trace -- Starts the session debugging

Description

void apd_set_session_trace (int $debug_level [, string $dump_directory])

Starts debugging to apd_dump_{process_id} in the dump directory.

Parameters

debug_level

An integer which is formed by adding together the XXX_TRACE constants. It is not
recommended to use MEMORY_TRACE. It is very slow and does not appear to be
accurate. ASSIGNMENT_TRACE is not implemented yet. To turn on all functional
traces (TIMING, FUNCTIONS, ARGS SUMMARY (like strace -c)) use the value 99

dump_directory

The directory in which the profile dump file is written. If not set, the apd.dumpdir setting
from the php.ini file is used.

Return Values

No value is returned.

Examples

Example #258 - apd_set_session_trace() example

<?php

apd_set_session_trace(99);

?>

apd_set_session

apd_set_session -- Changes or sets the current debugging level

Description

void apd_set_session (int $debug_level)

This can be used to increase or decrease debugging in a different area of your application.

Parameters

debug_level

An integer which is formed by adding together the XXX_TRACE constants. It is not
recommended to use MEMORY_TRACE. It is very slow and does not appear to be
accurate. ASSIGNMENT_TRACE is not implemented yet. To turn on all functional
traces (TIMING, FUNCTIONS, ARGS SUMMARY (like strace -c)) use the value 99

Return Values

No value is returned.

Examples

Example #259 - apd_set_session() example

<?php

apd_set_session(9);

?>

apd_set_socket_session_trace

apd_set_socket_session_trace -- Starts the remote session debugging

Description

bool apd_set_socket_session_trace (string $tcp_server, int $socket_type, int $port,
int $debug_level)

Connects to the specified tcp_server (eg. tcplisten) and sends debugging data to the
socket.

Parameters

tcp_server

IP or Unix Domain socket (like a file) of the TCP server.

socket_type

Can be AF_UNIX for file based sockets or APD_AF_INET for standard tcp/ip.

port

You can use any port, but higher numbers are better as most of the lower numbers
may be used by other system services.

debug_level

An integer which is formed by adding together the XXX_TRACE constants. It is not
recommended to use MEMORY_TRACE. It is very slow and does not appear to be
accurate. ASSIGNMENT_TRACE is not implemented yet. To turn on all functional
traces (TIMING, FUNCTIONS, ARGS SUMMARY (like strace -c)) use the value 99

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #260 - apd_set_socket_session_trace() example

<?php

 apd_set_socket_session_trace("127.0.0.1",APD_AF_INET,7112,0);

?>

override_function

override_function -- Overrides built-in functions

Description

bool override_function (string $function_name, string $function_args, string $
function_code)

Overrides built-in functions by replacing them in the symbol table.

Parameters

function_name

The function to override.

function_args

The function arguments, as a coma separated string. Usually you will want to pass this
parameter, as well as the function_code parameter, as a single quote delimited string.
The reason for using single quoted strings, is to protect the variable names from
parsing, otherwise, if you use double quotes there will be a need to escape the
variable names, e.g. \ $your_var.

function_code

The new code for the function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #261 - override_function() example

<?php

override_function('test', '$a,$b', 'echo "DOING TEST"; return $a * $b;');

?>

rename_function

rename_function -- Renames orig_name to new_name in the global function table

Description

bool rename_function (string $original_name, string $new_name)

Renames a orig_name to new_name in the global function table. Useful for temporarily
overriding built-in functions.

Parameters

original_name

The original function name.

new_name

The new name for the original_name function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #262 - rename_function() example

<?php

rename_function('mysql_connect', 'debug_mysql_connect');

?>

PHP bytecode Compiler

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Bcompiler was written for several reasons:

• To encode entire script in a proprietary PHP application
• To encode some classes and/or functions in a proprietary PHP application
• To enable the production of php-gtk applications that could be used on client desktops,

without the need for a php.exe.
• To do the feasibility study for a PHP to C converter

The first of these goals is achieved using the bcompiler_write_header(),
bcompiler_write_file() and bcompiler_write_footer() functions. The bytecode files can be
written as either uncompressed or plain. To use the generated bytecode, you can simply
include it with include or require statements.

The second of these goals is achieved using the bcompiler_write_header(),
bcompiler_write_class(), bcompiler_write_footer(), bcompiler_read(), and bcompiler_load()
functions. The bytecode files can be written as either uncompressed or plain. The
bcompiler_load() reads a bzip compressed bytecode file, which tends to be 1/3 of the size
of the original file.

To create EXE type files, bcompiler has to be used with a modified sapi file or a version of
PHP which has been compiled as a shared library. In this scenario, bcompiler reads the
compressed bytecode from the end of the exe file.

bcompiler can improve performance by about 30% when used with uncompressed
bytecodes only. But keep in mind that uncompressed bytecode can be up to 5 times larger
than the original source code. Using bytecode compression can save your space, but
decompression requires much more time than parsing a source. bcompiler also does not
do any bytecode optimization, this could be added in the future...

In terms of code protection, it is safe to say that it would be impossible to recreate the
exact source code that it was built from, and without the accompanying source code
comments. It would effectively be useless to use the bcompiler bytecodes to recreate and
modify a class. However it is possible to retrieve data from a bcompiled bytecode file - so
don't put your private passwords or anything in it.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

short installation note:

• You need at least PHP 4.3.0 for the compression to work

• To install on PHP 4.3.0 and later at the Unix command prompt type pear install
bcompiler

• To install on Windows, until the binary package distribution mechanism is finished
please search the archives of the pear-general mailing list for pre-built packages. (or
send an email to it if you could not find a reference)

• To install on older versions you need to make some slight changes to the build.

• untar the bcompiler.tgz archive into php4/ext.(Get it directly from PECL
» http://pecl.php.net/get/bcompiler)

• If the new directory is now called something like bcompiler-0.x, then you should
rename it to bcompiler (except you only want to build it as self-contained php-module).

• If you are using versions before PHP 4.3.0, the you will need to copy the
Makefile.in.old to Makefile.in and config.m4.old to config.m4.

• run phpize in ext/bcompiler

• run./buildconf in php4

• run configure with --enable-bcompiler (and your other options)

• make; make install

• that's it.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/get/bcompiler
http://pecl.php.net/get/bcompiler

Predefined Constants

This extension has no constants defined.

bcompiler Functions

Contact Information

If you have comments, bugfixes, enhancements or want to help developing this beast, you
can drop me a mail at » alan_k@php.net. Any help is very welcome.

mailto:alan_k@php.net

bcompiler_load_exe

bcompiler_load_exe -- Reads and creates classes from a bcompiler exe file

Description

bool bcompiler_load_exe (string $filename)

Reads data from a bcompiler exe file and creates classes from the bytecodes.

Parameters

filename

The exe file path, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #263 - bcompiler_load() example

<?php

bcompiler_load_exe("/tmp/example.exe");

print_r(get_defined_classes());

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_load()

bcompiler_load

bcompiler_load -- Reads and creates classes from a bz compressed file

Description

bool bcompiler_load (string $filename)

Reads data from a bzcompressed file and creates classes from the bytecodes.

Parameters

filename

The bzcompressed file path, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #264 - bcompiler_load() example

<?php

bcompiler_load("/tmp/example");

print_r(get_defined_classes());

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Note

Please use include or require statements to parse bytecodes, it's more portable and
convenient way than using this function.

Please note that this function won't execute script body code contained in the bytecode
file.

See Also

• bcompiler_load_exe()

bcompiler_parse_class

bcompiler_parse_class -- Reads the bytecodes of a class and calls back to a user function

Description

bool bcompiler_parse_class (string $class, string $callback)

Reads the bytecodes of a class and calls back to a user function.

Parameters

class

The class name, as a string.

callback

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #265 - bcompiler_parse_class() example

<?php

function readByteCodes($data) {

 print_r($data);

}

bcompiler_parse_class("DB","readByteCodes");

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Note

This function has been removed from bcompiler and is no longer available as of
bcompiler 0.5.

bcompiler_read

bcompiler_read -- Reads and creates classes from a filehandle

Description

bool bcompiler_read (resource $filehandle)

Reads data from a open file handle and creates classes from the bytecodes.

Parameters

filehandle

A file handle as returned by fopen().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #266 - bcompiler_read() example

<?php

$fh = fopen("/tmp/example","r");

bcompiler_read($fh);

fclose($fh);

print_r(get_defined_classes());

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Note

Please use include or require statements to parse bytecodes, it's more portable and
convenient way than using this function.

Please note that this function won't execute script body code contained in the bytecode
file.

bcompiler_write_class

bcompiler_write_class -- Writes an defined class as bytecodes

Description

bool bcompiler_write_class (resource $filehandle, string $className [, string $
extends])

Reads the bytecodes from PHP for an existing class, and writes them to the open file
handle.

Parameters

filehandle

A file handle as returned by fopen().

className

The class name, as a string.

extends

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #267 - bcompiler_write_class() example

<?php

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_class($fh,"DB");

// you must write DB_common before DB_mysql, as DB_mysql extends DB_common.

bcompiler_write_class($fh,"DB_common");

bcompiler_write_class($fh,"DB_mysql");

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Note

This function does not perform dependency checking, so make sure you write the
classes in an order that will not result in an undefined class error occurring when you
load it.

See Also

• bcompiler_write_header()
• bcompiler_write_footer()

bcompiler_write_constant

bcompiler_write_constant -- Writes a defined constant as bytecodes

Description

bool bcompiler_write_constant (resource $filehandle, string $constantName)

Reads the bytecodes from PHP for an existing constant, and writes them to the open file
handle.

Parameters

filehandle

A file handle as returned by fopen().

constantName

The name of the defined constant, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #268 - bcompiler_write_constant() example

<?php

define("MODULE_MAX", 30);

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_constant($fh,"MODULE_MAX");

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and

surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()
• bcompiler_write_footer()

bcompiler_write_exe_footer

bcompiler_write_exe_footer -- Writes the start pos, and sig to the end of a exe type file

Description

bool bcompiler_write_exe_footer (resource $filehandle, int $startpos)

An EXE (or self executable) file consists of 3 parts:

• The stub (executable code, e.g. a compiled C program) that loads PHP interpreter,
bcompiler extension, stored Bytecodes and initiates a call for the specified function
(e.g. main) or class method (e.g. main::main)

• The Bytecodes (uncompressed only for the moment)
• The bcompiler EXE footer

To obtain a suitable stub you can compile php_embed-based stub phpe.c located in the
examples/embed directory on bcompiler's CVS.

Parameters

filehandle

A file handle as returned by fopen().

startpos

The file position at which the Bytecodes start, and can be obtained using ftell().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #269 - bcompiler_write_footer() example

<?php

/* creating the output file (example.exe) */

$fh = fopen("example.exe", "w");

/* 1) writing a stub (phpe.exe) */

$size = filesize("phpe.exe");

$fr = fopen("phpe.exe", "r");

fwrite($fh, fread($fr, $size), $size);

$startpos = ftell($fh);

/* 2) writing bytecodes */

bcompiler_write_header($fh);

bcompiler_write_class($fh, "myclass");

bcompiler_write_function($fh, "main");

bcompiler_write_footer($fh);

/* 3) writing EXE footer */

bcompiler_write_exe_footer($fh, $startpos);

/* closing the output file */

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()
• bcompiler_write_class()
• bcompiler_write_footer()

bcompiler_write_file

bcompiler_write_file -- Writes a php source file as bytecodes

Description

bool bcompiler_write_file (resource $filehandle, string $filename)

This function complies specified source file into bytecodes, and writes them to the open file
handle.

Parameters

filehandle

A file handle as returned by fopen().

filename

The source file path, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #270 - bcompiler_write_file() example

<?php

$fh = fopen("example.phb", "w");

bcompiler_write_header($fh);

bcompiler_write_file($fh, "example.php");

bcompiler_write_footer($fh);

fclose($fh);

/* the following should be equivalent:

include "example.php";

 and

include "example.phb";

*/

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()
• bcompiler_write_footer()

bcompiler_write_footer

bcompiler_write_footer -- Writes the single character \x00 to indicate End of compiled data

Description

bool bcompiler_write_footer (resource $filehandle)

Writes the single character \x00 to indicate End of compiled data.

Parameters

filehandle

A file handle as returned by fopen().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #271 - bcompiler_write_footer() example

<?php

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_class($fh,"DB");

bcompiler_write_class($fh,"DB_common");

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()

bcompiler_write_function

bcompiler_write_function -- Writes an defined function as bytecodes

Description

bool bcompiler_write_function (resource $filehandle, string $functionName)

Reads the bytecodes from PHP for an existing function, and writes them to the open file
handle. Order is not important, (eg. if function b uses function a, and you compile it like the
example below, it will work perfectly OK).

Parameters

filehandle

A file handle as returned by fopen().

functionName

The function name, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #272 - bcompiler_write_function() example

<?php

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_function($fh,"my_function_a");

bcompiler_write_function($fh,"my_function_b");

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and

surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()
• bcompiler_write_footer()

bcompiler_write_functions_from_file

bcompiler_write_functions_from_file -- Writes all functions defined in a file as bytecodes

Description

bool bcompiler_write_functions_from_file (resource $filehandle, string $fileName)

Searches for all functions declared in the given file, and writes their correspondent
bytecodes to the open file handle.

Parameters

filehandle

A file handle as returned by fopen().

fileName

The file to be compiled. You must always include or require the file you intend to
compile.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #273 - bcompiler_write_functions_from_file() example

<?php

require('module.php');

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_functions_from_file($fh,'module.php');

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• bcompiler_write_header()
• bcompiler_write_footer()

bcompiler_write_header

bcompiler_write_header -- Writes the bcompiler header

Description

bool bcompiler_write_header (resource $filehandle [, string $write_ver])

Writes the header part of a bcompiler file.

Parameters

filehandle

A file handle as returned by fopen().

write_ver

Can be used to write bytecode in a previously used format, so that you can use it with
older versions of bcompiler.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #274 - bcompiler_write_header() example

<?php

$fh = fopen("/tmp/example","w");

bcompiler_write_header($fh);

bcompiler_write_class($fh,"DB");

bcompiler_write_footer($fh);

fclose($fh);

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This

function should be used at your own risk.

See Also

• bcompiler_write_footer()

bcompiler_write_included_filename

bcompiler_write_included_filename -- Writes an included file as bytecodes

Description

bool bcompiler_write_included_filename (resource $filehandle, string $filename)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Error Handling and Logging

Introduction

These are functions dealing with error handling and logging. They allow you to define your
own error handling rules, as well as modify the way the errors can be logged. This allows
you to change and enhance error reporting to suit your needs.

With the logging functions, you can send messages directly to other machines, to an email
(or email to pager gateway!), to system logs, etc., so you can selectively log and monitor
the most important parts of your applications and websites.

The error reporting functions allow you to customize what level and kind of error feedback
is given, ranging from simple notices to customized functions returned during errors.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Errors and Logging Configuration Options

Name Default Changeable Changelog

error_reporting NULL PHP_INI_ALL

display_errors "1" PHP_INI_ALL

display_startup_error
s

"0" PHP_INI_ALL

log_errors "0" PHP_INI_ALL

log_errors_max_len "1024" PHP_INI_ALL Available since PHP
4.3.0.

ignore_repeated_erro
rs

"0" PHP_INI_ALL Available since PHP
4.3.0.

ignore_repeated_sou
rce

"0" PHP_INI_ALL Available since PHP
4.3.0.

report_memleaks "1" PHP_INI_ALL Available since PHP
4.3.0.

track_errors "0" PHP_INI_ALL

html_errors "1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.2.3.

docref_root "" PHP_INI_ALL Available since PHP
4.3.0.

docref_ext "" PHP_INI_ALL Available since PHP
4.3.2.

error_prepend_string NULL PHP_INI_ALL

error_append_string NULL PHP_INI_ALL

error_log NULL PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

error_reporting integer
Set the error reporting level. The parameter is either an integer representing a bit field,
or named constants. The error_reporting levels and constants are described in
Predefined Constants, and in php.ini. To set at runtime, use the error_reporting()
function. See also the display_errors directive. In PHP 4 and PHP 5 the default value is
E_ALL & ~E_NOTICE. This setting does not show E_NOTICE level errors. You may
want to show them during development.

Note

Enabling E_NOTICE during development has some benefits. For debugging
purposes: NOTICE messages will warn you about possible bugs in your code. For
example, use of unassigned values is warned. It is extremely useful to find typos
and to save time for debugging. NOTICE messages will warn you about bad style.
For example, $arr[item] is better to be written as $arr['item'] since PHP tries to treat
"item" as constant. If it is not a constant, PHP assumes it is a string index for the
array.

Note

In PHP 5 a new error level E_STRICT is available. As E_STRICT is not included
within E_ALL you have to explicitly enable this kind of error level. Enabling
E_STRICT during development has some benefits. STRICT messages will help
you to use the latest and greatest suggested method of coding, for example warn
you about using deprecated functions.

Note

PHP Constants outside of PHP

Using PHP Constants outside of PHP, like in httpd.conf, will have no useful

meaning so in such cases the integer values are required. And since error levels
will be added over time, the maximum value (for E_ALL) will likely change. So in
place of E_ALL consider using a larger value to cover all bit fields from now and
well into the future, a numeric value like 2147483647.

display_errors string
This determines whether errors should be printed to the screen as part of the output or
if they should be hidden from the user. Value "stderr" sends the errors to stderr instead
of stdout. The value is available as of PHP 5.2.4. In earlier versions, this directive was
of type boolean.

Note

This is a feature to support your development and should never be used on
production systems (e.g. systems connected to the internet).

Note

Although display_errors may be set at runtime (with ini_set()), it won't have any
affect if the script has fatal errors. This is because the desired runtime action does
not get executed.

display_startup_errors boolean
Even when display_errors is on, errors that occur during PHP's startup sequence are
not displayed. It's strongly recommended to keep display_startup_errors off, except for
debugging.

log_errors boolean
Tells whether script error messages should be logged to the server's error log or
error_log. This option is thus server-specific.

Note

You're strongly advised to use error logging in place of error displaying on
production web sites.

log_errors_max_len integer
Set the maximum length of log_errors in bytes. In error_log information about the
source is added. The default is 1024 and 0 allows to not apply any maximum length at
all. This length is applied to logged errors, displayed errors and also to $php_errormsg.
When an integer is used, the value is measured in bytes. Shorthand notation, as
described in this FAQ, may also be used.

ignore_repeated_errors boolean

Do not log repeated messages. Repeated errors must occur in the same file on the
same line until ignore_repeated_source is set true.

ignore_repeated_source boolean
Ignore source of message when ignoring repeated messages. When this setting is On
you will not log errors with repeated messages from different files or sourcelines.

report_memleaks boolean
If this parameter is set to Off, then memory leaks will not be shown (on stdout or in the
log). This has only effect in a debug compile, and if error_reporting includes
E_WARNING in the allowed list

track_errors boolean
If enabled, the last error message will always be present in the variable $php_errormsg
.

html_errors boolean
Turn off HTML tags in error messages. The new format for HTML errors produces
clickable messages that direct the user to a page describing the error or function in
causing the error. These references are affected by docref_root and docref_ext.

docref_root string
The new error format contains a reference to a page describing the error or function
causing the error. In case of manual pages you can download the manual in your
language and set this ini directive to the URL of your local copy. If your local copy of
the manual can be reached by '/manual/' you can simply use docref_root=/manual/.
Additional you have to set docref_ext to match the fileextensions of your copy
docref_ext=.html. It is possible to use external references. For example you can use
docref_root=http://manual/en/ or
docref_root="http://landonize.it/?how=url&theme=classic&filter=Landon
&url=http%3A%2F%2Fwww.php.net%2F" Most of the time you want the docref_root
value to end with a slash '/'. But see the second example above which does not have
nor need it.

Note

This is a feature to support your development since it makes it easy to lookup a
function description. However it should never be used on production systems (e.g.
systems connected to the internet).

docref_ext string
See docref_root.

Note

The value of docref_ext must begin with a dot '.'.

error_prepend_string string

String to output before an error message.

error_append_string string
String to output after an error message.

error_log string
Name of the file where script errors should be logged. The file should be writable by
the web server's user. If the special value syslog is used, the errors are sent to the
system logger instead. On Unix, this means syslog(3) and on Windows NT it means
the event log. The system logger is not supported on Windows 95. See also: syslog().
If this directive is not set, errors are sent to the SAPI error logger. For example, it is an
error log in Apache or stderr in CLI.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are always available as part of the PHP core.

Note

You may use these constant names in php.ini but not outside of PHP, like in httpd.conf
, where you'd use the bitmask values instead.

Errors and Logging

Value Constant Description Note

1 E_ERROR (integer) Fatal run-time errors.
These indicate errors
that can not be
recovered from, such
as a memory
allocation problem.
Execution of the
script is halted.

2 E_WARNING (
integer)

Run-time warnings
(non-fatal errors).
Execution of the
script is not halted.

4 E_PARSE (integer) Compile-time parse
errors. Parse errors
should only be
generated by the
parser.

8 E_NOTICE (integer) Run-time notices.
Indicate that the
script encountered
something that could
indicate an error, but
could also happen in
the normal course of
running a script.

16 E_CORE_ERROR (
integer)

Fatal errors that
occur during PHP's
initial startup. This is
like an E_ERROR,
except it is generated

since PHP 4

by the core of PHP.

32 E_CORE_WARNING
(integer)

Warnings (non-fatal
errors) that occur
during PHP's initial
startup. This is like an
E_WARNING, except
it is generated by the
core of PHP.

since PHP 4

64 E_COMPILE_ERRO
R (integer)

Fatal compile-time
errors. This is like an
E_ERROR, except it
is generated by the
Zend Scripting
Engine.

since PHP 4

128 E_COMPILE_WARN
ING (integer)

Compile-time
warnings (non-fatal
errors). This is like an
E_WARNING, except
it is generated by the
Zend Scripting
Engine.

since PHP 4

256 E_USER_ERROR (
integer)

User-generated error
message. This is like
an E_ERROR,
except it is generated
in PHP code by using
the PHP function
trigger_error().

since PHP 4

512 E_USER_WARNING
(integer)

User-generated
warning message.
This is like an
E_WARNING, except
it is generated in PHP
code by using the
PHP function
trigger_error().

since PHP 4

1024 E_USER_NOTICE (
integer)

User-generated
notice message. This
is like an E_NOTICE,
except it is generated
in PHP code by using
the PHP function
trigger_error().

since PHP 4

2048 E_STRICT (integer) Run-time notices.
Enable to have PHP

since PHP 5

suggest changes to
your code which will
ensure the best
interoperability and
forward compatibility
of your code.

4096 E_RECOVERABLE_
ERROR (integer)

Catchable fatal error.
It indicates that a
probably dangerous
error occured, but did
not leave the Engine
in an unstable state.
If the error is not
caught by a user
defined handle (see
also
set_error_handler()),
the application aborts
as it was an
E_ERROR.

since PHP 5.2.0

8191 E_ALL (integer) All errors and
warnings, as
supported, except of
level E_STRICT in
PHP < 6.

6143 in PHP 5.2.x
and 2047 previously

The above values (either numerical or symbolic) are used to build up a bitmask that
specifies which errors to report. You can use the bitwise operators to combine these
values or mask out certain types of errors. Note that only '|', '~', '!', '^' and '&' will be
understood within php.ini.

Examples

Below we can see an example of using the error handling capabilities in PHP. We define
an error handling function which logs the information into a file (using an XML format), and
e-mails the developer in case a critical error in the logic happens.

Example #275 - Using error handling in a script

<?php

// we will do our own error handling

error_reporting(0);

// user defined error handling function

function userErrorHandler($errno, $errmsg, $filename, $linenum, $vars)

{

 // timestamp for the error entry

 $dt = date("Y-m-d H:i:s (T)");

 // define an assoc array of error string

 // in reality the only entries we should

 // consider are E_WARNING, E_NOTICE, E_USER_ERROR,

 // E_USER_WARNING and E_USER_NOTICE

 $errortype = array (

 E_ERROR => 'Error',

 E_WARNING => 'Warning',

 E_PARSE => 'Parsing Error',

 E_NOTICE => 'Notice',

 E_CORE_ERROR => 'Core Error',

 E_CORE_WARNING => 'Core Warning',

 E_COMPILE_ERROR => 'Compile Error',

 E_COMPILE_WARNING => 'Compile Warning',

 E_USER_ERROR => 'User Error',

 E_USER_WARNING => 'User Warning',

 E_USER_NOTICE => 'User Notice',

 E_STRICT => 'Runtime Notice',

 E_RECOVERABLE_ERROR => 'Catchable Fatal Error'

);

 // set of errors for which a var trace will be saved

 $user_errors = array(E_USER_ERROR, E_USER_WARNING, E_USER_NOTICE);

 $err = "<errorentry>\n";

 $err .= "\t<datetime>" . $dt . "</datetime>\n";

 $err .= "\t<errornum>" . $errno . "</errornum>\n";

 $err .= "\t<errortype>" . $errortype[$errno] . "</errortype>\n";

 $err .= "\t<errormsg>" . $errmsg . "</errormsg>\n";

 $err .= "\t<scriptname>" . $filename . "</scriptname>\n";

 $err .= "\t<scriptlinenum>" . $linenum . "</scriptlinenum>\n";

 if (in_array($errno, $user_errors)) {

 $err .= "\t<vartrace>" . wddx_serialize_value($vars, "Variables") .
"</vartrace>\n";

 }

 $err .= "</errorentry>\n\n";

 // for testing

 // echo $err;

 // save to the error log, and e-mail me if there is a critical user error

 error_log($err, 3, "/usr/local/php4/error.log");

 if ($errno == E_USER_ERROR) {

 mail("phpdev@example.com", "Critical User Error", $err);

 }

}

function distance($vect1, $vect2)

{

 if (!is_array($vect1) || !is_array($vect2)) {

 trigger_error("Incorrect parameters, arrays expected", E_USER_ERROR);

 return NULL;

 }

 if (count($vect1) != count($vect2)) {

 trigger_error("Vectors need to be of the same size", E_USER_ERROR);

 return NULL;

 }

 for ($i=0; $i<count($vect1); $i++) {

 $c1 = $vect1[$i]; $c2 = $vect2[$i];

 $d = 0.0;

 if (!is_numeric($c1)) {

 trigger_error("Coordinate $i in vector 1 is not a number, using
zero",

 E_USER_WARNING);

 $c1 = 0.0;

 }

 if (!is_numeric($c2)) {

 trigger_error("Coordinate $i in vector 2 is not a number, using
zero",

 E_USER_WARNING);

 $c2 = 0.0;

 }

 $d += $c2*$c2 - $c1*$c1;

 }

 return sqrt($d);

}

$old_error_handler = set_error_handler("userErrorHandler");

// undefined constant, generates a warning

$t = I_AM_NOT_DEFINED;

// define some "vectors"

$a = array(2, 3, "foo");

$b = array(5.5, 4.3, -1.6);

$c = array(1, -3);

// generate a user error

$t1 = distance($c, $b) . "\n";

// generate another user error

$t2 = distance($b, "i am not an array") . "\n";

// generate a warning

$t3 = distance($a, $b) . "\n";

?>

Error Handling Functions

See Also

See also syslog().

debug_backtrace

debug_backtrace -- Generates a backtrace

Description

array debug_backtrace ([bool $provide_object])

debug_backtrace() generates a PHP backtrace.

Return Values

Returns an associative array. The possible returned elements are as follows:

Possible returned elements from debug_backtrace()

Name Type Description

function string The current function name.
See also __FUNCTION__.

line integer The current line number. See
also __LINE__.

file string The current file name. See
also __FILE__.

class string The current class name. See
also __CLASS__

object object The current object.

type string The current call type. If a
method call, "->" is returned.
If a static method call, "::" is
returned. If a function call,
nothing is returned.

args array If inside a function, this lists
the functions arguments. If
inside an included file, this
lists the included file
name(s).

ChangeLog

Version Description

5.2.5 Added the optional parameter
provide_object.

5.1.1 Added the current object as a possible
return element.

Examples

Example #276 - debug_backtrace() example

<?php

// filename: a.php

function a_test($str)

{

 echo "\nHi: $str";

 var_dump(debug_backtrace());

}

a_test('friend');

?>

<?php

// filename: b.php

include_once '/tmp/a.php';

?>

Results similar to the following when executing /tmp/b.php:

Hi: friend

array(2) {

[0]=>

array(4) {

 ["file"] => string(10) "/tmp/a.php"

 ["line"] => int(10)

 ["function"] => string(6) "a_test"

 ["args"]=>

 array(1) {

 [0] => &string(6) "friend"

 }

}

[1]=>

array(4) {

 ["file"] => string(10) "/tmp/b.php"

 ["line"] => int(2)

 ["args"] =>

 array(1) {

 [0] => string(10) "/tmp/a.php"

 }

 ["function"] => string(12) "include_once"

 }

}

See Also

• trigger_error()
• debug_print_backtrace()

debug_print_backtrace

debug_print_backtrace -- Prints a backtrace

Description

void debug_print_backtrace (void)

debug_print_backtrace() prints a PHP backtrace. It prints the function calls,
included/required files and eval() ed stuff.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #277 - debug_print_backtrace() example

<?php

// include.php file

function a() {

 b();

}

function b() {

 c();

}

function c(){

 debug_print_backtrace();

}

a();

?>

<?php

// test.php file

// this is the file you should run

include 'include.php';

?>

The above example will output something similar to:

#0 eval() called at [/tmp/include.php:5]

#1 a() called at [/tmp/include.php:17]

#2 include(/tmp/include.php) called at [/tmp/test.php:3]

#0 c() called at [/tmp/include.php:10]

#1 b() called at [/tmp/include.php:6]

#2 a() called at [/tmp/include.php:17]

#3 include(/tmp/include.php) called at [/tmp/test.php:3]

See Also

• debug_backtrace()

error_get_last

error_get_last -- Get the last occurred error

Description

array error_get_last (void)

Gets information about the last error that occured.

Return Values

Returns an associative array describing the last error with keys "type", "message", "file"
and "line". Returns NULL if there hasn't been an error yet.

Examples

Example #278 - An error_get_last() example

<?php

echo $a;

print_r(error_get_last());

?>

The above example will output something similar to:

Array

(

 [type] => 8

 [message] => Undefined variable: a

 [file] => C:\WWW\index.php

 [line] => 2

)

See Also

• Error constants
• Variable $php_errormsg
• Directive display_errors

error_log

error_log -- Send an error message somewhere

Description

bool error_log (string $message [, int $message_type [, string $destination [, string $
extra_headers]]])

Sends an error message to the web server's error log, a TCP port or to a file.

Parameters

message

The error message that should be logged.

message_type

Says where the error should go. The possible message types are as follows:

error_log() log types

0 message is sent to PHP's system logger,
using the Operating System's system
logging mechanism or a file, depending on
what the error_log configuration directive is
set to. This is the default option.

1 message is sent by email to the address in
the destination parameter. This is the only
message type where the fourth parameter,
extra_headers is used.

2 No longer an option.

3 message is appended to the file destination
. A newline is not automatically added to the
end of the message string.

destination

The destination. Its meaning depends on the message_type parameter as described
above.

extra_headers

The extra headers. It's used when the message_type parameter is set to 1. This message
type uses the same internal function as mail() does.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #279 - error_log() examples

<?php

// Send notification through the server log if we can not

// connect to the database.

if (!Ora_Logon($username, $password)) {

 error_log("Oracle database not available!", 0);

}

// Notify administrator by email if we run out of FOO

if (!($foo = allocate_new_foo())) {

 error_log("Big trouble, we're all out of FOOs!", 1,

 "operator@example.com");

}

// another way to call error_log():

error_log("You messed up!", 3, "/var/tmp/my-errors.log");

?>

error_reporting

error_reporting -- Sets which PHP errors are reported

Description

int error_reporting ([int $level])

The error_reporting() function sets the error_reporting directive at runtime. PHP has many
levels of errors, using this function sets that level for the duration (runtime) of your script.

Parameters

level

The new error_reporting level. It takes on either a bitmask, or named constants. Using
named constants is strongly encouraged to ensure compatibility for future versions. As
error levels are added, the range of integers increases, so older integer-based error levels
will not always behave as expected. The available error level constants are listed below.
The actual meanings of these error levels are described in the predefined constants.

error_reporting() level constants and bit values

value constant

1 E_ERROR

2 E_WARNING

4 E_PARSE

8 E_NOTICE

16 E_CORE_ERROR

32 E_CORE_WARNING

64 E_COMPILE_ERROR

128 E_COMPILE_WARNING

256 E_USER_ERROR

512 E_USER_WARNING

1024 E_USER_NOTICE

6143 E_ALL

2048 E_STRICT

4096 E_RECOVERABLE_ERROR

Return Values

Returns the old error_reporting level.

ChangeLog

Version Description

5.0.0 E_STRICT introduced (not part of E_ALL).

5.2.0 E_RECOVERABLE_ERROR introduced.

6 E_STRICT became part of E_ALL.

Examples

Example #280 - error_reporting() examples

<?php

// Turn off all error reporting

error_reporting(0);

// Report simple running errors

error_reporting(E_ERROR | E_WARNING | E_PARSE);

// Reporting E_NOTICE can be good too (to report uninitialized

// variables or catch variable name misspellings ...)

error_reporting(E_ERROR | E_WARNING | E_PARSE | E_NOTICE);

// Report all errors except E_NOTICE

// This is the default value set in php.ini

error_reporting(E_ALL ^ E_NOTICE);

// Report all PHP errors

error_reporting(E_ALL);

// Same as error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

?>

Notes

Warning

Most of E_STRICT errors are evaluated at the compile time thus such errors are not
reported in the file where error_reporting is enhanced to include E_STRICT errors (and
vice versa).

See Also

• The display_errors directive
• ini_set()

restore_error_handler

restore_error_handler -- Restores the previous error handler function

Description

bool restore_error_handler (void)

Used after changing the error handler function using set_error_handler(), to revert to the
previous error handler (which could be the built-in or a user defined function).

Return Values

This function always returns TRUE.

Examples

Example #281 - restore_error_handler() example

Decide if unserialize() caused an error, then restore the original error handler.

<?php

function unserialize_handler($errno, $errstr)

{

 echo "Invalid serialized value.\n";

}

$serialized = 'foo';

set_error_handler('unserialize_handler');

$original = unserialize($serialized);

restore_error_handler();

?>

The above example will output:

Invalid serialized value.

Notes

Note

Calling restore_error_handler() from the error_handler function is ignored.

See Also

• error_reporting()
• set_error_handler()
• restore_exception_handler()
• trigger_error()

restore_exception_handler

restore_exception_handler -- Restores the previously defined exception handler function

Description

bool restore_exception_handler (void)

Used after changing the exception handler function using set_exception_handler(), to
revert to the previous exception handler (which could be the built-in or a user defined
function).

Return Values

This function always returns TRUE.

See Also

• set_exception_handler()
• set_error_handler()
• restore_error_handler()
• error_reporting()

set_error_handler

set_error_handler -- Sets a user-defined error handler function

Description

mixed set_error_handler (callback $error_handler [, int $error_types])

Sets a user function (error_handler) to handle errors in a script.

This function can be used for defining your own way of handling errors during runtime, for
example in applications in which you need to do cleanup of data/files when a critical error
happens, or when you need to trigger an error under certain conditions (using
trigger_error()).

It is important to remember that the standard PHP error handler is completely bypassed.
error_reporting() settings will have no effect and your error handler will be called
regardless - however you are still able to read the current value of error_reporting and act
appropriately. Of particular note is that this value will be 0 if the statement that caused the
error was prepended by the @ error-control operator.

Also note that it is your responsibility to die() if necessary. If the error-handler function
returns, script execution will continue with the next statement after the one that caused an
error.

The following error types cannot be handled with a user defined function: E_ERROR,
E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR,
E_COMPILE_WARNING, and most of E_STRICT raised in the file where
set_error_handler() is called.

If errors occur before the script is executed (e.g. on file uploads) the custom error handler
cannot be called since it is not registered at that time.

Parameters

error_handler

The user function needs to accept two parameters: the error code, and a string
describing the error. Then there are three optional parameters that may be supplied:
the filename in which the error occurred, the line number in which the error occurred,
and the context in which the error occurred (an array that points to the active symbol
table at the point the error occurred). The function can be shown as:
handler (int $errno, string $errstr [, string $errfile [, int $errline [, array $
errcontext]]])

errno

The first parameter, errno, contains the level of the error raised, as an integer.

errstr

The second parameter, errstr, contains the error message, as a string.

errfile

The third parameter is optional, errfile, which contains the filename that the error
was raised in, as a string.

errline

The fourth parameter is optional, errline, which contains the line number the error
was raised at, as an integer.

errcontext

The fifth parameter is optional, errcontext, which is an array that points to the
active symbol table at the point the error occurred. In other words, errcontext will
contain an array of every variable that existed in the scope the error was triggered
in. User error handler must not modify error context.

If the function returns FALSE then the normal error handler continues.

error_types

Can be used to mask the triggering of the error_handler function just like the
error_reporting ini setting controls which errors are shown. Without this mask set the
error_handler will be called for every error regardless to the setting of the
error_reporting setting.

Return Values

Returns a string containing the previously defined error handler (if any), or NULL on error.
If the previous handler was a class method, this function will return an indexed array with
the class and the method name.

ChangeLog

Version Description

5.2.0 The error handler must return FALSE to
populate $php_errormsg.

5.0.0 The error_types parameter was
introduced.

4.3.0 Instead of a function name, an array
containing an object reference and a
method name can also be supplied as the
error_handler.

4.0.2 Three optional parameters for the
error_handler user function was
introduced. These are the filename, the line
number, and the context.

Examples

Example #282 - Error handling with set_error_handler() and trigger_error()

The example below shows the handling of internal exceptions by triggering errors and
handling them with a user defined function:

<?php

// error handler function

function myErrorHandler($errno, $errstr, $errfile, $errline)

{

 switch ($errno) {

 case E_USER_ERROR:

 echo "My ERROR [$errno] $errstr
\n";

 echo " Fatal error on line $errline in file $errfile";

 echo ", PHP " . PHP_VERSION . " (" . PHP_OS . ")
\n";

 echo "Aborting...
\n";

 exit(1);

 break;

 case E_USER_WARNING:

 echo "My WARNING [$errno] $errstr
\n";

 break;

 case E_USER_NOTICE:

 echo "My NOTICE [$errno] $errstr
\n";

 break;

 default:

 echo "Unknown error type: [$errno] $errstr
\n";

 break;

 }

 /* Don't execute PHP internal error handler */

 return true;

}

// function to test the error handling

function scale_by_log($vect, $scale)

{

 if (!is_numeric($scale) || $scale <= 0) {

 trigger_error("log(x) for x <= 0 is undefined, you used: scale =
$scale", E_USER_ERROR);

 }

 if (!is_array($vect)) {

 trigger_error("Incorrect input vector, array of values expected",
E_USER_WARNING);

 return null;

 }

 $temp = array();

 foreach($vect as $pos => $value) {

 if (!is_numeric($value)) {

 trigger_error("Value at position $pos is not a number, using 0
(zero)", E_USER_NOTICE);

 $value = 0;

 }

 $temp[$pos] = log($scale) * $value;

 }

 return $temp;

}

// set to the user defined error handler

$old_error_handler = set_error_handler("myErrorHandler");

// trigger some errors, first define a mixed array with a non-numeric item

echo "vector a\n";

$a = array(2, 3, "foo", 5.5, 43.3, 21.11);

print_r($a);

// now generate second array

echo "----\nvector b - a notice (b = log(PI) * a)\n";

/* Value at position $pos is not a number, using 0 (zero) */

$b = scale_by_log($a, M_PI);

print_r($b);

// this is trouble, we pass a string instead of an array

echo "----\nvector c - a warning\n";

/* Incorrect input vector, array of values expected */

$c = scale_by_log("not array", 2.3);

var_dump($c); // NULL

// this is a critical error, log of zero or negative number is undefined

echo "----\nvector d - fatal error\n";

/* log(x) for x <= 0 is undefined, you used: scale = $scale" */

$d = scale_by_log($a, -2.5);

var_dump($d); // Never reached

?>

The above example will output something similar to:

vector a

Array

(

 [0] => 2

 [1] => 3

 [2] => foo

 [3] => 5.5

 [4] => 43.3

 [5] => 21.11

)

vector b - a notice (b = log(PI) * a)

My NOTICE [1024] Value at position 2 is not a number, using 0
(zero)

Array

(

 [0] => 2.2894597716988

 [1] => 3.4341896575482

 [2] => 0

 [3] => 6.2960143721717

 [4] => 49.566804057279

 [5] => 24.165247890281

)

vector c - a warning

My WARNING [512] Incorrect input vector, array of values expected

NULL

vector d - fatal error

My ERROR [256] log(x) for x <= 0 is undefined, you used: scale =
-2.5

 Fatal error on line 35 in file trigger_error.php, PHP 5.2.1 (FreeBSD)

Aborting...

See Also

• error_reporting()
• restore_error_handler()
• trigger_error()
• error level constants
• information about the callback type

set_exception_handler

set_exception_handler -- Sets a user-defined exception handler function

Description

string set_exception_handler (callback $exception_handler)

Sets the default exception handler if an exception is not caught within a try/catch block.
Execution will stop after the exception_handler is called.

Parameters

exception_handler

Name of the function to be called when an uncaught exception occurs. This function
must be defined before calling set_exception_handler(). This handler function needs to
accept one parameter, which will be the exception object that was thrown.

Return Values

Returns the name of the previously defined exception handler, or NULL on error. If no
previous handler was defined, NULL is also returned.

Examples

Example #283 - set_exception_handler() example

<?php

function exception_handler($exception) {

 echo "Uncaught exception: " , $exception->getMessage(), "\n";

}

set_exception_handler('exception_handler');

throw new Exception('Uncaught Exception');

echo "Not Executed\n";

?>

See Also

restore_exception_handler(), restore_error_handler(), error_reporting(), information about
the callback type, and PHP 5 Exceptions.

trigger_error

trigger_error -- Generates a user-level error/warning/notice message

Description

bool trigger_error (string $error_msg [, int $error_type])

Used to trigger a user error condition, it can be used by in conjunction with the built-in error
handler, or with a user defined function that has been set as the new error handler (
set_error_handler()).

This function is useful when you need to generate a particular response to an exception at
runtime.

Parameters

error_msg

The designated error message for this error. It's limited to 1024 characters in length.
Any additional characters beyond 1024 will be truncated.

error_type

The designated error type for this error. It only works with the E_USER family of
constants, and will default to E_USER_NOTICE.

Return Values

This function returns FALSE if wrong error_type is specified, TRUE otherwise.

Examples

Example #284 - trigger_error() example

See set_error_handler() for a more extensive example.

<?php

if (assert($divisor == 0)) {

 trigger_error("Cannot divide by zero", E_USER_ERROR);

}

?>

See Also

• error_reporting()
• set_error_handler()
• restore_error_handler()
• The error level constants

user_error

user_error -- Alias of trigger_error()

Description

This function is an alias of: trigger_error().

Object property and method call overloading

Introduction

The purpose of this extension is to allow overloading of object property access and
method calls. Only one function is defined in this extension, overload() which takes the
name of the class that should have this functionality enabled. The class named has to
define appropriate methods if it wants to have this functionality: __get(), __set() and
__call() respectively for getting/setting a property, or calling a method. This way
overloading can be selective. Inside these handler functions the overloading is disabled so
you can access object properties normally.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Warning

This extension is not a part of PHP 5. PHP 5 supports __get(), __set() and __call()
natively. See the Overloading in PHP 5 page for more information.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

In order to use these functions, you must compile PHP with the --enable-overload option.
Starting with PHP 4.3.0 this extension is enabled by default. You can disable overload
support with --disable--overload.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

Builtin support for overload is available with PHP 4.3.0.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Some simple examples on using the overload() function:

Example #285 - Overloading a PHP class

<?php

class OO {

 var $a = 111;

 var $elem = array('b' => 9, 'c' => 42);

 // Callback method for getting a property

 function __get($prop_name, &$prop_value)

 {

 if (isset($this->elem[$prop_name])) {

 $prop_value = $this->elem[$prop_name];

 return true;

 } else {

 return false;

 }

 }

 // Callback method for setting a property

 function __set($prop_name, $prop_value)

 {

 $this->elem[$prop_name] = $prop_value;

 return true;

 }

}

// Here we overload the OO object

overload('OO');

$o = new OO;

echo "\$o->a: $o->a\n"; // print: $o->a: 111

echo "\$o->b: $o->b\n"; // print: $o->b: 9

echo "\$o->c: $o->c\n"; // print: $o->c: 42

echo "\$o->d: $o->d\n"; // print: $o->d:

// add a new item to the $elem array in OO

$o->x = 56;

// instantiate stdclass (it is built-in in PHP 4)

// $val is not overloaded!

$val = new stdclass;

$val->prop = 555;

// Set "a" to be an array with the $val object in it

// But __set() will put this in the $elem array

$o->a = array($val);

var_dump($o->a[0]->prop);

?>

Object overloading Functions

overload

overload -- Enable property and method call overloading for a class

Description

void overload (string $class_name)

The overload() function will enable property and method call overloading for a class
identified by class_name.

Parameters

class_name

The overloaded class name, as a string

Return Values

No value is returned.

Examples

See an example in the introductory section of this part.

Output Buffering Control

Introduction

The Output Control functions allow you to control when output is sent from the script. This
can be useful in several different situations, especially if you need to send headers to the
browser after your script has began outputting data. The Output Control functions do not
affect headers sent using header() or setcookie(), only functions such as echo() and data
between blocks of PHP code.

Note

When upgrading from PHP 4.1.x (and 4.2.x) to 4.3.x due to a bug in earlier versions
you must ensure that implict_flush is OFF in your php.ini, otherwise any output with
ob_start() will not be hidden from output.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Output Control configuration options

Name Default Changeable Changelog

output_buffering "0" PHP_INI_PERDIR

output_handler NULL PHP_INI_PERDIR Available since PHP
4.0.4.

implicit_flush "0" PHP_INI_ALL PHP_INI_PERDIR in
PHP <= 4.2.3.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

output_buffering boolean / integer
You can enable output buffering for all files by setting this directive to 'On'. If you wish
to limit the size of the buffer to a certain size - you can use a maximum number of
bytes instead of 'On', as a value for this directive (e.g., output_buffering=4096). As of
PHP 4.3.5, this directive is always Off in PHP-CLI.

output_handler string
You can redirect all of the output of your scripts to a function. For example, if you set
output_handler to mb_output_handler(), character encoding will be transparently
converted to the specified encoding. Setting any output handler automatically turns on
output buffering.

Note

You cannot use both mb_output_handler() with ob_iconv_handler() and you cannot
use both ob_gzhandler() and zlib.output_compression.

Note

Only built-in functions can be used with this directive. For user defined functions,
use ob_start().

implicit_flush boolean
FALSE by default. Changing this to TRUE tells PHP to tell the output layer to flush
itself automatically after every output block. This is equivalent to calling the PHP
function flush() after each and every call to print() or echo() and each and every HTML
block. When using PHP within an web environment, turning this option on has serious
performance implications and is generally recommended for debugging purposes only.
This value defaults to TRUE when operating under the CLI SAPI. See also
ob_implicit_flush().

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Examples

Example #286 - Output Control example

<?php

ob_start();

echo "Hello\n";

setcookie("cookiename", "cookiedata");

ob_end_flush();

?>

In the above example, the output from echo() would be stored in the output buffer until
ob_end_flush() was called. In the mean time, the call to setcookie() successfully stored a
cookie without causing an error. (You can not normally send headers to the browser after
data has already been sent.)

Output Control Functions

See Also

See also header() and setcookie().

flush

flush -- Flush the output buffer

Description

void flush (void)

Flushes the output buffers of PHP and whatever backend PHP is using (CGI, a web
server, etc). This effectively tries to push all the output so far to the user's browser.

flush() has no effect on the buffering scheme of your web server or the browser on the
client side. Thus you need to call both ob_flush() and flush() to flush the output buffers.

Several servers, especially on Win32, will still buffer the output from your script until it
terminates before transmitting the results to the browser.

Server modules for Apache like mod_gzip may do buffering of their own that will cause
flush() to not result in data being sent immediately to the client.

Even the browser may buffer its input before displaying it. Netscape, for example, buffers
text until it receives an end-of-line or the beginning of a tag, and it won't render tables until
the </table> tag of the outermost table is seen.

Some versions of Microsoft Internet Explorer will only start to display the page after they
have received 256 bytes of output, so you may need to send extra whitespace before
flushing to get those browsers to display the page.

Return Values

No value is returned.

ob_clean

ob_clean -- Clean (erase) the output buffer

Description

void ob_clean (void)

This function discards the contents of the output buffer.

This function does not destroy the output buffer like ob_end_clean() does.

Return Values

No value is returned.

See Also

• ob_flush()
• ob_end_flush()
• ob_end_clean()

ob_end_clean

ob_end_clean -- Clean (erase) the output buffer and turn off output buffering

Description

bool ob_end_clean (void)

This function discards the contents of the topmost output buffer and turns off this output
buffering. If you want to further process the buffer's contents you have to call
ob_get_contents() before ob_end_clean() as the buffer contents are discarded when
ob_end_clean() is called.

Return Values

Returns TRUE on success or FALSE on failure. Reasons for failure are first that you
called the function without an active buffer or that for some reason a buffer could not be
deleted (possible for special buffer).

Errors/Exceptions

If the function fails it generates an E_NOTICE.

ChangeLog

Version Description

4.2.0 The boolean return value was added.

Examples

The following example shows an easy way to get rid of all output buffers:

Example #287 - ob_end_clean() example

<?php

ob_start();

echo 'Text that won\'t get displayed.';

ob_end_clean();

?>

See Also

• ob_start()
• ob_get_contents()
• ob_flush()

ob_end_flush

ob_end_flush -- Flush (send) the output buffer and turn off output buffering

Description

bool ob_end_flush (void)

This function will send the contents of the topmost output buffer (if any) and turn this
output buffer off. If you want to further process the buffer's contents you have to call
ob_get_contents() before ob_end_flush() as the buffer contents are discarded after
ob_end_flush() is called.

Note

This function is similar to ob_get_flush(), except that ob_get_flush() returns the buffer
as a string.

Return Values

Returns TRUE on success or FALSE on failure. Reasons for failure are first that you
called the function without an active buffer or that for some reason a buffer could not be
deleted (possible for special buffer).

Errors/Exceptions

If the function fails it generates an E_NOTICE.

ChangeLog

Version Description

4.2.0 The boolean return value was added.

Examples

Example #288 - ob_end_flush() example

The following example shows an easy way to flush and end all output buffers:

<?php

 while (@ob_end_flush());

?>

See Also

• ob_start()
• ob_get_contents()
• ob_get_flush()
• ob_flush()
• ob_end_clean()

ob_flush

ob_flush -- Flush (send) the output buffer

Description

void ob_flush (void)

This function will send the contents of the output buffer (if any). If you want to further
process the buffer's contents you have to call ob_get_contents() before ob_flush() as the
buffer contents are discarded after ob_flush() is called.

This function does not destroy the output buffer like ob_end_flush() does.

Return Values

No value is returned.

See Also

• ob_get_contents()
• ob_clean()
• ob_end_flush()
• ob_end_clean()

ob_get_clean

ob_get_clean -- Get current buffer contents and delete current output buffer

Description

string ob_get_clean (void)

Gets the current buffer contents and delete current output buffer.

ob_get_clean() essentially executes both ob_get_contents() and ob_end_clean().

Return Values

Returns the contents of the output buffer and end output buffering. If output buffering isn't
active then FALSE is returned.

Examples

Example #289 - A simple ob_get_clean() example

<?php

ob_start();

echo "Hello World";

$out = ob_get_clean();

$out = strtolower($out);

var_dump($out);

?>

The above example will output:

string(11) "hello world"

See Also

• ob_get_contents()
• ob_start()

ob_get_contents

ob_get_contents -- Return the contents of the output buffer

Description

string ob_get_contents (void)

Gets the contents of the output buffer without clearing it.

Return Values

This will return the contents of the output buffer or FALSE, if output buffering isn't active.

Examples

Example #290 - A simple ob_get_contents() example

<?php

ob_start();

echo "Hello ";

$out1 = ob_get_contents();

echo "World";

$out2 = ob_get_contents();

ob_end_clean();

var_dump($out1, $out2);

?>

The above example will output:

string(6) "Hello "

string(11) "Hello World"

See Also

• ob_start()
• ob_get_length()

ob_get_flush

ob_get_flush -- Flush the output buffer, return it as a string and turn off output buffering

Description

string ob_get_flush (void)

ob_get_flush() flushes the output buffer, return it as a string and turns off output buffering.

Note

This function is similar to ob_end_flush(), except that this function returns the buffer as
a string.

Return Values

Returns the output buffer or FALSE if no buffering is active.

Examples

Example #291 - ob_get_flush() example

<?php

//using output_buffering=On

print_r(ob_list_handlers());

//save buffer in a file

$buffer = ob_get_flush();

file_put_contents('buffer.txt', $buffer);

print_r(ob_list_handlers());

?>

The above example will output:

Array

(

 [0] => default output handler

)

Array

(

)

See Also

• ob_end_clean()
• ob_end_flush()
• ob_list_handlers()

ob_get_length

ob_get_length -- Return the length of the output buffer

Description

int ob_get_length (void)

This will return the length of the contents in the output buffer.

Return Values

Returns the length of the output buffer contents or FALSE if no buffering is active.

Examples

Example #292 - A simple ob_get_length() example

<?php

ob_start();

echo "Hello ";

$len1 = ob_get_length();

echo "World";

$len2 = ob_get_length();

ob_end_clean();

echo $len1 . ", ." . $len2;

?>

The above example will output:

6, 11

See Also

• ob_start()
• ob_get_contents()

ob_get_level

ob_get_level -- Return the nesting level of the output buffering mechanism

Description

int ob_get_level (void)

Returns the nesting level of the output buffering mechanism.

Return Values

Returns the level of nested output buffering handlers or zero if output buffering is not
active.

See Also

• ob_start()
• ob_get_contents()

ob_get_status

ob_get_status -- Get status of output buffers

Description

array ob_get_status ([bool $full_status = FALSE])

ob_get_status() returns status information on either the top level output buffer or all active
output buffer levels if full_status is set to TRUE.

Parameters

full_status

TRUE to return all active output buffer levels. If FALSE or not set, only the top level
output buffer is returned.

Return Values

If called without the full_status parameter or with full_status = FALSE a simple array
with the following elements is returned:

Array

(

 [level] => 2

 [type] => 0

 [status] => 0

 [name] => URL-Rewriter

 [del] => 1

)

Simple ob_get_status() results
Key: level
Value: Output nesting level
Key: type
Value: PHP_OUTPUT_HANDLER_INTERNAL (0) or PHP_OUTPUT_HANDLER_USER
(1)
Key: status
Value: One of PHP_OUTPUT_HANDLER_START (0), PHP_OUTPUT_HANDLER_CONT
(1) or PHP_OUTPUT_HANDLER_END (2)
Key: name
Value: Name of active output handler or ' default output handler' if none is set
Key: del
Value: Erase-flag as set by ob_start()

If called with full_status = TRUE an array with one element for each active output buffer

level is returned. The output level is used as key of the top level array and each array
element itself is another array holding status information on one active output level.

Array

(

 [0] => Array

 (

 [chunk_size] => 0

 [size] => 40960

 [block_size] => 10240

 [type] => 1

 [status] => 0

 [name] => default output handler

 [del] => 1

)

 [1] => Array

 (

 [chunk_size] => 0

 [size] => 40960

 [block_size] => 10240

 [type] => 0

 [buffer_size] => 0

 [status] => 0

 [name] => URL-Rewriter

 [del] => 1

)

)

The full output contains these additional elements:
Full ob_get_status() results
Key: chunk_size
Value: Chunk size as set by ob_start()
Key: size
Value:...
Key: blocksize
Value:...

See Also

• ob_get_level()
• ob_list_handlers()

ob_gzhandler

ob_gzhandler -- ob_start callback function to gzip output buffer

Description

string ob_gzhandler (string $buffer, int $mode)

ob_gzhandler() is intended to be used as a callback function for ob_start() to help facilitate
sending gz-encoded data to web browsers that support compressed web pages. Before
ob_gzhandler() actually sends compressed data, it determines what type of content
encoding the browser will accept ("gzip", "deflate" or none at all) and will return its output
accordingly. All browsers are supported since it's up to the browser to send the correct
header saying that it accepts compressed web pages. If a browser doesn't support
compressed pages this function returns FALSE.

Parameters

buffer

mode

Return Values

ChangeLog

Version Description

4.0.5 The mode parameter was added.

Examples

Example #293 - ob_gzhandler() example

<?php

ob_start("ob_gzhandler");

?>

<html>

<body>

<p>This should be a compressed page.</p>

</html>

<body>

Notes

Note

ob_gzhandler() requires the zlib extension.

Note

You cannot use both ob_gzhandler() and zlib.output_compression. Also note that
using zlib.output_compression is preferred over ob_gzhandler().

See Also

• ob_start()
• ob_end_flush()

ob_implicit_flush

ob_implicit_flush -- Turn implicit flush on/off

Description

void ob_implicit_flush ([int $flag])

ob_implicit_flush() will turn implicit flushing on or off. Implicit flushing will result in a flush
operation after every output call, so that explicit calls to flush() will no longer be needed.

Parameters

flag

TRUE to turn implicit flushing on, FALSE otherwise. Defaults to TRUE.

Return Values

No value is returned.

See Also

• flush()
• ob_start()
• ob_end_flush()

ob_list_handlers

ob_list_handlers -- List all output handlers in use

Description

array ob_list_handlers (void)

Lists all output handlers in use.

Return Values

This will return an array with the output handlers in use (if any). If output_buffering is
enabled or an anonymous function was used with ob_start(), ob_list_handlers() will return
"default output handler".

Examples

Example #294 - ob_list_handlers() example

<?php

//using output_buffering=On

print_r(ob_list_handlers());

ob_end_flush();

ob_start("ob_gzhandler");

print_r(ob_list_handlers());

ob_end_flush();

// anonymous functions

ob_start(create_function('$string', 'return $string;'));

print_r(ob_list_handlers());

ob_end_flush();

?>

The above example will output:

Array

(

 [0] => default output handler

)

Array

(

 [0] => ob_gzhandler

)

Array

(

 [0] => default output handler

)

See Also

• ob_end_clean()
• ob_end_flush()
• ob_get_flush()
• ob_start()

ob_start

ob_start -- Turn on output buffering

Description

bool ob_start ([callback $output_callback [, int $chunk_size [, bool $erase]]])

This function will turn output buffering on. While output buffering is active no output is sent
from the script (other than headers), instead the output is stored in an internal buffer.

The contents of this internal buffer may be copied into a string variable using
ob_get_contents(). To output what is stored in the internal buffer, use ob_end_flush().
Alternatively, ob_end_clean() will silently discard the buffer contents.

Warning

Some web servers (e.g. Apache) change the working directory of a script when calling
the callback function. You can change it back by e.g.
chdir(dirname($_SERVER['SCRIPT_FILENAME'])) in the callback function.

Output buffers are stackable, that is, you may call ob_start() while another ob_start() is
active. Just make sure that you call ob_end_flush() the appropriate number of times. If
multiple output callback functions are active, output is being filtered sequentially through
each of them in nesting order.

Parameters

output_callback

An optional output_callback function may be specified. This function takes a string as
a parameter and should return a string. The function will be called when
ob_end_flush() is called, or when the output buffer is flushed to the browser at the end
of the request. When output_callback is called, it will receive the contents of the
output buffer as its parameter and is expected to return a new output buffer as a result,
which will be sent to the browser. If the output_callback is not a callable function, this
function will return FALSE. If the callback function has two parameters, the second
parameter is filled with a bit-field consisting of PHP_OUTPUT_HANDLER_START,
PHP_OUTPUT_HANDLER_CONT and PHP_OUTPUT_HANDLER_END. If
output_callback returns FALSE original input is sent to the browser. The
output_callback parameter may be bypassed by passing a NULL value.
ob_end_clean(), ob_end_flush(), ob_clean(), ob_flush() and ob_start() may not be
called from a callback function. If you call them from callback function, the behavior is
undefined. If you would like to delete the contents of a buffer, return "" (a null string)
from callback function. You can't even call functions using the output buffering
functions like print_r($expression, true) or highlight_file($filename, true) from a
callback function.

Note

In PHP 4.0.4, ob_gzhandler() was introduced to facilitate sending gz-encoded data
to web browsers that support compressed web pages. ob_gzhandler() determines
what type of content encoding the browser will accept and will return its output
accordingly.

chunk_size

If the optional parameter chunk_size is passed, the buffer will be flushed after any
output call which causes the buffer's length to equal or exceed chunk_size. Default
value 0 means that the function is called only in the end, other special value 1 sets
chunk_size to 4096.

erase

If the optional parameter erase is set to FALSE, the buffer will not be deleted until the
script finishes (as of PHP 4.3.0).

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.2 This function was changed to return FALSE
in case the passed output_callback can
not be executed.

Examples

Example #295 - User defined callback function example

<?php

function callback($buffer)

{

 // replace all the apples with oranges

 return (str_replace("apples", "oranges", $buffer));

}

ob_start("callback");

?>

<html>

<body>

<p>It's like comparing apples to oranges.</p>

</body>

</html>

<?php

ob_end_flush();

?>

The above example will output:

<html>

<body>

<p>It's like comparing oranges to oranges.</p>

</body>

</html>

See Also

• ob_get_contents()
• ob_end_clean()
• ob_end_flush()
• ob_implicit_flush()
• ob_gzhandler()
• ob_iconv_handler()
• mb_output_handler()
• ob_tidyhandler()

output_add_rewrite_var

output_add_rewrite_var -- Add URL rewriter values

Description

bool output_add_rewrite_var (string $name, string $value)

This function adds another name/value pair to the URL rewrite mechanism. The name and
value will be added to URLs (as GET parameter) and forms (as hidden input fields) the
same way as the session ID when transparent URL rewriting is enabled with
session.use_trans_sid. Please note that absolute URLs (http://example.com/..) aren't
rewritten.

This function's behavior is controlled by the url_rewriter.tags php.ini parameter.

Note

Calling this function will implicitly start output buffering if it is not active already.

Parameters

name

The variable name.

value

The variable value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #296 - output_add_rewrite_var() example

<?php

output_add_rewrite_var('var', 'value');

// some links

echo 'link

link2';

// a form

echo '<form action="script.php" method="post">

<input type="text" name="var2" />

</form>';

print_r(ob_list_handlers());

?>

The above example will output:

link

link2

<form action="script.php" method="post">

<input type="hidden" name="var" value="value" />

<input type="text" name="var2" />

</form>

Array

(

 [0] => URL-Rewriter

)

See Also

• output_reset_rewrite_vars()
• ob_flush()
• ob_list_handlers()

output_reset_rewrite_vars

output_reset_rewrite_vars -- Reset URL rewriter values

Description

bool output_reset_rewrite_vars (void)

This function resets the URL rewriter and removes all rewrite variables previously set by
the output_add_rewrite_var() function or the session mechanism (if session.use_trans_sid
was set on session_start()).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #297 - output_reset_rewrite_vars() example

<?php

session_start();

output_add_rewrite_var('var', 'value');

echo 'link';

ob_flush();

output_reset_rewrite_vars();

echo 'link';

?>

The above example will output:

link

link

See Also

• output_add_rewrite_var()
• ob_flush()
• ob_list_handlers()
• session_start()

PHP Options and Information

Introduction

This functions enable you to get a lot of information about PHP itself, e.g. runtime
configuration, loaded extensions, version and much more. You'll also find functions to set
options for your running PHP. The probably best known function of PHP - phpinfo() - can
be found here.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PHP Options/Inf Configuration Options

Name Default Changeable Changelog

assert.active "1" PHP_INI_ALL

assert.bail "0" PHP_INI_ALL

assert.warning "1" PHP_INI_ALL

assert.callback NULL PHP_INI_ALL

assert.quiet_eval "0" PHP_INI_ALL

enable_dl "1" PHP_INI_SYSTEM Removed in PHP
6.0.0.

max_execution_time "30" PHP_INI_ALL

max_input_time "-1" PHP_INI_PERDIR Available since PHP
4.3.0.

max_input_nesting_l
evel

"64" PHP_INI_PERDIR Available since PHP
4.4.8. Removed in
PHP 5.0.0.

magic_quotes_gpc "1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3. Removed in
PHP 6.0.0.

magic_quotes_runtim
e

"0" PHP_INI_ALL Removed in PHP
6.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

assert.active boolean
Enable assert() evaluation.

assert.bail boolean
Terminate script execution on failed assertions.

assert.warning boolean
Issue a PHP warning for each failed assertion.

assert.callback string
user function to call on failed assertions

assert.quiet_eval boolean
Use the current setting of error_reporting() during assertion expression evaluation. If
enabled, no errors are shown (implicit error_reporting(0)) while evaluation. If disabled,
errors are shown according to the settings of error_reporting()

enable_dl boolean
This directive is really only useful in the Apache module version of PHP. You can turn
dynamic loading of PHP extensions with dl() on and off per virtual server or per
directory. The main reason for turning dynamic loading off is security. With dynamic
loading, it's possible to ignore all open_basedir restrictions. The default is to allow
dynamic loading, except when using safe mode. In safe mode, it's always impossible
to use dl().

max_execution_time integer
This sets the maximum time in seconds a script is allowed to run before it is terminated
by the parser. This helps prevent poorly written scripts from tying up the server. The
default setting is 30. The maximum execution time is not affected by system calls,
stream operations etc. Please see the set_time_limit() function for more details. You
can not change this setting with ini_set() when running in safe mode. The only
workaround is to turn off safe mode or by changing the time limit in the php.ini. Your
web server can have other timeouts. E.g. Apache has Timeout directive, IIS has CGI
timeout function, both default to 300 seconds. See the web server documentation for
meaning of it.

max_input_time integer
This sets the maximum time in seconds a script is allowed to parse input data, like
POST, GET and file uploads.

max_input_nesting_level integer
Sets the max nesting depth of input variables (i.e. $_GET, $_POST..)

magic_quotes_gpc boolean

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on
this feature is highly discouraged.

Sets the magic_quotes state for GPC (Get/Post/Cookie) operations. When
magic_quotes are on, all ' (single-quote), " (double quote), \ (backslash) and NUL's are
escaped with a backslash automatically.

Note

In PHP 4, also $_ENV variables are escaped.

Note

If the magic_quotes_sybase directive is also ON it will completely override
magic_quotes_gpc. Having both directives enabled means only single quotes are
escaped as ''. Double quotes, backslashes and NUL's will remain untouched and
unescaped.

See also get_magic_quotes_gpc()

magic_quotes_runtime boolean

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on
this feature is highly discouraged.

If magic_quotes_runtime is enabled, most functions that return data from any sort of
external source including databases and text files will have quotes escaped with a
backslash. If magic_quotes_sybase is also on, a single-quote is escaped with a
single-quote instead of a backslash.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are always available as part of the PHP core.

Pre-defined phpcredits() constants

Constant Value Description

CREDITS_GROUP 1 A list of the core developers

CREDITS_GENERAL 2 General credits: Language
design and concept, PHP
authors and SAPI module.

CREDITS_SAPI 4 A list of the server API
modules for PHP, and their
authors.

CREDITS_MODULES 8 A list of the extension
modules for PHP, and their
authors.

CREDITS_DOCS 16 The credits for the
documentation team.

CREDITS_FULLPAGE 32 Usually used in combination
with the other flags. Indicates
that a complete stand-alone
HTML page needs to be
printed including the
information indicated by the
other flags.

CREDITS_QA 64 The credits for the quality
assurance team.

CREDITS_ALL -1 All the credits, equivalent to
using: CREDITS_DOCS +
CREDITS_GENERAL +
CREDITS_GROUP +
CREDITS_MODULES +
CREDITS_QA
CREDITS_FULLPAGE. It
generates a complete
stand-alone HTML page with
the appropriate tags. This is
the default value.

phpinfo() constants

Constant Value Description

INFO_GENERAL 1 The configuration line,
php.ini location, build date,
Web Server, System and
more.

INFO_CREDITS 2 PHP Credits. See also
phpcredits().

INFO_CONFIGURATION 4 Current Local and Master
values for PHP directives.
See also ini_get().

INFO_MODULES 8 Loaded modules and their
respective settings.

INFO_ENVIRONMENT 16 Environment Variable
information that's also
available in $_ENV.

INFO_VARIABLES 32 Shows all predefined
variables from EGPCS
(Environment, GET, POST,
Cookie, Server).

INFO_LICENSE 64 PHP License information.
See also the » license faq.

INFO_ALL -1 Shows all of the above. This
is the default value.

ASSERT_ACTIVE (integer)

ASSERT_CALLBACK (integer)

ASSERT_BAIL (integer)

ASSERT_WARNING (integer)

ASSERT_QUIET_EVAL (integer)

http://www.php.net/license/

PHP Options/Info Functions

assert_options

assert_options -- Set/get the various assert flags

Description

mixed assert_options (int $what [, mixed $value])

Set the various assert() control options or just query their current settings.

Parameters

what

Assert Options

option ini-parameter default description

ASSERT_ACTIVE assert.active 1 enable assert()
evaluation

ASSERT_WARNING assert.warning 1 issue a PHP warning
for each failed
assertion

ASSERT_BAIL assert.bail 0 terminate execution
on failed assertions

ASSERT_QUIET_EV
AL

assert.quiet_eval 0 disable
error_reporting during
assertion expression
evaluation

ASSERT_CALLBAC
K

assert.callback (NULL) user function to call
on failed assertions

value

An optional new value for the option.

Return Values

Returns the original setting of any option or FALSE on errors.

assert

assert -- Checks if assertion is FALSE

Description

bool assert (mixed $assertion)

assert() will check the given assertion and take appropriate action if its result is FALSE.

If the assertion is given as a string it will be evaluated as PHP code by assert(). The
advantages of a string assertion are less overhead when assertion checking is off and
messages containing the assertion expression when an assertion fails. This means that if
you pass a boolean condition as assertion this condition will not show up as parameter to the
assertion function which you may have defined with the assert_options() function, the
condition is converted to a string before calling that handler function, and the boolean FALSE
is converted as the empty string.

Assertions should be used as a debugging feature only. You may use them for sanity-checks
that test for conditions that should always be TRUE and that indicate some programming
errors if not or to check for the presence of certain features like extension functions or certain
system limits and features.

Assertions should not be used for normal runtime operations like input parameter checks. As a
rule of thumb your code should always be able to work correctly if assertion checking is not
activated.

The behavior of assert() may be configured by assert_options() or by .ini-settings described in
that functions manual page.

The assert_options() function and/or ASSERT_CALLBACK configuration directive allow a
callback function to be set to handle failed assertions.

assert() callbacks are particularly useful for building automated test suites because they allow
you to easily capture the code passed to the assertion, along with information on where the
assertion was made. While this information can be captured via other methods, using
assertions makes it much faster and easier!

The callback function should accept three arguments. The first argument will contain the file
the assertion failed in. The second argument will contain the line the assertion failed on and
the third argument will contain the expression that failed (if any - literal values such as 1 or
"two" will not be passed via this argument)

Parameters

assertion

The assertion.

Return Values

FALSE if the assertion is false, TRUE otherwise.

Examples

Example #298 - Handle a failed assertion with a custom handler

<?php

// Active assert and make it quiet

assert_options(ASSERT_ACTIVE, 1);

assert_options(ASSERT_WARNING, 0);

assert_options(ASSERT_QUIET_EVAL, 1);

// Create a handler function

function my_assert_handler($file, $line, $code)

{

 echo "<hr>Assertion Failed:

 File '$file'

 Line '$line'

 Code '$code'
<hr />";

}

// Set up the callback

assert_options(ASSERT_CALLBACK, 'my_assert_handler');

// Make an assertion that should fail

assert('mysql_query("")');

?>

dl

dl -- Loads a PHP extension at runtime

Description

int dl (string $library)

Loads the PHP extension given by the parameter library.

Use extension_loaded() to test whether a given extension is already available or not. This
works on both built-in extensions and dynamically loaded ones (either through php.ini or dl()).

Parameters

library

This parameter is only the filename of the extension to load which also depends on your
platform. For example, the sockets extension (if compiled as a shared module, not the
default!) would be called sockets.so on Unix platforms whereas it is called php_sockets.dll
on the Windows platform. The directory where the extension is loaded from depends on
your platform: Windows - If not explicitly set in the php.ini, the extension is loaded from
c:\php4\extensions\ by default. Unix - If not explicitly set in the php.ini, the default
extension directory depends on

• whether PHP has been built with --enable-debug or not

• whether PHP has been built with (experimental) ZTS (Zend Thread Safety) support or
not

• the current internal ZEND_MODULE_API_NO (Zend internal module API number,
which is basically the date on which a major module API change happened, e.g.
20010901)

Taking into account the above, the directory then defaults to
<install-dir>/lib/php/extensions/ <debug-or-not>-<zts-or-not>-ZEND_MODULE_API_NO,
e.g. /usr/local/php/lib/php/extensions/debug-non-zts-20010901 or
/usr/local/php/lib/php/extensions/no-debug-zts-20010901.

Return Values

Returns TRUE on success or FALSE on failure. If the functionality of loading modules is not
available (see Note) or has been disabled (either by turning it off enable_dl or by enabling safe
mode in php.ini) an E_ERROR is emitted and execution is stopped. If dl() fails because the
specified library couldn't be loaded, in addition to FALSE an E_WARNING message is
emitted.

Examples

Example #299 - dl() examples

<?php

// Example loading an extension based on OS

if (!extension_loaded('sqlite')) {

 if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') {

 dl('php_sqlite.dll');

 } else {

 dl('sqlite.so');

 }

}

// Or, the PHP_SHLIB_SUFFIX constant is available as of PHP 4.3.0

if (!extension_loaded('sqlite')) {

 $prefix = (PHP_SHLIB_SUFFIX === 'dll') ? 'php_' : '';

 dl($prefix . 'sqlite.' . PHP_SHLIB_SUFFIX);

}

?>

Notes

Note

dl() is not supported in multithreaded Web servers. Use the extensions statement in your
php.ini when operating under such an environment. However, the CGI and CLI build are
not affected !

Note

As of PHP 5, the dl() function is deprecated in every SAPI except CLI. Use Extension
Loading Directives method instead.

Note

Since PHP 6 this function is disabled in all SAPIs, except CLI, CGI and embed.

Note

dl() is case sensitive on Unix platforms.

Note

This function is disabled when PHP is running in safe mode.

See Also

• Extension Loading Directives
• extension_loaded()

extension_loaded

extension_loaded -- Find out whether an extension is loaded

Description

bool extension_loaded (string $name)

Finds out whether the extension is loaded.

Parameters

name

The extension name. You can see the names of various extensions by using phpinfo() or if
you're using the CGI or CLI version of PHP you can use the -m switch to list all available
extensions:
$ php -m

[PHP Modules]

xml

tokenizer

standard

sockets

session

posix

pcre

overload

mysql

mbstring

ctype

[Zend Modules]

Return Values

Returns TRUE if the extension identified by name is loaded, FALSE otherwise.

Examples

Example #300 - extension_loaded() example

<?php

if (!extension_loaded('gd')) {

 if (!dl('gd.so')) {

 exit;

 }

}

?>

Notes

Note

extension_loaded() uses the internal extension name to test whether a certain extension is
available or not. Most internal extension names are written in lower case but there may be
extension available which also use uppercase letters. Be warned that this function
compares case sensitive !

See Also

• get_loaded_extensions()
• get_extension_funcs()
• phpinfo()
• dl()

get_cfg_var

get_cfg_var -- Gets the value of a PHP configuration option

Description

string get_cfg_var (string $option)

Gets the value of a PHP configuration option.

This function will not return configuration information set when the PHP was compiled, or read
from an Apache configuration file.

To check whether the system is using a configuration file, try retrieving the value of the
cfg_file_path configuration setting. If this is available, a configuration file is being used.

Parameters

option

The configuration option name.

Return Values

Returns the current value of the PHP configuration variable specified by varname, or FALSE if
an error occurs.

See Also

• ini_get()
• ini_get_all()

get_current_user

get_current_user -- Gets the name of the owner of the current PHP script

Description

string get_current_user (void)

Returns the name of the owner of the current PHP script.

Return Values

Returns the username as a string.

See Also

• getmyuid()
• getmygid()
• getmypid()
• getmyinode()
• getlastmod()

get_defined_constants

get_defined_constants -- Returns an associative array with the names of all the constants and
their values

Description

array get_defined_constants ([mixed $categorize])

Returns the names and values of all the constants currently defined. This includes those
created by extensions as well as those created with the define() function.

Parameters

categorize

May be passed, causing this function to return a multi-dimensional array with categories in
the keys of the first dimension and constants and their values in the second dimension.

<?php

define("MY_CONSTANT", 1);

print_r(get_defined_constants(true));

?>

The above example will output something similar to:

Array

(

 [internal] => Array

 (

 [E_ERROR] => 1

 [E_WARNING] => 2

 [E_PARSE] => 4

 [E_NOTICE] => 8

 [E_CORE_ERROR] => 16

 [E_CORE_WARNING] => 32

 [E_COMPILE_ERROR] => 64

 [E_COMPILE_WARNING] => 128

 [E_USER_ERROR] => 256

 [E_USER_WARNING] => 512

 [E_USER_NOTICE] => 1024

 [E_ALL] => 2047

 [TRUE] => 1

)

 [pcre] => Array

 (

 [PREG_PATTERN_ORDER] => 1

 [PREG_SET_ORDER] => 2

 [PREG_OFFSET_CAPTURE] => 256

 [PREG_SPLIT_NO_EMPTY] => 1

 [PREG_SPLIT_DELIM_CAPTURE] => 2

 [PREG_SPLIT_OFFSET_CAPTURE] => 4

 [PREG_GREP_INVERT] => 1

)

 [user] => Array

 (

 [MY_CONSTANT] => 1

)

)

Note

The value of the categorize parameter is irrelevant, only its presence is considered.

Return Values

ChangeLog

Version Description

5.0.0 The categorize parameter was added.

Examples

Example #301 - get_defined_constants() Example

<?php

print_r(get_defined_constants());

?>

The above example will output something similar to:

Array

(

 [E_ERROR] => 1

 [E_WARNING] => 2

 [E_PARSE] => 4

 [E_NOTICE] => 8

 [E_CORE_ERROR] => 16

 [E_CORE_WARNING] => 32

 [E_COMPILE_ERROR] => 64

 [E_COMPILE_WARNING] => 128

 [E_USER_ERROR] => 256

 [E_USER_WARNING] => 512

 [E_USER_NOTICE] => 1024

 [E_ALL] => 2047

 [TRUE] => 1

)

See Also

• defined()
• get_loaded_extensions()
• get_defined_functions()
• get_defined_vars()

get_extension_funcs

get_extension_funcs -- Returns an array with the names of the functions of a module

Description

array get_extension_funcs (string $module_name)

This function returns the names of all the functions defined in the module indicated by
module_name.

Parameters

module_name

The module name.

Note

This parameter must be in lowercase.

Return Values

Returns an array with all the functions, or FALSE if module_name is not a valid extension.

Examples

Example #302 - Prints the XML functions

<?php

print_r(get_extension_funcs("xml"));

?>

The above example will output something similar to:

Array

(

 [0] => xml_parser_create

 [1] => xml_parser_create_ns

 [2] => xml_set_object

 [3] => xml_set_element_handler

 [4] => xml_set_character_data_handler

 [5] => xml_set_processing_instruction_handler

 [6] => xml_set_default_handler

 [7] => xml_set_unparsed_entity_decl_handler

 [8] => xml_set_notation_decl_handler

 [9] => xml_set_external_entity_ref_handler

 [10] => xml_set_start_namespace_decl_handler

 [11] => xml_set_end_namespace_decl_handler

 [12] => xml_parse

 [13] => xml_parse_into_struct

 [14] => xml_get_error_code

 [15] => xml_error_string

 [16] => xml_get_current_line_number

 [17] => xml_get_current_column_number

 [18] => xml_get_current_byte_index

 [19] => xml_parser_free

 [20] => xml_parser_set_option

 [21] => xml_parser_get_option

 [22] => utf8_encode

 [23] => utf8_decode

)

See Also

• get_loaded_extensions()

get_include_path

get_include_path -- Gets the current include_path configuration option

Description

string get_include_path (void)

Gets the current include_path configuration option value.

Return Values

Returns the path, as a string.

Examples

Example #303 - get_include_path() example

<?php

// Works as of PHP 4.3.0

echo get_include_path();

// Works in all PHP versions

echo ini_get('include_path');

?>

See Also

• ini_get()
• restore_include_path()
• set_include_path()
• include()

get_included_files

get_included_files -- Returns an array with the names of included or required files

Description

array get_included_files (void)

Gets the names of all files that have been included using include(), include_once(),
require() or require_once().

Return Values

Returns an array of the names of all files.

The script originally called is considered an "included file," so it will be listed together with
the files referenced by include() and family.

Files that are included or required multiple times only show up once in the returned array.

ChangeLog

Version Description

4.0.1 In PHP 4.0.1 and previous versions this
function assumed that the required files
ended in the extension.php; other
extensions would not be returned. The array
returned by get_included_files() was an
associative array and only listed files
included by include() and include_once().

Examples

Example #304 - get_included_files() example

<?php

// This file is abc.php

include 'test1.php';

include_once 'test2.php';

require 'test3.php';

require_once 'test4.php';

$included_files = get_included_files();

foreach ($included_files as $filename) {

 echo "$filename\n";

}

?>

The above example will output:

abc.php

test1.php

test2.php

test3.php

test4.php

Notes

Note

Files included using the auto_prepend_file configuration directive are not included in
the returned array.

See Also

• include()
• include_once()
• require()
• require_once()
• get_required_files()

get_loaded_extensions

get_loaded_extensions -- Returns an array with the names of all modules compiled and
loaded

Description

array get_loaded_extensions ([bool $zend_extensions = FALSE])

This function returns the names of all the modules compiled and loaded in the PHP
interpreter.

Parameters

zend_extensions

Return zend_extensions or not, defaults to FALSE (do not list zend_extensions).

Return Values

Returns an indexed array of all the modules names.

ChangeLog

Version Description

5.2.4 The optional zend_extensions parameter
was added

Examples

Example #305 - get_loaded_extensions() Example

<?php

print_r(get_loaded_extensions());

?>

The above example will output something similar to:

Array

(

 [0] => xml

 [1] => wddx

 [2] => standard

 [3] => session

 [4] => posix

 [5] => pgsql

 [6] => pcre

 [7] => gd

 [8] => ftp

 [9] => db

 [10] => calendar

 [11] => bcmath

)

See Also

• get_extension_funcs()
• extension_loaded()
• dl()
• phpinfo()

get_magic_quotes_gpc

get_magic_quotes_gpc -- Gets the current configuration setting of magic quotes gpc

Description

int get_magic_quotes_gpc (void)

Returns the current configuration setting of magic_quotes_gpc

Keep in mind that the setting magic_quotes_gpc will not work at runtime.

For more information about magic_quotes, see this security section.

Return Values

Returns 0 if magic quotes gpc are off, 1 otherwise.

Examples

Example #306 - get_magic_quotes_gpc() example

<?php

echo get_magic_quotes_gpc(); // 1

echo $_POST['lastname']; // O\'reilly

echo addslashes($_POST['lastname']); // O\\\'reilly

if (!get_magic_quotes_gpc()) {

 $lastname = addslashes($_POST['lastname']);

} else {

 $lastname = $_POST['lastname'];

}

echo $lastname; // O\'reilly

$sql = "INSERT INTO lastnames (lastname) VALUES ('$lastname')";

?>

Notes

Note

If the directive magic_quotes_sybase is ON it will completely override
magic_quotes_gpc. So even when get_magic_quotes_gpc() returns TRUE neither
double quotes, backslashes or NUL's will be escaped. Only single quotes will be
escaped. In this case they'll look like: ''

See Also

• addslashes()
• stripslashes()
• get_magic_quotes_runtime()
• ini_get()

get_magic_quotes_runtime

get_magic_quotes_runtime -- Gets the current active configuration setting of
magic_quotes_runtime

Description

int get_magic_quotes_runtime (void)

Returns the current active configuration setting of magic_quotes_runtime.

Return Values

Returns 0 if magic quotes runtime is off, 1 otherwise.

See Also

• get_magic_quotes_gpc()
• set_magic_quotes_runtime()

get_required_files

get_required_files -- Alias of get_included_files()

Description

This function is an alias of: get_included_files().

getenv

getenv -- Gets the value of an environment variable

Description

string getenv (string $varname)

Gets the value of an environment variable.

You can see a list of all the environmental variables by using phpinfo(). You can find out
what many of them mean by taking a look at the » CGI specification, specifically the
» page on environmental variables.

Parameters

varname

The variable name.

Return Values

Returns the value of the environment variable varname, or FALSE on an error.

Examples

Example #307 - getenv() Example

<?php

// Example use of getenv()

$ip = getenv('REMOTE_ADDR');

// Or simply use a Superglobal ($_SERVER or $_ENV)

$ip = $_SERVER['REMOTE_ADDR'];

?>

See Also

• putenv()
• apache_getenv()
• Superglobals

http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

getlastmod

getlastmod -- Gets time of last page modification

Description

int getlastmod (void)

Gets the time of the last modification of the current page.

If you're interested in getting the last modification time of a different file, consider using
filemtime().

Return Values

Returns the time of the last modification of the current page. The value returned is a Unix
timestamp, suitable for feeding to date(). Returns FALSE on error.

Examples

Example #308 - getlastmod() example

<?php

// outputs e.g. 'Last modified: March 04 1998 20:43:59.'

echo "Last modified: " . date ("F d Y H:i:s.", getlastmod());

?>

See Also

• date()
• getmyuid()
• getmygid()
• get_current_user()
• getmyinode()
• getmypid()
• filemtime()

getmygid

getmygid -- Get PHP script owner's GID

Description

int getmygid (void)

Gets the group ID of the current script.

Return Values

Returns the group ID of the current script, or FALSE on error.

See Also

• getmyuid()
• getmypid()
• get_current_user()
• getmyinode()
• getlastmod()

getmyinode

getmyinode -- Gets the inode of the current script

Description

int getmyinode (void)

Gets the inode of the current script.

Return Values

Returns the current script's inode as an integer, or FALSE on error.

See Also

• getmygid()
• getmyuid()
• getmypid()
• get_current_user()
• getlastmod()

getmypid

getmypid -- Gets PHP's process ID

Description

int getmypid (void)

Gets the current PHP process ID.

Return Values

Returns the current PHP process ID, or FALSE on error.

Notes

Warning

Process IDs are not unique, thus they are a weak entropy source. We recommend
against relying on pids in security-dependent contexts.

See Also

• getmygid()
• getmyuid()
• get_current_user()
• getmyinode()
• getlastmod()

getmyuid

getmyuid -- Gets PHP script owner's UID

Description

int getmyuid (void)

Gets the user ID of the current script.

Return Values

Returns the user ID of the current script, or FALSE on error.

See Also

• getmygid()
• getmypid()
• get_current_user()
• getmyinode()
• getlastmod()

getopt

getopt -- Gets options from the command line argument list

Description

array getopt (string $options [, array $longopts])

Parses options passed to the script.

Parameters

options

Each character in this string will be used as option characters and matched against
options passed to the script starting with a single hyphen (-). For example, an option
string "x" recognizes an option -x.

longopts

An array of options. Each element in this array will be used as option strings and
matched against options passed to the script starting with two hyphens (--). For
example, an longopts element "opt" recognizes an option --opt.

Note

Prior to PHP5.3.0 this parameter was only available on few systems

The options parameter may contain the following elements:

• Individual characters (do not accept values)
• Characters followed by a colon (parameter requires value)
• Characters followed by two colons (optional value)

Option values are the first argument after the string. It does not matter if a value has
leading white space or not.

Note

Optional values do not accept " " (space) as a seperator.

Note

The format for the options and longopts is almost the same, the only difference is
that longopts takes an array of options (where each element is the option) where as

options takes a string (where each character is the option).

Return Values

This function will return an array of option / argument pairs or FALSE on failure.

ChangeLog

Version Description

5.3.0 Added support for "=" as argument/value
separator.

5.3.0 Added support for optional values (specified
with "::").

5.3.0 This function is no longer system dependent
and works on Windows too.

Examples

Example #309 - getopt() Example

<?php

$options = getopt("f:hp:");

var_dump($options);

?>

Running the above script with php script.php -fvalue -h will output:

array(2) {

 ["f"]=>

 string(5) "value"

 ["h"]=>

 bool(false)

}

Example #310 - getopt() Example#2

<?php

$shortopts = "";

$shortopts .= "f:"; // Required value

$shortopts .= "v::"; // Optional value

$shortopts .= "abc"; // These options do not accept values

$longopts = array(

 "required:", // Required value

 "optional::", // Optional value

 "option", // No value

 "opt", // No value

);

$options = getopt($shortopts, $longopts);

var_dump($options);

?>

Running the above script with php script.php -f "value for f" -v -a --required value
--optional="optional value" --option will output:

array(6) {

 ["f"]=>

 string(11) "value for f"

 ["v"]=>

 bool(false)

 ["a"]=>

 bool(false)

 ["required"]=>

 string(5) "value"

 ["optional"]=>

 string(14) "optional value"

 ["option"]=>

 bool(false)

}

Example #311 - getopt() Example#3

Passing multiple options as one

<?php

$options = getopt("abc");

var_dump($options);

?>

Running the above script with php script.php -aaac will output:

array(2) {

 ["a"]=>

 array(3) {

 [0]=>

 bool(false)

 [1]=>

 bool(false)

 [2]=>

 bool(false)

 }

 ["c"]=>

 bool(false)

}

Notes

Note

The register_argc_argv option must be enabled for this function to work

getrusage

getrusage -- Gets the current resource usages

Description

array getrusage ([int $who])

This is an interface to getrusage(2). It gets data returned from the system call.

Parameters

who

If who is 1, getrusage will be called with RUSAGE_CHILDREN.

Return Values

Returns an associative array containing the data returned from the system call. All entries
are accessible by using their documented field names.

Examples

Example #312 - getrusage() example

<?php

$dat = getrusage();

echo $dat["ru_nswap"]; // number of swaps

echo $dat["ru_majflt"]; // number of page faults

echo $dat["ru_utime.tv_sec"]; // user time used (seconds)

echo $dat["ru_utime.tv_usec"]; // user time used (microseconds)

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

• Your system's man page on getrusage(2)

ini_alter

ini_alter -- Alias of ini_set()

Description

This function is an alias of: ini_set().

ini_get_all

ini_get_all -- Gets all configuration options

Description

array ini_get_all ([string $extension [, bool $details]])

Returns all the registered configuration options.

Parameters

extension

An optional extension name. If set, the function return only options specific for that
extension.

details

Retrieve details settings or only the current value for each setting. Default is TRUE
(retrieve details).

Return Values

Returns an associative array with directive name as the array key.

When details is TRUE (default) the array will contain global_value (set in php.ini),
local_value (perhaps set with ini_set() or.htaccess), and access (the access level).

When details is FALSE the value will be the current value of the option.

See the manual section for information on what access levels mean.

Note

It's possible for a directive to have multiple access levels, which is why access shows
the appropriate bitmask values.

ChangeLog

Version Description

5.3.0 Added details.

Examples

Example #313 - ini_get_all() examples

<?php

print_r(ini_get_all("pcre"));

print_r(ini_get_all());

?>

The above example will output something similar to:

Array

(

 [pcre.backtrack_limit] => Array

 (

 [global_value] => 100000

 [local_value] => 100000

 [access] => 7

)

 [pcre.recursion_limit] => Array

 (

 [global_value] => 100000

 [local_value] => 100000

 [access] => 7

)

)

Array

(

 [allow_call_time_pass_reference] => Array

 (

 [global_value] => 0

 [local_value] => 0

 [access] => 6

)

 [allow_url_fopen] => Array

 (

 [global_value] => 1

 [local_value] => 1

 [access] => 4

)

 ...

)

Example #314 - Disabling details

<?php

print_r(ini_get_all("pcre", false)); // Added in PHP 5.3.0

print_r(ini_get_all(null, false)); // Added in PHP 5.3.0

?>

The above example will output something similar to:

Array

(

 [pcre.backtrack_limit] => 100000

 [pcre.recursion_limit] => 100000

)

Array

(

 [allow_call_time_pass_reference] => 0

 [allow_url_fopen] => 1

 ...

)

See Also

• How to change configuration settings
• ini_get()
• ini_restore()
• ini_set()
• get_loaded_extensions()
• phpinfo()

ini_get

ini_get -- Gets the value of a configuration option

Description

string ini_get (string $varname)

Returns the value of the configuration option on success.

Parameters

varname

The configuration option name.

Return Values

Returns the value of the configuration option as a string on success, or an empty string on
failure or for null values.

Examples

Example #315 - A few ini_get() examples

<?php

/*

Our php.ini contains the following settings:

display_errors = On

register_globals = Off

post_max_size = 8M

*/

echo 'display_errors = ' . ini_get('display_errors') . "\n";

echo 'register_globals = ' . ini_get('register_globals') . "\n";

echo 'post_max_size = ' . ini_get('post_max_size') . "\n";

echo 'post_max_size+1 = ' . (ini_get('post_max_size')+1) . "\n";

echo 'post_max_size in bytes = ' . return_bytes(ini_get('post_max_size'));

function return_bytes($val) {

 $val = trim($val);

 $last = strtolower($val[strlen($val)-1]);

 switch($last) {

 // The 'G' modifier is available since PHP 5.1.0

 case 'g':

 $val *= 1024;

 case 'm':

 $val *= 1024;

 case 'k':

 $val *= 1024;

 }

 return $val;

}

?>

The above example will output something similar to:

display_errors = 1

register_globals = 0

post_max_size = 8M

post_max_size+1 = 9

post_max_size in bytes = 8388608

Notes

Note

When querying boolean values

A boolean ini value of off will be returned as an empty string or "0" while a boolean ini
value of on will be returned as "1". The function can also return the literal string of INI
value.

Note

When querying memory size values

Many ini memory size values, such as upload_max_filesize, are stored in the php.ini
file in shorthand notation. ini_get() will return the exact string stored in the php.ini file
and NOT its integer equivalent. Attempting normal arithmetic functions on these values
will not have otherwise expected results. The example above shows one way to
convert shorthand notation into bytes, much like how the PHP source does it.

See Also

• get_cfg_var()
• ini_get_all()
• ini_restore()
• ini_set()

ini_restore

ini_restore -- Restores the value of a configuration option

Description

void ini_restore (string $varname)

Restores a given configuration option to its original value.

Parameters

varname

The configuration option name.

Return Values

No value is returned.

See Also

• ini_get()
• ini_get_all()
• ini_set()

ini_set

ini_set -- Sets the value of a configuration option

Description

string ini_set (string $varname, string $newvalue)

Sets the value of the given configuration option. The configuration option will keep this new
value during the script's execution, and will be restored at the script's ending.

Parameters

varname

Not all the available options can be changed using ini_set(). There is a list of all
available options in the appendix.

newvalue

The new value for the option.

Return Values

Returns the old value on success, FALSE on failure.

See Also

• get_cfg_var()
• ini_get()
• ini_get_all()
• ini_restore()
• How to change configuration settings

main

main -- Dummy for main()

Description

There is no function named main() except in the PHP source. In PHP 4.3.0, a new type of
error handling in the PHP source (php_error_docref) was introduced. One feature is to
provide links to a manual page in PHP error messages when the PHP directives
html_errors (on by default) and docref_root (on by default until PHP 4.3.2) are set.

Sometimes error messages refer to a manual page for the function main() which is why
this page exists. Please add a user comment below that mentions what PHP function
caused the error that linked to main() and it will be fixed and properly documented.

Known errors that point to main()

Function name No longer points here as of

include() 5.1.0

include_once() 5.1.0

require() 5.1.0

require_once() 5.1.0

See Also

• html_errors
• display_errors

memory_get_peak_usage

memory_get_peak_usage -- Returns the peak of memory allocated by PHP

Description

int memory_get_peak_usage ([bool $real_usage])

Returns the peak of memory, in bytes, that's been allocated to your PHP script.

Parameters

real_usage

Set this to TRUE to get the real size of memory allocated from system. If not set or
FALSE only the memory used by emalloc() is reported.

Return Values

Returns the memory peak in bytes.

ChangeLog

Version Description

5.2.1 Compiling with --enable-memory-limit is no
longer required for this function to exist.

5.2.0 real_usage was added.

See Also

• memory_get_usage()
• memory_limit

memory_get_usage

memory_get_usage -- Returns the amount of memory allocated to PHP

Description

int memory_get_usage ([bool $real_usage])

Returns the amount of memory, in bytes, that's currently being allocated to your PHP
script.

Parameters

real_usage

Set this to TRUE to get the real size of memory allocated from system. If not set or
FALSE only the memory used by emalloc() is reported.

Return Values

Returns the memory amount in bytes.

ChangeLog

Version Description

5.2.1 Compiling with --enable-memory-limit is no
longer required for this function to exist.

5.2.0 real_usage was added.

Examples

Example #316 - A memory_get_usage() example

<?php

// This is only an example, the numbers below will

// differ depending on your system

echo memory_get_usage() . "\n"; // 36640

$a = str_repeat("Hello", 4242);

echo memory_get_usage() . "\n"; // 57960

unset($a);

echo memory_get_usage() . "\n"; // 36744

?>

See Also

• memory_get_peak_usage()
• memory_limit

php_ini_loaded_file

php_ini_loaded_file -- Retrieve a path to the loaded php.ini file

Description

string php_ini_loaded_file (void)

Check if a php.ini file is loaded, and retrieve its path.

Parameters

This function has no parameters.

Return Values

The loaded php.ini path, or FALSE if one is not loaded.

Examples

Example #317 - php_ini_loaded_file() example

<?php

$inipath = php_ini_loaded_file();

if ($inipath) {

 echo 'Loaded php.ini: ' . $inipath;

} else {

 echo 'A php.ini file is not loaded';

}

?>

The above example will output something similar to:

Loaded php.ini: /usr/local/php/php.ini

See Also

• php_ini_scanned_files()
• phpinfo()
• The configuration file

php_ini_scanned_files

php_ini_scanned_files -- Return a list of .ini files parsed from the additional ini dir

Description

string php_ini_scanned_files (void)

php_ini_scanned_files() returns a comma-separated list of configuration files parsed after
php.ini. These files are found in a directory defined by the --with-config-file-scan-dir option
which is set during compilation.

The returned configuration files also include the path as declared in the
--with-config-file-scan-dir option.

Return Values

Returns a comma-separated string of .ini files on success. Each comma is followed by a
newline. If the directive --with-config-file-scan-dir wasn't set, FALSE is returned. If it was
set and the directory was empty, an empty string is returned. If a file is unrecognizable, the
file will still make it into the returned string but a PHP error will also result. This PHP error
will be seen both at compile time and while using php_ini_scanned_files().

Examples

Example #318 - A simple example to list the returned ini files

<?php

if ($filelist = php_ini_scanned_files()) {

 if (strlen($filelist) > 0) {

 $files = explode(',', $filelist);

 foreach ($files as $file) {

 echo "" . trim($file) . "\n";

 }

 }

}

?>

See Also

• ini_set()
• phpinfo()
• php_ini_loaded_file()

php_logo_guid

php_logo_guid -- Gets the logo guid

Description

string php_logo_guid (void)

This function returns the ID which can be used to display the PHP logo using the built-in
image. Logo is displayed only if expose_php is On.

Return Values

Returns PHPE9568F34-D428-11d2-A769-00AA001ACF42.

Examples

Example #319 - php_logo_guid() example

<?php

echo '<img src="' . $_SERVER['PHP_SELF'] .

 '?=' . php_logo_guid() . '" alt="PHP Logo !" />';

?>

See Also

• phpinfo()
• phpversion()
• phpcredits()
• zend_logo_guid()

php_sapi_name

php_sapi_name -- Returns the type of interface between web server and PHP

Description

string php_sapi_name (void)

Returns a lowercase string which describes the type of interface between web server and
PHP (Server API, SAPI). In CGI PHP, this string is "cgi", in mod_php for Apache, this
string is "apache" and so on.

Return Values

Returns the interface type, as a lowercase string.

Examples

Example #320 - php_sapi_name() example

<?php

$sapi_type = php_sapi_name();

if (substr($sapi_type, 0, 3) == 'cgi') {

 echo "You are using CGI PHP\n";

} else {

 echo "You are not using CGI PHP\n";

}

?>

See Also

• PHP_SAPI

php_uname

php_uname -- Returns information about the operating system PHP is running on

Description

string php_uname ([string $mode])

php_uname() returns a description of the operating system PHP is running on. For the
name of just the operating system, consider using the PHP_OS constant, but be reminded
this constant will contain the operating system PHP was built on.

On Unix, the output reverts to displaying the operating system information PHP was built
on if it cannot determine the currently running OS.

Parameters

mode

mode is a single character that defines what information is returned:

• 'a': This is the default. Contains all modes in the sequence "s n r v m".

• 's': Operating system name. eg. FreeBSD.

• 'n': Host name. eg. localhost.example.com.

• 'r': Release name. eg. 5.1.2-RELEASE.

• 'v': Version information. Varies a lot between operating systems.

• 'm': Machine type. eg. i386.

Return Values

Returns the description, as a string.

Examples

Example #321 - Some php_uname() examples

<?php

echo php_uname();

echo PHP_OS;

/* Some possible outputs:

Linux localhost 2.4.21-0.13mdk #1 Fri Mar 14 15:08:06 EST 2003 i686

Linux

FreeBSD localhost 3.2-RELEASE #15: Mon Dec 17 08:46:02 GMT 2001

FreeBSD

Windows NT XN1 5.1 build 2600

WINNT

*/

if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') {

 echo 'This is a server using Windows!';

} else {

 echo 'This is a server not using Windows!';

}

?>

There are also some related Predefined PHP constants that may come in handy, for
example:

Example #322 - A few OS related constant examples

<?php

// *nix

echo DIRECTORY_SEPARATOR; // /

echo PHP_SHLIB_SUFFIX; // so

echo PATH_SEPARATOR; // :

// Win*

echo DIRECTORY_SEPARATOR; // \

echo PHP_SHLIB_SUFFIX; // dll

echo PATH_SEPARATOR; // ;

?>

See Also

• phpversion()
• php_sapi_name()
• phpinfo()

phpcredits

phpcredits -- Prints out the credits for PHP

Description

bool phpcredits ([int $flag])

This function prints out the credits listing the PHP developers, modules, etc. It generates
the appropriate HTML codes to insert the information in a page.

Parameters

flag

To generate a custom credits page, you may want to use the flag parameter. flag is
optional, and it defaults to CREDITS_ALL.

Pre-defined phpcredits() flags

name description

CREDITS_ALL All the credits, equivalent to using:
CREDITS_DOCS + CREDITS_GENERAL +
CREDITS_GROUP + CREDITS_MODULES
+ CREDITS_FULLPAGE. It generates a
complete stand-alone HTML page with the
appropriate tags.

CREDITS_DOCS The credits for the documentation team

CREDITS_FULLPAGE Usually used in combination with the other
flags. Indicates that a complete stand-alone
HTML page needs to be printed including
the information indicated by the other flags.

CREDITS_GENERAL General credits: Language design and
concept, PHP 4.0 authors and SAPI module.

CREDITS_GROUP A list of the core developers

CREDITS_MODULES A list of the extension modules for PHP, and
their authors

CREDITS_SAPI A list of the server API modules for PHP,
and their authors

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #323 - Prints the general credits

<?php

phpcredits(CREDITS_GENERAL);

?>

Example #324 - Prints the core developers and the documentation group

<?php

phpcredits(CREDITS_GROUP + CREDITS_DOCS + CREDITS_FULLPAGE);

?>

Example #325 - Printing all the credits

<html>

<head>

 <title>My credits page</title>

</head>

<body>

<?php

// some code of your own

phpcredits(CREDITS_ALL - CREDITS_FULLPAGE);

// some more code

?>

</body>

</html>

See Also

• phpversion()
• php_logo_guid()
• phpinfo()

phpinfo

phpinfo -- Outputs lots of PHP information

Description

bool phpinfo ([int $what])

Outputs a large amount of information about the current state of PHP. This includes
information about PHP compilation options and extensions, the PHP version, server
information and environment (if compiled as a module), the PHP environment, OS version
information, paths, master and local values of configuration options, HTTP headers, and the
PHP License.

Because every system is setup differently, phpinfo() is commonly used to check configuration
settings and for available predefined variables on a given system.

phpinfo() is also a valuable debugging tool as it contains all EGPCS (Environment, GET,
POST, Cookie, Server) data.

Parameters

what

The output may be customized by passing one or more of the following constants bitwise
values summed together in the optional what parameter. One can also combine the
respective constants or bitwise values together with the or operator.

phpinfo() options

Name (constant) Value Description

INFO_GENERAL 1 The configuration line,
php.ini location, build date,
Web Server, System and
more.

INFO_CREDITS 2 PHP Credits. See also
phpcredits().

INFO_CONFIGURATION 4 Current Local and Master
values for PHP directives.
See also ini_get().

INFO_MODULES 8 Loaded modules and their
respective settings. See also
get_loaded_extensions().

INFO_ENVIRONMENT 16 Environment Variable

information that's also
available in $_ENV.

INFO_VARIABLES 32 Shows all predefined
variables from EGPCS
(Environment, GET, POST,
Cookie, Server).

INFO_LICENSE 64 PHP License information.
See also the » license FAQ.

INFO_ALL -1 Shows all of the above. This
is the default value.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.2 The "Loaded Configuration File" information
was added, when before only "Configuration
File (php.ini) Path" existed.

Examples

Example #326 - phpinfo() Example

<?php

// Show all information, defaults to INFO_ALL

phpinfo();

// Show just the module information.

// phpinfo(8) yields identical results.

phpinfo(INFO_MODULES);

?>

http://www.php.net/license/

Notes

Note

Parts of the information displayed are disabled when the expose_php configuration
setting is set to off. This includes the PHP and Zend logos, and the credits.

Note

phpinfo() outputs plain text instead of HTML when using the CLI mode.

See Also

• phpversion()
• phpcredits()
• php_logo_guid()
• ini_get()
• ini_set()
• get_loaded_extensions()
• Predefined Variables

phpversion

phpversion -- Gets the current PHP version

Description

string phpversion ([string $extension])

Returns a string containing the version of the currently running PHP parser or extension.

Parameters

extension

An optional extension name.

Return Values

If the optional extension parameter is specified, phpversion() returns the version of that
extension, or FALSE if there is no version information associated or the extension isn't
enabled.

Examples

Example #327 - phpversion() example

<?php

// prints e.g. 'Current PHP version: 4.1.1'

echo 'Current PHP version: ' . phpversion();

// prints e.g. '2.0' or nothing if the extension isn't enabled

echo phpversion('tidy');

?>

Notes

Note

This information is also available in the predefined constant PHP_VERSION.

See Also

• version_compare()
• phpinfo()
• phpcredits()
• php_logo_guid()
• zend_version()

putenv

putenv -- Sets the value of an environment variable

Description

bool putenv (string $setting)

Adds setting to the server environment. The environment variable will only exist for the
duration of the current request. At the end of the request the environment is restored to its
original state.

Setting certain environment variables may be a potential security breach. The
safe_mode_allowed_env_vars directive contains a comma-delimited list of prefixes. In
Safe Mode, the user may only alter environment variables whose names begin with the
prefixes supplied by this directive. By default, users will only be able to set environment
variables that begin with PHP_ (e.g. PHP_FOO=BAR). Note: if this directive is empty,
PHP will let the user modify ANY environment variable!

The safe_mode_protected_env_vars directive contains a comma-delimited list of
environment variables, that the end user won't be able to change using putenv(). These
variables will be protected even if safe_mode_allowed_env_vars is set to allow to change
them.

Parameters

setting

The setting, like "FOO=BAR"

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #328 - Setting an environment variable

<?php

putenv("UNIQID=$uniqid");

?>

Notes

Warning

These directives have only effect when safe-mode itself is enabled!

See Also

• getenv()

restore_include_path

restore_include_path -- Restores the value of the include_path configuration option

Description

void restore_include_path (void)

Restores the include_path configuration option back to its original master value as set in
php.ini

Return Values

No value is returned.

Examples

Example #329 - restore_include_path() example

<?php

echo get_include_path(); // .:/usr/local/lib/php

set_include_path('/inc');

echo get_include_path(); // /inc

// Works as of PHP 4.3.0

restore_include_path();

// Works in all PHP versions

ini_restore('include_path');

echo get_include_path(); // .:/usr/local/lib/php

?>

See Also

• ini_restore()
• get_include_path()
• set_include_path()
• include()

set_include_path

set_include_path -- Sets the include_path configuration option

Description

string set_include_path (string $new_include_path)

Sets the include_path configuration option for the duration of the script.

Parameters

new_include_path

The new value for the include_path

Return Values

Returns the old include_path on success or FALSE on failure.

Examples

Example #330 - set_include_path() example

<?php

// Works as of PHP 4.3.0

set_include_path('/inc');

// Works in all PHP versions

ini_set('include_path', '/inc');

?>

Example #331 - Adding to the include path

Making use of the PATH_SEPARATOR constant, it is possible to extend the include
path regardless of the operating system.

In this example we add /usr/lib/pear to the end of the existing include_path.

<?php

$path = '/usr/lib/pear';

set_include_path(get_include_path() . PATH_SEPARATOR . $path);

?>

See Also

• ini_set()
• get_include_path()
• restore_include_path()
• include()

set_magic_quotes_runtime

set_magic_quotes_runtime -- Sets the current active configuration setting of
magic_quotes_runtime

Description

bool set_magic_quotes_runtime (int $new_setting)

Set the current active configuration setting of magic_quotes_runtime.

Parameters

new_setting

0 for off, 1 for on.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• get_magic_quotes_gpc()
• get_magic_quotes_runtime()

set_time_limit

set_time_limit -- Limits the maximum execution time

Description

void set_time_limit (int $seconds)

Set the number of seconds a script is allowed to run. If this is reached, the script returns a
fatal error. The default limit is 30 seconds or, if it exists, the max_execution_time value
defined in the php.ini.

When called, set_time_limit() restarts the timeout counter from zero. In other words, if the
timeout is the default 30 seconds, and 25 seconds into script execution a call such as
set_time_limit(20) is made, the script will run for a total of 45 seconds before timing out.

Parameters

seconds

The maximum execution time, in seconds. If set to zero, no time limit is imposed.

Return Values

No value is returned.

Notes

Warning

This function has no effect when PHP is running in safe mode. There is no workaround
other than turning off safe mode or changing the time limit in the php.ini.

Note

The set_time_limit() function and the configuration directive max_execution_time only
affect the execution time of the script itself. Any time spent on activity that happens
outside the execution of the script such as system calls using system(), stream
operations, database queries, etc. is not included when determining the maximum time
that the script has been running.

See Also

• max_execution_time
• max_input_time

sys_get_temp_dir

sys_get_temp_dir -- Returns directory path used for temporary files

Description

string sys_get_temp_dir (void)

Returns the path of the directory PHP stores temporary files in by default.

Return Values

Returns the path of the temporary directory.

See Also

• tmpfile()
• tempnam()

version_compare

version_compare -- Compares two "PHP-standardized" version number strings

Description

mixed version_compare (string $version1, string $version2 [, string $operator])

version_compare() compares two "PHP-standardized" version number strings. This is
useful if you would like to write programs working only on some versions of PHP.

The function first replaces _, - and + with a dot. in the version strings and also inserts dots.
before and after any non number so that for example '4.3.2RC1' becomes '4.3.2.RC.1'.
Then it splits the results like if you were using explode('.', $ver). Then it compares the parts
starting from left to right. If a part contains special version strings these are handled in the
following order: dev < alpha = a < beta = b < RC < pl. This way not only versions with
different levels like '4.1' and '4.1.2' can be compared but also any PHP specific version
containing development state.

Parameters

version1

First version number.

version2

Second version number.

operator

If you specify the third optional operator argument, you can test for a particular
relationship. The possible operators are: <, lt, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne
respectively. This parameter is case-sensitive, so values should be lowercase.

Return Values

By default, version_compare() returns -1 if the first version is lower than the second, 0 if
they are equal, and 1 if the second is lower.

When using the optional operator argument, the function will return TRUE if the
relationship is the one specified by the operator, FALSE otherwise.

Examples

The examples below use the PHP_VERSION constant, because it contains the value of
the PHP version that is executing the code.

Example #332 - version_compare() examples

<?php

if (version_compare(PHP_VERSION, '6.0.0') === 1) {

 echo 'I am at least PHP version 6.0.0, my version: ' . PHP_VERSION .
"\n";

}

if (version_compare(PHP_VERSION, '5.3.0') === 1) {

 echo 'I am at least PHP version 5.3.0, my version: ' . PHP_VERSION .
"\n";

}

if (version_compare(PHP_VERSION, '5.0.0', '>')) {

 echo 'I am using PHP 5, my version: ' . PHP_VERSION . "\n";

}

if (version_compare(PHP_VERSION, '5.0.0', '<')) {

 echo 'I am using PHP 4, my version: ' . PHP_VERSION . "\n";

}

?>

Notes

Note

The PHP_VERSION constant holds current PHP version.

Note

Note that pre-release versions, such as 5.3.0-dev, are considered lower than their final
release counterparts (like 5.3.0).

See Also

• phpversion()
• php_uname()
• function_exists()

zend_logo_guid

zend_logo_guid -- Gets the Zend guid

Description

string zend_logo_guid (void)

This function returns the ID which can be used to display the Zend logo using the built-in
image.

Return Values

Returns PHPE9568F35-D428-11d2-A769-00AA001ACF42.

Examples

Example #333 - zend_logo_guid() example

<?php

echo '<img src="' . $_SERVER['PHP_SELF'] .

 '?=' . zend_logo_guid() . '" alt="Zend Logo !" />';

?>

See Also

• php_logo_guid()

zend_thread_id

zend_thread_id -- Returns a unique identifier for the current thread

Description

int zend_thread_id (void)

This function returns an unique identifier for the current thread.

Return Values

Returns the thread id as an integer.

Notes

Note

This function is only available if PHP has been built with ZTS (Zend Thread Safety)
support.

zend_version

zend_version -- Gets the version of the current Zend engine

Description

string zend_version (void)

Returns a string containing the version of the currently running Zend Engine.

Return Values

Returns the Zend Engine version number, as a string.

Examples

Example #334 - zend_version() example

<?php

echo "Zend engine version: " . zend_version();

?>

The above example will output something similar to:

Zend engine version: 2.2.0

See Also

• phpinfo()
• phpcredits()
• php_logo_guid()
• phpversion()

runkit

Introduction

The runkit extension provides means to modify constants, user-defined functions, and
user-defined classes. It also provides for custom superglobal variables and embeddable
sub-interpreters via sandboxing.

This package is meant as a feature added replacement for the » classkit package. When
compiled with the --enable-runkit=classkit option to ./configure, it will export classkit
compatible function definitions and constants.

http://pecl.php.net/package/classkit

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

RUNKIT_IMPORT_FUNCTIONS (integer)
runkit_import() flag indicating that normal functions should be imported from the
specified file.

RUNKIT_IMPORT_CLASS_METHODS (integer)
runkit_import() flag indicating that class methods should be imported from the specified
file.

RUNKIT_IMPORT_CLASS_CONSTS (integer)
runkit_import() flag indicating that class constants should be imported from the
specified file. Note that this flag is only meaningful in PHP versions 5.1.0 and above.

RUNKIT_IMPORT_CLASS_PROPS (integer)
runkit_import() flag indicating that class standard properties should be imported from
the specified file.

RUNKIT_IMPORT_CLASSES (integer)
runkit_import() flag representing a bitwise OR of the RUNKIT_IMPORT_CLASS_*
constants.

RUNKIT_IMPORT_OVERRIDE (integer)
runkit_import() flag indicating that if any of the imported functions, methods, constants,
or properties already exist, they should be replaced with the new definitions. If this flag
is not set, then any imported definitions which already exist will be discarded.

RUNKIT_ACC_PUBLIC (integer)
PHP 5 specific flag to runkit_method_add()

RUNKIT_ACC_PROTECTED (integer)
PHP 5 specific flag to runkit_method_add()

RUNKIT_ACC_PRIVATE (integer)
PHP 5 specific flag to runkit_method_add()

CLASSKIT_ACC_PUBLIC (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
is enabled.

CLASSKIT_ACC_PROTECTED (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
is enabled.

CLASSKIT_ACC_PRIVATE (integer)
PHP 5 specific flag to classkit_method_add() Only defined when classkit compatibility
is enabled.

CLASSKIT_AGGREGATE_OVERRIDE (integer)
PHP 5 specific flag to classkit_import() Only defined when classkit compatibility is
enabled.

RUNKIT_VERSION (string)
Defined to the current version of the runkit package.

CLASSKIT_VERSION (string)
Defined to the current version of the runkit package. Only defined when classkit
compatibility is enabled.

Installing/Configuring

Requirements

Modifying Constants, Functions, Classes, and Methods works with all releases of PHP 4
and PHP 5. No special requirements are necessary.

Custom Superglobals are only available in PHP 4.2.0 or later.

Sandboxing requires PHP 5.1.0 or later, or PHP 5.0.0 with a special TSRM patch applied.
Regardless of which version of PHP is in use it must be compiled with the
--enable-maintainer-zts option. See the README file in the runkit package for additional
information.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/runkit.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Runkit Configuration Options

Name Default Changeable Changelog

runkit.superglobal "" PHP_INI_PERDIR

runkit.internal_overrid
e

"0" PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://pecl.php.net/
http://pecl.php.net/package/runkit
http://pecl.php.net/package/runkit
http://www.php.net/downloads.php
http://pecl4win.php.net/

runkit.superglobal string
Comma-separated list of variable names to be treated as superglobals. This value
should be set in the systemwide php.ini file, but may work in perdir configuration
contexts depending on your SAPI.

Example #335 - Custom Superglobals with runkit.superglobal=_FOO,_BAR in
php.ini

<?php

function show_values() {

 echo "Foo is $_FOO\n";

 echo "Bar is $_BAR\n";

 echo "Baz is $_BAZ\n";

}

$_FOO = 'foo';

$_BAR = 'bar';

$_BAZ = 'baz';

/* Displays foo and bar, but not baz */

show_values();

?>

Resource Types

This extension has no resource types defined.

runkit Functions

Runkit_Sandbox

Runkit_Sandbox -- Runkit Sandbox Class -- PHP Virtual Machine

Description

Instantiating the Runkit_Sandbox class creates a new thread with its own scope and
program stack. Using a set of options passed to the constructor, this environment may be
restricted to a subset of what the primary interpreter can do and provide a safer
environment for executing user supplied code.

Note

Sandbox support (required for runkit_lint(), runkit_lint_file(), and the Runkit_Sandbox
class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Constructor

void Runkit_Sandbox::__construct ([array $options])

options is an associative array containing any combination of the special ini options listed
below.

safe_mode

If the outer script which is instantiating the Runkit_Sandbox class is configured with
safe_mode = off, then safe_mode may be turned on for the sandbox environment. This
setting can not be used to disable safe_mode when it's already enabled in the outer
script.

safe_mode_gid

If the outer script which is instantiating the Runkit_Sandbox class is configured with
safe_mode_gid = on, then safe_mode_gid may be turned off for the sandbox
environment. This setting can not be used to enable safe_mode_gid when it's already
disabled in the outer script.

safe_mode_include_dir

If the outer script which is instantiating the Runkit_Sandbox class is configured with a
safe_mode_include_dir, then a new safe_mode_include_dir may be set for sandbox
environments below the currently defined value. safe_mode_include_dir may also be
cleared to indicate that the bypass feature is disabled. If safe_mode_include_dir was
blank in the outer script, but safe_mode was not enabled, then any arbitrary
safe_mode_include_dir may be set while turning safe_mode on.

open_basedir

open_basedir may be set to any path below the current setting of open_basedir. If
open_basedir is not set within the global scope, then it is assumed to be the root
directory and may be set to any location.

allow_url_fopen

Like safe_mode, this setting can only be made more restrictive, in this case by setting it
to FALSE when it is previously set to TRUE

disable_functions

Comma separated list of functions to disable within the sandbox sub-interpreter. This
list need not contain the names of the currently disabled functions, they will remain
disabled whether listed here or not.

disable_classes

Comma separated list of classes to disable within the sandbox sub-interpreter. This list
need not contain the names of the currently disabled classes, they will remain disabled
whether listed here or not.

runkit.superglobal

Comma separated list of variables to be treated as superglobals within the sandbox
sub-interpreter. These variables will be used in addition to any variables defined
internally or through the global runkit.superglobal setting.

runkit.internal_override

Ini option runkit.internal_override may be disabled (but not re-enabled) within
sandboxes.

Example #336 - Instantiating a restricted sandbox

<?php

$options = array(

 'safe_mode'=>true,

 'open_basedir'=>'/var/www/users/jdoe/',

 'allow_url_fopen'=>'false',

 'disable_functions'=>'exec,shell_exec,passthru,system',

 'disable_classes'=>'myAppClass');

$sandbox = new Runkit_Sandbox($options);

/* Non-protected ini settings may set normally */

$sandbox->ini_set('html_errors',true);

?>

Accessing Variables

All variables in the global scope of the sandbox environment are accessible as properties
of the sandbox object. The first thing to note is that because of the way memory between
these two threads is managed, object and resource variables can not currently be
exchanged between interpreters. Additionally, all arrays are deep copied and any
references will be lost. This also means that references between interpreters are not
possible.

Example #337 - Working with variables in a sandbox

<?php

$sandbox = new Runkit_Sandbox();

$sandbox->foo = 'bar';

$sandbox->eval('echo "$foo\n"; $bar = $foo . "baz";');

echo "{$sandbox->bar}\n";

if (isset($sandbox->foo)) unset($sandbox->foo);

$sandbox->eval('var_dump(isset($foo));');

?>

The above example will output:

bar

barbaz

bool(false)

Calling PHP Functions

Any function defined within the sandbox may be called as a method on the sandbox
object. This also includes a few pseudo-function language constructs: eval(), include(),
include_once(), require(), require_once(), echo(), print(), die(), and exit().

Example #338 - Calling sandbox functions

<?php

$sandbox = new Runkit_Sandbox();

echo $sandbox->str_replace('a','f','abc');

?>

The above example will output:

fbc

When passing arguments to a sandbox function, the arguments are taken from the outer
instance of PHP. If you wish to pass arguments from the sandbox's scope, be sure to
access them as properties of the sandbox object as illustrated above.

Example #339 - Passing arguments to sandbox functions

<?php

$sandbox = new Runkit_Sandbox();

$foo = 'bar';

$sandbox->foo = 'baz';

echo $sandbox->str_replace('a',$foo,'a');

echo $sandbox->str_replace('a',$sandbox->foo,'a');

?>

The above example will output:

bar

baz

Changing Sandbox Settings

As of runkit version 0.5, certain Sandbox settings may be modified on the fly using
ArrayAccess syntax. Some settings, such as active are read-only and meant to provide
status information. Other settings, such as output_handler may be set and read much like
a normal array offset. Future settings may be write-only, however no such settings
currently exist.

Sandbox Settings / Status Indicators

Setting Type Purpose Default

active Boolean (Read Only) TRUE if the Sandbox
is still in a usable
state, FALSE if the
request is in bailout
due to a call to die(),
exit(), or because of a
fatal error condition.

TRUE (Initial)

output_handler Callback When set to a valid
callback, all output
generated by the
Sandbox instance will
be processed through
the named function.
Sandbox output
handlers follow the
same calling
conventions as the
system-wide output
handler.

None

parent_access Boolean May the sandbox use
instances of the
Runkit_Sandbox_Par
ent class? Must be
enabled for other
Runkit_Sandbox_Par
ent related settings to
work.

FALSE

parent_read Boolean May the sandbox
read variables in its
parent's context?

FALSE

parent_write Boolean May the sandbox
modify variables in its
parent's context?

FALSE

parent_eval Boolean May the sandbox
evaluate arbitrary
code in its parent's
context?
DANGEROUS

FALSE

parent_include Boolean May the sandbox
include php code files
in its parent's
context?
DANGEROUS

FALSE

parent_echo Boolean May the sandbox
echo data in its
parent's context
effectively bypassing
its own
output_handler?

FALSE

parent_call Boolean May the sandbox call
functions in its
parent's context?

FALSE

parent_die Boolean May the sandbox kill
its own parent? (And
thus itself)

FALSE

parent_scope Integer What scope will
parental property
access look at? 0 ==
Global scope, 1 ==
Calling scope, 2 ==
Scope preceeding
calling scope, 3 ==
The scope before
that, etc..., etc...

0 (Global)

parent_scope String When parent_scope
is set to a string
value, it refers to a
named array variable
in the global scope. If
the named variable
does not exist at the
time of access it will
be created as an
empty array. If the
variable exists but it

not an array, a
dummy array will be
created containing a
reference to the
named global
variable.

Runkit_Sandbox_Parent

Runkit_Sandbox_Parent -- Runkit Anti-Sandbox Class

Description

void Runkit_Sandbox_Parent::__construct (void)

Instantiating the Runkit_Sandbox_Parent class from within a sandbox environment created
from the Runkit_Sandbox class provides some (controlled) means for a sandbox child to
access its parent.

Note

Sandbox support (required for runkit_lint(), runkit_lint_file(), and the Runkit_Sandbox
class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

In order for any of the Runkit_Sandbox_Parent features to function. Support must be
enabled on a per-sandbox basis by enabling the parent_access flag from the parent's
context.

Example #340 - Working with variables in a sandbox

<?php

$sandbox = new Runkit_Sandbox();

$sandbox['parent_access'] = true;

?>

Accessing the Parent's Variables

Just as with sandbox variable access, a sandbox parent's variables may be read from and
written to as properties of the Runkit_Sandbox_Parent class. Read access to parental
variables may be enabled with the parent_read setting (in addition to the base
parent_access setting). Write access, in turn, is enabled through the parent_write setting.

Unlike sandbox child variable access, the variable scope is not limited to globals only. By
setting the parent_scope setting to an appropriate integer value, other scopes in the active
call stack may be inspected instead. A value of 0 (Default) will direct variable access at the
global scope. 1 will point variable access at whatever variable scope was active at the time
the current block of sandbox code was executed. Higher values progress back through the
functions that called the functions that led to the sandbox executing code that tried to
access its own parent's variables.

Example #341 - Accessing parental variables

<?php

$php = new Runkit_Sandbox();

$php['parent_access'] = true;

$php['parent_read'] = true;

$test = "Global";

$php->eval('$PARENT = new Runkit_Sandbox_Parent;');

$php['parent_scope'] = 0;

one();

$php['parent_scope'] = 1;

one();

$php['parent_scope'] = 2;

one();

$php['parent_scope'] = 3;

one();

$php['parent_scope'] = 4;

one();

$php['parent_scope'] = 5;

one();

function one() {

 $test = "one()";

 two();

}

function two() {

 $test = "two()";

 three();

}

function three() {

 $test = "three()";

 $GLOBALS['php']->eval('var_dump($PARENT->test);');

}

?>

The above example will output:

string(6) "Global"

string(7) "three()"

string(5) "two()"

string(5) "one()"

string(6) "Global"

string(6) "Global"

Calling the Parent's Functions

Just as with sandbox access, a sandbox may access its parents functions providing that

the proper settings have been enabled. Enabling parent_call will allow the sandbox to call
all functions available to the parent scope. Language constructs are each controlled by
their own setting: print() and echo() are enabled with parent_echo. die() and exit() are
enabled with parent_die. eval() is enabled with parent_eval while include(),
include_once(), require(), and require_once() are enabled through parent_include.

runkit_class_adopt

runkit_class_adopt -- Convert a base class to an inherited class, add ancestral methods
when appropriate

Description

bool runkit_class_adopt (string $classname, string $parentname)

Parameters

classname

Name of class to be adopted

parentname

Parent class which child class is extending

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #342 - A runkit_class_adopt() example

<?php

class myParent {

 function parentFunc() {

 echo "Parent Function Output\n";

 }

}

class myChild {

}

runkit_class_adopt('myChild','myParent');

myChild::parentFunc();

?>

The above example will output:

Parent Function Output

See Also

• runkit_class_emancipate()

runkit_class_emancipate

runkit_class_emancipate -- Convert an inherited class to a base class, removes any
method whose scope is ancestral

Description

bool runkit_class_emancipate (string $classname)

Parameters

classname

Name of class to emancipate

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #343 - A runkit_class_emancipate() example

<?php

class myParent {

 function parentFunc () {

 echo "Parent Function Output\n";

 }

}

class myChild extends myParent {

}

myChild::parentFunc();

runkit_class_emancipate('myChild');

myChild::parentFunc();

?>

The above example will output:

Parent Function Output

Fatal error: Call to undefined function: parentFunc() in example.php on
line 12

See Also

• runkit_class_adopt()

runkit_constant_add

runkit_constant_add -- Similar to define(), but allows defining in class definitions as well

Description

bool runkit_constant_add (string $constname, mixed $value)

Parameters

constname

Name of constant to declare. Either a string to indicate a global constant, or
classname::constname to indicate a class constant.

value

NULL, Bool, Long, Double, String, or Resource value to store in the new constant.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• define()
• runkit_constant_redefine()
• runkit_constant_remove()

runkit_constant_redefine

runkit_constant_redefine -- Redefine an already defined constant

Description

bool runkit_constant_redefine (string $constname, mixed $newvalue)

Parameters

constname

Constant to redefine. Either string indicating global constant, or classname::constname
indicating class constant.

newvalue

New value to assign to constant.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• runkit_constant_add()
• runkit_constant_remove()

runkit_constant_remove

runkit_constant_remove -- Remove/Delete an already defined constant

Description

bool runkit_constant_remove (string $constname)

Parameters

constname

Name of constant to remove. Either a string indicating a global constant, or
classname::constname indicating a class constant.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• define()
• runkit_constant_add()
• runkit_constant_redefine()

runkit_function_add

runkit_function_add -- Add a new function, similar to create_function()

Description

bool runkit_function_add (string $funcname, string $arglist, string $code)

Parameters

funcname

Name of function to be created

arglist

Comma separated argument list

code

Code making up the function

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #344 - A runkit_function_add() example

<?php

runkit_function_add('testme','$a,$b','echo "The value of a is $a\n"; echo
"The value of b is $b\n";');

testme(1,2);

?>

The above example will output:

The value of a is 1

The value of b is 2

See Also

• create_function()

• runkit_function_redefine()
• runkit_function_copy()
• runkit_function_rename()
• runkit_function_remove()
• runkit_method_add()

runkit_function_copy

runkit_function_copy -- Copy a function to a new function name

Description

bool runkit_function_copy (string $funcname, string $targetname)

Parameters

funcname

Name of existing function

targetname

Name of new function to copy definition to

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #345 - A runkit_function_copy() example

<?php

function original() {

 echo "In a function\n";

}

runkit_function_copy('original','duplicate');

original();

duplicate();

?>

The above example will output:

In a function

In a function

See Also

• runkit_function_add()
• runkit_function_redefine()

• runkit_function_rename()
• runkit_function_remove()

runkit_function_redefine

runkit_function_redefine -- Replace a function definition with a new implementation

Description

bool runkit_function_redefine (string $funcname, string $arglist, string $code)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters

funcname

Name of function to redefine

arglist

New list of arguments to be accepted by function

code

New code implementation

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #346 - A runkit_function_redefine() example

<?php

function testme() {

 echo "Original Testme Implementation\n";

}

testme();

runkit_function_redefine('testme','','echo "New Testme Implementation\n";');

testme();

?>

The above example will output:

Original Testme Implementation

New Testme Implementation

See Also

• runkit_function_add()
• runkit_function_copy()
• runkit_function_rename()
• runkit_function_remove()

runkit_function_remove

runkit_function_remove -- Remove a function definition

Description

bool runkit_function_remove (string $funcname)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters

funcname

Name of function to be deleted

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• runkit_function_add()
• runkit_function_copy()
• runkit_function_redefine()
• runkit_function_rename()

runkit_function_rename

runkit_function_rename -- Change a function's name

Description

bool runkit_function_rename (string $funcname, string $newname)

Note

By default, only userspace functions may be removed, renamed, or modified. In order
to override internal functions, you must enable the runkit.internal_override setting in
php.ini.

Parameters

funcname

Current function name

newname

New function name

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• runkit_function_add()
• runkit_function_copy()
• runkit_function_redefine()
• runkit_function_remove()

runkit_import

runkit_import -- Process a PHP file importing function and class definitions, overwriting
where appropriate

Description

bool runkit_import (string $filename [, int $flags])

Similar to include() however any code residing outside of a function or class is simply
ignored. Additionally, depending on the value of flags, any functions or classes which
already exist in the currently running environment will be automatically overwritten by their
new definitions.

Parameters

filename

Filename to import function and class definitions from

flags

Bitwise OR of the RUNKIT_IMPORT_* family of constants.

Return Values

Returns TRUE on success or FALSE on failure.

runkit_lint_file

runkit_lint_file -- Check the PHP syntax of the specified file

Description

bool runkit_lint_file (string $filename)

The runkit_lint_file() function performs a syntax (lint) check on the specified filename
testing for scripting errors. This is similar to using php -l from the commandline.

Note

Sandbox support (required for runkit_lint(), runkit_lint_file(), and the Runkit_Sandbox
class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Parameters

filename

File containing PHP Code to be lint checked

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• runkit_lint()

runkit_lint

runkit_lint -- Check the PHP syntax of the specified php code

Description

bool runkit_lint (string $code)

The runkit_lint() function performs a syntax (lint) check on the specified php code testing
for scripting errors. This is similar to using php -l from the command line except runkit_lint()
accepts actual code rather than a filename.

Note

Sandbox support (required for runkit_lint(), runkit_lint_file(), and the Runkit_Sandbox
class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Parameters

code

PHP Code to be lint checked

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• runkit_lint_file()

runkit_method_add

runkit_method_add -- Dynamically adds a new method to a given class

Description

bool runkit_method_add (string $classname, string $methodname, string $args, string $
code [, int $flags])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class to which this method will be added

methodname

The name of the method to add

args

Comma-delimited list of arguments for the newly-created method

code

The code to be evaluated when methodname is called

flags

The type of method to create, can be RUNKIT_ACC_PUBLIC,
RUNKIT_ACC_PROTECTED or RUNKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #347 - runkit_method_add() example

<?php

class Example {

 function foo() {

 echo "foo!\n";

 }

}

// create an Example object

$e = new Example();

// Add a new public method

runkit_method_add(

 'Example',

 'add',

 '$num1, $num2',

 'return $num1 + $num2;',

 RUNKIT_ACC_PUBLIC

);

// add 12 + 4

echo $e->add(12, 4);

?>

The above example will output:

16

See Also

• runkit_method_copy()
• runkit_method_redefine()
• runkit_method_remove()
• runkit_method_rename()
• runkit_function_add()

runkit_method_copy

runkit_method_copy -- Copies a method from class to another

Description

bool runkit_method_copy (string $dClass, string $dMethod, string $sClass [, string $
sMethod])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

dClass

Destination class for copied method

dMethod

Destination method name

sClass

Source class of the method to copy

sMethod

Name of the method to copy from the source class. If this parameter is omitted, the
value of dMethod is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #348 - runkit_method_copy() example

<?php

class Foo {

 function example() {

 return "foo!\n";

 }

}

class Bar {

 // initially, no methods

}

// copy the example() method from the Foo class to the Bar class, as baz()

runkit_method_copy('Bar', 'baz', 'Foo', 'example');

// output copied function

echo Bar::baz();

?>

The above example will output:

foo!

See Also

• runkit_method_add()
• runkit_method_redefine()
• runkit_method_remove()
• runkit_method_rename()
• runkit_function_copy()

runkit_method_redefine

runkit_method_redefine -- Dynamically changes the code of the given method

Description

bool runkit_method_redefine (string $classname, string $methodname, string $args,
string $code [, int $flags])

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to redefine the method

methodname

The name of the method to redefine

args

Comma-delimited list of arguments for the redefined method

code

The new code to be evaluated when methodname is called

flags

The redefined method can be RUNKIT_ACC_PUBLIC, RUNKIT_ACC_PROTECTED
or RUNKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #349 - runkit_method_redefine() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

}

// create an Example object

$e = new Example();

// output Example::foo() (before redefine)

echo "Before: " . $e->foo();

// Redefine the 'foo' method

runkit_method_redefine(

 'Example',

 'foo',

 '',

 'return "bar!\n";',

 RUNKIT_ACC_PUBLIC

);

// output Example::foo() (after redefine)

echo "After: " . $e->foo();

?>

The above example will output:

Before: foo!

After: bar!

See Also

• runkit_method_add()
• runkit_method_copy()
• runkit_method_remove()
• runkit_method_rename()
• runkit_function_redefine()

runkit_method_remove

runkit_method_remove -- Dynamically removes the given method

Description

bool runkit_method_remove (string $classname, string $methodname)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to remove the method

methodname

The name of the method to remove

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #350 - runkit_method_remove() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

 function bar() {

 return "bar!\n";

 }

}

// Remove the 'foo' method

runkit_method_remove(

 'Example',

 'foo'

);

echo implode(' ', get_class_methods('Example'));

?>

The above example will output:

bar

See Also

• runkit_method_add()
• runkit_method_copy()
• runkit_method_redefine()
• runkit_method_rename()
• runkit_function_remove()

runkit_method_rename

runkit_method_rename -- Dynamically changes the name of the given method

Description

bool runkit_method_rename (string $classname, string $methodname, string $newname)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to rename the method

methodname

The name of the method to rename

newname

The new name to give to the renamed method

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #351 - runkit_method_rename() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

}

// Rename the 'foo' method to 'bar'

runkit_method_rename(

 'Example',

 'foo',

 'bar'

);

// output renamed function

echo Example::bar();

?>

The above example will output:

foo!

See Also

• runkit_method_add()
• runkit_method_copy()
• runkit_method_redefine()
• runkit_method_remove()
• runkit_function_rename()

runkit_return_value_used

runkit_return_value_used -- Determines if the current functions return value will be used

Description

bool runkit_return_value_used (void)

Return Values

Returns TRUE if the function's return value is used by the calling scope, otherwise FALSE

Examples

Example #352 - runkit_return_value_used() example

<?php

function foo() {

 var_dump(runkit_return_value_used());

}

foo();

$f = foo();

?>

The above example will output:

bool(false)

bool(true)

runkit_sandbox_output_handler

runkit_sandbox_output_handler -- Specify a function to capture and/or process output from
a runkit sandbox

Description

mixed runkit_sandbox_output_handler (object $sandbox [, mixed $callback])

Ordinarily, anything output (such as with echo() or print()) will be output as though it were
printed from the parent's scope. Using runkit_sandbox_output_handler() however, output
generated by the sandbox (including errors), can be captured by a function outside of the
sandbox.

Note

Sandbox support (required for runkit_lint(), runkit_lint_file(), and the Runkit_Sandbox
class) is only available as of PHP 5.1.0 or specially patched versions of PHP 5.0, and
requires that thread safety be enabled. See the README file included in the runkit
package for more information.

Note

Deprecated

As of runkit version 0.5, this function is deprecated and is scheduled to be removed
from the package prior to a 1.0 release. The output handler for a given
Runkit_Sandbox instance may be read/set using the array offset syntax shown on the
Runkit_Sandbox class definition page.

Parameters

sandbox

Object instance of Runkit_Sandbox class on which to set output handling.

callback

Name of a function which expects one parameter. Output generated by sandbox will be
passed to this callback. Anything returned by the callback will be displayed normally. If
this parameter is not passed then output handling will not be changed. If a non-truth
value is passed, output handling will be disabled and will revert to direct display.

Return Values

Returns the name of the previously defined output handler callback, or FALSE if no
handler was previously defined.

Examples

Example #353 - Feeding output to a variable

<?php

function capture_output($str) {

 $GLOBALS['sandbox_output'] .= $str;

 return '';

}

$sandbox_output = '';

$php = new Runkit_Sandbox();

runkit_sandbox_output_handler($php, 'capture_output');

$php->echo("Hello\n");

$php->eval('var_dump("Excuse me");');

$php->die("I lost myself.");

unset($php);

echo "Sandbox Complete\n\n";

echo $sandbox_output;

?>

The above example will output:

Sandbox Complete

Hello

string(9) "Excuse me"

I lost myself.

runkit_superglobals

runkit_superglobals -- Return numerically indexed array of registered superglobals

Description

array runkit_superglobals (void)

Return Values

Returns a numerically indexed array of the currently registered superglobals. i.e. _GET,
_POST, _REQUEST, _COOKIE, _SESSION, _SERVER, _ENV, _FILES

See Also

• Variable Scope

Audio Formats Manipulation

ID3 Tags

Introduction

These functions let you read and manipulate ID3 tags. ID3 tags are used in MP3 files to
store title of the song, as well as information about the artist, album, genre, year and track
number.

Since version 0.2 it is also possible to extract text frames from ID3 v2.2+ tags.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

id3 is part of PECL and can be installed using the PEAR installer. To compile PHP with id3
support, download the sourcecode, put it in php-src/ext/id3 and compile PHP using
--enable-id3.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

Most of the id3 functions either let you specify or return a tag version. In order to specify
the version please use on of these constants.

ID3_V1_0 (integer)
ID3_V1_0 is used if you are working with ID3 V1.0 tags. These tags may contain the
fields title, artist, album, genre, year and comment.

ID3_V1_1 (integer)
ID3_V1_1 is used if you are working with ID3 V1.1 tags. These tags may all
information contained in v1.0 tags plus the track number.

ID3_V2_1 (integer)
ID3_V2_1 is used if you are working with ID3 V2.1 tags.

ID3_V2_2 (integer)
ID3_V2_2 is used if you are working with ID3 V2.2 tags.

ID3_V2_3 (integer)
ID3_V2_3 is used if you are working with ID3 V2.3 tags.

ID3_V2_4 (integer)
ID3_V2_4 is used if you are working with ID3 V2.4 tags.

ID3_BEST (integer)
ID3_BEST is used if would like to let the id3 functions determine which tag version
should be used.

ID3 Functions

id3_get_frame_long_name

id3_get_frame_long_name -- Get the long name of an ID3v2 frame

Description

string id3_get_frame_long_name (string $frameId)

id3_get_frame_long_name() returns the long name for an ID3v2 frame.

Parameters

frameId

An ID3v2 frame

Return Values

Returns the frame long name or FALSE on errors.

Examples

Example #354 - id3_get_frame_long_name() example

<?php

$longName = id3_get_frame_long_name("TOLY");

echo $longName;

?>

The above example will output:

Original lyricist(s)/text writer(s)

See Also

• id3_get_frame_short_name()

id3_get_frame_short_name

id3_get_frame_short_name -- Get the short name of an ID3v2 frame

Description

string id3_get_frame_short_name (string $frameId)

id3_get_frame_short_name() returns the short name for an ID3v2 frame.

Parameters

frameId

An ID3v2 frame

Return Values

Returns the frame short name or FALSE on errors.

The values returned by id3_get_short_name() are used in the array returned by
id3_get_tag().

Examples

Example #355 - id3_get_frame_short_name() example

<?php

$shortName = id3_get_frame_short_name("TOLY");

echo $shortName;

?>

The above example will output:

originalLyricist

See Also

• id3_get_frame_long_name()

id3_get_genre_id

id3_get_genre_id -- Get the id for a genre

Description

int id3_get_genre_id (string $genre)

id3_get_genre_id() returns the id for a genre.

Parameters

genre

An integer ranging from 0 to 147

Return Values

The genre id or FALSE on errors.

Examples

Example #356 - id3_get_genre_id() example

<?php

$id = id3_get_genre_id("Alternative");

echo $id;

?>

The above example will output:

20

See Also

• id3_get_genre_name()
• id3_get_genre_list()

id3_get_genre_list

id3_get_genre_list -- Get all possible genre values

Description

array id3_get_genre_list (void)

id3_get_genre_list() returns an array containing all possible genres that may be stored in
an ID3 tag. This list has been created by Eric Kemp and later extended by WinAmp.

This function is useful to provide you users a list of genres from which they may choose
one. When updating the ID3 tag you will always have to specify the genre as an integer
ranging from 0 to 147.

Return Values

Returns an array containing all possible genres that may be stored in an ID3 tag.

Examples

Example #357 - id3_get_genre_list() example

<?php

$genres = id3_get_genre_list();

print_r($genres);

?>

The above example will output:

Array

(

 [0] => Blues

 [1] => Classic Rock

 [2] => Country

 [3] => Dance

 [4] => Disco

 [5] => Funk

 [6] => Grunge

 [7] => Hip-Hop

 [8] => Jazz

 [9] => Metal

 [10] => New Age

 [11] => Oldies

 [12] => Other

 [13] => Pop

 [14] => R&B

 [15] => Rap

 [16] => Reggae

 [17] => Rock

 [18] => Techno

 [19] => Industrial

 [20] => Alternative

 [21] => Ska

 [22] => Death Metal

 [23] => Pranks

 [24] => Soundtrack

 [25] => Euro-Techno

 [26] => Ambient

 [27] => Trip-Hop

 [28] => Vocal

 [29] => Jazz+Funk

 [30] => Fusion

 [31] => Trance

 [32] => Classical

 [33] => Instrumental

 [34] => Acid

 [35] => House

 [36] => Game

 [37] => Sound Clip

 [38] => Gospel

 [39] => Noise

 [40] => Alternative Rock

 [41] => Bass

 [42] => Soul

 [43] => Punk

 [44] => Space

 [45] => Meditative

 [46] => Instrumental Pop

 [47] => Instrumental Rock

 [48] => Ethnic

 [49] => Gothic

 [50] => Darkwave

 [51] => Techno-Industrial

 [52] => Electronic

 [53] => Pop-Folk

 [54] => Eurodance

 [55] => Dream

 [56] => Southern Rock

 [57] => Comedy

 [58] => Cult

 [59] => Gangsta

 [60] => Top 40

 [61] => Christian Rap

 [62] => Pop/Funk

 [63] => Jungle

 [64] => Native US

 [65] => Cabaret

 [66] => New Wave

 [67] => Psychadelic

 [68] => Rave

 [69] => Showtunes

 [70] => Trailer

 [71] => Lo-Fi

 [72] => Tribal

 [73] => Acid Punk

 [74] => Acid Jazz

 [75] => Polka

 [76] => Retro

 [77] => Musical

 [78] => Rock & Roll

 [79] => Hard Rock

 [80] => Folk

 [81] => Folk-Rock

 [82] => National Folk

 [83] => Swing

 [84] => Fast Fusion

 [85] => Bebob

 [86] => Latin

 [87] => Revival

 [88] => Celtic

 [89] => Bluegrass

 [90] => Avantgarde

 [91] => Gothic Rock

 [92] => Progressive Rock

 [93] => Psychedelic Rock

 [94] => Symphonic Rock

 [95] => Slow Rock

 [96] => Big Band

 [97] => Chorus

 [98] => Easy Listening

 [99] => Acoustic

 [100] => Humour

 [101] => Speech

 [102] => Chanson

 [103] => Opera

 [104] => Chamber Music

 [105] => Sonata

 [106] => Symphony

 [107] => Booty Bass

 [108] => Primus

 [109] => Porn Groove

 [110] => Satire

 [111] => Slow Jam

 [112] => Club

 [113] => Tango

 [114] => Samba

 [115] => Folklore

 [116] => Ballad

 [117] => Power Ballad

 [118] => Rhytmic Soul

 [119] => Freestyle

 [120] => Duet

 [121] => Punk Rock

 [122] => Drum Solo

 [123] => Acapella

 [124] => Euro-House

 [125] => Dance Hall

 [126] => Goa

 [127] => Drum & Bass

 [128] => Club-House

 [129] => Hardcore

 [130] => Terror

 [131] => Indie

 [132] => BritPop

 [133] => Negerpunk

 [134] => Polsk Punk

 [135] => Beat

 [136] => Christian Gangsta

 [137] => Heavy Metal

 [138] => Black Metal

 [139] => Crossover

 [140] => Contemporary C

 [141] => Christian Rock

 [142] => Merengue

 [143] => Salsa

 [144] => Thrash Metal

 [145] => Anime

 [146] => JPop

 [147] => SynthPop

)

See Also

• id3_get_genre_name()
• id3_get_genre_id()

id3_get_genre_name

id3_get_genre_name -- Get the name for a genre id

Description

string id3_get_genre_name (int $genre_id)

id3_get_genre_name() returns the name for a genre id.

Parameters

genre_id

An integer ranging from 0 to 147

Return Values

Returns the name as a string.

Examples

Example #358 - id3_get_genre_name() example

<?php

$genre = id3_get_genre_name(20);

echo $genre;

?>

The above example will output:

Alternative

See Also

• id3_get_genre_list()
• id3_get_genre_id()

id3_get_tag

id3_get_tag -- Get all information stored in an ID3 tag

Description

array id3_get_tag (string $filename [, int $version])

id3_get_tag() is used to get all information stored in the id3 tag of the specified file.

Parameters

filename

The path to the MP3 file Instead of a filename you may also pass a valid stream
resource

version

Allows you to specify the version of the tag as MP3 files may contain both, version 1.x
and version 2.x tags Since version 0.2 id3_get_tag() also supports ID3 tags of version
2.2, 2.3 and 2.4. To extract information from these tags, pass one of the constants
ID3_V2_2, ID3_V2_3 or ID3_V2_4 as the second parameter. ID3 v2.x tags can contain
a lot more information about the MP3 file than ID3 v1.x tags.

Return Values

Returns an associative array with various keys like: title, artist, ..

The key genre will contain an integer between 0 and 147. You may use
id3_get_genre_name() to convert it to a human readable string.

Examples

Example #359 - id3_get_tag() example

<?php

$tag = id3_get_tag("path/to/example.mp3");

print_r($tag);

?>

The above example will output something similar to:

Array

(

 [title] => DN-38416

 [artist] => Re:\Legion

 [album] => Reflections

 [year] => 2004

 [genre] => 19

)

Example #360 - id3_get_tag() example

<?php

$tag = id3_get_tag("path/to/example2.mp3", ID3_V2_3);

print_r($tag);

?>

The above example will output something similar to:

Array

(

 [copyright] => Dirty Mac

 [originalArtist] => Dirty Mac

 [composer] => Marcus Götze

 [artist] => Dirty Mac

 [title] => Little Big Man

 [album] => Demo-Tape

 [track] => 5/12

 [genre] => (17)Rock

 [year] => 2001

)

See Also

• id3_set_tag()
• id3_remove_tag()
• id3_get_version()

id3_get_version

id3_get_version -- Get version of an ID3 tag

Description

int id3_get_version (string $filename)

id3_get_version() retrieves the version(s) of the ID3 tag(s) in the MP3 file.

If a file contains an ID3 v1.1 tag, it always contains a 1.0 tag, as version 1.1 is just an
extension of 1.0.

Parameters

filename

The path to the MP3 file Instead of a filename you may also pass a valid stream
resource

Return Values

Returns the version number of the ID3 tag of the file. As a tag can contain ID3 v1.x and
v2.x tags, the return value of this function should be bitwise compared with the predefined
constants ID3_V1_0, ID3_V1_1 and ID3_V2.

Examples

Example #361 - id3_get_version() example

<?php

$version = id3_get_version("path/to/example.mp3");

if ($version & ID3_V1_0) {

 echo "Contains a 1.x tag\n";

}

if ($version & ID3_V1_1) {

 echo "Contains a 1.1 tag\n";

}

if ($version & ID3_V2) {

 echo "Contains a 2.x tag\n";

}

?>

The above example will output something similar to:

Contains a 1.x tag

Contains a 1.1 tag

See Also

• id3_set_tag()
• id3_get_tag()
• id3_remove_tag()

id3_remove_tag

id3_remove_tag -- Remove an existing ID3 tag

Description

bool id3_remove_tag (string $filename [, int $version])

id3_remove_tag() is used to remove the information stored of an ID3 tag.

Parameters

filename

The path to the MP3 file Instead of a filename you may also pass a valid stream
resource

version

Allows you to specify the version of the tag as MP3 files may contain both, version 1.x
and version 2.x tags.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #362 - id3_remove_tag() example

<?php

$result = id3_remove_tag("path/to/example.mp3", ID3_V1_0);

if ($result === true) {

 echo "Tag succesfully removed\n";

}

?>

If the file is writable and contained a 1.0 tag, this will output:

Tag succesfully removed

Notes

Note

Currently id3_remove_tag() only supports version 1.0 and 1.1. If you choose to remove
a 1.0 tag and the file contains a 1.1 tag, this tag will be removed, as v1.1 is only an
extension of 1.0.

See Also

• id3_set_tag()
• id3_get_tag()
• id3_get_version()

id3_set_tag

id3_set_tag -- Update information stored in an ID3 tag

Description

bool id3_set_tag (string $filename, array $tag [, int $version])

id3_set_tag() is used to change the information stored of an ID3 tag. If no tag has been
present, it will be added to the file.

Parameters

filename

The path to the MP3 file Instead of a filename you may also pass a valid stream
resource

tag

An associative array of tag keys and values The following keys may be used in the
associative array:

Keys in the associative array

key possible value available in version

title string with maximum of 30
characters

v1.0, v1.1

artist string with maximum of 30
characters

v1.0, v1.1

album string with maximum of 30
characters

v1.0, v1.1

year 4 digits v1.0, v1.1

genre integer value between 0 and
147

v1.0, v1.1

comment string with maximum of 30
characters (28 in v1.1)

v1.0, v1.1

track integer between 0 and 255 v1.1

version

Allows you to specify the version of the tag as MP3 files may contain both, version 1.x and

version 2.x tags

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #363 - id3_set_tag() example

<?php

$data = array(

 "title" => "Re:Start",

 "artist" => "Re:\Legion",

 "comment" => "A nice track"

);

$result = id3_set_tag("path/to/example.mp3", $data, ID3_V1_0);

if ($result === true) {

 echo "Tag succesfully updated\n";

}

?>

If the file is writable, this will output:

Tag succesfully updated

Notes

Note

Currently id3_remove_tag() only supports version 1.0 and 1.1.

See Also

• id3_remove_tag()
• id3_get_tag()
• id3_get_version()

OGG/Vorbis

Introduction

The OGG/Vorbis file format, as defined by » http://www.vorbis.com/, is a scheme for
compressing audio streams by multiple factors with a minimum of quality loss. This extension
adds Ogg Vorbis support to PHP's URL Wrappers. When used in read mode, compressed
OGG/Vorbis data is expanded to raw PCM audio in one of six PCM encoding formats listed
below.

http://www.vorbis.com/

Installing/Configuring

Requirements

This extension requires PHP >= 4.3.0, » libogg >= 1.0, and » libvorbis >= 1.0.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/oggvorbis

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.vorbis.com/setup/
http://www.vorbis.com/setup/
http://pecl.php.net/package/oggvorbis
http://pecl.php.net/package/oggvorbis

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

OGG/Vorbis supports PCM encodings in the following formats

Constant Definition

OGGVORBIS_PCM_U8 Unsigned 8-bit PCM.

OGGVORBIS_PCM_S8 Signed 8-bit PCM.

OGGVORBIS_PCM_U16_LE Unsigned 16-bit PCM. Little Endian byte
order.

OGGVORBIS_PCM_U16_BE Unsigned 16-bit PCM. Big Endian byte
order.

OGGVORBIS_PCM_S16_LE Signed 16-bit PCM. Little Endian byte order.

OGGVORBIS_PCM_S16_BE Signed 16-bit PCM. Big Endian byte order.

Context options

OGG/Vorbis tuning options

Option Definition Relevance Default

pcm_mode PCM byte encoding
used. See constants
below.

Read / Write OGGVORBIS_PCM_
S16_LE

rate PCM Sampling rate.
Measured in Hz.

Write only 44100

bitrate Vorbis Average
Bitrate Encoding /
Variable Bitrate
Encoding. Measured
in bps (ABR) or
Quality level (VBR:
0.0 to 1.0). 128000
ABR is rough equal
to 0.4 VBR.

Write only 128000

channels Number of PCM
channels. 1 == Mono,
2 == Stereo.

Write only 2

serialno Serial Number of
stream within file.
Must be unique within
file. Because of the
potential to select a
duplicate serial
number within a
chained file, make
efforts to manually
assign unique
numbers when
encoding.

Write only Random

comments Associative array of
file comments. Will
be translated to
strtoupper($name) .
"=$value". Note: This
context option is not
available in
oggvorbis-0.1

Write only array('ENCODER' =>
'PHP/OggVorbis,
http://pear.php.net/o
ggvorbis')

Examples

Examples on using the ogg:// wrapper.

Example #364 - Reading an OGG/Vorbis file

<?php

dl("oggvorbis.so");

/* By default, ogg:// will decode to Signed 16-bit Little Endian */

$fp = fopen('ogg://myaudio.ogg', 'r');

/* Collect some information about the file. */

$metadata = stream_get_meta_data($fp);

/* Inspect the first song (usually the only song,

 but OGG/Vorbis files may be chained) */

$songdata = $metadata['wrapper_data'][0];

echo "OGG/Vorbis file encoded by: {$songdata['vendor']}\n.";

echo " {$songdata['channels']} channels of {$songdata['rate']}Hz sampling
encoded at {$songdata['bitrate_nominal']}bps.\n";

foreach($songdata['comments'] as $comment) {

 echo " $comment\n";

}

while ($audio_data = fread($fp, 8192)) {

 /* Do something with the PCM audio we're extracting from the OGG.

 Copying to /dev/dsp is a good target on linux systems,

 just remember to setup the device for your sampling mode first. */

}

fclose($fp);

?>

Example #365 - Encode an audio file to OGG/Vorbis

<?php

dl('oggvorbis.so');

$context = stream_context_create(array('ogg'=>array(

 'pcm_mode' => OGGVORBIS_PCM_S8, /* Signed 8bit audio */

 'rate' => 44100, /* 44kHz CD quality */

 'bitrate' => 0.5, /* Midquality VBR */

 'channels' => 1, /* Mono */

 'serialno' => 12345))); /* Unique within our stream */

/* Open file for appending. This will "chain" a second OGG stream at the
end of the first. */

$ogg = fopen('ogg://mysong.ogg', 'a', false, $context);

$pcm = fopen('mysample.pcm', 'r');

/* Compress the raw PCM audio from mysample.pcm into mysong.ogg */

stream_copy_to_stream($pcm, $ogg);

fclose($pcm);

fclose($ogg);

?>

OpenAL Audio Bindings

Introduction

Platform independent audio bindings. Requires the » OpenAL library.

http://www.openal.org/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/openal.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines four resource types: Open AL(Device) - Returned by
openal_device_open(), Open AL(Context) - Returned by openal_context_create(), Open
AL(Buffer) - Returned by openal_buffer_create(), and Open AL(Source) - Returned by
openal_source_create().

http://pecl.php.net/
http://pecl.php.net/package/openal
http://pecl.php.net/package/openal
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

ALC_FREQUENCY (integer)
Context Attribute

ALC_REFRESH (integer)
Context Attribute

ALC_SYNC (integer)
Context Attribute

AL_FREQUENCY (integer)
Buffer Setting

AL_BITS (integer)
Buffer Setting

AL_CHANNELS (integer)
Buffer Setting

AL_SIZE (integer)
Buffer Setting

AL_BUFFER (integer)
Source/Listener Setting (Integer)

AL_SOURCE_RELATIVE (integer)
Source/Listener Setting (Integer)

AL_SOURCE_STATE (integer)
Source/Listener Setting (Integer)

AL_PITCH (integer)
Source/Listener Setting (Float)

AL_GAIN (integer)
Source/Listener Setting (Float)

AL_MIN_GAIN (integer)
Source/Listener Setting (Float)

AL_MAX_GAIN (integer)
Source/Listener Setting (Float)

AL_MAX_DISTANCE (integer)
Source/Listener Setting (Float)

AL_ROLLOFF_FACTOR (integer)
Source/Listener Setting (Float)

AL_CONE_OUTER_GAIN (integer)
Source/Listener Setting (Float)

AL_CONE_INNER_ANGLE (integer)
Source/Listener Setting (Float)

AL_CONE_OUTER_ANGLE (integer)
Source/Listener Setting (Float)

AL_REFERENCE_DISTANCE (integer)
Source/Listener Setting (Float)

AL_POSITION (integer)
Source/Listener Setting (Float Vector)

AL_VELOCITY (integer)
Source/Listener Setting (Float Vector)

AL_DIRECTION (integer)
Source/Listener Setting (Float Vector)

AL_ORIENTATION (integer)
Source/Listener Setting (Float Vector)

AL_FORMAT_MONO8 (integer)
PCM Format

AL_FORMAT_MONO16 (integer)
PCM Format

AL_FORMAT_STEREO8 (integer)
PCM Format

AL_FORMAT_STEREO16 (integer)
PCM Format

AL_INITIAL (integer)
Source State

AL_PLAYING (integer)
Source State

AL_PAUSED (integer)
Source State

AL_STOPPED (integer)
Source State

AL_LOOPING (integer)

Source State

AL_TRUE (integer)
Boolean value recognized by OpenAL

AL_FALSE (integer)
Boolean value recognized by OpenAL

OpenAL Functions

openal_buffer_create

openal_buffer_create -- Generate OpenAL buffer

Description

resource openal_buffer_create (void)

Return Values

Returns an Open AL(Buffer) resource on success or FALSE on failure.

See Also

• openal_buffer_loadwav()
• openal_buffer_data()

openal_buffer_data

openal_buffer_data -- Load a buffer with data

Description

bool openal_buffer_data (resource $buffer, int $format, string $data, int $freq)

Parameters

buffer

An Open AL(Buffer) resource (previously created by openal_buffer_create()).

format

Format of data, one of: AL_FORMAT_MONO8, AL_FORMAT_MONO16,
AL_FORMAT_STEREO8 and AL_FORMAT_STEREO16

data

Block of binary audio data in the format and freq specified.

freq

Frequency of data given in Hz.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_buffer_loadwav()
• openal_stream()

openal_buffer_destroy

openal_buffer_destroy -- Destroys an OpenAL buffer

Description

bool openal_buffer_destroy (resource $buffer)

Parameters

buffer

An Open AL(Buffer) resource (previously created by openal_buffer_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_buffer_create()

openal_buffer_get

openal_buffer_get -- Retrieve an OpenAL buffer property

Description

int openal_buffer_get (resource $buffer, int $property)

Parameters

buffer

An Open AL(Buffer) resource (previously created by openal_buffer_create()).

property

Specific property, one of: AL_FREQUENCY, AL_BITS, AL_CHANNELS and
AL_SIZE.

Return Values

Returns an integer value appropriate to the property requested or FALSE on failure.

See Also

• openal_buffer_create()

openal_buffer_loadwav

openal_buffer_loadwav -- Load a .wav file into a buffer

Description

bool openal_buffer_loadwav (resource $buffer, string $wavfile)

Parameters

buffer

An Open AL(Buffer) resource (previously created by openal_buffer_create()).

wavfile

Path to .WAV file on local file system.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_buffer_data()
• openal_stream()

openal_context_create

openal_context_create -- Create an audio processing context

Description

resource openal_context_create (resource $device)

Parameters

device

An Open AL(Device) resource (previously created by openal_device_open()).

Return Values

Returns an Open AL(Context) resource on success or FALSE on failure.

See Also

• openal_device_open()
• openal_context_destroy()

openal_context_current

openal_context_current -- Make the specified context current

Description

bool openal_context_current (resource $context)

Parameters

context

An Open AL(Context) resource (previously created by openal_context_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_context_create()

openal_context_destroy

openal_context_destroy -- Destroys a context

Description

bool openal_context_destroy (resource $context)

Parameters

context

An Open AL(Context) resource (previously created by openal_context_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_context_create()

openal_context_process

openal_context_process -- Process the specified context

Description

bool openal_context_process (resource $context)

Parameters

context

An Open AL(Context) resource (previously created by openal_context_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_context_create()
• openal_context_current()
• openal_context_suspend()

openal_context_suspend

openal_context_suspend -- Suspend the specified context

Description

bool openal_context_suspend (resource $context)

Parameters

context

An Open AL(Context) resource (previously created by openal_context_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_context_create()
• openal_context_current()
• openal_context_process()

openal_device_close

openal_device_close -- Close an OpenAL device

Description

bool openal_device_close (resource $device)

Parameters

device

An Open AL(Device) resource (previously created by openal_device_open()) to be
closed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_device_open()

openal_device_open

openal_device_open -- Initialize the OpenAL audio layer

Description

resource openal_device_open ([string $device_desc])

Parameters

device_desc

Open an audio device optionally specified by device_desc. If device_desc is not
specified the first available audio device will be used.

Return Values

Returns an Open AL(Device) resource on success or FALSE on failure.

See Also

• openal_device_close()
• openal_context_create()

openal_listener_get

openal_listener_get -- Retrieve a listener property

Description

mixed openal_listener_get (int $property)

Parameters

property

Property to retrieve, one of: AL_GAIN (float), AL_POSITION (array(float,float,float)),
AL_VELOCITY (array(float,float,float)) and AL_ORIENTATION (array(float,float,float)).

Return Values

Returns a float or array of floats (as appropriate), or FALSE on failure.

See Also

• openal_listener_set()

openal_listener_set

openal_listener_set -- Set a listener property

Description

bool openal_listener_set (int $property, mixed $setting)

Parameters

property

Property to set, one of: AL_GAIN (float), AL_POSITION (array(float,float,float)),
AL_VELOCITY (array(float,float,float)) and AL_ORIENTATION (array(float,float,float)).

setting

Value to set, either float, or an array of floats as appropriate.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_listener_get()

openal_source_create

openal_source_create -- Generate a source resource

Description

resource openal_source_create (void)

Return Values

Returns an Open AL(Source) resource on success or FALSE on failure.

See Also

• openal_source_set()
• openal_source_play()
• openal_source_destroy()

openal_source_destroy

openal_source_destroy -- Destroy a source resource

Description

bool openal_source_destroy (resource $source)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_create()

openal_source_get

openal_source_get -- Retrieve an OpenAL source property

Description

mixed openal_source_get (resource $source, int $property)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

property

Property to get, one of: AL_SOURCE_RELATIVE (int), AL_SOURCE_STATE (int),
AL_PITCH (float), AL_GAIN (float), AL_MIN_GAIN (float), AL_MAX_GAIN (float),
AL_MAX_DISTANCE (float), AL_ROLLOFF_FACTOR (float),
AL_CONE_OUTER_GAIN (float), AL_CONE_INNER_ANGLE (float),
AL_CONE_OUTER_ANGLE (float), AL_REFERENCE_DISTANCE (float),
AL_POSITION (array(float,float,float)), AL_VELOCITY (array(float,float,float)),
AL_DIRECTION (array(float,float,float)).

Return Values

Returns the type associated with the property being retrieved or FALSE on failure.

See Also

• openal_source_create()
• openal_source_set()
• openal_source_play()

openal_source_pause

openal_source_pause -- Pause the source

Description

bool openal_source_pause (resource $source)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_stop()
• openal_source_play()
• openal_source_rewind()

openal_source_play

openal_source_play -- Start playing the source

Description

bool openal_source_play (resource $source)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_stop()
• openal_source_pause()
• openal_source_rewind()

openal_source_rewind

openal_source_rewind -- Rewind the source

Description

bool openal_source_rewind (resource $source)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_stop()
• openal_source_pause()
• openal_source_play()

openal_source_set

openal_source_set -- Set source property

Description

bool openal_source_set (resource $source, int $property, mixed $setting)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

property

Property to set, one of: AL_BUFFER (OpenAL(Source)), AL_LOOPING (bool),
AL_SOURCE_RELATIVE (int), AL_SOURCE_STATE (int), AL_PITCH (float),
AL_GAIN (float), AL_MIN_GAIN (float), AL_MAX_GAIN (float), AL_MAX_DISTANCE
(float), AL_ROLLOFF_FACTOR (float), AL_CONE_OUTER_GAIN (float),
AL_CONE_INNER_ANGLE (float), AL_CONE_OUTER_ANGLE (float),
AL_REFERENCE_DISTANCE (float), AL_POSITION (array(float,float,float)),
AL_VELOCITY (array(float,float,float)), AL_DIRECTION (array(float,float,float)).

setting

Value to assign to specified property. Refer to the description of property for a
description of the value(s) expected.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_create()
• openal_source_get()
• openal_source_play()

openal_source_stop

openal_source_stop -- Stop playing the source

Description

bool openal_source_stop (resource $source)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openal_source_play()
• openal_source_pause()
• openal_source_rewind()

openal_stream

openal_stream -- Begin streaming on a source

Description

resource openal_stream (resource $source, int $format, int $rate)

Parameters

source

An Open AL(Source) resource (previously created by openal_source_create()).

format

Format of data, one of: AL_FORMAT_MONO8, AL_FORMAT_MONO16,
AL_FORMAT_STEREO8 and AL_FORMAT_STEREO16

rate

Frequency of data to stream given in Hz.

Return Values

Returns a stream resource on success, or FALSE on failure.

See Also

• openal_source_create()
• fwrite()

Authentication Services

Kerberos V

Introduction

These package allows you to access Kerberos V administration servers. You can create,
modify, and delete Kerberos V principals and policies.

More information about Kerberos can be found at » http://web.mit.edu/kerberos/www/.

Documentation for Kerberos and KADM5 can be found at
» http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.8/doc/admin_toc.html.

http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.8/doc/admin_toc.html
http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.8/doc/admin_toc.html

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a KADM5 handle returned by kadm5_init_with_password().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Constants for Attribute Flags

The functions kadm5_create_principal(), kadm5_modify_principal(), and
kadm5_modify_principal() allow to specify special attributes using a bitfield. The symbols
are defined below:

Attributes for use by the KDC

constant

KRB5_KDB_DISALLOW_POSTDATED

KRB5_KDB_DISALLOW_FORWARDABLE

KRB5_KDB_DISALLOW_TGT_BASED

KRB5_KDB_DISALLOW_RENEWABLE

KRB5_KDB_DISALLOW_PROXIABLE

KRB5_KDB_DISALLOW_DUP_SKEY

KRB5_KDB_DISALLOW_ALL_TIX

KRB5_KDB_REQUIRES_PRE_AUTH

KRB5_KDB_REQUIRES_HW_AUTH

KRB5_KDB_REQUIRES_PWCHANGE

KRB5_KDB_DISALLOW_SVR

KRB5_KDB_PWCHANGE_SERVER

KRB5_KDB_SUPPORT_DESMD5

KRB5_KDB_NEW_PRINC

Constants for Options

The functions kadm5_create_principal(), kadm5_modify_principal(), and
kadm5_get_principal() allow to specify or return principal's options as an associative array.
The keys for the associative array are defined as string constants below:

Options for creating/modifying/retrieving principals

constant funcdef description

KADM5_PRINCIPAL long The expire time of the
princial as a Kerberos
timestamp.

KADM5_PRINC_EXPIRE_TI
ME

long The expire time of the
princial as a Kerberos
timestamp.

KADM5_LAST_PW_CHANG
E

long The time this principal's
password was last changed.

KADM5_PW_EXPIRATION long The expire time of the
principal's current password,
as a Kerberos timestamp.

KADM5_MAX_LIFE long The maximum lifetime of any
Kerberos ticket issued to this
principal.

KADM5_MAX_RLIFE long The maximum renewable
lifetime of any Kerberos
ticket issued to or for this
principal.

KADM5_MOD_NAME string The name of the Kerberos
principal that most recently
modified this principal.

KADM5_MOD_TIME long The time this principal was
last modified, as a Kerberos
timestamp.

KADM5_KVNO long The version of the principal's
current key.

KADM5_POLICY string The name of the policy
controlling this principal.

KADM5_CLEARPOLICY long Standard procedure is to
assign the 'default' policy to
new principals.
KADM5_CLEARPOLICY
suppresses this behaviour.

KADM5_LAST_SUCCESS long The KDC time of the last
successfull AS_REQ.

KADM5_LAST_FAILED long The KDC time of the last
failed AS_REQ.

KADM5_FAIL_AUTH_COUN
T

long The number of consecutive
failed AS_REQs.

KADM5_RANDKEY long Generates a random
password for the principal.
The parameter password will
be ignored.

KADM5_ATTRIBUTES long A bitfield of attributes for use
by the KDC.

Examples

This simple example shows how to connect, query, print resulting principals and
disconnect from a KADM5 database.

Example #366 - KADM5 extension overview example

<?php

 $handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

 print "<h1>get_principals</h1>\n";

 $principals = kadm5_get_principals($handle);

 for($i=0; $i<count($principals); $i++)

 print "$principals[$i]
\n";

 print "<h1>get_policies</h1>\n";

 $policies = kadm5_get_policies($handle);

 for($i=0; $i<count($policies); $i++)

 print "$policies[$i]
\n";

 print "<h1>get_principal burbach@GONICUS.LOCAL</h1>\n";

 $options = kadm5_get_principal($handle, "burbach@GONICUS.LOCAL");

 $keys = array_keys($options);

 for($i=0; $i<count($keys); $i++) {

 $value = $options[$keys[$i]];

 print "$keys[$i]: $value
\n";

 }

 $options = array(KADM5_PRINC_EXPIRE_TIME => 0);

 kadm5_modify_principal($handle, "burbach@GONICUS.LOCAL", $options);

 kadm5_destroy($handle);

?>

KADM5 Functions

kadm5_chpass_principal

kadm5_chpass_principal -- Changes the principal's password

Description

bool kadm5_chpass_principal (resource $handle, string $principal, string $password)

kadm5_chpass_principal() sets the new password password for the principal.

Parameters

handle

A KADM5 handle.

principal

The principal.

password

The new password.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #367 - Example of changing principal's password

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

kadm5_chpass_principal($handle, "burbach@GONICUS.LOCAL", "newpassword");

kadm5_destroy($handle);

?>

kadm5_create_principal

kadm5_create_principal -- Creates a kerberos principal with the given parameters

Description

bool kadm5_create_principal (resource $handle, string $principal [, string $password
[, array $options]])

Creates a principal with the given password.

Parameters

handle

A KADM5 handle.

principal

The principal.

password

If password is omitted or is NULL, a random key will be generated.

options

It is possible to specify several optional parameters within the array options. Allowed
are the following options: KADM5_PRINC_EXPIRE_TIME,
KADM5_PW_EXPIRATION, KADM5_ATTRIBUTES, KADM5_MAX_LIFE,
KADM5_KVNO, KADM5_POLICY, KADM5_CLEARPOLICY, KADM5_MAX_RLIFE.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #368 - Example of principal's creation

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

$attributes = KRB5_KDB_REQUIRES_PRE_AUTH | KRB5_KDB_DISALLOW_PROXIABLE;

$options = array(KADM5_PRINC_EXPIRE_TIME => 0,

 KADM5_POLICY => "default",

 KADM5_ATTRIBUTES => $attributes);

kadm5_create_principal($handle, "burbach@GONICUS.LOCAL", "password",
$options);

kadm5_destroy($handle);

?>

See Also

• kadm5_modify_principal()
• kadm5_delete_principal()

kadm5_delete_principal

kadm5_delete_principal -- Deletes a kerberos principal

Description

bool kadm5_delete_principal (resource $handle, string $principal)

Removes the principal from the Kerberos database.

Parameters

handle

A KADM5 handle.

principal

The removed principal.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #369 - kadm5_delete_principal() example

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

kadm5_delete_principal($handle, "burbach@GONICUS.LOCAL");

kadm5_destroy($handle);

?>

See Also

• kadm5_modify_principal()
• kadm5_create_principal()

kadm5_destroy

kadm5_destroy -- Closes the connection to the admin server and releases all related
resources

Description

bool kadm5_destroy (resource $handle)

Closes the connection to the admin server and releases all related resources.

Parameters

handle

A KADM5 handle.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• kadm5_init_with_password()

kadm5_flush

kadm5_flush -- Flush all changes to the Kerberos database

Description

bool kadm5_flush (resource $handle)

Flush all changes to the Kerberos database, leaving the connection to the Kerberos admin
server open.

Parameters

handle

A KADM5 handle.

Return Values

Returns TRUE on success or FALSE on failure.

kadm5_get_policies

kadm5_get_policies -- Gets all policies from the Kerberos database

Description

array kadm5_get_policies (resource $handle)

Gets an array containing the policies's names.

Parameters

handle

A KADM5 handle.

Return Values

Returns array of policies on success, or FALSE on failure.

Examples

Example #370 - kadm5_get_policies() example

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

print "<h1>get_policies</h1>\n";

foreach (kadm5_get_policies($handle) as $policy) {

 echo "$policy
\n";

}

kadm5_destroy($handle);

?>

kadm5_get_principal

kadm5_get_principal -- Gets the principal's entries from the Kerberos database

Description

array kadm5_get_principal (resource $handle, string $principal)

Gets the principal's entries from the Kerberos database.

Parameters

handle

A KADM5 handle.

principal

The principal.

Return Values

Returns array of options containing the following keys: KADM5_PRINCIPAL,
KADM5_PRINC_EXPIRE_TIME, KADM5_PW_EXPIRATION, KADM5_ATTRIBUTES,
KADM5_MAX_LIFE, KADM5_MOD_NAME, KADM5_MOD_TIME, KADM5_KVNO,
KADM5_POLICY, KADM5_MAX_RLIFE, KADM5_LAST_SUCCESS,
KADM5_LAST_FAILED, KADM5_FAIL_AUTH_COUNT on success, or FALSE on failure.

Examples

Example #371 - kadm5_get_principal() example

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

print "<h1>get_principal burbach@GONICUS.LOCAL</h1>\n";

$options = kadm5_get_principal($handle, "burbach@GONICUS.LOCAL");

foreach ($options as $key => $value) {

 echo "$key: $value
\n";

}

kadm5_destroy($handle);

?>

See Also

• kadm5_get_principals()

kadm5_get_principals

kadm5_get_principals -- Gets all principals from the Kerberos database

Description

array kadm5_get_principals (resource $handle)

kadm5_get_principals() returns an array containing the principals's names.

Parameters

handle

A KADM5 handle.

Return Values

Returns array of principals on success, or FALSE on failure.

Examples

Example #372 - kadm5_get_principals() example

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

print "<h1>get_principals</h1>\n";

foreach (kadm5_get_principals($handle) as $principal) {

 echo "$principal
\n";

}

kadm5_destroy($handle);

?>

See Also

• kadm5_get_principal()

kadm5_init_with_password

kadm5_init_with_password -- Opens a connection to the KADM5 library

Description

resource kadm5_init_with_password (string $admin_server, string $realm, string $
principal, string $password)

Opens a connection with the KADM5 library using the principal and the given password
to obtain initial credentials from the admin_server.

Parameters

admin_server

The server.

realm

Defines the authentication domain for the connection.

principal

The principal.

password

If password is omitted or is NULL, a random key will be generated.

Return Values

Returns a KADM5 handle on success, or FALSE on failure.

Examples

Example #373 - KADM5 initialization example

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

$attributes = KRB5_KDB_REQUIRES_PRE_AUTH | KRB5_KDB_DISALLOW_PROXIABLE;

$options = array(KADM5_PRINC_EXPIRE_TIME => 0,

 KADM5_POLICY => "default",

 KADM5_ATTRIBUTES => $attributes);

kadm5_create_principal($handle, "burbach@GONICUS.LOCAL", "password",
$options);

kadm5_destroy($handle);

?>

Notes

Note

Connection should be closed after use with kadm5_destroy().

See Also

• kadm5_destroy()

kadm5_modify_principal

kadm5_modify_principal -- Modifies a kerberos principal with the given parameters

Description

bool kadm5_modify_principal (resource $handle, string $principal, array $options)

Modifies a principal according to the given options.

Parameters

handle

A KADM5 handle.

principal

The principal.

options

It is possible to specify several optional parameters within the array options. Allowed
are the following options: KADM5_PRINC_EXPIRE_TIME,
KADM5_PW_EXPIRATION, KADM5_ATTRIBUTES, KADM5_MAX_LIFE,
KADM5_KVNO, KADM5_POLICY, KADM5_CLEARPOLICY, KADM5_MAX_RLIFE.
KADM5_FAIL_AUTH_COUNT.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #374 - Example of modifying principal

<?php

$handle = kadm5_init_with_password("afs-1", "GONICUS.LOCAL", "admin/admin",
"password");

$attributes = KRB5_KDB_REQUIRES_PRE_AUTH;

$options = array(KADM5_PRINC_EXPIRE_TIME => 3451234,

 KADM5_POLICY => "gonicus",

 KADM5_ATTRIBUTES => $attributes);

kadm5_modify_principal($handle, "burbach@GONICUS.LOCAL", $options);

kadm5_destroy($handle);

?>

See Also

• kadm5_create_principal()
• kadm5_delete_principal()

Radius

Introduction

This package is based on the libradius of FreeBSD. This PECL adds full support for
Radius Authentication (» RFC 2865) and Radius Accounting (» RFC 2866). This
package is available for Unix (tested on FreeBSD and Linux) and for Windows.

Note

An exact description for libradius can be found » here. A detailed description of the
configuration file can be found » here.

http://www.faqs.org/rfcs/rfc2865
http://www.faqs.org/rfcs/rfc2866
http://www.freebsd.org/cgi/man.cgi?query=libradius
url.libradius.conf

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Howto install the package?

• untar the package (usually into php4/ext)

• rename radius-x.x to radius

• run ./buildconf in php4

• run ./configure --enable-radius

• make; make install

or if you would like to have it as .so:

• untar the package

• run phpize in the radius-x.x directory

• run ./configure in the radius-x.x directory

• make; make install

For Windows I recommend to use the php_radius.dll from » http://snaps.php.net/.
Unbundled PECL extensions may be downloaded from: » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://snaps.php.net/
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

RADIUS_ACCESS_REQUEST ()
Authentication Request

RADIUS_ACCESS_ACCEPT ()
Access accepted

RADIUS_ACCESS_REJECT ()
Access rejected

RADIUS_ACCOUNTING_REQUEST ()
Accounting request

RADIUS_ACCOUNTING_RESPONSE ()
Accounting response

RADIUS_ACCESS_CHALLENGE ()
Accsess challenge

RADIUS_USER_NAME (string)
Username

RADIUS_USER_PASSWORD (string)
Password

RADIUS_CHAP_PASSWORD (string)
Chap Password: chappass = md5(ident + plaintextpass + challenge)

RADIUS_NAS_IP_ADDRESS (string)
NAS IP-Adress

RADIUS_NAS_PORT (int)
NAS Port

RADIUS_SERVICE_TYPE (int)
Type of Service, one of:

• RADIUS_LOGIN
• RADIUS_FRAMED
• RADIUS_CALLBACK_LOGIN
• RADIUS_CALLBACK_FRAMED
• RADIUS_OUTBOUND
• RADIUS_ADMINISTRATIVE
• RADIUS_NAS_PROMPT
• RADIUS_AUTHENTICATE_ONLY

• RADIUS_CALLBACK_NAS_PROMPT

RADIUS_FRAMED_PROTOCOL (int)
Framed Protocol, one of:

• RADIUS_PPP
• RADIUS_SLIP
• RADIUS_ARAP
• RADIUS_GANDALF
• RADIUS_XYLOGICS

RADIUS_FRAMED_IP_ADDRESS (string)
IP-Address

RADIUS_FRAMED_IP_NETMASK (string)
Netmask

RADIUS_FRAMED_ROUTING (int)
Routing

RADIUS_FILTER_ID (string)
Filter ID

RADIUS_FRAMED_MTU (int)
MTU

RADIUS_FRAMED_COMPRESSION (int)
Compression, one of:

• RADIUS_COMP_NONE
• RADIUS_COMP_VJ
• RADIUS_COMP_IPXHDR

RADIUS_LOGIN_IP_HOST (string)
Login IP Host

RADIUS_LOGIN_SERVICE (int)
Login Service

RADIUS_LOGIN_TCP_PORT (int)
Login TCP Port

RADIUS_REPLY_MESSAGE (string)
Reply Message

RADIUS_CALLBACK_NUMBER (string)
Callback Number

RADIUS_CALLBACK_ID (string)

Callback ID

RADIUS_FRAMED_ROUTE (string)
Framed Route

RADIUS_FRAMED_IPX_NETWORK (string)
Framed IPX Network

RADIUS_STATE (string)
State

RADIUS_CLASS (int)
Class

RADIUS_VENDOR_SPECIFIC (int)
Vendor specific attribute

RADIUS_SESSION_TIMEOUT (int)
Session timeout

RADIUS_IDLE_TIMEOUT (int)
Idle timeout

RADIUS_TERMINATION_ACTION (int)
Termination action

RADIUS_CALLED_STATION_ID (int)
Called Station Id

RADIUS_CALLING_STATION_ID (string)
Calling Station Id

RADIUS_NAS_IDENTIFIER (int)
NAS ID

RADIUS_PROXY_STATE (int)
Proxy State

RADIUS_LOGIN_LAT_SERVICE (int)
Login LAT Service

RADIUS_LOGIN_LAT_NODE (int)
Login LAT Node

RADIUS_LOGIN_LAT_GROUP (int)
Login LAT Group

RADIUS_FRAMED_APPLETALK_LINK (int)
Framed Appletalk Link

RADIUS_FRAMED_APPLETALK_NETWORK (int)
Framed Appletalk Network

RADIUS_FRAMED_APPLETALK_ZONE (int)
Framed Appletalk Zone

RADIUS_CHAP_CHALLENGE (string)
Challenge

RADIUS_NAS_PORT_TYPE (int)
NAS port type, one of:

• RADIUS_ASYNC
• RADIUS_SYNC
• RADIUS_ISDN_SYNC
• RADIUS_ISDN_ASYNC_V120
• RADIUS_ISDN_ASYNC_V110
• RADIUS_VIRTUAL
• RADIUS_PIAFS
• RADIUS_HDLC_CLEAR_CHANNEL
• RADIUS_X_25
• RADIUS_X_75
• RADIUS_G_3_FAX
• RADIUS_SDSL
• RADIUS_ADSL_CAP
• RADIUS_ADSL_DMT
• RADIUS_IDSL
• RADIUS_ETHERNET
• RADIUS_XDSL
• RADIUS_CABLE
• RADIUS_WIRELESS_OTHER
• RADIUS_WIRELESS_IEEE_802_11

RADIUS_PORT_LIMIT (int)
Port Limit

RADIUS_LOGIN_LAT_PORT (int)
Login LAT Port

RADIUS_CONNECT_INFO (string)
Connect info

RADIUS_ACCT_STATUS_TYPE (int)
Accounting status type, one of:

• RADIUS_START
• RADIUS_STOP
• RADIUS_ACCOUNTING_ON
• RADIUS_ACCOUNTING_OFF

RADIUS_ACCT_DELAY_TIME (int)
Accounting delay time

RADIUS_ACCT_INPUT_OCTETS (int)
Accounting input bytes

RADIUS_ACCT_OUTPUT_OCTETS (int)
Accounting output bytes

RADIUS_ACCT_SESSION_ID (int)
Accounting session ID

RADIUS_ACCT_AUTHENTIC (int)
Accounting authentic, one of:

• RADIUS_AUTH_RADIUS
• RADIUS_AUTH_LOCAL
• RADIUS_AUTH_REMOTE

RADIUS_ACCT_SESSION_TIME (int)
Accounting session time

RADIUS_ACCT_INPUT_PACKETS (int)
Accounting input packets

RADIUS_ACCT_OUTPUT_PACKETS (int)
Accounting output packets

RADIUS_ACCT_TERMINATE_CAUSE (int)
Accounting terminate cause, one of:

• RADIUS_TERM_USER_REQUEST
• RADIUS_TERM_LOST_CARRIER
• RADIUS_TERM_LOST_SERVICE
• RADIUS_TERM_IDLE_TIMEOUT
• RADIUS_TERM_SESSION_TIMEOUT
• RADIUS_TERM_ADMIN_RESET
• RADIUS_TERM_ADMIN_REBOOT
• RADIUS_TERM_PORT_ERROR
• RADIUS_TERM_NAS_ERROR
• RADIUS_TERM_NAS_REQUEST
• RADIUS_TERM_NAS_REBOOT
• RADIUS_TERM_PORT_UNNEEDED
• RADIUS_TERM_PORT_PREEMPTED
• RADIUS_TERM_PORT_SUSPENDED
• RADIUS_TERM_SERVICE_UNAVAILABLE
• RADIUS_TERM_CALLBACK
• RADIUS_TERM_USER_ERROR
• RADIUS_TERM_HOST_REQUEST

RADIUS_ACCT_MULTI_SESSION_ID (string)
Accounting multi session ID

RADIUS_ACCT_LINK_COUNT (int)
Accounting link count

RADIUS_VENDOR_MICROSOFT (int)
Microsoft specific vendor attributes (» RFC 2548), one of:

• RADIUS_MICROSOFT_MS_CHAP_RESPONSE
• RADIUS_MICROSOFT_MS_CHAP_ERROR
• RADIUS_MICROSOFT_MS_CHAP_PW_1
• RADIUS_MICROSOFT_MS_CHAP_PW_2
• RADIUS_MICROSOFT_MS_CHAP_LM_ENC_PW
• RADIUS_MICROSOFT_MS_CHAP_NT_ENC_PW
• RADIUS_MICROSOFT_MS_MPPE_ENCRYPTION_POLICY
• RADIUS_MICROSOFT_MS_MPPE_ENCRYPTION_TYPES
• RADIUS_MICROSOFT_MS_RAS_VENDOR
• RADIUS_MICROSOFT_MS_CHAP_DOMAIN
• RADIUS_MICROSOFT_MS_CHAP_CHALLENGE
• RADIUS_MICROSOFT_MS_CHAP_MPPE_KEYS
• RADIUS_MICROSOFT_MS_BAP_USAGE
• RADIUS_MICROSOFT_MS_LINK_UTILIZATION_THRESHOLD
• RADIUS_MICROSOFT_MS_LINK_DROP_TIME_LIMIT
• RADIUS_MICROSOFT_MS_MPPE_SEND_KEY
• RADIUS_MICROSOFT_MS_MPPE_RECV_KEY
• RADIUS_MICROSOFT_MS_RAS_VERSION
• RADIUS_MICROSOFT_MS_OLD_ARAP_PASSWORD
• RADIUS_MICROSOFT_MS_NEW_ARAP_PASSWORD
• RADIUS_MICROSOFT_MS_ARAP_PASSWORD_CHANGE_REASON
• RADIUS_MICROSOFT_MS_FILTER
• RADIUS_MICROSOFT_MS_ACCT_AUTH_TYPE
• RADIUS_MICROSOFT_MS_ACCT_EAP_TYPE
• RADIUS_MICROSOFT_MS_CHAP2_RESPONSE
• RADIUS_MICROSOFT_MS_CHAP2_SUCCESS
• RADIUS_MICROSOFT_MS_CHAP2_PW
• RADIUS_MICROSOFT_MS_PRIMARY_DNS_SERVER
• RADIUS_MICROSOFT_MS_SECONDARY_DNS_SERVER
• RADIUS_MICROSOFT_MS_PRIMARY_NBNS_SERVER
• RADIUS_MICROSOFT_MS_SECONDARY_NBNS_SERVER
• RADIUS_MICROSOFT_MS_ARAP_CHALLENGE

http://www.faqs.org/rfcs/rfc2548

Examples

Howto start?

• get a radius resource

• configure the library

• create the request

• put attributes

• send the request

• receive attributes

• close the radius resource (optional)

Take also a look at the examples in this package.

The package contains an example php script. This script demonstrates howto authenticate
with radius using PAP or CHAP (md5). If you authenticate with Microsoft Radius servers
then its not possible to use CHAP (md5). If you would like to authenticate with Microsoft
Servers you have to use MS-CHAPv1 or MS-CHAPv2, but its more complicated, because
you need md4, sha1 and des to generate the right data. The enclosed examples
demonstrate all authentication-methods, including MS-CHAPv1 and MS-CHAPv2. To get
the MS-CHAP to work you need the mcrypt and the mhash extension, starting with version
1.2 of the package, the mcrypt extension is no longer needed.

Radius Functions

Contact Information

If you have comments, bugfixes, enhancements or want to help to develop this you can
send me a mail at » mbretter@php.net. Binaries for Windows can be downloaded from
» here.

mailto:mbretter@php.net
http://www.bretterklieber.com/php
http://www.bretterklieber.com/php

radius_acct_open

radius_acct_open -- Creates a Radius handle for accounting

Description

resource radius_acct_open (void)

Return Values

Returns a handle on success, FALSE on error. This function only fails if insufficient
memory is available.

Examples

Example #375 - radius_acct_open() example

<?php

$res = radius_acct_open ()

 or die ("Could not create handle");

print("Handle successfully created");

?>

radius_add_server

radius_add_server -- Adds a server

Description

bool radius_add_server (resource $radius_handle, string $hostname, int $port, string $
secret, int $timeout, int $max_tries)

radius_add_server() may be called multiple times, and it may be used together with
radius_config(). At most 10 servers may be specified. When multiple servers are given,
they are tried in round-robin fashion until a valid response is received, or until each
server's max_tries limit has been reached.

Parameters

radius_handle

hostname

The hostname parameter specifies the server host, either as a fully qualified domain
name or as a dotted-quad IP address in text form.

port

The port specifies the UDP port to contact on the server. If port is given as 0, the
library looks up the radius/udp or radacct/udp service in the network services
database, and uses the port found there. If no entry is found, the library uses the
standard Radius ports, 1812 for authentication and 1813 for accounting.

secret

The shared secret for the server host is passed to the secret parameter. The Radius
protocol ignores all but the leading 128 bytes of the shared secret.

timeout

The timeout for receiving replies from the server is passed to the timeout parameter,
in units of seconds.

max_tries

The maximum number of repeated requests to make before giving up is passed into
the max_tries.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #376 - radius_add_server() example

<?php

if (!radius_add_server($res, 'radius.example.com', 1812, 'testing123', 3,
3)) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

See Also

• radius_config()

radius_auth_open

radius_auth_open -- Creates a Radius handle for authentication

Description

resource radius_auth_open (void)

Return Values

Returns a handle on success, FALSE on error. This function only fails if insufficient
memory is available.

Examples

Example #377 - radius_auth_open() example

<?php

$radh = radius_auth_open()

 or die ("Could not create handle");

echo "Handle successfully created";

?>

radius_close

radius_close -- Frees all ressources

Description

bool radius_close (resource $radius_handle)

It is not needed to call this function because php frees all resources at the end of each
request.

Return Values

Returns TRUE on success or FALSE on failure.

radius_config

radius_config -- Causes the library to read the given configuration file

Description

bool radius_config (resource $radius_handle, string $file)

Before issuing any Radius requests, the library must be made aware of the servers it can
contact. The easiest way to configure the library is to call radius_config(). radius_config()
causes the library to read a configuration file whose format is described in » radius.conf.

Parameters

radius_handle

file

The pathname of the configuration file is passed as the file argument to radius_config()
. The library can also be configured programmatically by calls to radius_add_server().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• radius_add_server()

http://www.freebsd.org/cgi/man.cgi?query=radius.conf

radius_create_request

radius_create_request -- Create accounting or authentication request

Description

bool radius_create_request (resource $radius_handle, int $type)

A Radius request consists of a code specifying the kind of request, and zero or more
attributes which provide additional information. To begin constructing a new request, call
radius_create_request().

Note

Attention: You must call this function, before you can put any attribute!

Parameters

radius_handle

Type is RADIUS_ACCESS_REQUEST or RADIUS_ACCOUNTING_REQUEST.

type

Its description

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #378 - radius_create_request() example

<?php

if (!radius_create_request($res, RADIUS_ACCESS_REQUEST)) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

See Also

• radius_send_request()

radius_cvt_addr

radius_cvt_addr -- Converts raw data to IP-Address

Description

string radius_cvt_addr (string $data)

Examples

Example #379 - radius_cvt_addr() example

<?php

while ($resa = radius_get_attr($res)) {

 if (!is_array($resa)) {

 printf ("Error getting attribute: %s\n", radius_strerror($res));

 exit;

 }

 $attr = $resa['attr'];

 $data = $resa['data'];

 switch ($attr) {

 case RADIUS_FRAMED_IP_ADDRESS:

 $ip = radius_cvt_addr($data);

 echo "IP: $ip
\n";

 break;

 case RADIUS_FRAMED_IP_NETMASK:

 $mask = radius_cvt_addr($data);

 echo "MASK: $mask
\n";

 break;

 }

}

?>

See Also

• radius_cvt_int()
• radius_cvt_string()

radius_cvt_int

radius_cvt_int -- Converts raw data to integer

Description

int radius_cvt_int (string $data)

Examples

Example #380 - radius_cvt_int() example

<?php

while ($resa = radius_get_attr($res)) {

 if (!is_array($resa)) {

 printf ("Error getting attribute: %s\n", radius_strerror($res));

 exit;

 }

 $attr = $resa['attr'];

 $data = $resa['data'];

 switch ($attr) {

 case RADIUS_FRAMED_MTU:

 $mtu = radius_cvt_int($data);

 echo "MTU: $mtu
\n";

 break;

 }

}

?>

See Also

• radius_cvt_addr()
• radius_cvt_string()

radius_cvt_string

radius_cvt_string -- Converts raw data to string

Description

string radius_cvt_string (string $data)

Examples

Example #381 - radius_cvt_string() example

<?php

while ($resa = radius_get_attr($res)) {

 if (!is_array($resa)) {

 printf ("Error getting attribute: %s\n", radius_strerror($res));

 exit;

 }

 $attr = $resa['attr'];

 $data = $resa['data'];

 switch ($attr) {

 case RADIUS_FILTER_ID:

 $id = radius_cvt_string($data);

 echo "Filter ID: $id
\n";

 break;

 }

}

?>

See Also

• radius_cvt_addr()
• radius_cvt_int()

radius_demangle_mppe_key

radius_demangle_mppe_key -- Derives mppe-keys from mangled data

Description

string radius_demangle_mppe_key (resource $radius_handle, string $mangled)

When using MPPE with MS-CHAPv2, the send- and recv-keys are mangled (see » RFC
2548), however this function is useless, because I don't think that there is or will be a
PPTP-MPPE implementation in PHP.

Return Values

Returns the demangled string, or FALSE on error.

http://www.faqs.org/rfcs/rfc2548
http://www.faqs.org/rfcs/rfc2548

radius_demangle

radius_demangle -- Demangles data

Description

string radius_demangle (resource $radius_handle, string $mangled)

Some data (Passwords, MS-CHAPv1 MPPE-Keys) is mangled for security reasons, and
must be demangled before you can use them.

Return Values

Returns the demangled string, or FALSE on error.

radius_get_attr

radius_get_attr -- Extracts an attribute

Description

mixed radius_get_attr (resource $radius_handle)

Like Radius requests, each response may contain zero or more attributes. After a
response has been received successfully by radius_send_request(), its attributes can be
extracted one by one using radius_get_attr(). Each time radius_get_attr() is called, it gets
the next attribute from the current response.

Return Values

Returns an associative array containing the attribute-type and the data, or error number <=
0.

Examples

Example #382 - radius_get_attr() example

<?php

while ($resa = radius_get_attr($res)) {

 if (!is_array($resa)) {

 printf("Error getting attribute: %s\n", radius_strerror($res));

 exit;

 }

 $attr = $resa['attr'];

 $data = $resa['data'];

 printf("Got Attr:%d %d Bytes %s\n", $attr, strlen($data),
bin2hex($data));

}

?>

See Also

• radius_put_attr()
• radius_get_vendor_attr()
• radius_put_vendor_attr()
• radius_send_request()

radius_get_vendor_attr

radius_get_vendor_attr -- Extracts a vendor specific attribute

Description

array radius_get_vendor_attr (string $data)

If radius_get_attr() returns RADIUS_VENDOR_SPECIFIC, radius_get_vendor_attr() may
be called to determine the vendor.

Return Values

Returns an associative array containing the attribute-type, vendor and the data, or FALSE
on error.

Examples

Example #383 - radius_get_vendor_attr() example

<?php

while ($resa = radius_get_attr($res)) {

 if (!is_array($resa)) {

 printf ("Error getting attribute: %s\n", radius_strerror($res));

 exit;

 }

 $attr = $resa['attr'];

 $data = $resa['data'];

 printf("Got Attr:%d %d Bytes %s\n", $attr, strlen($data),
bin2hex($data));

 if ($attr == RADIUS_VENDOR_SPECIFIC) {

 $resv = radius_get_vendor_attr($data);

 if (is_array($resv)) {

 $vendor = $resv['vendor'];

 $attrv = $resv['attr'];

 $datav = $resv['data'];

 printf("Got Vendor Attr:%d %d Bytes %s\n", $attrv,
strlen($datav), bin2hex($datav));

 }

 }

}

?>

See Also

• radius_get_attr()
• radius_put_vendor_attr()

radius_put_addr

radius_put_addr -- Attaches an IP-Address attribute

Description

bool radius_put_addr (resource $radius_handle, int $type, string $addr)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

radius_put_attr

radius_put_attr -- Attaches a binary attribute

Description

bool radius_put_attr (resource $radius_handle, int $type, string $value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #384 - radius_put_attr() example

<?php

mt_srand(time());

$chall = mt_rand();

$chapval = md5(pack('Ca*',1 , 'sepp' . $chall));

$pass = pack('CH*', 1, $chapval);

if (!radius_put_attr($res, RADIUS_CHAP_PASSWORD, $pass)) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

See Also

• radius_get_attr()
• radius_get_vendor_attr()
• radius_put_vendor_attr()

radius_put_int

radius_put_int -- Attaches an integer attribute

Description

bool radius_put_int (resource $radius_handle, int $type, int $value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #385 - radius_put_int() example

<?php

if (!radius_put_int($res, RAD_FRAMED_PROTOCOL, RAD_PPP)) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

See Also

• radius_put_string()
• radius_put_vendor_int()
• radius_put_vendor_string()

radius_put_string

radius_put_string -- Attaches a string attribute

Description

bool radius_put_string (resource $radius_handle, int $type, string $value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #386 - radius_put_string() example

<?php

if (!radius_put_string($res, RADIUS_USER_NAME, 'billy')) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

See Also

• radius_put_int()
• radius_put_vendor_int()
• radius_put_vendor_string()

radius_put_vendor_addr

radius_put_vendor_addr -- Attaches a vendor specific IP-Address attribute

Description

bool radius_put_vendor_addr (resource $radius_handle, int $vendor, int $type, string
$addr)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

radius_put_vendor_attr

radius_put_vendor_attr -- Attaches a vendor specific binary attribute

Description

bool radius_put_vendor_attr (resource $radius_handle, int $vendor, int $type, string $
value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #387 - radius_put_vendor_attr() example

<?php

if (!radius_put_vendor_attr($res, RADIUS_VENDOR_MICROSOFT,
RAD_MICROSOFT_MS_CHAP_CHALLENGE, $challenge)) {

 echo 'RadiusError:' . radius_strerror($res). "\n
";

 exit;

}

?>

radius_put_vendor_int

radius_put_vendor_int -- Attaches a vendor specific integer attribute

Description

bool radius_put_vendor_int (resource $radius_handle, int $vendor, int $type, int $
value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

radius_put_vendor_string

radius_put_vendor_string -- Attaches a vendor specific string attribute

Description

bool radius_put_vendor_string (resource $radius_handle, int $vendor, int $type, string
$value)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

radius_request_authenticator

radius_request_authenticator -- Returns the request authenticator

Description

string radius_request_authenticator (resource $radius_handle)

The request authenticator is needed for demangling mangled data like passwords and
encryption-keys.

Return Values

Returns the request authenticator as string, or FALSE on error.

See Also

• radius_demangle()

radius_send_request

radius_send_request -- Sends the request and waites for a reply

Description

int radius_send_request (resource $radius_handle)

After the Radius request has been constructed, it is sent by radius_send_request().

The radius_send_request() function sends the request and waits for a valid reply, retrying
the defined servers in round-robin fashion as necessary.

Return Values

If a valid response is received, radius_send_request() returns the Radius code which
specifies the type of the response. This will typically be RADIUS_ACCESS_ACCEPT,
RADIUS_ACCESS_REJECT, or RADIUS_ACCESS_CHALLENGE. If no valid response
is received, radius_send_request() returns FALSE.

See Also

• radius_create_request()

radius_server_secret

radius_server_secret -- Returns the shared secret

Description

string radius_server_secret (resource $radius_handle)

The shared secret is needed as salt for demangling mangled data like passwords and
encryption-keys.

Return Values

Returns the server's shared secret as string, or FALSE on error.

radius_strerror

radius_strerror -- Returns an error message

Description

string radius_strerror (resource $radius_handle)

If Radius-functions fail then they record an error message. This error message can be
retrieved with this function.

Return Values

Returns error messages as string from failed radius functions.

Calendar and Event Related Extensions

Calendar

Introduction

The calendar extension presents a series of functions to simplify converting between
different calendar formats. The intermediary or standard it is based on is the Julian Day
Count. The Julian Day Count is a count of days starting from January 1st, 4713 B.C. To
convert between calendar systems, you must first convert to Julian Day Count, then to the
calendar system of your choice. Julian Day Count is very different from the Julian
Calendar! For more information on Julian Day Count, visit
» http://www.hermetic.ch/cal_stud/jdn.htm. For more information on calendar systems visit
» http://www.fourmilab.ch/documents/calendar/. Excerpts from this page are included in
these instructions, and are in quotes.

http://www.hermetic.ch/cal_stud/jdn.htm
http://www.hermetic.ch/cal_stud/jdn.htm
http://www.fourmilab.ch/documents/calendar/
http://www.fourmilab.ch/documents/calendar/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To get these functions to work, you have to compile PHP with --enable-calendar.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CAL_GREGORIAN (integer)

CAL_JULIAN (integer)

CAL_JEWISH (integer)

CAL_FRENCH (integer)

CAL_NUM_CALS (integer)

CAL_DOW_DAYNO (integer)

CAL_DOW_SHORT (integer)

CAL_DOW_LONG (integer)

CAL_MONTH_GREGORIAN_SHORT (integer)

CAL_MONTH_GREGORIAN_LONG (integer)

CAL_MONTH_JULIAN_SHORT (integer)

CAL_MONTH_JULIAN_LONG (integer)

CAL_MONTH_JEWISH (integer)

CAL_MONTH_FRENCH (integer)

The following constants are available since PHP 4.3.0 :

CAL_EASTER_DEFAULT (integer)

CAL_EASTER_ROMAN (integer)

CAL_EASTER_ALWAYS_GREGORIAN (integer)

CAL_EASTER_ALWAYS_JULIAN (integer)

The following constants are available since PHP 5.0.0 :

CAL_JEWISH_ADD_ALAFIM_GERESH (integer)

CAL_JEWISH_ADD_ALAFIM (integer)

CAL_JEWISH_ADD_GERESHAYIM (integer)

Calendar Functions

cal_days_in_month

cal_days_in_month -- Return the number of days in a month for a given year and calendar

Description

int cal_days_in_month (int $calendar, int $month, int $year)

This function will return the number of days in the month of year for the specified
calendar.

Parameters

calendar

Calendar to use for calculation

month

Month in the selected calendar

year

Year in the selected calendar

Return Values

The length in days of the selected month in the given calendar

Examples

Example #388 - cal_days_in_month() example

<?php

$num = cal_days_in_month(CAL_GREGORIAN, 8, 2003); // 31

echo "There was $num days in August 2003";

?>

cal_from_jd

cal_from_jd -- Converts from Julian Day Count to a supported calendar

Description

array cal_from_jd (int $jd, int $calendar)

cal_from_jd() converts the Julian day given in jd into a date of the specified calendar.
Supported calendar values are CAL_GREGORIAN, CAL_JULIAN, CAL_JEWISH and
CAL_FRENCH.

Parameters

jd

Julian day as integer

calendar

Calendar to convert to

Return Values

Returns an array containing calendar information like month, day, year, day of week,
abbreviated and full names of weekday and month and the date in string form
"month/day/year".

Examples

Example #389 - cal_from_jd() example

<?php

$today = unixtojd(mktime(0, 0, 0, 8, 16, 2003));

print_r(cal_from_jd($today, CAL_GREGORIAN));

?>

The above example will output:

Array

(

 [date] => 8/16/2003

 [month] => 8

 [day] => 16

 [year] => 2003

 [dow] => 6

 [abbrevdayname] => Sat

 [dayname] => Saturday

 [abbrevmonth] => Aug

 [monthname] => August

)

See Also

• cal_to_jd()
• jdtofrench()
• jdtogregorian()
• jdtojewish()
• jdtojulian()
• jdtounix()

cal_info

cal_info -- Returns information about a particular calendar

Description

array cal_info ([int $calendar])

cal_info() returns information on the specified calendar.

Calendar information is returned as an array containing the elements calname, calsymbol,
month, abbrevmonth and maxdaysinmonth. The names of the different calendars which
can be used as calendar are as follows:

• 0 or CAL_GREGORIAN - Gregorian Calendar

• 1 or CAL_JULIAN - Julian Calendar

• 2 or CAL_JEWISH - Jewish Calendar

• 3 or CAL_FRENCH - French Revolutionary Calendar

If no calendar is specified information on all supported calendars is returned as an array.

Parameters

calendar

Calendar to return information for. If no calendar is specified information about all
calendars is returned.

Return Values

ChangeLog

Version Description

Since 5.0 The calendar parameter becomes optional
and defaults to "all calendars" if omitted.

Examples

Example #390 - cal_info() example

<?php

$info = cal_info(0);

print_r($info);

?>

The above example will output:

Array

(

 [months] => Array

 (

 [1] => January

 [2] => February

 [3] => March

 [4] => April

 [5] => May

 [6] => June

 [7] => July

 [8] => August

 [9] => September

 [10] => October

 [11] => November

 [12] => December

)

 [abbrevmonths] => Array

 (

 [1] => Jan

 [2] => Feb

 [3] => Mar

 [4] => Apr

 [5] => May

 [6] => Jun

 [7] => Jul

 [8] => Aug

 [9] => Sep

 [10] => Oct

 [11] => Nov

 [12] => Dec

)

 [maxdaysinmonth] => 31

 [calname] => Gregorian

 [calsymbol] => CAL_GREGORIAN

)

cal_to_jd

cal_to_jd -- Converts from a supported calendar to Julian Day Count

Description

int cal_to_jd (int $calendar, int $month, int $day, int $year)

cal_to_jd() calculates the Julian day count for a date in the specified calendar. Supported
calendar s are CAL_GREGORIAN, CAL_JULIAN, CAL_JEWISH and CAL_FRENCH.

Parameters

calendar

Calendar to convert from, one of CAL_GREGORIAN, CAL_JULIAN, CAL_JEWISH or
CAL_FRENCH.

month

The month as a number, the valid range depends on the calendar

day

The day as a number, the valid range depends on the calendar

year

The year as a number, the valid range depends on the calendar

Return Values

A Julian Day number.

See Also

• cal_from_jd()
• frenchtojd()
• gregoriantojd()
• jewishtojd()
• juliantojd()
• unixtojd()

easter_date

easter_date -- Get Unix timestamp for midnight on Easter of a given year

Description

int easter_date ([int $year])

Returns the Unix timestamp corresponding to midnight on Easter of the given year.

Warning

This function will generate a warning if the year is outside of the range for Unix
timestamps (i.e. before 1970 or after 2037).

The date of Easter Day was defined by the Council of Nicaea in AD325 as the Sunday
after the first full moon which falls on or after the Spring Equinox. The Equinox is assumed
to always fall on 21st March, so the calculation reduces to determining the date of the full
moon and the date of the following Sunday. The algorithm used here was introduced
around the year 532 by Dionysius Exiguus. Under the Julian Calendar (for years before
1753) a simple 19-year cycle is used to track the phases of the Moon. Under the
Gregorian Calendar (for years after 1753 - devised by Clavius and Lilius, and introduced
by Pope Gregory XIII in October 1582, and into Britain and its then colonies in September
1752) two correction factors are added to make the cycle more accurate.

(The code is based on a C program by Simon Kershaw, <webmaster at ely.anglican dot
org>)

Parameters

year

The year as a number between 1970 an 2037

Return Values

The easter date as a unix timestamp.

ChangeLog

Version Description

Since 4.3.0 The year parameter is optional and defaults

to the current year according to the local
time if omitted.

Examples

Example #391 - easter_date() example

<?php

echo date("M-d-Y", easter_date(1999)); // Apr-04-1999

echo date("M-d-Y", easter_date(2000)); // Apr-23-2000

echo date("M-d-Y", easter_date(2001)); // Apr-15-2001

?>

See Also

• easter_days() for calculating Easter before 1970 or after 2037

easter_days

easter_days -- Get number of days after March 21 on which Easter falls for a given year

Description

int easter_days ([int $year [, int $method]])

Returns the number of days after March 21 on which Easter falls for a given year. If no
year is specified, the current year is assumed.

This function can be used instead of easter_date() to calculate Easter for years which fall
outside the range of Unix timestamps (i.e. before 1970 or after 2037).

The date of Easter Day was defined by the Council of Nicaea in AD325 as the Sunday
after the first full moon which falls on or after the Spring Equinox. The Equinox is assumed
to always fall on 21st March, so the calculation reduces to determining the date of the full
moon and the date of the following Sunday. The algorithm used here was introduced
around the year 532 by Dionysius Exiguus. Under the Julian Calendar (for years before
1753) a simple 19-year cycle is used to track the phases of the Moon. Under the
Gregorian Calendar (for years after 1753 - devised by Clavius and Lilius, and introduced
by Pope Gregory XIII in October 1582, and into Britain and its then colonies in September
1752) two correction factors are added to make the cycle more accurate.

(The code is based on a C program by Simon Kershaw, <webmaster at ely.anglican dot
org>)

Parameters

year

The year as a positive number

method

Allows to calculate easter dates based on the Gregorian calendar during the years
1582 - 1752 when set to CAL_EASTER_ROMAN. See the calendar constants for
more valid constants.

Return Values

The number of days after March 21st that the Easter Sunday is in the given year.

ChangeLog

Version Description

Since 4.3.0 The year parameter is optional and defaults
to the current year according to the local
time if omitted.

Since 4.3.0 The method parameter was introduced.

Examples

Example #392 - easter_days() example

<?php

echo easter_days(1999); // 14, i.e. April 4

echo easter_days(1492); // 32, i.e. April 22

echo easter_days(1913); // 2, i.e. March 23

?>

See Also

• easter_date()

FrenchToJD

FrenchToJD -- Converts a date from the French Republican Calendar to a Julian Day
Count

Description

int frenchtojd (int $month, int $day, int $year)

Converts a date from the French Republican Calendar to a Julian Day Count.

These routines only convert dates in years 1 through 14 (Gregorian dates 22 September
1792 through 22 September 1806). This more than covers the period when the calendar
was in use.

Parameters

month

The month as a number from 1 (for VendÃ©miaire) to 13 (for the period of 5-6 days at
the end of each year)

day

The day as a number from 1 to 30

year

The year as a number between 1 and 14

Return Values

The julian day for the given french revolution date as an integer.

See Also

• jdtofrench()
• cal_to_jd()

GregorianToJD

GregorianToJD -- Converts a Gregorian date to Julian Day Count

Description

int gregoriantojd (int $month, int $day, int $year)

Valid Range for Gregorian Calendar 4714 B.C. to 9999 A.D.

Although this function can handle dates all the way back to 4714 B.C., such use may not
be meaningful. The Gregorian calendar was not instituted until October 15, 1582 (or
October 5, 1582 in the Julian calendar). Some countries did not accept it until much later.
For example, Britain converted in 1752, The USSR in 1918 and Greece in 1923. Most
European countries used the Julian calendar prior to the Gregorian.

Parameters

month

The month as a number from 1 (for January) to 12 (for December)

day

The day as a number from 1 to 31

year

The year as a number between -4714 and 9999

Return Values

The julian day for the given gregorian date as an integer.

Examples

Example #393 - Calendar functions

<?php

$jd = GregorianToJD(10, 11, 1970);

echo "$jd\n";

$gregorian = JDToGregorian($jd);

echo "$gregorian\n";

?>

See Also

• jdtogregorian()
• cal_to_jd()

JDDayOfWeek

JDDayOfWeek -- Returns the day of the week

Description

mixed jddayofweek (int $julianday [, int $mode])

Returns the day of the week. Can return a string or an integer depending on the mode.

Parameters

julianday

A julian day number as integer

mode

Calendar week modes

Mode Meaning

0 (Default) Return the day number as an int (0=Sunday,
1=Monday, etc)

1 Returns string containing the day of week
(English-Gregorian)

2 Return a string containing the abbreviated
day of week (English-Gregorian)

Return Values

The gregorian weekday as either an integer or string.

JDMonthName

JDMonthName -- Returns a month name

Description

string jdmonthname (int $julianday, int $mode)

Returns a string containing a month name. mode tells this function which calendar to convert
the Julian Day Count to, and what type of month names are to be returned.

Calendar modes

Mode Meaning Values

0 Gregorian - abbreviated Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov,
Dec

1 Gregorian January, February, March,
April, May, June, July,
August, September, October,
November, December

2 Julian - abbreviated Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov,
Dec

3 Julian January, February, March,
April, May, June, July,
August, September, October,
November, December

4 Jewish Tishri, Heshvan, Kislev,
Tevet, Shevat, AdarI, AdarII,
Nisan, Iyyar, Sivan,
Tammuz, Av, Elul

5 French Republican Vendemiaire, Brumaire,
Frimaire, Nivose, Pluviose,
Ventose, Germinal, Floreal,
Prairial, Messidor,
Thermidor, Fructidor, Extra

Parameters

jday

The Julian Day to operate on

calendar

The calendar to take the month name from

Return Values

The month name for the given Julian Day and calendar.

JDToFrench

JDToFrench -- Converts a Julian Day Count to the French Republican Calendar

Description

string jdtofrench (int $juliandaycount)

Converts a Julian Day Count to the French Republican Calendar.

Parameters

julianday

A julian day number as integer

Return Values

The french revolution date as a string in the form "month/day/year"

See Also

• frenchtojd()
• cal_from_jd()

JDToGregorian

JDToGregorian -- Converts Julian Day Count to Gregorian date

Description

string jdtogregorian (int $julianday)

Converts Julian Day Count to a string containing the Gregorian date in the format of
"month/day/year".

Parameters

julianday

A julian day number as integer

Return Values

The gregorian date as a string in the form "month/day/year"

See Also

• gregoriantojd()
• cal_from_jd()

jdtojewish

jdtojewish -- Converts a Julian day count to a Jewish calendar date

Description

string jdtojewish (int $juliandaycount [, bool $hebrew [, int $fl]])

Converts a Julian Day Count to the Jewish Calendar.

Parameters

julianday

A julian day number as integer

hebrew

If the hebrew parameter is set to TRUE, the fl parameter is used for Hebrew, string
based, output format.

fl

The available formats are: CAL_JEWISH_ADD_ALAFIM_GERESH,
CAL_JEWISH_ADD_ALAFIM, CAL_JEWISH_ADD_GERESHAYIM.

Return Values

The jewish date as a string in the form "month/day/year"

ChangeLog

Version Description

5.0.0 The hebrew and fl parameters were added

Examples

Example #394 - jdtojewish() Example

<?php

echo jdtojewish(gregoriantojd(10, 8, 2002), true,

 CAL_JEWISH_ADD_GERESHAYIM + CAL_JEWISH_ADD_ALAFIM +
CAL_JEWISH_ADD_ALAFIM_GERESH);

?>

See Also

• jewishtojd()
• cal_from_jd()

JDToJulian

JDToJulian -- Converts a Julian Day Count to a Julian Calendar Date

Description

string jdtojulian (int $julianday)

Converts Julian Day Count to a string containing the Julian Calendar Date in the format of
"month/day/year".

Parameters

julianday

A julian day number as integer

Return Values

The julian date as a string in the form "month/day/year"

See Also

• juliantojd()
• cal_from_jd()

jdtounix

jdtounix -- Convert Julian Day to Unix timestamp

Description

int jdtounix (int $jday)

This function will return a Unix timestamp corresponding to the Julian Day given in jday or
FALSE if jday is not inside the Unix epoch (Gregorian years between 1970 and 2037 or
2440588 <= jday <= 2465342). The time returned is localtime (and not GMT).

Parameters

jday

A julian day number between 2440588 and 2465342.

Return Values

The unix timestamp for the start of the given julian day.

See Also

• unixtojd()

JewishToJD

JewishToJD -- Converts a date in the Jewish Calendar to Julian Day Count

Description

int jewishtojd (int $month, int $day, int $year)

Although this function can handle dates all the way back to the year 1 (3761 B.C.), such
use may not be meaningful. The Jewish calendar has been in use for several thousand
years, but in the early days there was no formula to determine the start of a month. A new
month was started when the new moon was first observed.

Parameters

month

The month as a number from 1 to 13

day

The day as a number from 1 to 30

year

The year as a number between 1 and 9999

Return Values

The julian day for the given jewish date as an integer.

See Also

• jdtojewish()
• cal_to_jd()

JulianToJD

JulianToJD -- Converts a Julian Calendar date to Julian Day Count

Description

int juliantojd (int $month, int $day, int $year)

Valid Range for Julian Calendar 4713 B.C. to 9999 A.D.

Although this function can handle dates all the way back to 4713 B.C., such use may not
be meaningful. The calendar was created in 46 B.C., but the details did not stabilize until
at least 8 A.D., and perhaps as late at the 4th century. Also, the beginning of a year varied
from one culture to another - not all accepted January as the first month.

Caution

Remember, the current calendar system being used worldwide is the Gregorian
calendar. gregoriantojd() can be used to convert such dates to their Julian Day count.

Parameters

month

The month as a number from 1 (for January) to 12 (for December)

day

The day as a number from 1 to 31

year

The year as a number between -4713 and 9999

Return Values

The julian day for the given julian date as an integer.

See Also

• jdtojulian()
• cal_to_jd()

unixtojd

unixtojd -- Convert Unix timestamp to Julian Day

Description

int unixtojd ([int $timestamp])

Return the Julian Day for a Unix timestamp (seconds since 1.1.1970), or for the current
day if no timestamp is given.

Parameters

timestamp

A unix timestamp to convert.

Return Values

A julian day number as integer.

See Also

• jdtounix()

Date and Time

Introduction

These functions allow you to get the date and time from the server where your PHP scripts
are running. You can use these functions to format the date and time in many different
ways.

Note

Please keep in mind that these functions are dependent on the locale settings of your
server. Make sure to take daylight saving time (use e.g. $date = strtotime('+7 days',
$date) and not $date += 7*24*60*60) and leap years into consideration when working
with these functions.

Note

The timezones referenced in this section can be found in the List of Supported
Timezones.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Note

Getting the latest timezone database

The latest version of the timezone database can be installed via PECL's » timezonedb.
For Windows users, a pre-compiled DLL can be downloaded from the PECL4Win site:
» php_timezonedb.dll.

Note

Experimental DateTime support in PHP 5.1.x

Although the DateTime class (and related functions) are enabled by default since PHP
5.2.0, it is possible to add experimental support into PHP 5.1.x by using the following
flag before configure/compile: CFLAGS=-DEXPERIMENTAL_DATE_SUPPORT=1

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Date/Time Configuration Options

Name Default Changeable Changelog

date.default_latitude "31.7667" PHP_INI_ALL Available since PHP
5.0.0.

date.default_longitud
e

"35.2333" PHP_INI_ALL Available since PHP
5.0.0.

http://pecl.php.net/get/timezonedb
http://pecl4win.php.net/ext.php/php_timezonedb.dll
http://pecl4win.php.net/ext.php/php_timezonedb.dll

date.sunrise_zenith "90.583333" PHP_INI_ALL Available since PHP
5.0.0.

date.sunset_zenith "90.583333" PHP_INI_ALL Available since PHP
5.0.0.

date.timezone "" PHP_INI_ALL Available since PHP
5.1.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

date.default_latitude float
The default latitude.

date.default_longitude float
The default longitude.

date.sunrise_zenith float
The default sunrise zenith.

date.sunset_zenith float
The default sunset zenith.

date.timezone string
The default timezone used by all date/time functions if the TZ environment variable
isn't set. The precedence order is described in the date_default_timezone_get() page.
See List of Supported Timezones for a list of supported timezones.

Note

The first four configuration options are currently only used by date_sunrise() and
date_sunset().

Resource Types

This extension has no resource types defined.

Predefined Constants

The following constants are defined since PHP 5.1.1 and they offer standard date
representations, which can be used along with the date format functions (like date()).

DATE_ATOM (string)
Atom (example: 2005-08-15T15:52:01+00:00)

DATE_COOKIE (string)
HTTP Cookies (example: Monday, 15-Aug-05 15:52:01 UTC)

DATE_ISO8601 (string)
ISO-8601 (example: 2005-08-15T15:52:01+0000)

DATE_RFC822 (string)
RFC 822 (example: Mon, 15 Aug 05 15:52:01 +0000)

DATE_RFC850 (string)
RFC 850 (example: Monday, 15-Aug-05 15:52:01 UTC)

DATE_RFC1036 (string)
RFC 1036 (example: Mon, 15 Aug 05 15:52:01 +0000)

DATE_RFC1123 (string)
RFC 1123 (example: Mon, 15 Aug 2005 15:52:01 +0000)

DATE_RFC2822 (string)
RFC 2822 (Mon, 15 Aug 2005 15:52:01 +0000)

DATE_RFC3339 (string)
Same as DATE_ATOM (since PHP 5.1.3)

DATE_RSS (string)
RSS (Mon, 15 Aug 2005 15:52:01 +0000)

DATE_W3C (string)
World Wide Web Consortium (example: 2005-08-15T15:52:01+00:00)

Following constants exists since PHP 5.1.2 and specify a format returned by functions
date_sunrise() and date_sunset().

SUNFUNCS_RET_TIMESTAMP (integer)
Timestamp

SUNFUNCS_RET_STRING (integer)
Hours:minutes (example: 08:02)

SUNFUNCS_RET_DOUBLE (integer)
Hours as floating point number (example 8.75)

List of Supported Timezones

Here you'll find the complete list of timezones supported by PHP, which are meant to be
used with e.g. date_default_timezone_set().

Note

The latest version of the timezone database can be installed via PECL's » timezonedb.
For Windows users, a pre-compiled DLL can be downloaded from the PECL4Win site:
» php_timezonedb.dll.

Africa

Africa

Africa/Abidjan Africa/Accra Africa/Addis_Aba
ba

Africa/Algiers Africa/Asmara

Africa/Asmera Africa/Bamako Africa/Bangui Africa/Banjul Africa/Bissau

Africa/Blantyre Africa/Brazzaville Africa/Bujumbura Africa/Cairo Africa/Casablanc
a

Africa/Ceuta Africa/Conakry Africa/Dakar Africa/Dar_es_S
alaam

Africa/Djibouti

Africa/Douala Africa/El_Aaiun Africa/Freetown Africa/Gaborone Africa/Harare

Africa/Johannes
burg

Africa/Kampala Africa/Khartoum Africa/Kigali Africa/Kinshasa

Africa/Lagos Africa/Libreville Africa/Lome Africa/Luanda Africa/Lubumbas
hi

Africa/Lusaka Africa/Malabo Africa/Maputo Africa/Maseru Africa/Mbabane

Africa/Mogadish
u

Africa/Monrovia Africa/Nairobi Africa/Ndjamena Africa/Niamey

Africa/Nouakchot
t

Africa/Ouagadou
gou

Africa/Porto-Nov
o

Africa/Sao_Tom
e

Africa/Timbuktu

Africa/Tripoli Africa/Tunis Africa/Windhoek

http://pecl.php.net/get/timezonedb
http://pecl4win.php.net/ext.php/php_timezonedb.dll
http://pecl4win.php.net/ext.php/php_timezonedb.dll

America

America

America/Adak America/Anchora
ge

America/Anguilla America/Antigua America/Araguai
na

America/Argentin
a/Buenos_Aires

America/Argentin
a/Catamarca

America/Argentin
a/ComodRivadav
ia

America/Argentin
a/Cordoba

America/Argentin
a/Jujuy

America/Argentin
a/La_Rioja

America/Argentin
a/Mendoza

America/Argentin
a/Rio_Gallegos

America/Argentin
a/San_Juan

America/Argentin
a/San_Luis

America/Argentin
a/Tucuman

America/Argentin
a/Ushuaia

America/Aruba America/Asuncio
n

America/Atikoka
n

America/Atka America/Bahia America/Barbad
os

America/Belem America/Belize

America/Blanc-S
ablon

America/Boa_Vis
ta

America/Bogota America/Boise America/Buenos
_Aires

America/Cambri
dge_Bay

America/Campo
_Grande

America/Cancun America/Caracas America/Catama
rca

America/Cayenn
e

America/Cayman America/Chicago America/Chihuah
ua

America/Coral_H
arbour

America/Cordob
a

America/Costa_
Rica

America/Cuiaba America/Curaca
o

America/Danmar
kshavn

America/Dawson America/Dawson
_Creek

America/Denver America/Detroit America/Dominic
a

America/Edmont
on

America/Eirunep
e

America/El_Salv
ador

America/Ensena
da

America/Fort_W
ayne

America/Fortalez
a

America/Glace_
Bay

America/Godtha
b

America/Goose_
Bay

America/Grand_
Turk

America/Grenad
a

America/Guadel
oupe

America/Guatem
ala

America/Guayaq
uil

America/Guyana

America/Halifax America/Havana America/Hermosi
llo

America/Indiana/
Indianapolis

America/Indiana/
Knox

America/Indiana/
Marengo

America/Indiana/
Petersburg

America/Indiana/
Tell_City

America/Indiana/
Vevay

America/Indiana/
Vincennes

America/Indiana/
Winamac

America/Indiana
polis

America/Inuvik America/Iqaluit America/Jamaica

America/Jujuy America/Juneau America/Kentuck
y/Louisville

America/Kentuck
y/Monticello

America/Knox_I
N

America/La_Paz America/Lima America/Los_An
geles

America/Louisvill
e

America/Maceio

America/Managu
a

America/Manaus America/Marigot America/Martiniq
ue

America/Mazatla
n

America/Mendoz
a

America/Menomi
nee

America/Merida America/Mexico_
City

America/Miquelo
n

America/Moncto
n

America/Monterr
ey

America/Montevi
deo

America/Montrea
l

America/Montser
rat

America/Nassau America/New_Y
ork

America/Nipigon America/Nome America/Noronh
a

America/North_D
akota/Center

America/North_D
akota/New_Sale
m

America/Panama America/Pangnirt
ung

America/Parama
ribo

America/Phoenix America/Port-au-
Prince

America/Port_of
_Spain

America/Porto_A
cre

America/Porto_V
elho

America/Puerto_
Rico

America/Rainy_
River

America/Rankin_
Inlet

America/Recife America/Regina

America/Resolut
e

America/Rio_Bra
nco

America/Rosario America/Santiag
o

America/Santo_
Domingo

America/Sao_Pa
ulo

America/Scoresb
ysund

America/Shiproc
k

America/St_Bart
helemy

America/St_John
s

America/St_Kitts America/St_Luci
a

America/St_Tho
mas

America/St_Vinc
ent

America/Swift_C
urrent

America/Tegucig
alpa

America/Thule America/Thunder
_Bay

America/Tijuana America/Toronto

America/Tortola America/Vancou
ver

America/Virgin America/Whiteho
rse

America/Winnipe
g

America/Yakutat America/Yellowk
nife

Antarctica

Antarctica

Antarctica/Casey Antarctica/Davis Antarctica/Dumo
ntDUrville

Antarctica/Maws
on

Antarctica/McMu
rdo

Antarctica/Palme
r

Antarctica/Rothe
ra

Antarctica/South
_Pole

Antarctica/Syow
a

Antarctica/Vosto
k

Arctic

Arctic

Arctic/Longyearbyen

Asia

Asia

Asia/Aden Asia/Almaty Asia/Amman Asia/Anadyr Asia/Aqtau

Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad Asia/Baghdad Asia/Bahrain

Asia/Baku Asia/Bangkok Asia/Beirut Asia/Bishkek Asia/Brunei

Asia/Calcutta Asia/Choibalsan Asia/Chongqing Asia/Chungking Asia/Colombo

Asia/Dacca Asia/Damascus Asia/Dhaka Asia/Dili Asia/Dubai

Asia/Dushanbe Asia/Gaza Asia/Harbin Asia/Ho_Chi_Mi
nh

Asia/Hong_Kong

Asia/Hovd Asia/Irkutsk Asia/Istanbul Asia/Jakarta Asia/Jayapura

Asia/Jerusalem Asia/Kabul Asia/Kamchatka Asia/Karachi Asia/Kashgar

Asia/Katmandu Asia/Kolkata Asia/Krasnoyars
k

Asia/Kuala_Lum
pur

Asia/Kuching

Asia/Kuwait Asia/Macao Asia/Macau Asia/Magadan Asia/Makassar

Asia/Manila Asia/Muscat Asia/Nicosia Asia/Novosibirsk Asia/Omsk

Asia/Oral Asia/Phnom_Pe
nh

Asia/Pontianak Asia/Pyongyang Asia/Qatar

Asia/Qyzylorda Asia/Rangoon Asia/Riyadh Asia/Saigon Asia/Sakhalin

Asia/Samarkand Asia/Seoul Asia/Shanghai Asia/Singapore Asia/Taipei

Asia/Tashkent Asia/Tbilisi Asia/Tehran Asia/Tel_Aviv Asia/Thimbu

Asia/Thimphu Asia/Tokyo Asia/Ujung_Pan
dang

Asia/Ulaanbaatar Asia/Ulan_Bator

Asia/Urumqi Asia/Vientiane Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinbu
rg

Asia/Yerevan

Atlantic

Atlantic

Atlantic/Azores Atlantic/Bermuda Atlantic/Canary Atlantic/Cape_V
erde

Atlantic/Faeroe

Atlantic/Faroe Atlantic/Jan_May
en

Atlantic/Madeira Atlantic/Reykjavi
k

Atlantic/South_G
eorgia

Atlantic/St_Helen
a

Atlantic/Stanley

Australia

Australia

Australia/ACT Australia/Adelaid
e

Australia/Brisban
e

Australia/Broken
_Hill

Australia/Canber
ra

Australia/Currie Australia/Darwin Australia/Eucla Australia/Hobart Australia/LHI

Australia/Lindem
an

Australia/Lord_H
owe

Australia/Melbou
rne

Australia/North Australia/NSW

Australia/Perth Australia/Queens
land

Australia/South Australia/Sydney Australia/Tasma
nia

Australia/Victoria Australia/West Australia/Yanco
winna

Europe

Europe

Europe/Amsterd
am

Europe/Andorra Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin Europe/Bratislav
a

Europe/Brussels Europe/Buchare
st

Europe/Budapes
t

Europe/Chisinau Europe/Copenha
gen

Europe/Dublin Europe/Gibraltar Europe/Guernse
y

Europe/Helsinki Europe/Isle_of_
Man

Europe/Istanbul Europe/Jersey Europe/Kaliningr
ad

Europe/Kiev Europe/Lisbon Europe/Ljubljana Europe/London Europe/Luxembo
urg

Europe/Madrid Europe/Malta Europe/Marieha
mn

Europe/Minsk Europe/Monaco

Europe/Moscow Europe/Nicosia Europe/Oslo Europe/Paris Europe/Podgoric
a

Europe/Prague Europe/Riga Europe/Rome Europe/Samara Europe/San_Mar
ino

Europe/Sarajevo Europe/Simferop
ol

Europe/Skopje Europe/Sofia Europe/Stockhol
m

Europe/Tallinn Europe/Tirane Europe/Tiraspol Europe/Uzhgoro
d

Europe/Vaduz

Europe/Vatican Europe/Vienna Europe/Vilnius Europe/Volgogra
d

Europe/Warsaw

Europe/Zagreb Europe/Zaporoz
hye

Europe/Zurich

Indian

Indian

Indian/Antananar
ivo

Indian/Chagos Indian/Christmas Indian/Cocos Indian/Comoro

Indian/Kerguelen Indian/Mahe Indian/Maldives Indian/Mauritius Indian/Mayotte

Indian/Reunion

Pacific

Pacific

Pacific/Apia Pacific/Auckland Pacific/Chatham Pacific/Easter Pacific/Efate

Pacific/Enderbur
y

Pacific/Fakaofo Pacific/Fiji Pacific/Funafuti Pacific/Galapago
s

Pacific/Gambier Pacific/Guadalca
nal

Pacific/Guam Pacific/Honolulu Pacific/Johnston

Pacific/Kiritimati Pacific/Kosrae Pacific/Kwajalein Pacific/Majuro Pacific/Marquesa
s

Pacific/Midway Pacific/Nauru Pacific/Niue Pacific/Norfolk Pacific/Noumea

Pacific/Pago_Pa
go

Pacific/Palau Pacific/Pitcairn Pacific/Ponape Pacific/Port_Mor
esby

Pacific/Rarotong
a

Pacific/Saipan Pacific/Samoa Pacific/Tahiti Pacific/Tarawa

Pacific/Tongatap
u

Pacific/Truk Pacific/Wake Pacific/Wallis Pacific/Yap

Others

Others

Brazil/Acre Brazil/DeNoronh
a

Brazil/East Brazil/West Canada/Atlantic

Canada/Central Canada/East-Sa
skatchewan

Canada/Eastern Canada/Mountai
n

Canada/Newfou
ndland

Canada/Pacific Canada/Saskatc
hewan

Canada/Yukon CET Chile/Continental

Chile/EasterIslan
d

CST6CDT Cuba EET Egypt

Eire EST EST5EDT Etc/GMT Etc/GMT+0

Etc/GMT+1 Etc/GMT+10 Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5 Etc/GMT+6 Etc/GMT+7

Etc/GMT+8 Etc/GMT+9 Etc/GMT-0 Etc/GMT-1 Etc/GMT-10

Etc/GMT-11 Etc/GMT-12 Etc/GMT-13 Etc/GMT-14 Etc/GMT-2

Etc/GMT-3 Etc/GMT-4 Etc/GMT-5 Etc/GMT-6 Etc/GMT-7

Etc/GMT-8 Etc/GMT-9 Etc/GMT0 Etc/Greenwich Etc/UCT

Etc/Universal Etc/UTC Etc/Zulu Factory GB

GB-Eire GMT GMT+0 GMT-0 GMT0

Greenwich Hongkong HST Iceland Iran

Israel Jamaica Japan Kwajalein Libya

MET Mexico/BajaNort
e

Mexico/BajaSur Mexico/General MST

MST7MDT Navajo NZ NZ-CHAT Poland

Portugal PRC PST8PDT ROC ROK

Singapore Turkey UCT Universal US/Alaska

US/Aleutian US/Arizona US/Central US/East-Indiana US/Eastern

US/Hawaii US/Indiana-Stark
e

US/Michigan US/Mountain US/Pacific

US/Pacific-New US/Samoa UTC W-SU WET

Zulu

Warning

Please do not use any of the timezones listed here (besides UTC), they only exist for
backward compatible reasons.

Date/Time Functions

checkdate

checkdate -- Validate a Gregorian date

Description

bool checkdate (int $month, int $day, int $year)

Checks the validity of the date formed by the arguments. A date is considered valid if each
parameter is properly defined.

Parameters

month

The month is between 1 and 12 inclusive.

day

The day is within the allowed number of days for the given month. Leap year s are
taken into consideration.

year

The year is between 1 and 32767 inclusive.

Return Values

Returns TRUE if the date given is valid; otherwise returns FALSE.

Examples

Example #395 - checkdate() example

<?php

var_dump(checkdate(12, 31, 2000));

var_dump(checkdate(2, 29, 2001));

?>

The above example will output:

bool(true)

bool(false)

See Also

• mktime()
• strtotime()

date_create

date_create -- Returns new DateTime object

Description

DateTime date_create ([string $time [, DateTimeZone $timezone]])

DateTime DateTime::__construct ([string $time [, DateTimeZone $timezone]])

Parameters

time

String in a format accepted by strtotime(), defaults to "now".

timezone

Time zone of the time.

Return Values

Returns DateTime object on success or FALSE on failure.

date_date_set

date_date_set -- Sets the date

Description

void date_date_set (DateTime $object, int $year, int $month, int $day)

void DateTime::setDate (int $year, int $month, int $day)

Parameters

object

DateTime object.

year

Year of the date.

month

Month of the date.

day

Day of the date.

Return Values

Returns NULL on success or FALSE on failure.

See Also

• date_isodate_set()
• date_time_set()

date_default_timezone_get

date_default_timezone_get -- Gets the default timezone used by all date/time functions in
a script

Description

string date_default_timezone_get (void)

This functions returns the default timezone, using the following "guess" order:

• The timezone set using the date_default_timezone_set() function (if any)

• The TZ environment variable (if non empty)

• The date.timezone ini option (if set)

• "magical" guess (if the operating system supports it)

• If none of the above options succeeds, return UTC

Return Values

Returns a string.

See Also

• date_default_timezone_set()

date_default_timezone_set

date_default_timezone_set -- Sets the default timezone used by all date/time functions in a
script

Description

bool date_default_timezone_set (string $timezone_identifier)

date_default_timezone_set() sets the default timezone used by all date/time functions.

Note

Since PHP 5.1.0 (when the date/time functions were rewritten), every call to a
date/time function will generate a E_NOTICE if the timezone isn't valid, and/or a
E_STRICT message if using the system settings or the TZ environment variable.

Instead of using this function to set the default timezone in your script, you can also use
the INI setting date.timezone to set the default timezone.

Parameters

timezone_identifier

The timezone identifier, like UTC or Europe/Lisbon. The list of valid identifiers is
available in the List of Supported Timezones.

Return Values

This function returns FALSE if the timezone_identifier isn't valid, or TRUE otherwise.

ChangeLog

Version Description

5.1.2 The function started to validate the
timezone_identifier parameter.

See Also

• date_default_timezone_get()

date_format

date_format -- Returns date formatted according to given format

Description

string date_format (DateTime $object, string $format)

string DateTime::format (string $format)

Parameters

object

DateTime object.

format

Format accepted by date().

Return Values

Returns formatted date on success or FALSE on failure.

See Also

• date()

date_isodate_set

date_isodate_set -- Sets the ISO date

Description

void date_isodate_set (DateTime $object, int $year, int $week [, int $day])

void DateTime::setISODate (int $year, int $week [, int $day])

Parameters

object

DateTime object.

year

Year of the date.

week

Week of the date.

day

Day of the date.

Return Values

Returns NULL on success or FALSE on failure.

See Also

• date_date_set()

date_modify

date_modify -- Alters the timestamp

Description

void date_modify (DateTime $object, string $modify)

void DateTime::modify (string $modify)

Parameters

object

DateTime object.

modify

String in a relative format accepted by strtotime().

Return Values

Returns NULL on success or FALSE on failure.

Examples

Example #396 - A date_modify() example

<?php

$date = new DateTime("2006-12-12");

$date->modify("+1 day");

echo $date->format("Y-m-d");

?>

The above example will output:

2006-12-13

See Also

• strtotime()

date_offset_get

date_offset_get -- Returns the daylight saving time offset

Description

int date_offset_get (DateTime $object)

int DateTime::getOffset (void)

Parameters

object

DateTime object.

Return Values

Returns DST offset in seconds on success or FALSE on failure.

date_parse

date_parse -- Returns associative array with detailed info about given date

Description

array date_parse (string $date)

Parameters

date

Date in format accepted by strtotime().

Return Values

Returns array with information about the parsed date on success, or FALSE on failure.

Errors/Exceptions

In case the date format has an error, the element 'errors' will contains the error messages.

Examples

Example #397 - A date_parse() example

<?php

print_r(date_parse("2006-12-12 10:00:00.5"));

?>

The above example will output:

Array

(

 [year] => 2006

 [month] => 12

 [day] => 12

 [hour] => 10

 [minute] => 0

 [second] => 0

 [fraction] => 0.5

 [warning_count] => 0

 [warnings] => Array()

 [error_count] => 0

 [errors] => Array()

 [is_localtime] =>

)

See Also

• getdate()

date_sun_info

date_sun_info -- Returns an array with information about sunset/sunrise and twilight
begin/end

Description

array date_sun_info (int $time, float $latitude, float $longitude)

Parameters

time

Timestamp.

latitude

Latitude in degrees.

longitude

Longitude in degrees.

Return Values

Returns array on success or FALSE on failure.

Examples

Example #398 - A date_sun_info() example

<?php

$sun_info = date_sun_info(strtotime("2006-12-12"), 31.7667, 35.2333);

foreach ($sun_info as $key => $val) {

 echo "$key: " . date("H:i:s", $val) . "\n";

}

?>

The above example will output:

sunrise: 05:52:11

sunset: 15:41:21

transit: 10:46:46

civil_twilight_begin: 05:24:08

civil_twilight_end: 16:09:24

nautical_twilight_begin: 04:52:25

nautical_twilight_end: 16:41:06

astronomical_twilight_begin: 04:21:32

astronomical_twilight_end: 17:12:00

See Also

• date_sunrise()
• date_sunset()

date_sunrise

date_sunrise -- Returns time of sunrise for a given day and location

Description

mixed date_sunrise (int $timestamp [, int $format [, float $latitude [, float $longitude [,
float $zenith [, float $gmt_offset]]]]])

date_sunrise() returns the sunrise time for a given day (specified as a timestamp) and
location.

Parameters

timestamp

The timestamp of the day from which the sunrise time is taken.

format

format constants

constant description example

SUNFUNCS_RET_STRING returns the result as string 16:46

SUNFUNCS_RET_DOUBLE returns the result as float 16.78243132

SUNFUNCS_RET_TIMESTAMP returns the result as integer (timestamp) 1095034606

latitude

Defaults to North, pass in a negative value for South. See also: date.default_latitude

longitude

Defaults to East, pass in a negative value for West. See also: date.default_longitude

zenith

Default: date.sunrise_zenith

gmtoffset

Specified in hours.

Return Values

Returns the sunrise time in a specified format on success, or FALSE on failure.

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable. See
also date_default_timezone_set()

ChangeLog

Version Description

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

Example #399 - date_sunrise() example

<?php

/* calculate the sunrise time for Lisbon, Portugal

Latitude: 38.4 North

Longitude: 9 West

Zenith ~= 90

offset: +1 GMT

*/

echo date("D M d Y"). ', sunrise time : ' .date_sunrise(time(),
SUNFUNCS_RET_STRING, 38.4, -9, 90, 1);

?>

The above example will output something similar to:

Mon Dec 20 2004, sunrise time : 08:54

See Also

• date_sunset()

date_sunset

date_sunset -- Returns time of sunset for a given day and location

Description

mixed date_sunset (int $timestamp [, int $format [, float $latitude [, float $longitude [,
float $zenith [, float $gmt_offset]]]]])

date_sunset() returns the sunset time for a given day (specified as a timestamp) and
location.

Parameters

timestamp

The timestamp of the day from which the sunset time is taken.

format

format constants

constant description example

SUNFUNCS_RET_STRING returns the result as string 16:46

SUNFUNCS_RET_DOUBLE returns the result as float 16.78243132

SUNFUNCS_RET_TIMESTAMP returns the result as integer (timestamp) 1095034606

latitude

Defaults to North, pass in a negative value for South. See also: date.default_latitude

longitude

Defaults to East, pass in a negative value for West. See also: date.default_longitude

zenith

Default: date.sunrise_zenith

gmtoffset

Specified in hours.

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,

and/or a E_STRICT message if using the system settings or the TZ environment variable. See
also date_default_timezone_set()

ChangeLog

Version Description

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Return Values

Returns the sunset time in a specified format on success, or FALSE on failure.

Examples

Example #400 - date_sunset() example

<?php

/* calculate the sunset time for Lisbon, Portugal

Latitude: 38.4 North

Longitude: 9 West

Zenith ~= 90

offset: +1 GMT

*/

echo date("D M d Y"). ', sunset time : ' .date_sunset(time(),
SUNFUNCS_RET_STRING, 38.4, -9, 90, 1);

?>

The above example will output something similar to:

Mon Dec 20 2004, sunset time : 18:13

See Also

• date_sunrise()

date_time_set

date_time_set -- Sets the time

Description

void date_time_set (DateTime $object, int $hour, int $minute [, int $second])

void DateTime::setTime (int $hour, int $minute [, int $second])

Parameters

object

DateTime object.

hour

Hour of the time.

minute

Minute of the time.

second

Second of the time.

Return Values

Returns NULL on success or FALSE on failure.

See Also

• date_date_set()

date_timezone_get

date_timezone_get -- Return time zone relative to given DateTime

Description

DateTimeZone date_timezone_get (DateTime $object)

DateTimeZone DateTime::getTimezone (void)

Parameters

object

DateTime object.

Return Values

Returns DateTimeZone object on success or FALSE on failure.

See Also

• date_timezone_set()

date_timezone_set

date_timezone_set -- Sets the time zone for the DateTime object

Description

void date_timezone_set (DateTime $object, DateTimeZone $timezone)

void DateTime::setTimezone (DateTimeZone $timezone)

Parameters

object

DateTime object.

timezone

Desired time zone.

Return Values

Returns NULL on success or FALSE on failure.

See Also

• date_timezone_get()

date

date -- Format a local time/date

Description

string date (string $format [, int $timestamp])

Returns a string formatted according to the given format string using the given integer
timestamp or the current time if no timestamp is given. In other words, timestamp is
optional and defaults to the value of time().

Parameters

format

The format of the outputted date string. See the formatting options below.

The following characters are recognized in the format parameter string

format character Description Example returned values

Day --- ---

d Day of the month, 2 digits
with leading zeros

01 to 31

D A textual representation of a
day, three letters

Mon through Sun

j Day of the month without
leading zeros

1 to 31

l (lowercase 'L') A full textual representation
of the day of the week

Sunday through Saturday

N ISO-8601 numeric
representation of the day of
the week (added in PHP
5.1.0)

1 (for Monday) through 7 (for
Sunday)

S English ordinal suffix for the
day of the month, 2
characters

st, nd, rd or th. Works well
with j

w Numeric representation of
the day of the week

0 (for Sunday) through 6 (for
Saturday)

z The day of the year (starting 0 through 365

from 0)

Week --- ---

W ISO-8601 week number of
year, weeks starting on
Monday (added in PHP
4.1.0)

Example: 42 (the 42nd week
in the year)

Month --- ---

F A full textual representation
of a month, such as January
or March

January through December

m Numeric representation of a
month, with leading zeros

01 through 12

M A short textual
representation of a month,
three letters

Jan through Dec

n Numeric representation of a
month, without leading zeros

1 through 12

t Number of days in the given
month

28 through 31

Year --- ---

L Whether it's a leap year 1 if it is a leap year, 0
otherwise.

o ISO-8601 year number. This
has the same value as Y,
except that if the ISO week
number (W) belongs to the
previous or next year, that
year is used instead. (added
in PHP 5.1.0)

Examples: 1999 or 2003

Y A full numeric representation
of a year, 4 digits

Examples: 1999 or 2003

y A two digit representation of
a year

Examples: 99 or 03

Time --- ---

a Lowercase Ante meridiem
and Post meridiem

am or pm

A Uppercase Ante meridiem
and Post meridiem

AM or PM

B Swatch Internet time 000 through 999

g 12-hour format of an hour
without leading zeros

1 through 12

G 24-hour format of an hour
without leading zeros

0 through 23

h 12-hour format of an hour
with leading zeros

01 through 12

H 24-hour format of an hour
with leading zeros

00 through 23

i Minutes with leading zeros 00 to 59

s Seconds, with leading zeros 00 through 59

u Milliseconds (added in PHP
5.2.2)

Example: 54321

Timezone --- ---

e Timezone identifier (added in
PHP 5.1.0)

Examples: UTC, GMT,
Atlantic/Azores

I (capital i) Whether or not the date is in
daylight saving time

1 if Daylight Saving Time, 0
otherwise.

O Difference to Greenwich time
(GMT) in hours

Example: +0200

P Difference to Greenwich time
(GMT) with colon between
hours and minutes (added in
PHP 5.1.3)

Example: +02:00

T Timezone abbreviation Examples: EST, MDT...

Z Timezone offset in seconds.
The offset for timezones
west of UTC is always
negative, and for those east
of UTC is always positive.

-43200 through 50400

Full Date/Time --- ---

c ISO 8601 date (added in
PHP 5)

2004-02-12T15:19:21+00:00

r » RFC 2822 formatted date Example: Thu, 21 Dec 2000
16:01:07 +0200

U Seconds since the Unix
Epoch (January 1 1970
00:00:00 GMT)

See also time()

Unrecognized characters in the format string will be printed as-is. The Z format will always
return 0 when using gmdate().

Note

Since this function only accepts integer timestamps the u format character is only
useful when using the date_format() function with user based timestamps created with
date_create().

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the current
local time if a timestamp is not given. In other words, it defaults to the value of time().

Return Values

Returns a formatted date string. If a non-numeric value is used for timestamp, FALSE is
returned and an E_WARNING level error is emitted.

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable. See
also date_default_timezone_set()

ChangeLog

Version Description

5.1.0 The valid range of a timestamp is typically
from Fri, 13 Dec 1901 20:45:54 GMT to Tue,
19 Jan 2038 03:14:07 GMT. (These are the
dates that correspond to the minimum and
maximum values for a 32-bit signed integer).
However, before PHP 5.1.0 this range was
limited from 01-01-1970 to 19-01-2038 on
some systems (e.g. Windows).

5.1.0
Now issues the E_STRICT and E_NOTICE

http://www.faqs.org/rfcs/rfc2822

time zone errors.

5.1.1 There are useful constants of standard
date/time formats that can be used to
specify the format parameter.

Examples

Example #401 - date() examples

<?php

// set the default timezone to use. Available since PHP 5.1

date_default_timezone_set('UTC');

// Prints something like: Monday

echo date("l");

// Prints something like: Monday 8th of August 2005 03:12:46 PM

echo date('l jS \of F Y h:i:s A');

// Prints: July 1, 2000 is on a Saturday

echo "July 1, 2000 is on a " . date("l", mktime(0, 0, 0, 7, 1, 2000));

/* use the constants in the format parameter */

// prints something like: Mon, 15 Aug 2005 15:12:46 UTC

echo date(DATE_RFC822);

// prints something like: 2000-07-01T00:00:00+00:00

echo date(DATE_ATOM, mktime(0, 0, 0, 7, 1, 2000));

?>

You can prevent a recognized character in the format string from being expanded by
escaping it with a preceding backslash. If the character with a backslash is already a
special sequence, you may need to also escape the backslash.

Example #402 - Escaping characters in date()

<?php

// prints something like: Wednesday the 15th

echo date("l \\t\h\e jS");

?>

It is possible to use date() and mktime() together to find dates in the future or the past.

Example #403 - date() and mktime() example

<?php

$tomorrow = mktime(0, 0, 0, date("m") , date("d")+1, date("Y"));

$lastmonth = mktime(0, 0, 0, date("m")-1, date("d"), date("Y"));

$nextyear = mktime(0, 0, 0, date("m"), date("d"), date("Y")+1);

?>

Note

This can be more reliable than simply adding or subtracting the number of seconds in
a day or month to a timestamp because of daylight saving time.

Some examples of date() formatting. Note that you should escape any other characters, as
any which currently have a special meaning will produce undesirable results, and other
characters may be assigned meaning in future PHP versions. When escaping, be sure to
use single quotes to prevent characters like \n from becoming newlines.

Example #404 - date() Formatting

<?php

// Assuming today is: March 10th, 2001, 5:16:18 pm

$today = date("F j, Y, g:i a"); // March 10, 2001, 5:16 pm

$today = date("m.d.y"); // 03.10.01

$today = date("j, n, Y"); // 10, 3, 2001

$today = date("Ymd"); // 20010310

$today = date('h-i-s, j-m-y, it is w Day z '); // 05-16-17, 10-03-01, 1631
1618 6 Fripm01

$today = date('\i\t \i\s \t\h\e jS \d\a\y.'); // It is the 10th day.

$today = date("D M j G:i:s T Y"); // Sat Mar 10 15:16:08 MST
2001

$today = date('H:m:s \m \i\s\ \m\o\n\t\h'); // 17:03:17 m is month

$today = date("H:i:s"); // 17:16:17

?>

To format dates in other languages, you should use the setlocale() and strftime() functions
instead of date().

Notes

Note

To generate a timestamp from a string representation of the date, you may be able to
use strtotime(). Additionally, some databases have functions to convert their date
formats into timestamps (such as MySQL's » UNIX_TIMESTAMP function).

http://dev.mysql.com/doc/mysql/en/date-and-time-functions.html

Tip

Timestamp of the start of the request is available in $_SERVER['REQUEST_TIME']
since PHP 5.1.

See Also

• getlastmod()
• gmdate()
• mktime()
• strftime()
• time()

getdate

getdate -- Get date/time information

Description

array getdate ([int $timestamp])

Returns an associative array containing the date information of the timestamp, or the
current local time if no timestamp is given.

Parameters

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the
current local time if a timestamp is not given. In other words, it defaults to the value of
time().

Return Values

Returns an associative array of information related to the timestamp. Elements from the
returned associative array are as follows:

Key elements of the returned associative array

Key Description Example returned values

"seconds" Numeric representation of
seconds

0 to 59

"minutes" Numeric representation of
minutes

0 to 59

"hours" Numeric representation of
hours

0 to 23

"mday" Numeric representation of
the day of the month

1 to 31

"wday" Numeric representation of
the day of the week

0 (for Sunday) through 6 (for
Saturday)

"mon" Numeric representation of a
month

1 through 12

"year" A full numeric representation
of a year, 4 digits

Examples: 1999 or 2003

"yday" Numeric representation of
the day of the year

0 through 365

"weekday" A full textual representation
of the day of the week

Sunday through Saturday

"month" A full textual representation
of a month, such as January
or March

January through December

0 Seconds since the Unix
Epoch, similar to the values
returned by time() and used
by date().

System Dependent, typically
-2147483648 through
2147483647.

Examples

Example #405 - getdate() example

<?php

$today = getdate();

print_r($today);

?>

The above example will output something similar to:

Array

(

 [seconds] => 40

 [minutes] => 58

 [hours] => 21

 [mday] => 17

 [wday] => 2

 [mon] => 6

 [year] => 2003

 [yday] => 167

 [weekday] => Tuesday

 [month] => June

 [0] => 1055901520

)

See Also

• date()
• time()
• setlocale()

gettimeofday

gettimeofday -- Get current time

Description

mixed gettimeofday ([bool $return_float])

This is an interface to gettimeofday(2). It returns an associative array containing the data
returned from the system call.

Parameters

return_float

When set to TRUE, a float instead of an array is returned.

Return Values

By default an array is returned. If return_float is set, then a float is returned.

Array keys:

• "sec" - seconds since the Unix Epoch

• "usec" - microseconds

• "minuteswest" - minutes west of Greenwich

• "dsttime" - type of dst correction

ChangeLog

Version Description

5.1.0 The return_float parameter was added.

Examples

Example #406 - gettimeofday() example

<?php

print_r(gettimeofday());

echo gettimeofday(true);

?>

The above example will output something similar to:

Array

(

 [sec] => 1073504408

 [usec] => 238215

 [minuteswest] => 0

 [dsttime] => 1

)

1073504408.23910

gmdate

gmdate -- Format a GMT/UTC date/time

Description

string gmdate (string $format [, int $timestamp])

Identical to the date() function except that the time returned is Greenwich Mean Time
(GMT).

Parameters

format

The format of the outputted date string. See the formatting options for the date()
function.

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the
current local time if a timestamp is not given. In other words, it defaults to the value of
time().

Return Values

Returns a formatted date string. If a non-numeric value is used for timestamp, FALSE is
returned and an E_WARNING level error is emitted.

ChangeLog

Version Description

5.1.0 The valid range of a timestamp is typically
from Fri, 13 Dec 1901 20:45:54 GMT to Tue,
19 Jan 2038 03:14:07 GMT. (These are the
dates that correspond to the minimum and
maximum values for a 32-bit signed integer).
However, before PHP 5.1.0 this range was
limited from 01-01-1970 to 19-01-2038 on
some systems (e.g. Windows).

5.1.1 There are useful constants of standard
date/time formats that can be used to
specify the format parameter.

Examples

Example #407 - gmdate() example

When run in Finland (GMT +0200), the first line below prints "Jan 01 1998 00:00:00",
while the second prints "Dec 31 1997 22:00:00".

<?php

echo date("M d Y H:i:s", mktime(0, 0, 0, 1, 1, 1998));

echo gmdate("M d Y H:i:s", mktime(0, 0, 0, 1, 1, 1998));

?>

See Also

• date()
• mktime()
• gmmktime()
• strftime()

gmmktime

gmmktime -- Get Unix timestamp for a GMT date

Description

int gmmktime ([int $hour [, int $minute [, int $second [, int $month [, int $day [, int $year
[, int $is_dst]]]]]]])

Identical to mktime() except the passed parameters represents a GMT date. gmmktime()
internally uses mktime() so only times valid in derived local time can be used.

Like mktime(), arguments may be left out in order from right to left, with any omitted
arguments being set to the current corresponding GMT value.

Parameters

hour

The hour

minute

The minute

second

The second

month

The month

day

The day

year

The year

is_dst

Parameters always represent a GMT date so is_dst doesn't influence the result.

Return Values

Returns a integer Unix timestamp.

ChangeLog

Version Description

5.1.0 As of PHP 5.1.0, the is_dst parameter
became deprecated. As a result, the new
timezone handling features should be used
instead.

Examples

Example #408 - gmmktime() on Windows boundary

<?php

gmmktime(0, 0, 0, 1, 1, 1970); // valid in GMT and west, invalid in east

?>

See Also

• mktime()
• date()
• time()

gmstrftime

gmstrftime -- Format a GMT/UTC time/date according to locale settings

Description

string gmstrftime (string $format [, int $timestamp])

Behaves the same as strftime() except that the time returned is Greenwich Mean Time
(GMT). For example, when run in Eastern Standard Time (GMT -0500), the first line below
prints "Dec 31 1998 20:00:00", while the second prints "Jan 01 1999 01:00:00".

Parameters

format

See description in strftime().

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the
current local time if a timestamp is not given. In other words, it defaults to the value of
time().

Return Values

Returns a string formatted according to the given format string using the given timestamp
or the current local time if no timestamp is given. Month and weekday names and other
language dependent strings respect the current locale set with setlocale().

Examples

Example #409 - gmstrftime() example

<?php

setlocale(LC_TIME, 'en_US');

echo strftime("%b %d %Y %H:%M:%S", mktime(20, 0, 0, 12, 31, 98)) . "\n";

echo gmstrftime("%b %d %Y %H:%M:%S", mktime(20, 0, 0, 12, 31, 98)) . "\n";

?>

See Also

• strftime()

idate

idate -- Format a local time/date as integer

Description

int idate (string $format [, int $timestamp])

Returns a number formatted according to the given format string using the given integer
timestamp or the current local time if no timestamp is given. In other words, timestamp is
optional and defaults to the value of time().

Unlike the function date(), idate() accepts just one char in the format parameter.

Parameters

format

The following characters are recognized in the format parameter string

format character Description

B Swatch Beat/Internet Time

d Day of the month

h Hour (12 hour format)

H Hour (24 hour format)

i Minutes

I (uppercase i) returns 1 if DST is activated, 0 otherwise

L (uppercase l) returns 1 for leap year, 0 otherwise

m Month number

s Seconds

t Days in current month

U Seconds since the Unix Epoch - January 1
1970 00:00:00 UTC - this is the same as
time()

w Day of the week (0 on Sunday)

W ISO-8601 week number of year, weeks
starting on Monday

y Year (1 or 2 digits - check note below)

Y Year (4 digits)

z Day of the year

Z Timezone offset in seconds

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the current
local time if a timestamp is not given. In other words, it defaults to the value of time().

Return Values

Returns an integer.

As idate() always returns an integer and as they can't start with a "0", idate() may return fewer
digits than you would expect. See the example below.

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable. See
also date_default_timezone_set()

ChangeLog

Version Description

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

Example #410 - idate() example

<?php

$timestamp = strtotime('1st January 2004'); //1072915200

// this prints the year in a two digit format

// however, as this would start with a "0", it

// only prints "4"

echo idate('y', $timestamp);

?>

See Also

• date()
• time()

localtime

localtime -- Get the local time

Description

array localtime ([int $timestamp [, bool $is_associative]])

The localtime() function returns an array identical to that of the structure returned by the C
function call.

Parameters

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the
current local time if a timestamp is not given. In other words, it defaults to the value of
time().

is_associative

If set to FALSE or not supplied than the array is returned as a regular, numerically
indexed array. If the argument is set to TRUE then localtime() is an associative array
containing all the different elements of the structure returned by the C function call to
localtime. The names of the different keys of the associative array are as follows:

• "tm_sec" - seconds

• "tm_min" - minutes

• "tm_hour" - hour

• "tm_mday" - day of the month Months are from 0 (Jan) to 11 (Dec) and days of the
week are from 0 (Sun) to 6 (Sat).

• "tm_mon" - month of the year, starting with 0 for January

• "tm_year" - Years since 1900

• "tm_wday" - Day of the week

• "tm_yday" - Day of the year

• "tm_isdst" - Is daylight savings time in effect

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable.
See also date_default_timezone_set()

ChangeLog

Version Description

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

Example #411 - localtime() example

<?php

$localtime = localtime();

$localtime_assoc = localtime(time(), true);

print_r($localtime);

print_r($localtime_assoc);

?>

The above example will output something similar to:

Array

(

 [0] => 24

 [1] => 3

 [2] => 19

 [3] => 3

 [4] => 3

 [5] => 105

 [6] => 0

 [7] => 92

 [8] => 1

)

Array

(

 [tm_sec] => 24

 [tm_min] => 3

 [tm_hour] => 19

 [tm_mday] => 3

 [tm_mon] => 3

 [tm_year] => 105

 [tm_wday] => 0

 [tm_yday] => 92

 [tm_isdst] => 1

)

microtime

microtime -- Return current Unix timestamp with microseconds

Description

mixed microtime ([bool $get_as_float])

microtime() returns the current Unix timestamp with microseconds. This function is only
available on operating systems that support the gettimeofday() system call.

Parameters

get_as_float

When called without the optional argument, this function returns the string "msec sec"
where sec is the current time measured in the number of seconds since the Unix
Epoch (0:00:00 January 1, 1970 GMT), and msec is the microseconds part. Both
portions of the string are returned in units of seconds. If the optional get_as_float is
set to TRUE then a float (in seconds) is returned.

ChangeLog

Version Description

5.0.0 The get_as_float parameter was added.

Examples

Example #412 - Timing script execution with microtime()

<?php

/**

* Simple function to replicate PHP 5 behaviour

*/

function microtime_float()

{

 list($usec, $sec) = explode(" ", microtime());

 return ((float)$usec + (float)$sec);

}

$time_start = microtime_float();

// Sleep for a while

usleep(100);

$time_end = microtime_float();

$time = $time_end - $time_start;

echo "Did nothing in $time seconds\n";

?>

Example #413 - Timing script execution in PHP 5

<?php

$time_start = microtime(true);

// Sleep for a while

usleep(100);

$time_end = microtime(true);

$time = $time_end - $time_start;

echo "Did nothing in $time seconds\n";

?>

See Also

• time()

mktime

mktime -- Get Unix timestamp for a date

Description

int mktime ([int $hour [, int $minute [, int $second [, int $month [, int $day [, int $year [,
int $is_dst]]]]]]])

Returns the Unix timestamp corresponding to the arguments given. This timestamp is a
long integer containing the number of seconds between the Unix Epoch (January 1 1970
00:00:00 GMT) and the time specified.

Arguments may be left out in order from right to left; any arguments thus omitted will be set
to the current value according to the local date and time.

Parameters

hour

The number of the hour.

minute

The number of the minute.

second

The number of seconds past the minute.

month

The number of the month.

day

The number of the day.

year

The number of the year, may be a two or four digit value, with values between 0-69
mapping to 2000-2069 and 70-100 to 1970-2000. On systems where time_t is a 32bit
signed integer, as most common today, the valid range for year is somewhere
between 1901 and 2038. However, before PHP 5.1.0 this range was limited from 1970
to 2038 on some systems (e.g. Windows).

is_dst

This parameter can be set to 1 if the time is during daylight savings time (DST), 0 if it is
not, or -1 (the default) if it is unknown whether the time is within daylight savings time
or not. If it's unknown, PHP tries to figure it out itself. This can cause unexpected (but
not incorrect) results. Some times are invalid if DST is enabled on the system PHP is
running on or is_dst is set to 1. If DST is enabled in e.g. 2:00, all times between 2:00
and 3:00 are invalid and mktime() returns an undefined (usually negative) value. Some
systems (e.g. Solaris 8) enable DST at midnight so time 0:30 of the day when DST is

enabled is evaluated as 23:30 of the previous day.

Note

As of PHP 5.1.0, this parameter became deprecated. As a result, the new
timezone handling features should be used instead.

Return Values

mktime() returns the Unix timestamp of the arguments given. If the arguments are invalid,
the function returns FALSE (before PHP 5.1 it returned -1).

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable.
See also date_default_timezone_set()

ChangeLog

Version Description

3.0.10 Added is_dst parameter

5.1.0 The is_dst parameter became deprecated.
Made the function return FALSE on error,
instead of -1. Fixed the function to accept
the year, month and day to be all passed as
zero.

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

Example #414 - mktime() example

mktime() is useful for doing date arithmetic and validation, as it will automatically
calculate the correct value for out-of-range input. For example, each of the following
lines produces the string "Jan-01-1998".

<?php

echo date("M-d-Y", mktime(0, 0, 0, 12, 32, 1997));

echo date("M-d-Y", mktime(0, 0, 0, 13, 1, 1997));

echo date("M-d-Y", mktime(0, 0, 0, 1, 1, 1998));

echo date("M-d-Y", mktime(0, 0, 0, 1, 1, 98));

?>

Example #415 - Last day of next month

The last day of any given month can be expressed as the "0" day of the next month,
not the -1 day. Both of the following examples will produce the string "The last day in
Feb 2000 is: 29".

<?php

$lastday = mktime(0, 0, 0, 3, 0, 2000);

echo strftime("Last day in Feb 2000 is: %d", $lastday);

$lastday = mktime(0, 0, 0, 4, -31, 2000);

echo strftime("Last day in Feb 2000 is: %d", $lastday);

?>

Notes

Caution

Before PHP 5.1.0, negative timestamps were not supported under any known version
of Windows and some other systems as well. Therefore the range of valid years was
limited to 1970 through 2038.

See Also

• gmmktime()
• date()
• time()

strftime

strftime -- Format a local time/date according to locale settings

Description

string strftime (string $format [, int $timestamp])

Format a local time/date according to locale settings. Month and weekday names and
other language dependent strings respect the current locale set with setlocale().

Not all conversion specifiers may be supported by your C library, in which case they will
not be supported by PHP's strftime(). Additionally, not all platforms support negative
timestamps, therefore your date range may be limited to no earlier than the Unix epoch.
This means that e.g. %e, %T, %R and %D (there might be more) and dates prior to Jan 1,
1970 will not work on Windows, some Linux distributions, and a few other operating
systems. For Windows systems a complete overview of supported conversion specifiers
can be found at this MSDN » website.

Parameters

format

The following conversion specifiers are recognized in the format string:

• %a - abbreviated weekday name according to the current locale

• %A - full weekday name according to the current locale

• %b - abbreviated month name according to the current locale

• %B - full month name according to the current locale

• %c - preferred date and time representation for the current locale

• %C - century number (the year divided by 100 and truncated to an integer, range
00 to 99)

• %d - day of the month as a decimal number (range 01 to 31)

• %D - same as %m/%d/%y

• %e - day of the month as a decimal number, a single digit is preceded by a space
(range ' 1' to '31')

• %g - like %G, but without the century.

• %G - The 4-digit year corresponding to the ISO week number (see %V). This has
the same format and value as %Y, except that if the ISO week number belongs to
the previous or next year, that year is used instead.

• %h - same as %b

• %H - hour as a decimal number using a 24-hour clock (range 00 to 23)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strftime.2c_.wcsftime.asp

• %I - hour as a decimal number using a 12-hour clock (range 01 to 12)

• %j - day of the year as a decimal number (range 001 to 366)

• %m - month as a decimal number (range 01 to 12)

• %M - minute as a decimal number

• %n - newline character

• %p - either `am' or `pm' according to the given time value, or the corresponding
strings for the current locale

• %r - time in a.m. and p.m. notation

• %R - time in 24 hour notation

• %S - second as a decimal number

• %t - tab character

• %T - current time, equal to %H:%M:%S

• %u - weekday as a decimal number [1,7], with 1 representing Monday

Warning

Sun Solaris seems to start with Sunday as 1 although ISO 9889:1999 (the
current C standard) clearly specifies that it should be Monday.

• %U - week number of the current year as a decimal number, starting with the first
Sunday as the first day of the first week

• %V - The ISO 8601:1988 week number of the current year as a decimal number,
range 01 to 53, where week 1 is the first week that has at least 4 days in the
current year, and with Monday as the first day of the week. (Use %G or %g for the
year component that corresponds to the week number for the specified timestamp.)

• %W - week number of the current year as a decimal number, starting with the first
Monday as the first day of the first week

• %w - day of the week as a decimal, Sunday being 0

• %x - preferred date representation for the current locale without the time

• %X - preferred time representation for the current locale without the date

• %y - year as a decimal number without a century (range 00 to 99)

• %Y - year as a decimal number including the century

• %Z or %z - time zone or name or abbreviation

• %% - a literal `%' character

Maximum length of this parameter is 1023 characters.

timestamp

The optional timestamp parameter is an integer Unix timestamp that defaults to the
current local time if a timestamp is not given. In other words, it defaults to the value of
time().

Return Values

Returns a string formatted according to the given format string using the given timestamp
or the current local time if no timestamp is given. Month and weekday names and other
language dependent strings respect the current locale set with setlocale().

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable.
See also date_default_timezone_set()

ChangeLog

Version Description

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

This example works if you have the respective locales installed in your system.

Example #416 - strftime() locale examples

<?php

setlocale(LC_TIME, "C");

echo strftime("%A");

setlocale(LC_TIME, "fi_FI");

echo strftime(" in Finnish is %A,");

setlocale(LC_TIME, "fr_FR");

echo strftime(" in French %A and");

setlocale(LC_TIME, "de_DE");

echo strftime(" in German %A.\n");

?>

Example #417 - ISO 8601:1988 week number example

<?php

/* December 2002 / January 2003

ISOWk M Tu W Thu F Sa Su

----- ----------------------------

51 16 17 18 19 20 21 22

52 23 24 25 26 27 28 29

1 30 31 1 2 3 4 5

2 6 7 8 9 10 11 12

3 13 14 15 16 17 18 19 */

// Outputs: 12/28/2002 - %V,%G,%Y = 52,2002,2002

echo "12/28/2002 - %V,%G,%Y = " . strftime("%V,%G,%Y",
strtotime("12/28/2002")) . "\n";

// Outputs: 12/30/2002 - %V,%G,%Y = 1,2003,2002

echo "12/30/2002 - %V,%G,%Y = " . strftime("%V,%G,%Y",
strtotime("12/30/2002")) . "\n";

// Outputs: 1/3/2003 - %V,%G,%Y = 1,2003,2003

echo "1/3/2003 - %V,%G,%Y = " . strftime("%V,%G,%Y",strtotime("1/3/2003")) .
"\n";

// Outputs: 1/10/2003 - %V,%G,%Y = 2,2003,2003

echo "1/10/2003 - %V,%G,%Y = " . strftime("%V,%G,%Y",strtotime("1/10/2003"))
. "\n";

/* December 2004 / January 2005

ISOWk M Tu W Thu F Sa Su

----- ----------------------------

51 13 14 15 16 17 18 19

52 20 21 22 23 24 25 26

53 27 28 29 30 31 1 2

1 3 4 5 6 7 8 9

2 10 11 12 13 14 15 16 */

// Outputs: 12/23/2004 - %V,%G,%Y = 52,2004,2004

echo "12/23/2004 - %V,%G,%Y = " .
strftime("%V,%G,%Y",strtotime("12/23/2004")) . "\n";

// Outputs: 12/31/2004 - %V,%G,%Y = 53,2004,2004

echo "12/31/2004 - %V,%G,%Y = " .
strftime("%V,%G,%Y",strtotime("12/31/2004")) . "\n";

// Outputs: 1/2/2005 - %V,%G,%Y = 53,2004,2005

echo "1/2/2005 - %V,%G,%Y = " . strftime("%V,%G,%Y",strtotime("1/2/2005")) .
"\n";

// Outputs: 1/3/2005 - %V,%G,%Y = 1,2005,2005

echo "1/3/2005 - %V,%G,%Y = " . strftime("%V,%G,%Y",strtotime("1/3/2005")) .
"\n";

?>

Notes

Note

%G and %V, which are based on ISO 8601:1988 week numbers can give unexpected
(albeit correct) results if the numbering system is not thoroughly understood. See %V
examples in this manual page.

See Also

• setlocale()
• mktime()
• strptime()
• gmstrftime()
• » Open Group specification of strftime()

http://www.opengroup.org/onlinepubs/007908799/xsh/strftime.html

strptime

strptime -- Parse a time/date generated with strftime()

Description

array strptime (string $date, string $format)

strptime() returns an array with the date parsed, or FALSE on error.

Month and weekday names and other language dependent strings respect the current
locale set with setlocale() (LC_TIME).

Parameters

date (string)
The string to parse (e.g. returned from strftime())

format (string)
The format used in date (e.g. the same as used in strftime()). For more information
about the format options, read the strftime() page.

Return Values

Returns an array, or FALSE on failure.

The following parameters are returned in the array

parameters Description

tm_sec Seconds after the minute (0-61)

tm_min Minutes after the hour (0-59)

tm_hour Hour since midnight (0-23)

tm_mday Day of the month (1-31)

tm_mon Months since January (0-11)

tm_year Years since 1900

tm_wday Days since Sunday (0-6)

tm_yday Days since January 1 (0-365)

unparsed the date part which was not recognized
using the specified format

Examples

Example #418 - strptime() example

<?php

$format = '%d/%m/%Y %H:%M:%S';

$strf = strftime($format);

echo "$strf\n";

print_r(strptime($strf, $format));

?>

The above example will output something similar to:

03/10/2004 15:54:19

Array

(

 [tm_sec] => 19

 [tm_min] => 54

 [tm_hour] => 15

 [tm_mday] => 3

 [tm_mon] => 9

 [tm_year] => 104

 [tm_wday] => 0

 [tm_yday] => 276

 [unparsed] =>

)

Notes

Note

This function is not implemented on Windows platforms.

See Also

• strftime()

strtotime

strtotime -- Parse about any English textual datetime description into a Unix timestamp

Description

int strtotime (string $time [, int $now])

The function expects to be given a string containing a US English date format and will try
to parse that format into a Unix timestamp (the number of seconds since January 1 1970
00:00:00 GMT), relative to the timestamp given in now, or the current time if now is not
supplied.

This function will use the TZ environment variable (if available) to calculate the timestamp.
Since PHP 5.1.0 there are easier ways to define the timezone that is used across all
date/time functions. That process is explained in the date_default_timezone_get() function
page.

Note

If the number of the year is specified in a two digit format, the values between 00-69
are mapped to 2000-2069 and 70-99 to 1970-1999.

Parameters

time

The string to parse, according to the GNU » Date Input Formats syntax. Before PHP
5.0.0, microseconds weren't allowed in the time, since PHP 5.0.0 they are allowed but
ignored.

now

The timestamp used to calculate the returned value.

Return Values

Returns a timestamp on success, FALSE otherwise. Previous to PHP 5.1.0, this function
would return -1 on failure.

Errors/Exceptions

Every call to a date/time function will generate a E_NOTICE if the time zone is not valid,
and/or a E_STRICT message if using the system settings or the TZ environment variable.
See also date_default_timezone_set()

http://www.gnu.org/software/tar/manual/html_node/tar_113.html

ChangeLog

Version Description

5.1.0 It now returns FALSE on failure, instead of
-1.

5.1.0
Now issues the E_STRICT and E_NOTICE
time zone errors.

Examples

Example #419 - A strtotime() example

<?php

echo strtotime("now"), "\n";

echo strtotime("10 September 2000"), "\n";

echo strtotime("+1 day"), "\n";

echo strtotime("+1 week"), "\n";

echo strtotime("+1 week 2 days 4 hours 2 seconds"), "\n";

echo strtotime("next Thursday"), "\n";

echo strtotime("last Monday"), "\n";

?>

Example #420 - Checking for failure

<?php

$str = 'Not Good';

// previous to PHP 5.1.0 you would compare with -1, instead of false

if (($timestamp = strtotime($str)) === false) {

 echo "The string ($str) is bogus";

} else {

 echo "$str == " . date('l dS \o\f F Y h:i:s A', $timestamp);

}

?>

Notes

Warning

In PHP 5 up to 5.0.2, "now" and other relative times are wrongly computed from
today's midnight. It differs from other versions where it is correctly computed from
current time.

Warning

In PHP versions prior to 4.4.0, "next" is incorrectly computed as +2. A typical solution
to this is to use "+1".

Note

The valid range of a timestamp is typically from Fri, 13 Dec 1901 20:45:54 GMT to
Tue, 19 Jan 2038 03:14:07 GMT. (These are the dates that correspond to the
minimum and maximum values for a 32-bit signed integer.) Additionally, not all
platforms support negative timestamps, therefore your date range may be limited to no
earlier than the Unix epoch. This means that e.g. dates prior to Jan 1, 1970 will not
work on Windows, some Linux distributions, and a few other operating systems. PHP
5.1.0 and newer versions overcome this limitation though.

See Also

• strptime()

time

time -- Return current Unix timestamp

Description

int time (void)

Returns the current time measured in the number of seconds since the Unix Epoch
(January 1 1970 00:00:00 GMT).

Examples

Example #421 - time() example

<?php

$nextWeek = time() + (7 * 24 * 60 * 60);

 // 7 days; 24 hours; 60 mins; 60secs

echo 'Now: '. date('Y-m-d') ."\n";

echo 'Next Week: '. date('Y-m-d', $nextWeek) ."\n";

// or using strtotime():

echo 'Next Week: '. date('Y-m-d', strtotime('+1 week')) ."\n";

?>

The above example will output something similar to:

Now: 2005-03-30

Next Week: 2005-04-06

Next Week: 2005-04-06

Notes

Tip

Timestamp of the start of the request is available in $_SERVER['REQUEST_TIME']
since PHP 5.1.

See Also

• date()
• microtime()

timezone_abbreviations_list

timezone_abbreviations_list -- Returns associative array containing dst, offset and the
timezone name

Description

array timezone_abbreviations_list (void)

array DateTimeZone::listAbbreviations (void)

Return Values

Returns array on success or FALSE on failure.

Examples

Example #422 - A timezone_abbreviations_list() example

<?php

$timezone_abbreviations = DateTimeZone::listAbbreviations();

print_r($timezone_abbreviations["acst"]);

?>

The above example will output something similar to:

Array

(

 [0] => Array

 (

 [dst] => 1

 [offset] => -14400

 [timezone_id] => America/Porto_Acre

)

 [1] => Array

 (

 [dst] => 1

 [offset] => -14400

 [timezone_id] => America/Eirunepe

)

 [2] => Array

 (

 [dst] => 1

 [offset] => -14400

 [timezone_id] => America/Rio_Branco

)

 [3] => Array

 (

 [dst] => 1

 [offset] => -14400

 [timezone_id] => Brazil/Acre

)

)

See Also

• timezone_identifiers_list()

timezone_identifiers_list

timezone_identifiers_list -- Returns numerically index array with all timezone identifiers

Description

array timezone_identifiers_list (void)

array DateTimeZone::listIdentifiers (void)

Return Values

Returns array on success or FALSE on failure.

Examples

Example #423 - A timezone_identifiers_list() example

<?php

$timezone_identifiers = DateTimeZone::listIdentifiers();

for ($i=0; $i < 5; $i++) {

 echo "$timezone_identifiers[$i]\n";

}

?>

The above example will output something similar to:

Africa/Abidjan

Africa/Accra

Africa/Addis_Ababa

Africa/Algiers

Africa/Asmera

See Also

• timezone_abbreviations_list()

timezone_name_from_abbr

timezone_name_from_abbr -- Returns the timezone name from abbrevation

Description

string timezone_name_from_abbr (string $abbr [, int $gmtOffset [, int $isdst]])

Parameters

abbr

Time zone abbreviation.

gmtOffset

Offset from GMT in seconds. Defaults to -1 which means that first found time zone
corresponding to abbr is returned. Otherwise exact offset is searched and only if not
found then the first time zone with any offset is returned.

isdst

Daylight saving time indicator. If abbr doesn't exist then the time zone is searched
solely by offset and isdst.

Return Values

Returns time zone name on success or FALSE on failure.

Examples

Example #424 - A timezone_name_from_abbr() example

<?php

echo timezone_name_from_abbr("CET") . "\n";

echo timezone_name_from_abbr("", 3600, 0) . "\n";

?>

The above example will output something similar to:

Europe/Berlin

Europe/Paris

See Also

• timezone_abbreviations_list()

timezone_name_get

timezone_name_get -- Returns the name of the timezone

Description

string timezone_name_get (DateTimeZone $object)

string DateTimeZone::getName (void)

Parameters

object

DateTimeZone object.

Return Values

Returns time zone name on success or FALSE on failure.

timezone_offset_get

timezone_offset_get -- Returns the timezone offset from GMT

Description

int timezone_offset_get (DateTimeZone $object, DateTime $datetime)

int DateTimeZone::getOffset (DateTime $datetime)

This function returns the offset to GMT for the date/time specified in the datetime
parameter. The GMT offset is calculated with the timezone information contained in the
DateTime object being used.

Parameters

object

DateTimeZone object.

datetime

DateTime that contains the date/time to compute the offset from.

Return Values

Returns time zone offset in seconds on success or FALSE on failure.

Examples

Example #425 - timezone_offset_get() examples

<?php

// Create two timezone objects, one for Taipei (Taiwan) and one for

// Tokyo (Japan)

$dateTimeZoneTaipei = new DateTimeZone("Asia/Taipei");

$dateTimeZoneJapan = new DateTimeZone("Asia/Tokyo");

// Create two DateTime objects that will contain the same Unix timestamp,
but

// have different timezones attached to them.

$dateTimeTaipei = new DateTime("now", $dateTimeZoneTaipei);

$dateTimeJapan = new DateTime("now", $dateTimeZoneJapan);

// Calculate the GMT offset for the date/time contained in the
$dateTimeTaipei

// object, but using the timezone rules as defined for Tokyo

// ($dateTimeZoneJapan).

$timeOffset = $dateTimeZoneJapan->getOffset($dateTimeTaipei);

// Should show int(32400) (for dates after Sat Sep 8 01:00:00 1951 JST).

var_dump($timeOffset);

?>

timezone_open

timezone_open -- Returns new DateTimeZone object

Description

DateTimeZone timezone_open (string $timezone)

DateTimeZone DateTimeZone::__construct (string $timezone)

Parameters

timezone

Time zone identifier as full name (e.g. Europe/Prague) or abbreviation (e.g. CET).

Return Values

Returns DateTimeZone object on success or FALSE on failure.

timezone_transitions_get

timezone_transitions_get -- Returns all transitions for the timezone

Description

array timezone_transitions_get (DateTimeZone $object)

array DateTimeZone::getTransitions (void)

Parameters

object

DateTimeZone object.

Return Values

Returns numerically indexed array containing associative array with all transitions on
success or FALSE on failure.

Examples

Example #426 - A timezone_transitions_get() example

<?php

$timezone = new DateTimeZone("CET");

print_r(reset($timezone->getTransitions()));

?>

The above example will output something similar to:

Array

(

 [ts] => -1693706400

 [time] => 1916-04-30T22:00:00+0000

 [offset] => 7200

 [isdst] => 1

 [abbr] => CEST

)

Command Line Specific Extensions

Newt

Introduction

This is a PHP language extension for RedHat Newt library, a terminal-based window and
widget library for writing applications with user friendly interface. Once this extension is
enabled in PHP it will provide the use of Newt widgets, such as windows, buttons,
checkboxes, radiobuttons, labels, editboxes, scrolls, textareas, scales, etc. Use of this
extension if very similar to the original Newt API of C programming language.

Installing/Configuring

Requirements

This module uses the functions of the RedHat Newt library. You need libnewt version >=
0.51.0.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: » http://pecl.php.net/package/newt.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. In order to use these functions you must compile CGI or
CLI PHP with newt support by using the --with-newt[=DIR] configure option.

Note

This extension is not available for Windows platform.

You may need also curses and slang libraries, in order to compile this extension. To
specify locations of these libraries, use the following configuration options:
--with-curses-dir=/path/to/libcurses --with-slang-dir=/path/to/libslang

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension uses two resource types: "newt component" and "newt grid".

Resource type "newt component" is returned by functions, which create common newt
widgets (for example: newt_button())

Resource type "newt grid" is a special link identifier for components, returned by newt grid
factory functions (for example: newt_create_grid())

http://pecl.php.net/
http://pecl.php.net/package/newt

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Newt form exit reasons

Newt form exit reasons

constant meaning

NEWT_EXIT_HOTKEY hotkey defined by newt_form_add_hot_key()
was pressed

NEWT_EXIT_COMPONENT some component has caused form to exit

NEWT_EXIT_FDREADY file descriptor specified in
newt_form_watch_fd() is ready to be read or
written to

NEWT_EXIT_TIMER time specified in newt_form_set_timer() has
elapsed

Newt colorsets

Newt colorsets

constant meaning

NEWT_COLORSET_ROOT

NEWT_COLORSET_BORDER

NEWT_COLORSET_WINDOW

NEWT_COLORSET_SHADOW

NEWT_COLORSET_TITLE

NEWT_COLORSET_BUTTON

NEWT_COLORSET_ACTBUTTON

NEWT_COLORSET_CHECKBOX

NEWT_COLORSET_ACTCHECKBOX

NEWT_COLORSET_ENTRY

NEWT_COLORSET_LABEL

NEWT_COLORSET_LISTBOX

NEWT_COLORSET_ACTLISTBOX

NEWT_COLORSET_TEXTBOX

NEWT_COLORSET_ACTTEXTBOX

NEWT_COLORSET_HELPLINE

NEWT_COLORSET_ROOTTEXT

NEWT_COLORSET_ROOTTEXT

NEWT_COLORSET_EMPTYSCALE

NEWT_COLORSET_FULLSCALE

NEWT_COLORSET_DISENTRY

NEWT_COLORSET_COMPACTBUTTON

NEWT_COLORSET_ACTSELLISTBOX

NEWT_COLORSET_SELLISTBOX

Newt argument flags

Newt argument flags

constant meaning

NEWT_ARG_LAST

NEWT_ARG_APPEND

Newt Flags Sense

Newt Flags Sense

constant meaning

NEWT_FLAGS_SET

NEWT_FLAGS_RESET

NEWT_FLAGS_TOGGLE

Newt Components Flags

Newt Components Flags

constant meaning

NEWT_FLAG_RETURNEXIT Exit form, when component is activated

NEWT_FLAG_HIDDEN Component is hidden

NEWT_FLAG_SCROLL Component is scrollable

NEWT_FLAG_DISABLED Component is disabled

NEWT_FLAG_BORDER

NEWT_FLAG_WRAP Wrap text

NEWT_FLAG_NOF12 Don't exit form on pressing F12

NEWT_FLAG_MULTIPLE

NEWT_FLAG_SELECTED Component is selected

NEWT_FLAG_CHECKBOX Component is checkbox

NEWT_FLAG_PASSWORD Entry component is password entry

NEWT_FLAG_SHOWCURSOR Show cursor

File Descriptor Flags

File Descriptor Flags

constant meaning

NEWT_FD_READ

NEWT_FD_WRITE

NEWT_FD_EXCEPT

Checkbox Tree Flags

Checkbox Tree Flags

constant meaning

NEWT_CHECKBOXTREE_UNSELECTAB
LE

NEWT_CHECKBOXTREE_HIDE_BOX

NEWT_CHECKBOXTREE_COLLAPSED

NEWT_CHECKBOXTREE_EXPANDED

NEWT_CHECKBOXTREE_UNSELECTED

NEWT_CHECKBOXTREE_SELECTED

Entry Flags

Entry Flags

constant meaning

NEWT_ENTRY_SCROLL

NEWT_ENTRY_HIDDEN

NEWT_ENTRY_RETURNEXIT

NEWT_ENTRY_DISABLED

Listbox Flags

Listbox Flags

constant meaning

NEWT_LISTBOX_RETURNEXIT

Textbox Flags

Textbox Flags

constant meaning

NEWT_TEXTBOX_WRAP Wrap text in the textbox

NEWT_TEXTBOX_SCROLL Scroll text in the textbox

Form Flags

Form Flags

constant meaning

NEWT_FORM_NOF12 Don't exit form on F12 press

Newt Keys

Newt Keys

constant meaning

NEWT_KEY_TAB

NEWT_KEY_ENTER

NEWT_KEY_SUSPEND

NEWT_KEY_ESCAPE

NEWT_KEY_RETURN

NEWT_KEY_EXTRA_BASE

NEWT_KEY_UP

NEWT_KEY_DOWN

NEWT_KEY_LEFT

NEWT_KEY_RIGHT

NEWT_KEY_BKSPC

NEWT_KEY_DELETE

NEWT_KEY_HOME

NEWT_KEY_END

NEWT_KEY_UNTAB

NEWT_KEY_PGUP

NEWT_KEY_PGDN

NEWT_KEY_INSERT

NEWT_KEY_F1

NEWT_KEY_F2

NEWT_KEY_F3

NEWT_KEY_F4

NEWT_KEY_F5

NEWT_KEY_F6

NEWT_KEY_F7

NEWT_KEY_F8

NEWT_KEY_F9

NEWT_KEY_F10

NEWT_KEY_F11

NEWT_KEY_F12

NEWT_KEY_RESIZE

Newt Anchors

Newt Anchors

constant meaning

NEWT_ANCHOR_LEFT

NEWT_ANCHOR_RIGHT

NEWT_ANCHOR_TOP

NEWT_ANCHOR_BOTTOM

Grid Flags

Grid Flags

constant meaning

NEWT_GRID_FLAG_GROWX

NEWT_GRID_FLAG_GROWY

NEWT_GRID_EMPTY

NEWT_GRID_COMPONENT

NEWT_GRID_SUBGRID

Examples

Basic usage

This example is a PHP port of RedHat 'setup' utility dialog, executed in text mode.

Example #427 - Newt Usage Example

<?php

newt_init ();

newt_cls ();

newt_draw_root_text (0, 0, "Test Mode Setup Utility 1.12");

newt_push_help_line (null);

newt_draw_root_text (-30, 0, "(c) 1999-2002 RedHat, Inc");

newt_get_screen_size (&$rows, &$cols);

newt_open_window ($rows/2-17, $cols/2-10, 34, 17, "Choose a Tool");

$form = newt_form ();

$list = newt_listbox (3, 2, 10);

foreach (array (

 "Authentication configuration",

 "Firewall configuration",

 "Mouse configuration",

 "Network configuration",

 "Printer configuration",

 "System services") as $l_item)

{

 newt_listbox_add_entry ($list, $l_item, $l_item);

}

$b1 = newt_button (5, 12, "Run Tool");

$b2 = newt_button (21, 12, "Quit");

newt_form_add_component ($form, $list);

newt_form_add_components ($form, array($b1, $b2));

newt_refresh ();

newt_run_form ($form);

newt_pop_window ();

newt_pop_help_line ();

newt_finished ();

newt_form_destroy ($form);

?>

Newt Functions

newt_bell

newt_bell -- Send a beep to the terminal

Description

void newt_bell (void)

This function sends a beep to the terminal.

Note

Depending on the terminal's settings, this beep may or may not be audible.

Return Values

No value is returned.

newt_button_bar

newt_button_bar -- This function returns a grid containing the buttons created.

Description

resource newt_button_bar (array &$buttons)

This function returns a grid containing the buttons created.

Parameters

buttons

Return Values

Returns grid containing the buttons created.

newt_button

newt_button -- Create a new button

Description

resource newt_button (int $left, int $top, string $text)

Creates a new button.

Parameters

left

X-coordinate of the button.

top

Y-coordinate of the button.

text

The text which should be displayed in the button.

Return Values

Returns a resource link to the created button component, or FALSE on error.

Examples

Example #428 - A newt_button() example

<?php

$form = newt_form();

$ok_button = newt_button(5, 12, "Run Tool");

newt_form_add_component($form, $ok_button);

?>

See Also

• newt_button_bar()

newt_centered_window

newt_centered_window -- Open a centered window of the specified size

Description

int newt_centered_window (int $width, int $height [, string $title])

Open a centered window of the specified size.

Parameters

width

Window width

height

Window height

title

Window title

Return Values

Undefined value.

See Also

• newt_pop_window()
• newt_open_window()

newt_checkbox_get_value

newt_checkbox_get_value -- Retreives value of checkox resource

Description

string newt_checkbox_get_value (resource $checkbox)

This function returns the character in the sequence which indicates the current value of the
checkbox.

Parameters

checkbox

Return Values

Returns character indicating the value of the checkbox.

newt_checkbox_set_flags

newt_checkbox_set_flags -- Configures checkbox resource

Description

void newt_checkbox_set_flags (resource $checkbox, int $flags, int $sense)

This function allows to set various flags on checkbox resource.

Parameters

checkbox

flags

sense

Return Values

No value is returned.

newt_checkbox_set_value

newt_checkbox_set_value -- Sets the value of the checkbox

Description

void newt_checkbox_set_value (resource $checkbox, string $value)

This function allows to set the current value of the checkbox resource.

Parameters

checkbox

value

Return Values

No value is returned.

newt_checkbox_tree_add_item

newt_checkbox_tree_add_item -- Adds new item to the checkbox tree

Description

void newt_checkbox_tree_add_item (resource $checkboxtree, string $text, mixed $
data, int $flags, int $index [, int $...])

This function allows to add new item to the checkbox tree.

Parameters

checkboxtree

text

data

flags

index

Return Values

No value is returned.

newt_checkbox_tree_find_item

newt_checkbox_tree_find_item -- Finds an item in the checkbox tree

Description

array newt_checkbox_tree_find_item (resource $checkboxtree, mixed $data)

Finds an item in the checkbox tree by item's data.

Parameters

checkboxtree

data

Return Values

Returns checkbox tree item resource, or NULL if it wasn't found.

newt_checkbox_tree_get_current

newt_checkbox_tree_get_current -- Returns checkbox tree selected item

Description

mixed newt_checkbox_tree_get_current (resource $checkboxtree)

This method returns checkbox tree selected tem.

Parameters

checkboxtree

Return Values

Returns current (selected) checkbox tree item.

newt_checkbox_tree_get_entry_value

newt_checkbox_tree_get_entry_value --

Description

string newt_checkbox_tree_get_entry_value (resource $checkboxtree, mixed $data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

data

Return Values

newt_checkbox_tree_get_multi_selection

newt_checkbox_tree_get_multi_selection --

Description

array newt_checkbox_tree_get_multi_selection (resource $checkboxtree, string $
seqnum)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

seqnum

Return Values

newt_checkbox_tree_get_selection

newt_checkbox_tree_get_selection --

Description

array newt_checkbox_tree_get_selection (resource $checkboxtree)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

Return Values

newt_checkbox_tree_multi

newt_checkbox_tree_multi --

Description

resource newt_checkbox_tree_multi (int $left, int $top, int $height, string $seq [, int
$flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

height

seq

flags

Return Values

newt_checkbox_tree_set_current

newt_checkbox_tree_set_current --

Description

void newt_checkbox_tree_set_current (resource $checkboxtree, mixed $data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

data

Return Values

No value is returned.

newt_checkbox_tree_set_entry_value

newt_checkbox_tree_set_entry_value --

Description

void newt_checkbox_tree_set_entry_value (resource $checkboxtree, mixed $data,
string $value)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

data

value

Return Values

No value is returned.

newt_checkbox_tree_set_entry

newt_checkbox_tree_set_entry --

Description

void newt_checkbox_tree_set_entry (resource $checkboxtree, mixed $data, string $
text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkboxtree

data

text

Return Values

No value is returned.

newt_checkbox_tree_set_width

newt_checkbox_tree_set_width --

Description

void newt_checkbox_tree_set_width (resource $checkbox_tree, int $width)

Warning

This function is currently not documented; only its argument list is available.

Parameters

checkbox_tree

width

Return Values

No value is returned.

newt_checkbox_tree

newt_checkbox_tree --

Description

resource newt_checkbox_tree (int $left, int $top, int $height [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

height

flags

Return Values

newt_checkbox

newt_checkbox --

Description

resource newt_checkbox (int $left, int $top, string $text, string $def_value [, string $
seq])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

text

def_value

seq

Return Values

newt_clear_key_buffer

newt_clear_key_buffer -- Discards the contents of the terminal's input buffer without
waiting for additional input

Description

void newt_clear_key_buffer (void)

Discards the contents of the terminal's input buffer without waiting for additional input.

Return Values

No value is returned.

See Also

• newt_wait_for_key()

newt_cls

newt_cls --

Description

void newt_cls (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

No value is returned.

newt_compact_button

newt_compact_button --

Description

resource newt_compact_button (int $left, int $top, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

text

Return Values

newt_component_add_callback

newt_component_add_callback --

Description

void newt_component_add_callback (resource $component, mixed $func_name, mixed
$data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

component

func_name

data

Return Values

No value is returned.

newt_component_takes_focus

newt_component_takes_focus --

Description

void newt_component_takes_focus (resource $component, bool $takes_focus)

Warning

This function is currently not documented; only its argument list is available.

Parameters

component

takes_focus

Return Values

No value is returned.

newt_create_grid

newt_create_grid --

Description

resource newt_create_grid (int $cols, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Parameters

cols

rows

Return Values

newt_cursor_off

newt_cursor_off --

Description

void newt_cursor_off (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

No value is returned.

newt_cursor_on

newt_cursor_on --

Description

void newt_cursor_on (void)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

newt_delay

newt_delay --

Description

void newt_delay (int $microseconds)

Warning

This function is currently not documented; only its argument list is available.

Parameters

microseconds

Return Values

No value is returned.

newt_draw_form

newt_draw_form --

Description

void newt_draw_form (resource $form)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

Return Values

No value is returned.

newt_draw_root_text

newt_draw_root_text -- Displays the string text at the position indicated

Description

void newt_draw_root_text (int $left, int $top, string $text)

Displays the string text at the position indicated.

Parameters

left

Column number

Note

If left is negative, the position is measured from the opposite side of the screen.

top

Line number

Note

If top is negative, the position is measured from the opposite side of the screen.

text

Text to display.

Return Values

No value is returned.

Examples

Example #429 - A newt_draw_root_text() example

This code demonstrates drawing of titles in the both corners of the screen.

<?php

newt_init();

newt_cls();

newt_draw_root_text (2, 0, "Some root text");

newt_refresh();

sleep(1);

newt_draw_root_text (-30, 0, "Root text in the other corner");

newt_refresh();

sleep(1);

newt_finished();

?>

See Also

• newt_push_help_line()
• newt_pop_help_line()

newt_entry_get_value

newt_entry_get_value --

Description

string newt_entry_get_value (resource $entry)

Warning

This function is currently not documented; only its argument list is available.

Parameters

entry

Return Values

newt_entry_set_filter

newt_entry_set_filter --

Description

void newt_entry_set_filter (resource $entry, callback $filter, mixed $data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

entry

filter

data

Return Values

No value is returned.

newt_entry_set_flags

newt_entry_set_flags --

Description

void newt_entry_set_flags (resource $entry, int $flags, int $sense)

Warning

This function is currently not documented; only its argument list is available.

Parameters

entry

flags

sense

Return Values

No value is returned.

newt_entry_set

newt_entry_set --

Description

void newt_entry_set (resource $entry, string $value [, bool $cursor_at_end])

Warning

This function is currently not documented; only its argument list is available.

Parameters

entry

value

cursor_at_end

Return Values

No value is returned.

newt_entry

newt_entry --

Description

resource newt_entry (int $left, int $top, int $width [, string $init_value [, int $flags]]
)

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

width

init_value

flags

Return Values

newt_finished

newt_finished -- Uninitializes newt interface

Description

int newt_finished (void)

Uninitializes newt interface. This function be called, when program is ready to exit.

Return Values

Returns 1 on success, 0 on failure.

See Also

• newt_init()

newt_form_add_component

newt_form_add_component -- Adds a single component to the form

Description

void newt_form_add_component (resource $form, resource $component)

Adds a single component to the form.

Parameters

form

Form to which component will be added

component

Component to add to the form

Return Values

No value is returned.

Examples

Example #430 - A newt_form_add_component() example

<?php

$form = newt_form();

$options = array("Authentication configuration", "Firewall configuration",

"Mouse configuration", "Network configuration", "Printer configuration",

"System services");

$list = newt_listbox(3, 2, 10);

foreach ($options as $l_item) {

 newt_listbox_add_entry($list, $l_item, $l_item);

}

newt_form_add_component($form, $list);

?>

See Also

• newt_form_add_components()

newt_form_add_components

newt_form_add_components -- Add several components to the form

Description

void newt_form_add_components (resource $form, array $components)

Adds several components to the form.

Parameters

form

Form to which components will be added

components

Array of components to add to the form

Return Values

No value is returned.

Examples

Example #431 - A newt_form_add_components() example

<?php

$form = newt_form();

$b1 = newt_button(5, 12, "Run Tool");

$b2 = newt_button(21, 12, "Quit");

newt_form_add_components($form, array($b1, $b2));

?>

See Also

• newt_form_add_component()

newt_form_add_hot_key

newt_form_add_hot_key --

Description

void newt_form_add_hot_key (resource $form, int $key)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

key

Return Values

No value is returned.

newt_form_destroy

newt_form_destroy -- Destroys a form

Description

void newt_form_destroy (resource $form)

This function frees the memory resources used by the form and all of the components
which have been added to the form (including those components which are on subforms).
Once a form has been destroyed, none of the form's components can be used.

Parameters

form

Form component, which is going to be destroyed

Return Values

No value is returned.

See Also

• newt_form_run()
• newt_run_form()

newt_form_get_current

newt_form_get_current --

Description

resource newt_form_get_current (resource $form)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

Return Values

newt_form_run

newt_form_run -- Runs a form

Description

void newt_form_run (resource $form, array &$exit_struct)

This function runs the form passed to it.

Parameters

form

Form component

exit_struct

Array, used for returning information after running the form component. Keys and
values are described in the following table:

Form Exit Structure

Index Key Value Type Description

reason integer The reason, why the form
has been exited. Possible
values are defined here.

watch resource Resource link, specified in
newt_form_watch_fd()

key integer Hotkey

component resource Component, which caused
the form to exit

Return Values

No value is returned.

See Also

• newt_run_form()

newt_form_set_background

newt_form_set_background --

Description

void newt_form_set_background (resource $from, int $background)

Warning

This function is currently not documented; only its argument list is available.

Parameters

from

background

Return Values

No value is returned.

newt_form_set_height

newt_form_set_height --

Description

void newt_form_set_height (resource $form, int $height)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

height

Return Values

No value is returned.

newt_form_set_size

newt_form_set_size --

Description

void newt_form_set_size (resource $form)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

Return Values

No value is returned.

newt_form_set_timer

newt_form_set_timer --

Description

void newt_form_set_timer (resource $form, int $milliseconds)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

milliseconds

Return Values

No value is returned.

newt_form_set_width

newt_form_set_width --

Description

void newt_form_set_width (resource $form, int $width)

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

width

Return Values

No value is returned.

newt_form_watch_fd

newt_form_watch_fd --

Description

void newt_form_watch_fd (resource $form, resource $stream [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

form

stream

flags

Return Values

No value is returned.

newt_form

newt_form -- Create a form

Description

resource newt_form ([resource $vert_bar [, string $help [, int $flags]]])

Create a new form.

Parameters

vert_bar

Vertical scrollbar which should be associated with the form

help

Help text string

flags

Various flags

Return Values

Returns a resource link to the created form component, or FALSE on error.

Examples

Example #432 - A newt_form() example

Displays a single button "Quit", which closes the application once it's pressed.

<?php

newt_init();

newt_cls();

$myform = newt_form();

$button = newt_button (5, 12, "Quit");

newt_form_add_component ($myform, $button);

newt_refresh ();

newt_run_form ($myform);

newt_finished ();

newt_form_destroy ($myform);

?>

See Also

• newt_form_run()
• newt_run_form()
• newt_form_add_component()
• newt_form_add_components()
• newt_form_destroy()

newt_get_screen_size

newt_get_screen_size -- Fills in the passed references with the current size of the terminal

Description

void newt_get_screen_size (int &$cols, int &$rows)

Fills in the passed references with the current size of the terminal.

Parameters

cols

Number of columns in the terminal

rows

Number of rows in the terminal

Return Values

No value is returned.

Examples

Example #433 - A newt_get_screen_size() example

This code prints out the screen size of your terminal.

<?php

newt_init();

newt_get_screen_size (&$cols, &$rows);

newt_finished();

print "Your terminal size is: {$cols}x{$rows}\n";

?>

The above example will output:

Your terminal size is: 138x47

newt_grid_add_components_to_form

newt_grid_add_components_to_form --

Description

void newt_grid_add_components_to_form (resource $grid, resource $form, bool $
recurse)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

form

recurse

Return Values

No value is returned.

newt_grid_basic_window

newt_grid_basic_window --

Description

resource newt_grid_basic_window (resource $text, resource $middle, resource $buttons
)

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

middle

buttons

Return Values

newt_grid_free

newt_grid_free --

Description

void newt_grid_free (resource $grid, bool $recurse)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

recurse

Return Values

No value is returned.

newt_grid_get_size

newt_grid_get_size --

Description

void newt_grid_get_size (resouce $grid, int &$width, int &$height)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

width

height

Return Values

No value is returned.

newt_grid_h_close_stacked

newt_grid_h_close_stacked --

Description

resource newt_grid_h_close_stacked (int $element1_type, resource $element1 [, int $...
[, resource $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

element1_type

element1

Return Values

newt_grid_h_stacked

newt_grid_h_stacked --

Description

resource newt_grid_h_stacked (int $element1_type, resource $element1 [, int $... [,
resource $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

element1_type

element1

Return Values

newt_grid_place

newt_grid_place --

Description

void newt_grid_place (resource $grid, int $left, int $top)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

left

top

Return Values

No value is returned.

newt_grid_set_field

newt_grid_set_field --

Description

void newt_grid_set_field (resource $grid, int $col, int $row, int $type, resource $val, int $
pad_left, int $pad_top, int $pad_right, int $pad_bottom, int $anchor [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

col

row

type

val

pad_left

pad_top

pad_right

pad_bottom

anchor

flags

Return Values

No value is returned.

newt_grid_simple_window

newt_grid_simple_window --

Description

resource newt_grid_simple_window (resource $text, resource $middle, resource $
buttons)

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

middle

buttons

Return Values

newt_grid_v_close_stacked

newt_grid_v_close_stacked --

Description

resource newt_grid_v_close_stacked (int $element1_type, resource $element1 [, int $... [,
resource $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

element1_type

element1

Return Values

newt_grid_v_stacked

newt_grid_v_stacked --

Description

resource newt_grid_v_stacked (int $element1_type, resource $element1 [, int $... [,
resource $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

element1_type

element1

Return Values

newt_grid_wrapped_window_at

newt_grid_wrapped_window_at --

Description

void newt_grid_wrapped_window_at (resource $grid, string $title, int $left, int $top)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

title

left

top

Return Values

No value is returned.

newt_grid_wrapped_window

newt_grid_wrapped_window --

Description

void newt_grid_wrapped_window (resource $grid, string $title)

Warning

This function is currently not documented; only its argument list is available.

Parameters

grid

title

Return Values

No value is returned.

newt_init

newt_init -- Initialize newt

Description

int newt_init (void)

Initializes the newt interface. This function must be called before any other newt function.

Return Values

Returns 1 on success, 0 on failure.

See Also

• newt_finished()

newt_label_set_text

newt_label_set_text --

Description

void newt_label_set_text (resource $label, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

label

text

Return Values

No value is returned.

newt_label

newt_label --

Description

resource newt_label (int $left, int $top, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

text

Return Values

newt_listbox_append_entry

newt_listbox_append_entry --

Description

void newt_listbox_append_entry (resource $listbox, string $text, mixed $data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

text

data

Return Values

No value is returned.

newt_listbox_clear_selection

newt_listbox_clear_selection --

Description

void newt_listbox_clear_selection (resource $listbox)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

Return Values

No value is returned.

newt_listbox_clear

newt_listbox_clear --

Description

void newt_listbox_clear (resource $listobx)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listobx

Return Values

No value is returned.

newt_listbox_delete_entry

newt_listbox_delete_entry --

Description

void newt_listbox_delete_entry (resource $listbox, mixed $key)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

key

Return Values

No value is returned.

newt_listbox_get_current

newt_listbox_get_current --

Description

string newt_listbox_get_current (resource $listbox)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

Return Values

newt_listbox_get_selection

newt_listbox_get_selection --

Description

array newt_listbox_get_selection (resource $listbox)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

Return Values

newt_listbox_insert_entry

newt_listbox_insert_entry --

Description

void newt_listbox_insert_entry (resource $listbox, string $text, mixed $data, mixed $key
)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

text

data

key

Return Values

No value is returned.

newt_listbox_item_count

newt_listbox_item_count --

Description

int newt_listbox_item_count (resource $listbox)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

Return Values

newt_listbox_select_item

newt_listbox_select_item --

Description

void newt_listbox_select_item (resource $listbox, mixed $key, int $sense)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

key

sense

Return Values

No value is returned.

newt_listbox_set_current_by_key

newt_listbox_set_current_by_key --

Description

void newt_listbox_set_current_by_key (resource $listbox, mixed $key)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

key

Return Values

No value is returned.

newt_listbox_set_current

newt_listbox_set_current --

Description

void newt_listbox_set_current (resource $listbox, int $num)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

num

Return Values

No value is returned.

newt_listbox_set_data

newt_listbox_set_data --

Description

void newt_listbox_set_data (resource $listbox, int $num, mixed $data)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

num

data

Return Values

No value is returned.

newt_listbox_set_entry

newt_listbox_set_entry --

Description

void newt_listbox_set_entry (resource $listbox, int $num, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

num

text

Return Values

No value is returned.

newt_listbox_set_width

newt_listbox_set_width --

Description

void newt_listbox_set_width (resource $listbox, int $width)

Warning

This function is currently not documented; only its argument list is available.

Parameters

listbox

width

Return Values

No value is returned.

newt_listbox

newt_listbox --

Description

resource newt_listbox (int $left, int $top, int $height [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

height

flags

Return Values

newt_listitem_get_data

newt_listitem_get_data --

Description

mixed newt_listitem_get_data (resource $item)

Warning

This function is currently not documented; only its argument list is available.

Parameters

item

Return Values

newt_listitem_set

newt_listitem_set --

Description

void newt_listitem_set (resource $item, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

item

text

Return Values

No value is returned.

newt_listitem

newt_listitem --

Description

resource newt_listitem (int $left, int $top, string $text, bool $is_default, resouce $
prev_item, mixed $data [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

text

is_default

prev_item

data

flags

Return Values

newt_open_window

newt_open_window -- Open a window of the specified size and position

Description

int newt_open_window (int $left, int $top, int $width, int $height [, string $title])

Open a window of the specified size and position.

Parameters

left

Location of the upper left-hand corner of the window (column number)

top

Location of the upper left-hand corner of the window (row number)

width

Window width

height

Window height

title

Window title

Return Values

Returns 1 on success, 0 on failure.

See Also

• newt_pop_window()
• newt_centered_window()

newt_pop_help_line

newt_pop_help_line -- Replaces the current help line with the one from the stack

Description

void newt_pop_help_line (void)

Replaces the current help line with the one from the stack.

Note

It's important not to call to newt_pop_help_line() more than newt_push_help_line().

Return Values

No value is returned.

See Also

• newt_push_help_line()

newt_pop_window

newt_pop_window -- Removes the top window from the display

Description

void newt_pop_window (void)

Removes the top window from the display, and redraws the display areas which the window
overwrote.

Return Values

No value is returned.

See Also

• newt_open_window()
• newt_centered_window()

newt_push_help_line

newt_push_help_line -- Saves the current help line on a stack, and displays the new line

Description

void newt_push_help_line ([string $text])

Saves the current help line on a stack, and displays the new line.

Parameters

text

New help text message

Note

If not specified, the help line is cleared.

Return Values

No value is returned.

See Also

• newt_pop_help_line()

newt_radio_get_current

newt_radio_get_current --

Description

resource newt_radio_get_current (resource $set_member)

Warning

This function is currently not documented; only its argument list is available.

Parameters

set_member

Return Values

newt_radiobutton

newt_radiobutton --

Description

resource newt_radiobutton (int $left, int $top, string $text, bool $is_default [, resource
$prev_button])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

text

is_default

prev_button

Return Values

newt_redraw_help_line

newt_redraw_help_line --

Description

void newt_redraw_help_line (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

No value is returned.

newt_reflow_text

newt_reflow_text --

Description

string newt_reflow_text (string $text, int $width, int $flex_down, int $flex_up, int &$
actual_width, int &$actual_height)

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

width

flex_down

flex_up

actual_width

actual_height

Return Values

newt_refresh

newt_refresh -- Updates modified portions of the screen

Description

void newt_refresh (void)

To increase performance, newt only updates the display when it needs to, not when the
program tells it to write to the terminal. Applications can force newt to immediately update
modified portions of the screen by calling this function.

Return Values

No value is returned.

newt_resize_screen

newt_resize_screen --

Description

void newt_resize_screen ([bool $redraw])

Warning

This function is currently not documented; only its argument list is available.

Parameters

redraw

Return Values

No value is returned.

newt_resume

newt_resume -- Resume using the newt interface after calling newt_suspend()

Description

void newt_resume (void)

Resume using the newt interface after calling newt_suspend().

Return Values

No value is returned.

See Also

• newt_suspend()

newt_run_form

newt_run_form -- Runs a form

Description

resource newt_run_form (resource $form)

This function runs the form passed to it.

Parameters

form

Form component

Return Values

The component which caused the form to stop running.

Note

Notice that this function doesn't fit in with newt's normal naming convention. It is an older
interface which will not work for all forms. It was left in newt only for legacy applications. It
is a simpler interface than the new newt_form_run() though, and is still used quite often as
a result. When an application is done with a form, it destroys the form and all of the
components the form contains.

See Also

• newt_form_run()
• newt_form_destroy()

newt_scale_set

newt_scale_set --

Description

void newt_scale_set (resource $scale, int $amount)

Warning

This function is currently not documented; only its argument list is available.

Parameters

scale

amount

Return Values

No value is returned.

newt_scale

newt_scale --

Description

resource newt_scale (int $left, int $top, int $width, int $full_value)

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

width

full_value

Return Values

newt_scrollbar_set

newt_scrollbar_set --

Description

void newt_scrollbar_set (resource $scrollbar, int $where, int $total)

Warning

This function is currently not documented; only its argument list is available.

Parameters

scrollbar

where

total

Return Values

No value is returned.

newt_set_help_callback

newt_set_help_callback --

Description

void newt_set_help_callback (mixed $function)

Warning

This function is currently not documented; only its argument list is available.

Parameters

function

Return Values

No value is returned.

newt_set_suspend_callback

newt_set_suspend_callback -- Set a callback function which gets invoked when user presses
the suspend key

Description

void newt_set_suspend_callback (callback $function, mixed $data)

Set a callback function which gets invoked when user presses the suspend key (normally ^Z).
If no suspend callback is registered, the suspend keystroke is ignored.

Parameters

function

A callback function, which accepts one argument: data

data

This data is been passed to the callback function

See Also

• newt_suspend()
• newt_resume()

newt_suspend

newt_suspend -- Tells newt to return the terminal to its initial state

Description

void newt_suspend (void)

Tells newt to return the terminal to its initial state. Once this is done, the application can
suspend itself (by sending itself a SIGTSTP, fork a child program, or do whatever else it likes).

Return Values

No value is returned.

See Also

• newt_resume()

newt_textbox_get_num_lines

newt_textbox_get_num_lines --

Description

int newt_textbox_get_num_lines (resource $textbox)

Warning

This function is currently not documented; only its argument list is available.

Parameters

textbox

Return Values

newt_textbox_reflowed

newt_textbox_reflowed --

Description

resource newt_textbox_reflowed (int $left, int $top, char $*text, int $width, int $
flex_down, int $flex_up [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

*text

width

flex_down

flex_up

flags

Return Values

newt_textbox_set_height

newt_textbox_set_height --

Description

void newt_textbox_set_height (resource $textbox, int $height)

Warning

This function is currently not documented; only its argument list is available.

Parameters

textbox

height

Return Values

No value is returned.

newt_textbox_set_text

newt_textbox_set_text --

Description

void newt_textbox_set_text (resource $textbox, string $text)

Warning

This function is currently not documented; only its argument list is available.

Parameters

textbox

text

Return Values

No value is returned.

newt_textbox

newt_textbox --

Description

resource newt_textbox (int $left, int $top, int $width, int $height [, int $flags])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

width

height

flags

Return Values

newt_vertical_scrollbar

newt_vertical_scrollbar --

Description

resource newt_vertical_scrollbar (int $left, int $top, int $height [, int $normal_colorset [,
int $thumb_colorset]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

left

top

height

normal_colorset

thumb_colorset

Return Values

newt_wait_for_key

newt_wait_for_key -- Doesn't return until a key has been pressed

Description

void newt_wait_for_key (void)

This function doesn't return until a key has been pressed. The keystroke is then ignored. If a
key is already in the terminal's buffer, this function discards a keystroke and returns
immediately.

Return Values

No value is returned.

See Also

• newt_clear_key_buffer()

newt_win_choice

newt_win_choice --

Description

int newt_win_choice (string $title, string $button1_text, string $button2_text, string $
format [, mixed $args [, mixed $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

button1_text

button2_text

format

args

Return Values

newt_win_entries

newt_win_entries --

Description

int newt_win_entries (string $title, string $text, int $suggested_width, int $flex_down, int
$flex_up, int $data_width, array &$items, string $button1 [, string $...])

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

text

suggested_width

flex_down

flex_up

data_width

items

button1

button2

Return Values

Examples

Example #434 - A newt_win_entries() example

<?php

newt_init();

newt_cls();

$entries[] = array('text' => 'First name:', 'value' => &$f_name);

$entries[] = array('text' => 'Last name:', 'value' => &$l_name);

$rc = newt_win_entries("User information", "Please enter your credentials:", 50,
7, 7, 30, $entries, "Ok", "Back");

newt_finished ();

if ($rc != 2) {

 echo "Your name is: $f_name $l_name\n";

}

?>

newt_win_menu

newt_win_menu --

Description

int newt_win_menu (string $title, string $text, int $suggestedWidth, int $flexDown, int $
flexUp, int $maxListHeight, array $items, int &$listItem [, string $button1 [, string $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

text

suggestedWidth

flexDown

flexUp

maxListHeight

items

listItem

button1

Return Values

No value is returned.

newt_win_message

newt_win_message --

Description

void newt_win_message (string $title, string $button_text, string $format [, mixed $args
[, mixed $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

button_text

format

args

Return Values

No value is returned.

newt_win_messagev

newt_win_messagev --

Description

void newt_win_messagev (string $title, string $button_text, string $format, array $args)

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

button_text

format

args

Return Values

No value is returned.

newt_win_ternary

newt_win_ternary --

Description

int newt_win_ternary (string $title, string $button1_text, string $button2_text, string $
button3_text, string $format [, mixed $args [, mixed $...]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

title

Its description

button1_text

Its description

button2_text

Its description

button3_text

Its description

format

Its description

args

Its description

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

Ncurses Terminal Screen Control

Introduction

ncurses (new curses) is a free software emulation of curses in System V Rel 4.0 (and above).
It uses terminfo format, supports pads, colors, multiple highlights, form characters and function
key mapping. Because of the interactive nature of this library, it will be of little use for writing
Web applications, but may be useful when writing scripts meant using PHP from the command
line.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the names
of its functions and any other documentation surrounding this extension?may change
without notice in a future release of PHP. This extension should be used at your own risk.

Ncurses is available for the following platforms:

• AIX

• BeOS

• Cygwin

• Digital Unix (aka OSF1)

• FreeBSD

• GNU/Linux

• HPUX

• IRIX

• OS/2

• SCO OpenServer

• Solaris

• SunOS

Note

This extension has been moved to the » PECL repository and is no longer bundled with
PHP as of PHP 6.0.0

http://pecl.php.net/

Installing/Configuring

Requirements

You need the ncurses libraries and headerfiles. Download the latest version from the
» ftp://ftp.gnu.org/pub/gnu/ncurses/ or from an other GNU-Mirror.

Installation

To get these functions to work, you have to compile the CGI or CLI version of PHP with
--with-ncurses[=DIR].

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines window, panel and pad resources.

ftp://ftp.gnu.org/pub/gnu/ncurses/
ftp://ftp.gnu.org/pub/gnu/ncurses/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Error codes

On error ncurses functions return NCURSES_ERR.

Colors

ncurses color constants

constant meaning

NCURSES_COLOR_BLACK no color (black)

NCURSES_COLOR_WHITE white

NCURSES_COLOR_RED red - supported when terminal is in color
mode

NCURSES_COLOR_GREEN green - supported when terminal is in color
mode

NCURSES_COLOR_YELLOW yellow - supported when terminal is in color
mode

NCURSES_COLOR_BLUE blue - supported when terminal is in color
mode

NCURSES_COLOR_CYAN cyan - supported when terminal is in color
mode

NCURSES_COLOR_MAGENTA magenta - supported when terminal is in
color mode

Keys

ncurses key constants

constant meaning

NCURSES_KEY_F0 -
NCURSES_KEY_F64

function keys F1 - F64

NCURSES_KEY_DOWN down arrow

NCURSES_KEY_UP up arrow

NCURSES_KEY_LEFT left arrow

NCURSES_KEY_RIGHT right arrow

NCURSES_KEY_HOME home key (upward+left arrow)

NCURSES_KEY_BACKSPACE backspace

NCURSES_KEY_DL delete line

NCURSES_KEY_IL insert line

NCURSES_KEY_DC delete character

NCURSES_KEY_IC insert char or enter insert mode

NCURSES_KEY_EIC exit insert char mode

NCURSES_KEY_CLEAR clear screen

NCURSES_KEY_EOS clear to end of screen

NCURSES_KEY_EOL clear to end of line

NCURSES_KEY_SF scroll one line forward

NCURSES_KEY_SR scroll one line backward

NCURSES_KEY_NPAGE next page

NCURSES_KEY_PPAGE previous page

NCURSES_KEY_STAB set tab

NCURSES_KEY_CTAB clear tab

NCURSES_KEY_CATAB clear all tabs

NCURSES_KEY_SRESET soft (partial) reset

NCURSES_KEY_RESET reset or hard reset

NCURSES_KEY_PRINT print

NCURSES_KEY_LL lower left

NCURSES_KEY_A1 upper left of keypad

NCURSES_KEY_A3 upper right of keypad

NCURSES_KEY_B2 center of keypad

NCURSES_KEY_C1 lower left of keypad

NCURSES_KEY_C3 lower right of keypad

NCURSES_KEY_BTAB back tab

NCURSES_KEY_BEG beginning

NCURSES_KEY_CANCEL cancel

NCURSES_KEY_CLOSE close

NCURSES_KEY_COMMAND cmd (command)

NCURSES_KEY_COPY copy

NCURSES_KEY_CREATE create

NCURSES_KEY_END end

NCURSES_KEY_EXIT exit

NCURSES_KEY_FIND find

NCURSES_KEY_HELP help

NCURSES_KEY_MARK mark

NCURSES_KEY_MESSAGE message

NCURSES_KEY_MOVE move

NCURSES_KEY_NEXT next

NCURSES_KEY_OPEN open

NCURSES_KEY_OPTIONS options

NCURSES_KEY_PREVIOUS previous

NCURSES_KEY_REDO redo

NCURSES_KEY_REFERENCE ref (reference)

NCURSES_KEY_REFRESH refresh

NCURSES_KEY_REPLACE replace

NCURSES_KEY_RESTART restart

NCURSES_KEY_RESUME resume

NCURSES_KEY_SAVE save

NCURSES_KEY_SBEG shiftet beg (beginning)

NCURSES_KEY_SCANCEL shifted cancel

NCURSES_KEY_SCOMMAND shifted command

NCURSES_KEY_SCOPY shifted copy

NCURSES_KEY_SCREATE shifted create

NCURSES_KEY_SDC shifted delete char

NCURSES_KEY_SDL shifted delete line

NCURSES_KEY_SELECT select

NCURSES_KEY_SEND shifted end

NCURSES_KEY_SEOL shifted end of line

NCURSES_KEY_SEXIT shifted exit

NCURSES_KEY_SFIND shifted find

NCURSES_KEY_SHELP shifted help

NCURSES_KEY_SHOME shifted home

NCURSES_KEY_SIC shifted input

NCURSES_KEY_SLEFT shifted left arrow

NCURSES_KEY_SMESSAGE shifted message

NCURSES_KEY_SMOVE shifted move

NCURSES_KEY_SNEXT shifted next

NCURSES_KEY_SOPTIONS shifted options

NCURSES_KEY_SPREVIOUS shifted previous

NCURSES_KEY_SPRINT shifted print

NCURSES_KEY_SREDO shifted redo

NCURSES_KEY_SREPLACE shifted replace

NCURSES_KEY_SRIGHT shifted right arrow

NCURSES_KEY_SRSUME shifted resume

NCURSES_KEY_SSAVE shifted save

NCURSES_KEY_SSUSPEND shifted suspend

NCURSES_KEY_UNDO undo

NCURSES_KEY_MOUSE mouse event has occurred

NCURSES_KEY_MAX maximum key value

Mouse

mouse constants

Constant meaning

NCURSES_BUTTON1_RELEASED -
NCURSES_BUTTON4_RELEASED

button (1-4) released

NCURSES_BUTTON1_PRESSED -
NCURSES_BUTTON4_PRESSED

button (1-4) pressed

NCURSES_BUTTON1_CLICKED -
NCURSES_BUTTON4_CLICKED

button (1-4) clicked

NCURSES_BUTTON1_DOUBLE_CLICKED
-
NCURSES_BUTTON4_DOUBLE_CLICKED

button (1-4) double clicked

NCURSES_BUTTON1_TRIPLE_CLICKED -
NCURSES_BUTTON4_TRIPLE_CLICKED

button (1-4) triple clicked

NCURSES_BUTTON_CTRL ctrl pressed during click

NCURSES_BUTTON_SHIFT shift pressed during click

NCURSES_BUTTON_ALT alt pressed during click

NCURSES_ALL_MOUSE_EVENTS report all mouse events

NCURSES_REPORT_MOUSE_POSITION report mouse position

Ncurses Functions

ncurses_addch

ncurses_addch -- Add character at current position and advance cursor

Description

int ncurses_addch (int $ch)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

ch

ncurses_addchnstr

ncurses_addchnstr -- Add attributed string with specified length at current position

Description

int ncurses_addchnstr (string $s, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

s

n

ncurses_addchstr

ncurses_addchstr -- Add attributed string at current position

Description

int ncurses_addchstr (string $s)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

s

ncurses_addnstr

ncurses_addnstr -- Add string with specified length at current position

Description

int ncurses_addnstr (string $s, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

s

n

ncurses_addstr

ncurses_addstr -- Output text at current position

Description

int ncurses_addstr (string $text)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

ncurses_assume_default_colors

ncurses_assume_default_colors -- Define default colors for color 0

Description

int ncurses_assume_default_colors (int $fg, int $bg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

fg

bg

ncurses_attroff

ncurses_attroff -- Turn off the given attributes

Description

int ncurses_attroff (int $attributes)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

attributes

ncurses_attron

ncurses_attron -- Turn on the given attributes

Description

int ncurses_attron (int $attributes)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

attributes

ncurses_attrset

ncurses_attrset -- Set given attributes

Description

int ncurses_attrset (int $attributes)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

attributes

ncurses_baudrate

ncurses_baudrate -- Returns baudrate of terminal

Description

int ncurses_baudrate (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_beep

ncurses_beep -- Let the terminal beep

Description

int ncurses_beep (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

ncurses_beep() sends an audible alert (bell) and if its not possible flashes the screen.

See Also

• ncurses_flash()

ncurses_bkgd

ncurses_bkgd -- Set background property for terminal screen

Description

int ncurses_bkgd (int $attrchar)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

attrchar

ncurses_bkgdset

ncurses_bkgdset -- Control screen background

Description

void ncurses_bkgdset (int $attrchar)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

attrchar

ncurses_border

ncurses_border -- Draw a border around the screen using attributed characters

Description

int ncurses_border (int $left, int $right, int $top, int $bottom, int $tl_corner, int $
tr_corner, int $bl_corner, int $br_corner)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Draws the specified lines and corners around the main window.

Use ncurses_wborder() for borders around subwindows!

Parameters

Every parameter expects 0 to draw a line or 1 to skip it.
left

right

top

bottom

tl_corner

Top left corner

tr_corner

Top right corner

bl_corner

Bottom left corner

br_corner

Bottom right corner

See Also

• ncurses_wborder()

ncurses_bottom_panel

ncurses_bottom_panel -- Moves a visible panel to the bottom of the stack

Description

int ncurses_bottom_panel (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_can_change_color

ncurses_can_change_color -- Check if we can change terminals colors

Description

bool ncurses_can_change_color (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Tells whether the terminal has color capabilities and whether the programmer can change
the colors.

Return Values

Return TRUE if the terminal has color capabilities and you can change the colors, FALSE
otherwise.

ncurses_cbreak

ncurses_cbreak -- Switch of input buffering

Description

bool ncurses_cbreak (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Disables line buffering and character processing (interrupt and flow control characters are
unaffected), making characters typed by the user immediately available to the program.

Return Values

Returns TRUE or NCURSES_ERR if any error occurred.

See Also

• ncurses_nocbreak()

ncurses_clear

ncurses_clear -- Clear screen

Description

bool ncurses_clear (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Clears the screen completely without setting blanks.

Note: ncurses_clear() clears the screen without setting blanks, which have the current
background rendition. To clear screen with blanks, use ncurses_erase().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ncurses_erase()

ncurses_clrtobot

ncurses_clrtobot -- Clear screen from current position to bottom

Description

bool ncurses_clrtobot (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Erases all lines from cursor to end of screen and creates blanks. Blanks created by
ncurses_clrtobot() have the current background rendition.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ncurses_clear()
• ncurses_clrtoeol()

ncurses_clrtoeol

ncurses_clrtoeol -- Clear screen from current position to end of line

Description

bool ncurses_clrtoeol (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Erases the current line from cursor position to the end. Blanks created by
ncurses_clrtoeol() have the current background rendition.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ncurses_clear()
• ncurses_clrtobot()

ncurses_color_content

ncurses_color_content -- Gets the RGB value for color

Description

int ncurses_color_content (int $color, int &$r, int &$g, int &$b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

color

r

g

b

ncurses_color_set

ncurses_color_set -- Set fore- and background color

Description

int ncurses_color_set (int $pair)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

pair

ncurses_curs_set

ncurses_curs_set -- Set cursor state

Description

int ncurses_curs_set (int $visibility)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

visibility

ncurses_def_prog_mode

ncurses_def_prog_mode -- Saves terminals (program) mode

Description

bool ncurses_def_prog_mode (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Saves the current terminal modes for program (in curses) for use by
ncurses_reset_prog_mode().

Return Values

Returns FALSE on success, otherwise TRUE.

See Also

• ncurses_reset_prog_mode()

ncurses_def_shell_mode

ncurses_def_shell_mode -- Saves terminals (shell) mode

Description

bool ncurses_def_shell_mode (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Saves the current terminal modes for shell (not in curses) for use by
ncurses_reset_shell_mode().

Return Values

Returns FALSE on success, TRUE otherwise.

See Also

• ncurses_reset_shell_mode()

ncurses_define_key

ncurses_define_key -- Define a keycode

Description

int ncurses_define_key (string $definition, int $keycode)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

definition

keycode

ncurses_del_panel

ncurses_del_panel -- Remove panel from the stack and delete it (but not the associated
window)

Description

bool ncurses_del_panel (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_delay_output

ncurses_delay_output -- Delay output on terminal using padding characters

Description

int ncurses_delay_output (int $milliseconds)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

milliseconds

ncurses_delch

ncurses_delch -- Delete character at current position, move rest of line left

Description

bool ncurses_delch (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Deletes the character under the cursor. All characters to the right of the cursor on the
same line are moved to the left one position and the last character on the line is filled with
a blank. The cursor position does not change.

Return Values

Returns FALSE on success, TRUE otherwise.

See Also

• ncurses_deleteln()

ncurses_deleteln

ncurses_deleteln -- Delete line at current position, move rest of screen up

Description

bool ncurses_deleteln (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Deletes the current line under cursorposition. All lines below the current line are moved up
one line. The bottom line of window is cleared. Cursor position does not change.

Return Values

Returns FALSE on success, otherwise TRUE.

See Also

• ncurses_delch()

ncurses_delwin

ncurses_delwin -- Delete a ncurses window

Description

bool ncurses_delwin (resource $window)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_doupdate

ncurses_doupdate -- Write all prepared refreshes to terminal

Description

bool ncurses_doupdate (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Compares the virtual screen to the physical screen and updates the physical screen. This
way is more effective than using multiple refresh calls.

Return Values

Returns TRUE on success or FALSE on failure.

ncurses_echo

ncurses_echo -- Activate keyboard input echo

Description

bool ncurses_echo (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Enables echo mode. All characters typed by user are echoed by ncurses_getch().

Return Values

Returns FALSE on success, TRUE if any error occurred.

See Also

• ncurses_noecho() to disable echo mode

ncurses_echochar

ncurses_echochar -- Single character output including refresh

Description

int ncurses_echochar (int $character)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

character

ncurses_end

ncurses_end -- Stop using ncurses, clean up the screen

Description

int ncurses_end (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_erase

ncurses_erase -- Erase terminal screen

Description

bool ncurses_erase (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Fills the terminal screen with blanks.

Created blanks have the current background rendition, set by ncurses_bkgd().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ncurses_bkgd()
• ncurses_clear()

ncurses_erasechar

ncurses_erasechar -- Returns current erase character

Description

string ncurses_erasechar (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the current erase character.

Return Values

The current erase char, as a string.

See Also

• ncurses_killchar()

ncurses_filter

ncurses_filter -- Set LINES for iniscr() and newterm() to 1

Description

void ncurses_filter (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_flash

ncurses_flash -- Flash terminal screen (visual bell)

Description

bool ncurses_flash (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Flashes the screen, and if its not possible, sends an audible alert (bell).

Return Values

Returns FALSE on success, otherwise TRUE.

See Also

• ncurses_beep()

ncurses_flushinp

ncurses_flushinp -- Flush keyboard input buffer

Description

bool ncurses_flushinp (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Throws away any typeahead that has been typed and has not yet been read by your
program.

Return Values

Returns FALSE on success, otherwise TRUE.

ncurses_getch

ncurses_getch -- Read a character from keyboard

Description

int ncurses_getch (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_getmaxyx

ncurses_getmaxyx -- Returns the size of a window

Description

void ncurses_getmaxyx (resource $window, int &$y, int &$x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Gets the horizontal and vertical size of the given window into the given variables.

Variables must be passed as reference, so they are updated when the user changes the
terminal size.

Parameters

window

The measured window

x

This will be set to the window width

y

This will be set to the window height

Return Values

No value is returned.

ncurses_getmouse

ncurses_getmouse -- Reads mouse event

Description

bool ncurses_getmouse (array &$mevent)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

ncurses_getmouse() reads mouse event out of queue.

Parameters

mevent

Event options will be delivered in this parameter which has to be an array, passed by
reference (see example below). On success an associative array with following keys
will be delivered:

• "id" : Id to distinguish multiple devices

• "x" : screen relative x-position in character cells

• "y" : screen relative y-position in character cells

• "z" : currently not supported

• "mmask" : Mouse action

Return Values

Returns FALSE if a mouse event is actually visible in the given window, otherwise returns
TRUE.

Examples

Example #435 - ncurses_getmouse() example

<?php

switch (ncurses_getch()){

 case NCURSES_KEY_MOUSE:

 if (!ncurses_getmouse(&$mevent)){

 if ($mevent["mmask"] & NCURSES_MOUSE_BUTTON1_PRESSED){

 $mouse_x = $mevent["x"]; // Save mouse position

 $mouse_y = $mevent["y"];

 }

 }

 break;

 default:

 /* */

}

?>

See Also

• ncurses_ungetmouse()

ncurses_getyx

ncurses_getyx -- Returns the current cursor position for a window

Description

void ncurses_getyx (resource $window, int &$y, int &$x)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

y

x

ncurses_halfdelay

ncurses_halfdelay -- Put terminal into halfdelay mode

Description

int ncurses_halfdelay (int $tenth)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

tenth

ncurses_has_colors

ncurses_has_colors -- Check if terminal has colors

Description

bool ncurses_has_colors (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Checks whether the terminal has color capacities.

Return Values

Return TRUE if the terminal has color capacities, FALSE otherwise.

See Also

• ncurses_can_change_color()

ncurses_has_ic

ncurses_has_ic -- Check for insert- and delete-capabilities

Description

bool ncurses_has_ic (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Checks whether the terminal has insert and delete capabilities.

Return Values

Returns TRUE if the terminal has insert/delete-capabilities, FALSE otherwise.

See Also

• ncurses_has_il()

ncurses_has_il

ncurses_has_il -- Check for line insert- and delete-capabilities

Description

bool ncurses_has_il (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Checks whether the terminal has insert- and delete-line-capabilities.

Return Values

Returns TRUE if the terminal has insert/delete-line capabilities, FALSE otherwise.

See Also

• ncurses_has_ic()

ncurses_has_key

ncurses_has_key -- Check for presence of a function key on terminal keyboard

Description

int ncurses_has_key (int $keycode)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

keycode

ncurses_hide_panel

ncurses_hide_panel -- Remove panel from the stack, making it invisible

Description

int ncurses_hide_panel (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_hline

ncurses_hline -- Draw a horizontal line at current position using an attributed character and
max. n characters long

Description

int ncurses_hline (int $charattr, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

charattr

n

ncurses_inch

ncurses_inch -- Get character and attribute at current position

Description

string ncurses_inch (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the character from the current position.

Return Values

Returns the character, as a string.

ncurses_init_color

ncurses_init_color -- Set new RGB value for color

Description

int ncurses_init_color (int $color, int $r, int $g, int $b)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

color

r

g

b

ncurses_init_pair

ncurses_init_pair -- Allocate a color pair

Description

int ncurses_init_pair (int $pair, int $fg, int $bg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

pair

fg

bg

ncurses_init

ncurses_init -- Initialize ncurses

Description

void ncurses_init (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Initializes the ncurses interface and must be used before any other ncurses function call.

Return Values

No value is returned.

ncurses_insch

ncurses_insch -- Insert character moving rest of line including character at current position

Description

int ncurses_insch (int $character)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

character

ncurses_insdelln

ncurses_insdelln -- Insert lines before current line scrolling down (negative numbers delete
and scroll up)

Description

int ncurses_insdelln (int $count)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

count

ncurses_insertln

ncurses_insertln -- Insert a line, move rest of screen down

Description

int ncurses_insertln (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Inserts a new line above the current line. The bottom line will be lost.

ncurses_insstr

ncurses_insstr -- Insert string at current position, moving rest of line right

Description

int ncurses_insstr (string $text)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

ncurses_instr

ncurses_instr -- Reads string from terminal screen

Description

int ncurses_instr (string &$buffer)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Reads a string from the terminal screen and returns the number of characters read from
the current character position until end of line.

Parameters

buffer

The characters. Attributes will be stripped.

Return Values

Returns the number of characters.

ncurses_isendwin

ncurses_isendwin -- Ncurses is in endwin mode, normal screen output may be performed

Description

bool ncurses_isendwin (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Checks if ncurses is in endwin mode.

Return Values

Returns TRUE, if ncurses_endwin() has been called without any subsequent calls to
ncurses_wrefresh(), FALSE otherwise.

See Also

• ncurses_endwin()
• ncurses_wrefresh()

ncurses_keyok

ncurses_keyok -- Enable or disable a keycode

Description

int ncurses_keyok (int $keycode, bool $enable)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

keycode

enable

ncurses_keypad

ncurses_keypad -- Turns keypad on or off

Description

int ncurses_keypad (resource $window, bool $bf)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

bf

ncurses_killchar

ncurses_killchar -- Returns current line kill character

Description

string ncurses_killchar (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the current line kill character.

Return Values

Returns the kill character, as a string.

See Also

• ncurses_erasechar()

ncurses_longname

ncurses_longname -- Returns terminals description

Description

string ncurses_longname (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns a verbose description of the terminal.

Return Values

Returns the description, as a string truncated to 128 characters. On errors, returns NULL.

See Also

• ncurses_termname()

ncurses_meta

ncurses_meta -- Enables/Disable 8-bit meta key information

Description

int ncurses_meta (resource $window, bool $8bit)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

8bit

ncurses_mouse_trafo

ncurses_mouse_trafo -- Transforms coordinates

Description

bool ncurses_mouse_trafo (int &$y, int &$x, bool $toscreen)

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

toscreen

ncurses_mouseinterval

ncurses_mouseinterval -- Set timeout for mouse button clicks

Description

int ncurses_mouseinterval (int $milliseconds)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

milliseconds

ncurses_mousemask

ncurses_mousemask -- Sets mouse options

Description

int ncurses_mousemask (int $newmask, int &$oldmask)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets mouse events to be reported. By default no mouse events will be reported.

Mouse events are represented by NCURSES_KEY_MOUSE in the ncurses_wgetch()
input stream. To read the event data and pop the event of queue, call ncurses_getmouse()
.

Parameters

newmask

Mouse mask options can be set with the following predefined constants:

• NCURSES_BUTTON1_PRESSED

• NCURSES_BUTTON1_RELEASED

• NCURSES_BUTTON1_CLICKED

• NCURSES_BUTTON1_DOUBLE_CLICKED

• NCURSES_BUTTON1_TRIPLE_CLICKED

• NCURSES_BUTTON2_PRESSED

• NCURSES_BUTTON2_RELEASED

• NCURSES_BUTTON2_CLICKED

• NCURSES_BUTTON2_DOUBLE_CLICKED

• NCURSES_BUTTON2_TRIPLE_CLICKED

• NCURSES_BUTTON3_PRESSED

• NCURSES_BUTTON3_RELEASED

• NCURSES_BUTTON3_CLICKED

• NCURSES_BUTTON3_DOUBLE_CLICKED

• NCURSES_BUTTON3_TRIPLE_CLICKED

• NCURSES_BUTTON4_PRESSED

• NCURSES_BUTTON4_RELEASED

• NCURSES_BUTTON4_CLICKED

• NCURSES_BUTTON4_DOUBLE_CLICKED

• NCURSES_BUTTON4_TRIPLE_CLICKED

• NCURSES_BUTTON_SHIFT>

• NCURSES_BUTTON_CTRL

• NCURSES_BUTTON_ALT

• NCURSES_ALL_MOUSE_EVENTS

• NCURSES_REPORT_MOUSE_POSITION

As a side effect, setting a zero mousemask in newmask turns off the mouse pointer.
Setting a non zero value turns mouse pointer on.

oldmask

This will be set to the previous value of the mouse event mask.

Return Values

Returns a mask to indicated which of the in parameter newmask specified mouse events
can be reported. On complete failure, it returns 0.

Examples

Example #436 - ncurses_mousemask() example

<?php

$newmask = NCURSES_BUTTON1_CLICKED + NCURSES_BUTTON1_RELEASED;

$mask = ncurses_mousemask($newmask, &$oldmask);

if ($mask & $newmask){

 printf("All specified mouse options will be supported\n");

}

?>

See Also

• ncurses_getmouse()
• ncurses_ungetmouse()
• ncurese_getch()

ncurses_move_panel

ncurses_move_panel -- Moves a panel so that its upper-left corner is at [startx, starty]

Description

int ncurses_move_panel (resource $panel, int $startx, int $starty)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

startx

starty

ncurses_move

ncurses_move -- Move output position

Description

int ncurses_move (int $y, int $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

ncurses_mvaddch

ncurses_mvaddch -- Move current position and add character

Description

int ncurses_mvaddch (int $y, int $x, int $c)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

c

ncurses_mvaddchnstr

ncurses_mvaddchnstr -- Move position and add attributed string with specified length

Description

int ncurses_mvaddchnstr (int $y, int $x, string $s, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

s

n

ncurses_mvaddchstr

ncurses_mvaddchstr -- Move position and add attributed string

Description

int ncurses_mvaddchstr (int $y, int $x, string $s)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

s

ncurses_mvaddnstr

ncurses_mvaddnstr -- Move position and add string with specified length

Description

int ncurses_mvaddnstr (int $y, int $x, string $s, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

s

n

ncurses_mvaddstr

ncurses_mvaddstr -- Move position and add string

Description

int ncurses_mvaddstr (int $y, int $x, string $s)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

s

ncurses_mvcur

ncurses_mvcur -- Move cursor immediately

Description

int ncurses_mvcur (int $old_y, int $old_x, int $new_y, int $new_x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

old_y

old_x

new_y

new_x

ncurses_mvdelch

ncurses_mvdelch -- Move position and delete character, shift rest of line left

Description

int ncurses_mvdelch (int $y, int $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

ncurses_mvgetch

ncurses_mvgetch -- Move position and get character at new position

Description

int ncurses_mvgetch (int $y, int $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

ncurses_mvhline

ncurses_mvhline -- Set new position and draw a horizontal line using an attributed
character and max. n characters long

Description

int ncurses_mvhline (int $y, int $x, int $attrchar, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

attrchar

n

ncurses_mvinch

ncurses_mvinch -- Move position and get attributed character at new position

Description

int ncurses_mvinch (int $y, int $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

ncurses_mvvline

ncurses_mvvline -- Set new position and draw a vertical line using an attributed character
and max. n characters long

Description

int ncurses_mvvline (int $y, int $x, int $attrchar, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

y

x

attrchar

n

ncurses_mvwaddstr

ncurses_mvwaddstr -- Add string at new position in window

Description

int ncurses_mvwaddstr (resource $window, int $y, int $x, string $text)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

y

x

text

ncurses_napms

ncurses_napms -- Sleep

Description

int ncurses_napms (int $milliseconds)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

milliseconds

ncurses_new_panel

ncurses_new_panel -- Create a new panel and associate it with window

Description

resource ncurses_new_panel (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_newpad

ncurses_newpad -- Creates a new pad (window)

Description

resource ncurses_newpad (int $rows, int $cols)

Warning

This function is currently not documented; only its argument list is available.

Parameters

rows

cols

ncurses_newwin

ncurses_newwin -- Create a new window

Description

resource ncurses_newwin (int $rows, int $cols, int $y, int $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new window to draw elements in.

When creating additional windows, remember to use ncurses_getmaxyx() to check for
available space, as terminal size is individual and may vary.

Parameters

rows

Number of rows

cols

Number of columns

y

y-ccordinate of the origin

x

x-ccordinate of the origin

Return Values

Returns a resource ID for the new window.

ncurses_nl

ncurses_nl -- Translate newline and carriage return / line feed

Description

bool ncurses_nl (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_nocbreak

ncurses_nocbreak -- Switch terminal to cooked mode

Description

bool ncurses_nocbreak (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns terminal to normal (cooked) mode. Initially the terminal may or may not in cbreak
mode as the mode is inherited. Therefore a program should call ncurses_cbreak() and
ncurses_nocbreak() explicitly.

Return Values

Returns TRUE if any error occurred, otherwise FALSE.

See Also

• ncurses_cbreak()

ncurses_noecho

ncurses_noecho -- Switch off keyboard input echo

Description

bool ncurses_noecho (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Prevents echoing of user typed characters.

Return Values

Returns TRUE if any error occurred, FALSE otherwise.

See Also

• ncurses_echo()
• ncurses_getch()

ncurses_nonl

ncurses_nonl -- Do not translate newline and carriage return / line feed

Description

bool ncurses_nonl (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_noqiflush

ncurses_noqiflush -- Do not flush on signal characters

Description

void ncurses_noqiflush (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_noraw

ncurses_noraw -- Switch terminal out of raw mode

Description

bool ncurses_noraw (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Switches the terminal out of raw mode. Raw mode is similar to cbreak mode, in that
characters typed are immediately passed through to the user program. The differences
that are that in raw mode, the interrupt, quit, suspend and flow control characters are all
passed through uninterpreted, instead of generating a signal.

Return Values

Returns TRUE if any error occurred, otherwise FALSE.

See Also

• ncurses_raw()
• ncurses_cbreak()
• ncurses_nocbreak()

ncurses_pair_content

ncurses_pair_content -- Gets the RGB value for color

Description

int ncurses_pair_content (int $pair, int &$f, int &$b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

pair

f

b

ncurses_panel_above

ncurses_panel_above -- Returns the panel above panel

Description

resource ncurses_panel_above (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

Return Values

If panel is null, returns the bottom panel in the stack.

ncurses_panel_below

ncurses_panel_below -- Returns the panel below panel

Description

resource ncurses_panel_below (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

Parameters

If panel is null, returns the top panel in the stack.

ncurses_panel_window

ncurses_panel_window -- Returns the window associated with panel

Description

resource ncurses_panel_window (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_pnoutrefresh

ncurses_pnoutrefresh -- Copies a region from a pad into the virtual screen

Description

int ncurses_pnoutrefresh (resource $pad, int $pminrow, int $pmincol, int $sminrow, int $
smincol, int $smaxrow, int $smaxcol)

Warning

This function is currently not documented; only its argument list is available.

Parameters

pad

pminrow

pmincol

sminrow

smincol

smaxrow

smaxcol

ncurses_prefresh

ncurses_prefresh -- Copies a region from a pad into the virtual screen

Description

int ncurses_prefresh (resource $pad, int $pminrow, int $pmincol, int $sminrow, int $
smincol, int $smaxrow, int $smaxcol)

Warning

This function is currently not documented; only its argument list is available.

Parameters

pad

pminrow

pmincol

sminrow

smincol

smaxrow

smaxcol

ncurses_putp

ncurses_putp -- Apply padding information to the string and output it

Description

int ncurses_putp (string $text)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

text

ncurses_qiflush

ncurses_qiflush -- Flush on signal characters

Description

void ncurses_qiflush (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_raw

ncurses_raw -- Switch terminal into raw mode

Description

bool ncurses_raw (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Places the terminal in raw mode. Raw mode is similar to cbreak mode, in that characters
typed are immediately passed through to the user program. The differences that are that in
raw mode, the interrupt, quit, suspend and flow control characters are all passed through
uninterpreted, instead of generating a signal.

Return Values

Returns TRUE if any error occurred, otherwise FALSE.

See Also

• ncurses_noraw()
• ncurses_cbreak()
• ncurses_nocbreak()

ncurses_refresh

ncurses_refresh -- Refresh screen

Description

int ncurses_refresh (int $ch)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

ch

ncurses_replace_panel

ncurses_replace_panel -- Replaces the window associated with panel

Description

int ncurses_replace_panel (resource $panel, resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

window

ncurses_reset_prog_mode

ncurses_reset_prog_mode -- Resets the prog mode saved by def_prog_mode

Description

int ncurses_reset_prog_mode (void)

Warning

This function is currently not documented; only its argument list is available.

ncurses_reset_shell_mode

ncurses_reset_shell_mode -- Resets the shell mode saved by def_shell_mode

Description

int ncurses_reset_shell_mode (void)

Warning

This function is currently not documented; only its argument list is available.

ncurses_resetty

ncurses_resetty -- Restores saved terminal state

Description

bool ncurses_resetty (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Restores the terminal state, which was previously saved by calling ncurses_savetty().

Return Values

Always returns FALSE.

See Also

• ncurses_savetty()

ncurses_savetty

ncurses_savetty -- Saves terminal state

Description

bool ncurses_savetty (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Saves the current terminal state. The saved terminal state can be restored with
ncurses_resetty().

Return Values

Always returns FALSE.

See Also

• ncurses_resetty()

ncurses_scr_dump

ncurses_scr_dump -- Dump screen content to file

Description

int ncurses_scr_dump (string $filename)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

filename

ncurses_scr_init

ncurses_scr_init -- Initialize screen from file dump

Description

int ncurses_scr_init (string $filename)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

filename

ncurses_scr_restore

ncurses_scr_restore -- Restore screen from file dump

Description

int ncurses_scr_restore (string $filename)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

filename

ncurses_scr_set

ncurses_scr_set -- Inherit screen from file dump

Description

int ncurses_scr_set (string $filename)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

filename

ncurses_scrl

ncurses_scrl -- Scroll window content up or down without changing current position

Description

int ncurses_scrl (int $count)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

count

ncurses_show_panel

ncurses_show_panel -- Places an invisible panel on top of the stack, making it visible

Description

int ncurses_show_panel (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_slk_attr

ncurses_slk_attr -- Returns current soft label key attribute

Description

int ncurses_slk_attr (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the current soft label key attribute.

Return Values

The attribute, as an integer.

ncurses_slk_attroff

ncurses_slk_attroff -- Turn off the given attributes for soft function-key labels

Description

int ncurses_slk_attroff (int $intarg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

intarg

ncurses_slk_attron

ncurses_slk_attron -- Turn on the given attributes for soft function-key labels

Description

int ncurses_slk_attron (int $intarg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

intarg

ncurses_slk_attrset

ncurses_slk_attrset -- Set given attributes for soft function-key labels

Description

int ncurses_slk_attrset (int $intarg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

intarg

ncurses_slk_clear

ncurses_slk_clear -- Clears soft labels from screen

Description

bool ncurses_slk_clear (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

The function ncurses_slk_clear() clears soft label keys from screen.

Return Values

Returns TRUE on errors, FALSE otherwise.

ncurses_slk_color

ncurses_slk_color -- Sets color for soft label keys

Description

int ncurses_slk_color (int $intarg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

intarg

ncurses_slk_init

ncurses_slk_init -- Initializes soft label key functions

Description

bool ncurses_slk_init (int $format)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Initializes soft label key functions

This function must be called before ncurses_initscr() or ncurses_newterm() is called.

Parameters

format

If ncurses_initscr() eventually uses a line from stdscr to emulate the soft labels, then
this parameter determines how the labels are arranged of the screen. 0 indicates a
3-2-3 arrangement of the labels, 1 indicates a 4-4 arrangement and 2 indicates the PC
like 4-4-4 mode, but in addition an index line will be created.

Return Values

Returns TRUE on success or FALSE on failure.

ncurses_slk_noutrefresh

ncurses_slk_noutrefresh -- Copies soft label keys to virtual screen

Description

bool ncurses_slk_noutrefresh (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_slk_refresh

ncurses_slk_refresh -- Copies soft label keys to screen

Description

int ncurses_slk_refresh (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Copies soft label keys from virtual screen to physical screen.

ncurses_slk_restore

ncurses_slk_restore -- Restores soft label keys

Description

int ncurses_slk_restore (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Restores the soft label keys after ncurses_slk_clear() has been performed.

ncurses_slk_set

ncurses_slk_set -- Sets function key labels

Description

bool ncurses_slk_set (int $labelnr, string $label, int $format)

Warning

This function is currently not documented; only its argument list is available.

Parameters

labelnr

label

format

ncurses_slk_touch

ncurses_slk_touch -- Forces output when ncurses_slk_noutrefresh is performed

Description

int ncurses_slk_touch (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Forces all the soft labels to be output the next time a ncurses_slk_noutrefresh() is
performed.

ncurses_standend

ncurses_standend -- Stop using 'standout' attribute

Description

int ncurses_standend (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_standout

ncurses_standout -- Start using 'standout' attribute

Description

int ncurses_standout (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_start_color

ncurses_start_color -- Start using colors

Description

int ncurses_start_color (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_termattrs

ncurses_termattrs -- Returns a logical OR of all attribute flags supported by terminal

Description

bool ncurses_termattrs (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_termname

ncurses_termname -- Returns terminals (short)-name

Description

string ncurses_termname (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns terminals shortname.

Return Values

Returns the shortname of the terminal, truncated to 14 characters. On errors, returns
NULL.

See Also

• ncurses_longname()

ncurses_timeout

ncurses_timeout -- Set timeout for special key sequences

Description

void ncurses_timeout (int $millisec)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

millisec

ncurses_top_panel

ncurses_top_panel -- Moves a visible panel to the top of the stack

Description

int ncurses_top_panel (resource $panel)

Warning

This function is currently not documented; only its argument list is available.

Parameters

panel

ncurses_typeahead

ncurses_typeahead -- Specify different filedescriptor for typeahead checking

Description

int ncurses_typeahead (int $fd)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

fd

ncurses_ungetch

ncurses_ungetch -- Put a character back into the input stream

Description

int ncurses_ungetch (int $keycode)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

keycode

ncurses_ungetmouse

ncurses_ungetmouse -- Pushes mouse event to queue

Description

bool ncurses_ungetmouse (array $mevent)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Pushes a KEY_MOUSE event onto the unput queue and associates with this event the
given state sata and screen-relative character cell coordinates, specified in mevent.

Parameters

mevent

An associative array specifying the event options:

• "id" : Id to distinguish multiple devices

• "x" : screen relative x-position in character cells

• "y" : screen relative y-position in character cells

• "z" : currently not supported

• "mmask" : Mouse action

Return Values

Returns FALSE on success, TRUE otherwise.

See Also

• ncurses_getmouse()

ncurses_update_panels

ncurses_update_panels -- Refreshes the virtual screen to reflect the relations between
panels in the stack

Description

void ncurses_update_panels (void)

Warning

This function is currently not documented; only its argument list is available.

ncurses_use_default_colors

ncurses_use_default_colors -- Assign terminal default colors to color id -1

Description

bool ncurses_use_default_colors (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ncurses_use_env

ncurses_use_env -- Control use of environment information about terminal size

Description

void ncurses_use_env (bool $flag)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

flag

ncurses_use_extended_names

ncurses_use_extended_names -- Control use of extended names in terminfo descriptions

Description

int ncurses_use_extended_names (bool $flag)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

flag

ncurses_vidattr

ncurses_vidattr -- Display the string on the terminal in the video attribute mode

Description

int ncurses_vidattr (int $intarg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

intarg

ncurses_vline

ncurses_vline -- Draw a vertical line at current position using an attributed character and
max. n characters long

Description

int ncurses_vline (int $charattr, int $n)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

charattr

n

ncurses_waddch

ncurses_waddch -- Adds character at current position in a window and advance cursor

Description

int ncurses_waddch (resource $window, int $ch)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ch

ncurses_waddstr

ncurses_waddstr -- Outputs text at current postion in window

Description

int ncurses_waddstr (resource $window, string $str [, int $n])

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

str

n

ncurses_wattroff

ncurses_wattroff -- Turns off attributes for a window

Description

int ncurses_wattroff (resource $window, int $attrs)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

attrs

ncurses_wattron

ncurses_wattron -- Turns on attributes for a window

Description

int ncurses_wattron (resource $window, int $attrs)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

attrs

ncurses_wattrset

ncurses_wattrset -- Set the attributes for a window

Description

int ncurses_wattrset (resource $window, int $attrs)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

attrs

ncurses_wborder

ncurses_wborder -- Draws a border around the window using attributed characters

Description

int ncurses_wborder (resource $window, int $left, int $right, int $top, int $bottom, int
$tl_corner, int $tr_corner, int $bl_corner, int $br_corner)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Draws the specified lines and corners around the passed window.

Use ncurses_border() for borders around the main window.

Parameters

Each parameter expects 0 to draw a line and 1 to skip it.
window

The window on which we operate

left

right

top

bottom

tl_corner

Top left corner

tr_corner

Top right corner

bl_corner

Bottom left corner

br_corner

Bottom right corner

See Also

• ncurses_border()

ncurses_wclear

ncurses_wclear -- Clears window

Description

int ncurses_wclear (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wcolor_set

ncurses_wcolor_set -- Sets windows color pairings

Description

int ncurses_wcolor_set (resource $window, int $color_pair)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

color_pair

ncurses_werase

ncurses_werase -- Erase window contents

Description

int ncurses_werase (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wgetch

ncurses_wgetch -- Reads a character from keyboard (window)

Description

int ncurses_wgetch (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_whline

ncurses_whline -- Draws a horizontal line in a window at current position using an
attributed character and max. n characters long

Description

int ncurses_whline (resource $window, int $charattr, int $n)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

charattr

n

ncurses_wmouse_trafo

ncurses_wmouse_trafo -- Transforms window/stdscr coordinates

Description

bool ncurses_wmouse_trafo (resource $window, int &$y, int &$x, bool $toscreen)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

x

y

toscreen

ncurses_wmove

ncurses_wmove -- Moves windows output position

Description

int ncurses_wmove (resource $window, int $y, int $x)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

y

x

ncurses_wnoutrefresh

ncurses_wnoutrefresh -- Copies window to virtual screen

Description

int ncurses_wnoutrefresh (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wrefresh

ncurses_wrefresh -- Refresh window on terminal screen

Description

int ncurses_wrefresh (resource $window)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wstandend

ncurses_wstandend -- End standout mode for a window

Description

int ncurses_wstandend (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wstandout

ncurses_wstandout -- Enter standout mode for a window

Description

int ncurses_wstandout (resource $window)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

ncurses_wvline

ncurses_wvline -- Draws a vertical line in a window at current position using an attributed
character and max. n characters long

Description

int ncurses_wvline (resource $window, int $charattr, int $n)

Warning

This function is currently not documented; only its argument list is available.

Parameters

window

charattr

n

GNU Readline

Introduction

The readline functions implement an interface to the GNU Readline library. These are
functions that provide editable command lines. An example being the way Bash allows you
to use the arrow keys to insert characters or scroll through command history. Because of
the interactive nature of this library, it will be of little use for writing Web applications, but
may be useful when writing scripts used from a command line.

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

To use the readline functions, you need to install libreadline. You can find libreadline on
the home page of the GNU Readline project, at
» http://cnswww.cns.cwru.edu/~chet/readline/rltop.html. It's maintained by Chet Ramey,
who's also the author of Bash.

You can also use these functions with the libedit library, a non-GPL replacement for the
readline library. The libedit library is BSD licensed and available for download from
» http://www.thrysoee.dk/editline/.

Installation

To use these functions you must compile the CGI or CLI version of PHP with readline
support. You need to configure PHP --with-readline[=DIR]. In order you want to use the
libedit readline replacement, configure PHP --with-libedit[=DIR].

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://www.thrysoee.dk/editline/
http://www.thrysoee.dk/editline/

Predefined Constants

This extension has no constants defined.

Readline Functions

readline_add_history

readline_add_history -- Adds a line to the history

Description

bool readline_add_history (string $line)

This function adds a line to the command line history.

Parameters

line

The line to be added in the history.

Return Values

Returns TRUE on success or FALSE on failure.

readline_callback_handler_install

readline_callback_handler_install -- Initializes the readline callback interface and terminal,
prints the prompt and returns immediately

Description

bool readline_callback_handler_install (string $prompt, callback $callback)

Sets up a readline callback interface then prints prompt and immediately returns. Calling
this function twice without removing the previous callback interface will automatically and
conveniently overwrite the old interface.

The callback feature is useful when combined with stream_select() as it allows interleaving
of IO and user input, unlike readline().

Parameters

prompt

The prompt message.

callback

The callback function takes one parameter; the user input returned.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #437 - Readline Callback Interface Example

<?php

function rl_callback($ret)

{

 global $c, $prompting;

 echo "You entered: $ret\n";

 $c++;

 if ($c > 10) {

 $prompting = false;

 readline_callback_handler_remove();

 } else {

 readline_callback_handler_install("[$c] Enter something: ",
'rl_callback');

 }

}

$c = 1;

$prompting = true;

readline_callback_handler_install("[$c] Enter something: ", 'rl_callback');

while ($prompting) {

 $w = NULL;

 $e = NULL;

 $n = stream_select($r = array(STDIN), $w, $e, null);

 if ($n && in_array(STDIN, $r)) {

 // read a character, will call the callback when a newline is entered

 readline_callback_read_char();

 }

}

echo "Prompting disabled. All done.\n";

?>

See Also

• readline_callback_handler_remove()
• readline_callback_read_char()
• stream_select()

readline_callback_handler_remove

readline_callback_handler_remove -- Removes a previously installed callback handler and
restores terminal settings

Description

bool readline_callback_handler_remove (void)

Removes a previously installed callback handler and restores terminal settings.

Return Values

Returns TRUE if a previously installed callback handler was removed, or FALSE if one
could not be found.

Examples

See readline_callback_handler_install() for an example of how to use the readline callback
interface.

See Also

• readline_callback_handler_install()
• readline_callback_read_char()

readline_callback_read_char

readline_callback_read_char -- Reads a character and informs the readline callback
interface when a line is received

Description

void readline_callback_read_char (void)

Reads a character of user input. When a line is received, this function informs the readline
callback interface installed using readline_callback_handler_install() that a line is ready for
input.

Return Values

No value is returned.

Examples

See readline_callback_handler_install() for an example of how to use the readline callback
interface.

See Also

• readline_callback_handler_install()
• readline_callback_handler_remove()

readline_clear_history

readline_clear_history -- Clears the history

Description

bool readline_clear_history (void)

This function clears the entire command line history.

Return Values

Returns TRUE on success or FALSE on failure.

readline_completion_function

readline_completion_function -- Registers a completion function

Description

bool readline_completion_function (callback $function)

This function registers a completion function. This is the same kind of functionality you'd
get if you hit your tab key while using Bash.

Parameters

function

You must supply the name of an existing function which accepts a partial command
line and returns an array of possible matches.

Return Values

Returns TRUE on success or FALSE on failure.

readline_info

readline_info -- Gets/sets various internal readline variables

Description

mixed readline_info ([string $varname [, string $newvalue]])

Gets or sets various internal readline variables.

Parameters

varname

A variable name.

newvalue

If provided, this will be the new value of the setting.

Return Values

If called with no parameters, this function returns an array of values for all the setting
readline uses. The elements will be indexed by the following values: done, end,
erase_empty_line, library_version, line_buffer, mark, pending_input, point, prompt,
readline_name, and terminal_name.

If called with one or two parameters, the old value is returned.

readline_list_history

readline_list_history -- Lists the history

Description

array readline_list_history (void)

Gets the entire command line history.

Return Values

Returns an array of the entire command line history. The elements are indexed by integers
starting at zero.

readline_on_new_line

readline_on_new_line -- Inform readline that the cursor has moved to a new line

Description

void readline_on_new_line (void)

Tells readline that the cursor has moved to a new line.

Return Values

No value is returned.

readline_read_history

readline_read_history -- Reads the history

Description

bool readline_read_history ([string $filename])

This function reads a command history from a file.

Parameters

filename

Path to the filename containing the command history.

Return Values

Returns TRUE on success or FALSE on failure.

readline_redisplay

readline_redisplay -- Redraws the display

Description

void readline_redisplay (void)

Redraws readline to redraw the display.

Return Values

No value is returned.

readline_write_history

readline_write_history -- Writes the history

Description

bool readline_write_history ([string $filename])

This function writes the command history to a file.

Parameters

filename

Path to the saved file.

Return Values

Returns TRUE on success or FALSE on failure.

readline

readline -- Reads a line

Description

string readline ([string $prompt])

Reads a single line from the user. You must add this line to the history yourself using
readline_add_history().

Parameters

prompt

You may specify a string with which to prompt the user.

Return Values

Returns a single string from the user. The line returned has the ending newline removed.

Examples

Example #438 - readline() Example

<?php

//get 3 commands from user

for ($i=0; $i < 3; $i++) {

 $line = readline("Command: ");

 readline_add_history($line);

}

//dump history

print_r(readline_list_history());

//dump variables

print_r(readline_info());

?>

Compression and Archive Extensions

Bzip2

Introduction

The bzip2 functions are used to transparently read and write bzip2 (.bz2) compressed
files.

Installing/Configuring

Requirements

This module uses the functions of the » bzip2 library by Julian Seward. This module
requires bzip2/libbzip2 version >= 1.0.x.

Installation

Bzip2 support in PHP is not enabled by default. You will need to use the --with-bz2[=DIR]
configuration option when compiling PHP to enable bzip2 support.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines one resource type: a file pointer identifying the bz2-file to work on.

http://www.bzip.org/

Predefined Constants

This extension has no constants defined.

Examples

This example opens a temporary file and writes a test string to it, then prints out the
contents of the file.

Example #439 - Small bzip2 Example

<?php

$filename = "/tmp/testfile.bz2";

$str = "This is a test string.\n";

// open file for writing

$bz = bzopen($filename, "w");

// write string to file

bzwrite($bz, $str);

// close file

bzclose($bz);

// open file for reading

$bz = bzopen($filename, "r");

// read 10 characters

echo bzread($bz, 10);

// output until end of the file (or the next 1024 char) and close it.

echo bzread($bz);

bzclose($bz);

?>

Bzip2 Functions

bzclose

bzclose -- Close a bzip2 file

Description

int bzclose (resource $bz)

Closes the given bzip2 file pointer.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• bzopen()

bzcompress

bzcompress -- Compress a string into bzip2 encoded data

Description

mixed bzcompress (string $source [, int $blocksize [, int $workfactor]])

bzcompress() compresses the given string and returns it as bzip2 encoded data.

Parameters

source

The string to compress.

blocksize

Specifies the blocksize used during compression and should be a number from 1 to 9
with 9 giving the best compression, but using more resources to do so. blocksize
defaults to 4.

workfactor

Controls how the compression phase behaves when presented with worst case, highly
repetitive, input data. The value can be between 0 and 250 with 0 being a special case
and 30 being the default value. Regardless of the workfactor, the generated output is
the same.

Return Values

The compressed string or number of error in case of error.

Examples

Example #440 - Compressing data

<?php

$str = "sample data";

$bzstr = bzcompress($str, 9);

echo $bzstr;

?>

See Also

• bzdecompress()

bzdecompress

bzdecompress -- Decompresses bzip2 encoded data

Description

mixed bzdecompress (string $source [, int $small])

bzdecompress() decompresses the given string containing bzip2 encoded data.

Parameters

source

The string to decompress.

small

If TRUE, an alternative decompression algorithm will be used which uses less memory
(the maximum memory requirement drops to around 2300K) but works at roughly half
the speed. See the » bzip2 documentation for more information about this feature.

Return Values

The decompressed string or number of error in case of error.

Examples

Example #441 - Decompressing a String

<?php

$start_str = "This is not an honest face?";

$bzstr = bzcompress($start_str);

echo "Compressed String: ";

echo $bzstr;

echo "\n
\n";

$str = bzdecompress($bzstr);

echo "Decompressed String: ";

echo $str;

echo "\n
\n";

?>

See Also

http://www.bzip.org/

• bzcompress()

bzerrno

bzerrno -- Returns a bzip2 error number

Description

int bzerrno (resource $bz)

Returns the error number of any bzip2 error returned by the given file pointer.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

Return Values

Returns the error number as an integer.

See Also

• bzerror()
• bzerrstr()

bzerror

bzerror -- Returns the bzip2 error number and error string in an array

Description

array bzerror (resource $bz)

Returns the error number and error string of any bzip2 error returned by the given file
pointer.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

Return Values

Returns an associative array, with the error code in the errno entry, and the error message
in the errstr entry.

Examples

Example #442 - bzerror() example

<?php

$error = bzerror($bz);

echo $error["errno"];

echo $error["errstr"];

?>

See Also

• bzerrno()
• bzerrstr()

bzerrstr

bzerrstr -- Returns a bzip2 error string

Description

string bzerrstr (resource $bz)

Gets the error string of any bzip2 error returned by the given file pointer.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

Return Values

Returns a string containing the error message.

See Also

• bzerrno()
• bzerror()

bzflush

bzflush -- Force a write of all buffered data

Description

int bzflush (resource $bz)

Forces a write of all buffered bzip2 data for the file pointer bz.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• bzread()
• bzwrite()

bzopen

bzopen -- Opens a bzip2 compressed file

Description

resource bzopen (string $filename, string $mode)

bzopen() opens a bzip2 (.bz2) file for reading or writing.

Parameters

filename

The name of the file to open.

mode

Similar to the fopen() function ('r' for read, 'w' for write, etc.).

Return Values

If the open fails, bzopen() returns FALSE, otherwise it returns a pointer to the newly
opened file.

Examples

Example #443 - bzopen() example

<?php

$file = "/tmp/foo.bz2";

$bz = bzopen($file, "r") or die("Couldn't open $file for reading");

bzclose($bz);

?>

See Also

• bzclose()

bzread

bzread -- Binary safe bzip2 file read

Description

string bzread (resource $bz [, int $length])

bzread() reads from the given bzip2 file pointer.

Reading stops when length (uncompressed) bytes have been read or EOF is reached,
whichever comes first.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

length

If not specified, bzread() will read 1024 (uncompressed) bytes at a time.

Return Values

Returns the uncompressed data, or FALSE on error.

Examples

Example #444 - bzread() example

<?php

$file = "/tmp/foo.bz2";

$bz = bzopen($file, "r") or die("Couldn't open $file");

$decompressed_file = '';

while (!feof($bz)) {

 $decompressed_file .= bzread($bz, 4096);

}

bzclose($bz);

echo "The contents of $file are:
\n";

echo $decompressed_file;

?>

See Also

• bzwrite()
• feof()
• bzopen()

bzwrite

bzwrite -- Binary safe bzip2 file write

Description

int bzwrite (resource $bz, string $data [, int $length])

bzwrite() writes a string into the given bzip2 file stream.

Parameters

bz

The file pointer. It must be valid and must point to a file successfully opened by
bzopen().

data

The written data.

length

If supplied, writing will stop after length (uncompressed) bytes have been written or
the end of data is reached, whichever comes first.

Return Values

Returns the number of bytes written, or FALSE on error.

Examples

Example #445 - bzwrite() example

<?php

$str = "uncompressed data";

$bz = bzopen("/tmp/foo.bz2", "w");

bzwrite($bz, $str, strlen($str));

bzclose($bz);

?>

See Also

• bzread()

• bzopen()

LZF

Introduction

LZF is a very fast compression algorithm, ideal for saving space with only slight speed
cost. It can be optimized for speed or space at the time of compilation.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: » http://pecl.php.net/package/lzf.

In order to use these functions you must compile PHP with lzf support by using the
--with-lzf[=DIR] configure option. You may also pass --enable-lzf-better-compression to
optimize LZF for space rather then speed.

Windows users will enable php_lzf.dll inside of php.ini in order to use these functions. The
DLL for this PECL extension may be downloaded from either the » PHP Downloads page
or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/lzf
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

This extension has no constants defined.

LZF Functions

lzf_compress

lzf_compress -- LZF compression

Description

string lzf_compress (string $data)

lzf_compress() compresses the given data.

Parameters

data

The string to compress.

Return Values

Returns the compressed data or FALSE if an error occurred.

See Also

• lzf_decompress()

lzf_decompress

lzf_decompress -- LZF decompression

Description

string lzf_decompress (string $data)

lzf_compress() decompresses the given data.

Parameters

data

The compressed string.

Return Values

Returns the decompressed data or FALSE if an error occurred.

See Also

• lzf_compress()

lzf_optimized_for

lzf_optimized_for -- Determines what LZF extension was optimized for

Description

int lzf_optimized_for (void)

Determines for what the LZF extension was optimised.

Return Values

Returns 1 if LZF was optimized for speed, 0 for compression.

Phar

Introduction

The phar extension provides a way to put entire PHP applications into a single file called a
"phar" (PHP Archive) for easy distribution and installation. In addition to providing this
service, the phar extension also provides a file-format abstraction method for creating and
manipulating tar and zip files through the PharData class, much as PDO provides a unified
interface for accessing different databases. Unlike PDO, which cannot convert between
different databases, Phar also can convert between tar, zip and phar file formats with a
single line of code. see Phar::convertToExecutable() for one example.

What is phar? Phar archives are best characterized as a convenient way to group several
files into a single file. As such, a phar archive provides a way to distribute a complete PHP
application in a single file and run it from that file without the need to extract it to disk.
Additionally, phar archives can be executed by PHP as easily as any other file, both on the
commandline and from a web server. Phar is kind of like a thumb drive for PHP
applications.

Phar implements this functionality through a Stream Wrapper. Normally, to use an external
file within a PHP script, you would use include()

Example #446 - Using an external file

<?php

include '/path/to/external/file.php';

?>

PHP can be thought of as actually translating /path/to/external/file.php into a stream
wrapper as file:///path/to/external/file.php, and under the hood it does in fact use the plain
file stream wrapper stream functions to access all local files.

To use a file named file.php contained with a phar archive /path/to/myphar.phar, the
syntax is very similar to the file:// syntax above.

Example #447 - Using a file within a phar archive

<?php

include 'phar:///path/to/myphar.phar/file.php';

?>

In fact, one can treat a phar archive exactly as if it were an external disk, using any of
fopen() -related functions, opendir() and mkdir() -related functions to read, change, or
create new files and directories within the phar archive. This allows complete PHP
applications to be distributed in a single file and run directly from that file.

The most common usage for a phar archive is to distribute a complete application in a
single file. For instance, the PEAR Installer that is bundled with PHP versions is distributed
as a phar archive. To use a phar archive distributed in this way, the archive can be
executed on the command-line or via a web server.

Phar archives can be distributed as tar archives, zip archives, or as the custom phar file
format designed specifically for the phar extension. Each file format has advantages and
disadvantages. The tar and zip file formats can be read or extracted by any third-party tool
that can read the format, but require the phar extension in order to run with PHP. The phar
file format is customized and unique to the phar extension, and can only be created by the
phar extension or the PEAR package » PHP_Archive, but has the advantage that
applications created in this format will run even if the phar extension is not enabled.

In other words, even with the phar extension disabled, one can execute or include a
phar-based archive. Accessing individual files within a phar archive is only possible with
the phar extension unless the phar archive was created by PHP_Archive.

The phar extension is also capable of converting a phar archive from tar to zip or to phar
file format in a single command:

Example #448 - Converting a phar archive from phar to tar file format

<?php

$phar = new Phar('myphar.phar');

$pgz = $phar->convertToExecutable(Phar::TAR, Phar::GZ); // makes
myphar.phar.tar.gz

?>

Phar can compress individual files or an entire archive using gzip compression or bzip2
compression, and can verify archive integrity automatically through the use of md5(),
sha1(), sha256(), or sha512() signatures.

Lastly, the Phar extension is security-conscious, and disables write access to executable
phar archives by default, and requires system-level disabling of the phar.readonly php.ini
setting in order to create or modify phar archives. Normal tar and zip archives without an
executable stub can always be created or modified using the PharData class.

If you are creating applications for distribution, you will want to read How to create Phar
Archives. If you want more information on the differences between the three file formats
that phar supports, you should read Phar, Tar and Zip.

If you are using phar applications, there are helpful tips in How to use Phar Archives

The word phar is a contraction of PHP and Archive and is based loosely on the jar (Java
Archive) familiar to Java developers.

The implementation for Phar archives is based on the PEAR package » PHP_Archive, and
the implementation details are similar, although the Phar extension is much more powerful.
In addition, the Phar extension allows most PHP applications to be run unmodified while

http://pear.php.net/PHP_Archive
http://pear.php.net/PHP_Archive

PHP_Archive-based phar archives often require extensive modification in order to work.

Installing/Configuring

Requirements

Phar requires PHP 5.2.0 or newer. Additional features require the SPL extension in order
to take advantage of iteration and array access to a Phar's file contents. The phar stream
does not require any additional extensions to function.

You may optionally wish to enable the zlib and bzip2 extensions to take advantage of
compressed phar support. In addition, to take advantage of OpenSSL signing, the
OpenSSL extension must be enabled.

Note that a bug in the zlib.deflate stream filter fixed in PHP version 5.2.6 and newer may
cause truncation of gzip and bzip2-compressed phar archives.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/phar.

To install on Windows, follow the instructions above, modify your php.ini and restart your
web server.

extension_dir=c:/php5/exts/

extension=php_phar.dll

;; optional extensions

extension=php_bz2.dll

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Filesystem and Streams Configuration Options

Name Default Changeable Changelog

phar.readonly "1" PHP_INI_ALL

phar.require_hash "1" PHP_INI_ALL

phar.extract_list "" PHP_INI_ALL Available from phar
1.1.0 to 1.2.3,

http://pecl.php.net/package/phar
http://pecl.php.net/package/phar

removed in 2.0.0.

phar.cache_list "" PHP_INI_SYSTEM Available from phar
2.0.0.

Here's a short explanation of the configuration directives.

phar.readonly boolean
This option disables creation or modification of Phar archives using the phar stream or
Phar object's write support. This setting should always be enabled on production
machines, as the phar extension's convenient write support could allow straightforward
creation of a php-based virus when coupled with other common security vulnerabilities.

Note

This setting can only be unset in php.ini due to security reasons. If phar.readonly is
disabled in php.ini, the user may enable phar.readonly in a script or disable it later.
If phar.readonly is enabled in php.ini, a script may harmlessly "re-enable" the INI
variable, but may not disable it.

phar.require_hash boolean
This option will force all opened Phar archives to contain some kind of signature
(currently MD5, SHA1, SHA256 and SHA512 are supported), and will refuse to
process any Phar archive that does not contain a signature.

Note

This setting can only be unset in php.ini due to security reasons. If
phar.require_hash is disabled in php.ini, the user may enable phar.require_hash in
a script or disable it later. If phar.require_hash is enabled in php.ini, a script may
harmlessly "re-enable" the INI variable, but may not disable it.

phar.extract_list string
This INI setting has been removed as of phar 2.0.0 Allows mappings from a full path to
a phar archive or its alias to the location of its extracted files. The format of the
parameter is name=archive,name2=archive2. This allows extraction of phar files to
disk, and allows phar to act as a kind of mapper to extracted disk files. This is often
done for performance reasons, or to assist with debugging a phar.

Example #449 - phar.extract_list usage example

in php.ini:

phar.extract_list =
archive=/full/path/to/archive/,arch2=/full/path/to/arch2

<?php

include "phar://archive/content.php";

include "phar://arch2/foo.php";

?>

phar.cache_list string
This INI setting was added in phar 2.0.0 Allows mapping phar archives to be
pre-parsed at web server startup, providing a performance improvement that brings
running files out of a phar archive very close to the speed of running those files from a
traditional disk-based installation.

Example #450 - phar.cache_list usage example

in php.ini (windows):

phar.cache_list =C:\path\to\phar1.phar;C:\path\to\phar2.phar

in php.ini (unix):

phar.cache_list =/path/to/phar1.phar:/path/to/phar2.phar

Resource Types

The Phar extension provides the phar stream, which allows accessing files contained
within a phar transparently. The file format of a Phar is described here

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Phar compression constants

Constant Value Description

Phar::NONE (integer) 0x00000000 no compression

Phar::COMPRESSED (
integer)

0x0000F000 bitmask that can be used
with file flags to determine if
any compression is present

Phar::GZ (integer) 0x00001000 zlib (gzip) compression

Phar::BZ2 (integer) 0x00002000 bzip2 compression

Phar file format constants

Constant Value Description

Phar::SAME (integer) 0 retain the same file format

Phar::PHAR (integer) 1 phar file format

Phar::TAR (integer) 2 tar file format

Phar::ZIP (integer) 3 zip file format

Phar signature constants

Constant Value Description

Phar::MD5 (integer) 0x0001 signature with md5 hash
algorithm

Phar::SHA1 (integer) 0x0002 signature with sha1 hash
algorithm

Phar::SHA256 (integer) 0x0003 signature with sha256 hash
algorithm (requires hash
extension)

Phar::SHA512 (integer) 0x0004 signature with sha512 hash
algorithm (requires hash
extension)

Phar::OPENSSL (integer) 0x0010 signature with OpenSSL
public/private key pair. This
is a true, asymmetric key
signature.

Phar webPhar mime override constants

Constant Value Description

Phar::PHP (integer) 1 used to instruct the
mimeoverrides parameter of
Phar::webPhar() that the
extension should be parsed
as a PHP file

Phar::PHPS (integer) 2 used to instruct the
mimeoverrides parameter of
Phar::webPhar() that the
extension should be parsed
as a PHP source file through
highlight_file()

Using Phar Archives

Using Phar Archives: Introduction

Phar archives are similar in concept to Java JAR archives, but are tailored to the needs
and to the flexibility of PHP applications. A Phar archive is used to distribute a complete
PHP application or library in a single file. Unlike Java's implementation of JAR archives, no
external tool is required to process or run a PHP Phar archive. A Phar archive application
is used exactly like any other PHP application:

php coolapplication.phar

Using a Phar archive library is identical to using any other PHP library:

<?php

include 'coollibrary.phar';

?>

The phar stream wrapper provides the core of the phar extension, and is explained in
detail here. The phar stream wrapper allows accessing the files within a phar archive using
PHP's standard file functions fopen(), opendir(), and others that work on regular files. The
phar stream wrapper supports all read/write operations on both files and directories.

<?php

include 'phar://coollibrary.phar/internal/file.php';

header('Content-type: image/jpeg');

// phars can be accessed by full path or by alias

echo file_get_contents('phar:///fullpath/to/coollibrary.phar/images/wow.jpg');

?>

The Phar class implements advanced functionality for accessing files and for creating phar
archives. The Phar class is explained in detail here.

<?php

try {

 // open an existing phar

 $p = new Phar('coollibrary.phar', 0);

 // Phar extends SPL's DirectoryIterator class

 foreach (new RecursiveIteratorIterator($p) as $file) {

 // $file is a PharFileInfo class, and inherits from SplFileInfo

 echo $file->getFileName() . "\n";

 echo file_get_contents($file->getPathName()) . "\n"; // display contents;

 }

 if (isset($p['internal/file.php'])) {

 var_dump($p['internal/file.php']->getMetaData());

 }

 // create a new phar - phar.readonly must be 0 in php.ini

 // phar.readonly is enabled by default for security reasons.

 // On production servers, Phars need never be created,

 // only executed.

 if (Phar::canWrite()) {

 $p = new Phar('newphar.tar.phar', 0, 'newphar.tar.phar');

 // make this a tar-based phar archive, compressed with gzip compression
(.tar.gz)

 $p = $p->convertToExecutable(Phar::TAR, Phar::GZ);

 // create transaction - nothing is written to newphar.phar

 // until stopBuffering() is called, although temporary storage is needed

 $p->startBuffering();

 // add all files in /path/to/project, saving in the phar with the prefix
"project"

 $p->buildFromIterator(new RecursiveIteratorIterator(new
DirectoryIterator('/path/to/project')), '/path/to/');

 // add a new file via the array access API

 $p['file1.txt'] = 'Information';

 $fp = fopen('hugefile.dat', 'rb');

 // copy all data from the stream

 $p['data/hugefile.dat'] = $fp;

 if (Phar::canCompress(Phar::GZ)) {

 $p['data/hugefile.dat']->compress(Phar::GZ);

 }

 $p['images/wow.jpg'] = file_get_contents('images/wow.jpg');

 // any value can be saved as file-specific meta-data

 $p['images/wow.jpg']->setMetaData(array('mime-type' => 'image/jpeg'));

 $p['index.php'] = file_get_contents('index.php');

 $p->setMetaData(array('bootstrap' => 'index.php'));

 // save the phar archive to disk

 $p->stopBuffering();

 }

} catch (Exception $e) {

 echo 'Could not open Phar: ', $e;

}

?>

In addition, verification of phar file contents can be done using any of the supported
symmetric hash algorithms (MD5, SHA1, SHA256 and SHA512 if ext/hash is enabled) and
using asymmetric public/private key signing using OpenSSL (new in Phar 2.0.0). To take
advantage of OpenSSL signing, you need to generate a public/private key pair, and use
the private key to set the signature using Phar::setSignatureAlgorithm(). In addition, the
public key as extracted using this code:
$public = openssl_get_publickey(file_get_contents('private.pem'));

$pkey = '';

openssl_pkey_export($public, $pkey);

must be saved adjacent to the phar archive it verifies. If the phar archive is saved as
/path/to/my.phar, the public key must be saved as /path/to/my.phar.pubkey, or phar will be
unable to verify the OpenSSL signature.

As of version 2.0.0, The Phar class also provides 3 static methods, Phar::webPhar(),
Phar::mungServer() and Phar::interceptFileFuncs() that are crucial to packaging up PHP
applications designed for usage on regular filesystems and for web-based applications.
Phar::webPhar() implements a front controller that routes HTTP calls to the correct
location within the phar archive. Phar::mungServer() is used to modify the values of the
$_SERVER array to trick applications that process these values.
Phar::interceptFileFuncs() instructs Phar to intercept calls to fopen(), file_get_contents(),
opendir(), and all of the stat-based functions (file_exists(), is_readable() and so on) and
route all relative paths to locations within the phar archive.

As an example, packaging up a release of the popular phpMyAdmin application for use as
a phar archive requires only this simple script and then phpMyAdmin.phar.tar.php can be
accessed as a regular file from your web server after modifying the user/password:

<?php

@unlink('phpMyAdmin.phar.tar.php');

copy('phpMyAdmin-2.11.3-english.tar.gz', 'phpMyAdmin.phar.tar.php');

$a = new Phar('phpMyAdmin.phar.tar.php');

$a->startBuffering();

$a["phpMyAdmin-2.11.3-english/config.inc.php"] = '<?php

/* Servers configuration */

$i = 0;

/* Server localhost (config:root) [1] */

$i++;

$cfg[\'Servers\'][$i][\'host\'] = \'localhost\';

$cfg[\'Servers\'][$i][\'extension\'] = \'mysqli\';

$cfg[\'Servers\'][$i][\'connect_type\'] = \'tcp\';

$cfg[\'Servers\'][$i][\'compress\'] = false;

$cfg[\'Servers\'][$i][\'auth_type\'] = \'config\';

$cfg[\'Servers\'][$i][\'user\'] = \'root\';

$cfg[\'Servers\'][$i][\'password\'] = \'\';

/* End of servers configuration */

if (strpos(PHP_OS, \'WIN\') !== false) {

 $cfg[\'UploadDir\'] = getcwd();

} else {

 $cfg[\'UploadDir\'] = \'/tmp/pharphpmyadmin\';

 @mkdir(\'/tmp/pharphpmyadmin\');

 @chmod(\'/tmp/pharphpmyadmin\', 0777);

}';

$a->setStub('<?php

Phar::interceptFileFuncs();

Phar::webPhar("phpMyAdmin.phar", "phpMyAdmin-2.11.3-english/index.php");

echo "phpMyAdmin is intended to be executed from a web browser\n";

exit -1;

__HALT_COMPILER();

');

$a->stopBuffering();

?>

Using Phar Archives: the phar stream wrapper

The Phar stream wrapper fully supports fopen() for read, write or append, unlink(), stat(),
fstat(), fseek(), rename() and directory stream operations opendir() and as of version 2.0.0,
rmdir() and mkdir().

Individual file compression and per-file metadata can also be manipulated in a Phar
archive using stream contexts:

<?php

$context = stream_context_create(array('phar' =>

 array('compress' => Phar::GZ)),

 array('metadata' => array('user' =>
'cellog')));

file_put_contents('phar://my.phar/somefile.php', 0, $context);

?>

The phar stream wrapper does not operate on remote files, and cannot operate on remote
files, and so is allowed even when the allow_url_fopen and allow_url_include INI options
are disabled.

Although it is possible to create phar archives from scratch just using stream operations, it
is best to use the functionality built into the Phar class. The stream wrapper is best used
for read-only operations.

Using Phar Archives: the Phar and PharData class

The Phar class supports reading and manipulation of Phar archives, as well as iteration
through inherited functionality of the RecursiveDirectoryIterator class. With support for the
ArrayAccess interface, files inside a Phar archive can be accessed as if they were part of
an associative array.

The PharData class extends the Phar, and allows creating and modifying non-executable
(data) tar and zip archives even if phar.readonly =1 in php.ini. As such,
PharData::setAlias() and PharData::setStub() are both disabled as the concept of alias and
stub are unique to executable phar archives.

It is important to note that when creating a Phar archive, the full path should be passed to
the Phar object constructor. Relative paths will fail to initialize.

Assuming that $p is a Phar object initialized as follows:

<?php

$p = new Phar('/path/to/myphar.phar', 0, 'myphar.phar');

?>

An empty Phar archive will be created at /path/to/myphar.phar, or if /path/to/myphar.phar
already exists, it will be opened again. The literal myphar.phar demonstrates the concept
of an alias that can be used to reference /path/to/myphar.phar in URLs as in:

<?php

// these two calls to file_get_contents() are equivalent if

// /path/to/myphar.phar has an explicit alias of "myphar.phar"

// in its manifest, or if the phar was initialized with the

// previous example's Phar object setup

$f = file_get_contents('phar:///path/to/myphar.phar/whatever.txt');

$f = file_get_contents('phar://myphar.phar/whatever.txt');

?>

With the newly created $p Phar object, the following is possible:

• $a = $p['file.php'] creates a PharFileInfo class that refers to the contents of
phar://myphar.phar/file.php

• $p['file.php'] = $v creates a new file (phar://myphar.phar/file.php), or overwrites an
existing file within myphar.phar. $v can be either a string or an open file pointer, in
which case the entire contents of the file will be used to create the new file. Note that
$p->addFromString('file.php', $v) is functionally equivalent to the above. Also possible
is to add the contents of a file with $p->addFile('/path/to/file.php', 'file.php'). Lastly, an
empty directory can be created with $p->addEmptyDir('empty').

• isset($p['file.php']) can be used to determine whether phar://myphar.phar/file.php exists
within myphar.phar.

• unset($p['file.php']) erases phar://myphar.phar/file.php from myphar.phar.

In addition, the Phar object is the only way to access Phar-specific metadata, through
Phar::getMetaData(), and the only way to set or retrieve a Phar archive's PHP loader stub
through Phar::getStub() and Phar::setStub(). Additionally, compression for the entire Phar
archive at once can only be manipulated using the Phar class.

The full list of Phar object functionality is documented below.

The PharFileInfo class extends the SplFileInfo class, and adds several methods for
manipulating Phar-specific details of a file contained within a Phar, such as manipulating
compression and metadata.

Creating Phar Archives

Creating Phar Archives: Introduction

To be written fully in the near future. Before reading this, be sure to read How to use Phar
Archives.

A great place to start is by reading about Phar::buildFromIterator(), and the specifics of the
file format choices available for archives. A healthy understanding of what a stub is and
does is crucial to phar archive creation, and so Phar::setStub() and
Phar::createDefaultStub() are good places to start as well. If you are distributing a
web-based application, it is crucial to know about Phar::webPhar() and related method
Phar::mungServer(). Any application that accesses its own files should also consider using
Phar::interceptFileFuncs().

What makes a phar a phar and not a tar or a zip?

Ingredients of all Phar archives, independent of file format

All Phar archives contain three to four sections:

• a stub

• a manifest describing the contents

• the file contents

• [optional] a signature for verifying Phar integrity (phar file format only)

Phar file stub

A Phar's stub is a simple PHP file. The smallest possible stub follows:

<?php __HALT_COMPILER();

A stub must contain as a minimum, the __HALT_COMPILER(); token at its conclusion.
Typically, a stub will contain loader functionality like so:

<?php

Phar::mapPhar();

include 'phar://myphar.phar/index.php';

__HALT_COMPILER();

There are no restrictions on the contents of a Phar stub, except for the requirement that it
conclude with __HALT_COMPILER();. The closing PHP tag?> may be included or omitted,
but there can be no more than 1 space between the; and the close tag?> or the phar
extension will be unable to process the Phar archive's manifest.

In a tar or zip-based phar archive, the stub is stored in the.phar/stub.php file. The default
stub for phar-based Phar archives contains approximately 7k of code to extract the
contents of the phar and execute them. See Phar::createDefaultStub() for more detail.

The phar alias is stored in a tar or zip-based phar archive in the.phar/alias.txt file as plain
text.

Head-to-head comparison of Phar, Tar and Zip

What are the good and the bad things about the three supported file formats in the phar

extension? This table attempts to address that question.

Feature matrix: Phar vs. Tar vs. Zip

Feature Phar Tar Zip

Standard File Format No Yes Yes

Can be executed
without the Phar
Extension [1]

Yes No No

Per-file compression Yes No Yes

Whole-archive
compression

Yes Yes No

Whole-archive
signature validation

Yes Yes No

Web-specific
application support

Yes Yes Yes

Per-file Meta-data Yes Yes Yes

Whole-Archive
Meta-data

Yes Yes Yes

Archive
creation/modification
[2]

Yes Yes Yes

Full support for all
stream wrapper
functions

Yes Yes Yes

Can be
created/modified
even if
phar.readonly=1 [3]

No Yes Yes

Tip

[1] PHP can only directly access the contents of a Phar archive without the Phar
extension if it is using a stub that extracts the contents of the phar archive. The stub
created by Phar::createDefaultStub() extracts the phar archive and runs its contents
from a temporary directory if no phar extension is found.

Tip

[2] All write access requires phar.readonly to be disabled in php.ini or on the
command-line directly.

Tip

[3] Only tar and zip archives without.phar in their filename and without an executable
stub.phar/stub.php can be created if phar.readonly=1.

Tar-based phars

Archives based on the tar file format follow the more modern USTAR file format. The
design of the tar file header makes them more efficient to access than the zip file format,
and almost as efficient as the phar file format. File names are limited to 255 bytes,
including full path within the phar archive. There is no limit on the number of files within a
tar-based phar archive. These archives can fully compressed in gzip or bzip2 format and
still be executed by the Phar extension.

To compress an entire archive, use Phar::compress(). To decompress an entire archive,
use Phar::decompress().

Zip-based phars

Archives based on the zip file format support several features built into the zip file format.
Per-file and whole-archive metadata is stored in the zip file comment and zip archive
comment as a serialized string. Pre-existing zip comments will be successfully read as a
string. Per-file compression read/write is supported with zlib compression, and read
access is supported with bzip2 compression. There is no limit on the number of files within
a zip-based phar archive. Empty directories are stored in the zip archive as files with a
trailing slash like my/directory/

Phar File Format

The phar file format is literally laid out as stub/manifest/contents/signature, and stores the
crucial information of what is included in the phar archive in its manifest.

The Phar manifest is a highly optimized format that allows per-file specification of file
compression, file permissions, and even user-defined meta-data such as file user or
group. All values greater than 1 byte are stored in little-endian byte order, with the
exception of the API version, which for historical reasons is stored as 3 nibbles in

big-endian order.

All unused flags are reserved for future use, and must not be used to store custom
information. Use the per-file meta-data facility to store customized information about
particular files.

The basic file format of a Phar archive manifest is as follows:

Global Phar manifest format

Size in bytes Description

4 bytes Length of manifest in bytes (1 MB limit)

4 bytes Number of files in the Phar

2 bytes API version of the Phar manifest (currently
1.0.0)

4 bytes Global Phar bitmapped flags

4 bytes Length of Phar alias

?? Phar alias (length based on previous)

4 bytes Length of Phar metadata (0 for none)

?? Serialized Phar Meta-data, stored in
serialize() format

at least 24 * number of entries bytes entries for each file

Global Phar bitmapped flags

Here are the bitmapped flags currently recognized by the Phar extension for the global
Phar flat bitmap:

Bitmap values recognized

Value Description

0x00010000 If set, this Phar contains a verification
signature

0x00001000 If set, this Phar contains at least 1 file that is
compressed with zlib compression

0x00002000 If set, this Phar contains at least 1 file that is
compressed with bzip compression

Phar manifest file entry definition

Each file in the manifest contains the following information:

Phar Manifest file entry

Size in bytes Description

4 bytes Filename length in bytes

?? Filename (length specified in previous)

4 bytes Un-compressed file size in bytes

4 bytes Unix timestamp of file

4 bytes Compressed file size in bytes

4 bytes CRC32 checksum of un-compressed file
contents

4 bytes Bit-mapped File-specific flags

4 bytes Serialized File Meta-data length (0 for
none)

?? Serialized File Meta-data, stored in
serialize() format

Note that as of API version 1.1.1, empty directories are stored as filenames with a trailing
slash like my/directory/

The File-specific bitmap values recognized are:

Bitmap values recognized

Value Description

0x000001FF These bits are reserved for defining specific
file permissions of a file. Permissions are
used for fstat() and can be used to recreate
desired permissions upon extraction.

0x00001000 If set, this file is compressed with zlib
compression

0x00002000 If set, this file is compressed with bzip
compression

Phar Signature format

Phars containing a signature always have the signature appended to the end of the Phar
archive after the loader, manifest, and file contents. The two signature formats supported
at this time are MD5 and SHA1.

Signature format

Length in bytes Description

16 or 20 bytes The actual signature, 20 bytes for an SHA1
signature, 16 bytes for an MD5 signature, 32
bytes for an SHA256 signature, and 64
bytes for an SHA512 signature.

4 bytes Signature flags. 0x0001 is used to define an
MD5 signature, 0x0002 is used to define an
SHA1 signature, 0x0004 is used to define
an SHA256 signature, and 0x0008 is used
to define an SHA512 signature. The
SHA256 and SHA512 signature support was
introduced with API version 1.1.0.

4 bytes Magic GBMB used to define the presence of
a signature.

The Phar class

Introduction

The Phar class provides a high-level interface to accessing and creating phar archives.

Class synopsis

Phar

Phar extends DirectoryIterator implements Countable, ArrayAccess {

/* Properties */

/* Methods */

bool Phar::addEmptyDir (string $dirname)

bool Phar::addFile (string $file [, string $localname])

bool Phar::addFromString (string $localname, string $contents)

string Phar::apiVersion (void)

array Phar::buildFromDirectory (string $base_dir [, string $regex])

array Phar::buildFromIterator (Iterator $iter [, string $base_directory])

bool Phar::canCompress ([int $type])

bool Phar::canWrite (void)

object Phar::compress (int $compression [, string $extension])

bool Phar::compressAllFilesBZIP2 (void)

bool Phar::compressAllFilesGZ (void)

bool Phar::compressFiles (int $compression)

void Phar::__construct (string $fname [, int $flags [, string $alias]])

PharData Phar::convertToData ([int $format [, int $compression [, string $

extension]]])

Phar Phar::convertToExecutable ([int $format [, int $compression [, string $
extension]]])

bool Phar::copy (string $oldfile, string $newfile)

int Phar::count (void)

string Phar::createDefaultStub (void)

object Phar::decompress ([string $extension])

bool Phar::decompressFiles (void)

int Phar::delMetadata (void)

int Phar::delete (string $entry)

int Phar::extractTo (string $pathto [, string|array $files [, bool $overwrite]])

int Phar::getMetaData (void)

bool Phar::getModified (void)

array Phar::getSignature (void)

string Phar::getStub (void)

array Phar::getSupportedCompression (void)

array Phar::getSupportedSignatures (void)

string Phar::getVersion (void)

int Phar::hasMetadata (void)

void Phar::interceptFileFuncs (void)

bool Phar::isBuffering (void)

mixed Phar::isCompressed (void)

bool Phar::isFileFormat (int $format)

bool Phar::isValidPharFilename (string $filename [, bool $executable])

bool Phar::isWritable (void)

mixed Phar::loadPhar (string $filename [, string $alias])

mixed Phar::mapPhar ([string $alias [, int $dataoffset]])

void Phar::mount (string $pharpath, string $externalpath)

void Phar::mungServer (array $munglist)

bool Phar::offsetExists (string $offset)

int Phar::offsetGet (string $offset)

void Phar::offsetSet (string $offset, string $value)

bool Phar::offsetUnset (string $offset)

bool Phar::running ([bool $retphar])

bool Phar::setAlias (string $alias)

void Phar::setDefaultStub ([string $index [, string $webindex]])

void Phar::setMetadata (mixed $metadata)

array Phar::setSignatureAlgorithm (int $sigtype [, string $privatekey])

void Phar::setStub (string $stub)

void Phar::startBuffering (void)

void Phar::stopBuffering (void)

bool Phar::uncompressAllFiles (void)

bool Phar::unlinkArchive (string $archive)

void Phar::webPhar (string $alias, string $index, string $f404, array $mimetypes,
array $rewrites)

}

Phar::addEmptyDir

Phar::addEmptyDir -- Add an empty directory to the phar archive

Description

bool Phar::addEmptyDir (string $dirname)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

With this method, an empty directory is created with path dirname. This method is similar
to ZipArchive::addEmptyDir().

Parameters

dirname

The name of the empty directory to create in the phar archive

Return Values

no return value, exception is thrown on failure.

Examples

Example #451 - A Phar::addEmptyDir() example

<?php

try {

 $a = new Phar('/path/to/phar.phar');

 $a->addEmptyDir('/full/path/to/file');

 // demonstrates how this file is stored

 $b = $a['full/path/to/file']->isDir();

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• PharData::addEmptyDir()
• Phar::addFile()
• Phar::addFromString()

Phar::addFile

Phar::addFile -- Add a file from the filesystem to the phar archive

Description

bool Phar::addFile (string $file [, string $localname])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

With this method, any file or URL can be added to the phar archive. If the optional second
parameter localname is specified, the file will be stored in the archive with that name,
otherwise the file parameter is used as the path to store within the archive. URLs must
have a localname or an exception is thrown. This method is similar to ZipArchive::addFile()
.

Parameters

file

Full or relative path to a file on disk to be added to the phar archive.

localname

Path that the file will be stored in the archive.

Return Values

no return value, exception is thrown on failure.

Examples

Example #452 - A Phar::addFile() example

<?php

try {

 $a = new Phar('/path/to/phar.phar');

 $a->addFile('/full/path/to/file');

 // demonstrates how this file is stored

 $b = $a['full/path/to/file']->getContent();

 $a->addFile('/full/path/to/file', 'my/file.txt');

 $c = $a['my/file.txt']->getContent();

 // demonstrate URL usage

 $a->addFile('http://www.example.com', 'example.html');

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• Phar::offsetSet()
• PharData::addFile()
• Phar::addFromString()
• Phar::addEmptyDir()

Phar::addFromString

Phar::addFromString -- Add a file from the filesystem to the phar archive

Description

bool Phar::addFromString (string $localname, string $contents)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

With this method, any string can be added to the phar archive. The file will be stored in the
archive with localname as its path. This method is similar to ZipArchive::addFromString().

Parameters

localname

Path that the file will be stored in the archive.

contents

The file contents to store

Return Values

no return value, exception is thrown on failure.

Examples

Example #453 - A Phar::addFromString() example

<?php

try {

 $a = new Phar('/path/to/phar.phar');

 $a->addFromString('path/to/file.txt', 'my simple file');

 $b = $a['path/to/file.txt']->getContent();

 // to add contents from a stream handle for large files, use offsetSet()

 $c = fopen('/path/to/hugefile.bin');

 $a['largefile.bin'] = $c;

 fclose($c);

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• Phar::offsetSet()
• PharData::addFromString()
• Phar::addFile()
• Phar::addEmptyDir()

Phar::apiVersion

Phar::apiVersion -- Returns the api version

Description

string Phar::apiVersion (void)

Return the API version of the phar file format that will be used when creating phars. The
Phar extension supports reading API version 1.0.0 or newer. API version 1.1.0 is required
for SHA-256 and SHA-512 hash, and API version 1.1.1 is required to store empty
directories.

Parameters

Return Values

The API version string as in "1.0.0".

Examples

Example #454 - A Phar::apiVersion() example

<?php

echo Phar::apiVersion();

?>

The above example will output:

1.1.1

Phar::buildFromDirectory

Phar::buildFromDirectory -- Construct a phar archive from the files within a directory.

Description

array Phar::buildFromDirectory (string $base_dir [, string $regex])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Populate a phar archive from directory contents. The optional second parameter is a
regular expression (pcre) that is used to exclude files. Any filename that matches the
regular expression will be included, all others will be excluded. For more fine-grained
control, use Phar::buildFromIterator().

Parameters

base_dir

The full or relative path to the directory that contains all files to add to the archive.

regex

An optional pcre regular expression that is used to filter the list of files. Only file paths
matching the regular expression will be included in the archive.

Return Values

Phar::buildFromDirectory() returns an associative array mapping internal path of file to the
full path of the file on the filesystem.

Errors/Exceptions

This method throws BadMethodCallException when unable to instantiate the internal
directory iterators, or a PharException if there were errors saving the phar archive.

Examples

Example #455 - A Phar::buildFromDirectory() example

<?php

// create with alias "project.phar"

$phar = new Phar('project.phar', 0, 'project.phar');

// add all files in the project

$phar->buildFromDirectory(dirname(__FILE__) . '/project');

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

$phar2 = new Phar('project2.phar', 0, 'project2.phar');

// add all files in the project, only include php files

$phar->buildFromDirectory(dirname(__FILE__) . '/project', '/\.php$/');

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

?>

See Also

• Phar::buildFromIterator()

Phar::buildFromIterator

Phar::buildFromIterator -- Construct a phar archive from an iterator.

Description

array Phar::buildFromIterator (Iterator $iter [, string $base_directory])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Populate a phar archive from an iterator. Two styles of iterators are supported, iterators
that map the filename within the phar to the name of a file on disk, and iterators like
DirectoryIterator that return SplFileInfo objects. For iterators that return SplFileInfo objects,
the second parameter is required.

Examples

Example #456 - A Phar::buildFromIterator() with SplFileInfo

For most phar archives, the archive will reflect an actual directory layout, and the
second style is the most useful. For instance, to create a phar archive containing the
files in this sample directory layout:

/path/to/project/

 config/

 dist.xml

 debug.xml

 lib/

 file1.php

 file2.php

 src/

 processthing.php

 www/

 index.php

 cli/

 index.php

This code could be used to add these files to the "project.phar" phar archive:

<?php

// create with alias "project.phar"

$phar = new Phar('project.phar', 0, 'project.phar');

$phar->buildFromIterator(

 new RecursiveIteratorIterator(

 new RecursiveDirectoryIterator('/path/to/project')),

 '/path/to/project');

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

?>

The file project.phar can then be used immediately. buildFromIterator() does not set
values such as compression, metadata, and this can be done after creating the phar
archive.

As an interesting note, buildFromIterator() can also be used to copy the contents of
an existing phar archive, as the Phar object descends from DirectoryIterator:

<?php

// create with alias "project.phar"

$phar = new Phar('project.phar', 0, 'project.phar');

$phar->buildFromIterator(

 new RecursiveIteratorIterator(

 new Phar('/path/to/anotherphar.phar')),

 'phar:///path/to/anotherphar.phar/path/to/project');

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

?>

Example #457 - A Phar::buildFromIterator() with other iterators

The second form of the iterator can be used with any iterator that returns a key =>
value mapping, such as an ArrayIterator:

<?php

// create with alias "project.phar"

$phar = new Phar('project.phar', 0, 'project.phar');

$phar->buildFromIterator(

 new ArrayIterator(

 array(

 'internal/file.php' => dirname(__FILE__) . '/somefile.php',

 'another/file.jpg' => fopen('/path/to/bigfile.jpg', 'rb'),

)));

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

?>

Parameters

iter

Any iterator that either associatively maps phar file to location or returns SplFileInfo

objects

base_directory

For iterators that return SplFileInfo objects, the portion of each file's full path to remove
when adding to the phar archive

Return Values

buildFromIterator() returns an associative array mapping internal path of file to the full
path of the file on the filesystem.

Errors/Exceptions

This method returns UnexpectedValueException when the iterator returns incorrect values,
such as an integer key instead of a string, a BadMethodCallException when an
SplFileInfo-based iterator is passed without a base_directory parameter, or a
PharException if there were errors saving the phar archive.

See Also

• Phar::buildFromDirectory()

Phar::canCompress

Phar::canCompress -- Returns whether phar extension supports compression using either
zlib or bzip2

Description

bool Phar::canCompress ([int $type])

This should be used to test whether compression is possible prior to loading a phar
archive containing compressed files.

Parameters

type

Either Phar::GZ or Phar::BZ2 can be used to test whether compression is possible with
a specific compression algorithm (zlib or bzip2).

Return Values

TRUE if compression/decompression is available, FALSE if not.

Examples

Example #458 - A Phar::canCompress() example

<?php

if (Phar::canCompress()) {

 echo file_get_contents('phar://compressedphar.phar/internal/file.txt');

} else {

 echo 'no compression available';

}

?>

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::isCompressed()

• Phar::compressFiles()
• Phar::decompressFiles()
• Phar::getSupportedCompression()
• Phar::convertToExecutable()
• Phar::convertToData()

Phar::canWrite

Phar::canWrite -- Returns whether phar extension supports writing and creating phars

Description

bool Phar::canWrite (void)

This static method determines whether write access has been disabled in the system
php.ini via the phar.readonly ini variable.

Parameters

Return Values

TRUE if write access is enabled, FALSE if it is disabled.

Examples

Example #459 - A Phar::canWrite() example

<?php

if (Phar::canWrite()) {

 file_put_contents('phar://myphar.phar/file.txt', 'hi there');

}

?>

See Also

• phar.readonly
• Phar::isWritable()

Phar::compress

Phar::compress -- Compresses the entire Phar archive using Gzip or Bzip2 compression

Description

object Phar::compress (int $compression [, string $extension])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based and phar-based phar archives, this method compresses the entire archive
using gzip compression or bzip2 compression. The resulting file can be processed with the
gunzip command/bunzip command, or accessed directly and transparently with the Phar
extension.

For Zip-based phar archives, this method fails with an exception. The zlib extension must
be enabled to compress with gzip compression, the bzip2 extension must be enabled in
order to compress with bzip2 compression. As with all functionality that modifies the
contents of a phar, the phar.readonly INI variable must be off in order to succeed.

In addition, this method automatically renames the archive, appending.gz,.bz2 or removing
the extension if passed Phar::NONE to remove compression. Alternatively, a file extension
may be specified with the second parameter.

A Phar object is returned.

Parameters

compression

Compression must be one of Phar::GZ, Phar::BZ2 to add compression, or Phar::NONE
to remove compression.

extension

By default, the extension is.phar.gz or.phar.bz2 for compressing phar archives, and
.phar.tar.gz or.phar.tar.bz2 for compressing tar archives. For decompressing, the
default file extensions are.phar and.phar.tar.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or the bzip2 extension is not enabled.

Examples

Example #460 - A Phar::compress() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p1 = $p->compress(Phar::GZ); // copies to /path/to/my.phar.gz

$p2 = $p->compress(Phar::BZ2); // copies to /path/to/my.phar.bz2

$p3 = $p2->compress(Phar::NONE); // exception: /path/to/my.phar already
exists

?>

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• PharData::compress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::decompress()
• Phar::getSupportedCompression()
• Phar::compressFiles()
• Phar::decompressFiles()

Phar::compressAllFilesBZIP2

Phar::compressAllFilesBZIP2 -- Compresses all files in the current Phar archive using
Bzip2 compression

Description

bool Phar::compressAllFilesBZIP2 (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using Phar::compress(), Phar::decompress(),
Phar::compressFiles() and Phar::decompressFiles().

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method compresses all files in the Phar archive using bzip2 compression. The bzip2
extension must be enabled to take advantage of this feature. In addition, if any files are
already compressed using gzip compression, the zlib extension must be enabled in order
to decompress the files prior to re-compressing with bzip2 compression. As with all
functionality that modifies the contents of a phar, the phar.readonly INI variable must be off
in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the bzip2
extension is not available, or if any files are compressed using gzip compression and the
zlib extension is not enabled.

Examples

Example #461 - A Phar::compressAllFilesBZIP2() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

}

$p->compressAllFilesBZIP2();

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

}

?>

The above example will output:

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

string(10) "myfile.txt"

bool(true)

bool(true)

bool(false)

string(11) "myfile2.txt"

bool(true)

bool(true)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

Phar::compressAllFilesGZ

Phar::compressAllFilesGZ -- Compresses all files in the current Phar archive using Gzip
compression

Description

bool Phar::compressAllFilesGZ (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using Phar::compress(), Phar::decompress(),
Phar::compressFiles() and Phar::decompressFiles().

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based phar archives, this method compresses the entire archive using gzip
compression. The resulting file can be processed with the gunzip command, or accessed
directly and transparently with the Phar extension.

For Zip-based and phar-based phar archives, this method compresses all files in the Phar
archive using gzip compression. The zlib extension must be enabled to take advantage of
this feature. In addition, if any files are already compressed using bzip2 compression, the
bzip2 extension must be enabled in order to decompress the files prior to re-compressing
with gzip compression. As with all functionality that modifies the contents of a phar, the
phar.readonly INI variable must be off in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or if any files are compressed using bzip2 compression and the bzip2
extension is not enabled.

Examples

Example #462 - A Phar::compressAllFilesGZ() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

}

$p->compressAllFilesGZ();

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

}

?>

The above example will output:

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

string(10) "myfile.txt"

bool(true)

bool(false)

bool(true)

string(11) "myfile2.txt"

bool(true)

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

Phar::compressFiles

Phar::compressFiles -- Compresses all files in the current Phar archive

Description

bool Phar::compressFiles (int $compression)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based phar archives, this method throws a BadMethodCallException, as
compression of individual files within a tar archive is not supported by the file format. Use
Phar::compress() to compress an entire tar-based phar archive.

For Zip-based and phar-based phar archives, this method compresses all files in the Phar
archive using the specified compression. The zlib or bzip2 extensions must be enabled to
take advantage of this feature. In addition, if any files are already compressed using
bzip2/zlib compression, the respective extension must be enabled in order to decompress
the files prior to re-compressing. As with all functionality that modifies the contents of a
phar, the phar.readonly INI variable must be off in order to succeed.

Parameters

compression

Compression must be one of Phar::GZ, Phar::BZ2 to add compression, or Phar::NONE
to remove compression.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or if any files are compressed using bzip2 compression and the bzip2
extension is not enabled.

Examples

Example #463 - A Phar::compressFiles() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

$p->compressFiles(Phar::GZ);

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

?>

The above example will output:

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

string(10) "myfile.txt"

int(4096)

bool(false)

bool(true)

string(11) "myfile2.txt"

int(4096)

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::decompressFiles()
• Phar::getSupportedCompression()
• Phar::compress()
• Phar::decompress()

Phar::__construct

Phar::__construct -- Construct a Phar archive object

Description

void Phar::__construct (string $fname [, int $flags [, string $alias]])

Parameters

fname

Path to an existing Phar archive or to-be-created archive

flags

flags to pass to parent class RecursiveDirectoryIterator. See » SPL
RecursiveDirectoryIterator docs

alias

Alias with which this Phar archive should be referred to in calls to stream functionality.

Errors/Exceptions

Throws BadMethodCallException if called twice, UnexpectedValueException if the phar
archive can't be opened.

Examples

Example #464 - A Phar::__construct() example

<?php

try {

 $p = new Phar('/path/to/my.phar', CURRENT_AS_FILEINFO | KEY_AS_FILENAME,

 'my.phar');

} catch (UnexpectedValueException $e) {

 die('Could not open my.phar');

} catch (BadMethodCallException $e) {

 echo 'technically, this cannot happen';

}

// this works now

echo file_get_contents('phar://my.phar/example.txt');

// and works as if we had typed

echo file_get_contents('phar:///path/to/my.phar/example.txt');

?>

http://www.php.net/~helly/php/ext/spl/classRecursiveDirectoryIterator.html#be0e1176d512c66500e5c26f248c89c4
http://www.php.net/~helly/php/ext/spl/classRecursiveDirectoryIterator.html#be0e1176d512c66500e5c26f248c89c4

Phar::convertToData

Phar::convertToData -- Convert a phar archive to a non-executable tar or zip file

Description

PharData Phar::convertToData ([int $format [, int $compression [, string $extension]]
])

This method is used to convert an executable phar archive to either a tar or zip file. To
make the tar or zip non-executable, the phar stub and phar alias files are removed from
the newly created archive.

If no changes are specified, this method throws a BadMethodCallException if the archive
is in phar file format. For archives in tar or zip file format, this method converts the archive
to a non-executable archive.

If successful, the method creates a new archive on disk and returns a PharData object.
The old archive is not removed from disk, and should be done manually after the process
has finished.

Parameters

format

This should be one of Phar::TAR or Phar::ZIP. If set to NULL, the existing file format
will be preserved.

compression

This should be one of Phar::NONE for no whole-archive compression, Phar::GZ for
zlib-based compression, and Phar::BZ2 for bzip-based compression.

extension

This parameter is used to override the default file extension for a converted archive.
Note that.phar cannot be used anywhere in the filename for a non-executable tar or zip
archive. If converting to a tar-based phar archive, the default extensions are.tar,.tar.gz,
and.tar.bz2 depending on specified compression. For zip-based archives, the default
extension is.zip.

Return Values

The method returns a PharData object on success and throws an exception on failure.

Errors/Exceptions

This method throws BadMethodCallException when unable to compress, an unknown
compression method has been specified, the requested archive is buffering with

Phar::startBuffering() and has not concluded with Phar::stopBuffering(), and a
PharException if any problems are encountered during the phar creation process.

Examples

Example #465 - A Phar::convertToData() example

Using Phar::convertToData():

<?php

try {

 $tarphar = new Phar('myphar.phar.tar');

 // note that myphar.phar.tar is *not* unlinked

 // convert it to the non-executable tar file format

 // creates myphar.tar

 $tar = $tarphar->comvertToData();

 // convert to non-executable zip format, creates myphar.zip

 $zip = $tarphar->convertToData(Phar::ZIP);

 // create myphar.tbz

 $tgz = $tarphar->convertToData(Phar::TAR, Phar::BZ2, '.tbz');

 // creates myphar.phar.tgz

 $phar = $tarphar->convertToData(Phar::PHAR); // throws exception

} catch (Exception $e) {

 // handle the error here

}

?>

See Also

• Phar::convertToExecutable()
• PharData::convertToExecutable()
• PharData::convertToData()

Phar::convertToExecutable

Phar::convertToExecutable -- Convert a phar archive to another executable phar archive
file format

Description

Phar Phar::convertToExecutable ([int $format [, int $compression [, string $extension
]]])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method is used to convert a phar archive to another file format. For instance, it can be
used to create a tar-based executable phar archive from a zip-based executable phar
archive, or from an executable phar archive in the phar file format. In addition, it can be
used to apply whole-archive compression to a tar or phar-based archive.

If no changes are specified, this method throws a BadMethodCallException.

If successful, the method creates a new archive on disk and returns a Phar object. The old
archive is not removed from disk, and should be done manually after the process has
finished.

Parameters

format

This should be one of Phar::PHAR, Phar::TAR, or Phar::ZIP. If set to NULL, the
existing file format will be preserved.

compression

This should be one of Phar::NONE for no whole-archive compression, Phar::GZ for
zlib-based compression, and Phar::BZ2 for bzip-based compression.

extension

This parameter is used to override the default file extension for a converted archive.
Note that all zip- and tar-based phar archives must contain.phar in their file extension
in order to be processed as a phar archive. If converting to a phar-based archive, the
default extensions are.phar,.phar.gz, or.phar.bz2 depending on the specified
compression. For tar-based phar archives, the default extensions are.phar.tar,
.phar.tar.gz, and.phar.tar.bz2. For zip-based phar archives, the default extension is
.phar.zip.

Return Values

The method returns a Phar object on success and throws an exception on failure.

Errors/Exceptions

This method throws BadMethodCallException when unable to compress, an unknown
compression method has been specified, the requested archive is buffering with
Phar::startBuffering() and has not concluded with Phar::stopBuffering(), an
UnexpectedValueException if write support is disabled, and a PharException if any
problems are encountered during the phar creation process.

Examples

Example #466 - A Phar::convertToExecutable() example

Using Phar::convertToExecutable():

<?php

try {

 $tarphar = new Phar('myphar.phar.tar');

 // convert it to the phar file format

 // note that myphar.phar.tar is *not* unlinked

 $phar = $tarphar->convertToExecutable(Phar::PHAR); // creates myphar.phar

 $phar->setStub($phar->createDefaultStub('cli.php', 'web/index.php'));

 // creates myphar.phar.tgz

 $compressed = $phar->convertToExecutable(Phar::TAR, Phar::GZ,
'.phar.tgz');

} catch (Exception $e) {

 // handle the error here

}

?>

See Also

• Phar::convertToData()
• PharData::convertToExecutable()
• PharData::convertToData()

Phar::copy

Phar::copy -- Copy a file internal to the phar archive to another new file within the phar

Description

bool Phar::copy (string $oldfile, string $newfile)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Copy a file internal to the phar archive to another new file within the phar. This is an
object-oriented alternative to using copy() with the phar stream wrapper.

Parameters

oldfile

newfile

Return Values

returns TRUE on success, but it is safer to encase method call in a try/catch block and
assume success if no exception is thrown.

Errors/Exceptions

throws UnexpectedValueException if the source file does not exist, the destination file
already exists, write access is disabled, opening either file fails, reading the source file
fails, or a PharException if writing the changes to the phar fails.

Examples

Example #467 - A Phar::copy() example

This example shows using Phar::copy() and the equivalent stream wrapper
performance of the same thing. The primary difference between the two approaches is
error handling. All Phar methods throw exceptions, whereas the stream wrapper uses

trigger_error().

<?php

try {

 $phar = new Phar('myphar.phar');

 $phar['a'] = 'hi';

 $phar->copy('a', 'b');

 echo $phar['b']; // outputs "hi"

} catch (Exception $e) {

 // handle error

}

// the stream wrapper equivalent of the above code.

// E_WARNINGS are triggered on error rather than exceptions.

copy('phar://myphar.phar/a', 'phar//myphar.phar/c');

echo file_get_contents('phar://myphar.phar/c'); // outputs "hi"

?>

Phar::count

Phar::count -- Returns the number of entries (files) in the Phar archive

Description

int Phar::count (void)

Parameters

Return Values

The number of files contained within this phar, or 0 (the number zero) if none.

Examples

Example #468 - A Phar::count() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

} catch (Exception $e) {

 echo 'Could not create phar:', $e;

}

echo 'The new phar has ' . $p->count() . " entries\n";

$p['file.txt'] = 'hi';

echo 'The new phar has ' . $p->count() . " entries\n";

?>

The above example will output:

The new phar has 0 entries

The new phar has 1 entries

Phar::createDefaultStub

Phar::createDefaultStub -- Return the PHP loader or bootstrap stub of a Phar archive

Description

string Phar::createDefaultStub (void)

This method is intended for creation of phar-file format-specific stubs, and is not intended
for use with tar- or zip-based phar archives.

Phar archives contain a bootstrap loader, or stub written in PHP that is executed when the
archive is executed in PHP either via include:
<?php

include 'myphar.phar';

?>
or by simple execution:
php myphar.phar

This method provides a simple and easy method to create a stub that will run a startup file
from the phar archive. In addition, different files can be specified for running the phar
archive from the command line versus through a web server. The loader stub also calls
Phar::interceptFileFuncs() to allow easy bundling of a PHP application that accesses the
file system. If the phar extension is not present, the loader stub will extract the phar
archive to a temporary directory and then operate on the files. A shutdown function erases
the temporary files on exit.

Return Values

Returns a string containing the contents of a customized bootstrap loader (stub) that
allows the created Phar archive to work with or without the Phar extension enabled.

Errors/Exceptions

Throws UnexpectedValueException if either parameter is longer than 400 bytes.

Examples

Example #469 - A Phar::createDefaultStub() example

try {

 $phar = new Phar('myphar.phar');

 $phar->setStub($phar->createDefaultStub('cli.php', 'web/index.php'));

} catch (Exception $e) {

 // handle errors

}

See Also

• Phar::setStub()
• Phar::getStub()

Phar::decompress

Phar::decompress -- Decompresses the entire Phar archive

Description

object Phar::decompress ([string $extension])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based and phar-based phar archives, this method decompresses the entire
archive.

For Zip-based phar archives, this method fails with an exception. The zlib extension must
be enabled to decompress an archive compressed with with gzip compression, and the
bzip2 extension must be enabled in order to decompress an archive compressed with
bzip2 compression. As with all functionality that modifies the contents of a phar, the
phar.readonly INI variable must be off in order to succeed.

In addition, this method automatically changes the file extension of the archive,.phar by
default for phar archives, or.phar.tar for tar-based phar archives. Alternatively, a file
extension may be specified with the second parameter.

A Phar object is returned.

Parameters

extension

For decompressing, the default file extensions are.phar and.phar.tar. Use this
parameter to specify another file extension. Be aware that all executable phar archives
must contain.phar in their filename.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or the bzip2 extension is not enabled.

Examples

Example #470 - A Phar::decompress() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar.gz');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p3 = $p2->decompress(); // creates /path/to/my.phar

?>

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• PharData::compress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compress()
• Phar::getSupportedCompression()
• Phar::compressFiles()
• Phar::decompressFiles()

Phar::decompressFiles

Phar::decompressFiles -- Decompresses all files in the current Phar archive

Description

bool Phar::decompressFiles (void)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based phar archives, this method throws a BadMethodCallException, as
compression of individual files within a tar archive is not supported by the file format. Use
Phar::compress() to compress an entire tar-based phar archive.

For Zip-based and phar-based phar archives, this method decompresses all files in the
Phar archive. The zlib or bzip2 extensions must be enabled to take advantage of this
feature if any files are compressed using bzip2/zlib compression. As with all functionality
that modifies the contents of a phar, the phar.readonly INI variable must be off in order to
succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or if any files are compressed using bzip2 compression and the bzip2
extension is not enabled.

Examples

Example #471 - A Phar::decompressFiles() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p->compressFiles(Phar::GZ);

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

$p->decompressFiles();

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

?>

The above example will output:

string(10) "myfile.txt"

int(4096)

bool(false)

bool(true)

string(11) "myfile2.txt"

int(4096)

bool(false)

bool(true)

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressFiles()
• Phar::getSupportedCompression()
• Phar::compress()
• Phar::decompress()

Phar::delMetadata

Phar::delMetadata -- Deletes the global metadata of the phar

Description

int Phar::delMetadata (void)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Deletes the global metadata of the phar

Parameters

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #472 - A Phar::delMetaData() example

<?php

try {

 $phar = new Phar('myphar.phar');

 var_dump($phar->getMetadata());

 $phar->setMetadata("hi there");

 var_dump($phar->getMetadata());

 $phar->delMetadata();

 var_dump($phar->getMetadata());

} catch (Exception $e) {

 // handle errors

}

?>

The above example will output:

NULL

string(8) "hi there"

NULL

See Also

• Phar::getMetadata()
• Phar::setMetadata()
• Phar::hasMetadata()

Phar::delete

Phar::delete -- Delete a file within a phar archive

Description

int Phar::delete (string $entry)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Delete a file within an archive. This is the functional equivalent of calling unlink() on the
stream wrapper equivalent, as shown in the example below.

Parameters

entry

Path within an archive to the file to delete.

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #473 - A Phar::delete() example

<?php

try {

 $phar = new Phar('myphar.phar');

 $phar->delete('unlink/me.php');

 // this is equivalent to:

 unlink('phar://myphar.phar/unlink/me.php');

} catch (Exception $e) {

 // handle errors

}

?>

See Also

• PharData::delete()
• Phar::unlinkArchive()

Phar::extractTo

Phar::extractTo -- Extract the contents of a phar archive to a directory

Description

int Phar::extractTo (string $pathto [, string|array $files [, bool $overwrite]])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Extract all files within a phar archive to disk. Extracted files and directories preserve
permissions as stored in the archive. The optional parameters allow optional control over
which files are extracted, and whether existing files on disk can be overwritten. The
second parameter files can be either the name of a file or directory to extract, or an array
of names of files and directories to extract. By default, this method will not overwrite
existing files, the third parameter can be set to true to enable overwriting of files. This
method is similar to ZipArchive::extractTo().

Parameters

pathto

Path within an archive to the file to delete.

files

The name of a file or directory to extract, or an array of files/directories to extract

overwrite

FALSE by default, set to TRUE to enable overwriting existing files

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #474 - A Phar::extractTo() example

<?php

try {

 $phar = new Phar('myphar.phar');

 $phar->extractTo('/full/path'); // extract all files

 $phar->extractTo('/another/path', 'file.txt'); // extract only file.txt

 $phar->extractTo('/this/path',

 array('file1.txt', 'file2.txt')); // extract 2 files only

 $phar->extractTo('/third/path', null, true); // extract all files, and
overwrite

} catch (Exception $e) {

 // handle errors

}

?>

See Also

• PharData::extractTo()

Phar::getMetaData

Phar::getMetaData -- Returns phar archive meta-data

Description

int Phar::getMetaData (void)

Retrieve archive meta-data. Meta-data can be any PHP variable that can be serialized.

Parameters

No parameters.

Return Values

any PHP variable that can be serialized and is stored as meta-data for the Phar archive, or
NULL if no meta-data is stored.

Examples

Example #475 - A Phar::getMetaData() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['file.php'] = '<?php echo "hello";';

 $p->setMetaData(array('bootstrap' => 'file.php'));

 var_dump($p->getMetaData());

} catch (Exception $e) {

 echo 'Could not modify phar:', $e;

}

?>

The above example will output:

array(1) {

 ["bootstrap"]=>

 string(8) "file.php"

}

See Also

• Phar::setMetadata()
• Phar::delMetadata()
• Phar::hasMetadata()

Phar::getModified

Phar::getModified -- Return whether phar was modified

Description

bool Phar::getModified (void)

This method can be used to determine whether a phar has either had an internal file
deleted, or contents of a file changed in some way.

Parameters

No parameters.

Return Values

TRUE if the phar has been modified since opened, FALSE if not.

Phar::getSignature

Phar::getSignature -- Return MD5/SHA1/SHA256/SHA512 signature of a Phar archive

Description

array Phar::getSignature (void)

Returns the verification signature of a phar archive in a hexadecimal string.

Parameters

Return Values

Array with the opened archive's signature in "hash" key and "md5", "sha1", "sha256", or
"sha512" in "hash_type". This signature is a hash calculated on the entire phar's contents,
and may be used to verify the integrity of the archive. A valid signature is absolutely
required of all phar-based phars if the phar.require_hash INI variable is set to true.

Phar::getStub

Phar::getStub -- Return the PHP loader or bootstrap stub of a Phar archive

Description

string Phar::getStub (void)

Phar archives contain a bootstrap loader, or stub written in PHP that is executed when the
archive is executed in PHP either via include:
<?php

include 'myphar.phar';

?>
or by simple execution:
php myphar.phar

Return Values

Returns a string containing the contents of the bootstrap loader (stub) of the current Phar
archive.

Errors/Exceptions

Throws RuntimeException if it is not possible to read the stub from the Phar archive.

Examples

Example #476 - A Phar::getStub() example

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

echo $p->getStub();

echo "==NEXT==\n";

$p->setStub("<?php

function __autoload($class)

{

 include 'phar://' . str_replace('_', '/', $class);

}

Phar::mapPhar('myphar.phar');

include 'phar://myphar.phar/startup.php';

__HALT_COMPILER(); ?>");

echo $p->getStub();

The above example will output:

<?php __HALT_COMPILER(); ?>

==NEXT==

<?php

function __autoload($class)

{

 include 'phar://' . str_replace('_', '/', $class);

}

Phar::mapPhar('myphar.phar');

include 'phar://myphar.phar/startup.php';

__HALT_COMPILER(); ?>

See Also

• Phar::setStub()
• Phar::createDefaultStub()

Phar::getSupportedCompression

Phar::getSupportedCompression -- Return array of supported compression algorithms

Description

array Phar::getSupportedCompression (void)

Parameters

No parameters.

Return Values

Returns an array containing any of Phar::GZ or Phar::BZ2, depending on the availability of
the zlib extension or the bz2 extension.

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::compress()
• Phar::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressFiles()
• Phar::decompressFiles()

Phar::getSupportedSignatures

Phar::getSupportedSignatures -- Return array of supported signature types

Description

array Phar::getSupportedSignatures (void)

Return array of supported signature types

Parameters

No parameters.

Return Values

Returns an array containing any of "MD5", "SHA-1", "SHA-256", "SHA-512".

See Also

• Phar::getSignature()
• Phar::setSignatureAlgorithm()

Phar::getVersion

Phar::getVersion -- Return version info of Phar archive

Description

string Phar::getVersion (void)

Returns the API version of an opened Phar archive.

Parameters

Return Values

The opened archive's API version. This is not to be confused with the API version that the
loaded phar extension will use to create new phars. Each Phar archive has the API version
hard-coded into its manifest. See Phar file format documentation for more information.

See Also

• Phar::apiVersion()

Phar::hasMetaData

Phar::hasMetaData -- Returns whether phar has global meta-data

Description

int Phar::hasMetadata (void)

Returns whether phar has global meta-data set.

Parameters

No parameters.

Return Values

Returns TRUE if meta-data has been set, and FALSE if not.

Examples

Example #477 - A Phar::hasMetaData() example

<?php

try {

 $phar = new Phar('myphar.phar');

 var_dump($phar->hasMetadata());

 $phar->setMetadata(array('thing' => 'hi'));

 var_dump($phar->hasMetadata());

 $phar->delMetadata();

 var_dump($phar->hasMetadata());

} catch (Exception $e) {

 // handle error

}

?>

The above example will output:

bool(false)

bool(true)

bool(false)

See Also

• Phar::getMetadata()
• Phar::setMetadata()

• Phar::delMetadata()

Phar::interceptFileFuncs

Phar::interceptFileFuncs -- instructs phar to intercept fopen, file_get_contents, opendir,
and all of the stat-related functions

Description

void Phar::interceptFileFuncs (void)

instructs phar to intercept fopen(), readfile(), file_get_contents(), opendir(), and all of the
stat-related functions. If any of these functions is called from within a phar archive with a
relative path, the call is modified to access a file within the phar archive. Absolute paths
are assumed to be attempts to load external files from the filesystem.

This function makes it possible to run PHP applications designed to run off of a hard disk
as a phar application.

Parameters

No parameters.

Return Values

Examples

Example #478 - A Phar::interceptFileFuncs() example

<?php

Phar::interceptFileFuncs();

include 'phar://' . __FILE__ . '/file.php';

?>

Assuming that this phar is at /path/to/myphar.phar and it contains file.php and file2.txt, if
file.php contains this code:

Example #479 - A Phar::interceptFileFuncs() example

<?php

echo file_get_contents('file2.txt');

?>

Normally PHP would search the current directory for file2.txt, which would translate as the
directory of file.php, or the current directory of a command-line user.
Phar::interceptFileFuncs() instructs PHP to consider the current directory to be
phar:///path/to/myphar.phar/ and so opens phar:///path/to/myphar.phar/file2.txt in the above
example code.

Phar::isBuffering

Phar::isBuffering -- Used to determine whether Phar write operations are being buffered,
or are flushing directly to disk

Description

bool Phar::isBuffering (void)

This method can be used to determine whether a Phar will save changes to disk
immediately, or whether a call to Phar->stopBuffering() is needed to enable saving
changes.

Phar write buffering is per-archive, buffering active for the foo.phar Phar archive does not
affect changes to the bar.phar Phar archive.

Examples

Example #480 - A Phar::isBuffering() example

<?php

$p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

$p2 = new Phar('existingphar.phar');

$p['file1.txt'] = 'hi';

var_dump($p->isBuffering());

var_dump($p2->isBuffering());

?>

=2=

<?php

$p->startBuffering();

var_dump($p->isBuffering());

var_dump($p2->isBuffering());

$p->stopBuffering();

?>

=3=

<?php

var_dump($p->isBuffering());

var_dump($p2->isBuffering());

?>

The above example will output:

bool(false)

bool(false)

=2=

bool(true)

bool(false)

=3=

bool(false)

bool(false)

See Also

• Phar::startBuffering()
• Phar::stopBuffering()

Phar::isCompressed

Phar::isCompressed -- Returns Phar::GZ or PHAR::BZ2 if the entire phar archive is
compressed (.tar.gz/tar.bz and so on)

Description

mixed Phar::isCompressed (void)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Returns Phar::GZ or PHAR::BZ2 if the entire phar archive is compressed (.tar.gz/tar.bz
and so on). Zip-based phar archives cannot be compressed as a file, and so this method
will always return FALSE if a zip-based phar archive is queried.

Parameters

No parameters.

Return Values

Phar::GZ, Phar::BZ2 or FALSE

Examples

Example #481 - A Phar::isCompressed() example

<?php

try {

 $phar1 = new Phar('myphar.zip.phar');

 var_dump($phar1->isCompressed());

 $phar2 = new Phar('myuncompressed.tar.phar');

 var_dump($phar2->isCompressed());

 $phar2->compressAllFilesGZ();

 var_dump($phar2->isCompressed() == Phar::GZ);

} catch (Exception $e) {

}

?>

The above example will output:

bool(false)

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::decompress()
• PharFileInfo::compress()
• Phar::decompress()
• Phar::compress()
• Phar::canCompress()
• Phar::compressFiles()
• Phar::decompressFiles()
• Phar::getSupportedCompression()

Phar::isFileFormat

Phar::isFileFormat -- Returns true if the phar archive is based on the tar/phar/zip file format
depending on the parameter

Description

bool Phar::isFileFormat (int $format)

Parameters

format

Either Phar::PHAR, Phar::TAR, or Phar::ZIP to test for the format of the archive.

Return Values

Returns TRUE if the phar archive matches the file format requested by the parameter

Errors/Exceptions

PharException is thrown if the parameter is an unknown file format specifier.

See Also

• Phar::convertToExecutable()
• Phar::convertToData()

Phar::isValidPharFilename

Phar::isValidPharFilename -- Returns whether the given filename is a valid phar filename

Description

bool Phar::isValidPharFilename (string $filename [, bool $executable])

Returns whether the given filename is a valid phar filename that will be recognized as a
phar archive by the phar extension. This can be used to test a name without having to
instantiate a phar archive and catch the inevitable Exception that will be thrown if an
invalid name is specified.

Parameters

filename

The name or full path to a phar archive not yet created

executable

This parameter determines whether the filename should be treated as a phar
executable archive, or a data non-executable archive and is TRUE by default

Return Values

Returns TRUE if the filename is valid, FALSE if not.

Phar::isWritable

Phar::isWritable -- Returns true if the phar archive can be modified

Description

bool Phar::isWritable (void)

This method returns TRUE if phar.readonly is 0, and the actual phar archive on disk is not
read-only.

Parameters

No parameters.

Return Values

Returns TRUE if the phar archive can be modified

See Also

• Phar::canWrite()
• PharData::isWritable()

Phar::loadPhar

Phar::loadPhar -- Loads any phar archive with an alias

Description

mixed Phar::loadPhar (string $filename [, string $alias])

This can be used to read the contents of an external Phar archive. This is most useful for
assigning an alias to a phar so that subsequent references to the phar can use the shorter
alias, or for loading Phar archives that only contain data and are not intended for
execution/inclusion in PHP scripts.

Parameters

filename

the full or relative path to the phar archive to open

alias

The alias that may be used to refer to the phar archive. Note that many phar archives
specify an explicit alias inside the phar archive, and a PharException will be thrown if a
new alias is specified in this case.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

PharException is thrown if an alias is passed in and the phar archive already has an
explicit alias

Examples

Example #482 - A Phar::loadPhar() example

Phar::loadPhar can be used anywhere to load an external Phar archive, whereas
Phar::mapPhar should be used in a loader stub for a Phar.

<?php

try {

 Phar::loadPhar('/path/to/phar.phar', 'my.phar');

 echo file_get_contents('phar://my.phar/file.txt');

} catch (PharException $e) {

 echo $e;

}

?>

See Also

• Phar::mapPhar()

Phar::mapPhar

Phar::mapPhar -- Reads the currently executed file (a phar) and registers its manifest

Description

mixed Phar::mapPhar ([string $alias [, int $dataoffset]])

This static method can only be used inside a Phar archive's loader stub in order to initialize
the phar when it is directly executed, or when it is included in another script.

Parameters

alias

The alias that can be used in phar:// URLs to refer to this archive, rather than its full
path.

dataoffset

Unused variable, here for compatibility with PEAR's PHP_Archive.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

PharException is thrown if not called directly within PHP execution, if no
__HALT_COMPILER(); token is found in the current source file, or if the file cannot be
opened for reading.

Examples

Example #483 - A Phar::mapPhar() example

mapPhar should be used only inside a phar's loader stub. Use loadPhar to load an
external phar into memory.

Here is a sample Phar loader stub that uses mapPhar.

<?php

function __autoload($class)

{

 include 'phar://me.phar/' . str_replace('_', '/', $class) . '.php';

}

try {

 Phar::mapPhar('me.phar');

 include 'phar://me.phar/startup.php';

} catch (PharException $e) {

 echo $e->getMessage();

 die('Cannot initialize Phar');

}

__HALT_COMPILER();

See Also

• Phar::loadPhar()

Phar::mount

Phar::mount -- Mount an external path or file to a virtual location within the phar archive

Description

void Phar::mount (string $pharpath, string $externalpath)

Much like the unix file system concept of mounting external devices to paths within the
directory tree, Phar::mount() allows referring to external files and directories as if they were
inside of an archive. This allows powerful abstraction such as referring to external
configuration files as if they were inside the archive.

Parameters

pharpath

The internal path within the phar archive to use as the mounted path location. If
executed within a phar archive, this may be a relative path, otherwise this must be a
full phar URL.

externalpath

A path or URL to an external file or directory to mount within the phar archive

Return Values

No return. PharException is thrown on failure.

Errors/Exceptions

Throws PharException if any problems occur mounting the path.

Examples

Example #484 - A Phar::mount() example

The following example shows accessing an external configuration file as if it were a
path within a phar archive.

First, the code inside of a phar archive:

<?php

$configuration = simplexml_load_string(file_get_contents(

 Phar::running(false) . '/config.xml'));

?>

Next the external code used to mount the configuration file:

<?php

// first set up the association between the abstract config.xml

// and the actual one on disk

Phar::mount('phar:///path/to/archive.phar/config.xml',
'/home/example/config.xml');

// now run the application

include '/path/to/archive.phar';

?>

Another method is to put the mounting code inside the stub of the phar archive. Here is
an example of setting up a default configuration file if no user configuration is specified:

<?php

// first set up the association between the abstract config.xml

// and the actual one on disk

if (defined('EXTERNAL_CONFIG')) {

 Phar::mount('config.xml', EXTERNAL_CONFIG);

 if (file_exists(__DIR__ . '/extra_config.xml')) {

 Phar::mount('extra.xml', __DIR__ . '/extra_config.xml');

 }

} else {

 Phar::mount('config.xml', 'phar://' . __FILE__ . '/default_config.xml');

 Phar::mount('extra.xml', 'phar://' . __FILE__ . '/default_extra.xml');

}

// now run the application

include 'phar://' . __FILE__ . '/index.php';

__HALT_COMPILER();

?>

...and the code externally to load this phar archive:

<?php

define('EXTERNAL_CONFIG', '/home/example/config.xml');

// now run the application

include '/path/to/archive.phar';

?>

Phar::mungServer

Phar::mungServer -- Defines a list of up to 4 $_SERVER variables that should be modified
for execution

Description

void Phar::mungServer (array $munglist)

Phar::mungServer() should only be called within the stub of a phar archive.

Defines a list of up to 4 $_SERVER variables that should be modified for execution.
Variables that can be modified to remove traces of phar execution are REQUEST_URI,
PHP_SELF, SCRIPT_NAME and SCRIPT_FILENAME.

On its own, this method does nothing. Only when combined with Phar::webPhar() does it
take effect, and only when the requested file is a PHP file to be parsed. Note that the
PATH_INFO and PATH_TRANSLATED variables are always modified.

The original values of variables that are modified are stored in the SERVER array with
PHAR_ prepended, so for instance SCRIPT_NAME would be saved as
PHAR_SCRIPT_NAME.

Parameters

munglist

an array containing as string indices any of REQUEST_URI, PHP_SELF,
SCRIPT_NAME and SCRIPT_FILENAME. Other values trigger an exception, and
Phar::mungServer() is case-sensitive.

Return Values

No return.

Errors/Exceptions

Throws UnexpectedValueException if any problems are found with the passed in data.

Examples

Example #485 - A Phar::mungServer() example

<?php

// example stub

Phar::mungServer(array('REQUEST_URI'));

Phar::webPhar();

__HALT_COMPILER();

?>

See Also

• Phar::webPhar()
• Phar::setStub()

Phar::offsetExists

Phar::offsetExists -- determines whether a file exists in the phar

Description

bool Phar::offsetExists (string $offset)

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a Phar archive using array access brackets.

offsetExists() is called whenever isset() is called.

Parameters

offset

The filename (relative path) to look for in a Phar.

Return Values

Returns TRUE if the file exists within the phar, or FALSE if not.

Examples

Example #486 - A Phar::offsetExists() example

<?php

$p = new Phar(dirname(__FILE__) . '/my.phar', 0, 'my.phar');

$p['firstfile.txt'] = 'first file';

$p['secondfile.txt'] = 'second file';

// the next set of lines call offsetExists() indirectly

var_dump(isset($p['firstfile.txt']));

var_dump(isset($p['nothere.txt']));

?>

The above example will output:

bool(true)

bool(false)

See Also

• Phar::offsetGet()
• Phar::offsetSet()
• Phar::offsetUnset()

Phar::offsetGet

Phar::offsetGet -- get a PharFileInfo object for a specific file

Description

int Phar::offsetGet (string $offset)

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a Phar archive using array access brackets. offsetGet is used for retrieving
files from a Phar archive.

Parameters

offset

The filename (relative path) to look for in a Phar.

Return Values

A PharFileInfo object is returned that can be used to iterate over a file's contents or to
retrieve information about the current file.

Errors/Exceptions

This method throws BadMethodCallException if the file does not exist in the Phar archive.

Examples

Example #487 - A Phar::offsetGet() example

As with all classes that implement the ArrayAccess interface, offsetGet is automatically
called when using the [] angle bracket operator

<?php

$p = new Phar(dirname(__FILE__) . '/myphar.phar', 0, 'myphar.phar');

$p['exists.txt'] = "file exists\n";

try {

 // automatically calls offsetGet()

 echo $p['exists.txt'];

 echo $p['doesnotexist.txt'];

} catch (BadMethodCallException $e) {

 echo $e;

}

?>

The above example will output:

file exists

Entry doesnotexist.txt does not exist

See Also

• Phar::offsetExists()
• Phar::offsetSet()
• Phar::offsetUnset()

Phar::offsetSet

Phar::offsetSet -- set the contents of an internal file to those of an external file

Description

void Phar::offsetSet (string $offset, string $value)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a Phar archive using array access brackets. offsetSet is used for modifying an
existing file, or adding a new file to a Phar archive.

Parameters

offset

The filename (relative path) to modify in a Phar.

value

Content of the file.

Return Values

No return values.

Errors/Exceptions

if phar.readonly is 1, BadMethodCallException is thrown, as modifying a Phar is only
allowed when phar.readonly is set to 0. Throws PharException if there are any problems
flushing changes made to the Phar archive to disk.

Examples

Example #488 - A Phar::offsetSet() example

offsetSet should not be accessed directly, but instead used via array access with the []
operator.

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

try {

 // calls offsetSet

 $p['file.txt'] = 'Hi there';

} catch (Exception $e) {

 echo 'Could not modify file.txt:', $e;

}

?>

See Also

• Phar::offsetExists()
• Phar::offsetGet()
• Phar::offsetUnset()

Phar::offsetUnset

Phar::offsetUnset -- remove a file from a phar

Description

bool Phar::offsetUnset (string $offset)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a Phar archive using array access brackets. offsetUnset is used for deleting an
existing file, and is called by the unset() language construct.

Parameters

offset

The filename (relative path) to modify in a Phar.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

if phar.readonly is 1, BadMethodCallException is thrown, as modifying a Phar is only
allowed when phar.readonly is set to 0. Throws PharException if there are any problems
flushing changes made to the Phar archive to disk.

Examples

Example #489 - A Phar::offsetUnset() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

try {

 // deletes file.txt from my.phar by calling offsetUnset

 unset($p['file.txt']);

} catch (Exception $e) {

 echo 'Could not delete file.txt: ', $e;

}

?>

See Also

• Phar::offsetExists()
• Phar::offsetGet()
• Phar::offsetSet()
• Phar::unlinkArchive()
• Phar::delete()

Phar::running

Phar::running -- Returns the full path on disk or full phar URL to the currently executing
Phar archive

Description

bool Phar::running ([bool $retphar])

Returns the full path to the running phar archive. This is intended for use much like the
__FILE__ magic constant, and only has effect inside an executing phar archive.

Inside the stub of an archive, Phar::running() returns "". Simply use __FILE__ to access
the current running phar inside a stub.

Parameters

retphar

TRUE by default. If TRUE, the full path on disk to the phar archive is returned. If
FALSE, a full phar URL is returned.

Return Values

Returns TRUE if the filename is valid.

Examples

Example #490 - A Phar::running() example

For the following example, assume the file is within phar archive /path/to/phar/my.phar
and the file is located at path my/file.txt within the phar archive.

<?php

$a = Phar::running(); // $a is "/path/to/my.phar"

$b = Phar::running(false); // $b is "phar:///path/to/my.phar"

?>

Phar::setAlias

Phar::setAlias -- Set the alias for the Phar archive

Description

bool Phar::setAlias (string $alias)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Set the alias for the Phar archive, and write it as the permanent alias for this phar archive.
An alias can be used internally to a phar archive to ensure that use of the phar stream
wrapper to access internal files always works regardless of the location of the phar archive
on the filesystem. Another alternative is to rely upon Phar's interception of include() or to
use Phar::interceptFileFuncs() and use relative paths.

Parameters

alias

A shorthand string that this archive can be referred to in phar stream wrapper access.

Return Values

Errors/Exceptions

Throws UnexpectedValueException when write access is disabled, and PharException if
the alias is already in use or any problems were encountered flushing changes to disk.

Examples

Example #491 - A Phar::setAlias() example

<?php

try {

 $phar = new Phar('myphar.phar');

 $phar->setAlias('myp.phar');

} catch (Exception $e) {

 // handle error

}

?>

See Also

• Phar::__construct()
• Phar::interceptFileFuncs()

Phar::setDefaultStub

Phar::setDefaultStub -- Used to set the PHP loader or bootstrap stub of a Phar archive to
the default loader

Description

void Phar::setDefaultStub ([string $index [, string $webindex]])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method is a convenience method that combines the functionality of
Phar::createDefaultStub() and Phar::setStub().

Parameters

index

Relative path within the phar archive to run if accessed on the command-line

webindex

Relative path within the phar archive to run if accessed through a web browser

Errors/Exceptions

UnexpectedValueException is thrown if phar.readonly is enabled in php.ini. PharException
is thrown if any problems are encountered flushing changes to disk.

Examples

Example #492 - A Phar::setDefaultStub() example

<?php

try {

 $phar = new Phar('myphar.phar');

 $phar->setDefaultStub('cli.php', 'web/index.php');

 // this is the same as:

 // $phar->setStub($phar->createDefaultStub('cli.php', 'web/index.php'));

} catch (Exception $e) {

 // handle errors

}

?>

See Also

• Phar::setStub()
• Phar::createDefaultStub()

Phar::setMetadata

Phar::setMetadata -- Sets phar archive meta-data

Description

void Phar::setMetadata (mixed $metadata)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Phar::setMetadata() should be used to store customized data that describes something
about the phar archive as a complete entity. PharFileInfo::setMetadata() should be used
for file-specific meta-data. Meta-data can slow down the performance of loading a phar
archive if the data is large.

Some possible uses for meta-data include specifying which file within the archive should
be used to bootstrap the archive, or the location of a file manifest like » PEAR 's
package.xml file. However, any useful data that describes the phar archive may be stored.

Parameters

metadata

Any PHP variable containing information to store that describes the phar archive

Examples

Example #493 - A Phar::setMetadata() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['file.php'] = '<?php echo "hello"';

 $p->setMetadata(array('bootstrap' => 'file.php'));

 var_dump($p->getMetadata());

} catch (Exception $e) {

 echo 'Could not create and/or modify phar:', $e;

http://pear.php.net

}

?>

The above example will output:

array(1) {

 ["bootstrap"]=>

 string(8) "file.php"

}

See Also

• Phar::getMetadata()
• Phar::delMetadata()
• Phar::hasMetadata()

Phar::setSignatureAlgorithm

Phar::setSignatureAlgorithm -- set the signature algorithm for a phar and apply it.

Description

array Phar::setSignatureAlgorithm (int $sigtype [, string $privatekey])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

set the signature algorithm for a phar and apply it. The signature algorithm must be one of
Phar::MD5, Phar::SHA1, Phar::SHA256, Phar::SHA512, or Phar::OPENSSL.

Note that all phar-based and tar-based phar archives have a signature created
automatically, SHA1 by default. data tar-based archives (archives created with the
PharData class) must have their signature created and set explicitly via
Phar::setSignatureAlgorithm().

Parameters

sigtype

One of Phar::MD5, Phar::SHA1, Phar::SHA256, Phar::SHA512, or Phar::OPENSSL

privatekey

The contents of an OpenSSL private key, as extracted from a certificate or OpenSSL
key file:
$private = openssl_get_privatekey(file_get_contents('private.pem'));

$pkey = '';

openssl_pkey_export($private, $pkey);

$p->setSignatureAlgorithm(Phar::OPENSSL, $pkey);
See phar introduction for instructions on naming and placement of the public key file.

Return Values

Errors/Exceptions

Throws UnexpectedValueException for many errors, BadMethodCallException if called for
a zip-based phar archive, and a PharException if any problems occur flushing changes to
disk.

See Also

• Phar::getSupportedSignatures()
• Phar::getSignature()

Phar::setStub

Phar::setStub -- Used to set the PHP loader or bootstrap stub of a Phar archive

Description

void Phar::setStub (string $stub)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method is used to add a PHP bootstrap loader stub to a new Phar archive, or to
replace the loader stub in an existing Phar archive.

The loader stub for a Phar archive is used whenever an archive is included directly as in
this example:

<?php

include 'myphar.phar';

?>

The loader is not accessed when including a file through the phar stream wrapper like so:

<?php

include 'phar://myphar.phar/somefile.php';

?>

Parameters

stub

A string or an open stream handle to use as the executable stub for this phar archive.

Errors/Exceptions

UnexpectedValueException is thrown if phar.readonly is enabled in php.ini. PharException
is thrown if any problems are encountered flushing changes to disk.

Examples

Example #494 - A Phar::setStub() example

<?php

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['a.php'] = '<?php var_dump("Hello");';

 $p->setStub('<?php var_dump("First"); Phar::mapPhar("brandnewphar.phar");
__HALT_COMPILER(); ?>');

 include 'phar://brandnewphar.phar/a.php';

 var_dump($p->getStub());

 $p['b.php'] = '<?php var_dump("World");';

 $p->setStub('<?php var_dump("Second");
Phar::mapPhar("brandnewphar.phar"); __HALT_COMPILER(); ?>');

 include 'phar://brandnewphar.phar/b.php';

 var_dump($p->getStub());

} catch (Exception $e) {

 echo 'Write operations failed on brandnewphar.phar: ', $e;

}

?>

The above example will output:

string(5) "Hello"

string(82) "<?php var_dump("First"); Phar::mapPhar("brandnewphar.phar");
__HALT_COMPILER(); ?>"

string(5) "World"

string(83) "<?php var_dump("Second"); Phar::mapPhar("brandnewphar.phar");
__HALT_COMPILER(); ?>"

See Also

• Phar::getStub()
• Phar::createDefaultStub()

Phar::startBuffering

Phar::startBuffering -- Start buffering Phar write operations, do not modify the Phar object
on disk

Description

void Phar::startBuffering (void)

Although technically unnecessary, the startBuffering() method can provide a significant
performance boost when creating or modifying a Phar archive with a large number of files.
Ordinarily, every time a file within a Phar archive is created or modified in any way, the
entire Phar archive will be recreated with the changes. In this way, the archive will be
up-to-date with the activity performed on it.

However, this can be unnecessary when simply creating a new Phar archive, when it
would make more sense to write the entire archive out at once. Similarly, it is often
necessary to make a series of changes and to ensure that they all are possible before
making any changes on disk, similar to the relational database concept of transactions. the
startBuffering() / stopBuffering() pair of methods is provided for this purpose.

Phar write buffering is per-archive, buffering active for the foo.phar Phar archive does not
affect changes to the bar.phar Phar archive.

Examples

Example #495 - A Phar::startBuffering() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

} catch (Exception $e) {

 echo 'Could not create phar:', $e;

}

echo 'The new phar has ' . $p->count() . " entries\n";

$p->startBuffering();

$p['file.txt'] = 'hi';

$p['file2.txt'] = 'there';

$p['file2.txt']->setCompressedGZ();

$p['file3.txt'] = 'babyface';

$p['file3.txt']->setMetaData(42);

$p->setStub("<?php

function __autoload($class)

{

 include 'phar://myphar.phar/' . str_replace('_', '/', $class) . '.php';

}

Phar::mapPhar('myphar.phar');

include 'phar://myphar.phar/startup.php';

__HALT_COMPILER();");

$p->stopBuffering();

?>

See Also

• Phar::stopBuffering()
• Phar::isBuffering()

Phar::stopBuffering

Phar::stopBuffering -- Stop buffering write requests to the Phar archive, and save changes
to disk

Description

void Phar::stopBuffering (void)

stopBuffering() is used in conjunction with the startBuffering() method. startBuffering()
can provide a significant performance boost when creating or modifying a Phar archive
with a large number of files. Ordinarily, every time a file within a Phar archive is created or
modified in any way, the entire Phar archive will be recreated with the changes. In this
way, the archive will be up-to-date with the activity performed on it.

However, this can be unnecessary when simply creating a new Phar archive, when it
would make more sense to write the entire archive out at once. Similarly, it is often
necessary to make a series of changes and to ensure that they all are possible before
making any changes on disk, similar to the relational database concept of transactions.
The startBuffering() / stopBuffering() pair of methods is provided for this purpose.

Phar write buffering is per-archive, buffering active for the foo.phar Phar archive does not
affect changes to the bar.phar Phar archive.

Errors/Exceptions

PharException is thrown if any problems are encountered flushing changes to disk.

Examples

Example #496 - A Phar::stopBuffering() example

<?php

$p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

$p['file1.txt'] = 'hi';

$p->startBuffering();

var_dump($p->getStub());

$p->setStub("<?php

function __autoload(\$class)

{

 include 'phar://brandnewphar.phar/' . str_replace('_', '/', \$class) .
'.php';

}

Phar::mapPhar('brandnewphar.phar');

include 'phar://brandnewphar.phar/startup.php';

__HALT_COMPILER();");

$p->stopBuffering();

var_dump($p->getStub());

?>

The above example will output:

string(24) "<?php __HALT_COMPILER();"

string(195) "<?php

function __autoload($class)

{

 include 'phar://' . str_replace('_', '/', $class);

}

Phar::mapPhar('brandnewphar.phar');

include 'phar://brandnewphar.phar/startup.php';

__HALT_COMPILER();"

See Also

• Phar::startBuffering()
• Phar::isBuffering()

Phar::uncompressAllFiles

Phar::uncompressAllFiles -- Uncompresses all files in the current Phar archive

Description

bool Phar::uncompressAllFiles (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using Phar::compress(), Phar::decompress(),
Phar::compressFiles() and Phar::decompressFiles().

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method decompresses all files in the Phar archive. If any files are already
compressed using gzip compression, the zlib extension must be enabled in order to
decompress the files, and any files compressed using bzip2 compression require the bzip2
extension to decompress the files. As with all functionality that modifies the contents of a
phar, the phar.readonly INI variable must be off in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the bzip2
extension is not enabled and any files are compressed using bzip2 compression, or if any
files are compressed using gzip compression and the zlib extension is not enabled.

Examples

Example #497 - A Phar::uncompressAllFiles() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $p['myfile2.txt'] = 'hi';

 $p->compressAllFilesGZ();

 foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

 }

 $p->uncompressAllFiles();

 foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressedBZIP2());

 var_dump($file->isCompressedGZ());

 }

} catch (Exception $e) {

 echo 'Write operations failed on my.phar: ', $e;

}

?>

The above example will output:

string(10) "myfile.txt"

bool(true)

bool(false)

bool(true)

string(11) "myfile2.txt"

bool(true)

bool(false)

bool(true)

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()

Phar::unlinkArchive

Phar::unlinkArchive -- Completely remove a phar archive from disk and from memory

Description

bool Phar::unlinkArchive (string $archive)

Parameters

archive

The path on disk to the phar archive.

Return Values

Returns TRUE if the archive is successfully removed from disk.

Errors/Exceptions

PharException is thrown if there are any open file pointers to the phar archive, or any
existing Phar, PharData, or PharFileInfo objects referring to the phar archive.

Examples

Example #498 - A Phar::unlinkArchive() example

<?php

// simple usage

Phar::unlinkArchive('/path/to/my.phar');

// more common example:

$p = new Phar('my.phar');

$fp = fopen('phar://my.phar/file.txt', 'r');

// this creates 'my.phar.gz'

$gp = $p->compress(Phar::GZ);

// remove all references to the archive

unset($p);

fclose($fp);

// now remove all traces of the archive

Phar::unlinkArchive('my.phar');

?>

See Also

• Phar::delete()
• Phar::offsetUnset()

Phar::webPhar

Phar::webPhar -- mapPhar for web-based phars. front controller for web applications

Description

void Phar::webPhar (string $alias, string $index, string $f404, array $mimetypes, array
$rewrites)

Phar::mapPhar() for web-based phars. This method parses $_SERVER['REQUEST_URI']
and routes a request from a web browser to an internal file within the phar archive. In
essence, it simulates a web server, routing requests to the correct file, echoing the correct
headers and parsing PHP files as needed. This powerful method is part of what makes it
easy to convert an existing PHP application into a phar archive. Combined with
Phar::mungServer() and Phar::interceptFileFuncs(), any web application can be used
unmodified from a phar archive.

Phar::webPhar() should only be called from the stub of a phar archive (see here for more
information on what a stub is).

Parameters

alias

The alias that can be used in phar:// URLs to refer to this archive, rather than its full
path.

index

The location within the phar of the directory index, defaults to index.php.

f404

The location of the script to run when a file is not found. This script should output the
proper HTTP 404 headers.

mimetypes

An array mapping additional file extensions to MIME type. By default, these extensions
are mapped to these mime types:
$mimes = array(

 'phps' => 2, // pass to highlight_file()

 'c' => 'text/plain',

 'cc' => 'text/plain',

 'cpp' => 'text/plain',

 'c++' => 'text/plain',

 'dtd' => 'text/plain',

 'h' => 'text/plain',

 'log' => 'text/plain',

 'rng' => 'text/plain',

 'txt' => 'text/plain',

 'xsd' => 'text/plain',

 'php' => 1, // parse as PHP

 'inc' => 1, // parse as PHP

 'avi' => 'video/avi',

 'bmp' => 'image/bmp',

 'css' => 'text/css',

 'gif' => 'image/gif',

 'htm' => 'text/html',

 'html' => 'text/html',

 'htmls' => 'text/html',

 'ico' => 'image/x-ico',

 'jpe' => 'image/jpeg',

 'jpg' => 'image/jpeg',

 'jpeg' => 'image/jpeg',

 'js' => 'application/x-javascript',

 'midi' => 'audio/midi',

 'mid' => 'audio/midi',

 'mod' => 'audio/mod',

 'mov' => 'movie/quicktime',

 'mp3' => 'audio/mp3',

 'mpg' => 'video/mpeg',

 'mpeg' => 'video/mpeg',

 'pdf' => 'application/pdf',

 'png' => 'image/png',

 'swf' => 'application/shockwave-flash',

 'tif' => 'image/tiff',

 'tiff' => 'image/tiff',

 'wav' => 'audio/wav',

 'xbm' => 'image/xbm',

 'xml' => 'text/xml',

);

rewrites

An array mapping URI to internal file, simulating mod_rewrite of apache. For example:
array(

 'myinfo' => 'myinfo.php'

);
would route calls to http://<host>/myphar.phar/myinfo to the file
phar:///path/to/myphar.phar/myinfo.php, preserving GET/POST. This does not quite
work like mod_rewrite in that it would not match
http://<host>/myphar.phar/myinfo/another.

Return Values

No return values

Errors/Exceptions

Throws PharException when unable to open the internal file to output, or if called from a
non-stub. If an invalid array value is passed into mimetypes or to rewrites, then
UnexpectedValueException is thrown.

Examples

Example #499 - A Phar::webPhar() example

With the example below, the created phar will display Hello World if one browses to
/myphar.phar/index.php or to /myphar.phar, and will display the source of index.phps if
one browses to /myphar.phar/index.phps.

<?php

// creating the phar archive:

try {

 $phar = new Phar('myphar.phar');

 $phar['index.php'] = '<?php echo "Hello World"; ?>';

 $phar['index.phps'] = '<?php echo "Hello World"; ?>';

 $phar->setStub('<?php

Phar::webPhar();

__HALT_COMPILER(); ?>');

} catch (Exception $e) {

 // handle error here

}

?>

See Also

• Phar::mungServer()
• Phar::interceptFileFuncs()

The PharData class

Introduction

The PharData class provides a high-level interface to accessing and creating
non-executable tar and zip archives. Because these archives do not contain a stub and
cannot be executed by the phar extension, it is possible to create and manipulate regular
zip and tar files using the PharData class even if phar.readonly php.ini setting is 1.

Class synopsis

PharData

PharData extends Phar {

/* Properties */

/* Methods */

bool PharData::addEmptyDir (string $dirname)

bool Phar::addFile (string $file [, string $localname])

bool PharData::addFromString (string $localname, string $contents)

array Phar::buildFromDirectory (string $base_dir [, string $regex])

array PharData::buildFromIterator (Iterator $iter [, string $base_directory])

object PharData::compress (int $compression, string $extension)

bool PharData::compressFiles (int $compression)

void PharData::__construct (string $fname [, int $flags])

PharData PharData::convertToData ([int $format [, int $compression [, string $
extension]]])

Phar PharData::convertToExecutable ([int $format [, int $compression [, string $
extension]]])

bool PharData::copy (string $oldfile, string $newfile)

object PharData::decompress ([string $extension])

bool PharData::decompressFiles (void)

int PharData::delMetadata (void)

int PharData::delete (string $entry)

int PharData::extractTo (string $pathto [, string|array $files [, bool $overwrite]])

bool PharData::isWritable (void)

void PharData::offsetSet (string $offset, string $value)

bool PharData::offsetUnset (string $offset)

bool PharData::setAlias (string $alias)

void PharData::setDefaultStub ([string $index [, string $webindex]])

void Phar::setMetadata (mixed $metadata)

array Phar::setSignatureAlgorithm (int $sigtype)

void PharData::setStub (string $stub)

/* Inherited methods */

bool Phar::addEmptyDir (string $dirname)

bool Phar::addFile (string $file [, string $localname])

bool Phar::addFromString (string $localname, string $contents)

string Phar::apiVersion (void)

array Phar::buildFromDirectory (string $base_dir [, string $regex])

array Phar::buildFromIterator (Iterator $iter [, string $base_directory])

bool Phar::canCompress ([int $type])

bool Phar::canWrite (void)

object Phar::compress (int $compression [, string $extension])

bool Phar::compressAllFilesBZIP2 (void)

bool Phar::compressAllFilesGZ (void)

bool Phar::compressFiles (int $compression)

void Phar::__construct (string $fname [, int $flags [, string $alias]])

PharData Phar::convertToData ([int $format [, int $compression [, string $
extension]]])

Phar Phar::convertToExecutable ([int $format [, int $compression [, string $
extension]]])

bool Phar::copy (string $oldfile, string $newfile)

int Phar::count (void)

string Phar::createDefaultStub (void)

object Phar::decompress ([string $extension])

bool Phar::decompressFiles (void)

int Phar::delMetadata (void)

int Phar::delete (string $entry)

int Phar::extractTo (string $pathto [, string|array $files [, bool $overwrite]])

int Phar::getMetaData (void)

bool Phar::getModified (void)

array Phar::getSignature (void)

string Phar::getStub (void)

array Phar::getSupportedCompression (void)

array Phar::getSupportedSignatures (void)

string Phar::getVersion (void)

int Phar::hasMetadata (void)

void Phar::interceptFileFuncs (void)

bool Phar::isBuffering (void)

mixed Phar::isCompressed (void)

bool Phar::isFileFormat (int $format)

bool Phar::isValidPharFilename (string $filename [, bool $executable])

bool Phar::isWritable (void)

mixed Phar::loadPhar (string $filename [, string $alias])

mixed Phar::mapPhar ([string $alias [, int $dataoffset]])

void Phar::mount (string $pharpath, string $externalpath)

void Phar::mungServer (array $munglist)

bool Phar::offsetExists (string $offset)

int Phar::offsetGet (string $offset)

void Phar::offsetSet (string $offset, string $value)

bool Phar::offsetUnset (string $offset)

bool Phar::running ([bool $retphar])

bool Phar::setAlias (string $alias)

void Phar::setDefaultStub ([string $index [, string $webindex]])

void Phar::setMetadata (mixed $metadata)

array Phar::setSignatureAlgorithm (int $sigtype [, string $privatekey])

void Phar::setStub (string $stub)

void Phar::startBuffering (void)

void Phar::stopBuffering (void)

bool Phar::uncompressAllFiles (void)

bool Phar::unlinkArchive (string $archive)

void Phar::webPhar (string $alias, string $index, string $f404, array $mimetypes,
array $rewrites)

}

PharData::addEmptyDir

PharData::addEmptyDir -- Add an empty directory to the tar/zip archive

Description

bool PharData::addEmptyDir (string $dirname)

With this method, an empty directory is created with path dirname. This method is similar
to ZipArchive::addEmptyDir().

Parameters

dirname

The name of the empty directory to create in the phar archive

Return Values

no return value, exception is thrown on failure.

Examples

Example #500 - A PharData::addEmptyDir() example

<?php

try {

 $a = new PharData('/path/to/my.tar');

 $a->addEmptyDir('/full/path/to/file');

 // demonstrates how this file is stored

 $b = $a['full/path/to/file']->isDir();

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• Phar::addEmptyDir()
• PharData::addFile()
• PharData::addFromString()

PharData::addFile

PharData::addFile -- Add a file from the filesystem to the tar/zip archive

Description

bool Phar::addFile (string $file [, string $localname])

With this method, any file or URL can be added to the tar/zip archive. If the optional
second parameter localname is specified, the file will be stored in the archive with that
name, otherwise the file parameter is used as the path to store within the archive. URLs
must have a localname or an exception is thrown. This method is similar to
ZipArchive::addFile().

Parameters

file

Full or relative path to a file on disk to be added to the phar archive.

localname

Path that the file will be stored in the archive.

Return Values

no return value, exception is thrown on failure.

Examples

Example #501 - A PharData::addFile() example

<?php

try {

 $a = new PharData('/path/to/my.tar');

 $a->addFile('/full/path/to/file');

 // demonstrates how this file is stored

 $b = $a['full/path/to/file']->getContent();

 $a->addFile('/full/path/to/file', 'my/file.txt');

 $c = $a['my/file.txt']->getContent();

 // demonstrate URL usage

 $a->addFile('http://www.example.com', 'example.html');

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• PharData::offsetSet()
• Phar::addFile()
• PharData::addFromString()
• PharData::addEmptyDir()

PharData::addFromString

PharData::addFromString -- Add a file from the filesystem to the tar/zip archive

Description

bool PharData::addFromString (string $localname, string $contents)

With this method, any string can be added to the tar/zip archive. The file will be stored in
the archive with localname as its path. This method is similar to
ZipArchive::addFromString().

Parameters

localname

Path that the file will be stored in the archive.

contents

The file contents to store

Return Values

no return value, exception is thrown on failure.

Examples

Example #502 - A PharData::addFromString() example

<?php

try {

 $a = new PharData('/path/to/my.tar');

 $a->addFromString('path/to/file.txt', 'my simple file');

 $b = $a['path/to/file.txt']->getContent();

 // to add contents from a stream handle for large files, use offsetSet()

 $c = fopen('/path/to/hugefile.bin');

 $a['largefile.bin'] = $c;

 fclose($c);

} catch (Exception $e) {

 // handle errors here

}

?>

See Also

• PharData::offsetSet()
• Phar::addFromString()
• PharData::addFile()
• PharData::addEmptyDir()

PharData::buildFromDirectory

PharData::buildFromDirectory -- Construct a tar/zip archive from the files within a directory.

Description

array Phar::buildFromDirectory (string $base_dir [, string $regex])

Populate a tar/zip archive from directory contents. The optional second parameter is a
regular expression (pcre) that is used to exclude files. Any filename that matches the
regular expression will be included, all others will be excluded. For more fine-grained
control, use PharData::buildFromIterator().

Parameters

base_dir

The full or relative path to the directory that contains all files to add to the archive.

regex

An optional pcre regular expression that is used to filter the list of files. Only file paths
matching the regular expression will be included in the archive.

Return Values

Phar::buildFromDirectory() returns an associative array mapping internal path of file to the
full path of the file on the filesystem.

Errors/Exceptions

This method throws BadMethodCallException when unable to instantiate the internal
directory iterators, or a PharException if there were errors saving the phar archive.

Examples

Example #503 - A PharData::buildFromDirectory() example

<?php

$phar = new PharData('project.tar');

// add all files in the project

$phar->buildFromDirectory(dirname(__FILE__) . '/project');

$phar2 = new PharData('project2.zip');

// add all files in the project, only include php files

$phar->buildFromDirectory(dirname(__FILE__) . '/project', '/\.php$/');

?>

See Also

• Phar::buildFromDirectory()
• PharData::buildFromIterator()

PharData::buildFromIterator

PharData::buildFromIterator -- Construct a tar or zip archive from an iterator.

Description

array PharData::buildFromIterator (Iterator $iter [, string $base_directory])

Populate a tar or zip archive from an iterator. Two styles of iterators are supported,
iterators that map the filename within the tar/zip to the name of a file on disk, and iterators
like DirectoryIterator that return SplFileInfo objects. For iterators that return SplFileInfo
objects, the second parameter is required.

Examples

Example #504 - A PharData::buildFromIterator() with SplFileInfo

For most tar/zip archives, the archive will reflect an actual directory layout, and the
second style is the most useful. For instance, to create a tar/zip archive containing the
files in this sample directory layout:

/path/to/project/

 config/

 dist.xml

 debug.xml

 lib/

 file1.php

 file2.php

 src/

 processthing.php

 www/

 index.php

 cli/

 index.php

This code could be used to add these files to the "project.tar" tar archive:

<?php

$phar = new PharData('project.tar');

$phar->buildFromIterator(

 new RecursiveIteratorIterator(

 new RecursiveDirectoryIterator('/path/to/project')),

 '/path/to/project');

?>

The file project.tar can then be used immediately. buildFromIterator() does not set
values such as compression, metadata, and this can be done after creating the tar/zip

archive.

As an interesting note, buildFromIterator() can also be used to copy the contents of
an existing phar, tar or zip archive, as the PharData object descends from
DirectoryIterator:

<?php

$phar = new PharData('project.tar');

$phar->buildFromIterator(

 new RecursiveIteratorIterator(

 new Phar('/path/to/anotherphar.phar')),

 'phar:///path/to/anotherphar.phar/path/to/project');

$phar->setStub($phar->createDefaultWebStub('cli/index.php',
'www/index.php'));

?>

Example #505 - A PharData::buildFromIterator() with other iterators

The second form of the iterator can be used with any iterator that returns a key =>
value mapping, such as an ArrayIterator:

<?php

$phar = new PharData('project.tar');

$phar->buildFromIterator(

 new ArrayIterator(

 array(

 'internal/file.php' => dirname(__FILE__) . '/somefile.php',

 'another/file.jpg' => fopen('/path/to/bigfile.jpg', 'rb'),

)));

?>

Parameters

iter

Any iterator that either associatively maps tar/zip file to location or returns SplFileInfo
objects

base_directory

For iterators that return SplFileInfo objects, the portion of each file's full path to remove
when adding to the tar/zip archive

Return Values

buildFromIterator() returns an associative array mapping internal path of file to the full
path of the file on the filesystem.

Errors/Exceptions

This method returns UnexpectedValueException when the iterator returns incorrect values,
such as an integer key instead of a string, a BadMethodCallException when an
SplFileInfo-based iterator is passed without a base_directory parameter, or a
PharException if there were errors saving the phar archive.

See Also

• Phar::buildFromIterator()

PharData::compress

PharData::compress -- Compresses the entire tar/zip archive using Gzip or Bzip2
compression

Description

object PharData::compress (int $compression, string $extension)

For tar archives, this method compresses the entire archive using gzip compression or
bzip2 compression. The resulting file can be processed with the gunzip command/bunzip
command, or accessed directly and transparently with the Phar extension.

For zip archives, this method fails with an exception. The zlib extension must be enabled
to compress with gzip compression, the bzip2 extension must be enabled in order to
compress with bzip2 compression.

In addition, this method automatically renames the archive, appending.gz,.bz2 or removing
the extension if passed Phar::NONE to remove compression. Alternatively, a file extension
may be specified with the second parameter.

A PharData object is returned.

Parameters

compression

Compression must be one of Phar::GZ, Phar::BZ2 to add compression, or Phar::NONE
to remove compression.

extension

By default, the extension is.tar.gz or.tar.bz2 for compressing a tar, and.tar for
decompressing.

Errors/Exceptions

Throws BadMethodCallException if the zlib extension is not available, or the bzip2
extension is not enabled.

Examples

Example #506 - A PharData::compress() example

<?php

$p = new PharData('/path/to/my.tar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p1 = $p->compress(Phar::GZ); // copies to /path/to/my.phar.gz

$p2 = $p->compress(Phar::BZ2); // copies to /path/to/my.phar.bz2

$p3 = $p2->compress(Phar::NONE); // exception: /path/to/my.phar already
exists

?>

See Also

• Phar::compress()

PharData::compressFiles

PharData::compressFiles -- Compresses all files in the current tar/zip archive

Description

bool PharData::compressFiles (int $compression)

For tar-based archives, this method throws a BadMethodCallException, as compression of
individual files within a tar archive is not supported by the file format. Use
PharData::compress() to compress an entire tar-based archive.

For Zip-based archives, this method compresses all files in the archive using the specified
compression. The zlib or bzip2 extensions must be enabled to take advantage of this
feature. In addition, if any files are already compressed using bzip2/zlib compression, the
respective extension must be enabled in order to decompress the files prior to
re-compressing.

Parameters

compression

Compression must be one of Phar::GZ, Phar::BZ2 to add compression, or Phar::NONE
to remove compression.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, the zlib extension
is not available, or if any files are compressed using bzip2 compression and the bzip2
extension is not enabled.

Examples

Example #507 - A PharData::compressFiles() example

<?php

$p = new Phar('/path/to/my.phar', 0, 'my.phar');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

$p->compressFiles(Phar::GZ);

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

?>

The above example will output:

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

string(10) "myfile.txt"

int(4096)

bool(false)

bool(true)

string(11) "myfile2.txt"

int(4096)

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• PharData::decompressFiles()
• Phar::getSupportedCompression()
• PharData::compress()
• PharData::decompress()

PharData::__construct

PharData::__construct -- Construct a non-executable tar or zip archive object

Description

void PharData::__construct (string $fname [, int $flags])

Parameters

fname

Path to an existing tar/zip archive or to-be-created archive

flags

flags to pass to Phar parent class RecursiveDirectoryIterator. See » SPL
RecursiveDirectoryIterator docs

Errors/Exceptions

Throws BadMethodCallException if called twice, UnexpectedValueException if the phar
archive can't be opened.

Examples

Example #508 - A PharData::__construct() example

<?php

try {

 $p = new PharData('/path/to/my.tar', CURRENT_AS_FILEINFO |
KEY_AS_FILENAME);

} catch (UnexpectedValueException $e) {

 die('Could not open my.tar');

} catch (BadMethodCallException $e) {

 echo 'technically, this cannot happen';

}

echo file_get_contents('phar:///path/to/my.tar/example.txt');

?>

http://www.php.net/~helly/php/ext/spl/classRecursiveDirectoryIterator.html#be0e1176d512c66500e5c26f248c89c4
http://www.php.net/~helly/php/ext/spl/classRecursiveDirectoryIterator.html#be0e1176d512c66500e5c26f248c89c4

PharData::convertToData

PharData::convertToData -- Convert a phar archive to a non-executable tar or zip file

Description

PharData PharData::convertToData ([int $format [, int $compression [, string $
extension]]])

This method is used to convert a non-executable tar or zip archive to another
non-executable format.

If no changes are specified, this method throws a BadMethodCallException. This method
should be used to convert a tar archive to zip format or vice-versa. Although it is possible
to simply change the compression of a tar archive using this method, it is better to use the
PharData::compress() method for logical consistency.

If successful, the method creates a new archive on disk and returns a PharData object.
The old archive is not removed from disk, and should be done manually after the process
has finished.

Parameters

format

This should be one of Phar::TAR or Phar::ZIP. If set to NULL, the existing file format
will be preserved.

compression

This should be one of Phar::NONE for no whole-archive compression, Phar::GZ for
zlib-based compression, and Phar::BZ2 for bzip-based compression.

extension

This parameter is used to override the default file extension for a converted archive.
Note that.phar cannot be used anywhere in the filename for a non-executable tar or zip
archive. If converting to a tar-based phar archive, the default extensions are.tar,.tar.gz,
and.tar.bz2 depending on specified compression. For zip-based archives, the default
extension is.zip.

Return Values

The method returns a PharData object on success and throws an exception on failure.

Errors/Exceptions

This method throws BadMethodCallException when unable to compress, an unknown
compression method has been specified, the requested archive is buffering with
PharData::startBuffering() and has not concluded with PharData::stopBuffering(), and

a PharException if any problems are encountered during the phar creation process.

Examples

Example #509 - A PharData::convertToData() example

Using PharData::convertToData():

<?php

try {

 $tarphar = new PharData('myphar.tar');

 // note that myphar.tar is *not* unlinked

 // convert it to the non-executable tar file format

 // creates myphar.zip

 $zip = $tarphar->convertToData(Phar::ZIP);

 // create myphar.tbz

 $tgz = $zip->convertToData(Phar::TAR, Phar::BZ2, '.tbz');

 // creates myphar.phar.tgz

 $phar = $tarphar->convertToData(Phar::PHAR); // throws exception

} catch (Exception $e) {

 // handle the error here

}

?>

See Also

• Phar::convertToExecutable()
• Phar::convertToData()
• PharData::convertToExecutable()

PharData::convertToExecutable

PharData::convertToExecutable -- Convert a non-executable tar/zip archive to an
executable phar archive

Description

Phar PharData::convertToExecutable ([int $format [, int $compression [, string $
extension]]])

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

This method is used to convert a non-executable tar or zip archive to an executable phar
archive. Any of the three executable file formats (phar, tar or zip) can be used, and
whole-archive compression can also be performed.

If no changes are specified, this method throws a BadMethodCallException.

If successful, the method creates a new archive on disk and returns a Phar object. The old
archive is not removed from disk, and should be done manually after the process has
finished.

Parameters

format

This should be one of Phar::PHAR, Phar::TAR, or Phar::ZIP. If set to NULL, the
existing file format will be preserved.

compression

This should be one of Phar::NONE for no whole-archive compression, Phar::GZ for
zlib-based compression, and Phar::BZ2 for bzip-based compression.

extension

This parameter is used to override the default file extension for a converted archive.
Note that all zip- and tar-based phar archives must contain.phar in their file extension
in order to be processed as a phar archive. If converting to a phar-based archive, the
default extensions are.phar,.phar.gz, or.phar.bz2 depending on the specified
compression. For tar-based phar archives, the default extensions are.phar.tar,
.phar.tar.gz, and.phar.tar.bz2. For zip-based phar archives, the default extension is
.phar.zip.

Return Values

The method returns a Phar object on success and throws an exception on failure.

Errors/Exceptions

This method throws BadMethodCallException when unable to compress, an unknown
compression method has been specified, the requested archive is buffering with
PharData::startBuffering() and has not concluded with PharData::stopBuffering(), an
UnexpectedValueException if write support is disabled, and a PharException if any
problems are encountered during the phar creation process.

Examples

Example #510 - A PharData::convertToExecutable() example

Using PharData::convertToExecutable():

<?php

try {

 $tarphar = new PharData('myphar.tar');

 // convert it to the phar file format

 // note that myphar.tar is *not* unlinked

 $phar = $tarphar->convertToExecutable(Phar::PHAR); // creates myphar.phar

 $phar->setStub($phar->createDefaultStub('cli.php', 'web/index.php'));

 // creates myphar.phar.tgz

 $compressed = $tarphar->convertToExecutable(Phar::TAR, Phar::GZ,
'.phar.tgz');

} catch (Exception $e) {

 // handle the error here

}

?>

See Also

• Phar::convertToExecutable()
• Phar::convertToData()
• PharData::convertToData()

PharData::copy

PharData::copy -- Copy a file internal to the phar archive to another new file within the
phar

Description

bool PharData::copy (string $oldfile, string $newfile)

Copy a file internal to the tar/zip archive to another new file within the same archive. This
is an object-oriented alternative to using copy() with the phar stream wrapper.

Parameters

oldfile

newfile

Return Values

returns TRUE on success, but it is safer to encase method call in a try/catch block and
assume success if no exception is thrown.

Errors/Exceptions

throws UnexpectedValueException if the source file does not exist, the destination file
already exists, write access is disabled, opening either file fails, reading the source file
fails, or a PharException if writing the changes to the phar fails.

Examples

Example #511 - A PharData::copy() example

This example shows using PharData::copy() and the equivalent stream wrapper
performance of the same thing. The primary difference between the two approaches is
error handling. All PharData methods throw exceptions, whereas the stream wrapper
uses trigger_error().

<?php

try {

 $phar = new PharData('myphar.tar');

 $phar['a'] = 'hi';

 $phar->copy('a', 'b');

 echo $phar['b']; // outputs "hi"

} catch (Exception $e) {

 // handle error

}

// the stream wrapper equivalent of the above code.

// E_WARNINGS are triggered on error rather than exceptions.

copy('phar://myphar.tar/a', 'phar//myphar.tar/c');

echo file_get_contents('phar://myphar.tar/c'); // outputs "hi"

?>

PharData::decompress

PharData::decompress -- Decompresses the entire Phar archive

Description

object PharData::decompress ([string $extension])

For tar-based archives, this method decompresses the entire archive.

For Zip-based archives, this method fails with an exception. The zlib extension must be
enabled to decompress an archive compressed with with gzip compression, and the bzip2
extension must be enabled in order to decompress an archive compressed with bzip2
compression.

In addition, this method automatically renames the file extension of the archive,.tar by
default. Alternatively, a file extension may be specified with the second parameter.

A PharData object is returned.

Parameters

extension

For decompressing, the default file extension is.phar.tar. Use this parameter to specify
another file extension. Be aware that no non-executable archives cannot contain.phar
in their filename.

Errors/Exceptions

Throws BadMethodCallException if the zlib extension is not available, or the bzip2
extension is not enabled.

Examples

Example #512 - A PharData::decompress() example

<?php

$p = new PharData('/path/to/my.tar', 0, 'my.tar.gz');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p3 = $p2->decompress(); // creates /path/to/my.tar

?>

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• PharData::compress()
• Phar::canCompress()
• Phar::isCompressed()
• PharData::compress()
• Phar::getSupportedCompression()
• PharData::compressFiles()
• PharData::decompressFiles()

PharData::decompressFiles

PharData::decompressFiles -- Decompresses all files in the current zip archive

Description

bool PharData::decompressFiles (void)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

For tar-based archives, this method throws a BadMethodCallException, as compression of
individual files within a tar archive is not supported by the file format. Use
PharData::compress() to compress an entire tar-based archive.

For Zip-based archives, this method decompresses all files in the archive. The zlib or
bzip2 extensions must be enabled to take advantage of this feature if any files are
compressed using bzip2/zlib compression.

Errors/Exceptions

Throws BadMethodCallException if the zlib extension is not available, or if any files are
compressed using bzip2 compression and the bzip2 extension is not enabled.

Examples

Example #513 - A PharData::decompressFiles() example

<?php

$p = new PharData('/path/to/my.zip');

$p['myfile.txt'] = 'hi';

$p['myfile2.txt'] = 'hi';

$p->compressFiles(Phar::GZ);

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

$p->decompressFiles();

foreach ($p as $file) {

 var_dump($file->getFileName());

 var_dump($file->isCompressed());

 var_dump($file->isCompressed(Phar::BZ2));

 var_dump($file->isCompressed(Phar::GZ));

}

?>

The above example will output:

string(10) "myfile.txt"

int(4096)

bool(false)

bool(true)

string(11) "myfile2.txt"

int(4096)

bool(false)

bool(true)

string(10) "myfile.txt"

bool(false)

bool(false)

bool(false)

string(11) "myfile2.txt"

bool(false)

bool(false)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• PharFileInfo::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• PharData::compressFiles()
• Phar::getSupportedCompression()
• PharData::compress()
• PharData::decompress()

PharData::delMetadata

PharData::delMetadata -- Deletes the global metadata of a zip archive

Description

int PharData::delMetadata (void)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Deletes the global metadata of the zip archive

Parameters

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #514 - A PharData::delMetaData() example

<?php

try {

 $phar = new PharData('myphar.zip');

 var_dump($phar->getMetadata());

 $phar->setMetadata("hi there");

 var_dump($phar->getMetadata());

 $phar->delMetadata();

 var_dump($phar->getMetadata());

} catch (Exception $e) {

 // handle errors

}

?>

The above example will output:

NULL

string(8) "hi there"

NULL

See Also

• Phar::delMetadata()

PharData::delete

PharData::delete -- Delete a file within a tar/zip archive

Description

int PharData::delete (string $entry)

Delete a file within an archive. This is the functional equivalent of calling unlink() on the
stream wrapper equivalent, as shown in the example below.

Parameters

entry

Path within an archive to the file to delete.

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #515 - A PharData::delete() example

<?php

try {

 $phar = new PharData('myphar.zip');

 $phar->delete('unlink/me.php');

 // this is equivalent to:

 unlink('phar://myphar.phar/unlink/me.php');

} catch (Exception $e) {

 // handle errors

}

?>

See Also

• Phar::delete()

PharData::extractTo

PharData::extractTo -- Extract the contents of a tar/zip archive to a directory

Description

int PharData::extractTo (string $pathto [, string|array $files [, bool $overwrite]])

Extract all files within a tar/zip archive to disk. Extracted files and directories preserve
permissions as stored in the archive. The optional parameters allow optional control over
which files are extracted, and whether existing files on disk can be overwritten. The
second parameter files can be either the name of a file or directory to extract, or an array
of names of files and directories to extract. By default, this method will not overwrite
existing files, the third parameter can be set to true to enable overwriting of files. This
method is similar to ZipArchive::extractTo().

Parameters

pathto

Path within an archive to the file to delete.

files

The name of a file or directory to extract, or an array of files/directories to extract

overwrite

FALSE by default, set to TRUE to enable overwriting existing files

Return Values

returns TRUE on success, but it is better to check for thrown exception, and assume
success if none is thrown.

Errors/Exceptions

Throws PharException if errors occur while flushing changes to disk.

Examples

Example #516 - A PharData::extractTo() example

<?php

try {

 $phar = new PharData('myphar.tar');

 $phar->extractTo('/full/path'); // extract all files

 $phar->extractTo('/another/path', 'file.txt'); // extract only file.txt

 $phar->extractTo('/this/path',

 array('file1.txt', 'file2.txt')); // extract 2 files only

 $phar->extractTo('/third/path', null, true); // extract all files, and
overwrite

} catch (Exception $e) {

 // handle errors

}

?>

See Also

• Phar::extractTo()

PharData::isWritable

PharData::isWritable -- Returns true if the tar/zip archive can be modified

Description

bool PharData::isWritable (void)

This method returns TRUE if the tar/zip archive on disk is not read-only. Unlike
Phar::isWritable(), data-only tar/zip archives can be modified even if phar.readonly is set to
1.

Parameters

No parameters.

Return Values

Returns TRUE if the tar/zip archive can be modified

See Also

• Phar::canWrite()
• Phar::isWritable()

PharData::offsetSet

PharData::offsetSet -- set the contents of a file within the tar/zip to those of an external file
or string

Description

void PharData::offsetSet (string $offset, string $value)

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a tar/zip archive using array access brackets. offsetSet is used for modifying
an existing file, or adding a new file to a tar/zip archive.

Parameters

offset

The filename (relative path) to modify in a tar or zip archive.

value

Content of the file.

Return Values

No return values.

Errors/Exceptions

Throws PharException if there are any problems flushing changes made to the tar/zip
archive to disk.

Examples

Example #517 - A PharData::offsetSet() example

offsetSet should not be accessed directly, but instead used via array access with the []
operator.

<?php

$p = new PharData('/path/to/my.tar');

try {

 // calls offsetSet

 $p['file.txt'] = 'Hi there';

} catch (Exception $e) {

 echo 'Could not modify file.txt:', $e;

}

?>

See Also

• Phar::offsetSet()

PharData::offsetUnset

PharData::offsetUnset -- remove a file from a tar/zip archive

Description

bool PharData::offsetUnset (string $offset)

This is an implementation of the ArrayAccess interface allowing direct manipulation of the
contents of a tar/zip archive using array access brackets. offsetUnset is used for deleting
an existing file, and is called by the unset() language construct.

Parameters

offset

The filename (relative path) to modify in the tar/zip archive.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Throws PharException if there are any problems flushing changes made to the tar/zip
archive to disk.

Examples

Example #518 - A PharData::offsetUnset() example

<?php

$p = new PharData('/path/to/my.zip');

try {

 // deletes file.txt from my.zip by calling offsetUnset

 unset($p['file.txt']);

} catch (Exception $e) {

 echo 'Could not delete file.txt: ', $e;

}

?>

See Also

• Phar::offsetUnset()

PharData::setAlias

PharData::setAlias -- dummy function (Phar::setAlias is not valid for PharData)

Description

bool PharData::setAlias (string $alias)

Non-executable tar/zip archives cannot have an alias, so this method simply throws an
exception.

Parameters

alias

A shorthand string that this archive can be referred to in phar stream wrapper access.
This parameter is ignored.

Return Values

Errors/Exceptions

Throws PharException on all method calls

See Also

• Phar::setAlias()

PharData::setDefaultStub

PharData::setDefaultStub -- dummy function (Phar::setDefaultStub is not valid for
PharData)

Description

void PharData::setDefaultStub ([string $index [, string $webindex]])

Non-executable tar/zip archives cannot have a stub, so this method simply throws an
exception.

Parameters

index

Relative path within the phar archive to run if accessed on the command-line

webindex

Relative path within the phar archive to run if accessed through a web browser

Errors/Exceptions

Throws PharException on all method calls

See Also

• Phar::setDefaultStub()

Phar::setMetadata

Phar::setMetadata -- Sets phar archive meta-data

Description

void Phar::setMetadata (mixed $metadata)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

Phar::setMetadata() should be used to store customized data that describes something
about the phar archive as a complete entity. PharFileInfo::setMetadata() should be used
for file-specific meta-data. Meta-data can slow down the performance of loading a phar
archive if the data is large.

Some possible uses for meta-data include specifying which file within the archive should
be used to bootstrap the archive, or the location of a file manifest like » PEAR 's
package.xml file. However, any useful data that describes the phar archive may be stored.

Parameters

metadata

Any PHP variable containing information to store that describes the phar archive

Examples

Example #519 - A Phar::setMetadata() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['file.php'] = '<?php echo "hello"';

 $p->setMetadata(array('bootstrap' => 'file.php'));

 var_dump($p->getMetadata());

} catch (Exception $e) {

 echo 'Could not create and/or modify phar:', $e;

http://pear.php.net

}

?>

The above example will output:

array(1) {

 ["bootstrap"]=>

 string(8) "file.php"

}

See Also

• Phar::getMetadata()
• Phar::delMetadata()
• Phar::hasMetadata()

Phar::setSignatureAlgorithm

Phar::setSignatureAlgorithm -- set the signature algorithm for a phar and apply it. The

Description

array Phar::setSignatureAlgorithm (int $sigtype)

Note

This method requires the php.ini setting phar.readonly to be set to 0 in order to work
for Phar objects. Otherwise, a PharException will be thrown.

set the signature algorithm for a phar and apply it. The signature algorithm must be one of
Phar::MD5, Phar::SHA1, Phar::SHA256, Phar::SHA512, or Phar::PGP (pgp not yet
supported and falls back to SHA-1).

Parameters

sigtype

One of Phar::MD5, Phar::SHA1, Phar::SHA256, Phar::SHA512, or Phar::PGP

Return Values

Errors/Exceptions

Throws UnexpectedValueException for many errors, BadMethodCallException if called for
a zip- or a tar-based phar archive, and a PharException if any problems occur flushing
changes to disk.

See Also

• Phar::getSupportedSignatures()
• Phar::getSignature()

PharData::setStub

PharData::setStub -- dummy function (Phar::setStub is not valid for PharData)

Description

void PharData::setStub (string $stub)

Non-executable tar/zip archives cannot have a stub, so this method simply throws an
exception.

Parameters

stub

A string or an open stream handle to use as the executable stub for this phar archive.
This parameter is ignored.

Errors/Exceptions

Throws PharException on all method calls

See Also

• Phar::setStub()

The PharFileInfo class

Introduction

The PharFileInfo class provides a high-level interface to the contents and attributes of a
single file within a phar archive.

Class synopsis

PharFileInfo

PharFileInfo extends SplFileInfo {

/* Properties */

/* Methods */

void PharFileInfo::chmod (int $permissions)

bool PharFileInfo::compress (int $compression)

void PharFileInfo::__construct (string $entry)

bool PharFileInfo::decompress (void)

bool PharFileInfo::delMetadata (void)

int PharFileInfo::getCRC32 (void)

int PharFileInfo::getCompressedSize (void)

int PharFileInfo::getMetaData (void)

int PharFileInfo::getPharFlags (void)

int PharFileInfo::hasMetadata (void)

bool PharFileInfo::isCRCChecked (void)

bool PharFileInfo::isCompressed (void)

bool PharFileInfo::isCompressedBZIP2 (void)

bool PharFileInfo::isCompressedGZ (void)

bool PharFileInfo::setCompressedBZIP2 (void)

bool PharFileInfo::setCompressedGZ (void)

void PharFileInfo::setMetaData (mixed $metadata)

bool PharFileInfo::setUncompressed (void)
}

PharFileInfo::chmod

PharFileInfo::chmod -- Sets file-specific permission bits

Description

void PharFileInfo::chmod (int $permissions)

PharFileInfo::chmod() allows setting of the executable file permissions bit, as well as
read-only bits. Writeable bits are ignored, and set at runtime based on the phar.readonly
INI variable. As with all functionality that modifies the contents of a phar, the phar.readonly
INI variable must be off in order to succeed if the file is within a Phar archive. Files within
PharData archives do not have this restriction.

Parameters

permissions

permissions (see chmod())

Examples

Example #520 - A PharFileInfo::chmod() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar('brandnewphar.phar', 0, 'brandnewphar.phar');

 $p['file.sh'] = '#!/usr/local/lib/php

 <?php echo "hi"; ?>';

 // set executable bit

 $p['file.sh']->chmod(0555);

 var_dump($p['file.sh']->isExecutable());

} catch (Exception $e) {

 echo 'Could not create/modify phar: ', $e;

}

?>

The above example will output:

bool(true)

PharFileInfo::compress

PharFileInfo::compress -- Compresses the current Phar entry with either zlib or bzip2
compression

Description

bool PharFileInfo::compress (int $compression)

This method compresses the file inside the Phar archive using either bzip2 compression or
zlib compression. The bzip2 or zlib extension must be enabled to take advantage of this
feature. In addition, if the file is already compressed, the respective extension must be
enabled in order to decompress the file. As with all functionality that modifies the contents
of a phar, the phar.readonly INI variable must be off in order to succeed if the file is within
a Phar archive. Files within PharData archives do not have this restriction.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, or if the bzip2 /
zlib extension is not available.

Examples

Example #521 - A PharFileInfo::compress() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 var_dump($file->isCompressed(Phar::BZ2));

 $p['myfile.txt']->compress(Phar::BZ2);

 var_dump($file->isCompressed(Phar::BZ2));

} catch (Exception $e) {

 echo 'Create/modify operations on my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::decompress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressFiles()
• Phar::decompressFiles()
• Phar::compress()
• Phar::decompress()
• Phar::getSupportedCompression()

PharFileInfo::__construct

PharFileInfo::__construct -- Construct a Phar entry object

Description

void PharFileInfo::__construct (string $entry)

This should not be called directly. Instead, a PharFileInfo object is initialized by calling
Phar::offsetGet() through array access.

Parameters

entry

The full url to retrieve a file. If you wish to retrieve the information for the file my/file.php
from the phar boo.phar, the entry should be phar://boo.phar/my/file.php.

Errors/Exceptions

Throws BadMethodCallException if __construct() is called twice. Throws
UnexpectedValueException if the phar URL requested is malformed, the requested phar
cannot be opened, or the file can't be found within the phar.

Examples

Example #522 - A PharFileInfo::__construct() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['testfile.txt'] = "hi\nthere\ndude";

 $file = $p['testfile.txt'];

 foreach ($file as $line => $text) {

 echo "line number $line: $text";

 }

 // this also works

 $file = new PharFileInfo('phar:///path/to/my.phar/testfile.txt');

 foreach ($file as $line => $text) {

 echo "line number $line: $text";

 }

} catch (Exception $e) {

 echo 'Phar operations failed: ', $e;

}

?>

The above example will output:

line number 1: hi

line number 2: there

line number 3: dude

line number 1: hi

line number 2: there

line number 3: dude

PharFileInfo::decompress

PharFileInfo::decompress -- Decompresses the current Phar entry within the phar

Description

bool PharFileInfo::decompress (void)

This method decompresses the file inside the Phar archive. Depending on how the file is
compressed, the bzip2 or zlib extensions must be enabled to take advantage of this
feature. As with all functionality that modifies the contents of a phar, the phar.readonly INI
variable must be off in order to succeed if the file is within a Phar archive. Files within
PharData archives do not have this restriction.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, or if the bzip2 /
zlib extension is not available.

Examples

Example #523 - A PharFileInfo::decompress() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 $file->compress(Phar::GZ);

 var_dump($file->isCompressed());

 $p['myfile.txt']->decompress();

 var_dump($file->isCompressed());

} catch (Exception $e) {

 echo 'Create/modify failed for my.phar: ', $e;

}

?>

The above example will output:

int(4096)

bool(false)

See Also

• PharFileInfo::getCompressedSize()

• PharFileInfo::isCompressed()
• PharFileInfo::compress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressFiles()
• Phar::decompressFiles()
• Phar::compress()
• Phar::decompress()
• Phar::getSupportedCompression()

PharFileInfo::delMetadata

PharFileInfo::delMetadata -- Deletes the metadata of the entry

Description

bool PharFileInfo::delMetadata (void)

Deletes the metadata of the entry, if any.

Parameters

No parameters.

Return Values

Returns TRUE if successful, FALSE if the entry had no metadata. As with all functionality
that modifies the contents of a phar, the phar.readonly INI variable must be off in order to
succeed if the file is within a Phar archive. Files within PharData archives do not have this
restriction.

Errors/Exceptions

Throws PharException if errors occurred while flushing changes to disk, and
BadMethodCallException if write access is disabled.

Examples

Example #524 - A PharFileInfo::delMetaData() example

<?php

try {

 $a = new Phar('myphar.phar');

 $a['hi'] = 'hi';

 var_dump($a['hi']->delMetadata());

 $a['hi']->setMetadata('there');

 var_dump($a['hi']->delMetadata());

 var_dump($a['hi']->delMetadata());

} catch (Exception $e) {

 // handle errors

}

?>

The above example will output:

bool(false)

bool(true)

bool(false)

See Also

• PharFileInfo::setMetadata()
• PharFileInfo::hasMetadata()
• PharFileInfo::getMetadata()
• Phar::setMetadata()
• Phar::hasMetadata()
• Phar::getMetadata()

PharFileInfo::getCRC32

PharFileInfo::getCRC32 -- Returns CRC32 code or throws an exception if CRC has not
been verified

Description

int PharFileInfo::getCRC32 (void)

This returns the crc32() checksum of the file within the Phar archive.

Return Values

The crc32() checksum of the file within the Phar archive.

Errors/Exceptions

Throws BadMethodCallException if the file has not yet had its CRC32 verified. This should
be impossible with normal use, as the CRC is verified upon opening the file for reading or
writing.

Examples

Example #525 - A PharFileInfo::getCRC32() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 echo $file->getCRC32();

} catch (Exception $e) {

 echo 'Write operations on my.phar.phar failed: ', $e;

}

?>

The above example will output:

3633523372

PharFileInfo::getCompressedSize

PharFileInfo::getCompressedSize -- Returns the actual size of the file (with compression)
inside the Phar archive

Description

int PharFileInfo::getCompressedSize (void)

This returns the size of the file within the Phar archive. Uncompressed files will return the
same value for getCompressedSize as they will with filesize()

Return Values

The size in bytes of the file within the Phar archive on disk.

Examples

Example #526 - A PharFileInfo::getCompressedSize() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 echo $file->getCompressedSize();

} catch (Exception $e) {

 echo 'Write operations failed on my.phar: ', $e;

}

?>

The above example will output:

2

See Also

• PharFileInfo::isCompressed()
• PharFileInfo::decompress()
• PharFileInfo::compress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compress()
• Phar::decompress()

• Phar::getSupportedCompression()
• Phar::decompressFiles()
• Phar::compressFiles()

PharFileInfo::getMetaData

PharFileInfo::getMetaData -- Returns file-specific meta-data saved with a file

Description

int PharFileInfo::getMetaData (void)

Return meta-data that was saved in the Phar archive's manifest for this file.

Parameters

Return Values

any PHP variable that can be serialized and is stored as meta-data for the file, or NULL if
no meta-data is stored.

Examples

Example #527 - A PharFileInfo::getMetaData() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['file.txt'] = 'hello';

 $p['file.txt']->setMetaData(array('user' => 'bill', 'mime-type' =>
'text/plain'));

 var_dump($p['file.txt']->getMetaData());

} catch (Exception $e) {

 echo 'Could not create/modify brandnewphar.phar: ', $e;

}

?>

The above example will output:

array(2) {

 ["user"]=>

 string(4) "bill"

 ["mime-type"]=>

 string(10) "text/plain"

}

See Also

• PharFileInfo::setMetadata()
• PharFileInfo::hasMetadata()
• PharFileInfo::delMetadata()
• Phar::setMetadata()
• Phar::hasMetadata()
• Phar::getMetadata()

PharFileInfo::getPharFlags

PharFileInfo::getPharFlags -- Returns the Phar file entry flags

Description

int PharFileInfo::getPharFlags (void)

This returns the flags set in the manifest for a Phar. This will always return 0 in the current
implementation.

Return Values

The Phar flags (always 0 in the current implementation)

Examples

Example #528 - A PharFileInfo::getPharFlags() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 var_dump($file->getPharFlags());

} catch (Exception $e) {

 echo 'Could not create/modify my.phar: ', $e;

}

?>

The above example will output:

int(0)

PharFileInfo::hasMetadata

PharFileInfo::hasMetadata -- Returns the metadata of the entry

Description

int PharFileInfo::hasMetadata (void)

Returns the metadata of a file within a phar archive.

Parameters

No parameters.

Return Values

Returns FALSE if no metadata is set or is NULL, TRUE if metadata is not NULL

See Also

• PharFileInfo::setMetadata()
• PharFileInfo::getMetadata()
• PharFileInfo::delMetadata()
• Phar::setMetadata()
• Phar::hasMetadata()
• Phar::getMetadata()

PharFileInfo::isCRCChecked

PharFileInfo::isCRCChecked -- Returns whether file entry has had its CRC verified

Description

bool PharFileInfo::isCRCChecked (void)

This returns whether a file within a Phar archive has had its CRC verified.

Return Values

TRUE if the file has had its CRC verified, FALSE if not.

Examples

Example #529 - A PharFileInfo::isCRCChecked() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 var_dump($file->isCRCChecked());

} catch (Exception $e) {

 echo 'Create/modify operations failed on my.phar: ', $e;

}

?>

The above example will output:

bool(true)

PharFileInfo::isCompressed

PharFileInfo::isCompressed -- Returns whether the entry is compressed

Description

bool PharFileInfo::isCompressed (void)

This returns whether a file is compressed within a Phar archive with either Gzip or Bzip2
compression.

Return Values

TRUE if the file is compressed within the Phar archive, FALSE if not.

Examples

Example #530 - A PharFileInfo::isCompressed() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $p['myfile2.txt'] = 'hi';

 $p['myfile2.txt']->setCompressedGZ();

 $file = $p['myfile.txt'];

 $file2 = $p['myfile2.txt'];

 var_dump($file->isCompressed());

 var_dump($file2->isCompressed());

} catch (Exception $e) {

 echo 'Create/modify on phar my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::decompress()
• PharFileInfo::compress()
• Phar::decompress()

• Phar::compress()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::getSupportedCompression()
• Phar::decompressFiles()
• Phar::compressFiles()

PharFileInfo::isCompressedBZIP2

PharFileInfo::isCompressedBZIP2 -- Returns whether the entry is compressed using bzip2

Description

bool PharFileInfo::isCompressedBZIP2 (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using PharFileInfo::isCompressed(),
PharFileInfo::decompress(), and PharFileInfo::compress().

This returns whether a file is compressed within a Phar archive with Bzip2 compression.

Return Values

TRUE if the file is compressed within the Phar archive using Bzip2, FALSE if not.

Examples

Example #531 - A PharFileInfo::isCompressedBZIP2() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $p['myfile2.txt'] = 'hi';

 $p['myfile3.txt'] = 'hi';

 $p['myfile2.txt']->setCompressedGZ();

 $p['myfile3.txt']->setCompressedBZIP2();

 $file = $p['myfile.txt'];

 $file2 = $p['myfile2.txt'];

 $file3 = $p['myfile3.txt'];

 var_dump($file->isCompressedBZIP2());

 var_dump($file2->isCompressedBZIP2());

 var_dump($file3->isCompressedBZIP2());

} catch (Exception $e) {

 echo 'Create/modify on phar my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

PharFileInfo::isCompressedGZ

PharFileInfo::isCompressedGZ -- Returns whether the entry is compressed using gz

Description

bool PharFileInfo::isCompressedGZ (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using PharFileInfo::isCompressed(),
PharFileInfo::decompress(), and PharFileInfo::compress().

This returns whether a file is compressed within a Phar archive with Gzip compression.

Return Values

TRUE if the file is compressed within the Phar archive using Gzip, FALSE if not.

Examples

Example #532 - A PharFileInfo::isCompressedGZ() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $p['myfile2.txt'] = 'hi';

 $p['myfile3.txt'] = 'hi';

 $p['myfile2.txt']->setCompressedGZ();

 $p['myfile3.txt']->setCompressedBZIP2();

 $file = $p['myfile.txt'];

 $file2 = $p['myfile2.txt'];

 $file3 = $p['myfile3.txt'];

 var_dump($file->isCompressedGZ());

 var_dump($file2->isCompressedGZ());

 var_dump($file3->isCompressedGZ());

} catch (Exception $e) {

 echo 'Create/modify on phar my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(true)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

PharFileInfo::setCompressedBZIP2

PharFileInfo::setCompressedBZIP2 -- Compresses the current Phar entry within the phar
using Bzip2 compression

Description

bool PharFileInfo::setCompressedBZIP2 (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using PharFileInfo::isCompressed(),
PharFileInfo::decompress(), and PharFileInfo::compress().

This method compresses the file inside the Phar archive using bzip2 compression. The
bzip2 extension must be enabled to take advantage of this feature. In addition, if the file is
already compressed using gzip compression, the zlib extension must be enabled in order
to decompress the file. As with all functionality that modifies the contents of a phar, the
phar.readonly INI variable must be off in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, or if the bzip2
extension is not available.

Examples

Example #533 - A PharFileInfo::setCompressedBZIP2() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 var_dump($file->isCompressedBZIP2());

 $p['myfile.txt']->setCompressedBZIP2();

 var_dump($file->isCompressedBZIP2());

} catch (Exception $e) {

 echo 'Create/modify operations on my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setUncompressed()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

PharFileInfo::setCompressedGZ

PharFileInfo::setCompressedGZ -- Compresses the current Phar entry within the phar
using gz compression

Description

bool PharFileInfo::setCompressedGZ (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using PharFileInfo::isCompressed(),
PharFileInfo::decompress(), and PharFileInfo::compress().

This method compresses the file inside the Phar archive using gzip compression. The zlib
extension must be enabled to take advantage of this feature. In addition, if the file is
already compressed using bzip2 compression, the bzip2 extension must be enabled in
order to decompress the file. As with all functionality that modifies the contents of a phar,
the phar.readonly INI variable must be off in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, or if the zlib
extension is not available.

Examples

Example #534 - A PharFileInfo::setCompressedGZ() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 var_dump($file->isCompressedGZ());

 $p['myfile.txt']->setCompressedGZ();

 var_dump($file->isCompressedGZ());

} catch (Exception $e) {

 echo 'Create/modify operations on my.phar failed: ', $e;

}

?>

The above example will output:

bool(false)

bool(true)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setUncompressed()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

PharFileInfo::setMetaData

PharFileInfo::setMetaData -- Sets file-specific meta-data saved with a file

Description

void PharFileInfo::setMetaData (mixed $metadata)

setMetaData() should only be used to store customized data in a file that cannot be
represented with existing information stored with a file. Meta-data can significantly slow
down the performance of loading a phar archive if the data is large, or if there are many
files containing meta-data. It is important to note that file permissions are natively
supported inside a phar; it is possible to set them with the PharFileInfo::chmod() method.
As with all functionality that modifies the contents of a phar, the phar.readonly INI variable
must be off in order to succeed if the file is within a Phar archive. Files within PharData
archives do not have this restriction.

Some possible uses for meta-data include passing a user/group that should be set when a
file is extracted from the phar to disk. Other uses could include explicitly specifying a MIME
type to return. However, any useful data that describes a file, but should not be contained
inside of it may be stored.

Parameters

metadata

Any PHP variable containing information to store alongside a file

Examples

Example #535 - A PharFileInfo::setMetaData() example

<?php

// make sure it doesn't exist

@unlink('brandnewphar.phar');

try {

 $p = new Phar(dirname(__FILE__) . '/brandnewphar.phar', 0,
'brandnewphar.phar');

 $p['file.txt'] = 'hello';

 $p['file.txt']->setMetaData(array('user' => 'bill', 'mime-type' =>
'text/plain'));

 var_dump($p['file.txt']->getMetaData());

} catch (Exception $e) {

 echo 'Could not create/modify phar: ', $e;

}

?>

The above example will output:

array(2) {

 ["user"]=>

 string(4) "bill"

 ["mime-type"]=>

 string(10) "text/plain"

}

See Also

• PharFileInfo::hasMetadata()
• PharFileInfo::getMetadata()
• PharFileInfo::delMetadata()
• Phar::setMetadata()
• Phar::hasMetadata()
• Phar::getMetadata()

PharFileInfo::setUncompressed

PharFileInfo::setUncompressed -- Uncompresses the current Phar entry within the phar, if
it is compressed

Description

bool PharFileInfo::setUncompressed (void)

Note

This method has been removed from the phar extension as of version 2.0.0.
Alternative implementations are available using PharFileInfo::isCompressed(),
PharFileInfo::decompress(), and PharFileInfo::compress().

This method decompresses the file inside the Phar archive. Depending on how the file is
compressed, the bzip2 or zlib extensions must be enabled to take advantage of this
feature. As with all functionality that modifies the contents of a phar, the phar.readonly INI
variable must be off in order to succeed.

Errors/Exceptions

Throws BadMethodCallException if the phar.readonly INI variable is on, or if the bzip2 /
zlib extension is not available.

Examples

Example #536 - A PharFileInfo::setUncompressed() example

<?php

try {

 $p = new Phar('/path/to/my.phar', 0, 'my.phar');

 $p['myfile.txt'] = 'hi';

 $file = $p['myfile.txt'];

 $file->setCompressedGZ();

 var_dump($file->isCompressed());

 $p['myfile.txt']->setUncompressed();

 var_dump($file->isCompressed());

} catch (Exception $e) {

 echo 'Create/modify failed for my.phar: ', $e;

}

?>

The above example will output:

bool(true)

bool(false)

See Also

• PharFileInfo::getCompressedSize()
• PharFileInfo::isCompressedBZIP2()
• PharFileInfo::isCompressed()
• PharFileInfo::isCompressedGZ()
• PharFileInfo::setCompressedBZIP2()
• PharFileInfo::setCompressedGZ()
• Phar::canCompress()
• Phar::isCompressed()
• Phar::compressAllFilesBZIP2()
• Phar::compressAllFilesGZ()
• Phar::getSupportedCompression()
• Phar::uncompressAllFiles()

The PharException class

Introduction

The PharException class provides a phar-specific exception class for try/catch blocks.

Class synopsis

PharException

PharException extends Exception {

/* Properties */
}

PharException

PharException -- The PharException class provides a phar-specific exception class for
try/catch blocks.

Description

Rar Archiving

Introduction

Rar is a powerful and effective archiver created by Eugene Roshal. This extension gives
you possibility to read Rar archives but doesn't support writing Rar archives, because this
is not supported by UnRar library and is directly prohibited by it's license.

More information about Rar and UnRar can be found at » http://www.rarlabs.com/.

http://www.rarlabs.com/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Rar is currently available through PECL » http://pecl.php.net/package/rar.

Also you can use the PECL installer to install the Rar extension, using the following
command: pecl -v install rar.

You can always download the tar.gz package and install Rar by hand:

Example #537 - Rar installation

gunzip rar-xxx.tgz

tar -xvf rar-xxx.tar

cd rar-xxx

phpize

./configure && make && make install

Windows users will enable php_rar.dll inside of php.ini in order to use these functions. The
DLL for this PECL extension may be downloaded from either the » PHP Downloads page
or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There is one resource used in Rar extension: a file descriptor returned by rar_open().

http://pecl.php.net/package/rar
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

RAR_HOST_MSDOS (integer)

RAR_HOST_OS2 (integer)

RAR_HOST_WIN32 (integer)

RAR_HOST_UNIX (integer)

RAR_HOST_BEOS (integer)

Examples

Example #538 - Rar extension overview example

<?php

$rar_file = rar_open('example.rar') or die("Can't open Rar archive");

$entries = rar_list($rar_file);

foreach ($entries as $entry) {

 echo 'Filename: ' . $entry->getName() . "\n";

 echo 'Packed size: ' . $entry->getPackedSize() . "\n";

 echo 'Unpacked size: ' . $entry->getUnpackedSize() . "\n";

 $entry->extract('/dir/extract/to/');

}

rar_close($rar_file);

?>

This example opens a Rar file archive and extracts each entry to the specified directory.

Rar Functions

rar_close

rar_close -- Close Rar archive and free all resources

Description

bool rar_close (resource $rar_file)

Close Rar archive and free all allocated resources.

Parameters

rar_file

A Rar file resource, opened with rar_open().

Return Values

Returns TRUE on success or FALSE on failure.

rar_entry_get

rar_entry_get -- Get entry object from the Rar archive

Description

RarEntry rar_entry_get (resource $rar_file, string $entry_name)

Get entry object from the Rar archive.

Parameters

rar_file

A Rar file resource, opened with rar_open().

entry_name

Path to the entry within the Rar archive.

Return Values

rar_get_entry() returns entry object or FALSE on error.

Examples

Example #539 - rar_entry_get() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

print_r($entry);

?>

Rar::extract

Rar::extract -- Extract entry from the archive

Description

Rar

bool extract (string $dir [, string $filepath])

Rar::extract() extracts entry's data to the dir. It will create new file in the specified dir
with the name identical to the entry's name.

Parameters

dir

Path to the directory where files should be extracted.

filepath

If parameter filepath is specified instead dir, Rar::extract() will extract entry's data to
the specified file.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #540 - Rar::extract() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

$entry->extract('/dir/to'); // create /dir/to/Dir/file.txt

$entry->extract(false, '/dir/to/new_name.txt'); // create
/dir/to/new_name.txt

?>

Example #541 - How to extract all files in archive:

<?php

/* example by Erik Jenssen aka erix */

$filename = "foobar.rar";

$filepath = "/home/foo/bar/";

$rar_file = rar_open($filepath.$filename);

$list = rar_list($rar_file);

foreach($list as $file) {

 $entry = rar_entry_get($rar_file, $file);

 $entry->extract("."); // extract to the current dir

}

rar_close($rar_file);

?>

Rar::getAttr

Rar::getAttr -- Get attributes of the entry

Description

Rar

int getAttr (void)

Rar::getAttr() returns attributes of the archive entry.

Return Values

Returns the attributes or FALSE on error.

Examples

Example #542 - Rar::getAttr() example

<?php

$rar_file = rar_open('example.rar') or die("Can't open Rar archive");

$entry = rar_entry_get($rar_file, 'dir/in/the/archive') or die("Can't find
such entry");

$host_os = $entry->getHostOs();

$attr = $entry->getAttr();

switch($host_os) {

 case RAR_HOST_MSDOS:

 case RAR_HOST_OS2:

 case RAR_HOST_WIN32:

 case RAR_HOST_MACOS:

 printf("%c%c%c%c%c%c\n",

 ($attr & 0x08) ? 'V' : '.',

 ($attr & 0x10) ? 'D' : '.',

 ($attr & 0x01) ? 'R' : '.',

 ($attr & 0x02) ? 'H' : '.',

 ($attr & 0x04) ? 'S' : '.',

 ($attr & 0x20) ? 'A' : '.');

 break;

 case RAR_HOST_UNIX:

 case RAR_HOST_BEOS:

 switch ($attr & 0xF000)

 {

 case 0x4000:

 printf("d");

 break;

 case 0xA000:

 printf("l");

 break;

 default:

 printf("-");

 break;

 }

 printf("%c%c%c%c%c%c%c%c%c\n",

 ($attr & 0x0100) ? 'r' : '-',

 ($attr & 0x0080) ? 'w' : '-',

 ($attr & 0x0040) ? (($attr & 0x0800) ? 's':'x'):(($attr &
0x0800) ? 'S':'-'),

 ($attr & 0x0020) ? 'r' : '-',

 ($attr & 0x0010) ? 'w' : '-',

 ($attr & 0x0008) ? (($attr & 0x0400) ? 's':'x'):(($attr &
0x0400) ? 'S':'-'),

 ($attr & 0x0004) ? 'r' : '-',

 ($attr & 0x0002) ? 'w' : '-',

 ($attr & 0x0001) ? 'x' : '-');

 break;

}

rar_close($rar_file);

?>

See Also

• Rar::getHostOs

Rar::getCrc

Rar::getCrc -- Get CRC of the entry

Description

Rar

int getCrc (void)

Rar::getCrc() returns CRC of the archive entry.

Return Values

Returns the CRC of the archive entry or FALSE on error.

Rar::getFileTime

Rar::getFileTime -- Get entry last modification time

Description

Rar

string getFileTime (void)

Gets entry last modification time.

Return Values

Returns entry last modification time as string in format YYYY-MM-DD HH:II:SS, or FALSE
on error.

Rar::getHostOs

Rar::getHostOs -- Get entry host OS

Description

Rar

int getHostOs (void)

Rar::getHostOs() return code of the host OS of the archive entry.

Return Values

Returns the code of the host OS, or FALSE on error.

Examples

Example #543 - Rar::getHostOs() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

switch ($entry->getHostOs()) {

 case RAR_HOST_MSDOS:

 echo "MS-DOS\n";

 break;

 case RAR_HOST_OS2:

 echo "OS2\n";

 break;

 case RAR_HOST_WIN32:

 echo "Win32\n";

 break;

 case RAR_HOST_MACOS:

 echo "MacOS\n";

 break;

 case RAR_HOST_UNIX:

 echo "Unix/Linux\n";

 break;

 case RAR_HOST_BEOS:

 echo "BeOS\n";

 break;

}

?>

Rar::getMethod

Rar::getMethod -- Get pack method of the entry

Description

Rar

int getMethod (void)

Rar::getMethod() returns number of the method used when adding current archive entry.

Return Values

Returns the method number or FALSE on error.

Examples

Example #544 - Rar::getMethod() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

echo "Method number: " . $entry->getMethod();

?>

Rar::getName

Rar::getName -- Get name of the entry

Description

Rar

string getName (void)

Rar::getName() returns full name of the archive entry.

Return Values

Returns the entry name as a string, or FALSE on error.

Examples

Example #545 - Rar::getName() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

echo "Entry name: " . $entry->getName();

?>

Rar::getPackedSize

Rar::getPackedSize -- Get packed size of the entry

Description

Rar

int getPackedSize (void)

Get packed size of the archive entry.

Return Values

Returns the packed size, or FALSE on error.

Examples

Example #546 - Rar::getPackedSize() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

echo "Packed size of " . $entry->getName() . " = " . $entry->getPackedSize()
. " bytes";

?>

Rar::getUnpackedSize

Rar::getUnpackedSize -- Get unpacked size of the entry

Description

Rar

int getUnpackedSize (void)

Get unpacked size of the archive entry.

Return Values

Returns the unpacked size, or FALSE on error.

Return Values

Example #547 - Rar::getUnpackedSize() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

echo "Unpacked size of " . $entry->getName() . " = " .
$entry->getPackedSize() . " bytes";

?>

Rar::getVersion

Rar::getVersion -- Get version of the archiver used to add the entry

Description

Rar

int getVersion (void)

Get version of the archiver used to add the archive entry.

Return Values

Returns the version or FALSE on error.

Examples

Example #548 - Rar::getVersion() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entry = rar_entry_get($rar_file, 'Dir/file.txt') or die("Failed to find
such entry");

echo "Rar (WinRAR) version used: " . $entry->getVersion();

?>

rar_list

rar_list -- Get entries list from the Rar archive

Description

array rar_list (resource $rar_file)

Get entries list from the Rar archive.

Parameters

rar_file

A Rar file resource, opened with rar_open().

Return Values

rar_list() returns array of entries or FALSE on error.

Examples

Example #549 - rar_list() example

<?php

$rar_file = rar_open('example.rar') or die("Failed to open Rar archive");

$entries_list = rar_list($rar_file);

print_r($entries_list);

?>

rar_open

rar_open -- Open Rar archive

Description

resource rar_open (string $filename [, string $password])

Open specified Rar archive and return Rar file resource.

Parameters

filename

Path to the Rar archive.

password

A plain password, if needed.

Return Values

rar_open() returns Rar file resource or FALSE on error.

Zip

Introduction

This extension enables you to transparently read or write ZIP compressed archives and
the files inside them.

Installing/Configuring

Requirements

PHP 4

The bundled PHP 4 version requires » ZZIPlib, by Guido Draheim, version 0.10.6 or later

PHP 5.2.0 or later

This extension uses the functions of » zlib by Jean-loup Gailly and Mark Adler.

Installation

PHP 4

Note

Zip support before PHP 4.1.0 is experimental.

Warning

Because the PHP 4 zip extension is unmaintained we recommend that the PECL
extension is used rather than the bundled one.

Linux systems

In order to use these functions you must compile PHP with zip support by using the
--with-zip[=DIR] configure option, where [DIR] is the prefix of the » ZZIPlib library install.

Windows

Windows users need to enable php_zip.dll inside of php.ini in order to use these functions.

PHP 5.2.0 and later

http://zziplib.sourceforge.net/
http://www.zlib.net/
http://zziplib.sourceforge.net/

Linux systems

In order to use these functions you must compile PHP with zip support by using the
--enable-zip configure option.

Windows

Windows users need to enable php_zip.dll inside of php.ini in order to use these functions.

Installation via PECL

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/zip.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

In PHP 4 this DLL resides in the extensions/ directory within the PHP Windows binaries
download.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There are two resource types used in the Zip module. The first one is the Zip directory for
the Zip archive, the second Zip Entry for the archive entries.

http://pecl.php.net/package/zip
http://pecl.php.net/package/zip
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

ZipArchive uses class constants. There is three types of constants, Flags (FL_) errors
(ER_) or mode (no prefix).

ZIPARCHIVE::CREATE (integer)
Create the archive if it does not exist.

ZIPARCHIVE::OVERWRITE (integer)
Always start a new archive, this mode will overwrite the file if it already exists.

ZIPARCHIVE::EXCL (integer)
Error if archive already exists.

ZIPARCHIVE::CHECKCONS (integer)
Perform additional consistency checks on the archive, and error if they fail.

ZIPARCHIVE::FL_NOCASE (integer)
Ignore case on name lookup

ZIPARCHIVE::FL_NODIR (integer)
Ignore directory component

ZIPARCHIVE::FL_COMPRESSED (integer)
Read compressed data

ZIPARCHIVE::FL_UNCHANGED (integer)
Use original data, ignoring changes.

ZIPARCHIVE::CM_DEFAULT (integer)
better of deflate or store.

ZIPARCHIVE::CM_STORE (integer)
stored (uncompressed).

ZIPARCHIVE::CM_SHRINK (integer)
shrunk

ZIPARCHIVE::CM_REDUCE_1 (integer)
reduced with factor 1

ZIPARCHIVE::CM_REDUCE_2 (integer)
reduced with factor 2

ZIPARCHIVE::CM_REDUCE_3 (integer)
reduced with factor 3

ZIPARCHIVE::CM_REDUCE_4 (integer)
reduced with factor 4

ZIPARCHIVE::CM_IMPLODE (integer)
imploded

ZIPARCHIVE::CM_DEFLATE (integer)
deflated

ZIPARCHIVE::CM_DEFLATE64 (integer)
deflate64

ZIPARCHIVE::CM_PKWARE_IMPLODE (integer)
PKWARE imploding

ZIPARCHIVE::CM_BZIP2 (integer)
BZIP2 algorithm

ZIPARCHIVE::ER_OK (integer)
No error.

ZIPARCHIVE::ER_MULTIDISK (integer)
Multi-disk zip archives not supported.

ZIPARCHIVE::ER_RENAME (integer)
Renaming temporary file failed.

ZIPARCHIVE::ER_CLOSE (integer)
Closing zip archive failed

ZIPARCHIVE::ER_SEEK (integer)
Seek error

ZIPARCHIVE::ER_READ (integer)
Read error

ZIPARCHIVE::ER_WRITE (integer)
Write error

ZIPARCHIVE::ER_CRC (integer)
CRC error

ZIPARCHIVE::ER_ZIPCLOSED (integer)
Containing zip archive was closed

ZIPARCHIVE::ER_NOENT (integer)
No such file.

ZIPARCHIVE::ER_EXISTS (integer)
File already exists

ZIPARCHIVE::ER_OPEN (integer)

Can't open file

ZIPARCHIVE::ER_TMPOPEN (integer)
Failure to create temporary file.

ZIPARCHIVE::ER_ZLIB (integer)
Zlib error

ZIPARCHIVE::ER_MEMORY (integer)
Memory allocation failure

ZIPARCHIVE::ER_CHANGED (string)
Entry has been changed

ZIPARCHIVE::ER_COMPNOTSUPP (integer)
Compression method not supported.

ZIPARCHIVE::ER_EOF (integer)
Premature EOF

ZIPARCHIVE::ER_INVAL (integer)
Invalid argument

ZIPARCHIVE::ER_NOZIP (integer)
Not a zip archive

ZIPARCHIVE::ER_INTERNAL (integer)
Internal error

ZIPARCHIVE::ER_INCONS (integer)
Zip archive inconsistent

ZIPARCHIVE::ER_REMOVE (integer)
Can't remove file

ZIPARCHIVE::ER_DELETED (integer)
Entry has been deleted

Examples

Example #550 - Create a Zip archive

<?php

$zip = new ZipArchive();

$filename = "./test112.zip";

if ($zip->open($filename, ZIPARCHIVE::CREATE)!==TRUE) {

 exit("cannot open <$filename>\n");

}

$zip->addFromString("testfilephp.txt" . time(), "#1 This is a test string
added as testfilephp.txt.\n");

$zip->addFromString("testfilephp2.txt" . time(), "#2 This is a test string
added as testfilephp2.txt.\n");

$zip->addFile($thisdir . "/too.php","/testfromfile.php");

echo "numfiles: " . $zip->numFiles . "\n";

echo "status:" . $zip->status . "\n";

$zip->close();

?>

Example #551 - Dump the archive details and listing

<?php

$za = new ZipArchive();

$za->open('test_with_comment.zip');

print_r($za);

var_dump($za);

echo "numFiles: " . $za->numFiles . "\n";

echo "status: " . $za->status . "\n";

echo "statusSys: " . $za->statusSys . "\n";

echo "filename: " . $za->filename . "\n";

echo "comment: " . $za->comment . "\n";

for ($i=0; $i<$za->numFiles;$i++) {

 echo "index: $i\n";

 print_r($za->statIndex($i));

}

echo "numFile:" . $za->numFiles . "\n";

?>

Example #552 - Zip stream wrapper, read an OpenOffice meta info

<?php

$reader = new XMLReader();

$reader->open('zip://' . dirname(__FILE__) . '/test.odt#meta.xml');

$odt_meta = array();

while ($reader->read()) {

 if ($reader->nodeType == XMLREADER::ELEMENT) {

 $elm = $reader->name;

 } else {

 if ($reader->nodeType == XMLREADER::END_ELEMENT && $reader->name ==
'office:meta') {

 break;

 }

 if (!trim($reader->value)) {

 continue;

 }

 $odt_meta[$elm] = $reader->value;

 }

}

print_r($odt_meta);

?>

This example uses the old API (PHP 4), it opens a ZIP file archive, reads each file in the
archive and prints out its contents. The test2.zip archive used in this example is one of the
test archives in the ZZIPlib source distribution.

Example #553 - Zip Usage Example

<?php

$zip = zip_open("/tmp/test2.zip");

if ($zip) {

 while ($zip_entry = zip_read($zip)) {

 echo "Name: " . zip_entry_name($zip_entry) . "\n";

 echo "Actual Filesize: " . zip_entry_filesize($zip_entry) . "\n";

 echo "Compressed Size: " . zip_entry_compressedsize($zip_entry) .
"\n";

 echo "Compression Method: " . zip_entry_compressionmethod($zip_entry)
. "\n";

 if (zip_entry_open($zip, $zip_entry, "r")) {

 echo "File Contents:\n";

 $buf = zip_entry_read($zip_entry,
zip_entry_filesize($zip_entry));

 echo "$buf\n";

 zip_entry_close($zip_entry);

 }

 echo "\n";

 }

 zip_close($zip);

}

?>

Zip Functions

zip_close

zip_close -- Close a ZIP file archive

Description

void zip_close (resource $zip)

Closes the given ZIP file archive.

Parameters

zip

A ZIP file previously opened with zip_open().

Return Values

No value is returned.

See Also

• zip_open()
• zip_read()

zip_entry_close

zip_entry_close -- Close a directory entry

Description

bool zip_entry_close (resource $zip_entry)

Closes the specified directory entry.

Parameters

zip_entry

A directory entry previously opened zip_entry_open().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• zip_entry_open()
• zip_entry_read()

zip_entry_compressedsize

zip_entry_compressedsize -- Retrieve the compressed size of a directory entry

Description

int zip_entry_compressedsize (resource $zip_entry)

Returns the compressed size of the specified directory entry.

Parameters

zip_entry

A directory entry returned by zip_read().

Return Values

The compressed size.

See Also

• zip_open()
• zip_read()

zip_entry_compressionmethod

zip_entry_compressionmethod -- Retrieve the compression method of a directory entry

Description

string zip_entry_compressionmethod (resource $zip_entry)

Returns the compression method of the directory entry specified by zip_entry.

Parameters

zip_entry

A directory entry returned by zip_read().

Return Values

The compression method.

See Also

• zip_open()
• zip_read()

zip_entry_filesize

zip_entry_filesize -- Retrieve the actual file size of a directory entry

Description

int zip_entry_filesize (resource $zip_entry)

Returns the actual size of the specified directory entry.

Parameters

zip_entry

A directory entry returned by zip_read().

Return Values

The size of the directory entry.

See Also

• zip_open()
• zip_read()

zip_entry_name

zip_entry_name -- Retrieve the name of a directory entry

Description

string zip_entry_name (resource $zip_entry)

Returns the name of the specified directory entry.

Parameters

zip_entry

A directory entry returned by zip_read().

Return Values

The name of the directory entry.

See Also

• zip_open()
• zip_read()

zip_entry_open

zip_entry_open -- Open a directory entry for reading

Description

bool zip_entry_open (resource $zip, resource $zip_entry [, string $mode])

Opens a directory entry in a zip file for reading.

Parameters

zip

A valid resource handle returned by zip_open().

zip_entry

A directory entry returned by zip_read().

mode

Any of the modes specified in the documentation of fopen().

Note

Currently, mode is ignored and is always "rb". This is due to the fact that zip support
in PHP is read only access.

Return Values

Returns TRUE on success or FALSE on failure.

Note

Unlike fopen() and other similar functions, the return value of zip_entry_open() only
indicates the result of the operation and is not needed for reading or closing the
directory entry.

See Also

• zip_entry_close()
• zip_entry_read()

zip_entry_read

zip_entry_read -- Read from an open directory entry

Description

string zip_entry_read (resource $zip_entry [, int $length])

Reads from an open directory entry.

Parameters

zip_entry

A directory entry returned by zip_read().

length

The number of bytes to return. If not specified, this function will attempt to read 1024
bytes.

Note

This should be the uncompressed length you wish to read.

Return Values

Returns the data read, or FALSE if the end of the file is reached.

See Also

• zip_entry_open()
• zip_entry_close()
• zip_entry_filesize()

zip_open

zip_open -- Open a ZIP file archive

Description

mixed zip_open (string $filename)

Opens a new zip archive for reading.

Parameters

filename

The file name of the ZIP archive to open.

Return Values

Returns a resource handle for later use with zip_read() and zip_close() or returns the
number of error if filename does not exist or in case of other error.

See Also

• zip_read()
• zip_close()

zip_read

zip_read -- Read next entry in a ZIP file archive

Description

mixed zip_read (resource $zip)

Reads the next entry in a zip file archive.

Parameters

zip

A ZIP file previously opened with zip_open().

Return Values

Returns a directory entry resource for later use with the zip_entry_... functions or FALSE if
there's no more entries to read or number of error in case of other error.

See Also

• zip_open()
• zip_close()
• zip_entry_open()
• zip_entry_read()

ZipArchive::addEmptyDir

ZipArchive::addEmptyDir -- Add a new directory

Description

bool ZipArchive::addEmptyDir (string $dirname)

Adds an empty directory in the archive.

Parameters

dirname

The directory to add.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #554 - Create a new directory in an archive

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 if($zip->addEmptyDir('newDirectory')) {

 echo 'Created a new root directory';

 } else {

 echo 'Could not create the directory';

 }

 $zip->close();

} else {

 echo 'failed';

}

?>

ZipArchive::addFile

ZipArchive::addFile -- Adds a file to a ZIP archive from the given path

Description

bool ZipArchive::addFile (string $filename [, string $localname])

Adds a file to a ZIP archive from a given path

Parameters

filename

The path to the file to add.

localname

local name inside ZIP archive.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

This example opens a ZIP file archive test.zip and add the file /path/to/index.txt. as
newname.txt.

Example #555 - Open and extract

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 $zip->addFile('/path/to/index.txt', 'newname.txt');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::addFromString

ZipArchive::addFromString -- Add a file to a ZIP archive using its contents

Description

bool ZipArchive::addFromString (string $localname, string $contents)

Add a file to a ZIP archive using its contents.

Parameters

localname

The name of the entry to create.

contents

The contents to use to create the entry. It is used in a binary safe mode.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #556 - Add an entry to a new archive

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip', ZipArchive::CREATE);

if ($res === TRUE) {

 $zip->addFromString('test.txt', 'file content goes here');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

Example #557 - Add file to a directory inside an archive

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 $zip->addFromString('dir/test.txt', 'file content goes here');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::close

ZipArchive::close -- Close the active archive (opened or newly created)

Description

bool ZipArchive::close (void)

Close opened or created archive and save changes. This method is automatically called at
the end of the script.

Return Values

Returns TRUE on success or FALSE on failure.

ZipArchive::deleteIndex

ZipArchive::deleteIndex -- delete an entry in the archive using its index

Description

bool ZipArchive::deleteIndex (int $index)

Delete an entry in the archive using its index.

Parameters

index

Index of the entry to delete.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #558 - Delete file from archive using its index

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 $zip->deleteIndex(2);

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::deleteName

ZipArchive::deleteName -- delete an entry in the archive using its name

Description

bool ZipArchive::deleteName (string $name)

Delete an entry in the archive using its name.

Parameters

name

Name of the entry to delete.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #559 - Delete file from archive using its name

<?php

$zip = new ZipArchive;

if ($zip->open('test1.zip') === TRUE) {

 $zip->deleteName('testfromfile.php');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::extractTo

ZipArchive::extractTo -- Extract the archive contents

Description

mixed ZipArchive::extractTo (string $destination [, mixed $entries])

Extract the complete archive or the given files to the specified destination.

Parameters

destination

Location where to extract the files.

entries

The entries to extract. It accepts either a single entry name or an array of names.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

This example opens a ZIP file archive, reads each file in the archive and prints out its
contents. The test2.zip archive used in this example is one of the test archives in the
ZZIPlib source distribution.

Example #560 - Extract all entries

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 $zip->extractTo('/my/destination/dir/');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

Example #561 - Extract only two entries

<?php

$zip = new ZipArchive;

$res = $zip->open('test_im.zip');

if ($res === TRUE) {

 $zip->extractTo('/my/destination/dir/', array('pear_item.gif',
'testfromfile.php'));

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::getArchiveComment

ZipArchive::getArchiveComment -- Returns the Zip archive comment

Description

string ZipArchive::getArchiveComment (void)

Returns the Zip archive comment.

Return Values

Returns the Zip archive comment or FALSE on failure.

Examples

Example #562 - Dump an archive comment

<?php

$zip = new ZipArchive;

$res = $zip->open('test_with_comment.zip')

if ($res === TRUE) {

 var_dump($zip->getArchiveComment());

 /* Or using the archive property */

 var_dump($zip->comment);

} else {

 echo 'failed, code:' . $res;

}

?>

ZipArchive::getCommentIndex

ZipArchive::getCommentIndex -- Returns the comment of an entry using the entry index

Description

string ZipArchive::getCommentIndex (int $index [, int $flags])

Returns the comment of an entry using the entry index.

Parameters

index

Index of the entry

flags

If flags is set to ZIPARCHIVE::FL_UNCHANGED, the original unchanged comment is
returned.

Return Values

Returns the comment on success or FALSE on failure.

Examples

Example #563 - Dump an entry comment

<?php

$zip = new ZipArchive;

$res = $zip->open('test1.zip')

if ($res === TRUE) {

 var_dump($zip->getCommentIndex(1));

} else {

 echo 'failed, code:' . $res;

}

?>

ZipArchive::getCommentName

ZipArchive::getCommentName -- Returns the comment of an entry using the entry name

Description

string ZipArchive::getCommentName (string $name [, int $flags])

Returns the comment of an entry using the entry name.

Parameters

name

Name of the entry

flags

If flags is set to ZIPARCHIVE::FL_UNCHANGED, the original unchanged comment is
returned.

Return Values

Returns the comment on success or FALSE on failure.

Examples

Example #564 - Dump an entry comment

<?php

$zip = new ZipArchive;

$res = $zip->open('test1.zip')

if ($res === TRUE) {

 var_dump($zip->getCommentName('test/entry1.txt'));

} else {

 echo 'failed, code:' . $res;

}

?>

ZipArchive::getFromIndex

ZipArchive::getFromIndex -- Returns the entry contents using its index.

Description

mixed ZipArchive::getFromIndex (int $index [, int $flags])

Returns the entry contents using its index.

Parameters

index

Index of the entry

flags

The flags to use to open the archive. the following values may be ORed to it.

• ZIPARCHIVE::FL_UNCHANGED

• ZIPARCHIVE::FL_COMPRESSED

Return Values

Returns the contents of the entry on success or FALSE on failure.

Examples

Example #565 - Get the file contents

<?php

$zip = new ZipArchive;

if ($zip->open('test.zip') === TRUE) {

 echo $zip->getFromIndex(2);

 $zip->close();

} else {

 echo 'failed';

}

?>

ZipArchive::getFromName

ZipArchive::getFromName -- Returns the entry contents using its name.

Description

mixed ZipArchive::getFromName (string $name [, int $flags])

Returns the entry contents using its name.

Parameters

name

Name of the entry

flags

The flags to use to open the archive. the following values may be ORed to it.

• ZIPARCHIVE::FL_UNCHANGED

• ZIPARCHIVE::FL_COMPRESSED

Return Values

Returns the contents of the entry on success or FALSE on failure.

Examples

Example #566 - Get the file contents

<?php

$zip = new ZipArchive;

if ($zip->open('test1.zip') === TRUE) {

 echo $zip->getFromName('testfromfile.php');

 $zip->close();

} else {

 echo 'failed';

}

?>

Example #567 - Convert an image from a zip entry

<?php

$z = new ZipArchive();

if ($z->open(dirname(__FILE__) . '/test_im.zip')) {

 $im_string = $z->getFromName("pear_item.gif");

 $im = imagecreatefromstring($im_string);

 imagepng($im, 'b.png');

}

?>

ZipArchive::getNameIndex

ZipArchive::getNameIndex -- Returns the name of an entry using its index

Description

string ZipArchive::getNameIndex (int $index)

Returns the name of an entry using its index.

Parameters

index

Index of the entry.

Return Values

Returns the name on success or FALSE on failure.

ZipArchive::getStream

ZipArchive::getStream -- Get a file handler to the entry defined by its name (read only).

Description

resource ZipArchive::getStream (string $name)

Get a file handler to the entry defined by its name. For now it only supports read
operations.

Parameters

name

The name of the entry to use.

Return Values

Returns a file pointer (resource) on success or FALSE on failure.

Examples

Example #568 - Get the entry contents with fread and store it.

<?php

$content = '';

$z = new ZipArchive();

if ($z->open('test.zip')) {

 $fp = $z->getStream('test');

 if(!$fp) exit("failed\n");

 while (!feof($fp)) {

 $contents .= fread($fp, 2);

 }

 fclose($fp);

 file_put_contents('t',$contents);

 echo "done.\n";

}

?>

Example #569 - Same as the previous example but with fopen and the zip stream
wrapper

<?php

$fp = fopen('zip://' . dirname(__FILE__) . '/test.zip#test', 'r');

if (!$fp) {

 exit("cannot open\n");

}

while (!feof($fp)) {

 $contents .= fread($fp, 2);

 echo "$contents\n";

}

fclose($fp);

echo "done.\n";

?>

Example #570 - Stream wrapper and image, can be used with the xml function as
well

<?php

$im = imagecreatefromgif('zip://' . dirname(__FILE__) .
'/test_im.zip#pear_item.gif');

imagepng($im, 'a.png');

?>

ZipArchive::locateName

ZipArchive::locateName -- Returns the index of the entry in the archive

Description

mixed ZipArchive::locateName (string $name [, int $flags])

Locates an entry using its name.

Parameters

name

The name of the entry to look up

flags

The function returns the index of the file named fname in archive. The flags are
specified by ORing the following values, or 0 for none of them.

• ZIPARCHIVE::FL_NOCASE

• ZIPARCHIVE::FL_NODIR

Return Values

Returns the index of the entry on success or FALSE on failure.

Examples

Example #571 - Create an archive and then use it with locateName

<?php

$file = 'testlocate.zip';

$zip = new ZipArchive;

if ($zip->open($file, ZIPARCHIVE::CREATE) !== TRUE) {

 exit('failed');

}

$zip->addFromString('entry1.txt', 'entry #1');

$zip->addFromString('entry2.txt', 'entry #2');

$zip->addFromString('dir/entry2d.txt', 'entry #2');

if (!$zip->status == ZIPARCHIVE::ER_OK) {

 echo "failed to write zip\n";

}

$zip->close();

if ($zip->open($file) !== TRUE) {

 exit('failed');

}

echo $zip->locateName('entry1.txt') . "\n";

echo $zip->locateName('eNtry2.txt') . "\n";

echo $zip->locateName('eNtry2.txt', ZIPARCHIVE::FL_NOCASE) . "\n";

echo $zip->locateName('enTRy2d.txt',
ZIPARCHIVE::FL_NOCASE|ZIPARCHIVE::FL_NODIR) . "\n";

$zip->close();

?>

ZipArchive::open

ZipArchive::open -- Open a ZIP file archive

Description

mixed ZipArchive::open (string $filename [, int $flags])

Opens a new zip archive for reading, writing or modifying.

Parameters

filename

The file name of the ZIP archive to open.

flags

The mode to use to open the archive.

• ZIPARCHIVE::OVERWRITE

• ZIPARCHIVE::CREATE

• ZIPARCHIVE::EXCL

• ZIPARCHIVE::CHECKCONS

Return Values

Error codes

Returns TRUE on success or the error code.

• ZIPARCHIVE::ER_EXISTS

• ZIPARCHIVE::ER_INCONS

• ZIPARCHIVE::ER_INVAL

• ZIPARCHIVE::ER_MEMORY

• ZIPARCHIVE::ER_NOENT

• ZIPARCHIVE::ER_NOZIP

• ZIPARCHIVE::ER_OPEN

• ZIPARCHIVE::ER_READ

• ZIPARCHIVE::ER_SEEK

Examples

This example opens a ZIP file archive, reads each file in the archive and prints out its
contents. The test2.zip archive used in this example is one of the test archives in the
ZZIPlib source distribution.

Example #572 - Open and extract

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip')

if ($res === TRUE) {

 echo 'ok';

 $zip->extractTo('test');

 $zip->close();

} else {

 echo 'failed, code:' . $res;

}

?>

Example #573 - Create an archive

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip', ZipArchive::CREATE);

if ($res === TRUE) {

 $zip->addFromString('test.txt', 'file content goes here');

 $zip->addFile('data.txt', 'entryname.txt');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::renameIndex

ZipArchive::renameIndex -- Renames an entry defined by its index

Description

bool ZipArchive::renameIndex (int $index, string $newname)

Renames an entry defined by its index.

Parameters

index

Index of the entry to rename.

newname

New name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #574 - Rename one entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip')

if ($res === TRUE) {

 $zip->renameIndex(2,'newname.txt');

 $zip->close();

} else {

 echo 'failed, code:' . $res;

}

?>

ZipArchive::renameName

ZipArchive::renameName -- Renames an entry defined by its name

Description

bool ZipArchive::renameName (string $name, string $newname)

Renames an entry defined by its index.

Parameters

name

Name of the entry to rename.

newname

New name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #575 - Rename one entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip');

if ($res === TRUE) {

 $zip->renameName('currentname.txt','newname.txt');

 $zip->close();

} else {

 echo 'failed, code:' . $res;

}

?>

ZipArchive::setArchiveComment

ZipArchive::setArchiveComment -- Set the comment of a ZIP archive

Description

mixed ZipArchive::setArchiveComment (string $comment)

Set the comment of a ZIP archive.

Parameters

comment

The contents of the comment.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #576 - Create an archive and set a comment

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip', ZipArchive::CREATE);

if ($res === TRUE) {

 $zip->addFromString('test.txt', 'file content goes here');

 $z->setArchiveComment('new archive comment');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::setCommentIndex

ZipArchive::setCommentIndex -- Set the comment of an entry defined by its index

Description

mixed ZipArchive::setCommentIndex (int $index, string $comment)

Set the comment of an entry defined by its index.

Parameters

index

Index of the entry.

comment

The contents of the comment.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #577 - Open an archive and set a comment for an entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip');

if ($res === TRUE) {

 $z->setCommentIndex(2, 'new entry comment');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::setCommentName

ZipArchive::setCommentName -- Set the comment of an entry defined by its name

Description

mixed ZipArchive::setCommentName (string $name, string $comment)

Set the comment of an entry defined by its name.

Parameters

name

Name of the entry.

comment

The contents of the comment.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #578 - Open an archive and set a comment for an entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip');

if ($res === TRUE) {

 $z->setCommentName('entry1.txt', 'new entry comment');

 $zip->close();

 echo 'ok';

} else {

 echo 'failed';

}

?>

ZipArchive::statIndex

ZipArchive::statIndex -- Get the details of an entry defined by its index.

Description

mixed ZipArchive::statIndex (int $index [, int $flags])

The function obtains information about the entry defined by its index.

Parameters

index

Index of the entry

flags

ZIPARCHIVE::FL_UNCHANGED may be ORed to it to request information about the
original file in the archive, ignoring any changes made.

Return Values

Returns an array containing the entry details or FALSE on failure.

Examples

Example #579 - Dump the stat info of an entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip')

if ($res === TRUE) {

 print_r($zip->statIndex(3));

 $zip->close();

} else {

 echo 'failed, code:' . $res;

}

?>

The above example will output something similar to:

Array

(

 [name] => foobar/baz

 [index] => 3

 [crc] => 499465816

 [size] => 27

 [mtime] => 1123164748

 [comp_size] => 24

 [comp_method] => 8

)

ZipArchive::statName

ZipArchive::statName -- Get the details of an entry defined by its name.

Description

mixed ZipArchive::statName (name $name [, int $flags])

The function obtains information about the entry defined by its name.

Parameters

name

Name of the entry

flags

The flags argument specifies how the name lookup should be done. Also,
ZIPARCHIVE::FL_UNCHANGED may be ORed to it to request information about the
original file in the archive, ignoring any changes made.

• ZIPARCHIVE::FL_NOCASE

• ZIPARCHIVE::FL_NODIR

• ZIPARCHIVE::FL_UNCHANGED

Return Values

Returns an array containing the entry details or FALSE on failure.

Examples

Example #580 - Dump the stat info of an entry

<?php

$zip = new ZipArchive;

$res = $zip->open('test.zip')

if ($res === TRUE) {

 print_r($zip->statName('foobar/baz'));

 $zip->close();

} else {

 echo 'failed, code:' . $res;

}

?>

The above example will output something similar to:

Array

(

 [name] => foobar/baz

 [index] => 3

 [crc] => 499465816

 [size] => 27

 [mtime] => 1123164748

 [comp_size] => 24

 [comp_method] => 8

)

ZipArchive::unchangeAll

ZipArchive::unchangeAll -- Undo all changes done in the archive.

Description

mixed ZipArchive::unchangeAll (void)

Undo all changes done in the archive.

Return Values

Returns TRUE on success or FALSE on failure.

ZipArchive::unchangeArchive

ZipArchive::unchangeArchive -- Revert all global changes done in the archive.

Description

mixed ZipArchive::unchangeArchive (void)

Revert all global changes to the archive archive. For now, this only reverts archive
comment changes.

Return Values

Returns TRUE on success or FALSE on failure.

ZipArchive::unchangeIndex

ZipArchive::unchangeIndex -- Revert all changes done to an entry at the given index.

Description

mixed ZipArchive::unchangeIndex (int $index)

Revert all changes done to an entry at the given index.

Parameters

index

Index of the entry.

Return Values

Returns TRUE on success or FALSE on failure.

ZipArchive::unchangeName

ZipArchive::unchangeName -- Revert all changes done to an entry with the given name.

Description

mixed ZipArchive::unchangeName (string $name)

Revert all changes done to an entry.

Parameters

name

Name of the entry.

Return Values

Returns TRUE on success or FALSE on failure.

Zlib Compression

Introduction

This module enables you to transparently read and write gzip (.gz) compressed files,
through versions of most of the filesystem functions which work with gzip-compressed files
(and uncompressed files, too, but not with sockets).

Note

Version 4.0.4 introduced a fopen-wrapper for .gz-files, so that you can use a special
zlib: URL to access compressed files transparently using the normal f*() file access
functions if you prefix the filename or path with zlib: when calling fopen(). This feature
requires a C runtime library that provides the fopencookie() function. Up to now the
GNU libc seems to be the only library that provides this feature.

In PHP 4.3.0, zlib: has been changed to compress.zlib:// to prevent ambiguities with
filenames containing ':' characters. The fopencookie() function is not longer required.
More information is available in the section about Compression Streams.

Installing/Configuring

Requirements

This module uses the functions of » zlib by Jean-loup Gailly and Mark Adler. You have to
use a zlib version >= 1.0.9 with this module.

Installation

Zlib support in PHP is not enabled by default. You will need to configure PHP
--with-zlib[=DIR]

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

Built-in support for zlib on Windows is available with PHP 4.3.0.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

The zlib extension offers the option to transparently compress your pages on-the-fly, if the
requesting browser supports this. Therefore there are three options in the configuration file
php.ini.

Zlib Configuration Options

Name Default Changeable Changelog

zlib.output_compressi
on

"0" PHP_INI_ALL Available since PHP
4.0.5.

zlib.output_compressi
on_level

"-1" PHP_INI_ALL Available since PHP
4.3.0.

zlib.output_handler "" PHP_INI_ALL Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://www.zlib.net/

zlib.output_compression boolean / integer
Whether to transparently compress pages. If this option is set to "On" in php.ini or the
Apache configuration, pages are compressed if the browser sends an
"Accept-Encoding: gzip" or "deflate" header. "Content-Encoding: gzip" (respectively
"deflate") and "Vary: Accept-Encoding" headers are added to the output. In runtime, it
can be set only before sending any output. This option also accepts integer values
instead of boolean "On"/"Off", using this you can set the output buffer size (default is
4KB).

Note

output_handler must be empty if this is set 'On' ! Instead you must use
zlib.output_handler.

zlib.output_compression_level integer
Compression level used for transparent output compression.

zlib.output_handler string
You cannot specify additional output handlers if zlib.output_compression is activated
here. This setting does the same as output_handler but in a different order.

Resource Types

This extension defines a file pointer resource returned by gzopen().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FORCE_GZIP (integer)

FORCE_DEFLATE (integer)

Examples

This example opens a temporary file and writes a test string to it, then it prints out the
content of this file twice.

Example #581 - Small Zlib Example

<?php

$filename = tempnam('/tmp', 'zlibtest') . '.gz';

echo "<html>\n<head></head>\n<body>\n<pre>\n";

$s = "Only a test, test, test, test, test, test, test, test!\n";

// open file for writing with maximum compression

$zp = gzopen($filename, "w9");

// write string to file

gzwrite($zp, $s);

// close file

gzclose($zp);

// open file for reading

$zp = gzopen($filename, "r");

// read 3 char

echo gzread($zp, 3);

// output until end of the file and close it.

gzpassthru($zp);

gzclose($zp);

echo "\n";

// open file and print content (the 2nd time).

if (readgzfile($filename) != strlen($s)) {

 echo "Error with zlib functions!";

}

unlink($filename);

echo "</pre>\n</body>\n</html>\n";

?>

Zlib Functions

gzclose

gzclose -- Close an open gz-file pointer

Description

bool gzclose (resource $zp)

Closes the given gz-file pointer.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #582 - gzclose() example

<?php

$gz = gzopen('somefile.gz','w9');

gzputs ($gz, 'I was added to somefile.gz');

gzclose($gz);

?>

See Also

• gzopen()

gzcompress

gzcompress -- Compress a string

Description

string gzcompress (string $data [, int $level])

This function compress the given string using the ZLIB data format.

For details on the ZLIB compression algorithm see the document " » ZLIB Compressed
Data Format Specification version 3.3 " (RFC 1950).

Note

This is not the same as gzip compression, which includes some header data. See
gzencode() for gzip compression.

Parameters

data

The data to compress.

level

The level of compression. Can be given as 0 for no compression up to 9 for maximum
compression.

Return Values

The compressed string or FALSE if an error occurred.

Examples

Example #583 - gzcompress() example

<?php

$compressed = gzcompress('Compress me', 9);

echo $compressed;

?>

See Also

http://www.faqs.org/rfcs/rfc1950
http://www.faqs.org/rfcs/rfc1950

• gzdeflate()
• gzinflate()
• gzuncompress()
• gzencode()

gzdecode

gzdecode -- Decodes a gzip compressed string

Description

string gzdecode (string $data [, int $length])

This function returns a decoded version of the input data.

Parameters

data

The data to decode, encoded by gzencode().

length

The maximum length of data to decode.

Return Values

The decoded string, or FALSE if an error occurred.

See Also

• gzencode()

gzdeflate

gzdeflate -- Deflate a string

Description

string gzdeflate (string $data [, int $level])

This function compress the given string using the DEFLATE data format.

For details on the DEFLATE compression algorithm see the document " » DEFLATE
Compressed Data Format Specification version 1.3 " (RFC 1951).

Parameters

data

The data to deflate.

level

The level of compression. Can be given as 0 for no compression up to 9 for maximum
compression. If not given, the default compression level will be the default
compression level of the zlib library.

Return Values

The deflated string or FALSE if an error occurred.

Examples

Example #584 - gzdeflate() example

<?php

$compressed = gzdeflate('Compress me', 9);

echo $compressed;

?>

See Also

• gzinflate()
• gzcompress()
• gzuncompress()

http://www.faqs.org/rfcs/rfc1951
http://www.faqs.org/rfcs/rfc1951

• gzencode()

gzencode

gzencode -- Create a gzip compressed string

Description

string gzencode (string $data [, int $level [, int $encoding_mode]])

This function returns a compressed version of the input data compatible with the output of
the gzip program.

For more information on the GZIP file format, see the document: » GZIP file format
specification version 4.3 (RFC 1952).

Parameters

data

The data to encode.

level

The level of compression. Can be given as 0 for no compression up to 9 for maximum
compression. If not given, the default compression level will be the default
compression level of the zlib library.

encoding_mode

The encoding mode. Can be FORCE_GZIP (the default) or FORCE_DEFLATE. If you
use FORCE_DEFLATE, you get a standard zlib deflated string (inclusive zlib headers)
after the gzip file header but without the trailing crc32 checksum.

Return Values

The encoded string, or FALSE if an error occurred.

ChangeLog

Version Description

4.2.0 The encoding_mode parameter was added

Examples

The resulting data contains the appropriate headers and data structure to make a standard

http://www.faqs.org/rfcs/rfc1952
http://www.faqs.org/rfcs/rfc1952

.gz file, e.g.:

Example #585 - Creating a gzip file

<?php

$data = implode("", file("bigfile.txt"));

$gzdata = gzencode($data, 9);

$fp = fopen("bigfile.txt.gz", "w");

fwrite($fp, $gzdata);

fclose($fp);

?>

See Also

• gzdecode()
• gzdeflate()
• gzinflate()
• gzuncompress()
• gzcompress()

gzeof

gzeof -- Test for end-of-file on a gz-file pointer

Description

int gzeof (resource $zp)

Tests the given GZ file pointer for EOF (end-of-file).

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

Returns TRUE if the gz-file pointer is at EOF or an error occurs; otherwise returns FALSE.

Examples

Example #586 - gzeof() example

<?php

$gz = gzopen('somefile.gz', 'r');

while (!gzeof($gz)) {

 echo gzgetc($gz);

}

gzclose($gz);

?>

gzfile

gzfile -- Read entire gz-file into an array

Description

array gzfile (string $filename [, int $use_include_path])

This function is identical to readgzfile(), except that it returns the file in an array.

Parameters

filename

The file name.

use_include_path

You can set this optional parameter to 1, if you want to search for the file in the
include_path too.

Return Values

An array containing the file, one line per cell.

Examples

Example #587 - gzfile() example

<?php

$lines = gzfile('somefile.gz');

foreach ($lines as $line) {

 echo $line;

}

?>

See Also

• readgzfile()
• gzopen()

gzgetc

gzgetc -- Get character from gz-file pointer

Description

string gzgetc (resource $zp)

Returns a string containing a single (uncompressed) character read from the given gz-file
pointer.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

The uncompressed character or FALSE on EOF (unlike gzeof()).

Examples

Example #588 - gzgetc() example

<?php

$gz = gzopen('somefile.gz', 'r');

while (!gzeof($gz)) {

 echo gzgetc($gz);

}

gzclose($gz);

?>

See Also

• gzopen()
• gzgets()

gzgets

gzgets -- Get line from file pointer

Description

string gzgets (resource $zp, int $length)

Gets a (uncompressed) string of up to length - 1 bytes read from the given file pointer.
Reading ends when length - 1 bytes have been read, on a newline, or on EOF (whichever
comes first).

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

length

The length of data to get.

Return Values

The uncompressed string, or FALSE on error.

Examples

Example #589 - gzgets() example

<?php

$handle = gzopen('somefile.gz', 'r');

while (!gzeof($handle)) {

 $buffer = gzgets($handle, 4096);

 echo $buffer;

}

gzclose($handle);

?>

See Also

• gzopen()

• gzgetc()
• gzwrite()

gzgetss

gzgetss -- Get line from gz-file pointer and strip HTML tags

Description

string gzgetss (resource $zp, int $length [, string $allowable_tags])

Identical to gzgets(), except that gzgetss() attempts to strip any HTML and PHP tags from
the text it reads.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

length

The length of data to get.

allowable_tags

You can use this optional parameter to specify tags which should not be stripped.

Return Values

The uncompressed and striped string, or FALSE on error.

ChangeLog

Version Description

3.0.13 and 4.0.0 allowable_tags was added.

Examples

Example #590 - gzgetss() example

<?php

$handle = gzopen('somefile.gz', 'r');

while (!gzeof($handle)) {

 $buffer = gzgetss($handle, 4096);

 echo $buffer;

}

gzclose($handle);

?>

See Also

• gzopen()
• gzgets()
• strip_tags()

gzinflate

gzinflate -- Inflate a deflated string

Description

string gzinflate (string $data [, int $length])

This function inflate a deflated string.

Parameters

data

The data compressed by gzdeflate().

length

The maximum length of data to decode.

Return Values

The original uncompressed data or FALSE on error.

The function will return an error if the uncompressed data is more than 32768 times the
length of the compressed input data or more than the optional parameter length.

Examples

Example #591 - gzinflate() example

<?php

$compressed = gzdeflate('Compress me', 9);

$uncompressed = gzinflate($compressed);

echo $uncompressed;

?>

See Also

• gzdeflate()
• gzcompress()
• gzuncompress()
• gzencode()

gzopen

gzopen -- Open gz-file

Description

resource gzopen (string $filename, string $mode [, int $use_include_path])

Opens a gzip (.gz) file for reading or writing.

gzopen() can be used to read a file which is not in gzip format; in this case gzread() will
directly read from the file without decompression.

Parameters

filename

The file name.

mode

As in fopen() (rb or wb) but can also include a compression level (wb9) or a strategy:
f for filtered data as in wb6f, h for Huffman only compression as in wb1h. (See the
description of deflateInit2 in zlib.h for more information about the strategy parameter.)

use_include_path

You can set this optional parameter to 1, if you want to search for the file in the
include_path too.

Return Values

Returns a file pointer to the file opened, after that, everything you read from this file
descriptor will be transparently decompressed and what you write gets compressed.

If the open fails, the function returns FALSE.

Examples

Example #592 - gzopen() Example

<?php

$fp = gzopen("/tmp/file.gz", "r");

?>

See Also

• gzclose()

gzpassthru

gzpassthru -- Output all remaining data on a gz-file pointer

Description

int gzpassthru (resource $zp)

Reads to EOF on the given gz-file pointer from the current position and writes the
(uncompressed) results to standard output.

Note

You may need to call gzrewind() to reset the file pointer to the beginning of the file if
you have already written data to it.

Tip

If you just want to dump the contents of a file to the output buffer, without first
modifying it or seeking to a particular offset, you may want to use the readgzfile()
function, which saves you the gzopen() call.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

The number of uncompressed characters read from gz and passed through to the input, or
FALSE on error.

Examples

Example #593 - gzpassthru() example

<?php

$fp = gzopen('file.gz', 'r');

gzpassthru($fp);

gzclose($fp);

?>

gzputs

gzputs -- Alias of gzwrite()

Description

This function is an alias of: gzwrite().

gzread

gzread -- Binary-safe gz-file read

Description

string gzread (resource $zp, int $length)

gzread() reads up to length bytes from the given gz-file pointer. Reading stops when
length (uncompressed) bytes have been read or EOF is reached, whichever comes first.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

length

The number of bytes to read.

Return Values

The data that have been read.

Examples

Example #594 - gzread() example

<?php

// get contents of a gz-file into a string

$filename = "/usr/local/something.txt.gz";

$zd = gzopen($filename, "r");

$contents = gzread($zd, 10000);

gzclose($zd);

?>

See Also

• gzwrite()
• gzopen()
• gzgets()

• gzgetss()
• gzfile()
• gzpassthru()

gzrewind

gzrewind -- Rewind the position of a gz-file pointer

Description

bool gzrewind (resource $zp)

Sets the file position indicator of the given gz-file pointer to the beginning of the file stream.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• gzseek()
• gztell()

gzseek

gzseek -- Seek on a gz-file pointer

Description

int gzseek (resource $zp, int $offset)

Sets the file position indicator for the given file pointer to the given offset byte into the file
stream. Equivalent to calling (in C) gzseek(zp, offset, SEEK_SET).

If the file is opened for reading, this function is emulated but can be extremely slow. If the
file is opened for writing, only forward seeks are supported; gzseek() then compresses a
sequence of zeroes up to the new starting position.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

offset

The seeked offset.

Return Values

Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not
considered an error.

Examples

Example #595 - gzseek() example

<?php

$gz = gzopen('somefile.gz', 'r');

gzseek($gz,2);

echo gzgetc($gz);

gzclose($gz);

?>

See Also

• gztell()
• gzrewind()

gztell

gztell -- Tell gz-file pointer read/write position

Description

int gztell (resource $zp)

Gets the position of the given file pointer; i.e., its offset into the uncompressed file stream.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

Return Values

The position of the file pointer or FALSE if an error occurs.

See Also

• gzopen()
• gzseek()
• gzrewind()

gzuncompress

gzuncompress -- Uncompress a compressed string

Description

string gzuncompress (string $data [, int $length])

This function uncompress a compressed string.

Parameters

data

The data compressed by gzcompress().

length

The maximum length of data to decode.

Return Values

The original uncompressed data or FALSE on error.

The function will return an error if the uncompressed data is more than 32768 times the
length of the compressed input data or more than the optional parameter length.

Examples

Example #596 - gzuncompress() example

<?php

$compressed = gzcompress('Compress me', 9);

$uncompressed = gzuncompress($compressed);

echo $uncompressed;

?>

See Also

• gzcompress()
• gzinflate()
• gzdeflate()
• gzencode()

gzwrite

gzwrite -- Binary-safe gz-file write

Description

int gzwrite (resource $zp, string $string [, int $length])

gzwrite() writes the contents of string to the given gz-file.

Parameters

zp

The gz-file pointer. It must be valid, and must point to a file successfully opened by
gzopen().

string

The string to write.

length

The number of uncompressed bytes to write. If supplied, writing will stop after length
(uncompressed) bytes have been written or the end of string is reached, whichever
comes first.

Note

Note that if the length argument is given, then the magic_quotes_runtime
configuration option will be ignored and no slashes will be stripped from string.

Return Values

Returns the number of (uncompressed) bytes written to the given gz-file stream.

Examples

Example #597 - gzwrite() example

<?php

$string = 'Some information to compress';

$gz = gzopen('somefile.gz','w9');

gzwrite($gz, $string);

gzclose($gz);

?>

See Also

• gzread()
• gzopen()

readgzfile

readgzfile -- Output a gz-file

Description

int readgzfile (string $filename [, int $use_include_path])

Reads a file, decompresses it and writes it to standard output.

readgzfile() can be used to read a file which is not in gzip format; in this case readgzfile()
will directly read from the file without decompression.

Parameters

filename

The file name. This file will be opened from the filesystem and its contents written to
standard output.

use_include_path

You can set this optional parameter to 1, if you want to search for the file in the
include_path too.

Return Values

Returns the number of (uncompressed) bytes read from the file. If an error occurs, FALSE
is returned and unless the function was called as @readgzfile, an error message is
printed.

See Also

• gzpassthru()
• gzfile()
• gzopen()

zlib_get_coding_type

zlib_get_coding_type -- Returns the coding type used for output compression

Description

string zlib_get_coding_type (void)

Returns the coding type used for output compression.

Return Values

Possible return values are gzip, deflate, or FALSE.

See Also

• The zlib.output_compression directive

Credit Card Processing

MCVE (Monetra) Payment

Introduction

These functions interface the MCVE (Monetra) API (libmonetra, formerly known as
libmcve), allowing you to work directly with MCVE/Monetra from your PHP scripts.
MCVE/Monetra is Main Street Softworks' solution to direct credit/debit/gift card processing
for Linux/Unix/MacOSX/Windows (» http://www.mainstreetsoftworks.com/). It lets you
directly address the credit card clearing houses via your *nix box, modem and/or internet
connection (bypassing the need for an additional service such as Authorize.Net or Pay
Flow Pro). Using the MCVE/Monetra module for PHP, you can process credit cards
directly through MCVE/Monetra via your PHP scripts. The following references will outline
the process.

Note

MCVE/Monetra is the replacement for RedHat's CCVS. They contracted with RedHat
in late 2001 to migrate all existing clientele to the MCVE platform.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

Note

This extension is not available on Windows platforms.

http://www.mainstreetsoftworks.com/
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To enable MCVE (Monetra) Support in PHP, first verify your LibMonetra (formerly libmcve)
installation directory. If you are compiling MCVE/Monetra support directly into PHP, you
will then need to configure PHP with the --with-mcve option. If you use this option without
specifying the path to your libmonetra installation, PHP will attempt to look in the default
LibMonetra Install location (/usr/local). If Monetra (MCVE) is in a non-standard location,
run configure with: --with-mcve=$mcve_path, where $mcve_path is the path to your
MCVE/Monetra installation. Please note that MCVE/Monetra support requires that
$mcve_path/lib and $mcve_path/include exist, and include mcve.h or monetra.h under the
include directory and libmcve.so and/or libmcve.a and/or libmonetra.so and/or libmonetra.a
under the lib directory.

If you want to install MCVE/Monetra support as a module, you can do so by using the
PECL repository, and issuing the 'pecl install mcve' command if you are running a PEAR
version of at least 1.4.0.

Since MCVE/Monetra has true server/client separation, there are no additional
requirements for running PHP with MCVE support. To test your MCVE/Monetra extension
in PHP, you may connect to testbox.monetra.com on port 8333 for IP, or port 8444 for SSL
using the MCVE/Monetra PHP API. Use 'vitale' for your username, and 'test' for your
password. Additional information about test facilities are available at
» http://www.mainstreetsoftworks.com/.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a MCVE_CONN resource returned by m_initconn().

http://www.mainstreetsoftworks.com/
http://www.mainstreetsoftworks.com/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

M_PENDING (integer)

M_DONE (integer)

M_ERROR (integer)

M_FAIL (integer)

M_SUCCESS (integer)

MCVE Functions

See Also

Additional documentation about MCVE/Monetra's PHP API can be found at
» http://www.mainstreetsoftworks.com/documentation.html. Main Street's documentation is
complete and should be the primary reference for functions.

http://www.mainstreetsoftworks.com/documentation.html
http://www.mainstreetsoftworks.com/documentation.html

m_checkstatus

m_checkstatus -- Check to see if a transaction has completed

Description

int m_checkstatus (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_completeauthorizations

m_completeauthorizations -- Number of complete authorizations in queue, returning an
array of their identifiers

Description

int m_completeauthorizations (resource $conn, int &$array)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

array

Its description

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

m_connect

m_connect -- Establish the connection to MCVE

Description

int m_connect (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_connectionerror

m_connectionerror -- Get a textual representation of why a connection failed

Description

string m_connectionerror (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_deletetrans

m_deletetrans -- Delete specified transaction from MCVE_CONN structure

Description

bool m_deletetrans (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_destroyconn

m_destroyconn -- Destroy the connection and MCVE_CONN structure

Description

bool m_destroyconn (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

Returns TRUE.

See Also

• m_initconn()

m_destroyengine

m_destroyengine -- Free memory associated with IP/SSL connectivity

Description

void m_destroyengine (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

No value is returned.

m_getcell

m_getcell -- Get a specific cell from a comma delimited response by column name

Description

string m_getcell (resource $conn, int $identifier, string $column, int $row)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

column

row

Return Values

m_getcellbynum

m_getcellbynum -- Get a specific cell from a comma delimited response by column
number

Description

string m_getcellbynum (resource $conn, int $identifier, int $column, int $row)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

column

row

Return Values

m_getcommadelimited

m_getcommadelimited -- Get the RAW comma delimited data returned from MCVE

Description

string m_getcommadelimited (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_getheader

m_getheader -- Get the name of the column in a comma-delimited response

Description

string m_getheader (resource $conn, int $identifier, int $column_num)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

column_num

Return Values

m_initconn

m_initconn -- Create and initialize an MCVE_CONN structure

Description

resource m_initconn (void)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns an MCVE_CONN resource.

See Also

• m_destroyconn()

m_initengine

m_initengine -- Ready the client for IP/SSL Communication

Description

int m_initengine (string $location)

Warning

This function is currently not documented; only its argument list is available.

Parameters

location

Return Values

m_iscommadelimited

m_iscommadelimited -- Checks to see if response is comma delimited

Description

int m_iscommadelimited (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_maxconntimeout

m_maxconntimeout -- The maximum amount of time the API will attempt a connection to
MCVE

Description

bool m_maxconntimeout (resource $conn, int $secs)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

secs

Return Values

m_monitor

m_monitor -- Perform communication with MCVE (send/receive data) Non-blocking

Description

int m_monitor (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_numcolumns

m_numcolumns -- Number of columns returned in a comma delimited response

Description

int m_numcolumns (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_numrows

m_numrows -- Number of rows returned in a comma delimited response

Description

int m_numrows (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_parsecommadelimited

m_parsecommadelimited -- Parse the comma delimited response so m_getcell, etc will
work

Description

int m_parsecommadelimited (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_responsekeys

m_responsekeys -- Returns array of strings which represents the keys that can be used for
response parameters on this transaction

Description

array m_responsekeys (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_responseparam

m_responseparam -- Get a custom response parameter

Description

string m_responseparam (resource $conn, int $identifier, string $key)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

key

Return Values

m_returnstatus

m_returnstatus -- Check to see if the transaction was successful

Description

int m_returnstatus (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_setblocking

m_setblocking -- Set blocking/non-blocking mode for connection

Description

int m_setblocking (resource $conn, int $tf)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

tf

Return Values

m_setdropfile

m_setdropfile -- Set the connection method to Drop-File

Description

int m_setdropfile (resource $conn, string $directory)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

directory

Return Values

m_setip

m_setip -- Set the connection method to IP

Description

int m_setip (resource $conn, string $host, int $port)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

host

port

Return Values

m_setssl_cafile

m_setssl_cafile -- Set SSL CA (Certificate Authority) file for verification of server certificate

Description

int m_setssl_cafile (resource $conn, string $cafile)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

cafile

Return Values

m_setssl_files

m_setssl_files -- Set certificate key files and certificates if server requires client certificate
verification

Description

int m_setssl_files (resource $conn, string $sslkeyfile, string $sslcertfile)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

sslkeyfile

sslcertfile

Return Values

m_setssl

m_setssl -- Set the connection method to SSL

Description

int m_setssl (resource $conn, string $host, int $port)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

host

port

Return Values

m_settimeout

m_settimeout -- Set maximum transaction time (per trans)

Description

int m_settimeout (resource $conn, int $seconds)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

seconds

Return Values

m_sslcert_gen_hash

m_sslcert_gen_hash -- Generate hash for SSL client certificate verification

Description

string m_sslcert_gen_hash (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Parameters

filename

Return Values

m_transactionssent

m_transactionssent -- Check to see if outgoing buffer is clear

Description

int m_transactionssent (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_transinqueue

m_transinqueue -- Number of transactions in client-queue

Description

int m_transinqueue (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_transkeyval

m_transkeyval -- Add key/value pair to a transaction. Replaces deprecated transparam()

Description

int m_transkeyval (resource $conn, int $identifier, string $key, string $value)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

key

value

Return Values

m_transnew

m_transnew -- Start a new transaction

Description

int m_transnew (resource $conn)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

Return Values

m_transsend

m_transsend -- Finalize and send the transaction

Description

int m_transsend (resource $conn, int $identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

identifier

Return Values

m_uwait

m_uwait -- Wait x microsecs

Description

int m_uwait (int $microsecs)

Warning

This function is currently not documented; only its argument list is available.

Parameters

microsecs

Return Values

m_validateidentifier

m_validateidentifier -- Whether or not to validate the passed identifier on any transaction it
is passed to

Description

int m_validateidentifier (resource $conn, int $tf)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

tf

Return Values

m_verifyconnection

m_verifyconnection -- Set whether or not to PING upon connect to verify connection

Description

bool m_verifyconnection (resource $conn, int $tf)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

tf

Return Values

m_verifysslcert

m_verifysslcert -- Set whether or not to verify the server ssl certificate

Description

bool m_verifysslcert (resource $conn, int $tf)

Warning

This function is currently not documented; only its argument list is available.

Parameters

conn

An MCVE_CONN resource returned by m_initengine().

tf

Return Values

SPPLUS Payment System

Introduction

This extension gives you the possibility to use the » SPPLUS Payment System of the
Caisse d'Epargne (a French Bank).

Note

This extension is not available on Windows platforms.

Refer to the README files in kit_php's source distribution for configuration details.

http://www.spplus.net/

Installing/Configuring

Requirements

Note

You need at least PHP 4.1.0 and SPPLUS v.3

Note

You will need to get the new kit_php for spplus. Feel free to contact the maintainer if
you can't get it.

Installation

short installation note:

• You need at least PHP 4.3.0 for the compression to work

• To install on PHP 4.3.0 and later at the Unix command prompt type pear install
pecl/spplus

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

SPPLUS Functions

calcul_hmac

calcul_hmac -- Obtain a hmac key (needs 8 arguments)

Description

string calcul_hmac (string $clent, string $siretcode, string $price, string $reference,
string $validity, string $taxation, string $devise, string $language)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

calculhmac

calculhmac -- Obtain a hmac key (needs 2 arguments)

Description

string calculhmac (string $clent, string $data)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

nthmac

nthmac -- Obtain a nthmac key (needs 2 arguments)

Description

string nthmac (string $clent, string $data)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

signeurlpaiement

signeurlpaiement -- Obtain the payment url (needs 2 arguments)

Description

string nthmac (string $clent, string $data)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Cryptography Extensions

Cracklib

Crack

Introduction

These functions allow you to use the CrackLib library to test the 'strength' of a password.
The 'strength' of a password is tested by that checks length, use of upper and lower case
and checked against the specified CrackLib dictionary. CrackLib will also give helpful
diagnostic messages that will help 'strengthen' the password.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

http://pecl.php.net/

Installing/Configuring

Requirements

More information regarding CrackLib along with the library can be found at
» http://sourceforge.net/projects/cracklib.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: » http://pecl.php.net/package/crack
.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. In order to use these functions you must compile PHP
with Crack support by using the --with-crack[=DIR] configuration option.

Windows users will enable php_crack.dll inside of php.ini in order to use these functions.
In PHP 4 this DLL resides in the extensions/ directory within the PHP Windows binaries
download. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Crack configuration options

Name Default Changeable Changelog

crack.default_dictiona
ry

NULL PHP_INI_PERDIR PHP_INI_SYSTEM in
crack <= 0.2.
Available since PHP
4.0.5. Removed in
PHP 5.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

http://sourceforge.net/projects/cracklib
http://sourceforge.net/projects/cracklib
http://pecl.php.net/
http://pecl.php.net/package/crack
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

The CrackLib extension defines a dictionary resource identifier returned by
crack_opendict().

Predefined Constants

This extension has no constants defined.

Examples

This example shows how to open a CrackLib dictionary, test a given password, retrieve
any diagnostic messages, and close the dictionary.

Example #598 - CrackLib example

<?php

// Open CrackLib Dictionary

$dictionary = crack_opendict('/usr/local/lib/pw_dict')

 or die('Unable to open CrackLib dictionary');

// Perform password check

$check = crack_check($dictionary, 'gx9A2s0x');

// Retrieve messages

$diag = crack_getlastmessage();

echo $diag; // 'strong password'

// Close dictionary

crack_closedict($dictionary);

?>

Note

If crack_check() returns TRUE, crack_getlastmessage() will return 'strong password'.

Crack Functions

crack_check

crack_check -- Performs an obscure check with the given password

Description

bool crack_check (resource $dictionary, string $password)

bool crack_check (string $password)

Performs an obscure check with the given password on the specified dictionary.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

dictionary

The crack lib dictionary. If not specified, the last opened dictionary is used.

password

The tested password.

Return Values

Returns TRUE if password is strong, or FALSE otherwise.

crack_closedict

crack_closedict -- Closes an open CrackLib dictionary

Description

bool crack_closedict ([resource $dictionary])

crack_closedict() closes the specified dictionary identifier.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

dictionary

The dictionary to close. If not specified, the current directory is closed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• crack_opendict()

crack_getlastmessage

crack_getlastmessage -- Returns the message from the last obscure check

Description

string crack_getlastmessage (void)

crack_getlastmessage() returns the message from the last obscure check.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return Values

The message from the last obscure check or FALSE if there was no obscure checks made
so far.

The returned message is one of:

• it's WAY too short

• it is too short

• it does not contain enough DIFFERENT characters

• it is all whitespace

• it is too simplistic/systematic

• it looks like a National Insurance number.

• it is based on a dictionary word

• it is based on a (reversed) dictionary word

• strong password

See Also

• crack_check()

crack_opendict

crack_opendict -- Opens a new CrackLib dictionary

Description

resource crack_opendict (string $dictionary)

crack_opendict() opens the specified CrackLib dictionary for use with crack_check().

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Note

Only one dictionary may be open at a time.

Parameters

dictionary

The path to the Cracklib dictionary.

Return Values

Returns a dictionary resource identifier on success, or FALSE on failure.

See Also

• crack_check()
• crack_closedict()

HASH Message Digest Framework

Introduction

Message Digest (hash) engine. Allows direct or incremental processing of arbitrary length
messages using a variety of hashing algorithms.

Installing/Configuring

Requirements

The Hash extension requires no external libraries and is enabled by default as of PHP
5.1.2. It may be explicitly disabled by using the --disable-hash switch to configure. Earlier
versions of PHP may incorporate the Hash extension by installing the » PECL module.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a Hashing Context resource returned by hash_init().

http://pecl.php.net/package/hash

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

HASH_HMAC (integer)
Optional flag for hash_init(). Indicates that the HMAC digest-keying algorithm should
be applied to the current hashing context.

Hash Functions

hash_algos

hash_algos -- Return a list of registered hashing algorithms

Description

array hash_algos (void)

Return Values

Returns a numerically indexed array containing the list of supported hashing algorithms.

Examples

Example #599 - hash_algos() example

As of PHP 5.1.2, hash_algos() will return the following list of algorithm names.

<?php

print_r(hash_algos());

?>

The above example will output:

Array

(

 [0] => md4

 [1] => md5

 [2] => sha1

 [3] => sha256

 [4] => sha384

 [5] => sha512

 [6] => ripemd128

 [7] => ripemd160

 [8] => whirlpool

 [9] => tiger128,3

 [10] => tiger160,3

 [11] => tiger192,3

 [12] => tiger128,4

 [13] => tiger160,4

 [14] => tiger192,4

 [15] => snefru

 [16] => gost

 [17] => adler32

 [18] => crc32

 [19] => crc32b

 [20] => haval128,3

 [21] => haval160,3

 [22] => haval192,3

 [23] => haval224,3

 [24] => haval256,3

 [25] => haval128,4

 [26] => haval160,4

 [27] => haval192,4

 [28] => haval224,4

 [29] => haval256,4

 [30] => haval128,5

 [31] => haval160,5

 [32] => haval192,5

 [33] => haval224,5

 [34] => haval256,5

)

hash_copy

hash_copy -- Copy hashing context

Description

resource hash_copy (resource $context)

Parameters

context

Hashing context returned by hash_init().

Return Values

Returns a copy of Hashing Context resource.

Examples

Example #600 - hash_copy() example

<?php

$context = hash_init("md5");

hash_update($context, "data");

/* copy context to be able to continue using it */

$copy_context = hash_copy($context);

echo hash_final($context), "\n";

hash_update($copy_context, "data");

echo hash_final($copy_context), "\n";

?>

The above example will output:

8d777f385d3dfec8815d20f7496026dc

511ae0b1c13f95e5f08f1a0dd3da3d93

hash_file

hash_file -- Generate a hash value using the contents of a given file

Description

string hash_file (string $algo, string $filename [, bool $raw_output])

Parameters

algo

Name of selected hashing algorithm (i.e. "md5", "sha256", "haval160,4", etc..)

filename

URL describing location of file to be hashed; Supports fopen wrappers.

raw_output

When set to TRUE, outputs raw binary data. Default value (FALSE) outputs
lowercase hexits.

Return Values

Returns a string containing the calculated message digest as lowercase hexits unless
raw_output is set to true in which case the raw binary representation of the message
digest is returned.

Examples

Example #601 - Using hash_file()

<?php

/* Create a file to calculate hash of */

file_put_contents('example.txt', 'The quick brown fox jumped over the lazy
dog.');

echo hash_file('md5', 'example.txt');

?>

The above example will output:

5c6ffbdd40d9556b73a21e63c3e0e904

See Also

• hash()
• hash_hmac_file()
• hash_update_file()

hash_final

hash_final -- Finalize an incremental hash and return resulting digest

Description

string hash_final (resource $context [, bool $raw_output])

Parameters

context

Hashing context returned by hash_init().

raw_output

When set to TRUE, outputs raw binary data. Default value (FALSE) outputs
lowercase hexits.

Return Values

Returns a string containing the calculated message digest as lowercase hexits unless
raw_output is set to true in which case the raw binary representation of the message
digest is returned.

Examples

Example #602 - hash_final() example

<?php

$ctx = hash_init('sha1');

hash_update($ctx, 'The quick brown fox jumped over the lazy dog.');

echo hash_final($ctx);

?>

The above example will output:

c0854fb9fb03c41cce3802cb0d220529e6eef94e

See Also

• hash_init()
• hash_update()

• hash_update_stream()
• hash_update_file()

hash_hmac_file

hash_hmac_file -- Generate a keyed hash value using the HMAC method and the contents
of a given file

Description

string hash_hmac_file (string $algo, string $filename, string $key [, bool $raw_output]
)

Parameters

algo

Name of selected hashing algorithm (i.e. "md5", "sha256", "haval160,4", etc..)

filename

URL describing location of file to be hashed; Supports fopen wrappers.

key

Shared secret key used for generating the HMAC variant of the message digest.

raw_output

When set to TRUE, outputs raw binary data. Default value (FALSE) outputs
lowercase hexits.

Return Values

Returns a string containing the calculated message digest as lowercase hexits unless
raw_output is set to true in which case the raw binary representation of the message
digest is returned.

Examples

Example #603 - hash_hmac_file() example

<?php

/* Create a file to calculate hash of */

file_put_contents('example.txt', 'The quick brown fox jumped over the lazy
dog.');

echo hash_hmac_file('md5', 'example.txt', 'secret');

?>

The above example will output:

7eb2b5c37443418fc77c136dd20e859c

See Also

• hash_hmac()
• hash_file()

hash_hmac

hash_hmac -- Generate a keyed hash value using the HMAC method

Description

string hash_hmac (string $algo, string $data, string $key [, bool $raw_output])

Parameters

algo

Name of selected hashing algorithm (i.e. "md5", "sha256", "haval160,4", etc..)

data

Message to be hashed.

key

Shared secret key used for generating the HMAC variant of the message digest.

raw_output

When set to TRUE, outputs raw binary data. Default value (FALSE) outputs
lowercase hexits.

Return Values

Returns a string containing the calculated message digest as lowercase hexits unless
raw_output is set to true in which case the raw binary representation of the message
digest is returned.

Examples

Example #604 - hash_hmac() example

<?php

echo hash_hmac('ripemd160', 'The quick brown fox jumped over the lazy dog.',
'secret');

?>

The above example will output:

b8e7ae12510bdfb1812e463a7f086122cf37e4f7

See Also

• hash()
• hash_init()
• hash_hmac_file()

hash_init

hash_init -- Initialize an incremental hashing context

Description

resource hash_init (string $algo [, int $options [, string $key]])

Parameters

algo

Name of selected hashing algorithm (i.e. "md5", "sha256", "haval160,4", etc..)

options

Optional settings for hash generation, currently supports only one option:
HASH_HMAC. When specified, the key must be specified.

key

When HASH_HMAC is specified for options, a shared secret key to be used with the
HMAC hashing method must be supplied in this parameter.

Return Values

Returns a Hashing Context resource for use with hash_update(), hash_update_stream(),
hash_update_file(), and hash_final().

Examples

Example #605 - Incremental hashing example

<?php

$ctx = hash_init('md5');

hash_update($ctx, 'The quick brown fox ');

hash_update($ctx, 'jumped over the lazy dog.');

echo hash_final($ctx);

?>

The above example will output:

5c6ffbdd40d9556b73a21e63c3e0e904

See Also

• hash()
• hash_file()
• hash_hmac()
• hash_hmac_file()

hash_update_file

hash_update_file -- Pump data into an active hashing context from a file

Description

bool hash_update_file (resource $context, string $filename [, resource $context])

Parameters

context

Hashing context returned by hash_init().

filename

URL describing location of file to be hashed; Supports fopen wrappers.

context

Stream context as returned by stream_context_create().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hash_init()
• hash_update()
• hash_update_stream()
• hash_final()
• hash()
• hash_file()

hash_update_stream

hash_update_stream -- Pump data into an active hashing context from an open stream

Description

int hash_update_stream (resource $context, resource $handle [, int $length])

Parameters

context

Hashing context returned by hash_init().

handle

Open file handle as returned by any stream creation function.

length

Maximum number of characters to copy from handle into the hashing context.

Return Values

Actual number of bytes added to the hashing context from handle.

Examples

Example #606 - hash_update_stream() example

<?php

$fp = tmpfile();

fwrite($fp, 'The quick brown fox jumped over the lazy dog.');

rewind($fp);

$ctx = hash_init('md5');

hash_update_stream($ctx, $fp);

echo hash_final($ctx);

?>

The above example will output:

5c6ffbdd40d9556b73a21e63c3e0e904

See Also

• hash_init()
• hash_update()
• hash_final()
• hash()
• hash_file()

hash_update

hash_update -- Pump data into an active hashing context

Description

bool hash_update (resource $context, string $data)

Parameters

context

Hashing context returned by hash_init().

data

Message to be included in the hash digest.

Return Values

Returns TRUE.

See Also

• hash_init()
• hash_update_file()
• hash_update_stream()
• hash_final()

hash

hash -- Generate a hash value (message digest)

Description

string hash (string $algo, string $data [, bool $raw_output])

Parameters

algo

Name of selected hashing algorithm (i.e. "md5", "sha256", "haval160,4", etc..)

data

Message to be hashed.

raw_output

When set to TRUE, outputs raw binary data. Default value (FALSE) outputs
lowercase hexits.

Return Values

Returns a string containing the calculated message digest as lowercase hexits unless
raw_output is set to true in which case the raw binary representation of the message
digest is returned.

Examples

Example #607 - A hash() example

<?php

echo hash('ripemd160', 'The quick brown fox jumped over the lazy dog.');

?>

The above example will output:

ec457d0a974c48d5685a7efa03d137dc8bbde7e3

See Also

• hash_file()

• hash_hmac()
• hash_init()

Mcrypt

Introduction

This is an interface to the mcrypt library, which supports a wide variety of block algorithms
such as DES, TripleDES, Blowfish (default), 3-WAY, SAFER-SK64, SAFER-SK128,
TWOFISH, TEA, RC2 and GOST in CBC, OFB, CFB and ECB cipher modes. Additionally,
it supports RC6 and IDEA which are considered "non-free".

Installing/Configuring

Requirements

These functions work using » mcrypt. To use it, download libmcrypt-x.x.tar.gz from
» http://mcrypt.sourceforge.net/ and follow the included installation instructions. Windows
users will find all the needed compiled mcrypt binaries at
» http://files.edin.dk/php/win32/mcrypt/.

As of PHP 5.0.0 you will need libmcrypt Version 2.5.6 or greater.

If you linked against libmcrypt 2.4.x or higher, the following additional block algorithms are
supported: CAST, LOKI97, RIJNDAEL, SAFERPLUS, SERPENT and the following stream
ciphers: ENIGMA (crypt), PANAMA, RC4 and WAKE. With libmcrypt 2.4.x or higher
another cipher mode is also available; nOFB.

Installation

You need to compile PHP with the --with-mcrypt[=DIR] parameter to enable this extension.
DIR is the mcrypt install directory. Make sure you compile libmcrypt with the option
--disable-posix-threads.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Mcrypt configuration options

Name Default Changeable Changelog

mcrypt.algorithms_dir NULL PHP_INI_ALL Available since PHP
4.0.2.

mcrypt.modes_dir NULL PHP_INI_ALL Available since PHP
4.0.2.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

mcrypt_module_open() returns an encryption descriptor.

http://mcrypt.sourceforge.net/
http://mcrypt.sourceforge.net/
http://mcrypt.sourceforge.net/
http://files.edin.dk/php/win32/mcrypt/
http://files.edin.dk/php/win32/mcrypt/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Mcrypt can operate in four block cipher modes (CBC, OFB, CFB, and ECB). If linked
against libmcrypt-2.4.x or higher the functions can also operate in the block cipher mode
nOFB and in STREAM mode. Below you find a list with all supported encryption modes
together with the constants that are defines for the encryption mode. For a more complete
reference and discussion see Applied Cryptography by Schneier (ISBN 0-471-11709-9).

• MCRYPT_MODE_ECB (electronic codebook) is suitable for random data, such as
encrypting other keys. Since data there is short and random, the disadvantages of
ECB have a favorable negative effect.

• MCRYPT_MODE_CBC (cipher block chaining) is especially suitable for encrypting
files where the security is increased over ECB significantly.

• MCRYPT_MODE_CFB (cipher feedback) is the best mode for encrypting byte streams
where single bytes must be encrypted.

• MCRYPT_MODE_OFB (output feedback, in 8bit) is comparable to CFB, but can be
used in applications where error propagation cannot be tolerated. It's insecure
(because it operates in 8bit mode) so it is not recommended to use it.

• MCRYPT_MODE_NOFB (output feedback, in nbit) is comparable to OFB, but more
secure because it operates on the block size of the algorithm.

• MCRYPT_MODE_STREAM is an extra mode to include some stream algorithms like
WAKE or RC4.

Some other mode and random device constants:
MCRYPT_ENCRYPT (integer)

MCRYPT_DECRYPT (integer)

MCRYPT_DEV_RANDOM (integer)

MCRYPT_DEV_URANDOM (integer)

MCRYPT_RAND (integer)

Mcrypt ciphers

Here is a list of ciphers which are currently supported by the mcrypt extension. For a
complete list of supported ciphers, see the defines at the end of mcrypt.h. The general rule
with the mcrypt-2.2.x API is that you can access the cipher from PHP with
MCRYPT_ciphername. With the libmcrypt-2.4.x and libmcrypt-2.5.x API these constants
also work, but it is possible to specify the name of the cipher as a string with a call to
mcrypt_module_open().

• MCRYPT_3DES

• MCRYPT_ARCFOUR_IV (libmcrypt > 2.4.x only)

• MCRYPT_ARCFOUR (libmcrypt > 2.4.x only)

• MCRYPT_BLOWFISH

• MCRYPT_CAST_128

• MCRYPT_CAST_256

• MCRYPT_CRYPT

• MCRYPT_DES

• MCRYPT_DES_COMPAT (libmcrypt 2.2.x only)

• MCRYPT_ENIGMA (libmcrypt > 2.4.x only, alias for MCRYPT_CRYPT)

• MCRYPT_GOST

• MCRYPT_IDEA (non-free)

• MCRYPT_LOKI97 (libmcrypt > 2.4.x only)

• MCRYPT_MARS (libmcrypt > 2.4.x only, non-free)

• MCRYPT_PANAMA (libmcrypt > 2.4.x only)

• MCRYPT_RIJNDAEL_128 (libmcrypt > 2.4.x only)

• MCRYPT_RIJNDAEL_192 (libmcrypt > 2.4.x only)

• MCRYPT_RIJNDAEL_256 (libmcrypt > 2.4.x only)

• MCRYPT_RC2

• MCRYPT_RC4 (libmcrypt 2.2.x only)

• MCRYPT_RC6 (libmcrypt > 2.4.x only)

• MCRYPT_RC6_128 (libmcrypt 2.2.x only)

• MCRYPT_RC6_192 (libmcrypt 2.2.x only)

• MCRYPT_RC6_256 (libmcrypt 2.2.x only)

• MCRYPT_SAFER64

• MCRYPT_SAFER128

• MCRYPT_SAFERPLUS (libmcrypt > 2.4.x only)

• MCRYPT_SERPENT(libmcrypt > 2.4.x only)

• MCRYPT_SERPENT_128 (libmcrypt 2.2.x only)

• MCRYPT_SERPENT_192 (libmcrypt 2.2.x only)

• MCRYPT_SERPENT_256 (libmcrypt 2.2.x only)

• MCRYPT_SKIPJACK (libmcrypt > 2.4.x only)

• MCRYPT_TEAN (libmcrypt 2.2.x only)

• MCRYPT_THREEWAY

• MCRYPT_TRIPLEDES (libmcrypt > 2.4.x only)

• MCRYPT_TWOFISH (for older mcrypt 2.x versions, or mcrypt > 2.4.x)

• MCRYPT_TWOFISH128 (TWOFISHxxx are available in newer 2.x versions, but not in
the 2.4.x versions)

• MCRYPT_TWOFISH192

• MCRYPT_TWOFISH256

• MCRYPT_WAKE (libmcrypt > 2.4.x only)

• MCRYPT_XTEA (libmcrypt > 2.4.x only)

You must (in CFB and OFB mode) or can (in CBC mode) supply an initialization vector (IV)
to the respective cipher function. The IV must be unique and must be the same when
decrypting/encrypting. With data which is stored encrypted, you can take the output of a
function of the index under which the data is stored (e.g. the MD5 key of the filename).
Alternatively, you can transmit the IV together with the encrypted data (see chapter 9.3 of
Applied Cryptography by Schneier (ISBN 0-471-11709-9) for a discussion of this topic).

Examples

Mcrypt can be used to encrypt and decrypt using the above mentioned ciphers. If you
linked against libmcrypt-2.2.x, the four important mcrypt commands (mcrypt_cfb(),
mcrypt_cbc(), mcrypt_ecb(), and mcrypt_ofb()) can operate in both modes which are
named MCRYPT_ENCRYPT and MCRYPT_DECRYPT, respectively.

Example #608 - Encrypt an input value with TripleDES under 2.2.x in ECB mode

<?php

$key = "this is a secret key";

$input = "Let us meet at 9 o'clock at the secret place.";

$encrypted_data = mcrypt_ecb (MCRYPT_3DES, $key, $input, MCRYPT_ENCRYPT);

?>

This example will give you the encrypted data as a string in $encrypted_data.

If you linked against libmcrypt 2.4.x or 2.5.x, these functions are still available, but it is
recommended that you use the advanced functions.

Example #609 - Encrypt an input value with TripleDES under 2.4.x and higher in
ECB mode

<?php

 $key = "this is a secret key";

 $input = "Let us meet at 9 o'clock at the secret place.";

 $td = mcrypt_module_open('tripledes', '', 'ecb', '');

 $iv = mcrypt_create_iv (mcrypt_enc_get_iv_size($td), MCRYPT_RAND);

 mcrypt_generic_init($td, $key, $iv);

 $encrypted_data = mcrypt_generic($td, $input);

 mcrypt_generic_deinit($td);

 mcrypt_module_close($td);

?>

This example will give you the encrypted data as a string in $encrypted_data. For a full
example see mcrypt_module_open().

Mcrypt Functions

mcrypt_cbc

mcrypt_cbc -- Encrypt/decrypt data in CBC mode

Description

string mcrypt_cbc (int $cipher, string $key, string $data, int $mode [, string $iv])

string mcrypt_cbc (string $cipher, string $key, string $data, int $mode [, string $iv])

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or higher. The mode should be either MCRYPT_ENCRYPT or
MCRYPT_DECRYPT.

This function should not be used anymore, see mcrypt_generic() and mdecrypt_generic()
for replacements.

mcrypt_cfb

mcrypt_cfb -- Encrypt/decrypt data in CFB mode

Description

string mcrypt_cfb (int $cipher, string $key, string $data, int $mode, string $iv)

string mcrypt_cfb (string $cipher, string $key, string $data, int $mode [, string $iv])

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or higher. The mode should be either MCRYPT_ENCRYPT or
MCRYPT_DECRYPT.

This function should not be used anymore, see mcrypt_generic() and mdecrypt_generic()
for replacements.

mcrypt_create_iv

mcrypt_create_iv -- Create an initialization vector (IV) from a random source

Description

string mcrypt_create_iv (int $size [, int $source])

mcrypt_create_iv() is used to create an IV.

Parameter size determines the size of the IV, parameter source (defaults to random
value) specifies the source of the IV.

The source can be MCRYPT_RAND (system random number generator),
MCRYPT_DEV_RANDOM (read data from /dev/random) and
MCRYPT_DEV_URANDOM (read data from /dev/urandom). MCRYPT_RAND is the only
one supported on Windows because Windows (of course) doesn't have /dev/random or
/dev/urandom.

Note

When using MCRYPT_RAND, remember to call srand() before mcrypt_create_iv() to
initialize the random number generator; it is not seeded automatically like rand() is.

Example #610 - mcrypt_create_iv() example

<?php

 $size = mcrypt_get_iv_size(MCRYPT_CAST_256, MCRYPT_MODE_CFB);

 $iv = mcrypt_create_iv($size, MCRYPT_DEV_RANDOM);

?>

The IV is only meant to give an alternative seed to the encryption routines. This IV does
not need to be secret at all, though it can be desirable. You even can send it along with
your ciphertext without losing security.

More information can be found at » http://www.ciphersbyritter.com/GLOSSARY.HTM#IV,
» http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/co0409.htm and in chapter 9.3 of
Applied Cryptography by Schneier (ISBN 0-471-11709-9) for a discussion of this topic.

http://www.ciphersbyritter.com/GLOSSARY.HTM#IV
http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/co0409.htm
http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/co0409.htm

mcrypt_decrypt

mcrypt_decrypt -- Decrypts crypttext with given parameters

Description

string mcrypt_decrypt (string $cipher, string $key, string $data, string $mode [, string $
iv])

Decrypts the data and returns the unencrypted data.

Parameters

cipher

cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as
string.

key

key is the key with which the data is encrypted. If it's smaller that the required keysize,
it is padded with ' \0 '.

data

data is the data that will be decrypted with the given cipher and mode. If the size of the
data is not n * blocksize, the data will be padded with ' \0 '.

mode

mode is one of the MCRYPT_MODE_modename constants of one of "ecb", "cbc", "cfb",
"ofb", "nofb" or "stream".

iv

The iv parameter is used for the initialisation in CBC, CFB, OFB modes, and in some
algorithms in STREAM mode. If you do not supply an IV, while it is needed for an
algorithm, the function issues a warning and uses an IV with all bytes set to ' \0 '.

Return Values

Returns the decrypted data as a string.

mcrypt_ecb

mcrypt_ecb -- Deprecated: Encrypt/decrypt data in ECB mode

Description

string mcrypt_ecb (int $cipher, string $key, string $data, int $mode)

string mcrypt_ecb (string $cipher, string $key, string $data, int $mode [, string $iv])

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or higher. The mode should be either MCRYPT_ENCRYPT or
MCRYPT_DECRYPT.

This function is deprecated and should not be used anymore, see mcrypt_generic() and
mdecrypt_generic() for replacements.

mcrypt_enc_get_algorithms_name

mcrypt_enc_get_algorithms_name -- Returns the name of the opened algorithm

Description

string mcrypt_enc_get_algorithms_name (resource $td)

This function returns the name of the algorithm.

Examples

Example #611 - mcrypt_enc_get_algorithms_name() example

<?php

$td = mcrypt_module_open(MCRYPT_CAST_256, '', MCRYPT_MODE_CFB, '');

echo mcrypt_enc_get_algorithms_name($td). "\n";

$td = mcrypt_module_open('cast-256', '', MCRYPT_MODE_CFB, '');

echo mcrypt_enc_get_algorithms_name($td). "\n";

?>

The above example will output:

CAST-256

CAST-256

mcrypt_enc_get_block_size

mcrypt_enc_get_block_size -- Returns the blocksize of the opened algorithm

Description

int mcrypt_enc_get_block_size (resource $td)

Gets the blocksize of the opened algorithm.

Parameters

td

The encryption descriptor.

Return Values

Returns the block size of the specified algorithm in bytes.

mcrypt_enc_get_iv_size

mcrypt_enc_get_iv_size -- Returns the size of the IV of the opened algorithm

Description

int mcrypt_enc_get_iv_size (resource $td)

This function returns the size of the IV of the algorithm specified by the encryption
descriptor in bytes. An IV is used in cbc, cfb and ofb modes, and in some algorithms in
stream mode.

Parameters

td

The encryption descriptor.

Return Values

Returns the size of the IV, or 0 if the IV is ignored in the algorithm.

mcrypt_enc_get_key_size

mcrypt_enc_get_key_size -- Returns the maximum supported keysize of the opened mode

Description

int mcrypt_enc_get_key_size (resource $td)

Gets the maximum supported key size of the algorithm in bytes.

Parameters

td

The encryption descriptor.

Return Values

Returns the maximum supported key size of the algorithm in bytes.

mcrypt_enc_get_modes_name

mcrypt_enc_get_modes_name -- Returns the name of the opened mode

Description

string mcrypt_enc_get_modes_name (resource $td)

This function returns the name of the mode.

Parameters

td

The encryption descriptor.

Return Values

Returns the name as a string.

Examples

Example #612 - mcrypt_enc_get_modes_name() example

<?php

$td = mcrypt_module_open (MCRYPT_CAST_256, '', MCRYPT_MODE_CFB, '');

echo mcrypt_enc_get_modes_name($td). "\n";

$td = mcrypt_module_open ('cast-256', '', 'ecb', '');

echo mcrypt_enc_get_modes_name($td). "\n";

?>

The above example will output:

CFB

ECB

mcrypt_enc_get_supported_key_sizes

mcrypt_enc_get_supported_key_sizes -- Returns an array with the supported keysizes of
the opened algorithm

Description

array mcrypt_enc_get_supported_key_sizes (resource $td)

Returns an array with the key sizes supported by the algorithm specified by the encryption
descriptor. If it returns an empty array then all key sizes between 1 and
mcrypt_enc_get_key_size() are supported by the algorithm.

Examples

Example #613 - mcrypt_enc_get_supported_key_sizes() example

<?php

 $td = mcrypt_module_open('rijndael-256', '', 'ecb', '');

 var_dump(mcrypt_enc_get_supported_key_sizes($td));

?>

This will print:

array(3) {

 [0]=>

 int(16)

 [1]=>

 int(24)

 [2]=>

 int(32)

}

mcrypt_enc_is_block_algorithm_mode

mcrypt_enc_is_block_algorithm_mode -- Checks whether the encryption of the opened
mode works on blocks

Description

bool mcrypt_enc_is_block_algorithm_mode (resource $td)

Tells whether the algorithm of the opened mode works on blocks (e.g. FALSE for stream,
and TRUE for cbc, cfb, ofb)..

Parameters

td

The encryption descriptor.

Return Values

Returns TRUE if the mode is for use with block algorithms, otherwise it returns FALSE.

mcrypt_enc_is_block_algorithm

mcrypt_enc_is_block_algorithm -- Checks whether the algorithm of the opened mode is a
block algorithm

Description

bool mcrypt_enc_is_block_algorithm (resource $td)

Tells whether the algorithm of the opened mode is a block algorithm.

Parameters

td

The encryption descriptor.

Return Values

Returns TRUE if the algorithm is a block algorithm or FALSE if it is a stream one.

mcrypt_enc_is_block_mode

mcrypt_enc_is_block_mode -- Checks whether the opened mode outputs blocks

Description

bool mcrypt_enc_is_block_mode (resource $td)

Tells whether the opened mode outputs blocks (e.g. TRUE for cbc and ecb, and FALSE
for cfb and stream).

Parameters

td

The encryption descriptor.

Return Values

Returns TRUE if the mode outputs blocks of bytes or FALSE if it outputs bytes.

mcrypt_enc_self_test

mcrypt_enc_self_test -- Runs a self test on the opened module

Description

int mcrypt_enc_self_test (resource $td)

This function runs the self test on the algorithm specified by the descriptor td.

Parameters

td

The encryption descriptor.

Return Values

If the self test succeeds it returns FALSE. In case of an error, it returns TRUE.

mcrypt_encrypt

mcrypt_encrypt -- Encrypts plaintext with given parameters

Description

string mcrypt_encrypt (string $cipher, string $key, string $data, string $mode [, string $
iv])

mcrypt_encrypt() encrypts the data and returns the encrypted data.

Cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as
string.

Key is the key with which the data will be encrypted. If it's smaller that the required keysize,
it is padded with ' \0 '. It is better not to use ASCII strings for keys. It is recommended to
use the mhash functions to create a key from a string.

Data is the data that will be encrypted with the given cipher and mode. If the size of the
data is not n * blocksize, the data will be padded with ' \0 '. The returned crypttext can be
larger that the size of the data that is given by data.

Mode is one of the MCRYPT_MODE_modename constants of one of "ecb", "cbc", "cfb",
"ofb", "nofb" or "stream".

The IV parameter is used for the initialisation in CBC, CFB, OFB modes, and in some
algorithms in STREAM mode. If you do not supply an IV, while it is needed for an
algorithm, the function issues a warning and uses an IV with all bytes set to ' \0 '.

Examples

Example #614 - mcrypt_encrypt() Example

<?php

 $iv_size = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_ECB);

 $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);

 $key = "This is a very secret key";

 $text = "Meet me at 11 o'clock behind the monument.";

 echo strlen($text) . "\n";

 $crypttext = mcrypt_encrypt(MCRYPT_RIJNDAEL_256, $key, $text,
MCRYPT_MODE_ECB, $iv);

 echo strlen($crypttext) . "\n";

?>

The above example will output:

42

64

See also mcrypt_module_open() for a more advanced API and an example.

mcrypt_generic_deinit

mcrypt_generic_deinit -- This function deinitializes an encryption module

Description

bool mcrypt_generic_deinit (resource $td)

This function terminates encryption specified by the encryption descriptor (td). It clears
all buffers, but does not close the module. You need to call mcrypt_module_close()
yourself. (But PHP does this for you at the end of the script.) Returns FALSE on error, or
TRUE on success.

See for an example mcrypt_module_open() and the entry on mcrypt_generic_init().

mcrypt_generic_end

mcrypt_generic_end -- This function terminates encryption

Description

bool mcrypt_generic_end (resource $td)

Warning

This function is deprecated, use mcrypt_generic_deinit() instead. It can cause crashes
when used with mcrypt_module_close() due to multiple buffer frees.

This function terminates encryption specified by the encryption descriptor (td). Actually it
clears all buffers, and closes all the modules used. Returns FALSE on error, or TRUE on
success.

mcrypt_generic_init

mcrypt_generic_init -- This function initializes all buffers needed for encryption

Description

int mcrypt_generic_init (resource $td, string $key, string $iv)

You need to call this function before every call to mcrypt_generic() or mdecrypt_generic().

Parameters

td

The encryption descriptor.

key

The maximum length of the key should be the one obtained by calling
mcrypt_enc_get_key_size() and every value smaller than this is legal.

iv

The IV should normally have the size of the algorithms block size, but you must obtain
the size by calling mcrypt_enc_get_iv_size(). IV is ignored in ECB. IV MUST exist in
CFB, CBC, STREAM, nOFB and OFB modes. It needs to be random and unique (but
not secret). The same IV must be used for encryption/decryption. If you do not want to
use it you should set it to zeros, but this is not recommended.

Return Values

The function returns a negative value on error, -3 when the key length was incorrect, -4
when there was a memory allocation problem and any other return value is an unknown
error. If an error occurs a warning will be displayed accordingly. FALSE is returned if
incorrect parameters were passed.

See Also

• mcrypt_module_open()

mcrypt_generic

mcrypt_generic -- This function encrypts data

Description

string mcrypt_generic (resource $td, string $data)

This function encrypts data. The data is padded with " \0 " to make sure the length of the
data is n * blocksize. This function returns the encrypted data. Note that the length of the
returned string can in fact be longer then the input, due to the padding of the data.

If you want to store the encrypted data in a database make sure to store the entire string
as returned by mcrypt_generic, or the string will not entirely decrypt properly. If your
original string is 10 characters long and the block size is 8 (use
mcrypt_enc_get_block_size() to determine the blocksize), you would need at least 16
characters in your database field. Note the string returned by mdecrypt_generic() will be
16 characters as well...use rtrim() ($str, "\0") to remove the padding.

If you are for example storing the data in a MySQL database remember that varchar fields
automatically have trailing spaces removed during insertion. As encrypted data can end in
a space (ASCII 32), the data will be damaged by this removal. Store data in a
tinyblob/tinytext (or larger) field instead.

The encryption handle should always be initialized with mcrypt_generic_init() with a key
and an IV before calling this function. Where the encryption is done, you should free the
encryption buffers by calling mcrypt_generic_deinit(). See mcrypt_module_open() for an
example.

See also mdecrypt_generic(), mcrypt_generic_init(), and mcrypt_generic_deinit().

mcrypt_get_block_size

mcrypt_get_block_size -- Get the block size of the specified cipher

Description

int mcrypt_get_block_size (int $cipher)

int mcrypt_get_block_size (string $cipher, string $module)

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or 2.5.x.

mcrypt_get_block_size() is used to get the size of a block of the specified cipher (in
combination with an encryption mode).

It is more useful to use the mcrypt_enc_get_block_size() function as this uses the
resource returned by mcrypt_module_open().

This example shows how to use this function when linked against libmcrypt 2.4.x and
2.5.x.

Example #615 - mcrypt_get_block_size() example

<?php

 echo mcrypt_get_block_size('tripledes', 'ecb');

?>

Prints:

8

See also: mcrypt_get_key_size(), mcrypt_enc_get_block_size() and mcrypt_encrypt().

mcrypt_get_cipher_name

mcrypt_get_cipher_name -- Get the name of the specified cipher

Description

string mcrypt_get_cipher_name (int $cipher)

string mcrypt_get_cipher_name (string $cipher)

mcrypt_get_cipher_name() is used to get the name of the specified cipher.

mcrypt_get_cipher_name() takes the cipher number as an argument (libmcrypt 2.2.x) or
takes the cipher name as an argument (libmcrypt 2.4.x or higher) and returns the name of
the cipher or FALSE, if the cipher does not exist.

Examples

Example #616 - mcrypt_get_cipher_name() Example

<?php

 $cipher = MCRYPT_TripleDES;

 echo mcrypt_get_cipher_name($cipher);

?>

The above example will output:

3DES

mcrypt_get_iv_size

mcrypt_get_iv_size -- Returns the size of the IV belonging to a specific cipher/mode
combination

Description

int mcrypt_get_iv_size (string $cipher, string $mode)

mcrypt_get_iv_size() returns the size of the Initialisation Vector (IV) in bytes. On error the
function returns FALSE. If the IV is ignored in the specified cipher/mode combination zero
is returned.

cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as
string.

mode is one of the MCRYPT_MODE_modename constants or one of "ecb", "cbc", "cfb",
"ofb", "nofb" or "stream". The IV is ignored in ECB mode as this mode does not require it.
You will need to have the same IV (think: starting point) both at encryption and decryption
stages, otherwise your encryption will fail.

It is more useful to use the mcrypt_enc_get_iv_size() function as this uses the resource
returned by mcrypt_module_open().

Examples

Example #617 - mcrypt_get_iv_size() example

<?php

 echo mcrypt_get_iv_size(MCRYPT_CAST_256, MCRYPT_MODE_CFB) . "\n";

 echo mcrypt_get_iv_size('des', 'ecb') . "\n";

?>

See also mcrypt_get_block_size(), mcrypt_enc_get_iv_size() and mcrypt_create_iv().

mcrypt_get_key_size

mcrypt_get_key_size -- Get the key size of the specified cipher

Description

int mcrypt_get_key_size (int $cipher)

int mcrypt_get_key_size (string $cipher, string $module)

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or 2.5.x.

mcrypt_get_key_size() is used to get the size of a key of the specified cipher (in
combination with an encryption mode).

This example shows how to use this function when linked against libmcrypt 2.4.x and
2.5.x. It is more useful to use the mcrypt_enc_get_key_size() function as this uses the
resource returned by mcrypt_module_open().

Example #618 - mcrypt_get_block_size() example

<?php

 echo mcrypt_get_key_size('tripledes', 'ecb');

?>

Prints:

24

See also: mcrypt_get_block_size(), mcrypt_end_get_key_size() and mcrypt_encrypt().

mcrypt_list_algorithms

mcrypt_list_algorithms -- Get an array of all supported ciphers

Description

array mcrypt_list_algorithms ([string $lib_dir])

mcrypt_list_algorithms() is used to get an array of all supported algorithms in the lib_dir
parameter.

mcrypt_list_algorithms() takes an optional lib_dir parameter which specifies the directory
where all algorithms are located. If not specifies, the value of the mcrypt.algorithms_dir
php.ini directive is used.

Examples

Example #619 - mcrypt_list_algorithms() Example

<?php

 $algorithms = mcrypt_list_algorithms("/usr/local/lib/libmcrypt");

 foreach ($algorithms as $cipher) {

 echo "$cipher
\n";

 }

?>

The above example will produce a list with all supported algorithms in the
"/usr/local/lib/libmcrypt" directory.

mcrypt_list_modes

mcrypt_list_modes -- Get an array of all supported modes

Description

array mcrypt_list_modes ([string $lib_dir])

mcrypt_list_modes() is used to get an array of all supported modes in the lib_dir.

mcrypt_list_modes() takes as optional parameter a directory which specifies the directory
where all modes are located. If not specifies, the value of the mcrypt.modes_dir php.ini
directive is used.

Examples

Example #620 - mcrypt_list_modes() Example

<?php

 $modes = mcrypt_list_modes();

 foreach ($modes as $mode) {

 echo "$mode
\n";

 }

?>

The above example will produce a list with all supported algorithms in the default mode
directory. If it is not set with the ini directive mcrypt.modes_dir, the default directory of
mcrypt is used (which is /usr/local/lib/libmcrypt).

mcrypt_module_close

mcrypt_module_close -- Close the mcrypt module

Description

bool mcrypt_module_close (resource $td)

Closes the specified encryption handle.

Parameters

td

The encryption descriptor.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mcrypt_module_open()

mcrypt_module_get_algo_block_size

mcrypt_module_get_algo_block_size -- Returns the blocksize of the specified algorithm

Description

int mcrypt_module_get_algo_block_size (string $algorithm [, string $lib_dir])

Gets the blocksize of the specified algorithm.

Parameters

algorithm

The algorithm name.

lib_dir

This optional parameter can contain the location where the mode module is on the
system.

Return Values

Returns the block size of the algorithm specified in bytes.

mcrypt_module_get_algo_key_size

mcrypt_module_get_algo_key_size -- Returns the maximum supported keysize of the
opened mode

Description

int mcrypt_module_get_algo_key_size (string $algorithm [, string $lib_dir])

Gets the maximum supported keysize of the opened mode.

Parameters

algorithm

The algorithm name.

lib_dir

This optional parameter can contain the location where the mode module is on the
system.

Return Values

This function returns the maximum supported key size of the algorithm specified in bytes.

mcrypt_module_get_supported_key_sizes

mcrypt_module_get_supported_key_sizes -- Returns an array with the supported keysizes
of the opened algorithm

Description

array mcrypt_module_get_supported_key_sizes (string $algorithm [, string $lib_dir
])

Returns an array with the key sizes supported by the specified algorithm. If it returns an
empty array then all key sizes between 1 and mcrypt_module_get_algo_key_size() are
supported by the algorithm. The optional lib_dir parameter can contain the location
where the mode module is on the system.

See also mcrypt_enc_get_supported_key_sizes() which is used on open encryption
modules.

mcrypt_module_is_block_algorithm_mode

mcrypt_module_is_block_algorithm_mode -- Returns if the specified module is a block
algorithm or not

Description

bool mcrypt_module_is_block_algorithm_mode (string $mode [, string $lib_dir])

This function returns TRUE if the mode is for use with block algorithms, otherwise it
returns FALSE. (e.g. FALSE for stream, and TRUE for cbc, cfb, ofb). The optional
lib_dir parameter can contain the location where the mode module is on the system.

mcrypt_module_is_block_algorithm

mcrypt_module_is_block_algorithm -- This function checks whether the specified algorithm
is a block algorithm

Description

bool mcrypt_module_is_block_algorithm (string $algorithm [, string $lib_dir])

This function returns TRUE if the specified algorithm is a block algorithm, or FALSE is it is
a stream algorithm. The optional lib_dir parameter can contain the location where the
algorithm module is on the system.

mcrypt_module_is_block_mode

mcrypt_module_is_block_mode -- Returns if the specified mode outputs blocks or not

Description

bool mcrypt_module_is_block_mode (string $mode [, string $lib_dir])

This function returns TRUE if the mode outputs blocks of bytes or FALSE if it outputs just
bytes. (e.g. TRUE for cbc and ecb, and FALSE for cfb and stream). The optional lib_dir
parameter can contain the location where the mode module is on the system.

mcrypt_module_open

mcrypt_module_open -- Opens the module of the algorithm and the mode to be used

Description

resource mcrypt_module_open (string $algorithm, string $algorithm_directory, string
$mode, string $mode_directory)

This function opens the module of the algorithm and the mode to be used. The name of
the algorithm is specified in algorithm, e.g. "twofish" or is one of the MCRYPT_ciphername
constants. The module is closed by calling mcrypt_module_close(). Normally it returns an
encryption descriptor, or FALSE on error.

The algorithm_directory and mode_directory are used to locate the encryption
modules. When you supply a directory name, it is used. When you set one of these to the
empty string (""), the value set by the mcrypt.algorithms_dir or mcrypt.modes_dir
ini-directive is used. When these are not set, the default directories that are used are the
ones that were compiled in into libmcrypt (usually /usr/local/lib/libmcrypt).

Examples

Example #621 - mcrypt_module_open() examples

<?php

 $td = mcrypt_module_open(MCRYPT_DES, '',

 MCRYPT_MODE_ECB, '/usr/lib/mcrypt-modes');

 $td = mcrypt_module_open('rijndael-256', '', 'ofb', '');

?>

The first line in the example above will try to open the DES cipher from the default
directory and the EBC mode from the directory /usr/lib/mcrypt-modes. The second
example uses strings as name for the cipher and mode, this only works when the
extension is linked against libmcrypt 2.4.x or 2.5.x.

Examples

Example #622 - Using mcrypt_module_open() in encryption

<?php

 /* Open the cipher */

 $td = mcrypt_module_open('rijndael-256', '', 'ofb', '');

 /* Create the IV and determine the keysize length, use MCRYPT_RAND

 * on Windows instead */

 $iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($td), MCRYPT_DEV_RANDOM);

 $ks = mcrypt_enc_get_key_size($td);

 /* Create key */

 $key = substr(md5('very secret key'), 0, $ks);

 /* Intialize encryption */

 mcrypt_generic_init($td, $key, $iv);

 /* Encrypt data */

 $encrypted = mcrypt_generic($td, 'This is very important data');

 /* Terminate encryption handler */

 mcrypt_generic_deinit($td);

 /* Initialize encryption module for decryption */

 mcrypt_generic_init($td, $key, $iv);

 /* Decrypt encrypted string */

 $decrypted = mdecrypt_generic($td, $encrypted);

 /* Terminate decryption handle and close module */

 mcrypt_generic_deinit($td);

 mcrypt_module_close($td);

 /* Show string */

 echo trim($decrypted) . "\n";

?>

See also mcrypt_module_close(), mcrypt_generic(), mdecrypt_generic(),
mcrypt_generic_init(), and mcrypt_generic_deinit().

mcrypt_module_self_test

mcrypt_module_self_test -- This function runs a self test on the specified module

Description

bool mcrypt_module_self_test (string $algorithm [, string $lib_dir])

This function runs the self test on the algorithm specified. The optional lib_dir parameter
can contain the location of where the algorithm module is on the system.

The function returns TRUE if the self test succeeds, or FALSE when if fails.

Examples

Example #623 - mcrypt_module_self_test() example

<?php

var_dump(mcrypt_module_self_test(MCRYPT_RIJNDAEL_128)) . "\n";

var_dump(mcrypt_module_self_test(MCRYPT_BOGUS_CYPHER));

?>

The above example will output:

bool(true)

bool(false)

mcrypt_ofb

mcrypt_ofb -- Encrypt/decrypt data in OFB mode

Description

string mcrypt_ofb (int $cipher, string $key, string $data, int $mode, string $iv)

string mcrypt_ofb (string $cipher, string $key, string $data, int $mode [, string $iv])

The first prototype is when linked against libmcrypt 2.2.x, the second when linked against
libmcrypt 2.4.x or higher. The mode should be either MCRYPT_ENCRYPT or
MCRYPT_DECRYPT.

This function should not be used anymore, see mcrypt_generic() and mdecrypt_generic()
for replacements.

mdecrypt_generic

mdecrypt_generic -- Decrypt data

Description

string mdecrypt_generic (resource $td, string $data)

This function decrypts data. Note that the length of the returned string can in fact be longer
then the unencrypted string, due to the padding of the data.

Examples

Example #624 - mdecrypt_generic() example

<?php

 /* Data */

 $key = 'this is a very long key, even too long for the cipher';

 $plain_text = 'very important data';

 /* Open module, and create IV */

 $td = mcrypt_module_open('des', '', 'ecb', '');

 $key = substr($key, 0, mcrypt_enc_get_key_size($td));

 $iv_size = mcrypt_enc_get_iv_size($td);

 $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);

 /* Initialize encryption handle */

 if (mcrypt_generic_init($td, $key, $iv) != -1) {

 /* Encrypt data */

 $c_t = mcrypt_generic($td, $plain_text);

 mcrypt_generic_deinit($td);

 /* Reinitialize buffers for decryption */

 mcrypt_generic_init($td, $key, $iv);

 $p_t = mdecrypt_generic($td, $c_t);

 /* Clean up */

 mcrypt_generic_deinit($td);

 mcrypt_module_close($td);

 }

 if (strncmp($p_t, $plain_text, strlen($plain_text)) == 0) {

 echo "ok\n";

 } else {

 echo "error\n";

 }

?>

The above example shows how to check if the data before the encryption is the same as

the data after the decryption. It is very important to reinitialize the encryption buffer with
mcrypt_generic_init() before you try to decrypt the data.

The decryption handle should always be initialized with mcrypt_generic_init() with a key
and an IV before calling this function. Where the encryption is done, you should free the
encryption buffers by calling mcrypt_generic_deinit(). See mcrypt_module_open() for an
example.

See also mcrypt_generic(), mcrypt_generic_init(), and mcrypt_generic_deinit().

Mhash

Introduction

These functions are intended to work with » mhash. Mhash can be used to create
checksums, message digests, message authentication codes, and more.

This is an interface to the mhash library. mhash supports a wide variety of hash algorithms
such as MD5, SHA1, GOST, and many others. For a complete list of supported hashes,
refer to the documentation of mhash. The general rule is that you can access the hash
algorithm from PHP with MHASH_HASHNAME. For example, to access TIGER you use
the PHP constant MHASH_TIGER.

Note

This extension is obsoleted by Hash.

http://mhash.sourceforge.net/

Installing/Configuring

Requirements

To use it, download the mhash distribution from » its web site and follow the included
installation instructions.

Installation

You need to compile PHP with the --with-mhash[=DIR] parameter to enable this extension.
DIR is the mhash install directory.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://mhash.sourceforge.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Here is a list of hashes which are currently supported by mhash. If a hash is not listed
here, but is listed by mhash as supported, you can safely assume that this documentation
is outdated.

• MHASH_ADLER32

• MHASH_CRC32

• MHASH_CRC32B

• MHASH_GOST

• MHASH_HAVAL128

• MHASH_HAVAL160

• MHASH_HAVAL192

• MHASH_HAVAL256

• MHASH_MD4

• MHASH_MD5

• MHASH_RIPEMD160

• MHASH_SHA1

• MHASH_SHA256

• MHASH_TIGER

• MHASH_TIGER128

• MHASH_TIGER160

Examples

Example #625 - Compute the MD5 digest and hmac and print it out as hex

<?php

$input = "what do ya want for nothing?";

$hash = mhash(MHASH_MD5, $input);

echo "The hash is " . bin2hex($hash) . "
\n";

$hash = mhash(MHASH_MD5, $input, "Jefe");

echo "The hmac is " . bin2hex($hash) . "
\n";

?>

This will produce:
The hash is d03cb659cbf9192dcd066272249f8412

The hmac is 750c783e6ab0b503eaa86e310a5db738

Mhash Functions

mhash_count

mhash_count -- Get the highest available hash id

Description

int mhash_count (void)

Gets the highest available hash id.

Return Values

Returns the highest available hash id. Hashes are numbered from 0 to this hash id.

Examples

Example #626 - Traversing all hashes

<?php

$nr = mhash_count();

for ($i = 0; $i <= $nr; $i++) {

 echo sprintf("The blocksize of %s is %d\n",

 mhash_get_hash_name($i),

 mhash_get_block_size($i));

}

?>

mhash_get_block_size

mhash_get_block_size -- Get the block size of the specified hash

Description

int mhash_get_block_size (int $hash)

Gets the size of a block of the specified hash.

Parameters

hash

The hash id. One of the MHASH_XXX constants.

Return Values

Returns the size in bytes or FALSE, if the hash does not exist.

Examples

Example #627 - mhash_get_block_size() Example

<?php

echo mhash_get_block_size(MHASH_MD5); // 16

?>

mhash_get_hash_name

mhash_get_hash_name -- Get the name of the specified hash

Description

string mhash_get_hash_name (int $hash)

Gets the name of the specified hash.

Parameters

hash

The hash id. One of the MHASH_XXX constants.

Return Values

Returns the name of the hash or FALSE, if the hash does not exist.

Examples

Example #628 - mhash_get_hash_name() example

<?php

echo mhash_get_hash_name(MHASH_MD5); // MD5

?>

mhash_keygen_s2k

mhash_keygen_s2k -- Generates a key

Description

string mhash_keygen_s2k (int $hash, string $password, string $salt, int $bytes)

Generates a key according to the hash given a user provided password.

This is the Salted S2K algorithm as specified in the OpenPGP document (» RFC 2440).

Keep in mind that user supplied passwords are not really suitable to be used as keys in
cryptographic algorithms, since users normally choose keys they can write on keyboard.
These passwords use only 6 to 7 bits per character (or less). It is highly recommended to
use some kind of transformation (like this function) to the user supplied key.

Parameters

hash

The hash id used to create the key. One of the MHASH_XXX constants.

password

User supplied password.

salt

Must be different and random enough for every key you generate in order to create
different keys. That salt must be known when you check the keys, thus it is a good
idea to append the key to it. Salt has a fixed length of 8 bytes and will be padded with
zeros if you supply less bytes.

bytes

The key length, in bytes.

Return Values

Returns the generated key as a string, or FALSE on error.

http://www.faqs.org/rfcs/rfc2440

mhash

mhash -- Compute hash

Description

string mhash (int $hash, string $data [, string $key])

mhash() applies a hash function specified by hash to the data.

Parameters

hash

The hash id. One of the MHASH_XXX constants.

data

The user input, as a string.

key

If specified, the function will return the resulting HMAC instead. HMAC is keyed
hashing for message authentication, or simply a message digest that depends on the
specified key. Not all algorithms supported in mhash can be used in HMAC mode.

Return Values

Returns the resulting hash (also called digest) or HMAC as a string, or FALSE on errors.

OpenSSL

Introduction

This module uses the functions of » OpenSSL for generation and verification of signatures
and for sealing (encrypting) and opening (decrypting) data. OpenSSL offers many features
that this module currently doesn't support. Some of these may be added in the future.

http://www.openssl.org/

Installing/Configuring

Requirements

In order to use the OpenSSL functions you need to install the » OpenSSL package. PHP
between versions 4.0.5 and 4.3.1 will work with OpenSSL >= 0.9.5. Other versions (PHP
<=4.0.4 and >= 4.3.2) require OpenSSL >= 0.9.6.

Warning

You are strongly encouraged to use the most recent OpenSSL version, otherwise your
web server could be vulnerable to attack.

Installation

To use PHP's OpenSSL support you must also compile PHP --with-openssl[=DIR].

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: libeay32.dll

Additionally, if you are planning to use the key generation and certificate signing
functions, you will need to install a valid openssl.cnf file on your system. As of PHP
4.3.0, we include a sample configuration file in our win32 binary distributions. PHP
4.3.x and 4.4.x has the file in the openssl directory. PHP 5.x and 6.x has the file in the
extras/openssl directory. If you are either using PHP 4.2.x or missing the file, you can
obtain it from » the OpenSSL binaries page or by downloading a recent PHP release.
Be aware that Windows Explorer hides the.cnf extension by default and says the file
Type is SpeedDial.

PHP will search for the openssl.cnf using the following logic:

• the OPENSSL_CONF environmental variable, if set, will be used as the path
(including filename) of the configuration file.

• the SSLEAY_CONF environmental variable, if set, will be used as the path
(including filename) of the configuration file.

http://www.openssl.org/
http://www.openssl.org/related/binaries.html

• The file openssl.cnf will be assumed to be found in the default certificate area, as
configured at the time that the openssl DLL was compiled. This is usually means
that the default filename is c:\usr\local\ssl\openssl.cnf.

In your installation, you need to decide whether to install the configuration file at
c:\usr\local\ssl\openssl.cnf or whether to install it someplace else and use
environmental variables (possibly on a per-virtual-host basis) to locate the
configuration file. Note that it is possible to override the default path from the script
using the configargs of the functions that require a configuration file.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Purpose checking flags

X509_PURPOSE_SSL_CLIENT (integer)

X509_PURPOSE_SSL_SERVER (integer)

X509_PURPOSE_NS_SSL_SERVER (integer)

X509_PURPOSE_SMIME_SIGN (integer)

X509_PURPOSE_SMIME_ENCRYPT (integer)

X509_PURPOSE_CRL_SIGN (integer)

X509_PURPOSE_ANY (integer)

Padding flags

OPENSSL_PKCS1_PADDING (integer)

OPENSSL_SSLV23_PADDING (integer)

OPENSSL_NO_PADDING (integer)

OPENSSL_PKCS1_OAEP_PADDING (integer)

Key types

OPENSSL_KEYTYPE_RSA (integer)

OPENSSL_KEYTYPE_DSA (integer)

OPENSSL_KEYTYPE_DH (integer)

PKCS7 Flags/Constants

The S/MIME functions make use of flags which are specified using a bitfield which can
include one or more of the following values:

PKCS7 CONSTANTS

Constant Description

PKCS7_TEXT Adds text/plain content type headers to
encrypted/signed message. If decrypting or
verifying, it strips those headers from the
output - if the decrypted or verified message
is not of MIME type text/plain then an error
will occur.

PKCS7_BINARY Normally the input message is converted to
"canonical" format which is effectively using
CR and LF as end of line: as required by the
S/MIME specification. When this options is
present, no translation occurs. This is useful
when handling binary data which may not be
in MIME format.

PKCS7_NOINTERN When verifying a message, certificates (if
any) included in the message are normally
searched for the signing certificate. With this
option only the certificates specified in the
extracerts parameter of
openssl_pkcs7_verify() are used. The
supplied certificates can still be used as
untrusted CAs however.

PKCS7_NOVERIFY Do not verify the signers certificate of a
signed message.

PKCS7_NOCHAIN Do not chain verification of signers
certificates: that is don't use the certificates
in the signed message as untrusted CAs.

PKCS7_NOCERTS When signing a message the signer's
certificate is normally included - with this
option it is excluded. This will reduce the
size of the signed message but the verifier
must have a copy of the signers certificate

available locally (passed using the
extracerts to openssl_pkcs7_verify() for
example).

PKCS7_NOATTR Normally when a message is signed, a set
of attributes are included which include the
signing time and the supported symmetric
algorithms. With this option they are not
included.

PKCS7_DETACHED When signing a message, use cleartext
signing with the MIME type multipart/signed.
This is the default if you do not specify any
flags to openssl_pkcs7_sign(). If you turn
this option off, the message will be signed
using opaque signing, which is more
resistant to translation by mail relays but
cannot be read by mail agents that do not
support S/MIME.

PKCS7_NOSIGS Don't try and verify the signatures on a
message

Note

These constants were added in 4.0.6.

Signature Algorithms

OPENSSL_ALGO_SHA1 (integer)
Used as default algorithm by openssl_sign() and openssl_verify().

OPENSSL_ALGO_MD5 (integer)

OPENSSL_ALGO_MD4 (integer)

OPENSSL_ALGO_MD2 (integer)

Note

These constants were added in 5.0.0.

Ciphers

OPENSSL_CIPHER_RC2_40 (integer)

OPENSSL_CIPHER_RC2_128 (integer)

OPENSSL_CIPHER_RC2_64 (integer)

OPENSSL_CIPHER_DES (integer)

OPENSSL_CIPHER_3DES (integer)

Note

These constants were added in 4.3.0.

Version constants

OPENSSL_VERSION_TEXT (string)

OPENSSL_VERSION_NUMBER (integer)

Note

These constants were added in 5.2.0.

Key/Certificate parameters

Quite a few of the openssl functions require a key or a certificate parameter. PHP 4.0.5
and earlier have to use a key or certificate resource returned by one of the
openssl_get_xxx functions. Later versions may use one of the following methods:

• Certificates

• An X.509 resource returned from openssl_x509_read()

• A string having the format file://path/to/cert.pem; the named file must contain a
PEM encoded certificate

• A string containing the content of a certificate, PEM encoded

• Public/Private Keys

• A key resource returned from openssl_get_publickey() or openssl_get_privatekey()

• For public keys only: an X.509 resource

• A string having the format file://path/to/file.pem - the named file must contain a
PEM encoded certificate/private key (it may contain both)

• A string containing the content of a certificate/key, PEM encoded

• For private keys, you may also use the syntax array($key, $passphrase) where
$key represents a key specified using the file:// or textual content notation above,
and $passphrase represents a string containing the passphrase for that private key

Certificate Verification

When calling a function that will verify a signature/certificate, the cainfo parameter is an
array containing file and directory names that specify the locations of trusted CA files. If a
directory is specified, then it must be a correctly formed hashed directory as the openssl
command would use.

OpenSSL Functions

openssl_csr_export_to_file

openssl_csr_export_to_file -- Exports a CSR to a file

Description

bool openssl_csr_export_to_file (resource $csr, string $outfilename [, bool $notext])

openssl_csr_export_to_file() takes the Certificate Signing Request represented by csr
and saves it as ascii-armoured text into the file named by outfilename.

Parameters

csr

outfilename

Path to the output file.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_csr_export()
• openssl_csr_new()
• openssl_csr_sign()

openssl_csr_export

openssl_csr_export -- Exports a CSR as a string

Description

bool openssl_csr_export (resource $csr, string &$out [, bool $notext])

openssl_csr_export() takes the Certificate Signing Request represented by csr and stores
it as ascii-armoured text into out, which is passed by reference.

Parameters

csr

out

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_csr_export_to_file()
• openssl_csr_new()
• openssl_csr_sign()

openssl_csr_get_public_key

openssl_csr_get_public_key -- Returns the public key of a CERT

Description

resource openssl_csr_get_public_key (mixed $csr [, bool $use_shortnames])

Warning

This function is currently not documented; only its argument list is available.

openssl_csr_get_subject

openssl_csr_get_subject -- Returns the subject of a CERT

Description

array openssl_csr_get_subject (mixed $csr [, bool $use_shortnames])

Warning

This function is currently not documented; only its argument list is available.

openssl_csr_new

openssl_csr_new -- Generates a CSR

Description

mixed openssl_csr_new (array $dn, resource &$privkey [, array $configargs [, array $
extraattribs]])

openssl_csr_new() generates a new CSR (Certificate Signing Request) based on the
information provided by dn, which represents the Distinguished Name to be used in the
certificate.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

dn

The Distinguished Name to be used in the certificate.

privkey

privkey should be set to a private key that was previously generated by
openssl_pkey_new() (or otherwise obtained from the other openssl_pkey family of
functions). The corresponding public portion of the key will be used to sign the CSR.

configargs

By default, the information in your system openssl.conf is used to initialize the request;
you can specify a configuration file section by setting the config_section_section key of
configargs. You can also specify an alternative openssl configuration file by setting
the value of the config key to the path of the file you want to use. The following keys, if
present in configargs behave as their equivalents in the openssl.conf, as listed in the
table below.

Configuration overrides

configargs key type openssl.conf equivalent description

digest_alg string default_md Selects which digest method
to use

x509_extensions string x509_extensions Selects which extensions
should be used when
creating an x509 certificate

req_extensions string req_extensions Selects which extensions
should be used when
creating a CSR

private_key_bits integer default_bits Specifies how many bits
should be used to generate a
private key

private_key_type integer none Specifies the type of private
key to create. This can be
one of
OPENSSL_KEYTYPE_DSA,
OPENSSL_KEYTYPE_DH
or
OPENSSL_KEYTYPE_RSA.
The default value is
OPENSSL_KEYTYPE_RSA
which is currently the only
supported key type.

encrypt_key boolean encrypt_key Should an exported key (with
passphrase) be encrypted?

extraattribs

extraattribs is used to specify additional configuration options for the CSR. Both dn and
extraattribs are associative arrays whose keys are converted to OIDs and applied to the
relevant part of the request.

Return Values

Returns the CSR.

Examples

Example #629 - Creating a self-signed-certificate

<?php

// Fill in data for the distinguished name to be used in the cert

// You must change the values of these keys to match your name and

// company, or more precisely, the name and company of the person/site

// that you are generating the certificate for.

// For SSL certificates, the commonName is usually the domain name of

// that will be using the certificate, but for S/MIME certificates,

// the commonName will be the name of the individual who will use the

// certificate.

$dn = array(

 "countryName" => "UK",

 "stateOrProvinceName" => "Somerset",

 "localityName" => "Glastonbury",

 "organizationName" => "The Brain Room Limited",

 "organizationalUnitName" => "PHP Documentation Team",

 "commonName" => "Wez Furlong",

 "emailAddress" => "wez@example.com"

);

// Generate a new private (and public) key pair

$privkey = openssl_pkey_new();

// Generate a certificate signing request

$csr = openssl_csr_new($dn, $privkey);

// You will usually want to create a self-signed certificate at this

// point until your CA fulfills your request.

// This creates a self-signed cert that is valid for 365 days

$sscert = openssl_csr_sign($csr, null, $privkey, 365);

// Now you will want to preserve your private key, CSR and self-signed

// cert so that they can be installed into your web server, mail server

// or mail client (depending on the intended use of the certificate).

// This example shows how to get those things into variables, but you

// can also store them directly into files.

// Typically, you will send the CSR on to your CA who will then issue

// you with the "real" certificate.

openssl_csr_export($csr, $csrout) and var_dump($csrout);

openssl_x509_export($sscert, $certout) and var_dump($certout);

openssl_pkey_export($privkey, $pkeyout, "mypassword") and var_dump($pkeyout);

// Show any errors that occurred here

while (($e = openssl_error_string()) !== false) {

 echo $e . "\n";

}

?>

openssl_csr_sign

openssl_csr_sign -- Sign a CSR with another certificate (or itself) and generate a certificate

Description

resource openssl_csr_sign (mixed $csr, mixed $cacert, mixed $priv_key, int $days [,
array $configargs [, int $serial]])

openssl_csr_sign() generates an x509 certificate resource from the given CSR.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly. See
the notes under the installation section for more information.

Parameters

csr

A CSR previously generated by openssl_csr_new(). It can also be the path to a PEM
encoded CSR when specified as file://path/to/csr or an exported string generated by
openssl_csr_export().

cacert

The generated certificate will be signed by cacert. If cacert is NULL, the generated
certificate will be a self-signed certificate.

priv_key

priv_key is the private key that corresponds to cacert.

days

days specifies the length of time for which the generated certificate will be valid, in days.

configargs

You can finetune the CSR signing by configargs. See openssl_csr_new() for more
information about configargs.

serial

An optional the serial number of issued certificate. If not specified it will default to 0.

Return Values

Returns an x509 certificate resource on success, FALSE on failure.

ChangeLog

Version Description

4.3.3 The serial parameter was added.

Examples

Example #630 - openssl_csr_sign() example - signing a CSR (how to implement
your own CA)

<?php

// Let's assume that this script is set to receive a CSR that has

// been pasted into a textarea from another page

$csrdata = $_POST["CSR"];

// We will sign the request using our own "certificate authority"

// certificate. You can use any certificate to sign another, but

// the process is worthless unless the signing certificate is trusted

// by the software/users that will deal with the newly signed certificate

// We need our CA cert and its private key

$cacert = "file://path/to/ca.crt";

$privkey = array("file://path/to/ca.key", "your_ca_key_passphrase");

$userscert = openssl_csr_sign($csrdata, $cacert, $privkey, 365);

// Now display the generated certificate so that the user can

// copy and paste it into their local configuration (such as a file

// to hold the certificate for their SSL server)

openssl_x509_export($usercert, $certout);

echo $certout;

// Show any errors that occurred here

while (($e = openssl_error_string()) !== false) {

 echo $e . "\n";

}

?>

openssl_error_string

openssl_error_string -- Return openSSL error message

Description

string openssl_error_string (void)

openssl_error_string() returns the last error from the openSSL library. Error messages are
stacked, so this function should be called multiple times to collect all of the information.

Return Values

Returns an error message string, or FALSE if there are no more error messages to return.

Examples

Example #631 - openssl_error_string() example

<?php

// lets assume you just called an openssl function that failed

while ($msg = openssl_error_string())

 echo $msg . "
\n";

?>

openssl_free_key

openssl_free_key -- Free key resource

Description

void openssl_free_key (resource $key_identifier)

openssl_free_key() frees the key associated with the specified key_identifier from
memory.

Parameters

key_identifier

Return Values

No value is returned.

openssl_get_privatekey

openssl_get_privatekey -- Alias of openssl_pkey_get_private()

Description

This function is an alias of: openssl_pkey_get_private().

openssl_get_publickey

openssl_get_publickey -- Alias of openssl_pkey_get_public()

Description

This function is an alias of: openssl_pkey_get_public().

openssl_open

openssl_open -- Open sealed data

Description

bool openssl_open (string $sealed_data, string &$open_data, string $env_key, mixed $
priv_key_id)

openssl_open() opens (decrypts) sealed_data using the private key associated with the
key identifier priv_key_id and the envelope key env_key, and fills open_data with the
decrypted data. The envelope key is generated when the data are sealed and can only be
used by one specific private key. See openssl_seal() for more information.

Parameters

sealed_data

open_data

If the call is successful the opened data is returned in this parameter.

env_key

priv_key_id

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #632 - openssl_open() example

<?php

// $sealed and $env_key are assumed to contain the sealed data

// and our envelope key, both given to us by the sealer.

// fetch private key from file and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/key.pem", "r");

$priv_key = fread($fp, 8192);

fclose($fp);

$pkeyid = openssl_get_privatekey($priv_key);

// decrypt the data and store it in $open

if (openssl_open($sealed, $open, $env_key, $pkeyid)) {

 echo "here is the opened data: ", $open;

} else {

 echo "failed to open data";

}

// free the private key from memory

openssl_free_key($pkeyid);

?>

See Also

• openssl_seal()

openssl_pkcs12_export_to_file

openssl_pkcs12_export_to_file -- Exports a PKCS#12 Compatible Certificate Store File

Description

bool openssl_pkcs12_export_to_file (mixed $x509, string $filename, mixed $priv_key,
string $pass [, array $args])

openssl_pkcs12_export_to_file() stores x509 into a file named by filename in a PKCS#12
file format.

Parameters

x509

filename

Path to the output file.

priv_key

Private key component of PKCS#12 file.

pass

Encryption password for unlocking the PKCS#12 file.

args

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs12_export

openssl_pkcs12_export -- Exports a PKCS#12 Compatible Certificate Store File to
variable.

Description

bool openssl_pkcs12_export (mixed $x509, string &$out, mixed $priv_key, string $
pass [, array $args])

openssl_pkcs12_export() stores x509 into a string named by out in a PKCS#12 file
format.

Parameters

x509

out

On success, this will hold the PKCS#12.

priv_key

Private key component of PKCS#12 file.

pass

Encryption password for unlocking the PKCS#12 file.

args

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs12_read

openssl_pkcs12_read -- Parse a PKCS#12 Certificate Store into an array

Description

bool openssl_pkcs12_read (mixed $PKCS12, array &$certs, string $pass)

openssl_pkcs12_read() parses the PKCS#12 certificate store supplied by PKCS12 into a
array named certs.

Parameters

PKCS12

certs

On success, this will hold the Certificate Store Data.

pass

Encryption password for unlocking the PKCS#12 file.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkcs7_decrypt

openssl_pkcs7_decrypt -- Decrypts an S/MIME encrypted message

Description

bool openssl_pkcs7_decrypt (string $infilename, string $outfilename, mixed $
recipcert [, mixed $recipkey])

Decrypts the S/MIME encrypted message contained in the file specified by infilename
using the certificate and its associated private key specified by recipcert and recipkey.

Parameters

infilename

outfilename

The decrypted message is written to the file specified by outfilename.

recipcert

recipkey

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #633 - openssl_pkcs7_decrypt() example

<?php

// $cert and $key are assumed to contain your personal certificate and
private

// key pair, and that you are the recipient of an S/MIME message

$infilename = "encrypted.msg"; // this file holds your encrypted message

$outfilename = "decrypted.msg"; // make sure you can write to this file

if (openssl_pkcs7_decrypt($infilename, $outfilename, $cert, $key)) {

 echo "decrypted!";

} else {

 echo "failed to decrypt!";

}

?>

openssl_pkcs7_encrypt

openssl_pkcs7_encrypt -- Encrypt an S/MIME message

Description

bool openssl_pkcs7_encrypt (string $infile, string $outfile, mixed $recipcerts,
array $headers [, int $flags [, int $cipherid]])

openssl_pkcs7_encrypt() takes the contents of the file named infile and encrypts them
using an RC2 40-bit cipher so that they can only be read by the intended recipients
specified by recipcerts.

Parameters

infile

outfile

recipcerts

Either a lone X.509 certificate, or an array of X.509 certificates.

headers

headers is an array of headers that will be prepended to the data after it has been
encrypted. headers can be either an associative array keyed by header name, or an
indexed array, where each element contains a single header line.

flags

flags can be used to specify options that affect the encoding process - see PKCS7
constants.

cipherid

Cipher can be selected with cipherid.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The cipherid parameter was added.

Examples

Example #634 - openssl_pkcs7_encrypt() example

<?php

// the message you want to encrypt and send to your secret agent

// in the field, known as nighthawk. You have his certificate

// in the file nighthawk.pem

$data = <<<EOD

Nighthawk,

Top secret, for your eyes only!

The enemy is closing in! Meet me at the cafe at 8.30am

to collect your forged passport!

HQ

EOD;

// load key

$key = file_get_contents("nighthawk.pem");

// save message to file

$fp = fopen("msg.txt", "w");

fwrite($fp, $data);

fclose($fp);

// encrypt it

if (openssl_pkcs7_encrypt("msg.txt", "enc.txt", $key,

 array("To" => "nighthawk@example.com", // keyed syntax

 "From: HQ <hq@example.com>", // indexed syntax

 "Subject" => "Eyes only"))) {

 // message encrypted - send it!

 exec(ini_get("sendmail_path") . " < enc.txt");

}

?>

openssl_pkcs7_sign

openssl_pkcs7_sign -- Sign an S/MIME message

Description

bool openssl_pkcs7_sign (string $infilename, string $outfilename, mixed $signcert,
mixed $privkey, array $headers [, int $flags [, string $extracerts]])

openssl_pkcs7_sign() takes the contents of the file named infilename and signs them
using the certificate and its matching private key specified by signcert and privkey
parameters.

Parameters

infilename

outfilename

signcert

privkey

headers

headers is an array of headers that will be prepended to the data after it has been
signed (see openssl_pkcs7_encrypt() for more information about the format of this
parameter.

flags

flags can be used to alter the output - see PKCS7 constants - if not specified, it
defaults to PKCS7_DETACHED.

extracerts

extracerts specifies the name of a file containing a bunch of extra certificates to
include in the signature which can for example be used to help the recipient to verify
the certificate that you used.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #635 - openssl_pkcs7_sign() example

<?php

// the message you want to sign so that recipient can be sure it was you
that

// sent it

$data = <<<EOD

You have my authorization to spend $10,000 on dinner expenses.

The CEO

EOD;

// save message to file

$fp = fopen("msg.txt", "w");

fwrite($fp, $data);

fclose($fp);

// encrypt it

if (openssl_pkcs7_sign("msg.txt", "signed.txt", "mycert.pem",

 array("file://mycert.pem", "mypassphrase"),

 array("To" => "joes@example.com", // keyed syntax

 "From: HQ <ceo@example.com>", // indexed syntax

 "Subject" => "Eyes only")

)) {

 // message signed - send it!

 exec(ini_get("sendmail_path") . " < signed.txt");

}

?>

openssl_pkcs7_verify

openssl_pkcs7_verify -- Verifies the signature of an S/MIME signed message

Description

mixed openssl_pkcs7_verify (string $filename, int $flags [, string $outfilename [,
array $cainfo [, string $extracerts [, string $content]]]])

openssl_pkcs7_verify() reads the S/MIME message contained in the given file and
examines the digital signature.

Parameters

filename

Path to the message.

flags

flags can be used to affect how the signature is verified - see PKCS7 constants for
more information.

outfilename

If the outfilename is specified, it should be a string holding the name of a file into
which the certificates of the persons that signed the messages will be stored in PEM
format.

cainfo

If the cainfo is specified, it should hold information about the trusted CA certificates to
use in the verification process - see certificate verification for more information about
this parameter.

extracerts

If the extracerts is specified, it is the filename of a file containing a bunch of
certificates to use as untrusted CAs.

content

You can specify a filename with content that will be filled with the verified data, but
with the signature information stripped.

Return Values

Returns TRUE if the signature is verified, FALSE if it is not correct (the message has been
tampered with, or the signing certificate is invalid), or -1 on error.

ChangeLog

Version Description

5.1.0 The content parameter was added.

openssl_pkey_export_to_file

openssl_pkey_export_to_file -- Gets an exportable representation of a key into a file

Description

bool openssl_pkey_export_to_file (mixed $key, string $outfilename [, string $
passphrase [, array $configargs]])

openssl_pkey_export_to_file() saves an ascii-armoured (PEM encoded) rendition of key
into the file named by outfilename.

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

key

outfilename

Path to the output file.

passphrase

The key can be optionally protected by a passphrase.

configargs

configargs can be used to fine-tune the export process by specifying and/or overriding
options for the openssl configuration file. See openssl_csr_new() for more information
about configargs.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkey_export

openssl_pkey_export -- Gets an exportable representation of a key into a string

Description

bool openssl_pkey_export (mixed $key, string &$out [, string $passphrase [, array $
configargs]])

openssl_pkey_export() exports key as a PEM encoded string and stores it into out (which
is passed by reference).

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

key

out

passphrase

The key is optionally protected by passphrase.

configargs

configargs can be used to fine-tune the export process by specifying and/or overriding
options for the openssl configuration file. See openssl_csr_new() for more information
about configargs.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_pkey_free

openssl_pkey_free -- Frees a private key

Description

void openssl_pkey_free (resource $key)

This function frees a private key created by openssl_pkey_new().

Parameters

key

Resource holding the key.

Return Values

No value is returned.

openssl_pkey_get_details

openssl_pkey_get_details -- Returns an array with the key details

Description

array openssl_pkey_get_details (resource $key)

This function returns the key details (bits, key, type).

Parameters

key

Resource holding the key.

Return Values

Returns an array with the key details in success or FALSE in failure. Returned array has
indexes bits (number of bits), key (string representation of the public key) and type (type of
the key which is one of OPENSSL_KEYTYPE_RSA, OPENSSL_KEYTYPE_DSA,
OPENSSL_KEYTYPE_DH, OPENSSL_KEYTYPE_EC or -1 meaning unknown).

openssl_pkey_get_private

openssl_pkey_get_private -- Get a private key

Description

resource openssl_pkey_get_private (mixed $key [, string $passphrase])

openssl_get_privatekey() parses key and prepares it for use by other functions.

Parameters

key

key can be one of the following:

• a string having the format file://path/to/file.pem. The named file must contain a
PEM encoded certificate/private key (it may contain both).

• A PEM formatted private key.

passphrase

The optional parameter passphrase must be used if the specified key is encrypted
(protected by a passphrase).

Return Values

Returns a positive key resource identifier on success, or FALSE on error.

openssl_pkey_get_public

openssl_pkey_get_public -- Extract public key from certificate and prepare it for use

Description

resource openssl_pkey_get_public (mixed $certificate)

openssl_get_publickey() extracts the public key from certificate and prepares it for use
by other functions.

Parameters

certificate

certificate can be one of the following:

• an X.509 certificate resource

• a string having the format file://path/to/file.pem. The named file must contain a
PEM encoded certificate/private key (it may contain both).

• A PEM formatted private key.

Return Values

Returns a positive key resource identifier on success, or FALSE on error.

openssl_pkey_new

openssl_pkey_new -- Generates a new private key

Description

resource openssl_pkey_new ([array $configargs])

openssl_pkey_new() generates a new private and public key pair. The public component
of the key can be obtained using openssl_pkey_get_public().

Note

You need to have a valid openssl.cnf installed for this function to operate correctly.
See the notes under the installation section for more information.

Parameters

configargs

You can finetune the key generation (such as specifying the number of bits) using
configargs. See openssl_csr_new() for more information about configargs.

Return Values

Returns a resource identifier for the pkey on success, or FALSE on error.

openssl_private_decrypt

openssl_private_decrypt -- Decrypts data with private key

Description

bool openssl_private_decrypt (string $data, string &$decrypted, mixed $key [, int $
padding])

openssl_private_decrypt() decrypts data that was previous encrypted via
openssl_public_encrypt() and stores the result into decrypted.

You can use this function e.g. to decrypt data which were supposed only to you.

Parameters

data

decrypted

key

key must be the private key corresponding that was used to encrypt the data.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be one of
OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_public_encrypt()
• openssl_public_decrypt()

openssl_private_encrypt

openssl_private_encrypt -- Encrypts data with private key

Description

bool openssl_private_encrypt (string $data, string &$crypted, mixed $key [, int $
padding])

openssl_private_encrypt() encrypts data with private key and stores the result into
crypted. Encrypted data can be decrypted via openssl_public_decrypt().

This function can be used e.g. to sign data (or its hash) to prove that it is not written by
someone else.

Parameters

data

crypted

key

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_public_encrypt()
• openssl_public_decrypt()

openssl_public_decrypt

openssl_public_decrypt -- Decrypts data with public key

Description

bool openssl_public_decrypt (string $data, string &$decrypted, mixed $key [, int $
padding])

openssl_public_decrypt() decrypts data that was previous encrypted via
openssl_private_encrypt() and stores the result into decrypted.

You can use this function e.g. to check if the message was written by the owner of the
private key.

Parameters

data

decrypted

key

key must be the public key corresponding that was used to encrypt the data.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_private_encrypt()
• openssl_private_decrypt()

openssl_public_encrypt

openssl_public_encrypt -- Encrypts data with public key

Description

bool openssl_public_encrypt (string $data, string &$crypted, mixed $key [, int $
padding])

openssl_public_encrypt() encrypts data with public key and stores the result into crypted.
Encrypted data can be decrypted via openssl_private_decrypt().

This function can be used e.g. to encrypt message which can be then read only by owner
of the private key. It can be also used to store secure data in database.

Parameters

data

crypted

This will hold the result of the encryption.

key

The public key.

padding

padding defaults to OPENSSL_PKCS1_PADDING, but can also be one of
OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,
OPENSSL_NO_PADDING.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• openssl_private_encrypt()
• openssl_private_decrypt()

openssl_seal

openssl_seal -- Seal (encrypt) data

Description

int openssl_seal (string $data, string &$sealed_data, array &$env_keys, array $
pub_key_ids)

openssl_seal() seals (encrypts) data by using RC4 with a randomly generated secret key.
The key is encrypted with each of the public keys associated with the identifiers in
pub_key_ids and each encrypted key is returned in env_keys. This means that one can
send sealed data to multiple recipients (provided one has obtained their public keys). Each
recipient must receive both the sealed data and the envelope key that was encrypted with
the recipient's public key.

Parameters

data

sealed_data

env_keys

pub_key_ids

Return Values

Returns the length of the sealed data on success, or FALSE on error. If successful the
sealed data is returned in sealed_data, and the envelope keys in env_keys.

Examples

Example #636 - openssl_seal() example

<?php

// $data is assumed to contain the data to be sealed

// fetch public keys for our recipients, and ready them

$fp = fopen("/src/openssl-0.9.6/demos/maurice/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pk1 = openssl_get_publickey($cert);

// Repeat for second recipient

$fp = fopen("/src/openssl-0.9.6/demos/sign/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pk2 = openssl_get_publickey($cert);

// seal message, only owners of $pk1 and $pk2 can decrypt $sealed with keys

// $ekeys[0] and $ekeys[1] respectively.

openssl_seal($data, $sealed, $ekeys, array($pk1, $pk2));

// free the keys from memory

openssl_free_key($pk1);

openssl_free_key($pk2);

?>

See Also

• openssl_open()

openssl_sign

openssl_sign -- Generate signature

Description

bool openssl_sign (string $data, string &$signature, mixed $priv_key_id [, int $
signature_alg])

openssl_sign() computes a signature for the specified data by using SHA1 for hashing
followed by encryption using the private key associated with priv_key_id. Note that the
data itself is not encrypted.

Parameters

data

signature

If the call was successful the signature is returned in signature.

priv_key_id

signature_alg

Defaults to OPENSSL_ALGO_SHA1. For more information see the list of Signature
Algorithms.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The signature_alg parameter was added.

Examples

Example #637 - openssl_sign() example

<?php

// $data is assumed to contain the data to be signed

// fetch private key from file and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/key.pem", "r");

$priv_key = fread($fp, 8192);

fclose($fp);

$pkeyid = openssl_get_privatekey($priv_key);

// compute signature

openssl_sign($data, $signature, $pkeyid);

// free the key from memory

openssl_free_key($pkeyid);

?>

See Also

• openssl_verify()

openssl_verify

openssl_verify -- Verify signature

Description

int openssl_verify (string $data, string $signature, mixed $pub_key_id [, int $
signature_alg])

openssl_verify() verifies that the signature is correct for the specified data using the
public key associated with pub_key_id. This must be the public key corresponding to the
private key used for signing.

Parameters

data

signature

pub_key_id

signature_alg

Defaults to OPENSSL_ALGO_SHA1. For more information see the list of Signature
Algorithms.

Return Values

Returns 1 if the signature is correct, 0 if it is incorrect, and -1 on error.

ChangeLog

Version Description

5.0.0 The signature_alg parameter was added.

Examples

Example #638 - openssl_verify() example

<?php

// $data and $signature are assumed to contain the data and the signature

// fetch public key from certificate and ready it

$fp = fopen("/src/openssl-0.9.6/demos/sign/cert.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$pubkeyid = openssl_get_publickey($cert);

// state whether signature is okay or not

$ok = openssl_verify($data, $signature, $pubkeyid);

if ($ok == 1) {

 echo "good";

} elseif ($ok == 0) {

 echo "bad";

} else {

 echo "ugly, error checking signature";

}

// free the key from memory

openssl_free_key($pubkeyid);

?>

See Also

• openssl_sign()

openssl_x509_check_private_key

openssl_x509_check_private_key -- Checks if a private key corresponds to a certificate

Description

bool openssl_x509_check_private_key (mixed $cert, mixed $key)

Checks whether the given key is the private key that corresponds to cert.

Parameters

cert

The certificate.

key

The private key.

Return Values

Returns TRUE if key is the private key that corresponds to cert, or FALSE otherwise.

openssl_x509_checkpurpose

openssl_x509_checkpurpose -- Verifies if a certificate can be used for a particular purpose

Description

int openssl_x509_checkpurpose (mixed $x509cert, int $purpose [, array $cainfo [,
string $untrustedfile]])

openssl_x509_checkpurpose() examines a certificate to see if it can be used for the
specified purpose.

Parameters

x509cert

The examined certificate.

purpose

openssl_x509_checkpurpose() purposes

Constant Description

X509_PURPOSE_SSL_CLIENT Can the certificate be used for the client side
of an SSL connection?

X509_PURPOSE_SSL_SERVER Can the certificate be used for the server
side of an SSL connection?

X509_PURPOSE_NS_SSL_SERVER Can the cert be used for Netscape SSL
server?

X509_PURPOSE_SMIME_SIGN Can the cert be used to sign S/MIME email?

X509_PURPOSE_SMIME_ENCRYPT Can the cert be used to encrypt S/MIME
email?

X509_PURPOSE_CRL_SIGN Can the cert be used to sign a certificate
revocation list (CRL)?

X509_PURPOSE_ANY Can the cert be used for Any/All purposes?

These options are not bitfields - you may specify one only!

cainfo

cainfo should be an array of trusted CA files/dirs as described in Certificate Verification. It
defaults to an empty array.

untrustedfile

If specified, this should be the name of a PEM encoded file holding certificates that can be
used to help verify the certificate, although no trust in placed in the certificates that come
from that file.

Return Values

Returns TRUE if the certificate can be used for the intended purpose, FALSE if it cannot, or -1
on error.

openssl_x509_export_to_file

openssl_x509_export_to_file -- Exports a certificate to file

Description

bool openssl_x509_export_to_file (mixed $x509, string $outfilename [, bool $notext])

openssl_x509_export_to_file() stores x509 into a file named by outfilename in a PEM
encoded format.

Parameters

x509

outfilename

Path to the output file.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_x509_export

openssl_x509_export -- Exports a certificate as a string

Description

bool openssl_x509_export (mixed $x509, string &$output [, bool $notext])

openssl_x509_export() stores x509 into a string named by output in a PEM encoded format.

Parameters

x509

output

On success, this will hold the PEM.

notext

The optional parameter notext affects the verbosity of the output; if it is FALSE, then
additional human-readable information is included in the output. The default value of
notext is TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

openssl_x509_free

openssl_x509_free -- Free certificate resource

Description

void openssl_x509_free (resource $x509cert)

openssl_x509_free() frees the certificate associated with the specified x509cert resource from
memory.

Parameters

x509cert

Return Values

No value is returned.

openssl_x509_parse

openssl_x509_parse -- Parse an X509 certificate and return the information as an array

Description

array openssl_x509_parse (mixed $x509cert [, bool $shortnames])

openssl_x509_parse() returns information about the supplied x509cert, including fields such
as subject name, issuer name, purposes, valid from and valid to dates etc.

Parameters

x509cert

shortnames

shortnames controls how the data is indexed in the array - if shortnames is TRUE (the
default) then fields will be indexed with the short name form, otherwise, the long name
form will be used - e.g.: CN is the shortname form of commonName.

Return Values

The structure of the returned data is (deliberately) not yet documented, as it is still subject to
change.

openssl_x509_read

openssl_x509_read -- Parse an X.509 certificate and return a resource identifier for it

Description

resource openssl_x509_read (mixed $x509certdata)

openssl_x509_read() parses the certificate supplied by x509certdata and returns a resource
identifier for it.

Parameters

x509certdata

Return Values

Returns a resource identifier on success, or FALSE on failure.

Database Extensions

Abstraction Layers

Database (dbm-style) Abstraction Layer

Introduction

These functions build the foundation for accessing Berkeley DB style databases.

This is a general abstraction layer for several file-based databases. As such, functionality is
limited to a common subset of features supported by modern databases such as » Sleepycat
Software's DB2. (This is not to be confused with IBM's DB2 software, which is supported
through the ODBC functions.)

http://www.sleepycat.com/
http://www.sleepycat.com/

Installing/Configuring

Requirements

The behaviour of various aspects depends on the implementation of the underlying database.
Functions such as dba_optimize() and dba_sync() will do what they promise for one database
and will do nothing for others. You have to download and install supported dba-Handlers.

List of DBA handlers

Handler Notes

dbm Dbm is the oldest (original) type of Berkeley
DB style databases. You should avoid it, if
possible. We do not support the
compatibility functions built into DB2 and
gdbm, because they are only compatible on
the source code level, but cannot handle the
original dbm format.

ndbm Ndbm is a newer type and more flexible
than dbm. It still has most of the arbitrary
limits of dbm (therefore it is deprecated).

gdbm Gdbm is the » GNU database manager.

db2 DB2 is » Sleepycat Software's DB2. It is
described as "a programmatic toolkit that
provides high-performance built-in database
support for both standalone and
client/server applications.

db3 DB3 is » Sleepycat Software's DB3.

db4 DB4 is » Sleepycat Software's DB4. This is
available since PHP 4.3.2.

cdb Cdb is "a fast, reliable, lightweight package
for creating and reading constant
databases." It is from the author of qmail
and can be found at
» http://cr.yp.to/cdb.html. Since it is
constant, we support only reading
operations. And since PHP 4.3.0 we support
writing (not updating) through the internal
cdb library.

cdb_make Since PHP 4.3.0 we support creation (not

ftp://ftp.gnu.org/pub/gnu/gdbm/
http://www.sleepycat.com/
http://www.sleepycat.com/
http://www.sleepycat.com/
http://cr.yp.to/cdb.html
http://cr.yp.to/cdb.html

updating) of cdb files when the bundled cdb
library is used.

flatfile This is available since PHP 4.3.0 for
compatibility with the deprecated dbm
extension only and should be avoided.
However you may use this where files were
created in this format. That happens when
configure could not find any external library.

inifile This is available since PHP 4.3.3 to be able
to modify php.ini files from within PHP
scripts. When working with ini files you can
pass arrays of the form
array(0=>group,1=>value_name) or strings
of the form "[group]value_name" where
group is optional. As the functions
dba_firstkey() and dba_nextkey() return
string representations of the key there is a
new function dba_key_split() available since
PHP 5 which allows to convert the string
keys into array keys without loosing FALSE.

qdbm This is available since PHP 5.0.0. The qdbm
library can be loaded from
» http://qdbm.sourceforge.net.

When invoking the dba_open() or dba_popen() functions, one of the handler names must
be supplied as an argument. The actually available list of handlers is displayed by invoking
phpinfo() or dba_handlers().

Installation

By using the --enable-dba=shared configuration option you can build a dynamic loadable
module to enable PHP for basic support of dbm-style databases. You also have to add
support for at least one of the following handlers by specifying the --with-XXXX configure
switch to your PHP configure line.

Warning

After configuring and compiling PHP you must execute the following test from
commandline: php run-tests.php ext/dba. This shows whether your combination of
handlers works. Most problematic are dbm and ndbm which conflict with many
installations. The reason for this is that on several systems these libraries are part of
more than one other library. The configuration test only prevents you from configuring
malfunctioning single handlers but not combinations.

http://qdbm.sourceforge.net
http://qdbm.sourceforge.net

Supported DBA handlers

Handler Configure Switch

dbm
To enable support for dbm add
--with-dbm[=DIR].

Note

dbm normally is a wrapper which often
results in failures. This means you
should only use dbm if you are sure it
works and if you really need this format.

ndbm
To enable support for ndbm add
--with-ndbm[=DIR].

Note

ndbm normally is a wrapper which often
results in failures. This means you
should only use ndbm if you are sure it
works and if you really need this format.

gdbm To enable support for gdbm add
--with-gdbm[=DIR].

db2
To enable support for db2 add
--with-db2[=DIR].

Note

db2 conflicts with db3 and db4.

db3
To enable support for db3 add
--with-db3[=DIR].

Note

db3 conflicts with db2 and db4.

db4
To enable support for db4 add
--with-db4[=DIR].

Note

db4 conflicts with db2 and db3.

Note

This was added in PHP 4.3.2. In earlier
versions of PHP you need to use
--with-db3=DIR with DIR being the path
to db4 library. It is not possible to use db
versions starting from 4.1 with PHP prior
to version 4.3.0. Also, the db libraries
with versions 4.1 through 4.1.24 cannot
be used in any PHP version.

cdb
To enable support for cdb add

--with-cdb[=DIR].

Note

Since PHP 4.3.0 you can omit DIR to
use the bundled cdb library that adds the
cdb_make handler which allows creation
of cdb files and allows to access cdb
files on the network using PHP's
streams.

flatfile
To enable support for flatfile add
--with-flatfile.

Note

This was added in PHP 4.3.0 to add
compatibility with deprecated dbm
extension. Use this handler only when
you cannot install one of the libraries
required by the other handlers and when
you cannot use bundled cdb handler.

inifile
To enable support for inifile add --with-inifile.

Note

This was added in PHP 5.0.0 and allows
to read and set microsoft style.ini files
(like the php.ini file).

qdbm
To enable support for qdbm add
--with-qdbm[=DIR].

Note

qdbm conflicts with dbm and gdbm.

Note

This was added in PHP 5.0.0. The qdbm
library can be loaded from
» http://qdbm.sourceforge.net.

Note

Up to PHP 4.3.0 you are able to add both db2 and db3 handler but only one of them
can be used internally. That means that you cannot have both file formats. Starting
with PHP 5.0.0 there is a configuration check avoid such misconfigurations.

http://qdbm.sourceforge.net
http://qdbm.sourceforge.net

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

The functions dba_open() and dba_popen() return a handle to the specified database file
to access which is used by all other dba-function calls.

Predefined Constants

This extension has no constants defined.

Examples

Basic usage

Example #639 - DBA example

<?php

$id = dba_open("/tmp/test.db", "n", "db2");

if (!$id) {

 echo "dba_open failed\n";

 exit;

}

dba_replace("key", "This is an example!", $id);

if (dba_exists("key", $id)) {

 echo dba_fetch("key", $id);

 dba_delete("key", $id);

}

dba_close($id);

?>

DBA is binary safe and does not have any arbitrary limits. However, it inherits all limits set
by the underlying database implementation.

All file-based databases must provide a way of setting the file mode of a new created
database, if that is possible at all. The file mode is commonly passed as the fourth
argument to dba_open() or dba_popen().

You can access all entries of a database in a linear way by using the dba_firstkey() and
dba_nextkey() functions. You may not change the database while traversing it.

Example #640 - Traversing a database

<?php

// ...open database...

$key = dba_firstkey($id);

while ($key != false) {

 if (true) { // remember the key to perform some action later

 $handle_later[] = $key;

 }

 $key = dba_nextkey($id);

}

foreach ($handle_later as $val) {

 dba_delete($val, $id);

}

?>

DBA Functions

dba_close

dba_close -- Close a DBA database

Description

void dba_close (resource $handle)

dba_close() closes the established database and frees all resources of the specified
database handle.

Parameters

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

No value is returned.

See Also

• dba_open()
• dba_popen()

dba_delete

dba_delete -- Delete DBA entry specified by key

Description

bool dba_delete (string $key, resource $handle)

dba_delete() deletes the specified entry from the database.

Parameters

key

The key of the entry which is deleted.

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dba_exists()
• dba_fetch()
• dba_insert()
• dba_replace()

dba_exists

dba_exists -- Check whether key exists

Description

bool dba_exists (string $key, resource $handle)

dba_exists() checks whether the specified key exists in the database.

Parameters

key

The key the check is performed for.

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE if the key exists, FALSE otherwise.

See Also

• dba_delete()
• dba_fetch()
• dba_insert()
• dba_replace()

dba_fetch

dba_fetch -- Fetch data specified by key

Description

string dba_fetch (string $key, resource $handle)

string dba_fetch (string $key, int $skip, resource $handle)

dba_fetch() fetches the data specified by key from the database specified with handle.

Parameters

key

The key the data is specified by.

Note

When working with inifiles this function accepts arrays as keys where index 0 is the
group and index 1 is the value name. See: dba_key_split().

skip

The number of key-value pairs to ignore when using cdb databases. This value is
ignored for all other databases which do not support multiple keys with the same
name.

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns the associated string if the key/data pair is found, FALSE otherwise.

ChangeLog

Version Description

4.3 The skip parameter is available to support
cdb's capability of multiple keys having the
same name.

See Also

• dba_exists()
• dba_delete()
• dba_insert()
• dba_replace()
• dba_key_split()

dba_firstkey

dba_firstkey -- Fetch first key

Description

string dba_firstkey (resource $handle)

dba_firstkey() returns the first key of the database and resets the internal key pointer. This
permits a linear search through the whole database.

Parameters

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns the key on success, or FALSE on failure.

See Also

• dba_nextkey()
• dba_key_split()
• Example 2 in the DBA examples

dba_handlers

dba_handlers -- List all the handlers available

Description

array dba_handlers ([bool $full_info])

dba_handlers() list all the handlers supported by this extension.

Parameters

full_info

Turns on/off full information display in the result. The default is FALSE.

Return Values

Returns an array of database handlers. If full_info is set to TRUE, the array will be
associative with the handlers names as keys, and their version information as value.
Otherwise, the result will be an indexed array of handlers names.

Note

When the internal cdb library is used you will see cdb and cdb_make.

Examples

Example #641 - dba_handlers() Example

<?php

echo "Available DBA handlers:\n";

foreach (dba_handlers(true) as $handler_name => $handler_version) {

 // clean the versions

 $handler_version = str_replace('$', '', $handler_version);

 echo " - $handler_name: $handler_version\n";

}

?>

The above example will output something similar to:

Available DBA handlers:

- cdb: 0.75, Revision: 1.3.2.3

- cdb_make: 0.75, Revision: 1.2.2.4

- db2: Sleepycat Software: Berkeley DB 2.7.7: (08/20/99)

- inifile: 1.0, Revision: 1.6.2.3

- flatfile: 1.0, Revision: 1.5.2.4

dba_insert

dba_insert -- Insert entry

Description

bool dba_insert (string $key, string $value, resource $handle)

dba_insert() inserts the entry described with key and value into the database.

Parameters

key

The key of the entry to be inserted. If this key already exist in the database, this
function will fail. Use dba_replace() if you need to replace an existent key.

value

The value to be inserted.

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dba_exists()
• dba_delete()
• dba_fetch()
• dba_replace()

dba_key_split

dba_key_split -- Splits a key in string representation into array representation

Description

mixed dba_key_split (mixed $key)

dba_key_split() splits a key (string representation) into an array representation.

Parameters

key

The key in string representation.

Return Values

Returns an array of the form array(0 => group, 1 => value_name). This function will return
FALSE if key is NULL or FALSE.

See Also

• dba_firstkey()
• dba_nextkey()
• dba_fetch()

dba_list

dba_list -- List all open database files

Description

array dba_list (void)

dba_list() list all open database files.

Return Values

An associative array, in the form resourceid => filename.

dba_nextkey

dba_nextkey -- Fetch next key

Description

string dba_nextkey (resource $handle)

dba_nextkey() returns the next key of the database and advances the internal key pointer.

Parameters

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns the key on success, or FALSE on failure.

See Also

• dba_firstkey()
• dba_key_split()
• Example 2 in the DBA examples

dba_open

dba_open -- Open database

Description

resource dba_open (string $path, string $mode [, string $handler [, mixed $...]])

dba_open() establishes a database instance for path with mode using handler.

Parameters

path

Commonly a regular path in your filesystem.

mode

It is r for read access, w for read/write access to an already existing database, c for
read/write access and database creation if it doesn't currently exist, and n for create,
truncate and read/write access. Additionally you can set the database lock method with
the next char. Use l to lock the database with a.lck file or d to lock the databasefile
itself. It is important that all of your applications do this consistently. If you want to test
the access and do not want to wait for the lock you can add t as third character. When
you are absolutely sure that you do not require database locking you can do so by
using - instead of l or d. When none of d, l or - is used, dba will lock on the database
file as it would with d.

Note

There can only be one writer for one database file. When you use dba on a web
server and more than one request requires write operations they can only be done
one after another. Also read during write is not allowed. The dba extension uses
locks to prevent this. See the following table:

DBA locking

already
open

mode =
"rl"

mode =
"rlt"

mode =
"wl"

mode =
"wlt"

mode =
"rd"

mode =
"rdt"

mode =
"wd"

mode =
"wdt"

not open ok ok ok ok ok ok ok ok

mode =
"rl"

ok ok wait false illegal illegal illegal illegal

mode =
"wl"

wait false wait false illegal illegal illegal illegal

mode =
"rd"

illegal illegal illegal illegal ok ok wait false

mode =
"wd"

illegal illegal illegal illegal wait false wait false

• ok: the second call will be successfull.
• wait: the second call waits until dba_close() is called for the first.
• false: the second call returns false.
• illegal: you must not mix "l" and "d" modifiers for mode parameter.

handler

The name of the handler which shall be used for accessing path. It is passed all optional
parameters given to dba_open() and can act on behalf of them.

Return Values

Returns a positive handle on success, or FALSE on failure.

ChangeLog

Version Description

4.3.0 It's possible to open database files over
network connection. However in cases a
socket connection will be used (as with http
or ftp) the connection will be locked instead
of the resource itself. This is important to
know since in such cases locking is simply
ignored on the resource and other solutions
have to be found.

4.3.0 Locking and the mode modifiers "l", "d", "-"
and "t" were added. In previous PHP
versions, you must use semaphores to
guard against simultaneous database
access for any database handler with the
exception of GDBM. See System V
semaphore support.

before 4.3.5 open mode 'c' is broken for several internal
handlers and truncates the database instead
of appending data to an existent database.
Also dbm and ndbm fail on mode 'c' in
typical configurations (this cannot be fixed).

See Also

• dba_popen()
• dba_close()

dba_optimize

dba_optimize -- Optimize database

Description

bool dba_optimize (resource $handle)

dba_optimize() optimizes the underlying database.

Parameters

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dba_sync()

dba_popen

dba_popen -- Open database persistently

Description

resource dba_popen (string $path, string $mode [, string $handler [, mixed $...]])

dba_popen() establishes a persistent database instance for path with mode using handler
.

Parameters

path

Commonly a regular path in your filesystem.

mode

It is r for read access, w for read/write access to an already existing database, c for
read/write access and database creation if it doesn't currently exist, and n for create,
truncate and read/write access.

handler

The name of the handler which shall be used for accessing path. It is passed all
optional parameters given to dba_popen() and can act on behalf of them.

Return Values

Returns a positive handle on success, or FALSE on failure.

See Also

• dba_open()
• dba_close()

dba_replace

dba_replace -- Replace or insert entry

Description

bool dba_replace (string $key, string $value, resource $handle)

dba_replace() replaces or inserts the entry described with key and value into the
database specified by handle.

Parameters

key

The key of the entry to be replaced.

value

The value to be replaced.

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dba_exists()
• dba_delete()
• dba_fetch()
• dba_insert()

dba_sync

dba_sync -- Synchronize database

Description

bool dba_sync (resource $handle)

dba_sync() synchronizes the database. This will probably trigger a physical write to the
disk, if supported.

Parameters

handle

The database handler, returned by dba_open() or dba_popen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dba_optimize()

dbx

Introduction

The dbx module is a database abstraction layer (db 'X', where 'X' is a supported
database). The dbx functions allow you to access all supported databases using a single
calling convention. The dbx-functions themselves do not interface directly to the
databases, but interface to the modules that are used to support these databases.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

http://pecl.php.net/

Installing/Configuring

Requirements

To be able to use a database with the dbx-module, the module must be either linked or
loaded into PHP, and the database module must be supported by the dbx-module.
Currently, the following databases are supported, but others will follow:

• FrontBase (available from PHP 4.1.0).

• Microsoft SQL Server

• MySQL

• ODBC

• PostgreSQL

• Sybase-CT (available from PHP 4.2.0).

• Oracle (oci8) (available from PHP 4.3.0).

• SQLite (PHP 5).

Documentation for adding additional database support to dbx can be found at
» http://www.guidance.nl/php/dbx/doc/.

Installation

In order to have these functions available, you must compile PHP with dbx support by
using the --enable-dbx option and all options for the databases that will be used, e.g. for
MySQL you must also specify --with-mysql=[DIR]. To get other supported databases to
work with the dbx-module refer to their specific documentation.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

DBX Configuration Options

Name Default Changeable Changelog

dbx.colnames_case "unchanged" PHP_INI_SYSTEM Available since PHP
4.3.0. Removed in
PHP 5.1.0.

http://www.guidance.nl/php/dbx/doc/
http://www.guidance.nl/php/dbx/doc/

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

dbx.colnames_case string
Columns names can be returned "unchanged" or converted to "uppercase" or
"lowercase". This directive can be overridden with a flag to dbx_query().

Resource Types

There are two resource types used in the dbx module. The first one is the link- object for a
database connection, the second a result- object which holds the result of a query.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

DBX_MYSQL (integer)

DBX_ODBC (integer)

DBX_PGSQL (integer)

DBX_MSSQL (integer)

DBX_FBSQL (integer)

DBX_OCI8 (integer) (available from PHP 4.3.0)

DBX_SYBASECT (integer)

DBX_SQLITE (integer) (PHP 5)

DBX_PERSISTENT (integer)

DBX_RESULT_INFO (integer)

DBX_RESULT_INDEX (integer)

DBX_RESULT_ASSOC (integer)

DBX_RESULT_UNBUFFERED (integer) (PHP 5)

DBX_COLNAMES_UNCHANGED (integer) (available from PHP 4.3.0)

DBX_COLNAMES_UPPERCASE (integer) (available from PHP 4.3.0)

DBX_COLNAMES_LOWERCASE (integer) (available from PHP 4.3.0)

DBX_CMP_NATIVE (integer)

DBX_CMP_TEXT (integer)

DBX_CMP_NUMBER (integer)

DBX_CMP_ASC (integer)

DBX_CMP_DESC (integer)

dbx Functions

dbx_close

dbx_close -- Close an open connection/database

Description

int dbx_close (object $link_identifier)

Parameters

link_identifier

The DBX link object to close.

Return Values

Returns 1 on success and 0 on errors.

Examples

Example #642 - dbx_close() example

<?php

$link = dbx_connect(DBX_MYSQL, "localhost", "db", "username", "password")

 or die("Could not connect");

echo "Connected successfully";

dbx_close($link);

?>

Notes

Note

Always refer to the module-specific documentation as well.

See Also

• dbx_connect()

dbx_compare

dbx_compare -- Compare two rows for sorting purposes

Description

int dbx_compare (array $row_a, array $row_b, string $column_key [, int $flags])

dbx_compare() is a helper function for dbx_sort() to ease the make and use of the custom
sorting function.

Parameters

row_a

First row

row_b

Second row

column_key

The compared column

flags

The flags can be set to specify comparison direction:

• DBX_CMP_ASC - ascending order

• DBX_CMP_DESC - descending order

and the preferred comparison type:

• DBX_CMP_NATIVE - no type conversion

• DBX_CMP_TEXT - compare items as strings

• DBX_CMP_NUMBER - compare items numerically

One of the direction and one of the type constant can be combined with bitwise OR
operator (|). The default value for the flags parameter is DBX_CMP_ASC |
DBX_CMP_NATIVE.

Return Values

Returns 0 if the row_a[$column_key] is equal to row_b[$column_key], and 1 or -1 if the
former is greater or is smaller than the latter one, respectively, or vice versa if the flag is
set to DBX_CMP_DESC.

Examples

Example #643 - dbx_compare() example

<?php

function user_re_order($a, $b)

{

 $rv = dbx_compare($a, $b, "parentid", DBX_CMP_DESC);

 if (!$rv) {

 $rv = dbx_compare($a, $b, "id", DBX_CMP_NUMBER);

 }

 return $rv;

}

$link = dbx_connect(DBX_ODBC, "", "db", "username", "password")

 or die("Could not connect");

$result = dbx_query($link, "SELECT id, parentid, description FROM table
ORDER BY id");

 // data in $result is now ordered by id

dbx_sort($result, "user_re_order");

 // date in $result is now ordered by parentid (descending), then by id

dbx_close($link);

?>

See Also

• dbx_sort()

dbx_connect

dbx_connect -- Open a connection/database

Description

object dbx_connect (mixed $module, string $host, string $database, string $username,
string $password [, int $persistent])

Opens a connection to a database.

Parameters

module

The module parameter can be either a string or a constant, though the latter form is
preferred. The possible values are given below, but keep in mind that they only work if
the module is actually loaded.

• DBX_MYSQL or "mysql"

• DBX_ODBC or "odbc"

• DBX_PGSQL or "pgsql"

• DBX_MSSQL or "mssql"

• DBX_FBSQL or "fbsql" (available from PHP 4.1.0)

• DBX_SYBASECT or "sybase_ct" (available from PHP 4.2.0)

• DBX_OCI8 or "oci8" (available from PHP 4.3.0)

• DBX_SQLITE or "sqlite" (PHP 5)

host

The SQL server host

database

The database name

username

The username

password

The password

persistent

The persistent parameter can be set to DBX_PERSISTENT, if so, a persistent
connection will be created.

The host, database, username and password parameters are expected, but not always
used depending on the connect functions for the abstracted module.

Return Values

Returns an object on success, FALSE on error. If a connection has been made but the
database could not be selected, the connection is closed and FALSE is returned.

The returned object has three properties:
database

It is the name of the currently selected database.

handle
It is a valid handle for the connected database, and as such it can be used in
module-specific functions (if required).

<?php

$link = dbx_connect(DBX_MYSQL, "localhost", "db", "username", "password");

mysql_close($link->handle); // dbx_close($link) would be better here

?>

module
It is used internally by dbx only, and is actually the module number mentioned above.

Examples

Example #644 - dbx_connect() example

<?php

$link = dbx_connect(DBX_ODBC, "", "db", "username", "password",
DBX_PERSISTENT)

 or die("Could not connect");

echo "Connected successfully";

dbx_close($link);

?>

Notes

Note

Always refer to the module-specific documentation as well.

See Also

• dbx_close()

dbx_error

dbx_error -- Report the error message of the latest function call in the module

Description

string dbx_error (object $link_identifier)

dbx_error() returns the last error message.

Parameters

link_identifier

The DBX link object returned by dbx_connect()

Return Values

Returns a string containing the error message from the last function call of the abstracted
module (e.g. mysql module). If there are multiple connections in the same module, just the
last error is given. If there are connections on different modules, the latest error is returned
for the module specified by the link_identifier parameter.

Examples

Example #645 - dbx_error() example

<?php

$link = dbx_connect(DBX_MYSQL, "localhost", "db", "username", "password")

 or die("Could not connect");

$result = dbx_query($link, "select id from non_existing_table");

if ($result == 0) {

 echo dbx_error($link);

}

dbx_close($link);

?>

Notes

Note

Always refer to the module-specific documentation as well.

The error message for Microsoft SQL Server is actually the result of the
mssql_get_last_message() function.

The error message for Oracle (oci8) is not implemented yet.

dbx_escape_string

dbx_escape_string -- Escape a string so it can safely be used in an sql-statement

Description

string dbx_escape_string (object $link_identifier, string $text)

Escape the given string so that it can safely be used in an sql-statement.

Parameters

link_identifier

The DBX link object returned by dbx_connect()

text

The string to escape.

Return Values

Returns the text, escaped where necessary (such as quotes, backslashes etc). On error,
NULL is returned.

Examples

Example #646 - dbx_escape_string() example

<?php

$link = dbx_connect(DBX_MYSQL, "localhost", "db", "username", "password")

 or die("Could not connect");

$text = dbx_escape_string($link, "It\'s quoted and backslashed (\\).");

$result = dbx_query($link, "insert into tbl (txt) values ('" . $text .
"')");

if ($result == 0) {

 echo dbx_error($link);

}

dbx_close($link);

?>

See Also

• dbx_query()

dbx_fetch_row

dbx_fetch_row -- Fetches rows from a query-result that had the
DBX_RESULT_UNBUFFERED flag set

Description

mixed dbx_fetch_row (object $result_identifier)

dbx_fetch_row() fetches rows from a result identifier that had the
DBX_RESULT_UNBUFFERED flag set.

When the DBX_RESULT_UNBUFFERED is not set in the query, dbx_fetch_row() will fail
as all rows have already been fetched into the results data property.

As a side effect, the rows property of the query-result object is incremented for each
successful call to dbx_fetch_row().

Parameters

result_identifier

A result set returned by dbx_query().

Return Values

Returns an object on success that contains the same information as any row would have
in the dbx_query() result data property, including columns accessible by index or
fieldname when the flags for dbx_query() were set that way.

Upon failure, returns 0 (e.g. when no more rows are available).

Examples

Example #647 - How to handle the returned value

<?php

$result = dbx_query($link, 'SELECT id, parentid, description FROM table',
DBX_RESULT_UNBUFFERED);

echo "<table>\n";

while ($row = dbx_fetch_row($result)) {

 echo "<tr>\n";

 foreach ($row as $field) {

 echo "<td>$field</td>";

 }

 echo "</tr>\n";

}

echo "</table>\n";

?>

See Also

• dbx_query()

dbx_query

dbx_query -- Send a query and fetch all results (if any)

Description

mixed dbx_query (object $link_identifier, string $sql_statement [, int $flags])

Sends a query and fetch all results.

Parameters

link_identifier

The DBX link object returned by dbx_connect()

sql_statement

SQL statement.

flags

The flags parameter is used to control the amount of information that is returned. It
may be any combination of the following constants with the bitwise OR operator (|).
The DBX_COLNAMES_* flags override the dbx.colnames_case setting from php.ini.
DBX_RESULT_INDEX

It is always set, that is, the returned object has a data property which is a 2
dimensional array indexed numerically. For example, in the expression data[2][3] 2
stands for the row (or record) number and 3 stands for the column (or field)
number. The first row and column are indexed at 0. If DBX_RESULT_ASSOC is
also specified, the returning object contains the information related to
DBX_RESULT_INFO too, even if it was not specified.

DBX_RESULT_INFO
It provides info about columns, such as field names and field types.

DBX_RESULT_ASSOC
It effects that the field values can be accessed with the respective column names
used as keys to the returned object's data property. Associated results are actually
references to the numerically indexed data, so modifying data[0][0] causes that
data[0]['field_name_for_first_column'] is modified as well.

DBX_RESULT_UNBUFFERED (PHP 5)
This flag will not create the data property, and the rows property will initially be 0.
Use this flag for large datasets, and use dbx_fetch_row() to retrieve the results row
by row. The dbx_fetch_row() function will return rows that are conformant to the
flags set with this query. Incidentally, it will also update the rows each time it is
called.

DBX_COLNAMES_UNCHANGED (available from PHP 4.3.0)
The case of the returned column names will not be changed.

DBX_COLNAMES_UPPERCASE (available from PHP 4.3.0)
The case of the returned column names will be changed to uppercase.

DBX_COLNAMES_LOWERCASE (available from PHP 4.3.0)
The case of the returned column names will be changed to lowercase.

Note that DBX_RESULT_INDEX is always used, regardless of the actual value of
flags parameter. This means that only the following combinations are effective:

• DBX_RESULT_INDEX

• DBX_RESULT_INDEX | DBX_RESULT_INFO

• DBX_RESULT_INDEX | DBX_RESULT_INFO | DBX_RESULT_ASSOC - this is
the default, if flags is not specified.

Return Values

dbx_query() returns an object or 1 on success, and 0 on failure. The result object is
returned only if the query given in sql_statement produces a result set (i.e. a SELECT
query, even if the result set is empty).

The returned object has four or five properties depending on flags:
handle

It is a valid handle for the connected database, and as such it can be used in module
specific functions (if required).

<?php

$result = dbx_query($link, "SELECT id FROM table");

mysql_field_len($result->handle, 0);

?>

cols and rows
These contain the number of columns (or fields) and rows (or records) respectively.

<?php

$result = dbx_query($link, 'SELECT id FROM table');

echo $result->rows; // number of records

echo $result->cols; // number of fields

?>

info (optional)
It is returned only if either DBX_RESULT_INFO or DBX_RESULT_ASSOC is
specified in the flags parameter. It is a 2 dimensional array, that has two named rows
(name and type) to retrieve column information.

Example #648 - lists each field's name and type

<?php

$result = dbx_query($link, 'SELECT id FROM table',

 DBX_RESULT_INDEX | DBX_RESULT_INFO);

for ($i = 0; $i < $result->cols; $i++) {

 echo $result->info['name'][$i] . "\n";

 echo $result->info['type'][$i] . "\n";

}

?>

data
This property contains the actual resulting data, possibly associated with column
names as well depending on flags. If DBX_RESULT_ASSOC is set, it is possible to
use $result->data[2]["field_name"].

Example #649 - outputs the content of data property into HTML table

<?php

$result = dbx_query($link, 'SELECT id, parentid, description FROM
table');

echo "<table>\n";

foreach ($result->data as $row) {

 echo "<tr>\n";

 foreach ($row as $field) {

 echo "<td>$field</td>";

 }

 echo "</tr>\n";

}

echo "</table>\n";

?>

Example #650 - How to handle UNBUFFERED queries

<?php

$result = dbx_query ($link, 'SELECT id, parentid, description FROM
table', DBX_RESULT_UNBUFFERED);

echo "<table>\n";

while ($row = dbx_fetch_row($result)) {

 echo "<tr>\n";

 foreach ($row as $field) {

 echo "<td>$field</td>";

 }

 echo "</tr>\n";

}

echo "</table>\n";

?>

Examples

Example #651 - How to handle the returned value

<?php

$link = dbx_connect(DBX_ODBC, "", "db", "username", "password")

 or die("Could not connect");

$result = dbx_query($link, 'SELECT id, parentid, description FROM table');

if (is_object($result)) {

 // ... do some stuff here, see detailed examples below ...

 // first, print out field names and types

 // then, draw a table filled with the returned field values

} else {

 exit("Query failed");

}

dbx_close($link);

?>

Notes

Note

Always refer to the module-specific documentation as well.

Column names for queries on an Oracle database are returned in lowercase.

See Also

• dbx_escape_string()
• dbx_fetch_row()
• dbx_connect()

dbx_sort

dbx_sort -- Sort a result from a dbx_query by a custom sort function

Description

bool dbx_sort (object $result, string $user_compare_function)

Sort a result from a dbx_query() call with a custom sort function.

Parameters

result

A result set returned by dbx_query().

user_compare_function

The user-defined comparison function. It must accept two arguments and return an
integer less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #652 - dbx_sort() example

<?php

function user_re_order($a, $b)

{

 $rv = dbx_compare($a, $b, "parentid", DBX_CMP_DESC);

 if (!$rv) {

 $rv = dbx_compare($a, $b, "id", DBX_CMP_NUMBER);

 }

 return $rv;

}

$link = dbx_connect(DBX_ODBC, "", "db", "username", "password")

 or die("Could not connect");

$result = dbx_query($link, "SELECT id, parentid, description FROM tbl ORDER
BY id");

 // data in $result is now ordered by id

dbx_sort($result, "user_re_order");

 // data in $result is now ordered by parentid (descending), then by id

dbx_close($link);

?>

Notes

Note

It is always better to use ORDER BY SQL clause instead of dbx_sort() if possible.

See Also

• dbx_compare()

ODBC (Unified)

Introduction

In addition to normal ODBC support, the Unified ODBC functions in PHP allow you to
access several databases that have borrowed the semantics of the ODBC API to
implement their own API. Instead of maintaining multiple database drivers that were all
nearly identical, these drivers have been unified into a single set of ODBC functions.

The following databases are supported by the Unified ODBC functions: » Adabas D, » IBM
DB2, » iODBC, » Solid, and » Sybase SQL Anywhere.

Note

With the exception of iODBC, there is no ODBC involved when connecting to the
above databases. The functions that you use to speak natively to them just happen to
share the same names and syntax as the ODBC functions. However, building PHP
with iODBC support enables you to use any ODBC-compliant drivers with your PHP
applications. More information on iODBC, is available at » www.iodbc.org with the
alternative unixODBC available at » www.unixodbc.org.

http://www.softwareag.com/Corporate/products/adabas/adad/
http://www-306.ibm.com/software/data/db2/
http://www-306.ibm.com/software/data/db2/
http://www.iodbc.org/
http://www.solidtech.com/
http://www.sybase.com/
http://www.iodbc.org/
http://www.unixodbc.org/

Installing/Configuring

Requirements

To access any of the supported databases you need to have the required libraries
installed.

Installation

--with-adabas[=DIR]
Include Adabas D support. DIR is the Adabas base install directory, defaults to
/usr/local.

--with-sapdb[=DIR]
Include SAP DB support. DIR is SAP DB base install directory, defaults to /usr/local.

--with-solid[=DIR]
Include Solid support. DIR is the Solid base install directory, defaults to /usr/local/solid.

--with-ibm-db2[=DIR]
Include IBM DB2 support. DIR is the DB2 base install directory, defaults to
/home/db2inst1/sqllib.

--with-empress[=DIR]
Include Empress support. DIR is the Empress base install directory, defaults to
$EMPRESSPATH. From PHP 4, this option only supports Empress Version 8.60 and
above.

--with-empress-bcs[=DIR]
Include Empress Local Access support. DIR is the Empress base install directory,
defaults to $EMPRESSPATH. From PHP 4, this option only supports Empress Version
8.60 and above.

--with-birdstep[=DIR]
Include Birdstep support. DIR is the Birdstep base install directory, defaults to
/usr/local/birdstep.

--with-custom-odbc[=DIR]
Include a user defined ODBC support. The DIR is ODBC install base directory, which
defaults to /usr/local. Make sure to define CUSTOM_ODBC_LIBS and have some
odbc.h in your include dirs. E.g., you should define following for Sybase SQL
Anywhere 5.5.00 on QNX, prior to run configure script:CPPFLAGS="-DODBC_QNX
-DSQLANY_BUG"

 LDFLAGS=-lunix

 CUSTOM_ODBC_LIBS="-ldblib -lodbc".

--with-iodbc[=DIR]
Include iODBC support. DIR is the iODBC base install directory, defaults to /usr/local.

--with-esoob[=DIR]
Include Easysoft OOB support. DIR is the OOB base install directory, defaults to
/usr/local/easysoft/oob/client.

--with-unixODBC[=DIR]
Include unixODBC support. DIR is the unixODBC base install directory, defaults to
/usr/local.

--with-openlink[=DIR]
Include OpenLink ODBC support. DIR is the OpenLink base install directory, defaults
to /usr/local. This is the same as iODBC.

--with-dbmaker[=DIR]
Include DBMaker support. DIR is the DBMaker base install directory, defaults to where
the latest version of DBMaker is installed (such as /home/dbmaker/3.6).

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Unified ODBC Configuration Options

Name Default Changeable Changelog

odbc.default_db * NULL PHP_INI_ALL

odbc.default_user * NULL PHP_INI_ALL

odbc.default_pw * NULL PHP_INI_ALL

odbc.allow_persistent "1" PHP_INI_SYSTEM

odbc.check_persisten
t

"1" PHP_INI_SYSTEM

odbc.max_persistent "-1" PHP_INI_SYSTEM

odbc.max_links "-1" PHP_INI_SYSTEM

odbc.defaultlrl "4096" PHP_INI_ALL

odbc.defaultbinmode "1" PHP_INI_ALL

Note

Entries marked with * are not implemented yet.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

odbc.default_db string
ODBC data source to use if none is specified in odbc_connect() or odbc_pconnect().

odbc.default_user string
User name to use if none is specified in odbc_connect() or odbc_pconnect().

odbc.default_pw string
Password to use if none is specified in odbc_connect() or odbc_pconnect().

odbc.allow_persistent boolean
Whether to allow persistent ODBC connections.

odbc.check_persistent boolean
Check that a connection is still valid before reuse.

odbc.max_persistent integer
The maximum number of persistent ODBC connections per process.

odbc.max_links integer
The maximum number of ODBC connections per process, including persistent
connections.

odbc.defaultlrl integer
Handling of LONG fields. Specifies the number of bytes returned to variables. When an
integer is used, the value is measured in bytes. Shorthand notation, as described in
this FAQ, may also be used.

odbc.defaultbinmode integer
Handling of binary data.

Resource Types

This extension defines two resource types: an ODBC connection identifier and an ODBC
result identifier.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

ODBC_TYPE (integer)

ODBC_BINMODE_PASSTHRU (integer)

ODBC_BINMODE_RETURN (integer)

ODBC_BINMODE_CONVERT (integer)

SQL_ODBC_CURSORS (integer)

SQL_CUR_USE_DRIVER (integer)

SQL_CUR_USE_IF_NEEDED (integer)

SQL_CUR_USE_ODBC (integer)

SQL_CONCURRENCY (integer)

SQL_CONCUR_READ_ONLY (integer)

SQL_CONCUR_LOCK (integer)

SQL_CONCUR_ROWVER (integer)

SQL_CONCUR_VALUES (integer)

SQL_CURSOR_TYPE (integer)

SQL_CURSOR_FORWARD_ONLY (integer)

SQL_CURSOR_KEYSET_DRIVEN (integer)

SQL_CURSOR_DYNAMIC (integer)

SQL_CURSOR_STATIC (integer)

SQL_KEYSET_SIZE (integer)

SQL_CHAR (integer)

SQL_VARCHAR (integer)

SQL_LONGVARCHAR (integer)

SQL_DECIMAL (integer)

SQL_NUMERIC (integer)

SQL_BIT (integer)

SQL_TINYINT (integer)

SQL_SMALLINT (integer)

SQL_INTEGER (integer)

SQL_BIGINT (integer)

SQL_REAL (integer)

SQL_FLOAT (integer)

SQL_DOUBLE (integer)

SQL_BINARY (integer)

SQL_VARBINARY (integer)

SQL_LONGVARBINARY (integer)

SQL_DATE (integer)

SQL_TIME (integer)

SQL_TIMESTAMP (integer)

SQL_TYPE_DATE (integer)

SQL_TYPE_TIME (integer)

SQL_TYPE_TIMESTAMP (integer)

SQL_BEST_ROWID (integer)

SQL_ROWVER (integer)

SQL_SCOPE_CURROW (integer)

SQL_SCOPE_TRANSACTION (integer)

SQL_SCOPE_SESSION (integer)

SQL_NO_NULLS (integer)

SQL_NULLABLE (integer)

SQL_INDEX_UNIQUE (integer)

SQL_INDEX_ALL (integer)

SQL_ENSURE (integer)

SQL_QUICK (integer)

ODBC Functions

odbc_autocommit

odbc_autocommit -- Toggle autocommit behaviour

Description

mixed odbc_autocommit (resource $connection_id [, bool $OnOff])

Toggles autocommit behaviour.

By default, auto-commit is on for a connection. Disabling auto-commit is equivalent with
starting a transaction.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

OnOff

If OnOff is TRUE, auto-commit is enabled, if it is FALSE auto-commit is disabled.

Return Values

Without the OnOff parameter, this function returns auto-commit status for connection_id.
Non-zero is returned if auto-commit is on, 0 if it is off, or FALSE if an error occurs.

If OnOff is set, this function returns TRUE on success and FALSE on failure.

See Also

• odbc_commit()
• odbc_rollback()

odbc_binmode

odbc_binmode -- Handling of binary column data

Description

bool odbc_binmode (resource $result_id, int $mode)

Enables handling of binary column data. ODBC SQL types affected are BINARY,
VARBINARY, and LONGVARBINARY.

When binary SQL data is converted to character C data, each byte (8 bits) of source data
is represented as two ASCII characters. These characters are the ASCII character
representation of the number in its hexadecimal form. For example, a binary 00000001 is
converted to "01" and a binary 11111111 is converted to "FF".

LONGVARBINARY handling

binmode longreadlen result

ODBC_BINMODE_PASSTH
RU

0 passthru

ODBC_BINMODE_RETURN 0 passthru

ODBC_BINMODE_CONVER
T

0 passthru

ODBC_BINMODE_PASSTH
RU

0 passthru

ODBC_BINMODE_PASSTH
RU

>0 passthru

ODBC_BINMODE_RETURN >0 return as is

ODBC_BINMODE_CONVER
T

>0 return as char

If odbc_fetch_into() is used, passthru means that an empty string is returned for these
columns.

Parameters

result_id

The result identifier. If result_id is 0, the settings apply as default for new results.

Note

Default for longreadlen is 4096 and mode defaults to ODBC_BINMODE_RETURN.
Handling of binary long columns is also affected by odbc_longreadlen().

mode

Possible values for mode are:

• ODBC_BINMODE_PASSTHRU: Passthru BINARY data

• ODBC_BINMODE_RETURN: Return as is

• ODBC_BINMODE_CONVERT: Convert to char and return

Return Values

Returns TRUE on success or FALSE on failure.

odbc_close_all

odbc_close_all -- Close all ODBC connections

Description

void odbc_close_all (void)

odbc_close_all() will close down all connections to database server(s).

Parameters

This function has no parameters.

Return Values

No value is returned.

Notes

Note

This function will fail if there are open transactions on a connection. This connection
will remain open in this case.

odbc_close

odbc_close -- Close an ODBC connection

Description

void odbc_close (resource $connection_id)

Closes down the connection to the database server.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

Return Values

No value is returned.

Notes

Note

This function will fail if there are open transactions on this connection. The connection
will remain open in this case.

odbc_columnprivileges

odbc_columnprivileges -- Lists columns and associated privileges for the given table

Description

resource odbc_columnprivileges (resource $connection_id, string $qualifier, string $
owner, string $table_name, string $column_name)

Lists columns and associated privileges for the given table.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner.

table_name

The table name.

column_name

The column_name argument accepts search patterns ('%' to match zero or more
characters and '_' to match a single character).

The owner, table_name, and column_name accept search patterns ('%' to match zero or
more characters and '_' to match a single character).

Return Values

Returns an ODBC result identifier or FALSE on failure. This result identifier can be used to
fetch a list of columns and associated privileges.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_OWNER

• TABLE_NAME

• GRANTOR

• GRANTEE

• PRIVILEGE

• IS_GRANTABLE

The result set is ordered by TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

odbc_columns

odbc_columns -- Lists the column names in specified tables

Description

resource odbc_columns (resource $connection_id [, string $qualifier [, string $schema
[, string $table_name [, string $column_name]]]])

Lists all columns in the requested range.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

schema

The owner.

table_name

The table name.

column_name

The column name.

The schema, table_name, and column_name accept search patterns ('%' to match zero or
more characters and '_' to match a single character).

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_SCHEM

• TABLE_NAME

• COLUMN_NAME

• DATA_TYPE

• TYPE_NAME

• PRECISION

• LENGTH

• SCALE

• RADIX

• NULLABLE

• REMARKS

The result set is ordered by TABLE_QUALIFIER, TABLE_SCHEM and TABLE_NAME.

See Also

• odbc_columnprivileges() to retrieve associated privileges

odbc_commit

odbc_commit -- Commit an ODBC transaction

Description

bool odbc_commit (resource $connection_id)

Commits all pending transactions on the connection.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

Return Values

Returns TRUE on success or FALSE on failure.

odbc_connect

odbc_connect -- Connect to a datasource

Description

resource odbc_connect (string $dsn, string $user, string $password [, int $cursor_type]
)

The connection id returned by this functions is needed by other ODBC functions. You can
have multiple connections open at once as long as they either use different db or different
credentials.

With some ODBC drivers, executing a complex stored procedure may fail with an error
similar to: "Cannot open a cursor on a stored procedure that has anything other than a
single select statement in it". Using SQL_CUR_USE_ODBC may avoid that error. Also,
some drivers don't support the optional row_number parameter in odbc_fetch_row().
SQL_CUR_USE_ODBC might help in that case, too.

Parameters

dsn

The database source name for the connection.

user

The username.

password

The password.

cursor_type

This sets the type of cursor to be used for this connection. This parameter is not
normally needed, but can be useful for working around problems with some ODBC
drivers. The following constants are defined for cursortype:

• SQL_CUR_USE_IF_NEEDED

• SQL_CUR_USE_ODBC

• SQL_CUR_USE_DRIVER

• SQL_CUR_DEFAULT

Return Values

Returns an ODBC connection id or 0 (FALSE) on error.

See Also

• For persistent connections: odbc_pconnect()

odbc_cursor

odbc_cursor -- Get cursorname

Description

string odbc_cursor (resource $result_id)

Gets the cursorname for the given result_id.

Parameters

result_id

The result identifier.

Return Values

Returns the cursor name, as a string.

odbc_data_source

odbc_data_source -- Returns information about a current connection

Description

array odbc_data_source (resource $connection_id, int $fetch_type)

This function will return the list of available DNS (after calling it several times).

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

fetch_type

The fetch_type can be one of two constant types: SQL_FETCH_FIRST,
SQL_FETCH_NEXT. Use SQL_FETCH_FIRST the first time this function is called,
thereafter use the SQL_FETCH_NEXT.

Return Values

Returns FALSE on error, and an array upon success.

odbc_do

odbc_do -- Alias of odbc_exec()

Description

This function is an alias of: odbc_exec().

odbc_error

odbc_error -- Get the last error code

Description

string odbc_error ([resource $connection_id])

Returns a six-digit ODBC state, or an empty string if there has been no errors.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

Return Values

If connection_id is specified, the last state of that connection is returned, else the last
state of any connection is returned.

This function returns meaningful value only if last odbc query failed (i.e. odbc_exec()
returned FALSE).

See Also

• odbc_errormsg()
• odbc_exec()

odbc_errormsg

odbc_errormsg -- Get the last error message

Description

string odbc_errormsg ([resource $connection_id])

Returns a string containing the last ODBC error message, or an empty string if there has
been no errors.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

Return Values

If connection_id is specified, the last state of that connection is returned, else the last
state of any connection is returned.

This function returns meaningful value only if last odbc query failed (i.e. odbc_exec()
returned FALSE).

See Also

• odbc_error()
• odbc_exec()

odbc_exec

odbc_exec -- Prepare and execute a SQL statement

Description

resource odbc_exec (resource $connection_id, string $query_string [, int $flags])

Sends an SQL statement to the database server.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

query_string

The SQL statement.

flags

Return Values

Returns an ODBC result identifier if the SQL command was executed successfully, or
FALSE on error.

See Also

• odbc_prepare()
• odbc_execute()

odbc_execute

odbc_execute -- Execute a prepared statement

Description

bool odbc_execute (resource $result_id [, array $parameters_array])

Executes a statement prepared with odbc_prepare().

Parameters

result_id

The result id resource, from odbc_prepare().

parameters_array

Parameters in parameter_array will be substituted for placeholders in the prepared
statement in order. Elements of this array will be converted to strings by calling this
function. Any parameters in parameter_array which start and end with single quotes
will be taken as the name of a file to read and send to the database server as the data
for the appropriate placeholder. If you wish to store a string which actually begins and
ends with single quotes, you must add a space or other non-single-quote character to
the beginning or end of the parameter, which will prevent the parameter from being
taken as a file name. If this is not an option, then you must use another mechanism to
store the string, such as executing the query directly with odbc_exec()).

Return Values

Returns TRUE on success or FALSE on failure..

ChangeLog

Version Description

4.2.0 File reading is now subject to safe mode
and open-basedir restrictions in
parameters_array.

4.1.1 Remote files are no longer supported in
parameters_array.

odbc_fetch_array

odbc_fetch_array -- Fetch a result row as an associative array

Description

array odbc_fetch_array (resource $result [, int $rownumber])

Fetch an associative array from an ODBC query. See the changelog below for when this
function is available.

Parameters

result

The result resource from odbc_exec().

rownumber

Optionally choose which row number to retrieve.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

ChangeLog

Version Description

4.3.3 This function exists when compiled with IBM
DB2 or UnixODBC support.

4.3.2 This function exists when compiled for
Windows.

4.0.2 This function exists when compiled with
DBMaker support.

See Also

• odbc_fetch_row()
• odbc_fetch_object()

• odbc_num_rows()

odbc_fetch_into

odbc_fetch_into -- Fetch one result row into array

Description

int odbc_fetch_into (resource $result_id, array $result_array [, int $rownumber])

Fetch one result row into array.

Parameters

result_id

The result resource.

result_array

The result array that can be of any type since it will be converted to type array. The
array will contain the column values starting at array index 0.

rownumber

The row number.

Return Values

Returns the number of columns in the result; FALSE on error.

ChangeLog

Version Description

4.2.0 The result_array and rownumber
parameters have been swapped. This
allows the rownumber to be a constant
again.

4.0.6 The rownumber can no longer be passed in
as a constant, but rather as a variable. This
again changed in 4.2.0.

4.0.5 The result_array parameter no longer
needs to be passed in by reference.

Examples

Example #653 - odbc_fetch_into() examples

<?php

$rc = odbc_fetch_into($res_id, $my_array);

?>

or

<?php

$rc = odbc_fetch_into($res_id, $my_array, 2);

?>

odbc_fetch_object

odbc_fetch_object -- Fetch a result row as an object

Description

object odbc_fetch_object (resource $result [, int $rownumber])

Fetch an object from an ODBC query. See the changelog below for when this function is
available.

Parameters

result

The result resource from odbc_exec().

rownumber

Optionally choose which row number to retrieve.

Return Values

Returns an object that corresponds to the fetched row, or FALSE if there are no more
rows.

ChangeLog

Version Description

4.3.3 This function exists when compiled with IBM
DB2 or UnixODBC support.

4.3.2 This function exists when compiled for
Windows.

4.0.2 This function exists when compiled with
DBMaker support.

See Also

• odbc_fetch_row()

• odbc_fetch_array()
• odbc_num_rows()

odbc_fetch_row

odbc_fetch_row -- Fetch a row

Description

bool odbc_fetch_row (resource $result_id [, int $row_number])

Fetches a row of the data that was returned by odbc_do() or odbc_exec(). After
odbc_fetch_row() is called, the fields of that row can be accessed with odbc_result().

Parameters

result_id

The result identifier.

row_number

If row_number is not specified, odbc_fetch_row() will try to fetch the next row in the
result set. Calls to odbc_fetch_row() with and without row_number can be mixed. To
step through the result more than once, you can call odbc_fetch_row() with
row_number 1, and then continue doing odbc_fetch_row() without row_number to review
the result. If a driver doesn't support fetching rows by number, the row_number
parameter is ignored.

Return Values

Returns TRUE if there was a row, FALSE otherwise.

odbc_field_len

odbc_field_len -- Get the length (precision) of a field

Description

int odbc_field_len (resource $result_id, int $field_number)

Gets the length of the field referenced by number in the given result identifier.

Parameters

result_id

The result identifier.

field_number

The field number. Field numbering starts at 1.

Return Values

Returns the field name as a string, or FALSE on error.

See Also

• odbc_field_scale() to get the scale of a floating point number

odbc_field_name

odbc_field_name -- Get the columnname

Description

string odbc_field_name (resource $result_id, int $field_number)

Gets the name of the field occupying the given column number in the given result
identifier.

Parameters

result_id

The result identifier.

field_number

The field number. Field numbering starts at 1.

Return Values

Returns the field name as a string, or FALSE on error.

odbc_field_num

odbc_field_num -- Return column number

Description

int odbc_field_num (resource $result_id, string $field_name)

Gets the number of the column slot that corresponds to the named field in the given result
identifier.

Parameters

result_id

The result identifier.

field_name

The field name.

Return Values

Returns the field number as a integer, or FALSE on error. Field numbering starts at 1.

odbc_field_precision

odbc_field_precision -- Alias of odbc_field_len()

Description

This function is an alias of: odbc_field_len().

See Also

• odbc_field_scale() to get the scale of a floating point number.

odbc_field_scale

odbc_field_scale -- Get the scale of a field

Description

int odbc_field_scale (resource $result_id, int $field_number)

Gets the scale of the field referenced by number in the given result identifier.

Parameters

result_id

The result identifier.

field_number

The field number. Field numbering starts at 1.

Return Values

Returns the field scale as a integer, or FALSE on error.

odbc_field_type

odbc_field_type -- Datatype of a field

Description

string odbc_field_type (resource $result_id, int $field_number)

Gets the SQL type of the field referenced by number in the given result identifier.

Parameters

result_id

The result identifier.

field_number

The field number. Field numbering starts at 1.

Return Values

Returns the field type as a string, or FALSE on error.

odbc_foreignkeys

odbc_foreignkeys -- Retrieves a list of foreign keys

Description

resource odbc_foreignkeys (resource $connection_id, string $pk_qualifier, string $
pk_owner, string $pk_table, string $fk_qualifier, string $fk_owner, string $fk_table)

Retrieves a list of foreign keys in the specified table or a list of foreign keys in other tables
that refer to the primary key in the specified table

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

pk_qualifier

The primary key qualifier.

pk_owner

The primary key owner.

pk_table

The primary key table.

fk_qualifier

The foreign key qualifier.

fk_owner

The foreign key owner.

fk_table

The foreign key table.

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• PKTABLE_QUALIFIER

• PKTABLE_OWNER

• PKTABLE_NAME

• PKCOLUMN_NAME

• FKTABLE_QUALIFIER

• FKTABLE_OWNER

• FKTABLE_NAME

• FKCOLUMN_NAME

• KEY_SEQ

• UPDATE_RULE

• DELETE_RULE

• FK_NAME

• PK_NAME

If pk_table contains a table name, odbc_foreignkeys() returns a result set containing the
primary key of the specified table and all of the foreign keys that refer to it.

If fk_table contains a table name, odbc_foreignkeys() returns a result set containing all of
the foreign keys in the specified table and the primary keys (in other tables) to which they
refer.

If both pk_table and fk_table contain table names, odbc_foreignkeys() returns the
foreign keys in the table specified in fk_table that refer to the primary key of the table
specified in pk_table. This should be one key at most.

odbc_free_result

odbc_free_result -- Free resources associated with a result

Description

bool odbc_free_result (resource $result_id)

Free resources associated with a result.

odbc_free_result() only needs to be called if you are worried about using too much
memory while your script is running. All result memory will automatically be freed when the
script is finished.

Parameters

result_id

The result identifier.

Return Values

Always returns TRUE.

Notes

Note

If auto-commit is disabled (see odbc_autocommit()) and you call odbc_free_result()
before committing, all pending transactions are rolled back.

odbc_gettypeinfo

odbc_gettypeinfo -- Retrieves information about data types supported by the data source

Description

resource odbc_gettypeinfo (resource $connection_id [, int $data_type])

Retrieves information about data types supported by the data source.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

data_type

The data type, which can be used to restrict the information to a single data type.

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• TYPE_NAME

• DATA_TYPE

• PRECISION

• LITERAL_PREFIX

• LITERAL_SUFFIX

• CREATE_PARAMS

• NULLABLE

• CASE_SENSITIVE

• SEARCHABLE

• UNSIGNED_ATTRIBUTE

• MONEY

• AUTO_INCREMENT

• LOCAL_TYPE_NAME

• MINIMUM_SCALE

• MAXIMUM_SCALE

The result set is ordered by DATA_TYPE and TYPE_NAME.

odbc_longreadlen

odbc_longreadlen -- Handling of LONG columns

Description

bool odbc_longreadlen (resource $result_id, int $length)

Enables handling of LONG and LONGVARBINARY columns.

Parameters

result_id

The result identifier.

length

The number of bytes returned to PHP is controlled by the parameter length. If it is set
to 0, Long column data is passed through to the client.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Handling of LONGVARBINARY columns is also affected by odbc_binmode().

odbc_next_result

odbc_next_result -- Checks if multiple results are available

Description

bool odbc_next_result (resource $result_id)

Checks if there are more result sets available as well as allowing access to the next result
set via odbc_fetch_array(), odbc_fetch_row(), odbc_result(), etc.

Parameters

result_id

The result identifier.

Return Values

Returns TRUE if there are more result sets, FALSE otherwise.

Examples

Example #654 - odbc_next_result()

<?php

$r_Connection = odbc_connect($dsn, $username, $password);

$s_SQL = <<<END_SQL

SELECT 'A'

SELECT 'B'

SELECT 'C'

END_SQL;

$r_Results = odbc_exec($r_Connection, $s_SQL);

$a_Row1 = odbc_fetch_array($r_Results);

$a_Row2 = odbc_fetch_array($r_Results);

echo "Dump first result set";

var_dump($a_Row1, $a_Row2);

echo "Get second results set ";

var_dump(odbc_next_result($r_Results));

$a_Row1 = odbc_fetch_array($r_Results);

$a_Row2 = odbc_fetch_array($r_Results);

echo "Dump second result set ";

var_dump($a_Row1, $a_Row2);

echo "Get third results set ";

var_dump(odbc_next_result($r_Results));

$a_Row1 = odbc_fetch_array($r_Results);

$a_Row2 = odbc_fetch_array($r_Results);

echo "Dump third result set ";

var_dump($a_Row1, $a_Row2);

echo "Try for a fourth result set ";

var_dump(odbc_next_result($r_Results));

?>

The above example will output:

Dump first result set array(1) {

 ["A"]=>

 string(1) "A"

}

bool(false)

Get second results set bool(true)

Dump second result set array(1) {

 ["B"]=>

 string(1) "B"

}

bool(false)

Get third results set bool(true)

Dump third result set array(1) {

 ["C"]=>

 string(1) "C"

}

bool(false)

Try for a fourth result set bool(false)

odbc_num_fields

odbc_num_fields -- Number of columns in a result

Description

int odbc_num_fields (resource $result_id)

Gets the number of fields (columns) in an ODBC result.

Parameters

result_id

The result identifier returned by odbc_exec().

Return Values

Returns the number of fields, or -1 on error.

odbc_num_rows

odbc_num_rows -- Number of rows in a result

Description

int odbc_num_rows (resource $result_id)

Gets the number of rows in a result. For INSERT, UPDATE and DELETE statements
odbc_num_rows() returns the number of rows affected. For a SELECT clause this can be
the number of rows available.

Parameters

result_id

The result identifier returned by odbc_exec().

Return Values

Returns the number of rows in an ODBC result. This function will return -1 on error.

Notes

Note

Using odbc_num_rows() to determine the number of rows available after a SELECT
will return -1 with many drivers.

odbc_pconnect

odbc_pconnect -- Open a persistent database connection

Description

resource odbc_pconnect (string $dsn, string $user, string $password [, int $cursor_type
])

Opens a persistent database connection.

This function is much like odbc_connect(), except that the connection is not really closed
when the script has finished. Future requests for a connection with the same dsn, user,
password combination (via odbc_connect() and odbc_pconnect()) can reuse the persistent
connection.

Parameters

See odbc_connect() for details.

Return Values

Returns an ODBC connection id or 0 (FALSE) on error.

Notes

Note

Persistent connections have no effect if PHP is used as a CGI program.

See Also

• odbc_connect()
• Persistent Database Connections

odbc_prepare

odbc_prepare -- Prepares a statement for execution

Description

resource odbc_prepare (resource $connection_id, string $query_string)

Prepares a statement for execution. The result identifier can be used later to execute the
statement with odbc_execute().

Some databases (such as IBM DB2, MS SQL Server, and Oracle) support stored
procedures that accept parameters of type IN, INOUT, and OUT as defined by the ODBC
specification. However, the Unified ODBC driver currently only supports parameters of
type IN to stored procedures.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

query_string

The query string statement being prepared.

Return Values

Returns an ODBC result identifier if the SQL command was prepared successfully.
Returns FALSE on error.

Examples

Example #655 - odbc_prepare() example

In the following code, $res will only be valid if all three parameters to myproc are IN
parameters:

<?php

$a = 1;

$b = 2;

$c = 3;

$stmt = odbc_prepare($conn, 'CALL myproc(?,?,?)');

$res = odbc_execute($stmt, array($a, $b, $c));

?>

If you need to call a stored procedure using INOUT or OUT parameters, the recommended
workaround is to use a native extension for your database (for example, mssql for MS SQL
Server, or oci8 for Oracle).

odbc_primarykeys

odbc_primarykeys -- Gets the primary keys for a table

Description

resource odbc_primarykeys (resource $connection_id, string $qualifier, string $
owner, string $table)

Returns a result identifier that can be used to fetch the column names that comprise the
primary key for a table.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

owner

table

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_OWNER

• TABLE_NAME

• COLUMN_NAME

• KEY_SEQ

• PK_NAME

odbc_procedurecolumns

odbc_procedurecolumns -- Retrieve information about parameters to procedures

Description

resource odbc_procedurecolumns (resource $connection_id)

resource odbc_procedurecolumns (resource $connection_id, string $qualifier, string
$owner, string $proc, string $column)

Retrieve information about parameters to procedures.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner. This parameter accepts the following search patterns: "%" to match zero or
more characters, and "_" to match a single character.

proc

The proc. This parameter accepts the following search patterns: "%" to match zero or
more characters, and "_" to match a single character.

column

The column. This parameter accepts the following search patterns: "%" to match zero
or more characters, and "_" to match a single character.

Return Values

Returns the list of input and output parameters, as well as the columns that make up the
result set for the specified procedures. Returns an ODBC result identifier or FALSE on
failure.

The result set has the following columns:

• PROCEDURE_QUALIFIER

• PROCEDURE_OWNER

• PROCEDURE_NAME

• COLUMN_NAME

• COLUMN_TYPE

• DATA_TYPE

• TYPE_NAME

• PRECISION

• LENGTH

• SCALE

• RADIX

• NULLABLE

• REMARKS

The result set is ordered by PROCEDURE_QUALIFIER, PROCEDURE_OWNER,
PROCEDURE_NAME and COLUMN_TYPE.

odbc_procedures

odbc_procedures -- Get the list of procedures stored in a specific data source

Description

resource odbc_procedures (resource $connection_id)

resource odbc_procedures (resource $connection_id, string $qualifier, string $owner,
string $name)

Lists all procedures in the requested range.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner. This parameter accepts the following search patterns: "%" to match zero or
more characters, and "_" to match a single character.

name

The name. This parameter accepts the following search patterns: "%" to match zero or
more characters, and "_" to match a single character.

Return Values

Returns an ODBC result identifier containing the information or FALSE on failure.

The result set has the following columns:

• PROCEDURE_QUALIFIER

• PROCEDURE_OWNER

• PROCEDURE_NAME

• NUM_INPUT_PARAMS

• NUM_OUTPUT_PARAMS

• NUM_RESULT_SETS

• REMARKS

• PROCEDURE_TYPE

odbc_result_all

odbc_result_all -- Print result as HTML table

Description

int odbc_result_all (resource $result_id [, string $format])

Prints all rows from a result identifier produced by odbc_exec(). The result is printed in
HTML table format.

Parameters

result_id

The result identifier.

format

Additional overall table formatting.

Return Values

Returns the number of rows in the result or FALSE on error.

odbc_result

odbc_result -- Get result data

Description

mixed odbc_result (resource $result_id, mixed $field)

Get result data

Parameters

result_id

The ODBC resource.

field

The field name being retrieved. It can either be an integer containing the column
number of the field you want; or it can be a string containing the name of the field.

Return Values

Returns the string contents of the field, FALSE on error, NULL for NULL data, or TRUE for
binary data.

Examples

The first call to odbc_result() returns the value of the third field in the current record of the
query result. The second function call to odbc_result() returns the value of the field whose
field name is "val" in the current record of the query result. An error occurs if a column
number parameter for a field is less than one or exceeds the number of columns (or fields)
in the current record. Similarly, an error occurs if a field with a name that is not one of the
fieldnames of the table(s) that is(are) being queried.

Example #656 - odbc_result() examples

<?php

$item_3 = odbc_result($Query_ID, 3);

$item_val = odbc_result($Query_ID, "val");

?>

Notes

Field indices start from 1. Regarding the way binary or long column data is returned refer

to odbc_binmode() and odbc_longreadlen().

odbc_rollback

odbc_rollback -- Rollback a transaction

Description

bool odbc_rollback (resource $connection_id)

Rolls back all pending statements on the connection.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

Return Values

Returns TRUE on success or FALSE on failure.

odbc_setoption

odbc_setoption -- Adjust ODBC settings

Description

bool odbc_setoption (resource $id, int $function, int $option, int $param)

This function allows fiddling with the ODBC options for a particular connection or query
result. It was written to help find work around to problems in quirky ODBC drivers. You
should probably only use this function if you are an ODBC programmer and understand
the effects the various options will have. You will certainly need a good ODBC reference to
explain all the different options and values that can be used. Different driver versions
support different options.

Because the effects may vary depending on the ODBC driver, use of this function in
scripts to be made publicly available is strongly discouraged. Also, some ODBC options
are not available to this function because they must be set before the connection is
established or the query is prepared. However, if on a particular job it can make PHP work
so your boss doesn't tell you to use a commercial product, that's all that really matters.

Parameters

id

Is a connection id or result id on which to change the settings. For
SQLSetConnectOption(), this is a connection id. For SQLSetStmtOption(), this is a
result id.

function

Is the ODBC function to use. The value should be 1 for SQLSetConnectOption() and 2
for SQLSetStmtOption().

option

The option to set.

param

The value for the given option.

Return Values

Returns TRUE on success or FALSE on failure..

Examples

Example #657 - odbc_setoption() examples

<?php

// 1. Option 102 of SQLSetConnectOption() is SQL_AUTOCOMMIT.

// Value 1 of SQL_AUTOCOMMIT is SQL_AUTOCOMMIT_ON.

// This example has the same effect as

// odbc_autocommit($conn, true);

odbc_setoption($conn, 1, 102, 1);

// 2. Option 0 of SQLSetStmtOption() is SQL_QUERY_TIMEOUT.

// This example sets the query to timeout after 30 seconds.

$result = odbc_prepare($conn, $sql);

odbc_setoption($result, 2, 0, 30);

odbc_execute($result);

?>

odbc_specialcolumns

odbc_specialcolumns -- Retrieves special columns

Description

resource odbc_specialcolumns (resource $connection_id, int $type, string $qualifier
, string $owner, string $table, int $scope, int $nullable)

Retrieves either the optimal set of columns that uniquely identifies a row in the table, or
columns that are automatically updated when any value in the row is updated by a
transaction.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

type

When the type argument is SQL_BEST_ROWID, odbc_specialcolumns() returns the
column or columns that uniquely identify each row in the table. When the type
argument is SQL_ROWVER, odbc_specialcolumns() returns the column or columns in
the specified table, if any, that are automatically updated by the data source when any
value in the row is updated by any transaction.

qualifier

The qualifier.

owner

The owner.

table

The table.

scope

The scope, which orders the result set.

nullable

The nullable option.

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• SCOPE

• COLUMN_NAME

• DATA_TYPE

• TYPE_NAME

• PRECISION

• LENGTH

• SCALE

• PSEUDO_COLUMN

odbc_statistics

odbc_statistics -- Retrieve statistics about a table

Description

resource odbc_statistics (resource $connection_id, string $qualifier, string $owner,
string $table_name, int $unique, int $accuracy)

Get statistics about a table and its indexes.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner.

table_name

The table name.

unique

The unique attribute.

accuracy

The accuracy.

Return Values

Returns an ODBC result identifier or FALSE on failure.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_OWNER

• TABLE_NAME

• NON_UNIQUE

• INDEX_QUALIFIER

• INDEX_NAME

• TYPE

• SEQ_IN_INDEX

• COLUMN_NAME

• COLLATION

• CARDINALITY

• PAGES

• FILTER_CONDITION

The result set is ordered by NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME
and SEQ_IN_INDEX.

odbc_tableprivileges

odbc_tableprivileges -- Lists tables and the privileges associated with each table

Description

resource odbc_tableprivileges (resource $connection_id, string $qualifier, string $
owner, string $name)

Lists tables in the requested range and the privileges associated with each table.

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner. Accepts the following search patterns: ('%' to match zero or more
characters and '_' to match a single character)

name

The name. Accepts the following search patterns: ('%' to match zero or more
characters and '_' to match a single character)

Return Values

An ODBC result identifier or FALSE on failure.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_OWNER

• TABLE_NAME

• GRANTOR

• GRANTEE

• PRIVILEGE

• IS_GRANTABLE

The result set is ordered by TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

odbc_tables

odbc_tables -- Get the list of table names stored in a specific data source

Description

resource odbc_tables (resource $connection_id [, string $qualifier [, string $owner [,
string $name [, string $types]]]])

Lists all tables in the requested range.

To support enumeration of qualifiers, owners, and table types, the following special
semantics for the qualifier, owner, name, and table_type are available:

• If qualifier is a single percent character (%) and owner and name are empty strings,
then the result set contains a list of valid qualifiers for the data source. (All columns
except the TABLE_QUALIFIER column contain NULLs.)

• If owner is a single percent character (%) and qualifier and name are empty strings,
then the result set contains a list of valid owners for the data source. (All columns
except the TABLE_OWNER column contain NULLs.)

• If table_type is a single percent character (%) and qualifier, owner and name are
empty strings, then the result set contains a list of valid table types for the data source.
(All columns except the TABLE_TYPE column contain NULLs.)

Parameters

connection_id

The ODBC connection identifier, see odbc_connect() for details.

qualifier

The qualifier.

owner

The owner. Accepts search patterns ('%' to match zero or more characters and '_' to
match a single character).

name

The name. Accepts search patterns ('%' to match zero or more characters and '_' to
match a single character).

types

If table_type is not an empty string, it must contain a list of comma-separated values
for the types of interest; each value may be enclosed in single quotes (') or unquoted.
For example, "'TABLE','VIEW'" or "TABLE, VIEW". If the data source does not support
a specified table type, odbc_tables() does not return any results for that type.

Return Values

Returns an ODBC result identifier containing the information or FALSE on failure.

The result set has the following columns:

• TABLE_QUALIFIER

• TABLE_OWNER

• TABLE_NAME

• TABLE_TYPE

• REMARKS

The result set is ordered by TABLE_TYPE, TABLE_QUALIFIER, TABLE_OWNER and
TABLE_NAME.

See Also

• odbc_tableprivileges()

PHP Data Objects

Introduction

The PHP Data Objects (PDO) extension defines a lightweight, consistent interface for
accessing databases in PHP. Each database driver that implements the PDO interface
can expose database-specific features as regular extension functions. Note that you
cannot perform any database functions using the PDO extension by itself; you must use a
database-specific PDO driver to access a database server.

PDO provides a data-access abstraction layer, which means that, regardless of which
database you're using, you use the same functions to issue queries and fetch data. PDO
does not provide a database abstraction; it doesn't rewrite SQL or emulate missing
features. You should use a full-blown abstraction layer if you need that facility.

PDO ships with PHP 5.1, and is available as a PECL extension for PHP 5.0; PDO requires
the new OO features in the core of PHP 5, and so will not run with earlier versions of PHP.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

PHP 5.1 and up on Unix systems
1. If you're running a PHP 5.1 release, PDO and PDO_SQLITE is included in the

distribution; it will be automatically enabled when you run configure. It is recommended
that you build PDO as a shared extension, as this will allow you to take advantage of
updates that are made available via PECL. The recommended configure line for
building PHP with PDO support should enable zlib support (for the pecl installer) as
well. You may also need to enable the PDO driver for your database of choice; consult
the documentation for database-specific PDO drivers to find out more about that, but
note that if you build PDO as a shared extension, you must build the PDO drivers as
shared extensions. SQLite extension depends on PDO so if PDO is built as a shared
extension, SQLite needs to be built the same way.
./configure --with-zlib --enable-pdo=shared --with-pdo-sqlite=shared
--with-sqlite=shared

2. After installing PDO as a shared module, you must edit your php.ini file so that the
PDO extension will be loaded automatically when PHP runs. You will also need to
enable any database specific drivers there too; make sure that they are listed after the
pdo.so line, as PDO must be initialized before the database-specific extensions can be
loaded. If you built PDO and the database-specific extensions statically, you can skip
this step.
extension=pdo.so

3. Having PDO as a shared module will allow you to run pecl upgrade pdo as new
versions of PDO are published, without forcing you to rebuild the whole of PHP. Note
that if you do this, you also need to upgrade your database specific PDO drivers at the
same time.

PHP 5.0.0 and up on Unix systems
1. PDO is available as a PECL extension from » http://pecl.php.net/package/pdo.

Installation can be performed via the pecl tool; this is enabled by default when you
configure PHP. You should ensure that PHP was configured --with-zlib in order for pecl
to be able to handle the compressed package files.

2. Run the following command to download, build, and install the latest stable version of
PDO:
pecl install pdo

3. The pecl command automatically installs the PDO module into your PHP extensions

http://pecl.php.net/package/pdo

directory. To enable the PDO extension on Linux or Unix operating systems, you must
add the following line to php.ini:
extension=pdo.so
For more information about building PECL packages, consult the PECL installation
section of the manual.

Windows users running PHP 5.1.0 and up
1. PDO and all the major drivers ship with PHP as shared extensions, and simply need to

be activated by editing the php.ini file:
extension=php_pdo.dll

2. Next, choose the other database-specific DLL files and either use dl() to load them at
runtime, or enable them in php.ini below php_pdo.dll. For example:
extension=php_pdo.dll

extension=php_pdo_firebird.dll

extension=php_pdo_informix.dll

extension=php_pdo_mssql.dll

extension=php_pdo_mysql.dll

extension=php_pdo_oci.dll

extension=php_pdo_oci8.dll

extension=php_pdo_odbc.dll

extension=php_pdo_pgsql.dll

extension=php_pdo_sqlite.dll
These DLLs should exist in the system's extension_dir. Note that PDO_INFORMIX is
only available as a PECL extension.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PDO Configuration Options

Name Default Changeable Changelog

pdo.dsn.* php.ini only

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

pdo.dsn.* string
Defines DSN alias. See PDO::__construct() for thorough explanation.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Warning

PDO uses class constants since PHP 5.1. Prior releases use global constants in the
form PDO_PARAM_BOOL.

PDO::PARAM_BOOL (integer)
Represents a boolean data type.

PDO::PARAM_NULL (integer)
Represents the SQL NULL data type.

PDO::PARAM_INT (integer)
Represents the SQL INTEGER data type.

PDO::PARAM_STR (integer)
Represents the SQL CHAR, VARCHAR, or other string data type.

PDO::PARAM_LOB (integer)
Represents the SQL large object data type.

PDO::PARAM_STMT (integer)
Represents a recordset type. Not currently supported by any drivers.

PDO::PARAM_INPUT_OUTPUT (integer)
Specifies that the parameter is an INOUT parameter for a stored procedure. You must
bitwise-OR this value with an explicit PDO::PARAM_* data type.

PDO::FETCH_LAZY (integer)
Specifies that the fetch method shall return each row as an object with variable names
that correspond to the column names returned in the result set. PDO::FETCH_LAZY
creates the object variable names as they are accessed.

PDO::FETCH_ASSOC (integer)
Specifies that the fetch method shall return each row as an array indexed by column
name as returned in the corresponding result set. If the result set contains multiple
columns with the same name, PDO::FETCH_ASSOC returns only a single value per
column name.

PDO::FETCH_NAMED (integer)
Specifies that the fetch method shall return each row as an array indexed by column
name as returned in the corresponding result set. If the result set contains multiple
columns with the same name, PDO::FETCH_NAMED returns an array of values per
column name.

PDO::FETCH_NUM (integer)
Specifies that the fetch method shall return each row as an array indexed by column
number as returned in the corresponding result set, starting at column 0.

PDO::FETCH_BOTH (integer)
Specifies that the fetch method shall return each row as an array indexed by both
column name and number as returned in the corresponding result set, starting at
column 0.

PDO::FETCH_OBJ (integer)
Specifies that the fetch method shall return each row as an object with property names
that correspond to the column names returned in the result set.

PDO::FETCH_BOUND (integer)
Specifies that the fetch method shall return TRUE and assign the values of the
columns in the result set to the PHP variables to which they were bound with the
PDOStatement::bindParam() or PDOStatement::bindColumn() methods.

PDO::FETCH_COLUMN (integer)
Specifies that the fetch method shall return only a single requested column from the
next row in the result set.

PDO::FETCH_CLASS (integer)
Specifies that the fetch method shall return a new instance of the requested class,
mapping the columns to named properties in the class.

PDO::FETCH_INTO (integer)
Specifies that the fetch method shall update an existing instance of the requested
class, mapping the columns to named properties in the class.

PDO::FETCH_FUNC (integer)

PDO::FETCH_GROUP (integer)

PDO::FETCH_UNIQUE (integer)

PDO::FETCH_KEY_PAIR (integer)
Fetch into an array where the 1st column is a key and all subsequent columns are
values

PDO::FETCH_CLASSTYPE (integer)

PDO::FETCH_SERIALIZE (integer)
As PDO::FETCH_INTO but object is provided as a serialized string. Available since
PHP 5.1.0.

PDO::FETCH_PROPS_LATE (integer)
Available since PHP 5.2.0

PDO::ATTR_AUTOCOMMIT (integer)
If this value is FALSE, PDO attempts to disable autocommit so that the connection
begins a transaction.

PDO::ATTR_PREFETCH (integer)
Setting the prefetch size allows you to balance speed against memory usage for your
application. Not all database/driver combinations support setting of the prefetch size. A
larger prefetch size results in increased performance at the cost of higher memory
usage.

PDO::ATTR_TIMEOUT (integer)
Sets the timeout value in seconds for communications with the database.

PDO::ATTR_ERRMODE (integer)
See the Errors and error handling section for more information about this attribute.

PDO::ATTR_SERVER_VERSION (integer)
This is a read only attribute; it will return information about the version of the database
server to which PDO is connected.

PDO::ATTR_CLIENT_VERSION (integer)
This is a read only attribute; it will return information about the version of the client
libraries that the PDO driver is using.

PDO::ATTR_SERVER_INFO (integer)
This is a read only attribute; it will return some meta information about the database
server to which PDO is connected.

PDO::ATTR_CONNECTION_STATUS (integer)

PDO::ATTR_CASE (integer)
Force column names to a specific case specified by the PDO::CASE_* constants.

PDO::ATTR_CURSOR_NAME (integer)
Get or set the name to use for a cursor. Most useful when using scrollable cursors and
positioned updates.

PDO::ATTR_CURSOR (integer)
Selects the cursor type. PDO currently supports either PDO::CURSOR_FWDONLY
and PDO::CURSOR_SCROLL. Stick with PDO::CURSOR_FWDONLY unless you
know that you need a scrollable cursor.

PDO::ATTR_DRIVER_NAME (string)
Returns the name of the driver.

Example #658 - using PDO::ATTR_DRIVER_NAME

<?php

if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {

 echo "Running on mysql; doing something mysql specific here\n";

}

?>

PDO::ATTR_ORACLE_NULLS (integer)
Convert empty strings to SQL NULL values on data fetches.

PDO::ATTR_PERSISTENT (integer)
Request a persistent connection, rather than creating a new connection. See
Connections and Connection management for more information on this attribute.

PDO::ATTR_STATEMENT_CLASS (integer)

PDO::ATTR_FETCH_CATALOG_NAMES (integer)
Prepend the containing catalog name to each column name returned in the result set.
The catalog name and column name are separated by a decimal (.) character. Support
of this attribute is at the driver level; it may not be supported by your driver.

PDO::ATTR_FETCH_TABLE_NAMES (integer)
Prepend the containing table name to each column name returned in the result set.
The table name and column name are separated by a decimal (.) character. Support of
this attribute is at the driver level; it may not be supported by your driver.

PDO::ATTR_STRINGIFY_FETCHES (integer)

PDO::ATTR_MAX_COLUMN_LEN (integer)

PDO::ATTR_DEFAULT_FETCH_MODE (integer)
Available since PHP 5.2.0

PDO::ATTR_EMULATE_PREPARES (integer)
Available since PHP 5.1.3.

PDO::ERRMODE_SILENT (integer)
Do not raise an error or exception if an error occurs. The developer is expected to
explicitly check for errors. This is the default mode. See Errors and error handling for
more information about this attribute.

PDO::ERRMODE_WARNING (integer)
Issue a PHP E_WARNING message if an error occurs. See Errors and error handling
for more information about this attribute.

PDO::ERRMODE_EXCEPTION (integer)
Throw a PDOException if an error occurs. See Errors and error handling for more
information about this attribute.

PDO::CASE_NATURAL (integer)
Leave column names as returned by the database driver.

PDO::CASE_LOWER (integer)
Force column names to lower case.

PDO::CASE_UPPER (integer)
Force column names to upper case.

PDO::NULL_NATURAL (integer)

PDO::NULL_EMPTY_STRING (integer)

PDO::NULL_TO_STRING (integer)

PDO::FETCH_ORI_NEXT (integer)
Fetch the next row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_PRIOR (integer)
Fetch the previous row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_FIRST (integer)
Fetch the first row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_LAST (integer)
Fetch the last row in the result set. Valid only for scrollable cursors.

PDO::FETCH_ORI_ABS (integer)
Fetch the requested row by row number from the result set. Valid only for scrollable
cursors.

PDO::FETCH_ORI_REL (integer)
Fetch the requested row by relative position from the current position of the cursor in
the result set. Valid only for scrollable cursors.

PDO::CURSOR_FWDONLY (integer)
Create a PDOStatement object with a forward-only cursor. This is the default cursor
choice, as it is the fastest and most common data access pattern in PHP.

PDO::CURSOR_SCROLL (integer)
Create a PDOStatement object with a scrollable cursor. Pass the PDO::FETCH_ORI_*
constants to control the rows fetched from the result set.

PDO::ERR_NONE (string)
Corresponds to SQLSTATE '00000', meaning that the SQL statement was successfully
issued with no errors or warnings. This constant is for your convenience when
checking PDO::errorCode() or PDOStatement::errorCode() to determine if an error
occurred. You will usually know if this is the case by examining the return code from
the method that raised the error condition anyway.

PDO::PARAM_EVT_ALLOC (integer)
Allocation event

PDO::PARAM_EVT_FREE (integer)
Deallocation event

PDO::PARAM_EVT_EXEC_PRE (integer)
Event triggered prior to execution of a prepared statement.

PDO::PARAM_EVT_EXEC_POST (integer)
Event triggered subsequent to execution of a prepared statement.

PDO::PARAM_EVT_FETCH_PRE (integer)
Event triggered prior to fetching a result from a resultset.

PDO::PARAM_EVT_FETCH_POST (integer)
Event triggered subsequent to fetching a result from a resultset.

PDO::PARAM_EVT_NORMALIZE (integer)
Event triggered during bound parameter registration allowing the driver to normalize
the parameter name.

Connections and Connection management

Connections are established by creating instances of the PDO base class. It doesn't
matter which driver you want to use; you always use the PDO class name. The constructor
accepts parameters for specifying the database source (known as the DSN) and optionally
for the username and password (if any).

Example #659 - Connecting to MySQL

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

?>

If there are any connection errors, a PDOException object will be thrown. You may catch
the exception if you want to handle the error condition, or you may opt to leave it for an
application global exception handler that you set up via set_exception_handler().

Example #660 - Handling connection errors

<?php

try {

 $dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

 foreach($dbh->query('SELECT * from FOO') as $row) {

 print_r($row);

 }

 $dbh = null;

} catch (PDOException $e) {

 print "Error!: " . $e->getMessage() . "
";

 die();

}

?>

Warning

If your application does not catch the exception thrown from the PDO constructor, the
default action taken by the zend engine is to terminate the script and display a back
trace. This back trace will likely reveal the full database connection details, including
the username and password. It is your responsibility to catch this exception, either
explicitly (via a catch statement) or implicitly via set_exception_handler().

Upon successful connection to the database, an instance of the PDO class is returned to
your script. The connection remains active for the lifetime of that PDO object. To close the

connection, you need to destroy the object by ensuring that all remaining references to it
are deleted--you do this by assigning NULL to the variable that holds the object. If you
don't do this explicitly, PHP will automatically close the connection when your script ends.

Example #661 - Closing a connection

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

// use the connection here

// and now we're done; close it

$dbh = null;

?>

Many web applications will benefit from making persistent connections to database
servers. Persistent connections are not closed at the end of the script, but are cached and
re-used when another script requests a connection using the same credentials. The
persistent connection cache allows you to avoid the overhead of establishing a new
connection every time a script needs to talk to a database, resulting in a faster web
application.

Example #662 - Persistent connections

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass, array(

 PDO::ATTR_PERSISTENT => true

));

?>

Note

If you wish to use persistent connections, you must set PDO::ATTR_PERSISTENT in
the array of driver options passed to the PDO constructor. If setting this attribute with
PDO::setAttribute() after instantiation of the object, the driver will not use persistent
connections.

Note

If you're using the PDO ODBC driver and your ODBC libraries support ODBC
Connection Pooling (unixODBC and Windows are two that do; there may be more),
then it's recommended that you don't use persistent PDO connections, and instead
leave the connection caching to the ODBC Connection Pooling layer. The ODBC

Connection Pool is shared with other modules in the process; if PDO is told to cache
the connection, then that connection would never be returned to the ODBC connection
pool, resulting in additional connections being created to service those other modules.

Transactions and auto-commit

Now that you're connected via PDO, you must understand how PDO manages
transactions before you start issuing queries. If you've never encountered transactions
before, they offer 4 major features: Atomicity, Consistency, Isolation and Durability (ACID).
In layman's terms, any work carried out in a transaction, even if it is carried out in stages,
is guaranteed to be applied to the database safely, and without interference from other
connections, when it is committed. Transactional work can also be automatically undone at
your request (provided you haven't already committed it), which makes error handling in
your scripts easier.

Transactions are typically implemented by "saving-up" your batch of changes to be applied
all at once; this has the nice side effect of drastically improving the efficiency of those
updates. In other words, transactions can make your scripts faster and potentially more
robust (you still need to use them correctly to reap that benefit).

Unfortunately, not every database supports transactions, so PDO needs to run in what is
known as "auto-commit" mode when you first open the connection. Auto-commit mode
means that every query that you run has its own implicit transaction, if the database
supports it, or no transaction if the database doesn't support transactions. If you need a
transaction, you must use the PDO::beginTransaction() method to initiate one. If the
underlying driver does not support transactions, a PDOException will be thrown
(regardless of your error handling settings: this is always a serious error condition). Once
you are in a transaction, you may use PDO::commit() or PDO::rollBack() to finish it,
depending on the success of the code you run during the transaction.

When the script ends or when a connection is about to be closed, if you have an
outstanding transaction, PDO will automatically roll it back. This is a safety measure to
help avoid inconsistency in the cases where the script terminates unexpectedly--if you
didn't explicitly commit the transaction, then it is assumed that something went awry, so
the rollback is performed for the safety of your data.

Warning

The automatic rollback only happens if you initiate the transaction via
PDO::beginTransaction(). If you manually issue a query that begins a transaction PDO
has no way of knowing about it and thus cannot roll it back if something bad happens.

Example #663 - Executing a batch in a transaction

In the following sample, let's assume that we are creating a set of entries for a new
employee, who has been assigned an ID number of 23. In addition to entering the
basic data for that person, we also need to record their salary. It's pretty simple to
make two separate updates, but by enclosing them within the PDO::beginTransaction()
and PDO::commit() calls, we are guaranteeing that no one else will be able to see
those changes until they are complete. If something goes wrong, the catch block rolls

back all changes made since the transaction was started, and then prints out an error
message.

<?php

try {

 $dbh = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2',

 array(PDO::ATTR_PERSISTENT => true));

 echo "Connected\n";

 $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $dbh->beginTransaction();

 $dbh->exec("insert into staff (id, first, last) values (23, 'Joe',
'Bloggs')");

 $dbh->exec("insert into salarychange (id, amount, changedate)

 values (23, 50000, NOW())");

 $dbh->commit();

} catch (Exception $e) {

 $dbh->rollBack();

 echo "Failed: " . $e->getMessage();

}

?>

You're not limited to making updates in a transaction; you can also issue complex queries
to extract data, and possibly use that information to build up more updates and queries;
while the transaction is active, you are guaranteed that no one else can make changes
while you are in the middle of your work. In truth, this isn't 100% correct, but it is a
good-enough introduction, if you've never heard of transactions before.

Prepared statements and stored procedures

Many of the more mature databases support the concept of prepared statements. What
are they? You can think of them as a kind of compiled template for the SQL that you want
to run, that can be customized using variable parameters. Prepared statements offer two
major benefits:

• The query only needs to be parsed (or prepared) once, but can be executed multiple
times with the same or different parameters. When the query is prepared, the database
will analyze, compile and optimize it's plan for executing the query. For complex
queries this process can take up enough time that it will noticeably slow down your
application if you need to repeat the same query many times with different parameters.
By using a prepared statement you avoid repeating the analyze/compile/optimize
cycle. In short, prepared statements use fewer resources and thus run faster.

• The parameters to prepared statements don't need to be quoted; the driver handles it
for you. If your application exclusively uses prepared statements, you can be sure that
no SQL injection will occur. (However, if you're still building up other parts of the query
based on untrusted input, you're still at risk).

Prepared statements are so useful that they are the only feature that PDO will emulate for
drivers that don't support them. This ensures that you will be able to use the same data
access paradigm regardless of the capabilities of the database.

Example #664 - Repeated inserts using prepared statements

This example performs an INSERT query by substituting a name and a value for the
named placeholders.

<?php

$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (:name,
:value)");

$stmt->bindParam(':name', $name);

$stmt->bindParam(':value', $value);

// insert one row

$name = 'one';

$value = 1;

$stmt->execute();

// insert another row with different values

$name = 'two';

$value = 2;

$stmt->execute();

?>

Example #665 - Repeated inserts using prepared statements

This example performs an INSERT query by substituting a name and a value for the
positional ? placeholders.

<?php

$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (?, ?)");

$stmt->bindParam(1, $name);

$stmt->bindParam(2, $value);

// insert one row

$name = 'one';

$value = 1;

$stmt->execute();

// insert another row with different values

$name = 'two';

$value = 2;

$stmt->execute();

?>

Example #666 - Fetching data using prepared statements

This example fetches data based on a key value supplied by a form. The user input is
automatically quoted, so there is no risk of a SQL injection attack.

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name = ?");

if ($stmt->execute(array($_GET['name']))) {

 while ($row = $stmt->fetch()) {

 print_r($row);

 }

}

?>

If the database driver supports it, you may also bind parameters for output as well as input.
Output parameters are typically used to retrieve values from stored procedures. Output
parameters are slightly more complex to use than input parameters, in that you must know
how large a given parameter might be when you bind it. If the value turns out to be larger
than the size you suggested, an error is raised.

Example #667 - Calling a stored procedure with an output parameter

<?php

$stmt = $dbh->prepare("CALL sp_returns_string(?)");

$stmt->bindParam(1, $return_value, PDO::PARAM_STR, 4000);

// call the stored procedure

$stmt->execute();

print "procedure returned $return_value\n";

?>

You may also specify parameters that hold values both input and output; the syntax is
similar to output parameters. In this next example, the string 'hello' is passed into the
stored procedure, and when it returns, hello is replaced with the return value of the
procedure.

Example #668 - Calling a stored procedure with an input/output parameter

<?php

$stmt = $dbh->prepare("CALL sp_takes_string_returns_string(?)");

$value = 'hello';

$stmt->bindParam(1, $value, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 4000);

// call the stored procedure

$stmt->execute();

print "procedure returned $value\n";

?>

Example #669 - Invalid use of placeholder

<?php

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE '%?%'");

$stmt->execute(array($_GET['name']));

// placeholder must be used in the place of the whole value

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE ?");

$stmt->execute(array("%$_GET[name]%"));

?>

Errors and error handling

PDO offers you a choice of 3 different error handling strategies, to fit your style of
application development.

• PDO::ERRMODE_SILENT This is the default mode. PDO will simply set the error
code for you to inspect using the PDO::errorCode() and PDO::errorInfo() methods on
both the statement and database objects; if the error resulted from a call on a
statement object, you would invoke the PDOStatement::errorCode() or
PDOStatement::errorInfo() method on that object. If the error resulted from a call on
the database object, you would invoke those methods on the database object instead.

• PDO::ERRMODE_WARNING In addition to setting the error code, PDO will emit a
traditional E_WARNING message. This setting is useful during debugging/testing, if
you just want to see what problems occurred without interrupting the flow of the
application.

• PDO::ERRMODE_EXCEPTION In addition to setting the error code, PDO will throw a
PDOException and set its properties to reflect the error code and error information.
This setting is also useful during debugging, as it will effectively "blow up" the script at
the point of the error, very quickly pointing a finger at potential problem areas in your
code (remember: transactions are automatically rolled back if the exception causes the
script to terminate). Exception mode is also useful because you can structure your
error handling more clearly than with traditional PHP-style warnings, and with less
code/nesting than by running in silent mode and explicitly checking the return value of
each database call. See Exceptions for more information about Exceptions in PHP.

PDO standardizes on using SQL-92 SQLSTATE error code strings; individual PDO drivers
are responsible for mapping their native codes to the appropriate SQLSTATE codes. The
PDO::errorCode() method returns a single SQLSTATE code. If you need more specific
information about an error, PDO also offers an PDO::errorInfo() method which returns an
array containing the SQLSTATE code, the driver specific error code and driver specific
error string.

Large Objects (LOBs)

At some point in your application, you might find that you need to store "large" data in your
database. Large typically means "around 4kb or more", although some databases can
happily handle up to 32kb before data becomes "large". Large objects can be either textual
or binary in nature. PDO allows you to work with this large data type by using the
PDO::PARAM_LOB type code in your PDOStatement::bindParam() or
PDOStatement::bindColumn() calls. PDO::PARAM_LOB tells PDO to map the data as a
stream, so that you can manipulate it using the PHP Streams API.

Example #670 - Displaying an image from a database

This example binds the LOB into the variable named $lob and then sends it to the
browser using fpassthru(). Since the LOB is represented as a stream, functions such
as fgets(), fread() and stream_get_contents() can be used on it.

<?php

$db = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2');

$stmt = $db->prepare("select contenttype, imagedata from images where
id=?");

$stmt->execute(array($_GET['id']));

$stmt->bindColumn(1, $type, PDO::PARAM_STR, 256);

$stmt->bindColumn(2, $lob, PDO::PARAM_LOB);

$stmt->fetch(PDO::FETCH_BOUND);

header("Content-Type: $type");

fpassthru($lob);

?>

Example #671 - Inserting an image into a database

This example opens up a file and passes the file handle to PDO to insert it as a LOB.
PDO will do its best to get the contents of the file up to the database in the most
efficient manner possible.

<?php

$db = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2');

$stmt = $db->prepare("insert into images (id, contenttype, imagedata) values
(?, ?, ?)");

$id = get_new_id(); // some function to allocate a new ID

// assume that we are running as part of a file upload form

// You can find more information in the PHP documentation

$fp = fopen($_FILES['file']['tmp_name'], 'rb');

$stmt->bindParam(1, $id);

$stmt->bindParam(2, $_FILES['file']['type']);

$stmt->bindParam(3, $fp, PDO::PARAM_LOB);

$db->beginTransaction();

$stmt->execute();

$db->commit();

?>

Example #672 - Inserting an image into a database: Oracle

Oracle requires a slightly different syntax for inserting a lob from a file. It's also
essential that you perform the insert under a transaction, otherwise your newly inserted
LOB will be committed with a zero-length as part of the implicit commit that happens
when the query is executed:

<?php

$db = new PDO('oci:', 'scott', 'tiger');

$stmt = $db->prepare("insert into images (id, contenttype, imagedata) " .

"VALUES (?, ?, EMPTY_BLOB()) RETURNING imagedata INTO ?");

$id = get_new_id(); // some function to allocate a new ID

// assume that we are running as part of a file upload form

// You can find more information in the PHP documentation

$fp = fopen($_FILES['file']['tmp_name'], 'rb');

$stmt->bindParam(1, $id);

$stmt->bindParam(2, $_FILES['file']['type']);

$stmt->bindParam(3, $fp, PDO::PARAM_LOB);

$stmt->beginTransaction();

$stmt->execute();

$stmt->commit();

?>

The PDO class

Introduction

Represents a connection between PHP and a database server.

Class synopsis

PDO

PDO {

PDO::__construct (string $dsn [, string $username [, string $password [, array $
driver_options]]])

bool PDO::beginTransaction (void)

bool PDO::commit (void)

string PDO::errorCode (void)

array PDO::errorInfo (void)

int PDO::exec (string $statement)

mixed PDO::getAttribute (int $attribute)

array PDO::getAvailableDrivers (void)

string PDO::lastInsertId ([string $name])

PDOStatement PDO::prepare (string $statement [, array $driver_options])

PDOStatement PDO::query (string $statement)

string PDO::quote (string $string [, int $parameter_type])

bool PDO::rollBack (void)

bool PDO::setAttribute (int $attribute, mixed $value)
}

PDO::beginTransaction

PDO::beginTransaction -- Initiates a transaction

Description

bool PDO::beginTransaction (void)

Turns off autocommit mode. While autocommit mode is turned off, changes made to the
database via the PDO object instance are not committed until you end the transaction by
calling PDO::commit(). Calling PDO::rollBack() will roll back all changes to the database
and return the connection to autocommit mode.

Some databases, including MySQL, automatically issue an implicit COMMIT when a
database definition language (DDL) statement such as DROP TABLE or CREATE TABLE
is issued within a transaction. The implicit COMMIT will prevent you from rolling back any
other changes within the transaction boundary.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #673 - Roll back a transaction

The following example begins a transaction and issues two statements that modify the
database before rolling back the changes. On MySQL, however, the DROP TABLE
statement automatically commits the transaction so that none of the changes in the
transaction are rolled back.

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = 'hamburger'");

/* Recognize mistake and roll back changes */

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::commit()
• PDO::rollBack()

PDO::commit

PDO::commit -- Commits a transaction

Description

bool PDO::commit (void)

Commits a transaction, returning the database connection to autocommit mode until the
next call to PDO::beginTransaction() starts a new transaction.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #674 - Commit a transaction

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema */

$sth = $dbh->exec("DROP TABLE fruit");

/* Commit the changes */

$dbh->commit();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::beginTransaction()
• PDO::rollBack()

PDO::__construct

PDO::__construct -- Creates a PDO instance representing a connection to a database

Description

PDO::__construct (string $dsn [, string $username [, string $password [, array $
driver_options]]])

Creates a PDO instance to represent a connection to the requested database.

Parameters

dsn
The Data Source Name, or DSN, contains the information required to connect to the
database. In general, a DSN consists of the PDO driver name, followed by a colon,
followed by the PDO driver-specific connection syntax. Further information is available
from the PDO driver-specific documentation. The dsn parameter supports three
different methods of specifying the arguments required to create a database
connection:
Driver invocation

dsn contains the full DSN.

URI invocation
dsn consists of uri: followed by a URI that defines the location of a file containing
the DSN string. The URI can specify a local file or a remote URL.
uri:file:///path/to/dsnfile

Aliasing
dsn consists of a name name that maps to pdo.dsn. name in php.ini defining the
DSN string.

Note

The alias must be defined in php.ini, and not.htaccess or httpd.conf

username
The user name for the DSN string. This parameter is optional for some PDO drivers.

password
The password for the DSN string. This parameter is optional for some PDO drivers.

driver_options
A key=>value array of driver-specific connection options.

Return Values

Returns a PDO object on success.

Errors/Exceptions

PDO::__construct() throws a PDOException if the attempt to connect to the requested
database fails.

Examples

Example #675 - Create a PDO instance via driver invocation

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = 'mysql:dbname=testdb;host=127.0.0.1';

$user = 'dbuser';

$password = 'dbpass';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

Example #676 - Create a PDO instance via URI invocation

The following example assumes that the file /usr/local/dbconnect exists with file
permissions that enable PHP to read the file. The file contains the PDO DSN to
connect to a DB2 database through the PDO_ODBC driver:

odbc:DSN=SAMPLE;UID=john;PWD=mypass

The PHP script can then create a database connection by simply passing the uri:
parameter and pointing to the file URI:

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = 'uri:file:///usr/local/dbconnect';

$user = '';

$password = '';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

Example #677 - Create a PDO instance using an alias

The following example assumes that php.ini contains the following entry to enable a
connection to a MySQL database using only the alias mydb:

[PDO]

pdo.dsn.mydb="mysql:dbname=testdb;host=localhost"

<?php

/* Connect to an ODBC database using an alias */

$dsn = 'mydb';

$user = '';

$password = '';

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo 'Connection failed: ' . $e->getMessage();

}

?>

PDO::errorCode

PDO::errorCode -- Fetch the SQLSTATE associated with the last operation on the
database handle

Description

string PDO::errorCode (void)

Return Values

Returns a SQLSTATE, a five-character alphanumeric identifier defined in the ANSI
SQL-92 standard. Briefly, an SQLSTATE consists of a two-character class value followed
by a three-character subclass value. A class value of 01 indicates a warning and is
accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values other than
'01', except for the class 'IM', indicate an error. The class 'IM' is specific to warnings and
errors that derive from the implementation of PDO (or perhaps ODBC, if you're using the
ODBC driver) itself. The subclass value '000' in any class indicates that there is no
subclass for that SQLSTATE.

PDO::errorCode() only retrieves error codes for operations performed directly on the
database handle. If you create a PDOStatement object through PDO::prepare() or
PDO::query() and invoke an error on the statement handle, PDO::errorCode() will not
reflect that error. You must call PDOStatement::errorCode() to return the error code for an
operation performed on a particular statement handle.

Examples

Example #678 - Retrieving a SQLSTATE code

<?php

/* Provoke an error -- the BONES table does not exist */

$dbh->exec("INSERT INTO bones(skull) VALUES ('lucy')");

echo "\nPDO::errorCode(): ";

print $dbh->errorCode();

?>

The above example will output:

PDO::errorCode(): 42S02

See Also

• PDO::errorInfo()
• PDOStatement::errorCode()
• PDOStatement::errorInfo()

PDO::errorInfo

PDO::errorInfo -- Fetch extended error information associated with the last operation on
the database handle

Description

array PDO::errorInfo (void)

Return Values

PDO::errorInfo() returns an array of error information about the last operation performed by
this database handle. The array consists of the following fields:

Element Information

0 SQLSTATE error code (a five-character
alphanumeric identifier defined in the ANSI
SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

PDO::errorInfo() only retrieves error information for operations performed directly on the
database handle. If you create a PDOStatement object through PDO::prepare() or
PDO::query() and invoke an error on the statement handle, PDO::errorInfo() will not reflect
the error from the statement handle. You must call PDOStatement::errorInfo() to return the
error information for an operation performed on a particular statement handle.

Examples

Example #679 - Displaying errorInfo() fields for a PDO_ODBC connection to a
DB2 database

<?php

/* Provoke an error -- bogus SQL syntax */

$stmt = $dbh->prepare('bogus sql');

if (!$stmt) {

 echo "\nPDO::errorInfo():\n";

 print_r($dbh->errorInfo());

}

?>

The above example will output:

PDO::errorInfo():

Array

(

 [0] => HY000

 [1] => 1

 [2] => near "bogus": syntax error

)

See Also

• PDO::errorCode()
• PDOStatement::errorCode()
• PDOStatement::errorInfo()

PDO::exec

PDO::exec -- Execute an SQL statement and return the number of affected rows

Description

int PDO::exec (string $statement)

PDO::exec() executes an SQL statement in a single function call, returning the number of
rows affected by the statement.

PDO::exec() does not return results from a SELECT statement. For a SELECT statement
that you only need to issue once during your program, consider issuing PDO::query(). For
a statement that you need to issue multiple times, prepare a PDOStatement object with
PDO::prepare() and issue the statement with PDOStatement::execute().

Parameters

statement

The SQL statement to prepare and execute.

Return Values

PDO::exec() returns the number of rows that were modified or deleted by the SQL
statement you issued. If no rows were affected, PDO::exec() returns 0.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

The following example incorrectly relies on the return value of PDO::exec(), wherein a
statement that affected 0 rows results in a call to die():
<?php

$db->exec() or die($db->errorInfo());

?>

Examples

Example #680 - Issuing a DELETE statement

Count the number of rows deleted by a DELETE statement with no WHERE clause.

<?php

$dbh = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

/* Delete all rows from the FRUIT table */

$count = $dbh->exec("DELETE FROM fruit WHERE colour = 'red'");

/* Return number of rows that were deleted */

print("Deleted $count rows.\n");

?>

The above example will output:

Deleted 1 rows.

See Also

• PDO::prepare()
• PDO::query()
• PDOStatement::execute()

PDO::getAttribute

PDO::getAttribute -- Retrieve a database connection attribute

Description

mixed PDO::getAttribute (int $attribute)

This function returns the value of a database connection attribute. To retrieve
PDOStatement attributes, refer to PDOStatement::getAttribute().

Note that some database/driver combinations may not support all of the database
connection attributes.

Parameters

attribute

One of the PDO::ATTR_* constants. The constants that apply to database connections
are as follows:

• PDO::ATTR_AUTOCOMMIT
• PDO::ATTR_CASE
• PDO::ATTR_CLIENT_VERSION
• PDO::ATTR_CONNECTION_STATUS
• PDO::ATTR_DRIVER_NAME
• PDO::ATTR_ERRMODE
• PDO::ATTR_ORACLE_NULLS
• PDO::ATTR_PERSISTENT
• PDO::ATTR_PREFETCH
• PDO::ATTR_SERVER_INFO
• PDO::ATTR_SERVER_VERSION
• PDO::ATTR_TIMEOUT

Return Values

A successful call returns the value of the requested PDO attribute. An unsuccessful call
returns null.

Examples

Example #681 - Retrieving database connection attributes

<?php

$conn = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

$attributes = array(

 "AUTOCOMMIT", "ERRMODE", "CASE", "CLIENT_VERSION", "CONNECTION_STATUS",

 "ORACLE_NULLS", "PERSISTENT", "PREFETCH", "SERVER_INFO",
"SERVER_VERSION",

 "TIMEOUT"

);

foreach ($attributes as $val) {

 echo "PDO::ATTR_$val: ";

 echo $conn->getAttribute(constant("PDO::ATTR_$val")) . "\n";

}

?>

See Also

• PDO::setAttribute()
• PDOStatement::getAttribute()
• PDOStatement::setAttribute()

PDO::getAvailableDrivers

PDO::getAvailableDrivers -- Return an array of available PDO drivers

Description

array PDO::getAvailableDrivers (void)

This function returns all currently available PDO drivers which can be used in DSN
parameter of PDO::__construct(). This is a static method.

Return Values

PDO::getAvailableDrivers() returns an array of PDO driver names. If no drivers are
available, it returns an empty array.

Examples

Example #682 - A PDO::getAvailableDrivers() example

<?php

print_r(PDO::getAvailableDrivers());

?>

The above example will output something similar to:

Array

(

 [0] => mysql

 [1] => sqlite

)

PDO::lastInsertId

PDO::lastInsertId -- Returns the ID of the last inserted row or sequence value

Description

string PDO::lastInsertId ([string $name])

Returns the ID of the last inserted row, or the last value from a sequence object,
depending on the underlying driver. For example, PDO_PGSQL() requires you to specify
the name of a sequence object for the name parameter.

Note

This method may not return a meaningful or consistent result across different PDO
drivers, because the underlying database may not even support the notion of
auto-increment fields or sequences.

Parameters

name

Name of the sequence object from which the ID should be returned.

Return Values

If a sequence name was not specified for the name parameter, PDO::lastInsertId() returns
a string representing the row ID of the last row that was inserted into the database.

If a sequence name was specified for the name parameter, PDO::lastInsertId() returns a
string representing the last value retrieved from the specified sequence object.

If the PDO driver does not support this capability, PDO::lastInsertId() triggers an IM001
SQLSTATE.

PDO::prepare

PDO::prepare -- Prepares a statement for execution and returns a statement object

Description

PDOStatement PDO::prepare (string $statement [, array $driver_options])

Prepares an SQL statement to be executed by the PDOStatement::execute() method. The
SQL statement can contain zero or more named (:name) or question mark (?) parameter
markers for which real values will be substituted when the statement is executed. You
cannot use both named and question mark parameter markers within the same SQL
statement; pick one or the other parameter style.

You must include a unique parameter marker for each value you wish to pass in to the
statement when you call PDOStatement::execute(). You cannot use a named parameter
marker of the same name twice in a prepared statement. You cannot bind multiple values
to a single named parameter in, for example, the IN() clause of an SQL statement.

Calling PDO::prepare() and PDOStatement::execute() for statements that will be issued
multiple times with different parameter values optimizes the performance of your
application by allowing the driver to negotiate client and/or server side caching of the query
plan and meta information, and helps to prevent SQL injection attacks by eliminating the
need to manually quote the parameters.

PDO will emulate prepared statements/bound parameters for drivers that do not natively
support them, and can also rewrite named or question mark style parameter markers to
something more appropriate, if the driver supports one style but not the other.

Parameters

statement

This must be a valid SQL statement for the target database server.

driver_options

This array holds one or more key=>value pairs to set attribute values for the
PDOStatement object that this method returns. You would most commonly use this to
set the PDO::ATTR_CURSOR value to PDO::CURSOR_SCROLL to request a
scrollable cursor. Some drivers have driver specific options that may be set at
prepare-time.

Return Values

If the database server successfully prepares the statement, PDO::prepare() returns a
PDOStatement object. If the database server cannot successfully prepare the statement,
PDO::prepare() returns FALSE.

Examples

Example #683 - Prepare an SQL statement with named parameters

<?php

/* Execute a prepared statement by passing an array of values */

$sql = 'SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour';

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_FWDONLY));

$sth->execute(array(':calories' => 150, ':colour' => 'red'));

$red = $sth->fetchAll();

$sth->execute(array('calories' => 175, 'colour' => 'yellow'));

$yellow = $sth->fetchAll();

?>

Example #684 - Prepare an SQL statement with question mark parameters

<?php

/* Execute a prepared statement by passing an array of values */

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->execute(array(150, 'red'));

$red = $sth->fetchAll();

$sth->execute(array(175, 'yellow'));

$yellow = $sth->fetchAll();

?>

See Also

• PDO::exec()
• PDO::query()
• PDOStatement::execute()

PDO::query

PDO::query -- Executes an SQL statement, returning a result set as a PDOStatement
object

Description

PDOStatement PDO::query (string $statement)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_COLUMN, int $colno)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_CLASS, string $
classname, array $ctorargs)

PDOStatement PDO::query (string $statement, int $PDO::FETCH_INTO, object $object)

PDO::query() executes an SQL statement in a single function call, returning the result set
(if any) returned by the statement as a PDOStatement object.

For a query that you need to issue multiple times, you will realize better performance if you
prepare a PDOStatement object using PDO::prepare() and issue the statement with
multiple calls to PDOStatement::execute().

If you do not fetch all of the data in a result set before issuing your next call to
PDO::query(), your call may fail. Call PDOStatement::closeCursor() to release the
database resources associated with the PDOStatement object before issuing your next
call to PDO::query().

Note

Although this function is only documented as having a single parameter, you may pass
additional arguments to this function. They will be treated as though you called
PDOStatement::setFetchMode() on the resultant statement object.

Parameters

statement

The SQL statement to prepare and execute.

Return Values

PDO::query() returns a PDOStatement object.

Examples

Example #685 - Demonstrate PDO::query

A nice feature of PDO::query() is that it enables you to iterate over the rowset returned
by a successfully executed SELECT statement.

<?php

function getFruit($conn) {

 $sql = 'SELECT name, colour, calories FROM fruit ORDER BY name';

 foreach ($conn->query($sql) as $row) {

 print $row['NAME'] . "\t";

 print $row['COLOUR'] . "\t";

 print $row['CALORIES'] . "\n";

 }

}

?>

The above example will output:

apple red 150

banana yellow 250

kiwi brown 75

lemon yellow 25

orange orange 300

pear green 150

watermelon pink 90

See Also

• PDO::exec()
• PDO::prepare()
• PDOStatement::execute()

PDO::quote

PDO::quote -- Quotes a string for use in a query.

Description

string PDO::quote (string $string [, int $parameter_type])

PDO::quote() places quotes around the input string (if required) and escapes special
characters within the input string, using a quoting style appropriate to the underlying driver.

If you are using this function to build SQL statements, you are strongly recommended to
use PDO::prepare() to prepare SQL statements with bound parameters instead of using
PDO::quote() to interpolate user input into a SQL statement. Prepared statements with
bound parameters are not only more portable, more convenient, immune to SQL injection,
but are often much faster to execute than interpolated queries, as both the server and
client side can cache a compiled form of the query.

Not all PDO drivers implement this method (notably PDO_ODBC). Consider using
prepared statements instead.

Parameters

string

The string to be quoted.

parameter_type

Provides a data type hint for drivers that have alternate quoting styles. The default
value is PDO::PARAM_STR.

Return Values

Returns a quoted string that is theoretically safe to pass into an SQL statement. Returns
FALSE if the driver does not support quoting in this way.

Examples

Example #686 - Quoting a normal string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Simple string */

$string = 'Nice';

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Nice

Quoted string: 'Nice'

Example #687 - Quoting a dangerous string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Dangerous string */

$string = 'Naughty \' string';

print "Unquoted string: $string\n";

print "Quoted string:" . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Naughty ' string

Quoted string: 'Naughty '' string'

Example #688 - Quoting a complex string

<?php

$conn = new PDO('sqlite:/home/lynn/music.sql3');

/* Complex string */

$string = "Co'mpl''ex \"st'\"ring";

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The above example will output:

Unquoted string: Co'mpl''ex "st'"ring

Quoted string: 'Co''mpl''''ex "st''"ring'

See Also

• PDO::prepare()
• PDOStatement::execute()

PDO::rollBack

PDO::rollBack -- Rolls back a transaction

Description

bool PDO::rollBack (void)

Rolls back the current transaction, as initiated by PDO::beginTransaction(). It is an error to
call this method if no transaction is active.

If the database was set to autocommit mode, this function will restore autocommit mode
after it has rolled back the transaction.

Some databases, including MySQL, automatically issue an implicit COMMIT when a
database definition language (DDL) statement such as DROP TABLE or CREATE TABLE
is issued within a transaction. The implicit COMMIT will prevent you from rolling back any
other changes within the transaction boundary.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #689 - Roll back a transaction

The following example begins a transaction and issues two statements that modify the
database before rolling back the changes. On MySQL, however, the DROP TABLE
statement automatically commits the transaction so that none of the changes in the
transaction are rolled back.

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = 'hamburger'");

/* Recognize mistake and roll back changes */

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

See Also

• PDO::beginTransaction()
• PDO::commit()

PDO::setAttribute

PDO::setAttribute -- Set an attribute

Description

bool PDO::setAttribute (int $attribute, mixed $value)

Sets an attribute on the database handle. Some of the available generic attributes are
listed below; some drivers may make use of additional driver specific attributes.

• PDO::ATTR_CASE: Force column names to a specific case.

• PDO::CASE_LOWER: Force column names to lower case.

• PDO::CASE_NATURAL: Leave column names as returned by the database driver.

• PDO::CASE_UPPER: Force column names to upper case.

• PDO::ATTR_ERRMODE: Error reporting.

• PDO::ERRMODE_SILENT: Just set error codes.

• PDO::ERRMODE_WARNING: Raise E_WARNING.

• PDO::ERRMODE_EXCEPTION: Throw exceptions.

• PDO::ATTR_ORACLE_NULLS (available with all drivers, not just Oracle): Conversion
of NULL and empty strings.

• PDO::NULL_NATURAL: No conversion.

• PDO::NULL_EMPTY_STRING: Empty string is converted to NULL.

• PDO::NULL_TO_STRING: NULL is converted to an empty string.

• PDO::ATTR_STRINGIFY_FETCHES: Convert numeric values to strings when
fetching. Requires bool.

• PDO::ATTR_STATEMENT_CLASS: Set user-supplied statement class derived from
PDOStatement. Cannot be used with persistent PDO instances. Requires array(string
classname, array(mixed constructor_args)).

• PDO::ATTR_AUTOCOMMIT (available in OCI, Firebird and MySQL): Whether to
autocommit every single statement.

• PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (available in MySQL): Use buffered
queries.

Return Values

Returns TRUE on success or FALSE on failure.

The PDOStatement class

Introduction

Represents a prepared statement and, after the statement is executed, an associated
result set.

Class synopsis

PDOStatement

PDOStatement implements Traversable {

bool PDOStatement::bindColumn (mixed $column, mixed &$param [, int $type [, int
$maxlen [, mixed $driverdata]]])

bool PDOStatement::bindParam (mixed $parameter, mixed &$variable [, int $
data_type [, int $length [, mixed $driver_options]]])

bool PDOStatement::bindValue (mixed $parameter, mixed $value [, int $data_type
])

bool PDOStatement::closeCursor (void)

int PDOStatement::columnCount (void)

string PDOStatement::errorCode (void)

array PDOStatement::errorInfo (void)

bool PDOStatement::execute ([array $input_parameters])

mixed PDOStatement::fetch ([int $fetch_style [, int $cursor_orientation [, int $
cursor_offset]]])

array PDOStatement::fetchAll ([int $fetch_style [, int $column_index [, array $
ctor_args]]])

string PDOStatement::fetchColumn ([int $column_number])

mixed PDOStatement::fetchObject ([string $class_name [, array $ctor_args]])

mixed PDOStatement::getAttribute (int $attribute)

array PDOStatement::getColumnMeta (int $column)

bool PDOStatement::nextRowset (void)

int PDOStatement::rowCount (void)

bool PDOStatement::setAttribute (int $attribute, mixed $value)

bool PDOStatement::setFetchMode (int $mode)
}

PDOStatement->bindColumn

PDOStatement->bindColumn -- Bind a column to a PHP variable

Description

bool PDOStatement::bindColumn (mixed $column, mixed &$param [, int $type [, int $
maxlen [, mixed $driverdata]]])

PDOStatement::bindColumn() arranges to have a particular variable bound to a given
column in the result-set from a query. Each call to PDOStatement::fetch() or
PDOStatement::fetchAll() will update all the variables that are bound to columns.

Note

Since information about the columns is not always available to PDO until the statement
is executed, portable applications should call this function after
PDOStatement::execute().

Parameters

column

Number of the column (1-indexed) or name of the column in the result set. If using the
column name, be aware that the name should match the case of the column, as
returned by the driver.

param

Name of the PHP variable to which the column will be bound.

type

Data type of the parameter, specified by the PDO::PARAM_* constants.

maxlen

A hint for pre-allocation.

driverdata

Optional parameter(s) for the driver.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #690 - Binding result set output to PHP variables

Binding columns in the result set to PHP variables is an effective way to make the data
contained in each row immediately available to your application. The following example
demonstrates how PDO allows you to bind and retrieve columns with a variety of
options and with intelligent defaults.

<?php

function readData($dbh) {

 $sql = 'SELECT name, colour, calories FROM fruit';

 try {

 $stmt = $dbh->prepare($sql);

 $stmt->execute();

 /* Bind by column number */

 $stmt->bindColumn(1, $name);

 $stmt->bindColumn(2, $colour);

 /* Bind by column name */

 $stmt->bindColumn('calories', $cals);

 while ($row = $stmt->fetch(PDO::FETCH_BOUND)) {

 $data = $name . "\t" . $colour . "\t" . $cals . "\n";

 print $data;

 }

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

readData($dbh);

?>

The above example will output:

apple red 150

banana yellow 175

kiwi green 75

orange orange 150

mango red 200

strawberry red 25

See Also

• PDOStatement::execute()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()

PDOStatement->bindParam

PDOStatement->bindParam -- Binds a parameter to the specified variable name

Description

bool PDOStatement::bindParam (mixed $parameter, mixed &$variable [, int $
data_type [, int $length [, mixed $driver_options]]])

Binds a PHP variable to a corresponding named or question mark placeholder in the SQL
statement that was use to prepare the statement. Unlike PDOStatement::bindValue(), the
variable is bound as a reference and will only be evaluated at the time that
PDOStatement::execute() is called.

Most parameters are input parameters, that is, parameters that are used in a read-only
fashion to build up the query. Some drivers support the invocation of stored procedures
that return data as output parameters, and some also as input/output parameters that both
send in data and are updated to receive it.

Parameters

parameter

Parameter identifier. For a prepared statement using named placeholders, this will be
a parameter name of the form:name. For a prepared statement using question mark
placeholders, this will be the 1-indexed position of the parameter.

variable

Name of the PHP variable to bind to the SQL statement parameter.

data_type

Explicit data type for the parameter using the PDO::PARAM_* constants. Defaults to
PHP native type. To return an INOUT parameter from a stored procedure, use the
bitwise OR operator to set the PDO::PARAM_INPUT_OUTPUT bits for the data_type
parameter.

length

Length of the data type. To indicate that a parameter is an OUT parameter from a
stored procedure, you must explicitly set the length.

driver_options

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #691 - Execute a prepared statement with named placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindParam(':calories', $calories, PDO::PARAM_INT);

$sth->bindParam(':colour', $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #692 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #693 - Call a stored procedure with an INOUT parameter

<?php

/* Call a stored procedure with an INOUT parameter */

$colour = 'red';

$sth = $dbh->prepare('CALL puree_fruit(?)');

$sth->bindParam(1, $colour, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 12);

$sth->execute();

print("After pureeing fruit, the colour is: $colour");

?>

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::bindValue()

PDOStatement->bindValue

PDOStatement->bindValue -- Binds a value to a parameter

Description

bool PDOStatement::bindValue (mixed $parameter, mixed $value [, int $data_type])

Binds a value to a corresponding named or question mark placeholder in the SQL
statement that was use to prepare the statement.

Parameters

parameter

Parameter identifier. For a prepared statement using named placeholders, this will be
a parameter name of the form:name. For a prepared statement using question mark
placeholders, this will be the 1-indexed position of the parameter.

value

The value to bind to the parameter.

data_type

Explicit data type for the parameter using the PDO::PARAM_* constants. Defaults to
PHP native type.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #694 - Execute a prepared statement with named placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindValue(':calories', $calories, PDO::PARAM_INT);

$sth->bindValue(':colour', $colour, PDO::PARAM_STR);

$sth->execute();

?>

Example #695 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindValue(1, $calories, PDO::PARAM_INT);

$sth->bindValue(2, $colour, PDO::PARAM_STR);

$sth->execute();

?>

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::bindParam()

PDOStatement->closeCursor

PDOStatement->closeCursor -- Closes the cursor, enabling the statement to be executed
again.

Description

bool PDOStatement::closeCursor (void)

PDOStatement::closeCursor() frees up the connection to the server so that other SQL
statements may be issued, but leaves the statement in a state that enables it to be
executed again.

This method is useful for database drivers that do not support executing a PDOStatement
object when a previously executed PDOStatement object still has unfetched rows. If your
database driver suffers from this limitation, the problem may manifest itself in an
out-of-sequence error.

PDOStatement::closeCursor() is implemented either as an optional driver specific method
(allowing for maximum efficiency), or as the generic PDO fallback if no driver specific
function is installed. The PDO generic fallback is semantically the same as writing the
following code in your PHP script:
<?php

do {

 while ($stmt->fetch())

 ;

 if (!$stmt->nextRowset())

 break;

} while (true);

?>

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #696 - A PDOStatement::closeCursor() example

In the following example, the $stmt PDOStatement object returns multiple rows but the
application fetches only the first row, leaving the PDOStatement object in a state of
having unfetched rows. To ensure that the application will work with all database
drivers, the author inserts a call to PDOStatement::closeCursor() on $stmt before
executing the $otherStmt PDOStatement object.

<?php

/* Create a PDOStatement object */

$stmt = $dbh->prepare('SELECT foo FROM bar');

/* Create a second PDOStatement object */

$otherStmt = $dbh->prepare('SELECT foobaz FROM foobar');

/* Execute the first statement */

$stmt->execute();

/* Fetch only the first row from the results */

$stmt->fetch();

/* The following call to closeCursor() may be required by some drivers */

$stmt->closeCursor();

/* Now we can execute the second statement */

$otherStmt->execute();

?>

See Also

• PDOStatement::execute()

PDOStatement->columnCount

PDOStatement->columnCount -- Returns the number of columns in the result set

Description

int PDOStatement::columnCount (void)

Use PDOStatement::columnCount() to return the number of columns in the result set
represented by the PDOStatement object.

If the PDOStatement object was returned from PDO::query(), the column count is
immediately available.

If the PDOStatement object was returned from PDO::prepare(), an accurate column count
will not be available until you invoke PDOStatement::execute().

Return Values

Returns the number of columns in the result set represented by the PDOStatement object.
If there is no result set, PDOStatement::columnCount() returns 0.

Examples

Example #697 - Counting columns

This example demonstrates how PDOStatement::columnCount() operates with and
without a result set.

<?php

$dbh = new PDO('odbc:sample', 'db2inst1', 'ibmdb2');

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

/* Count the number of columns in the (non-existent) result set */

$colcount = $sth->columnCount();

print("Before execute(), result set has $colcount columns (should be 0)\n");

$sth->execute();

/* Count the number of columns in the result set */

$colcount = $sth->columnCount();

print("After execute(), result set has $colcount columns (should be 2)\n");

?>

The above example will output:

Before execute(), result set has 0 columns (should be 0)

After execute(), result set has 2 columns (should be 2)

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::rowCount()

PDOStatement->errorCode

PDOStatement->errorCode -- Fetch the SQLSTATE associated with the last operation on
the statement handle

Description

string PDOStatement::errorCode (void)

Return Values

Identical to PDO::errorCode(), except that PDOStatement::errorCode() only retrieves error
codes for operations performed with PDOStatement objects.

Examples

Example #698 - Retrieving a SQLSTATE code

<?php

/* Provoke an error -- the BONES table does not exist */

$err = $dbh->prepare('SELECT skull FROM bones');

$err->execute();

echo "\nPDOStatement::errorCode(): ";

print $err->errorCode();

?>

The above example will output:

PDOStatement::errorCode(): 42S02

See Also

• PDO::errorCode()
• PDO::errorInfo()
• PDOStatement::errorInfo()

PDOStatement->errorInfo

PDOStatement->errorInfo -- Fetch extended error information associated with the last
operation on the statement handle

Description

array PDOStatement::errorInfo (void)

Return Values

PDOStatement::errorInfo() returns an array of error information about the last operation
performed by this statement handle. The array consists of the following fields:

Element Information

0 SQLSTATE error code (a five-character
alphanumeric identifier defined in the ANSI
SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

Examples

Example #699 - Displaying errorInfo() fields for a PDO_ODBC connection to a
DB2 database

<?php

/* Provoke an error -- the BONES table does not exist */

$sth = $dbh->prepare('SELECT skull FROM bones');

$sth->execute();

echo "\nPDOStatement::errorInfo():\n";

$arr = $sth->errorInfo();

print_r($arr);

?>

The above example will output:

PDOStatement::errorInfo():

Array

(

 [0] => 42S02

 [1] => -204

 [2] => [IBM][CLI Driver][DB2/LINUX] SQL0204N "DANIELS.BONES" is an

undefined name. SQLSTATE=42704

)

See Also

• PDO::errorCode()
• PDO::errorInfo()
• PDOStatement::errorCode()

PDOStatement->execute

PDOStatement->execute -- Executes a prepared statement

Description

bool PDOStatement::execute ([array $input_parameters])

Execute the prepared statement. If the prepared statement included parameter markers,
you must either:

• call PDOStatement::bindParam() to bind PHP variables to the parameter markers:
bound variables pass their value as input and receive the output value, if any, of their
associated parameter markers

• or pass an array of input-only parameter values

Parameters

input_parameters

An array of values with as many elements as there are bound parameters in the SQL
statement being executed. You cannot bind multiple values to a single parameter; for
example, you cannot bind two values to a single named parameter in an IN() clause.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #700 - Execute a prepared statement with bound variables

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->bindParam(':calories', $calories, PDO::PARAM_INT);

$sth->bindParam(':colour', $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

Example #701 - Execute a prepared statement with an array of insert values
(named parameters)

<?php

/* Execute a prepared statement by passing an array of insert values */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour');

$sth->execute(array(':calories' => $calories, ':colour' => $colour));

?>

Example #702 - Execute a prepared statement with an array of insert values
(placeholders)

<?php

/* Execute a prepared statement by passing an array of insert values */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->execute(array($calories, $colour));

?>

Example #703 - Execute a prepared statement with question mark placeholders

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = 'red';

$sth = $dbh->prepare('SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?');

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

See Also

• PDO::prepare()
• PDOStatement::bindParam()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()

PDOStatement->fetch

PDOStatement->fetch -- Fetches the next row from a result set

Description

mixed PDOStatement::fetch ([int $fetch_style [, int $cursor_orientation [, int $
cursor_offset]]])

Fetches a row from a result set associated with a PDOStatement object. The fetch_style
parameter determines how PDO returns the row.

Parameters

fetch_style

Controls how the next row will be returned to the caller. This value must be one of the
PDO::FETCH_* constants, defaulting to PDO::FETCH_BOTH.

• PDO::FETCH_ASSOC: returns an array indexed by column name as returned in
your result set

• PDO::FETCH_BOTH (default): returns an array indexed by both column name and
0-indexed column number as returned in your result set

• PDO::FETCH_BOUND: returns TRUE and assigns the values of the columns in
your result set to the PHP variables to which they were bound with the
PDOStatement::bindColumn() method

• PDO::FETCH_CLASS: returns a new instance of the requested class, mapping the
columns of the result set to named properties in the class. If fetch_style includes
PDO::FETCH_CLASSTYPE (e.g. PDO::FETCH_CLASS |
PDO::FETCH_CLASSTYPE) then the name of the class is determined from a
value of the first column.

• PDO::FETCH_INTO: updates an existing instance of the requested class, mapping
the columns of the result set to named properties in the class

• PDO::FETCH_LAZY: combines PDO::FETCH_BOTH and PDO::FETCH_OBJ,
creating the object variable names as they are accessed

• PDO::FETCH_NUM: returns an array indexed by column number as returned in
your result set, starting at column 0

• PDO::FETCH_OBJ: returns an anonymous object with property names that
correspond to the column names returned in your result set

cursor_orientation

For a PDOStatement object representing a scrollable cursor, this value determines
which row will be returned to the caller. This value must be one of the
PDO::FETCH_ORI_* constants, defaulting to PDO::FETCH_ORI_NEXT. To request a

scrollable cursor for your PDOStatement object, you must set the
PDO::ATTR_CURSOR attribute to PDO::CURSOR_SCROLL when you prepare the
SQL statement with PDO::prepare().

offset

For a PDOStatement object representing a scrollable cursor for which the
cursor_orientation parameter is set to PDO::FETCH_ORI_ABS, this value specifies the
absolute number of the row in the result set that shall be fetched. For a PDOStatement
object representing a scrollable cursor for which the cursor_orientation parameter is
set to PDO::FETCH_ORI_REL, this value specifies the row to fetch relative to the
cursor position before PDOStatement::fetch() was called.

Return Values

The return value of this function on success depends on the fetch type. In all cases,
FALSE is returned on failure.

Examples

Example #704 - Fetching rows using different fetch styles

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Exercise PDOStatement::fetch styles */

print("PDO::FETCH_ASSOC: ");

print("Return next row as an array indexed by column name\n");

$result = $sth->fetch(PDO::FETCH_ASSOC);

print_r($result);

print("\n");

print("PDO::FETCH_BOTH: ");

print("Return next row as an array indexed by both column name and
number\n");

$result = $sth->fetch(PDO::FETCH_BOTH);

print_r($result);

print("\n");

print("PDO::FETCH_LAZY: ");

print("Return next row as an anonymous object with column names as
properties\n");

$result = $sth->fetch(PDO::FETCH_LAZY);

print_r($result);

print("\n");

print("PDO::FETCH_OBJ: ");

print("Return next row as an anonymous object with column names as
properties\n");

$result = $sth->fetch(PDO::FETCH_OBJ);

print $result->NAME;

print("\n");

?>

The above example will output:

PDO::FETCH_ASSOC: Return next row as an array indexed by column name

Array

(

 [NAME] => apple

 [COLOUR] => red

)

PDO::FETCH_BOTH: Return next row as an array indexed by both column name and
number

Array

(

 [NAME] => banana

 [0] => banana

 [COLOUR] => yellow

 [1] => yellow

)

PDO::FETCH_LAZY: Return next row as an anonymous object with column names as
properties

PDORow Object

(

 [NAME] => orange

 [COLOUR] => orange

)

PDO::FETCH_OBJ: Return next row as an anonymous object with column names as
properties

kiwi

Example #705 - Fetching rows with a scrollable cursor

<?php

function readDataForwards($dbh) {

 $sql = 'SELECT hand, won, bet FROM mynumbers ORDER BY BET';

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR =>
PDO::CURSOR_SCROLL));

 $stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT)) {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

 }

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

function readDataBackwards($dbh) {

 $sql = 'SELECT hand, won, bet FROM mynumbers ORDER BY bet';

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR =>
PDO::CURSOR_SCROLL));

 $stmt->execute();

 $row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_LAST);

 do {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

 } while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_PRIOR));

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

print "Reading forwards:\n";

readDataForwards($conn);

print "Reading backwards:\n";

readDataBackwards($conn);

?>

The above example will output:

Reading forwards:

21 10 5

16 0 5

19 20 10

Reading backwards:

19 20 10

16 0 5

21 10 5

See Also

• PDO::prepare()
• PDOStatement::execute()
• PDOStatement::fetchAll()
• PDOStatement::fetchColumn()
• PDOStatement::fetchObject()
• PDOStatement::setFetchMode()

PDOStatement->fetchAll

PDOStatement->fetchAll -- Returns an array containing all of the result set rows

Description

array PDOStatement::fetchAll ([int $fetch_style [, int $column_index [, array $
ctor_args]]])

Parameters

fetch_style

Controls the contents of the returned array as documented in PDOStatement::fetch().
Defaults to PDO::FETCH_BOTH. To return an array consisting of all values of a single
column from the result set, specify PDO::FETCH_COLUMN. You can specify which
column you want with the column-index parameter. To fetch only the unique values of
a single column from the result set, bitwise-OR PDO::FETCH_COLUMN with
PDO::FETCH_UNIQUE. To return an associative array grouped by the values of a
specified column, bitwise-OR PDO::FETCH_COLUMN with PDO::FETCH_GROUP.

column_index

Returns the indicated 0-indexed column when the value of fetch_style is
PDO::FETCH_COLUMN. Defaults to 0.

ctor_args

Arguments of custom class constructor.

Return Values

PDOStatement::fetchAll() returns an array containing all of the remaining rows in the result
set. The array represents each row as either an array of column values or an object with
properties corresponding to each column name.

Using this method to fetch large result sets will result in a heavy demand on system and
possibly network resources. Rather than retrieving all of the data and manipulating it in
PHP, consider using the database server to manipulate the result sets. For example, use
the WHERE and SORT BY clauses in SQL to restrict results before retrieving and
processing them with PHP.

Examples

Example #706 - Fetch all remaining rows in a result set

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the remaining rows in the result set */

print("Fetch all of the remaining rows in the result set:\n");

$result = $sth->fetchAll();

print_r($result);

?>

The above example will output:

Fetch all of the remaining rows in the result set:

Array

(

 [0] => Array

 (

 [NAME] => pear

 [0] => pear

 [COLOUR] => green

 [1] => green

)

 [1] => Array

 (

 [NAME] => watermelon

 [0] => watermelon

 [COLOUR] => pink

 [1] => pink

)

)

Example #707 - Fetching all values of a single column from a result set

The following example demonstrates how to return all of the values of a single column
from a result set, even though the SQL statement itself may return multiple columns
per row.

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the values of the first column */

$result = $sth->fetchAll(PDO::FETCH_COLUMN, 0);

var_dump($result);

?>

The above example will output:

Array(3)

(

 [0] =>

 string(5) => apple

 [1] =>

 string(4) => pear

 [2] =>

 string(10) => watermelon

)

Example #708 - Grouping all values by a single column

The following example demonstrates how to return an associative array grouped by
the values of the specified column in the result set. The array contains three keys:
values apple and pear are returned as arrays that contain two different colours, while
watermelon is returned as an array that contains only one colour.

<?php

$insert = $dbh->prepare("INSERT INTO fruit(name, colour) VALUES (?, ?)");

$insert->execute('apple', 'green');

$insert->execute('pear', 'yellow');

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Group values by the first column */

var_dump($sth->fetchAll(PDO::FETCH_COLUMN|PDO::FETCH_GROUP));

?>

The above example will output:

array(3) {

 ["apple"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(3) "red"

 }

 ["pear"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(6) "yellow"

 }

 ["watermelon"]=>

 array(1) {

 [0]=>

 string(5) "green"

 }

}

See Also

• PDO::query()
• PDOStatement::fetch()
• PDOStatement::fetchColumn()
• PDO::prepare()

• PDOStatement::setFetchMode()

PDOStatement->fetchColumn

PDOStatement->fetchColumn -- Returns a single column from the next row of a result set

Description

string PDOStatement::fetchColumn ([int $column_number])

Returns a single column from the next row of a result set or FALSE if there are no more
rows.

Parameters

column_number

0-indexed number of the column you wish to retrieve from the row. If no value is
supplied, PDOStatement::fetchColumn() fetches the first column.

Return Values

PDOStatement::fetchColumn() returns a single column in the next row of a result set.

Warning

There is no way to return another column from the same row if you use
PDOStatement::fetchColumn() to retrieve data.

Examples

Example #709 - Return first column of the next row

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch the first column from the next row in the result set */

print("Fetch the first column from the next row in the result set:\n");

$result = $sth->fetchColumn();

print("name = $result\n");

print("Fetch the second column from the next row in the result set:\n");

$result = $sth->fetchColumn(1);

print("colour = $result\n");

?>

The above example will output:

Fetch the first column from the next row in the result set:

name = lemon

Fetch the second column from the next row in the result set:

colour = red

See Also

• PDO::query()
• PDOStatement::fetch()
• PDOStatement::fetchAll()
• PDO::prepare()
• PDOStatement::setFetchMode()

PDOStatement->fetchObject

PDOStatement->fetchObject -- Fetches the next row and returns it as an object.

Description

mixed PDOStatement::fetchObject ([string $class_name [, array $ctor_args]])

Fetches the next row and returns it as an object. This function is an alternative to
PDOStatement::fetch() with PDO::FETCH_CLASS or PDO::FETCH_OBJ style.

Parameters

class_name

Name of the created class, defaults to stdClass.

ctor_args

Elements of this array are passed to the constructor.

Return Values

Returns an instance of the required class with property names that correspond to the
column names or FALSE in case of an error.

See Also

• PDOStatement::fetch()

PDOStatement->getAttribute

PDOStatement->getAttribute -- Retrieve a statement attribute

Description

mixed PDOStatement::getAttribute (int $attribute)

Gets an attribute of the statement. Currently, no generic attributes exist but only driver
specific:

• PDO::ATTR_CURSOR_NAME (Firebird and ODBC specific): Get the name of cursor
for UPDATE ... WHERE CURRENT OF.

Return Values

Returns the attribute value.

See Also

• PDO::getAttribute()
• PDO::setAttribute()
• PDOStatement::setAttribute()

PDOStatement->getColumnMeta

PDOStatement->getColumnMeta -- Returns metadata for a column in a result set

Description

array PDOStatement::getColumnMeta (int $column)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Retrieves the metadata for a 0-indexed column in a result set as an associative array.

Warning

Not all PDO drivers support PDOStatement::getColumnMeta().

Parameters

column

The 0-indexed column in the result set.

Return Values

Returns an associative array containing the following values representing the metadata for
a single column:

Column metadata

Name Value

native_type The PHP native type used to represent the
column value.

driver:decl_type The SQL type used to represent the column
value in the database. If the column in the
result set is the result of a function, this
value is not returned by
PDOStatement::getColumnMeta().

flags Any flags set for this column.

name The name of this column as returned by the
database.

table The name of this column's table as returned
by the database.

len The length of this column. Normally -1 for
types other than floating point decimals.

precision The numeric precision of this column.
Normally 0 for types other than floating point
decimals.

pdo_type The type of this column as represented by
the PDO::PARAM_* constants.

Returns FALSE if the requested column does not exist in the result set, or if no result set
exists.

ChangeLog

Version Description

5.2.3 table field

Examples

Example #710 - Retrieving column metadata

The following example shows the results of retrieving the metadata for a single column
generated by a function (COUNT) in a PDO_SQLITE driver.

<?php

$select = $DB->query('SELECT COUNT(*) FROM fruit');

$meta = $select->getColumnMeta(0);

var_dump($meta);

?>

The above example will output:

array(6) {

 ["native_type"]=>

 string(7) "integer"

 ["flags"]=>

 array(0) {

 }

 ["name"]=>

 string(8) "COUNT(*)"

 ["len"]=>

 int(-1)

 ["precision"]=>

 int(0)

 ["pdo_type"]=>

 int(2)

}

See Also

• PDOStatement::columnCount()
• PDOStatement::rowCount()

PDOStatement->nextRowset

PDOStatement->nextRowset -- Advances to the next rowset in a multi-rowset statement
handle

Description

bool PDOStatement::nextRowset (void)

Some database servers support stored procedures that return more than one rowset (also
known as a result set). PDOStatement::nextRowset() enables you to access the second
and subsequent rowsets associated with a PDOStatement object. Each rowset can have a
different set of columns from the preceding rowset.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #711 - Fetching multiple rowsets returned from a stored procedure

The following example shows how to call a stored procedure, MULTIPLE_ROWSETS,
that returns three rowsets. We use a do / while loop to loop over the
PDOStatement::nextRowset() method, which returns false and terminates the loop
when no more rowsets can be returned.

<?php

$sql = 'CALL multiple_rowsets()';

$stmt = $conn->query($sql);

$i = 1;

do {

 $rowset = $stmt->fetch(PDO::FETCH_NUM);

 if ($rowset) {

 printResultSet($rowset, $i);

 }

 $i++;

} while ($stmt->nextRowset());

function printResultSet(&$rowset, $i) {

 print "Result set $i:\n";

 foreach ($rowset as $row) {

 foreach ($row as $col) {

 print $col . "\t";

 }

 print "\n";

 }

 print "\n";

}

?>

The above example will output:

Result set 1:

apple red

banana yellow

Result set 2:

orange orange 150

banana yellow 175

Result set 3:

lime green

apple red

banana yellow

See Also

• PDOStatement::columnCount()
• PDOStatement::execute()
• PDOStatement::getColumnMeta()
• PDO::query()

PDOStatement->rowCount

PDOStatement->rowCount -- Returns the number of rows affected by the last SQL
statement

Description

int PDOStatement::rowCount (void)

PDOStatement::rowCount() returns the number of rows affected by the last DELETE,
INSERT, or UPDATE statement executed by the corresponding PDOStatement object.

If the last SQL statement executed by the associated PDOStatement was a SELECT
statement, some databases may return the number of rows returned by that statement.
However, this behaviour is not guaranteed for all databases and should not be relied on for
portable applications.

Return Values

Returns the number of rows.

Examples

Example #712 - Return the number of deleted rows

PDOStatement::rowCount() returns the number of rows affected by a DELETE,
INSERT, or UPDATE statement.

<?php

/* Delete all rows from the FRUIT table */

$del = $dbh->prepare('DELETE FROM fruit');

$del->execute();

/* Return number of rows that were deleted */

print("Return number of rows that were deleted:\n");

$count = $del->rowCount();

print("Deleted $count rows.\n");

?>

The above example will output:

Deleted 9 rows.

Example #713 - Counting rows returned by a SELECT statement

For most databases, PDOStatement::rowCount() does not return the number of rows
affected by a SELECT statement. Instead, use PDO::query() to issue a SELECT

COUNT(*) statement with the same predicates as your intended SELECT statement,
then use PDOStatement::fetchColumn() to retrieve the number of rows that will be
returned. Your application can then perform the correct action.

<?php

$sql = "SELECT COUNT(*) FROM fruit WHERE calories > 100";

if ($res = $conn->query($sql)) {

 /* Check the number of rows that match the SELECT statement */

 if ($res->fetchColumn() > 0) {

 /* Issue the real SELECT statement and work with the results */

 $sql = "SELECT name FROM fruit WHERE calories > 100";

 foreach ($conn->query($sql) as $row) {

 print "Name: " . $row['NAME'] . "\n";

 }

 }

 /* No rows matched -- do something else */

 else {

 print "No rows matched the query.";

 }

}

$res = null;

$conn = null;

?>

The above example will output:

apple

banana

orange

pear

See Also

• PDOStatement::columnCount()
• PDOStatement::fetchColumn()
• PDO::query()

PDOStatement->setAttribute

PDOStatement->setAttribute -- Set a statement attribute

Description

bool PDOStatement::setAttribute (int $attribute, mixed $value)

Sets an attribute on the statement. Currently, no generic attributes are set but only driver
specific:

• PDO::ATTR_CURSOR_NAME (Firebird and ODBC specific): Set the name of cursor
for UPDATE ... WHERE CURRENT OF.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• PDO::getAttribute()
• PDO::setAttribute()
• PDOStatement::getAttribute()

PDOStatement->setFetchMode

PDOStatement->setFetchMode -- Set the default fetch mode for this statement

Description

bool PDOStatement::setFetchMode (int $mode)

bool PDOStatement::setFetchMode (int $PDO::FETCH_COLUMN, int $colno)

bool PDOStatement::setFetchMode (int $PDO::FETCH_CLASS, string $classname, array $
ctorargs)

bool PDOStatement::setFetchMode (int $PDO::FETCH_INTO, object $object)

Parameters

mode

The fetch mode must be one of the PDO::FETCH_* constants.

Return Values

Returns 1 on success or FALSE on failure.

Examples

Example #714 - Setting the fetch mode

The following example demonstrates how PDOStatement::setFetchMode() changes
the default fetch mode for a PDOStatement object.

<?php

$sql = 'SELECT name, colour, calories FROM fruit';

try {

 $stmt = $dbh->query($sql);

 $result = $stmt->setFetchMode(PDO::FETCH_NUM);

 while ($row = $stmt->fetch()) {

 print $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 }

}

catch (PDOException $e) {

 print $e->getMessage();

}

?>

The above example will output:

apple red 150

banana yellow 250

orange orange 300

kiwi brown 75

lemon yellow 25

pear green 150

watermelon pink 90

PDO Drivers

The following drivers currently implement the PDO interface:

Driver name Supported databases

PDO_DBLIB FreeTDS / Microsoft SQL Server / Sybase

PDO_FIREBIRD Firebird/Interbase 6

PDO_IBM IBM DB2

PDO_INFORMIX IBM Informix Dynamic Server

PDO_MYSQL MySQL 3.x/4.x/5.x

PDO_OCI Oracle Call Interface

PDO_ODBC ODBC v3 (IBM DB2, unixODBC and win32
ODBC)

PDO_PGSQL PostgreSQL

PDO_SQLITE SQLite 3 and SQLite 2

Microsoft SQL Server and Sybase Functions
(PDO_DBLIB)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_DBLIB is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to Microsoft SQL Server and Sybase databases through the FreeTDS
libary.

On Windows, you should use the PDO_ODBC driver to connect to Microsoft SQL Server
and Sybase databases, as the native Windows DB-LIB is ancient, thread un-safe and no
longer supported by Microsoft.

PDO_DBLIB DSN

PDO_DBLIB DSN -- Connecting to Microsoft SQL Server and Sybase databases

Description

The PDO_DBLIB Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is sybase: if PDO_DBLIB was linked against the FreeTDS libraries,
mssql: if PDO_DBLIB was linked against the Microsoft SQL Server libraries, or dblib:
if linked against any other variety of DB-lib.

host
The hostname on which the database server resides.

dbname
The name of the database.

Examples

Example #715 - PDO_DBLIB DSN examples

The following examples show a PDO_DBLIB DSN for connecting to Microsoft SQL
Server and Sybase databases:
mssql:host=localhost;dbname=testdb

sybase:host=localhost;dbname=testdb

dblib:host=localhost;dbname=testdb

Firebird/Interbase Functions (PDO_FIREBIRD)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_FIREBIRD is a driver that implements the PHP Data Objects (PDO) interface to
enable access from PHP to Firebird and Interbase databases.

PDO_FIREBIRD DSN

PDO_FIREBIRD DSN -- Connecting to Firebird and Interbase databases

Description

The PDO_FIREBIRD Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is firebird:.

DataSource
The hostname on which the database server resides.

Port
The port number for the server on which the database is running.

Database
The name of the database.

User
The name of the user that will connect to the database.

Password
The password for the user.

Examples

Example #716 - PDO_FIREBIRD DSN examples

The following example shows a PDO_FIREBIRD DSN for connecting to Firebird and
Interbase databases:
firebird:User=john;Password=mypass;Database=DATABASE.GDE;DataSource=localhos
t;Port=3050

IBM Functions (PDO_IBM)

Introduction

PDO_IBM is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to IBM databases.

Installation

To build the PDO_IBM extension, the DB2 Client v9.1 or later must be installed on the
same system as PHP. The DB2 Client can be downloaded from the IBM » Application
Development Site.

Note

Note

The DB2 Client v9.1 or later supports direct access to DB2 for Linux, UNIX, and
Windows v8 and v9.1 servers.

The DB2 Client v9.1 also supports access to DB2 UDB for i5 and DB2 UDB for z/OS
servers using the separately purchased » DB2 Connect product.

PDO_IBM is a » PECL extension, so follow the instructions in Installation of PECL
extensions to install the PDO_IBM extension. Issue the configure command to point to the
location of your DB2 Client header files and libraries as follows:
bash$./configure --with-pdo-ibm=/path/to/sqllib[,shared]
The configure command defaults to the value of the DB2DIR environment variable.

http://www.ibm.com/software/data/db2/ad
http://www.ibm.com/software/data/db2/ad
http://www.ibm.com/software/data/db2/db2connect
http://pecl.php.net/

PDO_IBM DSN

PDO_IBM DSN -- Connecting to IBM databases

Description

The PDO_IBM Data Source Name (DSN) is based on the IBM CLI DSN. The major
components of the PDO_IBM DSN are:
DSN prefix

The DSN prefix is ibm:.

DSN
The DSN can be any of the following:

• a) Data source setup using db2cli.ini or odbc.ini

• b) Catalogued database name i.e. database alias in the DB2 client catalog

• c) Complete connection string in the following format: DRIVER={IBM DB2 ODBC
DRIVER};DATABASE= database;HOSTNAME= hostname;PORT= port
;PROTOCOL=TCPIP;UID= username;PWD= password; where the parameters represent
the following values:
database

The name of the database.

hostname

The hostname or IP address of the database server.

port

The TCP/IP port on which the database is listening for requests.

username

The username with which you are connecting to the database.

password

The password with which you are connecting to the database.

Examples

Example #717 - PDO_IBM DSN example using db2cli.ini

The following example shows a PDO_IBM DSN for connecting to an DB2 database
cataloged as DB2_9 in db2cli.ini:
$db = new PDO("ibm:DSN=DB2_9", "", "");

[DB2_9]

Database=testdb

Protocol=tcpip

Hostname=11.22.33.444

Servicename=56789

Example #718 - PDO_IBM DSN example using a connection string

The following example shows a PDO_IBM DSN for connecting to an DB2 database
named testdb using the DB2 CLI connection string syntax.
$db = new PDO("ibm:DRIVER={IBM DB2 ODBC DRIVER};DATABASE=testdb;" .

 "HOSTNAME=11.22.33.444;PORT=56789;PROTOCOL=TCPIP;", "testuser", "tespass");

Informix Functions (PDO_INFORMIX)

Introduction

PDO_INFORMIX is a driver that implements the PHP Data Objects (PDO) interface to
enable access from PHP to Informix databases.

Installation

To build the PDO_INFORMIX extension, the Informix Client SDK 2.81 UC1 or higher must
be installed on the same system as PHP. The Informix Client SDK is available from the
» IBM Informix Support Site.

PDO_INFORMIX is a » PECL extension, so follow the instructions in Installation of PECL
extensions to install the PDO_INFORMIX extension. Issue the configure command to point
to the location of your Informix Client SDK header files and libraries as follows:
bash$./configure --with-pdo-informix=/path/to/SDK[,shared]
The configure command defaults to the value of the INFORMIXDIR environment variable.

Scrollable cursors

PDO_INFORMIX supports scrollable cursors; however, they are not enabled by default. To
enable scrollable cursor support, you must either set
ENABLESCROLLABLECURSORS=1 in the corresponding ODBC connection settings in
odbc.ini or pass the EnableScrollableCursors=1 clause in the DSN connection string.

http://www-306.ibm.com/software/data/informix/tools/csdk/
http://www-306.ibm.com/software/data/informix/tools/csdk/
http://pecl.php.net/

PDO_INFORMIX DSN

PDO_INFORMIX DSN -- Connecting to Informix databases

Description

The PDO_INFORMIX Data Source Name (DSN) is based on the Informix ODBC DSN
string. Details on configuring an Informix ODBC DSN are available from the » Informix
Dynamic Server Information Center. The major components of the PDO_INFORMIX DSN
are:
DSN prefix

The DSN prefix is informix:.

DSN
The DSN can be either a data source setup using odbc.ini or a complete » connection
string.

Examples

Example #719 - PDO_INFORMIX DSN example using odbc.ini

The following example shows a PDO_INFORMIX DSN for connecting to an Informix
database cataloged as Infdrv33 in odbc.ini:
$db = new PDO("informix:DSN=Infdrv33", "", "");

[ODBC Data Sources]

Infdrv33=INFORMIX 3.3 32-BIT

[Infdrv33]

Driver=/opt/informix/csdk_2.81.UC1G2/lib/cli/iclis09b.so

Description=INFORMIX 3.3 32-BIT

Database=common_db

LogonID=testuser

pwd=testpass

Servername=ids_server

DB_LOCALE=en_US.819

OPTIMIZEAUTOCOMMIT=1

ENABLESCROLLABLECURSORS=1

Example #720 - PDO_INFORMIX DSN example using a connection string

The following example shows a PDO_INFORMIX DSN for connecting to an Informix
database named common_db using the Informix connection string syntax.
$db = new PDO("informix:host=host.domain.com; service=9800;

 database=common_db; server=ids_server; protocol=onsoctcp;

 EnableScrollableCursors=1", "testuser", "tespass");

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v10/topic/com.ibm.odbc.doc/odbc66.htm#sii02998361
http://publib.boulder.ibm.com/infocenter/idshelp/v10/topic/com.ibm.odbc.doc/odbc66.htm#sii02998361

MySQL Functions (PDO_MYSQL)

Introduction

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to MySQL 3.x, 4.x and 5.x databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL
4.1 and higher. If you're using an older version of the mysql client libraries, PDO will
emulate them for you.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions.
When writing transactional database code using a table type that does not support
transactions, MySQL will pretend that a transaction was initiated successfully. In
addition, any DDL queries issued will implicitly commit any pending transactions.

Predefined Constants

The constants below are defined by this driver, and will only be available when the
extension has been either compiled into PHP or dynamically loaded at runtime. In addition,
these driver-specific constants should only be used if you are using this driver. Using
mysql-specific attributes with the postgres driver may result in unexpected behaviour.
PDO::getAttribute() may be used to obtain the PDO_ATTR_DRIVER_NAME attribute to
check the driver, if your code can run against multiple drivers.

PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (integer)
If this attribute is set to TRUE on a PDOStatement, the MySQL driver will use the
buffered versions of the MySQL API. If you're writing portable code, you should use
PDOStatement::fetchAll() instead.

Example #721 - Forcing queries to be buffered in mysql

<?php

if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {

 $stmt = $db->prepare('select * from foo',

 array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));

} else {

 die("my application only works with mysql; I should use
\$stmt->fetchAll() instead");

}

?>

PDO::MYSQL_ATTR_LOCAL_INFILE (integer)
Enable LOAD LOCAL INFILE.

PDO::MYSQL_ATTR_INIT_COMMAND (integer)
Command to execute when connecting to the MySQL server. Will automatically be
re-executed when reconnecting.

PDO::MYSQL_ATTR_READ_DEFAULT_FILE (integer)
Read options from the named option file instead of from my.cnf.

PDO::MYSQL_ATTR_READ_DEFAULT_GROUP (integer)
Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

PDO::MYSQL_ATTR_MAX_BUFFER_SIZE (integer)
Maximum buffer size. Defaults to 1 MiB.

PDO::MYSQL_ATTR_DIRECT_QUERY (integer)
Perform direct queries, don't use prepared statements.

PDO_MYSQL DSN

PDO_MYSQL DSN -- Connecting to MySQL databases

Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is mysql:.

host
The hostname on which the database server resides.

port
The port number where the database server is listening.

dbname
The name of the database.

unix_socket
The MySQL Unix socket (shouldn't be used with host or port).

Examples

Example #722 - PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL
databases:
mysql:host=localhost;dbname=testdb
More complete examples:
mysql:host=localhost;port=3307;dbname=testdb

mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

Oracle Functions (PDO_OCI)

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

PDO_OCI is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to Oracle databases through the OCI library.

PDO_OCI DSN

PDO_OCI DSN -- Connecting to Oracle databases

Description

The PDO_OCI Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is oci:.

dbname (Oracle Instant Client)
The URI for the Oracle Instant Client connection takes the form of dbname=// hostname:
port-number / database. If you are connecting to a database defined in tnsnames.ora,
use only the name of the database: dbname= database.

charset
The client-side character set for the current environment handle.

Examples

Example #723 - PDO_OCI DSN examples

The following examples show a PDO_OCI DSN for connecting to Oracle databases:
// Connect to a database defined in tnsnames.ora

oci:dbname=mydb

// Connect using the Oracle Instant Client

oci:dbname=//localhost:1521/mydb

ODBC and DB2 Functions (PDO_ODBC)

Introduction

PDO_ODBC is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to databases through ODBC drivers or through the IBM DB2 Call Level
Interface (DB2 CLI) library. PDO_ODBC currently supports three different "flavours" of
database drivers:
ibm-db2

Supports access to IBM DB2 Universal Database, Cloudscape, and Apache Derby
servers through the free DB2 client.

unixODBC
Supports access to database servers through the unixODBC driver manager and the
database's own ODBC drivers.

generic
Offers a compile option for ODBC driver managers that are not explicitly supported by
PDO_ODBC.

On Windows, PDO_ODBC is built into the PHP core by default. It is linked against the
Windows ODBC Driver Manager so that PHP can connect to any database cataloged as a
System DSN, and is the recommended driver for connecting to Microsoft SQL Server
databases.

Installation

PDO_ODBC on UNIX systems
1. As of PHP 5.1, PDO_ODBC is included in the PHP source. You can compile the

PDO_ODBC extension as either a static or shared module using the following
configure commands.
ibm_db2

./configure --with-pdo-odbc=ibm-db2,/opt/IBM/db2/V8.1/
To build PDO_ODBC with the ibm-db2 flavour, you have to have previously
installed the DB2 application development headers on the same machine on which
you are compiling PDO_ODBC. The DB2 application development headers are an
installable option in the DB2 servers, and are also available as part of the DB2
Application Development Client freely available for download from the IBM DB2
Universal Database » support site. If you do not supply a location for the DB2
libraries and headers to the configure command, PDO_ODBC defaults to
/home/db2inst1/sqllib.

unixODBC

http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html

./configure --with-pdo-odbc=unixODBC,/usr/local
If you do not supply a location for the unixODBC libraries and headers to the
configure command, PDO_ODBC defaults to /usr/local.

generic

./configure --with-pdo-odbc=generic,/usr/local,libname,ldflags,cflags

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PDO_ODBC Configuration Options

Name Default Changeable Changelog

pdo_odbc.connection
_pooling

"strict" PHP_INI_ALL Available since PHP
5.1.0.

pdo_odbc.db2_instan
ce_name

NULL PHP_INI_SYSTEM Available since PHP
5.1.1. Removed in
PHP 6.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

pdo_odbc.connection_pooling string
Whether to pool ODBC connections. Can be one of "strict", "relaxed" or "off" (equals to
""). The parameter describes how strict the connection manager should be when
matching connection parameters to existing pooled connections. strict is the
recommend default, and will result in the use of cached connections only when all the
connection parameters match exactly. relaxed will result in the use of cached
connections when similar connection parameters are used. This can result in
increased use of the cache, at the risk of bleeding connection information between (for
example) virtual hosts. This setting can only be changed from the php.ini file, and
affects the entire process; any other modules loaded into the process that use the
same ODBC libraries will be affected too, including the Unified ODBC extension.

Warning

relaxed matching should not be used on a shared server, for security reasons.

Tip

Leave this setting at the default strict setting unless you have good reason to
change it.

pdo_odbc.db2_instance_name string
If you compile PDO_ODBC using the db2 flavour, this setting sets the value of the
DB2INSTANCE environment variable on Linux and UNIX operating systems to the
specified name of the DB2 instance. This enables PDO_ODBC to resolve the location
of the DB2 libraries and make cataloged connections to DB2 databases. This setting
can only be changed from the php.ini file, and affects the entire process; any other
modules loaded into the process that use the same ODBC libraries will be affected too,
including the Unified ODBC extension. This setting has no effect on Windows.

PDO_ODBC DSN

PDO_ODBC DSN -- Connecting to ODBC or DB2 databases

Description

The PDO_ODBC Data Source Name (DSN) is composed of the following elements:
DSN prefix

The DSN prefix is odbc:. If you are connecting to a database cataloged in the ODBC
driver manager or the DB2 catalog, you can append the cataloged name of the
database to the DSN.

DSN
The name of the database as cataloged in the ODBC driver manager or the DB2
catalog. Alternately, you can provide a complete ODBC connection string to connect to
a database as described at » http://www.connectionstrings.com/.

UID
The name of the user for the connection. If you specify the user name in the DSN,
PDO ignores the value of the user name argument in the PDO constructor.

PWD
The password of the user for the connection. If you specify the password in the DSN,
PDO ignores the value of the password argument in the PDO constructor.

Examples

Example #724 - PDO_ODBC DSN example (ODBC driver manager)

The following example shows a PDO_ODBC DSN for connecting to an ODBC
database cataloged as testdb in the ODBC driver manager:
odbc:testdb

Example #725 - PDO_ODBC DSN example (IBM DB2 uncataloged connection)

The following example shows a PDO_ODBC DSN for connecting to an IBM DB2
database named SAMPLE using the full ODBC DSN syntax:
odbc:DRIVER={IBM DB2 ODBC
DRIVER};HOSTNAME=localhost;PORT=50000;DATABASE=SAMPLE;PROTOCOL=TCPIP;UID=db2
inst1;PWD=ibmdb2;

http://www.connectionstrings.com/

Example #726 - PDO_ODBC DSN example (Microsoft Access uncataloged
connection)

The following example shows a PDO_ODBC DSN for connecting to a Microsoft
Access database stored at C:\db.mdb using the full ODBC DSN syntax:
odbc:Driver={Microsoft Access Driver (*.mdb)};Dbq=C:\\db.mdb;Uid=Admin

PostgreSQL Functions (PDO_PGSQL)

Introduction

PDO_PGSQL is a driver that implements the PHP Data Objects (PDO) interface to enable
access from PHP to PostgreSQL databases.

Resource Types

This extension defines a stream resource returned by PDO::pgsqlLOBOpen().

PDO_PGSQL DSN

PDO_PGSQL DSN -- Connecting to PostgreSQL databases

Description

The PDO_PGSQL Data Source Name (DSN) is composed of the following elements,
delimited by spaces:
DSN prefix

The DSN prefix is pgsql:.

host
The hostname on which the database server resides.

port
The port on which the database server is running.

dbname
The name of the database.

user
The name of the user for the connection. If you specify the user name in the DSN,
PDO ignores the value of the user name argument in the PDO constructor.

password
The password of the user for the connection. If you specify the password in the DSN,
PDO ignores the value of the password argument in the PDO constructor.

Note

The bytea fields are returned as streams.

Examples

Example #727 - PDO_PGSQL DSN examples

The following example shows a PDO_PGSQL DSN for connecting to a PostgreSQL
database:
pgsql:host=localhost port=5432 dbname=testdb user=bruce password=mypass

PDO::pgsqlLOBCreate

PDO::pgsqlLOBCreate -- Creates a new large object

Description

string PDO::pgsqlLOBCreate (void)

PDO::pgsqlLOBCreate() creates a large object and returns the OID of that object. You
may then open a stream on the object using PDO::pgsqlLOBOpen() to read or write data
to it. The OID can be stored in columns of type OID and be used to reference the large
object, without causing the row to grow arbitrarily large. The large object will continue to
live in the database until it is removed by calling PDO::pgsqlLOBUnlink().

Large objects can be up to 2GB in size, but are cumbersome to use; you need to ensure
that PDO::pgsqlLOBUnlink() is called prior to deleting the last row that references its OID
from your database. In addition, large objects have no access controls. As an alternative,
try the bytea column type; recent versions of PostgreSQL allow bytea columns of up to
1GB in size and transparently manage the storage for optimal row size.

Note

This function must be called within a transaction.

Parameters

PDO::pgsqlLOBCreate() takes no parameters.

Return Values

Returns the OID of the newly created large object on success, or FALSE on failure.

Examples

Example #728 - A PDO::pgsqlLOBCreate() example

This example creates a new large object and copies the contents of a file into it. The
OID is then stored into a table.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$oid = $db->pgsqlLOBCreate();

$stream = $db->pgsqlLOBOpen($oid, 'w');

$local = fopen($filename, 'rb');

stream_copy_to_stream($local, $stream);

$local = null;

$stream = null;

$stmt = $db->prepare("INSERT INTO BLOBS (ident, oid) VALUES (?, ?)");

$stmt->execute(array($some_id, $oid));

$db->commit();

?>

See Also

• PDO::pgsqlLOBOpen()
• PDO::pgsqlLOBUnlink()
• pg_lo_create()

PDO::pgsqlLOBOpen

PDO::pgsqlLOBOpen -- Opens an existing large object stream

Description

resource PDO::pgsqlLOBOpen (string $oid [, string $mode])

PDO::pgsqlLOBOpen() opens a stream to access the data referenced by oid. If mode is r,
the stream is opened for reading, if mode is w, then the stream will be opened for writing.
You can use all the usual filesystem functions, such as fread(), fwrite() and fgets() to
manipulate the contents of the stream.

Note

This function, and all manipulations of the large object, must be called and carried out
within a transaction.

Parameters

oid

A large object identifier.

mode

If mode is r, open the stream for reading. If mode is w, open the stream for writing.

Return Values

Returns a stream resource on success, or FALSE on failure.

Examples

Example #729 - A PDO::pgsqlLOBOpen() example

Following on from the PDO::pgsqlLOBCreate() example, this code snippet retrieves
the large object from the database and outputs it to the browser.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$stmt = $db->prepare("select oid from BLOBS where ident = ?");

$stmt->execute(array($some_id));

$stmt->bindColumn('oid', $lob, PDO::PARAM_LOB);

$stmt->fetch(PDO::FETCH_BOUND);

fpassthru($lob);

?>

See Also

• PDO::pgsqlLOBCreate()
• PDO::pgsqlLOBUnlink()
• pg_lo_open()

PDO::pgsqlLOBUnlink

PDO::pgsqlLOBUnlink -- Deletes the large object

Description

bool PDO::pgsqlLOBUnlink (string $oid)

Deletes a large object from the database identified by OID.

Note

This function must be called within a transaction.

Parameters

oid

A large object identifier

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #730 - A PDO::pgsqlLOBUnlink() example

This example unlinks a large object from the database prior to deleting the row that
references it from the blobs table we've been using in our PDO::pgsqlLOBCreate() and
PDO::pgsqlLOBOpen() examples.

<?php

$db = new PDO('pgsql:dbname=test host=localhost', $user, $pass);

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->beginTransaction();

$db->pgsqlLOBUnlink($oid);

$stmt = $db->prepare("DELETE FROM BLOBS where ident = ?");

$stmt->execute(array($some_id));

$db->commit();

?>

See Also

• PDO::pgsqlLOBOpen()
• PDO::pgsqlLOBCreate()

SQLite Functions (PDO_SQLITE)

Introduction

PDO_SQLITE is a driver that implements the PHP Data Objects (PDO) interface to enable
access to SQLite 3 databases.

In PHP 5.1, the SQLite extension also provides a driver for SQLite 2 databases; while it is
not technically a part of the PDO_SQLITE driver, it behaves similarly, so it is documented
alongside it. The SQLite 2 driver for PDO is provided primarily to make it easier to import
legacy sqlite 2 database files into an application that uses the faster, more efficient sqlite 3
driver. As a result, the SQLite 2 driver is not as feature-rich as the SQLite 3 driver.

PDO_SQLITE DSN

PDO_SQLITE DSN -- Connecting to SQLite databases

Description

The PDO_SQLITE Data Source Name (DSN) is composed of the following elements:
DSN prefix (SQLite 3)

The DSN prefix is sqlite:.

• To access a database on disk, append the absolute path to the DSN prefix.

• To create a database in memory, append:memory: to the DSN prefix.

DSN prefix (SQLite 2)
The SQLite extension in PHP 5.1 provides a PDO driver that supports accessing and
creating SQLite 2 databases. This enables you to access databases you may have
created with the SQLite extension in previous versions of PHP.

Note

The sqlite2 driver is only available in PHP 5.1.x if you have enabled both PDO and
ext/sqlite. It is not currently available via PECL.

The DSN prefix for connecting to SQLite 2 databases is sqlite2:.

• To access a database on disk, append the absolute path to the DSN prefix.

• To create a database in memory, append:memory: to the DSN prefix.

Examples

Example #731 - PDO_SQLITE DSN examples

The following examples show PDO_SQLITE DSN for connecting to SQLite databases:
sqlite:/opt/databases/mydb.sq3

sqlite::memory:

sqlite2:/opt/databases/mydb.sq2

sqlite2::memory:

PDO->sqliteCreateAggregate()

PDO->sqliteCreateAggregate() -- Registers an aggregating User Defined Function for use
in SQL statements

Description

PDO

bool sqliteCreateAggregate (string $function_name, callback $step_func, callback $
finalize_func [, int $num_args])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method is similar to PDO->sqliteCreateFunction() except that it registers functions
that can be used to calculate a result aggregated across all the rows of a query.

The key difference between this method and PDO->sqliteCreateFunction() is that two
functions are required to manage the aggregate.

Parameters

function_name

The name of the function used in SQL statements.

step_func

Callback function called for each row of the result set. Your PHP function should
accumulate the result and store it in the aggregation context. This function need to be
defined as:
step (mixed $context, int $rownumber, mixed $value1 [, mixed $value2 [, mixed $..]
])
context will be NULL for the first row; on subsequent rows it will have the value that
was previously returned from the step function; you should use this to maintain the
aggregate state. rownumber will hold the current row number.

finalize_func

Callback function to aggregate the "stepped" data from each row. Once all the rows
have been processed, this function will be called and it should then take the data from

the aggregation context and return the result. Callback functions should return a type
understood by SQLite (i.e. scalar type). This function need to be defined as:
fini (mixed $context, int $rownumber)
context will hold the return value from the very last call to the step function. rownumber
will hold the number of rows over which the aggregate was performed. The return
value of this function will be used as the return value for the aggregate.

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #732 - max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$db = new PDO('sqlite::memory:');

$db->exec("CREATE TABLE strings(a)");

$insert = $db->prepare('INSERT INTO strings VALUES (?)');

foreach ($data as $str) {

 $insert->execute(array($str));

}

$insert = null;

function max_len_step(&$context, $rownumber, $string)

{

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context, $rownumber)

{

 return $context;

}

$db->sqliteCreateAggregate('max_len', 'max_len_step', 'max_len_finalize');

var_dump($db->query('SELECT max_len(a) from strings')->fetchAll());

?>

In this example, we are creating an aggregating function that will calculate the length of the
longest string in one of the columns of the table. For each row, the max_len_step function
is called and passed a context parameter. The context parameter is just like any other
PHP variable and be set to hold an array or even an object value. In this example, we are
simply using it to hold the maximum length we have seen so far; if the string has a length
longer than the current maximum, we update the context to hold this new maximum length.

After all of the rows have been processed, SQLite calls the max_len_finalize function to
determine the aggregate result. Here, we could perform some kind of calculation based on
the data found in the context. In our simple example though, we have been calculating
the result as the query progressed, so we simply need to return the context value.

Tip

It is NOT recommended for you to store a copy of the values in the context and then
process them at the end, as you would cause SQLite to use a lot of memory to process
the query - just think of how much memory you would need if a million rows were
stored in memory, each containing a string 32 bytes in length.

Tip

You can use PDO->sqliteCreateFunction() and PDO->sqliteCreateAggregate() to
override SQLite native SQL functions.

Note

This method is not available with the SQLite2 driver. Use the old style sqlite API for
that instead.

See Also

• PDO->sqliteCreateFunction()
• sqlite_create_function()
• sqlite_create_aggregate()

PDO->sqliteCreateFunction()

PDO->sqliteCreateFunction() -- Registers a User Defined Function for use in SQL
statements

Description

PDO

bool sqliteCreateFunction (string $function_name, callback $callback [, int $num_args]
)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method allows you to register a PHP function with SQLite as an UDF (User Defined
Function), so that it can be called from within your SQL statements.

The UDF can be used in any SQL statement that can call functions, such as SELECT and
UPDATE statements and also in triggers.

Parameters

function_name

The name of the function used in SQL statements.

callback

Callback function to handle the defined SQL function.

Note

Callback functions should return a type understood by SQLite (i.e. scalar type).

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #733 - PDO::sqliteCreateFunction() example

<?php

function md5_and_reverse($string)

{

 return strrev(md5($string));

}

$db = new PDO('sqlite:sqlitedb');

$db->sqliteCreateFunction('md5rev', 'md5_and_reverse', 1);

$rows = $db->query('SELECT md5rev(filename) FROM files')->fetchAll();

?>

In this example, we have a function that calculates the md5 sum of a string, and then
reverses it. When the SQL statement executes, it returns the value of the filename
transformed by our function. The data returned in $rows contains the processed result.

The beauty of this technique is that you do not need to process the result using a foreach()
loop after you have queried for the data.

Tip

You can use PDO->sqliteCreateFunction() and PDO->sqliteCreateAggregate() to
override SQLite native SQL functions.

Note

This method is not available with the SQLite2 driver. Use the old style sqlite API for
that instead.

See Also

• PDO->sqliteCreateAggregate()
• sqlite_create_function()
• sqlite_create_aggregate()

Service Data Objects

Introduction

Service Data Objects (SDOs) enable PHP applications to work with data from different
sources (like a database query, an XML file, and a spreadsheet) using a single interface.

Each different kind of data source requires a Data Access Service (DAS) to provide
access to the data in the data source. In your PHP application, you use a DAS to create an
SDO instance that represents some data in the data source. You can then set and get
values in the SDO instance using the standard SDO interface. Finally, you use a DAS to
write the modified data back to a data source, typically the same one.

See the list of Data Access Services for details on those currently available. In addition to
the provided DASs, SDO also provides interfaces to enable others to be implemented (see
the section on SDO Data Access Services Interface for more details).

This extension is derived from concepts taken from the » Service Data Objects
specification. It includes a version of the » Apache Tuscany SDO for C++ project.

The Structure of a Service Data Object

A Service Data Object instance is made up of a tree of data objects. The tree is defined by
containment relationships between the data objects. For example, a Company data object
might consist of a number of Department data objects and therefore the Company would
have a containment relationship to the Departments.

An SDO may also have non-containment references between data objects in the tree. For
example, one Employee data object might reference another Employee to identify a career
mentor.

As well as data objects referencing each other, they can also have primitive properties. For
example, the Company data object might have a property called "name" of type string, for
holding the name of the company (for example, "Acme").

Each of these properties of a data object - containment relationships, non-containment
references, or primitive properties - may be many-valued or single-valued. In the above
examples, Departments is many-valued and the Company name is single-valued.

In PHP, each SDO data object is represented as a PHP object. The properties of the data
object can be accessed using either object syntax or associative array syntax. We'll see
some examples of this later.

http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/
http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/
http://incubator.apache.org/tuscany/

Installing/Configuring

Requirements

The SDO extension requires PHP 5.1.0 or higher. It also requires the libxml2 library.
Normally libxml2 will already be installed, but if not, it can be downloaded from
» http://www.xmlsoft.org/.

Installation

Note

Earlier versions of the SDO extension required a separate shared library for the XML
DAS. This is now obsolete and any references to php_sdo_das_xml.dll or
sdo_das_xml.so should be removed from your php.ini.

Unix systems
1. The three SDO components - the SDO core, the XML DAS and the Relational DAS -

are packaged together with Service Component Architecture (SCA) into one PECL
project, SCA_SDO, so you can download SCA and all three parts of SDO with the
command:
pecl install SCA_SDO
This command will build the SDO shared library as well as installing the PHP files that
make up SCA and the SDO Relational DAS. If you want to use the latest beta version,
then instead run:
pecl install SCA_SDO-beta

2. The pecl command automatically installs the SDO module into your PHP extensions
directory. To enable the SDO extension you must add the following line to php.ini:
extension=sdo.so
For more information about building PECL packages, consult the PECL installation
section of the manual.

Windows
1. The latest SDO DLL can be downloaded from » php_sdo.dll. Note that currently the

» pecl4win site does not provide this binary at the current release level; you can only
download the latest level.

2. The pecl command automatically installs the SDO module into your PHP extensions
directory. To enable the SDO extension you must add the following line to php.ini:
extension=php_sdo.dll

3. The Relational DAS can be downloaded and installed with the command:
pecl install -B sdo
The Relational DAS is written in PHP. You may need to update your include_path in

http://www.xmlsoft.org/
http://www.xmlsoft.org/
http://pecl4win.php.net/ext.php/php_sdo.dll
http://pecl4win.php.net/
http://pecl4win.php.net/

php.ini to point to the directory that contains sdo/DAS/Relational.

Building SDO on Linux
This section describes how to build the SDO core and XML DAS on Linux. You would
only need to know how to do this if you wish to build a recent version that you have
checked out of CVS.

1. Change to the main extension directory: cd < wherever your sdo code is >

2. Run phpize, which will set up the environment to compile SDO.

3. Next, run./configure; make; make install. Please note, you may need to login as root to
install the extension.

4. Make sure that the module is loaded by PHP, by adding extension=sdo.so to your
php.ini file.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SDO_DAS_ChangeSummary::NONE=0 (integer)
Represents a change type of 'none'.

SDO_DAS_ChangeSummary::MODIFICATION=1 (integer)
Represents a change type of 'modification'.

SDO_DAS_ChangeSummary::ADDITION=2 (integer)
Represents a change type of 'addition'.

SDO_DAS_ChangeSummary::DELETION=3 (integer)
Represents a change type of 'deletion'.

Limitations

Implementation Limitations
The following are limitations in the current SDO implementation:

1. There is no support for multi-byte character sets. This will be considered, depending
on community requirements, in the Unicode-enabled version of PHP. See Unicode
Functions.

SDO Limitations
The following SDO 2.0 concepts are not supported in the current PHP implementation.
It is not necessarily the case that these will all be added over time. Their inclusion will
depend on community requirements.

1. Bi-directional relationships.

2. Type and property alias names.

3. Read-only properties.

4. The Helper classes defined in SDO 2.0 are not directly implemented. However
equivalent function is provided in a more natural way for PHP. For example the
function of CopyHelper::copy() is provided by applying the PHP clone keyword to a
data object.

Examples

Basic Usage

The examples below assume an SDO created with the schema and instance information
shown below, using the XML Data Access Service.

The instance document below describes a single company, called 'MegaCorp', which
contains a single department, called 'Advanced Technologies'. The Advanced
Technologies department contains three employees. The company employeeOfTheMonth
is referencing the second employee, 'Jane Doe'.

<?xml version="1.0" encoding="UTF-8" ?>

<company xmlns="companyNS" name="MegaCorp"

 employeeOfTheMonth="E0003">

 <departments name="Advanced Technologies" location="NY" number="123">

 <employees name="John Jones" SN="E0001"/>

 <employees name="Jane Doe" SN="E0003"/>

 <employees name="Al Smith" SN="E0004" manager="true"/>

 </departments>

</company>

The root element of the schema is a company. The company contains departments, and
each department contains employees. Each element has a number of attributes to store
things like name, serial number, and so on. Finally, the company also has an IDREF
attribute which identifies one of the employees as the 'employeeOfTheMonth'.

<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sdo="commonj.sdo"

 xmlns:sdoxml="commonj.sdo/xml"

 xmlns:company="companyNS"

 targetNamespace="companyNS">

 <xsd:element name="company" type="company:CompanyType"/>

 <xsd:complexType name="CompanyType">

 <xsd:sequence>

 <xsd:element name="departments" type="company:DepartmentType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="employeeOfTheMonth" type="xsd:IDREF"

 sdoxml:propertyType="company:EmployeeType"/>

 </xsd:complexType>

 <xsd:complexType name="DepartmentType">

 <xsd:sequence>

 <xsd:element name="employees" type="company:EmployeeType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="location" type="xsd:string"/>

 <xsd:attribute name="number" type="xsd:int"/>

 </xsd:complexType>

 <xsd:complexType name="EmployeeType">

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="SN" type="xsd:ID"/>

 <xsd:attribute name="manager" type="xsd:boolean"/>

 </xsd:complexType>

</xsd:schema>

The XML Data Access Service maps the schema to an SDO. Attributes such as "name"
become primitive properties, the sequence of employees becomes a many-valued
containment relationship, and so on. Note that the containment relationships are
expressed as one complex type within another, whereas non-containment references are
expressed in terms of ID and IDREF, with a special sdoxml:propertyType attribute
specifying the type of the non-containment reference.

Setting and Getting Property Values

The following examples assume $company is the root of a tree of data objects created
from the schema and instance document shown above.

Example #734 - Access via property name

Data object properties can be accessed using the object property access syntax. The
following sets the company name to 'Acme'.

<?php

$company->name = 'Acme';

?>

Example #735 - Access via property name as array index

We can also access properties using associative array syntax. The simplest form of
this uses the property name as the array index. For example, the following sets the
company name and gets the employeeOfTheMonth.

<?php

$company['name'] = 'UltraCorp';

$eotm = $company['employeeOfTheMonth'];

?>

Example #736 - Data Object iteration

We can iterate over the properties of a data object using foreach. The following iterates
over the properties of the employee of the month.

<?php

 $eotm = $company->employeeOfTheMonth;

 foreach ($eotm as $name => $value) {

 echo "$name: $value\n";

 }

?>

which will output:

name: Jane Doe

SN: E0003

The 'manager' property is not output, because it has not been set.

Example #737 - Access many-valued property by name

Many-valued data object properties can also be accessed using the object property
name syntax. The following gets the list of departments.

<?php

$departments = $company->departments;

?>

Example #738 - Many-valued element access

We can access individual elements of many-valued properties using array syntax. The
following accesses the first department in the company.

<?php

$ad_tech_dept = $company->departments[0];

?>

Example #739 - Many-valued property iteration

Many-valued properties can also be iterated over using foreach. The following iterates
over the company's departments.

<?php

 foreach ($company->departments as $department) {

 // ...

 }

?>

Each iteration will assign the next department in the list to the variable $department.

Example #740 - Chained property access

We can chain property references on a single line. The following sets and gets the
name of the first department.

<?php

 $company->departments[0]->name = 'Emerging Technologies';

 $dept_name = $company->departments[0]->name;

?>

Using the associative array syntax, this is equivalent to

<?php

 $company['departments'][0]['name'] = 'Emerging Technologies';

 $dept_name = $company['departments'][0]['name'];

?>

In either case, the dept_name variable is set to 'Emerging Technologies'.

Example #741 - XPath navigation

The associative array index can be an XPath-like expression. Valid expressions are
defined by an augmented sub-set of XPath.

Two forms of indexing into many-valued properties are supported. The first is the
standard XPath array syntax with the indexing starting at one, the second is an SDO
extension to XPath with an index starting at zero. The standard syntax is:

<?php

 $jane_doe = $company["departments[1]/employees[2]"];

?>

and the SDO XPath extension syntax is:

<?php

 $jane_doe = $company["departments.0/employees.1"];

?>

Both these examples get the second employee from the first department.

Example #742 - XPath querying

We can use XPath to query and identify parts of a data object based on instance data.
The following retrieves the manager from the 'Advanced Technologies' department.

<?php

$ad_tech_mgr =

 $company["departments[name='Advanced
Technologies']/employees[manager=true]"];

?>

Example #743 - Creating child data objects

A data object can be a factory for its child data objects. A child data object is
automatically part of the data graph. The following add a new employee to the
'Advanced Technologies' department.

<?php

 $ad_tech_dept = $company["departments[name='Advanced Technologies']"];

 $new_hire = $ad_tech_dept->createDataObject('employees');

 $new_hire->name = 'John Johnson';

 $new_hire->SN = 'E0005';

 $new_hire->manager = false;

?>

Example #744 - Unset a primitive property

We can use the isset() and unset() functions to test and remove items from the data
object.

The following clears the name of the first department.

<?php

 unset($company->departments[0]->name);

?>

Example #745 - Unset a data object

unset can also be used to remove a data object from the tree. The following example
shows John Jones leaving the company.

<?php

 unset($company->departments[0]->employees[0]);

?>

Example #746 - Unset a referenced data object

The following removes the 'employeeOfTheMonth' from the company. If this were a
containment relationship then the employee would be removed from the company
(probably not a good idea to sack your best employee each month!), but since this is a
non-containment reference, the employee being referenced will remain in the
department in the company, but will no longer be accessible via the
employeeOfTheMonth property.

<?php

 if (isset($company->employeeOfTheMonth)) {

 unset($company->employeeOfTheMonth);

 }

?>

Example #747 - Access via property index

Data object properties can be accessed via their property index using array syntax.
The property index is the position at which the property's definition appears in the
model (in this case the xml schema). We can see from the schema listing above that
the company name attribute is the second company property (the SDO interface
makes no distinction between XML attributes and elements). The following sets the
company name to 'Acme', with the same result as Access via property name

<?php

 $company[1] = 'Acme';

?>

Using the index directly in this way is likely to be fragile. Normally the property name
syntax should be preferred, but the property index may be required in special cases.

Working with Sequenced Data Objects

Sequenced data objects are SDOs which can track property ordering across the properties
of a data object. They can also contain unstructured text elements (text element which do
not belong to any of the SDO's properties). Sequenced data objects are useful for working
with XML documents which allow unstructured text (i.e. mixed=true) or if the elements can
be interleaved (<A/><A/>). This can occur for example when the schema defines

maxOccurs>1 on a element which is a complexType with a choice order indicator.

The examples below assume an SDO created with the following schema and instance
information, using the XML Data Access Service.

The schema below describes the format of a letter. The letter can optionally contain three
properties; date, firstName, and lastName. The schema states mixed="true" which means
that unstructured text can be interspersed between the three properties.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:letter="http://letterSchema"

 targetNamespace="http://letterSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 <xsd:sequence>

 <xsd:element name="date" minOccurs="0" type="xsd:string"/>

 <xsd:element name="firstName" minOccurs="0" type="xsd:string"/>

 <xsd:element name="lastName" minOccurs="0" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

The following is an instance letter document. It contains the three letter properties; date,
firstName and lastName, and has unstructured text elements for the address and letter
body.

<letter:letters xmlns:letter="http://letterSchema">

 <date>March 1, 2005</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Casy</firstName>

 <lastName>Crocodile</lastName>

 Please buy more shark repellent.

 Your premium is past due.

</letter:letters>

When loaded, the letter data object will have the sequence and property indices shown in
the table below:

Sequence Index Property Index:Name Value

0 0:date March 1, 2005

1 - Mutual of Omaha

2 - Wild Kingdom, USA

3 - Dear

4 1:firstName Casy

5 2:lastName Crocodile

6 - Please buy more shark
repellent.

7 - Your premium is past due.

To ensure sequence indices are maintained, sequenced data objects should be
manipulated through the SDO_Sequence interface. This allows the data object's instance
data to be manipulated in terms of the sequence index as opposed to the property index
(shown in the table above). The following examples assume the letter instance has been
loaded into a data object referenced by the variable $letter.

Example #748 - Getting the SDO_Sequence interface

We obtain a data object's sequence using the getSequence() method. The follow gets
the sequence for the letter data object.

<?php

 $letter_seq = $letter->getSequence();

?>

All subsequent examples assume that the $letter_seq variable has been assigned the
sequence for the letter data object.

Example #749 - Get/set sequence values

We can get and set individual values (including unstructured text) using the sequence
index. The following sets the firstName to 'Snappy' and gets the last sequence values
(the unstructured text, 'Your premium is past due.').

<?php

 $letter_seq[4] = 'Snappy';

 $text = $letter_seq[count($letter_seq) - 1];

?>

Example #750 - Sequence iteration

We can iterate through the individual sequence values using foreach. The following
runs through the individual values in sequence order.

<?php

foreach ($letter->getSequence() as $value) {

 // ...

}

?>

Example #751 - Sequence versus Data Object

Setting values through the data object interface may result in the value not being part
of the sequence. A value set through the data object will only be accessible through
the sequence if the property was already part of the sequence. The following example
sets the lastName through the data object and gets it through the sequence. This is
fine because lastName already exists in the sequence. If it had not previously been
set, then lastName would be set to 'Smith', but would not be part of the sequence.

<?php

 $letter[2] = 'Smith';

 $last_name = $letter_seq[5];

?>

Example #752 - Adding to a sequence

We can add new values to a sequence using the SDO_Sequence::insert() method.
The following examples assume that the 'firstName' and 'lastName' properties are
initially unset.

<?php

 // Append a firstName value to the sequence

 // value: 'Smith'

 // sequence index: NULL (append)

 // propertyIdentifier: 1 (firtName property index)

 $letter_seq->insert('Smith', NULL, 1);

 // Append a lastName value to the sequence

 // value: 'Jones'

 // sequence index: NULL (append)

 // propertyIdentifier: 'lastName' (lastName property name)

 $letter_seq->insert('Jones', NULL, 'lastName');

 // Append unstructured text

 // value: 'Cancel Subscription.'

 // sequence index: absent (append)

 // propertyIdentifier: absent (unstructured text)

 $letter_seq->insert('Cancel Subscription.');

 // Insert new unstructured text. Subsequent sequence values

 // are shifted up.

 // value: 'Care of:'

 // sequence index: 1 (insert as second element)

 // propertyIdentifier: absent (unstructured text)

 $letter_seq->insert('Care of:', 1);

?>

Example #753 - Removing from a sequence

We can use the isset() and unset() functions to test and remove items from the
sequence (Note: unset() currently leaves the values in the data object, but this
behaviour is likely to change to also remove the data from the data object). A
sequence behaves like a contiguous list; therefore, removing items from the middle will
shift entries at higher indices down. The following example tests to see if the first
sequence element is set and unsets it if is.

<?php

 if (isset($letter_seq[0])) {

 unset($letter_seq[0]);

 }

?>

Reflecting on Service Data Objects

SDOs have a knowledge of the structure they have been created to represent (the model).
For example, a Company SDO created using the Company XML schema above would
only be permitted to contain DepartmentType data objects which in turn could only contain
EmployeeType data objects.

Sometimes it is useful to be able to access this model information at runtime. For example,
this could be used to automatically generate a user interface for populating a data object.
The model information is accessed using reflection.

Example #754 - Reflecting on a Data Object

The following example shows how we can reflect on an empty Employee data object.

<?php

 // Create the employee data object (e.g. from an XML Data Access Service)

 $employee = ...;

 $reflection = new SDO_Model_ReflectionDataObject($employee);

 print($reflection);

?>

The above example will output:

object(SDO_Model_ReflectionDataObject)#4 { - ROOT OBJECT - Type {

companyNS:EmployeeType[3] { commonj.sdo:String $name;

commonj.sdo:String $SN; commonj.sdo:Boolean $manager; } }

Using print on the SDO_Model_ReflectionDataObject writes out the data object's
model. We can see from the output how the type companyNS:EmployeeType has
three properties and we can see the names of the properties along with their types.
Note, the primitive types are listed as SDO types (e.g. commonj.sdo namespace,
String type). It is worth noting that this is the SDO model and when these are surfaced
to an application they can be treated as the PHP equivalent types (e.g. string and
boolean).

Example #755 - Accessing the type information

We can query the type information of a data object using reflection. The following
example checks the type corresponds to a data object rather than a primitive and then
iterates through the properties of the type, writing out the name of each property ($type
and $property are SDO_Model_Type and SDO_Model_Property objects, respectively).

<?php

 // Create the employee data object (e.g. from an XML Data Access Service)

 $employee = ...;

 $reflection = new SDO_Model_ReflectionDataObject($employee);

 $type = $reflection->getType();

 if (! $type->isDataType()) {

 foreach ($type->getProperties() as $property) {

 print $property->getName() . "\n";

 }

 }

?>

The above example will output:

name

SN

manager

SDO Functions

Data Access Services

The table below lists the currently provided SDO Data Access Services:

DAS Name Description

SDO_DAS_XML An XML Data Access Service supporting
reading/writing SDOs as XML documents.

SDO_DAS_Relational A PDO-based Data Access Service
supporting reading/writing SDO to relational
databases. Implements an optimistic
concurrency policy for updates.

Predefined Classes

SDO consists of three sets of interfaces. The first set covers those interfaces for use by
typical SDO applications. These are identified by the package prefix 'SDO_'. The second
set is those used to reflect on, and work with, the model of a data object. These are
identified by the package prefix 'SDO_Model_'. Finally, the third set are those use by Data
Access Service implementations and are identified by the package prefix 'SDO_DAS_'.
The majority of SDO users will not need to use or understand the 'SDO_Model_' and
'SDO_DAS_' interfaces.

SDO Application Programmer Interface

SDO_DataObject

The main interface through which data objects are manipulated. In addition to the methods
below, SDO_DataObject extends the ArrayAccess, SDO_PropertyAccess (defines __get()
/ __set() methods for property access overloading), Iterator, and Countable interfaces.

Methods

• getSequence - get the sequence for the data object

• createDataObject - create a child data object

• clear - unset the properties of a data object

• getContainer - get the container (also known as 'parent') of this data object

• getTypeName - get the name of the type for this data object

• getTypeNamespaceURI - get the namespace URI of the type for this data object

SDO_Sequence

The interface through which sequenced data objects can be accessed to preserve
ordering across a data object's properties and to allow unstructured text. SDO_Sequence
preserves contiguous indices and therefore inserting or removing elements may shift other
elements up or down. In addition to the methods below, SDO_Sequence extends the
ArrayAccess, Iterator and Countable interface.

Methods

• getProperty - get the property for a given sequence index

• move - move an element from one property index to another

• insert - insert a new value into the sequence

SDO_List

The interface through which many-valued properties are manipulated. In addition to the
method defined below, SDO_List extends ArrayAccess, Iterator and Countable. SDO_List
preserves contiguous indices and therefore inserting or removing elements may shift other
elements up or down.

Methods

• insert - insert a new value into the list

SDO_DataFactory

The interface through which data objects can be created. A Data Access Service is
responsible for populating the model (i.e. configuring the data factory with the type and
structure information for the data objects it can create.) for the factory and can then
optionally return an instance of, or implement, the SDO_DataFactory interface.

Methods

• create - create a new data object

SDO_Exception

An SDO_Exception is thrown when the caller's request cannot be completed. The
subclasses of SDO_Exception are:

• SDO_PropertyNotSetException - the property specified exists but has not been set or
does not have a default value

• SDO_PropertyNotFoundException - the property specified is not part of the data
object's type

• SDO_TypeNotFoundException - the specified namespace URI or type name is
unknown

• SDO_InvalidConversionException - conversion between the types of the assignment is
not possible

• SDO_IndexOutOfBoundsException - the numeric index into a data object, sequence or
list is not in the valid range

• SDO_UnsupportedOperationException - the request cannot be completed because it
is not allowed, for example an attempt to set a read-only property.

Methods

One method is added to those inherited from the built in Exception class:

• getCause - get the cause of this SDO_Exception

SDO Reflection Application Programmer Interfaces

SDO_Model_ReflectionDataObject

The main interface used to reflect on a data object instance to obtain its model type and
property information. It is designed to follow the reflection pattern introduced in PHP 5.

Constructor

• __construct - construct a new SDO_Model_ReflectionDataObject.

Methods

• export - get a string describing the data object.

• getType - get the SDO_Model_Type for the data object.

• getInstanceProperties - get the instance properties of the data object.

• getContainmentProperty - get the property which defines the containment relationship
to the data object.

SDO_Model_Type

The interface through which a data object's type information can be retrieved. This
interface can be used to find out the type name and namespace URI of the type, whether
the type allow open content, and so on.

Methods

• getName - get the name of the type.

• getNamespaceURI - get the namespace URI of the type.

• isInstance - test for a data object being an instance of the type.

• getProperties - get the properties of the type.

• getProperty - get a property of the type.

• isDataType - test to see if this type is a primitive scalar type.

• isSequencedType - test to see if this is a sequenced type.

• isOpenType - test to see if this is an open type.

• isAbstractType - test to see if this is an abstract type.

• getBaseType - get the base type of this type (if one exists).

SDO_Model_Property

The interface through which a data object's property information can be retrieved. This
interface can be used to find out the type of a property, whether a property has a default
value, whether the property is contained or reference by its parent, its cardinality, and so
on.

Methods

• getName - get the name of the property.

• getType - get the type of the property.

• isMany - test to see if the property is many-valued.

• isContainment - test to see if the property describes a containment relationship.

• getContainingType - get the type which contains this property.

• getDefault - get the default value for a property.

SDO Data Access Service Developer Interfaces

SDO_DAS_DataObject

The interface through which a Data Access Service can access a data object's
SDO_DAS_ChangeSummary. The change summary is used by the Data Access Service
to check for conflicts when applying changes back to a data source.

Methods

• getChangeSummary - get the change summary for a data object

SDO_DAS_ChangeSummary

The interface through which the change history of a data object is accessed. The change
summary holds information for any modifications on a data object which occurred since
logging was activated. In the case of deletions and modifications, the old values are also
held in the change summary.

If logging is no longer active then the change summary only holds changes made up to the
point when logging was deactivated. Reactivating logging clears the change summary.
This is useful when a set of changes have been written out by a DAS and the data object
is to be reused.

Methods

• beginLogging - begin logging changes made to a data object

• endLogging - end logging changes made to a data object

• isLogging - test to see if change logging is on

• getChangedDataObjects - get a list of the data objects which have been changed

• getChangeType - get the type of change which has been made to a data object

• getOldValues - get a list of old values for a data object

• getOldContainer - get the old container data object for a deleted data object

SDO_DAS_Setting

The interface through which the old value for a property is accessed. A list of settings is
returned by the change summary method getOldValues().

Methods

• getPropertyIndex - get the property index for the changed property

• getPropertyName - get the property name for the changed property

• getValue - get the old value for the changed property

• getListIndex - get the list index for the old value if it was part of a many-valued property

• isSet - test to see if the property was set prior to being modified

SDO_DAS_DataFactory

The interface for constructing the model for an SDO_DataObject. The
SDO_DAS_DataFactory is an abstract class providing a static method which returns a
concrete data factory implementation. The implementation is used by Data Access
Services to create an SDO model from their model. For example, a Relational Data
Access Service might create and populate an SDO_DAS_DataFactory model based on a
schema for a relational database.

Methods

• getDataFactory - static methods for getting a concrete data factory instance

• addType - add a new type to the SDO model

• addPropertyToType - add a new property to a type definition in the SDO model

SDO_DAS_ChangeSummary::beginLogging

SDO_DAS_ChangeSummary::beginLogging -- Begin change logging

Description

void SDO_DAS_ChangeSummary::beginLogging (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Begin logging changes made to the SDO_DataObject.

Parameters

None.

Return Values

None.

SDO_DAS_ChangeSummary::endLogging

SDO_DAS_ChangeSummary::endLogging -- End change logging

Description

void SDO_DAS_ChangeSummary::endLogging (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

End logging changes made to an SDO_DataObject.

Parameters

None.

Return Values

None.

SDO_DAS_ChangeSummary::getChangeType

SDO_DAS_ChangeSummary::getChangeType -- Get the type of change made to an
SDO_DataObject

Description

int SDO_DAS_ChangeSummary::getChangeType (SDO_DataObject $dataObject)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the type of change which has been made to the supplied SDO_DataObject.

Parameters

dataObject

The SDO_DataObject which has been changed.

Return Values

The type of change which has been made. The change type is expressed as an
enumeration and will be one of the following four values:

• SDO_DAS_ChangeSummary::NONE

• SDO_DAS_ChangeSummary::MODIFICATION

• SDO_DAS_ChangeSummary::ADDITION

• SDO_DAS_ChangeSummary::DELETION

SDO_DAS_ChangeSummary::getChangedDataObj
ects

SDO_DAS_ChangeSummary::getChangedDataObjects -- Get the changed data objects
from a change summary

Description

SDO_List SDO_DAS_ChangeSummary::getChangedDataObjects (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get an SDO_List of the SDO_DataObjects which have been changed. These data objects
can then be used to identify the types of change made to each, along with the old values.

Parameters

None.

Return Values

Returns an SDO_List of SDO_DataObjects.

SDO_DAS_ChangeSummary::getOldContainer

SDO_DAS_ChangeSummary::getOldContainer -- Get the old container for a deleted
SDO_DataObject

Description

SDO_DataObject SDO_DAS_ChangeSummary::getOldContainer (SDO_DataObject $
data_object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the old container (SDO_DataObject) for a deleted SDO_DataObject.

Parameters

data_object

The SDO_DataObject which has been deleted and whose container we wish to
identify.

Return Values

The old containing data object of the deleted SDO_DataObject.

SDO_DAS_ChangeSummary::getOldValues

SDO_DAS_ChangeSummary::getOldValues -- Get the old values for a given changed
SDO_DataObject

Description

SDO_List SDO_DAS_ChangeSummary::getOldValues (SDO_DataObject $
data_object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get a list of the old values for a given changed SDO_DataObject. Returns a list of
SDO_DAS_Settings describing the old values for the changed properties of the
SDO_DataObject.

Parameters

data_object

The data object which has been changed.

Return Values

A list of SDO_DAS_Settings describing the old values for the changed properties of the
SDO_DataObject. If the change type is SDO_DAS_ChangeSummary::ADDITION, this list
is empty.

SDO_DAS_ChangeSummary::isLogging

SDO_DAS_ChangeSummary::isLogging -- Test to see whether change logging is
switched on

Description

bool SDO_DAS_ChangeSummary::isLogging (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see whether change logging is switched on.

Parameters

None.

Return Values

Returns TRUE if change logging is on, otherwise returns FALSE.

SDO_DAS_DataFactory::addPropertyToType

SDO_DAS_DataFactory::addPropertyToType -- Adds a property to a type

Description

void SDO_DAS_DataFactory::addPropertyToType (string $
parent_type_namespace_uri, string $parent_type_name, string $property_name, string $
type_namespace_uri, string $type_name [, array $options])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Adds a property to a type. The type must already be known to the SDO_DAS_DataFactory
(i.e. have been added using addType()). The property becomes a property of the type.
This is how the graph model for the structure of an SDO_DataObject is built.

Parameters

parent_type_namespace_uri

The namespace URI for the parent type.

parent_type_name

The type name for the parent type.

property_name

The name by which the property will be known in the parent type.

type_namespace_uri

The namespace URI for the type of the property.

type_name

The type name for the type of the property

options

This array holds one or more key=>value pairs to set attribute values for the property.
The optional keywords are:
many

A flag to say whether the property is many-valued. A value of 'true' adds the
property as a many-valued property (default is 'false').

readOnly

A flag to say whether the property is read-only. A value of 'true' means the property

value cannot be modified through the SDO application APIs (default is 'false').

containment

A flag to say whether the property is contained by the parent. A value of 'true'
means the property is contained by the parent. A value of 'false' results in a
non-containment reference (default is 'true'). This flag is only interpreted when
adding properties which are data object types, otherwise it is ignored.

default

A default value for the property. Omitting this key means that the property does not
have a default value. A property can only have a default value if it is a
single-valued data type (primitive).

Return Values

None.

ChangeLog

Version Description

0.5.2 Optional parameters many, readOnly, and
containment deprecated in favour of the
options array.

Examples

Example #756 - A SDO_DAS_DataFactory::addPropertyToType() example

The following adds an 'addressline' property to a Person type. The person type is
identified by its namespace, 'PersonNS', and type name, 'PersonType'. The type of the
'addressline' property is a many-valued SDO data type (primitive) with namespace
'commonj.sdo' and type name 'String'.

<?php

 $df->addPropertyToType('PersonNS', 'PersonType',

 'addressline', 'commonj.sdo', 'String', array('many'=>true));

?>

SDO_DAS_DataFactory::addType

SDO_DAS_DataFactory::addType -- Add a new type to a model

Description

void SDO_DAS_DataFactory::addType (string $type_namespace_uri, string $type_name
[, array $options])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Add a new type to the SDO_DAS_DataFactory, defined by its namespace and type name.
The type becomes part of the model of data objects that the data factory can create.

Parameters

type_namespace_uri

The namespace of the type.

type_name

The name of the type.

options

This array holds one or more key=>value pairs to set attribute values for the type. The
optional keywords are:
open

A flag to say whether the type is open. An SDO_DataObject whose type is open
can have properties added to them which are not described by the type. This
capability is used to support working with XML documents whose schema support
open content such as that described by an <xsd:any> element. The default value is
'false'.

sequenced

A flag to say whether the type is sequenced. Sequenced types can have the
ordering across properties preserved and can contain unstructured text. The
default value is 'false'. For more information on sequenced types see the section
on Working with Sequenced Data Objects.

basetype

If specified, an array of namespace URI and type name strings for the type from
which this type is derived. An example of the use of base types is when a type
derived in an XML schema inherits from another type by using <extension

base="...">.

Return Values

None.

Examples

Example #757 - A SDO_DAS_DataFactory::addType() example

The following adds a new data object type of 'CompanyType' where that type belongs
to the namespace 'CompanyNS'.

<?php

 $df->addType('CompanyNS', 'CompanyType');

?>

SDO_DAS_DataFactory::getDataFactory

SDO_DAS_DataFactory::getDataFactory -- Get a data factory instance

Description

SDO_DAS_DataFactory SDO_DAS_DataFactory::getDataFactory (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Static method to get an instance of an SDO_DAS_DataFactory. This instance is initially
only configured with the basic SDO types. A Data Access Service is responsible for
populating the data factory model and then allowing PHP applications to create SDOs
based on the model through the SDO_DataFactory interface. PHP applications should
always obtain a data factory from a configured Data Access Service, not through this
interface.

Parameters

None.

Return Values

Returns an SDO_DAS_DataFactory.

SDO_DAS_DataObject::getChangeSummary

SDO_DAS_DataObject::getChangeSummary -- Get a data object's change summary

Description

SDO_DAS_ChangeSummary SDO_DAS_DataObject::getChangeSummary (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the SDO_DAS_ChangeSummary for an SDO_DAS_DataObject, or NULL if it does not
have one.

Parameters

None.

Return Values

Returns the SDO_DAS_ChangeSummary for an SDO_DAS_DataObject, or NULL if it
does not have one.

SDO_DAS_Setting::getListIndex

SDO_DAS_Setting::getListIndex -- Get the list index for a changed many-valued property

Description

int SDO_DAS_Setting::getListIndex (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the list index for a modification made to an element of a many-valued property. For
example, if we modified the third element of a many-valued property we could obtain an
SDO_DAS_Setting from the change summary corresponding to that modification. A call to
getListIndex() on that setting would return the value 2 (lists are indexed from zero).

Parameters

None.

Return Values

The list index for the element of the many-valued property which has been changed.

SDO_DAS_Setting::getPropertyIndex

SDO_DAS_Setting::getPropertyIndex -- Get the property index for a changed property

Description

int SDO_DAS_Setting::getPropertyIndex (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the property index for the changed property. This index identifies the property
which was modified in data object.

Parameters

None.

Return Values

The property index for a changed property.

SDO_DAS_Setting::getPropertyName

SDO_DAS_Setting::getPropertyName -- Get the property name for a changed property

Description

string SDO_DAS_Setting::getPropertyName (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the property name for the changed property. This name identifies the property
which was modified in data object.

Parameters

None.

Return Values

The property name for a changed property.

SDO_DAS_Setting::getValue

SDO_DAS_Setting::getValue -- Get the old value for the changed property

Description

mixed SDO_DAS_Setting::getValue (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the old value for the changed property. This can be used by a Data Access
Service when writing updates to a data source. The DAS uses the old value to detect
conflicts by comparing it with the current value in the data source. If they do not match,
then the data source has been updated since the data object was originally populated, and
therefore writing any new updates risks compromising the integrity of the data.

Parameters

None.

Return Values

Returns the old value of the changed property.

SDO_DAS_Setting::isSet

SDO_DAS_Setting::isSet -- Test whether a property was set prior to being modified

Description

bool SDO_DAS_Setting::isSet (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test whether a property was set prior to being modified. If it was set prior to being modified
then the SDO_DAS_Setting will also contain the old value.

Parameters

None.

Return Values

Returns TRUE if the property was set prior to being modified, otherwise returns FALSE.

SDO_DataFactory::create

SDO_DataFactory::create -- Create an SDO_DataObject

Description

void SDO_DataFactory::create (string $type_namespace_uri, string $type_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Create a new SDO_DataObject given the data object's namespace URI and type name.

Parameters

type_namespace_uri

The namespace of the type.

type_name

The name of the type.

Return Values

Returns the newly created SDO_DataObject.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if the namespaceURI and typeName do not correspond to a type known to this
data factory.

SDO_DataObject::clear

SDO_DataObject::clear -- Clear an SDO_DataObject's properties

Description

void SDO_DataObject::clear (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Clear an SDO_DataObject's properties. Read-only properties are unaffected. Subsequent
calls to isset() for the data object will return FALSE.

Parameters

None.

Return Values

No return values.

SDO_DataObject::createDataObject

SDO_DataObject::createDataObject -- Create a child SDO_DataObject

Description

SDO_DataObject SDO_DataObject::createDataObject (mixed $identifier)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Create a child SDO_DataObject of the default type for the property identified. The data
object is automatically inserted into the tree and a reference to it is returned.

Parameters

identifier

Identifies the property for the data object type to be created. Can be either a property
name (string), a property index (int), or an SDO_Model_Property.

Return Values

Returns the newly created SDO_DataObject.

Errors/Exceptions

SDO_PropertyNotFoundException

Thrown if the identifier does not correspond to a property of the data object.

SDO_DataObject::getContainer

SDO_DataObject::getContainer -- Get a data object's container

Description

SDO_DataObject SDO_DataObject::getContainer (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the data object which contains this data object.

Parameters

None.

Return Values

Returns the SDO_DataObject which contains this SDO_DataObject, or returns NULL if this
is a root SDO_DataObject (i.e. it has no container).

SDO_DataObject::getSequence

SDO_DataObject::getSequence -- Get the sequence for a data object

Description

SDO_Sequence SDO_DataObject::getSequence (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return the SDO_Sequence for this SDO_DataObject. Accessing the SDO_DataObject
through the SDO_Sequence interface acts on the same SDO_DataObject instance data,
but preserves ordering across properties.

Parameters

None.

Return Values

The SDO_Sequence for this SDO_DataObject, or returns NULL if the SDO_DataObject is
not of a type which can have a sequence.

SDO_DataObject::getTypeName

SDO_DataObject::getTypeName -- Return the name of the type for a data object.

Description

string SDO_DataObject::getTypeName (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return the name of the type for a data object. A convenience method corresponding to
SDO_Model_ReflectionDataObject::getType().getName().

Parameters

None.

Return Values

The name of the type for the data object.

SDO_DataObject::getTypeNamespaceURI

SDO_DataObject::getTypeNamespaceURI -- Return the namespace URI of the type for a
data object.

Description

string SDO_DataObject::getTypeNamespaceURI (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return the namespace URI of the type for a data object. A convenience method
corresponding to SDO_Model_ReflectionDataObject::getType().getNamespaceURI().

Parameters

None.

Return Values

The namespace URI of the type for the data object.

SDO_Exception::getCause

SDO_Exception::getCause -- Get the cause of the exception.

Description

mixed SDO_Exception::getCause (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the cause of this exception or NULL if the cause is nonexistent or unknown.
Typically the cause will be an SDO_CPPException object, which may be used to obtain
additional diagnostic information.

Parameters

None.

Return Values

Returns the cause of this exception or NULL if the cause is nonexistent or unknown.

SDO_List::insert

SDO_List::insert -- Insert into a list

Description

void SDO_List::insert (mixed $value [, int $index])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Insert a new element at a specified position in the list. All subsequent list items are moved
up.

Parameters

value

The new value to be inserted. This can be either a primitive or an SDO_DataObject.

index

The position at which to insert the new element. If this argument is not specified then
the new value will be appended.

Return Values

None.

Errors/Exceptions

SDO_IndexOutOfBoundsException

Thrown if the list index is less than zero or greater than the size of the list.

SDO_InvalidConversionException

Thrown if the type of the new value does not match the type for the list (e.g. the type of
the many-valued property that the list represents).

SDO_Model_Property::getContainingType

SDO_Model_Property::getContainingType -- Get the SDO_Model_Type which contains
this property

Description

SDO_Model_Type SDO_Model_Property::getContainingType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the SDO_Model_Type which contains this property.

Parameters

None.

Return Values

Returns the SDO_Model_Type which contains this property.

SDO_Model_Property::getDefault

SDO_Model_Property::getDefault -- Get the default value for the property

Description

mixed SDO_Model_Property::getDefault (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the default value for the property. Only primitive data type properties can have
default values.

Parameters

None.

Return Values

Returns the default value for the property.

SDO_Model_Property::getName

SDO_Model_Property::getName -- Get the name of the SDO_Model_Property

Description

string SDO_Model_Property::getName (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the name of the SDO_Model_Property.

Parameters

None.

Return Values

Returns the name of the SDO_Model_Property.

SDO_Model_Property::getType

SDO_Model_Property::getType -- Get the SDO_Model_Type of the property

Description

SDO_Model_Type SDO_Model_Property::getType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the SDO_Model_Type of the property. The SDO_Model_Type describes the type
information for the property, such as its type name, namespace URI, whether it is a
primitive data type, and so on.

Parameters

None.

Return Values

Returns the SDO_Model_Type describing the property's type information.

SDO_Model_Property::isContainment

SDO_Model_Property::isContainment -- Test to see if the property defines a containment
relationship

Description

bool SDO_Model_Property::isContainment (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if the property corresponds to a containment relationship. Returns TRUE if the
property defines a containment relationship, or FALSE if it is reference.

Parameters

None.

Return Values

Returns TRUE if the property defines a containment relationship, or FALSE if it is
reference.

SDO_Model_Property::isMany

SDO_Model_Property::isMany -- Test to see if the property is many-valued

Description

bool SDO_Model_Property::isMany (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if the property is many-valued. Returns TRUE if this is a many-valued property,
otherwise returns FALSE.

Parameters

None.

Return Values

Returns TRUE if this is a many-valued property, otherwise returns FALSE.

SDO_Model_ReflectionDataObject::__construct

SDO_Model_ReflectionDataObject::__construct -- Construct an
SDO_Model_ReflectionDataObject

Description

SDO_Model_ReflectionDataObject SDO_Model_ReflectionDataObject::__construct (
SDO_DataObject $data_object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Construct an SDO_Model_ReflectionDataObject to reflect on an SDO_DataObject.
Reflecting on an SDO_DataObject gives access to information about its model. The model
contains information such as the data object's type, and whether that type is sequenced
(preserves ordering across properties) or open (each instance can have its model
extended). The model also holds information about the data object's properties, any
default values they may have, and so on.

Parameters

data_object

The SDO_DataObject being reflected upon.

Return Values

None.

SDO_Model_ReflectionDataObject::export

SDO_Model_ReflectionDataObject::export -- Get a string describing the SDO_DataObject.

Description

mixed SDO_Model_ReflectionDataObject::export (SDO_Model_ReflectionDataObject
$rdo [, bool $return])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get a string describing the SDO_DataObject. The default behaviour is to print the output,
but if TRUE is specified for return, it is returned as a string.

Parameters

rdo

An SDO_Model_ReflectionDataObject.

return

If TRUE, return the output as a string, otherwise print it.

Return Values

Returns the output if TRUE is specified for return, otherwise NULL.

SDO_Model_ReflectionDataObject::getContainme
ntProperty

SDO_Model_ReflectionDataObject::getContainmentProperty -- Get the property which
defines the containment relationship to the data object

Description

SDO_Model_Property SDO_Model_ReflectionDataObject::getContainmentProperty (
void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the SDO_Model_Property that contains the SDO_DataObject. This method is used to
navigate up to the parent's property which contains the data object which has been
reflected upon.

Parameters

None.

Return Values

Returns the container's SDO_Model_Property which references the SDO_DataObject, or
NULL if it is a root SDO_DataObject.

SDO_Model_ReflectionDataObject::getInstancePr
operties

SDO_Model_ReflectionDataObject::getInstanceProperties -- Get the instance properties of
the SDO_DataObject

Description

array SDO_Model_ReflectionDataObject::getInstanceProperties (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the instance properties for the SDO_DataObject. The instance properties consist of all
the properties defined on the data object's type, plus any instance properties from open
content (if the data object is an open type).

Parameters

None.

Return Values

An array of SDO_Model_Property objects.

SDO_Model_ReflectionDataObject::getType

SDO_Model_ReflectionDataObject::getType -- Get the SDO_Model_Type for the
SDO_DataObject

Description

SDO_Model_Type SDO_Model_ReflectionDataObject::getType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the SDO_Model_Type for the SDO_DataObject. The SDO_Model_Type holds all
the information about the data object's type, such as namespace URI, type name, whether
it is a primitive data type, and so on.

Parameters

None.

Return Values

Returns the SDO_Model_Type for the SDO_DataObject.

SDO_Model_Type::getBaseType

SDO_Model_Type::getBaseType -- Get the base type for this type

Description

SDO_Model_Type SDO_Model_Type::getBaseType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get the base type for this type. Returns the SDO_Model_Type for the base type if this type
inherits from another, otherwise returns NULL. An example of when base types occur is
when a type defined in XML schema inherits from another type by using<extension
base="...">.

Parameters

None.

Return Values

Returns the SDO_Model_Type for the base type if this type inherits from another,
otherwise returns NULL.

SDO_Model_Type::getName

SDO_Model_Type::getName -- Get the name of the type

Description

string SDO_Model_Type::getName (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the name of the type. The combination of type name and namespace URI is used
to uniquely identify the type.

Parameters

None.

Return Values

Returns the name of the type.

SDO_Model_Type::getNamespaceURI

SDO_Model_Type::getNamespaceURI -- Get the namespace URI of the type

Description

string SDO_Model_Type::getNamespaceURI (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the namespace URI of the type. The combination of namespace URI and type
name is used to uniquely identify the type.

Parameters

None.

Return Values

Returns the namespace URI of the type.

SDO_Model_Type::getProperties

SDO_Model_Type::getProperties -- Get the SDO_Model_Property objects defined for the
type

Description

array SDO_Model_Type::getProperties (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get an array of SDO_Model_Property objects describing the properties defined for the
SDO_Model_Type. Each SDO_Model_Property holds information such as the property
name, default value, and so on.

Parameters

None.

Return Values

Returns an array of SDO_Model_Property objects.

SDO_Model_Type::getProperty

SDO_Model_Type::getProperty -- Get an SDO_Model_Property of the type

Description

SDO_Model_Property SDO_Model_Type::getProperty (mixed $identifier)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Get an SDO_Model_Property of the type, identified by its property index or property name.

Parameters

identifier

The property index or property name.

Return Values

Returns the SDO_Model_Property.

SDO_Model_Type::isAbstractType

SDO_Model_Type::isAbstractType -- Test to see if this SDO_Model_Type is an abstract
data type

Description

bool SDO_Model_Type::isAbstractType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if this SDO_Model_Type is an abstract data type. Returns TRUE if this type is
abstract, that is, no SDO_DataObject of this type can be instantiated, though other types
may inherit from it.

Parameters

None.

Return Values

Returns TRUE if this type is an abstract data type, otherwise returns FALSE.

SDO_Model_Type::isDataType

SDO_Model_Type::isDataType -- Test to see if this SDO_Model_Type is a primitive data
type

Description

bool SDO_Model_Type::isDataType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if this SDO_Model_Type is a primitive data type. Returns TRUE if this type is a
primitive data type, otherwise returns FALSE.

Parameters

None.

Return Values

Returns TRUE if this type is a primitive data type, otherwise returns FALSE.

SDO_Model_Type::isInstance

SDO_Model_Type::isInstance -- Test for an SDO_DataObject being an instance of this
SDO_Model_Type

Description

bool SDO_Model_Type::isInstance (SDO_DataObject $data_object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test for an SDO_DataObject being an instance of this SDO_Model_Type. Returns TRUE
if the SDO_DataObject provided is an instance of this SDO_Model_Type, or a derived
type, otherwise returns FALSE.

Parameters

data_object

The SDO_DataObject to be tested.

Return Values

Returns TRUE if the SDO_DataObject provided is an instance of this SDO_Model_Type,
or a derived type, otherwise returns FALSE.

SDO_Model_Type::isOpenType

SDO_Model_Type::isOpenType -- Test to see if this type is an open type

Description

bool SDO_Model_Type::isOpenType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if this type is open. Returns TRUE if this type is open, otherwise returns
FALSE. An SDO_DataObject whose type is open can have properties added to them
which are not described by the type. This capability is used to support working with XML
documents whose schema support open content, such as that defined by an<xsd:any>
element.

Parameters

None.

Return Values

Returns TRUE if this type is open, otherwise returns FALSE.

SDO_Model_Type::isSequencedType

SDO_Model_Type::isSequencedType -- Test to see if this is a sequenced type

Description

bool SDO_Model_Type::isSequencedType (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Test to see if this is a sequenced type. Returns TRUE if this type is sequence, otherwise
returns FALSE. Sequenced types can have the ordering across properties preserved and
can contain unstructured text. For more information on sequenced types see the section
on Working with Sequenced Data Objects.

Parameters

None.

Return Values

Returns TRUE if this type is sequence, otherwise return FALSE.

SDO_Sequence::getProperty

SDO_Sequence::getProperty -- Return the property for the specified sequence index.

Description

SDO_Model_Property SDO_Sequence::getProperty (int $sequence_index)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return the property for the specified sequence index.

Parameters

sequence_index

The position of the element in the sequence.

Return Values

An SDO_Model_Property. A return value of NULL means the sequence element does not
belong to a property and must therefore be unstructured text.

Errors/Exceptions

SDO_IndexOutOfBoundsException

Thrown if the sequence index is less than zero or greater than the size of the
sequence.

SDO_Sequence::insert

SDO_Sequence::insert -- Insert into a sequence

Description

void SDO_Sequence::insert (mixed $value [, int $sequenceIndex [, mixed $
propertyIdentifier]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Insert a new element at a specified position in the sequence. All subsequent sequence
items are moved up.

Parameters

value

The new value to be inserted. This can be either a primitive or an SDO_DataObject.

sequenceIndex

The position at which to insert the new element. Default is NULL, which results in the
new value being appended to the sequence.

propertyIdentifier

Either a property index, a property name, or an SDO_Model_Property, used to identify
a property in the sequence's corresponding SDO_DataObject. A value of NULL
signifies unstructured text.

Return Values

None.

Errors/Exceptions

SDO_IndexOutOfBoundsException

Thrown if the sequence index is less than zero or greater than the size of the
sequence.

SDO_InvalidConversionException

Thrown if the type of the new value cannot be juggled to match the type for the

specified data object property.

SDO_Sequence::move

SDO_Sequence::move -- Move an item to another sequence position

Description

void SDO_Sequence::move (int $toIndex, int $fromIndex)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Modify the position of the item in the sequence, without altering the value of the property in
the SDO_DataObject.

Parameters

toIndex

The destination sequence index. If this index is less than zero or greater than the size
of the sequence then the value is appended.

fromIndex

The source sequence index.

Return Values

None.

Errors/Exceptions

SDO_IndexOutOfBoundsException

Thrown if the fromIndex sequence index is less than zero or greater than the size of
the sequence.

SDO Relational Data Access Service

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

In order to use the Relational Data Access Service for Service Data Objects, you will need
to understand some of the concepts behind SDO: the data graph, the data object, the
disconnected way of working, the change summary, XPath and property expressions, and
so on. If you are not familiar with these ideas, you might want to look first at the section on
SDO. In addition, the Relational DAS makes use of the PDO extension to isolate itself from
specifics of different back-end relational databases. In order to use the Relational DAS you
will need to be able to create and pass a PDO database connection; for this reason you
might also want to take a look at the section on PDO.

The job of the Relational DAS is to move data between the application and a relational
database. In order to do this it needs to be told the mapping between the database entities
- tables, columns, primary keys and foreign keys - and the elements of the SDO model -
types, properties, containment relationships and so on. You specify this information as
metadata when you construct the Relational DAS.

Overview of Operation
1. The first step is to call the Relational DAS's constructor, passing the metadata that

defines the mapping between database and SDO model. There are examples of this
below.

2. The next step might be to call the executeQuery() or executePreparedQuery()
methods on the Relational DAS, passing either a literal SQL statement for the DAS to
prepare and execute, or a prepared statement with placeholders and a list of values to
be inserted. You may also need to specify a small amount of metadata about the query
itself, so that the Relational DAS knows exactly what columns will be returned from the
database and in what order. You will also need to pass a PDO database connection.
The return value from executeQuery() or executePreparedQuery() is a normalised
data graph containing all the data from the result set. For a query that returns data
obtained from a number of tables, this graph will contain a number of data objects,
linked by SDO containment relationships. There may also be SDO non-containment
references within the data. Once the query has been executed and the data graph
constructed, there is no need for either that instance of the the Relational DAS or the
database connection. There are no locks held on the database. Both the Relational
DAS and the PDO database connection can be garbage collected.

3. Quite possibly the data in the data graph will go through a number of modifications.
The data graph can be serialised into the PHP session and so may have a lifetime
beyond just one client-server interaction. Data objects can be created and added to the

graph, the data objects already in the graph can be deleted, and data objects in the
graph can be modified.

4. Finally, the changes made to the data graph can be applied back to the database
using the applyChanges() method of the Relational DAS. For this, another instance of
the Relational DAS must be constructed, using the same metadata, and another
connection to the database obtained. The connection and the data graph are passed
to applyChanges(). At this point the Relational DAS examines the change summary
and generates the necessary INSERT, UPDATE and DELETE SQL statements to
apply the changes. Any UPDATE and DELETE statements are qualified with the
original values of the data so that should the data have changed in the database in the
meantime this will be detected. Assuming no such collisions have occurred the
changes will be committed to the database. The application can then continue to work
with the data graph, make more changes and apply them, or can discard it.

There are other ways of working with the data in the database: it is possible to just create
data objects and write them to the database without a preliminary call to executeQuery(),
for example. This scenario and others are explored in the Examples section below.

Installing/Configuring

Requirements

The Relational DAS requires that the SDO extension be installed. The SDO extension
requires a version of PHP 5.1, and the Relational DAS requires a recent version that
contains an important fix for PDO. The most up-to-date information about required levels
of PHP should be found in the changelog for the package on PECL. At the time of writing,
though, the Relational DAS requires the most recent beta level of PHP 5.1, that is PHP
5.1.0.

The Relational DAS uses PDO to access the relational database, and so should run with a
variety of different relational databases. At the time of writing it has been tested in the
following configurations

• MySQL 4.1.14, on Windows. The Relational DAS operates correctly with the
php_pdo_mysql driver that comes with the pre-built binaries for PHP 5.1.0.

• MySQL 4.1.13, on Linux. It is necessary to have the most up-to-date PDO driver for
MySQL, which comes built in to PHP 5.1.0. It may be necessary to uninstall the usual
driver that would have come from PECL using pear uninstall pdo_mysql. You will need
to configure PHP with the --with-pdo-mysql option.

• DB2 8.2 Personal Edition, on Windows. The Relational DAS operates correctly with the
php_pdo_odbc driver that comes with the pre-built binaries for PHP 5.1.0.

• DB2 8.2 Personal Developer's Edition, on Linux. The Developer's Edition is needed
because it contains the include files needed when PHP is configured and built. You will
need to configure PHP with the --with-pdo-odbc=ibm-db2 option.

The Relational DAS applies changes to the database within a user-delimited transaction:
that is, it issues a call to PDO::beginTransaction() before beginning to apply changes, and
PDO::commit() or PDO::rollback() on completion. Whichever database is chosen, the
database and the PDO driver for the database must support these calls.

Installation

The installation instructions for all the SDO components are in the SDO install section of
the SDO documentation.

In any case, the essential facts are that the Relational DAS is written in PHP and it should
be placed somewhere on the PHP include_path.

Your application will of course need to include the Relational DAS with a statement like
this:
<?php

require_once 'SDO/DAS/Relational.php';

?>

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Tracing

You may be interested in seeing the SQL statements that are generated in order to apply
changes back to the database. At the top of the SDO/DAS/Relational.php you will find a
number of constants which control whether the process of constructing and executing the
SQL statements is to be traced. Try setting DEBUG_EXECUTE_PLAN to TRUE to see the
generated SQL statements.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The Relational DAS introduces no predefined constants.

Examples

Creating, retrieveing, updating and deleting data

This section illustrates how the Relational DAS can be used to create, retrieve, update and
delete data in a relational database. Many of the examples are illustrated with a three-table
database that contains companies, departments within those companies, and employees
that work in those departments. This example is used in a number of places within the
SDO literature. See the examples section of the » Service Data Objects specification or
the Examples section of the documentation for the SDO extension.

The Relational DAS is constructed with metadata that defines the relational database and
how it should be mapped to SDO. The long section that follows describes this metadata
and how to construct the Relational DAS. The examples that follow it all assume that this
metadata is in an included php file.

The examples below and others can all be found in the Scenarios directory in the
Relational DAS package.

The Relational DAS throws exceptions in the event that it finds errors in the metadata or
errors when executing SQL statements against the database. For brevity the examples
below all omit the use of try/catch blocks around the calls to the Relational DAS.

These examples all differ from the expected use of SDO in two important respects.

First, they show all interactions with the database completed within one script. In this
respect these scenarios are not realistic but are chosen to illustrate just the use of the
Relational DAS. It is expected that interactions with the database will be separated in time
and the data graph serialised and deserialised into the PHP session one or more times as
the application interacts with an end user.

Second, all queries executed against the database use hard-coded queries with no
variables substituted. In this case it is safe to use the simple executeQuery() call, and this
is what the examples illustrate. In practice, though, it is unlikely that the SQL statement is
known entirely ahead of time. In order to allow variables to be safely substituted into the
SQL queries, without running the risk of injecting SQL with unknown effects, it is safer to
use the executePreparedQuery() which takes a prepared SQL statement containing
placeholders and a list of values to be substituted.

Specifying the metadata

This first long section describes in detail how the metadata describing the database and
the required SDO model is supplied to the Relational DAS.

When the constructor for the Relational DAS is invoked, it needs to be passed several
pieces of information. The bulk of the information, passed as an associative array in the
first argument to the constructor, tells the Relational DAS what it needs to know about the

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v2.0.pdf

relational database. It describes the names of the tables, columns, primary keys and
foreign keys. It should be fairly easy to understand what is required, and once written it
can be placed in a php file and included when needed. The remainder of the information,
passed in the second and third arguments to the constructor, tells the Relational DAS what
it needs to know about the relationships between objects and the shape of the data graph;
it ultimately determines how the data from the database is to be normalised into a graph.

Database metadata

The first argument to the constructor describes the target relational database.

Each table is described by an associative array with up to four keys.

Key Value

name The name of the table.

columns An array listing the names of the columns, in
any order.

PK The name of the column containing the
primary key.

FK An array with two entries, 'from' and 'to',
which define a column containing a foreign
key, and a table to which the foreign key
points. If there are no foreign keys in the
table then the 'FK' entry does not need to be
specified. Only one foreign key can be
specified. Only a foreign key pointing to the
primary key of a table can be specified.

<?php

/***

* METADATA DEFINING THE DATABASE

**/

$company_table = array (

 'name' => 'company',

 'columns' => array('id', 'name', 'employee_of_the_month'),

 'PK' => 'id',

 'FK' => array (

 'from' => 'employee_of_the_month',

 'to' => 'employee',

),

);

$department_table = array (

 'name' => 'department',

 'columns' => array('id', 'name', 'location', 'number', 'co_id'),

 'PK' => 'id',

 'FK' => array (

 'from' => 'co_id',

 'to' => 'company',

)

);

$employee_table = array (

 'name' => 'employee',

 'columns' => array('id', 'name', 'SN', 'manager', 'dept_id'),

 'PK' => 'id',

 'FK' => array (

 'from' => 'dept_id',

 'to' => 'department',

)

);

$database_metadata = array($company_table, $department_table, $employee_table);

?>

This metadata corresponds to a relational database that might have been defined to
MySQL as:

create table company (

id integer auto_increment,

name char(20),

employee_of_the_month integer,

primary key(id)

);

create table department (

id integer auto_increment,

name char(20),

location char(10),

number integer(3),

co_id integer,

primary key(id)

);

create table employee (

id integer auto_increment,

name char(20),

SN char(4),

manager tinyint(1),

dept_id integer,

primary key(id)

);

or to DB2 as:

create table company (\

 id integer not null generated by default as identity, \

 name varchar(20), \

 employee_of_the_month integer, \

 primary key(id))

create table department (\

 id integer not null generated by default as identity, \

 name varchar(20), \

 location varchar(10), \

 number integer, \

 co_id integer, \

 primary key(id))

create table employee (\

 id integer not null generated by default as identity, \

 name varchar(20), \

 SN char(4), \

 manager smallint, \

 dept_id integer, \

 primary key(id))

Note that although in this example there are no foreign keys specified to the database and
so the database is not expected to enforce referential integrity, the intention behind the
co_id column on the department table and the dept_id column on the employee table is
they should contain the primary key of their containing company or department record,
respectively. So these two columns are acting as foreign keys.

There is a third foreign key in this example, that from the employee_of_the_month column
of the company record to a single row of the employee table. Note the difference in intent
between this foreign key and the other two. The employee_of_the_month column
represents a single-valued relationship: there can be only one employee of the month for a
given company. The co_id and dept_id columns represent multi-valued relationships: a
company can contain many departments and a department can contain many employees.
This distinction will become evident when the remainder of the metadata picks out the
company-department and department-employee relationships as containment
relationships.

There are a few simple rules to be followed when constructing the database metadata:

• All tables must have primary keys, and the primary keys must be specified in the
metadata. Without primary keys it is not possible to keep track of object identities. As
you can see from the SQL statements that create the tables, primary keys can be
auto-generated, that is, generated and assigned by the database when a record is
inserted. In this case the auto-generated primary key is obtained from the database
and inserted into the data object immediately after the row is inserted into the
database.

• It is not necessary to specify in the metadata all the columns that exist in the database,
only those that will be used. For example, if the company table had another column
that the application did not want to access with SDO, this need not be specified in the
metadata. On the other hand it would have done no harm to specify it: if specified in
the metadata but never retrieved, or assigned to by the application, then the unused
column will not affect anything.

• In the database metadata note that the foreign key definitions identify not the
destination column in the table which is pointed to, but the table name itself. Strictly,
the relational model permits the destination of a foreign key to be a non-primary key.
Only foreign keys that point to a primary key are useful for constructing the SDO
model, so the metadata specifies the table name. It is understood that the foreign key
points to the primary key of the given table.

Given these rules, and given the SQL statements that define the database, the database
metadata should be easy to construct.

What the Relational DAS does with the metadata

The Relational DAS uses the database metadata to form most of the SDO model. For
each table in the database metadata, an SDO type is defined. Each column which can

represent a primitive value (columns which are not defined as foreign keys) are added as
properties to the SDO type.

All primitive properties are given a type of string in the SDO model, regardless of their SQL
type. When writing values back to the database the Relational DAS will create SQL
statements that treat the values as strings, and the database will convert them to the
appropriate type.

Foreign keys are interpreted in one of two ways, depending on the metadata in the third
argument to the constructor that defines the SDO containment relationships. A discussion
of this is therefore deferred until the section on SDO containment relationships below.

Specifying the application root type

The second argument to the constructor is the application root type. The true root of each
data graph is an object of a special root type and all application data objects come
somewhere below that. Of the various application types in the SDO model, one has to be
the application type immediately below the root of the data graph. If there is only one table
in the database metadata, the application root type can be inferred, and this argument can
be omitted.

Specifying the SDO containment relationships

The third argument to the constructor defines how the types in the model are to be linked
together to form a graph. It identifies the parent-child relationships between the types
which collectively form a graph. The relationships need to be supported by foreign keys to
be found in the data, in a way shortly to be described.

The metadata is an array containing one or more associative arrays, each of which
identifies a parent and a child. The example below shows a parent-child relationship from
company to department, and another from department to employee. Each of these will
become an SDO property defining a multi-valued containment relationship in the SDO
model.

<?php

$department_containment = array('parent' => 'company', 'child' =>
'department');

$employee_containment = array('parent' => 'department', 'child' => 'employee');

$SDO_containment_metadata = array($department_containment,
$employee_containment);

?>

Foreign keys in the database metadata are interpreted as properties with either
multi-valued containment relationships or single-valued non-containment references,
depending on whether they have a corresponding SDO containment relationship specified
in the metadata. In the example here, the foreign keys from department to company (the
co_id column in the department table) and from employee to department (the dept_id
column in the employee table) are interpreted as supporting the SDO containment
relationships. Each containment relationship mentioned in the SDO containment

relationships metadata must have a corresponding foreign key present in the database
and defined in the database metadata. The values of the foreign key columns for
containment relationships do not appear in the data objects, instead each is represented
by a containment relationship from the parent to the child. So the co_id column in the
department row in the database, for example, does not appear as a property on the
department type, but instead as a containment relationship called department on the
company type. Note that the foreign key and the parent-child relationship appear to have
opposite senses: the foreign key points from the department to the company, but the
parent-child relationship points from company to department.

The third foreign key in this example, the employee_of_the_month, is handled differently.
This is not mentioned in the SDO containment relationships metadata. As a consequence
this is interpreted in the second way: it becomes a single-valued non-containment
reference on the company object, to which can be assigned references to SDO data
objects of the employee type. It does appear as a property on the company type. The way
to assign a value to it in the SDO data graph is to have a graph that contains an employee
object through the containment relationships, and to assign the object to it. This is
illustrated in the later examples below.

One-table examples

The following set of examples all use the Relational DAS to work with a data graph
containing just one application data object, a single company and the data just to be found
the company table. These examples do not exercise the power of SDO or the Relational
DAS and of course the same result could be achieved more economically with direct SQL
statements but they are intended to illustrate how to work with the Relational DAS.

For this very simple scenario it would be possible to simplify the database metadata to
include just the company table - if that were done the second and third arguments to the
constructor and the column specifier used in the query example would become optional.

Example #758 - Creating a data object

The simplest example is that of creating a single data object and writing it to the
database. In this example a single company object is created, its name is set to
'Acme', and the Relational DAS is called to write the changes to the database. The
company name is set here using the property name method. See the Examples
section on the SDO extension for other ways of accessing the properties of an object.

Data objects can only be created when you have a data object to start with, however. It
is for that reason that the first call to the Relational DAS here is to obtain a root object.
This is in effect how to ask for an empty data graph - the special root object is the true
root of the tree. The company data object is then created with a call to
createDataObject() on the root object. This creates the company data object and
inserts it in the graph by inserting into a multi-valued containment property on the root
object called 'company'.

When the Relational DAS is called to apply the changes a simple insert statement

'INSERT INTO company (name) VALUES ("Acme");' will be constructed and executed.
The auto-generated primary key will be set into the data object and the change
summary will be reset, so that it would be possible to continue working with the same
data object, modify it, and apply the newer changes a second time.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Construct the DAS with the metadata

***/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

/**

* Obtain a root object and create a company object underneath.

* Make a simple change to the data object.

***/

$root = $das -> createRootDataObject();

$acme = $root -> createDataObject('company');

$acme->name = "Acme";

/**

* Get a database connection and write the object to the database

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$das -> applyChanges($dbh, $root);

?>

Example #759 - Retrieving a data object

In this example a single data object is retrieved from the database - or possibly more
than one if there is more than one company called 'Acme'. For each company
returned, the name and id properties are echoed.

In this example the third argument to executeQuery(), the column specifier is needed
as there are other tables in the metadata with column names of name and id. If there
were no possible ambiguity it could be omitted.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Construct the DAS with the metadata

***/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

/**

* Get a database connection

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

/**

* Issue a query to obtain a company object - possibly more if they exist

***/

$root = $das->executeQuery($dbh,

 'select name, id from company where name="Acme"',

 array('company.name', 'company.id'));

/**

* Echo name and id

***/

foreach ($root['company'] as $company) {

 echo "Company obtained from the database has name = " .

 $company['name'] . " and id " . $company['id'] . "\n";

}

?>

Example #760 - Updating a data object

This example combines the previous two, in the sense that in order to be updated the
object must first be retrieved. The application code reverses the company name (so
'Acme' becomes 'emcA') and then the changes are written back to the database in the
same way that they were when the object was created. Because the query searches
for the name both ways round the program can be run repeatedly to find the company
and reverse its name each time.

In this example the same instance of the Relational DAS is reused for the
applyChanges(), as is the PDO database handle. This is quite alright; it also alright to
allow the previous instances to be garbage collected and to obtain new instances. No
state data regarding the graph is held the Relational DAS once it has returned a data
graph to the application. All necessary data is either within the graph itself, or can be
reconstructed from the metadata.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Construct the DAS with the metadata

***/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

/**

* Get a database connection

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

/**

* Issue a query to obtain a company object - possibly more if they exist

***/

$root = $das->executeQuery($dbh,

 'select name, id from company where name="Acme" or name="emcA"',

 array('company.name', 'company.id'));

/**

* Alter the name of just the first company

***/

$company = $root['company'][0];

echo "obtained a company with name of " . $company->name . "\n";

$company->name = strrev($company->name);

/**

* Write the change back

***/

$das->applyChanges($dbh,$root);

?>

Example #761 - Deleting a data object

Any companies called 'Acme' or its reverse 'emcA' are retrieved. They are then all
deleted from the graph with unset.

In this example they are all deleted in one go by unsetting the containing property (the
property defining the containment relationship). It is also possible to delete them
individually.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Construct the DAS with the metadata

***/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

/**

* Get a database connection

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

/**

* Issue a query to obtain a company object - possibly more if they exist

***/

$root = $das->executeQuery($dbh,

 'select name, id from company where name="Acme" or name="emcA"',

 array('company.name', 'company.id'));

/**

* Delete any companies found from the data graph

***/

unset($root['company']);

/**

* Write the change(s) back

***/

$das->applyChanges($dbh,$root);

?>

Two-table examples

The following set of examples all use two tables from the company database: the company
and department tables. These examples exercise more of the function of the Relational
DAS.

In this series of examples a company and department are created, retrieved, updated, and
finally deleted. This illustrates the lifecycle for a data graph containing more than one
object. Note that this example clears out the company and department tables at the start
so that the exact results of the queries can be known.

You can find these examples combined into one script called 1cd-CRUD in the Scenarios
directory in the Relational DAS package.

Example #762 - One company, one department - Create

As in the earlier example of creating just one company data object, the first action after
constructing the Relational DAS is to call createRootDataObject() to obtain the
special root object of the otherwise empty data graph. The company object is then
created as a child of the root object, and the department object as a child of the
company object.

When it comes to applying the changes, the Relational DAS has to perform special
processing to maintain the foreign keys that support the containment relationships,
especially if auto-generated primary keys are involved. In this example, the relationship
between the auto-generated primary key id in the company table and the co_id column
in the department table must be maintained. When inserting a company and
department for the first time the Relational DAS has to first insert the company row,
then call PDO's getLastInsertId() method to obtain the auto-generated primary key,
then add that as the value of the co_id column when inserting the department row.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/***

* Empty out the two tables

**
*********/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$pdo_stmt = $dbh->prepare('DELETE FROM COMPANY;');

$rows_affected = $pdo_stmt->execute();

$pdo_stmt = $dbh->prepare('DELETE FROM DEPARTMENT;');

$rows_affected = $pdo_stmt->execute();

/**

* Create a company with name Acme and one department, the Shoe department

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$root = $das -> createRootDataObject();

$acme = $root -> createDataObject('company');

$acme -> name = "Acme";

$shoe = $acme->createDataObject('department');

$shoe->name = 'Shoe';

$das -> applyChanges($dbh, $root);

?>

Example #763 - One company, one department - Retrieve and Update

In this case the SQL query passed to executeQuery() performs an inner join to join
the data from the company and department tables. Primary keys for both the company
and department tables must be included in the query. The result set is re-normalised to
form a normalised data graph. Note that a column specifier is passed as the third
argument to the executeQuery() call enabling the Relational DAS to know which
column is which in the result set.

Note that the co_id column although used in the query is not needed in the result set.
In order to understand what the Relational DAS is doing when it builds the data graph
it may be helpful to visualise what the result set looks like. Although the data in the
database is normalised, so that multiple department rows can point through their
foreign key to one company row, the data in the result set is non-normalised: that is, if
there is one company and multiple departments, the values for the company are
repeated in each row. The Relational DAS has to reverse this process and turn the
result set back into a normalised data graph, with just one company object.

In this example the Relational DAS will examine the result set and column specifier,
find data for both the company and department tables, find primary keys for both, and
interpret each row as containing data for a department and its parent company. If it has
not seen data for that company before (it uses the primary key to check) it creates a
company object and then a department object underneath it. If it has seen data for that
company before and has already created the company object it just creates the
department object underneath.

In this way the Relational DAS can retrieve and renormalise data for multiple
companies and multiple departments underneath them.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Retrieve the company and Shoe department, then delete Shoe and add IT

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$root = $das->executeQuery($dbh,

'select c.id, c.name, d.id, d.name from company c, department d where
d.co_id = c.id',

array('company.id','company.name','department.id','department.name'));

$acme = $root['company'][0]; // get the first company - will be
'Acme'

$shoe = $acme['department'][0]; // get the first department
underneath - will be 'Shoe'

unset($acme['department'][0]);

$it = $acme->createDataObject('department');

$it->name = 'IT';

$das -> applyChanges($dbh, $root);

?>

Example #764 - One company, two departments - Retrieve and Delete

In this example the company and department are retrieved and then deleted. It is not
necessary to delete them individually (although that would be possible) - deleting the
company object from the data graph also deletes any departments underneath it.

Note the way that the company object is actually deleted using the PHP unset call. The
unset has to be performed on the containing property which in this case is the
company property on the special root object. You must use:
<?php

unset($root['company'][0]);

?>
and not:
<?php

unset($acme); //WRONG

?>
Simply unsetting $acme would destroy the variable but leave the data in the data
graph untouched.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Retrieve the company and IT department, then delete the whole company

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$root = $das->executeQuery($dbh,

'select c.id, c.name, d.id, d.name from company c, department d where
d.co_id = c.id',

array('company.id','company.name','department.id','department.name'));

$acme = $root['company'][0];

$it = $acme['department'][0];

unset($root['company'][0]);

$das -> applyChanges($dbh, $root);

?>

Three-table example

The following examples use all three tables from the company database: the company,
department, and employee tables. These introduce the final piece of function not exercised
by the examples above: the non-containment reference employee_of_the_month.

Like the examples above for company and department, this set of examples is intended to
illustrate the full lifecycle of such a data graph.

Example #765 - One company, one department, one employee - Create

In this example a company is created containing one department and just one
employee. Note that this example clears out all three tables at the start so that the
exact results of the queries can be known.

Note how once the company, department and employee have been created, the
employee_of_the_month property of the company can be made to point at the new
employee. As this is a non-containment reference, this cannot be done until the
employee object has been created within the graph. Non-containment references need
to be managed carefully. For example if the employee were now deleted from under
the department, it would not be correct to try to save the graph without first clearing or
re-assigning the employee_of_the_month property. The closure rule for SDO data
graphs requires that any object pointed at by a non-containment reference must also
be reachable by containment relationships.

When it comes to inserting the graph into the database, the procedure is similar to the
example of inserting the company and department, but employee_of_the_month
introduces an extra complexity. The Relational DAS needs to insert the objects
working down the tree formed by containment relationships, so company, then
department, then employee. This is necessary so that it always has the auto-generated
primary key of a parent on hand to include in a child row. But when the company row is

inserted the employee who is employee of the month has not yet been inserted and
the primary key is not known. The procedure is that after the employee record is
inserted and its primary key known, a final step is performed in which the the company
record is updated with the employee's primary key.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/***

* Empty out the three tables

**
*********/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$pdo_stmt = $dbh->prepare('DELETE FROM COMPANY;');

$rows_affected = $pdo_stmt->execute();

$pdo_stmt = $dbh->prepare('DELETE FROM DEPARTMENT;');

$rows_affected = $pdo_stmt->execute();

$pdo_stmt = $dbh->prepare('DELETE FROM EMPLOYEE;');

$rows_affected = $pdo_stmt->execute();

/***

* Create a tiny but complete company.

* The company name is Acme.

* There is one department, Shoe.

* There is one employee, Sue.

* The employee of the month is Sue.

**
*********/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$root = $das -> createRootDataObject();

$acme = $root -> createDataObject('company');

$acme -> name = "Acme";

$shoe = $acme -> createDataObject('department');

$shoe -> name = 'Shoe';

$shoe -> location = 'A-block';

$sue = $shoe -> createDataObject('employee');

$sue -> name = 'Sue';

$acme -> employee_of_the_month = $sue;

$das -> applyChanges($dbh, $root);

echo "Wrote back Acme with one department and one employee\n";

?>

Example #766 - One company, one department, one employee - Retrieve and
update

The SQL statement passed to the Relational DAS is this time an inner join that

retrieves data from all three tables. Otherwise this example introduces nothing that has
not appeared in a previous example.

The graph is updated by the addition of a new department and employee and some
alterations to the name properties of the existing objects in the graph. The combined
changes are then written back. The Relational DAS will process and apply an arbitrary
mixture of additions, modifications and deletions to and from the data graph.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/***

* Find the company again and change various aspects.

* Change the name of the company, department and employee.

* Add a second department and a new employee.

* Change the employee of the month.

**
*********/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$root = $das->executeQuery($dbh,

 "select c.id, c.name, c.employee_of_the_month, d.id, d.name, e.id, e.name "
.

 "from company c, department d, employee e " .

 "where e.dept_id = d.id and d.co_id = c.id and c.name='Acme'",

 array('company.id','company.name','company.employee_of_the_month',

 'department.id','department.name','employee.id','employee.name'));

$acme = $root['company'][0];

$shoe = $acme->department[0];

$sue = $shoe -> employee[0];

$it = $acme->createDataObject('department');

$it->name = 'IT';

$it->location = 'G-block';

$billy = $it->createDataObject('employee');

$billy->name = 'Billy';

$acme->name = 'MegaCorp';

$shoe->name = 'Footwear';

$sue->name = 'Susan';

$acme->employee_of_the_month = $billy;

$das -> applyChanges($dbh, $root);

echo "Wrote back company with extra department and employee and all the
names changed (Megacorp/Footwear/Susan)\n";

?>

Example #767 - One company, two departments, two employees - Retrieve and
delete

The company is retrieved as a complete data graph containing five data objects - the
company, two departments and two employees. They are all deleted by deleting the
company object. Deleting an object from the graph deletes all the object beneath it in
the graph. Five SQL DELETE statements will be generated and executed. As always
they will be qualified with a WHERE clause that contains all of the fields that were
retrieved, so that any updates to the data in the database in the meantime by another
process will be detected.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/***

* Now read it one more time and delete it.

* You can delete part, apply the changes, then carry on working with the
same graph but

* care is needed to keep closure - you cannot delete the employee who is
eotm without

* reassigning. For safety here we delete the company all in one go.

**
*********/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_containment_metadata);

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

$root = $das->executeQuery($dbh,

 "select c.id, c.name, c.employee_of_the_month, d.id, d.name, e.id, e.name "
.

 "from company c, department d, employee e " .

 "where e.dept_id = d.id and d.co_id = c.id and c.name='MegaCorp';",

 array('company.id','company.name','company.employee_of_the_month',

 'department.id','department.name','employee.id','employee.name'));

$megacorp = $root['company'][0];

unset($root['company']);

$das -> applyChanges($dbh, $root);

echo "Deleted the company, departments and employees all in one go.\n";

?>

Limitations

There are the following limitations in the current release of the Relational DAS:

• No support for nulls. There is no support for SQL NULL type. It is not legal to assign
PHP NULL to a data object property and the Relational DAS will not write that back as
a NULL to the database. If nulls are found in the database on a query, the property will
remain unset.

• Only two types of SDO relationship. The metadata described below allows the
Relational DAS to model just two types of SDO relationship: multi-valued containment
relationships and single-valued non-containment references. In SDO, whether a
property describes a single- or multi-valued relationship, and whether it is containment
or non-containment, are independent. The full range of possibilities that SDO allows
cannot all be defined. There may be relationships that it would be useful to model but
which the current implementation cannot manage. One example is a single-valued
containment relationship.

• No support for the full range of SDO data types. The Relational DAS defines all
primitive properties in the SDO model as being of type string. SDO defines a richer set
of types containing various integer, float, boolean and data and time types. String is
adequate for the purposes of the Relational DAS since the combination of PHP, PDO
and the database will ensure that values passed as strings will be converted to the
proper type before being put in the database. This does affect some scenarios in which
the Relational DAS has to work with a data graph that has come from or will go to a
different DAS.

• Only one foreign key per table. The metadata only provides the means to specify one
foreign key per table. This foreign key may be mapped to one of the two types of SDO
relationship supported. Obviously there are some scenarios that cannot be described
under this limitation - it is not possible to have two non-containment references from
one table to another for example.

SDO-DAS-Relational Functions

Predefined Classes

The Relational DAS provides two classes: the Relational DAS itself and the subclass of
Exception that can be thrown. The Relational DAS has four publicly useful calls: the
constructor, the createRootDataObject() call to obtain the root object of an empty data
graph, the executeQuery() call to obtain a data graph containing data from a relational
database, and the applyChanges() call to write changes made to a data graph back to the
relational database.

SDO_DAS_Relational

The only object other than an SDO_DAS_Relational_Exception with which the application
is expected to interact.

Methods

• __construct - construct the Relational DAS with a model derived from the passed
metadata

• createRootDataObject - obtain an otherwise empty data graph containing just the
special root object

• executeQuery - execute an SQL query passed as a literal string and return the results
as a normalised data graph

• executePreparedQuery - execute an SQL query passed as a prepared statement, with
a list of values to substitute for placeholders, and return the results as a normalised
data graph

• applyChanges - examine the change summary in the data graph and apply those
changes back to the database, subject to an assumption of optimistic concurrency

SDO_DAS_Relational_Exception

Is a subclass of PHP's Exception. It adds no behaviour to Exception. Thrown, with useful
descriptive text, to signal errors in the metadata or unexpected failures to perform SQL
operations.

SDO_DAS_Relational::applyChanges

SDO_DAS_Relational::applyChanges -- Applies the changes made to a data graph back
to the database.

Description

void SDO_DAS_Relational::applyChanges (PDO $database_handle, SDODataObject $
root_data_object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Given a PDO database handle and the special root object of a data graph, examine the
change summary in the datagraph and applies the changes to the database. The changes
that it can apply can be creations of data objects, deletes of data objects, and
modifications to properties of data objects.

Parameters

PDO_database_handle
Constructed using the PDO extension. A typical line to construct a PDO database
handle might look like this:
$dbh = new
PDO("mysql:dbname=COMPANYDB;host=localhost",DATABASE_USER,DATABASE_PASSWORD)
;

root_data_object
The special root object which is at the top of every SDO data graph.

Return Values

None. Note however that the datagraph that was passed is still intact and usable.
Furthermore, if data objects were created and written back to a table with autogenerated
primary keys, then those primary keys will now be set in the data objects. If the changes
were successfully written, then the change summary associated with the datagraph will
have been cleared, so that it is possible to now make further changes to the data graph
and apply those changes in turn. In this way it is possible to work with the same data
graph and apply changes repeatedly.

Errors/Exceptions

SDO_DAS_Relational::applyChanges() can throw an SDO_DAS_Relational_Exception if it
is unable to apply all the changes correctly.

The Relational DAS starts a database transaction before beginning to apply the changes
and will commit the transaction only if they are all successful. The Relational DAS
generates qualified update and delete statements which contain a where clause that
specifies that the row to be updated or deleted must contain the same values that it did
when the data was first retrieved. This is how the the optimistic concurrency is
implemented. If any of the qualified update or delete statements fails to update or delete
their target row, it may be because the data has been altered in the database in the
meantime. In any event, if any update fails for any reason, the transaction is rolled back
and an exception thrown. The exception will contain the generated SQL statement that
failed.

The Relational DAS also catches any PDO exceptions and obtains PDO diagnostic
information which it includes in an SDO_DAS_Relational_Exception which it then throws.

Examples

Please see the Examples section in the general information about the Relational DAS for
many examples of calling this method. Please see also the section on Tracing to see how
you can see what SQL statements are generated by the Relational DAS.

SDO_DAS_Relational::__construct

SDO_DAS_Relational::__construct -- Creates an instance of a Relational Data Access
Service

Description

SDO_DAS_Relational SDO_DAS_Relational::__construct (array $database_metadata [,
string $application_root_type [, array $SDO_containment_references_metadata]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Constructs an instance of a Relational Data Access Service from the passed metadata.

Parameters

database_metadata
An array containing one or more table definitions, each of which is an associative array
containing the keys name, columns, PK, and optionally, FK. For a full discussion of the
metadata, see the metadata section in the general information about the Relational
DAS.

application_root_type
The root of each data graph is an object of a special root type and the application data
objects come below that. Of the various application types in the SDO model, one has
to be the the application type immediately below the root of the data graph. If there is
only one table in the database metadata, so the application root type can be inferred,
this argument can be omitted.

SDO_containment_references_metadata
An array containing one or more definitions of a containment relation, each of which is
an associative array containing the keys parent and child. The containment relations
describe how the types in the model are connected to form a tree. The type specified
as the application root type must be present as one of the parent types in the
containment references. If the application only needs to work with one table at a time,
and there are no containment relations in the model, this argument can be omitted. For
a full discussion of the metadata, see the metadata section in the general information
about the Relational DAS.

Return Values

Returns an SDO_DAS_Relational object on success.

Errors/Exceptions

SDO_DAS_Relational::__construct() throws a SDO_DAS_Relational_Exception if any
problems are found in the metadata.

Examples

For a full discussion of the metadata, see the metadata section in the general information
about the Relational DAS.

SDO_DAS_Relational::createRootDataObject

SDO_DAS_Relational::createRootDataObject -- Returns the special root object in an
otherwise empty data graph. Used when creating a data graph from scratch.

Description

SDODataObject SDO_DAS_Relational::createRootDataObject (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the special root object at the top of an otherwise empty data graph. This call is
used when the application wants to create a data graph from scratch, without having called
executeQuery() to create a data graph.

The special root object has one multi-valued containment property, with a name of the
application root type that was passed when the Relational DAS was constructed. The
property can take values of only that type. The only thing that the application can usefully
do with the root type is to call createDataObject() on it, passing the name of the
application root type, in order to create a data object of their own application type.

Parameters

None.

Return Values

The root object.

Errors/Exceptions

None.

Examples

Please see the Examples section in the general information about the Relational DAS for
many examples of calling this method.

SDO_DAS_Relational::executePreparedQuery

SDO_DAS_Relational::executePreparedQuery -- Executes an SQL query passed as a
prepared statement, with a list of values to substitute for placeholders, and return the
results as a normalised data graph.

Description

SDODataObject SDO_DAS_Relational::executePreparedQuery (PDO $
database_handle, PDOStatement $prepared_statement, array $value_list [, array $
column_specifier])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Executes a given query against the relational database, using the supplied PDO database
handle. Differs from the simpler executeQuery() in that it takes a prepared statement and
a list of values. This is the appropriate call to use either when the statement is to executed
a number of times with different arguments, and there is therefore a performance benefit to
be had from preparing the statement only once, or when the the SQL statement is to
contain varying values taken from a source that cannot be completely trusted. In this latter
case it may be unsafe to construct the SQL statement by simply concatenating the parts of
the statement together, since the values may contain pieces of SQL. To guard against this,
a so-called SQL injection attack, it is safer to prepare the SQL statement with placeholders
(also known as parameter markers, denoted by '?') and supply a list of the values to be
substituted as a separate argument. Otherwise this function is the same as
executeQuery() in that it uses the model that it built from the the metadata to interpret the
result set and returns a data graph.

Parameters

PDO_database_handle
Constructed using the PDO extension. A typical line to construct a PDO database
handle might look like this:
$dbh = new
PDO("mysql:dbname=COMPANYDB;host=localhost",DATABASE_USER,DATABASE_PASSWORD)
;

prepared_statement
A prepared SQL statement to be executed against the database. This will have been
prepared by PDO's prepare() method.

value_list

An array of the values to be substituted into the SQL statement in place of the
placeholders. In the event that there are no placeholders or parameter markers in the
SQL statement then this argument can be specified as NULL or as an empty array;

column_specifier
The Relational DAS needs to examine the result set and for every column, know which
table and which column of that table it came from. In some circumstances it can find
this information for itself, but sometimes it cannot. In these cases a column specifier is
needed, which is an array that identifies the columns. Each entry in the array is simply
a string in the form table-name.column_name. The column specifier is needed when
there are duplicate column names in the database metadata, For example, in the
database used within the examples, all the tables have both a id and a name column.
When the Relational DAS fetches the result set from PDO it can do so with the
PDO_FETCH_ASSOC attribute, which will cause the columns in the results set to be
labelled with the column name, but will not distinguish duplicates. So this will only work
when there are no duplicates possible in the results set. To summarise, specify a
column specifier array whenever there is any uncertainty about which column could be
from which table and only omit it when every column name in the database metadata
is unique. All of the examples in the Examples use a column specifier. There is one
example in the Scenarios directory of the installation that does not: that which works
with just the employee table, and because it works with just one table, there can not
exist duplicate column names.

Return Values

Returns a data graph. Specifically, it returns a root object of a special type. Under this root
object will be the data from the result set. The root object will have a multi-valued
containment property with the same name as the application root type specified on the
constructor, and that property will contain one or more data objects of the application root
type.

In the event that the query returns no data, the special root object will still be returned but
the containment property for the application root type will be empty.

Errors/Exceptions

SDO_DAS_Relational::executePreparedQuery() can throw an
SDO_DAS_Relational_Exception if it is unable to construct the data graph correctly. This
can occur for a number of reasons: for example if it finds that it does not have primary
keys in the result set for all the objects. It also catches any PDO exceptions and obtains
PDO diagnostic information which it includes in an SDO_DAS_Relational_Exception which
it then throws.

Examples

Example #768 - Retrieving a data object using executePreparedQuery()

In this example a single data object is retrieved from the database - or possibly more

than one if there is more than one company called 'Acme'. For each company
returned, the name and id properties are echoed.

Other examples of the use of executePreparedQuery() can be found in the example
code supplied in sdo/DAS/Relational/Scenarios.

<?php

require_once 'SDO/DAS/Relational.php';

require_once 'company_metadata.inc.php';

/**

* Construct the DAS with the metadata

***/

$das = new SDO_DAS_Relational
($database_metadata,'company',$SDO_reference_metadata);

/**

* Get a database connection

***/

$dbh = new PDO(PDO_DSN,DATABASE_USER,DATABASE_PASSWORD);

/**

* Issue a query to obtain a company object - possibly more if they exist

* Use a prepared query with a placeholder.

***/

$name = 'Acme';

$pdo_stmt = $dbh->prepare('select name, id from company where name=?');

$root = $das->executePreparedQuery(

 $dbh,

 $pdo_stmt,

 array($name),

 array('company.name', 'company.id'));

/**

* Echo name and id

***/

foreach ($root['company'] as $company) {

 echo "Company obtained from the database has name = " .

 $company['name'] . " and id " . $company['id'] . "\n";

}

?>

SDO_DAS_Relational::executeQuery

SDO_DAS_Relational::executeQuery -- Executes a given SQL query against a relational
database and returns the results as a normalised data graph.

Description

SDODataObject SDO_DAS_Relational::executeQuery (PDO $database_handle, string
$SQL_statement [, array $column_specifier])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Executes a given query against the relational database, using the supplied PDO database
handle. Uses the model that it built from the the metadata to interpret the result set.
Returns a data graph.

Parameters

PDO_database_handle
Constructed using the PDO extension. A typical line to construct a PDO database
handle might look like this:
$dbh = new
PDO("mysql:dbname=COMPANYDB;host=localhost",DATABASE_USER,DATABASE_PASSWORD)
;

SQL_statement
The SQL statement to be executed against the database.

column_specifier
The Relational DAS needs to examine the result set and for every column, know which
table and which column of that table it came from. In some circumstances it can find
this information for itself, but sometimes it cannot. In these cases a column specifier is
needed, which is an array that identifies the columns. Each entry in the array is simply
a string in the form table-name.column_name. The column specifier is needed when
there are duplicate column names in the database metadata. For example, in the
database used within the examples, all the tables have both a id and a name column.
When the Relational DAS fetches the result set from PDO it can do so with the
PDO_FETCH_ASSOC attribute, which will cause the columns in the results set to be
labelled with the column name, but will not distinguish duplicates. So this will only work
when there are no duplicates possible in the results set. To summarise, specify a
column specifier array whenever there is any uncertainty about which column could be
from which table and only omit it when every column name in the database metadata

is unique. All of the examples in the Examples use a column specifier. There is one
example in the Scenarios directory of the installation that does not: that which works
with just the employee table, and because it works with just one table, there can not
exist duplicate column names.

Return Values

Returns a data graph. Specifically, it returns a root object of a special type. Under this root
object will be the data from the result set. The root object will have a multi-valued
containment property with the same name as the application root type specified on the
constructor, and that property will contain one or more data objects of the application root
type.

In the event that the query returns no data, the special root object will still be returned but
the containment property for the application root type will be empty.

Errors/Exceptions

SDO_DAS_Relational::executeQuery() can throw an SDO_DAS_Relational_Exception if it
is unable to construct the data graph correctly. This can occur for a number of reasons: for
example if it finds that it does not have primary keys in the result set for all the objects. It
also catches any PDO exceptions and obtains PDO diagnostic information which it
includes in an SDO_DAS_Relational_Exception which it then throws.

Examples

Please see the Examples section in the general information about the Relational DAS for
many examples of calling this method.

Vendor Specific Database Extensions

dBase

Introduction

These functions allow you to access records stored in dBase-format (dbf) databases.

dBase files are simple sequential files of fixed length records. Records are appended to
the end of the file and delete records are kept until you call dbase_pack().

The types of dBase fields available are:

Available types of fields

Field dBase Type Format Additional information

M Memo n/a This type is not supported by
PHP, such field will be
ignored

D Date YYYYMMDD The field length is limited to 8

N Number A number You must declare a length
and a precision (the number
of digits after the decimal
point)

C String A string You must declare a length.
When retrieving data, the
string will be right-padded
with spaces to fit the
declared length.

L Boolean T or Y for TRUE, F or N for
FALSE

Stored and returned as an
integer (1 or 0)

F Float A float number Support for this type of field
was added in PHP 5.2.0

Warning

There is no support for indexes or memo fields. There is no support for locking, too.
Two concurrent web server processes modifying the same dBase file will very likely
ruin your database.

We recommend that you do not use dBase files as your production database. Choose
any real SQL server instead; » MySQL or » Postgres are common choices with PHP.
dBase support is here to allow you to import and export data to and from your web
database, because the file format is commonly understood by Windows spreadsheets
and organizers.

http://www.mysql.com/
http://www.postgresql.org/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

In order to enable the bundled dbase library and to use these functions, you must compile
PHP with the --enable-dbase option.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

dBase Functions

Examples

Many examples in this reference require a dBase database. We will use /tmp/test.dbf that
will be created in the example of dbase_create().

dbase_add_record

dbase_add_record -- Adds a record to a database

Description

bool dbase_add_record (int $dbase_identifier, array $record)

Adds the given data to the database.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

record

An indexed array of data. The number of items must be equal to the number of fields in
the database, otherwise dbase_add_record() will fail.

Note

If you're using dbase_get_record() return value for this parameter, remember to
reset the key named deleted.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #769 - Inserting a record in a dBase database

<?php

// open in read-write mode

$db = dbase_open('/tmp/test.dbf', 2);

if ($db) {

 dbase_add_record($db, array(

 date('Ymd'),

 'Maxim Topolov',

 '23',

 'max@example.com',

 'T'));

 dbase_close($db);

}

?>

See Also

• dbase_delete_record()
• dbase_replace_record()

dbase_close

dbase_close -- Closes a database

Description

bool dbase_close (int $dbase_identifier)

Closes the given database link identifier.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #770 - Closing a dBase database file

<?php

// open in read-only mode

$db = dbase_open('/tmp/test.dbf', 0);

if ($db) {

 // read some data ..

 dbase_close($db);

}

?>

See Also

• dbase_open()
• dbase_create()

dbase_create

dbase_create -- Creates a database

Description

int dbase_create (string $filename, array $fields)

dbase_create() creates a dBase database with the given definition.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is affected by open_basedir.

Parameters

filename

The name of the database. It can be a relative or absolute path to the file where dBase
will store your data.

fields

An array of arrays, each array describing the format of one field of the database. Each
field consists of a name, a character indicating the field type, and optionally, a length,
and a precision.

Note

The fieldnames are limited in length and must not exceed 10 chars.

Return Values

Returns a database link identifier if the database is successfully created, or FALSE if an
error occurred.

Examples

Example #771 - Creating a dBase database file

<?php

// database "definition"

$def = array(

 array("date", "D"),

 array("name", "C", 50),

 array("age", "N", 3, 0),

 array("email", "C", 128),

 array("ismember", "L")

);

// creation

if (!dbase_create('/tmp/test.dbf', $def)) {

 echo "Error, can't create the database\n";

}

?>

See Also

• dbase_open()
• dbase_close()

dbase_delete_record

dbase_delete_record -- Deletes a record from a database

Description

bool dbase_delete_record (int $dbase_identifier, int $record_number)

Marks the given record to be deleted from the database.

Note

To actually remove the record from the database, you must also call dbase_pack().

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

record_number

An integer which spans from 1 to the number of records in the database (as returned
by dbase_numrecords()).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• dbase_add_record()
• dbase_replace_record()

dbase_get_header_info

dbase_get_header_info -- Gets the header info of a database

Description

array dbase_get_header_info (int $dbase_identifier)

Returns information on the column structure of the given database link identifier.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

Return Values

An indexed array with an entry for each column in the database. The array index starts at
0.

Each array element contains an associative array of column information, as described
here:
name

The name of the column

type
The human-readable name for the dbase type of the column (i.e. date, boolean, etc.)

length
The number of bytes this column can hold

precision
The number of digits of decimal precision for the column

format
A suggested printf() format specifier for the column

offset
The byte offset of the column from the start of the row

If the database header information cannot be read, FALSE is returned.

Examples

Example #772 - Showing header information for a dBase database file

<?php

// Path to dbase file

$db_path = "/tmp/test.dbf";

// Open dbase file

$dbh = dbase_open($db_path, 0)

 or die("Error! Could not open dbase database file '$db_path'.");

// Get column information

$column_info = dbase_get_header_info($dbh);

// Display information

print_r($column_info);

?>

dbase_get_record_with_names

dbase_get_record_with_names -- Gets a record from a database as an associative array

Description

array dbase_get_record_with_names (int $dbase_identifier, int $record_number)

Gets a record from a dBase database as an associative array.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

record_number

The index of the record.

Return Values

An associative array with the record. This will also include a key named deleted which is
set to 1 if the record has been marked for deletion (see dbase_delete_record()).

Each field is converted to the appropriate PHP type, except:

• Dates are left as strings.

• Integers that would have caused an overflow (> 32 bits) are returned as strings.

On error, dbase_get_record_with_names() will return FALSE.

Examples

Example #773 - Listing all the registered members in the database

<?php

// open in read-only mode

$db = dbase_open('/tmp/test.dbf', 0);

if ($db) {

 $record_numbers = dbase_numrecords($db);

 for ($i = 1; $i <= $record_numbers; $i++) {

 $row = dbase_get_record_with_names($db, $i);

 if ($row['ismember'] == 1) {

 echo "Member #$i: " . trim($row['name']) . "\n";

 }

 }

}

?>

See Also

• dbase_get_record()

dbase_get_record

dbase_get_record -- Gets a record from a database as an indexed array

Description

array dbase_get_record (int $dbase_identifier, int $record_number)

Gets a record from a database as an indexed array.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

record_number

The index of the record.

Return Values

An indexed array with the record. This array will also include an associative key named
deleted which is set to 1 if the record has been marked for deletion (see
dbase_delete_record()).

Each field is converted to the appropriate PHP type, except:

• Dates are left as strings.

• Integers that would have caused an overflow (> 32 bits) are returned as strings.

On error, dbase_get_record() will return FALSE.

See Also

• dbase_get_record_with_names()

dbase_numfields

dbase_numfields -- Gets the number of fields of a database

Description

int dbase_numfields (int $dbase_identifier)

Gets the number of fields (columns) in the specified database.

Note

Field numbers are between 0 and dbase_numfields($db)-1, while record numbers are
between 1 and dbase_numrecords($db).

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

Return Values

The number of fields in the database, or FALSE if an error occurs.

Examples

Example #774 - dbase_numfields() Example

<?php

$rec = dbase_get_record($db, $recno);

$nf = dbase_numfields($db);

for ($i = 0; $i < $nf; $i++) {

 echo $rec[$i], "\n";

}

?>

See Also

• dbase_numrecords()

dbase_numrecords

dbase_numrecords -- Gets the number of records in a database

Description

int dbase_numrecords (int $dbase_identifier)

Gets the number of records (rows) in the specified database.

Note

Record numbers are between 1 and dbase_numrecords($db), while field numbers are
between 0 and dbase_numfields($db)-1.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

Return Values

The number of records in the database, or FALSE if an error occurs.

Examples

Example #775 - Looping over all the records of the database

<?php

// open in read-only mode

$db = dbase_open('/tmp/test.dbf', 0);

if ($db) {

 $record_numbers = dbase_numrecords($db);

 for ($i = 1; $i <= $record_numbers; $i++) {

 // do something here, for each record

 }

}

?>

See Also

• dbase_num_fields()

dbase_open

dbase_open -- Opens a database

Description

int dbase_open (string $filename, int $mode)

dbase_open() opens a dBase database with the given access mode.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is affected by open_basedir.

Parameters

filename

The name of the database. It can be a relative or absolute path to the file where dBase
will store your data.

mode

An integer which correspond to those for the open() system call (Typically 0 means
read-only, 1 means write-only, and 2 means read and write).

Note

You can't open a dBase file in write-only mode as the function will fail to read the
headers information and thus you can't use 1 as mode.

Examples

Example #776 - Opening a dBase database file

<?php

// open in read-only mode

$db = dbase_open('/tmp/test.dbf', 0);

if ($db) {

 // read some data ..

 dbase_close($db);

}

?>

Return Values

Returns a database link identifier if the database is successfully opened, or FALSE if an
error occurred.

See Also

• dbase_create()
• dbase_close()

dbase_pack

dbase_pack -- Packs a database

Description

bool dbase_pack (int $dbase_identifier)

Packs the specified database by permanently deleting all records marked for deletion
using dbase_delete_record().

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #777 - Emptying a dBase database

<?php

// open in read-write mode

$db = dbase_open('/tmp/test.dbf', 2);

if ($db) {

 $record_numbers = dbase_numrecords($db);

 for ($i = 1; $i <= $record_numbers; $i++) {

 dbase_delete_record($db, $i);

 }

 // expunge the database

 dbase_pack($db);

}

?>

See Also

• dbase_delete_record()

dbase_replace_record

dbase_replace_record -- Replaces a record in a database

Description

bool dbase_replace_record (int $dbase_identifier, array $record, int $record_number
)

Replaces the given record in the database with the given data.

Parameters

dbase_identifier

The database link identifier, returned by dbase_open() or dbase_create().

record

An indexed array of data. The number of items must be equal to the number of fields in
the database, otherwise dbase_replace_record() will fail.

Note

If you're using dbase_get_record() return value for this parameter, remember to
reset the key named deleted.

record_number

An integer which spans from 1 to the number of records in the database (as returned
by dbase_numrecords()).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #778 - Updating a record in the database

<?php

// open in read-write mode

$db = dbase_open('/tmp/test.dbf', 2);

if ($db) {

 // gets the old row

 $row = dbase_get_record_with_names($db, 1);

 // remove the 'deleted' entry

 unset($row['deleted']);

 // Update the date field with the current timestamp

 $row['date'] = date('Ymd');

 // Replace the record

 dbase_replace_record($db, $row, 1);

 dbase_close($db);

}

?>

See Also

• dbase_add_record()
• dbase_delete_record()

DB++

Introduction

db++, made by the German company » Concept asa, is a relational database system with
high performance and low memory and disk usage in mind. While providing SQL as an
additional language interface, it is not really a SQL database in the first place but provides
its own AQL query language which is much more influenced by the relational algebra than
SQL is.

Concept asa always had an interest in supporting open source languages, db++ has had
Perl and Tcl call interfaces for years now and uses Tcl as its internal stored procedure
language.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://www.concept-asa.de/index_gb.html

Installing/Configuring

Requirements

This extension relies on external client libraries so you have to have a db++ client installed
on the system you want to use this extension on.

» Concept asa provides » db++ Demo versions and » documentation for Linux, some other
Unix versions. There is also a Windows version of db++, but this extension doesn't support
it (yet).

Installation

In order to build this extension yourself you need the db++ client libraries and header files
to be installed on your system (these are included in the db++ installation archives by
default). You have to run configure with option --with-dbplus to build this extension.

configure looks for the client libraries and header files under the default paths /usr/dbplus,
/usr/local/dbplus and /opt/dblus. If you have installed db++ in a different place you have
add the installation path to the configure option like this:
--with-dbplus=/your/installation/path.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

dbplus_relation

Most db++ functions operate on or return dbplus_relation resources. A dbplus_relation
is a handle to a stored relation or a relation generated as the result of a query.

http://www.concept-asa.de/index_gb.html
http://www.concept-asa.de/down-eng.html
http://www.concept-asa.de/downloads/doc-eng.tar.gz

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

db++ error codes

DB++ Error Codes

PHP Constant db++ constant meaning

DBPLUS_ERR_NOERR (
integer)

ERR_NOERR Null error condition

DBPLUS_ERR_DUPLICAT
E (integer)

ERR_DUPLICATE Tried to insert a duplicate
tuple

DBPLUS_ERR_EOSCAN (
integer)

ERR_EOSCAN End of scan from rget()

DBPLUS_ERR_EMPTY (
integer)

ERR_EMPTY Relation is empty (server)

DBPLUS_ERR_CLOSE (
integer)

ERR_CLOSE The server can't close

DBPLUS_ERR_WLOCKED
(integer)

ERR_WLOCKED The record is write locked

DBPLUS_ERR_LOCKED (
integer)

ERR_LOCKED Relation was already locked

DBPLUS_ERR_NOLOCK (
integer)

ERR_NOLOCK Relation cannot be locked

DBPLUS_ERR_READ (
integer)

ERR_READ Read error on relation

DBPLUS_ERR_WRITE (
integer)

ERR_WRITE Write error on relation

DBPLUS_ERR_CREATE (
integer)

ERR_CREATE Create() system call failed

DBPLUS_ERR_LSEEK (
integer)

ERR_LSEEK Lseek() system call failed

DBPLUS_ERR_LENGTH (
integer)

ERR_LENGTH Tuple exceeds maximum
length

DBPLUS_ERR_OPEN (
integer)

ERR_OPEN Open() system call failed

DBPLUS_ERR_WOPEN (
integer)

ERR_WOPEN Relation already opened for
writing

DBPLUS_ERR_MAGIC (
integer)

ERR_MAGIC File is not a relation

DBPLUS_ERR_VERSION (
integer)

ERR_VERSION File is a very old relation

DBPLUS_ERR_PGSIZE (
integer)

ERR_PGSIZE Relation uses a different
page size

DBPLUS_ERR_CRC (
integer)

ERR_CRC Invalid crc in the superpage

DBPLUS_ERR_PIPE (
integer)

ERR_PIPE Piped relation requires
lseek()

DBPLUS_ERR_NIDX (
integer)

ERR_NIDX Too many secondary indices

DBPLUS_ERR_MALLOC (
integer)

ERR_MALLOC Malloc() call failed

DBPLUS_ERR_NUSERS (
integer)

ERR_NUSERS Error use of max users

DBPLUS_ERR_PREEXIT (
integer)

ERR_PREEXIT Caused by invalid usage

DBPLUS_ERR_ONTRAP (
integer)

ERR_ONTRAP Caused by a signal

DBPLUS_ERR_PREPROC (
integer)

ERR_PREPROC Error in the preprocessor

DBPLUS_ERR_DBPARSE (
integer)

ERR_DBPARSE Error in the parser

DBPLUS_ERR_DBRUNER
R (integer)

ERR_DBRUNERR Run error in db

DBPLUS_ERR_DBPREEXI
T (integer)

ERR_DBPREEXIT Exit condition caused by
prexit() * procedure

DBPLUS_ERR_WAIT (ERR_WAIT Wait a little (Simple only)

integer)

DBPLUS_ERR_CORRUPT_
TUPLE (integer)

ERR_CORRUPT_TUPLE A client sent a corrupt tuple

DBPLUS_ERR_WARNING0
(integer)

ERR_WARNING0 The Simple routines
encountered a non fatal error
which was corrected

DBPLUS_ERR_PANIC (
integer)

ERR_PANIC The server should not really
die but after a disaster send
ERR_PANIC to all its clients

DBPLUS_ERR_FIFO (
integer)

ERR_FIFO Can't create a fifo

DBPLUS_ERR_PERM (
integer)

ERR_PERM Permission denied

DBPLUS_ERR_TCL (
integer)

ERR_TCL TCL_error

DBPLUS_ERR_RESTRICTE
D (integer)

ERR_RESTRICTED Only two users

DBPLUS_ERR_USER (
integer)

ERR_USER An error in the use of the
library by an application
programmer

DBPLUS_ERR_UNKNOWN
(integer)

ERR_UNKNOWN

DB++ Functions

dbplus_add

dbplus_add -- Add a tuple to a relation

Description

int dbplus_add (resource $relation, array $tuple)

Adds a tuple to a relation.

Parameters

relation

tuple

An array of attribute/value pairs to be inserted into the given relation. After
successful execution this array will contain the complete data of the newly created
tuple, including all implicitly set domain fields like sequences.

Return Values

The function will return DBPLUS_ERR_NOERR on success or a db++ error code on
failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_errcode()

dbplus_aql

dbplus_aql -- Perform AQL query

Description

resource dbplus_aql (string $query [, string $server [, string $dbpath]])

Executes an AQL query on the given server and dbpath.

Parameters

query

The AQL query to be executed. Further information on the AQL A... Query Language is
provided in the original db++ manual.

server

dbpath

Return Values

Returns a relation handle on success. The result data may be fetched from this relation by
calling dbplus_next() and dbplus_current(). Other relation access functions will not work
on a result relation.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_chdir

dbplus_chdir -- Get/Set database virtual current directory

Description

string dbplus_chdir ([string $newdir])

Changes the virtual current directory where relation files will be looked for by
dbplus_open().

Parameters

newdir

The new directory for relation files. You can omit this parameter to query the current
working directory.

Return Values

Returns the absolute path of the current directory.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_close

dbplus_close -- Close a relation

Description

mixed dbplus_close (resource $relation)

Closes a relation previously opened by dbplus_open().

Parameters

relation

A relation opened by dbplus_open().

Return Values

Returns TRUE on success or DBPLUS_ERR_UNKNOWN on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_curr

dbplus_curr -- Get current tuple from relation

Description

int dbplus_curr (resource $relation, array &$tuple)

Reads the data for the current tuple for the given relation.

Parameters

relation

A relation opened by dbplus_open().

tuple

The data will be passed back in this parameter, as an associative array.

Return Values

The function will return zero (aka. DBPLUS_ERR_NOERR) on success or a db++ error
code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_first()
• dbplus_prev()
• dbplus_next()
• dbplus_last()
• dbplus_errcode()

dbplus_errcode

dbplus_errcode -- Get error string for given errorcode or last error

Description

string dbplus_errcode ([int $errno])

Returns a clear error string for the given error code.

Parameters

errno

The error code. If not provided, the result code of the last db++ operation is assumed.

Return Values

Returns the error message.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_errno

dbplus_errno -- Get error code for last operation

Description

int dbplus_errno (void)

Returns the error code returned by the last db++ operation.

Return Values

Returns the error code, as an integer.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_errcode()

dbplus_find

dbplus_find -- Set a constraint on a relation

Description

int dbplus_find (resource $relation, array $constraints, mixed $tuple)

Places a constraint on the given relation.

Further calls to functions like dbplus_curr() or dbplus_next() will only return tuples
matching the given constraints.

Parameters

relation

A relation opened by dbplus_open().

constraints

Constraints are triplets of strings containing of a domain name, a comparison operator
and a comparison value. The constraints parameter array may consist of a collection
of string arrays, each of which contains a domain, an operator and a value, or of a
single string array containing a multiple of three elements. The comparison operator
may be one of the following strings: '==', '>', '>=', '<', '<=', '!=', '~' for a regular
expression match and 'BAND' or 'BOR' for bitwise operations.

tuple

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_unselect()

dbplus_first

dbplus_first -- Get first tuple from relation

Description

int dbplus_first (resource $relation, array &$tuple)

Reads the data for the first tuple for the given relation, makes it the current tuple and
pass it back as an associative array in tuple.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_curr()
• dbplus_prev()
• dbplus_next()
• dbplus_last()
• dbplus_errcode()

dbplus_flush

dbplus_flush -- Flush all changes made on a relation

Description

int dbplus_flush (resource $relation)

Writes all changes applied to relation since the last flush to disk.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_errcode()

dbplus_freealllocks

dbplus_freealllocks -- Free all locks held by this client

Description

int dbplus_freealllocks (void)

Frees all tuple locks held by this client.

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_getlock()
• dbplus_freelock()
• dbplus_freerlocks()

dbplus_freelock

dbplus_freelock -- Release write lock on tuple

Description

int dbplus_freelock (resource $relation, string $tuple)

Releases a write lock on the given tuple previously obtained by dbplus_getlock().

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_getlock()
• dbplus_freerlocks()
• dbplus_freealllocks()

dbplus_freerlocks

dbplus_freerlocks -- Free all tuple locks on given relation

Description

int dbplus_freerlocks (resource $relation)

Frees all tuple locks held on the given relation.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_getlock()
• dbplus_freelock()
• dbplus_freealllocks()

dbplus_getlock

dbplus_getlock -- Get a write lock on a tuple

Description

int dbplus_getlock (resource $relation, string $tuple)

Requests a write lock on the specified tuple.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Returns zero on success or a non-zero error code, especially DBPLUS_ERR_WLOCKED
on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_freelock()
• dbplus_freerlocks()
• dbplus_freealllocks()

dbplus_getunique

dbplus_getunique -- Get an id number unique to a relation

Description

int dbplus_getunique (resource $relation, int $uniqueid)

Obtains a number guaranteed to be unique for the given relation and will pass it back in
the variable given as uniqueid.

Parameters

relation

A relation opened by dbplus_open().

uniqueid

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_info

dbplus_info -- Get information about a relation

Description

int dbplus_info (resource $relation, string $key, array &$result)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

key

result

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_last

dbplus_last -- Get last tuple from relation

Description

int dbplus_last (resource $relation, array &$tuple)

Reads the data for the last tuple for the given relation, makes it the current tuple and
pass it back as an associative array in tuple.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_first()
• dbplus_curr()
• dbplus_prev()
• dbplus_next()

dbplus_lockrel

dbplus_lockrel -- Request write lock on relation

Description

int dbplus_lockrel (resource $relation)

Requests a write lock on the given relation.

Other clients may still query the relation, but can't alter it while it is locked.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_next

dbplus_next -- Get next tuple from relation

Description

int dbplus_next (resource $relation, array &$tuple)

Reads the data for the next tuple for the given relation, makes it the current tuple and
will pass it back as an associative array in tuple.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_first()
• dbplus_curr()
• dbplus_prev()
• dbplus_last()

dbplus_open

dbplus_open -- Open relation file

Description

resource dbplus_open (string $name)

Opens the given relation file.

Parameters

name

Can be either a file name or a relative or absolute path name. This will be mapped in
any case to an absolute relation file path on a specific host machine and server.

Return Values

On success a relation file resource (cursor) is returned which must be used in any
subsequent commands referencing the relation. Failure leads to a zero return value, the
actual error code may be asked for by calling dbplus_errno().

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_prev

dbplus_prev -- Get previous tuple from relation

Description

int dbplus_prev (resource $relation, array &$tuple)

Reads the data for the previous tuple for the given relation, makes it the current tuple
and will pass it back as an associative array in tuple.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Returns DBPLUS_ERR_NOERR on success or a db++ error code on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_first()
• dbplus_curr()
• dbplus_next()
• dbplus_last()

dbplus_rchperm

dbplus_rchperm -- Change relation permissions

Description

int dbplus_rchperm (resource $relation, int $mask, string $user, string $group)

Changes access permissions as specified by mask, user and group. The values for these
are operating system specific.

Parameters

relation

A relation opened by dbplus_open().

mask

user

group

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rcreate

dbplus_rcreate -- Creates a new DB++ relation

Description

resource dbplus_rcreate (string $name, mixed $domlist [, bool $overwrite])

Creates a new relation. Any existing relation sharing the same name will be overwritten if
the relation is currently not in use and overwrite is set to TRUE.

Parameters

name

domlist

A combination of domains. May be passed as a single domain name string or as an
array of domain names. This parameter should contain the domain specification for the
new relation within an array of domain description strings. A domain description string
consists of a domain name unique to this relation, a slash and a type specification
character. See the db++ documentation, especially the dbcreate(1) manpage, for a
description of available type specifiers and their meanings.

Note

This function will also accept a string with space delimited domain description
strings, but it is recommended to use an array

overwrite

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rcrtexact

dbplus_rcrtexact -- Creates an exact but empty copy of a relation including indices

Description

mixed dbplus_rcrtexact (string $name, resource $relation [, bool $overwrite])

dbplus_rcrtexact() will create an exact but empty copy of the given relation under a new
name.

Parameters

name

relation

The copied relation, opened by dbplus_open().

overwrite

An existing relation by the same name will only be overwritten if this parameter is set to
TRUE and no other process is currently using the relation.

Return Values

Returns resource on success or DBPLUS_ERR_UNKNOWN on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rcrtlike

dbplus_rcrtlike -- Creates an empty copy of a relation with default indices

Description

mixed dbplus_rcrtlike (string $name, resource $relation [, int $overwrite])

dbplus_rcrtexact() will create an empty copy of the given relation under a new name, but
with default indices.

Parameters

name

relation

The copied relation, opened by dbplus_open().

overwrite

An existing relation by the same name will only be overwritten if this parameter is set to
TRUE and no other process is currently using the relation.

Return Values

Returns resource on success or DBPLUS_ERR_UNKNOWN on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_resolve

dbplus_resolve -- Resolve host information for relation

Description

array dbplus_resolve (string $relation_name)

dbplus_resolve() will try to resolve the given relation_name and find out internal server id,
real hostname and the database path on this host.

Parameters

relation_name

The relation name.

Return Values

Returns an array containing these values under the keys sid, host and host_path or
FALSE on error.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_tcl()

dbplus_restorepos

dbplus_restorepos -- Restore position

Description

int dbplus_restorepos (resource $relation, array $tuple)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

tuple

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rkeys

dbplus_rkeys -- Specify new primary key for a relation

Description

mixed dbplus_rkeys (resource $relation, mixed $domlist)

dbplus_rkeys() will replace the current primary key for relation with the combination of
domains specified by domlist.

Parameters

relation

A relation opened by dbplus_open().

domlist

A combination of domains. May be passed as a single domain name string or as an
array of domain names.

Return Values

Returns resource on success or DBPLUS_ERR_UNKNOWN on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_ropen

dbplus_ropen -- Open relation file local

Description

resource dbplus_ropen (string $name)

dbplus_ropen() will open the relation file locally for quick access without any client/server
overhead. Access is read only and only dbplus_current() and dbplus_next() may be
applied to the returned relation.

Parameters

name

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rquery

dbplus_rquery -- Perform local (raw) AQL query

Description

resource dbplus_rquery (string $query [, string $dbpath])

dbplus_rquery() performs a local (raw) AQL query using an AQL interpreter embedded into
the db++ client library. dbplus_rquery() is faster than dbplus_aql() but will work on local
data only.

Parameters

query

dbpath

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rrename

dbplus_rrename -- Rename a relation

Description

int dbplus_rrename (resource $relation, string $name)

dbplus_rrename() will change the name of relation to name.

Parameters

relation

A relation opened by dbplus_open().

name

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rsecindex

dbplus_rsecindex -- Create a new secondary index for a relation

Description

mixed dbplus_rsecindex (resource $relation, mixed $domlist, int $type)

dbplus_rsecindex() will create a new secondary index for relation with consists of the
domains specified by domlist and is of type type

Parameters

relation

A relation opened by dbplus_open().

domlist

A combination of domains. May be passed as a single domain name string or as an
array of domain names.

type

Return Values

Returns resource on success or DBPLUS_ERR_UNKNOWN on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_runlink

dbplus_runlink -- Remove relation from filesystem

Description

int dbplus_runlink (resource $relation)

dbplus_unlink() will close and remove the relation.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_rzap

dbplus_rzap -- Remove all tuples from relation

Description

int dbplus_rzap (resource $relation)

dbplus_rzap() will remove all tuples from relation.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_savepos

dbplus_savepos -- Save position

Description

int dbplus_savepos (resource $relation)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_setindex

dbplus_setindex -- Set index

Description

int dbplus_setindex (resource $relation, string $idx_name)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

idx_name

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_setindexbynumber

dbplus_setindexbynumber -- Set index by number

Description

int dbplus_setindexbynumber (resource $relation, int $idx_number)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

idx_number

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_sql

dbplus_sql -- Perform SQL query

Description

resource dbplus_sql (string $query [, string $server [, string $dbpath]])

Warning

This function is currently not documented; only its argument list is available.

Parameters

query

server

dbpath

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_tcl

dbplus_tcl -- Execute TCL code on server side

Description

string dbplus_tcl (int $sid, string $script)

A db++ server will prepare a TCL interpreter for each client connection. This interpreter will
enable the server to execute TCL code provided by the client as a sort of stored
procedures to improve the performance of database operations by avoiding client/server
data transfers and context switches.

dbplus_tcl() needs to pass the client connection id the TCL script code should be
executed by. dbplus_resolve() will provide this connection id. The function will return
whatever the TCL code returns or a TCL error message if the TCL code fails.

Parameters

sid

script

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_resolve()

dbplus_tremove

dbplus_tremove -- Remove tuple and return new current tuple

Description

int dbplus_tremove (resource $relation, array $tuple [, array &$current])

dbplus_tremove() removes tuple from relation if it perfectly matches a tuple within the
relation. current, if given, will contain the data of the new current tuple after calling
dbplus_tremove().

Parameters

relation

A relation opened by dbplus_open().

tuple

current

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_undo

dbplus_undo -- Undo

Description

int dbplus_undo (resource $relation)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_undoprepare

dbplus_undoprepare -- Prepare undo

Description

int dbplus_undoprepare (resource $relation)

Warning

This function is currently not documented; only its argument list is available.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_unlockrel

dbplus_unlockrel -- Give up write lock on relation

Description

int dbplus_unlockrel (resource $relation)

Release a write lock previously obtained by dbplus_lockrel().

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_unselect

dbplus_unselect -- Remove a constraint from relation

Description

int dbplus_unselect (resource $relation)

Calling dbplus_unselect() will remove a constraint previously set by dbplus_find() on
relation.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_update

dbplus_update -- Update specified tuple in relation

Description

int dbplus_update (resource $relation, array $old, array $new)

dbplus_update() replaces the old tuple with the data from the new one, only if the old
completely matches a tuple within relation.

Parameters

relation

A relation opened by dbplus_open().

old

The old tuple.

new

The new tuple.

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

dbplus_xlockrel

dbplus_xlockrel -- Request exclusive lock on relation

Description

int dbplus_xlockrel (resource $relation)

Request an exclusive lock on relation preventing even read access from other clients.

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• dbplus_xunlockrel()

dbplus_xunlockrel

dbplus_xunlockrel -- Free exclusive lock on relation

Description

int dbplus_xunlockrel (resource $relation)

Releases an exclusive lock previously obtained by dbplus_xlockrel().

Parameters

relation

A relation opened by dbplus_open().

Return Values

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

FrontBase

Introduction

These functions allow you to access FrontBase database servers. More information about
FrontBase can be found at » http://www.frontbase.com/.

Documentation for FrontBase can be found at » http://www.frontbase.com/cgi-bin/WebObj
ects/FrontBase.woa/wa/productsPage?currentPage=Documentation.

Frontbase support has been added to PHP 4.0.6.

http://www.frontbase.com/
http://www.frontbase.com/cgi-bin/WebObjects/FrontBase.woa/wa/productsPage?currentPage=Documentation
http://www.frontbase.com/cgi-bin/WebObjects/FrontBase.woa/wa/productsPage?currentPage=Documentation

Installing/Configuring

Requirements

You must install the FrontBase database server or at least the fbsql client libraries to use
this functions. You can get FrontBase from » http://www.frontbase.com/.

Installation

In order to have these functions available, you must compile PHP with fbsql support by
using the --with-fbsql[=DIR] option. If you use this option without specifying the path to
fbsql, PHP will search for the fbsql client libraries in the default installation location for the
platform. Users who installed FrontBase in a non standard directory should always specify
the path to fbsql: --with-fbsql=/path/to/fbsql. This will force PHP to use the client libraries
installed by FrontBase, avoiding any conflicts.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

FrontBase configuration options

Name Default Changeable Changelog

fbsql.allow_persistent "1" PHP_INI_SYSTEM Available since PHP
4.2.0.

fbsql.generate_warni
ngs

"0" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.autocommit "1" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_links "128" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_connection
s

"128" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_results "128" PHP_INI_SYSTEM Available since PHP
4.0.6.

http://www.frontbase.com/

fbsql.batchSize "1000" PHP_INI_SYSTEM Available since PHP
4.2.0. Removed in
PHP 5.1.0.

fbsql.default_host NULL PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_user "_SYSTEM" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_passwor
d

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_databas
e

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_databas
e_password

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FBSQL_ASSOC (integer)

FBSQL_NUM (integer)

FBSQL_BOTH (integer)

FBSQL_LOCK_DEFERRED (integer)

FBSQL_LOCK_OPTIMISTIC (integer)

FBSQL_LOCK_PESSIMISTIC (integer)

FBSQL_ISO_READ_UNCOMMITTED (integer)

FBSQL_ISO_READ_COMMITTED (integer)

FBSQL_ISO_REPEATABLE_READ (integer)

FBSQL_ISO_SERIALIZABLE (integer)

FBSQL_ISO_VERSIONED (integer)

FBSQL_UNKNOWN (integer)

FBSQL_STOPPED (integer)

FBSQL_STARTING (integer)

FBSQL_RUNNING (integer)

FBSQL_STOPPING (integer)

FBSQL_NOEXEC (integer)

FBSQL_LOB_DIRECT (integer)

FBSQL_LOB_HANDLE (integer)

FrontBase Functions

fbsql_affected_rows

fbsql_affected_rows -- Get number of affected rows in previous FrontBase operation

Description

int fbsql_affected_rows ([resource $link_identifier])

fbsql_affected_rows() returns the number of rows affected by the last INSERT, UPDATE
or DELETE query associated with link_identifier.

Note

If you are using transactions, you need to call fbsql_affected_rows() after your
INSERT, UPDATE, or DELETE query, not after the commit.

If the last query was a DELETE query with no WHERE clause, all of the records will have
been deleted from the table but this function will return zero.

Note

When using UPDATE, FrontBase will not update columns where the new value is the
same as the old value. This creates the possibility that fbsql_affected_rows() may not
actually equal the number of rows matched, only the number of rows that were literally
affected by the query.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

If the last query failed, this function will return -1.

See Also

• fbsql_num_rows()

fbsql_autocommit

fbsql_autocommit -- Enable or disable autocommit

Description

bool fbsql_autocommit (resource $link_identifier [, bool $OnOff])

Returns the current autocommit status.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

OnOff

If this optional parameter is given the auto commit status will be changed. With OnOff
set to TRUE each statement will be committed automatically, if no errors was found.
With OnOff set to FALSE the user must commit or rollback the transaction using either
fbsql_commit() or fbsql_rollback().

Return Values

Returns the current autocommit status, as a boolean.

See Also

• fbsql_commit()
• fbsql_rollback()

fbsql_blob_size

fbsql_blob_size -- Get the size of a BLOB

Description

int fbsql_blob_size (string $blob_handle [, resource $link_identifier])

Returns the size of the given BLOB.

Parameters

blob_handle

A BLOB handle, returned by fbsql_create_blob().

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns the BLOB size as an integer, or FALSE on error.

See Also

• fbsql_clob_size()

fbsql_change_user

fbsql_change_user -- Change logged in user of the active connection

Description

bool fbsql_change_user (string $user, string $password [, string $database [, resource
$link_identifier]])

fbsql_change_user() changes the logged in user of the specified connection. If the new
user and password authorization fails, the current connected user stays active.

Parameters

user

The new user name.

password

The new user password.

database

If specified, this will be the default or current database after the user has been
changed.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

fbsql_clob_size

fbsql_clob_size -- Get the size of a CLOB

Description

int fbsql_clob_size (string $clob_handle [, resource $link_identifier])

Returns the size of the given CLOB.

Parameters

clob_handle

A CLOB handle, returned by fbsql_create_clob().

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns the CLOB size as an integer, or FALSE on error.

See Also

• fbsql_blob_size()

fbsql_close

fbsql_close -- Close FrontBase connection

Description

bool fbsql_close ([resource $link_identifier])

Closes the connection to the FrontBase server that's associated with the specified link
identifier.

Using fbsql_close() isn't usually necessary, as non-persistent open links are automatically
closed at the end of the script's execution.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #779 - fbsql_close() example

<?php

$link = fbsql_connect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

echo "Connected successfully";

fbsql_close($link);

?>

See Also

• fbsql_connect()
• fbsql_pconnect()

fbsql_commit

fbsql_commit -- Commits a transaction to the database

Description

bool fbsql_commit ([resource $link_identifier])

Ends the current transaction by writing all inserts, updates and deletes to the disk and
unlocking all row and table locks held by the transaction. This command is only needed if
autocommit is set to false.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_autocommit()
• fbsql_rollback()

fbsql_connect

fbsql_connect -- Open a connection to a FrontBase Server

Description

resource fbsql_connect ([string $hostname [, string $username [, string $password]]])

fbsql_connect() establishes a connection to a FrontBase server.

If a second call is made to fbsql_connect() with the same arguments, no new link will be
established, but instead, the link identifier of the already opened link will be returned.

The link to the server will be closed as soon as the execution of the script ends, unless it's
closed earlier by explicitly calling fbsql_close().

Parameters

hostname

The server host name. Defaults to ' NULL '.

username

The user name for the connection. Defaults to _SYSTEM.

password

The password for the connection. Defaults to the empty string.

Return Values

Returns a positive FrontBase link identifier on success, or FALSE on errors.

Examples

Example #780 - fbsql_connect() example

<?php

$link = fbsql_connect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

echo "Connected successfully";

fbsql_close($link);

?>

See Also

• fbsql_pconnect()
• fbsql_close()

fbsql_create_blob

fbsql_create_blob -- Create a BLOB

Description

string fbsql_create_blob (string $blob_data [, resource $link_identifier])

Creates a BLOB from the given data.

Parameters

blob_data

The BLOB data.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a resource handle to the newly created BLOB, which can be used with insert and
update commands to store the BLOB in the database.

Examples

Example #781 - fbsql_create_blob() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

$filename = "blobfile.bin";

$fp = fopen($filename, "rb");

$blobdata = fread($fp, filesize($filename));

fclose($fp);

$blobHandle = fbsql_create_blob($blobdata, $link);

$sql = "INSERT INTO BLOB_TABLE (BLOB_COLUMN) VALUES ($blobHandle);";

$rs = fbsql_query($sql, $link);

?>

See Also

• fbsql_create_clob()
• fbsql_read_blob()
• fbsql_read_clob()
• fbsql_set_lob_mode()

fbsql_create_clob

fbsql_create_clob -- Create a CLOB

Description

string fbsql_create_clob (string $clob_data [, resource $link_identifier])

Creates a CLOB from the given data.

Parameters

clob_data

The CLOB data.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a resource handle to the newly created CLOB, which can be used with insert and
update commands to store the CLOB in the database.

Examples

Example #782 - fbsql_create_clob() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

$filename = "clob_file.txt";

$fp = fopen($filename, "rb");

$clobdata = fread($fp, filesize($filename));

fclose($fp);

$clobHandle = fbsql_create_clob($clobdata, $link);

$sql = "INSERT INTO CLOB_TABLE (CLOB_COLUMN) VALUES ($clobHandle);";

$rs = fbsql_query($sql, $link);

?>

See Also

• fbsql_create_blob()
• fbsql_read_blob()
• fbsql_read_clob()
• fbsql_set_lob_mode()

fbsql_create_db

fbsql_create_db -- Create a FrontBase database

Description

bool fbsql_create_db (string $database_name [, resource $link_identifier [, string $
database_options]])

Attempts to create a new database on the specied server.

Parameters

database_name

The database name, as a string.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

database_options

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #783 - fbsql_create_db() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

if (fbsql_create_db("my_db")) {

 echo "Database created successfully\n";

} else {

 printf("Error creating database: %s\n", fbsql_error());

}

?>

See Also

• fbsql_drop_db()

fbsql_data_seek

fbsql_data_seek -- Move internal result pointer

Description

bool fbsql_data_seek (resource $result, int $row_number)

Moves the internal row pointer of the FrontBase result associated with the specified result
identifier to point to the specified row number.

The next call to fbsql_fetch_row() would return that row.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

row_number

The row number. Starts at 0.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #784 - fbsql_data_seek() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

fbsql_select_db("samp_db")

 or die("Could not select database");

$query = "SELECT last_name, first_name FROM friends;";

$result = fbsql_query($query)

 or die("Query failed");

// fetch rows in reverse order

for ($i = fbsql_num_rows($result) - 1; $i >=0; $i--) {

 if (!fbsql_data_seek($result, $i)) {

 printf("Cannot seek to row %d\n", $i);

 continue;

 }

 if (!($row = fbsql_fetch_object($result)))

 continue;

 echo $row->last_name . $row->first_name . "
\n";

}

fbsql_free_result($result);

?>

fbsql_database_password

fbsql_database_password -- Sets or retrieves the password for a FrontBase database

Description

string fbsql_database_password (resource $link_identifier [, string $
database_password])

Sets and retrieves the database password used by the connection. If a database is
protected by a database password, the user must call this function before calling
fbsql_select_db().

If no link is open, the function will try to establish a link as if fbsql_connect() was called,
and use it.

This function does not change the database password in the database nor can it be used
to retrieve the database password for a database.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

database_password

The database password, as a string. If given, the function sets the database password
for the specified link identifier.

Return Values

Returns the database password associated with the link identifier.

Examples

Example #785 - fbsql_create_clob() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

fbsql_database_password($link, "secret db password");

fbsql_select_db($database, $link);

?>

See Also

• fbsql_connect()
• fbsql_pconnect()
• fbsql_select_db()

fbsql_database

fbsql_database -- Get or set the database name used with a connection

Description

string fbsql_database (resource $link_identifier [, string $database])

Get or set the database name used with the connection.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

database

The database name. If given, the default database of the connexion will be changed to
database.

Return Values

Returns the name of the database used with this connection.

fbsql_db_query

fbsql_db_query -- Send a FrontBase query

Description

resource fbsql_db_query (string $database, string $query [, resource $link_identifier
])

Selects a database and executes a query on it.

Parameters

database

The database to be selected.

query

The SQL query to be executed.

Note

The query string shall always end with a semicolon.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a positive FrontBase result identifier to the query result, or FALSE on error.

See Also

• fbsql_query()
• fbsql_connect()

fbsql_db_status

fbsql_db_status -- Get the status for a given database

Description

int fbsql_db_status (string $database_name [, resource $link_identifier])

Gets the current status of the specified database.

Parameters

database_name

The database name.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns an integer value with the current status. This can be one of the following
constants:

• FALSE - The exec handler for the host was invalid. This error will occur when the
link_identifier connects directly to a database by using a port number. FBExec can
be available on the server but no connection has been made for it.

• FBSQL_UNKNOWN - The Status is unknown.

• FBSQL_STOPPED - The database is not running. Use fbsql_start_db() to start the
database.

• FBSQL_STARTING - The database is starting.

• FBSQL_RUNNING - The database is running and can be used to perform SQL
operations.

• FBSQL_STOPPING - The database is stopping.

• FBSQL_NOEXEC - FBExec is not running on the server and it is not possible to get
the status of the database.

See Also

• fbsql_start_db()
• fbsql_stop_db()

fbsql_drop_db

fbsql_drop_db -- Drop (delete) a FrontBase database

Description

bool fbsql_drop_db (string $database_name [, resource $link_identifier])

fbsql_drop_db() attempts to drop (remove) an entire database from the server associated
with the specified link identifier.

Parameters

database_name

The database name, as a string.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_create_db()

fbsql_errno

fbsql_errno -- Returns the error number from previous operation

Description

int fbsql_errno ([resource $link_identifier])

Returns the numerical value of the error message from previous FrontBase operation.

Errors coming back from the fbsql database backend don't issue warnings. Instead, use
fbsql_errno() to retrieve the error code. Note that this function only returns the error code
from the most recently executed fbsql function (not including fbsql_error() and
fbsql_errno()), so if you want to use it, make sure you check the value before calling
another fbsql function.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns the error number from the last fbsql function, or 0 (zero) if no error occurred.

Examples

Example #786 - fbsql_errno() Example

<?php

fbsql_connect("marliesle");

echo fbsql_errno() . ": " . fbsql_error() . "
";

fbsql_select_db("nonexistentdb");

echo fbsql_errno() . ": " . fbsql_error() . "
";

$conn = fbsql_query("SELECT * FROM nonexistenttable;");

echo fbsql_errno() . ": " . fbsql_error() . "
";

?>

See Also

• fbsql_error()
• fbsql_warnings()

fbsql_error

fbsql_error -- Returns the error message from previous operation

Description

string fbsql_error ([resource $link_identifier])

Returns the error message from previous FrontBase operation.

Errors coming back from the fbsql database backend don't issue warnings. Instead, use
fbsql_error() to retrieve the error text. Note that this function only returns the error code
from the most recently executed fbsql function (not including fbsql_error() and
fbsql_errno()), so if you want to use it, make sure you check the value before calling
another fbsql function.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns the error text from the last fbsql function, or '' (the empty string) if no error
occurred.

Examples

Example #787 - fbsql_error() Example

<?php

fbsql_connect("marliesle");

echo fbsql_errno() . ": " . fbsql_error() . "
";

fbsql_select_db("nonexistentdb");

echo fbsql_errno() . ": " . fbsql_error() . "
";

$conn = fbsql_query("SELECT * FROM nonexistenttable;");

echo fbsql_errno() . ": " . fbsql_error() . "
";

?>

See Also

• fbsql_errno()
• fbsql_warnings()

fbsql_fetch_array

fbsql_fetch_array -- Fetch a result row as an associative array, a numeric array, or both

Description

array fbsql_fetch_array (resource $result [, int $result_type])

fbsql_fetch_array() is a combination of fbsql_fetch_row() and fbsql_fetch_assoc().

An important thing to note is that using fbsql_fetch_array() is NOT significantly slower than
using fbsql_fetch_row(), while it provides a significant added value.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

result_type

A constant and can take the following values: FBSQL_ASSOC, FBSQL_NUM, or
FBSQL_BOTH. When using FBSQL_BOTH, in addition to storing the data in the
numeric indices of the result array, it also stores the data in associative indices, using
the field names as keys.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you must the numeric
index of the column or make an alias for the column.

select t1.f1 as foo t2.f1 as bar from t1, t2

Examples

Example #788 - fbsql_fetch_array() example

<?php

fbsql_connect($host, $user, $password);

$result = fbsql_db_query("database", "select user_id, fullname from table");

while ($row = fbsql_fetch_array($result)) {

 echo "user_id: " . $row["user_id"] . "
\n";

 echo "user_id: " . $row[0] . "
\n";

 echo "fullname: " . $row["fullname"] . "
\n";

 echo "fullname: " . $row[1] . "
\n";

}

fbsql_free_result($result);

?>

See Also

• fbsql_fetch_row()
• fbsql_fetch_assoc()
• fbsql_fetch_object()

fbsql_fetch_assoc

fbsql_fetch_assoc -- Fetch a result row as an associative array

Description

array fbsql_fetch_assoc (resource $result)

Calling fbsql_fetch_assoc() is equivalent to calling fbsql_fetch_array() with
FBSQL_ASSOC as second parameter. It only returns an associative array.

This is the way fbsql_fetch_array() originally worked. If you need the numeric indices as
well as the associative, use fbsql_fetch_array().

An important thing to note is that using fbsql_fetch_assoc() is NOT significantly slower
than using fbsql_fetch_row(), while it provides a significant added value.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns an associative array that corresponds to the fetched row, or FALSE if there are no
more rows.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you must use
fbsql_fetch_array() and have it return the numeric indices as well.

Examples

Example #789 - fbsql_fetch_assoc() example

<?php

fbsql_connect($host, $user, $password);

$result = fbsql_db_query("database", "select * from table");

while ($row = fbsql_fetch_assoc($result)) {

 echo $row["user_id"];

 echo $row["fullname"];

}

fbsql_free_result($result);

?>

See Also

• fbsql_fetch_row()
• fbsql_fetch_array()
• fbsql_fetch_object()

fbsql_fetch_field

fbsql_fetch_field -- Get column information from a result and return as an object

Description

object fbsql_fetch_field (resource $result [, int $field_offset])

Used in order to obtain information about fields in a certain query result.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

field_offset

The numerical offset of the field. The field index starts at 0. If not specified, the next
field that wasn't yet retrieved by fbsql_fetch_field() is retrieved.

Return Values

Returns an object containing field information, or FALSE on errors.

The properties of the object are:

• name - column name

• table - name of the table the column belongs to

• max_length - maximum length of the column

• not_null - 1 if the column cannot be NULL

• type - the type of the column

Examples

Example #790 - fbsql_fetch_field() example

<?php

fbsql_connect($host, $user, $password)

 or die("Could not connect");

$result = fbsql_db_query("database", "select * from table")

 or die("Query failed");

get column metadata

$i = 0;

while ($i < fbsql_num_fields($result)) {

 echo "Information for column $i:
\n";

 $meta = fbsql_fetch_field($result);

 if (!$meta) {

 echo "No information available
\n";

 }

 echo "<pre>

max_length: $meta->max_length

name: $meta->name

not_null: $meta->not_null

table: $meta->table

type: $meta->type

</pre>";

 $i++;

}

fbsql_free_result($result);

?>

See Also

• fbsql_field_seek()

fbsql_fetch_lengths

fbsql_fetch_lengths -- Get the length of each output in a result

Description

array fbsql_fetch_lengths (resource $result)

Stores the lengths of each result column in the last row returned by fbsql_fetch_row(),
fbsql_fetch_array() and fbsql_fetch_object() in an array.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns an array, starting at offset 0, that corresponds to the lengths of each field in the
last row fetched by fbsql_fetch_row(), or FALSE on error.

See Also

• fbsql_fetch_row()

fbsql_fetch_object

fbsql_fetch_object -- Fetch a result row as an object

Description

object fbsql_fetch_object (resource $result)

fbsql_fetch_object() is similar to fbsql_fetch_array(), with one difference - an object is
returned, instead of an array. Indirectly, that means that you can only access the data by
the field names, and not by their offsets (numbers are illegal property names).

Speed-wise, the function is identical to fbsql_fetch_array(), and almost as quick as
fbsql_fetch_row() (the difference is insignificant).

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns an object with properties that correspond to the fetched row, or FALSE if there are
no more rows.

Examples

Example #791 - fbsql_fetch_object() example

<?php

fbsql_connect($host, $user, $password);

$result = fbsql_db_query("database", "select * from table");

while ($row = fbsql_fetch_object($result)) {

 echo $row->user_id;

 echo $row->fullname;

}

fbsql_free_result($result);

?>

See Also

• fbsql_fetch_array()

• fbsql_fetch_row()
• fbsql_fetch_assoc()

fbsql_fetch_row

fbsql_fetch_row -- Get a result row as an enumerated array

Description

array fbsql_fetch_row (resource $result)

fbsql_fetch_row() fetches one row of data from the result associated with the specified
result identifier.

Subsequent call to fbsql_fetch_row() would return the next row in the result set, or FALSE
if there are no more rows.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns an array that corresponds to the fetched row where each result column is stored
in an offset, starting at offset 0, or FALSE if there are no more rows.

See Also

• fbsql_fetch_array()
• fbsql_fetch_assoc()
• fbsql_fetch_object()
• fbsql_data_seek()
• fbsql_fetch_lengths()
• fbsql_result()

fbsql_field_flags

fbsql_field_flags -- Get the flags associated with the specified field in a result

Description

string fbsql_field_flags (resource $result [, int $field_offset])

Gets the flags associated with the specified field in a result.

Parameters

result

A result pointer returned by fbsql_list_fields().

field_offset

The numerical offset of the field. The field index starts at 0.

Return Values

Returns the field flags of the specified field as a single word per flag separated by a single
space, so that you can split the returned value using explode().

fbsql_field_len

fbsql_field_len -- Returns the length of the specified field

Description

int fbsql_field_len (resource $result [, int $field_offset])

Returns the length of the specified field.

Parameters

result

A result pointer returned by fbsql_list_fields().

field_offset

The numerical offset of the field. The field index starts at 0.

Return Values

Returns the length of the specified field.

fbsql_field_name

fbsql_field_name -- Get the name of the specified field in a result

Description

string fbsql_field_name (resource $result [, int $field_index])

Returns the name of the specified field index.

Parameters

result

A result pointer returned by fbsql_list_fields().

field_index

The numerical offset of the field. The field index starts at 0.

Return Values

Returns the name as a string, or FALSE if the field doesn't exist.

Examples

Example #792 - fbsql_field_name() example

<?php

// The users table consists of three fields:

// user_id

// username

// password.

$res = fbsql_db_query("users", "select * from users", $link);

echo fbsql_field_name($res, 0) . "\n";

echo fbsql_field_name($res, 2);

?>

The above example will output:

user_id

password

See Also

• fbsql_field_type()

fbsql_field_seek

fbsql_field_seek -- Set result pointer to a specified field offset

Description

bool fbsql_field_seek (resource $result [, int $field_offset])

Seeks to the specified field offset. If the next call to fbsql_fetch_field() doesn't include a
field offset, the field offset specified in fbsql_field_seek() will be returned.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

field_offset

The numerical offset of the field. The field index starts at 0.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_fetch_field()

fbsql_field_table

fbsql_field_table -- Get name of the table the specified field is in

Description

string fbsql_field_table (resource $result [, int $field_offset])

Returns the name of the table that the specified field is in.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

field_offset

The numerical offset of the field. The field index starts at 0.

Return Values

Returns the name of the table, as a string.

fbsql_field_type

fbsql_field_type -- Get the type of the specified field in a result

Description

string fbsql_field_type (resource $result [, int $field_offset])

fbsql_field_type() is similar to the fbsql_field_name() function, but the field type is returned
instead.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

field_offset

The numerical offset of the field. The field index starts at 0.

Return Values

Returns the field type, as a string.

This can be one of int, real, string, blob, and others as detailed in the » FrontBase
documentation.

Examples

Example #793 - fbsql_field_type() example

<?php

fbsql_connect("localhost", "_SYSTEM", "");

fbsql_select_db("wisconsin");

$result = fbsql_query("SELECT * FROM onek;");

$fields = fbsql_num_fields($result);

$rows = fbsql_num_rows($result);

$i = 0;

$table = fbsql_field_table($result, $i);

echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows .
" records
";

echo "The table has the following fields
";

while ($i < $fields) {

 $type = fbsql_field_type($result, $i);

 $name = fbsql_field_name($result, $i);

 $len = fbsql_field_len($result, $i);

 $flags = fbsql_field_flags($result, $i);

http://www.frontbase.com/cgi-bin/WebObjects/FrontBase.woa/wa/productsPage?currentPage=Documentation
http://www.frontbase.com/cgi-bin/WebObjects/FrontBase.woa/wa/productsPage?currentPage=Documentation

 echo $type . " " . $name . " " . $len . " " . $flags . "
";

 $i++;

}

fbsql_close();

?>

See Also

• fbsql_field_name()

fbsql_free_result

fbsql_free_result -- Free result memory

Description

bool fbsql_free_result (resource $result)

Frees all memory associated with the given result identifier.

fbsql_free_result() only needs to be called if you are concerned about how much memory
is being used for queries that return large result sets. All associated result memory is
automatically freed at the end of the script's execution.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns TRUE on success or FALSE on failure.

fbsql_get_autostart_info

fbsql_get_autostart_info --

Description

array fbsql_get_autostart_info ([resource $link_identifier])

Warning

This function is currently not documented; only its argument list is available.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

fbsql_hostname

fbsql_hostname -- Get or set the host name used with a connection

Description

string fbsql_hostname (resource $link_identifier [, string $host_name])

Gets or sets the host name used with a connection.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

host_name

If provided, this will be the new connection host name.

Return Values

Returns the current host name used for the connection.

See Also

• fbsql_username()
• fbsql_password()

fbsql_insert_id

fbsql_insert_id -- Get the id generated from the previous INSERT operation

Description

int fbsql_insert_id ([resource $link_identifier])

Gets the id generated from the previous INSERT operation which created a DEFAULT
UNIQUE value.

Note

The value of the FrontBase SQL function fbsql_insert_id() always contains the most
recently generated DEFAULT UNIQUE value, and is not reset between queries.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns the ID generated from the previous INSERT query, or 0 if the previous query does
not generate an DEFAULT UNIQUE value.

If you need to save the value for later, be sure to call this function immediately after the
query that generates the value.

See Also

• fbsql_affected_rows()

fbsql_list_dbs

fbsql_list_dbs -- List databases available on a FrontBase server

Description

resource fbsql_list_dbs ([resource $link_identifier])

Return a result pointer containing the databases available from the current fbsql daemon.
Use the fbsql_tablename() to traverse this result pointer.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a result pointer or FALSE on error.

Examples

Example #794 - fbsql_list_dbs() example

$link = fbsql_connect('localhost', 'myname', 'secret');

$db_list = fbsql_list_dbs($link);

while ($row = fbsql_fetch_object($db_list)) {

 echo $row->Database . "\n";

}

The above example will output something similar to:

database1

database2

database3

...

Note

The above code would just as easily work with fbsql_fetch_row() or other similar
functions.

See Also

• fbsql_list_fields()
• fbsql_list_tables()

fbsql_list_fields

fbsql_list_fields -- List FrontBase result fields

Description

resource fbsql_list_fields (string $database_name, string $table_name [, resource $
link_identifier])

Retrieves information about the given table.

Parameters

database_name

The database name.

table_name

The table name.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a result pointer which can be used with the fbsql_field_xxx functions, or FALSE
on error.

Errors/Exceptions

A string describing the error will be placed in $phperrmsg, and unless the function was
called as @fbsql() then this error string will also be printed out.

Examples

Example #795 - fbsql_list_fields() example

<?php

$link = fbsql_connect('localhost', 'myname', 'secret');

$fields = fbsql_list_fields("database1", "table1", $link);

$columns = fbsql_num_fields($fields);

for ($i = 0; $i < $columns; $i++) {

 echo fbsql_field_name($fields, $i) . "\n";;

}

?>

The above example will output something similar to:

field1

field2

field3

...

See Also

• fbsql_field_len()
• fbsql_field_name()
• fbsql_field_type()
• fbsql_field_flags()

fbsql_list_tables

fbsql_list_tables -- List tables in a FrontBase database

Description

resource fbsql_list_tables (string $database [, resource $link_identifier])

Returns a result pointer describing the database.

Parameters

database

The database name.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a result pointer which can be used with the fbsql_tablename() function to read the
actual table names, or FALSE on error.

See Also

• fbsql_list_fields()
• fbsql_list_dbs()

fbsql_next_result

fbsql_next_result -- Move the internal result pointer to the next result

Description

bool fbsql_next_result (resource $result)

When sending more than one SQL statement to the server or executing a stored
procedure with multiple results will cause the server to return multiple result sets. This
function will test for additional results available form the server. If an additional result set
exists it will free the existing result set and prepare to fetch the words from the new result
set.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns TRUE if an additional result set was available or FALSE otherwise.

Examples

Example #796 - fbsql_next_result() example

<?php

$link = fbsql_connect("localhost", "_SYSTEM", "secret");

fbsql_select_db("MyDB", $link);

$SQL = "Select * from table1; select * from table2;";

$rs = fbsql_query($SQL, $link);

do {

 while ($row = fbsql_fetch_row($rs)) {

 }

} while (fbsql_next_result($rs));

fbsql_free_result($rs);

fbsql_close($link);

?>

fbsql_num_fields

fbsql_num_fields -- Get number of fields in result

Description

int fbsql_num_fields (resource $result)

Returns the number of fields in the given result set.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns the number of fields, as an integer.

See Also

• fbsql_db_query()
• fbsql_query()
• fbsql_fetch_field()
• fbsql_num_rows()

fbsql_num_rows

fbsql_num_rows -- Get number of rows in result

Description

int fbsql_num_rows (resource $result)

Gets the number of rows in the given result set.

This function is only valid for SELECT statements. To retrieve the number of rows returned
from a INSERT, UPDATE or DELETE query, use fbsql_affected_rows().

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns the number of rows returned by the last SELECT statement.

Examples

Example #797 - fbsql_num_rows() example

<?php

$link = fbsql_connect("localhost", "username", "password");

fbsql_select_db("database", $link);

$result = fbsql_query("SELECT * FROM table1;", $link);

$num_rows = fbsql_num_rows($result);

echo "$num_rows Rows\n";

?>

See Also

• fbsql_affected_rows()
• fbsql_connect()

• fbsql_select_db()
• fbsql_query()

fbsql_password

fbsql_password -- Get or set the user password used with a connection

Description

string fbsql_password (resource $link_identifier [, string $password])

Get or set the user password used with a connection.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

password

If provided, this will be the new connection password.

Return Values

Returns the current password used for the connection.

See Also

• fbsql_username()
• fbsql_hostname()

fbsql_pconnect

fbsql_pconnect -- Open a persistent connection to a FrontBase Server

Description

resource fbsql_pconnect ([string $hostname [, string $username [, string $password]]])

Establishes a persistent connection to a FrontBase server.

To set the server port number, use fbsql_select_db().

fbsql_pconnect() acts very much like fbsql_connect() with two major differences:

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host, username and password. If one is found, an identifier for it will
be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use.

This type of links is therefore called 'persistent'.

Parameters

hostname

The server host name. Defaults to localhost.

username

The user name for the connection. Defaults to _SYSTEM.

password

The password for the connection. Defaults to the empty string.

Return Values

Returns a positive FrontBase persistent link identifier on success, or FALSE on error.

See Also

• fbsql_connect()

fbsql_query

fbsql_query -- Send a FrontBase query

Description

resource fbsql_query (string $query [, resource $link_identifier [, int $batch_size]])

Sends a query to the currently active database on the server.

If the query succeeds, you can call fbsql_num_rows() to find out how many rows were
returned for a SELECT statement or fbsql_affected_rows() to find out how many rows
were affected by a DELETE, INSERT, REPLACE, or UPDATE statement.

Parameters

query

The SQL query to be executed.

Note

The query string shall always end with a semicolon.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

batch_size

Return Values

fbsql_query() returns TRUE (non-zero) or FALSE to indicate whether or not the query
succeeded. A return value of TRUE means that the query was legal and could be
executed by the server. It does not indicate anything about the number of rows affected or
returned. It is perfectly possible for a query to succeed but affect no rows or return no
rows.

For SELECT statements, fbsql_query() returns a new result identifier that you can pass to
fbsql_result().

fbsql_query() will also fail and return FALSE if you don't have permission to access the
table(s) referenced by the query.

Examples

The following query is syntactically invalid, so fbsql_query() fails and returns FALSE:

Example #798 - fbsql_query() example

<?php

$result = fbsql_query("SELECT * WHERE 1=1")

 or die ("Invalid query");

?>

The following query is semantically invalid if my_col is not a column in the table my_tbl, so
fbsql_query() fails and returns FALSE:

Example #799 - fbsql_query() example

<?php

$result = fbsql_query ("SELECT my_col FROM my_tbl;")

 or die ("Invalid query");

?>

See Also

• fbsql_affected_rows()
• fbsql_db_query()
• fbsql_free_result()
• fbsql_result()
• fbsql_select_db()
• fbsql_connect()

fbsql_read_blob

fbsql_read_blob -- Read a BLOB from the database

Description

string fbsql_read_blob (string $blob_handle [, resource $link_identifier])

Reads BLOB data from the database.

If a select statement contains BLOB and/or CLOB columns FrontBase will return the data
directly when data is fetched. This default behavior can be changed with
fbsql_set_lob_mode() so the fetch functions will return handles to BLOB and CLOB data. If
a handle is fetched a user must call fbsql_read_blob() to get the actual BLOB data from
the database.

Parameters

blob_handle

A BLOB handle, returned by fbsql_create_blob().

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a string containing the specified BLOB data.

Examples

Example #800 - fbsql_read_blob() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

$sql = "SELECT BLOB_COLUMN FROM BLOB_TABLE;";

$rs = fbsql_query($sql, $link);

$row_data = fbsql_fetch_row($rs);

// $row_data[0] will now contain the blob data for the first row

fbsql_free_result($rs);

$rs = fbsql_query($sql, $link);

fbsql_set_lob_mode($rs, FBSQL_LOB_HANDLE);

$row_data = fbsql_fetch_row($rs);

// $row_data[0] will now contain a handle to the BLOB data in the first row

$blob_data = fbsql_read_blob($row_data[0]);

fbsql_free_result($rs);

?>

See Also

• fbsql_create_blob()
• fbsql_read_clob()
• fbsql_set_lob_mode()

fbsql_read_clob

fbsql_read_clob -- Read a CLOB from the database

Description

string fbsql_read_clob (string $clob_handle [, resource $link_identifier])

Reads CLOB data from the database.

If a select statement contains BLOB and/or CLOB columns FrontBase will return the data
directly when data is fetched. This default behavior can be changed with
fbsql_set_lob_mode() so the fetch functions will return handles to BLOB and CLOB data. If
a handle is fetched a user must call fbsql_read_clob() to get the actual CLOB data from
the database.

Parameters

clob_handle

A CLOB handle, returned by fbsql_create_clob().

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns a string containing the specified CLOB data.

Examples

Example #801 - fbsql_read_clob() example

<?php

$link = fbsql_pconnect("localhost", "_SYSTEM", "secret")

 or die("Could not connect");

$sql = "SELECT CLOB_COLUMN FROM CLOB_TABLE;";

$rs = fbsql_query($sql, $link);

$row_data = fbsql_fetch_row($rs);

// $row_data[0] will now contain the clob data for the first row

fbsql_free_result($rs);

$rs = fbsql_query($sql, $link);

fbsql_set_lob_mode($rs, FBSQL_LOB_HANDLE);

$row_data = fbsql_fetch_row($rs);

// $row_data[0] will now contain a handle to the CLOB data in the first row

$clob_data = fbsql_read_clob($row_data[0]);

fbsql_free_result($rs);

?>

See Also

• fbsql_create_clob()
• fbsql_read_blob()
• fbsql_set_lob_mode()

fbsql_result

fbsql_result -- Get result data

Description

mixed fbsql_result (resource $result [, int $row [, mixed $field]])

Returns the contents of one cell from a FrontBase result set.

When working on large result sets, you should consider using one of the functions that
fetch an entire row (specified below). As these functions return the contents of multiple
cells in one function call, they're MUCH quicker than fbsql_result().

Calls to fbsql_result() should not be mixed with calls to other functions that deal with the
result set.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

row

field

Can be the field's offset, or the field's name, or the field's table dot field's name
(tabledname.fieldname). If the column name has been aliased ('select foo as bar
from...'), use the alias instead of the column name.

Note

Specifying a numeric offset for the field argument is much quicker than specifying a
fieldname or tablename.fieldname argument.

Return Values

See Also

Recommended high-performance alternatives:

• fbsql_fetch_row()

• fbsql_fetch_array()
• fbsql_fetch_assoc()
• fbsql_fetch_object()

fbsql_rollback

fbsql_rollback -- Rollback a transaction to the database

Description

bool fbsql_rollback ([resource $link_identifier])

Ends the current transaction by rolling back all statements issued since last commit.

This command is only needed if autocommit is set to false.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_autocommit()
• fbsql_commit()

fbsql_rows_fetched

fbsql_rows_fetched -- Get the number of rows affected by the last statement

Description

int fbsql_rows_fetched (resource $result)

Gets the number of rows affected by the last statement.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

Return Values

Returns the number of rows, as an integer.

fbsql_select_db

fbsql_select_db -- Select a FrontBase database

Description

bool fbsql_select_db ([string $database_name [, resource $link_identifier]])

Sets the current active database on the given link identifier.

The client contacts FBExec to obtain the port number to use for the connection to the
database. If the database name is a number the system will use that as a port number and
it will not ask FBExec for the port number. The FrontBase server can be stared as
FRontBase -FBExec=No -port=<port number> <database name>.

Every subsequent call to fbsql_query() will be made on the active database.

Parameters

database_name

The name of the database to be selected. If the database is protected with a database
password, the you must call fbsql_database_password() before selecting the
database.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_connect()
• fbsql_pconnect()
• fbsql_database_password()
• fbsql_query()

fbsql_set_characterset

fbsql_set_characterset -- Change input/output character set

Description

void fbsql_set_characterset (resource $link_identifier, int $characterset [, int $
in_out_both])

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

fbsql_set_lob_mode

fbsql_set_lob_mode -- Set the LOB retrieve mode for a FrontBase result set

Description

bool fbsql_set_lob_mode (resource $result, int $lob_mode)

Sets the mode for retrieving LOB data from the database.

When BLOB and CLOB data is retrieved in FrontBase it can be retrieved direct or indirect.
Direct retrieved LOB data will always be fetched no matter the setting of the lob mode. If
the LOB data is less than 512 bytes it will always be retrieved directly.

Parameters

result

A result identifier returned by fbsql_query() or fbsql_db_query().

lob_mode

Can be one of:

• FBSQL_LOB_DIRECT - LOB data is retrieved directly. When data is fetched from
the database with fbsql_fetch_row(), and other fetch functions, all CLOB and BLOB
columns will be returned as ordinary columns. This is the default value on a new
FrontBase result.

• FBSQL_LOB_HANDLE - LOB data is retrieved as handles to the data. When data
is fetched from the database with fbsql_fetch_row(), and other fetch functions, LOB
data will be returned as a handle to the data if the data is stored indirect or the data
if it is stored direct. If a handle is returned it will be a 27 byte string formatted as
@'000000000000000000000000'.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_create_blob()
• fbsql_create_clob()
• fbsql_read_blob()
• fbsql_read_clob()

fbsql_set_password

fbsql_set_password -- Change the password for a given user

Description

bool fbsql_set_password (resource $link_identifier, string $user, string $password,
string $old_password)

Changes the password for the given user.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

user

The user name.

password

The new password to be set.

old_password

The old password to be replaced.

Return Values

Returns TRUE on success or FALSE on failure.

fbsql_set_transaction

fbsql_set_transaction -- Set the transaction locking and isolation

Description

void fbsql_set_transaction (resource $link_identifier, int $locking, int $isolation)

Sets the transaction locking and isolation.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

locking

The type of locking to be set. It can be one of the following constants:
FBSQL_LOCK_DEFERRED, FBSQL_LOCK_OPTIMISTIC, or
FBSQL_LOCK_PESSIMISTIC.

isolation

The type of isolation to be set. It can be one of the following constants:
FBSQL_ISO_READ_UNCOMMITTED, FBSQL_ISO_READ_COMMITTED,
FBSQL_ISO_REPEATABLE_READ, FBSQL_ISO_SERIALIZABLE, or
FBSQL_ISO_VERSIONED.

Return Values

No value is returned.

fbsql_start_db

fbsql_start_db -- Start a database on local or remote server

Description

bool fbsql_start_db (string $database_name [, resource $link_identifier [, string $
database_options]])

Start a database on local or remote server.

Parameters

database_name

The database name.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

database_options

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_db_status()
• fbsql_stop_db()

fbsql_stop_db

fbsql_stop_db -- Stop a database on local or remote server

Description

bool fbsql_stop_db (string $database_name [, resource $link_identifier])

Stops a database on local or remote server.

Parameters

database_name

The database name.

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fbsql_db_status()
• fbsql_start_db()

fbsql_table_name

fbsql_table_name -- Get table name of field

Description

string fbsql_table_name (resource $result, int $index)

fbsql_table_name() gets the name of the current table in the given result set.

The fbsql_num_rows() function may be used to determine the number of tables in the
result pointer.

Parameters

result

A result pointer returned by fbsql_list_tables().

index

Integer index for the current table.

Return Values

Returns the name of the table, as a string.

Examples

Example #802 - fbsql_table_name() example

<?php

fbsql_connect("localhost", "_SYSTEM", "");

$result = fbsql_list_tables("wisconsin");

$i = 0;

while ($i < fbsql_num_rows($result)) {

 $tb_names[$i] = fbsql_table_name($result, $i);

 echo $tb_names[$i] . "
";

 $i++;

}

?>

fbsql_tablename

fbsql_tablename -- Alias of of fbsql_table_name()

Description

This function is an alias of: fbsql_table_name().

fbsql_username

fbsql_username -- Get or set the username for the connection

Description

string fbsql_username (resource $link_identifier [, string $username])

Get or set the username used for the connection.

Parameters

link_identifier

A FrontBase link identifier returned by fbsql_connect() or fbsql_pconnect(). If optional
and not specified, the function will try to find an open link to the FrontBase server and if
no such link is found it will try to create one as if fbsql_connect() was called with no
arguments

username

If provided, this is the new username to set.

Return Values

Returns the current username used with the connection, as a string.

See Also

• fbsql_password()
• fbsql_hostname()

fbsql_warnings

fbsql_warnings -- Enable or disable FrontBase warnings

Description

bool fbsql_warnings ([bool $OnOff])

Enables or disables FrontBase warnings.

Parameters

OnOff

Whether to enable warnings or no.

Return Values

Returns TRUE if warnings is turned on, FALSE otherwise.

See Also

• fbsql_errno()
• fbsql_error()

filePro

Introduction

These functions allow read-only access to data stored in filePro databases.

filePro is a registered trademark of fP Technologies, Inc. You can find more information
about filePro at » http://www.fptech.com/.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.2.0.

http://www.fptech.com/
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

filePro support in PHP is not enabled by default. To enable the bundled read-only filePro
support you need to use the --enable-filepro configuration option when compiling PHP.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

filePro Functions

filepro_fieldcount

filepro_fieldcount -- Find out how many fields are in a filePro database

Description

int filepro_fieldcount (void)

Returns the number of fields (columns) in the opened filePro database.

Return Values

Returns the number of fields in the opened filePro database, or FALSE on errors.

See Also

• filepro()

filepro_fieldname

filepro_fieldname -- Gets the name of a field

Description

string filepro_fieldname (int $field_number)

Returns the name of the field corresponding to field_number.

Parameters

field_number

The field number.

Return Values

Returns the name of the field as a string, or FALSE on errors.

filepro_fieldtype

filepro_fieldtype -- Gets the type of a field

Description

string filepro_fieldtype (int $field_number)

Returns the edit type of the field corresponding to field_number.

Parameters

field_number

The field number.

Return Values

Returns the edit type of the field as a string, or FALSE on errors.

filepro_fieldwidth

filepro_fieldwidth -- Gets the width of a field

Description

int filepro_fieldwidth (int $field_number)

Returns the width of the field corresponding to field_number.

Parameters

field_number

The field number.

Return Values

Returns the width of the field as a integer, or FALSE on errors.

filepro_retrieve

filepro_retrieve -- Retrieves data from a filePro database

Description

string filepro_retrieve (int $row_number, int $field_number)

Returns the data from the specified location in the database.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Parameters

row_number

The row number. Must be between zero and the total number of rows minus one (0..
filepro_rowcount() - 1)

field_number

The field number. Accepts values between zero and the total number of fields minus
one (0.. filepro_fieldcount() - 1)

Return Values

Returns the specified data, or FALSE on errors.

filepro_rowcount

filepro_rowcount -- Find out how many rows are in a filePro database

Description

int filepro_rowcount (void)

Returns the number of rows in the opened filePro database.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Return Values

Returns the number of rows in the opened filePro database, or FALSE on errors.

See Also

• filepro()

filepro

filepro -- Read and verify the map file

Description

bool filepro (string $directory)

This reads and verifies the map file, storing the field count and info.

No locking is done, so you should avoid modifying your filePro database while it may be
opened in PHP.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Parameters

directory

The map directory.

Return Values

Returns TRUE on success or FALSE on failure.

Firebird/InterBase

Introduction

Firebird/InterBase is a relational database offering many ANSI SQL-92 features that runs
on Linux, Windows, and a variety of Unix platforms. Firebird/InterBase offers excellent
concurrency, high performance, and powerful language support for stored procedures and
triggers. It has been used in production systems, under a variety of names since 1981.

InterBase is the name of the closed-source variant of this RDBMS that was developed by
Borland/Inprise. More information about InterBase is available at
» http://www.borland.com/interbase/.

Firebird is a commercially independent project of C and C++ programmers, technical
advisors and supporters developing and enhancing a multi-platform relational database
management system based on the source code released by Inprise Corp (now known as
Borland Software Corp) under the InterBase Public License v.1.0 on 25 July, 2000. More
information about Firebird is available at » http://www.firebirdsql.org/.

Note

This extension supports InterBase versions 5 and up and all versions of Firebird.
Support for InterBase version 5.x will be dropped in PHP 5.

This database uses a single quote (') character for escaping, a behavior similar to the
Sybase database, add to your php.ini the following directive:

magic_quotes_sybase = On

http://www.borland.com/interbase/
http://www.borland.com/interbase/
http://www.firebirdsql.org/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To enable InterBase support configure PHP --with-interbase[=DIR], where DIR is the
InterBase base install directory, which defaults to /usr/interbase.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: gds32.dll

In case you installed the InterBase database server on the same machine PHP is
running on, you will have this DLL already. Therefore you don't need to worry because
gds32.dll will already be in the PATH.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

InterBase configuration options

Name Default Changeable Changelog

ibase.allow_persisten
t

"1" PHP_INI_SYSTEM

ibase.max_persistent "-1" PHP_INI_SYSTEM

ibase.max_links "-1" PHP_INI_SYSTEM

ibase.default_db NULL PHP_INI_SYSTEM Available since PHP

5.0.0.

ibase.default_user NULL PHP_INI_ALL

ibase.default_passwo
rd

NULL PHP_INI_ALL

ibase.default_charset NULL PHP_INI_ALL Available since PHP
5.0.0.

ibase.timestampform
at

"%Y-%m-%d
%H:%M:%S"

PHP_INI_ALL

ibase.dateformat "%Y-%m-%d" PHP_INI_ALL

ibase.timeformat "%H:%M:%S" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

ibase.allow_persistent boolean
Whether to allow persistent connections to Firebird/InterBase.

ibase.max_persistent integer
The maximum number of persistent Firebird/InterBase connections per process. New
connections created with ibase_pconnect() will be non-persistent if this number would
be exceeded.

ibase.max_links integer
The maximum number of Firebird/InterBase connections per process, including
persistent connections.

ibase.default_db string
The default database to connect to when ibase_[p]connect() is called without
specifying a database name. If this value is set and SQL safe mode is enabled, no
other connections than to this database will be allowed.

ibase.default_user string
The user name to use when connecting to a database if no user name is specified.

ibase.default_password string
The password to use when connecting to a database if no password is specified.

ibase.default_charset string
The character set to use when connecting to a database if no character set is
specified.

ibase.timestampformat string

ibase.dateformat string

ibase.timeformat string
These directives are used to set the date and time formats that are used when
returning dates and times from a result set, or when binding arguments to date and
time parameters.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following constants can be passed to ibase_trans() to specify transaction behaviour.

Firebird/InterBase transaction flags

Constant Description

IBASE_DEFAULT The default transaction settings are to be
used. This default is determined by the
client library, which defines it as
IBASE_WRITE|IBASE_CONCURRENCY|IB
ASE_WAIT in most cases.

IBASE_READ Starts a read-only transaction.

IBASE_WRITE Starts a read-write transaction.

IBASE_CONSISTENCY Starts a transaction with the isolation level
set to 'consistency', which means the
transaction cannot read from tables that are
being modified by other concurrent
transactions.

IBASE_CONCURRENCY Starts a transaction with the isolation level
set to 'concurrency' (or 'snapshot'), which
means the transaction has access to all
tables, but cannot see changes that were
committed by other transactions after the
transaction was started.

IBASE_COMMITTED Starts a transaction with the isolation level
set to 'read committed'. This flag should be
combined with either
IBASE_REC_VERSION or
IBASE_REC_NO_VERSION. This isolation
level allows access to changes that were
committed after the transaction was started.
If IBASE_REC_NO_VERSION was
specified, only the latest version of a row
can be read. If IBASE_REC_VERSION was
specified, a row can even be read when a
modification to it is pending in a concurrent
transaction.

IBASE_WAIT Indicated that a transaction should wait and
retry when a conflict occurs.

IBASE_NOWAIT Indicated that a transaction should fail
immediately when a conflict occurs.

The following constants can be passed to ibase_fetch_row(), ibase_fetch_assoc() or
ibase_fetch_object() to specify fetch behaviour.

Firebird/InterBase fetch flags

Constant Description

IBASE_FETCH_BLOBS Also available as IBASE_TEXT for
backward compatibility. Causes BLOB
contents to be fetched inline, instead of
being fetched as BLOB identifiers.

IBASE_FETCH_ARRAYS Causes arrays to be fetched inline.
Otherwise, array identifiers are returned.
Array identifiers can only be used as
arguments to INSERT operations, as no
functions to handle array identifiers are
currently available.

IBASE_UNIXTIME Causes date and time fields not to be
returned as strings, but as UNIX timestamps
(the number of seconds since the epoch,
which is 1-Jan-1970 0:00 UTC). Might be
problematic if used with dates before 1970
on some systems.

The following constants are used to pass requests and options to the service API functions
(ibase_server_info(), ibase_db_info(), ibase_backup(), ibase_restore() and
ibase_maintain_db()). Please refer to the Firebird/InterBase manuals for the meaning of
these options.
IBASE_BKP_IGNORE_CHECKSUMS

IBASE_BKP_IGNORE_LIMBO

IBASE_BKP_METADATA_ONLY

IBASE_BKP_NO_GARBAGE_COLLECT

IBASE_BKP_OLD_DESCRIPTIONS

IBASE_BKP_NON_TRANSPORTABLE

IBASE_BKP_CONVERT
Options to ibase_backup()

IBASE_RES_DEACTIVATE_IDX

IBASE_RES_NO_SHADOW

IBASE_RES_NO_VALIDITY

IBASE_RES_ONE_AT_A_TIME

IBASE_RES_REPLACE

IBASE_RES_CREATE

IBASE_RES_USE_ALL_SPACE
Options to ibase_restore()

IBASE_PRP_PAGE_BUFFERS

IBASE_PRP_SWEEP_INTERVAL

IBASE_PRP_SHUTDOWN_DB

IBASE_PRP_DENY_NEW_TRANSACTIONS

IBASE_PRP_DENY_NEW_ATTACHMENTS

IBASE_PRP_RESERVE_SPACE

IBASE_PRP_RES_USE_FULL

IBASE_PRP_RES

IBASE_PRP_WRITE_MODE

IBASE_PRP_WM_ASYNC

IBASE_PRP_WM_SYNC

IBASE_PRP_ACCESS_MODE

IBASE_PRP_AM_READONLY

IBASE_PRP_AM_READWRITE

IBASE_PRP_SET_SQL_DIALECT

IBASE_PRP_ACTIVATE

IBASE_PRP_DB_ONLINE

IBASE_RPR_CHECK_DB

IBASE_RPR_IGNORE_CHECKSUM

IBASE_RPR_KILL_SHADOWS

IBASE_RPR_MEND_DB

IBASE_RPR_VALIDATE_DB

IBASE_RPR_FULL

IBASE_RPR_SWEEP_DB
Options to ibase_maintain_db()

IBASE_STS_DATA_PAGES

IBASE_STS_DB_LOG

IBASE_STS_HDR_PAGES

IBASE_STS_IDX_PAGES

IBASE_STS_SYS_RELATIONS
Options to ibase_db_info()

IBASE_SVC_SERVER_VERSION

IBASE_SVC_IMPLEMENTATION

IBASE_SVC_GET_ENV

IBASE_SVC_GET_ENV_LOCK

IBASE_SVC_GET_ENV_MSG

IBASE_SVC_USER_DBPATH

IBASE_SVC_SVR_DB_INFO

IBASE_SVC_GET_USERS
Options to ibase_server_info()

Firebird/InterBase Functions

ibase_add_user

ibase_add_user -- Add a user to a security database (only for IB6 or later)

Description

bool ibase_add_user (resource $service_handle, string $user_name, string $password [,
string $first_name [, string $middle_name [, string $last_name]]])

PHP 4 uses server, dba_user_name and dba_user_password instead of service_handle
parameter.

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_modify_user()
• ibase_delete_user()

ibase_affected_rows

ibase_affected_rows -- Return the number of rows that were affected by the previous
query

Description

int ibase_affected_rows ([resource $link_identifier])

This function returns the number of rows that were affected by the previous query
(INSERT, UPDATE or DELETE) that was executed from within the specified transaction
context.

Parameters

link_identifier

A transaction context. If link_identifier is a connection resource, its default
transaction is used.

Return Values

Returns the number of rows as an integer.

See Also

• ibase_query()
• ibase_execute()

ibase_backup

ibase_backup -- Initiates a backup task in the service manager and returns immediately

Description

mixed ibase_backup (resource $service_handle, string $source_db, string $dest_file
[, int $options [, bool $verbose]])

Warning

This function is currently not documented; only its argument list is available.

ibase_blob_add

ibase_blob_add -- Add data into a newly created blob

Description

void ibase_blob_add (resource $blob_handle, string $data)

ibase_blob_add() adds data into a blob created with ibase_blob_create().

Parameters

blob_handle

A blob handle opened with ibase_blob_create().

data

The data to be added.

Return Values

No value is returned.

See Also

• ibase_blob_cancel()
• ibase_blob_close()
• ibase_blob_create()
• ibase_blob_import()

ibase_blob_cancel

ibase_blob_cancel -- Cancel creating blob

Description

bool ibase_blob_cancel (resource $blob_handle)

This function will discard a BLOB if it has not yet been closed by ibase_blob_close().

Parameters

blob_handle

A BLOB handle opened with ibase_create_blob().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_blob_close()
• ibase_blob_create()
• ibase_blob_import()

ibase_blob_close

ibase_blob_close -- Close blob

Description

mixed ibase_blob_close (resource $blob_handle)

This function closes a BLOB that has either been opened for reading by
ibase_open_blob() or has been opened for writing by ibase_create_blob().

Parameters

blob_handle

A BLOB handle opened with ibase_create_blob() or ibase_open_blob().

Return Values

If the BLOB was being read, this function returns TRUE on success, if the BLOB was
being written to, this function returns a string containing the BLOB id that has been
assigned to it by the database. On failure, this function returns FALSE.

See Also

• ibase_blob_cancel()
• ibase_blob_open()

ibase_blob_create

ibase_blob_create -- Create a new blob for adding data

Description

resource ibase_blob_create ([resource $link_identifier])

ibase_blob_create() creates a new BLOB for filling with data.

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

Return Values

Returns a BLOB handle for later use with ibase_blob_add() or FALSE on failure.

See Also

• ibase_blob_add()
• ibase_blob_cancel()
• ibase_blob_close()
• ibase_blob_import()

ibase_blob_echo

ibase_blob_echo -- Output blob contents to browser

Description

bool ibase_blob_echo ([resource $link_identifier], string $blob_id)

This function opens a BLOB for reading and sends its contents directly to standard output
(the browser, in most cases).

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

blob_id

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_blob_open()
• ibase_blob_close()
• ibase_blob_get()

ibase_blob_get

ibase_blob_get -- Get len bytes data from open blob

Description

string ibase_blob_get (resource $blob_handle, int $len)

This function returns at most len bytes from a BLOB that has been opened for reading by
ibase_blob_open().

Note

It is not possible to read from a BLOB that has been opened for writing by
ibase_blob_create().

Parameters

blob_handle

A BLOB handle opened with ibase_blob_open().

len

Size of returned data.

Return Values

Returns at most len bytes from the BLOB, or FALSE on failure.

Examples

Example #803 - ibase_blob_get() example

<?php

$result = ibase_query("SELECT blob_value FROM table");

$data = ibase_fetch_object($result);

$blob_data = ibase_blob_info($data->BLOB_VALUE);

$blob_hndl = ibase_blob_open($data->BLOB_VALUE);

echo ibase_blob_get($blob_hndl, $blob_data[0]);

?>

Whilst this example doesn't do much more than a
'ibase_blob_echo($data->BLOB_VALUE)' would do, it does show you how to get
information into a $variable to manipulate as you please.

See Also

• ibase_blob_open()
• ibase_blob_close()
• ibase_blob_echo()

ibase_blob_import

ibase_blob_import -- Create blob, copy file in it, and close it

Description

string ibase_blob_import (resource $link_identifier, resource $file_handle)

string ibase_blob_import (resource $file_handle)

This function creates a BLOB, reads an entire file into it, closes it and returns the assigned
BLOB id.

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

file_handle

The file handle is a handle returned by fopen().

Return Values

Returns the BLOB id on success, or FALSE on error.

Examples

Example #804 - ibase_blob_import() example

<?php

$dbh = ibase_connect($host, $username, $password);

$filename = '/tmp/bar';

$fd = fopen($filename, 'r');

if ($fd) {

 $blob = ibase_blob_import($dbh, $fd);

 fclose($fd);

 if (!is_string($blob)) {

 // import failed

 } else {

 $query = "INSERT INTO foo (name, data) VALUES ('$filename', ?)";

 $prepared = ibase_prepare($dbh, $query);

 if (!ibase_execute($prepared, $blob)) {

 // record insertion failed

 }

 }

} else {

 // unable to open the data file

}

?>

See Also

• ibase_blob_add()
• ibase_blob_cancel()
• ibase_blob_close()
• ibase_blob_create()

ibase_blob_info

ibase_blob_info -- Return blob length and other useful info

Description

array ibase_blob_info (resource $link_identifier, string $blob_id)

array ibase_blob_info (string $blob_id)

Returns the BLOB length and other useful information.

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

blob_id

A BLOB id.

Return Values

Returns an array containing information about a BLOB. The information returned consists
of the length of the BLOB, the number of segments it contains, the size of the largest
segment, and whether it is a stream BLOB or a segmented BLOB.

ibase_blob_open

ibase_blob_open -- Open blob for retrieving data parts

Description

resource ibase_blob_open (resource $link_identifier, string $blob_id)

resource ibase_blob_open (string $blob_id)

Opens an existing BLOB for reading.

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

blob_id

A BLOB id.

Return Values

Returns a BLOB handle for later use with ibase_blob_get() or FALSE on failure.

See Also

• ibase_blob_close()
• ibase_blob_echo()
• ibase_blob_get()

ibase_close

ibase_close -- Close a connection to an InterBase database

Description

bool ibase_close ([resource $connection_id])

Closes the link to an InterBase database that's associated with a connection id returned
from ibase_connect(). Default transaction on link is committed, other transactions are
rolled back.

Parameters

connection_id

An InterBase link identifier returned from ibase_connect(). If omitted, the last opened
link is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_connect()
• ibase_pconnect()

ibase_commit_ret

ibase_commit_ret -- Commit a transaction without closing it

Description

bool ibase_commit_ret ([resource $link_or_trans_identifier])

Commits a transaction without closing it.

Parameters

link_or_trans_identifier

If called without an argument, this function commits the default transaction of the
default link. If the argument is a connection identifier, the default transaction of the
corresponding connection will be committed. If the argument is a transaction identifier,
the corresponding transaction will be committed. The transaction context will be
retained, so statements executed from within this transaction will not be invalidated.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_commit

ibase_commit -- Commit a transaction

Description

bool ibase_commit ([resource $link_or_trans_identifier])

Commits a transaction.

Parameters

link_or_trans_identifier

If called without an argument, this function commits the default transaction of the
default link. If the argument is a connection identifier, the default transaction of the
corresponding connection will be committed. If the argument is a transaction identifier,
the corresponding transaction will be committed.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_connect

ibase_connect -- Open a connection to an InterBase database

Description

resource ibase_connect ([string $database [, string $username [, string $password [,
string $charset [, int $buffers [, int $dialect [, string $role [, int $sync]]]]]]]])

Establishes a connection to an InterBase server.

In case a second call is made to ibase_connect() with the same arguments, no new link
will be established, but instead, the link identifier of the already opened link will be
returned. The link to the server will be closed as soon as the execution of the script ends,
unless it's closed earlier by explicitly calling ibase_close().

Parameters

database

The database argument has to be a valid path to database file on the server it resides
on. If the server is not local, it must be prefixed with either 'hostname:' (TCP/IP),
'//hostname/' (NetBEUI) or 'hostname@' (IPX/SPX), depending on the connection
protocol used.

username

The user name. Can be set with the ibase.default_user php.ini directive.

password

The password for username. Can be set with the ibase.default_password php.ini
directive.

charset

charset is the default character set for a database.

buffers

buffers is the number of database buffers to allocate for the server-side cache. If 0 or
omitted, server chooses its own default.

dialect

dialect selects the default SQL dialect for any statement executed within a
connection, and it defaults to the highest one supported by client libraries. Functional
only with InterBase 6 and up.

role

Functional only with InterBase 5 and up.

sync

Return Values

Returns an InterBase link identifier on success, or FALSE on error.

Errors/Exceptions

If you get some error like "arithmetic exception, numeric overflow, or string truncation.
Cannot transliterate character between character sets" (this occurs when you try use some
character with accents) when using this and after ibase_query() you must set the character
set (i.e. ISO8859_1 or your current character set).

ChangeLog

Version Description

4.0.0 The buffers, dialect and role
parameters were added

Examples

Example #805 - ibase_connect() example

<?php

$host = 'localhost:/path/to/your.gdb';

$dbh = ibase_connect($host, $username, $password);

$stmt = 'SELECT * FROM tblname';

$sth = ibase_query($dbh, $stmt);

while ($row = ibase_fetch_object($sth)) {

 echo $row->email, "\n";

}

ibase_free_result($sth);

ibase_close($dbh);

?>

See Also

• ibase_pconnect()
• ibase_close()

ibase_db_info

ibase_db_info -- Request statistics about a database

Description

string ibase_db_info (resource $service_handle, string $db, int $action [, int $argument
])

Warning

This function is currently not documented; only its argument list is available.

ibase_delete_user

ibase_delete_user -- Delete a user from a security database (only for IB6 or later)

Description

bool ibase_delete_user (resource $service_handle, string $user_name)

PHP 4 uses server, dba_user_name and dba_user_password instead of service_handle
parameter.

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_add_user()
• ibase_modify_user()

ibase_drop_db

ibase_drop_db -- Drops a database

Description

bool ibase_drop_db ([resource $connection])

This functions drops a database that was opened by either ibase_connect() or
ibase_pconnect(). The database is closed and deleted from the server.

Parameters

connection

An InterBase link identifier. If omitted, the last opened link is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_connect()
• ibase_pconnect()

ibase_errcode

ibase_errcode -- Return an error code

Description

int ibase_errcode (void)

Returns the error code that resulted from the most recent InterBase function call.

Return Values

Returns the error code as an integer, or FALSE if no error occured.

See Also

• ibase_errmsg()

ibase_errmsg

ibase_errmsg -- Return error messages

Description

string ibase_errmsg (void)

Returns the error message that resulted from the most recent InterBase function call.

Return Values

Returns the error message as a string, or FALSE if no error occured.

See Also

• ibase_errcode()

ibase_execute

ibase_execute -- Execute a previously prepared query

Description

resource ibase_execute (resource $query [, mixed $bind_arg [, mixed $...]])

Execute a query prepared by ibase_prepare().

This is a lot more effective than using ibase_query() if you are repeating a same kind of
query several times with only some parameters changing.

Parameters

query

An InterBase query prepared by ibase_prepare().

bind_arg

...

Return Values

If the query raises an error, returns FALSE. If it is successful and there is a (possibly
empty) result set (such as with a SELECT query), returns a result identifier. If the query
was successful and there were no results, returns TRUE.

Note

In PHP 5.0.0 and up, this function returns the number of rows affected by the query (if
> 0 and applicable to the statement type). A query that succeeded, but did not affect
any rows (e.g. an UPDATE of a non-existent record) will return TRUE.

Examples

Example #806 - ibase_execute() example

<?php

$dbh = ibase_connect($host, $username, $password);

$updates = array(

 1 => 'Eric',

 5 => 'Filip',

 7 => 'Larry'

);

$query = ibase_prepare($dbh, "UPDATE FOO SET BAR = ? WHERE BAZ = ?");

foreach ($updates as $baz => $bar) {

 ibase_execute($query, $bar, $baz);

}

?>

See Also

• ibase_query()

ibase_fetch_assoc

ibase_fetch_assoc -- Fetch a result row from a query as an associative array

Description

array ibase_fetch_assoc (resource $result [, int $fetch_flag])

Fetch a result row from a query as an associative array.

ibase_fetch_assoc() fetches one row of data from the result. If two or more columns of
the result have the same field names, the last column will take precedence. To access the
other column(s) of the same name, you either need to access the result with numeric
indices by using ibase_fetch_row() or use alias names in your query.

Parameters

result

The result handle.

fetch_flag

fetch_flag is a combination of the constants IBASE_TEXT and IBASE_UNIXTIME
ORed together. Passing IBASE_TEXT will cause this function to return BLOB contents
instead of BLOB ids. Passing IBASE_UNIXTIME will cause this function to return
date/time values as Unix timestamps instead of as formatted strings.

Return Values

Returns an associative array that corresponds to the fetched row. Subsequent calls will
return the next row in the result set, or FALSE if there are no more rows.

See Also

• ibase_fetch_row()
• ibase_fetch_object()

ibase_fetch_object

ibase_fetch_object -- Get an object from a InterBase database

Description

object ibase_fetch_object (resource $result_id [, int $fetch_flag])

Fetches a row as a pseudo-object from a given result identifier.

Subsequent calls to ibase_fetch_object() return the next row in the result set.

Parameters

result_id

An InterBase result identifier obtained either by ibase_query() or ibase_execute().

fetch_flag

fetch_flag is a combination of the constants IBASE_TEXT and IBASE_UNIXTIME
ORed together. Passing IBASE_TEXT will cause this function to return BLOB contents
instead of BLOB ids. Passing IBASE_UNIXTIME will cause this function to return
date/time values as Unix timestamps instead of as formatted strings.

Return Values

Returns an object with the next row information, or FALSE if there are no more rows.

Examples

Example #807 - ibase_fetch_object() example

<?php

$dbh = ibase_connect($host, $username, $password);

$stmt = 'SELECT * FROM tblname';

$sth = ibase_query($dbh, $stmt);

while ($row = ibase_fetch_object($sth)) {

 echo $row->email . "\n";

}

ibase_close($dbh);

?>

See Also

• ibase_fetch_row()
• ibase_fetch_assoc()

ibase_fetch_row

ibase_fetch_row -- Fetch a row from an InterBase database

Description

array ibase_fetch_row (resource $result_identifier [, int $fetch_flag])

ibase_fetch_row() fetches one row of data from the given result set.

Subsequent calls to ibase_fetch_row() return the next row in the result set, or FALSE if
there are no more rows.

Parameters

result_identifier

An InterBase result identifier.

fetch_flag

fetch_flag is a combination of the constants IBASE_TEXT and IBASE_UNIXTIME
ORed together. Passing IBASE_TEXT will cause this function to return BLOB contents
instead of BLOB ids. Passing IBASE_UNIXTIME will cause this function to return
date/time values as Unix timestamps instead of as formatted strings.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.
Each result column is stored in an array offset, starting at offset 0.

See Also

• ibase_fetch_assoc()
• ibase_fetch_object()

ibase_field_info

ibase_field_info -- Get information about a field

Description

array ibase_field_info (resource $result, int $field_number)

Returns an array with information about a field after a select query has been run.

Parameters

result

An InterBase result identifier.

field_number

Field offset.

Return Values

Returns an array with the following keys: name, alias, relation, length and type.

Examples

Example #808 - ibase_field_info() example

<?php

$rs = ibase_query("SELECT * FROM tablename");

$coln = ibase_num_fields($rs);

for ($i = 0; $i < $coln; $i++) {

 $col_info = ibase_field_info($rs, $i);

 echo "name: ". $col_info['name']. "\n";

 echo "alias: ". $col_info['alias']. "\n";

 echo "relation: ". $col_info['relation']. "\n";

 echo "length: ". $col_info['length']. "\n";

 echo "type: ". $col_info['type']. "\n";

}

?>

See Also

• ibase_num_fields()

ibase_free_event_handler

ibase_free_event_handler -- Cancels a registered event handler

Description

bool ibase_free_event_handler (resource $event)

This function causes the registered event handler specified by event to be cancelled. The
callback function will no longer be called for the events it was registered to handle.

Parameters

event

An event resource, created by ibase_set_event_handler().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_set_event_handler()

ibase_free_query

ibase_free_query -- Free memory allocated by a prepared query

Description

bool ibase_free_query (resource $query)

Frees a prepared query.

Parameters

query

A query prepared with ibase_prepare().

Return Values

Returns TRUE on success or FALSE on failure.

ibase_free_result

ibase_free_result -- Free a result set

Description

bool ibase_free_result (resource $result_identifier)

Frees a result set.

Parameters

result_identifier

A result set created by ibase_query() or ibase_execute().

Return Values

Returns TRUE on success or FALSE on failure.

ibase_gen_id

ibase_gen_id -- Increments the named generator and returns its new value

Description

mixed ibase_gen_id (string $generator [, int $increment [, resource $link_identifier]
])

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns new generator value as integer, or as string if the value is too big.

ibase_maintain_db

ibase_maintain_db -- Execute a maintenance command on the database server

Description

bool ibase_maintain_db (resource $service_handle, string $db, int $action [, int $
argument])

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_modify_user

ibase_modify_user -- Modify a user to a security database (only for IB6 or later)

Description

bool ibase_modify_user (resource $service_handle, string $user_name, string $
password [, string $first_name [, string $middle_name [, string $last_name]]])

Warning

This function is currently not documented; only its argument list is available.

PHP 4 uses server, dba_user_name and dba_user_password instead of service_handle
parameter.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ibase_add_user()
• ibase_delete_user()

ibase_name_result

ibase_name_result -- Assigns a name to a result set

Description

bool ibase_name_result (resource $result, string $name)

This function assigns a name to a result set. This name can be used later in
UPDATE|DELETE ... WHERE CURRENT OF name statements.

Parameters

result

An InterBase result set.

name

The name to be assigned.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #809 - ibase_name_result() example

<?php

$result = ibase_query("SELECT field1,field2 FROM table FOR UPDATE");

ibase_name_result($result, "my_cursor");

$updateqry = ibase_prepare("UPDATE table SET field2 = ? WHERE CURRENT OF
my_cursor");

for ($i = 0; ibase_fetch_row($result); ++$i) {

 ibase_execute($updateqry, $i);

}

?>

See Also

• ibase_prepare()

• ibase_execute()

ibase_num_fields

ibase_num_fields -- Get the number of fields in a result set

Description

int ibase_num_fields (resource $result_id)

Get the number of fields in a result set.

Parameters

result_id

An InterBase result identifier.

Return Values

Returns the number of fields as an integer.

Examples

Example #810 - ibase_num_fields() example

<?php

$rs = ibase_query("SELECT * FROM tablename");

$coln = ibase_num_fields($rs);

for ($i = 0; $i < $coln; $i++) {

 $col_info = ibase_field_info($rs, $i);

 echo "name: " . $col_info['name'] . "\n";

 echo "alias: " . $col_info['alias'] . "\n";

 echo "relation: " . $col_info['relation'] . "\n";

 echo "length: " . $col_info['length'] . "\n";

 echo "type: " . $col_info['type'] . "\n";

}

?>

See Also

• ibase_field_info()

ibase_num_params

ibase_num_params -- Return the number of parameters in a prepared query

Description

int ibase_num_params (resource $query)

This function returns the number of parameters in the prepared query specified by query.
This is the number of binding arguments that must be present when calling
ibase_execute().

Parameters

query

The prepared query handle.

Return Values

Returns the number of parameters as an integer.

See Also

• ibase_prepare()
• ibase_param_info()

ibase_param_info

ibase_param_info -- Return information about a parameter in a prepared query

Description

array ibase_param_info (resource $query, int $param_number)

Returns an array with information about a parameter after a query has been prepared.

Parameters

query

An InterBase prepared query handle.

param_number

Parameter offset.

Return Values

Returns an array with the following keys: name, alias, relation, length and type.

See Also

• ibase_field_info()
• ibase_num_params()

ibase_pconnect

ibase_pconnect -- Open a persistent connection to an InterBase database

Description

resource ibase_pconnect ([string $database [, string $username [, string $password [,
string $charset [, int $buffers [, int $dialect [, string $role [, int $sync]]]]]]]])

Opens a persistent connection to an InterBase database.

ibase_pconnect() acts very much like ibase_connect() with two major differences.

First, when connecting, the function will first try to find a (persistent) link that's already
opened with the same parameters. If one is found, an identifier for it will be returned
instead of opening a new connection.

Second, the connection to the InterBase server will not be closed when the execution of
the script ends. Instead, the link will remain open for future use (ibase_close() will not
close links established by ibase_pconnect()). This type of link is therefore called
'persistent'.

Parameters

database

The database argument has to be a valid path to database file on the server it resides
on. If the server is not local, it must be prefixed with either 'hostname:' (TCP/IP),
'//hostname/' (NetBEUI) or 'hostname@' (IPX/SPX), depending on the connection
protocol used.

username

The user name. Can be set with the ibase.default_user php.ini directive.

password

The password for username. Can be set with the ibase.default_password php.ini
directive.

charset

charset is the default character set for a database.

buffers

buffers is the number of database buffers to allocate for the server-side cache. If 0 or
omitted, server chooses its own default.

dialect

dialect selects the default SQL dialect for any statement executed within a
connection, and it defaults to the highest one supported by client libraries. Functional
only with InterBase 6 and up.

role

Functional only with InterBase 5 and up.

sync

Return Values

Returns an InterBase link identifier on success, or FALSE on error.

ChangeLog

Version Description

4.0.0 The buffers, dialect and role
parameters were added

See Also

• ibase_close()
• ibase_connect()

ibase_prepare

ibase_prepare -- Prepare a query for later binding of parameter placeholders and
execution

Description

resource ibase_prepare (string $query)

resource ibase_prepare (resource $link_identifier, string $query)

resource ibase_prepare (resource $link_identifier, string $trans, string $query)

Prepare a query for later binding of parameter placeholders and execution (via
ibase_execute()).

Parameters

query

An InterBase query.

Return Values

Returns a prepared query handle, or FALSE on error.

ibase_query

ibase_query -- Execute a query on an InterBase database

Description

resource ibase_query ([resource $link_identifier], string $query [, int $bind_args])

Performs a query on an InterBase database.

Parameters

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

query

An InterBase query.

bind_args

Return Values

If the query raises an error, returns FALSE. If it is successful and there is a (possibly
empty) result set (such as with a SELECT query), returns a result identifier. If the query
was successful and there were no results, returns TRUE.

Note

In PHP 5.0.0 and up, this function will return the number of rows affected by the query
for INSERT, UPDATE and DELETE statements. In order to retain backward
compatibility, it will return TRUE for these statements if the query succeeded without
affecting any rows.

Errors/Exceptions

If you get some error like "arithmetic exception, numeric overflow, or string truncation.
Cannot transliterate character between character sets" (this occurs when you try use some
character with accents) when using this and after ibase_query() you must set the character
set (i.e. ISO8859_1 or your current character set).

Examples

Example #811 - ibase_query() example

<?php

$host = 'localhost:/path/to/your.gdb';

$dbh = ibase_connect($host, $username, $password);

$stmt = 'SELECT * FROM tblname';

$sth = ibase_query($dbh, $stmt) or die(ibase_errmsg());

?>

See Also

• ibase_errmsg()
• ibase_fetch_row()
• ibase_fetch_object()
• ibase_free_result()

ibase_restore

ibase_restore -- Initiates a restore task in the service manager and returns immediately

Description

mixed ibase_restore (resource $service_handle, string $source_file, string $dest_db [,
int $options [, bool $verbose]])

Warning

This function is currently not documented; only its argument list is available.

ibase_rollback_ret

ibase_rollback_ret -- Roll back a transaction without closing it

Description

bool ibase_rollback_ret ([resource $link_or_trans_identifier])

Rolls back a transaction without closing it.

Parameters

link_or_trans_identifier

If called without an argument, this function rolls back the default transaction of the
default link. If the argument is a connection identifier, the default transaction of the
corresponding connection will be rolled back. If the argument is a transaction identifier,
the corresponding transaction will be rolled back. The transaction context will be
retained, so statements executed from within this transaction will not be invalidated.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_rollback

ibase_rollback -- Roll back a transaction

Description

bool ibase_rollback ([resource $link_or_trans_identifier])

Rolls back a transaction.

Parameters

link_or_trans_identifier

If called without an argument, this function rolls back the default transaction of the
default link. If the argument is a connection identifier, the default transaction of the
corresponding connection will be rolled back. If the argument is a transaction identifier,
the corresponding transaction will be rolled back.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_server_info

ibase_server_info -- Request information about a database server

Description

string ibase_server_info (resource $service_handle, int $action)

Warning

This function is currently not documented; only its argument list is available.

ibase_service_attach

ibase_service_attach -- Connect to the service manager

Description

resource ibase_service_attach (string $host, string $dba_username, string $
dba_password)

Warning

This function is currently not documented; only its argument list is available.

ibase_service_detach

ibase_service_detach -- Disconnect from the service manager

Description

bool ibase_service_detach (resource $service_handle)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

ibase_set_event_handler

ibase_set_event_handler -- Register a callback function to be called when events are
posted

Description

resource ibase_set_event_handler (callback $event_handler, string $event_name1 [,
string $event_name2 [, string $...]])

resource ibase_set_event_handler (resource $connection, callback $event_handler,
string $event_name1 [, string $event_name2 [, string $...]])

This function registers a PHP user function as event handler for the specified events.

Parameters

event_handler

The callback is called with the event name and the link resource as arguments
whenever one of the specified events is posted by the database. The callback must
return FALSE if the event handler should be canceled. Any other return value is
ignored. This function accepts up to 15 event arguments.

event_name1

An event name.

event_name2

...

Return Values

The return value is an event resource. This resource can be used to free the event handler
using ibase_free_event_handler().

Examples

Example #812 - ibase_set_event_handler() example

<?php

function event_handler($event_name, $link)

{

 if ($event_name == "NEW ORDER") {

 // process new order

 ibase_query($link, "UPDATE orders SET status='handled'");

 } else if ($event_name == "DB_SHUTDOWN") {

 // free event handler

 return false;

 }

}

ibase_set_event_handler($link, "event_handler", "NEW_ORDER", "DB_SHUTDOWN");

?>

See Also

• ibase_free_event_handler()
• ibase_wait_event()

ibase_timefmt

ibase_timefmt -- Sets the format of timestamp, date and time type columns returned from
queries

Description

bool ibase_timefmt (string $format [, int $columntype])

Sets the format of timestamp, date or time type columns returned from queries.

You can set defaults for these formats with the PHP configuration directives
ibase.timestampformat, ibase.dateformat and ibase.timeformat.

Note

This function has been removed from PHP 5, use ini_set() instead.

Parameters

format

Internally, the columns are formatted by c-function strftime(), so refer to its
documentation regarding to the format of the string.

columntype

columntype is one of the constants IBASE_TIMESTAMP, IBASE_DATE and
IBASE_TIME. If omitted, defaults to IBASE_TIMESTAMP for backwards compatibility.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #813 - ibase_timefmt() example

<?php

/* InterBase 6 TIME-type columns will be returned in

* the form '05 hours 37 minutes'. */

ibase_timefmt("%H hours %M minutes", IBASE_TIME);

?>

ibase_trans

ibase_trans -- Begin a transaction

Description

resource ibase_trans ([int $trans_args [, resource $link_identifier]])

Begins a transaction.

Note

The behaviour of this function has been changed in PHP 5.0.0. The first call to
ibase_trans() will not return the default transaction of a connection. All transactions
started by ibase_trans() will be rolled back at the end of the script if they were not
committed or rolled back by either ibase_commit() or ibase_rollback().

Note

In PHP 5.0.0. and up, this function will accept multiple trans_args and
link_identifier arguments. This allows transactions over multiple database
connections, which are committed using a 2-phase commit algorithm. This means you
can rely on the updates to either succeed in every database, or fail in every database.
It does NOT mean you can use tables from different databases in the same query!

If you use transactions over multiple databases, you will have to specify both the
link_id and transaction_id in calls to ibase_query() and ibase_prepare().

Parameters

trans_args

trans_args can be a combination of IBASE_READ, IBASE_WRITE,
IBASE_COMMITTED, IBASE_CONSISTENCY, IBASE_CONCURRENCY,
IBASE_REC_VERSION, IBASE_REC_NO_VERSION, IBASE_WAIT and
IBASE_NOWAIT.

link_identifier

An InterBase link identifier. If omitted, the last opened link is assumed.

Return Values

Returns a transaction handle, or FALSE on error.

ibase_wait_event

ibase_wait_event -- Wait for an event to be posted by the database

Description

string ibase_wait_event (string $event_name1 [, string $event_name2 [, string $...]])

string ibase_wait_event (resource $connection, string $event_name1 [, string $
event_name2 [, string $...]])

This function suspends execution of the script until one of the specified events is posted by
the database. The name of the event that was posted is returned. This function accepts up
to 15 event arguments.

Parameters

event_name1

The event name.

event_name2

...

Return Values

Returns the name of the event that was posted.

See Also

• ibase_set_event_handler()
• ibase_free_event_handler()

Informix

Introduction

The Informix driver for Informix (IDS) 7.x, SE 7.x, Universal Server (IUS) 9.x and IDS 2000
is implemented in "ifx.ec" and "php_informix.h" in the informix extension directory. IDS 7.x
support is fairly complete, with full support for BYTE and TEXT columns. IUS 9.x support is
partly finished: the new data types are there, but SLOB and CLOB support is still under
construction.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.2.1.

http://pecl.php.net/

Installing/Configuring

Requirements

Note

Configuration notes

You need a version of ESQL/C to compile the PHP Informix driver. ESQL/C versions
from 7.2x on should be OK. ESQL/C is now part of the Informix Client SDK.

Make sure that the "INFORMIXDIR" variable has been set, and that
$INFORMIXDIR/bin is in your PATH before you run the "configure" script.

Installation

To be able to use the functions defined in this module you must compile your PHP
interpreter using the configure line --with-informix[=DIR], where DIR is the Informix base
install directory, defaults to nothing.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Note

Make sure that the Informix environment variables INFORMIXDIR and
INFORMIXSERVER are available to the PHP ifx driver, and that the INFORMIX bin
directory is in the PATH. Check this by running a script that contains a call to phpinfo()
before you start testing. The phpinfo() output should list these environment variables.
This is true for both CGI php and Apache mod_php. You may have to set these
environment variables in your Apache startup script.

The Informix shared libraries should also be available to the loader (check
LD_LIBRARY_PATH or ld.so.conf/ldconfig).

Note

Some notes on the use of BLOBs (TEXT and BYTE columns)

BLOBs are normally addressed by BLOB identifiers. Select queries return a "blob id"

for every BYTE and TEXT column. You can get at the contents with "string_var =
ifx_get_blob($blob_id);" if you choose to get the BLOBs in memory (with:
"ifx_blobinfile(0);"). If you prefer to receive the content of BLOB columns in a file, use
"ifx_blobinfile(1);", and "ifx_get_blob($blob_id);" will get you the filename. Use normal
file I/O to get at the blob contents.

For insert/update queries you must create these "blob id's" yourself with "
ifx_create_blob();". You then plug the blob id's into an array, and replace the blob
columns with a question mark (?) in the query string. For updates/inserts, you are
responsible for setting the blob contents with ifx_update_blob().

The behaviour of BLOB columns can be altered by configuration variables that also
can be set at runtime:

configuration variable: ifx.textasvarchar

configuration variable: ifx.byteasvarchar

runtime functions:

ifx_textasvarchar(0): use blob id's for select queries with TEXT columns

ifx_byteasvarchar(0): use blob id's for select queries with BYTE columns

ifx_textasvarchar(1): return TEXT columns as if they were VARCHAR columns, so that
you don't need to use blob id's for select queries.

ifx_byteasvarchar(1): return BYTE columns as if they were VARCHAR columns, so
that you don't need to use blob id's for select queries.

configuration variable: ifx.blobinfile

runtime function:

ifx_blobinfile_mode(0): return BYTE columns in memory, the blob id lets you get at the
contents.

ifx_blobinfile_mode(1): return BYTE columns in a file, the blob id lets you get at the file
name.

If you set ifx_text/byteasvarchar to 1, you can use TEXT and BYTE columns in select
queries just like normal (but rather long) VARCHAR fields. Since all strings are
"counted" in PHP, this remains "binary safe". It is up to you to handle this correctly.
The returned data can contain anything, you are responsible for the contents.

If you set ifx_blobinfile to 1, use the file name returned by ifx_get_blob(..) to get at the
blob contents. Note that in this case YOU ARE RESPONSIBLE FOR DELETING THE
TEMPORARY FILES CREATED BY INFORMIX when fetching the row. Every new row
fetched will create new temporary files for every BYTE column.

The location of the temporary files can be influenced by the environment variable
"blobdir", default is "." (the current directory). Something like: putenv(blobdir=tmpblob");

will ease the cleaning up of temp files accidentally left behind (their names all start with
"blb").

Note

Automatically trimming "char" (SQLCHAR and SQLNCHAR) data

This can be set with the configuration variable

ifx.charasvarchar: if set to 1 trailing spaces will be automatically trimmed, to save you
some "chopping".

Note

NULL values

The configuration variable ifx.nullformat (and the runtime function ifx_nullformat())
when set to TRUE will return NULL columns as the string " NULL ", when set to
FALSE they return the empty string. This allows you to discriminate between NULL
columns and empty columns.

Informix configuration options

Name Default Changeable Changelog

ifx.allow_persistent "1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.max_persistent "-1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.max_links "-1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.default_host NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.default_user NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.default_password NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.blobinfile "1" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.textasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.byteasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.charasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.nullformat "0" PHP_INI_ALL Removed in PHP
5.2.1.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

ifx.allow_persistent boolean
Whether to allow persistent Informix connections.

ifx.max_persistent integer
The maximum number of persistent Informix connections per process.

ifx.max_links integer
The maximum number of Informix connections per process, including persistent
connections.

ifx.default_host string
The default host to connect to when no host is specified in ifx_connect() or
ifx_pconnect(). Doesn't apply in safe mode.

ifx.default_user string
The default user id to use when none is specified in ifx_connect() or ifx_pconnect().
Doesn't apply in safe mode.

ifx.default_password string
The default password to use when none is specified in ifx_connect() or ifx_pconnect().
Doesn't apply in safe mode.

ifx.blobinfile boolean
Set to TRUE if you want to return blob columns in a file, FALSE if you want them in
memory. You can override the setting at runtime with ifx_blobinfile_mode().

ifx.textasvarchar boolean
Set to TRUE if you want to return TEXT columns as normal strings in select
statements, FALSE if you want to use blob id parameters. You can override the setting
at runtime with ifx_textasvarchar().

ifx.byteasvarchar boolean
Set to TRUE if you want to return BYTE columns as normal strings in select queries,
FALSE if you want to use blob id parameters. You can override the setting at runtime
with ifx_textasvarchar().

ifx.charasvarchar boolean
Set to TRUE if you want to trim trailing spaces from CHAR columns when fetching
them.

ifx.nullformat boolean
Set to TRUE if you want to return NULL columns as the literal string " NULL ", FALSE
if you want them returned as the empty string "". You can override this setting at
runtime with ifx_nullformat().

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

IFX_SCROLL (integer)

IFX_HOLD (integer)

IFX_LO_RDONLY (integer)

IFX_LO_WRONLY (integer)

IFX_LO_APPEND (integer)

IFX_LO_RDWR (integer)

IFX_LO_BUFFER (integer)

IFX_LO_NOBUFFER (integer)

Informix Functions

ifx_affected_rows

ifx_affected_rows -- Get number of rows affected by a query

Description

int ifx_affected_rows (resource $result_id)

Returns the number of rows affected by a query associated with result_id.

For inserts, updates and deletes the number is the real number (sqlerrd[2]) of affected
rows. For selects it is an estimate (sqlerrd[0]). Don't rely on it. The database server can
never return the actual number of rows that will be returned by a SELECT because it has
not even begun fetching them at this stage (just after the "PREPARE" when the optimizer
has determined the query plan).

Useful after ifx_prepare() to limit queries to reasonable result sets.

Parameters

result_id

A valid result id returned by ifx_query() or ifx_prepare().

Return Values

Returns the number of rows as an integer.

Examples

Example #814 - Informix affected rows

<?php

$rid = ifx_prepare("select * from emp

 where name like " . $name, $connid);

if (! $rid) {

 /* ... error ... */

}

$rowcount = ifx_affected_rows($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

?>

See Also

• ifx_num_rows()

ifx_blobinfile_mode

ifx_blobinfile_mode -- Set the default blob mode for all select queries

Description

bool ifx_blobinfile_mode (int $mode)

Set the default blob mode for all select queries.

Parameters

mode

Mode "0" means save Byte-Blobs in memory, and mode "1" means save Byte-Blobs in
a file.

Return Values

Returns TRUE on success or FALSE on failure.

ifx_byteasvarchar

ifx_byteasvarchar -- Set the default byte mode

Description

bool ifx_byteasvarchar (int $mode)

Sets the default byte mode for all select-queries.

Parameters

mode

Mode "0" will return a blob id, and mode "1" will return a varchar with text content.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_textasvarchar()

ifx_close

ifx_close -- Close Informix connection

Description

bool ifx_close ([resource $link_identifier])

ifx_close() closes the link to an Informix database that's associated with the specified link
identifier.

Note that this isn't usually necessary, as non-persistent open links are automatically closed
at the end of the script's execution.

ifx_close() will not close persistent links generated by ifx_pconnect().

Parameters

link_identifier

The link identifier. If not specified, the last opened link is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #815 - Closing a Informix connection

<?php

$conn_id = ifx_connect ("mydb@ol_srv", "itsme", "mypassword");

/* ... some queries and stuff ... */

ifx_close($conn_id);

?>

See Also

• ifx_connect()
• ifx_pconnect()

ifx_connect

ifx_connect -- Open Informix server connection

Description

resource ifx_connect ([string $database [, string $userid [, string $password]]])

ifx_connect() establishes a connection to an Informix server.

In case a second call is made to ifx_connect() with the same arguments, no new link will
be established, but instead, the link identifier of the already opened link will be returned.

The link to the server will be closed as soon as the execution of the script ends, unless it's
closed earlier by explicitly calling ifx_close().

Parameters

All of the arguments are optional, and if they're missing, defaults are taken from values
supplied in php.ini (ifx.default_host for the host (Informix libraries will use
INFORMIXSERVER environment value if not defined), ifx.default_user for user,
ifx.default_password for the password (none if not defined).

database

The database name, as a string.

userid

The username, as a string.

password

The password, as a string.

Return Values

Returns a connection identifier on success, or FALSE on error.

Examples

Example #816 - Connect to a Informix database

<?php

$conn_id = ifx_connect ("mydb@ol_srv1", "imyself", "mypassword");

?>

See Also

• ifx_pconnect()
• ifx_close()

ifx_copy_blob

ifx_copy_blob -- Duplicates the given blob object

Description

int ifx_copy_blob (int $bid)

Duplicates the given blob object.

Parameters

bid

A BLOB identifier.

Return Values

Returns the new blob object-id, or FALSE on errors.

See Also

• ifx_create_blob()
• ifx_free_blob()

ifx_create_blob

ifx_create_blob -- Creates an blob object

Description

int ifx_create_blob (int $type, int $mode, string $param)

Creates a blob object.

Parameters

type

1 = TEXT, 0 = BYTE

mode

0 = blob-object holds the content in memory, 1 = blob-object holds the content in file.

param

if mode = 0: pointer to the content, if mode = 1: pointer to the filestring.

Return Values

Returns the new BLOB object-id, or FALSE on errors.

See Also

• ifx_copy_blob()
• ifx_free_blob()

ifx_create_char

ifx_create_char -- Creates an char object

Description

int ifx_create_char (string $param)

Creates an char object.

Parameters

param

The char content.

Return Values

Returns the new char object id, or FALSE on errors.

See Also

• ifx_free_char()

ifx_do

ifx_do -- Execute a previously prepared SQL-statement

Description

bool ifx_do (resource $result_id)

Executes a previously prepared query or opens a cursor for it.

Does NOT free result_id on error.

Also sets the real number of ifx_affected_rows() for non-select statements for retrieval by
ifx_affected_rows().

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

Example #817 - ifx_do() Example

<?php

$conn = fx_connect("db", "user", "password");

$result = ifx_prepare("SELECT customer_num, company FROM customer", $conn);

ifx_do($result);

?>

See Also

• ifx_prepare()

ifx_error

ifx_error -- Returns error code of last Informix call

Description

string ifx_error ([resource $link_identifier])

Returns in a string one character describing the general results of a statement and both
SQLSTATE and SQLCODE associated with the most recent SQL statement executed.

Parameters

link_identifier

The link identifier.

Return Values

The Informix error codes (SQLSTATE & SQLCODE) formatted as x [SQLSTATE = aa bbb
SQLCODE=cccc].

where x = space : no error

E : error

N : no more data

W : warning

? : undefined

If the "x" character is anything other than space, SQLSTATE and SQLCODE describe the
error in more detail.

See the Informix manual for the description of SQLSTATE and SQLCODE

See Also

• ifx_errormsg()

ifx_errormsg

ifx_errormsg -- Returns error message of last Informix call

Description

string ifx_errormsg ([int $errorcode])

Returns the Informix error message associated with the most recent Informix error.

Parameters

errorcode

If specified, the function will return the message corresponding to the specified code.

Return Values

Return the error message, as a string.

Examples

Example #818 - ifx_errormsg() example

printf("%s\n
", ifx_errormsg(-201));

See Also

• ifx_error()

ifx_fetch_row

ifx_fetch_row -- Get row as an associative array

Description

array ifx_fetch_row (resource $result_id [, mixed $position])

Fetches one row of data from the result associated with the specified result identifier.

Subsequent calls to ifx_fetch_row() would return the next row in the result set, or FALSE if
there are no more rows.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

position

An optional parameter for a "fetch" operation on "scroll" cursors: NEXT, PREVIOUS,
CURRENT, FIRST, LAST or a number. If you specify a number, an "absolute" row
fetch is executed. This parameter is optional, and only valid for SCROLL cursors.

Return Values

Returns an associative array that corresponds to the fetched row, or FALSE if there are no
more rows.

Blob columns are returned as integer blob id values for use in ifx_get_blob() unless you
have used ifx_textasvarchar(1) or ifx_byteasvarchar(1), in which case blobs are returned
as string values.

Examples

Example #819 - Informix fetch rows

<?php

$rid = ifx_prepare ("select * from emp where name like " . $name,

 $connid, IFX_SCROLL);

if (! $rid) {

 /* ... error ... */

}

$rowcount = ifx_affected_rows($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

if (! ifx_do ($rid)) {

 /* ... error ... */

}

$row = ifx_fetch_row ($rid, "NEXT");

while (is_array($row)) {

 for (reset($row); $fieldname=key($row); next($row)) {

 $fieldvalue = $row[$fieldname];

 printf ("%s = %s,", $fieldname, $fieldvalue);

 }

 printf("\n
");

 $row = ifx_fetch_row($rid, "NEXT");

}

ifx_free_result ($rid);

?>

ifx_fieldproperties

ifx_fieldproperties -- List of SQL fieldproperties

Description

array ifx_fieldproperties (resource $result_id)

Returns the Informix SQL fieldproperties of every field in the query as an associative array.
Properties are encoded as: "SQLTYPE;length;precision;scale;ISNULLABLE" where
SQLTYPE = the Informix type like "SQLVCHAR" etc. and ISNULLABLE = "Y" or "N".

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns an associative array with fieldnames as key and the SQL fieldproperties as data
for a query with result_id. Returns FALSE on errors.

Examples

Example #820 - Informix SQL fieldproperties

<?php

$properties = ifx_fieldproperties($resultid);

if (!isset($properties)) {

 /* ... error ... */

}

foreach ($properties as $fname => $val) {

 echo "$fname:\t property = $val\n";

}

?>

See Also

• ifx_fieldtypes()

ifx_fieldtypes

ifx_fieldtypes -- List of Informix SQL fields

Description

array ifx_fieldtypes (resource $result_id)

Returns an associative array with fieldnames as key and the SQL fieldtypes as data for the
query associated with result_id.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns an associative array with fieldnames as key and the SQL fieldtypes as data for
query with result_id. Returns FALSE on error.

Examples

Example #821 - Fieldnames and SQL fieldtypes

<?php

$types = ifx_fieldtypes($resultid);

if (is_array($types)) {

 foreach ($types as $fname => $val) {

 echo "$fname:\t type = $val\n";

 }

}

?>

See Also

• ifx_fieldproperties()

ifx_free_blob

ifx_free_blob -- Deletes the blob object

Description

bool ifx_free_blob (int $bid)

Deletes the blobobject for the given blob object-id.

Parameters

bid

The BLOB object id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_create_blob()

ifx_free_char

ifx_free_char -- Deletes the char object

Description

bool ifx_free_char (int $bid)

Deletes the charobject for the given char object-id.

Parameters

bid

The char object id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_create_char()

ifx_free_result

ifx_free_result -- Releases resources for the query

Description

bool ifx_free_result (resource $result_id)

Releases resources for the query associated with result_id.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_do()

ifx_get_blob

ifx_get_blob -- Return the content of a blob object

Description

string ifx_get_blob (int $bid)

Returns the content of the blob object.

Parameters

bid

The BLOB object id.

Return Values

The contents of the BLOB as a string, or FALSE on errors.

See Also

• ifx_get_char()

ifx_get_char

ifx_get_char -- Return the content of the char object

Description

string ifx_get_char (int $bid)

Returns the content of the char object.

Parameters

bid

The char object-id.

Return Values

Returns the contents as a string, or FALSE on errors.

See Also

• ifx_get_blob()

ifx_getsqlca

ifx_getsqlca -- Get the contents of sqlca.sqlerrd[0..5] after a query

Description

array ifx_getsqlca (resource $result_id)

Returns a pseudo-row with sqlca.sqlerrd[0] ... sqlca.sqlerrd[5] after the query associated
with result_id.

For inserts, updates and deletes the values returned are those as set by the server after
executing the query. This gives access to the number of affected rows and the serial insert
value. For SELECT s the values are those saved after the PREPARE statement. This
gives access to the *estimated* number of affected rows. The use of this function saves
the overhead of executing a SELECT dbinfo('sqlca.sqlerrdx') query, as it retrieves the
values that were saved by the ifx driver at the appropriate moment.

Parameters

result_id

result_id is a valid result id returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns an associative array with the following entries: sqlerrd0, sqlerrd1, sqlerrd2,
sqlerrd3, sqlerrd4 and sqlerrd5.

Examples

Example #822 - Retrieve Informix sqlca.sqlerrd[x] values

<?php

/* assume the first column of 'sometable' is a serial */

$qid = ifx_query("insert into sometable

 values (0, '2nd column', 'another column') ", $connid);

if (!$qid) {

 /* ... error ... */

}

$sqlca = ifx_getsqlca($qid);

$serial_value = $sqlca["sqlerrd1"];

echo "The serial value of the inserted row is : $serial_value
\n";

?>

ifx_htmltbl_result

ifx_htmltbl_result -- Formats all rows of a query into a HTML table

Description

int ifx_htmltbl_result (resource $result_id [, string $html_table_options])

Formats and prints all rows of the result_id query into a HTML table.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

html_table_options

This optional argument is a string of <table> tag options.

Return Values

Returns the number of fetched rows, or FALSE on errors.

Examples

Example #823 - Informix results as HTML table

<?php

$rid = ifx_prepare ("select * from emp where name like " . $name,

 $connid, IFX_SCROLL);

if (! $rid) {

 /* ... error ... */

}

$rowcount = ifx_affected_rows ($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

if (! ifx_do($rid)) {

 /* ... error ... */

}

ifx_htmltbl_result ($rid, "border=\"2\"");

ifx_free_result($rid);

?>

ifx_nullformat

ifx_nullformat -- Sets the default return value on a fetch row

Description

bool ifx_nullformat (int $mode)

Sets the default return value of a NULL-value on a fetch row.

Parameters

mode

Mode "0" returns "", and mode "1" returns " NULL ".

Return Values

Returns TRUE on success or FALSE on failure.

ifx_num_fields

ifx_num_fields -- Returns the number of columns in the query

Description

int ifx_num_fields (resource $result_id)

After preparing or executing a query, this call gives you the number of columns in the
query.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns the number of columns in query for result_id, or FALSE on errors.

Examples

Example #824 - ifx_num_fields() Example

<?php

$conn_id = ifx_connect("db", "user", "password");

$res_id = ifx_query("select * from systables", $conn_id);

echo ifx_num_fields($res_id);

?>

See Also

• ifx_num_rows()

ifx_num_rows

ifx_num_rows -- Count the rows already fetched from a query

Description

int ifx_num_rows (resource $result_id)

Gives the number of rows fetched so far for a query with result_id after a ifx_query() or
ifx_do() query.

Parameters

result_id

result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type
queries only!).

Return Values

Returns the number of fetched rows or FALSE on errors.

See Also

• ifx_num_fields()

ifx_pconnect

ifx_pconnect -- Open persistent Informix connection

Description

resource ifx_pconnect ([string $database [, string $userid [, string $password]]])

ifx_pconnect() acts very much like ifx_connect() with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host, username and password. If one is found, an identifier for it will
be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use (ifx_close() will not close links
established by ifx_pconnect()).

This type of links is therefore called 'persistent'.

Parameters

All of the arguments are optional, and if they're missing, defaults are taken from values
supplied in php.ini (ifx.default_host for the host (Informix libraries will use
INFORMIXSERVER environment value if not defined), ifx.default_user for user,
ifx.default_password for the password (none if not defined).

database

The database name, as a string.

userid

The username, as a string.

password

The password, as a string.

Return Values

Returns: valid Informix persistent link identifier on success, or FALSE on errors.

See Also

• ifx_connect()

ifx_prepare

ifx_prepare -- Prepare an SQL-statement for execution

Description

resource ifx_prepare (string $query, resource $link_identifier [, int $cursor_def],
mixed $blobidarray)

Prepares a query for later use with ifx_do().

For "select-type" queries a cursor is declared and opened. Non-select queries are
"execute immediate".

For either query type the number of (estimated or real) affected rows is saved for retrieval
by ifx_affected_rows().

If the contents of the TEXT (or BYTE) column allow it, you can also use
ifx_textasvarchar(1) and ifx_byteasvarchar(1). This allows you to treat TEXT (or BYTE)
columns just as if they were ordinary (but long) VARCHAR columns for select queries, and
you don't need to bother with blob id's.

With ifx_textasvarchar(0) or ifx_byteasvarchar(0) (the default situation), select queries will
return BLOB columns as blob id's (integer value). You can get the value of the blob as a
string or file with the blob functions (see below).

Parameters

query

The query string.

link_identifier

The link identifier.

cursor_def

This optional parameter allows you to make this a scroll and/or hold cursor. It's a
bitmask and can be either IFX_SCROLL, IFX_HOLD, or both or'ed together.

blobidarray

If you have BLOB (BYTE or TEXT) columns in the query, you can add a blobidarray
parameter containing the corresponding "blob ids", and you should replace those
columns with a "?" in the query text.

Return Values

Returns a valid result identifier for use by ifx_do(), or FALSE on errors.

See Also

• ifx_do()

ifx_query

ifx_query -- Send Informix query

Description

resource ifx_query (string $query, resource $link_identifier [, int $cursor_type [,
mixed $blobidarray]])

Sends a query to the currently active database on the server that's associated with the
specified link identifier.

For "select-type" queries a cursor is declared and opened. Non-select queries are
"execute immediate".

For either query type the number of (estimated or real) affected rows is saved for retrieval
by ifx_affected_rows().

If the contents of the TEXT (or BYTE) column allow it, you can also use
ifx_textasvarchar(1) and ifx_byteasvarchar(1). This allows you to treat TEXT (or BYTE)
columns just as if they were ordinary (but long) VARCHAR columns for select queries, and
you don't need to bother with blob id's.

With ifx_textasvarchar(0) or ifx_byteasvarchar(0) (the default situation), select queries will
return BLOB columns as blob id's (integer value). You can get the value of the blob as a
string or file with the blob functions (see below).

Parameters

query

The query string.

link_identifier

The link identifier.

cursor_def

This optional parameter allows you to make this a scroll and/or hold cursor. It's a
bitmask and can be either IFX_SCROLL, IFX_HOLD, or both or'ed together. I you omit
this parameter the cursor is a normal sequential cursor.

blobidarray

If you have BLOB (BYTE or TEXT) columns in the query, you can add a blobidarray
parameter containing the corresponding "blob ids", and you should replace those
columns with a "?" in the query text.

Return Values

Returns valid Informix result identifier on success, or FALSE on errors.

Examples

Example #825 - Show all rows of the "orders" table as a HTML table

<?php

ifx_textasvarchar(1); // use "text mode" for blobs

$res_id = ifx_query("select * from orders", $conn_id);

if (! $res_id) {

 printf("Can't select orders : %s\n
%s
\n", ifx_error(),
ifx_errormsg());

 die;

}

ifx_htmltbl_result($res_id, "border=\"1\"");

ifx_free_result($res_id);

?>

Example #826 - Insert some values into the "catalog" table

<?php

// create blob id's for a byte and text column

$textid = ifx_create_blob(0, 0, "Text column in memory");

$byteid = ifx_create_blob(1, 0, "Byte column in memory");

// store blob id's in a blobid array

$blobidarray[] = $textid;

$blobidarray[] = $byteid;

// launch query

$query = "insert into catalog (stock_num, manu_code, " .

 "cat_descr,cat_picture) values(1,'HRO',?,?)";

$res_id = ifx_query($query, $conn_id, $blobidarray);

if (! $res_id) {

 /* ... error ... */

}

// free result id

ifx_free_result($res_id);

?>

See Also

• ifx_connect()

ifx_textasvarchar

ifx_textasvarchar -- Set the default text mode

Description

bool ifx_textasvarchar (int $mode)

Sets the default text mode for all select-queries.

Parameters

mode

Mode "0" will return a blob id, and mode "1" will return a varchar with text content.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_bytesasvarchar()

ifx_update_blob

ifx_update_blob -- Updates the content of the blob object

Description

bool ifx_update_blob (int $bid, string $content)

Updates the content of the blob object for the given blob object bid.

Parameters

bid

A BLOB object identifier.

content

The new data, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_update_char()

ifx_update_char

ifx_update_char -- Updates the content of the char object

Description

bool ifx_update_char (int $bid, string $content)

Updates the content of the char object for the given char object bid.

Parameters

bid

A char object identifier.

content

The new data, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifx_update_blob()

ifxus_close_slob

ifxus_close_slob -- Deletes the slob object

Description

bool ifxus_close_slob (int $bid)

Deletes the slob object on the given slob object-id bid.

Parameters

bid

An existing slob id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifxus_open_slob()

ifxus_create_slob

ifxus_create_slob -- Creates an slob object and opens it

Description

int ifxus_create_slob (int $mode)

Creates an slob object and opens it.

Parameters

mode

A combination of IFX_LO_RDONLY, IFX_LO_WRONLY, IFX_LO_APPEND
IFX_LO_RDWR, IFX_LO_BUFFER, IFX_LO_NOBUFFER.

Return Values

Return the new slob object-id, or FALSE on errors.

See Also

• ifxus_close_slob()
• ifxus_free_slob()

ifxus_free_slob

ifxus_free_slob -- Deletes the slob object

Description

bool ifxus_free_slob (int $bid)

Deletes the slob object.

Parameters

bid

An existing slob id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ifxus_close_slob()

ifxus_open_slob

ifxus_open_slob -- Opens an slob object

Description

int ifxus_open_slob (int $bid, int $mode)

Opens an slob object. bid should be an existing slob id.

Parameters

bid

An existing slob id.

mode

A combination of IFX_LO_RDONLY, IFX_LO_WRONLY, IFX_LO_APPEND
IFX_LO_RDWR, IFX_LO_BUFFER, IFX_LO_NOBUFFER.

Return Values

Returns the new slob object-id, or FALSE on errors.

See Also

• ifxus_close_slob()
• ifxus_free_slob()

ifxus_read_slob

ifxus_read_slob -- Reads nbytes of the slob object

Description

string ifxus_read_slob (int $bid, int $nbytes)

Reads nbytes of the slob object.

Parameters

bid

An existing slob id.

nbytes

The number of bytes to read.

Return Values

Returns the slob contents as a string, or FALSE on errors.

See Also

• ifxus_write_slob()

ifxus_seek_slob

ifxus_seek_slob -- Sets the current file or seek position

Description

int ifxus_seek_slob (int $bid, int $mode, int $offset)

Sets the current file or seek position of an open slob object.

Parameters

bid

An existing slob id.

mode

0 = LO_SEEK_SET, 1 = LO_SEEK_CUR, 2 = LO_SEEK_END.

offset

A byte offset.

Return Values

Returns the seek position as an integer, or FALSE on errors.

See Also

• ifxus_tell_slob()

ifxus_tell_slob

ifxus_tell_slob -- Returns the current file or seek position

Description

int ifxus_tell_slob (int $bid)

Returns the current file or seek position of an open slob object

Parameters

bid

An existing slob id.

Return Values

Returns the seek position as an integer, or FALSE on errors.

See Also

• ifxus_seek_slob()

ifxus_write_slob

ifxus_write_slob -- Writes a string into the slob object

Description

int ifxus_write_slob (int $bid, string $content)

Writes a string into the slob object.

Parameters

bid

An existing slob id.

content

The content to write, as a string.

Return Values

Returns the bytes written as an integer, or FALSE on errors.

See Also

• ifxus_read_slob()

IBM DB2, Cloudscape and Apache Derby

Introduction

These functions enable you to access IBM DB2 Universal Database, IBM Cloudscape, and
Apache Derby databases using the DB2 Call Level Interface (DB2 CLI).

Installing/Configuring

Requirements

To connect to IBM DB2 Universal Database for Linux, UNIX, and Windows, or IBM
Cloudscape, or Apache Derby, you must install an IBM DB2 Universal Database client on
the same computer on which you are running PHP. The extension has been developed
and tested with DB2 Version 8.2.

To connect to IBM DB2 Universal Database for z/OS or iSeries, you also require IBM DB2
Connect or the equivalent DRDA gateway software.

Requirements on Linux or Unix

The user invoking the PHP executable or SAPI must specify the DB2 instance before
accessing these functions. You can set the name of the DB2 instance in php.ini using the
ibm_db2.instance_name configuration option, or you can source the DB2 instance profile
before invoking the PHP executable.

If you created a DB2 instance named db2inst1 in /home/db2inst1/, for example, you can
add the following line to php.ini:
ibm_db2.instance_name=db2inst1
If you do not set this option in php.ini, you must issue the following command to modify
your environment variables to enable access to DB2:
bash$ source /home/db2inst1/sqllib/db2profile
To enable your PHP-enabled Web server to access these functions, you must either set
the ibm_db2.instance_name configuration option in php.ini, or source the DB2 instance
environment in your Web server start script (typically /etc/init.d/httpd or /etc/init.d/apache).

Installation

To build the ibm_db2 extension, the DB2 application development header files and
libraries must be installed on your system. DB2 does not install these by default, so you
may have to return to your DB2 installer and add this option. The header files are included
with the DB2 Application Development Client freely available for download from the IBM
DB2 Universal Database » support site.

If you add the DB2 application development header files and libraries to a Linux or Unix
operating system on which DB2 was already installed, you must issue the command
db2iupdt -e to update the symbolic links to the header files and libraries in your DB2
instances.

ibm_db2 is a » PECL extension, so follow the instructions in Installation of PECL
extensions to install the ibm_db2 extension for PHP. Issue the configure command to point
to the location of your DB2 header files and libraries as follows:
bash$./configure --with-IBM_DB2=/path/to/DB2
The configure command defaults to /opt/IBM/db2/V8.1.

http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html
http://pecl.php.net/

Note

Note for IIS users

If you are using the ibm_db2 driver with Microsoft Internet Information Server (IIS) you
may have to do the following:

• Install DB2 with extended operating system security.
• Add the PHP binary path to the PATH system environment variable (default

C:\php\).
• Create another system environment variable equal to the path where the PHP.INI

file is located (eg: PHPRC = C:\php\).
• Add the IUSR_COMPUTERNAME to the DB2USERS group.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

ibm_db2 Configure Options

Name Default Changeable Changelog

ibm_db2.binmode "1" PHP_INI_ALL

ibm_db2.i5_allow_co
mmit

"0" PHP_INI_SYSTEM Available since
ibm_db2 1.4.9.

ibm_db2.i5_dbcs_allo
c

"0" PHP_INI_SYSTEM Available since
ibm_db2 1.5.0.

ibm_db2.instance_na
me

NULL PHP_INI_SYSTEM Available since
ibm_db2 1.0.2.

ibm_db2.i5_all_pcon
nect

"0" PHP_INI_SYSTEM Available since
ibm_db2 1.6.5.

Here's a short explanation of the configuration directives.

ibm_db2.binmode integer

This option controls the mode used for converting to and from binary data in the PHP
application.

• 1 (DB2_BINARY)

• 2 (DB2_CONVERT)

• 3 (DB2_PASSTHRU)

ibm_db2.i5_allow_commit integer
This option controls the commit mode used for i5 schema collections in the PHP
application.

• 0 no commit (see i5_commit for override)

• 1 allow commit (see i5_commit for override)

ibm_db2.i5_dbcs_alloc integer
This option controls the internal ibm_db2 allocation scheme for large DBCS column
buffers.

• 0 no expanded allocations (see i5_dbcs_alloc for override)

• 1 use expanded allocations (see i5_dbcs_alloc for override)

ibm_db2.instance_name string
On Linux and UNIX operating systems, this option defines the name of the instance to
use for cataloged database connections. If this option is set, its value overrides the
DB2INSTANCE environment variable setting. This option is ignored on Windows
operating systems.

ibm_db2.i5_all_pconnect integer
This option overrides i5 db2_connect full open and close in the PHP application. When
ibm_db2.i5_all_pconnect = 1, all db2 connections become persistent (db2_pconnect).
On i5/OS, db2_pconnect performs dramatically better with lower machine stress over
db2_connect. This is a convenience override of db2_connect to evoke db2_pconnect
without PHP source code changes.

• 0 db2_connect default full open and close

• 1 db2_connect override to db2_pconnect for persistent connection only

Resource Types

The ibm_db2 extension returns connection resources, statement resources, and result set
resources.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

DB2_BINARY (integer)
Specifies that binary data shall be returned as is. This is the default mode.

DB2_CONVERT (integer)
Specifies that binary data shall be converted to a hexadecimal encoding and returned
as an ASCII string.

DB2_PASSTHRU (integer)
Specifies that binary data shall be converted to a NULL value.

DB2_SCROLLABLE (integer)
Specifies a scrollable cursor for a statement resource. This mode enables random
access to rows in a result set, but currently is supported only by IBM DB2 Universal
Database.

DB2_FORWARD_ONLY (integer)
Specifies a forward-only cursor for a statement resource. This is the default cursor type
and is supported on all database servers.

DB2_PARAM_IN (integer)
Specifies the PHP variable should be bound as an IN parameter for a stored
procedure.

DB2_PARAM_OUT (integer)
Specifies the PHP variable should be bound as an OUT parameter for a stored
procedure.

DB2_PARAM_INOUT (integer)
Specifies the PHP variable should be bound as an INOUT parameter for a stored
procedure.

DB2_PARAM_FILE (integer)
Specifies that the column should be bound directly to a file for input.

DB2_AUTOCOMMIT_ON (integer)
Specifies that autocommit should be turned on.

DB2_AUTOCOMMIT_OFF (integer)
Specifies that autocommit should be turned off.

DB2_DOUBLE (integer)
Specifies that the variable should be bound as a DOUBLE, FLOAT, or REAL data type.

DB2_LONG (integer)
Specifies that the variable should be bound as a SMALLINT, INTEGER, or BIGINT

data type.

DB2_CHAR (integer)
Specifies that the variable should be bound as a CHAR or VARCHAR data type.

DB2_CASE_NATURAL (integer)
Specifies that column names will be returned in their natural case.

DB2_CASE_LOWER (integer)
Specifies that column names will be returned in lower case.

DB2_CASE_UPPER (integer)
Specifies that column names will be returned in upper case.

DB2_DEFERRED_PREPARE_ON (integer)
Specifies that deferred prepare should be turned on for the specified statement
resource.

DB2_DEFERRED_PREPARE_OFF (integer)
Specifies that deferred prepare should be turned off for the specified statement
resource.

IBM DB2 Functions

db2_autocommit

db2_autocommit -- Returns or sets the AUTOCOMMIT state for a database connection

Description

mixed db2_autocommit (resource $connection [, bool $value])

Sets or gets the AUTOCOMMIT behavior of the specified connection resource.

Parameters

connection

A valid database connection resource variable as returned from db2_connect() or
db2_pconnect().

value

One of the following constants:
DB2_AUTOCOMMIT_OFF

Turns AUTOCOMMIT off.

DB2_AUTOCOMMIT_ON
Turns AUTOCOMMIT on.

Return Values

When db2_autocommit() receives only the connection parameter, it returns the current
state of AUTOCOMMIT for the requested connection as an integer value. A value of 0
indicates that AUTOCOMMIT is off, while a value of 1 indicates that AUTOCOMMIT is on.

When db2_autocommit() receives both the connection parameter and autocommit
parameter, it attempts to set the AUTOCOMMIT state of the requested connection to the
corresponding state. Returns TRUE on success or FALSE on failure.

Examples

Example #827 - Retrieving the AUTOCOMMIT value for a connection

In the following example, a connection which has been created with AUTOCOMMIT
turned off is tested with the db2_autocommit() function.

<?php

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

$ac = db2_autocommit($conn);

if ($ac == 0) {

 print "$ac -- AUTOCOMMIT is off.";

} else {

 print "$ac -- AUTOCOMMIT is on.";

}

?>

The above example will output:

0 -- AUTOCOMMIT is off.

Example #828 - Setting the AUTOCOMMIT value for a connection

In the following example, a connection which was initially created with AUTOCOMMIT
turned off has its behavior changed to turn AUTOCOMMIT on.

<?php

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

// Turn AUTOCOMMIT on

$rc = db2_autocommit($conn, DB2_AUTOCOMMIT_ON);

if ($rc) {

 print "Turning AUTOCOMMIT on succeeded.\n";

}

// Check AUTOCOMMIT state

$ac = db2_autocommit($conn);

if ($ac == 0) {

 print "$ac -- AUTOCOMMIT is off.";

} else {

 print "$ac -- AUTOCOMMIT is on.";

}

?>

The above example will output:

Turning AUTOCOMMIT on succeeded.

1 -- AUTOCOMMIT is on.

See Also

• db2_connect()
• db2_pconnect()

db2_bind_param

db2_bind_param -- Binds a PHP variable to an SQL statement parameter

Description

bool db2_bind_param (resource $stmt, int $parameter-number, string $variable-name [,
int $parameter-type [, int $data-type [, int $precision [, int $scale]]]])

Binds a PHP variable to an SQL statement parameter in a statement resource returned by
db2_prepare(). This function gives you more control over the parameter type, data type,
precision, and scale for the parameter than simply passing the variable as part of the
optional input array to db2_execute().

Parameters

stmt

A prepared statement returned from db2_prepare().

parameter-number

Specifies the 1-indexed position of the parameter in the prepared statement.

variable-name

A string specifying the name of the PHP variable to bind to the parameter specified by
parameter-number.

parameter-type

A constant specifying whether the PHP variable should be bound to the SQL
parameter as an input parameter (DB2_PARAM_IN), an output parameter (
DB2_PARAM_OUT), or as a parameter that accepts input and returns output (
DB2_PARAM_INOUT). To avoid memory overhead, you can also specify
DB2_PARAM_FILE to bind the PHP variable to the name of a file that contains large
object (BLOB, CLOB, or DBCLOB) data.

data-type

A constant specifying the SQL data type that the PHP variable should be bound as:
one of DB2_BINARY, DB2_CHAR, DB2_DOUBLE, or DB2_LONG.

precision

Specifies the precision with which the variable should be bound to the database. This
parameter can also be used for retrieving XML output values from stored procedures.
A non-negative value specifies the maximum size of the XML data that will be retrieved
from the database. If this parameter is not used, a default of 1MB will be assumed for
retrieving the XML output value from the stored procedure.

scale

Specifies the scale with which the variable should be bound to the database.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #829 - Binding PHP variables to a prepared statement

The SQL statement in the following example uses two input parameters in the WHERE
clause. We call db2_bind_param() to bind two PHP variables to the corresponding
SQL parameters. Notice that the PHP variables do not have to be declared or
assigned before the call to db2_bind_param(); in the example, $lower_limit is assigned
a value before the call to db2_bind_param(), but $upper_limit is assigned a value after
the call to db2_bind_param(). The variables must be bound and, for parameters that
accept input, must have any value assigned, before calling db2_execute().

<?php

$sql = 'SELECT name, breed, weight FROM animals

 WHERE weight > ? AND weight < ?';

$conn = db2_connect($database, $user, $password);

$stmt = db2_prepare($conn, $sql);

// We can declare the variable before calling db2_bind_param()

$lower_limit = 1;

db2_bind_param($stmt, 1, "lower_limit", DB2_PARAM_IN);

db2_bind_param($stmt, 2, "upper_limit", DB2_PARAM_IN);

// We can also declare the variable after calling db2_bind_param()

$upper_limit = 15.0;

if (db2_execute($stmt)) {

 while ($row = db2_fetch_array($stmt)) {

 print "{$row[0]}, {$row[1]}, {$row[2]}\n";

 }

}

?>

The above example will output:

Pook, cat, 3.2

Rickety Ride, goat, 9.7

Peaches, dog, 12.3

Example #830 - Calling stored procedures with IN and OUT parameters

The stored procedure match_animal in the following example accepts three different
parameters:

• an input (IN) parameter that accepts the name of the first animal as input

• an input-output (INOUT) parameter that accepts the name of the second animal as
input and returns the string TRUE if an animal in the database matches that name

• an output (OUT) parameter that returns the sum of the weight of the two identified
animals

In addition, the stored procedure returns a result set consisting of the animals listed in
alphabetic order starting at the animal corresponding to the input value of the first
parameter and ending at the animal corresponding to the input value of the second
parameter.

<?php

$sql = 'CALL match_animal(?, ?, ?)';

$conn = db2_connect($database, $user, $password);

$stmt = db2_prepare($conn, $sql);

$name = "Peaches";

$second_name = "Rickety Ride";

$weight = 0;

db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

db2_bind_param($stmt, 2, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 3, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$name} 2: {$second_name} 3: {$weight}\n\n";

if (db2_execute($stmt)) {

 print "Values of bound parameters _after_ CALL:\n";

 print " 1: {$name} 2: {$second_name} 3: {$weight}\n\n";

 print "Results:\n";

 while ($row = db2_fetch_array($stmt)) {

 print " {$row[0]}, {$row[1]}, {$row[2]}\n";

 }

}

?>

The above example will output:

Values of bound parameters _before_ CALL:

 1: Peaches 2: Rickety Ride 3: 0

Values of bound parameters _after_ CALL:

 1: Peaches 2: TRUE 3: 22

Results:

 Peaches, dog, 12.3

 Pook, cat, 3.2

 Rickety Ride, goat, 9.7

Example #831 - Inserting a binary large object (BLOB) directly from a file

The data for large objects are typically stored in files, such as XML documents or audio
files. Rather than reading an entire file into a PHP variable, and then binding that PHP

variable into an SQL statement, you can avoid some memory overhead by binding the
file directly to the input parameter of your SQL statement. The following example
demonstrates how to bind a file directly into a BLOB column.

<?php

$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES
(?)");

$picture = "/opt/albums/spook/grooming.jpg";

$rc = db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

?>

See Also

• db2_execute()
• db2_prepare()

db2_client_info

db2_client_info -- Returns an object with properties that describe the DB2 database client

Description

object db2_client_info (resource $connection)

This function returns an object with read-only properties that return information about the
DB2 database client. The following table lists the DB2 client properties:

DB2 client properties

Property name Return type Description

APPL_CODEPAGE int The application code page.

CONN_CODEPAGE int The code page for the
current connection.

DATA_SOURCE_NAME string The data source name
(DSN) used to create the
current connection to the
database.

DRIVER_NAME string The name of the library that
implements the DB2 Call
Level Interface (CLI)
specification.

DRIVER_ODBC_VER string The version of ODBC that
the DB2 client supports. This
returns a string "MM.mm"
where MM is the major
version and mm is the minor
version. The DB2 client
always returns "03.51".

DRIVER_VER string The version of the client, in
the form of a string
"MM.mm.uuuu" where MM is
the major version, mm is the
minor version, and uuuu is
the update. For example,
"08.02.0001" represents
major version 8, minor
version 2, update 1.

ODBC_SQL_CONFORMAN string

CE The level of ODBC SQL
grammar supported by the
client:
MINIMUM

Supports the minimum
ODBC SQL grammar.

CORE
Supports the core ODBC
SQL grammar.

EXTENDED
Supports extended
ODBC SQL grammar.

ODBC_VER string The version of ODBC that
the ODBC driver manager
supports. This returns a
string "MM.mm.rrrr" where
MM is the major version, mm
is the minor version, and rrrr
is the release. The DB2
client always returns
"03.01.0000".

Parameters

connection

Specifies an active DB2 client connection.

Return Values

Returns an object on a successful call. Returns FALSE on failure.

Examples

Example #832 - A db2_client_info() example

To retrieve information about the client, you must pass a valid database connection
resource to db2_client_info().

<?php

$conn = db2_connect('SAMPLE', 'db2inst1', 'ibmdb2');

$client = db2_client_info($conn);

if ($client) {

 echo "DRIVER_NAME: "; var_dump($client->DRIVER_NAME);

 echo "DRIVER_VER: "; var_dump($client->DRIVER_VER);

 echo "DATA_SOURCE_NAME: "; var_dump($client->DATA_SOURCE_NAME);

 echo "DRIVER_ODBC_VER: "; var_dump($client->DRIVER_ODBC_VER);

 echo "ODBC_VER: "; var_dump($client->ODBC_VER);

 echo "ODBC_SQL_CONFORMANCE: "; var_dump($client->ODBC_SQL_CONFORMANCE
);

 echo "APPL_CODEPAGE: "; var_dump($client->APPL_CODEPAGE);

 echo "CONN_CODEPAGE: "; var_dump($client->CONN_CODEPAGE);

}

else {

 echo "Error retrieving client information.

 Perhaps your database connection was invalid.";

}

db2_close($conn);

?>

The above example will output:

DRIVER_NAME: string(8) "libdb2.a"

DRIVER_VER: string(10) "08.02.0001"

DATA_SOURCE_NAME: string(6) "SAMPLE"

DRIVER_ODBC_VER: string(5) "03.51"

ODBC_VER: string(10) "03.01.0000"

ODBC_SQL_CONFORMANCE: string(8) "EXTENDED"

APPL_CODEPAGE: int(819)

CONN_CODEPAGE: int(819)

See Also

• db2_server_info()

db2_close

db2_close -- Closes a database connection

Description

bool db2_close (resource $connection)

This function closes a DB2 client connection created with db2_connect() and returns the
corresponding resources to the database server.

If you attempt to close a persistent DB2 client connection created with db2_pconnect(), the
close request is ignored and the persistent DB2 client connection remains available for the
next caller.

Parameters

connection

Specifies an active DB2 client connection.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #833 - Closing a connection

The following example demonstrates a successful attempt to close a connection to an
IBM DB2, Cloudscape, or Apache Derby database.

<?php

$conn = db2_connect('SAMPLE', 'db2inst1', 'ibmdb2');

$rc = db2_close($conn);

if ($rc) {

 echo "Connection was successfully closed.";

}

?>

The above example will output:

Connection was successfully closed.

See Also

• db2_connect()
• db2_pconnect()

db2_column_privileges

db2_column_privileges -- Returns a result set listing the columns and associated privileges
for a table

Description

resource db2_column_privileges (resource $connection [, string $qualifier [, string $
schema [, string $table-name [, string $column-name]]]])

Returns a result set listing the columns and associated privileges for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. To match all schemas, pass NULL or an empty
string.

table-name

The name of the table or view. To match all tables in the database, pass NULL or an
empty string.

column-name

The name of the column. To match all columns in the table, pass NULL or an empty
string.

Return Values

Returns a statement resource with a result set containing rows describing the column
privileges for columns matching the specified parameters. The rows are composed of the
following columns:

Column name Description

TABLE_CAT Name of the catalog. The value is NULL if
this table does not have catalogs.

TABLE_SCHEM Name of the schema.

TABLE_NAME Name of the table or view.

COLUMN_NAME Name of the column.

GRANTOR Authorization ID of the user who granted the
privilege.

GRANTEE Authorization ID of the user to whom the
privilege was granted.

PRIVILEGE The privilege for the column.

IS_GRANTABLE Whether the GRANTEE is permitted to grant
this privilege to other users.

See Also

• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_columns

db2_columns -- Returns a result set listing the columns and associated metadata for a
table

Description

resource db2_columns (resource $connection [, string $qualifier [, string $schema [,
string $table-name [, string $column-name]]]])

Returns a result set listing the columns and associated metadata for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. To match all schemas, pass '%'.

table-name

The name of the table or view. To match all tables in the database, pass NULL or an
empty string.

column-name

The name of the column. To match all columns in the table, pass NULL or an empty
string.

Return Values

Returns a statement resource with a result set containing rows describing the columns
matching the specified parameters. The rows are composed of the following columns:

Column name Description

TABLE_CAT Name of the catalog. The value is NULL if
this table does not have catalogs.

TABLE_SCHEM Name of the schema.

TABLE_NAME Name of the table or view.

COLUMN_NAME Name of the column.

DATA_TYPE The SQL data type for the column
represented as an integer value.

TYPE_NAME A string representing the data type for the
column.

COLUMN_SIZE An integer value representing the size of the
column.

BUFFER_LENGTH Maximum number of bytes necessary to
store data from this column.

DECIMAL_DIGITS The scale of the column, or NULL where
scale is not applicable.

NUM_PREC_RADIX An integer value of either 10 (representing
an exact numeric data type), 2 (representing
an approximate numeric data type), or
NULL (representing a data type for which
radix is not applicable).

NULLABLE An integer value representing whether the
column is nullable or not.

REMARKS Description of the column.

COLUMN_DEF Default value for the column.

SQL_DATA_TYPE An integer value representing the size of the
column.

SQL_DATETIME_SUB Returns an integer value representing a
datetime subtype code, or NULL for SQL
data types to which this does not apply.

CHAR_OCTET_LENGTH Maximum length in octets for a character
data type column, which matches
COLUMN_SIZE for single-byte character set
data, or NULL for non-character data types.

ORDINAL_POSITION The 1-indexed position of the column in the
table.

IS_NULLABLE A string value where 'YES' means that the
column is nullable and 'NO' means that the
column is not nullable.

See Also

• db2_column_privileges()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_commit

db2_commit -- Commits a transaction

Description

bool db2_commit (resource $connection)

Commits an in-progress transaction on the specified connection resource and begins a
new transaction. PHP applications normally default to AUTOCOMMIT mode, so
db2_commit() is not necessary unless AUTOCOMMIT has been turned off for the
connection resource.

Note

If the specified connection resource is a persistent connection, all transactions in
progress for all applications using that persistent connection will be committed. For this
reason, persistent connections are not recommended for use in applications that
require transactions.

Parameters

connection

A valid database connection resource variable as returned from db2_connect() or
db2_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• db2_autocommit()
• db2_rollback()

db2_conn_error

db2_conn_error -- Returns a string containing the SQLSTATE returned by the last
connection attempt

Description

string db2_conn_error ([resource $connection])

db2_conn_error() returns an SQLSTATE value representing the reason the last attempt to
connect to a database failed. As db2_connect() returns FALSE in the event of a failed
connection attempt, you do not pass any parameters to db2_conn_error() to retrieve the
SQLSTATE value.

If, however, the connection was successful but becomes invalid over time, you can pass
the connection parameter to retrieve the SQLSTATE value for a specific connection.

To learn what the SQLSTATE value means, you can issue the following command at a
DB2 Command Line Processor prompt: db2 '? sqlstate-value '. You can also call
db2_conn_errormsg() to retrieve an explicit error message and the associated SQLCODE
value.

Parameters

connection

A connection resource associated with a connection that initially succeeded, but which
over time became invalid.

Return Values

Returns the SQLSTATE value resulting from a failed connection attempt. Returns an
empty string if there is no error associated with the last connection attempt.

Examples

Example #834 - Retrieving an SQLSTATE value for a failed connection attempt

The following example demonstrates how to return an SQLSTATE value after
deliberately passing invalid parameters to db2_connect().

<?php

$conn = db2_connect('badname', 'baduser', 'badpassword');

if (!$conn) {

 print "SQLSTATE value: " . db2_conn_error();

}

?>

The above example will output:

SQLSTATE value: 08001

See Also

• db2_conn_errormsg()
• db2_connect()
• db2_stmt_error()
• db2_stmt_errormsg()

db2_conn_errormsg

db2_conn_errormsg -- Returns the last connection error message and SQLCODE value

Description

string db2_conn_errormsg ([resource $connection])

db2_conn_errormsg() returns an error message and SQLCODE value representing the
reason the last database connection attempt failed. As db2_connect() returns FALSE in
the event of a failed connection attempt, do not pass any parameters to
db2_conn_errormsg() to retrieve the associated error message and SQLCODE value.

If, however, the connection was successful but becomes invalid over time, you can pass
the connection parameter to retrieve the associated error message and SQLCODE value
for a specific connection.

Parameters

connection

A connection resource associated with a connection that initially succeeded, but which
over time became invalid.

Return Values

Returns a string containing the error message and SQLCODE value resulting from a failed
connection attempt. If there is no error associated with the last connection attempt,
db2_conn_errormsg() returns an empty string.

Examples

Example #835 - Retrieving the error message returned by a failed connection
attempt

The following example demonstrates how to return an error message and SQLCODE
value after deliberately passing invalid parameters to db2_connect().

<?php

$conn = db2_connect('badname', 'baduser', 'badpassword');

if (!$conn) {

 print db2_conn_errormsg();

}

?>

The above example will output:

[IBM][CLI Driver] SQL1013N The database alias name

or database name "BADNAME" could not be found. SQLSTATE=42705

SQLCODE=-1013

See Also

• db2_conn_error()
• db2_connect()
• db2_stmt_error()
• db2_stmt_errormsg()

db2_connect

db2_connect -- Returns a connection to a database

Description

resource db2_connect (string $database, string $username, string $password [, array $
options])

Creates a new connection to an IBM DB2 Universal Database, IBM Cloudscape, or
Apache Derby database.

Parameters

database

For a cataloged connection to a database, database represents the database alias in
the DB2 client catalog. For an uncataloged connection to a database, database
represents a complete connection string in the following format: DATABASE= database
;HOSTNAME= hostname;PORT= port;PROTOCOL=TCPIP;UID= username;PWD= password;
where the parameters represent the following values:
database

The name of the database.

hostname

The hostname or IP address of the database server.

port

The TCP/IP port on which the database is listening for requests.

username

The username with which you are connecting to the database.

password

The password with which you are connecting to the database.

username

The username with which you are connecting to the database. For uncataloged
connections, you must pass a NULL value or empty string.

password

The password with which you are connecting to the database. For uncataloged
connections, you must pass a NULL value or empty string.

options

An associative array of connection options that affect the behavior of the connection,
where valid array keys include:
autocommit

Passing the DB2_AUTOCOMMIT_ON value turns autocommit on for this
connection handle. Passing the DB2_AUTOCOMMIT_OFF value turns autocommit
off for this connection handle.

DB2_ATTR_CASE

Passing the DB2_CASE_NATURAL value specifies that column names are
returned in natural case. Passing the DB2_CASE_LOWER value specifies that
column names are returned in lower case. Passing the DB2_CASE_UPPER value
specifies that column names are returned in upper case.

CURSOR

Passing the DB2_FORWARD_ONLY value specifies a forward-only cursor for a
statement resource. This is the default cursor type and is supported on all
database servers. Passing the DB2_SCROLLABLE value specifies a scrollable
cursor for a statement resource. This mode enables random access to rows in a
result set, but currently is supported only by IBM DB2 Universal Database.

The following new i5/OS options are available as of ibm_db2 version 1.5.1. Note: prior
versions of ibm_db2 do not support these new i5 options.
i5_lib

A character value that indicates the default library that will be used for resolving
unqualified file references. This is not valid if the connection is using system
naming mode.

i5_naming

DB2_I5_NAMING_ON value turns on DB2 UDB CLI iSeries system naming mode.
Files are qualified using the slash (/) delimiter. Unqualified files are resolved using
the library list for the job. DB2_I5_NAMING_OFF value turns off DB2 UDB CLI
default naming mode, which is SQL naming. Files are qualified using the period (.)
delimiter. Unqualified files are resolved using either the default library or the current
user ID.

i5_commit

The i5_commit attribute should be set before the db2_connect(). If the value is
changed after the connection has been established, and the connection is to a
remote data source, the change does not take effect until the next successful
db2_connect() for the connection handle. Note: php.ini setting
ibm_db2.i5_allow_commit ==0 or DB2_I5_TXN_NO_COMMIT is the default, but
may be overridden with the i5_commit option. DB2_I5_TXN_NO_COMMIT -
Commitment control is not used. DB2_I5_TXN_READ_UNCOMMITTED - Dirty
reads, nonrepeatable reads, and phantoms are possible.
DB2_I5_TXN_READ_COMMITTED - Dirty reads are not possible. Nonrepeatable
reads, and phantoms are possible. DB2_I5_TXN_REPEATABLE_READ - Dirty
reads and nonrepeatable reads are not possible. Phantoms are possible.
DB2_I5_TXN_SERIALIZABLE - Transactions are serializable. Dirty reads,
non-repeatable reads, and phantoms are not possible

i5_query_optimize

DB2_FIRST_IO All queries are optimized with the goal of returning the first page of
output as fast as possible. This goal works well when the output is controlled by a
user who is most likely to cancel the query after viewing the first page of output
data. Queries coded with an OPTIMIZE FOR nnn ROWS clause honor the goal
specified by the clause. DB2_ALL_IO All queries are optimized with the goal of

running the entire query to completion in the shortest amount of elapsed time. This
is a good option when the output of a query is being written to a file or report, or the
interface is queuing the output data. Queries coded with an OPTIMIZE FOR nnn
ROWS clause honor the goal specified by the clause. This is the default.

i5_dbcs_alloc

DB2_I5_DBCS_ALLOC_ON value turns on DB2 6X allocation scheme for DBCS
translation column size growth. DB2_I5_DBCS_ALLOC_OFF value turns off DB2
6X allocation scheme for DBCS translation column size growth. Note: php.ini
setting ibm_db2.i5_dbcs_alloc ==0 or DB2_I5_DBCS_ALLOC_OFF is the default,
but may be overridden with the i5_dbcs_alloc option.

i5_date_fmt

SQL_FMT_ISO - The International Organization for Standardization (ISO) date
format yyyy-mm-dd is used. This is the default. DB2_I5_FMT_USA - The United
States date format mm/dd/yyyy is used. DB2_I5_FMT_EUR - The European date
format dd.mm.yyyy is used. DB2_I5_FMT_JIS - The Japanese Industrial Standard
date format yyyy-mm-dd is used. DB2_I5_FMT_MDY - The date format
mm/dd/yyyy is used. DB2_I5_FMT_DMY - The date format dd/mm/yyyy is used.
DB2_I5_FMT_YMD - The date format yy/mm/dd is used. DB2_I5_FMT_JUL - The
Julian date format yy/ddd is used. DB2_I5_FMT_JOB - The job default is used.

i5_date_sep

DB2_I5_SEP_SLASH - A slash (/) is used as the date separator. This is the
default. DB2_I5_SEP_DASH - A dash (-) is used as the date separator.
DB2_I5_SEP_PERIOD - A period (.) is used as the date separator.
DB2_I5_SEP_COMMA - A comma (,) is used as the date separator.
DB2_I5_SEP_BLANK - A blank is used as the date separator. DB2_I5_SEP_JOB -
The job default is used

i5_time_fmt

DB2_I5_FMT_ISO - The International Organization for Standardization (ISO) time
format hh.mm.ss is used. This is the default. DB2_I5_FMT_USA - The United
States time format hh:mmxx is used, where xx is AM or PM. DB2_I5_FMT_EUR -
The European time format hh.mm.ss is used. DB2_I5_FMT_JIS - The Japanese
Industrial Standard time format hh:mm:ss is used. DB2_I5_FMT_HMS - The
hh:mm:ss format is used.

i5_time_sep

DB2_I5_SEP_COLON - A colon (:) is used as the time separator. This is the
default. DB2_I5_SEP_PERIOD - A period (.) is used as the time separator.
DB2_I5_SEP_COMMA - A comma (,) is used as the time separator.
DB2_I5_SEP_BLANK - A blank is used as the time separator. DB2_I5_SEP_JOB -
The job default is used.

i5_decimal_sep

DB2_I5_SEP_PERIOD - A period (.) is used as the decimal separator. This is the
default. DB2_I5_SEP_COMMA - A comma (,) is used as the decimal separator.
DB2_I5_SEP_JOB - The job default is used.

Return Values

Returns a connection handle resource if the connection attempt is successful. If the
connection attempt fails, db2_connect() returns FALSE.

Examples

Example #836 - Creating a cataloged connection

Cataloged connections require you to have previously cataloged the target database
through the DB2 Command Line Processor (CLP) or DB2 Configuration Assistant.

<?php

$database = 'SAMPLE';

$user = 'db2inst1';

$password = 'ibmdb2';

$conn = db2_connect($database, $user, $password);

if ($conn) {

 echo "Connection succeeded.";

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

The above example will output:

Connection succeeded.

Example #837 - Creating an uncataloged connection

An uncataloged connection enables you to dynamically connect to a database.

<?php

$database = 'SAMPLE';

$user = 'db2inst1';

$password = 'ibmdb2';

$hostname = 'localhost';

$port = 50000;

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;" .

 "HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$password;";

$conn = db2_connect($conn_string, '', '');

if ($conn) {

 echo "Connection succeeded.";

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

The above example will output:

Connection succeeded.

Example #838 - Creating a connection with autocommit off by default

Passing an array of options to db2_connect() enables you to modify the default
behavior of the connection handle.

<?php

$database = 'SAMPLE';

$user = 'db2inst1';

$password = 'ibmdb2';

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

if ($conn) {

 echo "Connection succeeded.\n";

 if (db2_autocommit($conn)) {

 echo "Autocommit is on.\n";

 }

 else {

 echo "Autocommit is off.\n";

 }

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

The above example will output:

Connection succeeded.

Autocommit is off.

Example #839 - i5/OS best performance

To achieve best performance for your i5/OS ibm_db2 1.5.1 PHP application use the
default host, userid, and password for your db2_connect().

<?php

 $library = "ADC";

 $i5 = db2_connect("", "", "", array("i5_lib"=>"qsys2"));

 $result = db2_exec($i5,

 "select * from systables where table_schema = '$library'");

 while ($row = db2_fetch_both($result)) {

 echo $row['TABLE_NAME']."</br>";

 }

 db2_close($i5);

?>

The above example will output:

ANIMALS

NAMES

PICTURES

See Also

• db2_close()
• db2_pconnect()

db2_cursor_type

db2_cursor_type -- Returns the cursor type used by a statement resource

Description

int db2_cursor_type (resource $stmt)

Returns the cursor type used by a statement resource. Use this to determine if you are
working with a forward-only cursor or scrollable cursor.

Parameters

stmt

A valid statement resource.

Return Values

Returns either DB2_FORWARD_ONLY if the statement resource uses a forward-only
cursor or DB2_SCROLLABLE if the statement resource uses a scrollable cursor.

See Also

• db2_prepare()

db2_escape_string

db2_escape_string -- Used to escape certain characters

Description

string db2_escape_string (string $string_literal)

Prepends backslashes to special characters in the string argument.

Parameters

string_literal

The string that contains special characters that need to be modified. Characters that
are prepended with a backslash are \x00, \n, \r, \, ', " and \x1a.

Return Values

Returns string_literal with the special characters noted above prepended with
backslashes.

Examples

Example #840 - A db2_escape_string() example

Result of using the db2_escape_string() function

<?php

$conn = db2_connect($database, $user, $password);

if ($conn) {

 $str[0] = "All characters: \x00 , \n , \r , \ , ' , \" , \x1a .";

 $str[1] = "Backslash (\). Single quote ('). Double quote (\")";

 $str[2] = "The NULL character \0 must be quoted as well";

 $str[3] = "Intersting characters: \x1a , \x00 .";

 $str[4] = "Nothing to quote";

 $str[5] = 200676;

 $str[6] = "";

 foreach($str as $string) {

 echo "db2_escape_string: " . db2_escape_string($string). "\n";

 }

}

?>

The above example will output:

db2_escape_string: All characters: \0 , \n , \r , \\ , \' , \" , \Z .

db2_escape_string: Backslash (\\). Single quote (\'). Double quote (\")

db2_escape_string: The NULL character \0 must be quoted as well

db2_escape_string: Intersting characters: \Z , \0 .

db2_escape_string: Nothing to quote

db2_escape_string: 200676

db2_escape_string:

See Also

• db2_prepare()

db2_exec

db2_exec -- Executes an SQL statement directly

Description

resource db2_exec (resource $connection, string $statement [, array $options])

Executes an SQL statement directly.

If you plan to interpolate PHP variables into the SQL statement, understand that this is one
of the more common security exposures. Consider calling db2_prepare() to prepare an
SQL statement with parameter markers for input values. Then you can call db2_execute()
to pass in the input values and avoid SQL injection attacks.

If you plan to repeatedly issue the same SQL statement with different parameters,
consider calling db2_prepare() and db2_execute() to enable the database server to reuse
its access plan and increase the efficiency of your database access.

Parameters

connection

A valid database connection resource variable as returned from db2_connect() or
db2_pconnect().

statement

An SQL statement. The statement cannot contain any parameter markers.

options

An associative array containing statement options. You can use this parameter to
request a scrollable cursor on database servers that support this functionality.
cursor

Passing the DB2_FORWARD_ONLY value requests a forward-only cursor for this
SQL statement. This is the default type of cursor, and it is supported by all
database servers. It is also much faster than a scrollable cursor. Passing the
DB2_SCROLLABLE value requests a scrollable cursor for this SQL statement.
This type of cursor enables you to fetch rows non-sequentially from the database
server. However, it is only supported by DB2 servers, and is much slower than
forward-only cursors.

Return Values

Returns a statement resource if the SQL statement was issued successfully, or FALSE if
the database failed to execute the SQL statement.

Examples

Example #841 - Creating a table with db2_exec()

The following example uses db2_exec() to issue a set of DDL statements in the
process of creating a table.

<?php

$conn = db2_connect($database, $user, $password);

// Create the test table

$create = 'CREATE TABLE animals (id INTEGER, breed VARCHAR(32),

 name CHAR(16), weight DECIMAL(7,2))';

$result = db2_exec($conn, $create);

if ($result) {

 print "Successfully created the table.\n";

}

// Populate the test table

$animals = array(

 array(0, 'cat', 'Pook', 3.2),

 array(1, 'dog', 'Peaches', 12.3),

 array(2, 'horse', 'Smarty', 350.0),

 array(3, 'gold fish', 'Bubbles', 0.1),

 array(4, 'budgerigar', 'Gizmo', 0.2),

 array(5, 'goat', 'Rickety Ride', 9.7),

 array(6, 'llama', 'Sweater', 150)

);

foreach ($animals as $animal) {

 $rc = db2_exec($conn, "INSERT INTO animals (id, breed, name, weight)

 VALUES ({$animal[0]}, '{$animal[1]}', '{$animal[2]}', {$animal[3]})");

 if ($rc) {

 print "Insert... ";

 }

}

?>

The above example will output:

Successfully created the table.

Insert... Insert... Insert... Insert... Insert... Insert... Insert...

Example #842 - Executing a SELECT statement with a scrollable cursor

The following example demonstrates how to request a scrollable cursor for an SQL
statement issued by db2_exec().

<?php

$conn = db2_connect($database, $user, $password);

$sql = "SELECT name FROM animals

 WHERE weight < 10.0

 ORDER BY name";

if ($conn) {

 require_once('prepare.inc');

 $stmt = db2_exec($conn, $sql, array('cursor' => DB2_SCROLLABLE));

 while ($row = db2_fetch_array($stmt)) {

 print "$row[0]\n";

 }

}

?>

The above example will output:

Bubbles

Gizmo

Pook

Rickety Ride

Example #843 - Returning XML data as a SQL ResultSet

The following example demonstrates how to work with documents stored in a XML
column using the SAMPLE database. Using some pretty simple SQL/XML, this
example returns some of the nodes in a XML document in a SQL ResultSet format that
most users are familiar with.

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = 'SELECT * FROM XMLTABLE(

 XMLNAMESPACES (DEFAULT \'http://posample.org\'),

 \'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo\'

 COLUMNS

 "CID" VARCHAR (50) PATH \'@Cid\',

 "NAME" VARCHAR (50) PATH \'name\',

 "PHONE" VARCHAR (50) PATH \'phone [@type = "work"]\'

) AS T

 WHERE NAME = \'Kathy Smith\'

 ';

$stmt = db2_exec($conn, $query);

while($row = db2_fetch_object($stmt)){

 printf("$row->CID $row->NAME $row->PHONE\n");

}

db2_close($conn);

?>

The above example will output:

1000 Kathy Smith 416-555-1358

1001 Kathy Smith 905-555-7258

Example #844 - Performing a "JOIN" with XML data

The following example works with documents stored in 2 different XML columns in the
SAMPLE database. It creates 2 temporary tables from the XML documents from 2
different columns and returns a SQL ResultSet with information regarding shipping
status for the customer.

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = '

 SELECT A.CID, A.NAME, A.PHONE, C.PONUM, C.STATUS

 FROM

 XMLTABLE(

 XMLNAMESPACES (DEFAULT \'http://posample.org\'),

 \'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo\'

 COLUMNS

 "CID" BIGINT PATH \'@Cid\',

 "NAME" VARCHAR (50) PATH \'name\',

 "PHONE" VARCHAR (50) PATH \'phone [@type = "work"]\'

) as A,

 PURCHASEORDER AS B,

 XMLTABLE (

 XMLNAMESPACES (DEFAULT \'http://posample.org\'),

 \'db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/PurchaseOrder\'

 COLUMNS

 "PONUM" BIGINT PATH \'@PoNum\',

 "STATUS" VARCHAR (50) PATH \'@Status\'

) as C

 WHERE A.CID = B.CUSTID AND

 B.POID = C.PONUM AND

 A.NAME = \'Kathy Smith\'

';

$stmt = db2_exec($conn, $query);

while($row = db2_fetch_object($stmt)){

 printf("$row->CID $row->NAME $row->PHONE $row->PONUM
$row->STATUS\n");

}

db2_close($conn);

?>

The above example will output:

1001 Kathy Smith 905-555-7258 5002 Shipped

Example #845 - Returning SQL data as part of a larger XML document

The following example works with a portion of the PRODUCT.DESCRIPTION
documents in the SAMPLE database. It creates a XML document containing product
description (XML data) and pricing info (SQL data).

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = '

SELECT

XMLSERIALIZE(

XMLQUERY(\'

 declare boundary-space strip;

 declare default element namespace "http://posample.org";

 <promoList> {

 for $prod in $doc/product

 where $prod/description/price < 10.00

 order by $prod/description/price ascending

 return(

 <promoitem> {

 $prod,

 <startdate> {$start} </startdate>,

 <enddate> {$end} </enddate>,

 <promoprice> {$promo} </promoprice>

 } </promoitem>

)

 } </promoList>

\' passing by ref DESCRIPTION AS "doc",

PROMOSTART as "start",

PROMOEND as "end",

PROMOPRICE as "promo"

RETURNING SEQUENCE)

AS CLOB (32000))

AS NEW_PRODUCT_INFO

FROM PRODUCT

WHERE PID = \'100-100-01\'

';

$stmt = db2_exec($conn, $query);

while($row = db2_fetch_array($stmt)){

 printf("$row[0]\n");

}

db2_close($conn);

?>

The above example will output:

<promoList xmlns="http://posample.org">

 <promoitem>

 <product pid="100-100-01">

 <description>

 <name>Snow Shovel, Basic 22 inch</name>

 <details>Basic Snow Shovel, 22 inches wide, straight handle with
D-Grip</details>

 <price>9.99</price>

 <weight>1 kg</weight>

 </description>

 </product>

 <startdate>2004-11-19</startdate>

 <enddate>2004-12-19</enddate>

 <promoprice>7.25</promoprice>

 </promoitem>

</promoList>

See Also

• db2_execute()
• db2_prepare()

db2_execute

db2_execute -- Executes a prepared SQL statement

Description

bool db2_execute (resource $stmt [, array $parameters])

db2_execute() executes an SQL statement that was prepared by db2_prepare().

If the SQL statement returns a result set, for example, a SELECT statement or a CALL to
a stored procedure that returns one or more result sets, you can retrieve a row as an array
from the stmt resource using db2_fetch_assoc(), db2_fetch_both(), or db2_fetch_array().
Alternatively, you can use db2_fetch_row() to move the result set pointer to the next row
and fetch a column at a time from that row with db2_result().

Refer to db2_prepare() for a brief discussion of the advantages of using db2_prepare()
and db2_execute() rather than db2_exec().

Parameters

stmt

A prepared statement returned from db2_prepare().

parameters

An array of input parameters matching any parameter markers contained in the
prepared statement.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #846 - Preparing and executing an SQL statement with parameter
markers

The following example prepares an INSERT statement that accepts four parameter
markers, then iterates over an array of arrays containing the input values to be passed
to db2_execute().

<?php

$pet = array(0, 'cat', 'Pook', 3.2);

$insert = 'INSERT INTO animals (id, breed, name, weight)

 VALUES (?, ?, ?, ?)';

$stmt = db2_prepare($conn, $insert);

if ($stmt) {

 $result = db2_execute($stmt, $pet);

 if ($result) {

 print "Successfully added new pet.";

 }

}

?>

The above example will output:

Successfully added new pet.

Example #847 - Calling a stored procedure with an OUT parameter

The following example prepares a CALL statement that accepts one parameter marker
representing an OUT parameter, binds the PHP variable $my_pets to the parameter
using db2_bind_param(), then issues db2_execute() to execute the CALL statement.
After the CALL to the stored procedure has been made, the value of $num_pets
changes to reflect the value returned by the stored procedure for that OUT parameter.

<?php

$num_pets = 0;

$res = db2_prepare($conn, "CALL count_my_pets(?)");

$rc = db2_bind_param($res, 1, "num_pets", DB2_PARAM_OUT);

$rc = db2_execute($res);

print "I have $num_pets pets!";

?>

The above example will output:

I have 7 pets!

Example #848 - Returning XML data as a SQL ResultSet

The following example demonstrates how to work with documents stored in a XML
column using the SAMPLE database. Using some pretty simple SQL/XML, this
example returns some of the nodes in a XML document in a SQL ResultSet format that
most users are familiar with.

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = 'SELECT * FROM XMLTABLE(

 XMLNAMESPACES (DEFAULT \'http://posample.org\'),

 \'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo\'

 COLUMNS

 "CID" VARCHAR (50) PATH \'@Cid\',

 "NAME" VARCHAR (50) PATH \'name\',

 "PHONE" VARCHAR (50) PATH \'phone [@type = "work"]\'

) AS T

 WHERE NAME = ?

 ';

$stmt = db2_prepare($conn, $query);

$name = 'Kathy Smith';

if ($stmt) {

 db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

 db2_execute($stmt);

 while($row = db2_fetch_object($stmt)){

 printf("$row->CID $row->NAME $row->PHONE\n");

 }

}

db2_close($conn);

?>

The above example will output:

1000 Kathy Smith 416-555-1358

1001 Kathy Smith 905-555-7258

Example #849 - Performing a "JOIN" with XML data

The following example works with documents stored in 2 different XML columns in the
SAMPLE database. It creates 2 temporary tables from the XML documents from 2
different columns and returns a SQL ResultSet with information regarding shipping
status for the customer.

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = '

SELECT A.CID, A.NAME, A.PHONE, C.PONUM, C.STATUS

FROM

XMLTABLE(

XMLNAMESPACES (DEFAULT \'http://posample.org\'),

\'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo\'

COLUMNS

"CID" BIGINT PATH \'@Cid\',

"NAME" VARCHAR (50) PATH \'name\',

"PHONE" VARCHAR (50) PATH \'phone [@type = "work"]\'

) as A,

PURCHASEORDER AS B,

XMLTABLE (

XMLNAMESPACES (DEFAULT \'http://posample.org\'),

\'db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/PurchaseOrder\'

COLUMNS

"PONUM" BIGINT PATH \'@PoNum\',

"STATUS" VARCHAR (50) PATH \'@Status\'

) as C

WHERE A.CID = B.CUSTID AND

 B.POID = C.PONUM AND

 A.NAME = ?

';

$stmt = db2_prepare($conn, $query);

$name = 'Kathy Smith';

if ($stmt) {

 db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

 db2_execute($stmt);

 while($row = db2_fetch_object($stmt)){

 printf("$row->CID $row->NAME $row->PHONE $row->PONUM
$row->STATUS\n");

 }

}

db2_close($conn);

?>

The above example will output:

1001 Kathy Smith 905-555-7258 5002 Shipped

Example #850 - Returning SQL data as part of a larger XML document

The following example works with a portion of the PRODUCT.DESCRIPTION
documents in the SAMPLE database. It creates a XML document containing product
description (XML data) and pricing info (SQL data).

<?php

$conn = db2_connect("SAMPLE", "db2inst1", "ibmdb2");

$query = '

SELECT

XMLSERIALIZE(

XMLQUERY(\'

 declare boundary-space strip;

 declare default element namespace "http://posample.org";

 <promoList> {

 for $prod in $doc/product

 where $prod/description/price < 10.00

 order by $prod/description/price ascending

 return(

 <promoitem> {

 $prod,

 <startdate> {$start} </startdate>,

 <enddate> {$end} </enddate>,

 <promoprice> {$promo} </promoprice>

 } </promoitem>

)

 } </promoList>

\' passing by ref DESCRIPTION AS "doc",

PROMOSTART as "start",

PROMOEND as "end",

PROMOPRICE as "promo"

RETURNING SEQUENCE)

AS CLOB (32000))

AS NEW_PRODUCT_INFO

FROM PRODUCT

WHERE PID = ?

';

$stmt = db2_prepare($conn, $query);

$pid = "100-100-01";

if ($stmt) {

 db2_bind_param($stmt, 1, "pid", DB2_PARAM_IN);

 db2_execute($stmt);

 while($row = db2_fetch_array($stmt)){

 printf("$row[0]\n");

 }

}

db2_close($conn);

?>

The above example will output:

<promoList xmlns="http://posample.org">

 <promoitem>

 <product pid="100-100-01">

 <description>

 <name>Snow Shovel, Basic 22 inch</name>

 <details>Basic Snow Shovel, 22 inches wide, straight handle with
D-Grip</details>

 <price>9.99</price>

 <weight>1 kg</weight>

 </description>

 </product>

 <startdate>2004-11-19</startdate>

 <enddate>2004-12-19</enddate>

 <promoprice>7.25</promoprice>

 </promoitem>

</promoList>

See Also

• db2_exec()
• db2_fetch_array()
• db2_fetch_assoc()
• db2_fetch_both()
• db2_fetch_row()
• db2_prepare()
• db2_result()

db2_fetch_array

db2_fetch_array -- Returns an array, indexed by column position, representing a row in a
result set

Description

array db2_fetch_array (resource $stmt [, int $row_number])

Returns an array, indexed by column position, representing a row in a result set. The
columns are 0-indexed.

Parameters

stmt

A valid stmt resource containing a result set.

row_number

Requests a specific 1-indexed row from the result set. Passing this parameter results
in a PHP warning if the result set uses a forward-only cursor.

Return Values

Returns a 0-indexed array with column values indexed by the column position representing
the next or requested row in the result set. Returns FALSE if there are no rows left in the
result set, or if the row requested by row_number does not exist in the result set.

Examples

Example #851 - Iterating through a forward-only cursor

If you call db2_fetch_array() without a specific row number, it automatically retrieves
the next row in the result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_array($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row[1], $row[2], $row[3]);

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

Example #852 - Retrieving specific rows with db2_fetch_array() from a scrollable
cursor

If your result set uses a scrollable cursor, you can call db2_fetch_array() with a specific
row number. The following example retrieves every other row in the result set, starting
with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array('cursor' => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_array($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row[1], $row[2], $row[3]);

 $i = $i + 2;

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

See Also

• db2_fetch_assoc()
• db2_fetch_both()
• db2_fetch_object()
• db2_fetch_row()
• db2_result()

db2_fetch_assoc

db2_fetch_assoc -- Returns an array, indexed by column name, representing a row in a
result set

Description

array db2_fetch_assoc (resource $stmt [, int $row_number])

Returns an array, indexed by column name, representing a row in a result set.

Parameters

stmt

A valid stmt resource containing a result set.

row_number

Requests a specific 1-indexed row from the result set. Passing this parameter results
in a PHP warning if the result set uses a forward-only cursor.

Return Values

Returns an associative array with column values indexed by the column name
representing the next or requested row in the result set. Returns FALSE if there are no
rows left in the result set, or if the row requested by row_number does not exist in the result
set.

Examples

Example #853 - Iterating through a forward-only cursor

If you call db2_fetch_assoc() without a specific row number, it automatically retrieves
the next row in the result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_assoc($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row['ID'], $row['NAME'], $row['BREED'], $row['WEIGHT']);

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

Example #854 - Retrieving specific rows with db2_fetch_assoc() from a scrollable
cursor

If your result set uses a scrollable cursor, you can call db2_fetch_assoc() with a
specific row number. The following example retrieves every other row in the result set,
starting with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array('cursor' => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_assoc($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row['ID'], $row['NAME'], $row['BREED'], $row['WEIGHT']);

 $i = $i + 2;

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

See Also

• db2_fetch_array()
• db2_fetch_both()
• db2_fetch_object()
• db2_fetch_row()
• db2_result()

db2_fetch_both

db2_fetch_both -- Returns an array, indexed by both column name and position,
representing a row in a result set

Description

array db2_fetch_both (resource $stmt [, int $row_number])

Returns an array, indexed by both column name and position, representing a row in a
result set. Note that the row returned by db2_fetch_both() requires more memory than the
single-indexed arrays returned by db2_fetch_assoc() or db2_fetch_array().

Parameters

stmt

A valid stmt resource containing a result set.

row_number

Requests a specific 1-indexed row from the result set. Passing this parameter results
in a PHP warning if the result set uses a forward-only cursor.

Return Values

Returns an associative array with column values indexed by both the column name and
0-indexed column number. The array represents the next or requested row in the result
set. Returns FALSE if there are no rows left in the result set, or if the row requested by
row_number does not exist in the result set.

Examples

Example #855 - Iterating through a forward-only cursor

If you call db2_fetch_both() without a specific row number, it automatically retrieves the
next row in the result set. The following example accesses columns in the returned
array by both column name and by numeric index.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_both($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row['ID'], $row[0], $row['BREED'], $row[3]);

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

Example #856 - Retrieving specific rows with db2_fetch_both() from a scrollable
cursor

If your result set uses a scrollable cursor, you can call db2_fetch_both() with a specific
row number. The following example retrieves every other row in the result set, starting
with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array('cursor' => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_both($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row['NAME'], $row[2], $row['WEIGHT']);

 $i = $i + 2;

}

?>

The above example will output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

See Also

• db2_fetch_array()
• db2_fetch_assoc()
• db2_fetch_object()
• db2_fetch_row()
• db2_result()

db2_fetch_object

db2_fetch_object -- Returns an object with properties representing columns in the fetched
row

Description

object db2_fetch_object (resource $stmt [, int $row_number])

Returns an object in which each property represents a column returned in the row fetched
from a result set.

Parameters

stmt

A valid stmt resource containing a result set.

row_number

Requests a specific 1-indexed row from the result set. Passing this parameter results
in a PHP warning if the result set uses a forward-only cursor.

Return Values

Returns an object representing a single row in the result set. The properties of the object
map to the names of the columns in the result set.

The IBM DB2, Cloudscape, and Apache Derby database servers typically fold column
names to upper-case, so the object properties will reflect that case.

If your SELECT statement calls a scalar function to modify the value of a column, the
database servers return the column number as the name of the column in the result set. If
you prefer a more descriptive column name and object property, you can use the AS
clause to assign a name to the column in the result set.

Returns FALSE if no row was retrieved.

Examples

Example #857 - A db2_fetch_object() example

The following example issues a SELECT statement with a scalar function, RTRIM, that
removes whitespace from the end of the column. Rather than creating an object with
the properties "BREED" and "2", we use the AS clause in the SELECT statement to
assign the name "name" to the modified column. The database server folds the column

names to upper-case, resulting in an object with the properties "BREED" and "NAME".

<?php

$conn = db2_connect($database, $user, $password);

$sql = "SELECT breed, RTRIM(name) AS name

 FROM animals

 WHERE id = ?";

if ($conn) {

 $stmt = db2_prepare($conn, $sql);

 db2_execute($stmt, array(0));

 while ($pet = db2_fetch_object($stmt)) {

 echo "Come here, {$pet->NAME}, my little {$pet->BREED}!";

 }

 db2_close($conn);

}

?>

The above example will output:

Come here, Pook, my little cat!

See Also

• db2_fetch_array()
• db2_fetch_assoc()
• db2_fetch_both()
• db2_fetch_row()
• db2_result()

db2_fetch_row

db2_fetch_row -- Sets the result set pointer to the next row or requested row

Description

bool db2_fetch_row (resource $stmt [, int $row_number])

Use db2_fetch_row() to iterate through a result set, or to point to a specific row in a result
set if you requested a scrollable cursor.

To retrieve individual fields from the result set, call the db2_result() function.

Rather than calling db2_fetch_row() and db2_result(), most applications will call one of
db2_fetch_assoc(), db2_fetch_both(), or db2_fetch_array() to advance the result set
pointer and return a complete row as an array.

Parameters

stmt

A valid stmt resource.

row_number

With scrollable cursors, you can request a specific row number in the result set. Row
numbering is 1-indexed.

Return Values

Returns TRUE if the requested row exists in the result set. Returns FALSE if the
requested row does not exist in the result set.

Examples

Example #858 - Iterating through a result set

The following example demonstrates how to iterate through a result set with
db2_fetch_row() and retrieve columns from the result set with db2_result().

<?php

$sql = 'SELECT name, breed FROM animals WHERE weight < ?';

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, 1);

 print "$name $breed";

}

?>

The above example will output:

cat Pook

gold fish Bubbles

budgerigar Gizmo

goat Rickety Ride

Example #859 - i5/OS recommended alternatives to db2_fetch_row/db2_result

On i5/OS it is recommended that you use db2_fetch_both(), db2_fetch_array(), or
db2_fetch_object() over db2_fetch_row() / db2_result(). In general db2_fetch_row() /
db2_result() have more issues with various column types in EBCIDIC to ASCII
translation, including possible truncation in DBCS applications. You may also find the
performance of db2_fetch_both(), db2_fetch_array(), and db2_fetch_object() to be
superior to db2_fetch_row() / db2_result().

<?php

 $conn = db2_connect("","","");

 $sql = 'SELECT SPECIFIC_SCHEMA, SPECIFIC_NAME, ROUTINE_SCHEMA,
ROUTINE_NAME, ROUTINE_TYPE, ROUTINE_CREATED, ROUTINE_BODY, IN_PARMS,
OUT_PARMS, INOUT_PARMS, PARAMETER_STYLE, EXTERNAL_NAME, EXTERNAL_LANGUAGE
FROM QSYS2.SYSROUTINES FETCH FIRST 2 ROWS ONLY';

 $stmt = db2_exec($conn, $sql, array('cursor' => DB2_SCROLLABLE));

 while ($row = db2_fetch_both($stmt)){

 echo "
db2_fetch_both {$row['SPECIFIC_NAME']}
{$row['ROUTINE_CREATED']} {$row[5]}";

 }

 $stmt = db2_exec($conn, $sql, array('cursor' => DB2_SCROLLABLE));

 while ($row = db2_fetch_array($stmt)){

 echo "
db2_fetch_array {$row[1]} {$row[5]}";

 }

 $stmt = db2_exec($conn, $sql, array('cursor' => DB2_SCROLLABLE));

 while ($row = db2_fetch_object($stmt)){

 echo "
db2_fetch_object {$row->SPECIFIC_NAME}
{$row->ROUTINE_CREATED}";

 }

 db2_close($conn);

?>

The above example will output:

db2_fetch_both MATCH_ANIMAL 2006-08-25-17.10.23.775000
2006-08-25-17.10.23.775000

db2_fetch_both MULTIRESULTS 2006-10-17-10.11.05.308000
2006-10-17-10.11.05.308000

db2_fetch_array MATCH_ANIMAL 2006-08-25-17.10.23.775000

db2_fetch_array MULTIRESULTS 2006-10-17-10.11.05.308000

db2_fetch_object MATCH_ANIMAL 2006-08-25-17.10.23.775000

db2_fetch_object MULTIRESULTS 2006-10-17-10.11.05.308000

See Also

• db2_fetch_array()
• db2_fetch_assoc()
• db2_fetch_both()
• db2_fetch_object()
• db2_result()

db2_field_display_size

db2_field_display_size -- Returns the maximum number of bytes required to display a
column

Description

int db2_field_display_size (resource $stmt, mixed $column)

Returns the maximum number of bytes required to display a column in a result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns an integer value with the maximum number of bytes required to display the
specified column. If the column does not exist in the result set, db2_field_display_size()
returns FALSE.

See Also

• db2_field_name()
• db2_field_num()
• db2_field_precision()
• db2_field_scale()
• db2_field_type()
• db2_field_width()

db2_field_name

db2_field_name -- Returns the name of the column in the result set

Description

string db2_field_name (resource $stmt, mixed $column)

Returns the name of the specified column in the result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns a string containing the name of the specified column. If the specified column does
not exist in the result set, db2_field_name() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_num()
• db2_field_precision()
• db2_field_scale()
• db2_field_type()
• db2_field_width()

db2_field_num

db2_field_num -- Returns the position of the named column in a result set

Description

int db2_field_num (resource $stmt, mixed $column)

Returns the position of the named column in a result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns an integer containing the 0-indexed position of the named column in the result set.
If the specified column does not exist in the result set, db2_field_num() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_name()
• db2_field_precision()
• db2_field_scale()
• db2_field_type()
• db2_field_width()

db2_field_precision

db2_field_precision -- Returns the precision of the indicated column in a result set

Description

int db2_field_precision (resource $stmt, mixed $column)

Returns the precision of the indicated column in a result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns an integer containing the precision of the specified column. If the specified column
does not exist in the result set, db2_field_precision() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_name()
• db2_field_num()
• db2_field_scale()
• db2_field_type()
• db2_field_width()

db2_field_scale

db2_field_scale -- Returns the scale of the indicated column in a result set

Description

int db2_field_scale (resource $stmt, mixed $column)

Returns the scale of the indicated column in a result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns an integer containing the scale of the specified column. If the specified column
does not exist in the result set, db2_field_scale() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_name()
• db2_field_num()
• db2_field_precision()
• db2_field_type()
• db2_field_width()

db2_field_type

db2_field_type -- Returns the data type of the indicated column in a result set

Description

string db2_field_type (resource $stmt, mixed $column)

Returns the data type of the indicated column in a result set.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns a string containing the defined data type of the specified column. If the specified
column does not exist in the result set, db2_field_type() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_name()
• db2_field_num()
• db2_field_precision()
• db2_field_scale()
• db2_field_width()

db2_field_width

db2_field_width -- Returns the width of the current value of the indicated column in a result
set

Description

int db2_field_width (resource $stmt, mixed $column)

Returns the width of the current value of the indicated column in a result set. This is the
maximum width of the column for a fixed-length data type, or the actual width of the
column for a variable-length data type.

Parameters

stmt

Specifies a statement resource containing a result set.

column

Specifies the column in the result set. This can either be an integer representing the
0-indexed position of the column, or a string containing the name of the column.

Return Values

Returns an integer containing the width of the specified character or binary data type
column in a result set. If the specified column does not exist in the result set,
db2_field_width() returns FALSE.

See Also

• db2_field_display_size()
• db2_field_name()
• db2_field_num()
• db2_field_precision()
• db2_field_scale()
• db2_field_type()

db2_foreign_keys

db2_foreign_keys -- Returns a result set listing the foreign keys for a table

Description

resource db2_foreign_keys (resource $connection, string $qualifier, string $schema,
string $table-name)

Returns a result set listing the foreign keys for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. If schema is NULL, db2_foreign_keys()
matches the schema for the current connection.

table-name

The name of the table.

Return Values

Returns a statement resource with a result set containing rows describing the foreign keys
for the specified table. The result set is composed of the following columns:

Column name Description

PKTABLE_CAT Name of the catalog for the table containing
the primary key. The value is NULL if this
table does not have catalogs.

PKTABLE_SCHEM Name of the schema for the table containing
the primary key.

PKTABLE_NAME Name of the table containing the primary
key.

PKCOLUMN_NAME Name of the column containing the primary
key.

FKTABLE_CAT Name of the catalog for the table containing
the foreign key. The value is NULL if this
table does not have catalogs.

FKTABLE_SCHEM Name of the schema for the table containing
the foreign key.

FKTABLE_NAME Name of the table containing the foreign
key.

FKCOLUMN_NAME Name of the column containing the foreign
key.

KEY_SEQ 1-indexed position of the column in the key.

UPDATE_RULE Integer value representing the action applied
to the foreign key when the SQL operation is
UPDATE.

DELETE_RULE Integer value representing the action applied
to the foreign key when the SQL operation is
DELETE.

FK_NAME The name of the foreign key.

PK_NAME The name of the primary key.

DEFERRABILITY An integer value representing whether the
foreign key deferrability is
SQL_INITIALLY_DEFERRED,
SQL_INITIALLY_IMMEDIATE, or
SQL_NOT_DEFERRABLE.

See Also

• db2_column_privileges()
• db2_columns()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_free_result

db2_free_result -- Frees resources associated with a result set

Description

bool db2_free_result (resource $stmt)

Frees the system and database resources that are associated with a result set. These
resources are freed implicitly when a script finishes, but you can call db2_free_result() to
explicitly free the result set resources before the end of the script.

Parameters

stmt

A valid statement resource.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• db2_free_stmt()

db2_free_stmt

db2_free_stmt -- Frees resources associated with the indicated statement resource

Description

bool db2_free_stmt (resource $stmt)

Frees the system and database resources that are associated with a statement resource.
These resources are freed implicitly when a script finishes, but you can call
db2_free_stmt() to explicitly free the statement resources before the end of the script.

Parameters

stmt

A valid statement resource.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• db2_free_result()

db2_get_option

db2_get_option -- Retrieves an option value for a statement resource or a connection
resource

Description

string db2_get_option (resource $resource, string $option)

Retrieves the value of a specified option value for a statement resource or a connection
resource.

Parameters

resource

A valid statement resource as returned from db2_prepare() or a valid connection
resource as returned from db2_connect() or db2_pconnect().

option

A valid statement or connection options. The following new options are available as of
ibm_db2 version 1.6.0. They provide useful tracking information that can be set during
execution with db2_get_option().

Note

Note

Prior versions of ibm_db2 do not support these new options.

When the value in each option is being set, some servers might not handle the
entire length provided and might truncate the value.

To ensure that the data specified in each option is converted correctly when
transmitted to a host system, use only the characters A through Z, 0 through 9, and
the underscore (_) or period (.).

userid

SQL_ATTR_INFO_USERID - A pointer to a null-terminated character string used
to identify the client user ID sent to the host database server when using DB2
Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 16 characters. This
user-id is not to be confused with the authentication user-id, it is for

identification purposes only and is not used for any authorization.

acctstr

SQL_ATTR_INFO_ACCTSTR - A pointer to a null-terminated character string used
to identify the client accounting string sent to the host database server when using
DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 200 characters.

applname

SQL_ATTR_INFO_APPLNAME - A pointer to a null-terminated character string
used to identify the client application name sent to the host database server when
using DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 32 characters.

wrkstnname

SQL_ATTR_INFO_WRKSTNNAME - A pointer to a null-terminated character string
used to identify the client workstation name sent to the host database server when
using DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 18 characters.

The following table specifies which options are compatible with the available resource
types:

Resource-Parameter Matrix

Key Value Resource Type

Connection Statement Result Set

userid SQL_ATTR_INF
O_USERID

X X -

acctstr SQL_ATTR_INF
O_ACCTSTR

X X -

applname SQL_ATTR_INF
O_APPLNAME

X X -

wrkstnname SQL_ATTR_INF
O_WRKSTNNA
ME

X X -

Return Values

Returns the current setting of the connection attribute provided on success or FALSE on
failure.

Examples

Example #860 - Setting and retrieving parameters through a connection resource

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$user = 'db2inst1';

$password = 'ibmdb2';

/* Obtain Connection Resource */

$conn = db2_connect($database, $user, $password);

echo "Client attributes passed through connection string:\n";

/* Create the associative options array with valid key-value pairs */

/* Assign the attributes through connection string */

/* Access the options specified */

$options1 = array('userid' => 'db2inst1');

$conn1 = db2_connect($database, $user, $password, $options1);

$val = db2_get_option($conn1, 'userid');

echo $val . "\n";

$options2 = array('acctstr' => 'account');

$conn2 = db2_connect($database, $user, $password, $options2);

$val = db2_get_option($conn2, 'acctstr');

echo $val . "\n";

$options3 = array('applname' => 'myapp');

$conn3 = db2_connect($database, $user, $password, $options3);

$val = db2_get_option($conn3, 'applname');

echo $val . "\n";

$options4 = array('wrkstnname' => 'workstation');

$conn4 = db2_connect($database, $user, $password, $options4);

$val = db2_get_option($conn4, 'wrkstnname');

echo $val . "\n";

echo "Client attributes passed post-connection:\n";

/* Create the associative options array with valid key-value pairs */

/* Assign the attributes after a connection is made */

/* Access the options specified */

$options5 = array('userid' => 'db2inst1');

$conn5 = db2_connect($database, $user, $password);

$rc = db2_set_option($conn5, $options5, 1);

$val = db2_get_option($conn5, 'userid');

echo $val . "\n";

$options6 = array('acctstr' => 'account');

$conn6 = db2_connect($database, $user, $password);

$rc = db2_set_option($conn6, $options6, 1);

$val = db2_get_option($conn6, 'acctstr');

echo $val . "\n";

$options7 = array('applname' => 'myapp');

$conn7 = db2_connect($database, $user, $password);

$rc = db2_set_option($conn7, $options7, 1);

$val = db2_get_option($conn7, 'applname');

echo $val . "\n";

$options8 = array('wrkstnname' => 'workstation');

$conn8 = db2_connect($database, $user, $password);

$rc = db2_set_option($conn8, $options8, 1);

$val = db2_get_option($conn8, 'wrkstnname');

echo $val . "\n";

?>

The above example will output:

Client attributes passed through connection string:

db2inst1

account

myapp

workstation

Client attributes passed post-connection:

db2inst1

account

myapp

workstation

See Also

• db2_connect()
• db2_cursor_type()

• db2_exec()
• db2_set_option()
• db2_pconnect()
• db2_prepare()

db2_lob_read

db2_lob_read -- Gets a user defined size of LOB files with each invocation

Description

string db2_lob_read (resource $stmt, int $colnum, int $length)

Use db2_lob_read() to iterate through a specified column of a result set and retrieve a user
defined size of LOB data.

Parameters

stmt

A valid stmt resource containing LOB data.

colnum

A valid column number in the result set of the stmt resource.

length

The size of the LOB data to be retrieved from the stmt resource.

Return Values

Returns the amount of data the user specifies. Returns FALSE if the data cannot be
retrieved.

Examples

Example #861 - Iterating through different types of data

<?php

/* Database Connection Parameters */

$db = 'SAMPLE';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Obtain Connection Resource */

$conn = db2_connect($db,$username,$password);

if ($conn) {

 $drop = 'DROP TABLE clob_stream';

 $result = @db2_exec($conn, $drop);

 $create = 'CREATE TABLE clob_stream (id INTEGER, my_clob CLOB)';

 $result = db2_exec($conn, $create);

 $variable = "";

 $stmt = db2_prepare($conn, "INSERT INTO clob_stream (id,my_clob) VALUES
(1, ?)");

 $variable = "THIS IS A CLOB TEST. THIS IS A CLOB TEST.";

 db2_bind_param($stmt, 1, "variable", DB2_PARAM_IN);

 db2_execute($stmt);

 $sql = "SELECT id,my_clob FROM clob_stream";

 $result = db2_prepare($conn, $sql);

 db2_execute($result);

 db2_fetch_row($result);

 $i = 0;

 /* Read LOB data */

 while ($data = db2_lob_read($result, 2, 6)) {

 echo "Loop $i: $data\n";

 $i = $i + 1;

 }

 $drop = 'DROP TABLE blob_stream';

 $result = @db2_exec($conn, $drop);

 $create = 'CREATE TABLE blob_stream (id INTEGER, my_blob CLOB)';

 $result = db2_exec($conn, $create);

 $variable = "";

 $stmt = db2_prepare($conn, "INSERT INTO blob_stream (id,my_blob) VALUES
(1, ?)");

 $variable = "THIS IS A BLOB TEST. THIS IS A BLOB TEST.";

 db2_bind_param($stmt, 1, "variable", DB2_PARAM_IN);

 db2_execute($stmt);

 $sql = "SELECT id,my_blob FROM blob_stream";

 $result = db2_prepare($conn, $sql);

 db2_execute($result);

 db2_fetch_row($result);

 $i = 0;

 /* Read LOB data */

 while ($data = db2_lob_read($result, 2, 6)) {

 echo "Loop $i: $data\n";

 $i = $i + 1;

 }

} else {

 echo 'no connection: ' . db2_conn_errormsg();

}

?>

The above example will output:

Loop 0: THIS I

Loop 1: S A CL

Loop 2: OB TES

Loop 3: T. THI

Loop 4: S IS A

Loop 5: CLOB

Loop 6: TEST.

Loop 0: THIS I

Loop 1: S A BL

Loop 2: OB TES

Loop 3: T. THI

Loop 4: S IS A

Loop 5: BLOB

Loop 6: TEST.

See Also

• db2_bind_param()
• db2_exec()
• db2_execute()
• db2_fetch_row()
• db2_prepare()
• db2_result()

db2_next_result

db2_next_result -- Requests the next result set from a stored procedure

Description

resource db2_next_result (resource $stmt)

A stored procedure can return zero or more result sets. While you handle the first result
set in exactly the same way you would handle the results returned by a simple SELECT
statement, to fetch the second and subsequent result sets from a stored procedure you
must call the db2_next_result() function and return the result to a uniquely named PHP
variable.

Parameters

stmt

A prepared statement returned from db2_exec() or db2_execute().

Return Values

Returns a new statement resource containing the next result set if the stored procedure
returned another result set. Returns FALSE if the stored procedure did not return another
result set.

Examples

Example #862 - Calling a stored procedure that returns multiple result sets

In the following example, we call a stored procedure that returns three result sets. The
first result set is fetched directly from the same statement resource on which we
invoked the CALL statement, while the second and third result sets are fetched from
statement resources returned from our calls to the db2_next_result() function.

<?php

$conn = db2_connect($database, $user, $password);

if ($conn) {

 $stmt = db2_exec($conn, 'CALL multiResults()');

 print "Fetching first result set\n";

 while ($row = db2_fetch_array($stmt)) {

 var_dump($row);

 }

 print "\nFetching second result set\n";

 $res = db2_next_result($stmt);

 if ($res) {

 while ($row = db2_fetch_array($res)) {

 var_dump($row);

 }

 }

 print "\nFetching third result set\n";

 $res2 = db2_next_result($stmt);

 if ($res2) {

 while ($row = db2_fetch_array($res2)) {

 var_dump($row);

 }

 }

 db2_close($conn);

}

?>

The above example will output:

Fetching first result set

array(2) {

 [0]=>

 string(16) "Bubbles "

 [1]=>

 int(3)

}

array(2) {

 [0]=>

 string(16) "Gizmo "

 [1]=>

 int(4)

}

Fetching second result set

array(4) {

 [0]=>

 string(16) "Sweater "

 [1]=>

 int(6)

 [2]=>

 string(5) "llama"

 [3]=>

 string(6) "150.00"

}

array(4) {

 [0]=>

 string(16) "Smarty "

 [1]=>

 int(2)

 [2]=>

 string(5) "horse"

 [3]=>

 string(6) "350.00"

}

Fetching third result set

array(1) {

 [0]=>

 string(16) "Bubbles "

}

array(1) {

 [0]=>

 string(16) "Gizmo "

}

db2_num_fields

db2_num_fields -- Returns the number of fields contained in a result set

Description

int db2_num_fields (resource $stmt)

Returns the number of fields contained in a result set. This is most useful for handling the
result sets returned by dynamically generated queries, or for result sets returned by stored
procedures, where your application cannot otherwise know how to retrieve and use the
results.

Parameters

stmt

A valid statement resource containing a result set.

Return Values

Returns an integer value representing the number of fields in the result set associated with
the specified statement resource. Returns FALSE if the statement resource is not a valid
input value.

Examples

Example #863 - Retrieving the number of fields in a result set

The following example demonstrates how to retrieve the number of fields returned in a
result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, $sql);

$columns = db2_num_fields($stmt);

echo "There are {$columns} columns in the result set.";

?>

The above example will output:

There are 4 columns in the result set.

See Also

• db2_execute()
• db2_field_display_size()
• db2_field_name()
• db2_field_num()
• db2_field_precision()
• db2_field_scale()
• db2_field_type()
• db2_field_width()

db2_num_rows

db2_num_rows -- Returns the number of rows affected by an SQL statement

Description

int db2_num_rows (resource $stmt)

Returns the number of rows deleted, inserted, or updated by an SQL statement.

To determine the number of rows that will be returned by a SELECT statement, issue
SELECT COUNT(*) with the same predicates as your intended SELECT statement and
retrieve the value.

If your application logic checks the number of rows returned by a SELECT statement and
branches if the number of rows is 0, consider modifying your application to attempt to
return the first row with one of db2_fetch_assoc(), db2_fetch_both(), db2_fetch_array(), or
db2_fetch_row(), and branch if the fetch function returns FALSE.

Note

If you issue a SELECT statement using a scrollable cursor, db2_num_rows() returns
the number of rows returned by the SELECT statement. However, the overhead
associated with scrollable cursors significantly degrades the performance of your
application, so if this is the only reason you are considering using scrollable cursors,
you should use a forward-only cursor and either call SELECT COUNT(*) or rely on the
boolean return value of the fetch functions to achieve the equivalent functionality with
much better performance.

Parameters

stmt

A valid stmt resource containing a result set.

Return Values

Returns the number of rows affected by the last SQL statement issued by the specified
statement handle.

db2_pconnect

db2_pconnect -- Returns a persistent connection to a database

Description

resource db2_pconnect (string $database, string $username, string $password [, array $
options])

Returns a persistent connection to an IBM DB2 Universal Database, IBM Cloudscape, or
Apache Derby database. For more information on persistent connections, refer to
Persistent Database Connections.

Calling db2_close() on a persistent connection always returns TRUE, but the underlying
DB2 client connection remains open and waiting to serve the next matching
db2_pconnect() request.

Parameters

database

The database alias in the DB2 client catalog.

username

The username with which you are connecting to the database.

password

The password with which you are connecting to the database.

options

An associative array of connection options that affect the behavior of the connection,
where valid array keys include:
autocommit

Passing the DB2_AUTOCOMMIT_ON value turns autocommit on for this
connection handle. Passing the DB2_AUTOCOMMIT_OFF value turns autocommit
off for this connection handle.

DB2_ATTR_CASE

Passing the DB2_CASE_NATURAL value specifies that column names are
returned in natural case. Passing the DB2_CASE_LOWER value specifies that
column names are returned in lower case. Passing the DB2_CASE_UPPER value
specifies that column names are returned in upper case.

CURSOR

Passing the DB2_FORWARD_ONLY value specifies a forward-only cursor for a
statement resource. This is the default cursor type and is supported on all
database servers. Passing the DB2_SCROLLABLE value specifies a scrollable
cursor for a statement resource. This mode enables random access to rows in a
result set, but currently is supported only by IBM DB2 Universal Database.

Return Values

Returns a connection handle resource if the connection attempt is successful.
db2_pconnect() tries to reuse an existing connection resource that exactly matches the
database, username, and password parameters. If the connection attempt fails,
db2_pconnect() returns FALSE.

Examples

Example #864 - A db2_pconnect() example

In the following example, the first call to db2_pconnect() returns a new persistent
connection resource. The second call to db2_pconnect() returns a persistent
connection resource that simply reuses the first persistent connection resource.

<?php

$database = 'SAMPLE';

$user = 'db2inst1';

$password = 'ibmdb2';

$pconn = db2_pconnect($database, $user, $password);

if ($pconn) {

 echo "Persistent connection succeeded.";

}

else {

 echo "Persistent connection failed.";

}

$pconn2 = db2_pconnect($database, $user, $password);

if ($pconn) {

 echo "Second persistent connection succeeded.";

}

else {

 echo "Second persistent connection failed.";

}

?>

The above example will output:

Persistent connection succeeded.

Second persistent connection succeeded.

See Also

• db2_connect()

db2_prepare

db2_prepare -- Prepares an SQL statement to be executed

Description

resource db2_prepare (resource $connection, string $statement [, array $options])

db2_prepare() creates a prepared SQL statement which can include 0 or more parameter
markers (? characters) representing parameters for input, output, or input/output. You can
pass parameters to the prepared statement using db2_bind_param(), or for input values
only, as an array passed to db2_execute().

There are three main advantages to using prepared statements in your application:

• Performance: when you prepare a statement, the database server creates an
optimized access plan for retrieving data with that statement. Subsequently issuing the
prepared statement with db2_execute() enables the statements to reuse that access
plan and avoids the overhead of dynamically creating a new access plan for every
statement you issue.

• Security: when you prepare a statement, you can include parameter markers for input
values. When you execute a prepared statement with input values for placeholders,
the database server checks each input value to ensure that the type matches the
column definition or parameter definition.

• Advanced functionality: Parameter markers not only enable you to pass input values to
prepared SQL statements, they also enable you to retrieve OUT and INOUT
parameters from stored procedures using db2_bind_param().

Parameters

connection

A valid database connection resource variable as returned from db2_connect() or
db2_pconnect().

statement

An SQL statement, optionally containing one or more parameter markers..

options

An associative array containing statement options. You can use this parameter to
request a scrollable cursor on database servers that support this functionality.
cursor

Passing the DB2_FORWARD_ONLY value requests a forward-only cursor for this
SQL statement. This is the default type of cursor, and it is supported by all
database servers. It is also much faster than a scrollable cursor. Passing the
DB2_SCROLLABLE value requests a scrollable cursor for this SQL statement.

This type of cursor enables you to fetch rows non-sequentially from the database
server. However, it is only supported by DB2 servers, and is much slower than
forward-only cursors.

Return Values

Returns a statement resource if the SQL statement was successfully parsed and prepared
by the database server. Returns FALSE if the database server returned an error. You can
determine which error was returned by calling db2_stmt_error() or db2_stmt_errormsg().

Examples

Example #865 - Preparing and executing an SQL statement with parameter
markers

The following example prepares an INSERT statement that accepts four parameter
markers, then iterates over an array of arrays containing the input values to be passed
to db2_execute().

<?php

$animals = array(

 array(0, 'cat', 'Pook', 3.2),

 array(1, 'dog', 'Peaches', 12.3),

 array(2, 'horse', 'Smarty', 350.0),

);

$insert = 'INSERT INTO animals (id, breed, name, weight)

 VALUES (?, ?, ?, ?)';

$stmt = db2_prepare($conn, $insert);

if ($stmt) {

 foreach ($animals as $animal) {

 $result = db2_execute($stmt, $animal);

 }

}

?>

See Also

• db2_bind_param()
• db2_execute()
• db2_stmt_error()
• db2_stmt_errormsg()

db2_primary_keys

db2_primary_keys -- Returns a result set listing primary keys for a table

Description

resource db2_primary_keys (resource $connection, string $qualifier, string $schema,
string $table-name)

Returns a result set listing the primary keys for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. If schema is NULL, db2_primary_keys()
matches the schema for the current connection.

table-name

The name of the table.

Return Values

Returns a statement resource with a result set containing rows describing the primary keys
for the specified table. The result set is composed of the following columns:

Column name Description

TABLE_CAT Name of the catalog for the table containing
the primary key. The value is NULL if this
table does not have catalogs.

TABLE_SCHEM Name of the schema for the table containing
the primary key.

TABLE_NAME Name of the table containing the primary
key.

COLUMN_NAME Name of the column containing the primary
key.

KEY_SEQ 1-indexed position of the column in the key.

PK_NAME The name of the primary key.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_procedure_columns

db2_procedure_columns -- Returns a result set listing stored procedure parameters

Description

resource db2_procedure_columns (resource $connection, string $qualifier, string $
schema, string $procedure, string $parameter)

Returns a result set listing the parameters for one or more stored procedures.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the procedures. This parameter accepts a search pattern
containing _ and % as wildcards.

procedure

The name of the procedure. This parameter accepts a search pattern containing _ and
% as wildcards.

parameter

The name of the parameter. This parameter accepts a search pattern containing _ and
% as wildcards. If this parameter is NULL, all parameters for the specified stored
procedures are returned.

Return Values

Returns a statement resource with a result set containing rows describing the parameters
for the stored procedures matching the specified parameters. The rows are composed of
the following columns:

Column name Description

PROCEDURE_CAT The catalog that contains the procedure.
The value is NULL if this table does not
have catalogs.

PROCEDURE_SCHEM Name of the schema that contains the
stored procedure.

PROCEDURE_NAME Name of the procedure.

COLUMN_NAME Name of the parameter.

COLUMN_TYPE
An integer value representing the type of the
parameter:

Return value Parameter type

1 (SQL_PARAM_INPUT) Input (IN) parameter.

2 (SQL_PARAM_INPUT_OUTPUT) Input/output (INOUT) parameter.

3 (SQL_PARAM_OUTPUT) Output (OUT) parameter.

DATA_TYPE The SQL data type for the parameter
represented as an integer value.

TYPE_NAME A string representing the data type for the
parameter.

COLUMN_SIZE An integer value representing the size of the
parameter.

BUFFER_LENGTH Maximum number of bytes necessary to
store data for this parameter.

DECIMAL_DIGITS The scale of the parameter, or NULL where
scale is not applicable.

NUM_PREC_RADIX An integer value of either 10 (representing
an exact numeric data type), 2 (representing
an approximate numeric data type), or
NULL (representing a data type for which
radix is not applicable).

NULLABLE An integer value representing whether the
parameter is nullable or not.

REMARKS Description of the parameter.

COLUMN_DEF Default value for the parameter.

SQL_DATA_TYPE An integer value representing the size of the
parameter.

SQL_DATETIME_SUB Returns an integer value representing a
datetime subtype code, or NULL for SQL

data types to which this does not apply.

CHAR_OCTET_LENGTH Maximum length in octets for a character
data type parameter, which matches
COLUMN_SIZE for single-byte character set
data, or NULL for non-character data types.

ORDINAL_POSITION The 1-indexed position of the parameter in
the CALL statement.

IS_NULLABLE A string value where 'YES' means that the
parameter accepts or returns NULL values
and 'NO' means that the parameter does not
accept or return NULL values.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_procedures

db2_procedures -- Returns a result set listing the stored procedures registered in a
database

Description

resource db2_procedures (resource $connection, string $qualifier, string $schema,
string $procedure)

Returns a result set listing the stored procedures registered in a database.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the procedures. This parameter accepts a search pattern
containing _ and % as wildcards.

procedure

The name of the procedure. This parameter accepts a search pattern containing _ and
% as wildcards.

Return Values

Returns a statement resource with a result set containing rows describing the stored
procedures matching the specified parameters. The rows are composed of the following
columns:

Column name Description

PROCEDURE_CAT The catalog that contains the procedure.
The value is NULL if this table does not
have catalogs.

PROCEDURE_SCHEM Name of the schema that contains the
stored procedure.

PROCEDURE_NAME Name of the procedure.

NUM_INPUT_PARAMS Number of input (IN) parameters for the

stored procedure.

NUM_OUTPUT_PARAMS Number of output (OUT) parameters for the
stored procedure.

NUM_RESULT_SETS Number of result sets returned by the stored
procedure.

REMARKS Any comments about the stored procedure.

PROCEDURE_TYPE Always returns 1, indicating that the stored
procedure does not return a return value.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_result

db2_result -- Returns a single column from a row in the result set

Description

mixed db2_result (resource $stmt, mixed $column)

Use db2_result() to return the value of a specified column in the current row of a result set.
You must call db2_fetch_row() before calling db2_result() to set the location of the result
set pointer.

Parameters

stmt

A valid stmt resource.

column

Either an integer mapping to the 0-indexed field in the result set, or a string matching
the name of the column.

Return Values

Returns the value of the requested field if the field exists in the result set. Returns NULL if
the field does not exist, and issues a warning.

Examples

Example #866 - A db2_result() example

The following example demonstrates how to iterate through a result set with
db2_fetch_row() and retrieve columns from the result set with db2_result().

<?php

$sql = 'SELECT name, breed FROM animals WHERE weight < ?';

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, 'BREED');

 print "$name $breed";

}

?>

The above example will output:

cat Pook

gold fish Bubbles

budgerigar Gizmo

goat Rickety Ride

See Also

• db2_fetch_array()
• db2_fetch_assoc()
• db2_fetch_both()
• db2_fetch_object()
• db2_fetch_row()

db2_rollback

db2_rollback -- Rolls back a transaction

Description

bool db2_rollback (resource $connection)

Rolls back an in-progress transaction on the specified connection resource and begins a
new transaction. PHP applications normally default to AUTOCOMMIT mode, so
db2_rollback() normally has no effect unless AUTOCOMMIT has been turned off for the
connection resource.

Note

If the specified connection resource is a persistent connection, all transactions in
progress for all applications using that persistent connection will be rolled back. For
this reason, persistent connections are not recommended for use in applications that
require transactions.

Parameters

connection

A valid database connection resource variable as returned from db2_connect() or
db2_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #867 - Rolling back a DELETE statement

In the following example, we count the number of rows in a table, turn off
AUTOCOMMIT mode on a database connection, delete all of the rows in the table and
return the count of 0 to prove that the rows have been removed. We then issue
db2_rollback() and return the updated count of rows in the table to show that the
number is the same as before we issued the DELETE statement. The return to the
original state of the table demonstrates that the roll back of the transaction succeeded.

<?php

$conn = db2_connect($database, $user, $password);

if ($conn) {

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 // Turn AUTOCOMMIT off

 db2_autocommit($conn, DB2_AUTOCOMMIT_OFF);

 // Delete all rows from ANIMALS

 db2_exec($conn, "DELETE FROM animals");

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 // Roll back the DELETE statement

 db2_rollback($conn);

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 db2_close($conn);

}

?>

The above example will output:

7

0

7

See Also

• db2_autocommit()
• db2_commit()

db2_server_info

db2_server_info -- Returns an object with properties that describe the DB2 database
server

Description

object db2_server_info (resource $connection)

This function returns an object with read-only properties that return information about the
IBM DB2, Cloudscape, or Apache Derby database server. The following table lists the
database server properties:

Database server properties

Property name Return type Description

DBMS_NAME string The name of the database
server to which you are
connected. For DB2 servers
this is a combination of DB2
followed by the operating
system on which the
database server is running.

DBMS_VER string The version of the database
server, in the form of a string
"MM.mm.uuuu" where MM is
the major version, mm is the
minor version, and uuuu is
the update. For example,
"08.02.0001" represents
major version 8, minor
version 2, update 1.

DB_CODEPAGE int The code page of the
database to which you are
connected.

DB_NAME string The name of the database to
which you are connected.

DFT_ISOLATION string
The default transaction
isolation level supported by
the server:
UR

Uncommitted read:
changes are immediately

visible by all concurrent
transactions.

CS
Cursor stability: a row
read by one transaction
can be altered and
committed by a second
concurrent transaction.

RS
Read stability: a
transaction can add or
remove rows matching a
search condition or a
pending transaction.

RR
Repeatable read: data
affected by pending
transaction is not
available to other
transactions.

NC
No commit: any changes
are visible at the end of a
successful operation.
Explicit commits and
rollbacks are not allowed.

IDENTIFIER_QUOTE_CHA
R

string The character used to delimit
an identifier.

INST_NAME string The instance on the
database server that
contains the database.

ISOLATION_OPTION array An array of the isolation
options supported by the
database server. The
isolation options are
described in the
DFT_ISOLATION property.

KEYWORDS array An array of the keywords
reserved by the database
server.

LIKE_ESCAPE_CLAUSE bool TRUE if the database server

supports the use of % and _
wildcard characters. FALSE
if the database server does
not support these wildcard
characters.

MAX_COL_NAME_LEN int Maximum length of a column
name supported by the
database server, expressed
in bytes.

MAX_IDENTIFIER_LEN int Maximum length of an SQL
identifier supported by the
database server, expressed
in characters.

MAX_INDEX_SIZE int Maximum size of columns
combined in an index
supported by the database
server, expressed in bytes.

MAX_PROC_NAME_LEN int Maximum length of a
procedure name supported
by the database server,
expressed in bytes.

MAX_ROW_SIZE int Maximum length of a row in
a base table supported by
the database server,
expressed in bytes.

MAX_SCHEMA_NAME_LEN int Maximum length of a
schema name supported by
the database server,
expressed in bytes.

MAX_STATEMENT_LEN int Maximum length of an SQL
statement supported by the
database server, expressed
in bytes.

MAX_TABLE_NAME_LEN int Maximum length of a table
name supported by the
database server, expressed
in bytes.

NON_NULLABLE_COLUMN
S

bool TRUE if the database server
supports columns that can
be defined as NOT NULL,
FALSE if the database
server does not support
columns defined as NOT

NULL.

PROCEDURES bool TRUE if the database server
supports the use of the CALL
statement to call stored
procedures, FALSE if the
database server does not
support the CALL statement.

SPECIAL_CHARS string A string containing all of the
characters other than a-Z,
0-9, and underscore that can
be used in an identifier
name.

SQL_CONFORMANCE string
The level of conformance to
the ANSI/ISO SQL-92
specification offered by the
database server:
ENTRY

Entry-level SQL-92
compliance.

FIPS127
FIPS-127-2 transitional
compliance.

FULL
Full level SQL-92
compliance.

INTERMEDIATE
Intermediate level
SQL-92 compliance.

Parameters

connection

Specifies an active DB2 client connection.

Return Values

Returns an object on a successful call. Returns FALSE on failure.

Examples

Example #868 - A db2_server_info() example

To retrieve information about the server, you must pass a valid database connection
resource to db2_server_info().

<?php

$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

$server = db2_server_info($conn);

if ($server) {

 echo "DBMS_NAME: "; var_dump($server->DBMS_NAME);

 echo "DBMS_VER: "; var_dump($server->DBMS_VER);

 echo "DB_CODEPAGE: "; var_dump($server->DB_CODEPAGE);

 echo "DB_NAME: "; var_dump($server->DB_NAME);

 echo "INST_NAME: "; var_dump($server->INST_NAME);

 echo "SPECIAL_CHARS: "; var_dump($server->SPECIAL_CHARS);

 echo "KEYWORDS: "; var_dump(sizeof($server->KEYWORDS)
);

 echo "DFT_ISOLATION: "; var_dump($server->DFT_ISOLATION);

 echo "ISOLATION_OPTION: ";

 $il = '';

 foreach($server->ISOLATION_OPTION as $opt)

 {

 $il .= $opt." ";

 }

 var_dump($il);

 echo "SQL_CONFORMANCE: "; var_dump($server->SQL_CONFORMANCE);

 echo "PROCEDURES: "; var_dump($server->PROCEDURES);

 echo "IDENTIFIER_QUOTE_CHAR: "; var_dump(
$server->IDENTIFIER_QUOTE_CHAR);

 echo "LIKE_ESCAPE_CLAUSE: "; var_dump($server->LIKE_ESCAPE_CLAUSE
);

 echo "MAX_COL_NAME_LEN: "; var_dump($server->MAX_COL_NAME_LEN
);

 echo "MAX_ROW_SIZE: "; var_dump($server->MAX_ROW_SIZE);

 echo "MAX_IDENTIFIER_LEN: "; var_dump($server->MAX_IDENTIFIER_LEN
);

 echo "MAX_INDEX_SIZE: "; var_dump($server->MAX_INDEX_SIZE);

 echo "MAX_PROC_NAME_LEN: "; var_dump($server->MAX_PROC_NAME_LEN
);

 echo "MAX_SCHEMA_NAME_LEN: "; var_dump(
$server->MAX_SCHEMA_NAME_LEN);

 echo "MAX_STATEMENT_LEN: "; var_dump($server->MAX_STATEMENT_LEN
);

 echo "MAX_TABLE_NAME_LEN: "; var_dump($server->MAX_TABLE_NAME_LEN
);

 echo "NON_NULLABLE_COLUMNS: "; var_dump(
$server->NON_NULLABLE_COLUMNS);

 db2_close($conn);

}

?>

The above example will output:

DBMS_NAME: string(9) "DB2/LINUX"

DBMS_VER: string(10) "08.02.0000"

DB_CODEPAGE: int(1208)

DB_NAME: string(6) "SAMPLE"

INST_NAME: string(8) "db2inst1"

SPECIAL_CHARS: string(2) "@#"

KEYWORDS: int(179)

DFT_ISOLATION: string(2) "CS"

ISOLATION_OPTION: string(12) "UR CS RS RR "

SQL_CONFORMANCE: string(7) "FIPS127"

PROCEDURES: bool(true)

IDENTIFIER_QUOTE_CHAR: string(1) """

LIKE_ESCAPE_CLAUSE: bool(true)

MAX_COL_NAME_LEN: int(30)

MAX_ROW_SIZE: int(32677)

MAX_IDENTIFIER_LEN: int(18)

MAX_INDEX_SIZE: int(1024)

MAX_PROC_NAME_LEN: int(128)

MAX_SCHEMA_NAME_LEN: int(30)

MAX_STATEMENT_LEN: int(2097152)

MAX_TABLE_NAME_LEN: int(128)

NON_NULLABLE_COLUMNS: bool(true)

See Also

• db2_client_info()

db2_set_option

db2_set_option -- Set options for connection or statement resources

Description

bool db2_set_option (resource $resource, array $options, int $type)

Sets options for a statement resource or a connection resource. You cannot set options for
result set resources.

Parameters

resource

A valid statement resource as returned from db2_prepare() or a valid connection
resource as returned from db2_connect() or db2_pconnect().

options

An associative array containing valid statement or connection options. This parameter
can be used to change autocommit values, cursor types (scrollable or forward), and to
specify the case of the column names (lower, upper, or natural) that will appear in a
result set.
autocommit

Passing DB2_AUTOCOMMIT_ON turns autocommit on for the specified
connection resource. Passing DB2_AUTOCOMMIT_OFF turns autocommit off for
the specified connection resource.

cursor

Passing DB2_FORWARD_ONLY specifies a forward-only cursor for a statement
resource. This is the default cursor type, and is supported by all database servers.
Passing DB2_SCROLLABLE specifies a scrollable cursor for a statement
resource. Scrollable cursors enable result set rows to be accessed in
non-sequential order, but are only supported by IBM DB2 Universal Database
databases.

binmode

Passing DB2_BINARY specifies that binary data will be returned as is. This is the
default mode. This is the equivalent of setting ibm_db2.binmode=1 in php.ini.
Passing DB2_CONVERT specifies that binary data will be converted to
hexadecimal encoding, and will be returned as such. This is the equivalent of
setting ibm_db2.binmode=2 in php.ini. Passing DB2_PASSTHRU specifies that
binary data will be converted to NULL. This is the equivalent of setting
ibm_db2.binmode=3 in php.ini.

db2_attr_case

Passing DB2_CASE_LOWER specifies that column names of the result set are
returned in lower case. Passing DB2_CASE_UPPER specifies that column names
of the result set are returned in upper case. Passing DB2_CASE_NATURAL

specifies that column names of the result set are returned in natural case.

deferred_prepare

Passing DB2_DEFERRED_PREPARE_ON turns deferred prepare on for the
specified statement resource. Passing DB2_DEFERRED_PREPARE_OFF turns
deferred prepare off for the specified statement resource.

The following new i5/OS options are available as of ibm_db2 version 1.5.1.

Note

Note

Prior versions of ibm_db2 do not support these new i5 options.

i5_fetch_only

DB2_I5_FETCH_ON - Cursors are read-only and cannot be used for positioned
updates or deletes. This is the default unless SQL_ATTR_FOR_FETCH_ONLY
environment has been set to SQL_FALSE. DB2_I5_FETCH_OFF - Cursors can be
used for positioned updates and deletes.

The following new options are available as of ibm_db2 version 1.6.0. They provide
useful tracking information that can be accessed during execution with
db2_get_option().

Note

Note

Prior versions of ibm_db2 do not support these new options.

When the value in each option is being set, some servers might not handle the
entire length provided and might truncate the value.

To ensure that the data specified in each option is converted correctly when
transmitted to a host system, use only the characters A through Z, 0 through 9, and
the underscore (_) or period (.).

userid

SQL_ATTR_INFO_USERID - A pointer to a null-terminated character string used
to identify the client user ID sent to the host database server when using DB2
Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 16 characters. This
user-id is not to be confused with the authentication user-id, it is for
identification purposes only and is not used for any authorization.

acctstr

SQL_ATTR_INFO_ACCTSTR - A pointer to a null-terminated character string used
to identify the client accounting string sent to the host database server when using
DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 200 characters.

applname

SQL_ATTR_INFO_APPLNAME - A pointer to a null-terminated character string
used to identify the client application name sent to the host database server when
using DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 32 characters.

wrkstnname

SQL_ATTR_INFO_WRKSTNNAME - A pointer to a null-terminated character string
used to identify the client workstation name sent to the host database server when
using DB2 Connect.

Note

Note

DB2 for z/OS and OS/390 servers support up to a length of 18 characters.

type

An integer value that specifies the type of resource that was passed into the function.
The type of resource and this value must correspond.

Passing 1 as the value specifies that a connection resource has been passed into
the function. Passing any integer not equal to 1 as the value specifies that a
statement resource has been passed into the function.

The following table specifies which options are compatible with the available resource
types:

Resource-Parameter Matrix

Key Value Resource Type

Connection Statement Result Set

autocommit DB2_AUTOCOM
MIT_ON

X - -

autocommit DB2_AUTOCOM
MIT_OFF

X - -

cursor DB2_SCROLLA
BLE

- X -

cursor DB2_FORWARD
_ONLY

- X -

binmode DB2_BINARY X X -

binmode DB2_CONVERT X X -

binmode DB2_PASSTHR
U

X X -

db2_attr_case DB2_CASE_LO
WER

X X -

db2_attr_case DB2_CASE_UP
PER

X X -

db2_attr_case DB2_CASE_NA
TURAL

X X -

deferred_prepar
e

DB2_DEFERRE
D_PREPARE_O
N

- X -

deferred_prepar
e

DB2_DEFERRE
D_PREPARE_O
FF

- X -

i5_fetch_only DB2_I5_FETCH
_ON

- X -

i5_fetch_only DB2_I5_FETCH
_OFF

- X -

userid SQL_ATTR_INF X X -

O_USERID

acctstr SQL_ATTR_INF
O_ACCTSTR

X X -

applname SQL_ATTR_INF
O_APPLNAME

X X -

wrkstnname SQL_ATTR_INF
O_WRKSTNNA
ME

X X -

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #869 - Setting one parameter with a connection resource

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_ON);

/* Call the function using the correct resource, options array, and type
values */

$result = db2_set_option($conn, $options, 1);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Options Set Successfully

Example #870 - Setting multiple parameters with a connection resource

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF,

 'binmode' => DB2_PASSTHRU,

 'db2_attr_case' => DB2_CASE_UPPER,

 'cursor' => DB2_SCROLLABLE);

/* Call the function using the correct resource, options array, and type
values */

$result = db2_set_option($conn, $options, 1);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Options Set Successfully

Example #871 - Setting multiple parameters with an invalid key

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF,

 'MY_INVALID_KEY' => DB2_PASSTHRU,

 'db2_attr_case' => DB2_CASE_UPPER,

 'cursor' => DB2_SCROLLABLE);

/* Call the function using the correct resource, options array, and type
values */

$result = db2_set_option($conn, $options, 1);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Could Not Set Options

Example #872 - Setting multiple parameters with an invalid value

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF,

 'binmode' => 'INVALID_VALUE',

 'db2_attr_case' => DB2_CASE_UPPER,

 'cursor' => DB2_SCROLLABLE);

/* Call the function using the correct resource, options array, and type
values */

$result = db2_set_option($conn, $options, 1);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Could Not Set Options

Example #873 - Setting multiple parameters with a connection resource and the
wrong type

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF,

 'binmode' => DB2_PASSTHRU,

 'db2_attr_case' => DB2_CASE_UPPER,

 'cursor' => DB2_SCROLLABLE);

/* Call the function using the correct resource, options array, and the
wrong type value */

$result = db2_set_option($conn, $options, 2);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Could Not Set Options

Example #874 - Setting multiple parameters with the wrong resource

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('autocommit' => DB2_AUTOCOMMIT_OFF,

 'binmode' => DB2_PASSTHRU,

 'db2_attr_case' => DB2_CASE_UPPER,

 'cursor' => DB2_SCROLLABLE);

$stmt = db2_prepare($conn, 'SELECT * FROM EMPLOYEE');

/* Call the function using the wrong resource, and the correct options

array, and type values */

$result = db2_set_option($stmt, $options, 1);

/* Check if all options could be set correctly */

if($result)

{

 echo 'Options Set Successfully';

}

else

{

 echo 'Could Not Set Options';

}

?>

The above example will output:

Could Not Set Options

Example #875 - Putting it all together

<?php

/* Database Connection Parameters */

$database = 'SAMPLE';

$hostname = 'localhost';

$port = 50000;

$protocol = 'TCPIP';

$username = 'db2inst1';

$password = 'ibmdb2';

/* Connection String */

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;";

$conn_string .= "HOSTNAME=$hostname;PORT=$port;PROTOCOL=$protocol;";

$conn_string .= "UID=$username;PWD=$password;";

/* Obtain Connection Resource */

$conn = db2_connect($conn_string, '', '');

/* Create the associative options array with valid key-value pairs */

$options = array('db2_attr_case' => DB2_CASE_LOWER,

 'cursor' => DB2_SCROLLABLE);

$stmt = db2_prepare($conn, 'SELECT * FROM EMPLOYEE WHERE EMPNO = ? OR EMPNO
= ?');

/* Call the function using the correct resource, options array, and type
values */

$option_result = db2_set_option($stmt, $options, 2);

$result = db2_execute($stmt, array('000130', '000140'));

/* Get Row 2 before Row 1 since Scrollable Cursor */

print_r(db2_fetch_assoc($stmt, 2));

print '

';

print_r(db2_fetch_assoc($stmt, 1));

?>

The above example will output:

Array

(

 [empno] => 000140

 [firstnme] => HEATHER

 [midinit] => A

 [lastname] => NICHOLLS

 [workdept] => C01

 [phoneno] => 1793

 [hiredate] => 1976-12-15

 [job] => ANALYST

 [edlevel] => 18

 [sex] => F

 [birthdate] => 1946-01-19

 [salary] => 28420.00

 [bonus] => 600.00

 [comm] => 2274.00

)

Array

(

 [empno] => 000130

 [firstnme] => DELORES

 [midinit] => M

 [lastname] => QUINTANA

 [workdept] => C01

 [phoneno] => 4578

 [hiredate] => 1971-07-28

 [job] => ANALYST

 [edlevel] => 16

 [sex] => F

 [birthdate] => 1925-09-15

 [salary] => 23800.00

 [bonus] => 500.00

 [comm] => 1904.00

)

Example #876 - i5/OS cursors are read-only

<?php

 $conn = db2_connect("", "", "", array("i5_lib"=>"nobody"));

 $stmt = db2_prepare($conn, 'select * from names where first = ?');

 $name = "first2";

 db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

 $options = array("i5_fetch_only"=>DB2_I5_FETCH_ON);

 db2_set_option($stmt,$options,0);

 if (db2_execute($stmt)) {

 while ($row = db2_fetch_array($stmt)) {

 echo "{$row[0]} {$row[1]}";

 }

 }

?>

The above example will output:

first2 last2

See Also

• db2_connect()
• db2_pconnect()
• db2_exec()
• db2_prepare()
• db2_cursor_type()

db2_special_columns

db2_special_columns -- Returns a result set listing the unique row identifier columns for a
table

Description

resource db2_special_columns (resource $connection, string $qualifier, string $
schema, string $table_name, int $scope)

Returns a result set listing the unique row identifier columns for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables.

table_name

The name of the table.

scope

Integer value representing the minimum duration for which the unique row identifier is
valid. This can be one of the following values:

Integer value SQL constant Description

0 SQL_SCOPE_CURROW Row identifier is valid only
while the cursor is positioned
on the row.

1 SQL_SCOPE_TRANSACTI
ON

Row identifier is valid for the
duration of the transaction.

2 SQL_SCOPE_SESSION Row identifier is valid for the
duration of the connection.

Return Values

Returns a statement resource with a result set containing rows with unique row identifier
information for a table. The rows are composed of the following columns:

Column name Description

SCOPE

Integer value SQL constant Description

0 SQL_SCOPE_CURROW Row identifier is valid only
while the cursor is positioned
on the row.

1 SQL_SCOPE_TRANSACTI
ON

Row identifier is valid for the
duration of the transaction.

2 SQL_SCOPE_SESSION Row identifier is valid for the
duration of the connection.

COLUMN_NAME Name of the unique column.

DATA_TYPE SQL data type for the
column.

TYPE_NAME Character string
representation of the SQL
data type for the column.

COLUMN_SIZE An integer value
representing the size of the
column.

BUFFER_LENGTH Maximum number of bytes
necessary to store data from
this column.

DECIMAL_DIGITS The scale of the column, or
NULL where scale is not
applicable.

NUM_PREC_RADIX An integer value of either 10
(representing an exact
numeric data type), 2
(representing an
approximate numeric data
type), or NULL (representing
a data type for which radix is
not applicable).

PSEUDO_COLUMN Always returns 1.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_statistics()
• db2_table_privileges()
• db2_tables()

db2_statistics

db2_statistics -- Returns a result set listing the index and statistics for a table

Description

resource db2_statistics (resource $connection, string $qualifier, string $schema, string
$table-name, bool $unique)

Returns a result set listing the index and statistics for a table.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema that contains the targeted table. If this parameter is NULL, the statistics
and indexes are returned for the schema of the current user.

table_name

The name of the table.

unique

An integer value representing the type of index information to return.
0

Return only the information for unique indexes on the table.

1

Return the information for all indexes on the table.

Return Values

Returns a statement resource with a result set containing rows describing the statistics
and indexes for the base tables matching the specified parameters. The rows are
composed of the following columns:

Column name Description

TABLE_CAT The catalog that contains the table. The
value is NULL if this table does not have
catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

NON_UNIQUE
An integer value representing whether the
index prohibits unique values, or whether
the row represents statistics on the table
itself:

Return value Parameter type

0 (SQL_FALSE) The index allows duplicate values.

1 (SQL_TRUE) The index values must be unique.

NULL This row is statistics information for the table
itself.

INDEX_QUALIFIER A string value representing the qualifier that
would have to be prepended to
INDEX_NAME to fully qualify the index.

INDEX_NAME A string representing the name of the index.

TYPE
An integer value representing the type of
information contained in this row of the
result set:

Return value Parameter type

0 (SQL_TABLE_STAT) The row contains statistics about the table
itself.

1 (SQL_INDEX_CLUSTERED) The row contains information about a
clustered index.

2 (SQL_INDEX_HASH) The row contains information about a
hashed index.

3 (SQL_INDEX_OTHER) The row contains information about a type of
index that is neither clustered nor hashed.

ORDINAL_POSITION The 1-indexed position of the column in the
index. NULL if the row contains statistics

information about the table itself.

COLUMN_NAME The name of the column in the index. NULL
if the row contains statistics information
about the table itself.

ASC_OR_DESC A if the column is sorted in ascending order,
D if the column is sorted in descending
order, NULL if the row contains statistics
information about the table itself.

CARDINALITY
If the row contains information about an
index, this column contains an integer value
representing the number of unique values in
the index.

If the row contains information about the
table itself, this column contains an integer
value representing the number of rows in
the table.

PAGES
If the row contains information about an
index, this column contains an integer value
representing the number of pages used to
store the index.

If the row contains information about the
table itself, this column contains an integer
value representing the number of pages
used to store the table.

FILTER_CONDITION Always returns NULL.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_table_privileges()

• db2_tables()

db2_stmt_error

db2_stmt_error -- Returns a string containing the SQLSTATE returned by an SQL
statement

Description

string db2_stmt_error ([resource $stmt])

Returns a string containing the SQLSTATE value returned by an SQL statement.

If you do not pass a statement resource as an argument to db2_stmt_error(), the driver
returns the SQLSTATE value associated with the last attempt to return a statement
resource, for example, from db2_prepare() or db2_exec().

To learn what the SQLSTATE value means, you can issue the following command at a
DB2 Command Line Processor prompt: db2 '? sqlstate-value '. You can also call
db2_stmt_errormsg() to retrieve an explicit error message and the associated SQLCODE
value.

Parameters

stmt

A valid statement resource.

Return Values

Returns a string containing an SQLSTATE value.

See Also

• db2_conn_error()
• db2_conn_errormsg()
• db2_stmt_errormsg()

db2_stmt_errormsg

db2_stmt_errormsg -- Returns a string containing the last SQL statement error message

Description

string db2_stmt_errormsg ([resource $stmt])

Returns a string containing the last SQL statement error message.

If you do not pass a statement resource as an argument to db2_stmt_errormsg(), the
driver returns the error message associated with the last attempt to return a statement
resource, for example, from db2_prepare() or db2_exec().

Parameters

stmt

A valid statement resource.

Return Values

Returns a string containing the error message and SQLCODE value for the last error that
occurred issuing an SQL statement.

See Also

• db2_conn_error()
• db2_conn_errormsg()
• db2_stmt_error()

db2_table_privileges

db2_table_privileges -- Returns a result set listing the tables and associated privileges in a
database

Description

resource db2_table_privileges (resource $connection [, string $qualifier [, string $
schema [, string $table_name]]])

Returns a result set listing the tables and associated privileges in a database.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. This parameter accepts a search pattern
containing _ and % as wildcards.

table_name

The name of the table. This parameter accepts a search pattern containing _ and % as
wildcards.

Return Values

Returns a statement resource with a result set containing rows describing the privileges for
the tables that match the specified parameters. The rows are composed of the following
columns:

Column name Description

TABLE_CAT The catalog that contains the table. The
value is NULL if this table does not have
catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

GRANTOR Authorization ID of the user who granted the
privilege.

GRANTEE Authorization ID of the user to whom the
privilege was granted.

PRIVILEGE The privilege that has been granted. This
can be one of ALTER, CONTROL, DELETE,
INDEX, INSERT, REFERENCES, SELECT,
or UPDATE.

IS_GRANTABLE A string value of "YES" or "NO" indicating
whether the grantee can grant the privilege
to other users.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_tables()

db2_tables

db2_tables -- Returns a result set listing the tables and associated metadata in a database

Description

resource db2_tables (resource $connection [, string $qualifier [, string $schema [,
string $table-name [, string $table-type]]]])

Returns a result set listing the tables and associated metadata in a database.

Parameters

connection

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

A qualifier for DB2 databases running on OS/390 or z/OS servers. For other
databases, pass NULL or an empty string.

schema

The schema which contains the tables. This parameter accepts a search pattern
containing _ and % as wildcards.

table-name

The name of the table. This parameter accepts a search pattern containing _ and % as
wildcards.

table-type

A list of comma-delimited table type identifiers. To match all table types, pass NULL or
an empty string. Valid table type identifiers include: ALIAS, HIERARCHY TABLE,
INOPERATIVE VIEW, NICKNAME, MATERIALIZED QUERY TABLE, SYSTEM
TABLE, TABLE, TYPED TABLE, TYPED VIEW, and VIEW.

Return Values

Returns a statement resource with a result set containing rows describing the tables that
match the specified parameters. The rows are composed of the following columns:

Column name Description

TABLE_CAT The catalog that contains the table. The
value is NULL if this table does not have
catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

TABLE_TYPE Table type identifier for the table.

REMARKS Description of the table.

See Also

• db2_column_privileges()
• db2_columns()
• db2_foreign_keys()
• db2_primary_keys()
• db2_procedure_columns()
• db2_procedures()
• db2_special_columns()
• db2_statistics()
• db2_table_privileges()

Ingres II

Introduction

These functions allow you to access Ingres II database servers.

Note

If you already used PHP extensions to access other database servers, note that Ingres
doesn't allow concurrent queries and/or transaction over one connection, thus you
won't find any result or transaction handle in this extension. The result of a query must
be treated before sending another query, and a transaction must be committed or
rolled back before opening another transaction (which is automatically done when
sending the first query).

Installing/Configuring

Requirements

To compile PHP with Ingres support, you need the Ingres OpenAPI library and header
files.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/ingres.

In order to have these functions available, you must compile PHP with Ingres support by
using the --with-ingres[=DIR] option, where DIR is the Ingres base directory, which defaults
to /II/ingres. If the II_SYSTEM environment variable isn't correctly set you may have to use
--with-ingres=DIR to specify your Ingres installation directory.

When using this extension with Apache, if Apache does not start and complains with "PHP
Fatal error: Unable to start ingres_ii module in Unknown on line 0" then make sure the
environment variable II_SYSTEM is correctly set. Adding "export
II_SYSTEM="/home/ingres/II" in the script that starts Apache, just before launching httpd,
should be fine.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Ingres configuration options

Name Default Changeable Changelog

ingres.allow_persiste
nt

"1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.max_persisten
t

"-1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.max_links "-1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in

http://pecl.php.net/
http://pecl.php.net/package/ingres
http://pecl.php.net/package/ingres

PHP 5.1.0.

ingres.default_databa
se

NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.default_user NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.default_passw
ord

NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.report_db_war
nings

"1" PHP_INI_ALL Available since ingres
1.1.

ingres.cursor_mode "0" PHP_INI_ALL Available since ingres
1.1.

ingres.blob_segment
_length

"4096" PHP_INI_ALL Available since ingres
1.2.0.

ingres.trace_connect "0" PHP_INI_ALL Available since ingres
1.2.1.

ingres.timeout "-1" PHP_INI_ALL Available since ingres
1.4.0.

ingres.array_index_st
art

"1" PHP_INI_ALL Available since ingres
1.4.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

ingres_connect() and ingres_pconnect() return an Ingres II link identifier.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

INGRES_ASSOC (integer)
Columns are returned into the array having the fieldname as the array index.

INGRES_NUM (integer)
Columns are returned into the array having a numerical index to the fields. This index
starts with 1, the first field in the result.

INGRES_BOTH (integer)
Columns are returned into the array having both a numerical index and the fieldname
as the array index.

INGRES_EXT_VERSION (string)
Specifies the version of the Ingres Extension. Available since version 1.2.0 of the
PECL extension.

INGRES_API_VERSION (integer)
Specifies the version of Ingres OpenAPI the extension was built against. Available
since version 1.2.0 of the PECL extension.

INGRES_CURSOR_READONLY (integer)
Specifies that Ingres cursors should be opened in 'readonly' mode. Available since
version 1.2.0 of the PECL extension.

INGRES_CURSOR_UPDATE (integer)
Specifies that Ingres cursors should be opened 'for update'. Available since version
1.2.0 of the PECL extension.

INGRES_DATE_MULTINATIONAL (integer)
Equivalent to the II_DATE_FORMAT setting of MULTINATIONAL. Available since
version 1.2.0 of the PECL extension.

INGRES_DATE_MULTINATIONAL4 (integer)
Equivalent to the II_DATE_FORMAT setting of MULTINATIONAL4. Available since
version 1.2.0 of the PECL extension.

INGRES_DATE_FINNISH (integer)
Equivalent to the II_DATE_FORMAT setting of FINNISH. Available since version 1.2.0
of the PECL extension.

INGRES_DATE_ISO (integer)
Equivalent to the II_DATE_FORMAT setting of ISO. Available since version 1.2.0 of
the PECL extension.

INGRES_DATE_ISO4 (integer)
Equivalent to the II_DATE_FORMAT setting of ISO4. Available since version 1.2.0 of

the PECL extension.

INGRES_DATE_GERMAN (integer)
Equivalent to the II_DATE_FORMAT setting of GERMAN. Available since version
1.2.0 of the PECL extension.

INGRES_DATE_MDY (integer)
Equivalent to the II_DATE_FORMAT setting of MDY. Available since version 1.2.0 of
the PECL extension.

INGRES_DATE_DMY (integer)
Equivalent to the II_DATE_FORMAT setting of DMY. Available since version 1.2.0 of
the PECL extension.

INGRES_DATE_YMD (integer)
Equivalent to the II_DATE_FORMAT setting of YMD. Available since version 1.2.0 of
the PECL extension.

INGRES_MONEY_LEADING (integer)
Specifies the currency character that should be placed at the start of a money value.
Equivalent to setting II_MONEY_FORMAT to 'L:'. Available since version 1.2.0 of the
PECL extension.

INGRES_MONEY_TRAILING (integer)
Specifies the currency character that should be placed at the end of a money value.
Equivalent to setting II_MONEY_FORMAT to 'T:'. Available since version 1.2.0 of the
PECL extension.

INGRES_STRUCTURE_BTREE (integer)
Specifies the default table or index structure to BTREE when used in combination with
the table_structure or index_structure option when connecting. Available since version
1.4.0 of the PECL extension.

INGRES_STRUCTURE_CBTREE (integer)
Specifies the default table or index structure to COMPRESSED BTREE when used in
combination with the table_structure or index_structure option when connecting.
Available since version 1.4.0 of the PECL extension.

INGRES_STRUCTURE_HASH (integer)
Specifies the default table or index structure to HASH when used in combination with
the table_structure or index_structure option when connecting. Available since version
1.4.0 of the PECL extension.

INGRES_STRUCTURE_CHASH (integer)
Specifies the default table or index structure to COMPRESSED HASH when used in
combination with the table_structure or index_structure option when connecting.
Available since version 1.4.0 of the PECL extension.

INGRES_STRUCTURE_HEAP (integer)
Specifies the default table structure to HEAP when used in combination with the
table_structure option when connecting. Available since version 1.4.0 of the PECL
extension.

INGRES_STRUCTURE_CHEAP (integer)
Specifies the default table structure to COMPRESSED HEAP when used in
combination with the table_structure option when connecting. Available since version
1.4.0 of the PECL extension.

INGRES_STRUCTURE_ISAM (integer)
Specifies the default table or index structure to ISAM when used in combination with
the table_structure or index_structure option when connecting. Available since version
1.4.0 of the PECL extension.

INGRES_STRUCTURE_CISAM (integer)
Specifies the default table or index structure to COMPRESSED ISAM when used in
combination with the table_structure or index_structure option when connecting.
Available since version 1.4.0 of the PECL extension.

Examples

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from an Ingres database.

Example #877 - Simple Ingres Example

<?php

// Connecting, selecting database

$link = ingres_connect('database', 'user', 'password')

 or die('Could not connect: ' . ingres_error($link));

echo 'Connected successfully';

// Select from a table that exists in all Ingres databases

$query = 'SELECT * FROM iirelation';

$returncode = ingres_query($query,$link) or die('Query failed: ' .

ingres_error($link));

// Print results in HTML

// relid - table name

// relowner - table owner

echo "<table>\n";

while ($iirelation = ingres_fetch_object(INGRES_BOTH, $link)) {

 echo "\t<tr>\n";

 echo "\t\t<td>" . $iirelation->relid . "</td>\n";

 echo "\t\t<td>" . $iirelation->relowner . "</td>\n";

 echo "\t</tr>\n";

}

echo "</table>\n";

// Commit transaction

ingres_commit($link);

// Closing connection

ingres_close($link);

?>

Ingres II Functions

ingres_autocommit

ingres_autocommit -- Switch autocommit on or off

Description

bool ingres_autocommit ([resource $link])

ingres_autocommit() is called before opening a transaction (before the first call to
ingres_query() or just after a call to ingres_rollback() or ingres_commit()) to switch the
"autocommit" mode of the server on or off (when the script begins the autocommit mode is
off).

When the autocommit mode is on, every query is automatically committed by the server,
as if ingres_commit() was called after every call to ingres_query().

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ingres_query()
• ingres_rollback()
• ingres_commit()

ingres_close

ingres_close -- Close an Ingres II database connection

Description

bool ingres_close ([resource $link])

ingres_close() closes the connection to the Ingres server that's associated with the
specified link.

ingres_close() isn't usually necessary, as it won't close persistent connections and all
non-persistent connections are automatically closed at the end of the script.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ingres_connect()
• ingres_pconnect()

ingres_commit

ingres_commit -- Commit a transaction

Description

bool ingres_commit ([resource $link])

ingres_commit() commits the currently open transaction, making all changes made to the
database permanent.

This closes the transaction. A new one can be open by sending a query with
ingres_query().

You can also have the server commit automatically after every query by calling
ingres_autocommit() before opening the transaction.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ingres_query()
• ingres_rollback()
• ingres_autocommit()

ingres_connect

ingres_connect -- Open a connection to an Ingres database

Description

resource ingres_connect ([string $database [, string $username [, string $password [,
array $options]]]])

ingres_connect() opens a connection with the given Ingres database.

The connection is closed when the script ends or when ingres_close() is called on this link.

All the other ingres functions use the last opened link as a default, so you need to store the
returned value only if you use more than one link at a time.

Parameters

If some parameters are missing, ingres_connect() uses the values in php.ini for
ingres.default_database, ingres.default_user and ingres.default_password.

database

The database name. Must follows the syntax [node_id::]dbname[/svr_class].

username

The Ingres user name.

password

The password associated with username.

options

ingres_connect() options

Option name Description

date_century_boundary The threshold by which a 2 digit year is
determined to be in the current century or in
the next century. Equivalent to
II_DATE_CENTURY_BOUNDARY.

group Speficfies the group ID of the user,
equivalent to the '-G' flag

role The role ID of the application. If a role
password is required, the parameter value
should be specified as "role/password"

effective_user The ingres user account being

impersonated, equivalent to the '-u' flag

dbms_password The internal database password for the user
connecting to Ingres

table_structure
The default structure for new tables. Valid
values for table_structure are:

• INGRES_STRUCTURE_BTREE

• INGRES_STRUCTURE_HASH

• INGRES_STRUCTURE_HEAP

• INGRES_STRUCTURE_ISAM

• INGRES_STRUCTURE_CBTREE

• INGRES_STRUCTURE_CISAM

• INGRES_STRUCTURE_CHASH

• INGRES_STRUCTURE_CHEAP

index_structure
The default structure for new secondary
indexes. Valid values for index_structure
are:

• INGRES_STRUCTURE_CBTREE

• INGRES_STRUCTURE_CISAM

• INGRES_STRUCTURE_CHASH

• INGRES_STRUCTURE_BTREE

• INGRES_STRUCTURE_HASH

• INGRES_STRUCTURE_ISAM

login_local Determines how the connection user ID and
password are used when a VNODE is
included in the target database string. If set
to TRUE, the user ID and password are
used to locally access the VNODE and the
VNODE login information is used to
establish the DBMS connection. If set to
FALSE, the process user ID is used to
access the VNODE and the connection user
ID and password are used in place of the
VNODE login information to establish the

DBMS connection. This parameter is
ignored if no VNODE is included in the
target database string. The default is
FALSE.

timezone Controls the timezone of the session. If not
set it will default the the value defined by
II_TIMEZONE_NAME. If
II_TIMEZONE_NAME is not defined the
NA-PACIFIC (GMT-8 with Daylight Savings)
is used.

date_format
Sets the allowable input and output format
for Ingres dates. Defaults to the value
defined by II_DATE_FORMAT. If
II_DATE_FORMAT is not set the default
date format is US, e.g. mm/dd/yy. Valid
values for date_format are:

• INGRES_DATE_DMY

• INGRES_DATE_FINISH

• INGRES_DATE_GERMAN

• INGRES_DATE_ISO

• INGRES_DATE_ISO4

• INGRES_DATE_MDY

• INGRES_DATE_MULTINATIONAL

• INGRES_DATE_MULTINATIONAL4

• INGRES_DATE_YMD

• INGRES_DATE_US

decimal_separator The character identifier for decimal data

money_lort
Leading or trailing currency sign. Valid
values for money_lort are:

• INGRES_MONEY_LEADING

• INGRES_MONEY_TRAILING

money_sign The currency symbol to be used with the
MONEY datatype

money_precision The precision of the MONEY datatype

float4_precision Precision of the FLOAT4 datatype

float8_precision Precision of the FLOAT8 data

blob_segment_length The amount of data in bytes to fetch at a
time when retrieving BLOB/CLOB data,
defaults to 4096 bytes when not explicitly
set.

Return Values

Returns a Ingres link resource on success, or FALSE on failure.

Examples

Example #878 - ingres_connect() example

<?php

$link = ingres_connect("mydb", "user", "pass")

 or die("Could not connect");

echo "Connected successfully";

ingres_close($link);

?>

Example #879 - ingres_connect() example using default link

<?php

ingres_connect("mydb", "user", "pass")

 or die("Could not connect");

echo "Connected successfully";

ingres_close();

?>

See Also

• ingres_pconnect()
• ingres_close()

ingres_cursor

ingres_cursor -- Gets a cursor name for a given link resource

Description

string ingres_cursor ([resource $link])

Returns an string containing the active cursor name. If no cursor is active then NULL is
returned.

If a link resource is passed to ingres_cursor() it returns the cursor name recorded for the link.
If no link is passed then ingres_cursor() returns the cursor name asssociated with the default
link.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns an string containing the active cursor name. If no cursor is active then NULL is
returned.

Examples

Example #880 - ingres_cursor() example

<?php

$link = ingres_connect($database, $user, $password);

ingres_prepare("select * from table", $link);

$cursor_name = ingres_cursor($link);

echo $cursor_name;

?>

See Also

• ingres_prepare()
• ingres_execute()

ingres_errno

ingres_errno -- Gets the last ingres error number generated

Description

int ingres_errno ([resource $link])

Returns an integer containing the last error number. If no error was reported 0 is returned.

If a link resource is passed to ingres_errno() it returns the last error recorded for the link. If
no link is passed then ingres_errno() returns the last error reported using the default link.

The function, ingres_errno(), should always be called after executing a database query.
Calling another function before ingres_errno() is called, will reset or change any error code
from the last Ingres function call.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns an integer containing the last error number. If no error was reported 0 is returned.

Examples

Example #881 - ingres_errno() example

<?php

$link = ingres_connect($database, $user, $password);

ingres_query("select * from table", $link);

$error_code = ingres_errno($link);

if ($error_code != 0) {

 echo "An error occured - " . $error_code;

}

?>

See Also

• ingres_error()
• ingres_errsqlstate()

ingres_error

ingres_error -- Gets a meaningful error message for the last error generated

Description

string ingres_error ([resource $link])

Returns a string containing the last error, or NULL if no error has occurred.

If a link resource is passed to ingres_error() it returns the last error recorded for the link. If no
link is passed then ingres_error() returns the last error reported using the default link.

The function, ingres_error(), should always be called after executing any database query.
Calling another function before ingres_error() is called will reset or change any error message
from the last Ingres function call.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns a string containing the last error, or NULL if no error has occurred.

Examples

Example #882 - ingres_error() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

$error_text = ingres_error();

if (!is_null($error_text)) {

 echo "An error occured - " . $error_text;

}

?>

See Also

• ingres_errno()
• ingres_errsqlstate()

ingres_errsqlstate

ingres_errsqlstate -- Gets the last SQLSTATE error code generated

Description

string ingres_errsqlstate ([resource $link])

Returns a string containing the last SQLSTATE, or NULL if no error has occurred.

If a link resource is passed to ingres_errsqlstate() it returns the last error recorded for the
link. If no link is passed then ingres_errsqlstate() returns the last error reported using the
default link.

The function, ingres_errsqlstate(), should always be called after executing any database
query. Calling another function before ingres_errsqlstate() is called will reset or change any
error message from the last Ingres function call.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns a string containing the last SQLSTATE, or NULL if no error has occurred.

Examples

Example #883 - ingres_errsqlstate() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

$error_sqlstate = ingres_errsqlstate();

if (!is_null($error_sqlstate)) {

 echo "An error occured - " . $error_sqlstate;

}

?>

See Also

• ingres_errno()
• ingres_error()

ingres_fetch_array

ingres_fetch_array -- Fetch a row of result into an array

Description

array ingres_fetch_array ([int $result_type [, resource $link]])

This function is an extended version of ingres_fetch_row(). In addition to storing the data in the
numeric indices of the result array, it also stores the data in associative indices, using the field
names as keys.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you must use the numeric
index of the column or make an alias for the column.

<?php

ingres_query("select t1.f1 as foo t2.f1 as bar from t1, t2");

$result = ingres_fetch_array();

$foo = $result["foo"];

$bar = $result["bar"];

?>

Speed-wise, the function is identical to ingres_fetch_object(), and almost as quick as
ingres_fetch_row() (the difference is insignificant).

Parameters

result_type

result_type can be INGRES_NUM for enumerated array, INGRES_ASSOC for
associative array, or INGRES_BOTH (default).

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Examples

Example #884 - ingres_fetch_array() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

while ($row = ingres_fetch_array()) {

 echo $row["user_id"]; // using associative array

 echo $row["fullname"];

 echo $row[1]; // using enumerated array

 echo $row[2];

}

?>

See Also

• ingres_query()
• ingres_num_fields()
• ingres_field_name()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_fetch_object

ingres_fetch_object -- Fetch a row of result into an object

Description

object ingres_fetch_object ([int $result_type [, resource $link]])

This function is similar to ingres_fetch_array(), with one difference - an object is returned,
instead of an array. Indirectly, that means that you can only access the data by the field
names, and not by their offsets (numbers are illegal property names).

Speed-wise, the function is identical to ingres_fetch_array(), and almost as quick as
ingres_fetch_row() (the difference is insignificant).

Parameters

result_type

The optional argument result_type is a constant and can take the following values:
INGRES_ASSOC, INGRES_NUM, and INGRES_BOTH.

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns an object that corresponds to the fetched row, or FALSE if there are no more rows.

Examples

Example #885 - ingres_fetch_object() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

while ($row = ingres_fetch_object()) {

 echo $row->user_id;

 echo $row->fullname;

}

?>

See Also

• ingres_query()
• ingres_num_fields()
• ingres_field_name()
• ingres_fetch_array()
• ingres_fetch_row()

ingres_fetch_row

ingres_fetch_row -- Fetch a row of result into an enumerated array

Description

array ingres_fetch_row ([resource $link])

ingres_fetch_row() returns an array that corresponds to the fetched row, or FALSE if there are
no more rows. Each result column is stored in an array offset, starting at offset 1.

Subsequent call to ingres_fetch_row() would return the next row in the result set, or FALSE if
there are no more rows.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Examples

Example #886 - ingres_fetch_row() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

while ($row = ingres_fetch_row()) {

 echo $row[1];

 echo $row[2];

}

?>

See Also

• ingres_num_fields()
• ingres_query()
• ingres_fetch_array()

• ingres_fetch_object()

ingres_field_length

ingres_field_length -- Get the length of a field

Description

int ingres_field_length (int $index [, resource $link])

ingres_field_length() returns the length of a field. This is the number of bytes used by the
server to store the field. For detailed information, see the Ingres/OpenAPI User Guide -
Appendix C.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns the length of a field.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_field_name

ingres_field_name -- Get the name of a field in a query result

Description

string ingres_field_name (int $index [, resource $link])

ingres_field_name() returns the name of a field in a query result.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns the name of a field in a query result, or FALSE on failure.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_field_nullable

ingres_field_nullable -- Test if a field is nullable

Description

bool ingres_field_nullable (int $index [, resource $link])

Test if a field is nullable.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

ingres_field_nullable() returns TRUE if the field can be set to the NULL value and FALSE if it
can't.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_field_precision

ingres_field_precision -- Get the precision of a field

Description

int ingres_field_precision (int $index [, resource $link])

ingres_field_precision() returns the precision of a field. This value is used only for decimal,
float and money SQL data types. For detailed information, see the Ingres/OpenAPI User
Guide - Appendix C.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns the field precision as an integer.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_field_scale

ingres_field_scale -- Get the scale of a field

Description

int ingres_field_scale (int $index [, resource $link])

ingres_field_scale() returns the scale of a field. This value is used only for the decimal SQL
data type. For detailed information, see the Ingres/OpenAPI User Guide - Appendix C.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns the scale of the field, as an integer.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_field_type

ingres_field_type -- Get the type of a field in a query result

Description

string ingres_field_type (int $index [, resource $link])

Get the type of a field in a query result.

Parameters

index

index is the number of the field and must be between 1 and the value given by
ingres_num_fields().

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

ingres_field_type() returns the type of a field in a query result, or FALSE on failure. Examples
of types returned are "IIAPI_BYTE_TYPE", "IIAPI_CHA_TYPE", "IIAPI_DTE_TYPE",
"IIAPI_FLT_TYPE", "IIAPI_INT_TYPE", "IIAPI_VCH_TYPE". Some of these types can map to
more than one SQL type depending on the length of the field (see ingres_field_length()). For
example "IIAPI_FLT_TYPE" can be a float4 or a float8. For detailed information, see the
Ingres/OpenAPI User Guide - Appendix C.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_num_fields

ingres_num_fields -- Get the number of fields returned by the last query

Description

int ingres_num_fields ([resource $link])

ingres_num_fields() returns the number of fields in the results returned by the Ingres server
after a call to ingres_query()

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns the number of fields.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_num_rows

ingres_num_rows -- Get the number of rows affected or returned by the last query

Description

int ingres_num_rows ([resource $link])

This function is mainly meant to get the number of rows modified in the database. If this
function is called before using ingres_fetch_array(), ingres_fetch_object() or
ingres_fetch_row() the server will delete the result's data and the script won't be able to get
them.

You should instead retrieve the result's data using one of these fetch functions in a loop until it
returns FALSE, indicating that no more results are available.

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

For delete, insert or update queries, ingres_num_rows() returns the number of rows affected
by the query. For other queries, ingres_num_rows() returns the number of rows in the query's
result.

See Also

• ingres_query()
• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()

ingres_pconnect

ingres_pconnect -- Open a persistent connection to an Ingres II database

Description

resource ingres_pconnect ([string $database [, string $username [, string $password]]])

Open a persistent connection to an Ingres II database.

There are only 2 differences between this function and ingres_connect(): First, when
connecting, the function will first try to find a (persistent) link that's already opened with the
same parameters. If one is found, an identifier for it will be returned instead of opening a new
connection. Second, the connection to the Ingres server will not be closed when the execution
of the script ends. Instead, the link will remain open for future use (ingres_close() will not
close links established by ingres_pconnect()). This type of link is therefore called 'persistent'.

Parameters

database

The database name. Must follows the syntax [node_id::]dbname[/svr_class].

username

The Ingres user name.

password

The password associated with username.

Return Values

Returns a Ingres II link resource on success, or FALSE on failure.

See Also

• ingres_connect()
• ingres_close()

ingres_query

ingres_query -- Send a SQL query to Ingres II

Description

bool ingres_query (string $query [, resource $link])

ingres_query() sends the given query to the Ingres server.

The query becomes part of the currently open transaction. If there is no open transaction,
ingres_query() opens a new transaction. To close the transaction, you can either call
ingres_commit() to commit the changes made to the database or ingres_rollback() to cancel
these changes. When the script ends, any open transaction is rolled back (by calling
ingres_rollback()). You can also use ingres_autocommit() before opening a new transaction to
have every SQL query immediately committed.

Parameters

query

A valid SQL query (see the Ingres SQL reference guide). Some types of SQL queries can't
be sent with this function:

• close (see ingres_close())

• commit (see ingres_commit())

• connect (see ingres_connect())

• disconnect (see ingres_close())

• get dbevent

• prepare to commit

• rollback (see ingres_rollback())

• savepoint

• set autocommit (see ingres_autocommit())

• all cursor related queries are unsupported

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #887 - ingres_query() example

<?php

ingres_connect($database, $user, $password);

ingres_query("select * from table");

while ($row = ingres_fetch_row()) {

 echo $row[1];

 echo $row[2];

}

?>

See Also

• ingres_fetch_array()
• ingres_fetch_object()
• ingres_fetch_row()
• ingres_commit()
• ingres_rollback()
• ingres_autocommit()

ingres_rollback

ingres_rollback -- Roll back a transaction

Description

bool ingres_rollback ([resource $link])

ingres_rollback() rolls back the currently open transaction, actually canceling all changes
made to the database during the transaction.

This closes the transaction. A new one can be open by sending a query with ingres_query().

Parameters

link

The connection link identifier. If not specified, the last opened link is used.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ingres_query()
• ingres_commit()
• ingres_autocommit()

MaxDB

Introduction

The MaxDB PHP extension allows you to access the functionality provided by MaxDB 7.5.0
and above. More information about the MaxDB Database server can be found at
» http://www.sdn.sap.com/irj/sdn/maxdb.

The MaxDB PHP extension is compatible to the MySQL mysqli extension. There are only
minor differences in the behaviour of some functions due to the differences of the underlying
database servers, MaxDB and MySQL.

The main differences to mysqli are in the following functions:

• maxdb_character_set_name() - Returns only ascii or unicode.
• maxdb_get_client_info() - Returns a different version string.
• maxdb_get_client_version() - Returns a different version string.
• maxdb_get_host_info() - Returns localhost or hostname.
• maxdb_get_server_info() - Returns a different version string.
• maxdb_get_server_version() - Returns a different version string.
• maxdb_kill() - Only disconnects the session.
• maxdb_multi_query() - Can not handle multiple SQL statements.
• maxdb_next_result() - Function returns always false.
• maxdb_options() - Supports a different set of options.
• maxdb_report() - Supports a different report mode.
• maxdb_stat() - Returns a different system status string.
• maxdb_stmt_store_result() - Is not necessary for MaxDB.
• maxdb_store_result() - Is not necessary for MaxDB.

Documentation for MaxDB can be found at » http://maxdb.sap.com/documentation/.

http://www.sdn.sap.com/irj/sdn/maxdb
http://www.sdn.sap.com/irj/sdn/maxdb
http://maxdb.sap.com/documentation/

Installing/Configuring

Requirements

In order to have these functions available, you must compile PHP with MaxDB support.
Additionally, you must have the MaxDB SQLDBC runtime library available to access the
MaxDB server.

Documentation for MaxDB SQLDBC can be found at » http://maxdb.sap.com/documentation/.

Download the MaxDB SQLDBC package from
» http://www.sdn.sap.com/irj/sdn/maxdb-downloads.

Installation

By using the --with-maxdb[=DIR] configuration option you enable PHP to access MaxDB
databases. [DIR] points to the directory that contains the installed MaxDB SQLDBC package.

Windows users will need to enable php_maxdb.dll inside of php.ini.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

MaxDB Configuration Options

Name Default Changeable Changelog

maxdb.default_host NULL PHP_INI_ALL

maxdb.default_db NULL PHP_INI_ALL

maxdb.default_user NULL PHP_INI_ALL

maxdb.default_pw NULL PHP_INI_ALL

maxdb.long_readlen "200" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

maxdb.default_host string

http://maxdb.sap.com/documentation/
http://www.sdn.sap.com/irj/sdn/maxdb-downloads
http://www.sdn.sap.com/irj/sdn/maxdb-downloads

The default server host to use when connecting to the database server if no other host
is specified.

maxdb.default_db string
The default server database to use when connecting if no other database is specified.

maxdb.default_user string
The default user name to use when connecting to the database server if no other
name is specified.

maxdb.default_pw string
The default password to use when connecting to the database server if no other
password is specified.

maxdb.long_readlen integer
The default maximum length of bytes that is transferred to the client if long data is
retrieved from the MaxDB database server.

Resource Types

This extension defines resources.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following constants to use with maxdb_options() are defined. For further description of
these constants see » http://maxdb.sap.com/documentation/.

MaxDB PHP client constants

Constant Description

MAXDB_COMPNAME The component name used to initialise the
SQLDBC runtime environment.

MAXDB_APPLICATION The application to be connected to the
database.

MAXDB_APPVERSION The version of the application.

MAXDB_SQLMODE The SQL mode.

MAXDB_UNICODE TRUE, if the connection is an unicode
(UCS2) client or FALSE, if not.

MAXDB_TIMEOUT The maximum allowed time of inactivity after
which the connection to the database is
closed by the system.

MAXDB_ISOLATIONLEVEL Specifies whether and how shared locks
and exclusive locks are implicitly requested
or released.

MAXDB_PACKETCOUNT The number of different request packets
used for the connection.

MAXDB_STATEMENTCACHESIZE The number of prepared statements to be
cached for the connection for re-use.

MAXDB_CURSORPREFIX The prefix to use for result tables that are
automatically named.

The function maxdb_fetch_array() uses a constant for the different types of result arrays.
The following constants are defined:

MaxDB fetch constants

Constant Description

http://maxdb.sap.com/documentation/

MAXDB_ASSOC Columns are returned into the array having
the fieldname as the array index.

MAXDB_ASSOC_UPPER Columns are returned into the array having
the upper case fieldname as the array index.

MAXDB_ASSOC_LOWER Columns are returned into the array having
the lower case fieldname as the array index.

MAXDB_BOTH Columns are returned into the array having
both a numerical index and the fieldname as
the array index.

MAXDB_NUM Columns are returned into the array having
a numerical index to the fields. This index
starts with 0, the first field in the result.

Examples

All examples in the MaxDB PHP documentation use the HOTELDB demo database from
MaxDB. More about this database can be found at
» http://maxdb.sap.com/doc/7_7/44/d8c25164bb38d0e10000000a1553f7/content.htm.

To use the examples in the MaxDB PHP documentation, you have to load the tutorial data
into your database. Then you have to set maxdb.default_db in php.ini to the database that
contains the tutorial data.

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from a MaxDB database.

Example #888 - MaxDB extension overview example

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Performing SQL query */

$query = "SELECT * FROM hotel.city";

$result = maxdb_query($link, $query) or die("Query failed : " .
maxdb_error());

/* Printing results in HTML */

echo "<table>\n";

while ($line = maxdb_fetch_array($result, MAXDB_ASSOC)) {

 echo " <tr>\n";

 foreach ($line as $col_value) {

 echo " <td>$col_value</td>\n";

 }

 echo " </tr>\n";

}

echo "</table>\n";

/* Free resultset */

maxdb_free_result($result);

/* Closing connection */

maxdb_close($link);

?>

The following example shows how to bind variables to a SELECT INTO statement.

http://maxdb.sap.com/doc/7_7/44/d8c25164bb38d0e10000000a1553f7/content.htm
http://maxdb.sap.com/doc/7_7/44/d8c25164bb38d0e10000000a1553f7/content.htm

Example #889 - Example for use of SELECT INTO statements

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Performing SQL query */

$stmt = maxdb_prepare ($link, "SELECT percentage INTO ? FROM
hotel.countrylanguage where language = ?");

if (!$stmt) {

 printf ("Prepare failed: %s\n", maxdb_error($link));

}

$name = "Mbundu";

maxdb_stmt_bind_param($stmt, 'ds', $percentage, $name);

maxdb_stmt_execute($stmt);

printf ("%f\n", $percentage);

maxdb_stmt_close ($stmt);

?>

The following example shows how to use MaxDB database procedures.

Example #890 - Example fore using database procedures

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP DBPROC test_proc");

maxdb_report (MAXDB_REPORT_ERROR);

$query = "create dbproc test_proc (INOUT e_text char(72)) AS select * from
SYSDBA.DUAL; fetch into :e_text;";

maxdb_query($link, $query);

/* Performing SQL query */

$stmt = maxdb_prepare ($link, "CALL test_proc (?)");

if (!$stmt) {

 printf ("Prepare failed: %s\n", maxdb_error($link));

}

maxdb_stmt_bind_param($stmt, 's', $result);

maxdb_stmt_execute($stmt);

printf ("%s\n", $result);

maxdb_stmt_close ($stmt);

?>

MaxDB Functions

Predefined Classes

maxdb

Represents a connection between PHP and a MaxDB database.

Constructor

• maxdb - construct a new maxdb object

Methods

• autocommit - turns on or off auto-commiting database modifications

• change_user - changes the user of the specified database connection

• character_set_name - returns the default character set for the database connection

• close - closes a previously opened connection

• commit - commits the current transaction

• connect - opens a new connection to MaxDB database server

• debug - performs debugging operations

• dump_debug_info - dumps debug information

• get_client_info - returns client version

• get_host_info - returns type of connection used

• get_server_info - returns version of the MaxDB server

• get_server_version - returns version of the MaxDB server

• init - initializes maxdb object

• info - retrieves information about the most recently executed query

• kill - asks the server to kill a MaxDB thread

• multi_query - performs multiple queries

• more_results - check if more results exist from currently executed multi-query

• next_result - reads next result from currently executed multi-query

• options - set options

• ping - pings a server connection or reconnects if there is no connection

• prepare - prepares a SQL query

• query - performs a query

• real_connect - attempts to open a connection to MaxDB database server

• escape_string - escapes special characters in a string for use in a SQL statement,
taking into account the current charset of the connection

• rollback - rolls back the current transaction

• select_db - selects the default database

• ssl_set - sets ssl parameters

• stat - gets the current system status

• stmt_init - initializes a statement for use with maxdb_stmt_prepare

• store_result - transfers a resultset from last query

• use_result - transfers an unbuffered resultset from last query

• thread-safe - returns whether thread safety is given or not

Properties

• affected_rows - gets the number of affected rows in a previous MaxDB operation

• client_info - returns the MaxDB client version as a string

• client_version - returns the MaxDB client version as an integer

• errno - returns the error code for the most recent function call

• error - returns the error string for the most recent function call

• field_count - returns the number of columns for the most recent query

• host_info - returns a string representing the type of connection used

• info - retrieves information about the most recently executed query

• insert_id - returns the auto generated id used in the last query

• protocol_version - returns the version of the MaxDB protocol used

• sqlstate - returns a string containing the SQLSTATE error code for the last error

• thread_id - returns the thread ID for the current connection

• warning_count - returns the number of warnings generated during execution of the
previous SQL statement

maxdb_stmt

Represents a prepared statement.

Methods

• bind_param - binds variables to a prepared statement

• bind_result - binds variables to a prepared statement for result storage

• close - closes a prepared statement

• data-seek - seeks to an arbitrary row in a statement result set

• execute - executes a prepared statement

• fetch - fetches result from a prepared statement into bound variables

• free_result - frees stored result memory for the given statement handle

• result_metadata - retrieves a resultset from a prepared statement for metadata
information

• prepare - prepares a SQL query

• send_long_data - sends data in chunks

• close_long_data - end sending long data

• reset - resets a prepared statement

• store_result - buffers complete resultset from a prepared statement

Properties

• affected_rows - returns affected rows from last statement execution

• errno - returns errorcode for last statement function

• errno - returns errormessage for last statement function

• param_count - returns number of parameter for a given prepare statement

• sqlstate - returns a string containing the SQLSTATE error code for the last statement
function

maxdb_result

Represents the result set obtained from a query against the database.

Methods

• close - closes resultset

• data_seek - moves internal result pointer

• fetch_field - gets column information from a resultset

• fetch_fields - gets information for all columns from a resulset

• fetch_field_direct - gets column information for specified column

• fetch_array - fetches a result row as an associative array, a numeric array, or both.

• fetch_assoc - fetches a result row as an associative array

• fetch_object - fetches a result row as an object

• fetch_row - gets a result row as an enumerated array

• close - frees result memory

• field_seek - set result pointer to a specified field offset

Properties

• current_field - returns offset of current fieldpointer

• field_count - returns number of fields in resultset

• lengths - returns an array of columnlengths

• num_rows - returns number of rows in resultset

maxdb_affected_rows

maxdb->affected_rows

maxdb_affected_rows -- maxdb->affected_rows -- Gets the number of affected rows in a
previous MaxDB operation

Description

Procedural style:

int maxdb_affected_rows (resource $link)

Object oriented style (property):

maxdb

int affected_rows;

maxdb_affected_rows() returns the number of rows affected by the last INSERT,
UPDATE, or DELETE query associated with the provided link parameter. If this number
cannot be determined, this function will return -1.

Note

For SELECT statements maxdb_affected_rows() works like maxdb_num_rows().

The maxdb_affected_rows() function only works with queries which modify a table. In
order to return the number of rows from a SELECT query, use the maxdb_num_rows()
function instead.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero
indicates that no records where updated for an UPDATE statement, no rows matched the
WHERE clause in the query or that no query has yet been executed. -1 indicates that the
number of rows affected can not be determined.

Examples

Example #891 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

$maxdb->query("DROP TABLE mycustomer");

maxdb_report (MAXDB_REPORT_ERROR);

/* Insert rows */

$maxdb->query("CREATE TABLE mycustomer AS SELECT * from hotel.customer");

printf("Affected rows (INSERT): %d\n", $maxdb->affected_rows);

$maxdb->query("ALTER TABLE mycustomer ADD Status int default 0");

/* update rows */

$maxdb->query("UPDATE mycustomer SET Status=1 WHERE cno > 50");

printf("Affected rows (UPDATE): %d\n", $maxdb->affected_rows);

/* delete rows */

$maxdb->query("DELETE FROM mycustomer WHERE cno < 50");

printf("Affected rows (DELETE): %d\n", $maxdb->affected_rows);

/* select all rows */

$result = $maxdb->query("SELECT title FROM mycustomer");

printf("Affected rows (SELECT): %d\n", $maxdb->affected_rows);

$result->close();

/* Delete table Language */

$maxdb->query("DROP TABLE mycustomer");

/* close connection */

$maxdb->close();

?>

Example #892 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP TABLE mycustomer");

maxdb_report (MAXDB_REPORT_ERROR);

/* Insert rows */

maxdb_query($link, "CREATE TABLE mycustomer AS SELECT * from
hotel.customer");

printf("Affected rows (INSERT): %d\n", maxdb_affected_rows($link));

maxdb_query($link, "ALTER TABLE mycustomer ADD Status int default 0");

/* update rows */

maxdb_query($link, "UPDATE mycustomer SET Status=1 WHERE cno > 50");

printf("Affected rows (UPDATE): %d\n", maxdb_affected_rows($link));

/* delete rows */

maxdb_query($link, "DELETE FROM mycustomer WHERE cno < 50");

printf("Affected rows (DELETE): %d\n", maxdb_affected_rows($link));

/* select all rows */

$result = maxdb_query($link, "SELECT title FROM mycustomer");

printf("Affected rows (SELECT): %d\n", maxdb_affected_rows($link));

maxdb_free_result($result);

/* Delete table Language */

maxdb_query($link, "DROP TABLE mycustomer");

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Affected rows (INSERT): 15

Affected rows (UPDATE): 15

Affected rows (DELETE): 0

Affected rows (SELECT): 15

See Also

• maxdb_num_rows()
• maxdb_info()

maxdb_autocommit

maxdb->auto_commit

maxdb_autocommit -- maxdb->auto_commit -- Turns on or off auto-commiting database
modifications

Description

Procedural style:

bool maxdb_autocommit (resource $link, bool $mode)

Object oriented style (method)

maxdb

bool auto_commit (bool $mode)

maxdb_autocommit() is used to turn on or off auto-commit mode on queries for the
database connection represented by the link resource.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #893 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* turn autocommit on */

$maxdb->autocommit(TRUE);

/* close connection */

$maxdb->close();

?>

Example #894 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n", maxdb_connect_error());

 exit();

}

/* turn autocommit on */

maxdb_autocommit($link, TRUE);

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

See Also

• maxdb_commit()
• maxdb_rollback()

maxdb_bind_param

maxdb_bind_param -- Alias of maxdb_stmt_bind_param()

Description

This function is an alias of: maxdb_stmt_bind_param()

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_bind_result

maxdb_bind_result -- Alias of maxdb_stmt_bind_result()

Description

This function is an alias of: maxdb_stmt_bind_result().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_change_user

maxdb->change_user

maxdb_change_user -- maxdb->change_user -- Changes the user of the specified
database connection

Description

Procedural style:

bool maxdb_change_user (resource $link, string $user, string $password, string $
database)

Object oriented style (method):

maxdb

bool change_user (string $user, string $password, string $database)

maxdb_change_user() is used to change the user of the specified database connection as
given by the link parameter and to set the current database to that specified by the
database parameter.

In order to successfully change users a valid username and password parameters must be
provided and that user must have sufficient permissions to access the desired database. If
for any reason authorization fails, the current user authentication will remain.

Note

Using this command will always cause the current database connection to behave as if
was a completely new database connection, regardless of if the operation was
completed successfully. This reset includes performing a rollback on any active
transactions, closing all temporary tables, and unlocking all locked tables.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #895 - Object oriented style

<?php

/* connect database test */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = $maxdb->query("SELECT * FROM dual")) {

 $row = $result->fetch_row();

 printf("Result: %s\n", $row[0]);

 $result->free();

}

/* reset all and select a new database */

if (!$maxdb->change_user("DBADMIN", "SECRET", "DEMODB")) {

 printf("Database not running\n");

} else {

 printf("Database running\n");

}

/* close connection */

$maxdb->close();

?>

Example #896 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = maxdb_query($link, "SELECT * FROM dual")) {

 $row = maxdb_fetch_row($result);

 printf("Result: %s\n", $row[0]);

 maxdb_free_result($result);

}

/* reset all and select a new database */

if (!maxdb_change_user($link, "DBADMIN", "SECRET", "DEMODB")) {

 printf("Database not running\n");

} else {

 printf("Database running\n");

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Result: a

Database running

See Also

• maxdb_connect()
• maxdb_select_db()

maxdb_character_set_name

maxdb->character_set_name

maxdb_character_set_name -- maxdb->character_set_name -- Returns the default
character set for the database connection

Description

Procedural style:

string maxdb_character_set_name (resource $link)

Object oriented style (method):

maxdb

string character_set_name (void)

Returns the current character set for the database connection specified by the link
parameter.

Return Values

The default character set for the current connection, either ascii or unicode.

Examples

Example #897 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Print current character set */

$charset = $maxdb->character_set_name();

printf ("Current character set is %s\n", $charset);

$maxdb->close();

?>

Example #898 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Print current character set */

$charset = maxdb_character_set_name($link);

printf ("Current character set is %s\n",$charset);

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Current character set is ascii

See Also

• maxdb_client_encoding()
• maxdb_real_escape_string()

maxdb_client_encoding

maxdb_client_encoding -- Alias of maxdb_character_set_name()

Description

This function is an alias of: maxdb_character_set_name().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_close_long_data

maxdb->close_long_data

maxdb_close_long_data -- maxdb->close_long_data -- Alias of
maxdb_stmt_close_long_data()

Description

This function is an alias of: maxdb_stmt_close_long_data().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_close

maxdb->close

maxdb_close -- maxdb->close -- Closes a previously opened database connection

Description

Procedural style:

bool maxdb_close (resource $link)

Object oriented style (method):

maxdb

bool close (void)

The maxdb_close() function closes a previously opened database connection specified by
the link parameter.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• maxdb_connect()
• maxdb_init()
• maxdb_real_connect()

maxdb_commit

maxdb->commit

maxdb_commit -- maxdb->commit -- Commits the current transaction

Description

Procedural style:

bool maxdb_commit (resource $link)

Object oriented style (method)

maxdb

bool commit (void)

Commits the current transaction for the database connection specified by the link
parameter.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #899 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* set autocommit to off */

$maxdb->autocommit(FALSE);

maxdb_report (MAXDB_REPORT_OFF);

$maxdb->query("DROP TABLE mycustomer");

maxdb_report (MAXDB_REPORT_ERROR);

$maxdb->query("CREATE TABLE mycustomer LIKE hotel.customer");

/* Insert some values */

$maxdb->query("INSERT INTO mycustomer VALUES
(3000,'Mrs','Jenny','Porter','10580','1340 N.Ash Street, #3')");

$maxdb->query("INSERT INTO mycustomer VALUES
(3100,'Mr','Peter','Brown','48226','1001 34th Str., APT.3')");

/* commit transaction */

$maxdb->commit();

/* close connection */

$maxdb->close();

?>

Example #900 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* set autocommit to off */

maxdb_autocommit($link, FALSE);

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP TABLE mycustomer");

maxdb_report (MAXDB_REPORT_ERROR);

maxdb_query($link, "CREATE TABLE mycustomer LIKE hotel.customer");

/* Insert some values */

maxdb_query($link, "INSERT INTO mycustomer VALUES
(3000,'Mrs','Jenny','Porter','10580','1340 N.Ash Street, #3')");

maxdb_query($link, "INSERT INTO mycustomer VALUES
(3100,'Mr','Peter','Brown','48226','1001 34th Str., APT.3')");

/* commit transaction */

maxdb_commit($link);

/* close connection */

maxdb_close($link);

?>

The above examples produces no output.

See Also

• maxdb_autocommit()

• maxdb_rollback()

maxdb_connect_errno

maxdb_connect_errno -- Returns the error code from last connect call

Description

int maxdb_connect_errno (void)

The maxdb_connect_errno() function will return the last error code number for last call to
maxdb_connect(). If no errors have occured, this function will return zero.

Return Values

An error code value for the last call to maxdb_connect(), if it failed. zero means no error
occurred.

Examples

Example #901 - maxdb_connect_errno sample

<?php

$link = maxdb_connect("localhost", "XXXXXXXX", "YYYYYYYYY");

if (!$link) {

 printf("Can't connect to localhost. Errorcode: %d\n",
maxdb_connect_errno());

}

?>

The above example will output something similar to:

PHP Warning: maxdb_connect(): -4008 POS(1) Unknown user name/password
combination [08004] <...>

Can't connect to localhost. Errorcode: -4008

See Also

• maxdb_connect()
• maxdb_connect_error()
• maxdb_errno()
• maxdb_error()
• maxdb_sqlstate()

maxdb_connect_error

maxdb_connect_error -- Returns a string description of the last connect error

Description

string maxdb_connect_error (void)

The maxdb_connect_error() function is identical to the corresponding
maxdb_connect_errno() function in every way, except instead of returning an integer error
code the maxdb_connect_error() function will return a string representation of the last error
to occur for the last maxdb_connect() call. If no error has occured, this function will return
an empty string.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #902 - maxdb_connect_error sample

<?php

$link = maxdb_connect("localhost", "nonexisting_user", "");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n", maxdb_connect_error());

}

?>

The above example will output something similar to:

PHP Warning: maxdb_connect(): -4008 POS(1) Unknown user name/password
combination <...>

Can't connect to localhost. Error: POS(1) Unknown user name/password combination

See Also

• maxdb_connect()
• maxdb_connect_errno()
• maxdb_errno()
• maxdb_error()
• maxdb_sqlstate()

maxdb_connect

maxdb()

maxdb_connect -- maxdb() -- Open a new connection to the MaxDB server

Description

Procedural style

resource maxdb_connect ([string $host [, string $username [, string $passwd [, string $
dbname [, int $port [, string $socket]]]]]])

Object oriented style (constructor):

maxdb

__construct ([string $host [, string $username [, string $passwd [, string $dbname [, int $
port [, string $socket]]]]]])

The maxdb_connect() function attempts to open a connection to the MaxDB Server
running on host which can be either a host name or an IP address. Passing the string
"localhost" to this parameter, the local host is assumed. If successful, the
maxdb_connect() will return an resource representing the connection to the database, or
FALSE on failure.

The username and password parameters specify the username and password under which
to connect to the MaxDB server. If the password is not provided (the NULL value is
passed), the MaxDB server will attempt to authenticate the user against the
maxdb.default_pw in php.ini.

The dbname parameter if provided will specify the default database to be used when
performing queries. If not provied, the entry maxdb.default_db in php.ini is used.

The port and socket parameters are ignored for the MaxDB server.

Return Values

Returns a resource which represents the connection to a MaxDB Server or FALSE if the
connection failed.

Examples

Example #903 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf("Host information: %s\n", $maxdb->host_info);

/* close connection */

$maxdb->close();

?>

Example #904 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf("Host information: %s\n", maxdb_get_host_info($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Host information: localhost

maxdb_data_seek

result->data_seek

maxdb_data_seek -- result->data_seek -- Adjusts the result pointer to an arbitary row in
the result

Description

Procedural style:

bool maxdb_data_seek (resource $result, int $offset)

Object oriented style (method):

result

bool data_seek (int $offset)

The maxdb_data_seek() function seeks to an arbitrary result pointer specified by the
offset in the result set represented by result. The offset parameter must be between
zero and the total number of rows minus one (0.. maxdb_num_rows() - 1).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #905 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER BY name";

if ($result = $maxdb->query($query)) {

 /* seek to row no. 10 */

 $result->data_seek(10);

 /* fetch row */

 $row = $result->fetch_row();

 printf ("City: %s State: %s\n", $row[0], $row[1]);

 /* free result set*/

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #906 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER BY name";

if ($result = maxdb_query($link, $query)) {

 /* seek to row no. 400 */

 maxdb_data_seek($result, 10);

 /* fetch row */

 $row = maxdb_fetch_row($result);

 printf ("City: %s State: %s\n", $row[0], $row[1]);

 /* free result set*/

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

City: Irvine State: CA

See Also

• maxdb_store_result()

• maxdb_fetch_row()
• maxdb_num_rows()

maxdb_debug

maxdb_debug -- Performs debugging operations

Description

void maxdb_debug (string $debug)

The maxdb_debug() can be used to trace the SQLDBC communication. The following
strings can be used as a parameter to maxdb_debug():

• TRACE SHORT ON|OFF - Enables/disables method call trace.
• TRACE LONG ON|OFF - Enables/disables method argument and detail debug trace.
• TRACE PACKET ON|OFF|<size> - Enables/disables packet trace, limiting the size of

the traced object to the specified number of bytes, or 1000 if no size is specified.
• TRACE SQL ON|OFF - Enables/disables high level api trace.
• TRACE TIMESTAMP ON|OFF - Enables/disables a timestamp prefix on each line that

is traced.
• TRACE SIZE <size> - Limits the size of the trace file to <size> bytes, at least 8192

bytes are required.

Return Values

maxdb_debug() doesn't return any value.

Examples

Example #907 - Procedural style

<?php

maxdb_debug("trace packet 200");

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* close connection */

maxdb_close($link);

?>

The above example produces no output.

maxdb_disable_reads_from_master

maxdb->disable_reads_from_master

maxdb_disable_reads_from_master -- maxdb->disable_reads_from_master -- Disable
reads from master

Description

Procedural style:

bool maxdb_disable_reads_from_master (resource $link)

Object oriented style (method):

maxdb

void disable_reads_from_master (void)

Warning

This function is currently not documented; only its argument list is available.

maxdb_disable_rpl_parse

maxdb_disable_rpl_parse -- Disable RPL parse

Description

bool maxdb_disable_rpl_parse (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_dump_debug_info

maxdb_dump_debug_info -- Dump debugging information into the log

Description

bool maxdb_dump_debug_info (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_embedded_connect

maxdb_embedded_connect -- Open a connection to an embedded MaxDB server

Description

resource maxdb_embedded_connect ([string $dbname])

Warning

This function is currently not documented; only its argument list is available.

maxdb_enable_reads_from_master

maxdb_enable_reads_from_master -- Enable reads from master

Description

bool maxdb_enable_reads_from_master (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_enable_rpl_parse

maxdb_enable_rpl_parse -- Enable RPL parse

Description

bool maxdb_enable_rpl_parse (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_errno

maxdb->errno

maxdb_errno -- maxdb->errno -- Returns the error code for the most recent function call

Description

Procedural style:

int maxdb_errno (resource $link)

Object oriented style (property):

maxdb

int errno;

The maxdb_errno() function will return the last error code for the most recent MaxDB
function call that can succeed or fail with respect to the database link defined by the link
parameter. If no errors have occured, this function will return zero.

Return Values

An error code value for the last call, if it failed. zero means no error occurred.

Examples

Example #908 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if (!$maxdb->query("SELECT xxx FROM hotel.city")) {

 printf("Errorcode: %d\n", $maxdb->errno);

}

/* close connection */

$maxdb->close();

?>

Example #909 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if (!maxdb_query($link, "SELECT xxx FROM hotel.city")) {

 printf("Errorcode: %d\n", maxdb_errno($link));

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

PHP Warning: maxdb_query(): -4005 POS(8) Unknown column name:XXX [42000] <...>

Errorcode: -4005

See Also

• maxdb_connect_errno()
• maxdb_connect_error()
• maxdb_error()
• maxdb_sqlstate()

maxdb_error

maxdb_error -- Returns a string description of the last error

Description

Procedural style:

string maxdb_error (resource $link)

Object oriented style (property)

maxdb

string error;

The maxdb_error() function is identical to the corresponding maxdb_errno() function in
every way, except instead of returning an integer error code the maxdb_error() function will
return a string representation of the last error to occur for the database connection
represented by the link parameter. If no error has occured, this function will return an
empty string.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #910 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if (!$maxdb->query("SELECT xxx FROM hotel.city")) {

 printf("Errormessage: %s\n", $maxdb->error);

}

/* close connection */

$maxdb->close();

?>

Example #911 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if (!maxdb_query($link, "SELECT xxx FROM hotel.city")) {

 printf("Errormessgae: %s\n", maxdb_error($link));

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

PHP Warning: maxdb_query(): -4005 POS(8) Unknown column name:XXX [42000]

Errormessgae: POS(8) Unknown column name:XXX

See Also

• maxdb_connect_errno()
• maxdb_connect_error()
• maxdb_errno()
• maxdb_sqlstate()

maxdb_escape_string

maxdb_escape_string -- Alias of maxdb_real_escape_string()

Description

This function is an alias of: maxdb_real_escape_string().

maxdb_execute

maxdb_execute -- Alias of maxdb_stmt_execute()

Description

This function is an alias of: maxdb_stmt_execute().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_fetch_array

result->fetch_array

maxdb_fetch_array -- result->fetch_array -- Fetch a result row as an associative, a
numeric array, or both

Description

Procedural style:

mixed maxdb_fetch_array (resource $result [, int $resulttype])

Object oriented style (method):

result

mixed fetch_array ([int $resulttype])

Returns an array that corresponds to the fetched row or NULL if there are no more rows
for the resultset represented by the result parameter.

maxdb_fetch_array() is an extended version of the maxdb_fetch_row() function. In addition
to storing the data in the numeric indices of the result array, the maxdb_fetch_array()
function can also store the data in associative indices, using the field names of the result
set as keys.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take
precedence and overwrite the earlier data. In order to access multiple columns with the
same name, the numerically indexed version of the row must be used.

The optional second argument resulttype is a constant indicating what type of array

should be produced from the current row data. The possible values for this parameter are
the constants MAXDB_ASSOC, MAXDB_ASSOC_UPPER, MAXDB_ASSOC_LOWER,
MAXDB_NUM, or MAXDB_BOTH. By default the maxdb_fetch_array() function will
assume MAXDB_BOTH, which is a combination of MAXDB_NUM and MAXDB_ASSOC
for this parameter.

By using the MAXDB_ASSOC constant this function will behave identically to the
maxdb_fetch_assoc(), while MAXDB_NUM will behave identically to the
maxdb_fetch_row() function. The final option MAXDB_BOTH will create a single array with
the attributes of both.

By using the MAXDB_ASSOC_UPPER constant, the behaviour of this function is identical
to the use of MAXDB_ASSOC except the array index of a column is the fieldname in upper
case.

By using the MAXDB_ASSOC_LOWER constant, the behaviour of this function is identical
to the use of MAXDB_ASSOC except the array index of a column is the fieldname in lower
case.

Return Values

Returns an array that corresponds to the fetched row or NULL if there are no more rows in
resultset.

Examples

Example #912 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

$result = $maxdb->query($query);

/* numeric array */

$row = $result->fetch_array(MAXDB_NUM);

printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */

$row = $result->fetch_array(MAXDB_ASSOC);

printf ("%s (%s)\n", $row["NAME"], $row["STATE"]);

/* associative and numeric array */

$row = $result->fetch_array(MAXDB_BOTH);

printf ("%s (%s)\n", $row[0], $row["STATE"]);

/* free result set */

$result->close();

/* close connection */

$maxdb->close();

?>

Example #913 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

$result = maxdb_query($link, $query);

/* numeric array */

$row = maxdb_fetch_array($result, MAXDB_NUM);

printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */

$row = maxdb_fetch_array($result, MAXDB_ASSOC);

printf ("%s (%s)\n", $row["NAME"], $row["STATE"]);

/* associative and numeric array */

$row = maxdb_fetch_array($result, MAXDB_BOTH);

printf ("%s (%s)\n", $row[0], $row["STATE"]);

/* free result set */

maxdb_free_result($result);

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

New York (NY)

New York (NY)

Long Island (NY)

See Also

• maxdb_fetch_assoc()
• maxdb_fetch_row()
• maxdb_fetch_resource()

maxdb_fetch_assoc

maxdb->fetch_assoc

maxdb_fetch_assoc -- maxdb->fetch_assoc -- Fetch a result row as an associative array

Description

Procedural style:

array maxdb_fetch_assoc (resource $result)

Object oriented style (method):

result

array fetch_assoc (void)

Returns an associative array that corresponds to the fetched row or NULL if there are no
more rows.

The maxdb_fetch_assoc() function is used to return an associative array representing the
next row in the result set for the result represented by the result parameter, where each
key in the array represents the name of one of the result set's columns.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you either need to access
the result with numeric indices by using maxdb_fetch_row() or add alias names.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Return Values

Returns an array that corresponds to the fetched row or NULL if there are no more rows in

resultset.

Examples

Example #914 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = $maxdb->query($query)) {

 /* fetch associative array */

 while ($row = $result->fetch_assoc()) {

 printf ("%s (%s)\n", $row["NAME"], $row["STATE"]);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #915 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = maxdb_query($link, $query)) {

 /* fetch associative array */

 while ($row = maxdb_fetch_assoc($result)) {

 printf ("%s (%s)\n", $row["NAME"], $row["STATE"]);

 }

 /* free result set */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

New York (NY)

New York (NY)

Long Island (NY)

Albany (NY)

Washington (DC)

Washington (DC)

Washington (DC)

Silver Spring (MD)

Daytona Beach (FL)

Deerfield Beach (FL)

Clearwater (FL)

Cincinnati (OH)

Detroit (MI)

Rosemont (IL)

Chicago (IL)

Chicago (IL)

New Orleans (LA)

Dallas (TX)

Los Angeles (CA)

Hollywood (CA)

Long Beach (CA)

Palm Springs (CA)

Irvine (CA)

Santa Clara (CA)

Portland (OR)

See Also

• maxdb_fetch_array()
• maxdb_fetch_row()
• maxdb_fetch_resource()

maxdb_fetch_field_direct

result->fetch_field_direct

maxdb_fetch_field_direct -- result->fetch_field_direct -- Fetch meta-data for a single field

Description

Procedural style:

mixed maxdb_fetch_field_direct (resource $result, int $fieldnr)

Object oriented style (method):

result

mixed fetch_field_direct (int $fieldnr)

maxdb_fetch_field_direct() returns an resource which contains field definition informations
from specified resultset. The value of fieldnr must be in the range from 0 to number of
fields - 1.

Return Values

Returns an resource which contains field definition informations or FALSE if no field
information for specified fieldnr is available.

Object attributes

Attribute Description

name The name of the column

max_length The maximum width of the field for the result
set.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #916 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY name";

if ($result = $maxdb->query($query)) {

 /* Get field information for column 'SurfaceArea' */

 $finfo = $result->fetch_field_direct(1);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n", $finfo->type);

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #917 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY name";

if ($result = maxdb_query($link, $query)) {

 /* Get field information for column 'cno' */

 $finfo = maxdb_fetch_field_direct($result, 1);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n", $finfo->type);

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Name: CNO

Table:

max. Len: 4

Flags: -1

Type: 0

See Also

• maxdb_num_fields()
• maxdb_fetch_field()
• maxdb_fetch_fields()

maxdb_fetch_field

result->fetch_field

maxdb_fetch_field -- result->fetch_field -- Returns the next field in the result set

Description

Procedural style:

mixed maxdb_fetch_field (resource $result)

Object oriented style (method):

result

mixed fetch_field (void)

The maxdb_fetch_field() returns the definition of one column of a result set as an resource.
Call this function repeatedly to retrieve information about all columns in the result set.
maxdb_fetch_field() returns FALSE when no more fields are left.

Return Values

Returns an resource which contains field definition informations or FALSE if no field
information is available.

Object properties

Property Description

name The name of the column

max_length The maximum width of the field for the result
set.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #918 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = $maxdb->query($query)) {

 /* Get field information for all columns */

 while ($finfo = $result->fetch_field()) {

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #919 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = maxdb_query($link, $query)) {

 /* Get field information for all fields */

 while ($finfo = maxdb_fetch_field($result)) {

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Name: NAME

Table:

max. Len: 10

Flags: -1

Type: 2

Name: CNO

Table:

max. Len: 4

Flags: -1

Type: 0

See Also

• maxdb_num_fields()
• maxdb_fetch_field_direct()
• maxdb_fetch_fields()
• maxdb_field_seek()

maxdb_fetch_fields

result->fetch_fields

maxdb_fetch_fields -- result->fetch_fields -- Returns an array of resources representing
the fields in a result set

Description

Procedural Style:

mixed maxdb_fetch_fields (resource $result)

Object oriented style (method):

result

mixed fetch_fields (void)

This function serves an identical purpose to the maxdb_fetch_field() function with the
single difference that, instead of returning one resource at a time for each field, the
columns are returned as an array of resources.

Return Values

Returns an array of resources which contains field definition informations or FALSE if no
field information is available.

Object properties

Property Description

name The name of the column

max_length The maximum width of the field for the result
set.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #920 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = $maxdb->query($query)) {

 /* Get field information for all columns */

 $finfo = $result->fetch_fields();

 foreach ($finfo as $val) {

 printf("Name: %s\n", $val->name);

 printf("Table: %s\n", $val->table);

 printf("max. Len: %d\n", $val->max_length);

 printf("Flags: %d\n", $val->flags);

 printf("Type: %d\n\n", $val->type);

 }

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #921 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = maxdb_query($link, $query)) {

 /* Get field information for all columns */

 $finfo = maxdb_fetch_fields($result);

 foreach ($finfo as $val) {

 printf("Name: %s\n", $val->name);

 printf("Table: %s\n", $val->table);

 printf("max. Len: %d\n", $val->max_length);

 printf("Flags: %d\n", $val->flags);

 printf("Type: %d\n\n", $val->type);

 }

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Name: NAME

Table:

max. Len: 10

Flags: -1

Type: 2

Name: CNO

Table:

max. Len: 4

Flags: -1

Type: 0

See Also

• maxdb_num_fields()
• maxdb_fetch_field()
• maxdb_fetch_field_direct()

maxdb_fetch_lengths

result->lengths

maxdb_fetch_lengths -- result->lengths -- Returns the lengths of the columns of the
current row in the result set

Description

Procedural style:

array maxdb_fetch_lengths (resource $result)

Object oriented style (property):

result

array lengths;

The maxdb_fetch_lengths() function returns an array containing the lengths of every
column of the current row within the result set represented by the result parameter. If
successful, a numerically indexed array representing the lengths of each column is
returned or FALSE on failure.

Return Values

An array of integers representing the size of each column (not including any terminating
null characters). FALSE if an error occurred.

maxdb_fetch_lengths() is valid only for the current row of the result set. It returns FALSE if
you call it before calling maxdb_fetch_row/array/resource or after retrieving all rows in the
result.

Examples

Example #922 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * from hotel.customer WHERE cno = 3000";

if ($result = $maxdb->query($query)) {

 $row = $result->fetch_row();

 /* display column lengths */

 foreach ($result->lengths as $i => $val) {

 printf("Field %2d has Length %2d\n", $i+1, $val);

 }

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #923 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * from hotel.customer WHERE cno = 3000";

if ($result = maxdb_query($link, $query)) {

 $row = maxdb_fetch_row($result);

 /* display column lengths */

 foreach (maxdb_fetch_lengths($result) as $i => $val) {

 printf("Field %2d has Length %2d\n", $i+1, $val);

 }

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Field 1 has Length 4

Field 2 has Length 3

Field 3 has Length 5

Field 4 has Length 6

Field 5 has Length 5

Field 6 has Length 21

maxdb_fetch_object

result->fetch_object

maxdb_fetch_object -- result->fetch_object -- Returns the current row of a result set as an
object

Description

Procedural style:

object maxdb_fetch_object (object $result)

Object oriented style (method):

result

object fetch_object (void)

The maxdb_fetch_object() will return the current row result set as an object where the
attributes of the object represent the names of the fields found within the result set. If no
more rows exist in the current result set, NULL is returned.

Return Values

Returns an object that corresponds to the fetched row or NULL if there are no more rows
in resultset.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example #924 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = $maxdb->query($query)) {

 /* fetch object array */

 while ($obj = $result->fetch_object()) {

 printf ("%s (%s)\n", $obj->NAME, $obj->STATE);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #925 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = maxdb_query($link, $query)) {

 /* fetch object array */

 while ($obj = maxdb_fetch_object($result)) {

 printf ("%s (%s)\n", $obj->NAME, $obj->STATE);

 }

 /* free result set */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

New York (NY)

New York (NY)

Long Island (NY)

Albany (NY)

Washington (DC)

Washington (DC)

Washington (DC)

Silver Spring (MD)

Daytona Beach (FL)

Deerfield Beach (FL)

Clearwater (FL)

Cincinnati (OH)

Detroit (MI)

Rosemont (IL)

Chicago (IL)

Chicago (IL)

New Orleans (LA)

Dallas (TX)

Los Angeles (CA)

Hollywood (CA)

Long Beach (CA)

Palm Springs (CA)

Irvine (CA)

Santa Clara (CA)

Portland (OR)

See Also

• maxdb_fetch_array()
• maxdb_fetch_assoc()
• maxdb_fetch_row()

maxdb_fetch_row

result->fetch_row

maxdb_fetch_row -- result->fetch_row -- Get a result row as an enumerated array

Description

Procedural style:

mixed maxdb_fetch_row (resource $result)

Object oriented style (method):

result

mixed fetch_row (void)

Returns an array that corresponds to the fetched row, or NULL if there are no more rows.

maxdb_fetch_row() fetches one row of data from the result set represented by result and
returns it as an enumerated array, where each column is stored in an array offset starting
from 0 (zero). Each subsequent call to the maxdb_fetch_row() function will return the next
row within the result set, or FALSE if there are no more rows.

Return Values

maxdb_fetch_row() returns an array that corresponds to the fetched row or NULL if there
are no more rows in result set.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example #926 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = $maxdb->query($query)) {

 /* fetch enumerated array */

 while ($row = $result->fetch_row()) {

 printf ("%s (%s)\n", $row[0], $row[1]);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #927 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, state FROM hotel.city ORDER by zip";

if ($result = maxdb_query($link, $query)) {

 /* fetch enumerated array */

 while ($row = maxdb_fetch_row($result)) {

 printf ("%s (%s)\n", $row[0], $row[1]);

 }

 /* free result set */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

New York (NY)

New York (NY)

Long Island (NY)

Albany (NY)

Washington (DC)

Washington (DC)

Washington (DC)

Silver Spring (MD)

Daytona Beach (FL)

Deerfield Beach (FL)

Clearwater (FL)

Cincinnati (OH)

Detroit (MI)

Rosemont (IL)

Chicago (IL)

Chicago (IL)

New Orleans (LA)

Dallas (TX)

Los Angeles (CA)

Hollywood (CA)

Long Beach (CA)

Palm Springs (CA)

Irvine (CA)

Santa Clara (CA)

Portland (OR)

See Also

• maxdb_fetch_array()
• maxdb_fetch_assoc()
• maxdb_fetch_resource()

maxdb_fetch

maxdb_fetch -- Alias of maxdb_stmt_fetch()

Description

This function is an alias of: maxdb_stmt_fetch().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_field_count

maxdb->field_count

maxdb_field_count -- maxdb->field_count -- Returns the number of columns for the most
recent query

Description

Procedural style:

int maxdb_field_count (resource $link)

Object oriented style (method):

maxdb

int field_count (void)

Returns the number of columns for the most recent query on the connection represented
by the link parameter. This function can be useful when using the maxdb_store_result()
function to determine if the query should have produced a non-empty result set or not
without knowing the nature of the query.

Return Values

An integer representing the number of fields in a result set.

Examples

Example #928 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

maxdb_report (MAXDB_REPORT_OFF);

$maxdb->query("DROP TABLE friends");

maxdb_report (MAXDB_REPORT_ERROR);

$maxdb->query("CREATE TABLE friends (id int, name varchar(20))");

$maxdb->query("INSERT INTO friends VALUES (1,'Hartmut')");

$maxdb->query("INSERT INTO friends VALUES (2, 'Ulf')");

if ($maxdb->field_count()) {

 /* this was a select/show or describe query */

 $result = $maxdb->store_result();

 /* process resultset */

 $row = $result->fetch_row();

 /* free resultset */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #929 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP TABLE friends");

maxdb_report (MAXDB_REPORT_ERROR);

maxdb_query($link, "CREATE TABLE friends (id int, name varchar(20))");

maxdb_query($link, "INSERT INTO friends VALUES (1,'Hartmut')");

maxdb_query($link, "INSERT INTO friends VALUES (2, 'Ulf')");

if (maxdb_field_count($link)) {

 /* this was a select/show or describe query */

 $result = maxdb_store_result($link);

 /* process resultset */

 $row = maxdb_fetch_row($result);

 /* free resultset */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example produces no output.

maxdb_field_seek

result->field_seek

maxdb_field_seek -- result->field_seek -- Set result pointer to a specified field offset

Description

Procedural style:

bool maxdb_field_seek (resource $result, int $fieldnr)

Object oriented style (method):

result

bool field_seek (int $fieldnr)

Sets the field cursor to the given offset. The next call to maxdb_fetch_field() will retrieve
the field definition of the column associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Return Values

maxdb_field_seek() returns previuos value of field cursor.

Examples

Example #930 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = $maxdb->query($query)) {

 /* Get field information for 2nd column */

 $result->field_seek(1);

 $finfo = $result->fetch_field();

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #931 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = maxdb_query($link, $query)) {

 /* Get field information for 2nd column */

 maxdb_field_seek($result, 1);

 $finfo = maxdb_fetch_field($result);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Name: NAME

Table:

max. Len: 10

Flags: -1

Type: 2

See Also

• maxdb_fetch_field()

maxdb_field_tell

result->current_field

maxdb_field_tell -- result->current_field -- Get current field offset of a result pointer

Description

Procedural style:

int maxdb_field_tell (resource $result)

Object oriented style (property):

result

int current_field;

Returns the position of the field cursor used for the last maxdb_fetch_field() call. This
value can be used as an argument to maxdb_field_seek().

Return Values

Returns current offset of field cursor.

Examples

Example #932 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = $maxdb->query($query)) {

 /* Get field information for all columns */

 while ($finfo = $result->fetch_field()) {

 /* get fieldpointer offset */

 $currentfield = $result->current_field;

 printf("Column %d:\n", $currentfield);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #933 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, cno from hotel.customer ORDER BY cno";

if ($result = maxdb_query($link, $query)) {

 /* Get field information for all fields */

 while ($finfo = maxdb_fetch_field($result)) {

 /* get fieldpointer offset */

 $currentfield = maxdb_field_tell($result);

 printf("Column %d:\n", $currentfield);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Column 1:

Name: NAME

Table:

max. Len: 10

Flags: -1

Type: 2

Column 2:

Name: CNO

Table:

max. Len: 4

Flags: -1

Type: 0

See Also

• maxdb_fetch_field()
• maxdb_field_seek()

maxdb_free_result

result->free

maxdb_free_result -- result->free -- Frees the memory associated with a result

Description

Procedural style:

void maxdb_free_result (resource $result)

Object oriented style (method):

result

void free (void)

The maxdb_free_result() function frees the memory associated with the result represented
by the result parameter, which was allocated by maxdb_query(), maxdb_store_result() or
maxdb_use_result().

Note

You should always free your result with maxdb_free_result(), when your result
resource is not needed anymore.

Return Values

This function doesn't return any value.

See Also

• maxdb_query()
• maxdb_stmt_store_result()
• maxdb_store_result()
• maxdb_use_result()

maxdb_get_client_info

maxdb_get_client_info -- Returns the MaxDB client version as a string

Description

string maxdb_get_client_info (void)

The maxdb_get_client_info() function is used to return a string representing the client
version being used in the MaxDB extension.

Return Values

A string that represents the MaxDB client library version

Examples

Example #934 - maxdb_get_client_info

<?php

/* We don't need a connection to determine

 the version of MaxDB client library */

printf("Client library version: %s\n", maxdb_get_client_info());

?>

The above example will output something similar to:

Client library version: libSQLDBC <...>

See Also

• maxdb_get_client_version()
• maxdb_get_server_info()
• maxdb_get_server_version()

maxdb_get_client_version

maxdb_get_client_version -- Get MaxDB client info

Description

int maxdb_get_client_version (void)

Returns client version number as an integer.

Return Values

A number that represents the MaxDB client library version in format: main_version*10000
+ minor_version *100 + sub_version. For example, 7.5.0 is returned as 70500.

This is useful to quickly determine the version of the client library to know if some
capability exists.

Examples

Example #935 - maxdb_get_client_version

<?php

/* We don't need a connection to determine

 the version of MaxDB client library */

printf("Client library version: %d\n", maxdb_get_client_version());

?>

The above example will output something similar to:

Client library version: 7.<...>

See Also

• maxdb_get_client_info()
• maxdb_get_server_info()
• maxdb_get_server_version()

maxdb_get_host_info

maxdb->get_host_info

maxdb_get_host_info -- maxdb->get_host_info -- Returns a string representing the type of
connection used

Description

Procdural style:

string maxdb_get_host_info (resource $link)

Object oriented style (property):

maxdb

string host_info;

The maxdb_get_host_info() function returns a string describing the connection
represented by the link parameter is using.

Return Values

A character string representing the server hostname and the connection type.

Examples

Example #936 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print host information */

printf("Host info: %s\n", $maxdb->host_info);

/* close connection */

$maxdb->close();

?>

Example #937 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print host information */

printf("Host info: %s\n", maxdb_get_host_info($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Host info: localhost

See Also

• maxdb_get_proto_info()

maxdb_get_metadata

maxdb_get_metadata -- Alias of maxdb_stmt_result_metadata()

Description

This function is an alias of: maxdb_stmt_result_metadata().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_get_proto_info

maxdb->protocol_version

maxdb_get_proto_info -- maxdb->protocol_version -- Returns the version of the MaxDB
protocol used

Description

Procedural style:

int maxdb_get_proto_info (resource $link)

Object oriented style (property):

maxdb

string protocol_version;

Returns an integer representing the MaxDB protocol version used by the connection
represented by the link parameter.

Return Values

Returns an integer representing the protocol version (constant 10).

Examples

Example #938 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print protocol version */

printf("Protocol version: %d\n", $maxdb->protocol_version);

/* close connection */

$maxdb->close();

?>

Example #939 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print protocol version */

printf("Protocol version: %d\n", maxdb_get_proto_info($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Protocol version: 10

See Also

• maxdb_get_host_info()

maxdb_get_server_info

maxdb->server_info

maxdb_get_server_info -- maxdb->server_info -- Returns the version of the MaxDB server

Description

Procedural style:

string maxdb_get_server_info (resource $link)

Object oriented style (property):

maxdb

string server_info;

Returns a string representing the version of the MaxDB server that the MaxDB extension
is connected to (represented by the link parameter).

Return Values

A character string representing the server version.

Examples

Example #940 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print server version */

printf("Server version: %s\n", $maxdb->server_info);

/* close connection */

$maxdb->close();

?>

Example #941 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print server version */

printf("Server version: %s\n", maxdb_get_server_info($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Server version: Kernel 7<...>

See Also

• maxdb_get_client_info()
• maxdb_get_client_version()
• maxdb_get_server_version()

maxdb_get_server_version

maxdb_get_server_version -- Returns the version of the MaxDB server as an integer

Description

Procedural style:

int maxdb_get_server_version (resource $link)

Object oriented style (property):

maxdb

int server_version;

The maxdb_get_server_version() function returns the version of the server connected to
(represented by the link parameter) as an integer.

The form of this version number is main_version * 10000 + minor_version * 100 +
sub_version (i.e. version 7.5.0 is 70500).

Return Values

An integer representing the server version.

Examples

Example #942 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print server version */

printf("Server version: %d\n", $maxdb->server_version);

/* close connection */

$maxdb->close();

?>

Example #943 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* print server version */

printf("Server version: %d\n", maxdb_get_server_version($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Server version: 7<...>

See Also

• maxdb_get_client_info()
• maxdb_get_client_version()
• maxdb_get_server_info()

maxdb_info

maxdb->info

maxdb_info -- maxdb->info -- Retrieves information about the most recently executed
query

Description

Procedural style:

string maxdb_info (resource $link)

Object oriented style (property)

maxdb

string info;

The maxdb_info() function returns a string providing information about the last query
executed. The nature of this string is provided below:

Possible maxdb_info return values

Query type Example result string

INSERT INTO...SELECT... Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...) Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ... Records: 1 Deleted: 0 Skipped: 0 Warnings:
0

ALTER TABLE ... Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings:
0

Note

Queries which do not fall into one of the above formats are not supported. In these
situations, maxdb_info() will return an empty string.

Return Values

A character string representing additional information about the most recently executed
query.

Examples

Example #944 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.t1 LIKE hotel.city");

/* INSERT INTO .. SELECT */

$maxdb->query("INSERT INTO temp.t1 SELECT * FROM hotel.city");

printf("%s\n", $maxdb->info);

/* close connection */

$maxdb->close();

?>

Example #945 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.t1 LIKE hotel.city");

/* INSERT INTO .. SELECT */

maxdb_query($link, "INSERT INTO temp.t1 SELECT * FROM hotel.city");

printf("%s\n", maxdb_info($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Records: 25 Duplicates: 0 Warnings: 0

See Also

• maxdb_affected_rows()
• maxdb_warning_count()
• maxdb_num_rows()

maxdb_init

maxdb_init -- Initializes MaxDB and returns an resource for use with maxdb_real_connect

Description

resource maxdb_init (void)

Allocates or initializes a MaxDB resource suitable for maxdb_options() and
maxdb_real_connect().

Note

Any subsequent calls to any maxdb function (except maxdb_options()) will fail until
maxdb_real_connect() was called.

Return Values

Returns an resource.

See Also

• maxdb_options()
• maxdb_close()
• maxdb_real_connect()
• maxdb_connect()

maxdb_insert_id

maxdb->insert_id

maxdb_insert_id -- maxdb->insert_id -- Returns the auto generated id used in the last
query

Description

Procedural style:

mixed maxdb_insert_id (resource $link)

Object oriented style (property):

maxdb

mixed insert_id;

The maxdb_insert_id() function returns the ID generated by a query on a table with a
column having the DEFAULT SERIAL attribute. If the last query wasn't an INSERT or
UPDATE statement or if the modified table does not have a column with the DEFAULT
SERIAL attribute, this function will return zero.

Return Values

The value of the DEFAULT SERIAL field that was updated by the previous query. Returns
zero if there was no previous query on the connection or if the query did not update an
DEFAULT_SERIAL value.

Note

If the number is greater than maximal int value, maxdb_insert_id() will return a string.

Examples

Example #946 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

$maxdb->query("DROP TABLE mycity");

maxdb_report (MAXDB_REPORT_ERROR);

$maxdb->query("CREATE TABLE mycity LIKE hotel.city");

$maxdb->query("ALTER TABLE mycity ADD id FIXED(11) DEFAULT SERIAL");

$query = "INSERT INTO mycity (zip,name,state) VALUES ('12203','Albany'
,'NY')";

$maxdb->query($query);

printf ("New Record has id %d.\n", $maxdb->insert_id);

/* drop table */

$maxdb->query("DROP TABLE mycity");

/* close connection */

$maxdb->close();

?>

Example #947 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP TABLE mycity");

maxdb_report (MAXDB_REPORT_ERROR);

maxdb_query($link, "CREATE TABLE mycity LIKE hotel.city");

maxdb_query($link, "ALTER TABLE mycity ADD id FIXED(11) DEFAULT SERIAL");

$query = "INSERT INTO mycity (zip,name,state) VALUES ('12203','Albany'
,'NY')";

maxdb_query($link, $query);

printf ("New Record has id %d.\n", maxdb_insert_id($link));

/* drop table */

maxdb_query($link, "DROP TABLE mycity");

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

New Record has id 1.

maxdb_kill

maxdb->kill

maxdb_kill -- maxdb->kill -- Disconnects from a MaxDB server

Description

Procedural style:

bool maxdb_kill (resource $link, int $processid)

Object oriented style (method)

maxdb

bool kill (int $processid)

This function is used to disconnect from a MaxDB server specified by the processid
parameter.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #948 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = $maxdb->thread_id;

/* Kill connection */

$maxdb->kill($thread_id);

/* This should produce an error */

if (!$maxdb->query("CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", $maxdb->error);

 exit;

}

/* close connection */

$maxdb->close();

?>

Example #949 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = maxdb_thread_id($link);

/* Kill connection */

maxdb_kill($link, $thread_id);

/* This should produce an error */

if (!maxdb_query($link, "CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", maxdb_error($link));

 exit;

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Error: Session not connected

See Also

• maxdb_thread_id()

maxdb_master_query

maxdb_master_query -- Enforce execution of a query on the master in a master/slave
setup

Description

bool maxdb_master_query (resource $link, string $query)

Warning

This function is currently not documented; only its argument list is available.

maxdb_more_results

maxdb->more_results

maxdb_more_results -- maxdb->more_results -- Check if there any more query results
from a multi query

Description

bool maxdb_more_results (resource $link)

maxdb_more_results() indicates if one or more result sets are available from a previous
call to maxdb_multi_query().

Return Values

Always FALSE.

Examples

See maxdb_multi_query().

See Also

• maxdb_multi_query()
• maxdb_next_result()
• maxdb_store_result()
• maxdb_use_result()

maxdb_multi_query

maxdb->multi_query

maxdb_multi_query -- maxdb->multi_query -- Performs a query on the database

Description

Procedural style:

bool maxdb_multi_query (resource $link, string $query)

Object oriented style (method):

maxdb

bool multi_query (string $query)

The maxdb_multi_query() works like the function maxdb_query(). Multiple queries are not
yet supported.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #950 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * FROM dual";

/* execute multi query */

if ($maxdb->multi_query($query)) {

 do {

 /* store first result set */

 if ($result = $maxdb->store_result()) {

 while ($row = $result->fetch_row()) {

 printf("%s\n", $row[0]);

 }

 $result->close();

 }

 /* print divider */

 if ($maxdb->more_results()) {

 printf("-----------------\n");

 }

 } while ($maxdb->next_result());

}

/* close connection */

$maxdb->close();

?>

Example #951 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * FROM dual";

/* execute multi query */

if (maxdb_multi_query($link, $query)) {

 do {

 /* store first result set */

 if ($result = maxdb_store_result($link)) {

 while ($row = maxdb_fetch_row($result)) {

 printf("%s\n", $row[0]);

 }

 maxdb_free_result($result);

 }

 /* print divider */

 if (maxdb_more_results($link)) {

 printf("-----------------\n");

 }

 } while (maxdb_next_result($link));

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

a

See Also

• maxdb_use_result()
• maxdb_store_result()
• maxdb_next_result()
• maxdb_more_results()

maxdb_next_result

maxdb->next_result

maxdb_next_result -- maxdb->next_result -- Prepare next result from multi_query

Description

bool maxdb_next_result (resource $link)

Since multiple queries are not yet supported, maxdb_next_result() returns always FALSE.

Return Values

Returns FALSE.

See Also

• maxdb_multi_query()
• maxdb_more_results()
• maxdb_store_result()
• maxdb_use_result()

maxdb_num_fields

result->field_count

maxdb_num_fields -- result->field_count -- Get the number of fields in a result

Description

Procedural style:

int maxdb_num_fields (resource $result)

Object oriented style (property):

result

int field_count;

maxdb_num_fields() returns the number of fields from specified result set.

Return Values

The number of fields from a result set

Examples

Example #952 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = $maxdb->query("SELECT * FROM hotel.city ORDER BY zip")) {

 /* determine number of fields in result set */

 $field_cnt = $result->field_count;

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #953 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = maxdb_query($link, "SELECT * FROM hotel.city ORDER BY zip")) {

 /* determine number of fields in result set */

 $field_cnt = maxdb_num_fields($result);

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Result set has 3 fields.

See Also

• maxdb_fetch_field()

maxdb_num_rows

maxdb_num_rows -- Gets the number of rows in a result

Description

Procedural style:

int maxdb_num_rows (resource $result)

Object oriented style (property):

maxdb

int num_rows;

Returns the number of rows in the result set.

The use of maxdb_num_rows() depends on whether you use buffered or unbuffered result
sets. In case you use unbuffered resultsets maxdb_num_rows() will not correct the correct
number of rows until all the rows in the result have been retrieved.

Return Values

Returns number of rows in the result set.

Note

If the number of rows is greater than maximal int value, the number will be returned as
a string.

Examples

Example #954 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = $maxdb->query("SELECT cno, name FROM hotel.customer ORDER BY
name")) {

 /* determine number of rows result set */

 $row_cnt = $result->num_rows;

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */

 $result->close();

}

/* close connection */

$maxdb->close();

?>

Example #955 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($result = maxdb_query($link, "SELECT cno, name FROM hotel.customer ORDER
BY name")) {

 /* determine number of rows result set */

 $row_cnt = maxdb_num_rows($result);

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */

 maxdb_free_result($result);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Result set has 15 rows.

See Also

• maxdb_affected_rows()
• maxdb_store_result()
• maxdb_use_result()

• maxdb_query()

maxdb_options

maxdb->options

maxdb_options -- maxdb->options -- Set options

Description

Procedural style:

bool maxdb_options (resource $link, int $option, mixed $value)

Object oriented style (method)

maxdb

bool options (int $option, mixed $value)

maxdb_options() can be used to set extra connect options and affect behavior for a
connection.

This function may be called multiple times to set several options.

maxdb_options() should be called after maxdb_init() and before maxdb_real_connect().

The parameter option is the option that you want to set, the value is the value for the
option. For detailed description of the options see » http://maxdb.sap.com/documentation/
The parameter option can be one of the following values:

Valid options

Name Description

MAXDB_COMPNAME The component name used to initialise the
SQLDBC runtime environment.

MAXDB_APPLICATION The application to be connected to the
database.

MAXDB_APPVERSION The version of the application.

MAXDB_SQLMODE The SQL mode.

MAXDB_UNICODE TRUE, if the connection is an unicode

http://maxdb.sap.com/documentation/

(UCS2) client or FALSE, if not.

MAXDB_TIMEOUT The maximum allowed time of inactivity after
which the connection to the database is
closed by the system.

MAXDB_ISOLATIONLEVEL Specifies whether and how shared locks
and exclusive locks are implicitly requested
or released.

MAXDB_PACKETCOUNT The number of different request packets
used for the connection.

MAXDB_STATEMENTCACHESIZE The number of prepared statements to be
cached for the connection for re-use.

MAXDB_CURSORPREFIX The prefix to use for result tables that are
automatically named.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See maxdb_real_connect().

See Also

• maxdb_init()
• maxdb_real_connect()

maxdb_param_count

maxdb_param_count -- Alias of maxdb_stmt_param_count()

Description

This function is an alias of: maxdb_stmt_param_count().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_ping

maxdb->ping

maxdb_ping -- maxdb->ping -- Pings a server connection, or tries to reconnect if the
connection has gone down

Description

Procedural style:

bool maxdb_ping (resource $link)

Object oriented style (method):

maxdb

bool ping (void)

Checks whether the connection to the server is working. If it has gone down, and global
option maxdb.reconnect is enabled an automatic reconnection is attempted.

This function can be used by clients that remain idle for a long while, to check whether the
server has closed the connection and reconnect if necessary.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #956 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* check if server is alive */

if ($maxdb->ping()) {

 printf ("Our connection is ok!\n");

} else {

 printf ("Error: %s\n", $maxdb->error);

}

/* close connection */

$maxdb->close();

?>

Example #957 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* check if server is alive */

if (maxdb_ping($link)) {

 printf ("Our connection is ok!\n");

} else {

 printf ("Error: %s\n", maxdb_error($link));

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Our connection is ok!

maxdb_prepare

maxdb->prepare

maxdb_prepare -- maxdb->prepare -- Prepare a SQL statement for execution

Description

Procedure style:

resource maxdb_prepare (resource $link, string $query)

Object oriented style (method)

stmt

resource prepare (string $query)

maxdb_prepare() prepares the SQL query pointed to by the null-terminated string query,
and returns a statement handle to be used for further operations on the statement. The
query must consist of a single SQL statement.

Note

You should not add a terminating semicolon or \g to the statement.

The parameter query can include one or more parameter markers in the SQL statement
by embedding question mark (?) characters at the appropriate positions.

Note

The markers are legal only in certain places in SQL statements. For example, they are
allowed in the VALUES() list of an INSERT statement (to specify column values for a
row), or in a comparison with a column in a WHERE clause to specify a comparison
value.

However, they are not allowed for identifiers (such as table or column names), in the
select list that names the columns to be returned by a SELECT statement), or to
specify both operands of a binary operator such as the = equal sign. The latter
restriction is necessary because it would be impossible to determine the parameter
type. In general, parameters are legal only in Data Manipulation Languange (DML)

statements, and not in Data Defination Language (DDL) statements.

The parameter markers must be bound to application variables using
maxdb_stmt_bind_param() and/or maxdb_stmt_bind_result() before executing the
statement or fetching rows.

Return Values

maxdb_prepare() returns a statement resource or FALSE if an error occured.

Examples

Example #958 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$city = "Rosemont";

/* create a prepared statement */

if ($stmt = $maxdb->prepare("SELECT state FROM hotel.city WHERE name=?")) {

 /* bind parameters for markers */

 $stmt->bind_param("s", $city);

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($district);

 /* fetch value */

 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #959 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$city = "Rosemont";

/* create a prepared statement */

if ($stmt = maxdb_prepare($link, "SELECT state FROM hotel.city WHERE
name=?")) {

 /* bind parameters for markers */

 maxdb_stmt_bind_param($stmt, "s", $city);

 /* execute query */

 maxdb_stmt_execute($stmt);

 /* bind result variables */

 maxdb_stmt_bind_result($stmt, $district);

 /* fetch value */

 maxdb_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Rosemont is in district IL

See Also

• maxdb_stmt_execute()
• maxdb_stmt_fetch()
• maxdb_stmt_bind_param()
• maxdb_stmt_bind_result()
• maxdb_stmt_close()

maxdb_query

maxdb->query

maxdb_query -- maxdb->query -- Performs a query on the database

Description

Procedural style:

mixed maxdb_query (resource $link, string $query [, int $resultmode])

Object oriented style (method):

maxdb

mixed query (string $query)

The maxdb_query() function is used to simplify the act of performing a query against the
database represented by the link parameter.

Return Values

Returns TRUE on success or FALSE on failure. For SELECT, SHOW, DESCRIBE or
EXPLAIN maxdb_query() will return a result resource.

Examples

Example #960 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Create table doesn't return a resultset */

if ($maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city") === TRUE) {

 printf("Table mycity successfully created.\n");

}

/* Select queries return a resultset */

if ($result = $maxdb->query("SELECT name FROM hotel.city")) {

 printf("Select returned %d rows.\n", $result->num_rows);

 /* free result set */

 $result->close();

}

/* If we have to retrieve large amount of data we use MAXDB_USE_RESULT */

if ($result = $maxdb->query("SELECT * FROM hotel.city", MAXDB_USE_RESULT)) {

 $result->close();

}

$maxdb->close();

?>

Example #961 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Create table doesn't return a resultset */

if (maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city") === TRUE)
{

 printf("Table mycity successfully created.\n");

}

/* Select queries return a resultset */

if ($result = maxdb_query($link, "SELECT name FROM hotel.city")) {

 printf("Select returned %d rows.\n", maxdb_num_rows($result));

 /* free result set */

 maxdb_free_result($result);

}

/* If we have to retrieve large amount of data we use MAXDB_USE_RESULT */

if ($result = maxdb_query($link, "SELECT * FROM hotel.city",
MAXDB_USE_RESULT)) {

 maxdb_free_result($result);

}

maxdb_close($link);

?>

The above example will output something similar to:

Table mycity successfully created.

Select returned 25 rows.

See Also

• maxdb_real_query()
• maxdb_multi_query()
• maxdb_free_result()

maxdb_real_connect

maxdb->real_connect

maxdb_real_connect -- maxdb->real_connect -- Opens a connection to a MaxDB server

Description

Procedural style

bool maxdb_real_connect (resource $link [, string $hostname [, string $username [,
string $passwd [, string $dbname [, int $port [, string $socket]]]]]])

Object oriented style (method)

maxdb

bool real_connect ([string $hostname [, string $username [, string $passwd [, string $
dbname [, int $port [, string $socket]]]]]])

maxdb_real_connect() attempts to establish a connection to a MaxDB database engine
running on hostname.

This function differs from maxdb_connect():

• maxdb_real_connect() needs a valid resource which has to be created by function
maxdb_init()

• With function maxdb_options() you can set various options for connection.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #962 - Object oriented style

<?php

/* create a connection object which is not connected */

$maxdb = maxdb_init();

/* set connection options */

$maxdb->options(MAXDB_UNICODE, "FALSE");

$maxdb->options(MAXDB_TIMEOUT, 5);

/* connect to server */

$maxdb->real_connect('localhost', 'MONA', 'RED', 'DEMODB');

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf ("Connection: %s\n.", $maxdb->host_info);

$maxdb->close();

?>

Example #963 - Procedural style

<?php

/* create a connection object which is not connected */

$link = maxdb_init();

/* set connection options */

maxdb_options($link, MAXDB_UNICODE, "FALSE");

maxdb_options($link, MAXDB_TIMEOUT, 5);

/* connect to server */

maxdb_real_connect($link, 'localhost', 'MONA', 'RED', 'DEMODB');

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf ("Connection: %s\n.", maxdb_get_host_info($link));

maxdb_close($link);

?>

The above example will output something similar to:

Connection: localhost <...>

See Also

• maxdb_connect()
• maxdb_init()
• maxdb_options()

• maxdb_ssl_set()
• maxdb_close()

maxdb_real_escape_string

maxdb->real_escape_string

maxdb_real_escape_string -- maxdb->real_escape_string -- Escapes special characters in
a string for use in a SQL statement, taking into account the current charset of the
connection

Description

Procedural style:

string maxdb_real_escape_string (resource $link, string $escapestr)

Object oriented style (method):

maxdb

string real_escape_sring (string $escapestr)

This function is used to create a legal SQL string that you can use in a SQL statement.
The string escapestr is encoded to an escaped SQL string, taking into account the current
character set of the connection.

Characters encoded are ', ".

Return Values

Returns an escaped string.

Examples

Example #964 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */

if (!$maxdb->query("INSERT into temp.mycity VALUES ('11111','$city','NY')"))
{

 printf("Error: %s\n", $maxdb->sqlstate);

}

$city = $maxdb->real_escape_string($city);

/* this query with escaped $city will work */

if ($maxdb->query("INSERT into temp.mycity VALUES ('22222','$city','NY')"))
{

 printf("%d Row inserted.\n", $maxdb->affected_rows);

}

$maxdb->close();

?>

Example #965 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */

if (!maxdb_query($link, "INSERT into temp.mycity VALUES
('11111','$city','NY')")) {

 printf("Error: %s\n", maxdb_sqlstate($link));

}

$city = maxdb_real_escape_string($link, $city);

/* this query with escaped $city will work */

if (maxdb_query($link, "INSERT into temp.mycity VALUES
('22222','$city','NY')")) {

 printf("%d Row inserted.\n", maxdb_affected_rows($link));

}

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_query(): -5016 POS(43) Missing delimiter:) <...>

Error: 42000

1 Row inserted.

See Also

• maxdb_character_set_name()

maxdb_real_query

maxdb->real_query

maxdb_real_query -- maxdb->real_query -- Execute an SQL query

Description

Procedural style

bool maxdb_real_query (resource $link, string $query)

Object oriented style (method):

maxdb

bool real_query (string $query)

The maxdb_real_query() is functionally identical with the maxdb_query().

Note

In order to determine if a given query should return a result set or not, see
maxdb_field_count().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• maxdb_query()
• maxdb_store_result()
• maxdb_use_result()

maxdb_report

maxdb_report -- Enables or disables internal report functions

Description

bool maxdb_report (int $flags)

Examples

Example #966 - Procedural style

<?php

/* activate reporting */

maxdb_report(MAXDB_REPORT_ERROR);

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* this query should report an error */

$result = maxdb_query($link,"SELECT Name FROM Nonexistingtable WHERE
population > 50000");

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_query(): -4004 POS(18) Unknown table name:NONEXISTINGTABLE <...>

maxdb_rollback

maxdb->rollback

maxdb_rollback -- maxdb->rollback -- Rolls back current transaction

Description

bool maxdb_rollback (resource $link)

maxdb

bool rollback (void)

Rollbacks the current transaction for the database specified by the link parameter.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #967 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* disable autocommit */

$maxdb->autocommit(FALSE);

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query("INSERT INTO temp.mycity SELECT * FROM hotel.city");

/* commit insert */

$maxdb->commit();

/* delete all rows */

$maxdb->query("DELETE FROM temp.mycity");

if ($result = $maxdb->query("SELECT COUNT(*) FROM temp.mycity")) {

 $row = $result->fetch_row();

 printf("%d rows in table mycity.\n", $row[0]);

 /* Free result */

 $result->close();

}

/* Rollback */

$maxdb->rollback();

if ($result = $maxdb->query("SELECT COUNT(*) FROM temp.mycity")) {

 $row = $result->fetch_row();

 printf("%d rows in table mycity (after rollback).\n", $row[0]);

 /* Free result */

 $result->close();

}

/* Drop table myCity */

$maxdb->query("DROP TABLE temp.mycity");

$maxdb->close();

?>

Example #968 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* disable autocommit */

maxdb_autocommit($link, FALSE);

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

maxdb_query($link, "INSERT INTO temp.mycity SELECT * FROM hotel.city");

/* commit insert */

maxdb_commit($link);

/* delete all rows */

maxdb_query($link, "DELETE FROM temp.mycity");

if ($result = maxdb_query($link, "SELECT COUNT(*) FROM temp.mycity")) {

 $row = maxdb_fetch_row($result);

 printf("%d rows in table mycity.\n", $row[0]);

 /* Free result */

 maxdb_free_result($result);

}

/* Rollback */

maxdb_rollback($link);

if ($result = maxdb_query($link, "SELECT COUNT(*) FROM temp.mycity")) {

 $row = maxdb_fetch_row($result);

 printf("%d rows in table mycity (after rollback).\n", $row[0]);

 /* Free result */

 maxdb_free_result($result);

}

/* Drop table myCity */

maxdb_query($link, "DROP TABLE temp.mycity");

maxdb_close($link);

?>

The above example will output something similar to:

0 rows in table mycity.

25 rows in table mycity (after rollback).

See Also

• maxdb_commit()
• maxdb_autocommit()

maxdb_rpl_parse_enabled

maxdb_rpl_parse_enabled -- Check if RPL parse is enabled

Description

int maxdb_rpl_parse_enabled (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_rpl_probe

maxdb_rpl_probe -- RPL probe

Description

bool maxdb_rpl_probe (resource $link)

Warning

This function is currently not documented; only its argument list is available.

maxdb_rpl_query_type

maxdb->rpl_query_type

maxdb_rpl_query_type -- maxdb->rpl_query_type -- Returns RPL query type

Description

int maxdb_rpl_query_type (resource $link)

Object oriented style (method)

maxdb

int rpl_query_type (void)

Warning

This function is currently not documented; only its argument list is available.

maxdb_select_db

maxdb->select_db

maxdb_select_db -- maxdb->select_db -- Selects the default database for database
queries

Description

bool maxdb_select_db (resource $link, string $dbname)

The maxdb_select_db() function selects the default database (specified by the dbname
parameter) to be used when performing queries against the database connection
represented by the link parameter.

Note

This function should only be used to change the default database for the connection.
You can select the default database with 4th parameter in maxdb_connect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #969 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* return name of current default database */

if ($result = $maxdb->query("SELECT SERVERDB FROM USERS WHERE
USERNAME='MONA'")) {

 $row = $result->fetch_row();

 printf("Default database is %s.\n", $row[0]);

 $result->close();

}

/* change db to non existing db */

$maxdb->select_db("XXXXXXXX");

/* return name of current default database */

if ($result = $maxdb->query("SELECT SERVERDB FROM USERS WHERE
USERNAME='MONA'")) {

 $row = $result->fetch_row();

 printf("Default database is %s.\n", $row[0]);

 $result->close();

}

$maxdb->close();

?>

Example #970 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* return name of current default database */

if ($result = maxdb_query($link, "SELECT SERVERDB FROM USERS WHERE
USERNAME='MONA'")) {

 $row = maxdb_fetch_row($result);

 printf("Default database is %s.\n", $row[0]);

 maxdb_free_result($result);

}

/* change db to non existing db */

maxdb_select_db($link, "XXXXXXXX");

/* return name of current default database */

if ($result = maxdb_query($link, "SELECT SERVERDB FROM USERS WHERE
USERNAME='MONA'")) {

 $row = maxdb_fetch_row($result);

 printf("Default database is %s.\n", $row[0]);

 maxdb_free_result($result);

}

maxdb_close($link);

?>

The above example will output something similar to:

Default database is <...>.

Warning: maxdb_select_db(): -10709 Connection failed (RTE:database not running)
<...>

Warning: maxdb_query(): -10821 Session not connected [] <...>

Warning: maxdb_close(): -10821 Session not connected [] <...>

See Also

• maxdb_connect()
• maxdb_real_connect()

maxdb_send_long_data

maxdb_send_long_data -- Alias of maxdb_stmt_send_long_data()

Description

This function is an alias of: maxdb_stmt_send_long_data().

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

maxdb_send_query

maxdb->send_query

maxdb_send_query -- maxdb->send_query -- Send the query and return

Description

bool maxdb_send_query (resource $link, string $query)

Object oriented style (method)

maxdb

bool send_query (string $query)

Warning

This function is currently not documented; only its argument list is available.

maxdb_server_end

maxdb_server_end -- Shut down the embedded server

Description

void maxdb_server_end (void)

Warning

This function is currently not documented; only its argument list is available.

maxdb_server_init

maxdb_server_init -- Initialize embedded server

Description

bool maxdb_server_init ([array $server [, array $groups]])

Warning

This function is currently not documented; only its argument list is available.

maxdb_set_opt

maxdb_set_opt -- Alias of maxdb_options()

Description

This function is an alias of: maxdb_options().

maxdb_sqlstate

maxdb->sqlstate

maxdb_sqlstate -- maxdb->sqlstate -- Returns the SQLSTATE error from previous MaxDB
operation

Description

Procedural style:

string maxdb_sqlstate (resource $link)

Object oriented style (property):

maxdb

string sqlstate;

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error. The values are specified by ANSI SQL
and ODBC.

Note

Note that not all MaxDB errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error.

Examples

Example #971 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Table City already exists, so we should get an error */

if (!$maxdb->query("CREATE TABLE hotel.city (ID INT, Name VARCHAR(30))")) {

 printf("Error - SQLSTATE %s.\n", $maxdb->sqlstate);

}

$maxdb->close();

?>

Example #972 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Table City already exists, so we should get an error */

if (!maxdb_query($link, "CREATE TABLE hotel.city (ID INT, Name
VARCHAR(30))")) {

 printf("Error - SQLSTATE %s.\n", maxdb_sqlstate($link));

}

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_query(): -6000 POS(20) Duplicate table name:CITY [I6000] <...>

Error - SQLSTATE I6000.

See Also

• maxdb_errno()
• maxdb_error()

maxdb_ssl_set

maxdb->ssl_set

maxdb_ssl_set -- maxdb->ssl_set -- Used for establishing secure connections using SSL

Description

Procedural style:

bool maxdb_ssl_set (resource $link, string $key, string $cert, string $ca, string $
capath, string $cipher)

Object oriented style (method):

maxdb

bool ssl_set (string $key, string $cert, string $ca, string $capath, string $cipher)

Warning

This function is currently not documented; only its argument list is available.

maxdb_stat

maxdb->stat

maxdb_stat -- maxdb->stat -- Gets the current system status

Description

Procedural style:

string maxdb_stat (resource $link)

Object oriented style (method):

maxdb

string maxdb->stat (void)

maxdb_stat() returns a string containing several information about the MaxDB server
running.

Return Values

A string describing the server status. FALSE if an error occurred.

Examples

Example #973 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf ("System status: %s\n", $maxdb->stat());

$maxdb->close();

?>

Example #974 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

printf("System status: %s\n", maxdb_stat($link));

maxdb_close($link);

?>

The above example will output something similar to:

System status: Kernel 7<...>

See Also

• maxdb_get_server_info()

maxdb_stmt_affected_rows

maxdb_stmt->affected_rows

maxdb_stmt_affected_rows -- maxdb_stmt->affected_rows -- Returns the total number of
rows changed, deleted, or inserted by the last executed statement

Description

Procedural style :

int maxdb_stmt_affected_rows (resource $stmt)

Object oriented style (property):

stmt

int affected_rows;

maxdb_stmt_affected_rows() returns the number of rows affected by INSERT, UPDATE,
or DELETE query. If the last query was invalid or the number of rows can not determined,
this function will return -1.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero
indicates that no records where updated for an UPDATE/DELETE statement, no rows
matched the WHERE clause in the query or that no query has yet been executed. -1
indicates that the query has returned an error or the number of rows can not determined.

Examples

Example #975 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* create temp table */

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$query = "INSERT INTO temp.mycity SELECT * FROM hotel.city WHERE state LIKE
?";

/* prepare statement */

if ($stmt = $maxdb->prepare($query)) {

 /* Bind variable for placeholder */

 $code = 'N%';

 $stmt->bind_param("s", $code);

 /* execute statement */

 $stmt->execute();

 printf("rows inserted: %d\n", $stmt->affected_rows);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #976 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* create temp table */

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

$query = "INSERT INTO temp.mycity SELECT * FROM hotel.city WHERE state LIKE
?";

/* prepare statement */

if ($stmt = maxdb_prepare($link, $query)) {

 /* Bind variable for placeholder */

 $code = 'N%';

 maxdb_stmt_bind_param($stmt, "s", $code);

 /* execute statement */

 maxdb_stmt_execute($stmt);

 printf("rows inserted: %d\n", maxdb_stmt_affected_rows($stmt));

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

rows inserted: 4

See Also

• maxdb_stmt_num_rows()
• maxdb_prepare()

maxdb_stmt_bind_param

stmt->bind_param

maxdb_stmt_bind_param -- stmt->bind_param -- Binds variables to a prepared statement
as parameters

Description

Procedural style:

bool maxdb_stmt_bind_param (resource $stmt, string $types, mixed &$var1 [, mixed
&$...])

Object oriented style (method):

stmt

bool bind_param (string $types, mixed &$var1 [, mixed &$...])

Procedural style (extended syntax):

bool maxdb_stmt_bind_param (resource $stmt, string $types, array &$var)

Object oriented style (method) (extended syntax):

stmt

bool bind_param (string $types, array &$var)

maxdb_stmt_bind_param() is used to bind variables for the parameter markers in the SQL
statement that was passed to maxdb_prepare(). The string types contains one or more
characters which specify the types for the corresponding bind variables.

The extended syntax of maxdb_stmt_bind_param() allows to give the parameters as an
array instead of a variable list of PHP variables to the function. If the array variable has not
been used before calling maxdb_stmt_bind_param(), it has to be initialized as an emtpy
array. See the examples how to use maxdb_stmt_bind_param() with extended syntax.

Variables for SELECT INTO SQL statements can also be bound using

maxdb_stmt_bind_param(). Parameters for database procedures can be bound using
maxdb_stmt_bind_param(). See the examples how to use maxdb_stmt_bind_param() in
this cases.

If a variable bound as INTO variable to a SQL statement was used before, the content of
this variable is overwritten by the data of the SELECT INTO statement. A reference to this
variable will be invalid after a call to maxdb_stmt_bind_param().

For INOUT parameters of database procedures the content of the bound INOUT variable
is overwritten by the output value of the database procedure. A reference to this variable
will be invalid after a call to maxdb_stmt_bind_param().

Type specification chars

Character Description

i corresponding variable has type integer

d corresponding variable has type double

s corresponding variable has type string

b corresponding variable is a blob and will be
sent in packages

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #977 - Object oriented style

<?php

$maxdb = new maxdb('localhost', 'MONA', 'RED', 'DEMODB');

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query ("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query ("INSERT INTO temp.mycity SELECT * FROM hotel.city");

$stmt = $maxdb->prepare("INSERT INTO temp.mycity VALUES (?, ?, ?)");

$stmt->bind_param('sss', $zip, $name, $state);

$zip = '11111';

$name = 'Georgetown';

$state = 'NY';

/* execute prepared statement */

$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */

$stmt->close();

/* Clean up table CountryLanguage */

$maxdb->query("DELETE FROM temp.mycity WHERE name='Georgetown'");

printf("%d Row deleted.\n", $maxdb->affected_rows);

/* close connection */

$maxdb->close();

?>

Example #978 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query ($link, "CREATE TABLE temp.mycity LIKE hotel.city");

maxdb_query ($link, "INSERT INTO temp.mycity SELECT * FROM hotel.city");

$stmt = maxdb_prepare($link, "INSERT INTO temp.mycity VALUES (?, ?, ?)");

maxdb_stmt_bind_param($stmt, 'sss', $zip, $name, $state);

$zip = '11111';

$name = 'Georgetown';

$state = 'NY';

/* execute prepared statement */

maxdb_stmt_execute($stmt);

printf("%d Row inserted.\n", maxdb_stmt_affected_rows($stmt));

/* close statement and connection */

maxdb_stmt_close($stmt);

/* Clean up table CountryLanguage */

maxdb_query($link, "DELETE FROM temp.mycity WHERE name='Georgetown'");

printf("%d Row deleted.\n", maxdb_affected_rows($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

1 Row inserted.

1 Row deleted.

Example #979 - Procedural style (SELECT INTO)

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* Performing SQL query */

$stmt = maxdb_prepare ($link, "SELECT price INTO ? FROM hotel.room where hno
= ? and type = ?");

if (!$stmt) {

 printf ("Prepare failed: %s\n", maxdb_error($link));

}

$hno = "50";

$rtype = "suite";

maxdb_stmt_bind_param($stmt, 'dss', $price, $hno, $rtype);

maxdb_stmt_execute($stmt);

printf ("%f\n", $price);

maxdb_stmt_close ($stmt);

?>

The above example will output something similar to:

21.600000

Example #980 - Procedural style (DB procedure)

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_report (MAXDB_REPORT_OFF);

maxdb_query($link,"DROP DBPROC test_proc");

maxdb_report (MAXDB_REPORT_ERROR);

$query = "create dbproc test_proc (INOUT e_text char(72)) AS select * from
SYSDBA.DUAL; fetch into :e_text;";

maxdb_query($link, $query);

/* Performing SQL query */

$stmt = maxdb_prepare ($link, "CALL test_proc (?)");

if (!$stmt) {

 printf ("Prepare failed: %s\n", maxdb_error($link));

}

maxdb_stmt_bind_param($stmt, 's', $result);

maxdb_stmt_execute($stmt);

printf ("%s\n", $result);

maxdb_stmt_close ($stmt);

?>

The above example will output something similar to:

a

Example #981 - Object oriented style (extended syntax)

<?php

$maxdb = new maxdb('localhost', 'MONA', 'RED', 'DEMODB');

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query ("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query ("INSERT INTO temp.mycity SELECT * FROM hotel.city");

$stmt = $maxdb->prepare("INSERT INTO temp.mycity VALUES (?, ?, ?)");

$arr = array();

$stmt->bind_param('iss', $arr);

$arr[0] = 11111;

$arr[1] = 'Georgetown';

$arr[2] = 'NY';

/* execute prepared statement */

$stmt->execute();

printf("%d Row inserted.\n", maxdb_stmt_affected_rows($stmt));

$arr[0] = 22222;

$arr[1] = 'New Orleans';

$arr[2] = 'LA';

/* execute prepared statement */

$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */

$stmt->close();

$result = $maxdb->query("SELECT * from temp.mycity WHERE zip = '11111' OR
zip = '22222'");

if ($result) {

 while ($row = $result->fetch_row()) {

 printf ("%s %s %s\n", $row[0], $row[1], $row[2]);

 }

}

/* Clean up table CountryLanguage */

$maxdb->query("DELETE FROM temp.mycity WHERE name='Georgetown'");

$maxdb->query("DELETE FROM temp.mycity WHERE name='New Orleans'");

printf("%d Rows deleted.\n", $maxdb->affected_rows);

/* close connection */

$maxdb->close();

?>

The above example will output something similar to:

1 Row inserted.

1 Row inserted.

11111 Georgetown NY

22222 New Orleans LA

2 Rows deleted.

See Also

• maxdb_stmt_bind_result()
• maxdb_stmt_execute()
• maxdb_stmt_fetch()
• maxdb_prepare()
• maxdb_stmt_send_long_data()
• maxdb_stmt_errno()
• maxdb_stmt_error()

maxdb_stmt_bind_result

stmt->bind_result

maxdb_stmt_bind_result -- stmt->bind_result -- Binds variables to a prepared statement for
result storage

Description

Procedural style:

bool maxdb_stmt_bind_result (resource $stmt, mixed &$var1 [, mixed &$...])

Object oriented style (method):

stmt

bool bind_result (mixed &$var1 [, mixed &$...])

maxdb_stmt_bind_result() is used to associate (bind) columns in the result set to
variables. When maxdb_stmt_fetch() is called to fetch data, the MaxDB client/server
protocol places the data for the bound columns into the specified variables var1,

Note

Note that all columns must be bound prior to calling maxdb_stmt_fetch(). Depending
on column types bound variables can silently change to the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set has been
partially retrieved. The new binding takes effect the next time maxdb_stmt_fetch() is
called.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #982 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* prepare statement */

if ($stmt = $maxdb->prepare("SELECT zip, name FROM hotel.city ORDER BY
name")) {

 $stmt->execute();

 /* bind variables to prepared statement */

 $stmt->bind_result($col1, $col2);

 /* fetch values */

 while ($stmt->fetch()) {

 printf("%s %s\n", $col1, $col2);

 }

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #983 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* prepare statement */

if ($stmt = maxdb_prepare($link, "SELECT zip, name FROM hotel.city ORDER BY
name")) {

 maxdb_stmt_execute($stmt);

 /* bind variables to prepared statement */

 maxdb_stmt_bind_result($stmt, $col1, $col2);

 /* fetch values */

 while (maxdb_stmt_fetch($stmt)) {

 printf("%s %s\n", $col1, $col2);

 }

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

12203 Albany

60601 Chicago

60615 Chicago

45211 Cincinnati

33575 Clearwater

75243 Dallas

32018 Daytona Beach

33441 Deerfield Beach

48226 Detroit

90029 Hollywood

92714 Irvine

90804 Long Beach

11788 Long Island

90018 Los Angeles

70112 New Orleans

10019 New York

10580 New York

92262 Palm Springs

97213 Portland

60018 Rosemont

95054 Santa Clara

20903 Silver Spring

20005 Washington

20019 Washington

20037 Washington

See Also

• maxdb_stmt_bind_param()
• maxdb_stmt_execute()
• maxdb_stmt_fetch()
• maxdb_prepare()
• maxdb_stmt_prepare()
• maxdb_stmt_init()
• maxdb_stmt_errno()
• maxdb_stmt_error()

maxdb_stmt_close_long_data

stmt->close_long_data

maxdb_stmt_close_long_data -- stmt->close_long_data -- Ends a sequence of
maxdb_stmt_send_long_data()

Description

Procedural style:

bool maxdb_stmt_close_long_data (resource $stmt, int $param_nr)

Object oriented style (method):

maxdb_stmt

bool maxdb_stmt->close_long_data (void)

This function has to be called after a sequence of maxdb_stmt_send_long_data(), that was
started after maxdb_execute().

param_nr indicates which parameter to associate the end of data with. Parameters are
numbered beginning with 0.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• maxdb_prepare()
• maxdb_stmt_bind_param()

maxdb_stmt_close

maxdb_stmt->close

maxdb_stmt_close -- maxdb_stmt->close -- Closes a prepared statement

Description

Procedural style:

bool maxdb_stmt_close (resource $stmt)

Object oriented style (method):

maxdb_stmt

bool maxdb_stmt->close (void)

Closes a prepared statement. maxdb_stmt_close() also deallocates the statement handle
pointed to by stmt. If the current statement has pending or unread results, this function
cancels them so that the next query can be executed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• maxdb_prepare()

maxdb_stmt_data_seek

stmt->data_seek

maxdb_stmt_data_seek -- stmt->data_seek -- Seeks to an arbitray row in statement result
set

Description

Procedural style:

bool maxdb_stmt_data_seek (resource $statement, int $offset)

Object oriented style (method):

stmt

bool data_seek (int $offset)

The maxdb_stmt_data_seek() function seeks to an arbitrary result pointer specified by the
offset in the statement result set represented by statement. The offset parameter must
be between zero and the total number of rows minus one (0.. maxdb_stmt_num_rows() -
1).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #984 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, zip FROM hotel.city ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($name, $code);

 /* store result */

 $stmt->store_result();

 /* seek to row no. 5 */

 $stmt->data_seek(5);

 /* fetch values */

 $stmt->fetch();

 printf ("City: %s Zip: %s\n", $name, $code);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #985 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, zip FROM hotel.city ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* execute query */

 maxdb_stmt_execute($stmt);

 /* bind result variables */

 maxdb_stmt_bind_result($stmt, $name, $code);

 /* store result */

 maxdb_stmt_store_result($stmt);

 /* seek to row no. 5 */

 maxdb_stmt_data_seek($stmt, 5);

 /* fetch values */

 maxdb_stmt_fetch($stmt);

 printf ("City: %s Zip: %s\n", $name, $code);

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

City: Dallas Zip: 75243

See Also

• maxdb_prepare()

maxdb_stmt_errno

maxdb_stmt->errno

maxdb_stmt_errno -- maxdb_stmt->errno -- Returns the error code for the most recent
statement call

Description

Procedural style :

int maxdb_stmt_errno (resource $stmt)

Object oriented style (property):

stmt

int errno;

For the statement specified by stmt, maxdb_stmt_errno() returns the error code for the
most recently invoked statement function that can succeed or fail.

Note

For possible error codes see documentation of SQLDBC:
» http://maxdb.sap.com/documentation/.

Return Values

An error code value. Zero means no error occurred.

Examples

Example #986 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

http://maxdb.sap.com/documentation/
http://maxdb.sap.com/documentation/

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query("INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* drop table */

 $maxdb->query("DROP TABLE temp.mycity");

 /* execute query */

 $stmt->execute();

 printf("Error: %d.\n", $stmt->errno);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #987 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

maxdb_query($link, "INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* drop table */

 maxdb_query($link, "DROP TABLE temp.mycity");

 /* execute query */

 maxdb_stmt_execute($stmt);

 printf("Error: %d.\n", maxdb_stmt_errno($stmt));

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_stmt_execute(): -4004 POS(23) Unknown table name:MYCITY [42000]
<...>

Error: -4004.

See Also

• maxdb_stmt_error()
• maxdb_stmt_sqlstate()

maxdb_stmt_error

maxdb_stmt->error

maxdb_stmt_error -- maxdb_stmt->error -- Returns a string description for last statement
error

Description

Procedural style:

string maxdb_stmt_error (resource $stmt)

Object oriented style (property):

stmt

string error;

For the statement specified by stmt, maxdb_stmt_error() returns a containing the error
message for the most recently invoked statement function that can succeed or fail.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #988 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query("INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* drop table */

 $maxdb->query("DROP TABLE temp.mycity");

 /* execute query */

 $stmt->execute();

 printf("Error: %s.\n", $stmt->error);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #989 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

maxdb_query($link, "INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* drop table */

 maxdb_query($link, "DROP TABLE temp.mycity");

 /* execute query */

 maxdb_stmt_execute($stmt);

 printf("Error: %s.\n", maxdb_stmt_error($stmt));

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_stmt_execute(): -4004 POS(23) Unknown table name:MYCITY [42000]

<...>

Error: POS(23) Unknown table name:MYCITY.

See Also

• maxdb_stmt_errno()
• maxdb_stmt_sqlstate()

maxdb_stmt_execute

stmt->execute

maxdb_stmt_execute -- stmt->execute -- Executes a prepared Query

Description

Procedural style:

bool maxdb_stmt_execute (resource $stmt)

Object oriented style (method):

stmt

bool execute (void)

The maxdb_stmt_execute() function executes a query that has been previously prepared
using the maxdb_prepare() function represented by the stmt resource. When executed
any parameter markers which exist will automatically be replaced with the appropiate data.

If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can
be determined by using the maxdb_stmt_affected_rows() function. Likewise, if the query
yields a result set the maxdb_fetch() function is used.

Note

When using maxdb_stmt_execute(), the maxdb_fetch() function must be used to fetch
the data prior to preforming any additional queries.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #990 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

/* Prepare an insert statement */

$query = "INSERT INTO temp.mycity (zip, name, state) VALUES (?,?,?)";

$stmt = $maxdb->prepare($query);

$stmt->bind_param("sss", $val1, $val2, $val3);

$val1 = '11111';

$val2 = 'Georgetown';

$val3 = 'NY';

/* Execute the statement */

$stmt->execute();

$val1 = '22222';

$val2 = 'Hubbatown';

$val3 = 'CA';

/* Execute the statement */

$stmt->execute();

/* close statement */

$stmt->close();

/* retrieve all rows from myCity */

$query = "SELECT zip, name, state FROM temp.mycity";

if ($result = $maxdb->query($query)) {

 while ($row = $result->fetch_row()) {

 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

 }

 /* free result set */

 $result->close();

}

/* remove table */

$maxdb->query("DROP TABLE temp.mycity");

/* close connection */

$maxdb->close();

?>

Example #991 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

/* Prepare an insert statement */

$query = "INSERT INTO temp.mycity (zip, name, state) VALUES (?,?,?)";

$stmt = maxdb_prepare($link, $query);

maxdb_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);

$val1 = '11111';

$val2 = 'Georgetown';

$val3 = 'NY';

/* Execute the statement */

maxdb_stmt_execute($stmt);

$val1 = '22222';

$val2 = 'Hubbatown';

$val3 = 'CA';

/* Execute the statement */

maxdb_stmt_execute($stmt);

/* close statement */

maxdb_stmt_close($stmt);

/* retrieve all rows from myCity */

$query = "SELECT zip, name, state FROM temp.mycity";

if ($result = maxdb_query($link, $query)) {

 while ($row = maxdb_fetch_row($result)) {

 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

 }

 /* free result set */

 maxdb_free_result($result);

}

/* remove table */

maxdb_query($link, "DROP TABLE temp.mycity");

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

11111 (Georgetown,NY)

22222 (Hubbatown,CA)

See Also

• maxdb_prepare()
• maxdb_stmt_bind_param()

maxdb_stmt_fetch

stmt->fetch

maxdb_stmt_fetch -- stmt->fetch -- Fetch results from a prepared statement into the bound
variables

Description

Procedural style:

bool maxdb_stmt_fetch (resource $stmt)

Object oriented style (method):

stmt

bool fetch (void)

maxdb_stmt_fetch() returns row data using the variables bound by
maxdb_stmt_bind_result().

Note

Note that all columns must be bound by the application before calling
maxdb_stmt_fetch().

Return Values

Return values

Value Description

TRUE Success. Data has been fetched

FALSE Error occured

NULL No more rows/data exists

Examples

Example #992 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT zip, name FROM hotel.city ORDER by name";

if ($stmt = $maxdb->prepare($query)) {

 /* execute statement */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($name, $code);

 /* fetch values */

 while ($stmt->fetch()) {

 printf ("%s (%s)\n", $name, $code);

 }

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #993 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT zip, name FROM hotel.city ORDER by name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* execute statement */

 maxdb_stmt_execute($stmt);

 /* bind result variables */

 maxdb_stmt_bind_result($stmt, $name, $code);

 /* fetch values */

 while (maxdb_stmt_fetch($stmt)) {

 printf ("%s (%s)\n", $name, $code);

 }

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

12203 (Albany)

60601 (Chicago)

60615 (Chicago)

45211 (Cincinnati)

33575 (Clearwater)

75243 (Dallas)

32018 (Daytona Beach)

33441 (Deerfield Beach)

48226 (Detroit)

90029 (Hollywood)

92714 (Irvine)

90804 (Long Beach)

11788 (Long Island)

90018 (Los Angeles)

70112 (New Orleans)

10019 (New York)

10580 (New York)

92262 (Palm Springs)

97213 (Portland)

60018 (Rosemont)

95054 (Santa Clara)

20903 (Silver Spring)

20005 (Washington)

20019 (Washington)

20037 (Washington)

See Also

• maxdb_prepare()
• maxdb_stmt_errno()
• maxdb_stmt_error()
• maxdb_stmt_bind_result()

maxdb_stmt_free_result

stmt->free_result

maxdb_stmt_free_result -- stmt->free_result -- Frees stored result memory for the given
statement handle

Description

Procedural style:

void maxdb_stmt_free_result (resource $stmt)

Object oriented style (method):

stmt

void free_result (void)

The maxdb_stmt_free_result() function frees the result memory associated with the
statement represented by the stmt parameter, which was allocated by
maxdb_stmt_store_result().

Return Values

This function doesn't return any value.

See Also

• maxdb_stmt_store_result()

maxdb_stmt_init

maxdb->stmt_init

maxdb_stmt_init -- maxdb->stmt_init -- Initializes a statement and returns an resource for
use with maxdb_stmt_prepare

Description

Procedural style :

resource maxdb_stmt_init (resource $link)

Object oriented style (property):

maxdb

object stmt_init (void)

Allocates and initializes a statement resource suitable for maxdb_stmt_prepare().

Note

Any subsequent calls to any maxdb_stmt function will fail until maxdb_stmt_prepare()
was called.

Return Values

Returns an resource.

See Also

• maxdb_stmt_prepare()

maxdb_stmt_num_rows

stmt->num_rows

maxdb_stmt_num_rows -- stmt->num_rows -- Return the number of rows in statements
result set

Description

Procedural style :

int maxdb_stmt_num_rows (resource $stmt)

Object oriented style (property):

stmt

int num_rows;

Returns the number of rows in the result set.

Return Values

An integer representing the number of rows in result set.

Examples

Example #994 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT zip, name FROM hotel.city ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* store result */

 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #995 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT zip, name FROM hotel.city ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* execute query */

 maxdb_stmt_execute($stmt);

 /* store result */

 maxdb_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", maxdb_stmt_num_rows($stmt));

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Number of rows: 25.

See Also

• maxdb_stmt_affected_rows()
• maxdb_prepare()
• maxdb_stmt_store_result()

maxdb_stmt_param_count

stmt->param_count

maxdb_stmt_param_count -- stmt->param_count -- Returns the number of parameter for
the given statement

Description

Procedural style:

int maxdb_stmt_param_count (resource $stmt)

Object oriented style (property):

stmt

int param_count;

maxdb_stmt_param_count() returns the number of parameter markers present in the
prepared statement.

Return Values

returns an integer representing the number of parameters.

Examples

Example #996 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($stmt = $maxdb->prepare("SELECT name FROM hotel.city WHERE name=? OR
state=?")) {

 $marker = $stmt->param_count;

 printf("Statement has %d markers.\n", $marker);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #997 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

if ($stmt = maxdb_prepare($link, "SELECT name FROM hotel.city WHERE name=?
OR state=?")) {

 $marker = maxdb_stmt_param_count($stmt);

 printf("Statement has %d markers.\n", $marker);

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Statement has 2 markers.

See Also

• maxdb_prepare()

maxdb_stmt_prepare

stmt->prepare

maxdb_stmt_prepare -- stmt->prepare -- Prepare a SQL statement for execution

Description

Procedure style:

bool maxdb_stmt_prepare (resource $stmt, string $query)

Object oriented style (method)

stmt

mixed prepare (string $query)

maxdb_stmt_prepare() prepares the SQL query pointed to by the null-terminated string
query. The statement resource has to be allocated by maxdb_stmt_init(). The query must
consist of a single SQL statement.

Note

You should not add a terminating semicolon or \g to the statement.

The parameter query can include one or more parameter markers in the SQL statement
by embedding question mark (?) characters at the appropriate positions.

Note

The markers are legal only in certain places in SQL statements. For example, they are
allowed in the VALUES() list of an INSERT statement (to specify column values for a
row), or in a comparison with a column in a WHERE clause to specify a comparison
value.

However, they are not allowed for identifiers (such as table or column names), in the
select list that names the columns to be returned by a SELECT statement), or to
specify both operands of a binary operator such as the = equal sign. The latter
restriction is necessary because it would be impossible to determine the parameter
type. In general, parameters are legal only in Data Manipulation Languange (DML)

statements, and not in Data Defination Language (DDL) statements.

The parameter markers must be bound to application variables using
maxdb_stmt_bind_param() and/or maxdb_stmt_bind_result() before executing the
statement or fetching rows.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #998 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$city = "Portland";

/* create a prepared statement */

$stmt = $maxdb->stmt_init();

if ($stmt->prepare("SELECT state FROM hotel.city WHERE name=?")) {

 /* bind parameters for markers */

 $stmt->bind_param("s", $city);

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($district);

 /* fetch value */

 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #999 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$city = "Portland";

/* create a prepared statement */

$stmt = maxdb_stmt_init($link);

if (maxdb_stmt_prepare($stmt, "SELECT state FROM hotel.city WHERE name=?"))
{

 /* bind parameters for markers */

 maxdb_stmt_bind_param($stmt, "s", $city);

 /* execute query */

 maxdb_stmt_execute($stmt);

 /* bind result variables */

 maxdb_stmt_bind_result($stmt, $district);

 /* fetch value */

 maxdb_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Portland is in district OR

See Also

• maxdb_stmt_init()
• maxdb_stmt_execute()
• maxdb_stmt_fetch()
• maxdb_stmt_bind_param()
• maxdb_stmt_bind_result()
• maxdb_stmt_close()

maxdb_stmt_reset

stmt->reset

maxdb_stmt_reset -- stmt->reset -- Resets a prepared statement

Description

Procedural style:

bool maxdb_stmt_reset (resource $stmt)

Object oriented style (method):

stmt

bool reset (void)

Warning

This function is currently not documented; only its argument list is available.

maxdb_stmt_result_metadata

maxdb_stmt_result_metadata -- Returns result set metadata from a prepared statement

Description

Procedural style:

resource maxdb_stmt_result_metadata (resource $stmt)

Object oriented style (method):

stmt

resource result_metadata (void)

If a statement passed to maxdb_prepare() is one that produces a result set,
maxdb_stmt_result_metadata() returns the result resource that can be used to process the
meta information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based
functions that process result set metadata, such as:

• maxdb_num_fields()

• maxdb_fetch_field()

• maxdb_fetch_field_direct()

• maxdb_fetch_fields()

• maxdb_field_count()

• maxdb_field_seek()

• maxdb_field_tell()

• maxdb_free_result()

The result set structure should be freed when you are done with it, which you can do by
passing it to maxdb_free_result()

Note

The result set returned by maxdb_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handle
with maxdb_fetch().

Return Values

maxdb_stmt_result_metadata() returns a result resource or FALSE if an error occured.

Examples

Example #1000 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

$maxdb->query("CREATE TABLE temp.friends (id int, name varchar(20))");

$maxdb->query("INSERT INTO temp.friends VALUES (1,'Hartmut')");

$maxdb->query("INSERT INTO temp.friends VALUES (2, 'Ulf')");

$stmt = $maxdb->prepare("SELECT id, name FROM temp.friends");

$stmt->execute();

/* get resultset for metadata */

$result = $stmt->result_metadata();

/* retrieve field information from metadata result set */

$field = $result->fetch_field();

printf("Fieldname: %s\n", $field->name);

/* close resultset */

$result->close();

/* close connection */

$maxdb->close();

?>

Example #1001 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

maxdb_query($link, "CREATE TABLE temp.friends (id int, name varchar(20))");

maxdb_query($link, "INSERT INTO temp.friends VALUES (1,'Hartmut')");

maxdb_query($link, "INSERT INTO temp.friends VALUES (2, 'Ulf')");

$stmt = maxdb_prepare($link, "SELECT id, name FROM temp.friends");

maxdb_stmt_execute($stmt);

/* get resultset for metadata */

$result = maxdb_stmt_result_metadata($stmt);

/* retrieve field information from metadata result set */

$field = maxdb_fetch_field($result);

printf("Fieldname: %s\n", $field->name);

/* close resultset */

maxdb_free_result($result);

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Fieldname: ID

See Also

• maxdb_prepare()
• maxdb_free_result()

maxdb_stmt_send_long_data

stmt->send_long_data

maxdb_stmt_send_long_data -- stmt->send_long_data -- Send data in blocks

Description

Procedural style:

bool maxdb_stmt_send_long_data (resource $stmt, int $param_nr, string $data)

Object oriented style (method)

stmt

bool stmt_send_long_data (int $param_nr, string $data)

Allows to send parameter data to the server in pieces (or chunks). This function can be
called multiple times to send the parts of a character or binary data value for a column,
which must be one of the TEXT or BLOB datatypes.

param_nr indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a string containing data to be sent.

Note

For efficiency reasons, this function should be used after calling maxdb_execute(). In
this case, the data is not stored on the client side. The end of the sequence must end
with a call to maxdb_stmt_close_long_data().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• maxdb_prepare()
• maxdb_stmt_bind_param()

maxdb_stmt_sqlstate

maxdb_stmt_sqlstate -- Returns SQLSTATE error from previous statement operation

Description

string maxdb_stmt_sqlstate (resource $stmt)

Returns a string containing the SQLSTATE error code for the most recently invoked
prepared statement function that can succeed or fail. The error code consists of five
characters. '00000' means no error. The values are specified by ANSI SQL and ODBC.

Note

Note that not all MaxDB errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error.

Examples

Example #1002 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

$maxdb->query("INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* drop table */

 $maxdb->query("DROP TABLE temp.mycity");

 /* execute query */

 $stmt->execute();

 printf("Error: %s.\n", $stmt->sqlstate);

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #1003 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

maxdb_query($link, "INSERT INTO temp.mycity SELECT * FROM hotel.city");

$query = "SELECT name, zip FROM temp.mycity ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* drop table */

 maxdb_query($link, "DROP TABLE temp.mycity");

 /* execute query */

 maxdb_stmt_execute($stmt);

 printf("Error: %s.\n", maxdb_stmt_sqlstate($stmt));

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_stmt_execute(): -4004 POS(23) Unknown table name:MYCITY [42000]
<...>

Error: 42000.

See Also

• maxdb_stmt_errno()
• maxdb_stmt_error()

maxdb_stmt_store_result

maxdb->store_result

maxdb_stmt_store_result -- maxdb->store_result -- Transfers a result set from a prepared
statement

Description

Procedural style:

bool maxdb_stmt_store_result (resource $stmt)

Object oriented style (method):

maxdb

object store_result (void)

maxdb_stmt_store_result() has no functionally effect and should not be used for retrieving
data from MaxDB server.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1004 - Object oriented style

<?php

/* Open a connection */

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, zip FROM hotel.city ORDER BY name";

if ($stmt = $maxdb->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* store result */

 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* free result */

 $stmt->free_result();

 /* close statement */

 $stmt->close();

}

/* close connection */

$maxdb->close();

?>

Example #1005 - Procedural style

<?php

/* Open a connection */

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT name, zip FROM hotel.city ORDER BY name";

if ($stmt = maxdb_prepare($link, $query)) {

 /* execute query */

 maxdb_stmt_execute($stmt);

 /* store result */

 maxdb_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", maxdb_stmt_num_rows($stmt));

 /* free result */

 maxdb_stmt_free_result($stmt);

 /* close statement */

 maxdb_stmt_close($stmt);

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Number of rows: 25.

See Also

• maxdb_prepare()
• maxdb_stmt_result_metadata()
• maxdb_fetch()

maxdb_store_result

maxdb->store_result

maxdb_store_result -- maxdb->store_result -- Transfers a result set from the last query

Description

Procedural style:

resource maxdb_store_result (resource $link)

Object oriented style (method):

maxdb

object store_result (void)

This function has no functionally effect.

Return Values

Returns a result resource or FALSE if an error occurred.

Examples

See maxdb_multi_query().

See Also

• maxdb_real_query()
• maxdb_use_result()

maxdb_thread_id

maxdb->thread_id

maxdb_thread_id -- maxdb->thread_id -- Returns the thread ID for the current connection

Description

Procedural style:

int maxdb_thread_id (resource $link)

Object oriented style (property):

maxdb

int thread_id;

The maxdb_thread_id() function returns the thread ID for the current connection which can
then be killed using the maxdb_kill() function. If the connection is lost and you reconnect
with maxdb_ping(), the thread ID will be other. Therefore you should get the thread ID only
when you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the
connection is broken and then re-established a new thread ID will be assigned.

Return Values

maxdb_thread_id() returns the Thread ID for the current connection.

Examples

Example #1006 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = $maxdb->thread_id;

/* Kill connection */

$maxdb->kill($thread_id);

/* This should produce an error */

if (!$maxdb->query("CREATE TABLE mycity LIKE hotel.city")) {

 printf("Error: %s\n", $maxdb->error);

 exit;

}

/* close connection */

$maxdb->close();

?>

Example #1007 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = maxdb_thread_id($link);

/* Kill connection */

maxdb_kill($link, $thread_id);

/* This should produce an error */

if (!maxdb_query($link, "CREATE TABLE mycity LIKE hotel.city")) {

 printf("Error: %s\n", maxdb_error($link));

 exit;

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_query(): -10821 Session not connected <...>

Error: Session not connected

See Also

• maxdb_kill()

maxdb_thread_safe

maxdb_thread_safe -- Returns whether thread safety is given or not

Description

Procedural style:

bool maxdb_thread_safe (void)

maxdb_thread_safe() indicates whether the client library is compiled as thread-safe.

Return Values

TRUE if the client library is thread-safe, otherwise FALSE.

maxdb_use_result

maxdb->use_result

maxdb_use_result -- maxdb->use_result -- Initiate a result set retrieval

Description

Procedural style:

resource maxdb_use_result (resource $link)

Object oriented style (method):

maxdb

resource use_result (void)

maxdb_use_result() has no effect.

Return Values

Returns result or FALSE in case of error.

Examples

Example #1008 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * FROM DUAL";

/* execute multi query */

if ($maxdb->multi_query($query)) {

 do {

 /* store first result set */

 if ($result = $maxdb->use_result()) {

 while ($row = $result->fetch_row()) {

 printf("%s\n", $row[0]);

 }

 $result->close();

 }

 /* print divider */

 if ($maxdb->more_results()) {

 printf("-----------------\n");

 }

 } while ($maxdb->next_result());

}

/* close connection */

$maxdb->close();

?>

Example #1009 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$query = "SELECT * FROM DUAL";

/* execute multi query */

if (maxdb_multi_query($link, $query)) {

 do {

 /* store first result set */

 if ($result = maxdb_use_result($link)) {

 while ($row = maxdb_fetch_row($result)) {

 printf("%s\n", $row[0]);

 }

 maxdb_free_result($result);

 }

 /* print divider */

 if (maxdb_more_results($link)) {

 printf("-----------------\n");

 }

 } while (maxdb_next_result($link));

}

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

a

See Also

• maxdb_real_query()
• maxdb_store_result()

maxdb_warning_count

maxdb->warning_count

maxdb_warning_count -- maxdb->warning_count -- Returns the number of warnings from
the last query for the given link

Description

Procedural style:

int maxdb_warning_count (resource $link)

Object oriented style (property):

maxdb

int warning_count;

maxdb_warning_count() returns the number of warnings from the last query in the
connection represented by the link parameter.

Return Values

Number of warnings or zero if there are no warnings.

Examples

Example #1010 - Object oriented style

<?php

$maxdb = new maxdb("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

$maxdb->query("CREATE TABLE temp.mycity LIKE hotel.city");

/* a remarkable city in Wales */

$query = "INSERT INTO temp.mycity (zip, name) VALUES('11111',

 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

$maxdb->query($query);

printf ("Number of warning: %d\n", $maxdb->warning_count);

/* close connection */

$maxdb->close();

?>

Example #1011 - Procedural style

<?php

$link = maxdb_connect("localhost", "MONA", "RED", "DEMODB");

/* check connection */

if (maxdb_connect_errno()) {

 printf("Connect failed: %s\n", maxdb_connect_error());

 exit();

}

maxdb_query($link, "CREATE TABLE temp.mycity LIKE hotel.city");

/* a remarkable long city name in Wales */

$query = "INSERT INTO temp.mycity (zip, name) VALUES('11111',

 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

maxdb_query($link, $query);

printf ("Number of warning: %d\n", maxdb_warning_count($link));

/* close connection */

maxdb_close($link);

?>

The above example will output something similar to:

Warning: maxdb_query(): -8004 POS(62) Constant must be compatible with column
type and length <...>

Number of warning: 0

See Also

• maxdb_errno()
• maxdb_error()
• maxdb_sqlstate()

mSQL

Introduction

These functions allow you to access mSQL database servers. More information about
mSQL can be found at » http://www.hughes.com.au/.

http://www.hughes.com.au/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

In order to have these functions available, you must compile PHP with msql support by
using the --with-msql[=DIR] option. DIR is the mSQL base install directory, defaults to
/usr/local/msql3.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: msql.dll

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

mSQL configuration options

Name Default Changeable Changelog

msql.allow_persistent "1" PHP_INI_ALL

msql.max_persistent "-1" PHP_INI_ALL

msql.max_links "-1" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

msql.allow_persistent boolean
Whether to allow persistent mSQL connections.

msql.max_persistent integer
The maximum number of persistent mSQL connections per process.

msql.max_links integer
The maximum number of mSQL connections per process, including persistent
connections.

Resource Types

There are two resource types used in the mSQL module. The first one is the link identifier
for a database connection, the second a resource which holds the result of a query.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MSQL_ASSOC (integer)

MSQL_NUM (integer)

MSQL_BOTH (integer)

Examples

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from a mSQL database.

Example #1012 - mSQL usage example

<?php

/* Connecting, selecting database */

$link = msql_connect('localhost', 'username', 'password')

 or die('Could not connect : ' . msql_error($link));

msql_select_db('database', $link)

 or die('Could not select database');

/* Issue SQL query */

$query = 'SELECT * FROM my_table';

$result = msql_query($query, $link) or die('Query failed : ' .
msql_error());

/* Printing results in HTML */

echo "<table>\n";

while ($row = msql_fetch_array($result, MSQL_ASSOC)) {

 echo "\t<tr>\n";

 foreach ($row as $col_value) {

 echo "\t\t<td>$col_value</td>\n";

 }

 echo "\t</tr>\n";

}

echo "</table>\n";

/* Free result set */

msql_free_result($result);

/* Close connection */

msql_close($link);

?>

mSQL Functions

msql_affected_rows

msql_affected_rows -- Returns number of affected rows

Description

int msql_affected_rows (resource $result)

Returns number of affected rows by the last SELECT, UPDATE or DELETE query
associated with result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns the number of affected rows on success, or FALSE on error.

See Also

• msql_query()

msql_close

msql_close -- Close mSQL connection

Description

bool msql_close ([resource $link_identifier])

msql_close() closes the non-persistent connection to the mSQL server that's associated
with the specified link identifier.

Using msql_close() isn't usually necessary, as non-persistent open links are automatically
closed at the end of the script's execution. See also freeing resources.

Parameters

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_connect()
• msql_pconnect()

msql_connect

msql_connect -- Open mSQL connection

Description

resource msql_connect ([string $hostname])

msql_connect() establishes a connection to a mSQL server.

In case a second call is made to msql_connect() with the same arguments, no new link will
be established, but instead, the link identifier of the already opened link will be returned.

The link to the server will be closed as soon as the execution of the script ends, unless it's
closed earlier by explicitly calling msql_close().

Parameters

hostname

The hostname can also include a port number. e.g. hostname,port. If not specified, the
connection is established by the means of a Unix domain socket, being then more
efficient then a localhost TCP socket connection.

Note

While this function will accept a colon (:) as a host/port separator, a comma (,) is
the preferred method.

Return Values

Returns a positive mSQL link identifier on success, or FALSE on error.

See Also

• msql_pconnect()
• msql_close()

msql_create_db

msql_create_db -- Create mSQL database

Description

bool msql_create_db (string $database_name [, resource $link_identifier])

msql_create_db() attempts to create a new database on the mSQL server.

Parameters

database_name

The name of the mSQL database.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_drop_db()

msql_createdb

msql_createdb -- Alias of msql_create_db()

Description

This function is an alias of: msql_create_db().

msql_data_seek

msql_data_seek -- Move internal row pointer

Description

bool msql_data_seek (resource $result, int $row_number)

msql_data_seek() moves the internal row pointer of the mSQL result associated with the
specified query identifier to point to the specified row number. The next call to
msql_fetch_row() would return that row.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

row_number

The seeked row number.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_fetch_array()
• msql_fetch_object()
• msql_fetch_row()
• msql_result()

msql_db_query

msql_db_query -- Send mSQL query

Description

resource msql_db_query (string $database, string $query [, resource $link_identifier
])

msql_db_query() selects a database and executes a query on it.

Parameters

database

The name of the mSQL database.

query

The SQL query.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns a positive mSQL query identifier to the query result, or FALSE on error.

See Also

• msql_query()

msql_dbname

msql_dbname -- Alias of msql_result()

Description

This function is an alias of: msql_result().

msql_drop_db

msql_drop_db -- Drop (delete) mSQL database

Description

bool msql_drop_db (string $database_name [, resource $link_identifier])

msql_drop_db() attempts to drop (remove) a database from the mSQL server.

Parameters

database_name

The name of the database.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_create_db()

msql_error

msql_error -- Returns error message of last msql call

Description

string msql_error (void)

msql_error() returns the last issued error by the mSQL server. Note that only the last error
message is accessible with msql_error().

Return Values

The last error message or an empty string if no error was issued.

msql_fetch_array

msql_fetch_array -- Fetch row as array

Description

array msql_fetch_array (resource $result [, int $result_type])

msql_fetch_array() is an extended version of msql_fetch_row(). In addition to storing the
data in the numeric indices of the result array, it also stores the data in associative indices,
using the field names as keys.

An important thing to note is that using msql_fetch_array() is NOT significantly slower than
using msql_fetch_row(), while it provides a significant added value.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

result_type

A constant that can take the following values: MSQL_ASSOC, MSQL_NUM, and
MSQL_BOTH with MSQL_BOTH being the default.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Examples

Example #1013 - msql_fetch_array() example

<?php

$con = msql_connect();

if (!$con) {

 die('Server connection problem: ' . msql_error());

}

if (!msql_select_db('test', $con)) {

 die('Database connection problem: ' . msql_error());

}

$result = msql_query('SELECT id, name FROM people', $con);

if (!$result) {

 die('Query execution problem: ' . msql_error());

}

while ($row = msql_fetch_array($result, MSQL_ASSOC)) {

 echo $row['id'] . ': ' . $row['name'] . "\n";

}

msql_free_result($result);

?>

ChangeLog

Version Description

4.3.11 and 5.0.4 A bug was fixed when retrieving data from
columns containing NULL values. Such
columns were not placed into the resulting
array.

See Also

• msql_fetch_row()
• msql_fetch_object()
• msql_data_seek()
• msql_result()

msql_fetch_field

msql_fetch_field -- Get field information

Description

object msql_fetch_field (resource $result [, int $field_offset])

msql_fetch_field() can be used in order to obtain information about fields in a certain query
result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The field offset. If not specified, the next field that wasn't yet retrieved by
msql_fetch_field() is retrieved.

Return Values

Returns an object containing field information. The properties of the object are:

• name - column name

• table - name of the table the column belongs to

• not_null - 1 if the column cannot be NULL

• unique - 1 if the column is a unique key

• type - the type of the column

See Also

• msql_field_seek()

msql_fetch_object

msql_fetch_object -- Fetch row as object

Description

object msql_fetch_object (resource $result)

msql_fetch_object() is similar to msql_fetch_array(), with one difference - an object is
returned, instead of an array. Indirectly, that means that you can only access the data by
the field names, and not by their offsets (numbers are illegal property names).

Speed-wise, the function is identical to msql_fetch_array(), and almost as quick as
msql_fetch_row() (the difference is insignificant).

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns an object with properties that correspond to the fetched row, or FALSE if there are
no more rows.

Examples

Example #1014 - msql_fetch_object() example

<?php

$con = msql_connect();

if (!$con) {

 die('Server connection problem: ' . msql_error());

}

if (!msql_select_db('test', $con)) {

 die('Database connection problem: ' . msql_error());

}

$result = msql_query('SELECT id, name FROM people', $con);

if (!$result) {

 die('Query execution problem: ' . msql_error());

}

while ($row = msql_fetch_object($result, MSQL_ASSOC)) {

 echo $row->id . ': ' . $row->name . "\n";

}

msql_free_result($result);

?>

ChangeLog

Version Description

4.3.11 and 5.0.4 A bug was fixed when retrieving data from
columns containing NULL values. Such
columns were not placed into the resulting
array.

See Also

• msql_fetch_array()
• msql_fetch_row()
• msql_data_seek()
• msql_result()

msql_fetch_row

msql_fetch_row -- Get row as enumerated array

Description

array msql_fetch_row (resource $result)

msql_fetch_row() fetches one row of data from the result associated with the specified
query identifier. The row is returned as an array. Each result column is stored in an array
offset, starting at offset 0.

Subsequent call to msql_fetch_row() would return the next row in the result set, or FALSE
if there are no more rows.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Examples

Example #1015 - msql_fetch_row() example

<?php

$con = msql_connect();

if (!$con) {

 die('Server connection problem: ' . msql_error());

}

if (!msql_select_db('test', $con)) {

 die('Database connection problem: ' . msql_error());

}

$result = msql_query('SELECT id, name FROM people', $con);

if (!$result) {

 die('Query execution problem: ' . msql_error());

}

while ($row = msql_fetch_row($result)) {

 echo $row[0] . ': ' . $row[1] . "\n";

}

msql_free_result($result);

?>

ChangeLog

Version Description

4.3.11 and 5.0.4 A bug was fixed when retrieving data from
columns containing NULL values. Such
columns were not placed into the resulting
array.

See Also

• msql_fetch_array()
• msql_fetch_object()
• msql_data_seek()
• msql_result()

msql_field_flags

msql_field_flags -- Get field flags

Description

string msql_field_flags (resource $result, int $field_offset)

msql_field_flags() returns the field flags of the specified field.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

Returns a string containing the field flags of the specified key. This can be: primary key not
null, not null, primary key, unique not null or unique.

msql_field_len

msql_field_len -- Get field length

Description

int msql_field_len (resource $result, int $field_offset)

msql_field_len() returns the length of the specified field.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

Returns the length of the specified field or FALSE on error.

msql_field_name

msql_field_name -- Get the name of the specified field in a result

Description

string msql_field_name (resource $result, int $field_offset)

msql_field_name() gets the name of the specified field index.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

The name of the field or FALSE on failure.

See Also

• msql_field_len()

msql_field_seek

msql_field_seek -- Set field offset

Description

bool msql_field_seek (resource $result, int $field_offset)

Seeks to the specified field offset. If the next call to msql_fetch_field() won't include a field
offset, this field would be returned.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_fetch_field()

msql_field_table

msql_field_table -- Get table name for field

Description

int msql_field_table (resource $result, int $field_offset)

Returns the name of the table that the specified field is in.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

The name of the table on success, or FALSE on failure.

msql_field_type

msql_field_type -- Get field type

Description

string msql_field_type (resource $result, int $field_offset)

msql_field_type() gets the type of the specified field index.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

field_offset

The numerical field offset. The field_offset starts at 1.

Return Values

The type of the field. One of int, char, real, ident, null or unknown. This functions will return
FALSE on failure.

msql_fieldflags

msql_fieldflags -- Alias of msql_field_flags()

Description

This function is an alias of msql_field_flags().

msql_fieldlen

msql_fieldlen -- Alias of msql_field_len()

Description

This function is an alias of msql_field_len().

msql_fieldname

msql_fieldname -- Alias of msql_field_name()

Description

This function is an alias of msql_field_name().

msql_fieldtable

msql_fieldtable -- Alias of msql_field_table()

Description

This function is an alias of msql_field_table().

msql_fieldtype

msql_fieldtype -- Alias of msql_field_type()

Description

This function is an alias of msql_field_type().

msql_free_result

msql_free_result -- Free result memory

Description

bool msql_free_result (resource $result)

msql_free_result() frees the memory associated with query_identifier. When PHP
completes a request, this memory is freed automatically, so you only need to call this
function when you want to make sure you don't use too much memory while the script is
running.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns TRUE on success or FALSE on failure.

msql_list_dbs

msql_list_dbs -- List mSQL databases on server

Description

resource msql_list_dbs ([resource $link_identifier])

msql_list_tables() lists the databases available on the specified link_identifier.

Parameters

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns a result set which may be traversed with any function that fetches result sets,
such as msql_fetch_array(). On failure, this function will return FALSE.

See Also

• msql_list_tables()
• msql_list_fields()

msql_list_fields

msql_list_fields -- List result fields

Description

resource msql_list_fields (string $database, string $tablename [, resource $
link_identifier])

msql_list_fields() returns information about the given table.

Parameters

database

The name of the database.

tablename

The name of the table.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns a result set which may be traversed with any function that fetches result sets,
such as msql_fetch_array(). On failure, this function will return FALSE.

See Also

• msql_list_tables()
• msql_list_dbs()

msql_list_tables

msql_list_tables -- List tables in an mSQL database

Description

resource msql_list_tables (string $database [, resource $link_identifier])

msql_list_tables() lists the tables on the specified database.

Parameters

database

The name of the database.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns a result set which may be traversed with any function that fetches result sets,
such as msql_fetch_array(). On failure, this function will return FALSE.

See Also

• msql_list_fields()
• msql_list_dbs()

msql_num_fields

msql_num_fields -- Get number of fields in result

Description

int msql_num_fields (resource $result)

msql_num_fields() returns the number of fields in a result set.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns the number of fields in the result set.

See Also

• msql_query()
• msql_fetch_field()
• msql_num_rows()

msql_num_rows

msql_num_rows -- Get number of rows in result

Description

int msql_num_rows (resource $query_identifier)

msql_num_rows() returns the number of rows in a result set.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

Return Values

Returns the number of rows in the result set.

See Also

• msql_num_fields()

msql_numfields

msql_numfields -- Alias of msql_num_fields()

Description

This function is an alias of msql_num_fields().

msql_numrows

msql_numrows -- Alias of msql_num_rows()

Description

This function is an alias of msql_num_rows().

msql_pconnect

msql_pconnect -- Open persistent mSQL connection

Description

resource msql_pconnect ([string $hostname])

msql_pconnect() acts very much like msql_connect() with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host. If one is found, an identifier for it will be returned instead of
opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use (msql_close() will not close
links established by this function).

Parameters

hostname

The hostname can also include a port number. e.g. hostname,port. If not specified, the
connection is established by the means of a Unix domain socket, being then more
efficient then a localhost TCP socket connection.

Note

While this function will accept a colon (:) as a host/port separator, a comma (,) is
the preferred method.

Return Values

Returns a positive mSQL link identifier on success, or FALSE on error.

See Also

• msql_connect()
• msql_close()

msql_query

msql_query -- Send mSQL query

Description

resource msql_query (string $query [, resource $link_identifier])

msql_query() sends a query to the currently active database on the server that's
associated with the specified link identifier.

Parameters

query

The SQL query.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns a positive mSQL query identifier on success, or FALSE on error.

Examples

Example #1016 - msql_query() example

<?php

$link = msql_connect("dbserver")

 or die("unable to connect to msql server: " . msql_error());

msql_select_db("db", $link)

 or die("unable to select database 'db': " . msql_error());

$result = msql_query("SELECT * FROM table WHERE id=1", $link);

if (!$result) {

 die("query failed: " . msql_error());

}

while ($row = msql_fetch_array($result)) {

 echo $row["id"];

}

?>

See Also

• msql_db_query()
• msql_select_db()
• msql_connect()

msql_regcase

msql_regcase -- Alias of sql_regcase()

Description

This function is an alias of sql_regcase().

msql_result

msql_result -- Get result data

Description

string msql_result (resource $result, int $row [, mixed $field])

msql_result() returns the contents of one cell from a mSQL result set.

When working on large result sets, you should consider using one of the functions that
fetch an entire row (specified below). As these functions return the contents of multiple
cells in one function call, they are often much quicker than msql_result().

Recommended high-performance alternatives: msql_fetch_row(), msql_fetch_array(), and
msql_fetch_object().

Parameters

result

The result resource that is being evaluated. This result comes from a call to
msql_query().

row

The row offset.

field

Can be the field's offset, or the field's name, or the field's table dot field's name
(tablename.fieldname.). If the column name has been aliased ('select foo as bar from
...'), use the alias instead of the column name.

Note

Specifying a numeric field offset is much quicker than specifying a fieldname or
tablename.fieldname.

Return Values

Returns the contents of the cell at the row and offset in the specified mSQL result set.

msql_select_db

msql_select_db -- Select mSQL database

Description

bool msql_select_db (string $database_name [, resource $link_identifier])

msql_select_db() sets the current active database on the server that's associated with the
specified link_identifier.

Subsequent calls to msql_query() will be made on the active database.

Parameters

database_name

The database name.

link_identifier

The mSQL connection. If not specified, the last link opened by msql_connect() is
assumed. If no such link is found, the function will try to establish a link as if
msql_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msql_connect()
• msql_pconnect()
• msql_query()

msql_tablename

msql_tablename -- Alias of msql_result()

Description

This function is an alias of msql_result().

msql

msql -- Alias of msql_db_query()

Description

This function is an alias of msql_db_query().

Microsoft SQL Server

Introduction

These functions allow you to access MS SQL Server database.

Installing/Configuring

Requirements

Requirements for Win32 platforms.

The extension requires the MS SQL Client Tools to be installed on the system where PHP
is installed. The Client Tools can be installed from the MS SQL Server CD or by copying
ntwdblib.dll from \winnt\system32 on the server to \winnt\system32 on the PHP box.
Copying ntwdblib.dll will only provide access through named pipes. Configuration of the
client will require installation of all the tools.

Requirements for Unix/Linux platforms.

To use the MSSQL extension on Unix/Linux, you first need to build and install the
FreeTDS library. Source code and installation instructions are available at the FreeTDS
home page: » http://www.freetds.org/

Note

In Windows, the DBLIB from Microsoft is used. Functions that return a column name
are based on the dbcolname() function in DBLIB. DBLIB was developed for SQL
Server 6.x where the max identifier length is 30. For this reason, the maximum column
length is 30 characters. On platforms where FreeTDS is used (Linux), this is not a
problem.

Installation

The MSSQL extension is enabled by adding extension=php_mssql.dll to php.ini.

To get these functions to work, you have to compile PHP with --with-mssql[=DIR], where
DIR is the FreeTDS install prefix. And FreeTDS should be compiled using
--enable-msdblib.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

MS SQL Server configuration options

Name Default Changeable Changelog

http://www.freetds.org/

mssql.allow_persiste
nt

"1" PHP_INI_SYSTEM

mssql.max_persistent "-1" PHP_INI_SYSTEM

mssql.max_links "-1" PHP_INI_SYSTEM

mssql.min_error_sev
erity

"10" PHP_INI_ALL

mssql.min_message_
severity

"10" PHP_INI_ALL

mssql.compatability_
mode

"0" PHP_INI_ALL

mssql.connect_timeo
ut

"5" PHP_INI_ALL

mssql.timeout "60" PHP_INI_ALL Available since PHP
4.1.0.

mssql.textsize "-1" PHP_INI_ALL

mssql.textlimit "-1" PHP_INI_ALL

mssql.batchsize "0" PHP_INI_ALL Available since PHP
4.0.4.

mssql.datetimeconve
rt

"1" PHP_INI_ALL Available since PHP
4.2.0.

mssql.secure_connec
tion

"0" PHP_INI_SYSTEM Available since PHP
4.3.0.

mssql.max_procs "-1" PHP_INI_ALL Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MSSQL_ASSOC (integer)

MSSQL_NUM (integer)

MSSQL_BOTH (integer)

SQLTEXT (integer)

SQLVARCHAR (integer)

SQLCHAR (integer)

SQLINT1 (integer)

SQLINT2 (integer)

SQLINT4 (integer)

SQLBIT (integer)

SQLFLT8 (integer)

Mssql Functions

mssql_bind

mssql_bind -- Adds a parameter to a stored procedure or a remote stored procedure

Description

bool mssql_bind (resource $stmt, string $param_name, mixed &$var, int $type [, int $
is_output [, int $is_null [, int $maxlen]]])

Binds a parameter to a stored procedure or a remote stored procedure.

Parameters

stmt

Statement resource, obtained with mssql_init().

param_name

The parameter name, as a string.

Note

You have to include the @ character, like in the T-SQL syntax. See the explanation
included in mssql_execute().

var

The PHP variable you'll bind the MSSQL parameter to. You can pass it by value, or by
reference, to retrieve OUTPUT and RETVAL values after the procedure execution.

type

One of: SQLTEXT, SQLVARCHAR, SQLCHAR, SQLINT1, SQLINT2, SQLINT4,
SQLBIT, SQLFLT4, SQLFLT8, SQLFLTN.

is_output

Whether the value is an OUTPUT parameter or not. If it's an OUTPUT parameter and
you don't mention it, it will be treated as a normal input parameter and no error will be
thrown.

is_null

Whether the parameter is NULL or not. Passing the NULL value as var will not do the
job.

maxlen

Used with char/varchar values. You have to indicate the length of the data so if the
parameter is a varchar(50), the type must be SQLVARCHAR and this value 50.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1017 - mssql_bind() Example

<?php

$cn = mssql_connect($DBSERVER, $DBUSER, $DBPASS);

mssql_select_db($DB, $cn);

$sp = mssql_init("WDumpAdd"); // stored proc name

mssql_bind($sp, "@productname", stripslashes($newproduct), SQLVARCHAR,
false, false, 150);

mssql_bind($sp, "@quantity", stripslashes($newquantity), SQLVARCHAR, false,
false, 50);

mssql_execute($sp);

mssql_close($cn);

?>

See Also

• mssql_execute()
• mssql_free_statement()
• mssql_init()

mssql_close

mssql_close -- Close MS SQL Server connection

Description

bool mssql_close ([resource $link_identifier])

Closes the link to a MS SQL Server database that's associated with the specified link
identifier. If the link identifier isn't specified, the last opened link is assumed.

Note that this isn't usually necessary, as non-persistent open links are automatically closed
at the end of the script's execution.

Parameters

link_identifier

A MS SQL link identifier, returned by mssql_connect(). This function will not close
persistent links generated by mssql_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mssql_connect()
• mssql_pconnect()

mssql_connect

mssql_connect -- Open MS SQL server connection

Description

resource mssql_connect ([string $servername [, string $username [, string $password [,
bool $new_link]]]])

mssql_connect() establishes a connection to a MS SQL server. The servername argument
has to be a valid servername that is defined in the 'interfaces' file.

The link to the server will be closed as soon as the execution of the script ends, unless it's
closed earlier by explicitly calling mssql_close().

Parameters

servername

The MS SQL server. It can also include a port number. e.g. hostname,port.

username

The username.

password

The password.

new_link

If a second call is made to mssql_connect() with the same arguments, no new link will
be established, but instead, the link identifier of the already opened link will be
returned. This parameter modifies this behavior and makes mssql_connect() always
open a new link, even if mssql_connect() was called before with the same parameters.

Return Values

Returns a MS SQL link identifier on success, or FALSE on error.

ChangeLog

Version Description

4.4.1 and 5.1.0 The new_link parameter was added

See Also

• mssql_close()
• mssql_pconnect()

mssql_data_seek

mssql_data_seek -- Moves internal row pointer

Description

bool mssql_data_seek (resource $result_identifier, int $row_number)

mssql_data_seek() moves the internal row pointer of the MS SQL result associated with
the specified result identifier to point to the specified row number, first row being number 0.
The next call to mssql_fetch_row() would return that row.

Parameters

result_identifier

The result resource that is being evaluated.

row_number

The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

mssql_execute

mssql_execute -- Executes a stored procedure on a MS SQL server database

Description

mixed mssql_execute (resource $stmt [, bool $skip_results])

Executes a stored procedure on a MS SQL server database

Parameters

stmt

Statement handle obtained with mssql_init().

skip_results

Notes

Note

If the stored procedure returns parameters or a return value these will be available
after the call to mssql_execute() unless the stored procedure returns more than one
result set. In that case use mssql_next_result() to shift through the results. When the
last result has been processed the output parameters and return values will be
available.

See Also

• mssql_bind()
• mssql_free_statement()
• mssql_init()

mssql_fetch_array

mssql_fetch_array -- Fetch a result row as an associative array, a numeric array, or both

Description

array mssql_fetch_array (resource $result [, int $result_type])

mssql_fetch_array() is an extended version of mssql_fetch_row(). In addition to storing the
data in the numeric indices of the result array, it also stores the data in associative indices,
using the field names as keys.

An important thing to note is that using mssql_fetch_array() is NOT significantly slower
than using mssql_fetch_row(), while it provides a significant added value.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

result_type

The type of array that is to be fetched. It's a constant and can take the following
values: MSSQL_ASSOC, MSSQL_NUM, and the default value of MSSQL_BOTH.

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Notes

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mssql_fetch_row()

mssql_fetch_assoc

mssql_fetch_assoc -- Returns an associative array of the current row in the result

Description

array mssql_fetch_assoc (resource $result_id)

Returns an associative array that corresponds to the fetched row and moves the internal
data pointer ahead. mssql_fetch_assoc() is equivalent to calling mssql_fetch_array() with
MSSQL_ASSOC for the optional second parameter.

Parameters

result_id

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns an associative array that corresponds to the fetched row, or FALSE if there are no
more rows.

mssql_fetch_batch

mssql_fetch_batch -- Returns the next batch of records

Description

int mssql_fetch_batch (resource $result)

Returns the next batch of records

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns the batch number as an integer.

Examples

Example #1018 - mssql_fetch_batch() Example

<?php

$resDb = mssql_connect('localhost', 'user', 'name');

$result = mssql_query('SELECT * FROM MYTABLE', $resDb, 10000);

$intNumRows = mssql_num_rows($result);

while ($intNumRows > 0) {

 while ($arrRow = mssql_fetch_assoc($result)) {

 // Do stuff ...

 }

 $intNumRows = mssql_fetch_batch($result);

}

?>

mssql_fetch_field

mssql_fetch_field -- Get field information

Description

object mssql_fetch_field (resource $result [, int $field_offset])

mssql_fetch_field() can be used in order to obtain information about fields in a certain
query result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

field_offset

The numerical field offset. If the field offset is not specified, the next field that was not
yet retrieved by this function is retrieved. The field_offset starts at 0.

Return Values

Returns an object containing field information.

The properties of the object are:

• name - column name. if the column is a result of a function, this property is set to
computed#N, where #N is a serial number.

• column_source - the table from which the column was taken

• max_length - maximum length of the column

• numeric - 1 if the column is numeric

• type - the column type.

See Also

• mssql_field_seek()

mssql_fetch_object

mssql_fetch_object -- Fetch row as object

Description

object mssql_fetch_object (resource $result)

mssql_fetch_object() is similar to mssql_fetch_array(), with one difference - an object is
returned, instead of an array. Indirectly, that means that you can only access the data by
the field names, and not by their offsets (numbers are illegal property names).

Speed-wise, the function is identical to mssql_fetch_array(), and almost as quick as
mssql_fetch_row() (the difference is insignificant).

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns an object with properties that correspond to the fetched row, or FALSE if there are
no more rows.

Notes

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mssql_fetch_array()
• mssql_fetch_row()

mssql_fetch_row

mssql_fetch_row -- Get row as enumerated array

Description

array mssql_fetch_row (resource $result)

mssql_fetch_row() fetches one row of data from the result associated with the specified
result identifier. The row is returned as an array. Each result column is stored in an array
offset, starting at offset 0.

Subsequent call to mssql_fetch_row() would return the next row in the result set, or
FALSE if there are no more rows.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Notes

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mssql_fetch_array()
• mssql_fetch_object()
• mssql_data_seek()
• mssql_result()

mssql_field_length

mssql_field_length -- Get the length of a field

Description

int mssql_field_length (resource $result [, int $offset])

Returns the length of field no. offset in result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

offset

The field offset, starts at 0. If omitted, the current field is used.

Return Values

The length of the specified field index on success, or FALSE on failure.

Notes

Note

Note to Win32 Users

Due to a limitation in the underlying API used by PHP (MS DbLib C API), the length of
VARCHAR fields is limited to 255. If you need to store more data, use a TEXT field
instead.

See Also

• mssql_field_name()
• mssql_field_type()

mssql_field_name

mssql_field_name -- Get the name of a field

Description

string mssql_field_name (resource $result [, int $offset])

Returns the name of field no. offset in result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

offset

The field offset, starts at 0. If omitted, the current field is used.

Return Values

The name of the specified field index on success, or FALSE on failure.

See Also

• mssql_field_length()
• mssql_field_type()

mssql_field_seek

mssql_field_seek -- Seeks to the specified field offset

Description

bool mssql_field_seek (resource $result, int $field_offset)

Seeks to the specified field offset. If the next call to mssql_fetch_field() won't include a field
offset, this field would be returned.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

field_offset

The field offset, starts at 0.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mssql_fetch_field()

mssql_field_type

mssql_field_type -- Gets the type of a field

Description

string mssql_field_type (resource $result [, int $offset])

Returns the type of field no. offset in result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

offset

The field offset, starts at 0. If omitted, the current field is used.

Return Values

The type of the specified field index on success, or FALSE on failure.

See Also

• mssql_field_length()
• mssql_field_name()

mssql_free_result

mssql_free_result -- Free result memory

Description

bool mssql_free_result (resource $result)

mssql_free_result() only needs to be called if you are worried about using too much
memory while your script is running. All result memory will automatically be freed when the
script ends. You may call mssql_free_result() with the result identifier as an argument and
the associated result memory will be freed.

Parameters

result

The result resource that is being freed. This result comes from a call to mssql_query().

Return Values

Returns TRUE on success or FALSE on failure.

mssql_free_statement

mssql_free_statement -- Free statement memory

Description

bool mssql_free_statement (resource $stmt)

mssql_free_statement() only needs to be called if you are worried about using too much
memory while your script is running. All statement memory will automatically be freed
when the script ends. You may call mssql_free_statement() with the statement identifier as
an argument and the associated statement memory will be freed.

Parameters

stmt

Statement resource, obtained with mssql_init().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mssql_bind()
• mssql_execute()
• mssql_init()

mssql_get_last_message

mssql_get_last_message -- Returns the last message from the server

Description

string mssql_get_last_message (void)

Warning

This function is currently not documented; only its argument list is available.

mssql_guid_string

mssql_guid_string -- Converts a 16 byte binary GUID to a string

Description

string mssql_guid_string (string $binary [, int $short_format])

Warning

This function is currently not documented; only its argument list is available.

mssql_init

mssql_init -- Initializes a stored procedure or a remote stored procedure

Description

resource mssql_init (string $sp_name [, resource $link_identifier])

Initializes a stored procedure or a remote stored procedure.

Parameters

sp_name

Stored procedure name, like ownew.sp_name or otherdb.owner.sp_name.

link_identifier

A MS SQL link identifier, returned by mssql_connect().

Return Values

Returns a resource identifier "statement", used in subsequent calls to mssql_bind() and
mssql_execute(), or FALSE on errors.

See Also

• mssql_bind()
• mssql_execute()
• mssql_free_statement()

mssql_min_error_severity

mssql_min_error_severity -- Sets the lower error severity

Description

void mssql_min_error_severity (int $severity)

Warning

This function is currently not documented; only its argument list is available.

Parameters

severity

Return Values

No value is returned.

mssql_min_message_severity

mssql_min_message_severity -- Sets the lower message severity

Description

void mssql_min_message_severity (int $severity)

Warning

This function is currently not documented; only its argument list is available.

Parameters

severity

Return Values

No value is returned.

mssql_next_result

mssql_next_result -- Move the internal result pointer to the next result

Description

bool mssql_next_result (resource $result_id)

When sending more than one SQL statement to the server or executing a stored
procedure with multiple results, it will cause the server to return multiple result sets. This
function will test for additional results available form the server. If an additional result set
exists it will free the existing result set and prepare to fetch the rows from the new result
set.

Parameters

result_id

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns TRUE if an additional result set was available or FALSE otherwise.

Examples

Example #1019 - mssql_next_result() example

<?php

$link = mssql_connect("localhost", "userid", "secret");

mssql_select_db("MyDB", $link);

$sql = "Select * from table1 select * from table2";

$rs = mssql_query($sql, $link);

do {

 while ($row = mssql_fetch_row($rs)) {

 }

} while (mssql_next_result($rs));

mssql_free_result($rs);

mssql_close($link);

?>

mssql_num_fields

mssql_num_fields -- Gets the number of fields in result

Description

int mssql_num_fields (resource $result)

mssql_num_fields() returns the number of fields in a result set.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns the number of fields, as an integer.

See Also

• mssql_query()
• mssql_fetch_field()
• mssql_num_rows()

mssql_num_rows

mssql_num_rows -- Gets the number of rows in result

Description

int mssql_num_rows (resource $result)

mssql_num_rows() returns the number of rows in a result set.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

Return Values

Returns the number of rows, as an integer.

See Also

• mssql_query()
• mssql_fetch_row()

mssql_pconnect

mssql_pconnect -- Open persistent MS SQL connection

Description

resource mssql_pconnect ([string $servername [, string $username [, string $password [,
bool $new_link]]]])

mssql_pconnect() acts very much like mssql_connect() with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host, username and password. If one is found, an identifier for it will
be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use (mssql_close() will not close
links established by mssql_pconnect()).

This type of links is therefore called 'persistent'.

Parameters

servername

The MS SQL server. It can also include a port number. e.g. hostname:port.

username

The username.

password

The password.

new_link

If a second call is made to mssql_pconnect() with the same arguments, no new link will
be established, but instead, the link identifier of the already opened link will be
returned. This parameter modifies this behavior and makes mssql_pconnect() always
open a new link, even if mssql_pconnect() was called before with the same
parameters.

Return Values

Returns a positive MS SQL persistent link identifier on success, or FALSE on error.

mssql_query

mssql_query -- Send MS SQL query

Description

mixed mssql_query (string $query [, resource $link_identifier [, int $batch_size]])

mssql_query() sends a query to the currently active database on the server that's
associated with the specified link identifier.

Parameters

query

A SQL query.

link_identifier

A MS SQL link identifier, returned by mssql_connect() or mssql_pconnect(). If the link
identifier isn't specified, the last opened link is assumed. If no link is open, the function
tries to establish a link as if mssql_connect() was called, and use it.

batch_size

The number of records to batch in the buffer.

Return Values

Returns a MS SQL result resource on success, TRUE if no rows were returned, or FALSE
on error.

Notes

Note

If the query returns multiple results then it is necessary to fetch all results by
mssql_next_result() or free the results by mssql_free_result() before executing next
query.

See Also

• mssql_select_db()
• mssql_connect()

mssql_result

mssql_result -- Get result data

Description

string mssql_result (resource $result, int $row, mixed $field)

mssql_result() returns the contents of one cell from a MS SQL result set.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mssql_query().

row

The row number.

field

Can be the field's offset, the field's name or the field's table dot field's name
(tablename.fieldname). If the column name has been aliased ('select foo as bar
from...'), it uses the alias instead of the column name.

Note

Specifying a numeric offset for the field argument is much quicker than specifying
a fieldname or tablename.fieldname argument.

Return Values

Returns the contents of the specified cell.

Notes

Note

When working on large result sets, you should consider using one of the functions that
fetch an entire row (specified below). As these functions return the contents of multiple
cells in one function call, they're MUCH quicker than mssql_result().

See Also

Recommended high-performance alternatives:

• mssql_fetch_row()
• mssql_fetch_array()
• mssql_fetch_object()

mssql_rows_affected

mssql_rows_affected -- Returns the number of records affected by the query

Description

int mssql_rows_affected (resource $link_identifier)

Warning

This function is currently not documented; only its argument list is available.

Parameters

link_identifier

A MS SQL link identifier, returned by mssql_connect() or mssql_pconnect().

mssql_select_db

mssql_select_db -- Select MS SQL database

Description

bool mssql_select_db (string $database_name [, resource $link_identifier])

mssql_select_db() sets the current active database on the server that's associated with the
specified link identifier.

Every subsequent call to mssql_query() will be made on the active database.

Parameters

database_name

The database name. To escape the name of a database that contains spaces,
hyphens ("-"), or any other exceptional characters, the database name must be
enclosed in brackets, as is shown in the example, below. This technique must also be
applied when selecting a database name that is also a reserved word (such as primary
).

link_identifier

A MS SQL link identifier, returned by mssql_connect() or mssql_pconnect(). If no link
identifier is specified, the last opened link is assumed. If no link is open, the function
will try to establish a link as if mssql_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1020 - mssql_select_db() example

<?php

$conn = mssql_connect('MYSQLSERVER', 'sa', 'password');

mssql_select_db('[my data-base]', $conn);

?>

See Also

• mssql_connect()
• mssql_pconnect()
• mssql_query()

MySQL

Introduction

These functions allow you to access MySQL database servers. More information about
MySQL can be found at » http://www.mysql.com/.

Documentation for MySQL can be found at » http://dev.mysql.com/doc/.

http://www.mysql.com/
http://dev.mysql.com/doc/

Installing/Configuring

Requirements

In order to have these functions available, you must compile PHP with MySQL support.

Installation

For compiling, simply use the --with-mysql[=DIR] configuration option where the optional
[DIR] points to the MySQL installation directory.

Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't
support the extra functionality that these versions provide. For that, use the MySQLi
extension.

If you would like to install the mysql extension along with the mysqli extension you have to
use the same client library to avoid any conflicts.

Installation on Linux Systems

PHP 4

The option --with-mysql is enabled by default. This default behavior may be disabled with
the --without-mysql configure option. If MySQL is enabled without specifying the path to
the MySQL install DIR, PHP will use the bundled MySQL client libraries.

Users who run other applications that use MySQL (for example, auth-mysql) should not
use the bundled library, but rather specify the path to MySQL's install directory, like so:
--with-mysql=/path/to/mysql. This will force PHP to use the client libraries installed by
MySQL, thus avoiding any conflicts.

PHP 5+

MySQL is not enabled by default, nor is the MySQL library bundled with PHP. Read this
FAQ for details on why. Use the --with-mysql[=DIR] configure option to include MySQL
support. You can download headers and libraries from » MySQL.

Installation on Windows Systems

PHP 4

http://www.mysql.com/

The PHP MySQL extension is compiled into PHP.

PHP 5+

MySQL is no longer enabled by default, so the php_mysql.dll DLL must be enabled inside
of php.ini. Also, PHP needs access to the MySQL client library. A file named libmysql.dll is
included in the Windows PHP distribution and in order for PHP to talk to MySQL this file
needs to be available to the Windows systems PATH. See the FAQ titled " How do I add
my PHP directory to the PATH on Windows " for information on how to do this. Although
copying libmysql.dll to the Windows system directory also works (because the system
directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysql.dll), the PHP directive
extension_dir should be set to the directory where the PHP extensions are located. See
also the Manual Windows Installation Instructions. An example extension_dir value for
PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable to load
dynamic library './php_mysql.dll'", this is because php_mysql.dll and/or libmysql.dll
cannot be found by the system.

MySQL Installation Notes

Warning

Crashes and startup problems of PHP may be encountered when loading this
extension in conjunction with the recode extension. See the recode extension for more
information.

Note

If you need charsets other than latin (default), you have to install external (not bundled)
libmysql with compiled charset support.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

MySQL Configuration Options

Name Default Changeable Changelog

mysql.allow_persiste
nt

"1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysql.max_links "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP
4.3.0.

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP
4.0.1.

mysql.default_host NULL PHP_INI_ALL

mysql.default_user NULL PHP_INI_ALL

mysql.default_passw
ord

NULL PHP_INI_ALL

mysql.connect_timeo
ut

"60" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.3.2.
Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

mysql.allow_persistent boolean
Whether to allow persistent connections to MySQL.

mysql.max_persistent integer
The maximum number of persistent MySQL connections per process.

mysql.max_links integer
The maximum number of MySQL connections per process, including persistent
connections.

mysql.trace_mode boolean
Trace mode. When mysql.trace_mode is enabled, warnings for table/index scans, non
free result sets, and SQL-Errors will be displayed. (Introduced in PHP 4.3.0)

mysql.default_port string
The default TCP port number to use when connecting to the database server if no

other port is specified. If no default is specified, the port will be obtained from the
MYSQL_TCP_PORT environment variable, the mysql-tcp entry in /etc/services or the
compile-time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysql.default_socket string
The default socket name to use when connecting to a local database server if no other
socket name is specified.

mysql.default_host string
The default server host to use when connecting to the database server if no other host
is specified. Doesn't apply in SQL safe mode.

mysql.default_user string
The default user name to use when connecting to the database server if no other
name is specified. Doesn't apply in SQL safe mode.

mysql.default_password string
The default password to use when connecting to the database server if no other
password is specified. Doesn't apply in SQL safe mode.

mysql.connect_timeout integer
Connect timeout in seconds. On Linux this timeout is also used for waiting for the first
answer from the server.

Resource Types

There are two resource types used in the MySQL module. The first one is the link identifier
for a database connection, the second a resource which holds the result of a query.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Since PHP 4.3.0 it is possible to specify additional client flags for the mysql_connect() and
mysql_pconnect() functions. The following constants are defined:

MySQL client constants

Constant Description

MYSQL_CLIENT_COMPRESS Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE Allow space after function names

MYSQL_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead
of wait_timeout) of inactivity before closing
the connection.

MYSQL_CLIENT_SSL Use SSL encryption. This flag is only
available with version 4.x of the MySQL
client library or newer. Version 3.23.x is
bundled both with PHP 4 and Windows
binaries of PHP 5.

The function mysql_fetch_array() uses a constant for the different types of result arrays.
The following constants are defined:

MySQL fetch constants

Constant Description

MYSQL_ASSOC Columns are returned into the array having
the fieldname as the array index.

MYSQL_BOTH Columns are returned into the array having
both a numerical index and the fieldname as
the array index.

MYSQL_NUM Columns are returned into the array having
a numerical index to the fields. This index
starts with 0, the first field in the result.

Examples

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from a MySQL database.

Example #1021 - MySQL extension overview example

<?php

// Connecting, selecting database

$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')

 or die('Could not connect: ' . mysql_error());

echo 'Connected successfully';

mysql_select_db('my_database') or die('Could not select database');

// Performing SQL query

$query = 'SELECT * FROM my_table';

$result = mysql_query($query) or die('Query failed: ' . mysql_error());

// Printing results in HTML

echo "<table>\n";

while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

 echo "\t<tr>\n";

 foreach ($line as $col_value) {

 echo "\t\t<td>$col_value</td>\n";

 }

 echo "\t</tr>\n";

}

echo "</table>\n";

// Free resultset

mysql_free_result($result);

// Closing connection

mysql_close($link);

?>

MySQL Functions

Notes

Note

Most MySQL functions accept link_identifier as the last optional parameter. If it is
not provided, last opened connection is used. If it doesn't exist, connection is tried to
establish with default parameters defined in php.ini. If it is not successful, functions
return FALSE.

mysql_affected_rows

mysql_affected_rows -- Get number of affected rows in previous MySQL operation

Description

int mysql_affected_rows ([resource $link_identifier])

Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE
query associated with link_identifier.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the number of affected rows on success, and -1 if the last query failed.

If the last query was a DELETE query with no WHERE clause, all of the records will have
been deleted from the table but this function will return zero with MySQL versions prior to
4.1.2.

When using UPDATE, MySQL will not update columns where the new value is the same
as the old value. This creates the possibility that mysql_affected_rows() may not actually
equal the number of rows matched, only the number of rows that were literally affected by
the query.

The REPLACE statement first deletes the record with the same primary key and then
inserts the new record. This function returns the number of deleted records plus the
number of inserted records.

Examples

Example #1022 - mysql_affected_rows() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('mydb');

/* this should return the correct numbers of deleted records */

mysql_query('DELETE FROM mytable WHERE id < 10');

printf("Records deleted: %d\n", mysql_affected_rows());

/* with a where clause that is never true, it should return 0 */

mysql_query('DELETE FROM mytable WHERE 0');

printf("Records deleted: %d\n", mysql_affected_rows());

?>

The above example will output something similar to:

Records deleted: 10

Records deleted: 0

Example #1023 - mysql_affected_rows() example using transactions

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('mydb');

/* Update records */

mysql_query("UPDATE mytable SET used=1 WHERE id < 10");

printf ("Updated records: %d\n", mysql_affected_rows());

mysql_query("COMMIT");

?>

The above example will output something similar to:

Updated Records: 10

Notes

Note

Transactions

If you are using transactions, you need to call mysql_affected_rows() after your
INSERT, UPDATE, or DELETE query, not after the COMMIT.

Note

SELECT Statements

To retrieve the number of rows returned by a SELECT, it is possible to use
mysql_num_rows().

See Also

• mysql_num_rows()
• mysql_info()

mysql_change_user

mysql_change_user -- Change logged in user of the active connection

Description

int mysql_change_user (string $user, string $password [, string $database [, resource $
link_identifier]])

mysql_change_user() changes the logged in user of the current active connection, or the
connection given by the optional link_identifier parameter. If a database is specified,
this will be the current database after the user has been changed. If the new user and
password authorization fails, the current connected user stays active.

This function is deprecated and no longer exists in PHP.

Parameters

user

The new MySQL username.

password

The new MySQL password.

database

The MySQL database. If not specified, the current selected database is used.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

3.0.14 This function was removed from PHP.

Notes

Note

Requirements

This function requires MySQL 3.23.3 or higher.

See Also

• mysql_connect()
• mysql_select_db()
• mysql_query()

mysql_client_encoding

mysql_client_encoding -- Returns the name of the character set

Description

string mysql_client_encoding ([resource $link_identifier])

Retrieves the character_set variable from MySQL.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the default character set name for the current connection.

Examples

Example #1024 - mysql_client_encoding() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$charset = mysql_client_encoding($link);

echo "The current character set is: $charset\n";

?>

The above example will output something similar to:

The current character set is: latin1

See Also

• mysql_real_escape_string()

mysql_close

mysql_close -- Close MySQL connection

Description

bool mysql_close ([resource $link_identifier])

mysql_close() closes the non-persistent connection to the MySQL server that's associated
with the specified link identifier. If link_identifier isn't specified, the last opened link is
used.

Using mysql_close() isn't usually necessary, as non-persistent open links are automatically
closed at the end of the script's execution. See also freeing resources.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1025 - mysql_close() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

?>

The above example will output:

Connected successfully

Notes

Note

mysql_close() will not close persistent links created by mysql_pconnect().

See Also

• mysql_connect()
• mysql_free_result()

mysql_connect

mysql_connect -- Open a connection to a MySQL Server

Description

resource mysql_connect ([string $server [, string $username [, string $password [, bool
$new_link [, int $client_flags]]]]])

Opens or reuses a connection to a MySQL server.

Parameters

server

The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to
a local socket e.g. ":/path/to/socket" for the localhost. If the PHP directive
mysql.default_host is undefined (default), then the default value is 'localhost:3306'. In
SQL safe mode, this parameter is ignored and value 'localhost:3306' is always used.

username

The username. Default value is defined by mysql.default_user. In SQL safe mode, this
parameter is ignored and the name of the user that owns the server process is used.

password

The password. Default value is defined by mysql.default_password. In SQL safe mode,
this parameter is ignored and empty password is used.

new_link

If a second call is made to mysql_connect() with the same arguments, no new link will
be established, but instead, the link identifier of the already opened link will be
returned. The new_link parameter modifies this behavior and makes mysql_connect()
always open a new link, even if mysql_connect() was called before with the same
parameters. In SQL safe mode, this parameter is ignored.

client_flags

The client_flags parameter can be a combination of the following constants: 128
(enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL,
MYSQL_CLIENT_COMPRESS, MYSQL_CLIENT_IGNORE_SPACE or
MYSQL_CLIENT_INTERACTIVE. Read the section about MySQL client constants for
further information. In SQL safe mode, this parameter is ignored.

Return Values

Returns a MySQL link identifier on success, or FALSE on failure.

ChangeLog

Version Description

4.3.0 Added the client_flags parameter.

4.2.0 Added the new_link parameter.

3.0.10 Added support for ":/path/to/socket" with
server.

3.0.0 Added support for ":port" with server.

Examples

Example #1026 - mysql_connect() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

?>

Example #1027 - mysql_connect() example using hostname:port syntax

<?php

// we connect to example.com and port 3307

$link = mysql_connect('example.com:3307', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

// we connect to localhost at port 3307

$link = mysql_connect('127.0.0.1:3307', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

?>

Example #1028 - mysql_connect() example using ":/path/to/socket" syntax

<?php

// we connect to localhost and socket e.g. /tmp/mysql.sock

//variant 1: ommit localhost

$link = mysql_connect(':/tmp/mysql', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

// variant 2: with localhost

$link = mysql_connect('localhost:/tmp/mysql.sock', 'mysql_user',
'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($link);

?>

Notes

Note

Whenever you specify "localhost" or "localhost:port" as server, the MySQL client library
will override this and try to connect to a local socket (named pipe on Windows). If you
want to use TCP/IP, use "127.0.0.1" instead of "localhost". If the MySQL client library
tries to connect to the wrong local socket, you should set the correct path as in your
PHP configuration and leave the server field blank.

Note

The link to the server will be closed as soon as the execution of the script ends, unless
it's closed earlier by explicitly calling mysql_close().

Note

You can suppress the error message on failure by prepending a @ to the function
name.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is not
copied the SYSTEMROOT environment variable won't be available and PHP will have
problems loading Winsock.

See Also

• mysql_pconnect()
• mysql_close()

mysql_create_db

mysql_create_db -- Create a MySQL database

Description

bool mysql_create_db (string $database_name [, resource $link_identifier])

mysql_create_db() attempts to create a new database on the server associated with the
specified link identifier.

Parameters

database_name

The name of the database being created.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1029 - mysql_create_db() alternative example

The function mysql_create_db() is deprecated. It is preferable to use mysql_query() to
issue a sql CREATE DATABASE statement instead.

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

$sql = 'CREATE DATABASE my_db';

if (mysql_query($sql, $link)) {

 echo "Database my_db created successfully\n";

} else {

 echo 'Error creating database: ' . mysql_error() . "\n";

}

?>

The above example will output something similar to:

Database my_db created successfully

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_createdb()

Note

This function will not be available if the MySQL extension was built against a MySQL
4.x client library.

See Also

• mysql_query()
• mysql_select_db()

mysql_data_seek

mysql_data_seek -- Move internal result pointer

Description

bool mysql_data_seek (resource $result, int $row_number)

mysql_data_seek() moves the internal row pointer of the MySQL result associated with the
specified result identifier to point to the specified row number. The next call to a MySQL
fetch function, such as mysql_fetch_assoc(), would return that row.

row_number starts at 0. The row_number should be a value in the range from 0 to
mysql_num_rows() - 1. However if the result set is empty (mysql_num_rows() == 0), a
seek to 0 will fail with a E_WARNING and mysql_data_seek() will return FALSE.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

row_number

The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1030 - mysql_data_seek() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

$db_selected = mysql_select_db('sample_db');

if (!$db_selected) {

 die('Could not select database: ' . mysql_error());

}

$query = 'SELECT last_name, first_name FROM friends';

$result = mysql_query($query);

if (!$result) {

 die('Query failed: ' . mysql_error());

}

/* fetch rows in reverse order */

for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--) {

 if (!mysql_data_seek($result, $i)) {

 echo "Cannot seek to row $i: " . mysql_error() . "\n";

 continue;

 }

 if (!($row = mysql_fetch_assoc($result))) {

 continue;

 }

 echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";

}

mysql_free_result($result);

?>

Notes

Note

The function mysql_data_seek() can be used in conjunction only with mysql_query(),
not with mysql_unbuffered_query().

See Also

• mysql_query()
• mysql_num_rows()
• mysql_fetch_row()
• mysql_fetch_assoc()
• mysql_fetch_array()
• mysql_fetch_object()

mysql_db_name

mysql_db_name -- Get result data

Description

string mysql_db_name (resource $result, int $row [, mixed $field])

Retrieve the database name from a call to mysql_list_dbs().

Parameters

result

The result pointer from a call to mysql_list_dbs().

row

The index into the result set.

field

The field name.

Return Values

Returns the database name on success, and FALSE on failure. If FALSE is returned, use
mysql_error() to determine the nature of the error.

Examples

Example #1031 - mysql_db_name() example

<?php

error_reporting(E_ALL);

$link = mysql_connect('dbhost', 'username', 'password');

$db_list = mysql_list_dbs($link);

$i = 0;

$cnt = mysql_num_rows($db_list);

while ($i < $cnt) {

 echo mysql_db_name($db_list, $i) . "\n";

 $i++;

}

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dbname()

See Also

• mysql_list_dbs()
• mysql_tablename()

mysql_db_query

mysql_db_query -- Send a MySQL query

Description

resource mysql_db_query (string $database, string $query [, resource $
link_identifier])

mysql_db_query() selects a database, and executes a query on it.

Parameters

database

The name of the database that will be selected.

query

The MySQL query.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns a positive MySQL result resource to the query result, or FALSE on error. The
function also returns TRUE / FALSE for INSERT / UPDATE / DELETE queries to indicate
success/failure.

ChangeLog

Version Description

4.0.6 This function is deprecated, do not use this
function. Use mysql_select_db() and
mysql_query() instead.

Examples

Example #1032 - mysql_db_query() alternative example

<?php

if (!$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {

 echo 'Could not connect to mysql';

 exit;

}

if (!mysql_select_db('mysql_dbname', $link)) {

 echo 'Could not select database';

 exit;

}

$sql = 'SELECT foo FROM bar WHERE id = 42';

$result = mysql_query($sql, $link);

if (!$result) {

 echo "DB Error, could not query the database\n";

 echo 'MySQL Error: ' . mysql_error();

 exit;

}

while ($row = mysql_fetch_assoc($result)) {

 echo $row['foo'];

}

mysql_free_result($result);

?>

Notes

Note

Be aware that this function does NOT switch back to the database you were connected
before. In other words, you can't use this function to temporarily run a sql query on
another database, you would have to manually switch back. Users are strongly
encouraged to use the database.table syntax in their sql queries or mysql_select_db()
instead of this function.

See Also

• mysql_query()
• mysql_select_db()

mysql_drop_db

mysql_drop_db -- Drop (delete) a MySQL database

Description

bool mysql_drop_db (string $database_name [, resource $link_identifier])

mysql_drop_db() attempts to drop (remove) an entire database from the server associated
with the specified link identifier. This function is deprecated, it is preferable to use
mysql_query() to issue a sql DROP DATABASE statement instead.

Parameters

database_name

The name of the database that will be deleted.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1033 - mysql_drop_db() alternative example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

$sql = 'DROP DATABASE my_db';

if (mysql_query($sql, $link)) {

 echo "Database my_db was successfully dropped\n";

} else {

 echo 'Error dropping database: ' . mysql_error() . "\n";

}

?>

Notes

Warning

This function will not be available if the MySQL extension was built against a MySQL
4.x client library.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dropdb()

See Also

• mysql_query()

mysql_errno

mysql_errno -- Returns the numerical value of the error message from previous MySQL
operation

Description

int mysql_errno ([resource $link_identifier])

Returns the error number from the last MySQL function.

Errors coming back from the MySQL database backend no longer issue warnings. Instead,
use mysql_errno() to retrieve the error code. Note that this function only returns the error
code from the most recently executed MySQL function (not including mysql_error() and
mysql_errno()), so if you want to use it, make sure you check the value before calling
another MySQL function.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the error number from the last MySQL function, or 0 (zero) if no error occurred.

Examples

Example #1034 - mysql_errno() example

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!mysql_select_db("nonexistentdb", $link)) {

 echo mysql_errno($link) . ": " . mysql_error($link). "\n";

}

mysql_select_db("kossu", $link);

if (!mysql_query("SELECT * FROM nonexistenttable", $link)) {

 echo mysql_errno($link) . ": " . mysql_error($link) . "\n";

}

?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'

1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

• mysql_error()
• » MySQL error codes

http://dev.mysql.com/doc/mysql/en/error-handling.html

mysql_error

mysql_error -- Returns the text of the error message from previous MySQL operation

Description

string mysql_error ([resource $link_identifier])

Returns the error text from the last MySQL function. Errors coming back from the MySQL
database backend no longer issue warnings. Instead, use mysql_error() to retrieve the
error text. Note that this function only returns the error text from the most recently
executed MySQL function (not including mysql_error() and mysql_errno()), so if you want
to use it, make sure you check the value before calling another MySQL function.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the error text from the last MySQL function, or '' (empty string) if no error occurred.

Examples

Example #1035 - mysql_error() example

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");

mysql_select_db("nonexistentdb", $link);

echo mysql_errno($link) . ": " . mysql_error($link). "\n";

mysql_select_db("kossu", $link);

mysql_query("SELECT * FROM nonexistenttable", $link);

echo mysql_errno($link) . ": " . mysql_error($link) . "\n";

?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'

1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

• mysql_errno()
• » MySQL error codes

http://dev.mysql.com/doc/mysql/en/error-handling.html

mysql_escape_string

mysql_escape_string -- Escapes a string for use in a mysql_query

Description

string mysql_escape_string (string $unescaped_string)

This function will escape the unescaped_string, so that it is safe to place it in a
mysql_query(). This function is deprecated.

This function is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler and escapes the string according
to the current character set. mysql_escape_string() does not take a connection argument
and does not respect the current charset setting.

Parameters

unescaped_string

The string that is to be escaped.

Return Values

Returns the escaped string.

ChangeLog

Version Description

4.3.0 This function became deprecated, do not
use this function. Instead, use
mysql_real_escape_string().

Examples

Example #1036 - mysql_escape_string() example

<?php

$item = "Zak's Laptop";

$escaped_item = mysql_escape_string($item);

printf("Escaped string: %s\n", $escaped_item);

?>

The above example will output:

Escaped string: Zak\'s Laptop

Notes

Note

mysql_escape_string() does not escape % and _.

See Also

• mysql_real_escape_string()
• addslashes()
• The magic_quotes_gpc directive.

mysql_fetch_array

mysql_fetch_array -- Fetch a result row as an associative array, a numeric array, or both

Description

array mysql_fetch_array (resource $result [, int $result_type])

Returns an array that corresponds to the fetched row and moves the internal data pointer
ahead.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

result_type

The type of array that is to be fetched. It's a constant and can take the following
values: MYSQL_ASSOC, MYSQL_NUM, and the default value of MYSQL_BOTH.

Return Values

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no
more rows. The type of returned array depends on how result_type is defined. By using
MYSQL_BOTH (default), you'll get an array with both associative and number indices.
Using MYSQL_ASSOC, you only get associative indices (as mysql_fetch_assoc() works),
using MYSQL_NUM, you only get number indices (as mysql_fetch_row() works).

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you must use the numeric
index of the column or make an alias for the column. For aliased columns, you cannot
access the contents with the original column name.

Examples

Example #1037 - Query with aliased duplicate field names

SELECT table1.field AS foo, table2.field AS bar FROM table1, table2

Example #1038 - mysql_fetch_array() with MYSQL_NUM

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {

 printf("ID: %s Name: %s", $row[0], $row[1]);

}

mysql_free_result($result);

?>

Example #1039 - mysql_fetch_array() with MYSQL_ASSOC

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {

 printf("ID: %s Name: %s", $row["id"], $row["name"]);

}

mysql_free_result($result);

?>

Example #1040 - mysql_fetch_array() with MYSQL_BOTH

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {

 printf ("ID: %s Name: %s", $row[0], $row["name"]);

}

mysql_free_result($result);

?>

Notes

Note

Performance

An important thing to note is that using mysql_fetch_array() is not significantly slower
than using mysql_fetch_row(), while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mysql_fetch_row()
• mysql_fetch_assoc()
• mysql_data_seek()
• mysql_query()

mysql_fetch_assoc

mysql_fetch_assoc -- Fetch a result row as an associative array

Description

array mysql_fetch_assoc (resource $result)

Returns an associative array that corresponds to the fetched row and moves the internal
data pointer ahead. mysql_fetch_assoc() is equivalent to calling mysql_fetch_array() with
MYSQL_ASSOC for the optional second parameter. It only returns an associative array.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

Returns an associative array of strings that corresponds to the fetched row, or FALSE if
there are no more rows.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you either need to access
the result with numeric indices by using mysql_fetch_row() or add alias names. See the
example at the mysql_fetch_array() description about aliases.

Examples

Example #1041 - An expanded mysql_fetch_assoc() example

<?php

$conn = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!$conn) {

 echo "Unable to connect to DB: " . mysql_error();

 exit;

}

if (!mysql_select_db("mydbname")) {

 echo "Unable to select mydbname: " . mysql_error();

 exit;

}

$sql = "SELECT id as userid, fullname, userstatus

 FROM sometable

 WHERE userstatus = 1";

$result = mysql_query($sql);

if (!$result) {

 echo "Could not successfully run query ($sql) from DB: " . mysql_error();

 exit;

}

if (mysql_num_rows($result) == 0) {

 echo "No rows found, nothing to print so am exiting";

 exit;

}

// While a row of data exists, put that row in $row as an associative array

// Note: If you're expecting just one row, no need to use a loop

// Note: If you put extract($row); inside the following loop, you'll

// then create $userid, $fullname, and $userstatus

while ($row = mysql_fetch_assoc($result)) {

 echo $row["userid"];

 echo $row["fullname"];

 echo $row["userstatus"];

}

mysql_free_result($result);

?>

Notes

Note

Performance

An important thing to note is that using mysql_fetch_assoc() is not significantly slower
than using mysql_fetch_row(), while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mysql_fetch_row()
• mysql_fetch_array()
• mysql_data_seek()
• mysql_query()
• mysql_error()

mysql_fetch_field

mysql_fetch_field -- Get column information from a result and return as an object

Description

object mysql_fetch_field (resource $result [, int $field_offset])

Returns an object containing field information. This function can be used to obtain
information about fields in the provided query result.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. If the field offset is not specified, the next field that was not
yet retrieved by this function is retrieved. The field_offset starts at 0.

Return Values

Returns an object containing field information. The properties of the object are:

• name - column name

• table - name of the table the column belongs to

• def - default value of the column

• max_length - maximum length of the column

• not_null - 1 if the column cannot be NULL

• primary_key - 1 if the column is a primary key

• unique_key - 1 if the column is a unique key

• multiple_key - 1 if the column is a non-unique key

• numeric - 1 if the column is numeric

• blob - 1 if the column is a BLOB

• type - the type of the column

• unsigned - 1 if the column is unsigned

• zerofill - 1 if the column is zero-filled

Examples

Example #1042 - mysql_fetch_field() example

<?php

$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$conn) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('database');

$result = mysql_query('select * from table');

if (!$result) {

 die('Query failed: ' . mysql_error());

}

/* get column metadata */

$i = 0;

while ($i < mysql_num_fields($result)) {

 echo "Information for column $i:
\n";

 $meta = mysql_fetch_field($result, $i);

 if (!$meta) {

 echo "No information available
\n";

 }

 echo "<pre>

blob: $meta->blob

max_length: $meta->max_length

multiple_key: $meta->multiple_key

name: $meta->name

not_null: $meta->not_null

numeric: $meta->numeric

primary_key: $meta->primary_key

table: $meta->table

type: $meta->type

default: $meta->def

unique_key: $meta->unique_key

unsigned: $meta->unsigned

zerofill: $meta->zerofill

</pre>";

 $i++;

}

mysql_free_result($result);

?>

Notes

Note

Field names returned by this function are case-sensitive.

See Also

• mysql_field_seek()

mysql_fetch_lengths

mysql_fetch_lengths -- Get the length of each output in a result

Description

array mysql_fetch_lengths (resource $result)

Returns an array that corresponds to the lengths of each field in the last row fetched by
MySQL.

mysql_fetch_lengths() stores the lengths of each result column in the last row returned by
mysql_fetch_row(), mysql_fetch_assoc(), mysql_fetch_array(), and mysql_fetch_object() in
an array, starting at offset 0.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

An array of lengths on success, or FALSE on failure.

Examples

Example #1043 - A mysql_fetch_lengths() example

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

$row = mysql_fetch_assoc($result);

$lengths = mysql_fetch_lengths($result);

print_r($row);

print_r($lengths);

?>

The above example will output something similar to:

Array

(

 [id] => 42

 [email] => user@example.com

)

Array

(

 [0] => 2

 [1] => 16

)

See Also

• mysql_field_len()
• mysql_fetch_row()
• strlen()

mysql_fetch_object

mysql_fetch_object -- Fetch a result row as an object

Description

object mysql_fetch_object (resource $result [, string $class_name [, array $params]])

Returns an object with properties that correspond to the fetched row and moves the
internal data pointer ahead.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

class_name

The name of the class to instantiate, set the properties of and return. If not specified, a
stdClass object is returned.

params

An optional array of parameters to pass to the constructor for class_name objects.

Return Values

Returns an object with string properties that correspond to the fetched row, or FALSE if
there are no more rows.

mysql_fetch_row() fetches one row of data from the result associated with the specified
result identifier. The row is returned as an array. Each result column is stored in an array
offset, starting at offset 0.

ChangeLog

Version Description

5.0.0 Added the ability to return as a different
object.

Examples

Example #1044 - mysql_fetch_object() example

<?php

mysql_connect("hostname", "user", "password");

mysql_select_db("mydb");

$result = mysql_query("select * from mytable");

while ($row = mysql_fetch_object($result)) {

 echo $row->user_id;

 echo $row->fullname;

}

mysql_free_result($result);

?>

Example #1045 - mysql_fetch_object() example

<?php

class foo {

 public $name;

}

mysql_connect("hostname", "user", "password");

mysql_select_db("mydb");

$result = mysql_query("select name from mytable limit 1");

$obj = mysql_fetch_object($result, 'foo');

var_dump($obj);

?>

Notes

Note

Performance

Speed-wise, the function is identical to mysql_fetch_array(), and almost as quick as
mysql_fetch_row() (the difference is insignificant).

Note

mysql_fetch_object() is similar to mysql_fetch_array(), with one difference - an object
is returned, instead of an array. Indirectly, that means that you can only access the
data by the field names, and not by their offsets (numbers are illegal property names).

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mysql_fetch_array()
• mysql_fetch_assoc()
• mysql_fetch_row()
• mysql_data_seek()
• mysql_query()

mysql_fetch_row

mysql_fetch_row -- Get a result row as an enumerated array

Description

array mysql_fetch_row (resource $result)

Returns a numerical array that corresponds to the fetched row and moves the internal data
pointer ahead.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

Returns an numerical array of strings that corresponds to the fetched row, or FALSE if
there are no more rows.

mysql_fetch_row() fetches one row of data from the result associated with the specified
result identifier. The row is returned as an array. Each result column is stored in an array
offset, starting at offset 0.

Examples

Example #1046 - Fetching one row with mysql_fetch_row()

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

$row = mysql_fetch_row($result);

echo $row[0]; // 42

echo $row[1]; // the email value

?>

Notes

Note

This function sets NULL fields to the PHP NULL value.

See Also

• mysql_fetch_array()
• mysql_fetch_assoc()
• mysql_fetch_object()
• mysql_data_seek()
• mysql_fetch_lengths()
• mysql_result()

mysql_field_flags

mysql_field_flags -- Get the flags associated with the specified field in a result

Description

string mysql_field_flags (resource $result, int $field_offset)

mysql_field_flags() returns the field flags of the specified field. The flags are reported as a
single word per flag separated by a single space, so that you can split the returned value
using explode().

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

Returns a string of flags associated with the result, or FALSE on failure.

The following flags are reported, if your version of MySQL is current enough to support
them: "not_null", "primary_key", "unique_key", "multiple_key", "blob", "unsigned", "zerofill",
"binary", "enum", "auto_increment" and "timestamp".

Examples

Example #1047 - A mysql_field_flags() example

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

$flags = mysql_field_flags($result, 0);

echo $flags;

print_r(explode(' ', $flags));

?>

The above example will output something similar to:

not_null primary_key auto_increment

Array

(

 [0] => not_null

 [1] => primary_key

 [2] => auto_increment

)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldflags()

See Also

• mysql_field_type()
• mysql_field_len()

mysql_field_len

mysql_field_len -- Returns the length of the specified field

Description

int mysql_field_len (resource $result, int $field_offset)

mysql_field_len() returns the length of the specified field.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The length of the specified field index on success, or FALSE on failure.

Examples

Example #1048 - mysql_field_len() example

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

// Will get the length of the id field as specified in the database

// schema.

$length = mysql_field_len($result, 0);

echo $length;

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldlen()

See Also

• mysql_fetch_lengths()
• strlen()

mysql_field_name

mysql_field_name -- Get the name of the specified field in a result

Description

string mysql_field_name (resource $result, int $field_offset)

mysql_field_name() returns the name of the specified field index.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The name of the specified field index on success, or FALSE on failure.

Examples

Example #1049 - mysql_field_name() example

<?php

/* The users table consists of three fields:

* user_id

* username

* password.

*/

$link = @mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect to MySQL server: ' . mysql_error());

}

$dbname = 'mydb';

$db_selected = mysql_select_db($dbname, $link);

if (!$db_selected) {

 die("Could not set $dbname: " . mysql_error());

}

$res = mysql_query('select * from users', $link);

echo mysql_field_name($res, 0) . "\n";

echo mysql_field_name($res, 2);

?>

The above example will output:

user_id

password

Notes

Note

Field names returned by this function are case-sensitive.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldname()

See Also

• mysql_field_type()
• mysql_field_len()

mysql_field_seek

mysql_field_seek -- Set result pointer to a specified field offset

Description

bool mysql_field_seek (resource $result, int $field_offset)

Seeks to the specified field offset. If the next call to mysql_fetch_field() doesn't include a
field offset, the field offset specified in mysql_field_seek() will be returned.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysql_fetch_field()

mysql_field_table

mysql_field_table -- Get name of the table the specified field is in

Description

string mysql_field_table (resource $result, int $field_offset)

Returns the name of the table that the specified field is in.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The name of the table on success.

Examples

Example #1050 - A mysql_field_table() example

<?php

$query = "SELECT account.*, country.* FROM account, country WHERE
country.name = 'Portugal' AND account.country_id = country.id";

// get the result from the DB

$result = mysql_query($query);

// Lists the table name and then the field name

for ($i = 0; $i < mysql_num_fields($result); ++$i) {

 $table = mysql_field_table($result, $i);

 $field = mysql_field_name($result, $i);

 echo "$table: $field\n";

}

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtable()

See Also

• mysql_list_tables()

mysql_field_type

mysql_field_type -- Get the type of the specified field in a result

Description

string mysql_field_type (resource $result, int $field_offset)

mysql_field_type() is similar to the mysql_field_name() function. The arguments are
identical, but the field type is returned instead.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

field_offset

The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The returned field type will be one of "int", "real", "string", "blob", and others as detailed in
the » MySQL documentation.

Examples

Example #1051 - mysql_field_type() example

<?php

mysql_connect("localhost", "mysql_username", "mysql_password");

mysql_select_db("mysql");

$result = mysql_query("SELECT * FROM func");

$fields = mysql_num_fields($result);

$rows = mysql_num_rows($result);

$table = mysql_field_table($result, 0);

echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows .
" record(s)\n";

echo "The table has the following fields:\n";

for ($i=0; $i < $fields; $i++) {

 $type = mysql_field_type($result, $i);

 $name = mysql_field_name($result, $i);

 $len = mysql_field_len($result, $i);

 $flags = mysql_field_flags($result, $i);

 echo $type . " " . $name . " " . $len . " " . $flags . "\n";

}

http://dev.mysql.com/doc/

mysql_free_result($result);

mysql_close();

?>

The above example will output something similar to:

Your 'func' table has 4 fields and 1 record(s)

The table has the following fields:

string name 64 not_null primary_key binary

int ret 1 not_null

string dl 128 not_null

string type 9 not_null enum

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtype()

See Also

• mysql_field_name()
• mysql_field_len()

mysql_free_result

mysql_free_result -- Free result memory

Description

bool mysql_free_result (resource $result)

mysql_free_result() will free all memory associated with the result identifier result.

mysql_free_result() only needs to be called if you are concerned about how much memory
is being used for queries that return large result sets. All associated result memory is
automatically freed at the end of the script's execution.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

Returns TRUE on success or FALSE on failure.

If a non-resource is used for the result, an error of level E_WARNING will be emitted. It's
worth noting that mysql_query() only returns a resource for SELECT, SHOW, EXPLAIN,
and DESCRIBE queries.

Examples

Example #1052 - A mysql_free_result() example

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

/* Use the result, assuming we're done with it afterwards */

$row = mysql_fetch_assoc($result);

/* Now we free up the result and continue on with our script */

mysql_free_result($result);

echo $row['id'];

echo $row['email'];

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_freeresult()

See Also

• mysql_query()
• is_resource()

mysql_get_client_info

mysql_get_client_info -- Get MySQL client info

Description

string mysql_get_client_info (void)

mysql_get_client_info() returns a string that represents the client library version.

Return Values

The MySQL client version.

Examples

Example #1053 - mysql_get_client_info() example

<?php

printf("MySQL client info: %s\n", mysql_get_client_info());

?>

The above example will output something similar to:

MySQL client info: 3.23.39

See Also

• mysql_get_host_info()
• mysql_get_proto_info()
• mysql_get_server_info()

mysql_get_host_info

mysql_get_host_info -- Get MySQL host info

Description

string mysql_get_host_info ([resource $link_identifier])

Describes the type of connection in use for the connection, including the server host name.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns a string describing the type of MySQL connection in use for the connection or
FALSE on failure.

Examples

Example #1054 - mysql_get_host_info() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

printf("MySQL host info: %s\n", mysql_get_host_info());

?>

The above example will output something similar to:

MySQL host info: Localhost via UNIX socket

See Also

• mysql_get_client_info()

• mysql_get_proto_info()
• mysql_get_server_info()

mysql_get_proto_info

mysql_get_proto_info -- Get MySQL protocol info

Description

int mysql_get_proto_info ([resource $link_identifier])

Retrieves the MySQL protocol.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the MySQL protocol on success, or FALSE on failure.

Examples

Example #1055 - mysql_get_proto_info() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

printf("MySQL protocol version: %s\n", mysql_get_proto_info());

?>

The above example will output something similar to:

MySQL protocol version: 10

See Also

• mysql_get_client_info()
• mysql_get_host_info()

• mysql_get_server_info()

mysql_get_server_info

mysql_get_server_info -- Get MySQL server info

Description

string mysql_get_server_info ([resource $link_identifier])

Retrieves the MySQL server version.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the MySQL server version on success, or FALSE on failure.

Examples

Example #1056 - mysql_get_server_info() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

printf("MySQL server version: %s\n", mysql_get_server_info());

?>

The above example will output something similar to:

MySQL server version: 4.0.1-alpha

See Also

• mysql_get_client_info()
• mysql_get_host_info()

• mysql_get_proto_info()
• phpversion()

mysql_info

mysql_info -- Get information about the most recent query

Description

string mysql_info ([resource $link_identifier])

Returns detailed information about the last query.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns information about the statement on success, or FALSE on failure. See the
example below for which statements provide information, and what the returned value may
look like. Statements that are not listed will return FALSE.

Examples

Example #1057 - Relevant MySQL Statements

Statements that return string values. The numbers are only for illustrating purpose;
their values will correspond to the query.

INSERT INTO ... SELECT ...

String format: Records: 23 Duplicates: 0 Warnings: 0

INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 37 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ...

String format: Records: 42 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE

String format: Records: 60 Duplicates: 0 Warnings: 0

UPDATE

String format: Rows matched: 65 Changed: 65 Warnings: 0

Notes

Note

mysql_info() returns a non- FALSE value for the INSERT ... VALUES statement only if
multiple value lists are specified in the statement.

See Also

• mysql_affected_rows()
• mysql_insert_id()
• mysql_stat()

mysql_insert_id

mysql_insert_id -- Get the ID generated from the previous INSERT operation

Description

int mysql_insert_id ([resource $link_identifier])

Retrieves the ID generated for an AUTO_INCREMENT column by the previous INSERT
query.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

The ID generated for an AUTO_INCREMENT column by the previous INSERT query on
success, 0 if the previous query does not generate an AUTO_INCREMENT value, or
FALSE if no MySQL connection was established.

Examples

Example #1058 - mysql_insert_id() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('mydb');

mysql_query("INSERT INTO mytable (product) values ('kossu')");

printf("Last inserted record has id %d\n", mysql_insert_id());

?>

Notes

Caution

mysql_insert_id() converts the return type of the native MySQL C API function
mysql_insert_id() to a type of long (named int in PHP). If your AUTO_INCREMENT
column has a column type of BIGINT, the value returned by mysql_insert_id() will be
incorrect. Instead, use the internal MySQL SQL function LAST_INSERT_ID() in an
SQL query.

Note

Because mysql_insert_id() acts on the last performed query, be sure to call
mysql_insert_id() immediately after the query that generates the value.

Note

The value of the MySQL SQL function LAST_INSERT_ID() always contains the most
recently generated AUTO_INCREMENT value, and is not reset between queries.

See Also

• mysql_query()
• mysql_info()

mysql_list_dbs

mysql_list_dbs -- List databases available on a MySQL server

Description

resource mysql_list_dbs ([resource $link_identifier])

Returns a result pointer containing the databases available from the current mysql
daemon.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns a result pointer resource on success, or FALSE on failure. Use the
mysql_tablename() function to traverse this result pointer, or any function for result tables,
such as mysql_fetch_array().

Examples

Example #1059 - mysql_list_dbs() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$db_list = mysql_list_dbs($link);

while ($row = mysql_fetch_object($db_list)) {

 echo $row->Database . "\n";

}

?>

The above example will output something similar to:

database1

database2

database3

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listdbs()

See Also

• mysql_db_name()
• mysql_select_db()

mysql_list_fields

mysql_list_fields -- List MySQL table fields

Description

resource mysql_list_fields (string $database_name, string $table_name [, resource $
link_identifier])

Retrieves information about the given table name.

This function is deprecated. It is preferable to use mysql_query() to issue a SQL SHOW
COLUMNS FROM table [LIKE 'name'] statement instead.

Parameters

database_name

The name of the database that's being queried.

table_name

The name of the table that's being queried.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

The returned result can be used with mysql_field_flags(), mysql_field_len(),
mysql_field_name() and mysql_field_type().

Examples

Example #1060 - Alternate to deprecated mysql_list_fields()

<?php

$result = mysql_query("SHOW COLUMNS FROM sometable");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

if (mysql_num_rows($result) > 0) {

 while ($row = mysql_fetch_assoc($result)) {

 print_r($row);

 }

}

?>

The above example will output something similar to:

Array

(

 [Field] => id

 [Type] => int(7)

 [Null] =>

 [Key] => PRI

 [Default] =>

 [Extra] => auto_increment

)

Array

(

 [Field] => email

 [Type] => varchar(100)

 [Null] =>

 [Key] =>

 [Default] =>

 [Extra] =>

)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listfields()

See Also

• mysql_field_flags()
• mysql_info()

mysql_list_processes

mysql_list_processes -- List MySQL processes

Description

resource mysql_list_processes ([resource $link_identifier])

Retrieves the current MySQL server threads.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

Examples

Example #1061 - mysql_list_processes() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$result = mysql_list_processes($link);

while ($row = mysql_fetch_assoc($result)){

 printf("%s %s %s %s %s\n", $row["Id"], $row["Host"], $row["db"],

 $row["Command"], $row["Time"]);

}

mysql_free_result($result);

?>

The above example will output something similar to:

1 localhost test Processlist 0

4 localhost mysql sleep 5

See Also

• mysql_thread_id()
• mysql_stat()

mysql_list_tables

mysql_list_tables -- List tables in a MySQL database

Description

resource mysql_list_tables (string $database [, resource $link_identifier])

Retrieves a list of table names from a MySQL database.

This function is deprecated. It is preferable to use mysql_query() to issue a SQL SHOW
TABLES [FROM db_name] [LIKE 'pattern'] statement instead.

Parameters

database

The name of the database

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

Use the mysql_tablename() function to traverse this result pointer, or any function for
result tables, such as mysql_fetch_array().

ChangeLog

Version Description

4.3.7 This function became deprecated.

Examples

Example #1062 - mysql_list_tables() alternative example

<?php

$dbname = 'mysql_dbname';

if (!mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {

 echo 'Could not connect to mysql';

 exit;

}

$sql = "SHOW TABLES FROM $dbname";

$result = mysql_query($sql);

if (!$result) {

 echo "DB Error, could not list tables\n";

 echo 'MySQL Error: ' . mysql_error();

 exit;

}

while ($row = mysql_fetch_row($result)) {

 echo "Table: {$row[0]}\n";

}

mysql_free_result($result);

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listtables()

See Also

• mysql_list_dbs()
• mysql_tablename()

mysql_num_fields

mysql_num_fields -- Get number of fields in result

Description

int mysql_num_fields (resource $result)

Retrieves the number of fields from a query.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

Returns the number of fields in the result set resource on success, or FALSE on failure.

Examples

Example #1063 - A mysql_num_fields() example

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

/* returns 2 because id,email === two fields */

echo mysql_num_fields($result);

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numfields()

See Also

• mysql_select_db()
• mysql_query()
• mysql_fetch_field()
• mysql_num_rows()

mysql_num_rows

mysql_num_rows -- Get number of rows in result

Description

int mysql_num_rows (resource $result)

Retrieves the number of rows from a result set. This command is only valid for statements
like SELECT or SHOW that return an actual result set. To retrieve the number of rows
affected by a INSERT, UPDATE, REPLACE or DELETE query, use mysql_affected_rows()
.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

Return Values

The number of rows in a result set on success, or FALSE on failure.

Examples

Example #1064 - mysql_num_rows() example

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");

mysql_select_db("database", $link);

$result = mysql_query("SELECT * FROM table1", $link);

$num_rows = mysql_num_rows($result);

echo "$num_rows Rows\n";

?>

Notes

Note

If you use mysql_unbuffered_query(), mysql_num_rows() will not return the correct
value until all the rows in the result set have been retrieved.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numrows()

See Also

• mysql_affected_rows()
• mysql_connect()
• mysql_data_seek()
• mysql_select_db()
• mysql_query()

mysql_pconnect

mysql_pconnect -- Open a persistent connection to a MySQL server

Description

resource mysql_pconnect ([string $server [, string $username [, string $password [, int
$client_flags]]]])

Establishes a persistent connection to a MySQL server.

mysql_pconnect() acts very much like mysql_connect() with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host, username and password. If one is found, an identifier for it will
be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use (mysql_close() will not close
links established by mysql_pconnect()).

This type of link is therefore called 'persistent'.

Parameters

server

The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to
a local socket e.g. ":/path/to/socket" for the localhost. If the PHP directive
mysql.default_host is undefined (default), then the default value is 'localhost:3306'

username

The username. Default value is the name of the user that owns the server process.

password

The password. Default value is an empty password.

client_flags

The client_flags parameter can be a combination of the following constants: 128
(enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL,
MYSQL_CLIENT_COMPRESS, MYSQL_CLIENT_IGNORE_SPACE or
MYSQL_CLIENT_INTERACTIVE.

Return Values

Returns a MySQL persistent link identifier on success, or FALSE on failure.

ChangeLog

Version Description

4.3.0 Added the client_flags parameter.

3.0.10 Added support for ":/path/to/socket" with
server.

3.0.0 Added support for ":port" with server.

Notes

Note

Note, that these kind of links only work if you are using a module version of PHP. See
the Persistent Database Connections section for more information.

Warning

Using persistent connections can require a bit of tuning of your Apache and MySQL
configurations to ensure that you do not exceed the number of connections allowed by
MySQL.

Note

You can suppress the error message on failure by prepending a @ to the function
name.

See Also

• mysql_connect()
• Persistent Database Connections

mysql_ping

mysql_ping -- Ping a server connection or reconnect if there is no connection

Description

bool mysql_ping ([resource $link_identifier])

Checks whether or not the connection to the server is working. If it has gone down, an
automatic reconnection is attempted. This function can be used by scripts that remain idle
for a long while, to check whether or not the server has closed the connection and
reconnect if necessary.

Note

Since MySQL 5.0.13, automatic reconnection feature is disabled.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE.

Examples

Example #1065 - A mysql_ping() example

<?php

set_time_limit(0);

$conn = mysql_connect('localhost', 'mysqluser', 'mypass');

$db = mysql_select_db('mydb');

/* Assuming this query will take a long time */

$result = mysql_query($sql);

if (!$result) {

 echo 'Query #1 failed, exiting.';

 exit;

}

/* Make sure the connection is still alive, if not, try to reconnect */

if (!mysql_ping($conn)) {

 echo 'Lost connection, exiting after query #1';

 exit;

}

mysql_free_result($result);

/* So the connection is still alive, let's run another query */

$result2 = mysql_query($sql2);

?>

See Also

• mysql_thread_id()
• mysql_list_processes()

mysql_query

mysql_query -- Send a MySQL query

Description

resource mysql_query (string $query [, resource $link_identifier])

mysql_query() sends an unique query (multiple queries are not supported) to the currently
active database on the server that's associated with the specified link_identifier.

Parameters

query

A SQL query The query string should not end with a semicolon.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset,
mysql_query() returns a resource on success, or FALSE on error.

For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc,
mysql_query() returns TRUE on success or FALSE on error.

The returned result resource should be passed to mysql_fetch_array(), and other functions
for dealing with result tables, to access the returned data.

Use mysql_num_rows() to find out how many rows were returned for a SELECT statement
or mysql_affected_rows() to find out how many rows were affected by a DELETE,
INSERT, REPLACE, or UPDATE statement.

mysql_query() will also fail and return FALSE if the user does not have permission to
access the table(s) referenced by the query.

Examples

Example #1066 - Invalid Query

The following query is syntactically invalid, so mysql_query() fails and returns FALSE.

<?php

$result = mysql_query('SELECT * WHERE 1=1');

if (!$result) {

 die('Invalid query: ' . mysql_error());

}

?>

Example #1067 - Valid Query

The following query is valid, so mysql_query() returns a resource.

<?php

// This could be supplied by a user, for example

$firstname = 'fred';

$lastname = 'fox';

// Formulate Query

// This is the best way to perform a SQL query

// For more examples, see mysql_real_escape_string()

$query = sprintf("SELECT firstname, lastname, address, age FROM friends
WHERE firstname='%s' AND lastname='%s'",

 mysql_real_escape_string($firstname),

 mysql_real_escape_string($lastname));

// Perform Query

$result = mysql_query($query);

// Check result

// This shows the actual query sent to MySQL, and the error. Useful for
debugging.

if (!$result) {

 $message = 'Invalid query: ' . mysql_error() . "\n";

 $message .= 'Whole query: ' . $query;

 die($message);

}

// Use result

// Attempting to print $result won't allow access to information in the
resource

// One of the mysql result functions must be used

// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.

while ($row = mysql_fetch_assoc($result)) {

 echo $row['firstname'];

 echo $row['lastname'];

 echo $row['address'];

 echo $row['age'];

}

// Free the resources associated with the result set

// This is done automatically at the end of the script

mysql_free_result($result);

?>

See Also

• mysql_connect()
• mysql_error()
• mysql_real_escape_string()
• mysql_result()
• mysql_fetch_assoc()
• mysql_unbuffered_query()

mysql_real_escape_string

mysql_real_escape_string -- Escapes special characters in a string for use in a SQL
statement

Description

string mysql_real_escape_string (string $unescaped_string [, resource $
link_identifier])

Escapes special characters in the unescaped_string, taking into account the current
character set of the connection so that it is safe to place it in a mysql_query(). If binary
data is to be inserted, this function must be used.

mysql_real_escape_string() calls MySQL's library function mysql_real_escape_string,
which prepends backslashes to the following characters: \x00, \n, \r, \, ', " and \x1a.

This function must always (with few exceptions) be used to make data safe before sending
a query to MySQL.

Parameters

unescaped_string

The string that is to be escaped.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns the escaped string, or FALSE on error.

Examples

Example #1068 - Simple mysql_real_escape_string() example

<?php

// Connect

$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')

 OR die(mysql_error());

// Query

$query = sprintf("SELECT * FROM users WHERE user='%s' AND password='%s'",

 mysql_real_escape_string($user),

 mysql_real_escape_string($password));

?>

Example #1069 - An example SQL Injection Attack

<?php

// Query database to check if there are any matching users

$query = "SELECT * FROM users WHERE user='{$_POST['username']}' AND
password='{$_POST['password']}'";

mysql_query($query);

// We didn't check $_POST['password'], it could be anything the user wanted!
For example:

$_POST['username'] = 'aidan';

$_POST['password'] = "' OR ''='";

// This means the query sent to MySQL would be:

echo $query;

?>

The query sent to MySQL:

SELECT * FROM users WHERE user='aidan' AND password='' OR ''=''

This would allow anyone to log in without a valid password.

Example #1070 - A "Best Practice" query

Using mysql_real_escape_string() around each variable prevents SQL Injection. This
example demonstrates the "best practice" method for querying a database,
independent of the Magic Quotes setting.

<?php

if (isset($_POST['product_name']) && isset($_POST['product_description']) &&
isset($_POST['user_id'])) {

 // Connect

 $link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password');

 if(!is_resource($link)) {

 echo "Failed to connect to the server\n";

 // ... log the error properly

 } else {

 // Reverse magic_quotes_gpc/magic_quotes_sybase effects on those vars

if ON.

 if(get_magic_quotes_gpc()) {

 $product_name = stripslashes($_POST['product_name']);

 $product_description =
stripslashes($_POST['product_description']);

 } else {

 $product_name = $_POST['product_name'];

 $product_description = $_POST['product_description'];

 }

 // Make a safe query

 $query = sprintf("INSERT INTO products (`name`, `description`,
`user_id`) VALUES ('%s', '%s', %d)",

 mysql_real_escape_string($product_name, $link),

 mysql_real_escape_string($product_description, $link),

 $_POST['user_id']);

 mysql_query($query, $link);

 if (mysql_affected_rows($link) > 0) {

 echo "Product inserted\n";

 }

 }

} else {

 echo "Fill the form properly\n";

}

?>

The query will now execute correctly, and SQL Injection attacks will not work.

Notes

Note

A MySQL connection is required before using mysql_real_escape_string() otherwise
an error of level E_WARNING is generated, and FALSE is returned. If
link_identifier isn't defined, the last MySQL connection is used.

Note

If magic_quotes_gpc is enabled, first apply stripslashes() to the data. Using this
function on data which has already been escaped will escape the data twice.

Note

If this function is not used to escape data, the query is vulnerable to SQL Injection
Attacks.

Note

mysql_real_escape_string() does not escape % and _. These are wildcards in MySQL
if combined with LIKE, GRANT, or REVOKE.

See Also

• mysql_client_encoding()
• addslashes()
• stripslashes()
• The magic_quotes_gpc directive
• The magic_quotes_runtime directive

mysql_result

mysql_result -- Get result data

Description

string mysql_result (resource $result, int $row [, mixed $field])

Retrieves the contents of one cell from a MySQL result set.

When working on large result sets, you should consider using one of the functions that
fetch an entire row (specified below). As these functions return the contents of multiple
cells in one function call, they're MUCH quicker than mysql_result(). Also, note that
specifying a numeric offset for the field argument is much quicker than specifying a
fieldname or tablename.fieldname argument.

Parameters

result

The result resource that is being evaluated. This result comes from a call to
mysql_query().

row

The row number from the result that's being retrieved. Row numbers start at 0.

field

The name or offset of the field being retrieved. It can be the field's offset, the field's
name, or the field's table dot field name (tablename.fieldname). If the column name
has been aliased ('select foo as bar from...'), use the alias instead of the column name.
If undefined, the first field is retrieved.

Return Values

The contents of one cell from a MySQL result set on success, or FALSE on failure.

Examples

Example #1071 - mysql_result() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

$result = mysql_query('SELECT name FROM work.employee');

if (!$result) {

 die('Could not query:' . mysql_error());

}

echo mysql_result($result, 2); // outputs third employee's name

mysql_close($link);

?>

Notes

Note

Calls to mysql_result() should not be mixed with calls to other functions that deal with
the result set.

See Also

• mysql_fetch_row()
• mysql_fetch_array()
• mysql_fetch_assoc()
• mysql_fetch_object()

mysql_select_db

mysql_select_db -- Select a MySQL database

Description

bool mysql_select_db (string $database_name [, resource $link_identifier])

Sets the current active database on the server that's associated with the specified link
identifier. Every subsequent call to mysql_query() will be made on the active database.

Parameters

database_name

The name of the database that is to be selected.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1072 - mysql_select_db() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Not connected : ' . mysql_error());

}

// make foo the current db

$db_selected = mysql_select_db('foo', $link);

if (!$db_selected) {

 die ('Can\'t use foo : ' . mysql_error());

}

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_selectdb()

See Also

• mysql_connect()
• mysql_pconnect()
• mysql_query()

mysql_set_charset

mysql_set_charset -- Sets the client character set

Description

bool mysql_set_charset (string $charset [, resource $link_identifier])

Sets the default character set for the current connection.

Parameters

charset

A valid character set name.

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires MySQL 5.0.7 or later.

See Also

• » List of character sets that MySQL supports

http://dev.mysql.com/doc/refman/5.1/en/charset-charsets.html

mysql_stat

mysql_stat -- Get current system status

Description

string mysql_stat ([resource $link_identifier])

mysql_stat() returns the current server status.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns a string with the status for uptime, threads, queries, open tables, flush tables and
queries per second. For a complete list of other status variables, you have to use the
SHOW STATUS SQL command. If link_identifier is invalid, NULL is returned.

Examples

Example #1073 - mysql_stat() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$status = explode(' ', mysql_stat($link));

print_r($status);

?>

The above example will output something similar to:

Array

(

 [0] => Uptime: 5380

 [1] => Threads: 2

 [2] => Questions: 1321299

 [3] => Slow queries: 0

 [4] => Opens: 26

 [5] => Flush tables: 1

 [6] => Open tables: 17

 [7] => Queries per second avg: 245.595

)

Example #1074 - Alternative mysql_stat() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$result = mysql_query('SHOW VARIABLES', $link);

while ($row = mysql_fetch_assoc($result)) {

 echo $row['Variable_name'] . ' = ' . $row['Value'] . "\n";

}

?>

The above example will output something similar to:

back_log = 50

basedir = /usr/local/

bdb_cache_size = 8388600

bdb_log_buffer_size = 32768

bdb_home = /var/db/mysql/

bdb_max_lock = 10000

bdb_logdir =

bdb_shared_data = OFF

bdb_tmpdir = /var/tmp/

...

See Also

• mysql_get_server_info()
• mysql_list_processes()

mysql_tablename

mysql_tablename -- Get table name of field

Description

string mysql_tablename (resource $result, int $i)

Retrieves the table name from a result.

This function deprecated. It is preferable to use mysql_query() to issue a SQL SHOW
TABLES [FROM db_name] [LIKE 'pattern'] statement instead.

Parameters

result

A result pointer resource that's returned from mysql_list_tables().

i

The integer index (row/table number)

Return Values

The name of the table on success, or FALSE on failure.

Use the mysql_tablename() function to traverse this result pointer, or any function for
result tables, such as mysql_fetch_array().

Examples

Example #1075 - mysql_tablename() example

<?php

mysql_connect("localhost", "mysql_user", "mysql_password");

$result = mysql_list_tables("mydb");

$num_rows = mysql_num_rows($result);

for ($i = 0; $i < $num_rows; $i++) {

 echo "Table: ", mysql_tablename($result, $i), "\n";

}

mysql_free_result($result);

?>

Notes

Note

The mysql_num_rows() function may be used to determine the number of tables in the
result pointer.

See Also

• mysql_list_tables()
• mysql_field_table()
• mysql_db_name()

mysql_thread_id

mysql_thread_id -- Return the current thread ID

Description

int mysql_thread_id ([resource $link_identifier])

Retrieves the current thread ID. If the connection is lost, and a reconnect with
mysql_ping() is executed, the thread ID will change. This means only retrieve the thread ID
when needed.

Parameters

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

The thread ID on success, or FALSE on failure.

Examples

Example #1076 - mysql_thread_id() example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$thread_id = mysql_thread_id($link);

if ($thread_id){

 printf("current thread id is %d\n", $thread_id);

}

?>

The above example will output something similar to:

current thread id is 73

See Also

• mysql_ping()
• mysql_list_processes()

mysql_unbuffered_query

mysql_unbuffered_query -- Send an SQL query to MySQL, without fetching and buffering
the result rows

Description

resource mysql_unbuffered_query (string $query [, resource $link_identifier])

mysql_unbuffered_query() sends a SQL query query to MySQL, without fetching and
buffering the result rows automatically, as mysql_query() does. On the one hand, this
saves a considerable amount of memory with SQL queries that produce large result sets.
On the other hand, you can start working on the result set immediately after the first row
has been retrieved: you don't have to wait until the complete SQL query has been
performed. When using multiple DB-connects, you have to specify the optional parameter
link_identifier.

Parameters

query

A SQL query

link_identifier

The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect() is assumed. If no such link is found, it will try to create one as if
mysql_connect() was called with no arguments. If by chance no connection is found or
established, an E_WARNING level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_unbuffered_query()
returns a resource on success, or FALSE on error.

For other type of SQL statements, UPDATE, DELETE, DROP, etc,
mysql_unbuffered_query() returns TRUE on success or FALSE on error.

Notes

Note

The benefits of mysql_unbuffered_query() come at a cost: You cannot use
mysql_num_rows() and mysql_data_seek() on a result set returned from
mysql_unbuffered_query(). You also have to fetch all result rows from an unbuffered
SQL query, before you can send a new SQL query to MySQL.

See Also

• mysql_query()

MySQL Improved Extension

Introduction

The mysqli extension allows you to access the functionality provided by MySQL 4.1 and
above. More information about the MySQL Database server can be found at
» http://www.mysql.com/

Documentation for MySQL can be found at » http://dev.mysql.com/doc/.

Parts of this documentation included from MySQL manual with permissions of MySQL AB.

Examples

All Examples in the MySQLI documentation use the world database from MySQL AB. The
world database can be found at
» http://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick

http://www.mysql.com/
http://www.mysql.com/
http://dev.mysql.com/doc/
http://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick
http://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick

Installing/Configuring

Requirements

In order to have these functions available, you must compile PHP with support for the
mysqli extension.

Note

The mysqli extension is designed to work with the version 4.1.3 or above of MySQL.
For previous versions, please see the MySQL extension documentation.

Installation

To install the mysqli extension for PHP, use the
--with-mysqli=mysql_config_path/mysql_config configuration option where
mysql_config_path represents the location of the mysql_config program that comes with
MySQL versions greater than 4.1.

If you would like to install the mysql extension along with the mysqli extension you have to
use the same client library to avoid any conflicts.

Installation on Windows Systems

MySQLi is not enabled by default, so the php_mysqli.dll DLL must be enabled inside of
php.ini. Also, PHP needs access to the MySQL client library. A file named libmysql.dll is
included in the Windows PHP distribution and in order for PHP to talk to MySQL this file
needs to be available to the Windows systems PATH. See the FAQ titled " How do I add
my PHP directory to the PATH on Windows " for information on how to do this. Although
copying libmysql.dll to the Windows system directory also works (because the system
directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysqli.dll), the PHP directive
extension_dir should be set to the directory where the PHP extensions are located. See
also the Manual Windows Installation Instructions. An example extension_dir value for
PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable to load
dynamic library './php_mysqli.dll'", this is because php_mysqli.dll and/or libmysql.dll
cannot be found by the system.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

MySQLi Configuration Options

Name Default Changeable Changelog

mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP
5.0.0.

mysqli.default_port "3306" PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_socket NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_host NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_user NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP
5.0.0.

For further details and definitions of the above PHP_INI_* constants, see the chapter on
configuration changes.

Here's a short explanation of the configuration directives.

mysqli.max_links integer
The maximum number of MySQL connections per process.

mysqli.default_port string
The default TCP port number to use when connecting to the database server if no
other port is specified. If no default is specified, the port will be obtained from the
MYSQL_TCP_PORT environment variable, the mysql-tcp entry in /etc/services or the
compile-time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysqli.default_socket string
The default socket name to use when connecting to a local database server if no other
socket name is specified.

mysqli.default_host string

The default server host to use when connecting to the database server if no other host
is specified. Doesn't apply in safe mode.

mysqli.default_user string
The default user name to use when connecting to the database server if no other
name is specified. Doesn't apply in safe mode.

mysqli.default_pw string
The default password to use when connecting to the database server if no other
password is specified. Doesn't apply in safe mode.

Resource Types

This extension has no resource types defined.

Predefined Constants

MYSQLI_READ_DEFAULT_GROUP
Read options from the named group from my.cnf or the file specified with
MYSQLI_READ_DEFAULT_FILE

MYSQLI_READ_DEFAULT_FILE
Read options from the named option file instead of from my.cnf

MYSQLI_OPT_CONNECT_TIMEOUT
Connect timeout in seconds

MYSQLI_OPT_LOCAL_INFILE
Enables command LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND
Command to execute when connecting to MySQL server. Will automatically be
re-executed when reconnecting.

MYSQLI_CLIENT_SSL
Use SSL (encrypted protocol). This option should not be set by application programs; it
is set internally in the MySQL client library

MYSQLI_CLIENT_COMPRESS
Use compression protocol

MYSQLI_CLIENT_INTERACTIVE
Allow interactive_timeout seconds (instead of wait_timeout seconds) of inactivity
before closing the connection. The client's session wait_timeout variable will be set to
the value of the session interactive_timeout variable.

MYSQLI_CLIENT_IGNORE_SPACE
Allow spaces after function names. Makes all functions names reserved words.

MYSQLI_CLIENT_NO_SCHEMA
Don't allow the db_name.tbl_name.col_name syntax.

MYSQLI_CLIENT_MULTI_QUERIES
Allows multiple semicolon-delimited queries in a single mysqli_query() call.

MYSQLI_STORE_RESULT
For using buffered resultsets

MYSQLI_USE_RESULT
For using unbuffered resultsets

MYSQLI_ASSOC
Columns are returned into the array having the fieldname as the array index.

MYSQLI_NUM
Columns are returned into the array having an enumerated index.

MYSQLI_BOTH
Columns are returned into the array having both a numerical index and the fieldname
as the associative index.

MYSQLI_NOT_NULL_FLAG
Indicates that a field is defined as NOT NULL

MYSQLI_PRI_KEY_FLAG
Field is part of a primary index

MYSQLI_UNIQUE_KEY_FLAG
Field is part of a unique index.

MYSQLI_MULTIPLE_KEY_FLAG
Field is part of an index.

MYSQLI_BLOB_FLAG
Field is defined as BLOB

MYSQLI_UNSIGNED_FLAG
Field is defined as UNSIGNED

MYSQLI_ZEROFILL_FLAG
Field is defined as ZEROFILL

MYSQLI_AUTO_INCREMENT_FLAG
Field is defined as AUTO_INCREMENT

MYSQLI_TIMESTAMP_FLAG
Field is defined as TIMESTAMP

MYSQLI_SET_FLAG
Field is defined as SET

MYSQLI_NUM_FLAG
Field is defined as NUMERIC

MYSQLI_PART_KEY_FLAG
Field is part of an multi-index

MYSQLI_GROUP_FLAG
Field is part of GROUP BY

MYSQLI_TYPE_DECIMAL
Field is defined as DECIMAL

MYSQLI_TYPE_NEWDECIMAL
Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)

MYSQLI_TYPE_BIT
Field is defined as BIT (MySQL 5.0.3 and up)

MYSQLI_TYPE_TINY
Field is defined as TINYINT

MYSQLI_TYPE_SHORT
Field is defined as INT

MYSQLI_TYPE_LONG
Field is defined as INT

MYSQLI_TYPE_FLOAT
Field is defined as FLOAT

MYSQLI_TYPE_DOUBLE
Field is defined as DOUBLE

MYSQLI_TYPE_NULL
Field is defined as DEFAULT NULL

MYSQLI_TYPE_TIMESTAMP
Field is defined as TIMESTAMP

MYSQLI_TYPE_LONGLONG
Field is defined as BIGINT

MYSQLI_TYPE_INT24
Field is defined as MEDIUMINT

MYSQLI_TYPE_DATE
Field is defined as DATE

MYSQLI_TYPE_TIME
Field is defined as TIME

MYSQLI_TYPE_DATETIME
Field is defined as DATETIME

MYSQLI_TYPE_YEAR
Field is defined as YEAR

MYSQLI_TYPE_NEWDATE
Field is defined as DATE

MYSQLI_TYPE_ENUM
Field is defined as ENUM

MYSQLI_TYPE_SET
Field is defined as SET

MYSQLI_TYPE_TINY_BLOB

Field is defined as TINYBLOB

MYSQLI_TYPE_MEDIUM_BLOB
Field is defined as MEDIUMBLOB

MYSQLI_TYPE_LONG_BLOB
Field is defined as LONGBLOB

MYSQLI_TYPE_BLOB
Field is defined as BLOB

MYSQLI_TYPE_VAR_STRING
Field is defined as VARCHAR

MYSQLI_TYPE_STRING
Field is defined as CHAR

MYSQLI_TYPE_GEOMETRY
Field is defined as GEOMETRY

MYSQLI_NEED_DATA
More data available for bind variable

MYSQLI_NO_DATA
No more data available for bind variable

MYSQLI_DATA_TRUNCATED
Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.

The MySQLi class

Introduction

Represents a connection between PHP and a MySQL database.

Class synopsis

MySQLi

MySQLi {

/* Properties */

int affected_rows;

string connect_errno;

string connect_error;

int errno;

string error;

int field_count;

string host_info;

string protocol_version;

string server_info;

int server_version;

string info;

int insert_id;

string sqlstate;

int thread_id;

int warning_count;

/* Methods */

int mysqli_affected_rows (mysqli $link)

bool mysqli::autocommit (bool $mode)

bool mysqli::change_user (string $user, string $password, string $database)

string mysqli::character_set_name (void)

bool mysqli::close (void)

bool mysqli::commit (void)

int mysqli_connect_errno (void)

string mysqli_connect_error (void)

mysqli mysqli_connect ([string $host [, string $username [, string $passwd [, string $
dbname [, int $port [, string $socket]]]]]])

bool mysqli::debug (string $message)

bool mysqli::dump_debug_info (void)

int mysqli_errno (mysqli $link)

string mysqli_error (mysqli $link)

int mysqli_field_count (mysqli $link)

object mysqli::get_charset (void)

string mysqli::get_client_info (void)

int mysqli::get_client_version (void)

string mysqli_get_host_info (mysqli $link)

int mysqli_get_proto_info (mysqli $link)

string mysqli_get_server_info (mysqli $link)

int mysqli_get_server_version (mysqli $link)

object mysqli::get_warnings (void)

string mysqli_info (mysqli $link)

mysqli init (void)

int mysqli_insert_id (mysqli $link)

bool mysqli::kill (int $processid)

bool mysqli::more_results (void)

bool mysqli::multi_query (string $query)

bool mysqli::next_result (void)

bool mysqli::options (int $option, mixed $value)

bool mysqli::ping (void)

mysqli_stmt prepare (string $query)

mixed mysqli::query (string $query [, int $resultmode])

bool mysqli::real_connect ([string $host [, string $username [, string $passwd [,
string $dbname [, int $port [, string $socket [, int $flags]]]]]]])

string mysqli::escape_string (string $escapestr)

bool real_query (string $query)

bool mysqli::rollback (void)

bool mysqli::select_db (string $dbname)

bool mysqli::set_charset (string $charset)

void mysqli_set_local_infile_default (mysqli $link)

bool mysqli_set_local_infile_handler (mysqli $link, callback $read_func)

string mysqli_sqlstate (mysqli $link)

bool mysqli::ssl_set (string $key, string $cert, string $ca, string $capath, string $
cipher)

string mysqli::stat (void)

mysqli_stmt stmt_init (void)

mysqli_result store_result (void)

int mysqli_thread_id (mysqli $link)

bool mysqli_thread_safe (void)

mysqli_result use_result (void)

int mysqli_warning_count (mysqli $link)
}

mysqli->affected_rows

mysqli_affected_rows

mysqli->affected_rows -- mysqli_affected_rows -- Gets the number of affected rows in a
previous MySQL operation

Description

Object oriented style (property):

mysqli

int affected_rows;

Procedural style:

int mysqli_affected_rows (mysqli $link)

Returns the number of rows affected by the last INSERT, UPDATE, REPLACE or DELETE
query.

For SELECT statements mysqli_affected_rows() works like mysqli_num_rows().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero
indicates that no records where updated for an UPDATE statement, no rows matched the
WHERE clause in the query or that no query has yet been executed. -1 indicates that the
query returned an error.

Note

If the number of affected rows is greater than maximal int value, the number of affected
rows will be returned as a string.

Examples

Example #1077 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Insert rows */

$mysqli->query("CREATE TABLE Language SELECT * from CountryLanguage");

printf("Affected rows (INSERT): %d\n", $mysqli->affected_rows);

$mysqli->query("ALTER TABLE Language ADD Status int default 0");

/* update rows */

$mysqli->query("UPDATE Language SET Status=1 WHERE Percentage > 50");

printf("Affected rows (UPDATE): %d\n", $mysqli->affected_rows);

/* delete rows */

$mysqli->query("DELETE FROM Language WHERE Percentage < 50");

printf("Affected rows (DELETE): %d\n", $mysqli->affected_rows);

/* select all rows */

$result = $mysqli->query("SELECT CountryCode FROM Language");

printf("Affected rows (SELECT): %d\n", $mysqli->affected_rows);

$result->close();

/* Delete table Language */

$mysqli->query("DROP TABLE Language");

/* close connection */

$mysqli->close();

?>

Example #1078 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n",
mysqli_connect_error());

 exit();

}

/* Insert rows */

mysqli_query($link, "CREATE TABLE Language SELECT * from CountryLanguage");

printf("Affected rows (INSERT): %d\n", mysqli_affected_rows($link));

mysqli_query($link, "ALTER TABLE Language ADD Status int default 0");

/* update rows */

mysqli_query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");

printf("Affected rows (UPDATE): %d\n", mysqli_affected_rows($link));

/* delete rows */

mysqli_query($link, "DELETE FROM Language WHERE Percentage < 50");

printf("Affected rows (DELETE): %d\n", mysqli_affected_rows($link));

/* select all rows */

$result = mysqli_query($link, "SELECT CountryCode FROM Language");

printf("Affected rows (SELECT): %d\n", mysqli_affected_rows($link));

mysqli_free_result($result);

/* Delete table Language */

mysqli_query($link, "DROP TABLE Language");

/* close connection */

mysqli_close($link);

?>

The above example will output:

Affected rows (INSERT): 984

Affected rows (UPDATE): 168

Affected rows (DELETE): 815

Affected rows (SELECT): 169

See Also

• mysqli_num_rows()
• mysqli_info()

mysqli::autocommit

mysqli_autocommit

mysqli::autocommit -- mysqli_autocommit -- Turns on or off auto-commiting database
modifications

Description

Object oriented style (method)

bool mysqli::autocommit (bool $mode)

Procedural style:

bool mysqli_autocommit (mysqli $link, bool $mode)

Turns on or off auto-commit mode on queries for the database connection.

To determine the current state of autocommit use the SQL command SELECT
@@autocommit.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

mode

Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function doesn't work with non transactional table types (like MyISAM or ISAM).

Examples

Example #1079 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* turn autocommit on */

$mysqli->autocommit(TRUE);

if ($result = $mysqli->query("SELECT @@autocommit")) {

 $row = $result->fetch_row();

 printf("Autocommit is %s\n", $row[0]);

 $result->free();

}

/* close connection */

$mysqli->close();

?>

Example #1080 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n",
mysqli_connect_error());

 exit();

}

/* turn autocommit on */

mysqli_autocommit($link, TRUE);

if ($result = mysqli_query($link, "SELECT @@autocommit")) {

 $row = mysqli_fetch_row($result);

 printf("Autocommit is %s\n", $row[0]);

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Autocommit is 1

See Also

• mysqli_commit()
• mysqli_rollback()

mysqli::change_user

mysqli_change_user

mysqli::change_user -- mysqli_change_user -- Changes the user of the specified database
connection

Description

Object oriented style (method):

bool mysqli::change_user (string $user, string $password, string $database)

Procedural style:

bool mysqli_change_user (mysqli $link, string $user, string $password, string $
database)

Changes the user of the specified database connection and sets the current database.

In order to successfully change users a valid username and password parameters must be
provided and that user must have sufficient permissions to access the desired database. If
for any reason authorization fails, the current user authentication will remain.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

user

The MySQL user name.

password

The MySQL password.

database

The database to change to. If desired, the NULL value may be passed resulting in only
changing the user and not selecting a database. To select a database in this case use
the mysqli_select_db() function.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Using this command will always cause the current database connection to behave as if
was a completely new database connection, regardless of if the operation was
completed successfully. This reset includes performing a rollback on any active
transactions, closing all temporary tables, and unlocking all locked tables.

Examples

Example #1081 - Object oriented style

<?php

/* connect database test */

$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Set Variable a */

$mysqli->query("SET @a:=1");

/* reset all and select a new database */

$mysqli->change_user("my_user", "my_password", "world");

if ($result = $mysqli->query("SELECT DATABASE()")) {

 $row = $result->fetch_row();

 printf("Default database: %s\n", $row[0]);

 $result->close();

}

if ($result = $mysqli->query("SELECT @a")) {

 $row = $result->fetch_row();

 if ($row[0] === NULL) {

 printf("Value of variable a is NULL\n");

 }

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1082 - Procedural style

<?php

/* connect database test */

$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Set Variable a */

mysqli_query($link, "SET @a:=1");

/* reset all and select a new database */

mysqli_change_user($link, "my_user", "my_password", "world");

if ($result = mysqli_query($link, "SELECT DATABASE()")) {

 $row = mysqli_fetch_row($result);

 printf("Default database: %s\n", $row[0]);

 mysqli_free_result($result);

}

if ($result = mysqli_query($link, "SELECT @a")) {

 $row = mysqli_fetch_row($result);

 if ($row[0] === NULL) {

 printf("Value of variable a is NULL\n");

 }

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Default database: world

Value of variable a is NULL

See Also

• mysqli_connect()
• mysqli_select_db()

mysqli::character_set_name

mysqli_character_set_name

mysqli::character_set_name -- mysqli_character_set_name -- Returns the default
character set for the database connection

Description

Object oriented style (method):

string mysqli::character_set_name (void)

Procedural style:

string mysqli_character_set_name (mysqli $link)

Returns the current character set for the database connection.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

The default character set for the current connection

Examples

Example #1083 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Print current character set */

$charset = $mysqli->character_set_name();

printf ("Current character set is %s\n", $charset);

$mysqli->close();

?>

Example #1084 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Print current character set */

$charset = mysqli_character_set_name($link);

printf ("Current character set is %s\n",$charset);

/* close connection */

mysqli_close($link);

?>

The above example will output:

Current character set is latin1_swedish_ci

See Also

• mysqli_client_encoding()
• mysqli_real_escape_string()

mysqli::close

mysqli_close

mysqli::close -- mysqli_close -- Closes a previously opened database connection

Description

Object oriented style (method):

bool mysqli::close (void)

Procedural style:

bool mysqli_close (mysqli $link)

Closes a previously opened database connection.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysqli_connect()
• mysqli_init()
• mysqli_real_connect()

mysqli::commit

mysqli_commit

mysqli::commit -- mysqli_commit -- Commits the current transaction

Description

Object oriented style (method)

bool mysqli::commit (void)

Procedural style:

bool mysqli_commit (mysqli $link)

Commits the current transaction for the database connection.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1085 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE Language LIKE CountryLanguage Type=InnoDB");

/* set autocommit to off */

$mysqli->autocommit(FALSE);

/* Insert some values */

$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F',
11.2)");

$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */

$mysqli->commit();

/* drop table */

$mysqli->query("DROP TABLE Language");

/* close connection */

$mysqli->close();

?>

Example #1086 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* set autocommit to off */

mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE Language LIKE CountryLanguage
Type=InnoDB");

/* Insert some values */

mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F',
11.2)");

mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Swabian', 'F',
9.4)");

/* commit transaction */

mysqli_commit($link);

/* close connection */

mysqli_close($link);

?>

See Also

• mysqli_autocommit()
• mysqli_rollback()

mysqli->connect_errno

mysqli_connect_errno

mysqli->connect_errno -- mysqli_connect_errno -- Returns the error code from last
connect call

Description

mysqli

string connect_errno;

int mysqli_connect_errno (void)

Returns the last error code number from the last call to mysqli_connect().

Note

Client error message numbers are listed in the MySQL errmsg.h header file, server
error message numbers are listed in mysqld_error.h. In the MySQL source distribution
you can find a complete list of error messages and error numbers in the file
Docs/mysqld_error.txt.

Return Values

An error code value for the last call to mysqli_connect(), if it failed. zero means no error
occurred.

Examples

Example #1087 - mysqli_connect_errno() example

<?php

$link = @mysqli_connect("localhost", "nonexisting_user", "");

if (!$link) {

 printf("Can't connect to localhost. Errorcode: %d\n",
mysqli_connect_errno());

}

?>

See Also

• mysqli_connect()
• mysqli_connect_error()
• mysqli_errno()
• mysqli_error()
• mysqli_sqlstate()

mysqli->connect_error

mysqli_connect_error

mysqli->connect_error -- mysqli_connect_error -- Returns a string description of the last
connect error

Description

mysqli

string connect_error;

string mysqli_connect_error (void)

Returns the last error message string from the last call to mysqli_connect().

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #1088 - mysqli_connect_error() example

<?php

$link = @mysqli_connect("localhost", "nonexisting_user", "");

if (!$link) {

 printf("Can't connect to localhost. Error: %s\n",
mysqli_connect_error());

}

?>

See Also

• mysqli_connect()
• mysqli_connect_errno()

• mysqli_errno()
• mysqli_error()
• mysqli_sqlstate()

mysqli::__construct

mysqli_connect

mysqli::__construct -- mysqli_connect -- Open a new connection to the MySQL server

Description

Object oriented style (constructor):

mysqli::__construct ([string $host [, string $username [, string $passwd [, string $dbname
[, int $port [, string $socket]]]]]])

Procedural style

mysqli mysqli_connect ([string $host [, string $username [, string $passwd [, string $
dbname [, int $port [, string $socket]]]]]])

Opens a connection to the MySQL Server running on.

Parameters

host

Can be either a host name or an IP address. Passing the NULL value or the string
"localhost" to this parameter, the local host is assumed. When possible, pipes will be
used instead of the TCP/IP protocol.

username

The MySQL user name.

passwd

If not provided or NULL, the MySQL server will attempt to authenticate the user
against those user records which have no password only. This allows one username to
be used with different permissions (depending on if a password as provided or not).

dbname

If provided will specify the default database to be used when performing queries.

port

Specifies the port number to attempt to connect to the MySQL server.

socket

Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not explicitly determine the type of connection

to be used when connecting to the MySQL server. How the connection is made to
the MySQL database is determined by the host parameter.

Return Values

Returns a object which represents the connection to a MySQL Server or FALSE if the
connection failed.

Examples

Example #1089 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf("Host information: %s\n", $mysqli->host_info);

/* close connection */

$mysqli->close();

?>

Example #1090 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf("Host information: %s\n", mysqli_get_host_info($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Host information: Localhost via UNIX socket

Notes

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is not
copied the SYSTEMROOT environment variable won't be available and PHP will have
problems loading Winsock.

mysqli::debug

mysqli_debug

mysqli::debug -- mysqli_debug -- Performs debugging operations

Description

Object oriented style (method):

bool mysqli::debug (string $message)

Procedural style:

bool mysqli_debug (string $message)

Performs debugging operations using the Fred Fish debugging library.

Parameters

message

A string representing the debugging operation to perform

Return Values

Returns TRUE.

Notes

Note

To use the mysqli_debug() function you must complile the MySQL client library to
support debugging.

Examples

Example #1091 - Generating a Trace File

<?php

/* Create a trace file in '/tmp/client.trace' on the local (client) machine:
*/

mysqli_debug("d:t:0,/tmp/client.trace");

?>

See Also

• mysqli_dump_debug_info()
• mysqli_report()

mysqli::dump_debug_info

mysqli_dump_debug_info

mysqli::dump_debug_info -- mysqli_dump_debug_info -- Dump debugging information into
the log

Description

Object oriented style (method):

bool mysqli::dump_debug_info (void)

Procedural style:

bool mysqli_dump_debug_info (mysqli $link)

This function is designed to be executed by an user with the SUPER privilege and is used
to dump debugging information into the log for the MySQL Server relating to the
connection.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysqli_debug()

mysqli->errno

mysqli_errno

mysqli->errno -- mysqli_errno -- Returns the error code for the most recent function call

Description

Object oriented style (property):

mysqli

int errno;

Procedural style:

int mysqli_errno (mysqli $link)

Returns the last error code for the most recent MySQLi function call that can succeed or
fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error
message numbers are listed in mysqld_error.h. In the MySQL source distribution you can
find a complete list of error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

An error code value for the last call, if it failed. zero means no error occurred.

Examples

Example #1092 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if (!$mysqli->query("SET a=1")) {

 printf("Errorcode: %d\n", $mysqli->errno);

}

/* close connection */

$mysqli->close();

?>

Example #1093 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if (!mysqli_query($link, "SET a=1")) {

 printf("Errorcode: %d\n", mysqli_errno($link));

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Errorcode: 1193

See Also

• mysqli_connect_errno()
• mysqli_connect_error()
• mysqli_error()
• mysqli_sqlstate()

mysqli->error

mysqli_error

mysqli->error -- mysqli_error -- Returns a string description of the last error

Description

Object oriented style (property):

mysqli

string error;

Procedural style:

string mysqli_error (mysqli $link)

Returns the last error message for the most recent MySQLi function call that can succeed
or fail.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #1094 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if (!$mysqli->query("SET a=1")) {

 printf("Errormessage: %s\n", $mysqli->error);

}

/* close connection */

$mysqli->close();

?>

Example #1095 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if (!mysqli_query($link, "SET a=1")) {

 printf("Errormessage: %s\n", mysqli_error($link));

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Errormessage: Unknown system variable 'a'

See Also

• mysqli_connect_errno()
• mysqli_connect_error()
• mysqli_errno()
• mysqli_sqlstate()

mysqli->field_count

mysqli_field_count

mysqli->field_count -- mysqli_field_count -- Returns the number of columns for the most
recent query

Description

Object oriented style (property):

mysqli_result

int field_count;

Procedural style:

int mysqli_field_count (mysqli $link)

Returns the number of columns for the most recent query on the connection represented
by the link parameter. This function can be useful when using the mysqli_store_result()
function to determine if the query should have produced a non-empty result set or not
without knowing the nature of the query.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

An integer representing the number of fields in a result set.

Examples

Example #1096 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");

$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$mysqli->real_query($HTTP_POST_VARS['query']);

if ($mysqli->field_count) {

 /* this was a select/show or describe query */

 $result = $mysqli->store_result();

 /* process resultset */

 $row = $result->fetch_row();

 /* free resultset */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1097 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");

mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

mysqli_real_query($link, $HTTP_POST_VARS['query']);

if (mysqli_field_count($link)) {

 /* this was a select/show or describe query */

 $result = mysqli_store_result($link);

 /* process resultset */

 $row = mysqli_fetch_row($result);

 /* free resultset */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

mysqli::get_charset

mysqli_get_charset

mysqli::get_charset -- mysqli_get_charset -- Returns a character set object

Description

object mysqli::get_charset (void)

object mysqli_get_charset (mysqli $link)

Returns a character set object providing several properties of the current active characer
set.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

The function returns a character set object with the following properties:
charset

Character set name

collation

Collation name

dir

Directory the charset description was fetched from (?) or "" for builtin character sets

min_length

Minimum character lenght in bytes

max_length

Maximum character length in bytes

number

Internal character set number

state

Characer set status (?)

Examples

Example #1098 - Object oriented style

<?php

 $db = mysqli_init();

 $db->real_connect("localhost","root","","test");

 var_dump($db->get_charset());

?>

Example #1099 - Procedural style

<?php

 $db = mysqli_init();

 mysqli_real_connect($db, "localhost","root","","test");

 var_dump($db->get_charset());

?>

The above example will output:

object(stdClass)#2 (7) {

 ["charset"]=>

 string(6) "latin1"

 ["collation"]=>

 string(17) "latin1_swedish_ci"

 ["dir"]=>

 string(0) ""

 ["min_length"]=>

 int(1)

 ["max_length"]=>

 int(1)

 ["number"]=>

 int(8)

 ["state"]=>

 int(801)

}

See Also

• mysqli_characters_set_name()
• mysqli_set_charset()

mysqli::get_client_info

mysqli_get_client_info

mysqli::get_client_info -- mysqli_get_client_info -- Returns the MySQL client version as a
string

Description

string mysqli::get_client_info (void)

string mysqli_get_client_info (void)

The mysqli_get_client_info() function is used to return a string representing the client
version being used in the MySQLi extension.

Return Values

A string that represents the MySQL client library version

Examples

Example #1100 - mysqli_get_client_info

<?php

/* We don't need a connection to determine

 the version of mysql client library */

printf("Client library version: %s\n", mysqli_get_client_info());

?>

See Also

• mysqli_get_client_version()
• mysqli_get_server_info()
• mysqli_get_server_version()

mysqli::get_client_version

mysqli_get_client_version

mysqli::get_client_version -- mysqli_get_client_version -- Get MySQL client info

Description

int mysqli::get_client_version (void)

int mysqli_get_client_version (void)

Returns client version number as an integer.

Return Values

A number that represents the MySQL client library version in format: main_version*10000
+ minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some
capability exits.

Examples

Example #1101 - mysqli_get_client_version

<?php

/* We don't need a connection to determine

 the version of mysql client library */

printf("Client library version: %d\n", mysqli_get_client_version());

?>

See Also

• mysqli_get_client_info()
• mysqli_get_server_info()
• mysqli_get_server_version()

mysqli->host_info

mysqli_get_host_info

mysqli->host_info -- mysqli_get_host_info -- Returns a string representing the type of
connection used

Description

Object oriented style (property):

mysqli

string host_info;

Procdural style:

string mysqli_get_host_info (mysqli $link)

The mysqli_get_host_info() function returns a string describing the connection represented
by the link parameter is using (including the server host name).

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

A character string representing the server hostname and the connection type.

Examples

Example #1102 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print host information */

printf("Host info: %s\n", $mysqli->host_info);

/* close connection */

$mysqli->close();

?>

Example #1103 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print host information */

printf("Host info: %s\n", mysqli_get_host_info($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Host info: Localhost via UNIX socket

See Also

• mysqli_get_proto_info()

mysqli->protocol_version

mysqli_get_proto_info

mysqli->protocol_version -- mysqli_get_proto_info -- Returns the version of the MySQL
protocol used

Description

Object oriented style (property):

mysqli

string protocol_version;

Procedural style:

int mysqli_get_proto_info (mysqli $link)

Returns an integer representing the MySQL protocol version used by the connection
represented by the link parameter.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns an integer representing the protocol version.

Examples

Example #1104 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print protocol version */

printf("Protocol version: %d\n", $mysqli->protocol_version);

/* close connection */

$mysqli->close();

?>

Example #1105 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print protocol version */

printf("Protocol version: %d\n", mysqli_get_proto_info($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Protocol version: 10

See Also

• mysqli_get_host_info()

mysqli->server_info

mysqli_get_server_info

mysqli->server_info -- mysqli_get_server_info -- Returns the version of the MySQL server

Description

Object oriented style (property):

mysqli

string server_info;

Procedural style:

string mysqli_get_server_info (mysqli $link)

Returns a string representing the version of the MySQL server that the MySQLi extension
is connected to.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

A character string representing the server version.

Examples

Example #1106 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print server version */

printf("Server version: %s\n", $mysqli->server_info);

/* close connection */

$mysqli->close();

?>

Example #1107 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print server version */

printf("Server version: %s\n", mysqli_get_server_info($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Server version: 4.1.2-alpha-debug

See Also

• mysqli_get_client_info()
• mysqli_get_client_version()
• mysqli_get_server_version()

mysqli->server_version

mysqli_get_server_version

mysqli->server_version -- mysqli_get_server_version -- Returns the version of the MySQL
server as an integer

Description

Object oriented style (property):

mysqli

int server_version;

Procedural style:

int mysqli_get_server_version (mysqli $link)

The mysqli_get_server_version() function returns the version of the server connected to
(represented by the link parameter) as an integer.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

An integer representing the server version.

The form of this version number is main_version * 10000 + minor_version * 100 +
sub_version (i.e. version 4.1.0 is 40100).

Examples

Example #1108 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print server version */

printf("Server version: %d\n", $mysqli->server_version);

/* close connection */

$mysqli->close();

?>

Example #1109 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* print server version */

printf("Server version: %d\n", mysqli_get_server_version($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Server version: 40102

See Also

• mysqli_get_client_info()
• mysqli_get_client_version()
• mysqli_get_server_info()

mysqli::get_warnings

mysqli_get_warnings

mysqli::get_warnings -- mysqli_get_warnings --

Description

object mysqli::get_warnings (void)

object mysqli_get_warnings (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

mysqli->info

mysqli_info

mysqli->info -- mysqli_info -- Retrieves information about the most recently executed query

Description

Object oriented style (property)

mysqli

string info;

Procedural style:

string mysqli_info (mysqli $link)

The mysqli_info() function returns a string providing information about the last query
executed. The nature of this string is provided below:

Possible mysqli_info return values

Query type Example result string

INSERT INTO...SELECT... Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...) Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ... Records: 1 Deleted: 0 Skipped: 0 Warnings:
0

ALTER TABLE ... Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings:
0

Note

Queries which do not fall into one of the above formats are not supported. In these
situations, mysqli_info() will return an empty string.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

A character string representing additional information about the most recently executed
query.

Examples

Example #1110 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */

$mysqli->query("INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");

printf("%s\n", $mysqli->info);

/* close connection */

$mysqli->close();

?>

Example #1111 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */

mysqli_query($link, "INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT
150");

printf("%s\n", mysqli_info($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

Records: 150 Duplicates: 0 Warnings: 0

See Also

• mysqli_affected_rows()
• mysqli_warning_count()
• mysqli_num_rows()

mysqli::init

mysqli_init

mysqli::init -- mysqli_init -- Initializes MySQLi and returns a resource for use with
mysqli_real_connect()

Description

Object oriented style (method):

mysqli init (void)

Procedural style:

mysqli mysqli_init (void)

Allocates or initializes a MYSQL object suitable for mysqli_options() and
mysqli_real_connect().

Note

Any subsequent calls to any mysqli function (except mysqli_options()) will fail until
mysqli_real_connect() was called.

Return Values

Returns an object.

See Also

• mysqli_options()
• mysqli_close()
• mysqli_real_connect()
• mysqli_connect()

mysqli->insert_id

mysqli_insert_id

mysqli->insert_id -- mysqli_insert_id -- Returns the auto generated id used in the last query

Description

Object oriented style (property):

mysqli

int insert_id;

Procedural style:

int mysqli_insert_id (mysqli $link)

The mysqli_insert_id() function returns the ID generated by a query on a table with a
column having the AUTO_INCREMENT attribute. If the last query wasn't an INSERT or
UPDATE statement or if the modified table does not have a column with the
AUTO_INCREMENT attribute, this function will return zero.

Note

Performing an INSERT or UPDATE statement using the LAST_INSERT_ID() function
will also modify the value returned by the mysqli_insert_id() function.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

The value of the AUTO_INCREMENT field that was updated by the previous query.
Returns zero if there was no previous query on the connection or if the query did not
update an AUTO_INCREMENT value.

Note

If the number is greater than maximal int value, mysqli_insert_id() will return a string.

Examples

Example #1112 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart',
617000)";

$mysqli->query($query);

printf ("New Record has id %d.\n", $mysqli->insert_id);

/* drop table */

$mysqli->query("DROP TABLE myCity");

/* close connection */

$mysqli->close();

?>

Example #1113 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart',
617000)";

mysqli_query($link, $query);

printf ("New Record has id %d.\n", mysqli_insert_id($link));

/* drop table */

mysqli_query($link, "DROP TABLE myCity");

/* close connection */

mysqli_close($link);

?>

The above example will output:

New Record has id 1.

mysqli::kill

mysqli_kill

mysqli::kill -- mysqli_kill -- Asks the server to kill a MySQL thread

Description

Object oriented style (method)

bool mysqli::kill (int $processid)

Procedural style:

bool mysqli_kill (mysqli $link, int $processid)

This function is used to ask the server to kill a MySQL thread specified by the processid
parameter. This value must be retrieved by calling the mysqli_thread_id() function.

To stop a running query you should use the SQL command KILL QUERY processid.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1114 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = $mysqli->thread_id;

/* Kill connection */

$mysqli->kill($thread_id);

/* This should produce an error */

if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", $mysqli->error);

 exit;

}

/* close connection */

$mysqli->close();

?>

Example #1115 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = mysqli_thread_id($link);

/* Kill connection */

mysqli_kill($link, $thread_id);

/* This should produce an error */

if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", mysqli_error($link));

 exit;

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Error: MySQL server has gone away

See Also

• mysqli_thread_id()

mysqli::more_results

mysqli_more_results

mysqli::more_results -- mysqli_more_results -- Check if there are any more query results
from a multi query

Description

bool mysqli::more_results (void)

bool mysqli_more_results (mysqli $link)

Indicates if one or more result sets are available from a previous call to
mysqli_multi_query().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query().

See Also

• mysqli_multi_query()
• mysqli_next_result()
• mysqli_store_result()
• mysqli_use_result()

mysqli::multi_query

mysqli_multi_query

mysqli::multi_query -- mysqli_multi_query -- Performs a query on the database

Description

Object oriented style (method):

bool mysqli::multi_query (string $query)

Procedural style:

bool mysqli_multi_query (mysqli $link, string $query)

Executes one or multiple queries which are concatenated by a semicolon.

To retrieve the resultset from the first query you can use mysqli_use_result() or
mysqli_store_result(). All subsequent query results can be processed using
mysqli_more_results() and mysqli_next_result().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

query

The query, as a string.

Return Values

Returns FALSE if the first statement failed. To retrieve subsequent errors from other
statements you have to call mysqli_next_result() first.

Examples

Example #1116 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT CURRENT_USER();";

$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */

if ($mysqli->multi_query($query)) {

 do {

 /* store first result set */

 if ($result = $mysqli->store_result()) {

 while ($row = $result->fetch_row()) {

 printf("%s\n", $row[0]);

 }

 $result->free();

 }

 /* print divider */

 if ($mysqli->more_results()) {

 printf("-----------------\n");

 }

 } while ($mysqli->next_result());

}

/* close connection */

$mysqli->close();

?>

Example #1117 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT CURRENT_USER();";

$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */

if (mysqli_multi_query($link, $query)) {

 do {

 /* store first result set */

 if ($result = mysqli_store_result($link)) {

 while ($row = mysqli_fetch_row($result)) {

 printf("%s\n", $row[0]);

 }

 mysqli_free_result($result);

 }

 /* print divider */

 if (mysqli_more_results($link)) {

 printf("-----------------\n");

 }

 } while (mysqli_next_result($link));

}

/* close connection */

mysqli_close($link);

?>

The above example will output something similar to:

my_user@localhost

Amersfoort

Maastricht

Dordrecht

Leiden

Haarlemmermeer

See Also

• mysqli_use_result()
• mysqli_store_result()
• mysqli_next_result()
• mysqli_more_results()

mysqli::next_result

mysqli_next_result

mysqli::next_result -- mysqli_next_result -- Prepare next result from multi_query

Description

bool mysqli::next_result (void)

bool mysqli_next_result (mysqli $link)

Prepares next result set from a previous call to mysqli_multi_query() which can be
retrieved by mysqli_store_result() or mysqli_use_result().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query().

See Also

• mysqli_multi_query()
• mysqli_more_results()
• mysqli_store_result()
• mysqli_use_result()

mysqli::options

mysqli_options

mysqli::options -- mysqli_options -- Set options

Description

Object oriented style (method)

bool mysqli::options (int $option, mixed $value)

Procedural style:

bool mysqli_options (mysqli $link, int $option, mixed $value)

Used to set extra connect options and affect behavior for a connection.

This function may be called multiple times to set several options.

mysqli_options() should be called after mysqli_init() and before mysqli_real_connect().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

option

The option that you want to set. It can be one of the following values:

Valid options

Name Description

MYSQLI_OPT_CONNECT_TIMEOUT connection timeout in seconds

MYSQLI_OPT_LOCAL_INFILE enable/disable use of LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND command to execute after when connecting
to MySQL server

MYSQLI_READ_DEFAULT_FILE Read options from named option file instead
of my.cnf

MYSQLI_READ_DEFAULT_GROUP Read options from the named group from
my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

value

The value for the option.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_real_connect().

See Also

• mysqli_init()
• mysqli_real_connect()

mysqli::ping

mysqli_ping

mysqli::ping -- mysqli_ping -- Pings a server connection, or tries to reconnect if the connection
has gone down

Description

Object oriented style (method):

bool mysqli::ping (void)

Procedural style:

bool mysqli_ping (mysqli $link)

Checks whether the connection to the server is working. If it has gone down, and global option
mysqli.reconnect is enabled an automatic reconnection is attempted.

This function can be used by clients that remain idle for a long while, to check whether the
server has closed the connection and reconnect if necessary.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1118 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* check if server is alive */

if ($mysqli->ping()) {

 printf ("Our connection is ok!\n");

} else {

 printf ("Error: %s\n", $mysqli->error);

}

/* close connection */

$mysqli->close();

?>

Example #1119 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* check if server is alive */

if (mysqli_ping($link)) {

 printf ("Our connection is ok!\n");

} else {

 printf ("Error: %s\n", mysqli_error($link));

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Our connection is ok!

mysqli::prepare

mysqli_prepare

mysqli::prepare -- mysqli_prepare -- Prepare a SQL statement for execution

Description

Object oriented style (method)

mysqli_stmt prepare (string $query)

Procedure style:

mysqli_stmt mysqli_prepare (mysqli $link, string $query)

Prepares the SQL query pointed to by the null-terminated string query, and returns a
statement handle to be used for further operations on the statement. The query must consist
of a single SQL statement.

The parameter markers must be bound to application variables using
mysqli_stmt_bind_param() and/or mysqli_stmt_bind_result() before executing the statement or
fetching rows.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

query

The query, as a string.

Note

You should not add a terminating semicolon or \g to the statement.

This parameter can include one or more parameter markers in the SQL statement by
embedding question mark (?) characters at the appropriate positions.

Note

The markers are legal only in certain places in SQL statements. For example, they are
allowed in the VALUES() list of an INSERT statement (to specify column values for a
row), or in a comparison with a column in a WHERE clause to specify a comparison
value.

However, they are not allowed for identifiers (such as table or column names), in the

select list that names the columns to be returned by a SELECT statement, or to specify
both operands of a binary operator such as the = equal sign. The latter restriction is
necessary because it would be impossible to determine the parameter type. It's not
allowed to compare marker with NULL by ? IS NULL too. In general, parameters are
legal only in Data Manipulation Languange (DML) statements, and not in Data
Defination Language (DDL) statements.

Return Values

mysqli_prepare() returns a statement object or FALSE if an error occured.

Examples

Example #1120 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$city = "Amersfoort";

/* create a prepared statement */

if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */

 $stmt->bind_param("s", $city);

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($district);

 /* fetch value */

 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1121 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$city = "Amersfoort";

/* create a prepared statement */

if ($stmt = mysqli_prepare($link, "SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */

 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */

 mysqli_stmt_execute($stmt);

 /* bind result variables */

 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */

 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Amersfoort is in district Utrecht

See Also

• mysqli_stmt_execute()
• mysqli_stmt_fetch()
• mysqli_stmt_bind_param()
• mysqli_stmt_bind_result()
• mysqli_stmt_close()

mysqli::query

mysqli_query

mysqli::query -- mysqli_query -- Performs a query on the database

Description

Object oriented style (method):

mixed mysqli::query (string $query [, int $resultmode])

Procedural style:

mixed mysqli_query (mysqli $link, string $query [, int $resultmode])

Performs a query against the database.

Functionally, using this function is identical to calling mysqli_real_query() followed either by
mysqli_use_result() or mysqli_store_result().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

query

The query string.

resultmode

Either the constant MYSQLI_USE_RESULT or MYSQLI_STORE_RESULT depending on
the desired behavior. By default, MYSQLI_STORE_RESULT is used. If you use
MYSQLI_USE_RESULT all subsequent calls will return error Commands out of sync
unless you call mysqli_free_result()

Return Values

Returns TRUE on success or FALSE on failure. For SELECT, SHOW, DESCRIBE or
EXPLAIN mysqli_query() will return a result object.

Examples

Example #1122 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Create table doesn't return a resultset */

if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {

 printf("Table myCity successfully created.\n");

}

/* Select queries return a resultset */

if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {

 printf("Select returned %d rows.\n", $result->num_rows);

 /* free result set */

 $result->close();

}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */

if ($result = $mysqli->query("SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the

 server until result set was closed. All calls will return an

 'out of sync' error */

 if (!$mysqli->query("SET @a:='this will not work'")) {

 printf("Error: %s\n", $mysqli->error);

 }

 $result->close();

}

$mysqli->close();

?>

Example #1123 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Create table doesn't return a resultset */

if (mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {

 printf("Table myCity successfully created.\n");

}

/* Select queries return a resultset */

if ($result = mysqli_query($link, "SELECT Name FROM City LIMIT 10")) {

 printf("Select returned %d rows.\n", mysqli_num_rows($result));

 /* free result set */

 mysqli_free_result($result);

}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */

if ($result = mysqli_query($link, "SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the

 server until result set was closed. All calls will return an

 'out of sync' error */

 if (!mysqli_query($link, "SET @a:='this will not work'")) {

 printf("Error: %s\n", mysqli_error($link));

 }

 mysqli_free_result($result);

}

mysqli_close($link);

?>

The above example will output:

Table myCity successfully created.

Select returned 10 rows.

Error: Commands out of sync; You can't run this command now

See Also

• mysqli_real_query()
• mysqli_multi_query()
• mysqli_free_result()

mysqli::real_connect

mysqli_real_connect

mysqli::real_connect -- mysqli_real_connect -- Opens a connection to a mysql server

Description

Object oriented style (method)

bool mysqli::real_connect ([string $host [, string $username [, string $passwd [, string $
dbname [, int $port [, string $socket [, int $flags]]]]]]])

Procedural style

bool mysqli_real_connect (mysqli $link [, string $host [, string $username [, string $passwd
[, string $dbname [, int $port [, string $socket [, int $flags]]]]]]])

Establish a connection to a MySQL database engine.

This function differs from mysqli_connect():

• mysqli_real_connect() needs a valid object which has to be created by function
mysqli_init().

• With function mysqli_options() you can set various options for connection.

• There is a flags parameter.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

host

Can be either a host name or an IP address. Passing the NULL value or the string
"localhost" to this parameter, the local host is assumed. When possible, pipes will be used
instead of the TCP/IP protocol.

username

The MySQL user name.

passwd

If provided or NULL, the MySQL server will attempt to authenticate the user against those
user records which have no password only. This allows one username to be used with
different permissions (depending on if a password as provided or not).

dbname

If provided will specify the default database to be used when performing queries.

port

Specifies the port number to attempt to connect to the MySQL server.

socket

Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not explicitly determine the type of connection to
be used when connecting to the MySQL server. How the connection is made to the
MySQL database is determined by the host parameter.

flags

With the parameter flags you can set different connection options:

Supported flags

Name Description

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_FOUND_ROWS return number of matched rows, not the
number of affected rows

MYSQLI_CLIENT_IGNORE_SPACE Allow spaces after function names. Makes
all function names reserved words.

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead
of wait_timeout seconds) of inactivity before
closing the connection

MYSQLI_CLIENT_SSL Use SSL (encryption)

Note

For security reasons the MULTI_STATEMENT flag is not supported in PHP. If you
want to execute multiple queries use the mysqli_multi_query() function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1124 - Object oriented style

<?php

/* create a connection object which is not connected */

$mysqli = mysqli_init();

/* set connection options */

$mysqli->options(MYSQLI_INIT_COMMAND, "SET AUTOCOMMIT=0");

$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5);

/* connect to server */

$mysqli->real_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf ("Connection: %s\n.", $mysqli->host_info);

$mysqli->close();

?>

Example #1125 - Procedural style

<?php

/* create a connection object which is not connected */

$link = mysqli_init();

/* set connection options */

mysqli_options($link, MYSQLI_INIT_COMMAND, "SET AUTOCOMMIT=0");

mysqli_options($link, MYSQLI_OPT_CONNECT_TIMEOUT, 5);

/* connect to server */

mysqli_real_connect($link, 'localhost', 'my_user', 'my_password', 'world');

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf ("Connection: %s\n.", mysqli_get_host_info($link));

mysqli_close($link);

?>

The above example will output:

Connection: Localhost via UNIX socket

See Also

• mysqli_connect()
• mysqli_init()
• mysqli_options()
• mysqli_ssl_set()
• mysqli_close()

mysqli::real_escape_string

mysqli_real_escape_string

mysqli::real_escape_string -- mysqli_real_escape_string -- Escapes special characters in a
string for use in a SQL statement, taking into account the current charset of the connection

Description

Object oriented style (both methods are equivalent):

string mysqli::escape_string (string $escapestr)

string real_escape_string (string $escapestr)

Procedural style:

string mysqli_real_escape_string (mysqli $link, string $escapestr)

This function is used to create a legal SQL string that you can use in an SQL statement. The
given string is encoded to an escaped SQL string, taking into account the current character set
of the connection.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

escapestr

The string to be escaped. Characters encoded are NUL (ASCII 0), \n, \r, \, ', ", and
Control-Z.

Return Values

Returns an escaped string.

Examples

Example #1126 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */

if (!$mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {

 printf("Error: %s\n", $mysqli->sqlstate);

}

$city = $mysqli->real_escape_string($city);

/* this query with escaped $city will work */

if ($mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {

 printf("%d Row inserted.\n", $mysqli->affected_rows);

}

$mysqli->close();

?>

Example #1127 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */

if (!mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {

 printf("Error: %s\n", mysqli_sqlstate($link));

}

$city = mysqli_real_escape_string($link, $city);

/* this query with escaped $city will work */

if (mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {

 printf("%d Row inserted.\n", mysqli_affected_rows($link));

}

mysqli_close($link);

?>

The above example will output:

Error: 42000

1 Row inserted.

See Also

• mysqli_character_set_name()

mysqli::real_query

mysqli_real_query

mysqli::real_query -- mysqli_real_query -- Execute an SQL query

Description

Object oriented style (method):

bool real_query (string $query)

Procedural style

bool mysqli_real_query (mysqli $link, string $query)

Executes a single query against the database whose result can then be retrieved or stored
using the mysqli_store_result() or mysqli_use_result() functions.

In order to determine if a given query should return a result set or not, see mysqli_field_count()
.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

query

The query, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysqli_query()
• mysqli_store_result()
• mysqli_use_result()

mysqli::rollback

mysqli_rollback

mysqli::rollback -- mysqli_rollback -- Rolls back current transaction

Description

Object oriented style (method):

bool mysqli::rollback (void)

Procedural style:

bool mysqli_rollback (mysqli $link)

Rollbacks the current transaction for the database.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1128 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* disable autocommit */

$mysqli->autocommit(FALSE);

$mysqli->query("CREATE TABLE myCity LIKE City");

$mysqli->query("ALTER TABLE myCity Type=InnoDB");

$mysqli->query("INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */

$mysqli->commit();

/* delete all rows */

$mysqli->query("DELETE FROM myCity");

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {

 $row = $result->fetch_row();

 printf("%d rows in table myCity.\n", $row[0]);

 /* Free result */

 $result->close();

}

/* Rollback */

$mysqli->rollback();

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {

 $row = $result->fetch_row();

 printf("%d rows in table myCity (after rollback).\n", $row[0]);

 /* Free result */

 $result->close();

}

/* Drop table myCity */

$mysqli->query("DROP TABLE myCity");

$mysqli->close();

?>

Example #1129 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* disable autocommit */

mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE myCity LIKE City");

mysqli_query($link, "ALTER TABLE myCity Type=InnoDB");

mysqli_query($link, "INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */

mysqli_commit($link);

/* delete all rows */

mysqli_query($link, "DELETE FROM myCity");

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {

 $row = mysqli_fetch_row($result);

 printf("%d rows in table myCity.\n", $row[0]);

 /* Free result */

 mysqli_free_result($result);

}

/* Rollback */

mysqli_rollback($link);

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {

 $row = mysqli_fetch_row($result);

 printf("%d rows in table myCity (after rollback).\n", $row[0]);

 /* Free result */

 mysqli_free_result($result);

}

/* Drop table myCity */

mysqli_query($link, "DROP TABLE myCity");

mysqli_close($link);

?>

The above example will output:

0 rows in table myCity.

50 rows in table myCity (after rollback).

See Also

• mysqli_commit()
• mysqli_autocommit()

mysqli::select_db

mysqli_select_db

mysqli::select_db -- mysqli_select_db -- Selects the default database for database queries

Description

Object oriented style (method):

bool mysqli::select_db (string $dbname)

Procedural style:

bool mysqli_select_db (mysqli $link, string $dbname)

Selects the default database to be used when performing queries against the database
connection.

Note

This function should only be used to change the default database for the connection. You
can select the default database with 4th parameter in mysqli_connect().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

dbname

The database name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1130 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* return name of current default database */

if ($result = $mysqli->query("SELECT DATABASE()")) {

 $row = $result->fetch_row();

 printf("Default database is %s.\n", $row[0]);

 $result->close();

}

/* change db to world db */

$mysqli->select_db("world");

/* return name of current default database */

if ($result = $mysqli->query("SELECT DATABASE()")) {

 $row = $result->fetch_row();

 printf("Default database is %s.\n", $row[0]);

 $result->close();

}

$mysqli->close();

?>

Example #1131 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* return name of current default database */

if ($result = mysqli_query($link, "SELECT DATABASE()")) {

 $row = mysqli_fetch_row($result);

 printf("Default database is %s.\n", $row[0]);

 mysqli_free_result($result);

}

/* change db to world db */

mysqli_select_db($link, "world");

/* return name of current default database */

if ($result = mysqli_query($link, "SELECT DATABASE()")) {

 $row = mysqli_fetch_row($result);

 printf("Default database is %s.\n", $row[0]);

 mysqli_free_result($result);

}

mysqli_close($link);

?>

The above example will output:

Default database is test.

Default database is world.

See Also

• mysqli_connect()
• mysqli_real_connect()

mysqli::set_charset

mysqli_set_charset

mysqli::set_charset -- mysqli_set_charset -- Sets the default client character set

Description

Object oriented style (method):

bool mysqli::set_charset (string $charset)

Procedural style:

bool mysqli_set_charset (mysqli $link, string $charset)

Sets the default character set to be used when sending data from and to the database server.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

charset

The charset to be set as default.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

To use this function on a Windows platform you need MySQL client library version 4.1.11
or above (for MySQL 5.0 you need 5.0.6 or above).

Examples

Example #1132 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* change character set to utf8 */

if (!$mysqli->set_charset("utf8")) {

 printf("Error loading character set utf8: %s\n", $mysqli->error);

} else {

 printf("Current character set: %s\n", $mysqli->character_set_name());

}

$mysqli->close();

?>

Example #1133 - Procedural style

<?php

$link = mysqli_connect('localhost', 'my_user', 'my_password', 'test');

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* change character set to utf8 */

if (!mysqli_set_charset($link, "utf8")) {

 printf("Error loading character set utf8: %s\n", mysqli_error($link));

} else {

 printf("Current character set: %s\n", mysqli_character_set_name($link));

}

mysqli_close($link);

?>

The above example will output:

Current character set: utf8

See Also

• mysqli_character_set_name()
• mysqli_real_escape_string()
• » List of character sets that MySQL supports

http://dev.mysql.com/doc/refman/5.1/en/charset-charsets.html

mysqli::set_local_infile_default

mysqli_set_local_infile_default

mysqli::set_local_infile_default -- mysqli_set_local_infile_default -- Unsets user defined
handler for load local infile command

Description

void mysqli_set_local_infile_default (mysqli $link)

Deactivates a LOAD DATA INFILE LOCAL handler previously set with
mysqli_set_local_infile_handler().

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

No value is returned.

Examples

See mysqli_set_local_infile_handler() examples

See Also

• mysqli_set_local_infile_handler()

mysqli::set_local_infile_handler

mysqli_set_local_infile_handler

mysqli::set_local_infile_handler -- mysqli_set_local_infile_handler -- Set callback function for
LOAD DATA LOCAL INFILE command

Description

bool mysqli_set_local_infile_handler (mysqli $link, callback $read_func)

Object oriented style (method)

mysqli

bool set_local_infile_handler (mysqli $link, callback $read_func)

Set callback function for LOAD DATA LOCAL INFILE command

The callbacks task is to read input from the file specified in the LOAD DATA LOCAL INFILE
and to reformat it into the format understood by LOAD DATA INFILE.

The returned data needs to match the format speficied in the LOAD DATA

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

read_func

A callback function or object method taking the following parameters:
stream

A PHP stream associated with the SQL commands INFILE

&buffer

A string buffer to store the rewritten input into

buflen

The maximum number of characters to be stored in the buffer

&errormsg

If an error occures you can store an error message in here

The callback function should return the number of characters stored in the buffer or a
negative value if an error occured.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1134 - Object oriented style

<?php

 $db = mysqli_init();

 $db->real_connect("localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)

 {

 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]

 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);

 }

 echo "Input:\n";

 $db->set_local_infile_handler("callme");

 $db->query("LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");

 $db->set_local_infile_default();

 $res = $db->query("SELECT * FROM t1");

 echo "\nResult:\n";

 while ($row = $res->fetch_assoc()) {

 echo join(",", $row)."\n";

 }

?>

Example #1135 - Procedural style

<?php

 $db = mysqli_init();

 mysqli_real_connect($db, "localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)

 {

 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]

 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);

 }

 echo "Input:\n";

 mysqli_set_local_infile_handler($db, "callme");

 mysqli_query($db, "LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");

 mysqli_set_local_infile_default($db);

 $res = mysqli_query($db, "SELECT * FROM t1");

 echo "\nResult:\n";

 while ($row = mysqli_fetch_assoc($res)) {

 echo join(",", $row)."\n";

 }

?>

The above example will output:

Input:

23,foo

42,bar

Output:

23,FOO

42,BAR

See Also

• mysqli_set_local_infile_default()

mysqli->sqlstate

mysqli_sqlstate

mysqli->sqlstate -- mysqli_sqlstate -- Returns the SQLSTATE error from previous MySQL
operation

Description

Object oriented style (property):

mysqli

string sqlstate;

Procedural style:

string mysqli_sqlstate (mysqli $link)

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error. The values are specified by ANSI SQL
and ODBC. For a list of possible values, see
» http://dev.mysql.com/doc/mysql/en/error-handling.html.

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error.

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://dev.mysql.com/doc/mysql/en/error-handling.html

Examples

Example #1136 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Table City already exists, so we should get an error */

if (!$mysqli->query("CREATE TABLE City (ID INT, Name VARCHAR(30))")) {

 printf("Error - SQLSTATE %s.\n", $mysqli->sqlstate);

}

$mysqli->close();

?>

Example #1137 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* Table City already exists, so we should get an error */

if (!mysqli_query($link, "CREATE TABLE City (ID INT, Name VARCHAR(30))")) {

 printf("Error - SQLSTATE %s.\n", mysqli_sqlstate($link));

}

mysqli_close($link);

?>

The above example will output:

Error - SQLSTATE 42S01.

See Also

• mysqli_errno()
• mysqli_error()

mysqli::ssl_set

mysqli_ssl_set

mysqli::ssl_set -- mysqli_ssl_set -- Used for establishing secure connections using SSL

Description

Object oriented style (method):

bool mysqli::ssl_set (string $key, string $cert, string $ca, string $capath, string $cipher)

Procedural style:

bool mysqli_ssl_set (mysqli $link, string $key, string $cert, string $ca, string $capath,
string $cipher)

Used for establishing secure connections using SSL. It must be called before
mysqli_real_connect(). This function does nothing unless OpenSSL support is enabled.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

key

The path name to the key file.

cert

The path name to the certificate file.

ca

The path name to the certificate authority file.

capath

The pathname to a directory that contains trusted SSL CA certificates in PEM format.

cipher

A list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL

Return Values

This function always returns TRUE value. If SSL setup is incorrect mysqli_real_connect() will
return an error when you attempt to connect.

See Also

• mysqli_options()
• mysqli_real_connect()

mysqli::stat

mysqli_stat

mysqli::stat -- mysqli_stat -- Gets the current system status

Description

Object oriented style (method):

string mysqli::stat (void)

Procedural style:

string mysqli_stat (mysqli $link)

mysqli_stat() returns a string containing information similar to that provided by the 'mysqladmin
status' command. This includes uptime in seconds and the number of running threads,
questions, reloads, and open tables.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

A string describing the server status. FALSE if an error occurred.

Examples

Example #1138 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf ("System status: %s\n", $mysqli->stat());

$mysqli->close();

?>

Example #1139 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

printf("System status: %s\n", mysqli_stat($link));

mysqli_close($link);

?>

The above example will output:

System status: Uptime: 272 Threads: 1 Questions: 5340 Slow queries: 0

Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632

Memory in use: 8496K Max memory used: 8560K

See Also

• mysqli_get_server_info()

mysqli::stmt_init

mysqli_stmt_init

mysqli::stmt_init -- mysqli_stmt_init -- Initializes a statement and returns an object for use with
mysqli_stmt_prepare

Description

Object oriented style (property):

mysqli

mysqli_stmt stmt_init (void)

Procedural style :

mysqli_stmt mysqli_stmt_init (mysqli $link)

Allocates and initializes a statement object suitable for mysqli_stmt_prepare().

Note

Any subsequent calls to any mysqli_stmt function will fail until mysqli_stmt_prepare() was
called.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns an object.

See Also

• mysqli_stmt_prepare()

mysqli::store_result

mysqli_store_result

mysqli::store_result -- mysqli_store_result -- Transfers a result set from the last query

Description

Object oriented style (method):

mysqli_result store_result (void)

Procedural style:

mysqli_result mysqli_store_result (mysqli $link)

Transfers the result set from the last query on the database connection represented by the
link parameter to be used with the mysqli_data_seek() function.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns a buffered result object or FALSE if an error occurred.

Note

mysqli_store_result() returns FALSE in case the query didn't return a result set (if the
query was, for example an INSERT statement). This function also returns FALSE if the
reading of the result set failed. You can check if you have got an error by checking if
mysqli_error() doesn't return an empty string, if mysqli_errno() returns a non zero value, or
if mysqli_field_count() returns a non zero value. Also possible reason for this function
returning FALSE after successfull call to mysqli_query() can be too large result set
(memory for it cannot be allocated). If mysqli_field_count() returns a non-zero value, the
statement should have produced a non-empty result set.

Notes

Note

Although it is always good practice to free the memory used by the result of a query using
the mysqli_free_result() function, when transfering large result sets using the
mysqli_store_result() this becomes particularly important.

Examples

See mysqli_multi_query().

See Also

• mysqli_real_query()
• mysqli_use_result()

mysqli::thread_id

mysqli_thread_id

mysqli::thread_id -- mysqli_thread_id -- Returns the thread ID for the current connection

Description

Object oriented style (property):

mysqli

int thread_id;

Procedural style:

int mysqli_thread_id (mysqli $link)

The mysqli_thread_id() function returns the thread ID for the current connection which can
then be killed using the mysqli_kill() function. If the connection is lost and you reconnect with
mysqli_ping(), the thread ID will be other. Therefore you should get the thread ID only when
you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the connection
is broken and then re-established a new thread ID will be assigned.

To kill a running query you can use the SQL command KILL QUERY processid.

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Returns the Thread ID for the current connection.

Examples

Example #1140 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = $mysqli->thread_id;

/* Kill connection */

$mysqli->kill($thread_id);

/* This should produce an error */

if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", $mysqli->error);

 exit;

}

/* close connection */

$mysqli->close();

?>

Example #1141 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* determine our thread id */

$thread_id = mysqli_thread_id($link);

/* Kill connection */

mysqli_kill($link, $thread_id);

/* This should produce an error */

if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {

 printf("Error: %s\n", mysqli_error($link));

 exit;

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Error: MySQL server has gone away

See Also

• mysqli_kill()

mysqli::thread_safe

mysqli_thread_safe

mysqli::thread_safe -- mysqli_thread_safe -- Returns whether thread safety is given or not

Description

Procedural style:

bool mysqli_thread_safe (void)

Tells whether the client library is compiled as thread-safe.

Return Values

TRUE if the client library is thread-safe, otherwise FALSE.

mysqli::use_result

mysqli_use_result

mysqli::use_result -- mysqli_use_result -- Initiate a result set retrieval

Description

Object oriented style (method):

mysqli_result use_result (void)

Procedural style:

mysqli_result mysqli_use_result (mysqli $link)

Used to initiate the retrieval of a result set from the last query executed using the
mysqli_real_query() function on the database connection.

Either this or the mysqli_store_result() function must be called before the results of a query
can be retrieved, and one or the other must be called to prevent the next query on that
database connection from failing.

Note

The mysqli_use_result() function does not transfer the entire result set from the database
and hence cannot be used functions such as mysqli_data_seek() to move to a particular
row within the set. To use this functionality, the result set must be stored using
mysqli_store_result(). One should not use mysqli_use_result() if a lot of processing on the
client side is performed, since this will tie up the server and prevent other threads from
updating any tables from which the data is being fetched.

Return Values

Returns an unbuffered result object or FALSE if an error occurred.

Examples

Example #1142 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT CURRENT_USER();";

$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */

if ($mysqli->multi_query($query)) {

 do {

 /* store first result set */

 if ($result = $mysqli->use_result()) {

 while ($row = $result->fetch_row()) {

 printf("%s\n", $row[0]);

 }

 $result->close();

 }

 /* print divider */

 if ($mysqli->more_results()) {

 printf("-----------------\n");

 }

 } while ($mysqli->next_result());

}

/* close connection */

$mysqli->close();

?>

Example #1143 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT CURRENT_USER();";

$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */

if (mysqli_multi_query($link, $query)) {

 do {

 /* store first result set */

 if ($result = mysqli_use_result($link)) {

 while ($row = mysqli_fetch_row($result)) {

 printf("%s\n", $row[0]);

 }

 mysqli_free_result($result);

 }

 /* print divider */

 if (mysqli_more_results($link)) {

 printf("-----------------\n");

 }

 } while (mysqli_next_result($link));

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

my_user@localhost

Amersfoort

Maastricht

Dordrecht

Leiden

Haarlemmermeer

See Also

• mysqli_real_query()
• mysqli_store_result()

mysqli::warning_count

mysqli_warning_count

mysqli::warning_count -- mysqli_warning_count -- Returns the number of warnings from the
last query for the given link

Description

Object oriented style (property):

mysqli

int warning_count;

Procedural style:

int mysqli_warning_count (mysqli $link)

Returns the number of warnings from the last query in the connection.

Note

For retrieving warning messages you can use the SQL command SHOW WARNINGS
[limit row_count].

Parameters

link

Procedural style only: A link identifier returned by mysqli_connect() or mysqli_init()

Return Values

Number of warnings or zero if there are no warnings.

Examples

Example #1144 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* a remarkable city in Wales */

$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',

 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

$mysqli->query($query);

if ($mysqli->warning_count) {

 if ($result = $mysqli->query("SHOW WARNINGS")) {

 $row = $result->fetch_row();

 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);

 $result->close();

 }

}

/* close connection */

$mysqli->close();

?>

Example #1145 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* a remarkable long city name in Wales */

$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',

 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

mysqli_query($link, $query);

if (mysqli_warning_count($link)) {

 if ($result = mysqli_query($link, "SHOW WARNINGS")) {

 $row = mysqli_fetch_row($result);

 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);

 mysqli_free_result($result);

 }

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Warning (1264): Data truncated for column 'Name' at row 1

See Also

• mysqli_errno()
• mysqli_error()
• mysqli_sqlstate()

The MySQLi_STMT class

Introduction

Represents a prepared statement.

Class synopsis

MySQLi_STMT

MySQLi_STMT {

/* Properties */

int affected_rows;

int errno;

string error;

int field_count;

int insert_id;

int num_rows;

int param_count;

string sqlstate;

/* Methods */

int mysqli_stmt_affected_rows (mysqli_stmt $stmt)

int mysqli_stmt_attr_get (mysqli_stmt $stmt, int $attr)

bool mysqli_stmt_attr_set (mysqli_stmt $stmt, int $attr, int $mode)

bool mysqli_stmt::bind_param (string $types, mixed &$var1 [, mixed &$...])

bool mysqli_stmt::bind_result (mixed &$var1 [, mixed &$...])

bool mysqli_stmt::close (void)

void mysqli_stmt::data_seek (int $offset)

int mysqli_stmt_errno (mysqli_stmt $stmt)

string mysqli_stmt_error (mysqli_stmt $stmt)

bool mysqli_stmt::execute (void)

bool mysqli_stmt::fetch (void)

int mysqli_stmt_field_count (mysqli_stmt $stmt)

void mysqli_stmt::free_result (void)

object mysqli_stmt::get_warnings (mysqli_stmt $stmt)

mixed mysqli_stmt_insert_id (mysqli_stmt $stmt)

int mysqli_stmt_num_rows (mysqli_stmt $stmt)

int mysqli_stmt_param_count (mysqli_stmt $stmt)

mixed mysqli_stmt::prepare (string $query)

bool mysqli_stmt::reset (void)

mysqli_result mysqli_stmt::result_metadata (void)

bool mysqli_stmt::send_long_data (int $param_nr, string $data)

string mysqli_stmt_sqlstate (mysqli_stmt $stmt)

bool mysqli_stmt::store_result (void)
}

mysqli_stmt->affected_rows

mysqli_stmt_affected_rows

mysqli_stmt->affected_rows -- mysqli_stmt_affected_rows -- Returns the total number of rows
changed, deleted, or inserted by the last executed statement

Description

Object oriented style (property):

mysqli_stmt

int affected_rows;

Procedural style :

int mysqli_stmt_affected_rows (mysqli_stmt $stmt)

Returns the number of rows affected by INSERT, UPDATE, or DELETE query.

This function only works with queries which update a table. In order to get the number of rows
from a SELECT query, use mysqli_stmt_num_rows() instead.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates
that no records where updated for an UPDATE/DELETE statement, no rows matched the
WHERE clause in the query or that no query has yet been executed. -1 indicates that the
query has returned an error.

Note

If the number of affected rows is greater than maximal PHP int value, the number of
affected rows will be returned as a string value.

Examples

Example #1146 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* create temp table */

$mysqli->query("CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */

if ($stmt = $mysqli->prepare($query)) {

 /* Bind variable for placeholder */

 $code = 'A%';

 $stmt->bind_param("s", $code);

 /* execute statement */

 $stmt->execute();

 printf("rows inserted: %d\n", $stmt->affected_rows);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1147 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* create temp table */

mysqli_query($link, "CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */

if ($stmt = mysqli_prepare($link, $query)) {

 /* Bind variable for placeholder */

 $code = 'A%';

 mysqli_stmt_bind_param($stmt, "s", $code);

 /* execute statement */

 mysqli_stmt_execute($stmt);

 printf("rows inserted: %d\n", mysqli_stmt_affected_rows($stmt));

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

rows inserted: 17

See Also

• mysqli_stmt_num_rows()
• mysqli_prepare()

mysqli_stmt::attr_get

mysqli_stmt_attr_get

mysqli_stmt::attr_get -- mysqli_stmt_attr_get --

Description

int mysqli_stmt_attr_get (mysqli_stmt $stmt, int $attr)

Warning

This function is currently not documented; only its argument list is available.

mysqli_stmt::attr_set

mysqli_stmt_attr_set

mysqli_stmt::attr_set -- mysqli_stmt_attr_set --

Description

bool mysqli_stmt_attr_set (mysqli_stmt $stmt, int $attr, int $mode)

Warning

This function is currently not documented; only its argument list is available.

mysqli_stmt::bind_param

mysqli_stmt_bind_param

mysqli_stmt::bind_param -- mysqli_stmt_bind_param -- Binds variables to a prepared
statement as parameters

Description

Object oriented style (method):

bool mysqli_stmt::bind_param (string $types, mixed &$var1 [, mixed &$...])

Procedural style:

bool mysqli_stmt_bind_param (mysqli_stmt $stmt, string $types, mixed &$var1 [, mixed
&$...])

Bind variables for the parameter markers in the SQL statement that was passed to
mysqli_prepare().

Note

If data size of a variable exceeds max. allowed packet size (max_allowed_packet), you
have to specify b in types and use mysqli_stmt_send_long_data() to send the data in
packets.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

types

A string that contains one or more characters which specify the types for the
corresponding bind variables:

Type specification chars

Character Description

i corresponding variable has type integer

d corresponding variable has type double

s corresponding variable has type string

b corresponding variable is a blob and will be
sent in packets

var1

The number of variables and length of string types must match the parameters in the
statement.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1148 - Object oriented style

<?php

$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");

$stmt->bind_param('sssd', $code, $language, $official, $percent);

$code = 'DEU';

$language = 'Bavarian';

$official = "F";

$percent = 11.2;

/* execute prepared statement */

$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */

$stmt->close();

/* Clean up table CountryLanguage */

$mysqli->query("DELETE FROM CountryLanguage WHERE Language='Bavarian'");

printf("%d Row deleted.\n", $mysqli->affected_rows);

/* close connection */

$mysqli->close();

?>

Example #1149 - Procedural style

<?php

$link = mysqli_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$stmt = mysqli_prepare($link, "INSERT INTO CountryLanguage VALUES (?, ?, ?,
?)");

mysqli_stmt_bind_param($stmt, 'sssd', $code, $language, $official, $percent);

$code = 'DEU';

$language = 'Bavarian';

$official = "F";

$percent = 11.2;

/* execute prepared statement */

mysqli_stmt_execute($stmt);

printf("%d Row inserted.\n", mysqli_stmt_affected_rows($stmt));

/* close statement and connection */

mysqli_stmt_close($stmt);

/* Clean up table CountryLanguage */

mysqli_query($link, "DELETE FROM CountryLanguage WHERE Language='Bavarian'");

printf("%d Row deleted.\n", mysqli_affected_rows($link));

/* close connection */

mysqli_close($link);

?>

The above example will output:

1 Row inserted.

1 Row deleted.

See Also

• mysqli_stmt_bind_result()
• mysqli_stmt_execute()
• mysqli_stmt_fetch()
• mysqli_prepare()
• mysqli_stmt_send_long_data()
• mysqli_stmt_errno()
• mysqli_stmt_error()

mysqli_stmt::bind_result

mysqli_stmt_bind_result

mysqli_stmt::bind_result -- mysqli_stmt_bind_result -- Binds variables to a prepared statement
for result storage

Description

Object oriented style (method):

bool mysqli_stmt::bind_result (mixed &$var1 [, mixed &$...])

Procedural style:

bool mysqli_stmt_bind_result (mysqli_stmt $stmt, mixed &$var1 [, mixed &$...])

Binds columns in the result set to variables.

When mysqli_stmt_fetch() is called to fetch data, the MySQL client/server protocol places the
data for the bound columns into the specified variables var1,

Note

Note that all columns must be bound after mysqli_stmt_execute() and prior to calling
mysqli_stmt_fetch(). Depending on column types bound variables can silently change to
the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set has been partially
retrieved. The new binding takes effect the next time mysqli_stmt_fetch() is called.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

var1

The variable to be bound.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1150 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* prepare statement */

if ($stmt = $mysqli->prepare("SELECT Code, Name FROM Country ORDER BY Name LIMIT
5")) {

 $stmt->execute();

 /* bind variables to prepared statement */

 $stmt->bind_result($col1, $col2);

 /* fetch values */

 while ($stmt->fetch()) {

 printf("%s %s\n", $col1, $col2);

 }

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1151 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* prepare statement */

if ($stmt = mysqli_prepare($link, "SELECT Code, Name FROM Country ORDER BY Name
LIMIT 5")) {

 mysqli_stmt_execute($stmt);

 /* bind variables to prepared statement */

 mysqli_stmt_bind_result($stmt, $col1, $col2);

 /* fetch values */

 while (mysqli_stmt_fetch($stmt)) {

 printf("%s %s\n", $col1, $col2);

 }

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

AFG Afghanistan

ALB Albania

DZA Algeria

ASM American Samoa

AND Andorra

See Also

• mysqli_stmt_bind_param()
• mysqli_stmt_execute()
• mysqli_stmt_fetch()
• mysqli_prepare()
• mysqli_stmt_prepare()
• mysqli_stmt_init()
• mysqli_stmt_errno()
• mysqli_stmt_error()

mysqli_stmt::close

mysqli_stmt_close

mysqli_stmt::close -- mysqli_stmt_close -- Closes a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::close (void)

Procedural style:

bool mysqli_stmt_close (mysqli_stmt $stmt)

Closes a prepared statement. mysqli_stmt_close() also deallocates the statement handle. If
the current statement has pending or unread results, this function cancels them so that the
next query can be executed.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysqli_prepare()

mysqli_stmt::data_seek

mysqli_stmt_data_seek

mysqli_stmt::data_seek -- mysqli_stmt_data_seek -- Seeks to an arbitray row in statement
result set

Description

Object oriented style (method):

void mysqli_stmt::data_seek (int $offset)

Procedural style:

void mysqli_stmt_data_seek (mysqli_stmt $stmt, int $offset)

Seeks to an arbitrary result pointer in the statement result set.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

offset

Must be between zero and the total number of rows minus one (0..
mysqli_stmt_num_rows() - 1).

Return Values

No value is returned.

Examples

Example #1152 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($stmt = $mysqli->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($name, $code);

 /* store result */

 $stmt->store_result();

 /* seek to row no. 400 */

 $stmt->data_seek(399);

 /* fetch values */

 $stmt->fetch();

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1153 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */

 mysqli_stmt_execute($stmt);

 /* bind result variables */

 mysqli_stmt_bind_result($stmt, $name, $code);

 /* store result */

 mysqli_stmt_store_result($stmt);

 /* seek to row no. 400 */

 mysqli_stmt_data_seek($stmt, 399);

 /* fetch values */

 mysqli_stmt_fetch($stmt);

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

City: Benin City Countrycode: NGA

See Also

• mysqli_prepare()

mysqli_stmt->errno

mysqli_stmt_errno

mysqli_stmt->errno -- mysqli_stmt_errno -- Returns the error code for the most recent
statement call

Description

Object oriented style (property):

mysqli_stmt

int errno;

Procedural style :

int mysqli_stmt_errno (mysqli_stmt $stmt)

Returns the error code for the most recently invoked statement function that can succeed or
fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error
message numbers are listed in mysqld_error.h. In the MySQL source distribution you can find
a complete list of error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

An error code value. Zero means no error occurred.

Examples

Example #1154 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");

$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = $mysqli->prepare($query)) {

 /* drop table */

 $mysqli->query("DROP TABLE myCountry");

 /* execute query */

 $stmt->execute();

 printf("Error: %d.\n", $stmt->errno);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1155 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");

mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */

 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */

 mysqli_stmt_execute($stmt);

 printf("Error: %d.\n", mysqli_stmt_errno($stmt));

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Error: 1146.

See Also

• mysqli_stmt_error()
• mysqli_stmt_sqlstate()

mysqli_stmt->error

mysqli_stmt_error

mysqli_stmt->error -- mysqli_stmt_error -- Returns a string description for last statement error

Description

Object oriented style (property):

mysqli_stmt

string error;

Procedural style:

string mysqli_stmt_error (mysqli_stmt $stmt)

Returns a containing the error message for the most recently invoked statement function that
can succeed or fail.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example #1156 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");

$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = $mysqli->prepare($query)) {

 /* drop table */

 $mysqli->query("DROP TABLE myCountry");

 /* execute query */

 $stmt->execute();

 printf("Error: %s.\n", $stmt->error);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1157 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");

mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */

 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */

 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_error($stmt));

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Error: Table 'world.myCountry' doesn't exist.

See Also

• mysqli_stmt_errno()
• mysqli_stmt_sqlstate()

mysqli_stmt->execute

mysqli_stmt_execute

mysqli_stmt->execute -- mysqli_stmt_execute -- Executes a prepared Query

Description

Object oriented style (method):

bool mysqli_stmt::execute (void)

Procedural style:

bool mysqli_stmt_execute (mysqli_stmt $stmt)

Executes a query that has been previously prepared using the mysqli_prepare() function.
When executed any parameter markers which exist will automatically be replaced with the
appropiate data.

If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can be
determined by using the mysqli_stmt_affected_rows() function. Likewise, if the query yields a
result set the mysqli_stmt_fetch() function is used.

Note

When using mysqli_stmt_execute(), the mysqli_stmt_fetch() function must be used to fetch
the data prior to performing any additional queries.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1158 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */

$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";

$stmt = $mysqli->prepare($query);

$stmt->bind_param("sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';

$val2 = 'DEU';

$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */

$stmt->execute();

$val1 = 'Bordeaux';

$val2 = 'FRA';

$val3 = 'Aquitaine';

/* Execute the statement */

$stmt->execute();

/* close statement */

$stmt->close();

/* retrieve all rows from myCity */

$query = "SELECT Name, CountryCode, District FROM myCity";

if ($result = $mysqli->query($query)) {

 while ($row = $result->fetch_row()) {

 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

 }

 /* free result set */

 $result->close();

}

/* remove table */

$mysqli->query("DROP TABLE myCity");

/* close connection */

$mysqli->close();

?>

Example #1159 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */

$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";

$stmt = mysqli_prepare($link, $query);

mysqli_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';

$val2 = 'DEU';

$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */

mysqli_stmt_execute($stmt);

$val1 = 'Bordeaux';

$val2 = 'FRA';

$val3 = 'Aquitaine';

/* Execute the statement */

mysqli_stmt_execute($stmt);

/* close statement */

mysqli_stmt_close($stmt);

/* retrieve all rows from myCity */

$query = "SELECT Name, CountryCode, District FROM myCity";

if ($result = mysqli_query($link, $query)) {

 while ($row = mysqli_fetch_row($result)) {

 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

 }

 /* free result set */

 mysqli_free_result($result);

}

/* remove table */

mysqli_query($link, "DROP TABLE myCity");

/* close connection */

mysqli_close($link);

?>

The above example will output:

Stuttgart (DEU,Baden-Wuerttemberg)

Bordeaux (FRA,Aquitaine)

See Also

• mysqli_prepare()
• mysqli_stmt_bind_param()

mysqli_stmt::fetch

mysqli_stmt_fetch

mysqli_stmt::fetch -- mysqli_stmt_fetch -- Fetch results from a prepared statement into the
bound variables

Description

Object oriented style (method):

bool mysqli_stmt::fetch (void)

Procedural style:

bool mysqli_stmt_fetch (mysqli_stmt $stmt)

Fetch the result from a prepared statement into the variables bound by
mysqli_stmt_bind_result().

Note

Note that all columns must be bound by the application before calling mysqli_stmt_fetch().

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Return Values

Value Description

TRUE Success. Data has been fetched

FALSE Error occured

NULL No more rows/data exists or data truncation
occurred

Examples

Example #1160 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = $mysqli->prepare($query)) {

 /* execute statement */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($name, $code);

 /* fetch values */

 while ($stmt->fetch()) {

 printf ("%s (%s)\n", $name, $code);

 }

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1161 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute statement */

 mysqli_stmt_execute($stmt);

 /* bind result variables */

 mysqli_stmt_bind_result($stmt, $name, $code);

 /* fetch values */

 while (mysqli_stmt_fetch($stmt)) {

 printf ("%s (%s)\n", $name, $code);

 }

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Rockford (USA)

Tallahassee (USA)

Salinas (USA)

Santa Clarita (USA)

Springfield (USA)

See Also

• mysqli_prepare()
• mysqli_stmt_errno()
• mysqli_stmt_error()
• mysqli_stmt_bind_result()

mysqli_stmt->field_count

mysqli_stmt_field_count

mysqli_stmt->field_count -- mysqli_stmt_field_count -- Returns the number of field in the
given statement

Description

mysqli_stmt

int field_count;

int mysqli_stmt_field_count (mysqli_stmt $stmt)

Warning

This function is currently not documented; only its argument list is available.

stmt::free_result

mysqli_stmt_free_result

stmt::free_result -- mysqli_stmt_free_result -- Frees stored result memory for the given
statement handle

Description

Object oriented style (method):

void mysqli_stmt::free_result (void)

Procedural style:

void mysqli_stmt_free_result (mysqli_stmt $stmt)

Frees the result memory associated with the statement, which was allocated by
mysqli_stmt_store_result().

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

No value is returned.

See Also

• mysqli_stmt_store_result()

mysqli_stmt::get_warnings

mysqli_stmt_get_warnings

mysqli_stmt::get_warnings -- mysqli_stmt_get_warnings --

Description

object mysqli_stmt::get_warnings (mysqli_stmt $stmt)

object mysqli_stmt_get_warnings (mysqli_stmt $stmt)

Warning

This function is currently not documented; only its argument list is available.

mysqli_stmt->insert_id

mysqli_stmt_insert_id

mysqli_stmt->insert_id -- mysqli_stmt_insert_id -- Get the ID generated from the previous
INSERT operation

Description

mysqli_stmt

int insert_id;

mixed mysqli_stmt_insert_id (mysqli_stmt $stmt)

Warning

This function is currently not documented; only its argument list is available.

mysqli_stmt::num_rows

mysqli_stmt_num_rows

mysqli_stmt::num_rows -- mysqli_stmt_num_rows -- Return the number of rows in
statements result set

Description

Object oriented style (property):

mysqli_stmt

int num_rows;

Procedural style :

int mysqli_stmt_num_rows (mysqli_stmt $stmt)

Returns the number of rows in the result set. The use of mysqli_stmt_num_rows()
depends on whether or not you used mysqli_stmt_store_result() to buffer the entire result
set in the statement handle.

If you use mysqli_stmt_store_result(), mysqli_stmt_num_rows() may be called
immediately.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

An integer representing the number of rows in result set.

Examples

Example #1162 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";

if ($stmt = $mysqli->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* store result */

 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1163 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */

 mysqli_stmt_execute($stmt);

 /* store result */

 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Number of rows: 20.

See Also

• mysqli_stmt_affected_rows()
• mysqli_prepare()
• mysqli_stmt_store_result()

mysqli_stmt->param_count

mysqli_stmt_param_count

mysqli_stmt->param_count -- mysqli_stmt_param_count -- Returns the number of
parameter for the given statement

Description

Object oriented style (property):

mysqli_stmt

int param_count;

Procedural style:

int mysqli_stmt_param_count (mysqli_stmt $stmt)

Returns the number of parameter markers present in the prepared statement.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns an integer representing the number of parameters.

Examples

Example #1164 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($stmt = $mysqli->prepare("SELECT Name FROM Country WHERE Name=? OR
Code=?")) {

 $marker = $stmt->param_count;

 printf("Statement has %d markers.\n", $marker);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1165 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($stmt = mysqli_prepare($link, "SELECT Name FROM Country WHERE Name=? OR
Code=?")) {

 $marker = mysqli_stmt_param_count($stmt);

 printf("Statement has %d markers.\n", $marker);

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Statement has 2 markers.

See Also

• mysqli_prepare()

mysqli_stmt::prepare

mysqli_stmt_prepare

mysqli_stmt::prepare -- mysqli_stmt_prepare -- Prepare a SQL statement for execution

Description

Object oriented style (method)

mixed mysqli_stmt::prepare (string $query)

Procedure style:

bool mysqli_stmt_prepare (mysqli_stmt $stmt, string $query)

Prepares the SQL query pointed to by the null-terminated string query.

The parameter markers must be bound to application variables using
mysqli_stmt_bind_param() and/or mysqli_stmt_bind_result() before executing the
statement or fetching rows.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

query

The query, as a string. It must consist of a single SQL statement. You can include one
or more parameter markers in the SQL statement by embedding question mark (?)
characters at the appropriate positions.

Note

You should not add a terminating semicolon or \g to the statement.

Note

The markers are legal only in certain places in SQL statements. For example, they
are allowed in the VALUES() list of an INSERT statement (to specify column
values for a row), or in a comparison with a column in a WHERE clause to specify
a comparison value.

However, they are not allowed for identifiers (such as table or column names), in
the select list that names the columns to be returned by a SELECT statement), or

to specify both operands of a binary operator such as the = equal sign. The latter
restriction is necessary because it would be impossible to determine the parameter
type. In general, parameters are legal only in Data Manipulation Languange (DML)
statements, and not in Data Definition Language (DDL) statements.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1166 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$city = "Amersfoort";

/* create a prepared statement */

$stmt = $mysqli->stmt_init();

if ($stmt->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */

 $stmt->bind_param("s", $city);

 /* execute query */

 $stmt->execute();

 /* bind result variables */

 $stmt->bind_result($district);

 /* fetch value */

 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1167 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$city = "Amersfoort";

/* create a prepared statement */

$stmt = mysqli_stmt_init($link);

if (mysqli_stmt_prepare($stmt, 'SELECT District FROM City WHERE Name=?')) {

 /* bind parameters for markers */

 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */

 mysqli_stmt_execute($stmt);

 /* bind result variables */

 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */

 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_init(), mysqli_stmt_execute(), mysqli_stmt_fetch(), mysqli_stmt_bind_param()
, mysqli_stmt_bind_result() mysqli_stmt_close().

mysqli_stmt::reset

mysqli_stmt_reset

mysqli_stmt::reset -- mysqli_stmt_reset -- Resets a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::reset (void)

Procedural style:

bool mysqli_stmt_reset (mysqli_stmt $stmt)

Resets a prepared statement on client and server to state after prepare.

For now this is mainly used to reset data sent with mysqli_stmt_send_long_data().

To prepare a statement with another query use function mysqli_stmt_prepare().

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mysqli_prepare()

mysqli_stmt::result_metadata

mysqli_stmt_result_metadata

mysqli_stmt::result_metadata -- mysqli_stmt_result_metadata -- Returns result set
metadata from a prepared statement

Description

Object oriented style (method):

mysqli_result mysqli_stmt::result_metadata (void)

Procedural style:

mysqli_result mysqli_stmt_result_metadata (mysqli_stmt $stmt)

If a statement passed to mysqli_prepare() is one that produces a result set,
mysqli_stmt_result_metadata() returns the result object that can be used to process the
meta information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based
functions that process result set metadata, such as:

• mysqli_num_fields()

• mysqli_fetch_field()

• mysqli_fetch_field_direct()

• mysqli_fetch_fields()

• mysqli_field_count()

• mysqli_field_seek()

• mysqli_field_tell()

• mysqli_free_result()

The result set structure should be freed when you are done with it, which you can do by
passing it to mysqli_free_result()

Note

The result set returned by mysqli_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handle
with mysqli_stmt_fetch().

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns a result object or FALSE if an error occured.

Examples

Example #1168 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");

$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = $mysqli->prepare("SELECT id, name FROM friends");

$stmt->execute();

/* get resultset for metadata */

$result = $stmt->result_metadata();

/* retrieve field information from metadata result set */

$field = $result->fetch_field();

printf("Fieldname: %s\n", $field->name);

/* close resultset */

$result->close();

/* close connection */

$mysqli->close();

?>

Example #1169 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");

mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = mysqli_prepare($link, "SELECT id, name FROM friends");

mysqli_stmt_execute($stmt);

/* get resultset for metadata */

$result = mysqli_stmt_result_metadata($stmt);

/* retrieve field information from metadata result set */

$field = mysqli_fetch_field($result);

printf("Fieldname: %s\n", $field->name);

/* close resultset */

mysqli_free_result($result);

/* close connection */

mysqli_close($link);

?>

See Also

• mysqli_prepare()
• mysqli_free_result()

mysqli_stmt::send_long_data

mysqli_stmt_send_long_data

mysqli_stmt::send_long_data -- mysqli_stmt_send_long_data -- Send data in blocks

Description

Object oriented style (method)

bool mysqli_stmt::send_long_data (int $param_nr, string $data)

Procedural style:

bool mysqli_stmt_send_long_data (mysqli_stmt $stmt, int $param_nr, string $data)

Allows to send parameter data to the server in pieces (or chunks), e.g. if the size of a blob
exceeds the size of max_allowed_packet. This function can be called multiple times to
send the parts of a character or binary data value for a column, which must be one of the
TEXT or BLOB datatypes.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

param_nr

Indicates which parameter to associate the data with. Parameters are numbered
beginning with 0.

data

A string containing data to be sent.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1170 - Object oriented style

<?php

$stmt = $mysqli->prepare("INSERT INTO messages (message) VALUES (?)");

$null = NULL;

$stmt->bind_param("b", $null);

$fp = fopen("messages.txt", "r");

while (!feof($fp)) {

 $stmt->send_long_data(0, fread($fp, 8192));

}

fclose($fp);

$stmt->execute();

?>

See Also

• mysqli_prepare()
• mysqli_stmt_bind_param()

mysqli_stmt::sqlstate

mysqli_stmt_sqlstate

mysqli_stmt::sqlstate -- mysqli_stmt_sqlstate -- Returns SQLSTATE error from previous
statement operation

Description

Object oriented style (property):

mysqli_stmt

string sqlstate;

Procedural style:

string mysqli_stmt_sqlstate (mysqli_stmt $stmt)

Returns a string containing the SQLSTATE error code for the most recently invoked
prepared statement function that can succeed or fail. The error code consists of five
characters. '00000' means no error. The values are specified by ANSI SQL and ODBC.
For a list of possible values, see » http://dev.mysql.com/doc/mysql/en/error-handling.html.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means no error.

Notes

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

http://dev.mysql.com/doc/mysql/en/error-handling.html

Examples

Example #1171 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");

$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = $mysqli->prepare($query)) {

 /* drop table */

 $mysqli->query("DROP TABLE myCountry");

 /* execute query */

 $stmt->execute();

 printf("Error: %s.\n", $stmt->sqlstate);

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1172 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");

mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";

if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */

 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */

 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_sqlstate($stmt));

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Error: 42S02.

See Also

• mysqli_stmt_errno()
• mysqli_stmt_error()

mysqli_stmt::store_result

mysqli_stmt_store_result

mysqli_stmt::store_result -- mysqli_stmt_store_result -- Transfers a result set from a
prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::store_result (void)

Procedural style:

bool mysqli_stmt_store_result (mysqli_stmt $stmt)

You must call mysqli_stmt_store_result() for every query that successfully produces a
result set (SELECT, SHOW, DESCRIBE, EXPLAIN), and only if you want to buffer the
complete result set by the client, so that the subsequent mysqli_stmt_fetch() call returns
buffered data.

Note

It is unnecessary to call mysqli_stmt_store_result() for other queries, but if you do, it
will not harm or cause any notable performance in all cases. You can detect whether
the query produced a result set by checking if mysqli_stmt_result_metadata() returns
NULL.

Parameters

stmt

Procedural style only: A statement identifier returned by mysqli_stmt_init().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1173 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";

if ($stmt = $mysqli->prepare($query)) {

 /* execute query */

 $stmt->execute();

 /* store result */

 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* free result */

 $stmt->free_result();

 /* close statement */

 $stmt->close();

}

/* close connection */

$mysqli->close();

?>

Example #1174 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */

 mysqli_stmt_execute($stmt);

 /* store result */

 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* free result */

 mysqli_stmt_free_result($stmt);

 /* close statement */

 mysqli_stmt_close($stmt);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Number of rows: 20.

See Also

• mysqli_prepare()
• mysqli_stmt_result_metadata()
• mysqli_stmt_fetch()

The MySQLi_Result class

Introduction

Represents the result set obtained from a query against the database.

Class synopsis

MySQLi_Result

MySQLi_Result {

/* Properties */

int current_field;

int field_count;

array lengths;

int num_rows;

/* Methods */

int mysqli_field_tell (mysqli_result $result)

bool mysqli_result::data_seek (int $offset)

mixed mysqli_result::fetch_array ([int $resulttype])

array mysqli_result::fetch_assoc (void)

object mysqli_result::fetch_field_direct (int $fieldnr)

object mysqli_result::fetch_field (void)

array mysqli_result::fetch_fields (void)

object mysqli_result::fetch_object ([string $class_name [, array $params]])

mixed mysqli_result::fetch_row (void)

int mysqli_num_fields (mysqli_result $result)

bool mysqli_result::field_seek (int $fieldnr)

void mysqli_result::free (void)

array mysqli_fetch_lengths (mysqli_result $result)

int mysqli_num_rows (mysqli_result $result)
}

mysqli_result->current_field

mysqli_field_tell

mysqli_result->current_field -- mysqli_field_tell -- Get current field offset of a result pointer

Description

Object oriented style (property):

mysqli_result

int current_field;

Procedural style:

int mysqli_field_tell (mysqli_result $result)

Returns the position of the field cursor used for the last mysqli_fetch_field() call. This value
can be used as an argument to mysqli_field_seek().

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

Returns current offset of field cursor.

Examples

Example #1175 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */

 while ($finfo = $result->fetch_field()) {

 /* get fieldpointer offset */

 $currentfield = $result->current_field;

 printf("Column %d:\n", $currentfield);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1176 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */

 while ($finfo = mysqli_fetch_field($result)) {

 /* get fieldpointer offset */

 $currentfield = mysqli_field_tell($result);

 printf("Column %d:\n", $currentfield);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Column 1:

Name: Name

Table: Country

max. Len: 11

Flags: 1

Type: 254

Column 2:

Name: SurfaceArea

Table: Country

max. Len: 10

Flags: 32769

Type: 4

See Also

• mysqli_fetch_field()
• mysqli_field_seek()

mysqli_result::data_seek

mysqli_data_seek

mysqli_result::data_seek -- mysqli_data_seek -- Adjusts the result pointer to an arbitary
row in the result

Description

Object oriented style (method):

bool mysqli_result::data_seek (int $offset)

Procedural style:

bool mysqli_data_seek (mysqli_result $result, int $offset)

The mysqli_data_seek() function seeks to an arbitrary result pointer specified by the
offset in the result set.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

offset

The field offset. Must be between zero and the total number of rows minus one (0..
mysqli_num_rows() - 1).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function can only be used with buffered results attained from the use of the
mysqli_store_result() or mysqli_query() functions.

Examples

Example #1177 - Object oriented style

<?php

/* Open a connection */

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($result = $mysqli->query($query)) {

 /* seek to row no. 400 */

 $result->data_seek(399);

 /* fetch row */

 $row = $result->fetch_row();

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1178 - Procedural style

<?php

/* Open a connection */

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (!$link) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($result = mysqli_query($link, $query)) {

 /* seek to row no. 400 */

 mysqli_data_seek($result, 399);

 /* fetch row */

 $row = mysqli_fetch_row($result);

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

City: Benin City Countrycode: NGA

See Also

• mysqli_store_result()
• mysqli_fetch_row()
• mysqli_fetch_array()
• mysqli_fetch_assoc()
• mysqli_fetch_object()
• mysqli_query()
• mysqli_num_rows()

mysqli_result::fetch_array

mysqli_fetch_array

mysqli_result::fetch_array -- mysqli_fetch_array -- Fetch a result row as an associative, a
numeric array, or both

Description

Object oriented style (method):

mixed mysqli_result::fetch_array ([int $resulttype])

Procedural style:

mixed mysqli_fetch_array (mysqli_result $result [, int $resulttype])

Returns an array that corresponds to the fetched row or NULL if there are no more rows
for the resultset represented by the result parameter.

mysqli_fetch_array() is an extended version of the mysqli_fetch_row() function. In addition
to storing the data in the numeric indices of the result array, the mysqli_fetch_array()
function can also store the data in associative indices, using the field names of the result
set as keys.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take
precedence and overwrite the earlier data. In order to access multiple columns with the
same name, the numerically indexed version of the row must be used.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

resulttype

This optional parameter is a constant indicating what type of array should be produced
from the current row data. The possible values for this parameter are the constants
MYSQLI_ASSOC, MYSQLI_NUM, or MYSQLI_BOTH. Defaults to MYSQLI_BOTH.
By using the MYSQLI_ASSOC constant this function will behave identically to the
mysqli_fetch_assoc(), while MYSQLI_NUM will behave identically to the
mysqli_fetch_row() function. The final option MYSQLI_BOTH will create a single array
with the attributes of both.

Return Values

Returns an array of strings that corresponds to the fetched row or NULL if there are no
more rows in resultset.

Examples

Example #1179 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";

$result = $mysqli->query($query);

/* numeric array */

$row = $result->fetch_array(MYSQLI_NUM);

printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */

$row = $result->fetch_array(MYSQLI_ASSOC);

printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */

$row = $result->fetch_array(MYSQLI_BOTH);

printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */

$result->close();

/* close connection */

$mysqli->close();

?>

Example #1180 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";

$result = mysqli_query($link, $query);

/* numeric array */

$row = mysqli_fetch_array($result, MYSQLI_NUM);

printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */

$row = mysqli_fetch_array($result, MYSQLI_ASSOC);

printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */

$row = mysqli_fetch_array($result, MYSQLI_BOTH);

printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */

mysqli_free_result($result);

/* close connection */

mysqli_close($link);

?>

The above example will output:

Kabul (AFG)

Qandahar (AFG)

Herat (AFG)

See Also

• mysqli_fetch_assoc()
• mysqli_fetch_row()
• mysqli_fetch_object()
• mysqli_query()
• mysqli_data_seek()

mysqli_result::fetch_assoc

mysqli_fetch_assoc

mysqli_result::fetch_assoc -- mysqli_fetch_assoc -- Fetch a result row as an associative
array

Description

Object oriented style (method):

array mysqli_result::fetch_assoc (void)

Procedural style:

array mysqli_fetch_assoc (mysqli_result $result)

Returns an associative array that corresponds to the fetched row or NULL if there are no
more rows.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

Returns an associative array of strings representing the fetched row in the result set,
where each key in the array represents the name of one of the result set's columns or
NULL if there are no more rows in resultset.

If two or more columns of the result have the same field names, the last column will take
precedence. To access the other column(s) of the same name, you either need to access

the result with numeric indices by using mysqli_fetch_row() or add alias names.

Examples

Example #1181 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch associative array */

 while ($row = $result->fetch_assoc()) {

 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1182 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */

 while ($row = mysqli_fetch_assoc($result)) {

 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

 }

 /* free result set */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Pueblo (USA)

Arvada (USA)

Cape Coral (USA)

Green Bay (USA)

Santa Clara (USA)

See Also

• mysqli_fetch_array()
• mysqli_fetch_row()
• mysqli_fetch_object()
• mysqli_query()
• mysqli_data_seek()

mysqli_result::fetch_field_direct

mysqli_fetch_field_direct

mysqli_result::fetch_field_direct -- mysqli_fetch_field_direct -- Fetch meta-data for a single
field

Description

Object oriented style (method):

object mysqli_result::fetch_field_direct (int $fieldnr)

Procedural style:

object mysqli_fetch_field_direct (mysqli_result $result, int $fieldnr)

Returns an object which contains field definition informations from specified resultset.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

fieldnr

The field number. This value must be in the range from 0 to number of fields - 1.

Return Values

Returns an object which contains field definition information or FALSE if no field
information for specified fieldnr is available.

Object attributes

Attribute Description

name The name of the column

orgname Original column name if an alias was
specified

table The name of the table this field belongs to (if
not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented
as a string

max_length The maximum width of the field for the result
set.

length The width of the field, as specified in the tabl
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the
field.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #1183 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for column 'SurfaceArea' */

 $finfo = $result->fetch_field_direct(1);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n", $finfo->type);

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1184 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for column 'SurfaceArea' */

 $finfo = mysqli_fetch_field_direct($result, 1);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n", $finfo->type);

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Name: SurfaceArea

Table: Country

max. Len: 10

Flags: 32769

Type: 4

See Also

• mysqli_num_fields()
• mysqli_fetch_field()
• mysqli_fetch_fields()

mysqli_result::fetch_field

mysqli_fetch_field

mysqli_result::fetch_field -- mysqli_fetch_field -- Returns the next field in the result set

Description

Object oriented style (method):

object mysqli_result::fetch_field (void)

Procedural style:

object mysqli_fetch_field (mysqli_result $result)

Returns the definition of one column of a result set as an object. Call this function
repeatedly to retrieve information about all columns in the result set.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

Returns an object which contains field definition information or FALSE if no field
information is available.

Object properties

Property Description

name The name of the column

orgname Original column name if an alias was
specified

table The name of the table this field belongs to (if
not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented
as a string

max_length The maximum width of the field for the result
set.

length The width of the field, as specified in the
table definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the
field.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #1185 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */

 while ($finfo = $result->fetch_field()) {

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1186 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */

 while ($finfo = mysqli_fetch_field($result)) {

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 }

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Name: Name

Table: Country

max. Len: 11

Flags: 1

Type: 254

Name: SurfaceArea

Table: Country

max. Len: 10

Flags: 32769

Type: 4

See Also

• mysqli_num_fields()
• mysqli_fetch_field_direct()
• mysqli_fetch_fields()
• mysqli_field_seek()

mysqli_result::fetch_fields

mysqli_fetch_fields

mysqli_result::fetch_fields -- mysqli_fetch_fields -- Returns an array of objects
representing the fields in a result set

Description

Object oriented style (method):

array mysqli_result::fetch_fields (void)

Procedural Style:

array mysqli_fetch_fields (mysqli_result $result)

This function serves an identical purpose to the mysqli_fetch_field() function with the
single difference that, instead of returning one object at a time for each field, the columns
are returned as an array of objects.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

Returns an array of objects which contains field definition information or FALSE if no field
information is available.

Object properties

Property Description

name The name of the column

orgname Original column name if an alias was
specified

table The name of the table this field belongs to (if
not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented
as a string

max_length The maximum width of the field for the result
set.

length The width of the field, as specified in the
table definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the
field.

type The data type used for this field

decimals The number of decimals used (for integer
fields)

Examples

Example #1187 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */

 $finfo = $result->fetch_fields();

 foreach ($finfo as $val) {

 printf("Name: %s\n", $val->name);

 printf("Table: %s\n", $val->table);

 printf("max. Len: %d\n", $val->max_length);

 printf("Flags: %d\n", $val->flags);

 printf("Type: %d\n\n", $val->type);

 }

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1188 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all columns */

 $finfo = mysqli_fetch_fields($result);

 foreach ($finfo as $val) {

 printf("Name: %s\n", $val->name);

 printf("Table: %s\n", $val->table);

 printf("max. Len: %d\n", $val->max_length);

 printf("Flags: %d\n", $val->flags);

 printf("Type: %d\n\n", $val->type);

 }

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Name: Name

Table: Country

max. Len: 11

Flags: 1

Type: 254

Name: SurfaceArea

Table: Country

max. Len: 10

Flags: 32769

Type: 4

See Also

• mysqli_num_fields()
• mysqli_fetch_field_direct()

• mysqli_fetch_field()

mysqli_result::fetch_object

mysqli_fetch_object

mysqli_result::fetch_object -- mysqli_fetch_object -- Returns the current row of a result set
as an object

Description

Object oriented style (method):

object mysqli_result::fetch_object ([string $class_name [, array $params]])

Procedural style:

object mysqli_fetch_object (mysqli_result $result [, string $class_name [, array $
params]])

The mysqli_fetch_object() will return the current row result set as an object where the
attributes of the object represent the names of the fields found within the result set.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

class_name

params

Return Values

Returns an object with string properties that corresponds to the fetched row or NULL if
there are no more rows in resultset.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

ChangeLog

Version Description

5.0.0 Added the ability to return as a different
object.

Examples

Example #1189 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch object array */

 while ($obj = $result->fetch_object()) {

 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1190 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */

 while ($obj = mysqli_fetch_object($result)) {

 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);

 }

 /* free result set */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Pueblo (USA)

Arvada (USA)

Cape Coral (USA)

Green Bay (USA)

Santa Clara (USA)

See Also

• mysqli_fetch_array()
• mysqli_fetch_assoc()
• mysqli_fetch_row()
• mysqli_query()
• mysqli_data_seek()

mysqli_result::fetch_row

mysqli_fetch_row

mysqli_result::fetch_row -- mysqli_fetch_row -- Get a result row as an enumerated array

Description

Object oriented style (method):

mixed mysqli_result::fetch_row (void)

Procedural style:

mixed mysqli_fetch_row (mysqli_result $result)

Fetches one row of data from the result set and returns it as an enumerated array, where
each column is stored in an array offset starting from 0 (zero). Each subsequent call to this
function will return the next row within the result set, or NULL if there are no more rows.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

mysqli_fetch_row() returns an array of strings that corresponds to the fetched row or NULL
if there are no more rows in result set.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example #1191 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch object array */

 while ($row = $result->fetch_row()) {

 printf ("%s (%s)\n", $row[0], $row[1]);

 }

 /* free result set */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1192 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */

 while ($row = mysqli_fetch_row($result)) {

 printf ("%s (%s)\n", $row[0], $row[1]);

 }

 /* free result set */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Pueblo (USA)

Arvada (USA)

Cape Coral (USA)

Green Bay (USA)

Santa Clara (USA)

See Also

• mysqli_fetch_array()
• mysqli_fetch_assoc()
• mysqli_fetch_object()
• mysqli_query()
• mysqli_data_seek()

mysqli_result->field_count

mysqli_num_fields

mysqli_result->field_count -- mysqli_num_fields -- Get the number of fields in a result

Description

Object oriented style (property):

mysqli_result

int field_count;

Procedural style:

int mysqli_num_fields (mysqli_result $result)

Returns the number of fields from specified result set.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

The number of fields from a result set.

Examples

Example #1193 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($result = $mysqli->query("SELECT * FROM City ORDER BY ID LIMIT 1")) {

 /* determine number of fields in result set */

 $field_cnt = $result->field_count;

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1194 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($result = mysqli_query($link, "SELECT * FROM City ORDER BY ID LIMIT 1"))
{

 /* determine number of fields in result set */

 $field_cnt = mysqli_num_fields($result);

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Result set has 5 fields.

See Also

• mysqli_fetch_field()

mysqli_result::field_seek

mysqli_field_seek

mysqli_result::field_seek -- mysqli_field_seek -- Set result pointer to a specified field offset

Description

Object oriented style (method):

bool mysqli_result::field_seek (int $fieldnr)

Procedural style:

bool mysqli_field_seek (mysqli_result $result, int $fieldnr)

Sets the field cursor to the given offset. The next call to mysqli_fetch_field() will retrieve
the field definition of the column associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

fieldnr

The field number. This value must be in the range from 0 to number of fields - 1.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1195 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for 2nd column */

 $result->field_seek(1);

 $finfo = $result->fetch_field();

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1196 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for 2nd column */

 mysqli_field_seek($result, 1);

 $finfo = mysqli_fetch_field($result);

 printf("Name: %s\n", $finfo->name);

 printf("Table: %s\n", $finfo->table);

 printf("max. Len: %d\n", $finfo->max_length);

 printf("Flags: %d\n", $finfo->flags);

 printf("Type: %d\n\n", $finfo->type);

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Name: SurfaceArea

Table: Country

max. Len: 10

Flags: 32769

Type: 4

See Also

• mysqli_fetch_field()

mysqli_result::free

mysqli_free_result

mysqli_result::free -- mysqli_free_result -- Frees the memory associated with a result

Description

Object oriented style (all methods are equivalent):

void mysqli_result::free (void)

void mysqli_result::close (void)

void mysqli_result::free_result (void)

Procedural style:

void mysqli_free_result (mysqli_result $result)

Frees the memory associated with the result.

Note

You should always free your result with mysqli_free_result(), when your result object is
not needed anymore.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

No value is returned.

See Also

• mysqli_query()
• mysqli_stmt_store_result()

• mysqli_store_result()
• mysqli_use_result()

mysqli_result->lengths

mysqli_fetch_lengths

mysqli_result->lengths -- mysqli_fetch_lengths -- Returns the lengths of the columns of the
current row in the result set

Description

Object oriented style (property):

mysqli_result

array lengths;

Procedural style:

array mysqli_fetch_lengths (mysqli_result $result)

The mysqli_fetch_lengths() function returns an array containing the lengths of every
column of the current row within the result set.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

An array of integers representing the size of each column (not including any terminating
null characters). FALSE if an error occurred.

mysqli_fetch_lengths() is valid only for the current row of the result set. It returns FALSE if
you call it before calling mysqli_fetch_row/array/object or after retrieving all rows in the
result.

Examples

Example #1197 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = $mysqli->query($query)) {

 $row = $result->fetch_row();

 /* display column lengths */

 foreach ($result->lengths as $i => $val) {

 printf("Field %2d has Length %2d\n", $i+1, $val);

 }

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1198 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = mysqli_query($link, $query)) {

 $row = mysqli_fetch_row($result);

 /* display column lengths */

 foreach (mysqli_fetch_lengths($result) as $i => $val) {

 printf("Field %2d has Length %2d\n", $i+1, $val);

 }

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Field 1 has Length 3

Field 2 has Length 5

Field 3 has Length 13

Field 4 has Length 9

Field 5 has Length 6

Field 6 has Length 1

Field 7 has Length 6

Field 8 has Length 4

Field 9 has Length 6

Field 10 has Length 6

Field 11 has Length 5

Field 12 has Length 44

Field 13 has Length 7

Field 14 has Length 3

Field 15 has Length 2

mysqli_result->num_rows

mysqli_num_rows

mysqli_result->num_rows -- mysqli_num_rows -- Gets the number of rows in a result

Description

Object oriented style (property):

mysqli_result

int num_rows;

Procedural style:

int mysqli_num_rows (mysqli_result $result)

Returns the number of rows in the result set.

The use of mysqli_num_rows() depends on whether you use buffered or unbuffered result
sets. In case you use unbuffered resultsets mysqli_num_rows() will not correct the correct
number of rows until all the rows in the result have been retrieved.

Parameters

result

Procedural style only: A result set identifier returned by mysqli_query(),
mysqli_store_result() or mysqli_use_result().

Return Values

Returns number of rows in the result set.

Note

If the number of rows is greater than maximal int value, the number will be returned as
a string.

Examples

Example #1199 - Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($result = $mysqli->query("SELECT Code, Name FROM Country ORDER BY
Name")) {

 /* determine number of rows result set */

 $row_cnt = $result->num_rows;

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */

 $result->close();

}

/* close connection */

$mysqli->close();

?>

Example #1200 - Procedural style

<?php

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

if ($result = mysqli_query($link, "SELECT Code, Name FROM Country ORDER BY
Name")) {

 /* determine number of rows result set */

 $row_cnt = mysqli_num_rows($result);

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */

 mysqli_free_result($result);

}

/* close connection */

mysqli_close($link);

?>

The above example will output:

Result set has 239 rows.

See Also

• mysqli_affected_rows()
• mysqli_store_result()
• mysqli_use_result()
• mysqli_query()

The MySQLi_Driver class

Introduction

MySQLi Driver.

Class synopsis

MySQLi_Driver

MySQLi_Driver {

/* Properties */

public readonly string client_info;

public readonly string client_version;

public readonly string driver_version;

public readonly string embedded;

public bool reconnect;

public int report-mode;

/* Methods */

void mysqli_driver::embedded_server_end (void)

bool mysqli_driver::embedded_server_start (bool $start, array $arguments, array
$groups)

}

Properties

client_info
The Client API header version

client_version
The Client version

driver_version
The MySQLi Driver version

embedded
Wether MySQLi Embedded support is enabled

reconnect
Allow or prevent reconnect (see the mysqli.reconnect INI directive)

report_mode
Set to MYSQLI_REPORT_STRICT to throw Exceptions for errors

mysqli_driver::embedded_server_end

mysqli_embedded_server_end

mysqli_driver::embedded_server_end -- mysqli_embedded_server_end -- Stop embedded
server

Description

void mysqli_driver::embedded_server_end (void)

void mysqli_embedded_server_end (void)

Warning

This function is currently not documented; only its argument list is available.

mysqli_driver::embedded_server_start

mysqli_embedded_server_start

mysqli_driver::embedded_server_start -- mysqli_embedded_server_start -- Initialize and
start embedded server

Description

bool mysqli_driver::embedded_server_start (bool $start, array $arguments, array $
groups)

bool mysqli_embedded_server_start (bool $start, array $arguments, array $groups)

Warning

This function is currently not documented; only its argument list is available.

Aliases and deprecated Mysqli Functions

mysqli_bind_param

mysqli_bind_param -- Alias for mysqli_stmt_bind_param()

Description

This function is an alias of mysqli_stmt_bind_param().

Notes

Note

mysqli_bind_param() is deprecated and will be removed.

See Also

• mysqli_stmt_bind_param()

mysqli_bind_result

mysqli_bind_result -- Alias for mysqli_stmt_bind_result()

Description

This function is an alias of mysqli_stmt_bind_result().

Notes

Note

mysqli_bind_result() is deprecated and will be removed.

See Also

• mysqli_stmt_bind_result()

mysqli_client_encoding

mysqli_client_encoding -- Alias of mysqli_character_set_name()

Description

This function is an alias of mysqli_character_set_name().

See Also

• mysqli_real_escape_string()

mysqli_disable_reads_from_master

mysqli->disable_reads_from_master()

mysqli_disable_reads_from_master -- mysqli->disable_reads_from_master() -- Disable
reads from master

Description

Procedural style:

bool mysqli_disable_reads_from_master (mysqli $link)

Object oriented style (method):

mysqli

void disable_reads_from_master (void)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_disable_rpl_parse

mysqli_disable_rpl_parse -- Disable RPL parse

Description

bool mysqli_disable_rpl_parse (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_enable_reads_from_master

mysqli_enable_reads_from_master -- Enable reads from master

Description

bool mysqli_enable_reads_from_master (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_enable_rpl_parse

mysqli_enable_rpl_parse -- Enable RPL parse

Description

bool mysqli_enable_rpl_parse (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_escape_string

mysqli_escape_string -- Alias of mysqli_real_escape_string()

Description

This function is an alias of mysqli_real_escape_string().

See Also

• mysqli_real_escape_string()

mysqli_execute

mysqli_execute -- Alias for mysqli_stmt_execute()

Description

This function is an alias of mysqli_stmt_execute().

Notes

Note

mysqli_execute() is deprecated and will be removed.

See Also

• mysqli_stmt_execute()

mysqli_fetch

mysqli_fetch -- Alias for mysqli_stmt_fetch()

Description

This function is an alias of mysqli_stmt_fetch().

Notes

Note

mysqli_fetch() is deprecated and will be removed.

See Also

• mysqli_stmt_fetch()

mysqli_get_metadata

mysqli_get_metadata -- Alias for mysqli_stmt_result_metadata()

Description

This function is an alias of mysqli_stmt_result_metadata().

Notes

Note

mysqli_get_metadata() is deprecated and will be removed.

See Also

• mysqli_stmt_result_metadata()

mysqli_master_query

mysqli_master_query -- Enforce execution of a query on the master in a master/slave
setup

Description

bool mysqli_master_query (mysqli $link, string $query)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_param_count

mysqli_param_count -- Alias for mysqli_stmt_param_count()

Description

This function is an alias of mysqli_stmt_param_count().

Notes

Note

mysqli_param_count() is deprecated and will be removed.

See Also

• mysqli_stmt_param_count()

mysqli_report

mysqli_report -- Enables or disables internal report functions

Description

bool mysqli_report (int $flags)

mysqli_report() is a powerful function to improve your queries and code during
development and testing phase. Depending on the flags it reports errors from mysqli
function calls or queries which don't use an index (or use a bad index).

Parameters

flags

Supported flags

Name Description

MYSQLI_REPORT_OFF Turns reporting off

MYSQLI_REPORT_ERROR Report errors from mysqli function calls

MYSQLI_REPORT_STRICT Report warnings from mysqli function calls

MYSQLI_REPORT_INDEX Report if no index or bad index was used in
a query

MYSQLI_REPORT_ALL Set all options (report all)

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1201 - Object oriented style

<?php

/* activate reporting */

mysqli_report(MYSQLI_REPORT_ALL);

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

if (mysqli_connect_errno()) {

 printf("Connect failed: %s\n", mysqli_connect_error());

 exit();

}

/* this query should report an error */

$result = $mysqli->query("SELECT Name FROM Nonexistingtable WHERE population >
50000");

/* this query should report a warning */

$result = $mysqli->query("SELECT Name FROM City WHERE population > 50000");

$result->close();

$mysqli->close();

?>

See Also

• mysqli_debug()
• mysqli_dump_debug_info()

mysqli_rpl_parse_enabled

mysqli_rpl_parse_enabled -- Check if RPL parse is enabled

Description

int mysqli_rpl_parse_enabled (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_rpl_probe

mysqli_rpl_probe -- RPL probe

Description

bool mysqli_rpl_probe (mysqli $link)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_rpl_query_type

mysqli->rpl_query_type()

mysqli_rpl_query_type -- mysqli->rpl_query_type() -- Returns RPL query type

Description

Procedural style:

int mysqli_rpl_query_type (mysqli $link, string $query)

Object oriented style (method)

mysqli

int rpl_query_type (string $query)

Returns MYSQLI_RPL_MASTER, MYSQLI_RPL_SLAVE or MYSQLI_RPL_ADMIN
depending on a query type. INSERT, UPDATE and similar are master queries, SELECT is
slave, and FLUSH, REPAIR and similar are admin.

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_send_long_data

mysqli_send_long_data -- Alias for mysqli_stmt_send_long_data()

Description

This function is an alias of mysqli_stmt_send_long_data().

Notes

Note

mysqli_send_long_data() is deprecated and will be removed.

See Also

• mysqli_stmt_send_long_data()

mysqli_send_query

mysqli->send_query()

mysqli_send_query -- mysqli->send_query() -- Send the query and return

Description

Procedural style:

bool mysqli_send_query (mysqli $link, string $query)

Object oriented style (method)

mysqli

bool send_query (string $query)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_set_opt

mysqli_set_opt -- Alias of mysqli_options()

Description

This function is an alias of mysqli_options().

mysqli_slave_query

mysqli_slave_query -- Force execution of a query on a slave in a master/slave setup

Description

bool mysqli_slave_query (mysqli $link, string $query)

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

Oracle OCI8

Introduction

These functions allow you to access Oracle 10, Oracle 9, Oracle 8 and Oracle 7 databases
using the Oracle Call Interface (OCI). They support binding of PHP variables to Oracle
placeholders, have full LOB, FILE and ROWID support, and allow you to use user-supplied
define variables.

Installing/Configuring

Requirements

You will need the Oracle client libraries to use this extension. Windows users will need
libraries with version at least 10 to use the php_oci8.dll.

Note

This extension does not support Oracle 8 client libraries anymore. Though you still can
connect to Oracle 8 servers as long as the client library (v.9+) supports this.

The most convenient way to install all the required files is to use Oracle Instant Client, which is
available from here:
» http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html. To work with OCI8
module "basic" version of Oracle Instant Client is enough. Instant Client does not need
ORACLE_SID or ORACLE_HOME environment variables set. You still may need to set
LD_LIBRARY_PATH and NLS_LANG, though.

Before using this extension, make sure that you have set up your Oracle environment
variables properly for the Oracle user, as well as your web daemon user. These variables
should be set up before you start your web-server. The variables you might need to set are as
follows:

• ORACLE_HOME

• ORACLE_SID

• LD_PRELOAD

• LD_LIBRARY_PATH

• NLS_LANG

For less frequently used Oracle environment variables such as TNS_ADMIN, TWO_TASK,
ORA_TZFILE, and the various Oracle globalization settings like ORA_NLS33, ORA_NLS10
and the NLS_* variables refer to Oracle documentation.

After setting up the environment variables for your web server user, be sure to also add the
web server user (nobody, www) to the oracle group.

Note

If your web server doesn't start or crashes at startup

Check that Apache is linked with the pthread library:

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html
http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

ldd /www/apache/bin/httpd

 libpthread.so.0 => /lib/libpthread.so.0 (0x4001c000)

 libm.so.6 => /lib/libm.so.6 (0x4002f000)

 libcrypt.so.1 => /lib/libcrypt.so.1 (0x4004c000)

 libdl.so.2 => /lib/libdl.so.2 (0x4007a000)

 libc.so.6 => /lib/libc.so.6 (0x4007e000)

 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

If the libpthread is not listed you have to reinstall Apache:

cd /usr/src/apache_1.3.xx

make clean

LIBS=-lpthread ./config.status

make

make install

Please note that on some systems, like UnixWare it is libthread instead of libpthread. PHP
and Apache have to be configured with EXTRA_LIBS=-lthread.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

OCI8 Configuration Options

Name Default Changeable Changelog

oci8.privileged_conne
ct

"0" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.persistent_timeo
ut

"-1" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.ping_interval "60" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.statement_cach
e_size

"20" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.default_prefetch "10" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.old_oci_close_s
emantics

"0" PHP_INI_SYSTEM Available since PHP
5.1.2.

Here's a short explanation of the configuration directives.

oci8.privileged_connect boolean
This option enables privileged connections using external credentials (
OCI_SYSOPER, OCI_SYSDBA).

oci8.max_persistent int
The maximum number of persistent OCI8 connections per process. Setting this option
to -1 means that there is no limit.

oci8.persistent_timeout int
The maximum length of time (in seconds) that a given process is allowed to maintain
an idle persistent connection. Setting this option to -1 means that idle persistent
connections will be maintained forever.

oci8.ping_interval int
The length of time (in seconds) that must pass before issuing a ping during
oci_pconnect(). When set to 0, persistent connections will be pinged every time they
are reused. To disable pings completely, set this option to -1.

Note

Disabling pings will cause oci_pconnect() calls to operate at the highest efficiency,
but may cause PHP to not detect faulty connections, such as those caused by
network partitions, or if the Oracle server has gone down since PHP connected,
until later in the script. Consult the oci_pconnect() documentation for more
information.

oci8.statement_cache_size int
This option enables statement caching, and specifies how many statements to cache.
To disable statement caching just set this option to 0.

Note

A larger cache can result in improved performance, at the cost of increased
memory usage.

oci8.default_prefetch int
This option enables statement prefetching and sets the default number of rows that will
be fetched automatically after statement execution.

Note

A larger prefetch can result in improved performance, at the cost of increased
memory usage.

oci8.old_oci_close_semantics boolean
This option controls oci_close() behaviour. Enabling it means that oci_close() will do
nothing; the connection will not be closed until the end of the script. This is for
backward compatibility only. If you find that you need to enable this setting, you are
strongly encouraged to remove the oci_close() calls from your application instead of
enabling this option.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

OCI_DEFAULT (integer)
Statement execution mode. Statement is not committed automatically when using this
mode.

OCI_DESCRIBE_ONLY (integer)
Statement execution mode. Use this mode if you don't want to execute the query, but
get the select-list's description.

OCI_COMMIT_ON_SUCCESS (integer)
Statement execution mode. Statement is automatically committed after oci_execute()
call.

OCI_EXACT_FETCH (integer)
Statement fetch mode. Used when the application knows in advance exactly how
many rows it will be fetching. This mode turns prefetching off for Oracle release 8 or
later mode. Cursor is cancelled after the desired rows are fetched and may result in
reduced server-side resource usage.

OCI_SYSDATE (integer)

OCI_B_BFILE (integer)
Used with oci_bind_by_name() when binding BFILEs.

OCI_B_CFILEE (integer)
Used with oci_bind_by_name() when binding CFILEs.

OCI_B_CLOB (integer)
Used with oci_bind_by_name() when binding CLOBs.

OCI_B_BLOB (integer)
Used with oci_bind_by_name() when binding BLOBs.

OCI_B_ROWID (integer)
Used with oci_bind_by_name() when binding ROWIDs.

OCI_B_CURSOR (integer)
Used with oci_bind_by_name() when binding cursors, previously allocated with
oci_new_descriptor().

OCI_B_NTY (integer)
Used with oci_bind_by_name() when binding named data types. Note: in PHP < 5.0 it
was called OCI_B_SQLT_NTY.

OCI_B_BIN (integer)

SQLT_BFILEE (integer)
The same as OCI_B_BFILE.

SQLT_CFILEE (integer)
The same as OCI_B_CFILEE.

SQLT_CLOB (integer)
The same as OCI_B_CLOB.

SQLT_BLOB (integer)
The same as OCI_B_BLOB.

SQLT_RDD (integer)
The same as OCI_B_ROWID.

SQLT_NTY (integer)
The same as OCI_B_NTY.

SQLT_LNG (integer)
Used with oci_bind_by_name() to bind LONG values.

SQLT_LBI (integer)
Used with oci_bind_by_name() to bind LONG RAW values.

SQLT_BIN (integer)
Used with oci_bind_by_name() to bind RAW values.

SQLT_NUM (integer)
Used with oci_bind_array_by_name() to bind arrays of NUMBER.

SQLT_INT (integer)
Used with oci_bind_array_by_name() to bind arrays of INTEGER.

SQLT_AFC (integer)
Used with oci_bind_array_by_name() to bind arrays of CHAR.

SQLT_CHR (integer)
Used with oci_bind_array_by_name() to bind arrays of VARCHAR2. Also used with
oci_bind_by_name().

SQLT_VCS (integer)
Used with oci_bind_array_by_name() to bind arrays of VARCHAR.

SQLT_AVC (integer)
Used with oci_bind_array_by_name() to bind arrays of CHARZ.

SQLT_STR (integer)
Used with oci_bind_array_by_name() to bind arrays of STRING.

SQLT_LVC (integer)
Used with oci_bind_array_by_name() to bind arrays of LONG VARCHAR.

SQLT_FLT (integer)
Used with oci_bind_array_by_name() to bind arrays of FLOAT.

SQLT_ODT (integer)
Used with oci_bind_array_by_name() to bind arrays of LONG.

SQLT_BDOUBLE (integer)

SQLT_BFLOAT (integer)

OCI_FETCHSTATEMENT_BY_COLUMN (integer)
Default mode of oci_fetch_all().

OCI_FETCHSTATEMENT_BY_ROW (integer)
Alternative mode of oci_fetch_all().

OCI_ASSOC (integer)
Used with oci_fetch_all() and oci_fetch_array() to get an associative array as a result.

OCI_NUM (integer)
Used with oci_fetch_all() and oci_fetch_array() to get an enumerated array as a result.

OCI_BOTH (integer)
Used with oci_fetch_all() and oci_fetch_array() to get an array with both associative
and number indices.

OCI_RETURN_NULLS (integer)
Used with oci_fetch_array() to get empty array elements if field's value is NULL.

OCI_RETURN_LOBS (integer)
Used with oci_fetch_array() to get value of LOB instead of the descriptor.

OCI_DTYPE_FILE (integer)
This flag tells oci_new_descriptor() to initialize new FILE descriptor.

OCI_DTYPE_LOB (integer)
This flag tells oci_new_descriptor() to initialize new LOB descriptor.

OCI_DTYPE_ROWID (integer)
This flag tells oci_new_descriptor() to initialize new ROWID descriptor.

OCI_D_FILE (integer)
The same as OCI_DTYPE_FILE.

OCI_D_LOB (integer)
The same as OCI_DTYPE_LOB.

OCI_D_ROWID (integer)
The same as OCI_DTYPE_ROWID.

OCI_SYSOPER (integer)
Used with oci_connect() to connect as SYSOPER using external credentials (
oci8.privileged_connect should be enabled for this).

OCI_SYSDBA (integer)
Used with oci_connect() to connect as SYSDBA using external credentials (
oci8.privileged_connect should be enabled for this).

OCI_LOB_BUFFER_FREE (integer)
Used with OCI-Lob->flush to free buffers used.

OCI_TEMP_CLOB (integer)
Used with OCI-Lob->writeTemporary to indicate explicilty that temporary CLOB should
be created.

OCI_TEMP_BLOB (integer)
Used with OCI-Lob->writeTemporary to indicate explicilty that temporary BLOB should
be created.

Examples

Example #1202 - Basic query

<?php

 $conn = oci_connect('hr', 'hr', 'orcl');

 if (!$conn) {

 $e = oci_error();

 print htmlentities($e['message']);

 exit;

 }

 $query = 'SELECT * FROM DEPARTMENTS';

 $stid = oci_parse($conn, $query);

 if (!$stid) {

 $e = oci_error($conn);

 print htmlentities($e['message']);

 exit;

 }

 $r = oci_execute($stid, OCI_DEFAULT);

 if (!$r) {

 $e = oci_error($stid);

 echo htmlentities($e['message']);

 exit;

 }

 print '<table border="1">';

 while ($row = oci_fetch_array($stid, OCI_RETURN_NULLS)) {

 print '<tr>';

 foreach ($row as $item) {

 print '<td>'.($item?htmlentities($item):' ').'</td>';

 }

 print '</tr>';

 }

 print '</table>';

 oci_close($conn);

?>

Example #1203 - Insert with bind variables

<?php

 // Before running, create the table:

 // CREATE TABLE MYTABLE (mid NUMBER, myd VARCHAR2(20));

 $conn = oci_connect('scott', 'tiger', 'orcl');

 $query = 'INSERT INTO MYTABLE VALUES(:myid, :mydata)';

 $stid = oci_parse($conn, $query);

 $id = 60;

 $data = 'Some data';

 oci_bind_by_name($stid, ':myid', $id);

 oci_bind_by_name($stid, ':mydata', $data);

 $r = oci_execute($stid);

 if ($r)

 print "One row inserted";

 oci_close($conn);

?>

Example #1204 - Inserting data into a CLOB column

<?php

// Before running, create the table:

// CREATE TABLE MYTABLE (mykey NUMBER, myclob CLOB);

$conn = oci_connect('scott', 'tiger', 'orcl');

$mykey = 12343; // arbitrary key for this example;

$sql = "INSERT INTO mytable (mykey, myclob)

 VALUES (:mykey, EMPTY_CLOB())

 RETURNING myclob INTO :myclob";

$stid = oci_parse($conn, $sql);

$clob = oci_new_descriptor($conn, OCI_D_LOB);

oci_bind_by_name($stid, ":mykey", $mykey, 5);

oci_bind_by_name($stid, ":myclob", $clob, -1, OCI_B_CLOB);

oci_execute($stid, OCI_DEFAULT);

$clob->save("A very long string");

oci_commit($conn);

// Fetching CLOB data

$query = 'SELECT myclob FROM mytable WHERE mykey = :mykey';

$stid = oci_parse ($conn, $query);

oci_bind_by_name($stid, ":mykey", $mykey, 5);

oci_execute($stid, OCI_DEFAULT);

print '<table border="1">';

while ($row = oci_fetch_array($stid, OCI_ASSOC)) {

 $result = $row['MYCLOB']->load();

 print '<tr><td>'.$result.'</td></tr>';

}

print '</table>';

?>

You can easily access stored procedures in the same way as you would from the
command line.

Example #1205 - Using Stored Procedures

<?php

// by webmaster at remoterealty dot com

$sth = oci_parse($dbh, "begin sp_newaddress(:address_id, '$firstname',

'$lastname', '$company', '$address1', '$address2', '$city', '$state',

'$postalcode', '$country', :error_code);end;");

// This calls stored procedure sp_newaddress, with :address_id being an

// in/out variable and :error_code being an out variable.

// Then you do the binding:

 oci_bind_by_name($sth, ":address_id", $addr_id, 10);

 oci_bind_by_name($sth, ":error_code", $errorcode, 10);

 oci_execute($sth);

?>

Connecting Handling

The oci8 extension provides you with 3 different functions for connecting to Oracle. It is up
to you to use the most appropriate function for your application, and the information in this
section is intended to help you make an informed choice.

Connecting to an Oracle server is a reasonably expensive operation, in terms of the time
that it takes to complete. The oci_pconnect() function uses a persistent cache of
connections that can be re-used across different script requests. This means that you will
typically only incur the connection overhead once per php process (or apache child).

If your application connects to Oracle using a different set of credentials for each web
user, the persistent cache employed by oci_pconnect() will become less useful as the
number of concurrent users increases, to the point where it may start to adversely affect
the overall performance of your Oracle server due to maintaining too many idle
connections. If your application is structured in this way, it is recommended that you either
tune your application using the oci8.max_persistent and oci8.persistent_timeout
configuration settings (these will give you control over the persistent connection cache size
and lifetime) or use oci_connect() instead.

Both oci_connect() and oci_pconnect() employ a connection cache; if you make multiple
calls to oci_connect(), using the same parameters, in a given script, the second and
subsequent calls return the existing connection handle. The cache used by oci_connect()
is cleaned up at the end of the script run, or when you explicitly close the connection
handle. oci_pconnect() has similar behaviour, although its cache is maintained separately
and survives between requests.

This caching feature is important to remember, because it gives the appearance that the
two handles are not transactionally isolated (they are in fact the same connection handle,
so there is no isolation of any kind). If your application needs two separate, transactionally
isolated connections, you should use oci_new_connect().

oci_new_connect() always creates a new connection to the Oracle server, regardless of
what other connections might already exist. High traffic web applications should try to
avoid using oci_new_connect(), especially in the busiest sections of the application.

Supported Datatypes

The driver supports the following types when binding parameters using
oci_bind_by_name() function:

Type Mapping

SQLT_NTY Maps a native collection type from a PHP
collection object, such as those created by
oci_new_collection().

SQLT_BFILEE Maps a native descriptor, such as those
created by oci_new_descriptor().

SQLT_CFILEE Maps a native descriptor, such as those
created by oci_new_descriptor().

SQLT_CLOB Maps a native descriptor, such as those
created by oci_new_descriptor().

SQLT_BLOB Maps a native descriptor, such as those
created by oci_new_descriptor().

SQLT_RDD Maps a native descriptor, such as those
created by oci_new_descriptor().

SQLT_NUM Converts the PHP parameter to a 'C' long
type, and binds to that value.

SQLT_RSET Maps a native statement handle, such as
those created by oci_parse() or those
retrieved from other OCI queries.

SQLT_CHR and any other type Converts the PHP parameter to a string type
and binds as a string.

The following types are supported when retrieving columns from a result set:

Type Mapping

SQLT_RSET Creates an oci statement resource to
represent the the cursor.

SQLT_RDD Creates a ROWID object.

SQLT_BLOB Creates a LOB object.

SQLT_CLOB Creates a LOB object.

SQLT_BFILE Creates a LOB object.

SQLT_LNG Bound as SQLT_CHR, returned as a string

SQLT_LBI Bound as SQLT_BIN, returned as a string

Any other type Bound as SQLT_CHR, returned as a string

OCI8 Functions

oci_bind_array_by_name

oci_bind_array_by_name -- Binds PHP array to Oracle PL/SQL array by name

Description

bool oci_bind_array_by_name (resource $statement, string $name, array &$var_array,
int $max_table_length [, int $max_item_length [, int $type]])

Binds the PHP array var_array to the Oracle placeholder name, which points to Oracle
PL/SQL array. Whether it will be used for input or output will be determined at run-time.

Parameters

statement

A valid OCI statement identifier.

name

The Oracle placeholder.

var_array

An array.

max_table_length

Sets the maximum length both for incoming and result arrays.

max_item_length

Sets maximum length for array items. If not specified or equals to -1,
oci_bind_array_by_name() will use find the longest element in the incoming array and
will use it as maximum length for array items.

type

Should be used to set the type of PL/SQL array items. See list of available types
below:

• SQLT_NUM - for arrays of NUMBER.

• SQLT_INT - for arrays of INTEGER (Note: INTEGER it is actually a synonym for
NUMBER(38), but SQLT_NUM type won't work in this case even though they are
synonyms).

• SQLT_FLT - for arrays of FLOAT.

• SQLT_AFC - for arrays of CHAR.

• SQLT_CHR - for arrays of VARCHAR2.

• SQLT_VCS - for arrays of VARCHAR.

• SQLT_AVC - for arrays of CHARZ.

• SQLT_STR - for arrays of STRING.

• SQLT_LVC - for arrays of LONG VARCHAR.

• SQLT_ODT - for arrays of DATE.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1206 - oci_bind_array_by_name() example

<?php

$c = oci_connect("scott", "tiger");

$create = "CREATE TABLE bind_example(name VARCHAR(20))";

$statement = oci_parse($c, $create);

oci_execute($statement);

$create_pkg = "

CREATE OR REPLACE PACKAGE ARRAYBINDPKG1 AS

 TYPE ARRTYPE IS TABLE OF VARCHAR(20) INDEX BY BINARY_INTEGER;

 PROCEDURE iobind(c1 IN OUT ARRTYPE);

END ARRAYBINDPKG1;";

$statement = oci_parse($c, $create_pkg);

oci_execute($statement);

$create_pkg_body = "

CREATE OR REPLACE PACKAGE BODY ARRAYBINDPKG1 AS

 CURSOR CUR IS SELECT name FROM bind_example;

 PROCEDURE iobind(c1 IN OUT ARRTYPE) IS

 BEGIN

 FOR i IN 1..5 LOOP

 INSERT INTO bind_example VALUES (c1(i));

 END LOOP;

 IF NOT CUR%ISOPEN THEN

 OPEN CUR;

 END IF;

 FOR i IN REVERSE 1..5 LOOP

 FETCH CUR INTO c1(i);

 IF CUR%NOTFOUND THEN

 CLOSE CUR;

 EXIT;

 END IF;

 END LOOP;

 END iobind;

END ARRAYBINDPKG1;";

$statement = oci_parse($c, $create_pkg_body);

oci_execute($statement);

$statement = oci_parse($c, "BEGIN ARRAYBINDPKG1.iobind(:c1); END;");

$array = array("one", "two", "three", "four", "five");

oci_bind_array_by_name($statement, ":c1", $array, 5, -1, SQLT_CHR);

oci_execute($statement);

var_dump($array);

?>

Notes

Note

This function is available since OCI8 release 1.2.

oci_bind_by_name

oci_bind_by_name -- Binds the PHP variable to the Oracle placeholder

Description

bool oci_bind_by_name (resource $statement, string $ph_name, mixed &$variable [, int
$maxlength [, int $type]])

Binds the PHP variable variable to the Oracle placeholder ph_name. Whether it will be
used for input or output will be determined at run-time and the necessary storage space
will be allocated.

Parameters

statement

An OCI statement.

ph_name

The placeholder.

variable

The PHP variable.

maxlength

Sets the maximum length for the bind. If you set it to -1, this function will use the
current length of variable to set the maximum length.

type

If you need to bind an abstract datatype (LOB/ROWID/BFILE) you need to allocate it
first using the oci_new_descriptor() function. The length is not used for abstract
datatypes and should be set to -1. The type parameter tells Oracle which descriptor is
used. Default to SQLT_CHR. Possible values are:

• SQLT_FILE - for BFILEs;

• SQLT_CFILE - for CFILEs;

• SQLT_CLOB - for CLOBs;

• SQLT_BLOB - for BLOBs;

• SQLT_RDD - for ROWIDs;

• SQLT_NTY - for named datatypes;

• SQLT_INT - for integers;

• SQLT_CHR - for VARCHARs;

• SQLT_BIN - for RAW columns;

• SQLT_LNG - for LONG columns;

• SQLT_LBI - for LONG RAW columns;

• SQLT_RSET - for cursors, that were created before with oci_new_cursor().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1207 - oci_bind_by_name() example

<?php

/* oci_bind_by_name example thies at thieso dot net (980221)

 inserts 3 records into emp, and uses the ROWID for updating the

 records just after the insert.

*/

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "

 INSERT INTO

 emp (empno, ename)

 VALUES

 (:empno,:ename)

 RETURNING

 ROWID

 INTO

 :rid

 ");

$data = array(

 1111 => "Larry",

 2222 => "Bill",

 3333 => "Jim"

);

$rowid = oci_new_descriptor($conn, OCI_D_ROWID);

oci_bind_by_name($stmt, ":empno", $empno, 32);

oci_bind_by_name($stmt, ":ename", $ename, 32);

oci_bind_by_name($stmt, ":rid", $rowid, -1, OCI_B_ROWID);

$update = oci_parse($conn, "

 UPDATE

 emp

 SET

 sal = :sal

 WHERE

 ROWID = :rid

 ");

oci_bind_by_name($update, ":rid", $rowid, -1, OCI_B_ROWID);

oci_bind_by_name($update, ":sal", $sal, 32);

$sal = 10000;

foreach ($data as $empno => $ename) {

 oci_execute($stmt);

 oci_execute($update);

}

$rowid->free();

oci_free_statement($update);

oci_free_statement($stmt);

$stmt = oci_parse($conn, "

 SELECT

 *

 FROM

 emp

 WHERE

 empno

 IN

 (1111,2222,3333)

 ");

oci_execute($stmt);

while ($row = oci_fetch_assoc($stmt)) {

 var_dump($row);

}

oci_free_statement($stmt);

/* delete our "junk" from the emp table.... */

$stmt = oci_parse($conn, "

 DELETE FROM

 emp

 WHERE

 empno

 IN

 (1111,2222,3333)

 ");

oci_execute($stmt);

oci_free_statement($stmt);

oci_close($conn);

?>

Remember, this function strips trailing whitespaces. See the following example:

Example #1208 - oci_bind_by_name() example

<?php

 $connection = oci_connect('apelsin','kanistra');

 $query = "INSERT INTO test_table VALUES(:id, :text)";

 $statement = oci_parse($query);

 oci_bind_by_name($statement, ":id", 1);

 oci_bind_by_name($statement, ":text", "trailing spaces follow ");

 oci_execute($statement);

 /*

 This code will insert into DB string 'trailing spaces follow', without

 trailing spaces

 */

?>

Example #1209 - oci_bind_by_name() example

<?php

 $connection = oci_connect('apelsin','kanistra');

 $query = "INSERT INTO test_table VALUES(:id, 'trailing spaces follow
')";

 $statement = oci_parse($query);

 oci_bind_by_name($statement, ":id", 1);

 oci_execute($statement);

 /*

 And this code will add 'trailing spaces follow ', preserving

 trailing whitespaces

 */

?>

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

Do not use magic_quotes_gpc or addslashes() and oci_bind_by_name()
simultaneously as no quoting is needed and any magically applied quotes will be
written into your database as oci_bind_by_name() is not able to distinguish magically
added quotings from those added intentionally.

Note

In PHP versions before 5.0.0 you must use ocibindbyname() instead. This name still
can be used, it was left as alias of oci_bind_by_name() for downwards compatability.
This, however, is deprecated and not recommended.

oci_cancel

oci_cancel -- Cancels reading from cursor

Description

bool oci_cancel (resource $statement)

Invalidates a cursor, freeing all associated resources and cancels the ability to read from it.

Parameters

statement

An OCI statement.

Return Values

Returns TRUE on success or FALSE on failure.

oci_close

oci_close -- Closes Oracle connection

Description

bool oci_close (resource $connection)

Closes the Oracle connection.

Parameters

connection

An Oracle connection identifier, returned by oci_connect().

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Starting from the version 1.1 oci_close() correctly closes the Oracle connection. Use
oci8.old_oci_close_semantics option to restore old behaviour of this function.

OCI-Collection->append

OCI-Collection->append -- Appends element to the collection

Description

OCI-Collection

bool append (mixed $value)

Appends element to the end of the collection.

Parameters

value

The value to be added to the collection. Can be a string or a number.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Collection->assign

OCI-Collection->assign

OCI-Collection->assign -- Assigns a value to the collection from another existing collection

Description

OCI-Collection

bool assign (OCI-Collection $from)

Assigns a value to the collection from another, previously created collection. Both
collections must be created with oci_new_collection() prior to using them.

Parameters

from

An instance of OCI-Collection.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Collection->append

OCI-Collection->assignElem

OCI-Collection->assignElem -- Assigns a value to the element of the collection

Description

OCI-Collection

bool assignElem (int $index, mixed $value)

Assigns a value to the element with index index.

Parameters

index

The element index. First index is 1.

value

Can be a string or a number.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Collection->getElem

OCI-Collection->free

OCI-Collection->free -- Frees the resources associated with the collection object

Description

OCI-Collection

bool free (void)

Frees the resources associated with the collection object.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• oci_new_collection

OCI-Collection->getElem

OCI-Collection->getElem -- Returns value of the element

Description

OCI-Collection

mixed getElem (int $index)

Returns element's value with the index index (1-based).

Parameters

index

The element index. First index is 1.

Return Values

Returns FALSE if such element doesn't exist; NULL if element is NULL; string if element
is column of a string datatype or number if element is numeric field.

See Also

• OCI-Collection->assignElem

OCI-Collection->max

OCI-Collection->max -- Returns the maximum number of elements in the collection

Description

OCI-Collection

int max (void)

Returns the maximum number of elements in the collection.

Return Values

Returns the maximum number as an integer, or FALSE on errors.

If the returned value is 0, then the number of elements is not limited.

See Also

• OCI-Collection->size

OCI-Collection->size

OCI-Collection->size -- Returns size of the collection

Description

OCI-Collection

int size (void)

Returns the size of the collection.

Return Values

Returns the number of elements in the collection or FALSE on error.

See Also

• OCI-Collection->max

OCI-Collection->trim

OCI-Collection->trim -- Trims elements from the end of the collection

Description

OCI-Collection

bool trim (int $num)

Trims num of elements from the end of the collection.

Parameters

num

The number of elements to be trimmed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Collection->size

oci_commit

oci_commit -- Commits outstanding statements

Description

bool oci_commit (resource $connection)

Commits all outstanding statements for the active transaction on the Oracle connection.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1210 - oci_commit() example

<?php

// Login to Oracle server

$conn = oci_connect('scott', 'tiger');

// Parse SQL

$stmt = oci_parse($conn, "

 INSERT INTO

 employees (name, surname)

 VALUES

 ('Maxim', 'Maletsky')

 ");

/* Execute statement

 OCI_DEFAULT tells oci_execute()

 not to commit statement immediately */

oci_execute($stmt, OCI_DEFAULT);

/*

....

Parsing and executing other statements here ...

....

*/

// Commit transaction

$committed = oci_commit($conn);

// Test whether commit was successful. If error occurred, return error
message

if (!$committed) {

 $error = oci_error($conn);

 echo 'Commit failed. Oracle reports: ' . $error['message'];

}

?>

Notes

Note

Transactions are automatically rolled back when you close the connection, or when the
script ends, whichever is soonest. You need to explicitly call oci_commit() to commit
the transaction, or oci_rollback() to abort it.

See Also

• oci_rollback()
• oci_execute()

oci_connect

oci_connect -- Establishes a connection to the Oracle server

Description

resource oci_connect (string $username, string $password [, string $db [, string $charset
[, int $session_mode]]])

Returns a connection identifier needed for most other OCI calls.

Parameters

username

The Oracle user name.

password

The password for username.

db

This optional parameter can either contain the name of the local Oracle instance or the
name of the entry in tnsnames.ora. If the not specified, PHP uses environment
variables ORACLE_SID and TWO_TASK to determine the name of local Oracle
instance and location of tnsnames.ora accordingly.

charset

Using Oracle server version 9.2 and greater, you can indicate charset by parameter,
which will be used in the new connection. If you're using Oracle server < 9.2, this
parameter will be ignored and the NLS_LANG environment variable will be used
instead.

session_mode

This parameter is available since version 1.1 and accepts the following values:
OCI_DEFAULT, OCI_SYSOPER and OCI_SYSDBA. If either OCI_SYSOPER or
OCI_SYSDBA were specified, this function will try to establish privileged connection
using external credentials. Privileged connections are disabled by default. To enable
them you need to set oci8.privileged_connect to On.

Return Values

Returns a connection identifier or FALSE on error.

Examples

Example #1211 - oci_connect() example

<?php

echo "<pre>";

$db = "";

$c1 = oci_connect("scott", "tiger", $db);

$c2 = oci_connect("scott", "tiger", $db);

function create_table($conn)

{

 $stmt = oci_parse($conn, "create table scott.hallo (test varchar2(64))");

 oci_execute($stmt);

 echo $conn . " created table\n\n";

}

function drop_table($conn)

{

 $stmt = oci_parse($conn, "drop table scott.hallo");

 oci_execute($stmt);

 echo $conn . " dropped table\n\n";

}

function insert_data($conn)

{

 $stmt = oci_parse($conn, "insert into scott.hallo

 values('$conn' || ' ' || to_char(sysdate,'DD-MON-YY
HH24:MI:SS'))");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn . " inserted hallo\n\n";

}

function delete_data($conn)

{

 $stmt = oci_parse($conn, "delete from scott.hallo");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn . " deleted hallo\n\n";

}

function commit($conn)

{

 oci_commit($conn);

 echo $conn . " committed\n\n";

}

function rollback($conn)

{

 oci_rollback($conn);

 echo $conn . " rollback\n\n";

}

function select_data($conn)

{

 $stmt = oci_parse($conn, "select * from scott.hallo");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn."----selecting\n\n";

 while (oci_fetch($stmt)) {

 echo $conn . " [" . oci_result($stmt, "TEST") . "]\n\n";

 }

 echo $conn . "----done\n\n";

}

create_table($c1);

insert_data($c1); // Insert a row using c1

insert_data($c2); // Insert a row using c2

select_data($c1); // Results of both inserts are returned

select_data($c2);

rollback($c1); // Rollback using c1

select_data($c1); // Both inserts have been rolled back

select_data($c2);

insert_data($c2); // Insert a row using c2

commit($c2); // Commit using c2

select_data($c1); // Result of c2 insert is returned

delete_data($c1); // Delete all rows in table using c1

select_data($c1); // No rows returned

select_data($c2); // No rows returned

commit($c1); // Commit using c1

select_data($c1); // No rows returned

select_data($c2); // No rows returned

drop_table($c1);

echo "</pre>";

?>

Notes

Note

If you're using PHP with Oracle Instant Client, you can use easy connect naming
method described here: » http://download-west.oracle.com/docs/cd/B12037_01/networ
k.101/b10775/naming.htm#i498306. Basically this means you can specify
"//db_host[:port]/database_name" as database name. But if you want to use the old
way of naming you must set either ORACLE_HOME or TNS_ADMIN.

Note

The second and subsequent calls to oci_connect() with the same parameters will
return the connection handle returned from the first call. This means that queries
issued against one handle are also applied to the other handles, because they are the
same handle. This behaviour is demonstrated in Example 1 below. If you require two
handles to be transactionally isolated from each other, you should use
oci_new_connect() instead.

http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306
http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306

Note

In PHP versions before 5.0.0 you must use ocilogon() instead. This name still can be
used, it was left as the alias of oci_connect() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

• oci_pconnect()
• oci_new_connect()
• oci_close()

oci_define_by_name

oci_define_by_name -- Uses a PHP variable for the define-step during a SELECT

Description

bool oci_define_by_name (resource $statement, string $column_name, mixed &$
variable [, int $type])

Defines PHP variables for fetches of SQL-Columns.

Parameters

statement

A valid OCI statement identifier.

column_name

The column name. Must be uppercased. Take into consideration that Oracle uses
ALL-UPPERCASE column names, whereby in your select you can also use lowercase.
If you define a variable that doesn't exists in your select statement, no error will be
issued.

variable

The PHP variable.

type

If you need to define an abstract datatype (LOB/ROWID/BFILE) you must allocate it
first using oci_new_descriptor(). See also the oci_bind_by_name() function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1212 - oci_define_by_name() example

<?php

/* oci_define_by_name example - thies at thieso dot net (980219) */

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "SELECT empno, ename FROM emp");

/* the define MUST be done BEFORE oci_execute! */

oci_define_by_name($stmt, "EMPNO", $empno);

oci_define_by_name($stmt, "ENAME", $ename);

oci_execute($stmt);

while (oci_fetch($stmt)) {

 echo "empno:" . $empno . "\n";

 echo "ename:" . $ename . "\n";

}

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocidefinebyname() instead. This name still
can be used, it was left as alias of oci_define_by_name() for downwards compatability.
This, however, is deprecated and not recommended.

oci_error

oci_error -- Returns the last error found

Description

array oci_error ([resource $source])

Returns the last error found.

Parameters

source

For most errors, the parameter is the most appropriate resource handle. For
connection errors with oci_connect(), oci_new_connect() or oci_pconnect() do not pass
a parameter.

Return Values

If no error is found, oci_error() returns FALSE. oci_error() returns the error as an
associative array. In this array, code consists the oracle error code and message the
oracle error string.

ChangeLog

Version Description

4.3 offset and sqltext will also be included in the
return array to indicate the location of the
error and the original SQL text which caused
it.

Examples

Example #1213 - Displaying the Oracle error message after a connection error

$conn = @oci_connect("scott", "tiger", "mydb");

if (!$conn) {

 $e = oci_error(); // For oci_connect errors pass no handle

 echo htmlentities($e['message']);

}

Example #1214 - Displaying the Oracle error message after a parsing error

$stmt = @oci_parse($conn, "select ' from dual"); // note mismatched quote

if (!$stmt) {

 $e = oci_error($conn); // For oci_parse errors pass the connection handle

 echo htmlentities($e['message']);

}

Example #1215 - Displaying the Oracle error message and problematic statement
after an execution error

$r = oci_execute($stmt);

if (!$r) {

 $e = oci_error($stmt); // For oci_execute errors pass the statementhandle

 echo htmlentities($e['message']);

 echo "<pre>";

 echo htmlentities($e['sqltext']);

 printf("\n%".($e['offset']+1)."s", "^");

 echo "</pre>";

}

Notes

Note

In PHP versions before 5.0.0 you must use ocierror() instead. This name still can be
used, it was left as alias of oci_error() for downwards compatability. This, however, is
deprecated and not recommended.

oci_execute

oci_execute -- Executes a statement

Description

bool oci_execute (resource $statement [, int $mode])

Executes a previously parsed statement.

Parameters

statement

A valid OCI statement identifier.

mode

Allows you to specify the execution mode (default is OCI_COMMIT_ON_SUCCESS).
If you don't want statements to be committed automatically, you should specify
OCI_DEFAULT as your mode. When using OCI_DEFAULT mode, you're creating a
transaction. Transactions are automatically rolled back when you close the connection,
or when the script ends, whichever is soonest. You need to explicitly call oci_commit()
to commit the transaction, or oci_rollback() to abort it.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

In PHP versions before 5.0.0 you must use ociexecute() instead. This name still can be
used, it was left as alias of oci_execute() for downwards compatability. This, however,
is deprecated and not recommended.

See Also

• oci_parse()

oci_fetch_all

oci_fetch_all -- Fetches all rows of result data into an array

Description

int oci_fetch_all (resource $statement, array &$output [, int $skip [, int $maxrows [, int $
flags]]])

Fetches all the rows from a result into a user-defined array.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

A valid OCI statement identifier.

output

Note

This function sets NULL fields to the PHP NULL value.

skip

The number of initial rows to ignore when fetching the result (default value of 0, to start
at the first line).

maxrows

The number of rows to read, starting at the skip th row (default to -1, meaning all the
rows).

flags

Parameter flags can be any combination of the following:

• OCI_FETCHSTATEMENT_BY_ROW
• OCI_FETCHSTATEMENT_BY_COLUMN (default value)
• OCI_NUM
• OCI_ASSOC

Return Values

Returns the number of rows fetched or FALSE in case of an error.

Examples

Example #1216 - oci_fetch_all() example

<?php

/* oci_fetch_all example mbritton at verinet dot com (990624) */

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "select * from emp");

oci_execute($stmt);

$nrows = oci_fetch_all($stmt, $results);

if ($nrows > 0) {

 echo "<table border=\"1\">\n";

 echo "<tr>\n";

 foreach ($results as $key => $val) {

 echo "<th>$key</th>\n";

 }

 echo "</tr>\n";

 for ($i = 0; $i < $nrows; $i++) {

 echo "<tr>\n";

 foreach ($results as $data) {

 echo "<td>$data[$i]</td>\n";

 }

 echo "</tr>\n";

 }

 echo "</table>\n";

} else {

 echo "No data found
\n";

}

echo "$nrows Records Selected
\n";

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocifetchstatement() instead. This name still
can be used, it was left as alias of oci_fetch_all() for downwards compatability. This,
however, is deprecated and not recommended.

oci_fetch_array

oci_fetch_array -- Returns the next row from the result data as an associative or numeric
array, or both

Description

array oci_fetch_array (resource $statement [, int $mode])

Returns an array, which corresponds to the next result row.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

It should be mentioned here, that oci_fetch_array() is insignificantly slower, than
oci_fetch_row(), but much more handy.

Parameters

statement

A valid OCI statement identifier.

statement

An optional second parameter can be any combination of the following constants:

• OCI_BOTH - return an array with both associative and numeric indices (the same
as OCI_ASSOC + OCI_NUM). This is the default behavior.

• OCI_ASSOC - return an associative array (as oci_fetch_assoc() works).
• OCI_NUM - return a numeric array, (as oci_fetch_row() works).
• OCI_RETURN_NULLS - create empty elements for the NULL fields.
• OCI_RETURN_LOBS - return the value of a LOB of the descriptor.

Default mode is OCI_BOTH.

Return Values

Returns an array with both associative and numeric indices, or FALSE if there are no more
rows in the statement.

Note

This function sets NULL fields to the PHP NULL value.

Note

Oracle returns all field names in uppercase and associative indices in the result array
will be uppercased too.

Examples

Example #1217 - oci_fetch_array() with OCI_BOTH example

<?php

$connection = oci_connect("apelsin", "kanistra");

$query = "SELECT id, name FROM fruits";

$statement = oci_parse ($connection, $query);

oci_execute ($statement);

while ($row = oci_fetch_array ($statement, OCI_BOTH)) {

 echo $row[0]." and ".$row['ID']." is the same
";

 echo $row[1]." and ".$row['NAME']." is the same
";

}

?>

Example #1218 - oci_fetch_array() with OCI_NUM example

<?php

$connection = oci_connect("user", "password");

$query = "SELECT id, name, lob_field FROM fruits";

$statement = oci_parse ($connection, $query);

oci_execute ($statement);

while ($row = oci_fetch_array ($statement, OCI_NUM)) {

 echo $row[0]."
";

 echo $row[1]."
";

 echo $row[2]->read(100)."
"; //this will output first 100 bytes from
LOB

}

?>

Example #1219 - oci_fetch_array() with OCI_ASSOC example

<?php

$connection = oci_connect("user", "password");

$query = "SELECT id, name, lob_field FROM fruits";

$statement = oci_parse ($connection, $query);

oci_execute ($statement);

while ($row = oci_fetch_array ($statement, OCI_ASSOC)) {

 echo $row['ID']."
";

 echo $row['NAME']."
";

 echo $row['LOB_FIELD']."
"; //this will output "Object id #1"

}

?>

Example #1220 - oci_fetch_array() with OCI_RETURN_LOBS example

<?php

$connection = oci_connect("user", "password");

$query = "SELECT id, name, lob_field FROM fruits";

$statement = oci_parse ($connection, $query);

oci_execute ($statement);

while ($row = oci_fetch_array ($statement, (OCI_NUM+OCI_RETURN_LOBS))) {

 echo $row[0]."
";

 echo $row[1]."
";

 echo $row['LOB_FIELD']."
"; //this will output LOB's content

}

?>

See Also

• oci_fetch_assoc()
• oci_fetch_object()
• oci_fetch_row()
• oci_fetch_all()

oci_fetch_assoc

oci_fetch_assoc -- Returns the next row from the result data as an associative array

Description

array oci_fetch_assoc (resource $statement)

Returns the next row from the result data as an associative array.

Calling oci_fetch_assoc() is identical to calling oci_fetch_array() with OCI_ASSOC.

A subsequent call to oci_fetch_assoc() will return the next row or FALSE if there are no
more rows.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns an associative array, or FALSE if there are no more rows in the statement.

Note

This function sets NULL fields to the PHP NULL value.

Note

Oracle returns all field names in uppercase and associative indices in the result array
will be uppercased too.

See Also

• oci_fetch_array()
• oci_fetch_object()

• oci_fetch_row()
• oci_fetch_all()

oci_fetch_object

oci_fetch_object -- Returns the next row from the result data as an object

Description

object oci_fetch_object (resource $statement)

Returns the next row from the result data as an object.

Subsequent calls to oci_fetch_object() will return the next row from the result or FALSE if
there are no more rows.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns an object, which attributes correspond to fields in statement, or FALSE if there are
no more rows in the statement.

Note

This function sets NULL fields to the PHP NULL value.

Note

Oracle returns all field names in uppercase and associative indices in the result object
will be uppercased too.

See Also

• oci_fetch_array()
• oci_fetch_assoc()
• oci_fetch_row()

• oci_fetch_all()

oci_fetch_row

oci_fetch_row -- Returns the next row from the result data as a numeric array

Description

array oci_fetch_row (resource $statement)

Returns the next row from the result data as an indexed array.

Calling oci_fetch_row() is identical to calling oci_fetch_array() with OCI_NUM.

Subsequent calls to oci_fetch_row() will return the next row from the result data or FALSE
if there are no more rows.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns an indexed array with the field information, or FALSE if there are no more rows in
the statement.

Note

This function sets NULL fields to the PHP NULL value.

See Also

• oci_fetch_array()
• oci_fetch_assoc()
• oci_fetch_object()
• oci_fetch_all()

oci_fetch

oci_fetch -- Fetches the next row into result-buffer

Description

bool oci_fetch (resource $statement)

Fetches the next row (for SELECT statements) into the internal result-buffer.

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

In PHP versions before 5.0.0 you must use ocifetch() instead. This name still can be
used, it was left as alias of oci_fetch() for downwards compatability. This, however, is
deprecated and not recommended.

oci_field_is_null

oci_field_is_null -- Checks if the field is NULL

Description

bool oci_field_is_null (resource $statement, mixed $field)

Checks if the given field from the statement is NULL.

Parameters

statement

A valid OCI statement identifier.

field

Can be a field's index or a field's name (uppercased).

Return Values

Returns TRUE if field is NULL, FALSE otherwise.

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumnisnull() instead. This name still
can be used, it was left as alias of oci_field_is_null() for downwards compatability.
This, however, is deprecated and not recommended.

oci_field_name

oci_field_name -- Returns the name of a field from the statement

Description

string oci_field_name (resource $statement, int $field)

Returns the name of the field.

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns the name as a string, or FALSE on errors.

Examples

Example #1221 - oci_field_name() example

<?php

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "SELECT * FROM emp");

oci_execute($stmt);

echo "<table border=\"1\">";

echo "<tr>";

echo "<th>Name</th>";

echo "<th>Type</th>";

echo "<th>Length</th>";

echo "</tr>";

$ncols = oci_num_fields($stmt);

for ($i = 1; $i <= $ncols; $i++) {

 $column_name = oci_field_name($stmt, $i);

 $column_type = oci_field_type($stmt, $i);

 $column_size = oci_field_size($stmt, $i);

 echo "<tr>";

 echo "<td>$column_name</td>";

 echo "<td>$column_type</td>";

 echo "<td>$column_size</td>";

 echo "</tr>";

}

echo "</table>\n";

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumnname() instead. This name still
can be used, it was left as alias of oci_field_name() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

• oci_num_fields()
• oci_field_type()
• oci_field_size()

oci_field_precision

oci_field_precision -- Tell the precision of a field

Description

int oci_field_precision (resource $statement, int $field)

Returns precision of the field.

For FLOAT columns, precision is nonzero and scale is -127. If precision is 0, then column
is NUMBER. Else it's NUMBER(precision, scale).

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns the precision as an integer, or FALSE on errors.

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumnprecision() instead. This name
still can be used, it was left as alias of oci_field_precision() for downwards
compatability. This, however, is deprecated and not recommended.

See Also

• oci_field_scale()
• oci_field_type()

oci_field_scale

oci_field_scale -- Tell the scale of the field

Description

int oci_field_scale (resource $statement, int $field)

Returns the scale of the column with field index.

For FLOAT columns, precision is nonzero and scale is -127. If precision is 0, then column
is NUMBER. Else it's NUMBER(precision, scale).

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns the scale as an integer, or FALSE on errors.

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumnscale() instead. This name still
can be used, it was left as alias of oci_field_scale() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

• oci_field_precision()
• oci_field_type()

oci_field_size

oci_field_size -- Returns field's size

Description

int oci_field_size (resource $statement, mixed $field)

Returns the size of a field.

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns the size of a field in bytes, or FALSE on errors.

Examples

Example #1222 - oci_field_size() example

<?php

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "SELECT * FROM emp");

oci_execute($stmt);

echo "<table border=\"1\">";

echo "<tr>";

echo "<th>Name</th>";

echo "<th>Type</th>";

echo "<th>Length</th>";

echo "</tr>";

$ncols = oci_num_fields($stmt);

for ($i = 1; $i <= $ncols; $i++) {

 $column_name = oci_field_name($stmt, $i);

 $column_type = oci_field_type($stmt, $i);

 $column_size = oci_field_size($stmt, $i);

 echo "<tr>";

 echo "<td>$column_name</td>";

 echo "<td>$column_type</td>";

 echo "<td>$column_size</td>";

 echo "</tr>";

}

echo "</table>";

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumnsize() instead. This name still
can be used, it was left as alias of oci_field_size() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

• oci_num_fields()
• oci_field_name()

oci_field_type_raw

oci_field_type_raw -- Tell the raw Oracle data type of the field

Description

int oci_field_type_raw (resource $statement, int $field)

Returns Oracle's raw data type of the field.

However, if you want to get field's type, then oci_field_type() will suit you better.

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns Oracle's raw data type as a string, or FALSE on errors.

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumntyperaw() instead. This name still
can be used, it was left as alias of oci_field_type_raw() for downwards compatability.
This, however, is deprecated and not recommended.

oci_field_type

oci_field_type -- Returns field's data type

Description

mixed oci_field_type (resource $statement, int $field)

Returns a field's data type.

Parameters

statement

A valid OCI statement identifier.

field

Can be the field's index (1-based) or name.

Return Values

Returns the field data type as a string, or FALSE on errors.

Return Values

Example #1223 - oci_field_type() example

<?php

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "SELECT * FROM emp");

oci_execute($stmt);

echo "<table border=\"1\">";

echo "<tr>";

echo "<th>Name</th>";

echo "<th>Type</th>";

echo "<th>Length</th>";

echo "</tr>";

$ncols = oci_num_fields($stmt);

for ($i = 1; $i <= $ncols; $i++) {

 $column_name = oci_field_name($stmt, $i);

 $column_type = oci_field_type($stmt, $i);

 $column_size = oci_field_size($stmt, $i);

 echo "<tr>";

 echo "<td>$column_name</td>";

 echo "<td>$column_type</td>";

 echo "<td>$column_size</td>";

 echo "</tr>";

}

echo "</table>\n";

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocicolumntype() instead. This name still
can be used, it was left as alias of oci_field_type() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

• oci_num_fields()
• oci_field_name()
• oci_field_size()

oci_free_statement

oci_free_statement -- Frees all resources associated with statement or cursor

Description

bool oci_free_statement (resource $statement)

Frees resources associated with Oracle's cursor or statement, which was received from as
a result of oci_parse() or obtained from Oracle.

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns TRUE on success or FALSE on failure.

oci_internal_debug

oci_internal_debug -- Enables or disables internal debug output

Description

void oci_internal_debug (bool $onoff)

Enables or disables internal debug output.

Parameters

onoff

Set this to FALSE to turn debug output off or TRUE to turn it on.

Return Values

No value is returned.

Notes

Note

In PHP versions before 5.0.0 you must use ociinternaldebug() instead. This name still
can be used, it was left as alias of oci_internal_debug() for downwards compatability.
This, however, is deprecated and not recommended.

OCI-Lob->append

OCI-Lob->append -- Appends data from the large object to another large object

Description

OCI-Lob

bool append (OCI-Lob $lob_from)

Appends data from the large object to the end of another large object.

Writing to the large object with this method will fail if buffering was previously enabled. You
must disable buffering before appending. You may need to flush buffers with
OCI-Lob->flush before disabling buffering.

Parameters

lob_from

The copied LOB.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->flush
• OCI-Lob->setBuffering
• OCI-Lob->getBuffering

OCI-Lob->close

OCI-Lob->close -- Closes LOB descriptor

Description

OCI-Lob

bool close (void)

Closes descriptor of LOB or FILE. This function should be used only with
OCI-Lob->writeTemporary.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->writeTemporary

oci_lob_copy

oci_lob_copy -- Copies large object

Description

bool oci_lob_copy (OCI-Lob $lob_to, OCI-Lob $lob_from [, int $length])

Copies a large object or a part of a large object to another large object. Old LOB-recipient
data will be overwritten.

If you need to copy a particular part of a LOB to a particular position of a LOB, use
oci_lob_seek() to move LOB internal pointers.

Parameters

lob_to

The destination LOB.

lob_from

The copied LOB.

length

Indicates the length of data to be copied.

Return Values

Returns TRUE on success or FALSE on failure.

OCI-Lob->eof

OCI-Lob->eof -- Tests for end-of-file on a large object's descriptor

Description

OCI-Lob

bool eof (void)

Tells whether the internal pointer of large object is at the end of LOB.

Return Values

Returns TRUE if internal pointer of large object is at the end of LOB. Otherwise returns
FALSE.

See Also

• OCI-Lob->size

OCI-Lob->erase

OCI-Lob->erase -- Erases a specified portion of the internal LOB data

Description

OCI-Lob

int erase ([int $offset [, int $length]])

Erases a specified portion of the internal LOB data starting at a specified offset. If called
without parameters, it erases all LOB data.

For BLOBs, erasing means that the existing LOB value is overwritten with zero-bytes. For
CLOBs, the existing LOB value is overwritten with spaces.

Parameters

offset

length

Return Values

Returns the actual number of characters/bytes erased or FALSE in case of error.

See Also

• OCI-Lob->truncate

OCI-Lob->export

OCI-Lob->export -- Exports LOB's contents to a file

Description

OCI-Lob

bool export (string $filename [, int $start [, int $length]])

Exports LOB contents to a file.

Parameters

filename

Path to the file.

start

Indicates from where to start exporting.

length

Indicates the length of data to be exported.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->import

OCI-Lob->flush

OCI-Lob->flush -- Flushes/writes buffer of the LOB to the server

Description

OCI-Lob

bool flush ([int $flag])

OCI-Lob->flush() actually writes data to the server.

Parameters

flag

By default, resources are not freed, but using flag OCI_LOB_BUFFER_FREE you can
do it explicitly. Be sure you know what you're doing - next read/write operation to the
same part of LOB will involve a round-trip to the server and initialize new buffer
resources. It is recommended to use OCI_LOB_BUFFER_FREE flag only when you
are not going to work with the LOB anymore.

Return Values

Returns TRUE on success or FALSE on failure.

Returns FALSE if buffering was not enabled or an error occurred.

See Also

• OCI-Lob->getBuffering
• OCI-Lob->setBuffering

OCI-Lob->free

OCI-Lob->free -- Frees resources associated with the LOB descriptor

Description

OCI-Lob

bool free (void)

Frees resources associated with the descriptor, previously allocated with
oci_new_descriptor().

Return Values

Returns TRUE on success or FALSE on failure.

OCI-Lob->getBuffering

OCI-Lob->getBuffering -- Returns current state of buffering for the large object

Description

OCI-Lob

bool getBuffering (void)

Tells whether the buffering for the large object is on or off.

Return Values

Returns FALSE if buffering for the large object is off and TRUE if buffering is used.

See Also

• OCI-Lob->setBuffering

OCI-Lob->import

OCI-Lob->import -- Imports file data to the LOB

Description

OCI-Lob

bool import (string $filename)

Writes data from the filename in to the current position of large object.

Parameters

filename

Path to the file.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->export
• OCI-Lob->write

oci_lob_is_equal

oci_lob_is_equal -- Compares two LOB/FILE locators for equality

Description

bool oci_lob_is_equal (OCI-Lob $lob1, OCI-Lob $lob2)

Compares two LOB/FILE locators.

Parameters

lob1

A LOB identifier.

lob2

A LOB identifier.

Return Values

Returns TRUE if these objects are equal, FALSE otherwise.

OCI-Lob->load

OCI-Lob->load -- Returns large object's contents

Description

OCI-Lob

string load (void)

Returns large object's contents. As script execution is terminated when the memory_limit
is reached, ensure that the LOB does not exceed this limit. In most cases it's
recommended to use OCI-Lob->read instead.

Return Values

Returns the contents of the object, or FALSE on errors.

See Also

• OCI-Lob->read

OCI-Lob->read

OCI-Lob->read -- Reads part of the large object

Description

OCI-Lob

string read (int $length)

Reads length bytes from the current position of LOB's internal pointer.

Reading stops when length bytes have been read or end of the large object is reached.
Internal pointer of the large object will be shifted on the amount of bytes read.

Parameters

length

The length of data to read, in bytes.

Return Values

Returns the contents as a string, or FALSE in case of error.

See Also

• OCI-Lob->load
• OCI-Lob->write

OCI-Lob->rewind

OCI-Lob->rewind -- Moves the internal pointer to the beginning of the large object

Description

OCI-Lob

bool rewind (void)

Sets the internal pointer to the beginning of the large object.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->seek
• OCI-Lob->tell

OCI-Lob->save

OCI-Lob->save -- Saves data to the large object

Description

OCI-Lob

bool save (string $data [, int $offset])

Saves data to the large object.

Parameters

data

The data to be saved.

offset

Can be used to indicate offset from the beginning of the large object.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->write
• OCI-Lob->import

OCI-Lob->saveFile

OCI-Lob->saveFile -- Alias of oci_lob_import()

Description

This function is an alias of: oci_lob_import().

OCI-Lob->seek

OCI-Lob->seek -- Sets the internal pointer of the large object

Description

OCI-Lob

bool seek (int $offset [, int $whence])

Sets the internal pointer of the large object.

Parameters

offset

Indicates the amount of bytes, on which internal pointer should be moved from the
position, pointed by whence.

whence

May be one of:

• OCI_SEEK_SET - sets the position equal to offset
• OCI_SEEK_CUR - adds offset bytes to the current position
• OCI_SEEK_END - adds offset bytes to the end of large object (use negative

value to move to a position before the end of large object)

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->rewind
• OCI-Lob->tell
• OCI-Lob->eof

OCI-Lob->setBuffering

OCI-Lob->setBuffering -- Changes current state of buffering for the large object

Description

OCI-Lob

bool setBuffering (bool $on_off)

Sets the buffering for the large object, depending on the value of the on_off parameter.

Use of this function may provide performance improvements by buffering small reads and
writes of LOBs by reducing the number of network round-trips and LOB versions.
oci_lob_flush() should be used to flush buffers, when you have finished working with the
large object.

Parameters

on_off

TRUE for on and FALSE for off.

Return Values

Returns TRUE on success or FALSE on failure. Repeated calls to this method with the
same flag will return TRUE.

See Also

• OCI-Lob->getBuffering

OCI-Lob->size

OCI-Lob->size -- Returns size of large object

Description

OCI-Lob

int size (void)

Gets the size of the large object.

Return Values

Returns length of large object value or FALSE in case of error. Empty objects have zero
length.

OCI-Lob->tell

OCI-Lob->tell -- Returns current position of internal pointer of large object

Description

OCI-Lob

int tell (void)

Gets the current position of a LOB's internal pointer.

Return Values

Returns current position of a LOB's internal pointer or FALSE if an error occurred.

See Also

• OCI-Lob->rewind
• OCI-Lob->size
• OCI-Lob->eof

OCI-Lob->truncate

OCI-Lob->truncate -- Truncates large object

Description

OCI-Lob

bool truncate ([int $length])

Truncates the LOB.

Parameters

length

If provided, this method will truncate the LOB to length bytes. Otherwise, it will
completrely purge the LOB.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->erase

OCI-Lob->write

OCI-Lob->write -- Writes data to the large object

Description

OCI-Lob

int write (string $data [, int $length])

Writes data from the parameter data into the current position of LOB's internal pointer.

Parameters

data

The data to write in the LOB.

length

If this parameter is given, writing will stop after length bytes have been written or the
end of data is reached, whichever comes first.

Return Values

Returns the number of bytes written or FALSE in case of error.

See Also

• OCI-Lob->read

OCI-Lob->writeTemporary

OCI-Lob->writeTemporary -- Writes temporary large object

Description

OCI-Lob

bool writeTemporary (string $data [, int $lob_type])

Creates a temporary large object and writes data to it.

You should use OCI-Lob->close when you are done with this object.

Parameters

data

The data to write.

lob_type

Can be one of the following:

• OCI_TEMP_BLOB is used to create temporary BLOBs
• OCI_TEMP_CLOB (default value) is used to create temporary CLOBs

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• OCI-Lob->close

OCI-Lob->writeToFile

OCI-Lob->writeToFile -- Alias of oci_lob_export()

Description

This function is an alias of: oci_lob_export().

oci_new_collection

oci_new_collection -- Allocates new collection object

Description

OCI-Collection oci_new_collection (resource $connection, string $tdo [, string $schema
])

Allocates a new collection object.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

tdo

Should be a valid named type (uppercase).

schema

Should point to the scheme, where the named type was created. The name of the
current user is the default value.

Return Values

Returns a new OCICollection object or FALSE on error.

Notes

Note

In PHP versions before 5.0.0 you must use ocinewcollection() instead. This name still
can be used, it was left as alias of oci_new_collection() for downwards compatability.
This, however, is deprecated and not recommended.

oci_new_connect

oci_new_connect -- Establishes a new connection to the Oracle server

Description

resource oci_new_connect (string $username, string $password [, string $db [, string $
charset [, int $session_mode]]])

Establishes a new connection to an Oracle server and logs on.

Unlike oci_connect() and oci_pconnect(), oci_new_connect() does not cache connections
and will always return a brand-new freshly opened connection handle. This is useful if your
application needs transactional isolation between two sets of queries.

Parameters

username

The Oracle user name.

password

The password for username.

db

This optional parameter can either contain the name of the local Oracle instance or the
name of the entry in tnsnames.ora. If the not specified, PHP uses environment
variables ORACLE_SID and TWO_TASK to determine the name of local Oracle
instance and location of tnsnames.ora accordingly.

charset

Using Oracle server version 9.2 and greater, you can indicate charset by parameter,
which will be used in the new connection. If you're using Oracle server < 9.2, this
parameter will be ignored and the NLS_LANG environment variable will be used
instead.

session_mode

This parameter is available since version 1.1 and accepts the following values:
OCI_DEFAULT, OCI_SYSOPER and OCI_SYSDBA. If either OCI_SYSOPER or
OCI_SYSDBA were specified, this function will try to establish privileged connection
using external credentials. Privileged connections are disabled by default. To enable
them you need to set oci8.privileged_connect to On.

Return Values

Returns a connection identifier or FALSE on error.

Examples

The following demonstrates how you can separate connections.

Example #1224 - oci_new_connect() example

<?php

echo "<html><pre>";

$db = "";

$c1 = oci_connect("scott", "tiger", $db);

$c2 = oci_new_connect("scott", "tiger", $db);

function create_table($conn)

{

 $stmt = oci_parse($conn, "create table scott.hallo (test

varchar2(64))");

 oci_execute($stmt);

 echo $conn . " created table\n\n";

}

function drop_table($conn)

{

 $stmt = oci_parse($conn, "drop table scott.hallo");

 oci_execute($stmt);

 echo $conn . " dropped table\n\n";

}

function insert_data($conn)

{

 $stmt = oci_parse($conn, "insert into scott.hallo

 values('$conn' || ' ' || to_char(sysdate,'DD-MON-YY
HH24:MI:SS'))");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn . " inserted hallo\n\n";

}

function delete_data($conn)

{

 $stmt = oci_parse($conn, "delete from scott.hallo");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn . " deleted hallo\n\n";

}

function commit($conn)

{

 oci_commit($conn);

 echo $conn . " committed\n\n";

}

function rollback($conn)

{

 oci_rollback($conn);

 echo $conn . " rollback\n\n";

}

function select_data($conn)

{

 $stmt = oci_parse($conn, "select * from scott.hallo");

 oci_execute($stmt, OCI_DEFAULT);

 echo $conn . "----selecting\n\n";

 while (oci_fetch($stmt)) {

 echo $conn . " <" . oci_result($stmt, "TEST") . ">\n\n";

 }

 echo $conn . "----done\n\n";

}

create_table($c1);

insert_data($c1);

select_data($c1);

select_data($c2);

rollback($c1);

select_data($c1);

select_data($c2);

insert_data($c2);

commit($c2);

select_data($c1);

delete_data($c1);

select_data($c1);

select_data($c2);

commit($c1);

select_data($c1);

select_data($c2);

drop_table($c1);

echo "</pre></html>";

?>

Notes

Note

If you're using PHP with Oracle Instant Client, you can use easy connect naming
method described here: » http://download-west.oracle.com/docs/cd/B12037_01/networ
k.101/b10775/naming.htm#i498306. Basically this means you can specify
"//db_host[:port]/database_name" as database name. But if you want to use the old
way of naming you must set either ORACLE_HOME or TNS_ADMIN.

Note

In PHP versions before 5.0.0 you must use ocinlogon() instead. This name still can be
used, it was left as alias of oci_new_connect() for downwards compatability. This,
however, is deprecated and not recommended.

See Also

http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306
http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306

• oci_connect()
• oci_pconnect()

oci_new_cursor

oci_new_cursor -- Allocates and returns a new cursor (statement handle)

Description

resource oci_new_cursor (resource $connection)

Allocates a new statement handle on the specified connection.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

Return Values

Returns a new statement handle, or FALSE on error.

Examples

Example #1225 - Using REF CURSOR in an Oracle's stored procedure

<?php

// suppose your stored procedure info.output returns a ref cursor in :data

$conn = oci_connect("scott", "tiger");

$curs = oci_new_cursor($conn);

$stmt = oci_parse($conn, "begin info.output(:data); end;");

oci_bind_by_name($stmt, "data", $curs, -1, OCI_B_CURSOR);

oci_execute($stmt);

oci_execute($curs);

while ($data = oci_fetch_row($curs)) {

 var_dump($data);

}

oci_free_statement($stmt);

oci_free_statement($curs);

oci_close($conn);

?>

Example #1226 - Using REF CURSOR in an Oracle's select statement

<?php

echo "<html><body>";

$conn = oci_connect("scott", "tiger");

$count_cursor = "CURSOR(select count(empno) num_emps from emp " .

 "where emp.deptno = dept.deptno) as EMPCNT from dept";

$stmt = oci_parse($conn, "select deptno,dname,$count_cursor");

oci_execute($stmt);

echo "<table border=\"1\">";

echo "<tr>";

echo "<th>DEPT NAME</th>";

echo "<th>DEPT #</th>";

echo "<th># EMPLOYEES</th>";

echo "</tr>";

while ($data = oci_fetch_assoc($stmt)) {

 echo "<tr>";

 $dname = $data["DNAME"];

 $deptno = $data["DEPTNO"];

 echo "<td>$dname</td>";

 echo "<td>$deptno</td>";

 oci_execute($data["EMPCNT"]);

 while ($subdata = oci_fetch_assoc($data["EMPCNT"])) {

 $num_emps = $subdata["NUM_EMPS"];

 echo "<td>$num_emps</td>";

 }

 echo "</tr>";

}

echo "</table>";

echo "</body></html>";

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocinewcursor() instead. This name still can
be used, it was left as alias of oci_new_cursor() for downwards compatability. This,
however, is deprecated and not recommended.

oci_new_descriptor

oci_new_descriptor -- Initializes a new empty LOB or FILE descriptor

Description

OCI-Lob oci_new_descriptor (resource $connection [, int $type])

Allocates resources to hold descriptor or LOB locator.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

type

Valid values for type are: OCI_D_FILE, OCI_D_LOB and OCI_D_ROWID.

Return Values

Returns a new LOB or FILE descriptor on success, FALSE on error.

Examples

Example #1227 - oci_new_descriptor() example

<?php

/* This script is designed to be called from a HTML form.

* It expects $user, $password, $table, $where, and $commitsize

* to be passed in from the form. The script then deletes

* the selected rows using the ROWID and commits after each

* set of $commitsize rows. (Use with care, there is no rollback)

*/

$conn = oci_connect($user, $password);

$stmt = oci_parse($conn, "select rowid from $table $where");

$rowid = oci_new_descriptor($conn, OCI_D_ROWID);

oci_define_by_name($stmt, "ROWID", $rowid);

oci_execute($stmt);

while (oci_fetch($stmt)) {

 $nrows = oci_num_rows($stmt);

 $delete = oci_parse($conn, "delete from $table where ROWID = :rid");

 oci_bind_by_name($delete, ":rid", $rowid, -1, OCI_B_ROWID);

 oci_execute($delete);

 echo "$nrows\n";

 if (($nrows % $commitsize) == 0) {

 oci_commit($conn);

 }

}

$nrows = oci_num_rows($stmt);

echo "$nrows deleted...\n";

oci_free_statement($stmt);

oci_close($conn);

?>

<?php

 /* This script demonstrates file upload to LOB columns

 * The formfield used for this example looks like this

 * <form action="upload.php" method="post" enctype="multipart/form-data">

 * <input type="file" name="lob_upload" />

 * ...

 */

 if (!isset($lob_upload) || $lob_upload == 'none'){

?>

<form action="upload.php" method="post" enctype="multipart/form-data">

Upload file: <input type="file" name="lob_upload" />

<input type="submit" value="Upload" /> - <input type="reset" value="Reset"
/>

</form>

<?php

 } else {

 // $lob_upload contains the temporary filename of the uploaded file

 // see also the features section on file upload,

 // if you would like to use secure uploads

 $conn = oci_connect($user, $password);

 $lob = oci_new_descriptor($conn, OCI_D_LOB);

 $stmt = oci_parse($conn, "insert into $table (id, the_blob)

 values(my_seq.NEXTVAL, EMPTY_BLOB()) returning the_blob into
:the_blob");

 oci_bind_by_name($stmt, ':the_blob', $lob, -1, OCI_B_BLOB);

 oci_execute($stmt, OCI_DEFAULT);

 if ($lob->savefile($lob_upload)){

 oci_commit($conn);

 echo "Blob successfully uploaded\n";

 }else{

 echo "Couldn't upload Blob\n";

 }

 oci_free_descriptor($lob);

 oci_free_statement($stmt);

 oci_close($conn);

 }

?>

Example #1228 - oci_new_descriptor() example

<?php

/* Calling PL/SQL stored procedures which contain clobs as input

* parameters (PHP 4 >= 4.0.6).

* Example PL/SQL stored procedure signature is:

*

* PROCEDURE save_data

* Argument Name Type In/Out Default?

* ------------------------------ ----------------------- ------ --------

* KEY NUMBER(38) IN

* DATA CLOB IN

*

*/

$conn = oci_connect($user, $password);

$stmt = oci_parse($conn, "begin save_data(:key, :data); end;");

$clob = oci_new_descriptor($conn, OCI_D_LOB);

oci_bind_by_name($stmt, ':key', $key);

oci_bind_by_name($stmt, ':data', $clob, -1, OCI_B_CLOB);

$clob->write($data);

oci_execute($stmt, OCI_DEFAULT);

oci_commit($conn);

$clob->free();

oci_free_statement($stmt);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocinewdescriptor() instead. This name still
can be used, it was left as alias of oci_new_descriptor() for downwards compatability.
This, however, is deprecated and not recommended.

oci_num_fields

oci_num_fields -- Returns the number of result columns in a statement

Description

int oci_num_fields (resource $statement)

Gets the number of columns in the given statement.

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns the number of columns as an integer, or FALSE on errors.

Examples

Example #1229 - oci_num_fields() example

<?php

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "select * from emp");

oci_execute($stmt);

while (oci_fetch($stmt)) {

 echo "\n";

 $ncols = oci_num_fields($stmt);

 for ($i = 1; $i <= $ncols; $i++) {

 $column_name = oci_field_name($stmt, $i);

 $column_value = oci_result($stmt, $i);

 echo $column_name . ': ' . $column_value . "\n";

 }

 echo "\n";

}

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocinumcols() instead. This name still can
be used, it was left as alias of oci_num_fields() for downwards compatability. This,
however, is deprecated and not recommended.

oci_num_rows

oci_num_rows -- Returns number of rows affected during statement execution

Description

int oci_num_rows (resource $statement)

Gets the number of rows affected during statement execution.

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns the number of rows affected as an integer, or FALSE on errors.

Examples

Example #1230 - oci_num_rows() example

<?php

$conn = oci_connect("scott", "tiger");

$stmt = oci_parse($conn, "create table emp2 as select * from emp");

oci_execute($stmt);

echo oci_num_rows($stmt) . " rows inserted.
";

oci_free_statement($stmt);

$stmt = oci_parse($conn, "delete from emp2");

oci_execute($stmt, OCI_DEFAULT);

echo oci_num_rows($stmt) . " rows deleted.
";

oci_commit($conn);

oci_free_statement($stmt);

$stmt = oci_parse($conn, "drop table emp2");

oci_execute($stmt);

oci_free_statement($stmt);

oci_close($conn);

?>

Notes

Note

This function does not return number of rows selected! For SELECT statements this
function will return the number of rows, that were fetched to the buffer with
oci_fetch*() functions.

Note

In PHP versions before 5.0.0 you must use ocirowcount() instead. This name still can
be used, it was left as alias of oci_num_rows() for downwards compatability. This,
however, is deprecated and not recommended.

oci_parse

oci_parse -- Prepares Oracle statement for execution

Description

resource oci_parse (resource $connection, string $query)

Prepares the query using connection and returns the statement identifier, which can be
used with oci_bind_by_name(), oci_execute() and other functions.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

query

The SQL query.

Return Values

Returns a statement handler on success, or FALSE on error.

Notes

Note

This function does not validate query. The only way to find out if query is valid SQL or
PL/SQL statement - is to execute it.

Note

In PHP versions before 5.0.0 you must use ociparse() instead. This name still can be
used, it was left as alias of oci_parse() for downwards compatability. This, however, is
deprecated and not recommended.

oci_password_change

oci_password_change -- Changes password of Oracle's user

Description

bool oci_password_change (resource $connection, string $username, string $
old_password, string $new_password)

resource oci_password_change (string $dbname, string $username, string $
old_password, string $new_password)

Changes password for user with username.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

username

The Oracle user name.

old_password

The old password.

new_password

The new password to be set.

dbname

The database name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The second oci_password_change() syntax is available since version 1.1.

Note

In PHP versions before 5.0.0 you must use ocipasswordchange() instead. This name

still can be used, it was left as alias of oci_password_change() for downwards
compatability. This, however, is deprecated and not recommended.

oci_pconnect

oci_pconnect -- Connect to an Oracle database using a persistent connection

Description

resource oci_pconnect (string $username, string $password [, string $db [, string $
charset [, int $session_mode]]])

Creates a persistent connection to an Oracle server and logs on.

Persistent connections are cached and re-used between requests, resulting in reduced
overhead on each page load; a typical PHP application will have a single persistent
connection open against an Oracle server per Apache child process (or PHP FastCGI/CGI
process). See the Persistent Database Connections section for more information.

Parameters

username

The Oracle user name.

password

The password for username.

db

This optional parameter can either contain the name of the local Oracle instance or the
name of the entry in tnsnames.ora. If the not specified, PHP uses environment
variables ORACLE_SID and TWO_TASK to determine the name of local Oracle
instance and location of tnsnames.ora accordingly.

charset

Using Oracle server version 9.2 and greater, you can indicate charset by parameter,
which will be used in the new connection. If you're using Oracle server < 9.2, this
parameter will be ignored and the NLS_LANG environment variable will be used
instead.

session_mode

This parameter is available since version 1.1 and accepts the following values:
OCI_DEFAULT, OCI_SYSOPER and OCI_SYSDBA. If either OCI_SYSOPER or
OCI_SYSDBA were specified, this function will try to establish privileged connection
using external credentials. Privileged connections are disabled by default. To enable
them you need to set oci8.privileged_connect to On.

Return Values

Returns a connection identifier or FALSE on error.

Notes

Note

Starting with version 1.1 of the oci8 extension, the lifetime and maximum amount of
persistent Oracle connections can be tuned by setting the following configuration
values: oci8.persistent_timeout, oci8.ping_interval and oci8.max_persistent.

Note

If you're using PHP with Oracle Instant Client, you can use easy connect naming
method described here: » http://download-west.oracle.com/docs/cd/B12037_01/networ
k.101/b10775/naming.htm#i498306. Basically this means you can specify
"//db_host[:port]/database_name" as database name. But if you want to use the old
way of naming you must set either ORACLE_HOME or TNS_ADMIN.

Note

In PHP versions before 5.0.0 you must use ociplogon() instead. This name still can be
used, it was left as alias of oci_pconnect() for downwards compatability. This, however,
is deprecated and not recommended.

See Also

• oci_connect()
• oci_new_connect()

http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306
http://download-west.oracle.com/docs/cd/B12037_01/network.101/b10775/naming.htm#i498306

oci_result

oci_result -- Returns field's value from the fetched row

Description

mixed oci_result (resource $statement, mixed $field)

Returns the data from field in the current row, fetched by oci_fetch().

For details on the data type mapping performed by the oci8 driver, see the datatypes
supported by the driver

Parameters

statement

field

Can be either use the column number (1-based) or the column name (in uppercase).

Return Values

Returns everything as strings except for abstract types (ROWIDs, LOBs and FILEs).
Returns FALSE on error.

Notes

Note

In PHP versions before 5.0.0 you must use ociresult() instead. This name still can be
used, it was left as alias of oci_result() for downwards compatability. This, however, is
deprecated and not recommended.

See Also

• oci_fetch_array()
• oci_fetch_assoc()
• oci_fetch_object()
• oci_fetch_row()
• oci_fetch_all()

oci_rollback

oci_rollback -- Rolls back outstanding transaction

Description

bool oci_rollback (resource $connection)

Rolls back all outstanding statements for the Oracle connection.

Parameters

connection

An Oracle connection identifier, returned by oci_connect() or oci_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Transactions are automatically rolled back when you close the connection, or when the
script ends, whichever is soonest. You need to explicitly call oci_commit() to commit
the transaction, or oci_rollback() to abort it.

Note

In PHP versions before 5.0.0 you must use ocirollback() instead. This name still can be
used, it was left as alias of oci_rollback() for downwards compatability. This, however,
is deprecated and not recommended.

See Also

• oci_commit()

oci_server_version

oci_server_version -- Returns server version

Description

string oci_server_version (resource $connection)

Returns a string with version information of the Oracle server, which uses the provided
connection.

Parameters

connection

Return Values

Returns the version information as a string or FALSE on error.

Examples

Example #1231 - oci_server_version() example

<?php

 $conn = oci_connect("scott", "tiger");

 echo "Server Version: " . oci_server_version($conn);

 oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ociserverversion() instead. This name still
can be used, it was left as alias of oci_server_version() for downwards compatability.
This, however, is deprecated and not recommended.

oci_set_prefetch

oci_set_prefetch -- Sets number of rows to be prefetched

Description

bool oci_set_prefetch (resource $statement, int $rows)

Sets the number of rows to be prefetched after successful call to oci_execute().

Parameters

statement

rows

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

In PHP versions before 5.0.0 you must use ocisetprefetch() instead. This name still
can be used, it was left as alias of oci_set_prefetch() for downwards compatability.
This, however, is deprecated and not recommended.

See Also

• oci8_.default_prefetch ini option

oci_statement_type

oci_statement_type -- Returns the type of an OCI statement

Description

string oci_statement_type (resource $statement)

Returns the type of the provided OCI statement.

Parameters

statement

A valid OCI statement identifier.

Return Values

Returns the query type of statement as one of the following values:

• SELECT

• UPDATE

• DELETE

• INSERT

• CREATE

• DROP

• ALTER

• BEGIN

• DECLARE

• CALL (since PHP 5.2.1 and OCI8 1.2.3)

• UNKNOWN

Returns FALSE on error.

Examples

Example #1232 - oci_statement_type() example

<?php

 $conn = oci_connect("scott", "tiger");

 $sql = "delete from emp where deptno = 10";

 $stmt = oci_parse($conn, $sql);

 if (oci_statement_type($stmt) == "DELETE") {

 die("You are not allowed to delete from this table
");

 }

 oci_close($conn);

?>

Notes

Note

In PHP versions before 5.0.0 you must use ocistatementtype() instead. This name still
can be used, it was left as alias of oci_statement_type() for downwards compatability.
This, however, is deprecated and not recommended.

ocibindbyname

ocibindbyname -- Alias of oci_bind_by_name()

Description

This function is an alias of: oci_bind_by_name().

ocicancel

ocicancel -- Alias of oci_cancel()

Description

This function is an alias of: oci_cancel().

ocicloselob

ocicloselob -- Alias of OCI-Lob->close

Description

This function is an alias of: OCI-Lob->close.

ocicollappend

ocicollappend -- Alias of OCI-Collection->append

Description

This function is an alias of: OCI-Collection->append.

ocicollassign

ocicollassign -- Alias of OCI-Collection->assign

Description

This function is an alias of: OCI-Collection->assign.

ocicollassignelem

ocicollassignelem -- Alias of OCI-Collection->assignElem

Description

This function is an alias of: OCI-Collection->assignElem.

ocicollgetelem

ocicollgetelem -- Alias of OCI-Collection->getElem

Description

This function is an alias of: OCI-Collection->getElem.

ocicollmax

ocicollmax -- Alias of OCI-Collection->max

Description

This function is an alias of: OCI-Collection->max.

ocicollsize

ocicollsize -- Alias of OCI-Collection->size

Description

This function is an alias of: OCI-Collection->size.

ocicolltrim

ocicolltrim -- Alias of OCI-Collection->trim

Description

This function is an alias of: OCI-Collection->trim.

ocicolumnisnull

ocicolumnisnull -- Alias of oci_field_is_null()

Description

This function is an alias of: oci_field_is_null().

ocicolumnname

ocicolumnname -- Alias of oci_field_name()

Description

This function is an alias of: oci_field_name().

ocicolumnprecision

ocicolumnprecision -- Alias of oci_field_precision()

Description

This function is an alias of: oci_field_precision().

ocicolumnscale

ocicolumnscale -- Alias of oci_field_scale()

Description

This function is an alias of: oci_field_scale().

ocicolumnsize

ocicolumnsize -- Alias of oci_field_size()

Description

This function is an alias of: oci_field_size().

ocicolumntype

ocicolumntype -- Alias of oci_field_type()

Description

This function is an alias of: oci_field_type().

ocicolumntyperaw

ocicolumntyperaw -- Alias of oci_field_type_raw()

Description

This function is an alias of: oci_field_type_raw().

ocicommit

ocicommit -- Alias of oci_commit()

Description

This function is an alias of: oci_commit().

ocidefinebyname

ocidefinebyname -- Alias of oci_define_by_name()

Description

This function is an alias of: oci_define_by_name().

ocierror

ocierror -- Alias of oci_error()

Description

This function is an alias of: oci_error().

ociexecute

ociexecute -- Alias of oci_execute()

Description

This function is an alias of: oci_execute().

ocifetch

ocifetch -- Alias of oci_fetch()

Description

This function is an alias of: oci_fetch().

ocifetchinto

ocifetchinto -- Fetches the next row into an array (deprecated)

Description

int ocifetchinto (resource $statement, array &$result [, int $mode])

This function is deprecated. Recommended alternatives: oci_fetch_array(),
oci_fetch_object(), oci_fetch_assoc() and oci_fetch_row().

ocifetchstatement

ocifetchstatement -- Alias of oci_fetch_all()

Description

This function is an alias of: oci_fetch_all().

ocifreecollection

ocifreecollection -- Alias of OCI-Collection->free

Description

This function is an alias of: OCI-Collection->free.

ocifreecursor

ocifreecursor -- Alias of oci_free_statement()

Description

This function is an alias of: oci_free_statement().

ocifreedesc

ocifreedesc -- Alias of OCI-Lob->free

Description

This function is an alias of: OCI-Lob->free.

ocifreestatement

ocifreestatement -- Alias of oci_free_statement()

Description

This function is an alias of: oci_free_statement().

ociinternaldebug

ociinternaldebug -- Alias of oci_internal_debug()

Description

This function is an alias of: oci_internal_debug().

ociloadlob

ociloadlob -- Alias of OCI-Lob->load

Description

This function is an alias of: OCI-Lob->load.

ocilogoff

ocilogoff -- Alias of oci_close()

Description

This function is an alias of: oci_close().

ocilogon

ocilogon -- Alias of oci_connect()

Description

This function is an alias of: oci_connect().

ocinewcollection

ocinewcollection -- Alias of oci_new_collection()

Description

This function is an alias of: oci_new_collection().

ocinewcursor

ocinewcursor -- Alias of oci_new_cursor()

Description

This function is an alias of: oci_new_cursor().

ocinewdescriptor

ocinewdescriptor -- Alias of oci_new_descriptor()

Description

This function is an alias of: oci_new_descriptor().

ocinlogon

ocinlogon -- Alias of oci_new_connect()

Description

This function is an alias of: oci_new_connect().

ocinumcols

ocinumcols -- Alias of oci_num_fields()

Description

This function is an alias of: oci_num_fields().

ociparse

ociparse -- Alias of oci_parse()

Description

This function is an alias of: oci_parse().

ociplogon

ociplogon -- Alias of oci_pconnect()

Description

This function is an alias of: oci_pconnect().

ociresult

ociresult -- Alias of oci_result()

Description

This function is an alias of: oci_result().

ocirollback

ocirollback -- Alias of oci_rollback()

Description

This function is an alias of: oci_rollback().

ocirowcount

ocirowcount -- Alias of oci_num_rows()

Description

This function is an alias of: oci_num_rows().

ocisavelob

ocisavelob -- Alias of OCI-Lob->save

Description

This function is an alias of: OCI-Lob->save.

ocisavelobfile

ocisavelobfile -- Alias of OCI-Lob->import

Description

This function is an alias of: OCI-Lob->import.

ociserverversion

ociserverversion -- Alias of oci_server_version()

Description

This function is an alias of: oci_server_version().

ocisetprefetch

ocisetprefetch -- Alias of oci_set_prefetch()

Description

This function is an alias of: oci_set_prefetch().

ocistatementtype

ocistatementtype -- Alias of oci_statement_type()

Description

This function is an alias of: oci_statement_type().

ociwritelobtofile

ociwritelobtofile -- Alias of OCI-Lob->export

Description

This function is an alias of: OCI-Lob->export.

ociwritetemporarylob

ociwritetemporarylob -- Alias of OCI-Lob->writeTemporary

Description

This function is an alias of: OCI-Lob->writeTemporary.

Ovrimos SQL

Introduction

Ovrimos SQL Server, is a client/server, transactional RDBMS combined with Web
capabilities and fast transactions.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 4.4.5 and PHP 5.1.0.

Note

This extension is not available on Windows platforms.

http://pecl.php.net/

Installing/Configuring

Requirements

You'll need to install the sqlcli library available in the Ovrimos SQL Server distribution.

Installation

To enable Ovrimos support in PHP just compile PHP with the --with-ovrimos[=DIR]
parameter to your configure line. DIR is the Ovrimos' libsqlcli install directory.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Example #1233 - Connect to Ovrimos SQL Server and select from a system table

<?php

$conn = ovrimos_connect("server.domain.com", "8001", "admin", "password");

if ($conn != 0) {

 echo "Connection ok!";

 $res = ovrimos_exec($conn, "select table_id, table_name from
sys.tables");

 if ($res != 0) {

 echo "Statement ok!";

 ovrimos_result_all($res);

 ovrimos_free_result($res);

 }

 ovrimos_close($conn);

}

?>

Ovrimos SQL Functions

ovrimos_close

ovrimos_close -- Closes the connection to ovrimos

Description

void ovrimos_close (int $connection)

Closes the specified connection to Ovrimos. This has the effect of rolling back
uncommitted transactions.

Parameters

connection

The Ovrimos connection identifier, returned by ovrimos_connect().

Return Values

No value is returned.

See Also

• ovrimos_connect()

ovrimos_commit

ovrimos_commit -- Commits the transaction

Description

bool ovrimos_commit (int $connection_id)

Commits the transaction.

Parameters

connection_id

The Ovrimos connection identifier, returned by ovrimos_connect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ovrimos_rollback()

ovrimos_connect

ovrimos_connect -- Connect to the specified database

Description

int ovrimos_connect (string $host, string $dborport, string $user, string $password)

Connects to the specified database.

Parameters

host

A host name or IP address.

dborport

Either a database name, or the port number to connect to.

user

The user name.

password

Password associated with user.

Return Values

Returns a connection identifier (greater than 0) on success, or 0 on failure.

Examples

Example #1234 - ovrimos_connect() Example

<?php

$conn = ovrimos_connect("server.example.com", "8001", "admin", "password");

if ($conn != 0) {

 echo "Connection ok!";

 $res = ovrimos_exec($conn, "select table_id, table_name from
sys.tables");

 if ($res != 0) {

 echo "Statement ok!";

 ovrimos_result_all($res);

 ovrimos_free_result($res);

 }

 ovrimos_close($conn);

}

?>

See Also

• ovrimos_close()

ovrimos_cursor

ovrimos_cursor -- Returns the name of the cursor

Description

string ovrimos_cursor (int $result_id)

Gets the name of the cursor. Useful when wishing to perform positioned updates or
deletes.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

Return Values

Returns the name as a string, or FALSE on error.

ovrimos_exec

ovrimos_exec -- Executes an SQL statement

Description

int ovrimos_exec (int $connection_id, string $query)

Executes an SQL statement (query or update) and returns a result identifier.

Parameters

connection_id

The Ovrimos connection identifier, returned by ovrimos_connect().

query

The SQL statement. Evidently, it should not contain parameters. Use
ovrimos_prepare() for prepared statements.

Return Values

Returns the result identifier as an integer, or FALSE on error.

See Also

• ovrimos_execute()
• ovrimos_prepare()

ovrimos_execute

ovrimos_execute -- Executes a prepared SQL statement

Description

bool ovrimos_execute (int $result_id [, array $parameters_array])

Executes a prepared statement.

Parameters

result_id

An Ovrimos result identifier prepared with ovrimos_prepare().

parameters_array

If the prepared statement contained parameters (question marks in the statement), the
correct number of parameters should be passed in an array.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ovrimos_prepare()

ovrimos_fetch_into

ovrimos_fetch_into -- Fetches a row from the result set

Description

bool ovrimos_fetch_into (int $result_id, array &$result_array [, string $how [, int $
rownumber]])

Fetches a row from the given result set, into result_array.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

result_array

You must provide an array by reference. It will be filled with the fetched values.

how

Determines how the rows are fetched. This can be one of the following strings (case is
not significant):

Option Notes

Next Forward direction from current position. This
is the default value.

Prev Backward direction from current position.

First Forward direction from the start.

Last Backward direction from the end.

Absolute Absolute position from the start. Requires
rownumber.

rownumber

The row number, first one is 0. Only needed when how is set to Absolute.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1235 - A fetch into example

<?php

$conn=ovrimos_connect("neptune", "8001", "admin", "password");

if ($conn!=0) {

 echo "Connection ok!";

 $res=ovrimos_exec($conn, "select table_id, table_name from sys.tables");

 if ($res != 0) {

 echo "Statement ok!";

 if (ovrimos_fetch_into($res, &$row)) {

 list($table_id, $table_name) = $row;

 echo "table_id=" . $table_id . ", table_name=" . $table_name . "\n";

 if (ovrimos_fetch_into($res, &$row)) {

 list($table_id, $table_name) = $row;

 echo "table_id=" . $table_id . ", table_name=" . $table_name .
"\n";

 } else {

 echo "Next: error\n";

 }

 } else {

 echo "First: error\n";

 }

 ovrimos_free_result($res);

 }

 ovrimos_close($conn);

}

?>

See Also

• ovrimos_fetch_row()

ovrimos_fetch_row

ovrimos_fetch_row -- Fetches a row from the result set

Description

bool ovrimos_fetch_row (int $result_id [, int $how [, int $row_number]])

Fetches a row from the result set. Column values should be retrieved with other calls.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

how

Determines how the rows are fetched. This can be one of the following strings (case is not
significant):

Option Notes

Next Forward direction from current position. This
is the default value.

Prev Backward direction from current position.

First Forward direction from the start.

Last Backward direction from the end.

Absolute Absolute position from the start. Requires
rownumber.

rownumber

The row number, first one is 0. Only needed when how is set to Absolute.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1236 - A fetch row example

<?php

$conn = ovrimos_connect("remote.host", "8001", "admin", "password");

if ($conn != 0) {

 echo "Connection ok!";

 $res=ovrimos_exec($conn, "select table_id, table_name from sys.tables");

 if ($res != 0) {

 echo "Statement ok!";

 if (ovrimos_fetch_row($res, "First")) {

 $table_id = ovrimos_result($res, 1);

 $table_name = ovrimos_result($res, 2);

 echo "table_id=" . $table_id . ", table_name=" . $table_name . "\n";

 if (ovrimos_fetch_row($res, "Next")) {

 $table_id = ovrimos_result($res, "table_id");

 $table_name = ovrimos_result($res, "table_name");

 echo "table_id=" . $table_id . ", table_name=" . $table_name .
"\n";

 } else {

 echo "Next: error\n";

 }

 } else {

 echo "First: error\n";

 }

 ovrimos_free_result($res);

 }

 ovrimos_close($conn);

}

?>

This will fetch a row and print the result.

See Also

• ovrimos_fetch_into()

ovrimos_field_len

ovrimos_field_len -- Returns the length of the output column

Description

int ovrimos_field_len (int $result_id, int $field_number)

Gets the length of the specified output column.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

field_number

The field number. Starts at 1.

Return Values

Returns the length as an interger, or FALSE on error.

See Also

• ovrimos_field_name()
• ovrimos_field_num()
• ovrimos_field_type()

ovrimos_field_name

ovrimos_field_name -- Returns the output column name

Description

string ovrimos_field_name (int $result_id, int $field_number)

Returns the output column name at the index specified.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

field_number

The field number. Starts at 1.

Return Values

Returns the field name as a string, or FALSE on error.

See Also

• ovrimos_field_len()
• ovrimos_field_num()
• ovrimos_field_type()

ovrimos_field_num

ovrimos_field_num -- Returns the (1-based) index of the output column

Description

int ovrimos_field_num (int $result_id, string $field_name)

Returns the 1-based index of the specified output column.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

field_name

The field name.

Return Values

Returns the index, starting at 1, or FALSE on error.

See Also

• ovrimos_field_len()
• ovrimos_field_name()
• ovrimos_field_type()

ovrimos_field_type

ovrimos_field_type -- Returns the type of the output column

Description

int ovrimos_field_type (int $result_id, int $field_number)

Returns the type of the output column

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

field_number

A 1-based index.

Return Values

Returns the field type as an integer, or FALSE on error.

See Also

• ovrimos_field_len()
• ovrimos_field_name()
• ovrimos_field_num()

ovrimos_free_result

ovrimos_free_result -- Frees the specified result_id

Description

bool ovrimos_free_result (int $result_id)

Frees the specified result identifier.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

Return Values

Returns TRUE.

ovrimos_longreadlen

ovrimos_longreadlen -- Specifies how many bytes are to be retrieved from long datatypes

Description

bool ovrimos_longreadlen (int $result_id, int $length)

Specifies how many bytes are to be retrieved from long datatypes (long varchar and long
varbinary).

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

length

The number of bytes to retrieve. Default is zero.

Return Values

Returns TRUE.

ovrimos_num_fields

ovrimos_num_fields -- Returns the number of columns

Description

int ovrimos_num_fields (int $result_id)

Returns the number of columns in the specified result identifier.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

Return Values

Returns the number of columns as an integer, or FALSE on error.

See Also

• ovrimos_num_rows()

ovrimos_num_rows

ovrimos_num_rows -- Returns the number of rows affected by update operations

Description

int ovrimos_num_rows (int $result_id)

Gets the number of rows affected by update operations.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

Return Values

Returns the number of rows as an integer, or FALSE on error.

See Also

• ovrimos_num_fields()

ovrimos_prepare

ovrimos_prepare -- Prepares an SQL statement

Description

int ovrimos_prepare (int $connection_id, string $query)

Prepares an SQL statement.

Parameters

connection_id

The Ovrimos connection identifier, returned by ovrimos_connect().

query

The SQL statement.

Return Values

Returns a result identifier on success, or FALSE on error.

Examples

Example #1237 - ovrimos_prepare() Example

<?php

$conn=ovrimos_connect("db_host", "8001", "admin", "password");

if ($conn!=0) {

 echo "Connection ok!";

 // Prepare the statement

 $res=ovrimos_prepare($conn, "select table_id, table_name

 from sys.tables where table_id=1");

 if ($res != 0) {

 echo "Prepare ok!";

 // Execute the prepared statement

 if (ovrimos_execute($res)) {

 echo "Execute ok!\n";

 ovrimos_result_all($res);

 } else {

 echo "Execute not ok!";

 }

 ovrimos_free_result($res);

 } else {

 echo "Prepare not ok!\n";

 }

 ovrimos_close($conn);

}

?>

ovrimos_result_all

ovrimos_result_all -- Prints the whole result set as an HTML table

Description

int ovrimos_result_all (int $result_id [, string $format])

Prints the whole result set as an HTML table.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

format

Optional HTML attributes for the generated table element.

Return Values

Returns the number of rows in the generated table.

Examples

This will execute an SQL statement and print the result in an HTML table.

Example #1238 - Prepare a statement, execute, and view the result

<?php

$conn = ovrimos_connect("db_host", "8001", "admin", "password");

if ($conn != 0) {

 echo "Connection ok!";

 $res = ovrimos_prepare($conn, "select table_id, table_name

 from sys.tables where table_id = 7");

 if ($res != 0) {

 echo "Prepare ok!";

 if (ovrimos_execute($res, array(3))) {

 echo "Execute ok!\n";

 ovrimos_result_all($res);

 } else {

 echo "Execute not ok!";

 }

 ovrimos_free_result($res);

 } else {

 echo "Prepare not ok!\n";

 }

 ovrimos_close($conn);

}

?>

Example #1239 - ovrimos_result_all() with meta-information

<?php

$conn = ovrimos_connect("db_host", "8001", "admin", "password");

if ($conn != 0) {

 echo "Connection ok!";

 $res = ovrimos_exec($conn, "select table_id, table_name

 from sys.tables where table_id = 1");

 if ($res != 0) {

 echo "Statement ok! cursor=" . ovrimos_cursor($res) . "\n";

 $colnb = ovrimos_num_fields($res);

 echo "Output columns=" . $colnb . "\n";

 for ($i=1; $i <= $colnb; $i++) {

 $name = ovrimos_field_name($res, $i);

 $type = ovrimos_field_type($res, $i);

 $len = ovrimos_field_len($res, $i);

 echo "Column " . $i . " name=" . $name . " type=" . $type . " len=" .
$len . "\n";

 }

 ovrimos_result_all($res);

 ovrimos_free_result($res);

 }

 ovrimos_close($conn);

}

?>

ovrimos_result

ovrimos_result -- Retrieves the output column

Description

string ovrimos_result (int $result_id, mixed $field)

Retrieves the output column specified by field.

Parameters

result_id

A result identifier, returned by ovrimos_execute() or ovrimos_exec().

field

Either as a string with the field name or as an 1-based index.

Return Values

Returns the column as a string, FALSE on failure.

ovrimos_rollback

ovrimos_rollback -- Rolls back the transaction

Description

bool ovrimos_rollback (int $connection_id)

Rolls back the transaction.

Parameters

connection_id

The Ovrimos connection identifier, returned by ovrimos_connect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ovrimos_commit()

Paradox File Access

Introduction

This module allows to read and write Paradox databases, primary index files and blob files.
Write support has been proven to be quite reliable, though due to lack of documentation the
produced files may not in any case be readable by other applications. Encrypted databases
can be read without specifying a password if pxlib >= 0.5.0 is used.

Note

This module is also in development and may change, though I don't expect major changes
to the API.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the names
of its functions and any other documentation surrounding this extension?may change
without notice in a future release of PHP. This extension should be used at your own risk.

Installing/Configuring

Requirements

You need at least PHP 5.0.0 and pxlib >= 0.4.4 for the basic set of functions. Some newer
functions are only available with pxlib >= 0.6.0. Reading and writing of encrypted databases
requires at least pxlib >= 0.5.0. The paradox library (pxlib) is available at
» http://pxlib.sourceforge.net.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/paradox

Make sure you have pxlib installed before. If you install pxlib from an rpm or debian package,
do not forget to install the development package as well.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

px_new() creates a new Paradox object required by all Paradox functions.

http://pxlib.sourceforge.net
http://pxlib.sourceforge.net
http://pecl.php.net/package/paradox
http://pecl.php.net/package/paradox

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following two tables lists all constants defined by the paradox extension.

Contants for field types

Name Meaning

PX_FIELD_ALPHA Character data with fixed length

PX_FIELD_DATE Date, number of days since 1.1.0000

PX_FIELD_SHORT Short integer (2 Bytes)

PX_FIELD_LONG Long integer (4 Bytes)

PX_FIELD_CURRENCY same as PX_FIELD_NUMBER

PX_FIELD_NUMBER Double

PX_FIELD_LOGICAL Boolean

PX_FIELD_MEMOBLOB Binary large object

PX_FIELD_BLOB Binary large object (not supported)

PX_FIELD_FMTMEMOBLOB Binary large object

PX_FIELD_OLE OLE object (basically a blob, not supported)

PX_FIELD_GRAPHIC Graphic (basically a blob, not supported)

PX_FIELD_TIME time, number of milli seconds since midnight

PX_FIELD_TIMESTAMP timestamp, number of milli seconds since
1.1.0000

PX_FIELD_AUTOINC Auto incrementing interger (like
PX_FIELD_LONG)

PX_FIELD_BCD Decimal number stored in bcd format (not
supported)

PX_FIELD_BYTES Array of Bytes with not more than 255 bytes
(not supported)

PX_KEYTOLOWER Turn all field names into lower case

PX_KEYTOUPPER Turn all field names into upper case

Contants for file types

Name Meaning

PX_FILE_INDEX_DB Indexed database

PX_FILE_PRIM_INDEX Primary index

PX_FILE_NON_INDEX_DB None indexed database

PX_FILE_NON_INC_SEC_INDEX None incremental secondary index

PX_FILE_SEC_INDEX Secondary index

PX_FILE_INC_SEC_INDEX Incremental secondary index

PX_FILE_NON_INC_SEC_INDEX_G Non incremental secondary index

PX_FILE_SEC_INDEX_G Secondary index

PX_FILE_INC_SEC_INDEX_G Non incremental secondary index

Paradox Functions

Object oriented API

The paradox extension provides also an object oriented API. It consists of only one class
called paradox_db. Its methods only differ from the functions in its name and of course the
missing first parameter. The following table will list all methods and its equivalent
functions.

Methods of class paradox_db

Name of method Equivalent function

Constructor px_new()

Destructor px_delete()

open_fp() px_open_fp()

create_fp() px_create_fp()

close() px_close()

numrecords() px_numrecords()

numfields() px_numfields()

get_record() px_get_record()

put_record() px_put_record()

retrieve_record() px_retrieve_record()

delete_record() px_delete_record()

insert_record() px_insert_record()

update_record() px_update_record()

get_field() px_get_field()

get_schema() px_get_schema()

get_info() px_get_info()

set_parameter() px_set_parameter()

get_parameter() px_get_parameter()

set_value() px_set_value()

get_value() px_get_value()

get_info() px_get_info()

set_targetencoding() px_set_targetencoding()

set_tablename() px_set_tablename()

set_blob_file() px_set_blob_file()

date2string() px_date2string()

timestamp2string() px_timestamp2string()

px_close

px_close -- Closes a paradox database

Description

bool px_close (resource $pxdoc)

Closes the paradox database. This function will not close the file. You will have to call
fclose() afterwards.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• px_open_fp()
• The example at px_new()

px_create_fp

px_create_fp -- Create a new paradox database

Description

bool px_create_fp (resource $pxdoc, resource $file, array $fielddesc)

Create a new paradox database file. The actual file has to be opened before with fopen().
Make sure the file is writable.

Note

Calling this functions issues a warning about an empty tablename which can be safely
ignored. Just set the tablename afterwards with px_set_parameter().

Note

This function is highly experimental, due to insufficient documentation of the paradox
file format. Database files created with this function can be opened by px_open_fp()
and has been successfully opened by the Paradox software, but your milage may vary.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

file

File handle as returned by fopen().

fielddesc

fielddesc is an array containing one element for each field specification. A field
specification is an array itself with either two or three elements.The first element is
always a string value used as the name of the field. It may not be larger than ten
characters. The second element contains the field type which is one of the constants
listed in the table Constants for field types. In the case of a character field or bcd field,
you will have to provide a third element specifying the length respectively the
precesion of the field. If your field specification contains blob fields, you will have to
make sure to either make the field large enough for all field values to fit or specify a
blob file with px_set_blob_file() for storing the blobs. If this is not done the field data is
truncated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1240 - Creating a Paradox database with two fields

<?php

if(!$pxdoc = px_new()) {

 /* Error handling */

}

$fp = fopen("test.db", "w+");

$fields = array(array("col1", "S"), array("col2", "I"));

if(!px_create_fp($pxdoc, $fp, $fields)) {

 /* Error handling */

}

px_set_parameter($pxdoc, "tablename", "testtable");

for($i=-50; $i<50; $i++) {

 $rec = array($i, -$i);

 px_put_record($pxdoc, $rec);

}

px_close($pxdoc);

px_delete($pxdoc);

fclose($fp);

?>

See Also

• px_new()
• px_put_record()
• fopen()

px_date2string

px_date2string -- Converts a date into a string.

Description

string px_date2string (resource $pxdoc, int $value, string $format)

Turns a date as it stored in the paradox file into human readable format. Paradox dates
are the number of days since 1.1.0000. This function is just for convenience. It can be
easily replaced by some math and the calendar functions as demonstrated in the example
below.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

value

Value as stored in paradox database field of type PX_FIELD_DATE.

format

String format similar to the format used by date(). The placeholders support by this
function is a subset of those supported by date() (Y, y, m, n, d, j, L).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1241 - Turn a paradox date into a human readable form

<?php

$px = px_new();

/* make up a date as it could be stored in */

/* a date field of a paradox db. */

/* 700000 days since 1.1.0000. */

$days = 700000;

/* Use the calendar functions to print a */

/* human readable format of the date */

echo jdtogregorian($days+1721425)."\n";

/* px_date2string() outputs the same */

echo px_date2string($px, $days, "n/d/Y")."\n";

px_delete($px);

?>

The above example will output:

7/15/1917

7/15/1917

See Also

• px_timestamp2string()
• jdtogregorian()

px_delete_record

px_delete_record -- Deletes record from paradox database

Description

bool px_delete_record (resource $pxdoc, int $num)

This function deletes a record from the database. It does not free the space in the
database file but just marks it as deleted. Inserting a new record afterwards will reuse the
space.

Note

This function is only available if pxlib >= 0.6.0 is used.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

num

The record number is an artificial number counting records in the order as they are
stored in the database. The first record has number 0.

px_delete

px_delete -- Deletes resource of paradox database

Description

bool px_delete (resource $pxdoc)

Deletes the resource of the paradox file and frees all memory.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

Return Values

Returns TRUE on success or FALSE on failure.

px_get_field

px_get_field -- Returns the specification of a single field

Description

array px_get_field (resource $pxdoc, int $fieldno)

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

fieldno

Number of the field. The first field has number 0. Specifying a field number less than 0
and greater or equal the number of fields will trigger an error.

Return Values

Returns the specification of the fieldno 'th database field as an associated array. The array
contains three fields named name, type, and size.

px_get_info

px_get_info -- Return lots of information about a paradox file

Description

array px_get_info (resource $pxdoc)

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

Return Values

Returns an associated array with lots of information about a paradox file. This array is
likely to be extended in the future.

fileversion
Version of file multiplied by 10, e.g. 70.

tablename
Name of table as stored in the file. If the database was created by pxlib, then this will
be the name of the file without the extension.

numrecords
Number of records in this table.

numfields
Number of fields in this table.

headersize
Number of bytes used for the header. This is usually 0x800.

recordsize
Number of bytes used for each record. This is the sum of all field sizes (available since
version 1.4.2).

maxtablesize
This value multiplied by 0x400 is the size of a data block in bytes. The maximum
number of records in a datablock is the integer part of (maxtablesize * 0x400 - 8) /
recordsize.

numdatablocks
The number of data blocks in the file. Each data block contains a certain number of
records which depends on the record size and the data block size (maxtablesize). Data
blocks may not necessarily be completely filled.

numindexfields
Number of fields used for the primary index. The fields do always start with field
number 1.

codepage
The DOS codepage which was used for encoding fields with character data. If the
target encoding is not set with px_set_targetencoding() this will be the encoding for
character fields when records are being accessed with px_get_record() or
px_retrieve_record().

See Also

• px_numfields()
• px_numrecords()

px_get_parameter

px_get_parameter -- Gets a parameter

Description

string px_get_parameter (resource $pxdoc, string $name)

Gets various parameters.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

name

The name can be one of the following:
tablename

The name of the table as it will be stored in the database header.

targetencoding
The encoding for the output. Data which is being read from character fields with
px_get_record() or px_retrieve_record() is recoded into the targetencoding. If it is
not set, then the data will be delivered as stored in the database file.

inputencoding
The encoding of the input data which is to be stored into the database. When
storing data of character fields in the database, the data is expected to be
delivered in this encoding.

Return Values

Returns the value of the parameter or FALSE on failure.

px_get_record

px_get_record -- Returns record of paradox database

Description

array px_get_record (resource $pxdoc, int $num [, int $mode])

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

num

The record number is an artificial number counting records in the order as they are
stored in the database. The first record has number 0.

mode

The optional mode can be PX_KEYTOLOWER or PX_KEYTOUPPER in order to
convert the keys of the returned array into lower or upper case. If mode is not passed
or is 0, then the key will be exactly like the field name. The element values will contain
the field values. NULL values will be retained and are different from 0.0, 0 or the empty
string. Fields of type PX_FIELD_TIME will be returned as an integer counting the
number of milliseconds starting at midnight. A timestamp (PX_FIELD_TIMESTAMP)
and date (PX_FIELD_DATE) are floating point respectively int values counting
milliseconds respectively days starting at the beginning of julian calendar. Use the
functions px-timestamp2string() and px-date2string() to convert them into a character
representation.

Return Values

Returns the num 'th record from the paradox database. The record is returned as an
associated array with its keys being the field names.

See Also

• px_retrieve_record()

px_get_schema

px_get_schema -- Returns the database schema

Description

array px_get_schema (resource $pxdoc [, int $mode])

px_get_schema() returns the database schema.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

mode

If the optional mode is PX_KEYTOLOWER or PX_KEYTOUPPER the keys of the
returned array will be converted to lower or upper case. If mode is 0 or not passed at
all, then the key name will be identical to the field name.

Return Values

Returns the schema of a database file as an associated array. The key name is equal to
the field name. Each array element is itself an associated array containing the two fields
type and size. type is one of the constants in table Constants for field types. size is the
number of bytes this field consumes in the record. The total of all field sizes is equal to the
record size as it can be retrieved with px-get-info().

px_get_value

px_get_value -- Gets a value

Description

float px_get_value (resource $pxdoc, string $name)

Gets various values.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

name

name can be one of the following.
numprimkeys

The number of primary keys. Paradox databases always use the first numprimkeys
fields for the primary index.

Return Values

Returns the value of the parameter or FALSE on failure.

px_insert_record

px_insert_record -- Inserts record into paradox database

Description

int px_insert_record (resource $pxdoc, array $data)

Inserts a new record into the database. The record is not necessarily inserted at the end of
the database, but may be inserted at any position depending on where the first free slot is
found.

The record data is passed as an array of field values. The elements in the array must
correspond to the fields in the database. If the array has less elements than fields in the
database, the remaining fields will be set to null.

Most field values can be passed as its equivalent php type e.g. a long value is used for
fields of type PX_FIELD_LONG, PX_FIELD_SHORT and PX_FIELD_AUTOINC, a double
values is used for fields of type PX_FIELD_CURRENCY and PX_FIELD_NUMBER. Field
values for blob and alpha fields are passed as strings.

Fields of type PX_FIELD_TIME and PX_FIELD_DATE both require a long value. In the
first case this is the number of milliseconds since midnight. In the second case this is the
number of days since 1.1.0000. Below there are two examples to convert the current date
or timestamp into a value suitable for one of paradox's date/time fields.

Note

This function is only available if pxlib >= 0.6.0 is used.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

data

Associated or indexed array containing the field values as e.g. returned by
px_retrieve_record().

Return Values

Returns FALSE on failure or the record number in case of success.

Examples

Example #1242 - Set the date/time fields in a paradox database to the current
date/time

<?php

$px = px_new();

$fp = fopen("test.db", "w+");

px_create_fp($px, $fp, array(array("timestamp", "@"), array("time", "T"),
array("date", "D")));

$curdate = getdate();

$jd = gregoriantojd($curdate["mon"], $curdate["mday"], $curdate["year"]);

$days = $jd - 1721425; /* Number of days between 1.1.4714 b.c. and 1.1.0000
*/

$secs = $curdate["hours"]*3600 + $curdate["minutes"]*60 +
$curdate["seconds"];

px_insert_record($px, array($days*86400000.0 + $secs*1000.0, $secs*1000.0,
$days));

$curtimestamp = microtime(true);

$days = (int) ($curtimestamp/86400);

$secs = $curtimestamp - ($days * 86400.0);

$days += 2440588; /* Number of days between 1.1.4714 b.c. and 1.1.1970 */

$days -= 1721425; /* Number of days between 1.1.4714 b.c. and 1.1.0000 */

px_insert_record($px, array($days*86400000.0 + $secs*1000.0, $secs*1000.0,
$days));

for($i=0; $i<2; $i++) {

 $rec = px_retrieve_record($px, $i);

 echo px_timestamp2string($px, $rec["timestamp"], "n/d/Y H:i:s")."\n";

 echo px_date2string($px, $rec["date"], "n/d/Y")."\n";

}

px_close($px);

px_delete($px);

?>

The above example will output:

2/21/2006 21:42:30

2/21/2006

2/21/2006 20:42:30

2/21/2006

The Julian day count as passed to jdtogregorian() has a different base of 1.1.4714 b.c. and
must therefore be calculated by adding 1721425 to the day count used in the paradox file.
Turning the day count into a timestamp is easily done by multiplying with 86400000.0 to
obtain milli seconds.

See Also

px_update_record()

px_new

px_new -- Create a new paradox object

Description

resource px_new (void)

Create a new paradox object. You will have to call this function before any further
functions. px_new() does not create any file on the disk, it just creates an instance of a
paradox object. This function must not be called if the object oriented interface is used.
Use new paradox_db() instead.

Return Values

Returns FALSE on failure.

Examples

Example #1243 - Opening a Paradox database

<?php

if(!$pxdoc = px_new()) {

 /* Error handling */

}

$fp = fopen("test.db", "r");

if(!px_open_fp($pxdoc, $fp)) {

 /* Error handling */

}

// ...

px_close($pxdoc);

px_delete($pxdoc);

fclose($fp);

?>

If you prefer the object oriented API, then the above example will look like the following.

Example #1244 - Opening a Paradox database

<?php

$fp = fopen("test.db", "r");

$pxdoc = new paradox_db();

if(!$pxdoc->open_fp($fp)) {

 /* Error handling */

}

// ...

$pxdoc->close();

fclose($fp);

?>

See Also

• px_delete()
• px_open_fp()

px_numfields

px_numfields -- Returns number of fields in a database

Description

int px_numfields (resource $pxdoc)

Get the number of fields in a database file.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

Return Values

Returns the number of fields in a database file. The return value of this function is identical
to the element numfields in the array returned by px_get_info().

px_numrecords

px_numrecords -- Returns number of records in a database

Description

int px_numrecords (resource $pxdoc)

Get the number of records in a database file.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

Return Values

Returns the number of records in a database file. The return value of this function is
identical to the element numrecords in the array returned by px_get_info().

px_open_fp

px_open_fp -- Open paradox database

Description

bool px_open_fp (resource $pxdoc, resource $file)

Open an existing paradox database file. The actual file has to be opened before with
fopen(). This function can also be used to open primary index files and tread them like a
paradox database. This is supported for those who would like to investigate a primary
index. It cannot be used to accelerate access to a database file.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

file

file is the return value from fopen() with the actual database file as parameter. Make
sure the database is writable if you plan to update or insert records.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fopen()
• The example at px_new()

px_put_record

px_put_record -- Stores record into paradox database

Description

bool px_put_record (resource $pxdoc, array $record [, int $recpos])

Stores a record into a paradox database. The record is always added at the end of the
database, regardless of any free slots. Use px_insert_record() to add a new record into the
first free slot found in the database.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

record

Associated or indexed array containing the field values as e.g. returned by
px_retrieve_record().

recpos

This optional parameter may be used to specify a record number greater than the
current number of records in the database. The function will add as many empty
records as needed. There is hardly any need for this parameter.

Return Values

Returns TRUE on success or FALSE on failure.

px_retrieve_record

px_retrieve_record -- Returns record of paradox database

Description

array px_retrieve_record (resource $pxdoc, int $num [, int $mode])

This function is very similar to px_get_record() but uses internally a different approach to
retrieve the data. It relies on pxlib for reading each single field value, which usually results
in support for more field types.

Note

This function is only available if pxlib >= 0.6.0 is used.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

num

The record number is an artificial number counting records in the order as they are
stored in the database. The first record has number 0.

mode

The optional mode can be PX_KEYTOLOWER or PX_KEYTOUPPER in order to
convert the keys into lower or upper case. If mode is not passed or is 0, then the key
will be exactly like the field name. The element values will contain the field values.
NULL values will be retained and are different from 0.0, 0 or the empty string. Fields of
type PX_FIELD_TIME will be returned as an integer counting the number of
milliseconds starting at midnight. A timestamp is a floating point value also counting
milliseconds starting at the beginning of julian calendar.

Return Values

Returns the num 'th record from the paradox database. The record is returned as an
associated array with its keys being the field names.

See Also

• px_get_record()

px_set_blob_file

px_set_blob_file -- Sets the file where blobs are read from

Description

bool px_set_blob_file (resource $pxdoc, string $filename)

Sets the name of the file where blobs are going to be read from or written into. Without
calling this function, px_get_record() or px_retrieve_record() will only return data in blob
fields if the data is part of the record and not stored in the blob file. Blob data is stored in
the record if it is small enough to fit in the size of the blob field.

Calling px_put_record(), px_insert_record(), or px_update_record() without calling
px_set_blob_file() will result in truncated blob fields unless the data fits into the database
file.

Calling this function twice will close the first blob file and open the new one.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

filename

The name of the file. Its extension should be.MB.

Return Values

Returns TRUE on success or FALSE on failure.

px_set_parameter

px_set_parameter -- Sets a parameter

Description

bool px_set_parameter (resource $pxdoc, string $name, string $value)

Sets various parameters.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

name

Depending on the parameter you want to set, name can be one of the following.
tablename

The name of the table as it will be stored in the database header.

targetencoding
The encoding for the output. Data which is being read from character fields is
recoded into the targetencoding.

inputencoding
The encoding of the input data which is to be stored into the database.

value

The value of parameter to set. For inputencoding and targetencoding this must be the
name of the encoding as understood by iconv or recode, e.g. iso-8859-1, utf-8, cp850.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• px_get_info() to determine the DOS code page.

px_set_tablename

px_set_tablename -- Sets the name of a table (deprecated)

Description

void px_set_tablename (resource $pxdoc, string $name)

Sets the table name of a paradox database, which was created with px_create_fp(). This
function is deprecated use px_set_parameter() instead.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

tablename

The name of the table. If it is not set explicitly it will be set to the name of the database
file.

Return Values

Returns NULL on success or FALSE on failure.

See Also

px_set_parameter()

px_set_targetencoding

px_set_targetencoding -- Sets the encoding for character fields (deprecated)

Description

bool px_set_targetencoding (resource $pxdoc, string $encoding)

Set the encoding for data retrieved from a character field. All character fields will be
recoded to the encoding set by this function. If the encoding is not set, the character data
will be returned in the DOS code page encoding as specified in the database file. The
encoding can be any string identifier known to iconv or recode. On Unix systems run iconv
-l for a list of available encodings.

This function is deprecated and should be replaced by calling px_set_parameter().

See also px_get_info() to determine the DOS code page as stored in the database file.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

encoding

The encoding for the output. Data which is being read from character fields is recoded
into the targetencoding.

Return Values

Returns FALSE if the encoding could not be set, e.g. the encoding is unknown, or pxlib
does not support recoding at all. In the second case a warning will be issued.

See Also

px_set_parameter()

px_set_value

px_set_value -- Sets a value

Description

bool px_set_value (resource $pxdoc, string $name, float $value)

Sets various values.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

name

name can be one of the following.
numprimkeys

The number of primary keys. Paradox databases always use the first numprimkeys
fields for the primary index.

value

Return Values

Returns TRUE on success or FALSE on failure.

See Also

px_set_parameter()

px_timestamp2string

px_timestamp2string -- Converts the timestamp into a string.

Description

string px_timestamp2string (resource $pxdoc, float $value, string $format)

Turns a timestamp as it stored in the paradox file into human readable format. Paradox
timestamps are the number of milliseconds since 1.1.0000. This function is just for
convenience. It can be easily replaced by some math and the calendar functions as
demonstrated in the following example.

Parameters

pxdoc

Resource identifier of the paradox database.

value

Value as stored in paradox database field of type PX_FIELD_TIME, or
PX_FIELD_TIMESTAMP.

format

String format similar to the format used by date(). The placeholders support by this
function is a subset of those supported by date() (Y, y, m, n, d, j, H, h, G, g, i, s, A, a,
L).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1245 - Turn a paradox timestamp into a human readable form

<?php

$px = px_new();

/* make up a date as it could be stored in */

/* a date field of a paradox db. */

/* 700000 days since 1.1.0000. */

$days = 700000;

/* Use the calendar functions to print a */

/* human readable format of the date */

echo jdtogregorian($days+1721425)."\n";

/* Turn it into a timestamp as it stored in a paradox database */

/* Timestamps are stored in milli seconds since 1.1.0000 */

$stamp = $days * 86400.0 * 1000.0;

/* Add one hour */

$stamp += 3600000.0;

/* The following will output '7/15/1917 01:00:00'. */

echo px_timestamp2string($px, $stamp, "n/d/Y H:i:s")."\n";

px_delete($px);

?>

The above example will output:

7/15/1917

7/15/1917 01:00:00

The Julian day count as passed to jdtogregorian() has a different base of 1.1.4714 b.c. and
must therefore be calculated by adding 1721425 to the day count used in the paradox file.
Turning the day count into a timestamp is easily done by multiplying with 86400000.0 to
obtain milli seconds.

See Also

• px_date2string()
• jdtogregorian()

px_update_record

px_update_record -- Updates record in paradox database

Description

bool px_update_record (resource $pxdoc, array $data, int $num)

Updates an exiting record in the database. The record starts at 0.

The record data is passed as an array of field values. The elements in the array must
correspond to the fields in the database. If the array has less elements than fields in the
database, the remaining fields will be set to null.

Note

This function is only available if pxlib >= 0.6.0 is used.

Parameters

pxdoc

Resource identifier of the paradox database as returned by px_new().

data

Associated array containing the field values as returned by px_retrieve_record().

num

The record number is an artificial number counting records in the order as they are
stored in the database. The first record has number 0.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

px_insert_record()

PostgreSQL

Introduction

PostgreSQL database is Open Source product and available without cost. Postgres,
developed originally in the UC Berkeley Computer Science Department, pioneered many
of the object-relational concepts now becoming available in some commercial databases.
It provides SQL92/SQL99 language support, transactions, referential integrity, stored
procedures and type extensibility. PostgreSQL is an open source descendant of this
original Berkeley code.

Installing/Configuring

Requirements

To use PostgreSQL support, you need PostgreSQL 6.5 or later, PostgreSQL 8.0 or later to
enable all PostgreSQL module features. PostgreSQL supports many character encodings
including multibyte character encoding. The current version and more information about
PostgreSQL is available at » http://www.postgresql.org/ and the » PostgreSQL
Documentation.

Installation

In order to enable PostgreSQL support, --with-pgsql[=DIR] is required when you compile
PHP. DIR is the PostgreSQL base install directory, defaults to /usr/local/pgsql. If shared
object module is available, PostgreSQL module may be loaded using extension directive in
php.ini or dl() function.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PostgreSQL configuration options

Name Default Changeable Changelog

pgsql.allow_persisten
t

"1" PHP_INI_SYSTEM

pgsql.max_persistent "-1" PHP_INI_SYSTEM

pgsql.max_links "-1" PHP_INI_SYSTEM

pgsql.auto_reset_per
sistent

"0" PHP_INI_SYSTEM Available since PHP
4.2.0.

pgsql.ignore_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

pgsql.log_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://www.postgresql.org/
http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

pgsql.allow_persistent boolean
Whether to allow persistent Postgres connections.

pgsql.max_persistent integer
The maximum number of persistent Postgres connections per process.

pgsql.max_links integer
The maximum number of Postgres connections per process, including persistent
connections.

pgsql.auto_reset_persistent integer
Detect broken persistent links with pg_pconnect(). Needs a little overhead.

pgsql.ignore_notice integer
Whether or not to ignore PostgreSQL backend notices.

pgsql.log_notice integer
Whether or not to log PostgreSQL backends notice messages. The PHP directive
pgsql.ignore_notice must be off in order to log notice messages.

Resource Types

There are two resource types used in the PostgreSQL module. The first one is the link
identifier for a database connection, the second a resource which holds the result of a
query.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PGSQL_ASSOC (integer)
Passed to pg_fetch_array(). Return an associative array of field names and values.

PGSQL_NUM (integer)
Passed to pg_fetch_array(). Return a numerically indexed array of field numbers and
values.

PGSQL_BOTH (integer)
Passed to pg_fetch_array(). Return an array of field values that is both numerically
indexed (by field number) and associated (by field name).

PGSQL_CONNECT_FORCE_NEW (integer)
Passed to pg_connect() to force the creation of a new connection, rather then re-using
an existing identical connection.

PGSQL_CONNECTION_BAD (integer)
Returned by pg_connection_status() indicating that the database connection is in an
invalid state.

PGSQL_CONNECTION_OK (integer)
Returned by pg_connection_status() indicating that the database connection is in a
valid state.

PGSQL_SEEK_SET (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the start of the object.

PGSQL_SEEK_CUR (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the current position.

PGSQL_SEEK_END (integer)
Passed to pg_lo_seek(). Seek operation is to begin from the end of the object.

PGSQL_EMPTY_QUERY (integer)
Returned by pg_result_status(). The string sent to the server was empty.

PGSQL_COMMAND_OK (integer)
Returned by pg_result_status(). Successful completion of a command returning no
data.

PGSQL_TUPLES_OK (integer)
Returned by pg_result_status(). Successful completion of a command returning data
(such as a SELECT or SHOW).

PGSQL_COPY_OUT (integer)
Returned by pg_result_status(). Copy Out (from server) data transfer started.

PGSQL_COPY_IN (integer)
Returned by pg_result_status(). Copy In (to server) data transfer started.

PGSQL_BAD_RESPONSE (integer)
Returned by pg_result_status(). The server's response was not understood.

PGSQL_NONFATAL_ERROR (integer)
Returned by pg_result_status(). A nonfatal error (a notice or warning) occurred.

PGSQL_FATAL_ERROR (integer)
Returned by pg_result_status(). A fatal error occurred.

PGSQL_TRANSACTION_IDLE (integer)
Returned by pg_transaction_status(). Connection is currently idle, not in a transaction.

PGSQL_TRANSACTION_ACTIVE (integer)
Returned by pg_transaction_status(). A command is in progress on the connection. A
query has been sent via the connection and not yet completed.

PGSQL_TRANSACTION_INTRANS (integer)
Returned by pg_transaction_status(). The connection is idle, in a transaction block.

PGSQL_TRANSACTION_INERROR (integer)
Returned by pg_transaction_status(). The connection is idle, in a failed transaction
block.

PGSQL_TRANSACTION_UNKNOWN (integer)
Returned by pg_transaction_status(). The connection is bad.

PGSQL_DIAG_SEVERITY (integer)
Passed to pg_result_error_field(). The severity; the field contents are ERROR, FATAL,
or PANIC (in an error message), or WARNING, NOTICE, DEBUG, INFO, or LOG (in a
notice message), or a localized translation of one of these. Always present.

PGSQL_DIAG_SQLSTATE (integer)
Passed to pg_result_error_field(). The SQLSTATE code for the error. The SQLSTATE
code identifies the type of error that has occurred; it can be used by front-end
applications to perform specific operations (such as error handling) in response to a
particular database error. This field is not localizable, and is always present.

PGSQL_DIAG_MESSAGE_PRIMARY (integer)
Passed to pg_result_error_field(). The primary human-readable error message
(typically one line). Always present.

PGSQL_DIAG_MESSAGE_DETAIL (integer)
Passed to pg_result_error_field(). Detail: an optional secondary error message
carrying more detail about the problem. May run to multiple lines.

PGSQL_DIAG_MESSAGE_HINT (integer)
Passed to pg_result_error_field(). Hint: an optional suggestion what to do about the
problem. This is intended to differ from detail in that it offers advice (potentially
inappropriate) rather than hard facts. May run to multiple lines.

PGSQL_DIAG_STATEMENT_POSITION (integer)
Passed to pg_result_error_field(). A string containing a decimal integer indicating an
error cursor position as an index into the original statement string. The first character
has index 1, and positions are measured in characters not bytes.

PGSQL_DIAG_INTERNAL_POSITION (integer)
Passed to pg_result_error_field(). This is defined the same as the
PG_DIAG_STATEMENT_POSITION field, but it is used when the cursor position
refers to an internally generated command rather than the one submitted by the client.
The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

PGSQL_DIAG_INTERNAL_QUERY (integer)
Passed to pg_result_error_field(). The text of a failed internally-generated command.
This could be, for example, a SQL query issued by a PL/pgSQL function.

PGSQL_DIAG_CONTEXT (integer)
Passed to pg_result_error_field(). An indication of the context in which the error
occurred. Presently this includes a call stack traceback of active procedural language
functions and internally-generated queries. The trace is one entry per line, most recent
first.

PGSQL_DIAG_SOURCE_FILE (integer)
Passed to pg_result_error_field(). The file name of the PostgreSQL source-code
location where the error was reported.

PGSQL_DIAG_SOURCE_LINE (integer)
Passed to pg_result_error_field(). The line number of the PostgreSQL source-code
location where the error was reported.

PGSQL_DIAG_SOURCE_FUNCTION (integer)
Passed to pg_result_error_field(). The name of the PostgreSQL source-code function
reporting the error.

PGSQL_ERRORS_TERSE (integer)
Passed to pg_set_error_verbosity(). Specified that returned messages include
severity, primary text, and position only; this will normally fit on a single line.

PGSQL_ERRORS_DEFAULT (integer)
Passed to pg_set_error_verbosity(). The default mode produces messages that
include the above plus any detail, hint, or context fields (these may span multiple
lines).

PGSQL_ERRORS_VERBOSE (integer)
Passed to pg_set_error_verbosity(). The verbose mode includes all available fields.

PGSQL_STATUS_LONG (integer)
Passed to pg_result_status(). Indicates that numerical result code is desired.

PGSQL_STATUS_STRING (integer)
Passed to pg_result_status(). Indicates that textual result command tag is desired.

PGSQL_CONV_IGNORE_DEFAULT (integer)

Passed to pg_convert(). Ignore default values in the table during conversion.

PGSQL_CONV_FORCE_NULL (integer)
Passed to pg_convert(). Use SQL NULL in place of an empty string.

PGSQL_CONV_IGNORE_DEFAULT (integer)
Passed to pg_convert(). Ignore conversion of NULL into SQL NOT NULL columns.

Examples

This simple example shows how to connect, execute a query, print resulting rows and
disconnect from a PostgreSQL database.

Example #1246 - PostgreSQL extension overview example

<?php

// Connecting, selecting database

$dbconn = pg_connect("host=localhost dbname=publishing user=www
password=foo")

 or die('Could not connect: ' . pg_last_error());

// Performing SQL query

$query = 'SELECT * FROM authors';

$result = pg_query($query) or die('Query failed: ' . pg_last_error());

// Printing results in HTML

echo "<table>\n";

while ($line = pg_fetch_array($result, null, PGSQL_ASSOC)) {

 echo "\t<tr>\n";

 foreach ($line as $col_value) {

 echo "\t\t<td>$col_value</td>\n";

 }

 echo "\t</tr>\n";

}

echo "</table>\n";

// Free resultset

pg_free_result($result);

// Closing connection

pg_close($dbconn);

?>

PostgreSQL Functions

Notes

Note

Not all functions are supported by all builds. It depends on your libpq (The PostgreSQL
C client library) version and how libpq is compiled. If PHP PostgreSQL extensions are
missing, then it is because your libpq version does not support them.

Note

Most PostgreSQL functions accept connection as the first optional parameter. If it is
not provided, the last opened connection is used. If it doesn't exist, functions return
FALSE.

Note

PostgreSQL automatically folds all identifiers (e.g. table/column names) to lower-case
values at object creation time and at query time. To force the use of mixed or upper
case identifiers, you must escape the identifier using double quotes ("").

Note

PostgreSQL does not have special commands for fetching database schema
information (eg. all the tables in the current database). Instead, there is a standard
schema named information_schema in PostgreSQL 7.4 and above containing system
views with all the necessary information, in an easily queryable form. See the
» PostgreSQL Documentation for full details.

http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

pg_affected_rows

pg_affected_rows -- Returns number of affected records (tuples)

Description

int pg_affected_rows (resource $result)

pg_affected_rows() returns the number of tuples (instances/records/rows) affected by
INSERT, UPDATE, and DELETE queries.

Note

This function used to be called pg_cmdtuples().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of rows affected by the query. If no tuple is affected, it will return 0.

Examples

Example #1247 - pg_affected_rows() example

<?php

$result = pg_query($conn, "INSERT INTO authors VALUES ('Orwell', 2002,
'Animal Farm')");

$cmdtuples = pg_affected_rows($result);

echo $cmdtuples . " tuples are affected.\n";

?>

The above example will output:

1 tuples are affected.

See Also

• pg_query()
• pg_query_params()
• pg_execute()
• pg_num_rows()

pg_cancel_query

pg_cancel_query -- Cancel an asynchronous query

Description

bool pg_cancel_query (resource $connection)

pg_cancel_query() cancels an asynchronous query sent with pg_send_query(),
pg_send_query_params() or pg_send_execute(). You cannot cancel a query executed
using pg_query().

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1248 - pg_cancel_query() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 // Cancel the currently running query. Will be the second query if it is

 // still running.

 pg_cancel_query($dbconn);

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

See Also

• pg_send_query()
• pg_connection_busy()

pg_client_encoding

pg_client_encoding -- Gets the client encoding

Description

string pg_client_encoding ([resource $connection])

PostgreSQL supports automatic character set conversion between server and client for
certain character sets. pg_client_encoding() returns the client encoding as a string. The
returned string will be one of the standard PostgreSQL encoding identifiers.

Note

This function requires PHP 4.0.3 or higher and PostgreSQL 7.0 or higher. If libpq is
compiled without multibyte encoding support, pg_client_encoding() always returns
SQL_ASCII. Supported encoding depends on PostgreSQL version. Refer to the
PostgreSQL Documentation supported encodings.

The function used to be called pg_clientencoding().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

The client encoding, or FALSE on error.

Examples

Example #1249 - pg_client_encoding() example

<?php

// Assume $conn is a connection to a ISO-8859-1 database

$encoding = pg_client_encoding($conn);

echo "Client encoding is: ", $encoding, "\n";

?>

The above example will output:

Client encoding is: ISO-8859-1

See Also

• pg_set_client_encoding()

pg_close

pg_close -- Closes a PostgreSQL connection

Description

bool pg_close ([resource $connection])

pg_close() closes the non-persistent connection to a PostgreSQL database associated
with the given connection resource.

Note

Using pg_close() is not usually necessary, as non-persistent open connections are
automatically closed at the end of the script.

If there is open large object resource on the connection, do not close the connection
before closing all large object resources.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1250 - pg_close() example

<?php

$dbconn = pg_connect("host=localhost port=5432 dbname=mary")

 or die("Could not connect");

echo "Connected successfully";

pg_close($dbconn);

?>

The above example will output:

Connected successfully

See Also

• pg_connect()

pg_connect

pg_connect -- Open a PostgreSQL connection

Description

resource pg_connect (string $connection_string [, int $connect_type])

pg_connect() opens a connection to a PostgreSQL database specified by the
connection_string.

If a second call is made to pg_connect() with the same connection_string as an existing
connection, the existing connection will be returned unless you pass
PGSQL_CONNECT_FORCE_NEW as connect_type.

The old syntax with multiple parameters $conn = pg_connect("host", "port", "options", "tty",
"dbname") has been deprecated.

Parameters

connection_string

The connection_string can be empty to use all default parameters, or it can contain
one or more parameter settings separated by whitespace. Each parameter setting is in
the form keyword = value. Spaces around the equal sign are optional. To write an
empty value or a value containing spaces, surround it with single quotes, e.g., keyword
= 'a value'. Single quotes and backslashes within the value must be escaped with a
backslash, i.e., \' and \\. The currently recognized parameter keywords are: host,
hostaddr, port, dbname, user, password, connect_timeout, options, tty (ignored),
sslmode, requiressl (deprecated in favor of sslmode), and service. Which of these
arguments exist depends on your PostgreSQL version.

connect_type

If PGSQL_CONNECT_FORCE_NEW is passed, then a new connection is created,
even if the connection_string is identical to an existing connection.

Return Values

PostgreSQL connection resource on success, FALSE on failure.

Examples

Example #1251 - Using pg_connect()

<?php

$dbconn = pg_connect("dbname=mary");

//connect to a database named "mary"

$dbconn2 = pg_connect("host=localhost port=5432 dbname=mary");

// connect to a database named "mary" on "localhost" at port "5432"

$dbconn3 = pg_connect("host=sheep port=5432 dbname=mary user=lamb
password=foo");

//connect to a database named "mary" on the host "sheep" with a username and
password

$conn_string = "host=sheep port=5432 dbname=test user=lamb password=bar";

$dbconn4 = pg_connect($conn_string);

//connect to a database named "test" on the host "sheep" with a username and
password

?>

See Also

• pg_pconnect()
• pg_close()
• pg_host()
• pg_port()
• pg_tty()
• pg_options()
• pg_dbname()

pg_connection_busy

pg_connection_busy -- Get connection is busy or not

Description

bool pg_connection_busy (resource $connection)

pg_connection_busy() determines whether or not a connection is busy. If it is busy, a
previous query is still executing. If pg_get_result() is used on the connection, it will be
blocked.

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE if the connection is busy, FALSE otherwise.

Examples

Example #1252 - pg_connection_busy() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $bs = pg_connection_busy($dbconn);

 if ($bs) {

 echo 'connection is busy';

 } else {

 echo 'connection is not busy';

 }

?>

See Also

• pg_connection_status()
• pg_get_result()

pg_connection_reset

pg_connection_reset -- Reset connection (reconnect)

Description

bool pg_connection_reset (resource $connection)

pg_connection_reset() resets the connection. It is useful for error recovery.

Parameters

connection

PostgreSQL database connection resource.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1253 - pg_connection_reset() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $dbconn2 = pg_connection_reset($dbconn);

 if ($dbconn2) {

 echo "reset successful\n";

 } else {

 echo "reset failed\n";

 }

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_connection_status()

pg_connection_status

pg_connection_status -- Get connection status

Description

int pg_connection_status (resource $connection)

pg_connection_status() returns the status of the specified connection.

Parameters

connection

PostgreSQL database connection resource.

Return Values

PGSQL_CONNECTION_OK or PGSQL_CONNECTION_BAD.

Examples

Example #1254 - pg_connection_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $stat = pg_connection_status($dbconn);

 if ($stat === PGSQL_CONNECTION_OK) {

 echo 'Connection status ok';

 } else {

 echo 'Connection status bad';

 }

?>

See Also

• pg_connection_busy()

pg_convert

pg_convert -- Convert associative array values into suitable for SQL statement

Description

array pg_convert (resource $connection, string $table_name, array $assoc_array [, int
$options])

pg_convert() checks and converts the values in assoc_array into suitable values for use in
a SQL statement. Precondition for pg_convert() is the existence of a table table_name
which has at least as many columns as assoc_array has elements. The fieldnames in
table_name must match the indices in assoc_array and the corresponding datatypes must
be compatible. Returns an array with the converted values on success, FALSE otherwise.

Note

If there are boolean fields in table_name don't use the constant TRUE in assoc_array.
It will be converted to the string 'TRUE' which is no valid entry for boolean fields in
PostgreSQL. Use one of t, true, 1, y, yes instead.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table against which to convert types.

assoc_array

Data to be converted.

options

Any number of PGSQL_CONV_IGNORE_DEFAULT, PGSQL_CONV_FORCE_NULL
or PGSQL_CONV_IGNORE_NOT_NULL, combined.

Return Values

An array of converted values, or FALSE on error.

Examples

Example #1255 - pg_convert() example

<?php

 $dbconn = pg_connect('dbname=foo');

 $tmp = array(

 'author' => 'Joe Thackery',

 'year' => 2005,

 'title' => 'My Life, by Joe Thackery'

);

 $vals = pg_convert($dbconn, 'authors', $tmp);

?>

See Also

• pg_meta_data()

pg_copy_from

pg_copy_from -- Insert records into a table from an array

Description

bool pg_copy_from (resource $connection, string $table_name, array $rows [, string $
delimiter [, string $null_as]])

pg_copy_from() inserts records into a table from rows. It issues a COPY FROM SQL
command internally to insert records.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to copy the rows.

rows

An array of data to be copied into table_name. Each value in rows becomes a row in
table_name. Each value in rows should be a delimited string of the values to insert into
each field. Values should be linefeed terminated.

delimiter

The token that separates values for each field in each element of rows. Default is TAB.

null_as

How SQL NULL values are represented in the rows. Default is \N ("\\N").

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1256 - pg_copy_from() example

<?php

 $db = pg_connect("dbname=publisher") or die("Could not connect");

 $rows = pg_copy_to($db, $table_name);

 pg_query($db, "DELETE FROM $table_name");

 pg_copy_from($db, $table_name, $rows);

?>

See Also

• pg_copy_to()

pg_copy_to

pg_copy_to -- Copy a table to an array

Description

array pg_copy_to (resource $connection, string $table_name [, string $delimiter [,
string $null_as]])

pg_copy_to() copies a table to an array. It issues COPY TO SQL command internally to
retrieve records.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to copy the data into rows.

delimiter

The token that separates values for each field in each element of rows. Default is TAB.

null_as

How SQL NULL values are represented in the rows. Default is \N ("\\N").

Return Values

An array with one element for each line of COPY data. It returns FALSE on failure.

Examples

Example #1257 - pg_copy_to() example

<?php

 $db = pg_connect("dbname=publisher") or die("Could not connect");

 $rows = pg_copy_to($db, $table_name);

 pg_query($db, "DELETE FROM $table_name");

 pg_copy_from($db, $table_name, $rows);

?>

See Also

• pg_copy_from()

pg_dbname

pg_dbname -- Get the database name

Description

string pg_dbname ([resource $connection])

pg_dbname() returns the name of the database that the given PostgreSQL connection
resource.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the name of the database the connection is to, or FALSE on error.

Examples

Example #1258 - pg_dbname() example

<?php

 error_reporting(E_ALL);

 pg_connect("host=localhost port=5432 dbname=mary");

 echo pg_dbname(); // mary

?>

pg_delete

pg_delete -- Deletes records

Description

mixed pg_delete (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_delete() deletes records from a table specified by the keys and values in assoc_array.
If options is specified, pg_convert() is applied to assoc_array with the specified options.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to delete rows.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the values of those fields that are to be deleted.

options

Any number of PGSQL_CONV_FORCE_NULL, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC or PGSQL_DML_STRING combined. If PGSQL_DML_STRING
is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #1259 - pg_delete() example

<?php

 $db = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $res = pg_delete($db, 'post_log', $_POST);

 if ($res) {

 echo "POST data is deleted: $res\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• pg_convert()

pg_end_copy

pg_end_copy -- Sync with PostgreSQL backend

Description

bool pg_end_copy ([resource $connection])

pg_end_copy() syncs the PostgreSQL frontend (usually a web server process) with the
PostgreSQL server after doing a copy operation performed by pg_put_line().
pg_end_copy() must be issued, otherwise the PostgreSQL server may get out of sync with
the frontend and will report an error.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1260 - pg_end_copy() example

<?php

 $conn = pg_pconnect("dbname=foo");

 pg_query($conn, "create table bar (a int4, b char(16), d float8)");

 pg_query($conn, "copy bar from stdin");

 pg_put_line($conn, "3\thello world\t4.5\n");

 pg_put_line($conn, "4\tgoodbye world\t7.11\n");

 pg_put_line($conn, "\\.\n");

 pg_end_copy($conn);

?>

See Also

• pg_put_line()

pg_escape_bytea

pg_escape_bytea -- Escape a string for insertion into a bytea field

Description

string pg_escape_bytea ([resource $connection], string $data)

pg_escape_bytea() escapes string for bytea datatype. It returns escaped string.

Note

When you SELECT a bytea type, PostgreSQL returns octal byte values prefixed with '\'
(e.g. \032). Users are supposed to convert back to binary format manually.

This function requires PostgreSQL 7.2 or later. With PostgreSQL 7.2.0 and 7.2.1,
bytea values must be cast when you enable multi-byte support. i.e. INSERT INTO
test_table (image) VALUES ('$image_escaped'::bytea); PostgreSQL 7.2.2 or later
does not need a cast. The exception is when the client and backend character
encoding does not match, and there may be multi-byte stream error. User must then
cast to bytea to avoid this error.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A string containing text or binary data to be inserted into a bytea column.

Return Values

A string containing the escaped data.

ChangeLog

Version Description

5.2.0 connection added

Examples

Example #1261 - pg_escape_bytea() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Read in a binary file

 $data = file_get_contents('image1.jpg');

 // Escape the binary data

 $escaped = pg_escape_bytea($data);

 // Insert it into the database

 pg_query("INSERT INTO gallery (name, data) VALUES ('Pine trees',
'{$escaped}')");

?>

See Also

• pg_unescape_bytea()
• pg_escape_string()

pg_escape_string

pg_escape_string -- Escape a string for insertion into a text field

Description

string pg_escape_string ([resource $connection], string $data)

pg_escape_string() escapes a string for insertion into the database. It returns an escaped
string in the PostgreSQL format. Use of this function is recommended instead of
addslashes(). If the type of the column is bytea, pg_escape_bytea() must be used instead.

Note

This function requires PostgreSQL 7.2 or later.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A string containing text to be escaped.

Return Values

A string containing the escaped data.

ChangeLog

Version Description

5.2.0 connection added

Examples

Example #1262 - pg_escape_string() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Read in a text file (containing apostrophes and backslashes)

 $data = file_get_contents('letter.txt');

 // Escape the text data

 $escaped = pg_escape_string($data);

 // Insert it into the database

 pg_query("INSERT INTO correspondence (name, data) VALUES ('My letter',
'{$escaped}')");

?>

See Also

• pg_escape_bytea()

pg_execute

pg_execute -- Sends a request to execute a prepared statement with given parameters,
and waits for the result.

Description

resource pg_execute (resource $connection, string $stmtname, array $params)

resource pg_execute (string $stmtname, array $params)

Sends a request to execute a prepared statement with given parameters, and waits for the
result.

pg_execute() is like pg_query_params(), but the command to be executed is specified by
naming a previously-prepared statement, instead of giving a query string. This feature
allows commands that will be used repeatedly to be parsed and planned just once, rather
than each time they are executed. The statement must have been prepared previously in
the current session. pg_execute() is supported only against PostgreSQL 7.4 or higher
connections; it will fail when using earlier versions.

The parameters are identical to pg_query_params(), except that the name of a prepared
statement is given instead of a query string.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name of the prepared statement to execute. if "" is specified, then the unnamed
statement is executed. The name must have been previously prepared using
pg_prepare(), pg_send_prepare() or a PREPARE SQL command.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Warning

Elements are converted to strings by calling this function.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #1263 - Using pg_execute()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Prepare a query for execution

$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

// Execute the prepared query. Note that it is not necessary to escape

// the string "Joe's Widgets" in any way

$result = pg_execute($dbconn, "my_query", array("Joe's Widgets"));

// Execute the same prepared query, this time with a different parameter

$result = pg_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

?>

See Also

• pg_prepare()
• pg_send_prepare()
• pg_query_params()

pg_fetch_all_columns

pg_fetch_all_columns -- Fetches all rows in a particular result column as an array

Description

array pg_fetch_all_columns (resource $result [, int $column])

pg_fetch_all_columns() returns an array that contains all rows (records) in a particular
column of the result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

column

Column number, zero-based, to be retrieved from the result resource. Defaults to the
first column if not specified.

Return Values

An array with all values in the result column.

FALSE is returned if column is larger than the number of columns in the result, or on any
other error.

Examples

Example #1264 - pg_fetch_all_columns() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT title, name, address FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

// Get an array of all author names

$arr = pg_fetch_all_columns($result, 1);

var_dump($arr);

?>

See Also

• pg_fetch_all()

pg_fetch_all

pg_fetch_all -- Fetches all rows from a result as an array

Description

array pg_fetch_all (resource $result)

pg_fetch_all() returns an array that contains all rows (records) in the result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

An array with all rows in the result. Each row is an array of field values indexed by field
name.

FALSE is returned if there are no rows in the result, or on any other error.

Examples

Example #1265 - PostgreSQL fetch all

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT * FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$arr = pg_fetch_all($result);

var_dump($arr);

?>

See Also

• pg_fetch_row()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_array

pg_fetch_array -- Fetch a row as an array

Description

array pg_fetch_array (resource $result [, int $row [, int $result_type]])

pg_fetch_array() returns an array that corresponds to the fetched row (record).

pg_fetch_array() is an extended version of pg_fetch_row(). In addition to storing the data
in the numeric indices (field number) to the result array, it can also store the data using
associative indices (field name). It stores both indicies by default.

Note

This function sets NULL fields to the PHP NULL value.

pg_fetch_array() is NOT significantly slower than using pg_fetch_row(), and is significantly
easier to use.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

result_type

An optional parameter that controls how the returned array is indexed. result_type is
a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM and
PGSQL_BOTH. Using PGSQL_NUM, pg_fetch_array() will return an array with
numerical indices, using PGSQL_ASSOC it will return only associative indices while
PGSQL_BOTH, the default, will return both numerical and associative indices.

Return Values

An array indexed numerically (beginning with 0) or associatively (indexed by field name),
or both. Each value in the array is represented as a string. Database NULL values are
returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,

or on any other error.

ChangeLog

Version Description

4.1.0 The row parameter became optional.

4.0.0 The result_type parameter was added.

Examples

Example #1266 - pg_fetch_array() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$arr = pg_fetch_array($result, 0, PGSQL_NUM);

echo $arr[0] . " <- Row 1 Author\n";

echo $arr[1] . " <- Row 1 E-mail\n";

// As of PHP 4.1.0, the row parameter is optional; NULL can be passed
instead,

// to pass a result_type. Successive calls to pg_fetch_array will return
the

// next row.

$arr = pg_fetch_array($result, NULL, PGSQL_ASSOC);

echo $arr["author"] . " <- Row 2 Author\n";

echo $arr["email"] . " <- Row 2 E-mail\n";

$arr = pg_fetch_array($result);

echo $arr["author"] . " <- Row 3 Author\n";

echo $arr[1] . " <- Row 3 E-mail\n";

?>

See Also

• pg_fetch_row()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_assoc

pg_fetch_assoc -- Fetch a row as an associative array

Description

array pg_fetch_assoc (resource $result [, int $row])

pg_fetch_assoc() returns an associative array that corresponds to the fetched row
(records).

pg_fetch_assoc() is equivalent to calling pg_fetch_array() with PGSQL_ASSOC as the
optional third parameter. It only returns an associative array. If you need the numeric
indices, use pg_fetch_row().

Note

This function sets NULL fields to the PHP NULL value.

pg_fetch_assoc() is NOT significantly slower than using pg_fetch_row(), and is
significantly easier to use.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

Return Values

An array indexed associatively (by field name). Each value in the array is represented as a
string. Database NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

4.1.0 The parameter row became optional.

Examples

Example #1267 - pg_fetch_assoc() example

<?php

$conn = pg_connect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT id, author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_assoc($result)) {

 echo $row['id'];

 echo $row['author'];

 echo $row['email'];

}

?>

See Also

• pg_fetch_row()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_fetch_object

pg_fetch_object -- Fetch a row as an object

Description

object pg_fetch_object (resource $result [, int $row [, int $result_type]])

object pg_fetch_object (resource $result [, int $row [, string $class_name [, array $
params]]])

pg_fetch_object() returns an object with properties that correspond to the fetched row's
field names. It can optionally instantiate an object of a specific class, and pass parameters
to that class's constructor.

Note

This function sets NULL fields to the PHP NULL value.

Speed-wise, the function is identical to pg_fetch_array(), and almost as fast as
pg_fetch_row() (the difference is insignificant).

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

result_type

Ignored and deprecated. Defaults to PGSQL_ASSOC.

class_name

The name of the class to instantiate, set the properties of and return. If not specified, a
stdClass object is returned.

params

An optional array of parameters to pass to the constructor for class_name objects.

Return Values

An object with one attribute for each field name in the result. Database NULL values are

returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

5.0.0 class_name and params were added. The
old form with result_type still exists for
backwards compatibility.

4.3.0 result_type default changed from
PGSQL_BOTH to PGSQL_ASSOC, since
the numeric index was illegal.

4.1.0 The parameter row became optional.

Examples

Example #1268 - pg_fetch_object() example

<?php

$database = "store";

$db_conn = pg_connect("host=localhost port=5432 dbname=$database");

if (!$db_conn) {

 echo "Failed connecting to postgres database $database\n";

 exit;

}

$qu = pg_query($db_conn, "SELECT * FROM books ORDER BY author");

while ($data = pg_fetch_object($qu)) {

 echo $data->author . " (";

 echo $data->year . "): ";

 echo $data->title . "
";

}

pg_free_result($qu);

pg_close($db_conn);

?>

See Also

• pg_query()
• pg_fetch_array()
• pg_fetch_assoc()
• pg_fetch_row()
• pg_fetch_result()

pg_fetch_result

pg_fetch_result -- Returns values from a result resource

Description

string pg_fetch_result (resource $result, int $row, mixed $field)

string pg_fetch_result (resource $result, mixed $field)

pg_fetch_result() returns the value of a particular row and field (column) in a PostgreSQL
result resource.

Note

This function used to be called pg_result().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

field

A string representing the name of the field (column) to fetch, otherwise an int
representing the field number to fetch. Fields are numbered from 0 upwards.

Return Values

Boolean is returned as "t" or "f". All other types, including arrays are returned as strings
formatted in the same default PostgreSQL manner that you would see in the psql program.
Database NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, or on any other error.

Examples

Example #1269 - pg_fetch_result() example

<?php

$db = pg_connect("dbname=users user=me") || die();

$res = pg_query($db, "SELECT 1 UNION ALL SELECT 2");

$val = pg_fetch_result($res, 1, 0);

echo "First field in the second row is: ", $val, "\n";

?>

The above example will output:

First field in the second row is: 2

See Also

• pg_query()
• pg_fetch_array()

pg_fetch_row

pg_fetch_row -- Get a row as an enumerated array

Description

array pg_fetch_row (resource $result [, int $row])

pg_fetch_row() fetches one row of data from the result associated with the specified
result resource.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, next
row is fetched.

Return Values

An array, indexed from 0 upwards, with each value represented as a string. Database
NULL values are returned as NULL.

FALSE is returned if row exceeds the number of rows in the set, there are no more rows,
or on any other error.

ChangeLog

Version Description

4.1.0 The parameter row became optional.

Examples

Example #1270 - pg_fetch_row() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

See Also

• pg_query()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_field_is_null

pg_field_is_null -- Test if a field is SQL NULL

Description

int pg_field_is_null (resource $result, int $row, mixed $field)

int pg_field_is_null (resource $result, mixed $field)

pg_field_is_null() tests if a field in a PostgreSQL result resource is SQL NULL or not.

Note

This function used to be called pg_fieldisnull().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result to fetch. Rows are numbered from 0 upwards. If omitted, current
row is fetched.

field

Field number (starting from 0) as an integer or the field name as a string.

Return Values

Returns 1 if the field in the given row is SQL NULL, 0 if not. FALSE is returned if the row is
out of range, or upon any other error.

Examples

Example #1271 - pg_field_is_null() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die ("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 if ($res) {

 if (pg_field_is_null($res, 0, "year") == 1) {

 echo "The value of the field year is null.\n";

 }

 if (pg_field_is_null($res, 0, "year") == 0) {

 echo "The value of the field year is not null.\n";

 }

}

?>

pg_field_name

pg_field_name -- Returns the name of a field

Description

string pg_field_name (resource $result, int $field_number)

pg_field_name() returns the name of the field occupying the given field_number in the
given PostgreSQL result resource. Field numbering starts from 0.

Note

This function used to be called pg_fieldname().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The field name, or FALSE on error.

Examples

Example #1272 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_num()

pg_field_num

pg_field_num -- Returns the field number of the named field

Description

int pg_field_num (resource $result, string $field_name)

pg_field_num() will return the number of the field number that corresponds to the
field_name in the given PostgreSQL result resource.

Note

This function used to be called pg_fieldnum().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_name

The name of the field.

Return Values

The field number (numbered from 0), or -1 on error.

Examples

Example #1273 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select author, year, title from authors where
author = 'Orwell'");

 echo "Column 'title' is field number: ", pg_field_num($res, 'title');

?>

The above example will output:

Column 'title' is field number: 2

See Also

• pg_field_name()

pg_field_prtlen

pg_field_prtlen -- Returns the printed length

Description

int pg_field_prtlen (resource $result, int $row_number, mixed $field_name_or_number)

int pg_field_prtlen (resource $result, mixed $field_name_or_number)

pg_field_prtlen() returns the actual printed length (number of characters) of a specific
value in a PostgreSQL result. Row numbering starts at 0. This function will return -1 on
an error.

field_name_or_number can be passed either as an integer or as a string. If it is passed as
an integer, PHP recognises it as the field number, otherwise as field name.

See the example given at the pg_field_name() page.

Note

This function used to be called pg_fieldprtlen().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

row

Row number in result. Rows are numbered from 0 upwards. If omitted, current row is
fetched.

Return Values

The field printed length, or FALSE on error.

Examples

Example #1274 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_size()

pg_field_size

pg_field_size -- Returns the internal storage size of the named field

Description

int pg_field_size (resource $result, int $field_number)

pg_field_size() returns the internal storage size (in bytes) of the field number in the given
PostgreSQL result.

Note

This function used to be called pg_fieldsize().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The internal field storage size (in bytes). -1 indicates a variable length field. FALSE is
returned on error.

Examples

Example #1275 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $res = pg_query($dbconn, "select * from authors where author = 'Orwell'");

 $i = pg_num_fields($res);

 for ($j = 0; $j < $i; $j++) {

 echo "column $j\n";

 $fieldname = pg_field_name($res, $j);

 echo "fieldname: $fieldname\n";

 echo "printed length: " . pg_field_prtlen($res, $fieldname) . "
characters\n";

 echo "storage length: " . pg_field_size($res, $j) . " bytes\n";

 echo "field type: " . pg_field_type($res, $j) . " \n\n";

 }

?>

The above example will output:

column 0

fieldname: author

printed length: 6 characters

storage length: -1 bytes

field type: varchar

column 1

fieldname: year

printed length: 4 characters

storage length: 2 bytes

field type: int2

column 2

fieldname: title

printed length: 24 characters

storage length: -1 bytes

field type: varchar

See Also

• pg_field_prtlen()
• pg_field_type()

pg_field_table

pg_field_table -- Returns the name or oid of the tables field

Description

mixed pg_field_table (resource $result, int $field_number [, bool $oid_only])

pg_field_table() returns the name of the table that field belongs to, or the table's oid if
oid_only is TRUE.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

oid_only

By default the tables name that field belongs to is returned but if oid_only is set to
TRUE, then the oid will instead be returned.

Return Values

On success either the fields table name or oid. Or, FALSE on failure.

Examples

Example #1276 - Getting table information about a field

<?php

$dbconn = pg_connect("dbname=publisher") or die("Could not connect");

$res = pg_query($dbconn, "SELECT bar FROM foo");

echo pg_field_table($res, 0);

echo pg_field_table($res, 0, true);

$res = pg_query($dbconn, "SELECT version()");

var_dump(pg_field_table($res, 0));

?>

The above example will output something similar to:

foo

14379580

bool(false)

Notes

Note

Returning the oid is much faster than returning the table name because fetching the
table name requires a query to the database system table.

See Also

• pg_field_name()
• pg_field_type()

pg_field_type_oid

pg_field_type_oid -- Returns the type ID (OID) for the corresponding field number

Description

int pg_field_type_oid (resource $result, int $field_number)

pg_field_type_oid() returns an integer containing the OID of the base type of the given
field_number in the given PostgreSQL result resource.

You can get more information about the field type by querying PostgreSQL's pg_type
system table using the OID obtained with this function. The PostgreSQL format_type()
function will convert a type OID into an SQL standard type name.

Note

If the field uses a PostgreSQL domain (rather than a basic type), it is the OID of the
domain's underlying type that is returned, rather than the OID of the domain itself.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

The OID of the field's base type. FALSE is returned on error.

Examples

Example #1277 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Assume 'title' is a varchar type

 $res = pg_query($dbconn, "select title from authors where author =
'Orwell'");

 echo "Title field type OID: ", pg_field_type_oid($res, 0);

?>

The above example will output:

Title field type OID: 1043

See Also

• pg_field_type()
• pg_field_prtlen()
• pg_field_name()

pg_field_type

pg_field_type -- Returns the type name for the corresponding field number

Description

string pg_field_type (resource $result, int $field_number)

pg_field_type() returns a string containing the base type name of the given field_number
in the given PostgreSQL result resource.

Note

If the field uses a PostgreSQL domain (rather than a basic type), it is the name of the
domain's underlying type that is returned, rather than the name of the domain itself.

Note

This function used to be called pg_fieldtype().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

field_number

Field number, starting from 0.

Return Values

A string containing the base name of the field's type, or FALSE on error.

Examples

Example #1278 - Getting information about fields

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Assume 'title' is a varchar type

 $res = pg_query($dbconn, "select title from authors where author =
'Orwell'");

 echo "Title field type: ", pg_field_type($res, 0);

?>

The above example will output:

Title field type: varchar

See Also

• pg_field_prtlen()
• pg_field_name()
• pg_field_type_oid()

pg_free_result

pg_free_result -- Free result memory

Description

bool pg_free_result (resource $result)

pg_free_result() frees the memory and data associated with the specified PostgreSQL
query result resource.

This function need only be called if memory consumption during script execution is a
problem. Otherwise, all result memory will be automatically freed when the script ends.

Note

This function used to be called pg_freeresult().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1279 - pg_free_result() example

<?php

$db = pg_connect("dbname=users user=me") || die();

$res = pg_query($db, "SELECT 1 UNION ALL SELECT 2");

$val = pg_fetch_result($res, 1, 0);

echo "First field in the second row is: ", $val, "\n";

pg_free_result($res);

?>

The above example will output:

First field in the second row is: 2

See Also

• pg_query()
• pg_query_params()
• pg_execute()

pg_get_notify

pg_get_notify -- Gets SQL NOTIFY message

Description

array pg_get_notify (resource $connection [, int $result_type])

pg_get_notify() gets notifications generated by a NOTIFY SQL command. To receive
notifications, the LISTEN SQL command must be issued.

Parameters

connection

PostgreSQL database connection resource.

result_type

An optional parameter that controls how the returned array is indexed. result_type is
a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM and
PGSQL_BOTH. Using PGSQL_NUM, pg_get_notify() will return an array with
numerical indices, using PGSQL_ASSOC it will return only associative indices while
PGSQL_BOTH, the default, will return both numerical and associative indices.

Return Values

An array containing the NOTIFY message name and backend PID. Otherwise if no
NOTIFY is waiting, then FALSE is returned.

Examples

Example #1280 - PostgreSQL NOTIFY message

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Listen 'author_updated' message from other processes

pg_query($conn, 'LISTEN author_updated;');

$notify = pg_get_notify($conn);

if (!$notify) {

 echo "No messages\n";

} else {

 print_r($notify);

}

?>

See Also

• pg_get_pid()

pg_get_pid

pg_get_pid -- Gets the backend's process ID

Description

int pg_get_pid (resource $connection)

pg_get_pid() gets the backend's (database server process) PID. The PID is useful to
determine whether or not a NOTIFY message received via pg_get_notify() is sent from
another process or not.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The backend database process ID.

Examples

Example #1281 - PostgreSQL backend PID

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Backend process PID. Use PID with pg_get_notify()

$pid = pg_get_pid($conn);

?>

See Also

• pg_get_notify()

pg_get_result

pg_get_result -- Get asynchronous query result

Description

resource pg_get_result ([resource $connection])

pg_get_result() gets the result resource from an asynchronous query executed by
pg_send_query(), pg_send_query_params() or pg_send_execute().

pg_send_query() and the other asynchronous query functions can send multiple queries to
a PostgreSQL server and pg_get_result() is used to get each query's results, one by one.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The result resource, or FALSE if no more results are available.

Examples

Example #1282 - pg_get_result() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 $res2 = pg_get_result($dbconn);

 echo "Second call to pg_get_result(): $res2\n";

 $rows2 = pg_num_rows($res2);

 echo "$res2 has $rows2 records\n";

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

Second call to pg_get_result(): Resource id #4

Resource id #4 has 1 records

See Also

• pg_send_query()

pg_host

pg_host -- Returns the host name associated with the connection

Description

string pg_host ([resource $connection])

pg_host() returns the host name of the given PostgreSQL connection resource is
connected to.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the name of the host the connection is to, or FALSE on error.

Examples

Example #1283 - pg_host() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Successfully connected to: " . pg_host($pgsql_conn) . "
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• pg_connect()
• pg_pconnect()

pg_insert

pg_insert -- Insert array into table

Description

mixed pg_insert (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_insert() inserts the values of assoc_array into the table specified by table_name. If
options is specified, pg_convert() is applied to assoc_array with the specified options.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to insert rows. The table table_name must at least have
as many columns as assoc_array has elements.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the values of those fields that are to be inserted.

options

Any number of PGSQL_CONV_OPTS, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC, PGSQL_DML_ASYNC or PGSQL_DML_STRING combined. If
PGSQL_DML_STRING is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #1284 - pg_insert() example

<?php

 $dbconn = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $res = pg_insert($dbconn, 'post_log', $_POST);

 if ($res) {

 echo "POST data is successfully logged\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_last_error

pg_last_error -- Get the last error message string of a connection

Description

string pg_last_error ([resource $connection])

pg_last_error() returns the last error message for a given connection.

Error messages may be overwritten by internal PostgreSQL (libpq) function calls. It may
not return an appropriate error message if multiple errors occur inside a PostgreSQL
module function.

Use pg_result_error(), pg_result_error_field(), pg_result_status() and
pg_connection_status() for better error handling.

Note

This function used to be called pg_errormessage().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the last error message on the given connection, or FALSE on error.

Examples

Example #1285 - pg_last_error() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Query that fails

 $res = pg_query($dbconn, "select * from doesnotexist");

 echo pg_last_error($dbconn);

?>

See Also

• pg_result_error()
• pg_result_error_field()

pg_last_notice

pg_last_notice -- Returns the last notice message from PostgreSQL server

Description

string pg_last_notice (resource $connection)

pg_last_notice() returns the last notice message from the PostgreSQL server on the
specified connection. The PostgreSQL server sends notice messages in several cases,
for instance when creating a SERIAL column in a table.

With pg_last_notice(), you can avoid issuing useless queries by checking whether or not
the notice is related to your transaction.

Notice message tracking can be set to optional by setting 1 for pgsql.ignore_notice in
php.ini.

Notice message logging can be set to optional by setting 0 for pgsql.log_notice in php.ini.
Unless pgsql.ignore_notice is set to 0, notice message cannot be logged.

Parameters

connection

PostgreSQL database connection resource.

Return Values

A string containing the last notice on the given connection, or FALSE on error.

ChangeLog

Version Description

4.3.0 This function is now fully implemented.
Earlier versions ignores database
connection parameter.

4.3.0 The pgsql.ignore_notice and
pgsql.log_notice php.ini directives were
added.

4.0.6 PHP 4.0.6 has problem with notice message
handling. Use of the PostgreSQL module

with PHP 4.0.6 is not recommended even if
you are not using pg_last_notice().

Examples

Example #1286 - pg_last_error() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 $res = pg_query("CREATE TABLE test (id SERIAL)");

 $notice = pg_last_notice($pgsql_conn);

 echo $notice;

?>

The above example will output:

CREATE TABLE will create implicit sequence "test_id_seq" for "serial" column
"test.id"

See Also

• pg_query()
• pg_last_error()

pg_last_oid

pg_last_oid -- Returns the last row's OID

Description

string pg_last_oid (resource $result)

pg_last_oid() is used to retrieve the OID assigned to an inserted row.

OID field became an optional field from PostgreSQL 7.2 and will not be present by default
in PostgreSQL 8.1. When the OID field is not present in a table, the programmer must use
pg_result_status() to check for successful insertion.

To get the value of a SERIAL field in an inserted row, it is necessary to use the
PostgreSQL CURRVAL function, naming the sequence whose last value is required. If the
name of the sequence is unknown, the pg_get_serial_sequence PostgreSQL 8.0 function
is necessary.

PostgreSQL 8.1 has a function LASTVAL that returns the value of the most recently used
sequence in the session. This avoids the need for naming the sequence, table or column
altogether.

Note

This function used to be called pg_getlastoid().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

A string containing the OID assigned to the most recently inserted row in the specified
connection, or FALSE on error or no available OID.

Examples

Example #1287 - pg_last_oid() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 $res1 = pg_query("CREATE TABLE test (a INTEGER) WITH OIDS");

 $res2 = pg_query("INSERT INTO test VALUES (1)");

 $oid = pg_last_oid($res2);

?>

See Also

• pg_query()
• pg_result_status()

pg_lo_close

pg_lo_close -- Close a large object

Description

bool pg_lo_close (resource $large_object)

pg_lo_close() closes a large object. large_object is a resource for the large object from
pg_lo_open().

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loclose().

Parameters

result

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1288 - pg_lo_close() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_open()
• pg_lo_create()
• pg_lo_import()

pg_lo_create

pg_lo_create -- Create a large object

Description

int pg_lo_create ([resource $connection])

pg_lo_create() creates a large object and returns the OID of the large object. PostgreSQL
access modes INV_READ, INV_WRITE, and INV_ARCHIVE are not supported, the object
is created always with both read and write access. INV_ARCHIVE has been removed from
PostgreSQL itself (version 6.3 and above).

To use the large object interface, it is necessary to enclose it within a transaction block.

Instead of using the large object interface (which has no access controls and is
cumbersome to use), try PostgreSQL's bytea column type and pg_escape_bytea().

Note

This function used to be called pg_locreate().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A large object OID or FALSE on error.

Examples

Example #1289 - pg_lo_create() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

pg_lo_export

pg_lo_export -- Export a large object to file

Description

bool pg_lo_export (resource $connection, int $oid, string $pathname)

bool pg_lo_export (int $oid, string $pathname)

pg_lo_export() takes a large object in a PostgreSQL database and saves its contents to a
file on the local filesystem.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loexport().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

pathname

The full path and file name of the file in which to write the large object on the client
filesystem.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1290 - pg_lo_export() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 $handle = pg_lo_open($database, $oid, "w");

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_lo_export($database, $oid, '/tmp/lob.dat');

 pg_query($database, "commit");

?>

See Also

• pg_lo_import()

pg_lo_import

pg_lo_import -- Import a large object from file

Description

int pg_lo_import (resource $connection, string $pathname)

int pg_lo_import (string $pathname)

pg_lo_import() creates a new large object in the database using a file on the filesystem as
its data source.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function used to be called pg_loimport().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

pathname

The full path and file name of the file on the client filesystem from which to read the
large object data.

Return Values

The OID of the newly created large object, or FALSE on failure.

ChangeLog

Version Description

4.2.0
The syntax of this function changed. It used
to be:
int pg_lo_import (string $pathname [,
resource $connection])

Examples

Example #1291 - pg_lo_import() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_import($database, '/tmp/lob.dat');

 pg_query($database, "commit");

?>

See Also

• pg_lo_export()
• pg_lo_open()

pg_lo_open

pg_lo_open -- Open a large object

Description

resource pg_lo_open (resource $connection, int $oid, string $mode)

pg_lo_open() opens a large object in the database and returns large object resource so
that it can be manipulated.

Warning

Do not close the database connection before closing the large object resource.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loopen().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

mode

Can be either "r" for read-only, "w" for write only or "rw" for read and write.

Return Values

A large object resource or FALSE on error.

Examples

Example #1292 - pg_lo_open() example

<?php

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $oid = pg_lo_create($database);

 echo "$oid\n";

 $handle = pg_lo_open($database, $oid, "w");

 echo "$handle\n";

 pg_lo_write($handle, "large object data");

 pg_lo_close($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_close()
• pg_lo_create()

pg_lo_read_all

pg_lo_read_all -- Reads an entire large object and send straight to browser

Description

int pg_lo_read_all (resource $large_object)

pg_lo_read_all() reads a large object and passes it straight through to the browser after
sending all pending headers. Mainly intended for sending binary data like images or
sound.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loreadall().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

Number of bytes read or FALSE on error.

Examples

Example #1293 - pg_lo_read_all() example

<?php

 header('Content-type: image/jpeg');

 $image_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $image_oid, "r");

 pg_lo_read_all($handle);

 pg_query($database, "commit");

?>

See Also

• pg_lo_read()

pg_lo_read

pg_lo_read -- Read a large object

Description

string pg_lo_read (resource $large_object [, int $len])

pg_lo_read() reads at most len bytes from a large object and returns it as a string.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_loread().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

len

An optional maximum number of bytes to return. Defaults to 8192.

Return Values

A string containing len bytes from the large object, or FALSE on error.

Examples

Example #1294 - pg_lo_read() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 $data = pg_lo_read($handle, 50000);

 pg_query($database, "commit");

 echo $data;

?>

See Also

• pg_lo_read_all()

pg_lo_seek

pg_lo_seek -- Seeks position within a large object

Description

bool pg_lo_seek (resource $large_object, int $offset [, int $whence])

pg_lo_seek() seeks a position within a large object resource.

To use the large object interface, it is necessary to enclose it within a transaction block.

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

offset

The number of bytes to seek.

whence

One of the constants PGSQL_SEEK_SET (seek from object start),
PGSQL_SEEK_CUR (seek from current position) or PGSQL_SEEK_END (seek from
object end) .

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1295 - pg_lo_seek() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 // Skip first 50000 bytes

 pg_lo_seek($handle, 50000, PGSQL_SEEK_SET);

 // Read the next 10000 bytes

 $data = pg_lo_read($handle, 10000);

 pg_query($database, "commit");

 echo $data;

?>

See Also

• pg_lo_tell()

pg_lo_tell

pg_lo_tell -- Returns current seek position a of large object

Description

int pg_lo_tell (resource $large_object)

pg_lo_tell() returns the current position (offset from the beginning) of a large object.

To use the large object interface, it is necessary to enclose it within a transaction block.

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

Return Values

The current seek offset (in number of bytes) from the beginning of the large object. If there
is an error, the return value is negative.

Examples

Example #1296 - pg_lo_tell() example

<?php

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "r");

 // Skip first 50000 bytes

 pg_lo_seek($handle, 50000, PGSQL_SEEK_SET);

 // See how far we've skipped

 $offset = pg_lo_tell($handle);

 echo "Seek position is: $offset";

 pg_query($database, "commit");

?>

The above example will output:

Seek position is: 50000

See Also

• pg_lo_seek()

pg_lo_unlink

pg_lo_unlink -- Delete a large object

Description

bool pg_lo_unlink (resource $connection, int $oid)

pg_lo_unlink() deletes a large object with the oid. Returns TRUE on success or FALSE
on failure.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_lounlink().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

oid

The OID of the large object in the database.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1297 - pg_lo_unlink() example

<?php

 // OID of the large object to delete

 $doc_oid = 189762345;

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 pg_lo_unlink($database, $doc_oid);

 pg_query($database, "commit");

?>

See Also

• pg_lo_create()
• pg_lo_import()

pg_lo_write

pg_lo_write -- Write to a large object

Description

int pg_lo_write (resource $large_object, string $data [, int $len])

pg_lo_write() writes data into a large object at the current seek position.

To use the large object interface, it is necessary to enclose it within a transaction block.

Note

This function used to be called pg_lowrite().

Parameters

large_object

PostgreSQL large object (LOB) resource, returned by pg_lo_open().

data

The data to be written to the large object. If len is specified and is less than the length
of data, only len bytes will be written.

len

An optional maximum number of bytes to write. Must be greater than zero and no
greater than the length of data. Defaults to the length of data.

Return Values

The number of bytes written to the large object, or FALSE on error.

Examples

Example #1298 - pg_lo_write() example

<?php

 $doc_oid = 189762345;

 $data = "This will overwrite the start of the large object.";

 $database = pg_connect("dbname=jacarta");

 pg_query($database, "begin");

 $handle = pg_lo_open($database, $doc_oid, "w");

 $data = pg_lo_write($handle, $data);

 pg_query($database, "commit");

?>

See Also

• pg_lo_create()
• pg_lo_open()

pg_meta_data

pg_meta_data -- Get meta data for table

Description

array pg_meta_data (resource $connection, string $table_name)

pg_meta_data() returns table definition for table_name as an array.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

The name of the table.

Return Values

An array of the table definition, or FALSE on error.

Examples

Example #1299 - Getting table metadata

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $meta = pg_meta_data($dbconn, 'authors');

 if (is_array($meta)) {

 echo '<pre>';

 var_dump($meta);

 echo '</pre>';

 }

?>

The above example will output:

array(3) {

["author"]=>

array(5) {

 ["num"]=>

 int(1)

 ["type"]=>

 string(7) "varchar"

 ["len"]=>

 int(-1)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

["year"]=>

array(5) {

 ["num"]=>

 int(2)

 ["type"]=>

 string(4) "int2"

 ["len"]=>

 int(2)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

["title"]=>

array(5) {

 ["num"]=>

 int(3)

 ["type"]=>

 string(7) "varchar"

 ["len"]=>

 int(-1)

 ["not null"]=>

 bool(false)

 ["has default"]=>

 bool(false)

}

}

See Also

• pg_convert()

pg_num_fields

pg_num_fields -- Returns the number of fields in a result

Description

int pg_num_fields (resource $result)

pg_num_fields() returns the number of fields (columns) in a PostgreSQL result resource.

Note

This function used to be called pg_numfields().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of fields (columns) in the result. On error, -1 is returned.

Examples

Example #1300 - pg_num_fields() example

<?php

$result = pg_query($conn, "SELECT 1, 2");

$num = pg_num_fields($result);

echo $num . " field(s) returned.\n";

?>

The above example will output:

2 field(s) returned.

See Also

• pg_num_rows()
• pg_affected_rows()

pg_num_rows

pg_num_rows -- Returns the number of rows in a result

Description

int pg_num_rows (resource $result)

pg_num_rows() will return the number of rows in a PostgreSQL result resource.

Note

This function used to be called pg_numrows().

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

The number of rows in the result. On error, -1 is returned.

Examples

Example #1301 - pg_num_rows() example

<?php

$result = pg_query($conn, "SELECT 1");

$rows = pg_num_rows($result);

echo $rows . " row(s) returned.\n";

?>

The above example will output:

1 row(s) returned.

See Also

• pg_num_fields()
• pg_affected_rows()

pg_options

pg_options -- Get the options associated with the connection

Description

string pg_options ([resource $connection])

pg_options() will return a string containing the options specified on the given PostgreSQL
connection resource.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the connection options, or FALSE on error.

Examples

Example #1302 - pg_options() example

<?php

 $pgsql_conn = pg_connect("dbname=mark host=localhost");

 echo pg_options($pgsql_conn);

?>

See Also

• pg_connect()

pg_parameter_status

pg_parameter_status -- Looks up a current parameter setting of the server.

Description

string pg_parameter_status (resource $connection, string $param_name)

string pg_parameter_status (string $param_name)

Looks up a current parameter setting of the server.

Certain parameter values are reported by the server automatically at connection startup or
whenever their values change. pg_parameter_status() can be used to interrogate these
settings. It returns the current value of a parameter if known, or FALSE if the parameter is
not known.

Parameters reported as of PostgreSQL 8.0 include server_version, server_encoding,
client_encoding, is_superuser, session_authorization, DateStyle, TimeZone, and
integer_datetimes. (server_encoding, TimeZone, and integer_datetimes were not reported
by releases before 8.0.) Note that server_version, server_encoding and integer_datetimes
cannot change after PostgreSQL startup.

PostgreSQL 7.3 or lower servers do not report parameter settings, pg_parameter_status()
includes logic to obtain values for server_version and client_encoding anyway.
Applications are encouraged to use pg_parameter_status() rather than ad hoc code to
determine these values.

Caution

On a pre-7.4 PostgreSQL server, changing client_encoding via SET after connection
startup will not be reflected by pg_parameter_status().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

param_name

Possible param_name values include server_version, server_encoding, client_encoding,
is_superuser, session_authorization, DateStyle, TimeZone, and integer_datetimes.

Return Values

A string containing the value of the parameter, FALSE on failure or invalid param_name.

Examples

Example #1303 - pg_parameter_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 echo "Server encoding: ", pg_parameter_status($dbconn, "server_encoding");

?>

The above example will output:

Server encoding: SQL_ASCII

pg_pconnect

pg_pconnect -- Open a persistent PostgreSQL connection

Description

resource pg_pconnect (string $connection_string [, int $connect_type])

pg_pconnect() opens a connection to a PostgreSQL database. It returns a connection
resource that is needed by other PostgreSQL functions.

If a second call is made to pg_pconnect() with the same connection_string as an existing
connection, the existing connection will be returned unless you pass
PGSQL_CONNECT_FORCE_NEW as connect_type.

To enable persistent connection, the pgsql.allow_persistent php.ini directive must be set to
"On" (which is the default). The maximum number of persistent connection can be defined
with the pgsql.max_persistent php.ini directive (defaults to -1 for no limit). The total number
of connections can be set with the pgsql.max_links php.ini directive.

pg_close() will not close persistent links generated by pg_pconnect().

Parameters

connection_string

The connection_string can be empty to use all default parameters, or it can contain
one or more parameter settings separated by whitespace. Each parameter setting is in
the form keyword = value. Spaces around the equal sign are optional. To write an
empty value or a value containing spaces, surround it with single quotes, e.g., keyword
= 'a value'. Single quotes and backslashes within the value must be escaped with a
backslash, i.e., \' and \\. The currently recognized parameter keywords are: host,
hostaddr, port, dbname, user, password, connect_timeout, options, tty (ignored),
sslmode, requiressl (deprecated in favor of sslmode), and service. Which of these
arguments exist depends on your PostgreSQL version.

connect_type

If PGSQL_CONNECT_FORCE_NEW is passed, then a new connection is created,
even if the connection_string is identical to an existing connection.

Return Values

PostgreSQL connection resource on success, FALSE on failure.

Examples

Example #1304 - Using pg_pconnect()

<?php

$dbconn = pg_pconnect("dbname=mary");

//connect to a database named "mary"

$dbconn2 = pg_pconnect("host=localhost port=5432 dbname=mary");

// connect to a database named "mary" on "localhost" at port "5432"

$dbconn3 = pg_pconnect("host=sheep port=5432 dbname=mary user=lamb
password=foo");

//connect to a database named "mary" on the host "sheep" with a username and
password

$conn_string = "host=sheep port=5432 dbname=test user=lamb password=bar";

$dbconn4 = pg_pconnect($conn_string);

//connect to a database named "test" on the host "sheep" with a username and
password

?>

See Also

• pg_connect()
• Persistent Database Connections

pg_ping

pg_ping -- Ping database connection

Description

bool pg_ping ([resource $connection])

pg_ping() pings a database connection and tries to reconnect it if it is broken.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1305 - pg_ping() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

if (!pg_ping($conn))

 die("Connection is broken\n");

?>

See Also

• pg_connection_status()
• pg_connection_reset()

pg_port

pg_port -- Return the port number associated with the connection

Description

int pg_port ([resource $connection])

pg_port() returns the port number that the given PostgreSQL connection resource is
connected to.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

An int containing the port number of the database server the connection is to, or FALSE
on error.

Examples

Example #1306 - pg_port() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Successfully connected to port: " . pg_port($pgsql_conn) .
"
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

pg_prepare

pg_prepare -- Submits a request to create a prepared statement with the given
parameters, and waits for completion.

Description

resource pg_prepare (resource $connection, string $stmtname, string $query)

resource pg_prepare (string $stmtname, string $query)

pg_prepare() creates a prepared statement for later execution with pg_execute() or
pg_send_execute(). This feature allows commands that will be used repeatedly to be
parsed and planned just once, rather than each time they are executed. pg_prepare() is
supported only against PostgreSQL 7.4 or higher connections; it will fail when using earlier
versions.

The function creates a prepared statement named stmtname from the query string, which
must contain a single SQL command. stmtname may be "" to create an unnamed
statement, in which case any pre-existing unnamed statement is automatically replaced;
otherwise it is an error if the statement name is already defined in the current session. If
any parameters are used, they are referred to in the query as $1, $2, etc.

Prepared statements for use with pg_prepare() can also be created by executing SQL
PREPARE statements. (But pg_prepare() is more flexible since it does not require
parameter types to be pre-specified.) Also, although there is no PHP function for deleting a
prepared statement, the SQL DEALLOCATE statement can be used for that purpose.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name to give the prepared statement. Must be unique per-connection. If "" is
specified, then an unnamed statement is created, overwriting any previously defined
unnamed statement.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #1307 - Using pg_prepare()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Prepare a query for execution

$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

// Execute the prepared query. Note that it is not necessary to escape

// the string "Joe's Widgets" in any way

$result = pg_execute($dbconn, "my_query", array("Joe's Widgets"));

// Execute the same prepared query, this time with a different parameter

$result = pg_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

?>

See Also

• pg_execute()
• pg_send_execute()

pg_put_line

pg_put_line -- Send a NULL-terminated string to PostgreSQL backend

Description

bool pg_put_line (string $data)

bool pg_put_line (resource $connection, string $data)

pg_put_line() sends a NULL-terminated string to the PostgreSQL backend server. This is
needed in conjunction with PostgreSQL's COPY FROM command.

COPY is a high-speed data loading interface supported by PostgreSQL. Data is passed in
without being parsed, and in a single transaction.

An alternative to using raw pg_put_line() commands is to use pg_copy_from(). This is a far
simpler interface.

Note

The application must explicitly send the two characters "\." on the last line to indicate to
the backend that it has finished sending its data, before issuing pg_end_copy().

Warning

Use of the pg_put_line() causes most large object operations, including pg_lo_read()
and pg_lo_tell(), to subsequently fail. You can use pg_copy_from() and pg_copy_to()
instead.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

data

A line of text to be sent directly to the PostgreSQL backend. A NULL terminator is
added automatically.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1308 - pg_put_line() example

<?php

 $conn = pg_pconnect("dbname=foo");

 pg_query($conn, "create table bar (a int4, b char(16), d float8)");

 pg_query($conn, "copy bar from stdin");

 pg_put_line($conn, "3\thello world\t4.5\n");

 pg_put_line($conn, "4\tgoodbye world\t7.11\n");

 pg_put_line($conn, "\\.\n");

 pg_end_copy($conn);

?>

See Also

• pg_end_copy()

pg_query_params

pg_query_params -- Submits a command to the server and waits for the result, with the
ability to pass parameters separately from the SQL command text.

Description

resource pg_query_params (resource $connection, string $query, array $params)

resource pg_query_params (string $query, array $params)

Submits a command to the server and waits for the result, with the ability to pass
parameters separately from the SQL command text.

pg_query_params() is like pg_query(), but offers additional functionality: parameter values
can be specified separately from the command string proper. pg_query_params() is
supported only against PostgreSQL 7.4 or higher connections; it will fail when using earlier
versions.

If parameters are used, they are referred to in the query string as $1, $2, etc. params
specifies the actual values of the parameters. A NULL value in this array means the
corresponding parameter is SQL NULL.

The primary advantage of pg_query_params() over pg_query() is that parameter values
may be separated from the query string, thus avoiding the need for tedious and
error-prone quoting and escaping. Unlike pg_query(), pg_query_params() allows at most
one SQL command in the given string. (There can be semicolons in it, but not more than
one nonempty command.)

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #1309 - Using pg_query_params()

<?php

// Connect to a database named "mary"

$dbconn = pg_connect("dbname=mary");

// Find all shops named Joe's Widgets. Note that it is not necessary to

// escape "Joe's Widgets"

$result = pg_query_params($dbconn, 'SELECT * FROM shops WHERE name = $1',
array("Joe's Widgets"));

// Compare against just using pg_query

$str = pg_escape_string("Joe's Widgets");

$result = pg_query($dbconn, "SELECT * FROM shops WHERE name = '{$str}'");

?>

See Also

• pg_query()

pg_query

pg_query -- Execute a query

Description

resource pg_query (string $query)

resource pg_query (resource $connection, string $query)

pg_query() executes the query on the specified database connection.

If an error occurs, and FALSE is returned, details of the error can be retrieved using the
pg_last_error() function if the connection is valid.

Note

Although connection can be omitted, it is not recommended, since it can be the cause
of hard to find bugs in scripts.

Note

This function used to be called pg_exec(). pg_exec() is still available for compatibility
reasons, but users are encouraged to use the newer name.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

query

The SQL statement or statements to be executed. When multiple statements are
passed to the function, they are automatically executed as one transaction, unless
there are explicit BEGIN/COMMIT commands included in the query string. However,
using multiple transactions in one function call is not recommended.

Return Values

A query result resource on success, or FALSE on failure.

Examples

Example #1310 - pg_query() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

Example #1311 - Using pg_query() with multiple statements

<?php

$conn = pg_pconnect("dbname=publisher");

// these statements will be executed as one transaction

$query = "UPDATE authors SET author=UPPER(author) WHERE id=1;";

$query .= "UPDATE authors SET author=LOWER(author) WHERE id=2;";

$query .= "UPDATE authors SET author=NULL WHERE id=3;";

pg_query($conn, $query);

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_fetch_array()

• pg_fetch_object()
• pg_num_rows()
• pg_affected_rows()

pg_result_error_field

pg_result_error_field -- Returns an individual field of an error report.

Description

string pg_result_error_field (resource $result, int $fieldcode)

pg_result_error_field() returns one of the detailed error message fields associated with
result resource. It is only available against a PostgreSQL 7.4 or above server. The error
field is specified by the fieldcode.

Because pg_query() and pg_query_params() return FALSE if the query fails, you must
use pg_send_query() and pg_get_result() to get the result handle.

If you need to get additional error information from failed pg_query() queries, use
pg_set_error_verbosity() and pg_last_error() and then parse the result.

Parameters

result

A PostgreSQL query result resource from a previously executed statement.

fieldcode

Possible fieldcode values are: PGSQL_DIAG_SEVERITY,
PGSQL_DIAG_SQLSTATE, PGSQL_DIAG_MESSAGE_PRIMARY,
PGSQL_DIAG_MESSAGE_DETAIL, PGSQL_DIAG_MESSAGE_HINT,
PGSQL_DIAG_STATEMENT_POSITION, PGSQL_DIAG_INTERNAL_POSITION
(PostgreSQL 8.0+ only), PGSQL_DIAG_INTERNAL_QUERY (PostgreSQL 8.0+ only),
PGSQL_DIAG_CONTEXT, PGSQL_DIAG_SOURCE_FILE,
PGSQL_DIAG_SOURCE_LINE or PGSQL_DIAG_SOURCE_FUNCTION.

Return Values

A string containing the contents of the error field, NULL if the field does not exist or
FALSE on failure.

Examples

Example #1312 - pg_result_error_field() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 $res1 = pg_get_result($dbconn);

 echo pg_result_error_field($res1, PGSQL_DIAG_SQLSTATE);

?>

See Also

• pg_result_error()

pg_result_error

pg_result_error -- Get error message associated with result

Description

string pg_result_error (resource $result)

pg_result_error() returns any error message associated with the result resource.
Therefore, the user has a better chance of getting the correct error message than with
pg_last_error().

The function pg_result_error_field() can give much greater detail on result errors than
pg_result_error().

Because pg_query() returns FALSE if the query fails, you must use pg_send_query() and
pg_get_result() to get the result handle.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

Return Values

Returns a string if there is an error associated with the result parameter, FALSE
otherwise.

Examples

Example #1313 - pg_result_error() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 $res1 = pg_get_result($dbconn);

 echo pg_result_error($res1);

?>

See Also

• pg_result_error_field()
• pg_query()
• pg_send_query()
• pg_get_result()
• pg_last_error()
• pg_last_notice()

pg_result_seek

pg_result_seek -- Set internal row offset in result resource

Description

bool pg_result_seek (resource $result, int $offset)

pg_result_seek() sets the internal row offset in a result resource.

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

offset

Row to move the internal offset to in the result resource. Rows are numbered starting
from zero.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1314 - pg_result_seek() example

<?php

// Connect to the database

$conn = pg_pconnect("dbname=publisher");

// Execute a query

$result = pg_query($conn, "SELECT author, email FROM authors");

// Seek to the 3rd row (assuming there are 3 rows)

pg_result_seek($result, 2);

// Fetch the 3rd row

$row = pg_fetch_row($result);

?>

See Also

• pg_fetch_row()
• pg_fetch_assoc()
• pg_fetch_array()
• pg_fetch_object()
• pg_fetch_result()

pg_result_status

pg_result_status -- Get status of query result

Description

mixed pg_result_status (resource $result [, int $type])

pg_result_status() returns the status of a result resource, or the PostgreSQL command
completion tag associated with the result

Parameters

result

PostgreSQL query result resource, returned by pg_query(), pg_query_params() or
pg_execute() (among others).

type

Either PGSQL_STATUS_LONG to return the numeric status of the result, or
PGSQL_STATUS_STRING to return the command tag of the result. If not specified,
PGSQL_STATUS_LONG is the default.

Return Values

Possible return values are PGSQL_EMPTY_QUERY, PGSQL_COMMAND_OK,
PGSQL_TUPLES_OK, PGSQL_COPY_OUT, PGSQL_COPY_IN,
PGSQL_BAD_RESPONSE, PGSQL_NONFATAL_ERROR and
PGSQL_FATAL_ERROR if PGSQL_STATUS_LONG is specified. Otherwise, a string
containing the PostgreSQL command tag is returned.

ChangeLog

Version Description

4.3.0 The type parameter was added.

Examples

Example #1315 - pg_result_status() example

<?php

// Connect to the database

$conn = pg_pconnect("dbname=publisher");

// Execute a COPY

$result = pg_query($conn, "COPY authors FROM STDIN;");

// Get the result status

$status = pg_result_status($result);

// Determine status

if ($status == PGSQL_COPY_IN)

 echo "Copy began.";

else

 echo "Copy failed.";

?>

The above example will output:

Copy began.

See Also

• pg_connection_status()

pg_select

pg_select -- Select records

Description

mixed pg_select (resource $connection, string $table_name, array $assoc_array [, int $
options])

pg_select() selects records specified by assoc_array which has field=>value. For a
successful query, it returns an array containing all records and fields that match the
condition specified by assoc_array.

If options is specified, pg_convert() is applied to assoc_array with the specified flags.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table from which to select rows.

assoc_array

An array whose keys are field names in the table table_name, and whose values are
the conditions that a row must meet to be retrieved.

options

Any number of PGSQL_CONV_FORCE_NULL, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC, PGSQL_DML_ASYNC or PGSQL_DML_STRING combined. If
PGSQL_DML_STRING is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #1316 - pg_select() example

<?php

 $db = pg_connect('dbname=foo');

 // This is safe, since $_POST is converted automatically

 $rec = pg_select($db, 'post_log', $_POST);

 if ($rec) {

 echo "Records selected\n";

 var_dump($rec);

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_send_execute

pg_send_execute -- Sends a request to execute a prepared statement with given
parameters, without waiting for the result(s).

Description

bool pg_send_execute (resource $connection, string $stmtname, array $params)

Sends a request to execute a prepared statement with given parameters, without waiting
for the result(s).

This is similar to pg_send_query_params(), but the command to be executed is specified
by naming a previously-prepared statement, instead of giving a query string. The function's
parameters are handled identically to pg_execute(). Like pg_execute(), it will not work on
pre-7.4 versions of PostgreSQL.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name of the prepared statement to execute. if "" is specified, then the unnamed
statement is executed. The name must have been previously prepared using
pg_prepare(), pg_send_prepare() or a PREPARE SQL command.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

Returns TRUE on success, FALSE on failure. Use pg_get_result() to determine the query
result.

Examples

Example #1317 - Using pg_send_execute()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Prepare a query for execution

 if (!pg_connection_busy($dbconn)) {

 pg_send_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

 $res1 = pg_get_result($dbconn);

 }

 // Execute the prepared query. Note that it is not necessary to escape

 // the string "Joe's Widgets" in any way

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Joe's Widgets"));

 $res2 = pg_get_result($dbconn);

 }

 // Execute the same prepared query, this time with a different parameter

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

 $res3 = pg_get_result($dbconn);

 }

?>

See Also

• pg_prepare()
• pg_send_prepare()
• pg_execute()

pg_send_prepare

pg_send_prepare -- Sends a request to create a prepared statement with the given
parameters, without waiting for completion.

Description

bool pg_send_prepare (resource $connection, string $stmtname, string $query)

Sends a request to create a prepared statement with the given parameters, without waiting
for completion.

This is an asynchronous version of pg_prepare(): it returns TRUE if it was able to dispatch
the request, and FALSE if not. After a successful call, call pg_get_result() to determine
whether the server successfully created the prepared statement. The function's
parameters are handled identically to pg_prepare(). Like pg_prepare(), it will not work on
pre-7.4 versions of PostgreSQL.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

stmtname

The name to give the prepared statement. Must be unique per-connection. If "" is
specified, then an unnamed statement is created, overwriting any previously defined
unnamed statement.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

Return Values

Returns TRUE on success, FALSE on failure. Use pg_get_result() to determine the query
result.

Examples

Example #1318 - Using pg_send_prepare()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Prepare a query for execution

 if (!pg_connection_busy($dbconn)) {

 pg_send_prepare($dbconn, "my_query", 'SELECT * FROM shops WHERE name =
$1');

 $res1 = pg_get_result($dbconn);

 }

 // Execute the prepared query. Note that it is not necessary to escape

 // the string "Joe's Widgets" in any way

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Joe's Widgets"));

 $res2 = pg_get_result($dbconn);

 }

 // Execute the same prepared query, this time with a different parameter

 if (!pg_connection_busy($dbconn)) {

 pg_send_execute($dbconn, "my_query", array("Clothes Clothes Clothes"));

 $res3 = pg_get_result($dbconn);

 }

?>

See Also

• pg_connect()
• pg_pconnect()
• pg_execute()
• pg_send_execute()
• pg_send_query_params()

pg_send_query_params

pg_send_query_params -- Submits a command and separate parameters to the server
without waiting for the result(s).

Description

bool pg_send_query_params (resource $connection, string $query, array $params)

Submits a command and separate parameters to the server without waiting for the
result(s).

This is equivalent to pg_send_query() except that query parameters can be specified
separately from the query string. The function's parameters are handled identically to
pg_query_params(). Like pg_query_params(), it will not work on pre-7.4 PostgreSQL
connections, and it allows only one command in the query string.

Parameters

connection

PostgreSQL database connection resource.

query

The parameterised SQL statement. Must contain only a single statement. (multiple
statements separated by semi-colons are not allowed.) If any parameters are used,
they are referred to as $1, $2, etc.

params

An array of parameter values to substitute for the $1, $2, etc. placeholders in the
original prepared query string. The number of elements in the array must match the
number of placeholders.

Return Values

Returns TRUE on success or FALSE on failure.

Use pg_get_result() to determine the query result.

Examples

Example #1319 - Using pg_send_query_params()

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 // Using parameters. Note that it is not necessary to quote or escape

 // the parameter.

 pg_send_query_params($dbconn, 'select count(*) from authors where city =
$1', array('Perth'));

 // Compare against basic pg_send_query usage

 $str = pg_escape_string('Perth');

 pg_send_query($dbconn, "select count(*) from authors where city =
'${str}'");

?>

See Also

• pg_send_query()

pg_send_query

pg_send_query -- Sends asynchronous query

Description

bool pg_send_query (resource $connection, string $query)

pg_send_query() sends a query or queries asynchronously to the connection. Unlike
pg_query(), it can send multiple queries at once to PostgreSQL and get the results one by
one using pg_get_result().

Script execution is not blocked while the queries are executing. Use pg_connection_busy()
to check if the connection is busy (i.e. the query is executing). Queries may be cancelled
using pg_cancel_query().

Although the user can send multiple queries at once, multiple queries cannot be sent over
a busy connection. If a query is sent while the connection is busy, it waits until the last
query is finished and discards all its results.

Parameters

connection

PostgreSQL database connection resource.

query

The SQL statement or statements to be executed.

Return Values

Returns TRUE on success or FALSE on failure.

Use pg_get_result() to determine the query result.

Examples

Example #1320 - pg_send_query() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from authors; select count(*) from
authors;");

 }

 $res1 = pg_get_result($dbconn);

 echo "First call to pg_get_result(): $res1\n";

 $rows1 = pg_num_rows($res1);

 echo "$res1 has $rows1 records\n\n";

 $res2 = pg_get_result($dbconn);

 echo "Second call to pg_get_result(): $res2\n";

 $rows2 = pg_num_rows($res2);

 echo "$res2 has $rows2 records\n";

?>

The above example will output:

First call to pg_get_result(): Resource id #3

Resource id #3 has 3 records

Second call to pg_get_result(): Resource id #4

Resource id #4 has 1 records

See Also

• pg_query()
• pg_cancel_query()
• pg_get_result()
• pg_connection_busy()

pg_set_client_encoding

pg_set_client_encoding -- Set the client encoding

Description

int pg_set_client_encoding (string $encoding)

int pg_set_client_encoding (resource $connection, string $encoding)

pg_set_client_encoding() sets the client encoding and returns 0 if success or -1 if error.

PostgreSQL will automatically convert data in the backend database encoding into the
frontend encoding.

Note

The function used to be called pg_setclientencoding().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

encoding

The required client encoding. One of SQL_ASCII, EUC_JP, EUC_CN, EUC_KR,
EUC_TW, UNICODE, MULE_INTERNAL, LATINX (X=1...9), KOI8, WIN, ALT, SJIS,
BIG5 or WIN1250. The exact list of available encodings depends on your PostgreSQL
version, so check your PostgreSQL manual for a more specific list.

Return Values

Returns 0 on success or -1 on error.

Examples

Example #1321 - pg_set_client_encoding() example

<?php

$conn = pg_pconnect("dbname=publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

// Set the client encoding to UNICODE. Data will be automatically

// converted from the backend encoding to the frontend.

pg_set_client_encoding($conn, UNICODE);

$result = pg_query($conn, "SELECT author, email FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

// Write out UTF-8 data

while ($row = pg_fetch_row($result)) {

 echo "Author: $row[0] E-mail: $row[1]";

 echo "
\n";

}

?>

See Also

• pg_client_encoding()

pg_set_error_verbosity

pg_set_error_verbosity -- Determines the verbosity of messages returned by
pg_last_error() and pg_result_error().

Description

int pg_set_error_verbosity (resource $connection, int $verbosity)

int pg_set_error_verbosity (int $verbosity)

Determines the verbosity of messages returned by pg_last_error() and pg_result_error().

pg_set_error_verbosity() sets the verbosity mode, returning the connection's previous
setting. In PGSQL_ERRORS_TERSE mode, returned messages include severity, primary
text, and position only; this will normally fit on a single line. The default mode (
PGSQL_ERRORS_DEFAULT) produces messages that include the above plus any
detail, hint, or context fields (these may span multiple lines). The
PGSQL_ERRORS_VERBOSE mode includes all available fields. Changing the verbosity
does not affect the messages available from already-existing result objects, only
subsequently-created ones.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

verbosity

The required verbosity: PGSQL_ERRORS_TERSE, PGSQL_ERRORS_DEFAULT or
PGSQL_ERRORS_VERBOSE.

Return Values

The previous verbosity level: PGSQL_ERRORS_TERSE, PGSQL_ERRORS_DEFAULT
or PGSQL_ERRORS_VERBOSE.

Examples

Example #1322 - pg_set_error_verbosity() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 if (!pg_connection_busy($dbconn)) {

 pg_send_query($dbconn, "select * from doesnotexist;");

 }

 pg_set_error_verbosity($dbconn, PGSQL_ERRORS_VERBOSE);

 $res1 = pg_get_result($dbconn);

 echo pg_result_error($res1);

?>

See Also

• pg_last_error()
• pg_result_error()

pg_trace

pg_trace -- Enable tracing a PostgreSQL connection

Description

bool pg_trace (string $pathname [, string $mode [, resource $connection]])

pg_trace() enables tracing of the PostgreSQL frontend/backend communication to a file.
To fully understand the results, one needs to be familiar with the internals of PostgreSQL
communication protocol.

For those who are not, it can still be useful for tracing errors in queries sent to the server,
you could do for example grep '^To backend' trace.log and see what queries actually were
sent to the PostgreSQL server. For more information, refer to the » PostgreSQL
Documentation.

Parameters

pathname

The full path and file name of the file in which to write the trace log. Same as in fopen()
.

pathname

An optional file access mode, same as for fopen(). Defaults to "w".

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1323 - pg_trace() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 pg_trace('/tmp/trace.log', 'w', $pgsql_conn);

 pg_query("SELECT 1");

http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/

 pg_untrace($pgsql_conn);

 // Now /tmp/trace.log will contain backend communication

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• fopen()
• pg_untrace()

pg_transaction_status

pg_transaction_status -- Returns the current in-transaction status of the server.

Description

int pg_transaction_status (resource $connection)

Returns the current in-transaction status of the server.

Caution

pg_transaction_status() will give incorrect results when using a PostgreSQL 7.3 server
that has the parameter autocommit set to off. The server-side autocommit feature has
been deprecated and does not exist in later server versions.

Parameters

connection

PostgreSQL database connection resource.

Return Values

The status can be PGSQL_TRANSACTION_IDLE (currently idle),
PGSQL_TRANSACTION_ACTIVE (a command is in progress),
PGSQL_TRANSACTION_INTRANS (idle, in a valid transaction block), or
PGSQL_TRANSACTION_INERROR (idle, in a failed transaction block).
PGSQL_TRANSACTION_UNKNOWN is reported if the connection is bad.
PGSQL_TRANSACTION_ACTIVE is reported only when a query has been sent to the
server and not yet completed.

Examples

Example #1324 - pg_transaction_status() example

<?php

 $dbconn = pg_connect("dbname=publisher") or die("Could not connect");

 $stat = pg_transaction_status($dbconn);

 if ($stat === PGSQL_TRANSACTION_UNKNOWN) {

 echo 'Connection is bad';

 } else if ($stat === PGSQL_TRANSACTION_IDLE) {

 echo 'Connection is currently idle';

 } else {

 echo 'Connection is in a transaction state';

 }

?>

pg_tty

pg_tty -- Return the TTY name associated with the connection

Description

string pg_tty ([resource $connection])

pg_tty() returns the TTY name that server side debugging output is sent to on the given
PostgreSQL connection resource.

Note

pg_tty() is obsolete, since the server no longer pays attention to the TTY setting, but
the function remains for backwards compatibility.

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

A string containing the debug TTY of the connection, or FALSE on error.

Examples

Example #1325 - pg_tty() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 print "Server debug TTY is: " . pg_tty($pgsql_conn) . "
\n";

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

pg_unescape_bytea

pg_unescape_bytea -- Unescape binary for bytea type

Description

string pg_unescape_bytea (string $data)

pg_unescape_bytea() unescapes PostgreSQL bytea data values. It returns the unescaped
string, possibly containing binary data.

Note

When you SELECT a bytea type, PostgreSQL returns octal byte values prefixed with '\'
(e.g. \032). Users are supposed to convert back to binary format manually.

This function requires PostgreSQL 7.2 or later. With PostgreSQL 7.2.0 and 7.2.1,
bytea values must be cast when you enable multi-byte support. i.e. INSERT INTO
test_table (image) VALUES ('$image_escaped'::bytea); PostgreSQL 7.2.2 or later
does not need a cast. The exception is when the client and backend character
encoding does not match, and there may be multi-byte stream error. User must then
cast to bytea to avoid this error.

Parameters

data

A string containing PostgreSQL bytea data to be converted into a PHP binary string.

Return Values

A string containing the unescaped data.

Examples

Example #1326 - pg_unescape_bytea() example

<?php

 // Connect to the database

 $dbconn = pg_connect('dbname=foo');

 // Get the bytea data

 $res = pg_query("SELECT data FROM gallery WHERE name='Pine trees'");

 $raw = pg_fetch_result($res, 'data');

 // Convert to binary and send to the browser

 header('Content-type: image/jpeg');

 echo pg_unescape_bytea($raw);

?>

See Also

• pg_escape_bytea()
• pg_escape_string()

pg_untrace

pg_untrace -- Disable tracing of a PostgreSQL connection

Description

bool pg_untrace ([resource $connection])

Stop tracing started by pg_trace().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Always returns TRUE.

Examples

Example #1327 - pg_untrace() example

<?php

$pgsql_conn = pg_connect("dbname=mark host=localhost");

if ($pgsql_conn) {

 pg_trace('/tmp/trace.log', 'w', $pgsql_conn);

 pg_query("SELECT 1");

 pg_untrace($pgsql_conn);

 // Now tracing of backend communication is disabled

} else {

 print pg_last_error($pgsql_conn);

 exit;

}

?>

See Also

• pg_trace()

pg_update

pg_update -- Update table

Description

mixed pg_update (resource $connection, string $table_name, array $data, array $
condition [, int $options])

pg_update() updates records that matches condition with data. If options is specified,
pg_convert() is applied to data with specified options.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

connection

PostgreSQL database connection resource.

table_name

Name of the table into which to update rows.

data

An array whose keys are field names in the table table_name, and whose values are
what matched rows are to be updated to.

condition

An array whose keys are field names in the table table_name, and whose values are
the conditions that a row must meet to be updated.

options

Any number of PGSQL_CONV_OPTS, PGSQL_DML_NO_CONV,
PGSQL_DML_EXEC or PGSQL_DML_STRING combined. If PGSQL_DML_STRING
is part of the options then query string is returned.

Return Values

Returns TRUE on success or FALSE on failure. Returns string if PGSQL_DML_STRING
is passed via options.

Examples

Example #1328 - pg_update() example

<?php

 $db = pg_connect('dbname=foo');

 $data = array('field1'=>'AA', 'field2'=>'BB');

 // This is safe, since $_POST is converted automatically

 $res = pg_update($db, 'post_log', $_POST, $data);

 if ($res) {

 echo "Data is updated: $res\n";

 } else {

 echo "User must have sent wrong inputs\n";

 }

?>

See Also

• pg_convert()

pg_version

pg_version -- Returns an array with client, protocol and server version (when available)

Description

array pg_version ([resource $connection])

pg_version() returns an array with the client, protocol and server version. Protocol and
server versions are only available if PHP was compiled with PostgreSQL 7.4 or later.

For more detailed server information, use pg_parameter_status().

Parameters

connection

PostgreSQL database connection resource. When connection is not present, the
default connection is used. The default connection is the last connection made by
pg_connect() or pg_pconnect().

Return Values

Returns an array with client, protocol and server_version keys and values (if available).
Returns FALSE on error or invalid connection.

Examples

Example #1329 - pg_version() example

<?php

 $dbconn = pg_connect("host=localhost port=5432 dbname=mary")

 or die("Could not connect");

 $v = pg_version($dbconn);

 echo $v['client'];

?>

The above example will output:

7.4

See Also

• pg_parameter_status()

SQLite

Introduction

This is an extension for the SQLite Embeddable SQL Database Engine. SQLite is a C
library that implements an embeddable SQL database engine. Programs that link with the
SQLite library can have SQL database access without running a separate RDBMS
process.

SQLite is not a client library used to connect to a big database server. SQLite is the server.
The SQLite library reads and writes directly to and from the database files on disk.

Note

For further information see the SQLite Website (» http://sqlite.org/).

http://sqlite.org/

Installing/Configuring

Requirements

In order to have these functions available, you must compile PHP with SQLite support, or
load the SQLite extension dynamically from your php.ini.

Installation

Read the INSTALL file, which comes with the package. Or just use the PEAR installer with
pecl install sqlite. SQLite itself is already included, You do not need to install any additional
software.

Windows users will enable php_sqlite.dll inside of php.ini in order to use these functions.
The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

In PHP 5, the SQLite extension and the engine itself are bundled and compiled by default.
However, since PHP 5.1.0 you need to manually activate the extension in php.ini (because
it is now bundled as shared). Moreover, since PHP 5.1.0 SQLite depends on PDO it must
be enabled too, by adding the following lines to php.ini (in order):

extension=php_pdo.dll

extension=php_sqlite.dll

On Linux or Unix operating systems, if you build PDO as a shared extension, you must
build SQLite as a shared extension using the --with-sqlite=shared configure option.

SQLite 3 is supported through PDO SQLite.

Note

Windows installation for unprivileged accounts

On Windows operating systems, unprivileged accounts don't have the TMP
environment variable set by default. This will make sqlite create temporary files in the
windows directory, which is not desirable. So, you should set the TMP environment
variable for the web server or the user account the web server is running under. If
Apache is your web server, you can accomplish this via a SetEnv directive in your
httpd.conf file. For example:

SetEnv TMP c:/temp

If you are unable to establish this setting at the server level, you can implement the
setting in your script:

putenv('TMP=C:/temp');

http://www.php.net/downloads.php
http://pecl4win.php.net/

The setting must refer to a directory that the web server has permission to create files
in and subsequently write to and delete the files it created. Otherwise, you may receive
the following error message: malformed database schema - unable to open a
temporary database file for storing temporary tables

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

SQLite Configure Options

Name Default Changeable Changelog

sqlite.assoc_case "0" PHP_INI_ALL Available since PHP
5.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

sqlite.assoc_case int
Whether to use mixed case (0), upper case (1) or lower case (2) hash indexes.
This option is primarily useful when you need compatibility with other database
systems, where the names of the columns are always returned as uppercase or
lowercase, regardless of the case of the actual field names in the database schema.
The SQLite library returns the column names in their natural case (that matches the
case you used in your schema). When sqlite.assoc_case is set to 0 the natural case
will be preserved. When it is set to 1 or 2, PHP will apply case folding on the hash keys
to upper- or lower-case the keys, respectively. Use of this option incurs a slight
performance penalty, but is MUCH faster than performing the case folding yourself
using PHP script.

Resource Types

There are two resources used in the SQLite Interface. The first one is the database
connection, the second one the result set.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The functions sqlite_fetch_array() and sqlite_current() use a constant for the different
types of result arrays. The following constants are defined:
SQLite result type constants
SQLITE_ASSOC (int)

Columns are returned into the array having the field name as the array index.

SQLITE_BOTH (int)
Columns are returned into the array having both a numerical index and the field name
as the array index.

SQLITE_NUM (int)
Columns are returned into the array having a numerical index to the fields. This index
starts with 0, the first field in the result.

A number of functions may return status codes. The following constants are defined:
SQLite status code constants
SQLITE_OK (int)

Successful result.

SQLITE_ERROR (int)
SQL error or missing database.

SQLITE_INTERNAL (int)
An internal logic error in SQLite.

SQLITE_PERM (int)
Access permission denied.

SQLITE_ABORT (int)
Callback routine requested an abort.

SQLITE_BUSY (int)
The database file is locked.

SQLITE_LOCKED (int)
A table in the database is locked.

SQLITE_NOMEM (int)
Memory allocation failed.

SQLITE_READONLY (int)
Attempt to write a readonly database.

SQLITE_INTERRUPT (int)
Operation terminated internally.

SQLITE_IOERR (int)
Disk I/O error occurred.

SQLITE_CORRUPT (int)
The database disk image is malformed.

SQLITE_NOTFOUND (int)
(Internal) Table or record not found.

SQLITE_FULL (int)
Insertion failed because database is full.

SQLITE_CANTOPEN (int)
Unable to open the database file.

SQLITE_PROTOCOL (int)
Database lock protocol error.

SQLITE_EMPTY (int)
(Internal) Database table is empty.

SQLITE_SCHEMA (int)
The database schema changed.

SQLITE_TOOBIG (int)
Too much data for one row of a table.

SQLITE_CONSTRAINT (int)
Abort due to constraint violation.

SQLITE_MISMATCH (int)
Data type mismatch.

SQLITE_MISUSE (int)
Library used incorrectly.

SQLITE_NOLFS (int)
Uses of OS features not supported on host.

SQLITE_AUTH (int)
Authorized failed.

SQLITE_ROW (int)
Internal process has another row ready.

SQLITE_DONE (int)
Internal process has finished executing.

SQLite Functions

Predefined Classes

SQLiteDatabase

Represents an opened SQLite database.

Constructor

• __construct - construct a new SQLiteDatabase object

Methods

• query - Execute a query

• queryExec - Execute a result-less query

• arrayQuery - Execute a query and return the result as an array

• singleQuery - Execute a query and return either an array for one single column or the
value of the first row

• unbufferedQuery - Execute an unbuffered query

• lastInsertRowid - Returns the rowid of the most recently inserted row

• changes - Returns the number of rows changed by the most recent statement

• createAggregate - Register an aggregating UDF for use in SQL statements

• createFunction - Register a UDF for use in SQL statements

• busyTimeout - Sets or disables busy timeout duration

• lastError - Returns the last error code of the most recently encountered error

• fetchColumnTypes - Return an array of column types from a particular table

SQLiteResult

Represents a buffered SQLite result set.

Methods

• fetch - Fetches the next row from the result set as an array

• fetchObject - Fetches the next row from the result set as an object

• fetchSingle - Fetches the first column from the result set as a string

• fetchAll - Fetches all rows from the result set as an array of arrays

• column - Fetches a column from the current row of the result set

• numFields - Returns the number of fields in the result set

• fieldName - Returns the name of a particular field in the result set

• current - Fetches the current row from the result set as an array

• key - Return the current row index

• next - Seek to the next row number

• valid - Returns whether more rows are available

• rewind - Seek to the first row number of the result set

• prev - Seek to the previous row number of the result set

• hasPrev - Returns whether or not a previous row is available

• numRows - Returns the number of rows in the result set

• seek - Seek to a particular row number

SQLiteUnbuffered

Represents an unbuffered SQLite result set. Unbuffered results sets are sequential,
forward-seeking only.

Methods

• fetch - Fetches the next row from the result set as an array

• fetchObject - Fetches the next row from the result set as an object

• fetchSingle - Fetches the first column from the result set as a string

• fetchAll - Fetches all rows from the result set as an array of arrays

• column - Fetches a column from the current row of the result set

• numFields - Returns the number of fields in the result set

• fieldName - Returns the name of a particular field in the result set

• current - Fetches the current row from the result set as an array

• next - Seek to the next row number

• valid - Returns whether more rows are available

sqlite_array_query

SQLiteDatabase->arrayQuery

sqlite_array_query -- SQLiteDatabase->arrayQuery -- Execute a query against a given
database and returns an array

Description

array sqlite_array_query (resource $dbhandle, string $query [, int $result_type [, bool
$decode_binary]])

array sqlite_array_query (string $query, resource $dbhandle [, int $result_type [, bool
$decode_binary]])

Object oriented style (method):

SQLiteDatabase

array arrayQuery (string $query [, int $result_type [, bool $decode_binary]])

sqlite_array_query() executes the given query and returns an array of the entire result set.
It is similar to calling sqlite_query() and then sqlite_fetch_array() for each row in the result
set. sqlite_array_query() is significantly faster than the aforementioned.

Tip

sqlite_array_query() is best suited to queries returning 45 rows or less. If you have
more data than that, it is recommended that you write your scripts to use
sqlite_unbuffered_query() instead for more optimal performance.

Parameters

query

The query to be executed.

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

Returns an array of the entire result set; FALSE otherwise.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #1330 - Procedural style

<?php

$dbhandle = sqlite_open('sqlitedb');

$result = sqlite_array_query($dbhandle, 'SELECT name, email FROM users LIMIT
25', SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #1331 - Object-oriented style

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$result = $dbhandle->arrayQuery('SELECT name, email FROM users LIMIT 25',
SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_query()
• sqlite_fetch_array()
• sqlite_fetch_string()

sqlite_busy_timeout

SQLiteDatabase->busyTimeout

sqlite_busy_timeout -- SQLiteDatabase->busyTimeout -- Set busy timeout duration, or
disable busy handlers

Description

void sqlite_busy_timeout (resource $dbhandle, int $milliseconds)

Object oriented style (method):

SQLiteDatabase

void busyTimeout (int $milliseconds)

Set the maximum time, in milliseconds, that SQLite will wait for a dbhandle to become
ready for use.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

milliseconds

The number of milliseconds. When set to 0, busy handlers will be disabled and SQLite
will return immediately with a SQLITE_BUSY status code if another process/thread
has the database locked for an update. PHP sets the default busy timeout to be 60
seconds when the database is opened.

Note

There are one thousand (1000) milliseconds in one second.

Return Values

No value is returned.

Examples

Example #1332 - Procedural style

<?php

$dbhandle = sqlite_open('sqlitedb');

sqlite_busy_timeout($dbhandle, 10000); // set timeout to 10 seconds

sqlite_busy_timeout($dbhandle, 0); // disable busy handler

?>

Example #1333 - Object oriented style

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$dbhandle->busyTimeout(10000); // 10 seconds

$dbhandle->busyTimeout(0); // disable

?>

See Also

• sqlite_open()

sqlite_changes

SQLiteDatabase->changes

sqlite_changes -- SQLiteDatabase->changes -- Returns the number of rows that were
changed by the most recent SQL statement

Description

int sqlite_changes (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int changes (void)

Returns the numbers of rows that were changed by the most recent SQL statement
executed against the dbhandle database handle.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

Examples

Example #1334 - Procedural style

<?php

$dbhandle = sqlite_open('mysqlitedb');

$query = sqlite_query($dbhandle, "UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'");

if (!$query) {

 exit('Error in query.');

} else {

 echo 'Number of rows modified: ', sqlite_changes($dbhandle);

}

?>

Example #1335 - Object oriented style

<?php

$dbhandle = new SQLiteDatabase('mysqlitedb');

$query = $dbhandle->query("UPDATE users SET email='jDoe@example.com' WHERE
username='jDoe'");

if (!$query) {

 exit('Error in query.');

} else {

 echo 'Number of rows modified: ', $dbhandle->changes();

}

?>

See Also

• sqlite_open()

sqlite_close

sqlite_close -- Closes an open SQLite database

Description

void sqlite_close (resource $dbhandle)

Closes the given database handle. If the database was persistent, it will be closed and
removed from the persistent list.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.

Return Values

No value is returned.

Examples

Example #1336 - sqlite_close() example

<?php

$dbhandle = sqlite_open('sqlitedb');

sqlite_close($dbhandle);

?>

See Also

• sqlite_open()
• sqlite_popen()

sqlite_column

SQLiteResult->column

SQLiteUnbuffered->column

sqlite_column -- SQLiteResult->column -- SQLiteUnbuffered->column -- Fetches a column
from the current row of a result set

Description

mixed sqlite_column (resource $result, mixed $index_or_name [, bool $decode_binary
])

SQLiteResult

mixed column (mixed $index_or_name [, bool $decode_binary])

SQLiteUnbuffered

mixed column (mixed $index_or_name [, bool $decode_binary])

Fetches the value of a column named index_or_name (if it is a string), or of the ordinal
column numbered index_or_name (if it is an integer) from the current row of the query
result handle result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

index_or_name

The column index or name to fetch.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()

. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Notes

Note

Use this function when you are iterating a large result set with many columns, or with
columns that contain large amounts of data.

See Also

• sqlite_fetch_string()

sqlite_create_aggregate

SQLiteDatabase->createAggregate

sqlite_create_aggregate -- SQLiteDatabase->createAggregate -- Register an aggregating
UDF for use in SQL statements

Description

void sqlite_create_aggregate (resource $dbhandle, string $function_name, callback $
step_func, callback $finalize_func [, int $num_args])

Object oriented style (method):

SQLiteDatabase

void createAggregate (string $function_name, callback $step_func, callback $
finalize_func [, int $num_args])

sqlite_create_aggregate() is similar to sqlite_create_function() except that it registers
functions that can be used to calculate a result aggregated across all the rows of a query.

The key difference between this function and sqlite_create_function() is that two functions
are required to manage the aggregate; step_func is called for each row of the result set.
Your PHP function should accumulate the result and store it into the aggregation context.
Once all the rows have been processed, finalize_func will be called and it should then
take the data from the aggregation context and return the result. Callback functions should
return a type understood by SQLite (i.e. scalar type).

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

function_name

The name of the function used in SQL statements.

step_func

Callback function called for each row of the result set.

finalize_func

Callback function to aggregate the "stepped" data from each row.

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Return Values

No value is returned.

Examples

Example #1337 - max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$dbhandle = sqlite_open(':memory:');

sqlite_query($dbhandle, "CREATE TABLE strings(a)");

foreach ($data as $str) {

 $str = sqlite_escape_string($str);

 sqlite_query($dbhandle, "INSERT INTO strings VALUES ('$str')");

}

function max_len_step(&$context, $string)

{

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context)

{

 return $context;

}

sqlite_create_aggregate($dbhandle, 'max_len', 'max_len_step',
'max_len_finalize');

var_dump(sqlite_array_query($dbhandle, 'SELECT max_len(a) from strings'));

?>

In this example, we are creating an aggregating function that will calculate the length of the

longest string in one of the columns of the table. For each row, the max_len_step function
is called and passed a context parameter. The context parameter is just like any other
PHP variable and be set to hold an array or even an object value. In this example, we are
simply using it to hold the maximum length we have seen so far; if the string has a length
longer than the current maximum, we update the context to hold this new maximum length.

After all of the rows have been processed, SQLite calls the max_len_finalize function to
determine the aggregate result. Here, we could perform some kind of calculation based on
the data found in the context. In our simple example though, we have been calculating
the result as the query progressed, so we simply need to return the context value.

Note

The example above will not work correctly if the column contains binary data. Take a
look at the manual page for sqlite_udf_decode_binary() for an explanation of why this
is so, and an example of how to make it respect the binary encoding.

Tip

It is NOT recommended for you to store a copy of the values in the context and then
process them at the end, as you would cause SQLite to use a lot of memory to process
the query - just think of how much memory you would need if a million rows were
stored in memory, each containing a string 32 bytes in length.

Tip

You can use sqlite_create_function() and sqlite_create_aggregate() to override SQLite
native SQL functions.

See Also

• sqlite_create_function()
• sqlite_udf_encode_binary()
• sqlite_udf_decode_binary()

sqlite_create_function

SQLiteDatabase->createFunction

sqlite_create_function -- SQLiteDatabase->createFunction -- Registers a "regular" User
Defined Function for use in SQL statements

Description

void sqlite_create_function (resource $dbhandle, string $function_name, callback $
callback [, int $num_args])

Object oriented style (method):

SQLiteDatabase

void createFunction (string $function_name, callback $callback [, int $num_args])

sqlite_create_function() allows you to register a PHP function with SQLite as an UDF
(User Defined Function), so that it can be called from within your SQL statements.

The UDF can be used in any SQL statement that can call functions, such as SELECT and
UPDATE statements and also in triggers.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

function_name

The name of the function used in SQL statements.

callback

Callback function to handle the defined SQL function.

Note

Callback functions should return a type understood by SQLite (i.e. scalar type).

num_args

Hint to the SQLite parser if the callback function accepts a predetermined number of
arguments.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

No value is returned.

Examples

Example #1338 - sqlite_create_function() example

<?php

function md5_and_reverse($string)

{

 return strrev(md5($string));

}

if ($dbhandle = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 sqlite_create_function($dbhandle, 'md5rev', 'md5_and_reverse', 1);

 $sql = 'SELECT md5rev(filename) FROM files';

 $rows = sqlite_array_query($dbhandle, $sql);

} else {

 echo 'Error opening sqlite db: ' . $sqliteerror;

 exit;

}

?>

In this example, we have a function that calculates the md5 sum of a string, and then
reverses it. When the SQL statement executes, it returns the value of the filename
transformed by our function. The data returned in $rows contains the processed result.

The beauty of this technique is that you do not need to process the result using a foreach()
loop after you have queried for the data.

PHP registers a special function named php when the database is first opened. The php
function can be used to call any PHP function without having to register it first.

Example #1339 - Example of using the PHP function

<?php

$rows = sqlite_array_query($dbhandle, "SELECT php('md5', filename) from
files");

?>

This example will call the md5() on each filename column in the database and return
the result into $rows

Note

For performance reasons, PHP will not automatically encode/decode binary data
passed to and from your UDF's. You need to manually encode/decode the parameters
and return values if you need to process binary data in this way. Take a look at
sqlite_udf_encode_binary() and sqlite_udf_decode_binary() for more details.

Tip

It is not recommended to use UDF's to handle processing of binary data, unless high
performance is not a key requirement of your application.

Tip

You can use sqlite_create_function() and sqlite_create_aggregate() to override SQLite
native SQL functions.

See Also

• sqlite_create_aggregate()

sqlite_current

SQLiteResult->current

SQLiteUnbuffered->current

sqlite_current -- SQLiteResult->current -- SQLiteUnbuffered->current -- Fetches the
current row from a result set as an array

Description

array sqlite_current (resource $result [, int $result_type [, bool $decode_binary]])

Object oriented style (method):

SQLiteResult

array current ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array current ([int $result_type [, bool $decode_binary]])

sqlite_current() is identical to sqlite_fetch_array() except that it does not advance to the
next row prior to returning the data; it returns the data from the current position only.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the current row from a result set; FALSE if the current position is
beyond the final row.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

See Also

• sqlite_seek()
• sqlite_next()
• sqlite_fetch_array()

sqlite_error_string

sqlite_error_string -- Returns the textual description of an error code

Description

string sqlite_error_string (int $error_code)

Returns a human readable description of the error_code returned from sqlite_last_error().

Parameters

error_code

The error code being used, which might be passed in from sqlite_last_error().

Return Values

Returns a human readable description of the error_code, as a string.

See Also

• sqlite_last_error()

sqlite_escape_string

sqlite_escape_string -- Escapes a string for use as a query parameter

Description

string sqlite_escape_string (string $item)

sqlite_escape_string() will correctly quote the string specified by item for use in an SQLite
SQL statement. This includes doubling up single-quote characters (') and checking for
binary-unsafe characters in the query string.

Although the encoding makes it safe to insert the data, it will render simple text
comparisons and LIKE clauses in your queries unusable for the columns that contain the
binary data. In practice, this shouldn't be a problem, as your schema should be such that
you don't use such things on binary columns (in fact, it might be better to store binary data
using other means, such as in files).

Parameters

item

The string being quoted. If the item contains a NUL character, or if it begins with a
character whose ordinal value is 0x01, PHP will apply a binary encoding scheme so
that you can safely store and retrieve binary data.

Return Values

Returns an escaped string for use in an SQLite SQL statement.

Notes

Note

Do not use this function to encode the return values from UDF's created using
sqlite_create_function() or sqlite_create_aggregate() - use sqlite_udf_encode_binary()
instead.

Warning

addslashes() should NOT be used to quote your strings for SQLite queries; it will lead
to strange results when retrieving your data.

See Also

• sqlite_udf_encode_binary()

sqlite_exec

SQLiteDatabase->exec

sqlite_exec -- SQLiteDatabase->exec -- Executes a result-less query against a given
database

Description

bool sqlite_exec (resource $dbhandle, string $query [, string &$error_msg])

bool sqlite_exec (string $query, resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

bool queryExec (string $query [, string &$error_msg])

Executes an SQL statement given by the query against a given database handle
(specified by the dbhandle parameter).

Warning

SQLite will execute multiple queries separated by semicolons, so you can use it to
execute a batch of SQL that you have loaded from a file or have embedded in a script.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

This function will return a boolean result; TRUE for success or FALSE for failure. If you
need to run a query that returns rows, see sqlite_query().

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

Examples

Example #1340 - Procedural example

<?php

$dbhandle = sqlite_open('mysqlitedb');

$query = sqlite_exec($dbhandle, "UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'", $error);

if (!$query) {

 exit("Error in query: '$error'");

} else {

 echo 'Number of rows modified: ', sqlite_changes($dbhandle);

}

?>

Example #1341 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('mysqlitedb');

$query = $dbhandle->queryExec("UPDATE users SET email='jDoe@example.com'
WHERE username='jDoe'", $error);

if (!$query) {

 exit("Error in query: '$error'");

} else {

 echo 'Number of rows modified: ', $dbhandle->changes();

}

?>

See Also

• sqlite_query()
• sqlite_unbuffered_query()
• sqlite_array_query()

sqlite_factory

sqlite_factory -- Opens a SQLite database and returns a SQLiteDatabase object

Description

SQLiteDatabase sqlite_factory (string $filename [, int $mode [, string &$error_message]
])

sqlite_factory() behaves similarly to sqlite_open() in that it opens an SQLite database or
attempts to create it if it does not exist. However, a SQLiteDatabase object is returned
rather than a resource. Please see the sqlite_open() reference page for further usage and
caveats.

Parameters

filename

The filename of the SQLite database.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the
database could not be opened if there was an error.

Return Values

Returns a SQLiteDatabase object on success, NULL on error.

Examples

Example #1342 - sqlite_factory() example

<?php

$dbhandle = sqlite_factory('sqlitedb');

$dbhandle->query('SELECT user_id, username FROM users');

/* functionally equivalent to: */

$dbhandle = new SQLiteDatabase('sqlitedb');

$dbhandle->query('SELECT user_id, username FROM users');

?>

See Also

• sqlite_open()
• sqlite_popen()

sqlite_fetch_all

SQLiteResult->fetchAll

SQLiteUnbuffered->fetchAll

sqlite_fetch_all -- SQLiteResult->fetchAll -- SQLiteUnbuffered->fetchAll -- Fetches all rows
from a result set as an array of arrays

Description

array sqlite_fetch_all (resource $result [, int $result_type [, bool $decode_binary]])

Object oriented style (method):

SQLiteResult

array fetchAll ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array fetchAll ([int $result_type [, bool $decode_binary]])

sqlite_fetch_all() returns an array of the entire result set from the result resource. It is
similar to calling sqlite_query() (or sqlite_unbuffered_query()) and then
sqlite_fetch_array() for each row in the result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.

SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the remaining rows in a result set. If called right after sqlite_query(), it
returns all rows. If called after sqlite_fetch_array(), it returns the rest. If there are no rows
in a result set, it returns an empty array.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #1343 - Procedural example

<?php

$dbhandle = sqlite_open('sqlitedb');

$query = sqlite_query($dbhandle, 'SELECT name, email FROM users LIMIT 25');

$result = sqlite_fetch_all($query, SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #1344 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$query = $dbhandle->query('SELECT name, email FROM users LIMIT 25'); //
buffered result set

$query = $dbhandle->unbufferedQuery('SELECT name, email FROM users LIMIT
25'); // unbuffered result set

$result = $query->fetchAll(SQLITE_ASSOC);

foreach ($result as $entry) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_fetch_array()

sqlite_fetch_array

SQLiteResult->fetch

SQLiteUnbuffered->fetch

sqlite_fetch_array -- SQLiteResult->fetch -- SQLiteUnbuffered->fetch -- Fetches the next
row from a result set as an array

Description

array sqlite_fetch_array (resource $result [, int $result_type [, bool $decode_binary]
])

Object oriented style (method):

SQLiteResult

array fetch ([int $result_type [, bool $decode_binary]])

SQLiteUnbuffered

array fetch ([int $result_type [, bool $decode_binary]])

Fetches the next row from the given result handle. If there are no more rows, returns
FALSE, otherwise returns an associative array representing the row data.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.

SQLITE_BOTH is the default for this function.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()
. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Return Values

Returns an array of the next row from a result set; FALSE if the next position is beyond the
final row.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

Examples

Example #1345 - Procedural example

<?php

$dbhandle = sqlite_open('sqlitedb');

$query = sqlite_query($dbhandle, 'SELECT name, email FROM users LIMIT 25');

while ($entry = sqlite_fetch_array($query, SQLITE_ASSOC)) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

Example #1346 - Object-oriented example

<?php

$dbhandle = new SQLiteDatabase('sqlitedb');

$query = $dbhandle->query('SELECT name, email FROM users LIMIT 25'); //
buffered result set

$query = $dbhandle->unbufferedQuery('SELECT name, email FROM users LIMIT
25'); // unbuffered result set

while ($entry = $query->fetch(SQLITE_ASSOC)) {

 echo 'Name: ' . $entry['name'] . ' E-mail: ' . $entry['email'];

}

?>

See Also

• sqlite_array_query()
• sqlite_fetch_string()

sqlite_fetch_column_types

SQLiteDatabase->fetchColumnTypes

sqlite_fetch_column_types -- SQLiteDatabase->fetchColumnTypes -- Return an array of
column types from a particular table

Description

array sqlite_fetch_column_types (string $table_name, resource $dbhandle [, int $
result_type])

Object oriented style (method):

SQLiteDatabase

array fetchColumnTypes (string $table_name [, int $result_type])

sqlite_fetch_column_types() returns an array of column data types from the specified
table_name table.

Parameters

table_name

The table name to query.

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_ASSOC is the default for this function.

Return Values

Returns an array of column data types; FALSE on error.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded

according to the value of the sqlite.assoc_case configuration option.

ChangeLog

Version Description

5.1.0 Added result_type

Examples

Example #1347 - Procedural example

<?php

$db = sqlite_open('mysqlitedb');

sqlite_query($db, 'CREATE TABLE foo (bar varchar(10), arf text)');

$cols = sqlite_fetch_column_types('foo', $db, SQLITE_ASSOC);

foreach ($cols as $column => $type) {

 echo "Column: $column Type: $type";

}

?>

Example #1348 - Object-oriented example

<?php

$db = new SQLiteDatabase('mysqlitedb');

$db->query('CREATE TABLE foo (bar varchar(10), arf text)');

$cols = $db->fetchColumnTypes('foo', SQLITE_ASSOC);

foreach ($cols as $column => $type) {

 echo "Column: $column Type: $type";

}

?>

The above example will output:

Column: bar Type: VARCHAR

Column: arf Type: TEXT

sqlite_fetch_object

SQLiteResult->fetchObject

SQLiteUnbuffered->fetchObject

sqlite_fetch_object -- SQLiteResult->fetchObject -- SQLiteUnbuffered->fetchObject --
Fetches the next row from a result set as an object

Description

object sqlite_fetch_object (resource $result [, string $class_name [, array $
ctor_params [, bool $decode_binary]]])

Object oriented style (method):

SQLiteResult

object fetchObject ([string $class_name [, array $ctor_params [, bool $decode_binary]]
])

SQLiteUnbuffered

object fetchObject ([string $class_name [, array $ctor_params [, bool $decode_binary]]
])

Warning

This function is currently not documented; only its argument list is available.

sqlite_fetch_single

SQLiteResult->fetchSingle

SQLiteUnbuffered->fetchSingle

sqlite_fetch_single -- SQLiteResult->fetchSingle -- SQLiteUnbuffered->fetchSingle --
Fetches the first column of a result set as a string

Description

string sqlite_fetch_single (resource $result [, bool $decode_binary])

Object oriented style (method):

SQLiteResult

string fetchSingle ([bool $decode_binary])

SQLiteUnbuffered

string fetchSingle ([bool $decode_binary])

sqlite_fetch_single() is identical to sqlite_fetch_array() except that it returns the value of
the first column of the rowset.

This is the most optimal way to retrieve data when you are only interested in the values
from a single column of data.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

decode_binary

When the decode_binary parameter is set to TRUE (the default), PHP will decode the
binary encoding it applied to the data if it was encoded using the sqlite_escape_string()

. You should normally leave this value at its default, unless you are interoperating with
databases created by other sqlite capable applications.

Examples

Example #1349 - A sqlite_fetch_single() example

<?php

if ($dbhandle = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 $sql = "SELECT id FROM sometable WHERE id = 42";

 $res = sqlite_query($dbhandle, $sql);

 if (sqlite_num_rows($res) > 0) {

 echo sqlite_fetch_single($res); // 42

 }

 sqlite_close($dbhandle);

}

?>

See Also

• sqlite_fetch_array()

sqlite_fetch_string

sqlite_fetch_string -- Alias of sqlite_fetch_single()

Description

This function is an alias of: sqlite_fetch_single().

sqlite_field_name

SQLiteResult->fieldName

SQLiteUnbuffered->fieldName

sqlite_field_name -- SQLiteResult->fieldName -- SQLiteUnbuffered->fieldName -- Returns
the name of a particular field

Description

string sqlite_field_name (resource $result, int $field_index)

Object oriented style (method):

SQLiteResult

string fieldName (int $field_index)

SQLiteUnbuffered

string fieldName (int $field_index)

Given the ordinal column number, field_index, sqlite_field_name() returns the name of
that field in the result set result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

field_index

The ordinal column number in the result set.

Return Values

Returns the name of a field in an SQLite result set, given the ordinal column number;
FALSE on error.

The column names returned by SQLITE_ASSOC and SQLITE_BOTH will be case-folded
according to the value of the sqlite.assoc_case configuration option.

sqlite_has_more

sqlite_has_more -- Finds whether or not more rows are available

Description

bool sqlite_has_more (resource $result)

Finds whether more rows are available from the given result set.

Parameters

result

The SQLite result resource.

Return Values

Returns TRUE if there are more rows available from the result handle, or FALSE
otherwise.

See Also

• sqlite_num_rows()
• sqlite_changes()

sqlite_has_prev

SQLiteResult->hasPrev

sqlite_has_prev -- SQLiteResult->hasPrev -- Returns whether or not a previous row is
available

Description

bool sqlite_has_prev (resource $result)

Object oriented style (method):

SQLiteResult

bool hasPrev (void)

Find whether there are more previous rows from the given result handle.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE if there are more previous rows available from the result handle, or
FALSE otherwise.

See Also

• sqlite_prev()

• sqlite_has_more()
• sqlite_num_rows()

sqlite_key

SQLiteResult->key

sqlite_key -- SQLiteResult->key -- Returns the current row index

Description

int sqlite_key (resource $result)

Object oriented style (method):

SQLiteResult

int key (void)

sqlite_key() returns the current row index of the buffered result set result.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns the current row index of the buffered result set result.

ChangeLog

Version Description

5.0.4 Prior to PHP 5.0.4, sqlite_key() was only

able to be called as a method on a
SQLiteResult object, not procedurally.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_rewind()

sqlite_last_error

SQLiteDatabase->lastError

sqlite_last_error -- SQLiteDatabase->lastError -- Returns the error code of the last error for
a database

Description

int sqlite_last_error (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int lastError (void)

Returns the error code from the last operation performed on dbhandle (the database
handle), or 0 when no error occurred. A human readable description of the error code can
be retrieved using sqlite_error_string().

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

See Also

• sqlite_error_string()

sqlite_last_insert_rowid

SQLiteDatabase->lastInsertRowid

sqlite_last_insert_rowid -- SQLiteDatabase->lastInsertRowid -- Returns the rowid of the
most recently inserted row

Description

int sqlite_last_insert_rowid (resource $dbhandle)

Object oriented style (method):

SQLiteDatabase

int lastInsertRowid (void)

Returns the rowid of the row that was most recently inserted into the database dbhandle, if
it was created as an auto-increment field.

Tip

You can create auto-increment fields in SQLite by declaring them as INTEGER
PRIMARY KEY in your table schema.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

sqlite_libencoding

sqlite_libencoding -- Returns the encoding of the linked SQLite library

Description

string sqlite_libencoding (void)

The SQLite library may be compiled in either ISO-8859-1 or UTF-8 compatible modes.
This function allows you to determine which encoding scheme is used by your version of
the library.

Warning

The default PHP distribution builds libsqlite in ISO-8859-1 encoding mode. However,
this is a misnomer; rather than handling ISO-8859-1, it operates according to your
current locale settings for string comparisons and sort ordering. So, rather than
ISO-8859-1, you should think of it as being '8-bit' instead.

When compiled with UTF-8 support, sqlite handles encoding and decoding of UTF-8
multi-byte character sequences, but does not yet do a complete job when working with the
data (no normalization is performed for example), and some comparison operations may
still not be carried out correctly.

Warning

It is not recommended that you use PHP in a web-server configuration with a version
of the SQLite library compiled with UTF-8 support, since libsqlite will abort the process
if it detects a problem with the UTF-8 encoding.

See Also

• sqlite_lib_version()

sqlite_libversion

sqlite_libversion -- Returns the version of the linked SQLite library

Description

string sqlite_libversion (void)

Returns the version of the linked SQLite library.

See Also

• sqlite_libencoding()

sqlite_next

SQLiteResult->next

SQLiteUnbuffered->next

sqlite_next -- SQLiteResult->next -- SQLiteUnbuffered->next -- Seek to the next row
number

Description

bool sqlite_next (resource $result)

Object oriented style (method):

SQLiteResult

bool next (void)

SQLiteUnbuffered

bool next (void)

sqlite_next() advances the result handle result to the next row.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Return Values

Returns TRUE on success, or FALSE if there are no more rows.

See Also

• sqlite_seek()
• sqlite_current()
• sqlite_rewind()

sqlite_num_fields

SQLiteResult->numFields

SQLiteUnbuffered->numFields

sqlite_num_fields -- SQLiteResult->numFields -- SQLiteUnbuffered->numFields -- Returns
the number of fields in a result set

Description

int sqlite_num_fields (resource $result)

Object oriented style (method):

SQLiteResult

int numFields (void)

SQLiteUnbuffered

int numFields (void)

Returns the number of fields in the result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

See Also

• sqlite_changes()

• sqlite_num_rows()

sqlite_num_rows

SQLiteResult->numRows

sqlite_num_rows -- SQLiteResult->numRows -- Returns the number of rows in a buffered
result set

Description

int sqlite_num_rows (resource $result)

Object oriented style (method):

SQLiteResult

int numRows (void)

Returns the number of rows in the buffered result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Examples

Example #1350 - Procedural example

<?php

$db = sqlite_open('mysqlitedb');

$result = sqlite_query($db, "SELECT * FROM mytable WHERE name='John Doe'");

$rows = sqlite_num_rows($result);

echo "Number of rows: $rows";

?>

Example #1351 - Object-oriented example

<?php

$db = new SQLiteDatabase('mysqlitedb');

$result = $db->query("SELECT * FROM mytable WHERE name='John Doe'");

$rows = $result->numRows();

echo "Number of rows: $rows";

?>

See Also

• sqlite_changes()
• sqlite_query()
• sqlite_num_fields()

sqlite_open

sqlite_open -- Opens a SQLite database and create the database if it does not exist

Description

resource sqlite_open (string $filename [, int $mode [, string &$error_message]])

Object oriented style (constructor):

SQLiteDatabase

__construct (string $filename [, int $mode [, string &$error_message]])

Opens a SQLite database or creates the database if it does not exist.

Parameters

filename

The filename of the SQLite database. If the file does not exist, SQLite will attempt to
create it. PHP must have write permissions to the file if data is inserted, the database
schema is modified or to create the database if it does not exist.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the
database could not be opened if there was an error.

Return Values

Returns a resource (database handle) on success, FALSE on error.

Examples

Example #1352 - sqlite_open() example

<?php

if ($db = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {

 sqlite_query($db, 'CREATE TABLE foo (bar varchar(10))');

 sqlite_query($db, "INSERT INTO foo VALUES ('fnord')");

 $result = sqlite_query($db, 'select bar from foo');

 var_dump(sqlite_fetch_array($result));

} else {

 die($sqliteerror);

}

?>

Notes

Tip

On Unix platforms, SQLite is sensitive to scripts that use the fork() system call. If you
do have such a script, it is recommended that you close the handle prior to forking and
then re-open it in the child and/or parent. For more information on this issue, see » The
C language interface to the SQLite library in the section entitled Multi-Threading And
SQLite.

Tip

It is not recommended to work with SQLite databases mounted on NFS partitions.
Since NFS is notoriously bad when it comes to locking you may find that you cannot
even open the database at all, and if it succeeds, the locking behaviour may be
undefined.

Note

Starting with SQLite library version 2.8.2, you can specify:memory: as the filename to
create a database that lives only in the memory of the computer. This is useful mostly
for temporary processing, as the in-memory database will be destroyed when the
process ends. It can also be useful when coupled with the ATTACH DATABASE SQL
statement to load other databases and move and query data between them.

Note

SQLite is safe mode and open_basedir aware.

http://sqlite.org/c_interface.html
http://sqlite.org/c_interface.html

See Also

• sqlite_popen()
• sqlite_close()
• sqlite_factory()

sqlite_popen

sqlite_popen -- Opens a persistent handle to an SQLite database and create the database
if it does not exist

Description

resource sqlite_popen (string $filename [, int $mode [, string &$error_message]])

This function behaves identically to sqlite_open() except that is uses the persistent
resource mechanism of PHP. For information about the meaning of the parameters, read
the sqlite_open() manual page.

sqlite_popen() will first check to see if a persistent handle has already been opened for the
given filename. If it finds one, it returns that handle to your script, otherwise it opens a
fresh handle to the database.

The benefit of this approach is that you don't incur the performance cost of re-reading the
database and index schema on each page hit served by persistent web server SAPI's (any
SAPI except for regular CGI or CLI).

Note

If you use persistent handles and have the database updated by a background
process (perhaps via a crontab), and that process re-creates the database by
overwriting it (either by unlinking and rebuilding, or moving the updated version to
replace the current version), you may experience undefined behaviour when a
persistent handle on the old version of the database is recycled.

To avoid this situation, have your background processes open the same database file
and perform their updates in a transaction.

Parameters

filename

The filename of the SQLite database. If the file does not exist, SQLite will attempt to
create it. PHP must have write permissions to the file if data is inserted, the database
schema is modified or to create the database if it does not exist.

mode

The mode of the file. Intended to be used to open the database in read-only mode.
Presently, this parameter is ignored by the sqlite library. The default value for mode is
the octal value 0666 and this is the recommended value.

error_message

Passed by reference and is set to hold a descriptive error message explaining why the

database could not be opened if there was an error.

Return Values

Returns a resource (database handle) on success, FALSE on error.

See Also

• sqlite_open()
• sqlite_close()
• sqlite_factory()

sqlite_prev

SQLiteResult->prev

sqlite_prev -- SQLiteResult->prev -- Seek to the previous row number of a result set

Description

bool sqlite_prev (resource $result)

Object oriented style (method):

SQLiteResult

bool prev (void)

sqlite_prev() seeks back the result handle to the previous row.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE on success, or FALSE if there are no more previous rows.

See Also

• sqlite_has_prev()
• sqlite_rewind()
• sqlite_next()

sqlite_query

SQLiteDatabase->query

sqlite_query -- SQLiteDatabase->query -- Executes a query against a given database and
returns a result handle

Description

resource sqlite_query (resource $dbhandle, string $query [, int $result_type [, string &$
error_msg]])

resource sqlite_query (string $query, resource $dbhandle [, int $result_type [, string &$
error_msg]])

Object oriented style (method):

SQLiteDatabase

SQLiteResult query (string $query [, int $result_type [, string &$error_msg]])

Executes an SQL statement given by the query against a given database handle.

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

This function will return a result handle or FALSE on failure. For queries that return rows,
the result handle can then be used with functions such as sqlite_fetch_array() and
sqlite_seek().

Regardless of the query type, this function will return FALSE if the query failed.

sqlite_query() returns a buffered, seekable result handle. This is useful for reasonably
small queries where you need to be able to randomly access the rows. Buffered result
handles will allocate memory to hold the entire result and will not return until it has been
fetched. If you only need sequential access to the data, it is recommended that you use
the much higher performance sqlite_unbuffered_query() instead.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

Notes

Warning

SQLite will execute multiple queries separated by semicolons, so you can use it to
execute a batch of SQL that you have loaded from a file or have embedded in a script.
However, this works only when the result of the function is not used - if it is used, only
the first SQL statement would be executed. Function sqlite_exec() will always execute
multiple SQL statements.

When executing multiple queries, the return value of this function will be FALSE if
there was an error, but undefined otherwise (it might be TRUE for success or it might
return a result handle).

See Also

• sqlite_unbuffered_query()
• sqlite_array_query()

sqlite_rewind

SQLiteResult->rewind

sqlite_rewind -- SQLiteResult->rewind -- Seek to the first row number

Description

bool sqlite_rewind (resource $result)

Object oriented style (method):

SQLiteResult

bool rewind (void)

sqlite_rewind() seeks back to the first row in the given result set.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns FALSE if there are no rows in the result set, TRUE otherwise.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_seek()

sqlite_seek

SQLiteResult->seek

sqlite_seek -- SQLiteResult->seek -- Seek to a particular row number of a buffered result
set

Description

bool sqlite_seek (resource $result, int $rownum)

Object oriented style (method):

SQLiteResult

bool seek (int $rownum)

sqlite_seek() seeks to the row given by the parameter rownum.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

rownum

The ordinal row number to seek to. The row number is zero-based (0 is the first row).

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns FALSE if the row does not exist, TRUE otherwise.

See Also

• sqlite_next()
• sqlite_current()
• sqlite_rewind()

sqlite_single_query

SQLiteDatabase->singleQuery

sqlite_single_query -- SQLiteDatabase->singleQuery -- Executes a query and returns
either an array for one single column or the value of the first row

Description

array sqlite_single_query (resource $db, string $query [, bool $first_row_only [, bool
$decode_binary]])

Object oriented style (method):

SQLiteDatabase

array singleQuery (string $query [, bool $first_row_only [, bool $decode_binary]])

Warning

This function is currently not documented; only its argument list is available.

sqlite_udf_decode_binary

sqlite_udf_decode_binary -- Decode binary data passed as parameters to an UDF

Description

string sqlite_udf_decode_binary (string $data)

Decodes binary data passed as parameters to a UDF.

You must call this function on parameters passed to your UDF if you need them to handle
binary data, as the binary encoding employed by PHP will obscure the content and of the
parameter in its natural, non-coded form.

PHP does not perform this encode/decode operation automatically as it would severely
impact performance if it did.

Parameters

data

The encoded data that will be decoded, data that was applied by either
sqlite_udf_encode_binary() or sqlite_escape_string().

Return Values

The decoded string.

Examples

Example #1353 - binary-safe max_length aggregation function example

<?php

$data = array(

 'one',

 'two',

 'three',

 'four',

 'five',

 'six',

 'seven',

 'eight',

 'nine',

 'ten',

);

$db = sqlite_open(':memory:');

sqlite_query($db, "CREATE TABLE strings(a)");

foreach ($data as $str) {

 $str = sqlite_escape_string($str);

 sqlite_query($db, "INSERT INTO strings VALUES ('$str')");

}

function max_len_step(&$context, $string)

{

 $string = sqlite_udf_decode_binary($string);

 if (strlen($string) > $context) {

 $context = strlen($string);

 }

}

function max_len_finalize(&$context)

{

 return $context;

}

sqlite_create_aggregate($db, 'max_len', 'max_len_step', 'max_len_finalize');

var_dump(sqlite_array_query($db, 'SELECT max_len(a) from strings'));

?>

See Also

• sqlite_udf_encode_binary()
• sqlite_create_function()
• sqlite_create_aggregate()

sqlite_udf_encode_binary

sqlite_udf_encode_binary -- Encode binary data before returning it from an UDF

Description

string sqlite_udf_encode_binary (string $data)

sqlite_udf_encode_binary() applies a binary encoding to the data so that it can be safely
returned from queries (since the underlying libsqlite API is not binary safe).

If there is a chance that your data might be binary unsafe (e.g.: it contains a NUL byte in
the middle rather than at the end, or if it has and 0x01 byte as the first character) then you
must call this function to encode the return value from your UDF.

PHP does not perform this encode/decode operation automatically as it would severely
impact performance if it did.

Note

Do not use sqlite_escape_string() to quote strings returned from UDF's as it will lead to
double-quoting of the data. Use sqlite_udf_encode_binary() instead!

Parameters

data

The string being encoded.

Return Values

The encoded string.

See Also

• sqlite_udf_decode_binary()
• sqlite_escape_string()
• sqlite_create_function()
• sqlite_create_aggregate()

sqlite_unbuffered_query

SQLiteDatabase->unbufferedQuery

sqlite_unbuffered_query -- SQLiteDatabase->unbufferedQuery -- Execute a query that
does not prefetch and buffer all data

Description

resource sqlite_unbuffered_query (resource $dbhandle, string $query [, int $
result_type [, string &$error_msg]])

resource sqlite_unbuffered_query (string $query, resource $dbhandle [, int $
result_type [, string &$error_msg]])

Object oriented style (method):

SQLiteDatabase

SQLiteUnbuffered unbufferedQuery (string $query [, int $result_type [, string &$
error_msg]])

sqlite_unbuffered_query() is identical to sqlite_query() except that the result that is
returned is a sequential forward-only result set that can only be used to read each row,
one after the other.

This function is ideal for generating things such as HTML tables where you only need to
process one row at a time and don't need to randomly access the row data.

Note

Functions such as sqlite_seek(), sqlite_rewind(), sqlite_next(), sqlite_current(), and
sqlite_num_rows() do not work on result handles returned from
sqlite_unbuffered_query().

Parameters

dbhandle

The SQLite Database resource; returned from sqlite_open() when used procedurally.
This parameter is not required when using the object-oriented method.

query

The query to be executed.

result_type

The optional result_type parameter accepts a constant and determines how the
returned array will be indexed. Using SQLITE_ASSOC will return only associative
indices (named fields) while SQLITE_NUM will return only numerical indices (ordinal
field numbers). SQLITE_BOTH will return both associative and numerical indices.
SQLITE_BOTH is the default for this function.

error_msg

The specified variable will be filled if an error occurs. This is specially important
because SQL syntax errors can't be fetched using the sqlite_last_error() function.

Note

Two alternative syntaxes are supported for compatibility with other database
extensions (such as MySQL). The preferred form is the first, where the dbhandle
parameter is the first parameter to the function.

Return Values

Returns a result handle or FALSE on failure.

sqlite_unbuffered_query() returns a sequential forward-only result set that can only be
used to read each row, one after the other.

ChangeLog

Version Description

5.1.0 Added the error_msg parameter

See Also

• sqlite_query()

sqlite_valid

SQLiteResult->valid

SQLiteUnbuffered->valid

sqlite_valid -- SQLiteResult->valid -- SQLiteUnbuffered->valid -- Returns whether more
rows are available

Description

bool sqlite_valid (resource $result)

Object oriented style (method):

SQLiteResult

bool valid (void)

SQLiteUnbuffered

bool valid (void)

Finds whether more rows are available from the given result handle.

Parameters

result

The SQLite result resource. This parameter is not required when using the
object-oriented method.

Note

This function cannot be used with unbuffered result handles.

Return Values

Returns TRUE if there are more rows available from the result handle, or FALSE
otherwise.

See Also

• sqlite_num_rows()
• sqlite_changes()

Sybase

Introduction

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To enable Sybase-DB support configure PHP --with-sybase[=DIR]. DIR is the Sybase
home directory, defaults to /home/sybase. To enable Sybase-CT support configure PHP
--with-sybase-ct[=DIR]. DIR is the Sybase home directory, defaults to /home/sybase.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Sybase configuration options

Name Default Changeable Changelog

sybase.allow_persist
ent

"1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.max_persiste
nt

"-1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.max_links "-1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.interface_file "/usr/sybase/interface
s"

PHP_INI_SYSTEM

sybase.min_error_se
verity

"10" PHP_INI_ALL

sybase.min_message
_severity

"10" PHP_INI_ALL

sybase.compatability
_mode

"0" PHP_INI_ALL

magic_quotes_sybas
e

"0" PHP_INI_ALL Removed in PHP
6.0.0.

Here's a short explanation of the configuration directives.

sybase.allow_persistent boolean
Whether to allow persistent Sybase connections.

sybase.max_persistent integer
The maximum number of persistent Sybase connections per process. -1 means no
limit.

sybase.max_links integer
The maximum number of Sybase connections per process, including persistent
connections. -1 means no limit.

sybase.min_error_severity integer
Minimum error severity to display.

sybase.min_message_severity integer
Minimum message severity to display.

magic_quotes_sybase boolean
If magic_quotes_sybase is on, a single-quote is escaped with a single-quote instead of
a backslash if magic_quotes_gpc or magic_quotes_runtime are enabled.

Note

Note that when magic_quotes_sybase is ON it completely overrides
magic_quotes_gpc. In this case even when magic_quotes_gpc is enabled neither
double quotes, backslashes or NUL's will be escaped.

Sybase-CT configuration options

Name Default Changeable Changelog

sybct.allow_persisten
t

"1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.max_persistent "-1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.max_links "-1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.min_server_sev
erity

"10" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.min_client_sev
erity

"10" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.hostname NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.deadlock_retry
_count

"0" PHP_INI_ALL Available since PHP
4.3.0.

Here's a short explanation of the configuration directives.

sybct.allow_persistent boolean
Whether to allow persistent Sybase-CT connections. The default is on.

sybct.max_persistent integer
The maximum number of persistent Sybase-CT connections per process. The default
is -1 meaning unlimited.

sybct.max_links integer
The maximum number of Sybase-CT connections per process, including persistent
connections. The default is -1 meaning unlimited.

sybct.min_server_severity integer
Server messages with severity greater than or equal to sybct.min_server_severity will
be reported as warnings. This value can also be set from a script by calling
sybase_min_server_severity(). The default is 10 which reports errors of information
severity or greater.

sybct.min_client_severity integer
Client library messages with severity greater than or equal to sybct.min_client_severity
will be reported as warnings. This value can also be set from a script by calling

sybase_min_client_severity(). The default is 10 which effectively disables reporting.

sybct.login_timeout integer
The maximum time in seconds to wait for a connection attempt to succeed before
returning failure. Note that if max_execution_time has been exceeded when a
connection attempt times out, your script will be terminated before it can take action on
failure. The default is one minute.

sybct.timeout integer
The maximum time in seconds to wait for a select_db or query operation to succeed
before returning failure. Note that if max_execution_time has been exceeded when an
operation times out, your script will be terminated before it can take action on failure.
The default is no limit.

sybct.hostname string
The name of the host you claim to be connecting from, for display by sp_who. The
default is none.

sybct.deadlock_retry_count int
Allows you to define how often deadlocks are to be retried. The default is -1, or
"forever".

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Sybase Functions

sybase_affected_rows

sybase_affected_rows -- Gets number of affected rows in last query

Description

int sybase_affected_rows ([resource $link_identifier])

sybase_affected_rows() returns the number of rows affected by the last INSERT, UPDATE
or DELETE query on the server associated with the specified link identifier.

This command is not effective for SELECT statements, only on statements which modify
records. To retrieve the number of rows returned from a SELECT, use
sybase_num_rows().

Parameters

link_identifier

If the link identifier isn't specified, the last opened link is assumed.

Return Values

Returns the number of affected rows, as an integer.

Examples

Example #1354 - Delete-Query

<?php

/* connect to database */

sybase_connect('SYBASE', '', '') or

die("Could not connect");

sybase_select_db("db");

sybase_query("DELETE FROM sometable WHERE id < 10");

printf("Records deleted: %d\n", sybase_affected_rows());

?>

The above example will output:

Records deleted: 10

See Also

• sybase_num_rows()

sybase_close

sybase_close -- Closes a Sybase connection

Description

bool sybase_close ([resource $link_identifier])

sybase_close() closes the link to a Sybase database that's associated with the specified
link link_identifier.

Note that this isn't usually necessary, as non-persistent open links are automatically closed
at the end of the script's execution.

sybase_close() will not close persistent links generated by sybase_pconnect().

Parameters

link_identifier

If the link identifier isn't specified, the last opened link is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sybase_connect()
• sybase_pconnect()

sybase_connect

sybase_connect -- Opens a Sybase server connection

Description

resource sybase_connect ([string $servername [, string $username [, string $password [,
string $charset [, string $appname]]]]])

sybase_connect() establishes a connection to a Sybase server.

In case a second call is made to sybase_connect() with the same arguments, no new link
will be established, but instead, the link identifier of the already opened link will be
returned.

The link to the server will be closed as soon as the execution of the script ends, unless it's
closed earlier by explicitly calling sybase_close().

Parameters

servername

The servername argument has to be a valid servername that is defined in the
'interfaces' file.

username

Sybase user name

password

Password associated with username.

charset

Specifies the charset for the connection

appname

Return Values

Returns a positive Sybase link identifier on success, or FALSE on failure.

ChangeLog

Version Description

4.0.2 The charset parameter was added.

Examples

Example #1355 - sybase_connect() example

<?php

$link = sybase_connect('SYBASE', '', '')

 or die("Could not connect !");

echo "Connected successfully";

sybase_close($link);

?>

See Also

• sybase_pconnect()
• sybase_close()

sybase_data_seek

sybase_data_seek -- Moves internal row pointer

Description

bool sybase_data_seek (resource $result_identifier, int $row_number)

sybase_data_seek() moves the internal row pointer of the Sybase result associated with
the specified result identifier to pointer to the specified row number. The next call to
sybase_fetch_row() would return that row.

Parameters

result_identifier

row_number

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sybase_fetch_row()

sybase_deadlock_retry_count

sybase_deadlock_retry_count -- Sets the deadlock retry count

Description

void sybase_deadlock_retry_count (int $retry_count)

Using sybase_deadlock_retry_count(), the number of retries can be defined in cases of
deadlocks. By default, every deadlock is retried an infinite number of times or until the
process is killed by Sybase, the executing script is killed (for instance, by set_time_limit())
or the query succeeds.

Parameters

retry_count

Values for retry_count

-1 Retry forever (default)

0 Do not retry

n Retry n times

Return Values

No value is returned.

Notes

Note

This function is only available when using the CT library interface to Sybase, and not with
the DB library.

sybase_fetch_array

sybase_fetch_array -- Fetch row as array

Description

array sybase_fetch_array (resource $result)

sybase_fetch_array() is an extended version of sybase_fetch_row(). In addition to storing the
data in the numeric indices of the result array, it also stores the data in associative indices,
using the field names as keys.

An important thing to note is that using sybase_fetch_array() is NOT significantly slower than
using sybase_fetch_row(), while it provides a significant added value.

Parameters

result

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Note

When selecting fields with identical names (for instance, in a join), the associative indices
will have a sequential number prepended. See the example for details.

Examples

Example #1356 - Identical fieldnames

<?php

$dbh = sybase_connect('SYBASE', '', '');

$q = sybase_query('SELECT * FROM p, a WHERE p.person_id= a.person_id');

var_dump(sybase_fetch_array($q));

sybase_close($dbh);

?>

The above example would produce the following output (assuming the two tables only
have each one column called "person_id"):

array(4) {

 [0]=>

 int(1)

 ["person_id"]=>

 int(1)

 [1]=>

 int(1)

 ["person_id1"]=>

 int(1)

}

See Also

• sybase_fetch_row()
• sybase_fetch_assoc()
• sybase_fetch_object()

sybase_fetch_assoc

sybase_fetch_assoc -- Fetch a result row as an associative array

Description

array sybase_fetch_assoc (resource $result)

sybase_fetch_assoc() is a version of sybase_fetch_row() that uses column names instead of
integers for indices in the result array. Columns from different tables with the same names are
returned as name, name1, name2, ..., nameN.

An important thing to note is that using sybase_fetch_assoc() is NOT significantly slower than
using sybase_fetch_row(), while it provides a significant added value.

Parameters

result

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.

Notes

Note

This function is only available when using the CT library interface to Sybase, and not with
the DB library.

See Also

• sybase_fetch_row()
• sybase_fetch_array()
• sybase_fetch_object()

sybase_fetch_field

sybase_fetch_field -- Get field information from a result

Description

object sybase_fetch_field (resource $result [, int $field_offset])

sybase_fetch_field() can be used in order to obtain information about fields in a certain query
result.

Parameters

result

field_offset

If the field offset isn't specified, the next field that wasn't yet retrieved by
sybase_fetch_field() is retrieved.

Return Values

Returns an object containing field information.

The properties of the object are:

• name - column name. if the column is a result of a function, this property is set to
computed#N, where #N is a serial number.

• column_source - the table from which the column was taken

• max_length - maximum length of the column

• numeric - 1 if the column is numeric

• type - datatype of the column

See Also

• sybase_field_seek()

sybase_fetch_object

sybase_fetch_object -- Fetch a row as an object

Description

object sybase_fetch_object (resource $result [, mixed $object])

sybase_fetch_object() is similar to sybase_fetch_assoc(), with one difference - an object is
returned, instead of an array.

Speed-wise, the function is identical to sybase_fetch_array(), and almost as quick as
sybase_fetch_row() (the difference is insignificant).

Parameters

result

object

Use the second object to specify the type of object you want to return. If this parameter is
omitted, the object will be of type stdClass.

Return Values

Returns an object with properties that correspond to the fetched row, or FALSE if there are no
more rows.

ChangeLog

Version Description

4.3.0
This function will no longer return numeric
object members. Old behaviour:
object(stdclass)(3) {

 [0]=>

 string(3) "foo"

 ["foo"]=>

 string(3) "foo"

 [1]=>

 string(3) "bar"

 ["bar"]=>

 string(3) "bar"

}
New behaviour:

object(stdclass)(3) {

 ["foo"]=>

 string(3) "foo"

 ["bar"]=>

 string(3) "bar"

}

Examples

Example #1357 - sybase_fetch_object() return as Foo

<?php

 class Foo {

 var $foo, $bar, $baz;

 }

 // {...]

 $qrh= sybase_query('SELECT foo, bar, baz FROM example');

 $foo= sybase_fetch_object($qrh, 'Foo');

 $bar= sybase_fetch_object($qrh, new Foo());

 // {...]

?>

See Also

• sybase_fetch_array()
• sybase_fetch_row()

sybase_fetch_row

sybase_fetch_row -- Get a result row as an enumerated array

Description

array sybase_fetch_row (resource $result)

sybase_fetch_row() fetches one row of data from the result associated with the specified
result identifier.

Subsequent call to sybase_fetch_row() would return the next row in the result set, or
FALSE if there are no more rows.

Parameters

result

Return Values

Returns an array that corresponds to the fetched row, or FALSE if there are no more rows.
Each result column is stored in an array offset, starting at offset 0.

Data types

PHP Sybase

string VARCHAR, TEXT, CHAR, IMAGE, BINARY,
VARBINARY, DATETIME

int NUMERIC (w/o precision), DECIMAL (w/o
precision), INT, BIT, TINYINT, SMALLINT

float NUMERIC (w/ precision), DECIMAL (w/
precision), REAL, FLOAT, MONEY

NULL NULL

See Also

• sybase_fetch_array()

• sybase_fetch_assoc()
• sybase_fetch_object()
• sybase_data_seek()
• sybase_result()

sybase_field_seek

sybase_field_seek -- Sets field offset

Description

bool sybase_field_seek (resource $result, int $field_offset)

Seeks to the specified field offset. If the next call to sybase_fetch_field() won't include a
field offset, this field would be returned.

Parameters

result

field_offset

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sybase_fetch_field()

sybase_free_result

sybase_free_result -- Frees result memory

Description

bool sybase_free_result (resource $result)

sybase_free_result() only needs to be called if you are worried about using too much
memory while your script is running. All result memory will automatically be freed when the
script ends. You may call sybase_free_result() with the result identifier as an argument
and the associated result memory will be freed.

Parameters

result

Return Values

Returns TRUE on success or FALSE on failure.

sybase_get_last_message

sybase_get_last_message -- Returns the last message from the server

Description

string sybase_get_last_message (void)

sybase_get_last_message() returns the last message reported by the server.

Return Values

Returns the message as a string.

See Also

• sybase_min_message_severity()

sybase_min_client_severity

sybase_min_client_severity -- Sets minimum client severity

Description

void sybase_min_client_severity (int $severity)

sybase_min_client_severity() sets the minimum client severity level.

Parameters

severity

Return Values

No value is returned.

Notes

Note

This function is only available when using the CT library interface to Sybase, and not
with the DB library.

See Also

• sybase_min_server_severity()

sybase_min_error_severity

sybase_min_error_severity -- Sets minimum error severity

Description

void sybase_min_error_severity (int $severity)

sybase_min_error_severity() sets the minimum error severity level.

Parameters

severity

Return Values

No value is returned.

Notes

Note

This function is only available when using the CT library interface to Sybase, and not
with the DB library.

See Also

• sybase_min_message_severity()

sybase_min_message_severity

sybase_min_message_severity -- Sets minimum message severity

Description

void sybase_min_message_severity (int $severity)

sybase_min_message_severity() sets the minimum message severity level.

Parameters

severity

Return Values

No value is returned.

Notes

Note

This function is only available when using the DB library interface to Sybase, and not
with the CT library.

See Also

• sybase_min_error_severity()

sybase_min_server_severity

sybase_min_server_severity -- Sets minimum server severity

Description

void sybase_min_server_severity (int $severity)

sybase_min_server_severity() sets the minimum server severity level.

Parameters

severity

Return Values

No value is returned.

Notes

Note

This function is only available when using the CT library interface to Sybase, and not
with the DB library.

See Also

• sybase_min_client_severity()

sybase_num_fields

sybase_num_fields -- Gets the number of fields in a result set

Description

int sybase_num_fields (resource $result)

sybase_num_fields() returns the number of fields in a result set.

Parameters

result

Return Values

Returns the number of fields as an integer.

See Also

• sybase_query()
• sybase_fetch_field()
• sybase_num_rows()

sybase_num_rows

sybase_num_rows -- Get number of rows in a result set

Description

int sybase_num_rows (resource $result)

sybase_num_rows() returns the number of rows in a result set.

Parameters

result

Return Values

Returns the number of rows as an integer.

See Also

• sybase_num_fields()
• sybase_query()
• sybase_fetch_row()

sybase_pconnect

sybase_pconnect -- Open persistent Sybase connection

Description

resource sybase_pconnect ([string $servername [, string $username [, string $password
[, string $charset [, string $appname]]]]])

sybase_pconnect() acts very much like sybase_connect() with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already
open with the same host, username and password. If one is found, an identifier for it will
be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the
script ends. Instead, the link will remain open for future use (sybase_close() will not close
links established by sybase_pconnect()).

This type of links is therefore called 'persistent'.

Parameters

servername

The servername argument has to be a valid servername that is defined in the
'interfaces' file.

username

Sybase user name

password

Password associated with username.

charset

Specifies the charset for the connection

appname

Return Values

Returns a positive Sybase persistent link identifier on success, or FALSE on error.

ChangeLog

Version Description

4.0.2 The charset parameter was added.

See Also

• sybase_connect()

sybase_query

sybase_query -- Sends a Sybase query

Description

mixed sybase_query (string $query [, resource $link_identifier])

sybase_query() sends a query to the currently active database on the server that's
associated with the specified link identifier.

Parameters

query

link_identifier

If the link identifier isn't specified, the last opened link is assumed. If no link is open,
the function tries to establish a link as if sybase_connect() was called, and use it.

Return Values

Returns a positive Sybase result identifier on success, FALSE on error, or TRUE if the
query was successful but didn't return any columns.

See Also

• sybase_select_db()
• sybase_connect()

sybase_result

sybase_result -- Get result data

Description

string sybase_result (resource $result, int $row, mixed $field)

Returns the contents of the cell at the row and offset in the specified Sybase result set.

When working on large result sets, you should consider using one of the functions that
fetch an entire row (specified below). As these functions return the contents of multiple
cells in one function call, they're MUCH quicker than sybase_result(). Also, note that
specifying a numeric offset for the field argument is much quicker than specifying a
fieldname or tablename.fieldname argument.

Recommended high-performance alternatives: sybase_fetch_row(), sybase_fetch_array()
and sybase_fetch_object().

Parameters

result

row

field

The field argument can be the field's offset, or the field's name, or the field's table dot
field's name (tablename.fieldname). If the column name has been aliased ('select foo
as bar from...'), use the alias instead of the column name.

Return Values

sybase_result() returns the contents of one cell from a Sybase result set.

sybase_select_db

sybase_select_db -- Selects a Sybase database

Description

bool sybase_select_db (string $database_name [, resource $link_identifier])

sybase_select_db() sets the current active database on the server that's associated with
the specified link identifier.

Every subsequent call to sybase_query() will be made on the active database.

Parameters

database_name

link_identifier

If no link identifier is specified, the last opened link is assumed. If no link is open, the
function will try to establish a link as if sybase_connect() was called, and use it.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sybase_connect()
• sybase_pconnect()
• sybase_query()

sybase_set_message_handler

sybase_set_message_handler -- Sets the handler called when a server message is raised

Description

bool sybase_set_message_handler (callback $handler [, resource $connection])

sybase_set_message_handler() sets a user function to handle messages generated by
the server. You may specify the name of a global function, or use an array to specify an
object reference and a method name.

Parameters

handler

The handler expects five arguments in the following order: message number, severity,
state, line number and description. The first four are integers. The last is a string. If the
function returns FALSE, PHP generates an ordinary error message.

connection

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.5 The connection parameter was added.

Examples

Example #1358 - sybase_set_message_handler() callback function

<?php

 function msg_handler($msgnumber, $severity, $state, $line, $text)

 {

 var_dump($msgnumber, $severity, $state, $line, $text);

 }

 sybase_set_message_handler('msg_handler');

?>

Example #1359 - sybase_set_message_handler() callback to a class

<?php

 class Sybase {

 function handler($msgnumber, $severity, $state, $line, $text)

 {

 var_dump($msgnumber, $severity, $state, $line, $text);

 }

 }

 $sybase= new Sybase();

 sybase_set_message_handler(array($sybase, 'handler'));

?>

Example #1360 - sybase_set_message_handler() unhandled messages

<?php

 // Return FALSE from this function to indicate you can't handle

 // this. The error is printed out as a warning, the way you're used

 // to it if there is no handler installed.

 function msg_handler($msgnumber, $severity, $state, $line, $text)

 {

 if (257 == $msgnumber) {

 return false;

 }

 var_dump($msgnumber, $severity, $state, $line, $text);

 }

 sybase_set_message_handler('msg_handler');

?>

Notes

Note

This function is only available when using the CT library interface to Sybase, and not
with the DB library.

sybase_unbuffered_query

sybase_unbuffered_query -- Send a Sybase query and do not block

Description

resource sybase_unbuffered_query (string $query, resource $link_identifier [, bool
$store_result])

sybase_unbuffered_query() sends a query to the currently active database on the server
that's associated with the specified link identifier. If the link identifier isn't specified, the last
opened link is assumed. If no link is open, the function tries to establish a link as if
sybase_connect() was called, and use it.

Unlike sybase_query(), sybase_unbuffered_query() reads only the first row of the result
set. sybase_fetch_array() and similar function read more rows as needed.
sybase_data_seek() reads up to the target row. The behavior may produce better
performance for large result sets.

sybase_num_rows() will only return the correct number of rows if all result sets have been
read. To Sybase, the number of rows is not known and is therefore computed by the client
implementation.

Note

If you don't read all of the resultsets prior to executing the next query, PHP will raise a
warning and cancel all of the pending results. To get rid of this, use
sybase_free_result() which will cancel pending results of an unbuffered query.

Parameters

query

link_identifier

store_result

The optional store_result can be FALSE to indicate the resultsets shouldn't be
fetched into memory, thus minimizing memory usage which is particularly interesting
with very large resultsets.

Return Values

Returns a positive Sybase result identifier on success, or FALSE on error.

Examples

Example #1361 - sybase_unbuffered_query() example

<?php

$dbh = sybase_connect('SYBASE', '', '');

$q = sybase_unbuffered_query('select firstname, lastname from huge_table',
$dbh, false);

sybase_data_seek($q, 10000);

$i = 0;

while ($row = sybase_fetch_row($q)) {

 echo $row[0], ' ', $row[1], '
';

 if ($i++ > 40000) {

 break;

 }

}

sybase_free_result($q);

sybase_close($dbh);

?>

Notes

Note

This function is only available when using the CT library interface to Sybase, and not
with the DB library.

See Also

• sybase_query()

File System Related Extensions

Direct IO

Introduction

PHP supports the direct io functions as described in the Posix Standard (Section 6) for
performing I/O functions at a lower level than the C-Language stream I/O functions (
fopen(), fread(),..). The use of the DIO functions should be considered only when direct
control of a device is needed. In all other cases, the standard filesystem functions are
more than adequate.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

This extension is only available on Windows Platforms as of PHP 5.0.0

http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To get these functions to work, you have to configure PHP with --enable-dio.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

One resource type is defined by this extension: a file descriptor returned by dio_open().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

F_DUPFD (integer)

F_GETFD (integer)

F_GETFL (integer)

F_GETLK (integer)

F_GETOWN (integer)

F_RDLCK (integer)

F_SETFL (integer)

F_SETLK (integer)

F_SETLKW (integer)

F_SETOWN (integer)

F_UNLCK (integer)

F_WRLCK (integer)

O_APPEND (integer)

O_ASYNC (integer)

O_CREAT (integer)

O_EXCL (integer)

O_NDELAY (integer)

O_NOCTTY (integer)

O_NONBLOCK (integer)

O_RDONLY (integer)

O_RDWR (integer)

O_SYNC (integer)

O_TRUNC (integer)

O_WRONLY (integer)

S_IRGRP (integer)

S_IROTH (integer)

S_IRUSR (integer)

S_IRWXG (integer)

S_IRWXO (integer)

S_IRWXU (integer)

S_IWGRP (integer)

S_IWOTH (integer)

S_IWUSR (integer)

S_IXGRP (integer)

S_IXOTH (integer)

S_IXUSR (integer)

Direct IO Functions

dio_close

dio_close -- Closes the file descriptor given by fd

Description

void dio_close (resource $fd)

The function dio_close() closes the file descriptor fd.

Parameters

fd

The file descriptor returned by dio_open().

Return Values

No value is returned.

Examples

Example #1362 - Closing an open file descriptor

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

dio_close($fd);

?>

See Also

• dio_open()

dio_fcntl

dio_fcntl -- Performs a c library fcntl on fd

Description

mixed dio_fcntl (resource $fd, int $cmd [, mixed $args])

The dio_fcntl() function performs the operation specified by cmd on the file descriptor fd.
Some commands require additional arguments args to be supplied.

Parameters

fd

The file descriptor returned by dio_open().

cmd

Can be one of the following operations:

• F_SETLK - Lock is set or cleared. If the lock is held by someone else dio_fcntl()
returns -1.

• F_SETLKW - like F_SETLK, but in case the lock is held by someone else,
dio_fcntl() waits until the lock is released.

• F_GETLK - dio_fcntl() returns an associative array (as described above) if
someone else prevents lock. If there is no obstruction key "type" will set to
F_UNLCK.

• F_DUPFD - finds the lowest numbered available file descriptor greater than or
equal to args and returns them.

• F_SETFL - Sets the file descriptors flags to the value specified by args, which can
be O_APPEND, O_NONBLOCK or O_ASYNC. To use O_ASYNC you will need to
use the PCNTL extension.

args

args is an associative array, when cmd is F_SETLK or F_SETLLW, with the following
keys:

• "start" - offset where lock begins

• "length" - size of locked area. zero means to end of file

• "wenth" - Where l_start is relative to: can be SEEK_SET, SEEK_END and
SEEK_CUR

• "type" - type of lock: can be F_RDLCK (read lock), F_WRLCK (write lock) or
F_UNLCK (unlock)

Return Values

Returns the result of the C call.

Examples

Example #1363 - Setting and clearing a lock

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

if (dio_fcntl($fd, F_SETLK, Array("type"=>F_WRLCK)) == -1) {

 // the file descriptor appears locked

 echo "The lock can not be cleared. It is held by someone else.";

} else {

 echo "Lock succesfully set/cleared";

}

dio_close($fd);

?>

Notes

Note

This function is not implemented on Windows platforms.

dio_open

dio_open -- Opens a new filename with specified permissions of flags and creation
permissions of mode

Description

resource dio_open (string $filename, int $flags [, int $mode])

dio_open() opens a file and returns a new file descriptor for it.

Parameters

filename

The opened file.

flags

The flags parameter can also include any combination of the following flags:

• O_CREAT - creates the file, if it doesn't already exist.

• O_EXCL - if both, O_CREAT and O_EXCL are set, dio_open() fails, if the file
already exists.

• O_TRUNC - if the file exists, and its opened for write access, the file will be
truncated to zero length.

• O_APPEND - write operations write data at the end of the file.

• O_NONBLOCK - sets non blocking mode.

mode

If flags is O_CREAT, mode will set the mode of the file (creation permissions).

• O_RDONLY - opens the file for read access.

• O_WRONLY - opens the file for write access.

• O_RDWR - opens the file for both reading and writing.

Return Values

A file descriptor or FALSE on error.

Examples

Example #1364 - Opening a file descriptor

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR | O_NOCTTY | O_NONBLOCK);

dio_close($fd);

?>

See Also

• dio_close()

dio_read

dio_read -- Reads bytes from a file descriptor

Description

string dio_read (resource $fd [, int $len])

The function dio_read() reads and returns len bytes from file with descriptor fd.

Parameters

fd

The file descriptor returned by dio_open().

len

The number of bytes to read. If not specified, dio_read() reads 1K sized block.

Return Values

The bytes read from fd.

See Also

• dio_write()

dio_seek

dio_seek -- Seeks to pos on fd from whence

Description

int dio_seek (resource $fd, int $pos [, int $whence])

The function dio_seek() is used to change the file position of the given file descriptor.

Parameters

fd

The file descriptor returned by dio_open().

pos

The new position.

whence

Specifies how the position pos should be interpreted:

• SEEK_SET (default) - specifies that pos is specified from the beginning of the file.

• SEEK_CUR - Specifies that pos is a count of characters from the current file
position. This count may be positive or negative.

• SEEK_END - Specifies that pos is a count of characters from the end of the file. A
negative count specifies a position within the current extent of the file; a positive
count specifies a position past the current end. If you set the position past the
current end, and actually write data, you will extend the file with zeros up to that
position.

Return Values

Examples

Example #1365 - Positioning in a file

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR);

dio_seek($fd, 10, SEEK_SET);

// position is now at 10 characters from the start of the file

dio_seek($fd, -2, SEEK_CUR);

// position is now at 8 characters from the start of the file

dio_seek($fd, -5, SEEK_END);

// position is now at 5 characters from the end of the file

dio_seek($fd, 10, SEEK_END);

// position is now at 10 characters past the end of the file.

// The 10 characters between the end of the file and the current

// position are filled with zeros.

dio_close($fd);

?>

dio_stat

dio_stat -- Gets stat information about the file descriptor fd

Description

array dio_stat (resource $fd)

dio_stat() returns information about the given file descriptor.

Parameters

fd

The file descriptor returned by dio_open().

Return Values

Returns an associative array with the following keys:

• "device" - device

• "inode" - inode

• "mode" - mode

• "nlink" - number of hard links

• "uid" - user id

• "gid" - group id

• "device_type" - device type (if inode device)

• "size" - total size in bytes

• "blocksize" - blocksize

• "blocks" - number of blocks allocated

• "atime" - time of last access

• "mtime" - time of last modification

• "ctime" - time of last change

On error dio_stat() returns NULL.

dio_tcsetattr

dio_tcsetattr -- Sets terminal attributes and baud rate for a serial port

Description

bool dio_tcsetattr (resource $fd, array $options)

dio_tcsetattr() sets the terminal attributes and baud rate of the open fd.

Parameters

fd

The file descriptor returned by dio_open().

options

The currently available options are:

• 'baud' - baud rate of the port - can be 38400,19200,9600,4800,2400,1800,
1200,600,300,200,150,134,110,75 or 50, default value is 9600.

• 'bits' - data bits - can be 8,7,6 or 5. Default value is 8.

• 'stop' - stop bits - can be 1 or 2. Default value is 1.

• 'parity' - can be 0,1 or 2. Default value is 0.

Return Values

No value is returned.

Examples

Example #1366 - Setting the baud rate on a serial port

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR | O_NOCTTY | O_NONBLOCK);

dio_fcntl($fd, F_SETFL, O_SYNC);

dio_tcsetattr($fd, array(

 'baud' => 9600,

 'bits' => 8,

 'stop' => 1,

 'parity' => 0

));

while (1) {

 $data = dio_read($fd, 256);

 if ($data) {

 echo $data;

 }

}

?>

Notes

Note

This function is not implemented on Windows platforms.

dio_truncate

dio_truncate -- Truncates file descriptor fd to offset bytes

Description

bool dio_truncate (resource $fd, int $offset)

dio_truncate() truncates a file to at most offset bytes in size.

If the file previously was larger than this size, the extra data is lost. If the file previously
was shorter, it is unspecified whether the file is left unchanged or is extended. In the latter
case the extended part reads as zero bytes.

Parameters

fd

The file descriptor returned by dio_open().

offset

The offset in bytes.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is not implemented on Windows platforms.

dio_write

dio_write -- Writes data to fd with optional truncation at length

Description

int dio_write (resource $fd, string $data [, int $len])

dio_write() writes up to len bytes from data to file fd.

Parameters

fd

The file descriptor returned by dio_open().

data

The written data.

len

The length of data to write in bytes. If not specified, the function writes all the data to
the specified file.

Return Values

Returns the number of bytes written to fd.

See Also

• dio_read()

Directories

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

DIRECTORY_SEPARATOR (string)

PATH_SEPARATOR (string)

Note

The PATH_SEPARATOR was introduced with PHP 4.3.0-RC2.

Directory Functions

See Also

For related functions such as dirname(), is_dir(), mkdir(), and rmdir(), see the Filesystem
section.

chdir

chdir -- Change directory

Description

bool chdir (string $directory)

Changes PHP's current directory to directory.

Parameters

directory

The new current directory

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1367 - chdir() example

<?php

// current directory

echo getcwd() . "\n";

chdir('public_html');

// current directory

echo getcwd() . "\n";

?>

The above example will output something similar to:

/home/vincent

/home/vincent/public_html

Notes

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

See Also

• getcwd()

chroot

chroot -- Change the root directory

Description

bool chroot (string $directory)

Changes the root directory of the current process to directory.

This function is only available if your system supports it and you're using the CLI, CGI or
Embed SAPI. Also, this function requires root privileges.

Parameters

directory

The new directory

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is not implemented on Windows platforms.

dir

dir -- Return an instance of the Directory class

Description

Directory

Directory {

string path;

resource handle;

string Directory::read (void)

void Directory::rewind (void)

void Directory::close (void)
}

A pseudo-object oriented mechanism for reading a directory. The given directory is
opened. Two properties are available once the directory has been opened. The handle
property can be used with other directory functions such as readdir(), rewinddir() and
closedir(). The path property is set to path the directory that was opened. Three methods
are available: read, rewind and close.

Examples

Example #1368 - dir() example

Please note the fashion in which dir::read() 's return value is checked in the example
below. We are explicitly testing whether the return value is identical to (equal to and of
the same type as - see Comparison Operators for more information) FALSE since
otherwise, any directory entry whose name evaluates to FALSE will stop the loop.

<?php

$d = dir("/etc/php5");

echo "Handle: " . $d->handle . "\n";

echo "Path: " . $d->path . "\n";

while (false !== ($entry = $d->read())) {

 echo $entry."\n";

}

$d->close();

?>

The above example will output something similar to:

Handle: Resource id #2

Path: /etc/php5

.

..

apache

cgi

cli

Notes

Note

The order in which directory entries are returned by the read method is
system-dependent.

closedir

closedir -- Close directory handle

Description

void closedir (resource $dir_handle)

Closes the directory stream indicated by dir_handle. The stream must have previously
been opened by opendir().

Parameters

dir_handle

The directory handle resource previously opened with opendir().

Examples

Example #1369 - closedir() example

<?php

$dir = "/etc/php5/";

// Open a known directory, read directory into variable and then close

if (is_dir($dir)) {

 if ($dh = opendir($dir)) {

 $directory = readdir($dh);

 closedir($dh);

 }

}

?>

getcwd

getcwd -- Gets the current working directory

Description

string getcwd (void)

Gets the current working directory.

Return Values

Returns the current working directory on success, or FALSE on failure.

On some Unix variants, getcwd() will return FALSE if any one of the parent directories
does not have the readable or search mode set, even if the current directory does. See
chmod() for more information on modes and permissions.

Examples

Example #1370 - getcwd() example

<?php

// current directory

echo getcwd() . "\n";

chdir('cvs');

// current directory

echo getcwd() . "\n";

?>

The above example will output something similar to:

/home/didou

/home/didou/cvs

See Also

• chdir()
• chmod()

opendir

opendir -- Open directory handle

Description

resource opendir (string $path [, resource $context])

Opens up a directory handle to be used in subsequent closedir(), readdir(), and rewinddir()
calls.

Parameters

path

The directory path that is to be opened

context

For a description of the context parameter, refer to the streams section of the manual.

Return Values

Returns a directory handle resource on success, or FALSE on failure.

If path is not a valid directory or the directory can not be opened due to permission
restrictions or filesystem errors, opendir() returns FALSE and generates a PHP error of
level E_WARNING. You can suppress the error output of opendir() by prepending ' @ ' to
the front of the function name.

ChangeLog

Version Description

5.0.0 path supports the ftp:// URL wrapper.

4.3.0 path can also be any URL which supports
directory listing, however only the file:// URL
wrapper supports this in PHP 4

Examples

Example #1371 - opendir() example

<?php

$dir = "/etc/php5/";

// Open a known directory, and proceed to read its contents

if (is_dir($dir)) {

 if ($dh = opendir($dir)) {

 while (($file = readdir($dh)) !== false) {

 echo "filename: $file : filetype: " . filetype($dir . $file) .
"\n";

 }

 closedir($dh);

 }

}

?>

The above example will output something similar to:

filename: . : filetype: dir

filename: .. : filetype: dir

filename: apache : filetype: dir

filename: cgi : filetype: dir

filename: cli : filetype: dir

See Also

• is_dir()
• readdir()
• Dir

readdir

readdir -- Read entry from directory handle

Description

string readdir (resource $dir_handle)

Returns the filename of the next file from the directory. The filenames are returned in the
order in which they are stored by the filesystem.

Parameters

dir_handle

The directory handle resource previously opened with opendir().

Return Values

Returns the filename on success, or FALSE on failure.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #1372 - List all files in a directory

Please note the fashion in which readdir() 's return value is checked in the examples
below. We are explicitly testing whether the return value is identical to (equal to and of
the same type as--see Comparison Operators for more information) FALSE since
otherwise, any directory entry whose name evaluates to FALSE will stop the loop (e.g.
a directory named "0").

<?php

// Note that !== did not exist until 4.0.0-RC2

if ($handle = opendir('/path/to/files')) {

 echo "Directory handle: $handle\n";

 echo "Files:\n";

 /* This is the correct way to loop over the directory. */

 while (false !== ($file = readdir($handle))) {

 echo "$file\n";

 }

 /* This is the WRONG way to loop over the directory. */

 while ($file = readdir($handle)) {

 echo "$file\n";

 }

 closedir($handle);

}

?>

Example #1373 - List all files in the current directory and strip out. and..

<?php

if ($handle = opendir('.')) {

 while (false !== ($file = readdir($handle))) {

 if ($file != "." && $file != "..") {

 echo "$file\n";

 }

 }

 closedir($handle);

}

?>

See Also

• is_dir()
• glob()

rewinddir

rewinddir -- Rewind directory handle

Description

void rewinddir (resource $dir_handle)

Resets the directory stream indicated by dir_handle to the beginning of the directory.

Parameters

dir_handle

The directory handle resource previously opened with opendir().

scandir

scandir -- List files and directories inside the specified path

Description

array scandir (string $directory [, int $sorting_order [, resource $context]])

Returns an array of files and directories from the directory.

Parameters

directory

The directory that will be scanned.

sorting_order

By default, the sorted order is alphabetical in ascending order. If the optional
sorting_order is used (set to 1), then the sort order is alphabetical in descending
order.

context

For a description of the context parameter, refer to the streams section of the manual.

Return Values

Returns an array of filenames on success, or FALSE on failure. If directory is not a
directory, then boolean FALSE is returned, and an error of level E_WARNING is
generated.

Examples

Example #1374 - A simple scandir() example

<?php

$dir = '/tmp';

$files1 = scandir($dir);

$files2 = scandir($dir, 1);

print_r($files1);

print_r($files2);

?>

The above example will output something similar to:

Array

(

 [0] => .

 [1] => ..

 [2] => bar.php

 [3] => foo.txt

 [4] => somedir

)

Array

(

 [0] => somedir

 [1] => foo.txt

 [2] => bar.php

 [3] => ..

 [4] => .

)

Example #1375 - PHP 4 alternatives to scandir()

<?php

$dir = "/tmp";

$dh = opendir($dir);

while (false !== ($filename = readdir($dh))) {

 $files[] = $filename;

}

sort($files);

print_r($files);

rsort($files);

print_r($files);

?>

The above example will output something similar to:

Array

(

 [0] => .

 [1] => ..

 [2] => bar.php

 [3] => foo.txt

 [4] => somedir

)

Array

(

 [0] => somedir

 [1] => foo.txt

 [2] => bar.php

 [3] => ..

 [4] => .

)

Notes

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

See Also

• opendir()
• readdir()
• glob()
• is_dir()
• sort()

File Information

Introduction

The functions in this module try to guess the content type and encoding of a file by looking
for certain magic byte sequences at specific positions within the file. While this is not a
bullet proof approach the heuristics used do a very good job.

Installing/Configuring

Requirements

magic_open library is needed to build this extension.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/fileinfo

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There is one resource used in Fileinfo extension: a magic database descriptor returned by
finfo_open().

http://pecl.php.net/package/fileinfo
http://pecl.php.net/package/fileinfo

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FILEINFO_NONE (integer)
No special handling.

FILEINFO_SYMLINK (integer)
Follow symlinks.

FILEINFO_MIME (integer)
Return a mime string, instead of a textual description.

FILEINFO_COMPRESS (integer)
Decompress compressed files.

FILEINFO_DEVICES (integer)
Look at the contents of blocks or character special devices.

FILEINFO_CONTINUE (integer)
Return all matches, not just the first.

FILEINFO_PRESERVE_ATIME (integer)
If possible preserve the original access time.

FILEINFO_RAW (integer)
Don't translate unprintable characters to a \ooo octal representation.

Fileinfo Functions

finfo_buffer

finfo_buffer -- Return information about a string buffer

Description

string finfo_buffer (resource $finfo, string $string [, int $options [, resource $context
]])

finfo

string buffer (string $string [, int $options [, resource $context]])

This function is used to get information about binary data in a string.

Parameters

finfo

Fileinfo resource returned by finfo_open().

string

Content of a file to be checked.

options

One or disjunction of more Fileinfo constants.

context

Return Values

Returns a textual description of the string argument, or FALSE if an error occurred.

Examples

Example #1376 - A finfo_buffer() example

<?php

$finfo = new finfo(FILEINFO_MIME);

echo $finfo->buffer($_POST["script"]) . "\n";

?>

The above example will output something similar to:

application/x-sh

See Also

• finfo_file()

finfo_close

finfo_close -- Close fileinfo resource

Description

bool finfo_close (resource $finfo)

finfo

__destruct (void)

This function closes the resource opened by finfo_open().

Parameters

finfo

Fileinfo resource returned by finfo_open().

Return Values

Returns TRUE on success or FALSE on failure.

finfo_file

finfo_file -- Return information about a file

Description

string finfo_file (resource $finfo, string $file_name [, int $options [, resource $context
]])

finfo

string file (string $file_name [, int $options [, resource $context]])

This function is used to get information about a file.

Parameters

finfo

Fileinfo resource returned by finfo_open().

file_name

Name of a file to be checked.

options

One or disjunction of more Fileinfo constants.

context

For a description of contexts, refer to Stream Functions.

Return Values

Returns a textual description of the contents of the filename argument, or FALSE if an
error occurred.

Examples

Example #1377 - A finfo_file() example

<?php

$finfo = finfo_open(FILEINFO_MIME); // return mime type ala mimetype
extension

foreach (glob("*") as $filename) {

 echo finfo_file($finfo, $filename) . "\n";

}

finfo_close($finfo);

?>

The above example will output something similar to:

text/html

image/gif

application/vnd.ms-excel

See Also

• finfo_buffer()

finfo_open

finfo->__construct()

finfo_open -- finfo->__construct() -- Create a new fileinfo resource

Description

Procedural style

resource finfo_open ([int $options [, string $arg]])

Object oriented style (constructor):

finfo

__construct ([int $options [, string $magic_file]])

This function opens a magic database and returns its resource.

Parameters

options

One or disjunction of more Fileinfo constants.

magic_file

Name of a magic database file, usually something like /path/to/magic.mime. If not
specified, the MAGIC environment variable is used. If this variable is not set either,
/usr/share/misc/magic is used by default. A.mime and/or.mgc suffix is added if needed.

Return Values

Returns a magic database resource on success or FALSE on failure.

Examples

Example #1378 - Object oriented style

<?php

$finfo = new finfo(FILEINFO_MIME, "/usr/share/misc/magic"); // return mime
type ala mimetype extension

if (!$finfo) {

 echo "Opening fileinfo database failed";

 exit();

}

/* get mime-type for a specific file */

$filename = "/usr/local/something.txt";

echo $finfo->file($filename);

/* close connection */

$finfo->close();

?>

Example #1379 - Procedural style

<?php

$finfo = finfo_open(FILEINFO_MIME, "/usr/share/misc/magic"); // return mime
type ala mimetype extension

if (!$finfo) {

 echo "Opening fileinfo database failed";

 exit();

}

/* get mime-type for a specific file */

$filename = "/usr/local/something.txt";

echo finfo_file($finfo, $filename);

/* close connection */

finfo_close($finfo);

?>

The above example will output:

text/plain

See Also

• finfo_close()

finfo_set_flags

finfo_set_flags -- Set libmagic configuration options

Description

bool finfo_set_flags (resource $finfo, int $options)

finfo

bool set_flags (int $options)

This function sets various Fileinfo options. Options can be set also directly in finfo_open()
or other Fileinfo functions.

Parameters

finfo

Fileinfo resource returned by finfo_open().

options

One or disjunction of more Fileinfo constants.

Return Values

Returns TRUE on success or FALSE on failure.

Filesystem

Introduction

No external libraries are needed to build this extension, but if you want PHP to support
LFS (large files) on Linux, then you need to have a recent glibc and you need compile
PHP with the following compiler flags: -D_LARGEFILE_SOURCE
-D_FILE_OFFSET_BITS=64.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Filesystem and Streams Configuration Options

Name Default Changeable Changelog

allow_url_fopen "1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.3.4.
PHP_INI_SYSTEM in
PHP < 6. Available
since PHP 4.0.4.

allow_url_include "0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 5. Available
since PHP 5.2.0.

user_agent NULL PHP_INI_ALL Available since PHP
4.3.0.

default_socket_timeo
ut

"60" PHP_INI_ALL Available since PHP
4.3.0.

from "" PHP_INI_ALL

auto_detect_line_end
ings

"0" PHP_INI_ALL Available since PHP
4.3.0.

Here's a short explanation of the configuration directives.

allow_url_fopen boolean
This option enables the URL-aware fopen wrappers that enable accessing URL object
like files. Default wrappers are provided for the access of remote files using the ftp or
http protocol, some extensions like zlib may register additional wrappers.

Note

This setting can only be set in php.ini due to security reasons.

Note

This option was introduced immediately after the release of version 4.0.3. For
versions up to and including 4.0.3 you can only disable this feature at compile time
by using the configuration switch --disable-url-fopen-wrapper.

Warning

On Windows versions prior to PHP 4.3.0, the following functions do not support
remote file accessing: include(), include_once(), require(), require_once() and
the imagecreatefromXXX functions in the GD Functions extension.

allow_url_include boolean
This option allows the use of URL-aware fopen wrappers with the following functions:
include(), include_once(), require(), require_once().

Note

This setting requires allow_url_fopen to be on.

user_agent string
Define the user agent for PHP to send.

default_socket_timeout integer
Default timeout (in seconds) for socket based streams.

Note

This configuration option was introduced in PHP 4.3.0

from string
Define the anonymous ftp password (your email address).

auto_detect_line_endings boolean
When turned on, PHP will examine the data read by fgets() and file() to see if it is using
Unix, MS-Dos or Macintosh line-ending conventions. This enables PHP to interoperate
with Macintosh systems, but defaults to Off, as there is a very small performance
penalty when detecting the EOL conventions for the first line, and also because people
using carriage-returns as item separators under Unix systems would experience
non-backwards-compatible behaviour.

Note

This configuration option was introduced in PHP 4.3.0

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

GLOB_BRACE (integer)

GLOB_ONLYDIR (integer)

GLOB_MARK (integer)

GLOB_NOSORT (integer)

GLOB_NOCHECK (integer)

GLOB_NOESCAPE (integer)

PATHINFO_DIRNAME (integer)

PATHINFO_BASENAME (integer)

PATHINFO_EXTENSION (integer)

PATHINFO_FILENAME (integer)
Since PHP 5.2.0.

FILE_USE_INCLUDE_PATH (integer)
Search for filename in include_path (since PHP 5).

FILE_APPEND (integer)
Append content to existing file.

FILE_IGNORE_NEW_LINES (integer)
Strip EOL characters (since PHP 5).

FILE_SKIP_EMPTY_LINES (integer)
Skip empty lines (since PHP 5).

FILE_BINARY (integer)
Binary mode (since PHP 6).

FILE_TEXT (integer)
Text mode (since PHP 6).

Filesystem Functions

See Also

For related functions, see also the Directory and Program Execution sections.

For a list and explanation of the various URL wrappers that can be used as remote files,
see also List of Supported Protocols/Wrappers.

basename

basename -- Returns filename component of path

Description

string basename (string $path [, string $suffix])

Given a string containing a path to a file, this function will return the base name of the file.

Parameters

path

A path. On Windows, both slash (/) and backslash (\) are used as directory
separator character. In other environments, it is the forward slash (/).

suffix

If the filename ends in suffix this will also be cut off.

Return Values

Returns the base name of the given path.

ChangeLog

Version Description

4.1.0 The suffix parameter was added

Examples

Example #1380 - basename() example

<?php

$path = "/home/httpd/html/index.php";

$file = basename($path); // $file is set to "index.php"

$file = basename($path, ".php"); // $file is set to "index"

?>

See Also

• dirname()
• pathinfo()

chgrp

chgrp -- Changes file group

Description

bool chgrp (string $filename, mixed $group)

Attempts to change the group of the file filename to group.

Only the superuser may change the group of a file arbitrarily; other users may change the
group of a file to any group of which that user is a member.

Parameters

filename

Path to the file.

group

A group name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

See Also

• chown()

• chmod()

chmod

chmod -- Changes file mode

Description

bool chmod (string $filename, int $mode)

Attempts to change the mode of the specified file to that given in mode.

Parameters

filename

Path to the file.

mode

Note that mode is not automatically assumed to be an octal value, so strings (such as
"g+w") will not work properly. To ensure the expected operation, you need to prefix
mode with a zero (0):

<?php

chmod("/somedir/somefile", 755); // decimal; probably incorrect

chmod("/somedir/somefile", "u+rwx,go+rx"); // string; incorrect

chmod("/somedir/somefile", 0755); // octal; correct value of mode

?>

The mode parameter consists of three octal number components specifying access
restrictions for the owner, the user group in which the owner is in, and to everybody
else in this order. One component can be computed by adding up the needed
permissions for that target user base. Number 1 means that you grant execute rights,
number 2 means that you make the file writeable, number 4 means that you make the
file readable. Add up these numbers to specify needed rights. You can also read more
about modes on Unix systems with 'man 1 chmod' and 'man 2 chmod'.

<?php

// Read and write for owner, nothing for everybody else

chmod("/somedir/somefile", 0600);

// Read and write for owner, read for everybody else

chmod("/somedir/somefile", 0644);

// Everything for owner, read and execute for others

chmod("/somedir/somefile", 0755);

// Everything for owner, read and execute for owner's group

chmod("/somedir/somefile", 0750);

?>

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The current user is the user under which PHP runs. It is probably not the same user
you use for normal shell or FTP access. The mode can be changed only by user who
owns the file on most systems.

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories you are about
to operate on have the same UID (owner) as the script that is being executed. In
addition, you cannot set the SUID, SGID and sticky bits.

See Also

• chown()
• chgrp()

chown

chown -- Changes file owner

Description

bool chown (string $filename, mixed $user)

Attempts to change the owner of the file filename to user user. Only the superuser may
change the owner of a file.

Parameters

filename

Path to the file.

user

A user name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

See Also

• chmod()

clearstatcache

clearstatcache -- Clears file status cache

Description

void clearstatcache (void)

When you use stat(), lstat(), or any of the other functions listed in the affected functions list
(below), PHP caches the information those functions return in order to provide faster
performance. However, in certain cases, you may want to clear the cached information.
For instance, if the same file is being checked multiple times within a single script, and that
file is in danger of being removed or changed during that script's operation, you may elect
to clear the status cache. In these cases, you can use the clearstatcache() function to
clear the information that PHP caches about a file.

You should also note that PHP doesn't cache information about non-existent files. So, if
you call file_exists() on a file that doesn't exist, it will return FALSE until you create the file.
If you create the file, it will return TRUE even if you then delete the file. However unlink()
clears the cache automatically.

Note

This function caches information about specific filenames, so you only need to call
clearstatcache() if you are performing multiple operations on the same filename and
require the information about that particular file to not be cached.

Affected functions include stat(), lstat(), file_exists(), is_writable(), is_readable(),
is_executable(), is_file(), is_dir(), is_link(), filectime(), fileatime(), filemtime(), fileinode(),
filegroup(), fileowner(), filesize(), filetype(), and fileperms().

Return Values

No value is returned.

copy

copy -- Copies file

Description

bool copy (string $source, string $dest [, resource $context])

Makes a copy of the file source to dest.

If you wish to move a file, use the rename() function.

Parameters

source

Path to the source file.

dest

The destination path. If dest is a URL, the copy operation may fail if the wrapper does
not support overwriting of existing files.

Warning

If the destination file already exists, it will be overwritten.

context

A valid context resource created with stream_context_create().

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.3.0 Added context support.

4.3.0 Both source and dest may now be URLs if
the "fopen wrappers" have been enabled.
See fopen() for more details.

Examples

Example #1381 - copy() example

<?php

$file = 'example.txt';

$newfile = 'example.txt.bak';

if (!copy($file, $newfile)) {

 echo "failed to copy $file...\n";

}

?>

See Also

• move_uploaded_file()
• rename()
• The section of the manual about handling file uploads

delete

delete -- See unlink() or unset()

Description

void delete (void)

This is a dummy manual entry to satisfy those people who are looking for unlink() or
unset() in the wrong place.

Return Values

No value is returned.

See Also

• unlink() to delete files
• unset() to delete variables

dirname

dirname -- Returns directory name component of path

Description

string dirname (string $path)

Given a string containing a path to a file, this function will return the name of the directory.

Parameters

path

A path. On Windows, both slash (/) and backslash (\) are used as directory
separator character. In other environments, it is the forward slash (/).

Return Values

Returns the name of the directory. If there are no slashes in path, a dot ('. ') is returned,
indicating the current directory. Otherwise, the returned string is path with any trailing
/component removed.

ChangeLog

Version Description

5.0.0 dirname() is now binary safe

4.0.3 dirname() was fixed to be POSIX-compliant.

Examples

Example #1382 - dirname() example

<?php

$path = "/etc/passwd";

$file = dirname($path); // $file is set to "/etc"

?>

Notes

Note

Since PHP 4.3.0, you will often get a slash or a dot back from dirname() in situations
where the older functionality would have given you the empty string.

Check the following change example:

<?php

//before PHP 4.3.0

dirname('c:/'); // returned '.'

//after PHP 4.3.0

dirname('c:/x'); // returns 'c:\'

dirname('c:/Temp/x'); // returns 'c:/Temp'

dirname('/x'); // returns '\'

?>

See Also

• basename()
• pathinfo()
• realpath()

disk_free_space

disk_free_space -- Returns available space in directory

Description

float disk_free_space (string $directory)

Given a string containing a directory, this function will return the number of bytes available
on the corresponding filesystem or disk partition.

Parameters

directory

A directory of the filesystem or disk partition.

Note

Given a file name instead of a directory, the behaviour of the function is
unspecified and may differ between operating systems and PHP versions.

Return Values

Returns the number of available bytes as a float.

Examples

Example #1383 - disk_free_space() example

<?php

// $df contains the number of bytes available on "/"

$df = disk_free_space("/");

// On Windows:

disk_free_space("C:");

disk_free_space("D:");

?>

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

See Also

• disk_total_space()

disk_total_space

disk_total_space -- Returns the total size of a directory

Description

float disk_total_space (string $directory)

Given a string containing a directory, this function will return the total number of bytes on
the corresponding filesystem or disk partition.

Parameters

directory

A directory of the filesystem or disk partition.

Return Values

Returns the total number of bytes as a float.

Examples

Example #1384 - disk_total_space() example

<?php

// $df contains the total number of bytes available on "/"

$df = disk_total_space("/");

// On Windows:

disk_total_space("C:");

disk_total_space("D:");

?>

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

See Also

• disk_free_space()

diskfreespace

diskfreespace -- Alias of disk_free_space()

Description

This function is an alias of: disk_free_space().

fclose

fclose -- Closes an open file pointer

Description

bool fclose (resource $handle)

The file pointed to by handle is closed.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1385 - A simple fclose() example

<?php

$handle = fopen('somefile.txt', 'r');

fclose($handle);

?>

See Also

• fopen()
• fsockopen()

feof

feof -- Tests for end-of-file on a file pointer

Description

bool feof (resource $handle)

Tests for end-of-file on a file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns TRUE if the file pointer is at EOF or an error occurs (including socket timeout);
otherwise returns FALSE.

Notes

Warning

If a connection opened by fsockopen() wasn't closed by the server, feof() will wait until
a timeout has been reached to return TRUE. The default timeout value is 60 seconds.
You may use stream_set_timeout() to change this value.

Warning

If passed file pointer is not valid you may get an infinite loop, because EOF fails to
return TRUE.

Example #1386 - feof() example with an invalid file pointer

<?php

// if file can not be read or doesn't exist fopen function returns FALSE

$file = @fopen("no_such_file", "r");

// FALSE from fopen will issue warning and result in infinite loop here

while (!feof($file)) {

}

fclose($file);

?>

fflush

fflush -- Flushes the output to a file

Description

bool fflush (resource $handle)

This function forces a write of all buffered output to the resource pointed to by the file
handle.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns TRUE on success or FALSE on failure.

fgetc

fgetc -- Gets character from file pointer

Description

string fgetc (resource $handle)

Gets a character from the given file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

Returns a string containing a single character read from the file pointed to by handle.
Returns FALSE on EOF.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #1387 - A fgetc() example

<?php

$fp = fopen('somefile.txt', 'r');

if (!$fp) {

 echo 'Could not open file somefile.txt';

}

while (false !== ($char = fgetc($fp))) {

 echo "$char\n";

}

?>

Notes

Note

This function is binary-safe.

See Also

• fread()
• fopen()
• popen()
• fsockopen()
• fgets()

fgetcsv

fgetcsv -- Gets line from file pointer and parse for CSV fields

Description

array fgetcsv (resource $handle [, int $length [, string $delimiter [, string $enclosure [,
string $escape]]]])

Similar to fgets() except that fgetcsv() parses the line it reads for fields in CSV format and
returns an array containing the fields read.

Parameters

handle

A valid file pointer to a file successfully opened by fopen(), popen(), or fsockopen().

length

Must be greater than the longest line (in characters) to be found in the CSV file
(allowing for trailing line-end characters). It became optional in PHP 5. Omitting this
parameter (or setting it to 0 in PHP 5.0.4 and later) the maximum line length is not
limited, which is slightly slower.

delimiter

Set the field delimiter (one character only). Defaults as a comma.

enclosure

Set the field enclosure character (one character only). Defaults as a double quotation
mark.

escape

Set the escape character (one character only). Defaults as a backslash (\)

Return Values

Returns an indexed array containing the fields read.

Note

A blank line in a CSV file will be returned as an array comprising a single null field, and
will not be treated as an error.

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

fgetcsv() returns FALSE on error, including end of file.

ChangeLog

Version Description

5.3.0 The escape parameter was added

4.3.5 fgetcsv() is now binary safe

4.3.0 The enclosure parameter was added

Examples

Example #1388 - Read and print the entire contents of a CSV file

<?php

$row = 1;

$handle = fopen("test.csv", "r");

while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {

 $num = count($data);

 echo "<p> $num fields in line $row:
</p>\n";

 $row++;

 for ($c=0; $c < $num; $c++) {

 echo $data[$c] . "
\n";

 }

}

fclose($handle);

?>

Notes

Note

Locale setting is taken into account by this function. If LANG is e.g. en_US.UTF-8, files
in one-byte encoding are read wrong by this function.

See Also

• str_getcsv()
• explode()
• file()
• pack()
• fputcsv()

fgets

fgets -- Gets line from file pointer

Description

string fgets (resource $handle [, int $length])

Gets a line from file pointer.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

length

Reading ends when length - 1 bytes have been read, on a newline (which is included
in the return value), or on EOF (whichever comes first). If no length is specified, it will
keep reading from the stream until it reaches the end of the line.

Note

Until PHP 4.3.0, omitting it would assume 1024 as the line length. If the majority of
the lines in the file are all larger than 8KB, it is more resource efficient for your
script to specify the maximum line length.

Return Values

Returns a string of up to length - 1 bytes read from the file pointed to by handle.

If an error occurs, returns FALSE.

ChangeLog

Version Description

4.3.0 fgets() is now binary safe

4.2.0 The length parameter became optional

Examples

Example #1389 - Reading a file line by line

<?php

$handle = @fopen("/tmp/inputfile.txt", "r");

if ($handle) {

 while (!feof($handle)) {

 $buffer = fgets($handle, 4096);

 echo $buffer;

 }

 fclose($handle);

}

?>

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

Note

People used to the 'C' semantics of fgets() should note the difference in how EOF is
returned.

See Also

• fgetss()
• fread()
• fgetc()
• stream_get_line()
• fopen()
• popen()
• fsockopen()
• stream_set_timeout()

fgetss

fgetss -- Gets line from file pointer and strip HTML tags

Description

string fgetss (resource $handle [, int $length [, string $allowable_tags]])

Identical to fgets(), except that fgetss() attempts to strip any HTML and PHP tags from the
text it reads.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

length

Length of the data to be retrieved.

allowable_tags

You can use the optional third parameter to specify tags which should not be stripped.

Return Values

Returns a string of up to length - 1 bytes read from the file pointed to by handle, with all
HTML and PHP code striped.

If an error occurs, returns FALSE.

ChangeLog

Version Description

5.0.0 The length parameter is optional

3.0.13 and 4.0.0 The allowable_tags parameter was added,

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

See Also

• fgets()
• fopen()
• popen()
• fsockopen()
• strip_tags()

file_exists

file_exists -- Checks whether a file or directory exists

Description

bool file_exists (string $filename)

Checks whether a file or directory exists.

Parameters

filename

Path to the file or directory. On windows, use //computername/share/filename or
\\computername\share\filename to check files on network shares.

Return Values

Returns TRUE if the file or directory specified by filename exists; FALSE otherwise.

Note

This function will return FALSE for symlinks pointing to non-existing files.

Warning

This function returns FALSE for files inaccessible due to safe mode restrictions.
However these files still can be included if they are located in safe_mode_include_dir.

Note

The check is done using the real UID/GID instead of the effective one.

Examples

Example #1390 - Testing whether a file exists

<?php

$filename = '/path/to/foo.txt';

if (file_exists($filename)) {

 echo "The file $filename exists";

} else {

 echo "The file $filename does not exist";

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• is_writable()
• is_file()
• file()

file_get_contents

file_get_contents -- Reads entire file into a string

Description

string file_get_contents (string $filename [, int $flags [, resource $context [, int $
offset [, int $maxlen]]]])

This function is similar to file(), except that file_get_contents() returns the file in a string,
starting at the specified offset up to maxlen bytes. On failure, file_get_contents() will
return FALSE.

file_get_contents() is the preferred way to read the contents of a file into a string. It will use
memory mapping techniques if supported by your OS to enhance performance.

Note

If you're opening a URI with special characters, such as spaces, you need to encode
the URI with urlencode().

Parameters

filename

Name of the file to read.

flags

Warning

For all versions prior to PHP 6, this parameter is called use_include_path and is a
bool. The flags parameter is only available since PHP 6. If you use an older
version and want to search for filename in the include path, this parameter must
be TRUE. Since PHP 6, you have to use the FILE_USE_INCLUDE_PATH flag
instead.

The value of flags can be any combination of the following flags (with some
restrictions), joined with the binary OR (|) operator.

Available flags

Flag Description

FILE_USE_INCLUDE_PATH Search for filename in the include directory.
See include_path for more information.

FILE_TEXT If unicode semantics are enabled, the
default encoding of the read data is UTF-8.
You can specify a different encoding by
creating a custom context or by changing
the default using
stream_default_encoding(). This flag
cannot be used with FILE_BINARY.

FILE_BINARY With this flag, the file is read in binary mode.
This is the default setting and cannot be
used with FILE_TEXT.

context

A valid context resource created with stream_context_create(). If you don't need to use a
custom context, you can skip this parameter by NULL.

offset

The offset where the reading starts.

maxlen

Maximum length of data read.

Return Values

The function returns the read data or FALSE on failure.

ChangeLog

Version Description

5.0.0 Added context support.

5.1.0 Added the offset and maxlen parameters.

6.0.0 The use_include_path parameter was
replaced by the flags parameter.

Notes

Note

This function is binary-safe.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

See Also

• file()
• fgets()
• fread()
• readfile()
• file_put_contents()
• stream_get_contents()
• stream_context_create()

file_put_contents

file_put_contents -- Write a string to a file

Description

int file_put_contents (string $filename, mixed $data [, int $flags [, resource $context]
])

This function is identical to calling fopen(), fwrite() and fclose() successively to write data to
a file.

If filename does not exist, the file is created. Otherwise, the existing file is overwritten,
unless the FILE_APPEND flags is set.

Parameters

filename

Path to the file where to write the data.

data

The data to write. Can be either a string, an array or a stream resource (explained
above). If data is a stream resource, the remaining buffer of that stream will be copied
to the specified file. This is similar with using stream_copy_to_stream(). You can also
specify the data parameter as a single dimension array. This is equivalent to
file_put_contents($filename, implode('', $array)).

flags

The value of flags can be any combination of the following flags (with some
restrictions), joined with the binary OR (|) operator.

Available flags

Flag Description

FILE_USE_INCLUDE_PATH Search for filename in the include directory.
See include_path for more information.

FILE_APPEND If file filename already exists, append the
data to the file instead of overwriting it.

LOCK_EX Acquire an exclusive lock on the file while
proceeding to the writing.

FILE_TEXT data is written in text mode. If unicode
semantics are enabled, the default encoding
is UTF-8. You can specify a different
encoding by creating a custom context or by

using the stream_default_encoding() to
change the default. This flag cannot be used
with FILE_BINARY. This flag is only
available since PHP 6.

FILE_BINARY data will be written in binary mode. This is
the default setting and cannot be used with
FILE_TEXT. This flag is only available since
PHP 6.

context

A valid context resource created with stream_context_create().

Return Values

The function returns the number of bytes that were written to the file, or FALSE on failure.

ChangeLog

Version Description

5.0.0 Added context support

5.1.0 Added support for LOCK_EX and the ability
to pass a stream resource to the data
parameter

6.0.0 Added support for the FILE_TEXT and
FILE_BINARY flags

Notes

Note

This function is binary-safe.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

See Also

• fopen()
• fwrite()
• file_get_contents()
• stream_context_create()

file

file -- Reads entire file into an array

Description

array file (string $filename [, int $flags [, resource $context]])

Reads an entire file into an array.

Note

You can use file_get_contents() to return the contents of a file as a string.

Parameters

filename

Path to the file.

Tip

A URL can be used as a filename with this function if the fopen wrappers have
been enabled. See fopen() for more details on how to specify the filename and List
of Supported Protocols/Wrappers for a list of supported URL protocols.

flags

The optional parameter flags can be one, or more, of the following constants:
FILE_USE_INCLUDE_PATH

Search for the file in the include_path.

FILE_IGNORE_NEW_LINES
Do not add newline at the end of each array element

FILE_SKIP_EMPTY_LINES
Skip empty lines

FILE_TEXT
The content is returned in UTF-8 encoding. You can specify a different encoding by
creating a custom context. This flag cannot be used with FILE_BINARY. This flag
is only available since PHP 6.

FILE_BINARY
The content is read as binary data. This is the default setting and cannot be used
with FILE_TEXT. This flag is only available since PHP 6.

context

A context resource created with the stream_context_create() function.

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns the file in an array. Each element of the array corresponds to a line in the file, with
the newline still attached. Upon failure, file() returns FALSE.

Note

Each line in the resulting array will include the line ending, unless
FILE_IGNORE_NEW_LINES is used, so you still need to use rtrim() if you do not want
the line ending present.

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

ChangeLog

Version Description

6.0.0 Added support for the FILE_TEXT and
FILE_BINARY flags.

5.0.0 The context parameter was added

5.0.0 Prior to PHP 5.0.0 the flags parameter only
covered include_path and was enabled with
1

4.3.0 file() became binary safe

Examples

Example #1391 - file() example

<?php

// Get a file into an array. In this example we'll go through HTTP to get

// the HTML source of a URL.

$lines = file('http://www.example.com/');

// Loop through our array, show HTML source as HTML source; and line numbers
too.

foreach ($lines as $line_num => $line) {

 echo "Line #{$line_num} : " . htmlspecialchars($line) . "
\n";

}

// Another example, let's get a web page into a string. See also
file_get_contents().

$html = implode('', file('http://www.example.com/'));

// Using the optional flags parameter since PHP 5

$trimmed = file('somefile.txt', FILE_IGNORE_NEW_LINES |
FILE_SKIP_EMPTY_LINES);

?>

Notes

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

See Also

• readfile()
• fopen()
• fsockopen()
• popen()
• file_get_contents()
• include()
• stream_context_create()

fileatime

fileatime -- Gets last access time of file

Description

int fileatime (string $filename)

Gets the last access time of the given file.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last accessed, or FALSE in case of an error. The time is
returned as a Unix timestamp.

Examples

Example #1392 - fileatime() example

<?php

// outputs e.g. somefile.txt was last accessed: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last accessed: " . date("F d Y H:i:s.",
fileatime($filename));

}

?>

Notes

Note

The atime of a file is supposed to change whenever the data blocks of a file are being
read. This can be costly performance-wise when an application regularly accesses a
very large number of files or directories.

Some Unix filesystems can be mounted with atime updates disabled to increase the
performance of such applications; USENET news spools are a common example. On
such filesystems this function will be useless.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filemtime()
• fileinode()
• date()

filectime

filectime -- Gets inode change time of file

Description

int filectime (string $filename)

Gets the inode change time of a file.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last changed, or FALSE in case of an error. The time is
returned as a Unix timestamp.

Examples

Example #1393 - A filectime() example

<?php

// outputs e.g. somefile.txt was last changed: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last changed: " . date("F d Y H:i:s.",
filectime($filename));

}

?>

Notes

Note

Note: In most Unix filesystems, a file is considered changed when its inode data is
changed; that is, when the permissions, owner, group, or other metadata from the
inode is updated. See also filemtime() (which is what you want to use when you want

to create "Last Modified" footers on web pages) and fileatime().

Note

Note also that in some Unix texts the ctime of a file is referred to as being the creation
time of the file. This is wrong. There is no creation time for Unix files in most Unix
filesystems.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filemtime()

filegroup

filegroup -- Gets file group

Description

int filegroup (string $filename)

Gets the file group. The group ID is returned in numerical format, use posix_getgrgid() to
resolve it to a group name.

Parameters

filename

Path to the file.

Return Values

Returns the group ID of the file, or FALSE in case of an error. The group ID is returned in
numerical format, use posix_getgrgid() to resolve it to a group name. Upon failure, FALSE
is returned.

Errors/Exceptions

Upon failure, an E_WARNING is emitted.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• fileowner()
• safe_mode_gid

fileinode

fileinode -- Gets file inode

Description

int fileinode (string $filename)

Gets the file inode.

Parameters

filename

Path to the file.

Return Values

Returns the inode number of the file, or FALSE in case of an error.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

filemtime

filemtime -- Gets file modification time

Description

int filemtime (string $filename)

This function returns the time when the data blocks of a file were being written to, that is,
the time when the content of the file was changed.

Parameters

filename

Path to the file.

Return Values

Returns the time the file was last modified, or FALSE in case of an error. The time is
returned as a Unix timestamp, which is suitable for the date() function.

Examples

Example #1394 - filemtime() example

<?php

// outputs e.g. somefile.txt was last modified: December 29 2002 22:16:23.

$filename = 'somefile.txt';

if (file_exists($filename)) {

 echo "$filename was last modified: " . date ("F d Y H:i:s.",
filemtime($filename));

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• filectime()
• stat()
• touch()
• getlastmod()

fileowner

fileowner -- Gets file owner

Description

int fileowner (string $filename)

Gets the file owner.

Parameters

filename

Path to the file.

Return Values

Returns the user ID of the owner of the file, or FALSE in case of an error. The user ID is
returned in numerical format, use posix_getpwuid() to resolve it to a username.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

fileperms

fileperms -- Gets file permissions

Description

int fileperms (string $filename)

Gets permissions for the given file.

Parameters

filename

Path to the file.

Return Values

Returns the permissions on the file, or FALSE in case of an error.

Examples

Example #1395 - Display permissions as an octal value

<?php

echo substr(sprintf('%o', fileperms('/tmp')), -4);

echo substr(sprintf('%o', fileperms('/etc/passwd')), -4);

?>

The above example will output:

1777

0644

Example #1396 - Display full permissions

<?php

$perms = fileperms('/etc/passwd');

if (($perms & 0xC000) == 0xC000) {

 // Socket

 $info = 's';

} elseif (($perms & 0xA000) == 0xA000) {

 // Symbolic Link

 $info = 'l';

} elseif (($perms & 0x8000) == 0x8000) {

 // Regular

 $info = '-';

} elseif (($perms & 0x6000) == 0x6000) {

 // Block special

 $info = 'b';

} elseif (($perms & 0x4000) == 0x4000) {

 // Directory

 $info = 'd';

} elseif (($perms & 0x2000) == 0x2000) {

 // Character special

 $info = 'c';

} elseif (($perms & 0x1000) == 0x1000) {

 // FIFO pipe

 $info = 'p';

} else {

 // Unknown

 $info = 'u';

}

// Owner

$info .= (($perms & 0x0100) ? 'r' : '-');

$info .= (($perms & 0x0080) ? 'w' : '-');

$info .= (($perms & 0x0040) ?

 (($perms & 0x0800) ? 's' : 'x') :

 (($perms & 0x0800) ? 'S' : '-'));

// Group

$info .= (($perms & 0x0020) ? 'r' : '-');

$info .= (($perms & 0x0010) ? 'w' : '-');

$info .= (($perms & 0x0008) ?

 (($perms & 0x0400) ? 's' : 'x') :

 (($perms & 0x0400) ? 'S' : '-'));

// World

$info .= (($perms & 0x0004) ? 'r' : '-');

$info .= (($perms & 0x0002) ? 'w' : '-');

$info .= (($perms & 0x0001) ?

 (($perms & 0x0200) ? 't' : 'x') :

 (($perms & 0x0200) ? 'T' : '-'));

echo $info;

?>

The above example will output:

-rw-r--r--

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• stat()

filesize

filesize -- Gets file size

Description

int filesize (string $filename)

Gets the size for the given file.

Parameters

filename

Path to the file.

Return Values

Returns the size of the file in bytes, or FALSE (and generates an error of level
E_WARNING) in case of an error.

Note

Because PHP's integer type is signed and many platforms use 32bit integers, filesize()
may return unexpected results for files which are larger than 2GB. For files between
2GB and 4GB in size this can usually be overcome by using sprintf("%u", filesize($file))
.

Examples

Example #1397 - filesize() example

<?php

// outputs e.g. somefile.txt: 1024 bytes

$filename = 'somefile.txt';

echo $filename . ': ' . filesize($filename) . ' bytes';

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• file_exists()

filetype

filetype -- Gets file type

Description

string filetype (string $filename)

Returns the type of the given file.

Parameters

filename

Path to the file.

Return Values

Returns the type of the file. Possible values are fifo, char, dir, block, link, file, socket and
unknown.

Returns FALSE if an error occurs. filetype() will also produce an E_NOTICE message if
the stat call fails or if the file type is unknown.

Examples

Example #1398 - filetype() example

<?php

echo filetype('/etc/passwd'); // file

echo filetype('/etc/'); // dir

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_file()
• is_link()
• file_exists()
• stat()
• mime_content_type()

flock

flock -- Portable advisory file locking

Description

bool flock (resource $handle, int $operation [, int &$wouldblock])

flock() allows you to perform a simple reader/writer model which can be used on virtually
every platform (including most Unix derivatives and even Windows).

The lock is released also by fclose() (which is also called automatically when script
finished).

PHP supports a portable way of locking complete files in an advisory way (which means all
accessing programs have to use the same way of locking or it will not work).

Parameters

handle

An open file pointer.

operation

operation is one of the following:

• LOCK_SH to acquire a shared lock (reader).

• LOCK_EX to acquire an exclusive lock (writer).

• LOCK_UN to release a lock (shared or exclusive).

• LOCK_NB if you don't want flock() to block while locking. (not supported on
Windows)

wouldblock

The optional third argument is set to TRUE if the lock would block (EWOULDBLOCK
errno condition).

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.0.1 The LOCK_XXX constants were added.
Prior to that you must use 1 for LOCK_SH,
2 for LOCK_EX, 3 for LOCK_UN and 4 for
LOCK_NB

Examples

Example #1399 - flock() example

<?php

$fp = fopen("/tmp/lock.txt", "w+");

if (flock($fp, LOCK_EX)) { // do an exclusive lock

 fwrite($fp, "Write something here\n");

 flock($fp, LOCK_UN); // release the lock

} else {

 echo "Couldn't lock the file !";

}

fclose($fp);

?>

Notes

Note

flock() locks mandatory under Windows.

Note

Because flock() requires a file pointer, you may have to use a special lock file to
protect access to a file that you intend to truncate by opening it in write mode (with a
"w" or "w+" argument to fopen()).

Warning

flock() will not work on NFS and many other networked file systems. Check your
operating system documentation for more details.

On some operating systems flock() is implemented at the process level. When using a
multithreaded server API like ISAPI you may not be able to rely on flock() to protect
files against other PHP scripts running in parallel threads of the same server instance!

flock() is not supported on antiquated filesystems like FAT and its derivates and will
therefore always return FALSE under this environments (this is especially true for
Windows 98 users).

fnmatch

fnmatch -- Match filename against a pattern

Description

bool fnmatch (string $pattern, string $string [, int $flags])

fnmatch() checks if the passed string would match the given shell wildcard pattern.

Parameters

pattern

The shell wildcard pattern.

string

The tested string. This function is especially useful for filenames, but may also be used
on regular strings. The average user may be used to shell patterns or at least in their
simplest form to '?' and '*' wildcards so using fnmatch() instead of ereg() or
preg_match() for frontend search expression input may be way more convenient for
non-programming users.

flags

See the Unix manpage on fnmatch(3) for flag names (as long as they are not
documented here).

Return Values

Returns TRUE if there is a match, FALSE otherwise.

Examples

Example #1400 - Checking a color name against a shell wildcard pattern

<?php

if (fnmatch("*gr[ae]y", $color)) {

 echo "some form of gray ...";

}

?>

Notes

Warning

For now this function is not available on Windows or other non-POSIX compliant
systems.

See Also

• glob()
• ereg()
• preg_match()
• sscanf()
• printf()
• sprintf()

fopen

fopen -- Opens file or URL

Description

resource fopen (string $filename, string $mode [, bool $use_include_path [, resource $
context]])

fopen() binds a named resource, specified by filename, to a stream.

Parameters

filename

If filename is of the form "scheme://...", it is assumed to be a URL and PHP will
search for a protocol handler (also known as a wrapper) for that scheme. If no
wrappers for that protocol are registered, PHP will emit a notice to help you track
potential problems in your script and then continue as though filename specifies a
regular file. If PHP has decided that filename specifies a local file, then it will try to
open a stream on that file. The file must be accessible to PHP, so you need to ensure
that the file access permissions allow this access. If you have enabled safe mode, or
open_basedir further restrictions may apply. If PHP has decided that filename
specifies a registered protocol, and that protocol is registered as a network URL, PHP
will check to make sure that allow_url_fopen is enabled. If it is switched off, PHP will
emit a warning and the fopen call will fail.

Note

The list of supported protocols can be found in List of Supported
Protocols/Wrappers. Some protocols (also referred to as wrappers) support
context and/or php.ini options. Refer to the specific page for the protocol in use for
a list of options which can be set. (e.g. php.ini value user_agent used by the http
wrapper).

On the Windows platform, be careful to escape any backslashes used in the path to
the file, or use forward slashes.

<?php

$handle = fopen("c:\\data\\info.txt", "r");

?>

mode

The mode parameter specifies the type of access you require to the stream. It may be
any of the following:

A list of possible modes for fopen() using mode

mode Description

'r' Open for reading only; place the file pointer
at the beginning of the file.

'r+' Open for reading and writing; place the file
pointer at the beginning of the file.

'w' Open for writing only; place the file pointer
at the beginning of the file and truncate the
file to zero length. If the file does not exist,
attempt to create it.

'w+' Open for reading and writing; place the file
pointer at the beginning of the file and
truncate the file to zero length. If the file
does not exist, attempt to create it.

'a' Open for writing only; place the file pointer
at the end of the file. If the file does not
exist, attempt to create it.

'a+' Open for reading and writing; place the file
pointer at the end of the file. If the file does
not exist, attempt to create it.

'x' Create and open for writing only; place the
file pointer at the beginning of the file. If the
file already exists, the fopen() call will fail by
returning FALSE and generating an error of
level E_WARNING. If the file does not exist,
attempt to create it. This is equivalent to
specifying O_EXCL|O_CREAT flags for the
underlying open(2) system call.

'x+' Create and open for reading and writing;
place the file pointer at the beginning of the
file. If the file already exists, the fopen() call
will fail by returning FALSE and generating
an error of level E_WARNING. If the file
does not exist, attempt to create it. This is
equivalent to specifying O_EXCL|O_CREAT
flags for the underlying open(2) system call.

Note

Different operating system families have different line-ending conventions. When you
write a text file and want to insert a line break, you need to use the correct line-ending
character(s) for your operating system. Unix based systems use \n as the line ending
character, Windows based systems use \r\n as the line ending characters and

Macintosh based systems use \r as the line ending character.

If you use the wrong line ending characters when writing your files, you might find that
other applications that open those files will "look funny".

Windows offers a text-mode translation flag ('t') which will transparently translate \n to
\r\n when working with the file. In contrast, you can also use 'b' to force binary mode,
which will not translate your data. To use these flags, specify either 'b' or 't' as the last
character of the mode parameter.

The default translation mode depends on the SAPI and version of PHP that you are
using, so you are encouraged to always specify the appropriate flag for portability
reasons. You should use the 't' mode if you are working with plain-text files and you
use \n to delimit your line endings in your script, but expect your files to be readable
with applications such as notepad. You should use the 'b' in all other cases.

If you do not specify the 'b' flag when working with binary files, you may experience
strange problems with your data, including broken image files and strange problems
with \r\n characters.

Note

For portability, it is strongly recommended that you always use the 'b' flag when
opening files with fopen().

Note

Again, for portability, it is also strongly recommended that you re-write code that uses
or relies upon the 't' mode so that it uses the correct line endings and 'b' mode instead.

use_include_path

The optional third use_include_path parameter can be set to '1' or TRUE if you want to
search for the file in the include_path, too.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns a file pointer resource on success, or FALSE on error.

Errors/Exceptions

If the open fails, the function an error of level E_WARNING is generated. You may use @ to
suppress this warning.

ChangeLog

Version Description

4.3.2 As of PHP 4.3.2, the default mode is set to
binary for all platforms that distinguish
between binary and text mode. If you are
having problems with your scripts after
upgrading, try using the 't' flag as a
workaround until you have made your script
more portable as mentioned below

4.3.2 The 'x' and 'x+' option was added

Examples

Example #1401 - fopen() examples

<?php

$handle = fopen("/home/rasmus/file.txt", "r");

$handle = fopen("/home/rasmus/file.gif", "wb");

$handle = fopen("http://www.example.com/", "r");

$handle = fopen("ftp://user:password@example.com/somefile.txt", "w");

?>

Notes

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

If you are experiencing problems with reading and writing to files and you're using the
server module version of PHP, remember to make sure that the files and directories you're
using are accessible to the server process.

See Also

• List of Supported Protocols/Wrappers
• fclose()
• fgets()
• fread()
• fwrite()
• fsockopen()
• file()
• file_exists()
• is_readable()
• stream_set_timeout()
• popen()
• stream_context_create()

fpassthru

fpassthru -- Output all remaining data on a file pointer

Description

int fpassthru (resource $handle)

Reads to EOF on the given file pointer from the current position and writes the results to
the output buffer.

You may need to call rewind() to reset the file pointer to the beginning of the file if you
have already written data to the file.

If you just want to dump the contents of a file to the output buffer, without first modifying it
or seeking to a particular offset, you may want to use the readfile(), which saves you the
fopen() call.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

Return Values

If an error occurs, fpassthru() returns FALSE. Otherwise, fpassthru() returns the number of
characters read from handle and passed through to the output.

Examples

Example #1402 - Using fpassthru() with binary files

<?php

// open the file in a binary mode

$name = './img/ok.png';

$fp = fopen($name, 'rb');

// send the right headers

header("Content-Type: image/png");

header("Content-Length: " . filesize($name));

// dump the picture and stop the script

fpassthru($fp);

exit;

?>

Notes

Note

When using fpassthru() on a binary file on Windows systems, you should make sure to
open the file in binary mode by appending a b to the mode used in the call to fopen().

You are encouraged to use the b flag when dealing with binary files, even if your
system does not require it, so that your scripts will be more portable.

See Also

• readfile()
• fopen()
• popen()
• fsockopen()

fputcsv

fputcsv -- Format line as CSV and write to file pointer

Description

int fputcsv (resource $handle, array $fields [, string $delimiter [, string $enclosure]]
)

fputcsv() formats a line (passed as a fields array) as CSV and write it (terminated by a
newline) to the specified file handle.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or fsockopen() (and not yet closed by fclose()).

fields

An array of values.

delimiter

The optional delimiter parameter sets the field delimiter (one character only).
Defaults as a comma:,.

enclosure

The optional enclosure parameter sets the field enclosure (one character only) and
defaults to a double quotation mark: ".

Return Values

Returns the length of the written string, or FALSE on failure.

Examples

Example #1403 - fputcsv() example

<?php

$list = array (

 'aaa,bbb,ccc,dddd',

 '123,456,789',

 '"aaa","bbb"'

);

$fp = fopen('file.csv', 'w');

foreach ($list as $line) {

 fputcsv($fp, split(',', $line));

}

fclose($fp);

?>

Notes

Note

If PHP is not properly recognizing the line endings when reading files either on or
created by a Macintosh computer, enabling the auto_detect_line_endings run-time
configuration option may help resolve the problem.

See Also

• fgetcsv()

fputs

fputs -- Alias of fwrite()

Description

This function is an alias of: fwrite().

fread

fread -- Binary-safe file read

Description

string fread (resource $handle, int $length)

fread() reads up to length bytes from the file pointer referenced by handle. Reading stops
as soon as one of the following conditions is met:

• length bytes have been read

• EOF (end of file) is reached

• a packet becomes available (for network streams)

• 8192 bytes have been read (after opening userspace stream)

Parameters

handle

A file system pointer resource that is typically created using fopen().

length

Up to length number of bytes read.

Return Values

Returns the read string or FALSE in case of error.

Examples

Example #1404 - A simple fread() example

<?php

// get contents of a file into a string

$filename = "/usr/local/something.txt";

$handle = fopen($filename, "r");

$contents = fread($handle, filesize($filename));

fclose($handle);

?>

Example #1405 - Binary fread() example

Warning

On systems which differentiate between binary and text files (i.e. Windows) the file
must be opened with 'b' included in fopen() mode parameter.

<?php

$filename = "c:\\files\\somepic.gif";

$handle = fopen($filename, "rb");

$contents = fread($handle, filesize($filename));

fclose($handle);

?>

Example #1406 - Remote fread() examples

Warning

When reading from anything that is not a regular local file, such as streams
returned when reading remote files or from popen() and fsockopen(), reading will
stop after a packet is available. This means that you should collect the data
together in chunks as shown in the examples below.

<?php

// For PHP 5 and up

$handle = fopen("http://www.example.com/", "rb");

$contents = stream_get_contents($handle);

fclose($handle);

?>

<?php

$handle = fopen("http://www.example.com/", "rb");

$contents = '';

while (!feof($handle)) {

 $contents .= fread($handle, 8192);

}

fclose($handle);

?>

Notes

Note

If you just want to get the contents of a file into a string, use file_get_contents() as it
has much better performance than the code above.

See Also

• fwrite()
• fopen()
• fsockopen()
• popen()
• fgets()
• fgetss()
• fscanf()
• file()
• fpassthru()

fscanf

fscanf -- Parses input from a file according to a format

Description

mixed fscanf (resource $handle, string $format [, mixed &$...])

The function fscanf() is similar to sscanf(), but it takes its input from a file associated with
handle and interprets the input according to the specified format, which is described in the
documentation for sprintf().

Any whitespace in the format string matches any whitespace in the input stream. This
means that even a tab \t in the format string can match a single space character in the
input stream.

Parameters

handle

A file system pointer resource that is typically created using fopen().

format

The specified format as described in the sprintf() documentation.

...

The optional assigned values.

Return Values

If only two parameters were passed to this function, the values parsed will be returned as
an array. Otherwise, if optional parameters are passed, the function will return the number
of assigned values. The optional parameters must be passed by reference.

ChangeLog

Version Description

4.3.0 Before this time, the maximum number of
characters read from the file was 512 (or up
to the first \n, whichever came first). But
now, arbitrarily long lines will be read and
scanned.

Examples

Example #1407 - fscanf() Example

<?php

$handle = fopen("users.txt", "r");

while ($userinfo = fscanf($handle, "%s\t%s\t%s\n")) {

 list ($name, $profession, $countrycode) = $userinfo;

 //... do something with the values

}

fclose($handle);

?>

Example #1408 - Contents of users.txt

javier argonaut pe

hiroshi sculptor jp

robert slacker us

luigi florist it

See Also

• fread()
• fgets()
• fgetss()
• sscanf()
• printf()
• sprintf()

fseek

fseek -- Seeks on a file pointer

Description

int fseek (resource $handle, int $offset [, int $whence])

Sets the file position indicator for the file referenced by handle. The new position,
measured in bytes from the beginning of the file, is obtained by adding offset to the
position specified by whence.

Parameters

handle

A file system pointer resource that is typically created using fopen().

offset

The offset. To move to a position before the end-of-file, you need to pass a negative
value in offset.

whence

whence values are:

• SEEK_SET - Set position equal to offset bytes.
• SEEK_CUR - Set position to current location plus offset.
• SEEK_END - Set position to end-of-file plus offset.

If whence is not specified, it is assumed to be SEEK_SET.

Return Values

Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not
considered an error.

Examples

Example #1409 - fseek() example

<?php

$fp = fopen('somefile.txt', 'r');

// read some data

$data = fgets($fp, 4096);

// move back to the beginning of the file

// same as rewind($fp);

fseek($fp, 0);

?>

Notes

Note

If you have opened the file in append ("a" or "a+") mode, any data you write to the file
will always be appended, regardless of the file position.

Note

May not be used on file pointers returned by fopen() if they use the "http://" or "ftp://"
formats. fseek() gives also undefined results for append-only streams (opened with "a"
flag).

See Also

• ftell()
• rewind()

fstat

fstat -- Gets information about a file using an open file pointer

Description

array fstat (resource $handle)

Gathers the statistics of the file opened by the file pointer handle. This function is similar
to the stat() function except that it operates on an open file pointer instead of a filename.

Parameters

handle

A file system pointer resource that is typically created using fopen().

Return Values

Returns an array with the statistics of the file; the format of the array is described in detail
on the stat() manual page.

Examples

Example #1410 - fstat() example

<?php

// open a file

$fp = fopen("/etc/passwd", "r");

// gather statistics

$fstat = fstat($fp);

// close the file

fclose($fp);

// print only the associative part

print_r(array_slice($fstat, 13));

?>

The above example will output something similar to:

Array

(

 [dev] => 771

 [ino] => 488704

 [mode] => 33188

 [nlink] => 1

 [uid] => 0

 [gid] => 0

 [rdev] => 0

 [size] => 1114

 [atime] => 1061067181

 [mtime] => 1056136526

 [ctime] => 1056136526

 [blksize] => 4096

 [blocks] => 8

)

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

ftell

ftell -- Tells file pointer read/write position

Description

int ftell (resource $handle)

Tells the file pointer read/write position.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen()
or popen(). ftell() gives undefined results for append-only streams (opened with "a"
flag).

Return Values

Returns the position of the file pointer referenced by handle; i.e., its offset into the file
stream.

If an error occurs, returns FALSE.

Examples

Example #1411 - ftell() example

<?php

// opens a file and read some data

$fp = fopen("/etc/passwd", "r");

$data = fgets($fp, 12);

// where are we ?

echo ftell($fp); // 11

fclose($fp);

?>

See Also

• fopen()
• popen()
• fseek()
• rewind()

ftruncate

ftruncate -- Truncates a file to a given length

Description

bool ftruncate (resource $handle, int $size)

Takes the filepointer, handle, and truncates the file to length, size.

Parameters

handle

The file pointer.

Note

The handle must be open for writing.

size

The size to truncate to.

Note

If size is larger than the file it is extended with null bytes.

If size is smaller than the extra data will be lost.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

PHP 4.3.3 Prior to this release ftruncate() returned an
integer value of 1 on success, instead of
boolean TRUE.

Notes

Note

The file pointer is not changed.

See Also

• fopen()
• fseek()

fwrite

fwrite -- Binary-safe file write

Description

int fwrite (resource $handle, string $string [, int $length])

fwrite() writes the contents of string to the file stream pointed to by handle.

Parameters

handle

A file system pointer resource that is typically created using fopen().

string

The string that is to be written.

length

If the length argument is given, writing will stop after length bytes have been written
or the end of string is reached, whichever comes first. Note that if the length
argument is given, then the magic_quotes_runtime configuration option will be ignored
and no slashes will be stripped from string.

Return Values

fwrite() returns the number of bytes written, or FALSE on error.

Notes

Note

On systems which differentiate between binary and text files (i.e. Windows) the file
must be opened with 'b' included in fopen() mode parameter.

Note

If handle was fopen() ed in append mode, fwrite() s are atomic (unless the size of
string exceeds the filesystem's block size, on some platforms, and as long as the file
is on a local filesystem). That is, there is no need to flock() a resource before calling
fwrite(); all of the data will be written without interruption.

Note

If writing twice to the file pointer, then the data will be appended to the end of the file
content, meaning that the example below wouldn't work as expected:
<?php

$fp = fopen('data.txt', 'w');

fwrite($fp, '1');

fwrite($fp, '23');

fclose($fp);

// the content of 'data.txt' is now 123 and not 23!

?>

Examples

Example #1412 - A simple fwrite() example

<?php

$filename = 'test.txt';

$somecontent = "Add this to the file\n";

// Let's make sure the file exists and is writable first.

if (is_writable($filename)) {

 // In our example we're opening $filename in append mode.

 // The file pointer is at the bottom of the file hence

 // that's where $somecontent will go when we fwrite() it.

 if (!$handle = fopen($filename, 'a')) {

 echo "Cannot open file ($filename)";

 exit;

 }

 // Write $somecontent to our opened file.

 if (fwrite($handle, $somecontent) === FALSE) {

 echo "Cannot write to file ($filename)";

 exit;

 }

 echo "Success, wrote ($somecontent) to file ($filename)";

 fclose($handle);

} else {

 echo "The file $filename is not writable";

}

?>

See Also

• fread()
• fopen()
• fsockopen()
• popen()
• file_get_contents()

glob

glob -- Find pathnames matching a pattern

Description

array glob (string $pattern [, int $flags])

The glob() function searches for all the pathnames matching pattern according to the
rules used by the libc glob() function, which is similar to the rules used by common shells.

Parameters

pattern

The pattern. No tilde expansion or parameter substitution is done.

flags

Valid flags:

• GLOB_MARK - Adds a slash to each item returned

• GLOB_NOSORT - Return files as they appear in the directory (no sorting)

• GLOB_NOCHECK - Return the search pattern if no files matching it were found

• GLOB_NOESCAPE - Backslashes do not quote metacharacters

• GLOB_BRACE - Expands {a,b,c} to match 'a', 'b', or 'c'

• GLOB_ONLYDIR - Return only directory entries which match the pattern

• GLOB_ERR - Stop on read errors (like unreadable directories), by default errors
are ignored.

Return Values

Returns an array containing the matched files/directories, an empty array if no file matched
or FALSE on error.

Note

On some systems it is impossible to distinguish between empty match and an error.

ChangeLog

Version Description

5.1.0 GLOB_ERR was added

4.3.3 GLOB_ONLYDIR became available on
Windows and other systems not using the
GNU C library

Examples

Example #1413 - Convenient way how glob() can replace opendir() and friends.

<?php

foreach (glob("*.txt") as $filename) {

 echo "$filename size " . filesize($filename) . "\n";

}

?>

The above example will output something similar to:

funclist.txt size 44686

funcsummary.txt size 267625

quickref.txt size 137820

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

This function isn't available on some systems (e.g. old Sun OS).

Note

The GLOB_BRACE flag is not available on some non GNU systems, like Solaris.

See Also

• opendir()
• readdir()
• closedir()
• fnmatch()

is_dir

is_dir -- Tells whether the filename is a directory

Description

bool is_dir (string $filename)

Tells whether the given filename is a directory.

Parameters

filename

Path to the file. If filename is a relative filename, it will be checked relative to the
current working directory.

Return Values

Returns TRUE if the filename exists and is a directory, FALSE otherwise.

Examples

Example #1414 - is_dir() example

<?php

var_dump(is_dir('a_file.txt'));

var_dump(is_dir('bogus_dir/abc'));

var_dump(is_dir('..')); //one dir up

?>

The above example will output:

bool(false)

bool(false)

bool(true)

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• chdir()
• dir
• opendir()
• is_file()
• is_link()

is_executable

is_executable -- Tells whether the filename is executable

Description

bool is_executable (string $filename)

Tells whether the filename is executable.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is executable, or FALSE on error.

ChangeLog

Version Description

5.0.0 is_executable() became available with
Windows

Examples

Example #1415 - is_executable() example

<?php

$file = '/home/vincent/somefile.sh';

if (is_executable($file)) {

 echo $file.' is executable';

} else {

 echo $file.' is not executable';

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_file()
• is_link()

is_file

is_file -- Tells whether the filename is a regular file

Description

bool is_file (string $filename)

Tells whether the given file is a regular file.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is a regular file, FALSE otherwise.

Examples

Example #1416 - is_file() example

<?php

var_dump(is_file('a_file.txt')) . "\n";

var_dump(is_file('/usr/bin/')) . "\n";

?>

The above example will output:

bool(true)

bool(false)

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_link()

is_link

is_link -- Tells whether the filename is a symbolic link

Description

bool is_link (string $filename)

Tells whether the given file is a symbolic link.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the filename exists and is a symbolic link, FALSE otherwise.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_dir()
• is_file()
• readlink()

is_readable

is_readable -- Tells whether the filename is readable

Description

bool is_readable (string $filename)

Tells whether the filename is readable.

Parameters

filename

Path to the file.

Return Values

Returns TRUE if the file or directory specified by filename exists and is readable, FALSE
otherwise.

Examples

Example #1417 - is_readable() example

<?php

$filename = 'test.txt';

if (is_readable($filename)) {

 echo 'The file is readable';

} else {

 echo 'The file is not readable';

}

?>

Notes

Keep in mind that PHP may be accessing the file as the user id that the web server runs
as (often 'nobody'). Safe mode limitations are not taken into account before PHP 5.1.5.

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

Note

The check is done using the real UID/GID instead of the effective one.

See Also

• is_writable()
• file_exists()
• fgets()

is_uploaded_file

is_uploaded_file -- Tells whether the file was uploaded via HTTP POST

Description

bool is_uploaded_file (string $filename)

Returns TRUE if the file named by filename was uploaded via HTTP POST. This is useful
to help ensure that a malicious user hasn't tried to trick the script into working on files upon
which it should not be working--for instance, /etc/passwd.

This sort of check is especially important if there is any chance that anything done with
uploaded files could reveal their contents to the user, or even to other users on the same
system.

For proper working, the function is_uploaded_file() needs an argument like
$_FILES['userfile']['tmp_name'], - the name of the uploaded file on the clients machine
$_FILES['userfile']['name'] does not work.

Parameters

filename

The filename being checked.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1418 - is_uploaded_file() example

<?php

if (is_uploaded_file($_FILES['userfile']['tmp_name'])) {

 echo "File ". $_FILES['userfile']['name'] ." uploaded successfully.\n";

 echo "Displaying contents\n";

 readfile($_FILES['userfile']['tmp_name']);

} else {

 echo "Possible file upload attack: ";

 echo "filename '". $_FILES['userfile']['tmp_name'] . "'.";

}

?>

See Also

• move_uploaded_file()
• See Handling file uploads for a simple usage example.

is_writable

is_writable -- Tells whether the filename is writable

Description

bool is_writable (string $filename)

Returns TRUE if the filename exists and is writable. The filename argument may be a
directory name allowing you to check if a directory is writable.

Keep in mind that PHP may be accessing the file as the user id that the web server runs
as (often 'nobody'). Safe mode limitations are not taken into account.

Parameters

filename

The filename being checked.

Return Values

Returns TRUE if the filename exists and is writable.

Examples

Example #1419 - is_writable() example

<?php

$filename = 'test.txt';

if (is_writable($filename)) {

 echo 'The file is writable';

} else {

 echo 'The file is not writable';

}

?>

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• is_readable()
• file_exists()
• fwrite()

is_writeable

is_writeable -- Alias of is_writable()

Description

This function is an alias of: is_writable().

lchgrp

lchgrp -- Changes group ownership of symlink

Description

bool lchgrp (string $filename, mixed $group)

Attempts to change the group of the symlink filename to group.

Only the superuser may change the group of a symlink arbitrarily; other users may change
the group of a symlink to any group of which that user is a member.

Parameters

filename

Path to the symlink.

group

The group specified by name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is not implemented on Windows platforms.

See Also

• chgrp()
• lchown()
• chown()
• chmod()

lchown

lchown -- Changes user ownership of symlink

Description

bool lchown (string $filename, mixed $user)

Attempts to change the owner of the symlink filename to user user.

Only the superuser may change the owner of a symlink.

Parameters

filename

Path to the file.

user

User name or number.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

Note

This function is not implemented on Windows platforms.

See Also

• chgrp()
• lchgrp()
• chgrp()
• chmod()

link

link -- Create a hard link

Description

bool link (string $target, string $link)

link() creates a hard link.

Parameters

target

Target of the link.

link

The link name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work on remote files as the file to be examined must be
accessible via the server's filesystem.

Note

This function is not implemented on Windows platforms.

See Also

• symlink()
• readlink()
• linkinfo()

linkinfo

linkinfo -- Gets information about a link

Description

int linkinfo (string $path)

Gets information about a link.

This function is used to verify if a link (pointed to by path) really exists (using the same
method as the S_ISLNK macro defined in stat.h).

Parameters

path

Path to the link.

Return Values

linkinfo() returns the st_dev field of the Unix C stat structure returned by the lstat system
call. Returns 0 or FALSE in case of error.

Examples

Example #1420 - linkinfo() example

<?php

echo linkinfo('/vmlinuz'); // 835

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

• symlink()
• link()
• readlink()

lstat

lstat -- Gives information about a file or symbolic link

Description

array lstat (string $filename)

Gathers the statistics of the file or symbolic link named by filename.

Parameters

filename

Path to a file or a symbolic link.

Return Values

See the manual page for stat() for information on the structure of the array that lstat()
returns. This function is identical to the stat() function except that if the filename
parameter is a symbolic link, the status of the symbolic link is returned, not the status of
the file pointed to by the symbolic link.

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• stat()

mkdir

mkdir -- Makes directory

Description

bool mkdir (string $pathname [, int $mode [, bool $recursive [, resource $context]]])

Attempts to create the directory specified by pathname.

Parameters

pathname

The directory path.

mode

The mode is 0777 by default, which means the widest possible access. For more
information on modes, read the details on the chmod() page.

Note

mode is ignored on Windows.

Note that you probably want to specify the mode as an octal number, which means it
should have a leading zero. The mode is also modified by the current umask, which
you can change using umask().

recursive

Default to FALSE.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The recursive parameter was added

5.0.0 As of PHP 5.0.0 mkdir() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support mkdir()

4.2.0 The mode parameter became optional.

Examples

Example #1421 - mkdir() example

<?php

mkdir("/path/to/my/dir", 0700);

?>

Notes

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

See Also

• rmdir()

move_uploaded_file

move_uploaded_file -- Moves an uploaded file to a new location

Description

bool move_uploaded_file (string $filename, string $destination)

This function checks to ensure that the file designated by filename is a valid upload file
(meaning that it was uploaded via PHP's HTTP POST upload mechanism). If the file is
valid, it will be moved to the filename given by destination.

This sort of check is especially important if there is any chance that anything done with
uploaded files could reveal their contents to the user, or even to other users on the same
system.

Parameters

filename

The filename of the uploaded file.

destination

The destination of the moved file.

Return Values

If filename is not a valid upload file, then no action will occur, and move_uploaded_file()
will return FALSE.

If filename is a valid upload file, but cannot be moved for some reason, no action will
occur, and move_uploaded_file() will return FALSE. Additionally, a warning will be issued.

Notes

Note

move_uploaded_file() is both safe mode and open_basedir aware. However,
restrictions are placed only on the destination path as to allow the moving of
uploaded files in which filename may conflict with such restrictions.
move_uploaded_file() ensures the safety of this operation by allowing only those files
uploaded through PHP to be moved.

Warning

If the destination file already exists, it will be overwritten.

See Also

• is_uploaded_file()
• See Handling file uploads for a simple usage example

parse_ini_file

parse_ini_file -- Parse a configuration file

Description

array parse_ini_file (string $filename [, bool $process_sections])

parse_ini_file() loads in the ini file specified in filename, and returns the settings in it in an
associative array.

The structure of the ini file is the same as the php.ini 's.

Parameters

filename

The filename of the ini file being parsed.

process_sections

By setting the last process_sections parameter to TRUE, you get a multidimensional
array, with the section names and settings included. The default for process_sections
is FALSE

Return Values

The settings are returned as an associative array.

ChangeLog

Version Description

5.2.4 Keys and section names consisting of
numbers are now evaluated as PHP
integers thus numbers starting by 0 are
evaluated as octals and numbers starting by
0x are evaluated as hexadecimals.

5.0.0 Values enclosed in double quotes can
contain new lines.

4.2.1 This function is now affected by safe mode
and open_basedir.

Examples

Example #1422 - Contents of sample.ini

; This is a sample configuration file

; Comments start with ';', as in php.ini

[first_section]

one = 1

five = 5

animal = BIRD

[second_section]

path = "/usr/local/bin"

URL = "http://www.example.com/~username"

Example #1423 - parse_ini_file() example

Constants may also be parsed in the ini file so if you define a constant as an ini value
before running parse_ini_file(), it will be integrated into the results. Only ini values are
evaluated. For example:

<?php

define('BIRD', 'Dodo bird');

// Parse without sections

$ini_array = parse_ini_file("sample.ini");

print_r($ini_array);

// Parse with sections

$ini_array = parse_ini_file("sample.ini", true);

print_r($ini_array);

?>

The above example will output something similar to:

Array

(

 [one] => 1

 [five] => 5

 [animal] => Dodo bird

 [path] => /usr/local/bin

 [URL] => http://www.example.com/~username

)

Array

(

 [first_section] => Array

 (

 [one] => 1

 [five] => 5

 [animal] = Dodo bird

)

 [second_section] => Array

 (

 [path] => /usr/local/bin

 [URL] => http://www.example.com/~username

)

)

Notes

Note

This function has nothing to do with the php.ini file. It is already processed, the time
you run your script. This function can be used to read in your own application's
configuration files.

Note

If a value in the ini file contains any non-alphanumeric characters it needs to be
enclosed in double-quotes (").

Note

There are reserved words which must not be used as keys for ini files. These include:
null, yes, no, true, and false. Values null, no and false results in "", yes and true results
in "1". Characters {}|&~![()" must not be used anywhere in the key and have a special
meaning in the value.

pathinfo

pathinfo -- Returns information about a file path

Description

mixed pathinfo (string $path [, int $options])

pathinfo() returns an associative array containing information about path.

Parameters

path

The path being checked.

options

You can specify which elements are returned with optional parameter options. It
composes from PATHINFO_DIRNAME, PATHINFO_BASENAME,
PATHINFO_EXTENSION and PATHINFO_FILENAME. It defaults to return all
elements.

Return Values

The following associative array elements are returned: dirname, basename, extension (if
any), and filename.

If options is used, this function will return a string if not all elements are requested.

ChangeLog

Version Description

5.2.0 The PATHINFO_FILENAME constant was
added.

Examples

Example #1424 - pathinfo() Example

<?php

$path_parts = pathinfo('/www/htdocs/index.html');

echo $path_parts['dirname'], "\n";

echo $path_parts['basename'], "\n";

echo $path_parts['extension'], "\n";

echo $path_parts['filename'], "\n"; // since PHP 5.2.0

?>

The above example will output:

/www/htdocs

index.html

html

index

Notes

Note

For information on retrieving the current path info, read the section on predefined
reserved variables.

See Also

• dirname()
• basename()
• parse_url()
• realpath()

pclose

pclose -- Closes process file pointer

Description

int pclose (resource $handle)

Closes a file pointer to a pipe opened by popen().

Parameters

handle

The file pointer must be valid, and must have been returned by a successful call to
popen().

Return Values

Returns the termination status of the process that was run.

See Also

• popen()

popen

popen -- Opens process file pointer

Description

resource popen (string $command, string $mode)

Opens a pipe to a process executed by forking the command given by command.

Parameters

command

The command

mode

The mode

Return Values

Returns a file pointer identical to that returned by fopen(), except that it is unidirectional
(may only be used for reading or writing) and must be closed with pclose(). This pointer
may be used with fgets(), fgetss(), and fwrite().

If an error occurs, returns FALSE.

Examples

Example #1425 - popen() example

<?php

$handle = popen("/bin/ls", "r");

?>

If the command to be executed could not be found, a valid resource is returned. This may
seem odd, but makes sense; it allows you to access any error message returned by the
shell:

Example #1426 - popen() example

<?php

error_reporting(E_ALL);

/* Add redirection so we can get stderr. */

$handle = popen('/path/to/spooge 2>&1', 'r');

echo "'$handle'; " . gettype($handle) . "\n";

$read = fread($handle, 2096);

echo $read;

pclose($handle);

?>

Notes

Note

If you're looking for bi-directional support (two-way), use proc_open().

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• pclose()
• fopen()
• proc_open()

readfile

readfile -- Outputs a file

Description

int readfile (string $filename [, bool $use_include_path [, resource $context]])

Reads a file and writes it to the output buffer.

Parameters

filename

The filename being read.

use_include_path

You can use the optional second parameter and set it to TRUE, if you want to search
for the file in the include_path, too.

context

A context stream resource.

Return Values

Returns the number of bytes read from the file. If an error occurs, FALSE is returned and
unless the function was called as @ readfile(), an error message is printed.

Notes

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

See Also

• fpassthru()
• file()
• fopen()
• include()
• require()
• virtual()
• file_get_contents()
• List of Supported Protocols/Wrappers

readlink

readlink -- Returns the target of a symbolic link

Description

string readlink (string $path)

readlink() does the same as the readlink C function.

Parameters

path

The symbolic link path.

Return Values

Returns the contents of the symbolic link path or FALSE on error.

Examples

Example #1427 - readlink() example

<?php

// output e.g. /boot/vmlinux-2.4.20-xfs

echo readlink('/vmlinuz');

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

• is_link()

• symlink()
• linkinfo()

realpath

realpath -- Returns canonicalized absolute pathname

Description

string realpath (string $path)

realpath() expands all symbolic links and resolves references to '/./', '/../' and extra '/'
characters in the input path. and return the canonicalized absolute pathname.

Parameters

path

The path being checked.

Return Values

Returns the canonicalized absolute pathname on success. The resulting path will have no
symbolic link, '/./' or '/../' components.

realpath() returns FALSE on failure, e.g. if the file does not exist. On BSD systems
realpath() doesn't fail if only the last path component doesn't exist, while other systems
will return FALSE.

Examples

Example #1428 - realpath() example

<?php

chdir('/var/www/');

echo realpath('./../../etc/passwd');

?>

The above example will output:

/etc/passwd

Example #1429 - realpath() on Windows

On windows realpath() will change unix style paths to windows style.

<?php

echo realpath('/windows/system32');

?>

The above example will output:

C:\WINDOWS\System32

See Also

• basename()
• dirname()
• pathinfo()

rename

rename -- Renames a file or directory

Description

bool rename (string $oldname, string $newname [, resource $context])

Attempts to rename oldname to newname.

Parameters

oldname

Note

The old name. The wrapper used in oldname must match the wrapper used in
newname.

newname

The new name.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 rename() can now also be used with some
URL wrappers. Refer to List of Supported

Protocols/Wrappers for a listing of which
wrappers support rename().

4.3.3 rename() is now able to rename files across
partitions on *nix based systems.

Examples

Example #1430 - Example with rename()

<?php

rename("/tmp/tmp_file.txt", "/home/user/login/docs/my_file.txt");

?>

See Also

• copy()
• unlink()
• move_uploaded_file()

rewind

rewind -- Rewind the position of a file pointer

Description

bool rewind (resource $handle)

Sets the file position indicator for handle to the beginning of the file stream.

Note

If you have opened the file in append ("a" or "a+") mode, any data you write to the file
will always be appended, regardless of the file position.

Parameters

handle

The file pointer must be valid, and must point to a file successfully opened by fopen().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fseek()
• ftell()

rmdir

rmdir -- Removes directory

Description

bool rmdir (string $dirname [, resource $context])

Attempts to remove the directory named by dirname. The directory must be empty, and
the relevant permissions must permit this.

Parameters

dirname

Path to the directory.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 As of PHP 5.0.0 rmdir() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support rmdir().

Notes

Note

When safe mode is enabled, PHP checks whether the directory in which the script is
operating has the same UID (owner) as the script that is being executed.

See Also

• mkdir()
• unlink()

set_file_buffer

set_file_buffer -- Alias of stream_set_write_buffer()

Description

This function is an alias of: stream_set_write_buffer().

stat

stat -- Gives information about a file

Description

array stat (string $filename)

Gathers the statistics of the file named by filename. If filename is a symbolic link,
statistics are from the file itself, not the symlink.

lstat() is identical to stat() except it would instead be based off the symlinks status.

Parameters

filename

Path to the file.

Return Values

stat() and fstat() result format

Numeric Associative (since PHP
4.0.6)

Description

0 dev device number

1 ino inode number

2 mode inode protection mode

3 nlink number of links

4 uid userid of owner

5 gid groupid of owner

6 rdev device type, if inode device *

7 size size in bytes

8 atime time of last access (Unix
timestamp)

9 mtime time of last modification

(Unix timestamp)

10 ctime time of last inode change
(Unix timestamp)

11 blksize blocksize of filesystem IO *

12 blocks number of blocks allocated *

* Only valid on systems supporting the st_blksize type - other systems (e.g. Windows)
return -1.

In case of error, stat() returns FALSE.

Errors/Exceptions

Upon failure, an E_WARNING is emitted.

ChangeLog

Version Description

4.0.6 In addition to returning these attributes in a
numeric array, they can be accessed with
associative indices, as noted next to each
parameter

Notes

Note

The results of this function are cached. See clearstatcache() for more details.

Tip

As of PHP 5.0.0, this function can also be used with some URL wrappers. Refer to List
of Supported Protocols/Wrappers for a listing of which wrappers support stat() family of
functionality.

See Also

• lstat()
• fstat()
• filemtime()
• filegroup()

symlink

symlink -- Creates a symbolic link

Description

bool symlink (string $target, string $link)

symlink() creates a symbolic link to the existing target with the specified name link.

Parameters

target

Target of the link.

link

The link name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is not implemented on Windows platforms.

See Also

• link() to create hard links
• readlink() along with linkinfo()

tempnam

tempnam -- Create file with unique file name

Description

string tempnam (string $dir, string $prefix)

Creates a file with a unique filename, with access permission set to 0600, in the specified
directory. If the directory does not exist, tempnam() may generate a file in the system's
temporary directory, and return the name of that.

Parameters

dir

The directory where the temporary filename will be created.

prefix

The prefix of the generated temporary filename.

Return Values

Returns the new temporary filename, or FALSE on failure.

ChangeLog

Version Description

4.0.6 Prior to PHP 4.0.6, the behaviour of the
tempnam() function was system dependent.
On Windows the TMP environment variable
will override the dir parameter, on Linux
the TMPDIR environment variable has
precedence, while SVR4 will always use
your dir parameter if the directory it points
to exists. Consult your system
documentation on the tempnam(3) function
if in doubt.

4.0.3 This function's behavior changed in 4.0.3.
The temporary file is also created to avoid a
race condition where the file might appear in
the filesystem between the time the string
was generated and before the script gets

around to creating the file. Note, that you
need to remove the file in case you need it
no more, it is not done automatically.

Examples

Example #1431 - tempnam() example

<?php

$tmpfname = tempnam("/tmp", "FOO");

$handle = fopen($tmpfname, "w");

fwrite($handle, "writing to tempfile");

fclose($handle);

// do here something

unlink($tmpfname);

?>

Notes

Note

If PHP cannot create a file in the specified dir parameter, it falls back on the system
default.

See Also

• tmpfile()
• sys_get_temp_dir()
• unlink()

tmpfile

tmpfile -- Creates a temporary file

Description

resource tmpfile (void)

Creates a temporary file with a unique name in read-write (w+) mode and returns a file
handle .

The file is automatically removed when closed (using fclose()), or when the script ends.

For details, consult your system documentation on the tmpfile(3) function, as well as the
stdio.h header file.

Return Values

Returns a file handle, similar to the one returned by fopen(), for the new file, or FALSE on
failure.

Examples

Example #1432 - tmpfile() example

<?php

$temp = tmpfile();

fwrite($temp, "writing to tempfile");

fseek($temp, 0);

echo fread($temp, 1024);

fclose($temp); // this removes the file

?>

The above example will output:

writing to tempfile

See Also

• tempnam()
• sys_get_temp_dir()

touch

touch -- Sets access and modification time of file

Description

bool touch (string $filename [, int $time [, int $atime]])

Attempts to set the access and modification times of the file named in the filename
parameter to the value given in time. Note that the access time is always modified,
regardless of the number of parameters.

If the file does not exist, it will be created.

Parameters

filename

The name of the file being touched.

time

The touch time. If time is not supplied, the current system time is used.

atime

If present, the access time of the given filename is set to the value of atime

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1433 - touch() example

<?php

if (touch($FileName)) {

 echo "$FileName modification time has been changed to present time";

} else {

 echo "Sorry, could not change modification time of $FileName";

}

?>

Notes

Warning

It is not currently possible to change the modification time of a directory with this
function under Windows.

umask

umask -- Changes the current umask

Description

int umask ([int $mask])

umask() sets PHP's umask to mask & 0777 and returns the old umask. When PHP is being
used as a server module, the umask is restored when each request is finished.

Parameters

mask

The new umask.

Return Values

umask() without arguments simply returns the current umask otherwise the old umask is
returned.

Examples

Example #1434 - umask() example

<?php

$old = umask(0);

chmod("/path/some_dir/some_file.txt", 0755);

umask($old);

// Checking

if ($old != umask()) {

 die('An error occured while changing back the umask');

}

?>

Notes

Note

Avoid using this function in multithreaded webservers. It is better to change the file
permissions with chmod() after creating the file. Using umask() can lead to unexpected
behavior of concurrently running scripts and the webserver itself because they all use

the same umask.

unlink

unlink -- Deletes a file

Description

bool unlink (string $filename [, resource $context])

Deletes filename. Similar to the Unix C unlink() function.

Parameters

filename

Path to the file.

context

Note

Context support was added with PHP 5.0.0. For a description of contexts, refer to
Stream Functions.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 As of PHP 5.0.0 unlink() can also be used
with some URL wrappers. Refer to List of
Supported Protocols/Wrappers for a listing
of which wrappers support unlink().

See Also

• rmdir() for removing directories

Mimetype

Introduction

Warning

This extension has been deprecated as the PECL extension Fileinfo provides the
same functionality (and more) in a much cleaner way.

The functions in this module try to guess the content type and encoding of a file by looking
for certain magic byte sequences at specific positions within the file. While this is not a
bullet proof approach the heuristics used do a very good job.

This extension is derived from Apache mod_mime_magic, which is itself based on the file
command maintained by Ian F. Darwin. See the source code for further historic and
copyright information.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

You must compile PHP with the configure switch --with-mime-magic to get support for
mime-type functions. The extension needs a copy of the simplified magic file that is
distributed with the Apache httpd.

Note

The configure option has been changed from --enable-mime-magic to
--with-mime-magic since PHP 4.3.2

Note

This extension is not capable of handling the fully decorated magic file that generally
comes with standard Linux distro's and is supposed to be used with recent versions of
file command.

Note

Note to Win32 Users

In order to use this module on a Windows environment, you must set the path to the
bundled magic.mime file in your php.ini.

Example #1435 - Setting the path to magic.mime

mime_magic.magicfile = "$PHP_INSTALL_DIR\magic.mime"

Remember to substitute the $PHP_INSTALL_DIR for your actual path to PHP in the
above example. e.g. c:\php

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Mimetype configuration options

Name Default Changeable Changelog

mime_magic.debug "0" PHP_INI_SYSTEM Available since PHP
5.0.0.

mime_magic.magicfil
e

"/path/to/php/magic.m
ime"

PHP_INI_SYSTEM Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

mime_magic.debug bool
Enable/disable debugging.

mime_magic.magicfile string
The path to the magic.mime file.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Mimetype Functions

mime_content_type

mime_content_type -- Detect MIME Content-type for a file (deprecated)

Description

string mime_content_type (string $filename)

Returns the MIME content type for a file as determined by using information from the
magic.mime file.

Parameters

filename

Path to the tested file.

Return Values

Returns the content type in MIME format, like text/plain or application/octet-stream.

Notes

Warning

This function has been deprecated as the PECL extension Fileinfo provides the same
functionality (and more) in a much cleaner way.

Examples

Example #1436 - mime_content_type() Example

<?php

echo mime_content_type('php.gif') . "\n";

echo mime_content_type('test.php');

?>

The above example will output:

image/gif

text/plain

See Also

• Fileinfo for a replacement

xattr

Introduction

The xattr extension allows for the manipulation of extended attributes on a filesystem.

Installing/Configuring

Requirements

To use xattr, you will need libattr installed. It is available at
» http://oss.sgi.com/projects/xfs/.

Note

These functions only work on filesystems that support extended attributes, and have
them enabled at mount time. Some common filesystems that support extended
attributes are ext2, ext3, reiserfs, jfs, and xfs.

Installation

xattr is currently available through PECL » http://pecl.php.net/package/xattr.

If » PEAR is available on your *nix-like system you can use the pear installer to install the
xattr extension, by the following command: pear -v install xattr.

You can always download the tar.gz package and install xattr by hand:

Example #1437 - xattr install by hand

gunzip xattr-xxx.tgz

tar -xvf xattr-xxx.tar

cd xattr-xxx

phpize

./configure && make && make install

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://oss.sgi.com/projects/xfs/
http://oss.sgi.com/projects/xfs/
http://pecl.php.net/package/xattr
http://pear.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XATTR_ROOT (integer)
Set attribute in root (trusted) namespace. Requires root privileges.

XATTR_DONTFOLLOW (integer)
Do not follow the symbolic link but operate on symbolic link itself.

XATTR_CREATE (integer)
Function will fail if extended attribute already exists.

XATTR_REPLACE (integer)
Function will fail if extended attribute doesn't exist.

xattr Functions

xattr_get

xattr_get -- Get an extended attribute

Description

string xattr_get (string $filename, string $name [, int $flags])

This function gets the value of an extended attribute of a file.

Extended attributes have two different namespaces: user and root. The user namespace is
available to all users, while the root namespace is available only to users with root
privileges. xattr operates on the user namespace by default, but this can be changed with
the flags parameter.

Parameters

filename

The file from which we get the attribute.

name

The name of the attribute.

flags

Supported xattr flags

XATTR_DONTFOLLOW Do not follow the symbolic link but operate
on symbolic link itself.

XATTR_ROOT Set attribute in root (trusted) namespace.
Requires root privileges.

Return Values

Returns a string containing the value or FALSE if the attribute doesn't exist.

Examples

Example #1438 - Checks if system administrator has signed the file

<?php

$file = '/usr/local/sbin/some_binary';

$signature = xattr_get($file, 'Root signature', XATTR_ROOT);

/* ... check if $signature is valid ... */

?>

See Also

• xattr_list()
• xattr_set()
• xattr_remove()

xattr_list

xattr_list -- Get a list of extended attributes

Description

array xattr_list (string $filename [, int $flags])

This functions gets a list of names of extended attributes of a file.

Extended attributes have two different namespaces: user and root. The user namespace is
available to all users, while the root namespace is available only to users with root privileges.
xattr operates on the user namespace by default, but this can be changed with the flags
parameter.

Parameters

filename

The path of the file.

flags

Supported xattr flags

XATTR_DONTFOLLOW Do not follow the symbolic link but operate
on symbolic link itself.

XATTR_ROOT Set attribute in root (trusted) namespace.
Requires root privileges.

Return Values

This function returns an array with names of extended attributes.

Examples

Example #1439 - Prints names of all extended attributes of file

<?php

$file = 'some_file';

$root_attributes = xattr_list($file, XATTR_ROOT);

$user_attributes = xattr_list($file);

echo "Root attributes: \n";

foreach ($root_attributes as $attr_name) {

 printf("%s\n", $attr_name);

}

echo "\n User attributes: \n";

foreach ($attributes as $attr_name) {

 printf("%s\n", $attr_name);

}

?>

See Also

• xattr_get()

xattr_remove

xattr_remove -- Remove an extended attribute

Description

bool xattr_remove (string $filename, string $name [, int $flags])

This function removes an extended attribute of a file.

Extended attributes have two different namespaces: user and root. The user namespace is
available to all users, while the root namespace is available only to users with root privileges.
xattr operates on the user namespace by default, but this can be changed with the flags
parameter.

Parameters

filename

The file from which we remove the attribute.

name

The name of the attribute to remove.

flags

Supported xattr flags

XATTR_DONTFOLLOW Do not follow the symbolic link but operate
on symbolic link itself.

XATTR_ROOT Set attribute in root (trusted) namespace.
Requires root privileges.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1440 - Removes all extended attributes of a file

<?php

$file = 'some_file';

$attributes = xattr_list($file);

foreach ($attributes as $attr_name) {

 xattr_remove($file, $attr_name);

}

?>

See Also

• xattr_list()
• xattr_set()
• xattr_get()

xattr_set

xattr_set -- Set an extended attribute

Description

bool xattr_set (string $filename, string $name, string $value [, int $flags])

This function sets the value of an extended attribute of a file.

Extended attributes have two different namespaces: user and root. The user namespace is
available to all users, while the root namespace is available only to users with root privileges.
xattr operates on the user namespace by default, but this can be changed with the flags
parameter.

Parameters

filename

The file in which we set the attribute.

name

The name of the extended attribute. This attribute will be created if it doesn't exist or
replaced otherwise. You can change this behaviour by using the flags parameter.

value

The value of the attribute.

flags

Supported xattr flags

XATTR_CREATE Function will fail if extended attribute already
exists.

XATTR_REPLACE Function will fail if extended attribute doesn't
exist.

XATTR_DONTFOLLOW Do not follow the symbolic link but operate
on symbolic link itself.

XATTR_ROOT Set attribute in root (trusted) namespace.
Requires root privileges.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1441 - Sets extended attributes on .wav file

<?php

$file = 'my_favourite_song.wav';

xattr_set($file, 'Artist', 'Someone');

xattr_set($file, 'My ranking', 'Good');

xattr_set($file, 'Listen count', '34');

/* ... other code ... */

printf("You've played this song %d times", xattr_get($file, 'Listen count'));

?>

See Also

• xattr_get()
• xattr_remove()

xattr_supported

xattr_supported -- Check if filesystem supports extended attributes

Description

bool xattr_supported (string $filename [, int $flags])

This functions checks if the filesystem holding the given file supports extended attributes.
Read access to the file is required.

Parameters

filename

The path of the tested file.

flags

Supported xattr flags

XATTR_DONTFOLLOW Do not follow the symbolic link but operate
on symbolic link itself.

Return Values

This function returns TRUE if filesystem supports extended attributes, FALSE if it doesn't and
NULL if it can't be determined (for example wrong path or lack of permissions to file).

Examples

Example #1442 - xattr_supported() example

The following code checks if we can use extended attributes.

<?php

$file = 'some_file';

if (xattr_supported($file)) {

 /* ... make use of some xattr_* functions ... */

}

?>

See Also

• xattr_get()
• xattr_list()

xdiff

Introduction

xdiff extension creates and applies patches to both text and binary files.

Installing/Configuring

Requirements

To use xdiff, you will need libxdiff installed, available on the libxdiff homepage
» http://www.xmailserver.org/xdiff-lib.html.

Note

You'll need at least libxdiff 0.7 for these functions to be aware of memory_limit.

Installation

xdiff is currently available through PECL » http://pecl.php.net/package/xdiff.

If » PEAR is available on your *nix-like system you can use the pear installer to install the xdiff
extension, by the following command: pear -v install xdiff.

You can always download the tar.gz package and install xdiff by hand:

Example #1443 - xdiff install by hand

gunzip xdiff-xxx.tgz

tar -xvf xdiff-xxx.tar

cd xdiff-xxx

phpize

./configure && make && make install

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.xmailserver.org/xdiff-lib.html
http://www.xmailserver.org/xdiff-lib.html
http://pecl.php.net/package/xdiff
http://pear.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XDIFF_PATCH_NORMAL (integer)

XDIFF_PATCH_REVERSE (integer)

xdiff Functions

xdiff_file_diff_binary

xdiff_file_diff_binary -- Make binary diff of two files

Description

bool xdiff_file_diff_binary (string $file1, string $file2, string $dest)

Makes a binary diff of two files and stores the result in a file. This function works with both text
and binary files.

Parameters

file1

file2

dest

Path of the resulting file. Resulting file is in binary format.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1444 - xdiff_file_diff_binary() example

The following code makes binary diff of two archives.

<?php

$old_version = 'my_script_1.0.tgz';

$new_version = 'my_script_1.1.tgz';

xdiff_file_diff_binary($old_version, $new_version, 'my_script.bdiff');

?>

Notes

Note

Both files will be loaded into memory so ensure that your memory_limit is set high enough.

See Also

• xdiff_string_diff_binary()

xdiff_file_diff

xdiff_file_diff -- Make unified diff of two files

Description

bool xdiff_file_diff (string $file1, string $file2, string $dest [, int $context [, bool $
minimal]])

Makes a diff of two files and stores the result in a file.

Parameters

file1

file2

dest

Path of the resulting file.

context

Indicates how many lines of context you want to include in diff result.

minimal

Set this parameter to TRUE if you want to minimalize size of diff (can take a long time).
Resulting file is human-readable.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1445 - xdiff_file_diff() example

The following code makes unified diff of two php files.

<?php

$old_version = 'my_script.php';

$new_version = 'my_new_script.php';

xdiff_file_diff($old_version, $new_version, 'my_script.diff', 2);

?>

Notes

Note

This function doesn't work well with binary files. To make diff of binary files use
xdiff_file_diff_binary().

See Also

• xdiff_string_diff()

xdiff_file_merge3

xdiff_file_merge3 -- Merge 3 files into one

Description

mixed xdiff_file_merge3 (string $file1, string $file2, string $file3, string $dest)

Merges three files into one and stores the result in a file.

Parameters

file1

file2

file3

dest

Path of the resulting file.

Return Values

Returns TRUE if merge was successful, string with rejected chunks if it was not or FALSE if
an internal error happened.

Examples

Example #1446 - xdiff_file_merge3() example

The following code merges three files into one.

<?php

$old_version = 'original_script.php';

$fix1 = 'script_with_fix1.php';

$fix2 = 'script_with_fix2.php';

$errors = xdiff_file_merge3($old_version, $fix1, $fix2, 'fixed_script.php');

if (is_string($errors)) {

 echo "Rejects:\n";

 echo $errors;

}

?>

See Also

• xdiff_string_merge3()

xdiff_file_patch_binary

xdiff_file_patch_binary -- Patch a file with a binary diff

Description

bool xdiff_file_patch_binary (string $file, string $patch, string $dest)

Patches a file with a binary patch and stores the result in a file.

Parameters

file

The original file.

patch

The binary patch file.

dest

Path of the resulting file.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1447 - xdiff_file_patch_binary() example

The following code applies binary diff to a file.

<?php

$old_version = 'archive-1.0.tgz';

$patch = 'archive.bpatch';

$result = xdiff_file_patch_binary($old_version, $patch, 'archive-1.1.tgz');

if ($result) {

 echo "File patched";

} else {

 echo "File couldn't be patched";

}

?>

Notes

Note

Both files (file and patch) will be loaded into memory so ensure that your memory_limit
is set high enough.

See Also

• xdiff_string_patch_binary()

xdiff_file_patch

xdiff_file_patch -- Patch a file with an unified diff

Description

mixed xdiff_file_patch (string $file, string $patch, string $dest [, int $flags])

Patches a file with a unified patch and stores the result in a file.

Parameters

file

The original file.

patch

The patch file.

dest

Path of the resulting file.

flags

Can be either XDIFF_PATCH_NORMAL (default mode, normal patch) or
XDIFF_PATCH_REVERSE (reversed patch).

Return Values

Returns FALSE if an internal error happened, string with rejected chunks of patch or TRUE if
patch has been successfully applied.

Examples

Example #1448 - xdiff_file_patch() example

The following code applies unified diff to a file.

<?php

$old_version = 'my_script-1.0.php';

$patch = 'my_script.patch';

$errors = xdiff_file_patch($old_version, $patch, 'my_script-1.1.php');

if (is_string($errors)) {

 echo "Rejects:\n";

 echo $errors;

}

?>

Example #1449 - Patch reversing example

The following code reverses a patch.

<?php

$new_version = 'my_script-1.1.php';

$patch = 'my_script.patch';

$errors = xdiff_file_patch($new_version, $patch, 'my_script-1.0.php',
XDIFF_PATCH_REVERSE);

if (is_string($errors)) {

 echo "Rejects:\n";

 echo $errors;

}

?>

See Also

• xdiff_string_patch()

xdiff_string_diff_binary

xdiff_string_diff_binary -- Make binary diff of two strings

Description

string xdiff_string_diff_binary (string $str1, string $str2)

Makes a binary diff of two strings.

Parameters

str1

str2

Return Values

Returns string with result or FALSE if an internal error happened.

See Also

• xdiff_file_diff_binary()

xdiff_string_diff

xdiff_string_diff -- Make unified diff of two strings

Description

string xdiff_string_diff (string $str1, string $str2 [, int $context [, bool $minimal]])

Makes a unified diff of two strings.

Parameters

str1

str2

context

Indicates how many lines of context you want to include in the diff result.

minimal

Set this parameter to TRUE if you want to minimalize the size of the diff (can take a long
time).

Return Values

Returns string with result or FALSE if an internal error happened.

Examples

Example #1450 - xdiff_string_diff() example

The following code makes unified diff of two articles.

<?php

$old_article = file_get_contents('./old_article.txt');

$new_article = $_REQUEST['article']; /* Let's say that someone pasted a new
article to html form */

$diff = xdiff_string_diff($old_article, $new_article, 1);

if (is_string($diff)) {

 echo "Differences between two articles:\n";

 echo $diff;

}

?>

Notes

Note

This function doesn't work well with binary strings. To make diff of binary strings use
xdiff_string_diff_binary().

See Also

• xdiff_file_diff()

xdiff_string_merge3

xdiff_string_merge3 -- Merge 3 strings into one

Description

mixed xdiff_string_merge3 (string $str1, string $str2, string $str3 [, string &$error])

Merges three strings into one.

Parameters

str1

str2

str3

error

If provided then rejected parts are stored inside this variable.

Return Values

Returns merged string, FALSE if an internal error happened, or TRUE if merged string is
empty.

See Also

• xdiff_file_merge3()

xdiff_string_patch_binary

xdiff_string_patch_binary -- Patch a string with a binary diff

Description

string xdiff_string_patch_binary (string $str, string $patch)

Patches a string with a binary patch.

Parameters

str

The original binary string.

patch

The binary patch string.

Return Values

Returns the patched string, or FALSE on error.

See Also

• xdiff_file_patch_binary()

xdiff_string_patch

xdiff_string_patch -- Patch a string with an unified diff

Description

string xdiff_string_patch (string $str, string $patch [, int $flags [, string &$error]])

Patches a string with a unified patch string.

Parameters

str

The original string.

patch

The unified patch string.

flags

flags can be either XDIFF_PATCH_NORMAL (default mode, normal patch) or
XDIFF_PATCH_REVERSE (reversed patch).

error

If provided then rejected parts are stored inside this variable.

Return Values

Returns the patched string, or FALSE on error.

Examples

Example #1451 - xdiff_string_patch() example

The following code applies changes to some article.

<?php

$old_article = file_get_contents('./old_article.txt');

$diff = $_SERVER['patch']; /* Let's say that someone pasted a patch to html form
*/

$errors = '';

$new_article = xdiff_string_patch($old_article, $diff, XDIFF_PATCH_NORMAL,
$errors);

if (is_string($new_article)) {

 echo "New article:\n";

 echo $new_article;

}

if (strlen($errors)) {

 echo "Rejects: \n";

 echo $errors;

}

?>

See Also

• xdiff_file_patch()

Human Language and Character Encoding Support

Enchant spelling library

Introduction

Enchant is the PHP binding for the » Enchant library. Enchant steps in to provide uniformity
and conformity on top of all spelling libraries, and implement certain features that may be
lacking in any individual provider library. Everything should "just work" for any and every
definition of "just working."

Enchat supports the following backends:

• Aspell/Pspell (intends to replace Ispell)

• Ispell (old as sin, could be interpreted as a defacto standard)

• MySpell/Hunspell (an OOo projects, also used by Mozilla)

• Uspell (primarily Yiddish, Hebrew, and Eastern European languages - hosted in AbiWord's
CVS under the module "uspell")

• Hspell (Hebrew)

• AppleSpell (Mac OSX)

http://www.abisource.com/projects/enchant/

Installing/Configuring

Requirements

This version uses the functions of the » Enchant library by Dom Lachowicz. You need Enchant
1.2.4 or later.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/enchant.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There are two types of resources in this extension. The first one is the broker (backends
manager) and the second is for the dictionary.

http://www.abisource.com/projects/enchant/
http://pecl.php.net/package/enchant
http://pecl.php.net/package/enchant

Predefined Constants

This extension has no constants defined.

Examples

Example #1452 - Enchant Usage Example

<?php

$tag = 'en_US';

$r = enchant_broker_init();

$bprovides = enchant_broker_describe($r);

echo "Current broker provides the following backend(s):\n";

print_r($bprovides);

$dicts = enchant_broker_list_dicts($r);

print_r($dicts);

if (enchant_broker_dict_exists($r,$tag)) {

 $d = enchant_broker_request_dict($r, $tag);

 $dprovides = enchant_dict_describe($d);

 echo "dictionary $tag provides:\n";

 $spellerrors = enchant_dict_check($d, "soong");

 print_r($dprovides);

 echo "found $spellerrors spell errors\n";

 if ($spellerrors) {

 $suggs = enchant_dict_suggest($d, "soong");

 echo "Suggestions for 'soong':";

 print_r($suggs);

 }

 enchant_broker_free_dict($d);

} else {

}

enchant_broker_free($r);

?>

Enchant Functions

enchant_broker_describe

enchant_broker_describe -- Enumerates the Enchant providers

Description

array enchant_broker_describe (resource $broker)

Enumerates the Enchant providers and tells you some rudimentary information about them.
The same info is provided through phpinfo().

Parameters

broker

Broker resource

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1453 - List the backends provided by the given broker

<?php

$r = enchant_broker_init();

$bprovides = enchant_broker_describe($r);

echo "Current broker provides the following backend(s):\n";

print_r($bprovides);

?>

The above example will output something similar to:

Current broker provides the following backend(s):

Array

(

 [0] => Array

 (

 [name] => aspell

 [desc] => Aspell Provider

 [file] => /usr/lib/enchant/libenchant_aspell.so

)

 [1] => Array

 (

 [name] => hspell

 [desc] => Hspell Provider

 [file] => /usr/lib/enchant/libenchant_hspell.so

)

 [2] => Array

 (

 [name] => ispell

 [desc] => Ispell Provider

 [file] => /usr/lib/enchant/libenchant_ispell.so

)

 [3] => Array

 (

 [name] => myspell

 [desc] => Myspell Provider

 [file] => /usr/lib/enchant/libenchant_myspell.so

)

)

enchant_broker_dict_exists

enchant_broker_dict_exists -- Whether a dictionary exists or not. Using non-empty tag

Description

bool enchant_broker_dict_exists (resource $broker, string $tag)

Tells if a dictionary exists or not, using a non-empty tags

Parameters

broker

Broker resource

tag

non-empty tag in the LOCALE format, ex: us_US, ch_DE, etc.

Return Values

Returns TRUE when the tag exist or FALSE when not.

Examples

Example #1454 - A enchant_broker_dict_exists() example

<?php

$tag = 'en_US';

$r = enchant_broker_init();

if (enchant_broker_dict_exists($r,$tag)) {

 echo $tag . " dictionary found.\n";

}

?>

See Also

• enchant_broker_describe()

enchant_broker_free_dict

enchant_broker_free_dict -- Free a dictionary resource

Description

bool enchant_broker_free_dict (resource $dict)

Free a dictionary resource.

Parameters

dict

Dictionary resource.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• enchant_broker_request_dict()
• enchant_broker_request_pwl_dict()

enchant_broker_free

enchant_broker_free -- Free the broker resource and its dictionnaries

Description

bool enchant_broker_free (resource $broker)

Free a broker resource with all its dictionaries.

Parameters

broker

Broker resource

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• enchant_broker_init()

enchant_broker_get_error

enchant_broker_get_error -- Returns the last error of the broker

Description

string enchant_broker_get_error (resource $broker)

Returns the last error which occurred in this broker.

Parameters

broker

Broker resource.

Return Values

Return the msg string if an error was found or FALSE

enchant_broker_init

enchant_broker_init -- create a new broker object capable of requesting

Description

resource enchant_broker_init (void)

Parameters

Return Values

Returns a broker resource on success or FALSE.

See Also

• enchant_broker_free()

enchant_broker_list_dicts

enchant_broker_list_dicts -- Returns a list of available dictionaries

Description

mixed enchant_broker_list_dicts (resource $broker)

Returns a list of available dictionaries with their details.

Parameters

broker

Broker resource

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1455 - List all available dictionaries for one broker

<?php

$r = enchant_broker_init();

$dicts = enchant_broker_list_dicts($r);

print_r($dicts);

?>

The above example will output something similar to:

Array

(

 [0] => Array

 (

 [lang_tag] => de

 [provider_name] => aspell

 [provider_desc] => Aspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_aspell.so

)

 [1] => Array

 (

 [lang_tag] => de_DE

 [provider_name] => aspell

 [provider_desc] => Aspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_aspell.so

)

 [3] => Array

 (

 [lang_tag] => en

 [provider_name] => aspell

 [provider_desc] => Aspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_aspell.so

)

 [4] => Array

 (

 [lang_tag] => en_GB

 [provider_name] => aspell

 [provider_desc] => Aspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_aspell.so

)

 [5] => Array

 (

 [lang_tag] => en_US

 [provider_name] => aspell

 [provider_desc] => Aspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_aspell.so

)

 [6] => Array

 (

 [lang_tag] => hi_IN

 [provider_name] => myspell

 [provider_desc] => Myspell Provider

 [provider_file] => /usr/lib/enchant/libenchant_myspell.so

)

)

See Also

• enchant_broker_describe()

enchant_broker_request_dict

enchant_broker_request_dict -- create a new dictionary using a tag

Description

resource enchant_broker_request_dict (resource $broker, string $tag)

create a new dictionary using tag, the non-empty language tag you wish to request a
dictionary for ("en_US", "de_DE", ...)

Parameters

broker

Broker resource

tag

A tag describing the locale, for example en_US, de_DE

Return Values

Returns a dictionary resource on success or FALSE on failure.

Examples

Example #1456 - A enchant_broker_request_dict() example

Check if a dictionary exists using enchant_broker_dict_exists() and request it.

<?php

$tag = 'en_US';

$broker = enchant_broker_init();

if (enchant_broker_dict_exists($broker,$tag)) {

 $dict = enchant_broker_request_dict($r, $tag);

}

?>

See Also

• enchant_dict_describe()
• enchant_broker_dict_exists()

• enchant_broker_dict_free()

enchant_broker_request_pwl_dict

enchant_broker_request_pwl_dict -- creates a dictionary using a PWL file. A PWL file is
personal word file one word per line.

Description

resource enchant_broker_request_pwl_dict (resource $broker, string $filename)

creates a dictionary using a PWL file. A PWL file is personal word file one word per line.

Parameters

broker

Broker resource

filename

Path to the PWL file.

Return Values

Returns a dictionary resource on success or FALSE on failure.

See Also

• enchant_dict_describe()
• enchant_broker_dict_exists()
• enchant_broker_dict_free()

enchant_broker_set_ordering

enchant_broker_set_ordering -- Declares a preference of dictionaries to use for the language

Description

bool enchant_broker_set_ordering (resource $broker, string $tag, string $ordering)

Declares a preference of dictionaries to use for the language described/referred to by 'tag'.
The ordering is a comma delimited list of provider names. As a special exception, the "*" tag
can be used as a language tag to declare a default ordering for any language that does not
explicitly declare an ordering.

Parameters

broker

Broker resource

tag

Language tag. The special "*" tag can be used as a language tag to declare a default
ordering for any language that does not explicitly declare an ordering.

ordering

Comma delimited list of provider names

Return Values

Returns TRUE on success or FALSE on failure.

enchant_dict_add_to_personal

enchant_dict_add_to_personal -- add a word to personal word list

Description

void enchant_dict_add_to_personal (resource $dict, string $word)

Add a word to personal word list of the given dictionary.

Parameters

dict

Dictionary resource

word

The word to add

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• enchant_broker_request_pwl_dict()
• enchant_broker_request_dict()

enchant_dict_add_to_session

enchant_dict_add_to_session -- add 'word' to this spell-checking session

Description

void enchant_dict_add_to_session (resource $dict, string $word)

Add a word to the given dictionary. It will be added only for the active spell-checking session.

Parameters

dict

Dictionary resource

word

The word to add

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• enchant_broker_request_dict()

enchant_dict_check

enchant_dict_check -- Check whether a word is correctly spelled or not.

Description

bool enchant_dict_check (resource $dict, string $word)

If the word is correctly spelled return TRUE, otherwise return FALSE

Parameters

dict

Dictionary resource

word

The word to check

Return Values

Returns TRUE if the word is spelled correctly, FALSE if not.

enchant_dict_describe

enchant_dict_describe -- Describes an individual dictionary

Description

mixed enchant_dict_describe (resource $dict)

Returns the details of the dictionary.

Parameters

dict

Dictinaray resource

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1457 - A enchant_dict_describe() example

Check if a dictionary exists using enchant_broker_dict_exists() and show the detail of it.

<?php

$tag = 'en_US';

$broker = enchant_broker_init();

if (enchant_broker_dict_exists($broker,$tag)) {

 $dict = enchant_broker_request_dict($r, $tag);

 $dict_details = enchant_dict_describe($dict);

 print_r($dict_details);

}

?>

The above example will output something similar to:

Array

(

 [lang] => en_US

 [name] => aspell

 [desc] => Aspell Provider

 [file] => /usr/lib/enchant/libenchant_aspell.so

)

enchant_dict_get_error

enchant_dict_get_error -- Returns the last error of the current spelling-session

Description

string enchant_dict_get_error (resource $dict)

Returns the last error of the current spelling-session

Parameters

dict

Dictinaray resource

Return Values

Returns the error message as string or FALSE if no error occurred.

enchant_dict_is_in_session

enchant_dict_is_in_session -- whether or not 'word' exists in this spelling-session

Description

bool enchant_dict_is_in_session (resource $dict, string $word)

Tells whether or not a word already exists in the current session.

Parameters

dict

Dictionary resource

word

The word to lookup

Return Values

Returns TRUE if the word exists or FALSE

See Also

• enchant_dict_add_to_session()

enchant_dict_quick_check

enchant_dict_quick_check -- Check the word is correctly spelled and provide suggestions

Description

bool enchant_dict_quick_check (resource $dict, string $word [, array &$suggestions])

If the word is correctly spelled return TRUE, otherwise return FALSE, if suggestions variable is
provided, fill it with spelling alternatives.

Parameters

dict

Dictionary resource

word

The word to check

suggestions

If the word is not correctly spelled, this variable will contain an array of suggestions.

Return Values

Returns TRUE if the word is correctly spelled or FALSE

Examples

Example #1458 - A enchant_dict_quick_check() example

<?php

$tag = 'en_US';

$r = enchant_broker_init();

if (enchant_broker_dict_exists($r,$tag)) {

 $d = enchant_broker_request_dict($r, $tag);

 enchant_dict_quick_check($d, 'soong', $suggs);

 print_r($suggs);

}

?>

The above example will output something similar to:

Array

(

 [0] => song

 [1] => snog

 [2] => soon

 [3] => Sang

 [4] => Sung

 [5] => sang

 [6] => sung

 [7] => sponge

 [8] => spongy

 [9] => snag

 [10] => snug

 [11] => sonic

 [12] => sing

 [13] => songs

 [14] => Son

 [15] => Sonja

 [16] => Synge

 [17] => son

 [18] => Sejong

 [19] => sarong

 [20] => sooner

 [21] => Sony

 [22] => sown

 [23] => scone

 [24] => song's

)

See Also

• enchant_dict_check()
• enchant_dict_suggest()

enchant_dict_store_replacement

enchant_dict_store_replacement -- add a correction for a word.

Description

void enchant_dict_store_replacement (resource $dict, string $mis, string $cor)

Add a correction for 'mis' using 'cor'. Notes that you replaced @mis with @cor, so it's possibly
more likely that future occurrences of @mis will be replaced with @cor. So it might bump
@cor up in the suggestion list.

Parameters

dict

Dictionary resource

mis

The work to fix

cor

The correct word

Return Values

Returns TRUE on success or FALSE on failure.

enchant_dict_suggest

enchant_dict_suggest -- Will return a list of values if any of those pre-conditions are not met.

Description

array enchant_dict_suggest (resource $dict, string $word)

Parameters

dict

Dictionary resource

word

Word to use for the suggestions.

Return Values

Will returns an array of suggestions if the word is bad spelled.

Examples

Example #1459 - A enchant_dict_suggest() example

<?php

$tag = 'en_US';

$r = enchant_broker_init();

if (enchant_broker_dict_exists($r,$tag)) {

 $d = enchant_broker_request_dict($r, $tag);

 $spellerrors = enchant_dict_check($d, "soong");

 echo "found $spellerrors spell errors\n";

 if ($spellerrors) {

 $suggs = enchant_dict_suggest($d, "soong");

 echo "Suggestions for 'soong':";

 print_r($suggs);

 }

 enchant_broker_free_dict($d);

}

enchant_broker_free($r);

?>

See Also

• enchant_dict_check()
• enchant_dict_quick_check()

FriBiDi

Introduction

FriBiDi is a free implementation of the » Unicode Bidirectional Algorithm.

http://www.unicode.org/unicode/reports/tr9/

Installing/Configuring

Requirements

You must download and install the » FriBiDi package.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL extension
may be found in the manual chapter titled Installation of PECL extensions. Additional
information such as new releases, downloads, source files, maintainer information, and a
CHANGELOG, can be located here: » http://pecl.php.net/package/fribidi.

In order to use these functions you must compile PHP with Fribidi support by using the
--with-fribidi[=DIR] configure option.

Windows users will enable php_fribidi.dll inside of php.ini in order to use these functions. The
DLL for this PECL extension may be downloaded from either the » PHP Downloads page or
from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://fribidi.org/
http://pecl.php.net/
http://pecl.php.net/package/fribidi
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FRIBIDI_CHARSET_UTF8 (integer)
Unicode

FRIBIDI_CHARSET_8859_6 (integer)
Arabic

FRIBIDI_CHARSET_8859_8 (integer)
Hebrew

FRIBIDI_CHARSET_CP1255 (integer)
Hebrew/Yiddish

FRIBIDI_CHARSET_CP1256 (integer)
Arabic

FRIBIDI_CHARSET_ISIRI_3342 (integer)
Persian

FRIBIDI_CHARSET_CAP_RTL (integer)
Used for test purposes, will treat CAPS as non-English letters

FRIBIDI_RTL (integer)
Right to left

FRIBIDI_LTR (integer)
Left to right

FRIBIDI_AUTO (integer)
Autodetect the base direction

FriBiDi Functions

fribidi_log2vis

fribidi_log2vis -- Convert a logical string to a visual one

Description

string fribidi_log2vis (string $str, string $direction, int $charset)

Converts a logical string to a visual one.

Parameters

str

The logical string.

direction

One of FRIBIDI_RTL, FRIBIDI_LTR or FRIBIDI_AUTO.

charset

One of the FRIBIDI_CHARSET_XXX constants.

Return Values

Returns the visual string on success, or FALSE on failure.

Gettext

Introduction

The gettext functions implement an NLS (Native Language Support) API which can be used to
internationalize your PHP applications. Please see the gettext documentation for your system
for a thorough explanation of these functions or view the docs at
» http://www.gnu.org/software/gettext/manual/gettext.html.

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html

Installing/Configuring

Requirements

To use these functions you must download and install the GNU gettext package from
» http://www.gnu.org/software/gettext/gettext.html

Installation

To include GNU gettext support in your PHP build you must add the option
--with-gettext[=DIR] where DIR is the gettext install directory, defaults to /usr/local.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.gnu.org/software/gettext/gettext.html
http://www.gnu.org/software/gettext/gettext.html

Predefined Constants

This extension has no constants defined.

Gettext Functions

bind_textdomain_codeset

bind_textdomain_codeset -- Specify the character encoding in which the messages from the
DOMAIN message catalog will be returned

Description

string bind_textdomain_codeset (string $domain, string $codeset)

With bind_textdomain_codeset(), you can set in which encoding will be messages from
domain returned by gettext() and similar functions.

Parameters

domain

The domain

codeset

The code set

Return Values

A string on success.

bindtextdomain

bindtextdomain -- Sets the path for a domain

Description

string bindtextdomain (string $domain, string $directory)

The bindtextdomain() function sets the path for a domain.

Parameters

domain

The domain

directory

The directory path

Return Values

The full pathname for the domain currently being set.

Examples

Example #1460 - bindtextdomain() example

<?php

$domain = 'myapp';

echo bindtextdomain($domain, '/usr/share/myapp/locale');

?>

The above example will output:

/usr/share/myapp/locale

dcgettext

dcgettext -- Overrides the domain for a single lookup

Description

string dcgettext (string $domain, string $message, int $category)

This function allows you to override the current domain for a single message lookup.

Parameters

domain

The domain

message

The message

category

The category

Return Values

A string on success.

See Also

• gettext()

dcngettext

dcngettext -- Plural version of dcgettext

Description

string dcngettext (string $domain, string $msgid1, string $msgid2, int $n, int $category)

This function allows you to override the current domain for a single plural message lookup.

Parameters

domain

The domain

msgid1

msgid2

n

category

Return Values

A string on success.

See Also

• ngettext()

dgettext

dgettext -- Override the current domain

Description

string dgettext (string $domain, string $message)

The dgettext() function allows you to override the current domain for a single message lookup.

Parameters

domain

The domain

message

The message

Return Values

A string on success.

See Also

• gettext()

dngettext

dngettext -- Plural version of dgettext

Description

string dngettext (string $domain, string $msgid1, string $msgid2, int $n)

The dngettext() function allows you to override the current domain for a single plural message
lookup.

Parameters

domain

The domain

msgid1

msgid2

n

Return Values

A string on success.

See Also

• ngettext()

gettext

gettext -- Lookup a message in the current domain

Description

string gettext (string $message)

Looks up a message in the current domain.

Parameters

message

Return Values

Returns a translated string if one is found in the translation table, or the submitted message if
not found.

Examples

Example #1461 - gettext() -check

<?php

// Set language to German

setlocale(LC_ALL, 'de_DE');

// Specify location of translation tables

bindtextdomain("myPHPApp", "./locale");

// Choose domain

textdomain("myPHPApp");

// Translation is looking for in ./locale/de_DE/LC_MESSAGES/myPHPApp.mo now

// Print a test message

echo gettext("Welcome to My PHP Application");

// Or use the alias _() for gettext()

echo _("Have a nice day");

?>

Notes

Note

You may use the underscore character '_' as an alias to this function.

See Also

• setlocale()

ngettext

ngettext -- Plural version of gettext

Description

string ngettext (string $msgid1, string $msgid2, int $n)

The plural version of gettext(). Some languages have more than one form for plural messages
dependent on the count.

Parameters

msgid1

msgid2

n

Return Values

Returns correct plural form of message identified by msgid1 and msgid2 for count n.

Examples

Example #1462 - ngettext() example

<?php

setlocale(LC_ALL, 'cs_CZ');

printf(ngettext("%d window", "%d windows", 1), 1); // 1 okno

printf(ngettext("%d window", "%d windows", 2), 2); // 2 okna

printf(ngettext("%d window", "%d windows", 5), 5); // 5 oken

?>

textdomain

textdomain -- Sets the default domain

Description

string textdomain (string $text_domain)

This function sets the domain to search within when calls are made to gettext(), usually the
named after an application.

Parameters

text_domain

The new message domain, or NULL to get the current setting without changing it

Return Values

If successful, this function returns the current message domain, after possibly changing it.

Internationalization

Introduction

I18n (short for internationalization) are means of adapting an application for different
languages and cultures. The scope of i18n support includes support for local date and time,
currency, measures, number formatting and strings in different encoding. Native support for
i18n and l10n (localization) appeared in PHP6.

Please note that in PHP6, POSIX locales are obsoleted by the set of locales included with the
ICU library.

Warning

This extension is still in development and it isn't available to public yet.

Installing/Configuring

Requirements

The Unicode Extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

i18n Functions

locale_get_default

locale_get_default -- Get the default Locale

Description

string locale_get_default (void)

This function returns the default Locale, which is used by PHP to localize certain features.
Please note that this isn't influenced by setlocale() or the system settings.

Return Values

Returns a string with the current Locale.

Examples

Example #1463 - A locale_get_default() example

<?php

// get the default Locale

echo locale_get_default();

//set a new Locale...

locale_set_default('pt_PT');

// ... and print it

echo locale_get_default();

?>

The above example will output:

en_US_POSIX

pt_PT

See Also

• locale_set_default()

locale_set_default

locale_set_default -- Set the default Locale

Description

bool locale_set_default (string $name)

Sets the default Locale for PHP programs. Please note that this has nothing to do with
setlocale() nor with the system locale.

Parameters

name

The new Locale name. A comprehensive list of the supported locales is available at.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1464 - A locale_set_default() example

This example demonstrates a possible usage of locale_set_default() to localize the sort()
functions.

<?php

// the list of the strings to sort

$array = array(

 'caramelo',

 'cacto',

 'caçada'

);

// set our locale (Portuguese, in this case)

locale_set_default('pt_PT');

// sort using the locale we previously set

sort($array, SORT_LOCALE_STRING);

print_r($array);

?>

The above example will output:

Array

(

 [0] => caçada

 [1] => cacto

 [2] => caramelo

)

If we didn't use the locale, PHP would sort the string using the ASCII characters value,
thus returning (wrongly):

Array

(

 [0] => cacto

 [1] => caramelo

 [2] => caçada

)

See Also

• locale_get_default()

iconv

Introduction

This module contains an interface to iconv character set conversion facility. With this module,
you can turn a string represented by a local character set into the one represented by another
character set, which may be the Unicode character set. Supported character sets depend on
the iconv implementation of your system. Note that the iconv function on some systems may
not work as you expect. In such case, it'd be a good idea to install the » GNU libiconv library. It
will most likely end up with more consistent results.

Since PHP 5.0.0, this extension comes with various utility functions that help you to write
multilingual scripts. Let's have a look at the following sections to explore the new features.

http://www.gnu.org/software/libiconv/

Installing/Configuring

Requirements

You will need nothing if the system you are using is one of the recent POSIX-compliant
systems because standard C libraries that are supplied in them must provide iconv facility.
Otherwise, you have to get the » libiconv library installed in your system.

Installation

To use functions provided by this module, the PHP binary must be built with the following
configure line: --with-iconv[=DIR].

Note

Note to Windows® Users

In order to enable this module on a Windows® environment, you need to put a DLL file
named iconv.dll or iconv-1.3.dll (prior to 4.2.1) which is bundled with the PHP/Win32 binary
package into a directory specified by the PATH environment variable or one of the system
directories of your Windows® installation.

This module is part of PHP as of PHP 5 thus iconv.dll and php_iconv.dll is not needed
anymore.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Iconv configuration options

Name Default Changeable Changelog

iconv.input_encoding "ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

iconv.output_encodin
g

"ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

iconv.internal_encodi
ng

"ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

http://www.gnu.org/software/libiconv/

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Warning

Some systems (like IBM AIX) use "ISO8859-1" instead of "ISO-8859-1" so this value
has to be used in configuration options and function parameters.

Note

Configuration option iconv.input_encoding is currently not used for anything.

Resource Types

This extension has no resource types defined.

Predefined Constants

Since PHP 4.3.0 it is possible to identify at runtime which iconv implementation is adopted
by this extension.

iconv constants

Name Type Description

ICONV_IMPL string The implementation name

ICONV_VERSION string The implementation version

Note

Writing implementation-dependent scripts with these constants is strongly
discouraged.

Since PHP 5.0.0, the following constants are also available:

iconv constants available since PHP 5.0.0

Name Type Description

ICONV_MIME_DECODE_ST
RICT

integer A bitmask used for
iconv_mime_decode()

ICONV_MIME_DECODE_C
ONTINUE_ON_ERROR

integer A bitmask used for
iconv_mime_decode()

iconv Functions

See Also

See also GNU Recode functions.

iconv_get_encoding

iconv_get_encoding -- Retrieve internal configuration variables of iconv extension

Description

mixed iconv_get_encoding ([string $type])

Retrieve internal configuration variables of iconv extension.

Parameters

type

The value of the optional type can be:

• all
• input_encoding
• output_encoding
• internal_encoding

Return Values

Returns the current value of the internal configuration variable if successful, or FALSE on
failure.

If type is omitted or set to "all", iconv_get_encoding() returns an array that stores all these
variables.

Examples

Example #1465 - iconv_get_encoding() example

<pre>

<?php

iconv_set_encoding("internal_encoding", "UTF-8");

iconv_set_encoding("output_encoding", "ISO-8859-1");

var_dump(iconv_get_encoding('all'));

?>

</pre>

The above example will output:

Array

(

 [input_encoding] => ISO-8859-1

 [output_encoding] => ISO-8859-1

 [internal_encoding] => UTF-8

)

See Also

• iconv_set_encoding()
• ob_iconv_handler()

iconv_mime_decode_headers

iconv_mime_decode_headers -- Decodes multiple MIME header fields at once

Description

array iconv_mime_decode_headers (string $encoded_headers [, int $mode [, string $
charset]])

Returns an associative array that holds a whole set of MIME header fields specified by
encoded_headers on success, or FALSE if an error occurs during the decoding.

Each key of the return value represents an individual field name and the corresponding
element represents a field value. If more than one field of the same name are present,
iconv_mime_decode_headers() automatically incorporates them into a numerically
indexed array in the order of occurrence.

Parameters

encoded_headers

The encoded headers, as a string.

mode

mode determines the behaviour in the event iconv_mime_decode_headers()
encounters a malformed MIME header field. You can specify any combination of the
following bitmasks.

Bitmasks acceptable to iconv_mime_decode_headers()

Value Constant Description

1 ICONV_MIME_DECODE_ST
RICT

If set, the given header is
decoded in full conformance
with the standards defined in
» RFC2047. This option is
disabled by default because
there are a lot of broken mail
user agents that don't follow
the specification and don't
produce correct MIME
headers.

2 ICONV_MIME_DECODE_C
ONTINUE_ON_ERROR

If set, iconv_mime_decode_h
eaders() attempts to ignore
any grammatical errors and
continue to process a given
header.

http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2047

charset

The optional charset parameter specifies the character set to represent the result by. If
omitted, iconv.internal_encoding will be used.

Examples

Example #1466 - iconv_mime_decode_headers() example

<?php

$headers_string = <<<EOF

Subject: =?UTF-8?B?UHLDvGZ1bmcgUHLDvGZ1bmc=?=

To: example@example.com

Date: Thu, 1 Jan 1970 00:00:00 +0000

Message-Id: <example@example.com>

Received: from localhost (localhost [127.0.0.1]) by localhost

 with SMTP id example for <example@example.com>;

 Thu, 1 Jan 1970 00:00:00 +0000 (UTC)

 (envelope-from example-return-0000-example=example.com@example.com)

Received: (qmail 0 invoked by uid 65534); 1 Thu 2003 00:00:00 +0000

EOF;

$headers = iconv_mime_decode_headers($headers_string, 0, "ISO-8859-1");

print_r($headers);

?>

The above example will output:

Array

(

 [Subject] => Prüfung Prüfung

 [To] => example@example.com

 [Date] => Thu, 1 Jan 1970 00:00:00 +0000

 [Message-Id] => <example@example.com>

 [Received] => Array

 (

 [0] => from localhost (localhost [127.0.0.1]) by localhost with SMTP
id example for <example@example.com>; Thu, 1 Jan 1970 00:00:00 +0000 (UTC)
(envelope-from example-return-0000-example=example.com@example.com)

 [1] => (qmail 0 invoked by uid 65534); 1 Thu 2003 00:00:00 +0000

)

)

See Also

• iconv_mime_decode()
• mb_decode_mimeheader()
• imap_mime_header_decode()

• imap_base64()
• imap_qprint()

iconv_mime_decode

iconv_mime_decode -- Decodes a MIME header field

Description

string iconv_mime_decode (string $encoded_header [, int $mode [, string $charset]])

Decodes a MIME header field.

Parameters

encoded_header

The encoded header, as a string.

mode

mode determines the behaviour in the event iconv_mime_decode() encounters a
malformed MIME header field. You can specify any combination of the following bitmasks.

Bitmasks acceptable to iconv_mime_decode()

Value Constant Description

1 ICONV_MIME_DECODE_ST
RICT

If set, the given header is
decoded in full conformance
with the standards defined in
» RFC2047. This option is
disabled by default because
there are a lot of broken mail
user agents that don't follow
the specification and don't
produce correct MIME
headers.

2 ICONV_MIME_DECODE_C
ONTINUE_ON_ERROR

If set, iconv_mime_decode_h
eaders() attempts to ignore
any grammatical errors and
continue to process a given
header.

charset

The optional charset parameter specifies the character set to represent the result by. If
omitted, iconv.internal_encoding will be used.

Return Values

http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2047

Returns a decoded MIME field on success, or FALSE if an error occurs during the decoding.

Examples

Example #1467 - iconv_mime_decode() example

<?php

// This yields "Subject: Prüfung Prüfung"

echo iconv_mime_decode("Subject: =?UTF-8?B?UHLDvGZ1bmcgUHLDvGZ1bmc=?=",

 0, "ISO-8859-1");

?>

See Also

• iconv_mime_decode_headers()
• mb_decode_mimeheader()
• imap_mime_header_decode()
• imap_base64()
• imap_qprint()

iconv_mime_encode

iconv_mime_encode -- Composes a MIME header field

Description

string iconv_mime_encode (string $field_name, string $field_value [, array $preferences
])

Composes and returns a string that represents a valid MIME header field, which looks like the
following:
Subject: =?ISO-8859-1?Q?Pr=FCfung_f=FCr?= Entwerfen von einer MIME kopfzeile
In the above example, "Subject" is the field name and the portion that begins with
"=?ISO-8859-1?..." is the field value.

Parameters

field_name

The field name.

field_value

The field value.

preferences

You can control the behaviour of iconv_mime_encode() by specifying an associative array
that contains configuration items to the optional third parameter preferences. The items
supported by iconv_mime_encode() are listed below. Note that item names are treated
case-sensitive.

Configuration items supported by iconv_mime_encode()

Item Type Description Default value Example

scheme string Specifies the
method to
encode a field
value by. The
value of this item
may be either
"B" or "Q", where
"B" stands for
base64 encoding
scheme and "Q"
stands for
quoted-printable
encoding
scheme.

B B

input-charset string Specifies the
character set in
which the first
parameter
field_name and
the second
parameter
field_value are
presented. If not
given, iconv_mi
me_encode()
assumes those
parameters are
presented to it in
the iconv.internal
_encoding ini
setting.

iconv.internal_en
coding

ISO-8859-1

output-charset string Specifies the
character set to
use to compose
the MIME
header. If not
given, the same
value as
input-charset will
be used.

iconv.internal_en
coding

UTF-8

line-length integer Specifies the
maximum length
of the header
lines. The
resulting header
is "folded" to a
set of multiple
lines in case the
resulting header
field would be
longer than the
value of this
parameter,
according to
» RFC2822 -
Internet
Message Format
. If not given, the
length will be
limited to 76
characters.

76 996

line-break-chars string Specifies the
sequence of

\r\n \n

http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2822

characters to
append to each
line as an
end-of-line sign
when "folding" is
performed on a
long header field.
If not given, this
defaults to "\r\n" (
CR LF). Note
that this
parameter is
always treated
as an ASCII
string regardless
of the value of
input-charset.

Return Values

Returns an encoded MIME field on success, or FALSE if an error occurs during the encoding.

Examples

Example #1468 - iconv_mime_encode() example

<?php

$preferences = array(

 "input-charset" => "ISO-8859-1",

 "output-charset" => "UTF-8",

 "line-length" => 76,

 "line-break-chars" => "\n"

);

$preferences["scheme"] = "Q";

// This yields "Subject: =?UTF-8?Q?Pr=C3=BCfung_Pr=C3=BCfung?="

echo iconv_mime_encode("Subject", "Prüfung Prüfung", $preferences);

$preferences["scheme"] = "B";

// This yields "Subject: =?UTF-8?B?UHLDvGZ1bmcgUHLDvGZ1bmc=?="

echo iconv_mime_encode("Subject", "Prüfung Prüfung", $preferences);

?>

See Also

• imap_binary()
• mb_encode_mimeheader()
• imap_8bit()

iconv_set_encoding

iconv_set_encoding -- Set current setting for character encoding conversion

Description

bool iconv_set_encoding (string $type, string $charset)

Changes the value of the internal configuration variable specified by type to charset.

Parameters

type

The value of type can be any one of those:

• input_encoding
• output_encoding
• internal_encoding

charset

The character set.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1469 - iconv_set_encoding() example

<?php

iconv_set_encoding("internal_encoding", "UTF-8");

iconv_set_encoding("output_encoding", "ISO-8859-1");

?>

See Also

• iconv_get_encoding()
• ob_iconv_handler()

iconv_strlen

iconv_strlen -- Returns the character count of string

Description

int iconv_strlen (string $str [, string $charset])

In contrast to strlen(), iconv_strlen() counts the occurrences of characters in the given byte
sequence str on the basis of the specified character set, the result of which is not necessarily
identical to the length of the string in byte.

Parameters

str

The string.

charset

If charset parameter is omitted, str is assumed to be encoded in iconv.internal_encoding
.

Return Values

Returns the character count of str, as an integer.

See Also

• strlen()
• mb_strlen()

iconv_strpos

iconv_strpos -- Finds position of first occurrence of a needle within a haystack

Description

int iconv_strpos (string $haystack, string $needle [, int $offset [, string $charset]])

Finds position of first occurrence of a needle within a haystack.

In contrast to strpos(), the return value of iconv_strpos() is the number of characters that
appear before the needle, rather than the offset in bytes to the position where the needle has
been found. The characters are counted on the basis of the specified character set charset.

Parameters

haystack

The entire string.

needle

The searched substring.

offset

The optional offset parameter specifies the position from which the search should be
performed.

charset

If charset parameter is omitted, string are assumed to be encoded in
iconv.internal_encoding.

If haystack or needle is not a string, it is converted to a string and applied as the ordinal value
of a character.

Return Values

Returns the numeric position of the first occurrence of needle in haystack.

If needle is not found, iconv_strpos() will return FALSE.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value which
evaluates to FALSE, such as 0 or "". Please read the section on Booleans for more
information. Use the === operator for testing the return value of this function.

See Also

• strpos()
• iconv_strrpos()
• mb_strpos()

iconv_strrpos

iconv_strrpos -- Finds the last occurrence of a needle within a haystack

Description

int iconv_strrpos (string $haystack, string $needle [, string $charset])

In contrast to strpos(), the return value of iconv_strrpos() is the number of characters that
appear before the needle, rather than the offset in bytes to the position where the needle has
been found.

Parameters

haystack

The entire string.

needle

The searched substring.

charset

If charset parameter is omitted, string are assumed to be encoded in
iconv.internal_encoding.

If haystack or needle is not a string, it is converted to a string and applied as the ordinal value
of a character.

Return Values

Returns the numeric position of the last occurrence of needle in haystack. The characters are
counted on the basis of the specified character set charset.

If needle is not found, iconv_strrpos() will return FALSE.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value which
evaluates to FALSE, such as 0 or "". Please read the section on Booleans for more
information. Use the === operator for testing the return value of this function.

See Also

• strrpos()
• iconv_strpos()
• mb_strrpos()

iconv_substr

iconv_substr -- Cut out part of a string

Description

string iconv_substr (string $str, int $offset)

string iconv_substr (string $str, int $offset, int $length, string $charset)

Cuts a portion of str specified by the offset and length parameters.

Parameters

str

The original string.

offset

If offset is non-negative, iconv_substr() cuts the portion out of str beginning at offset
'th character, counting from zero. If offset is negative, iconv_substr() cuts out the portion
beginning at the position, offset characters away from the end of str.

length

If length is given and is positive, the return value will contain at most length characters of
the portion that begins at offset (depending on the length of string). If negative length
is passed, iconv_substr() cuts the portion out of str from the offset 'th character up to
the character that is length characters away from the end of the string. In case offset is
also negative, the start position is calculated beforehand according to the rule explained
above.

charset

If charset parameter is omitted, string are assumed to be encoded in
iconv.internal_encoding. Note that offset and length parameters are always deemed to
represent offsets that are calculated on the basis of the character set determined by
charset, whilst the counterpart substr() always takes these for byte offsets.

Return Values

Returns the portion of str specified by the offset and length parameters.

If str is shorter than offset characters long, FALSE will be returned.

See Also

• substr()

• mb_substr()
• mb_strcut()

iconv

iconv -- Convert string to requested character encoding

Description

string iconv (string $in_charset, string $out_charset, string $str)

Performs a character set conversion on the string str from in_charset to out_charset.

Parameters

in_charset

The input charset.

out_charset

The output charset. If you append the string //TRANSLIT to out_charset transliteration is
activated. This means that when a character can't be represented in the target charset, it
can be approximated through one or several similarly looking characters. If you append
the string //IGNORE, characters that cannot be represented in the target charset are
silently discarded. Otherwise, str is cut from the first illegal character.

str

The string to be converted.

Return Values

Returns the converted string or FALSE on failure.

Examples

Example #1470 - iconv() example

<?php

echo iconv("ISO-8859-1", "UTF-8", "This is a test.");

?>

ob_iconv_handler

ob_iconv_handler -- Convert character encoding as output buffer handler

Description

string ob_iconv_handler (string $contents, int $status)

Converts the string encoded in internal_encoding to output_encoding.

internal_encoding and output_encoding should be defined in the php.ini file or in
iconv_set_encoding().

Parameters

See ob_start() for information about this handler parameters.

Return Values

See ob_start() for information about this handler return values.

Examples

Example #1471 - ob_iconv_handler() example:

<?php

iconv_set_encoding("internal_encoding", "UTF-8");

iconv_set_encoding("output_encoding", "ISO-8859-1");

ob_start("ob_iconv_handler"); // start output buffering

?>

See Also

• iconv_get_encoding()
• iconv_set_encoding()
• output-control functions

Internationalization Functions

Introduction

Internationalization extension (further is referred as Intl) is a wrapper for » ICU library,
enabling PHP programmers to perform UCA-conformant collation and
date/time/number/currency formatting in their scripts.

It tends to closely follow ICU APIs, so that people having experience working with ICU in either
C/C++ or Java could easily use the PHP API. Also, this way ICU documentation would be
useful to understand various ICU functions.

Intl consists of several modules, each of them exposes the corresponding ICU API:

• Collator: provides string comparison capability with support for appropriate locale-sensitive
sort orderings.

• Number Formatter: allows to display number according to the localized format or given
pattern or set of rules, and to parse strings into numbers.

• Message Formatter: allows to create messages incorporating data (such as numbers or
dates) formatted according to given pattern and locale rules, and parse messages
extracting data from them.

• Normalizer: provides a function to transform text into one of the Unicode normalization
forms, and provides a routine to test if a given string is already normalized.

• Locale: provides interaction with locale identifiers in the form of functions to get subtags
from locale identifier; parse, compose, match(lookup and filter) locale identifiers.

Links

• » Miscellaneous ICU docs

• » ICU User Guide

• » Unicode Collation Algorithm

http://www.icu-project.org/
http://www.icu-project.org/docs/
http://www.icu-project.org/userguide/
http://www.unicode.org/reports/tr10/

Installing/Configuring

Requirements

To build the extension you need to install the » ICU library of version 3.6+.

You will also need the latest version of PHP. Collator is known to work well on PHP 5.1.3+ and
5.2.0+.

Installation

Run:
$ make install

Then enable the extension by adding the following line to [PHP] section of your php.ini:
extension=intl.so

Testing

Run:
$ make test

Note that the tests may fail if:

• The Collator extension is already enabled in php.ini

• LD_LIBRARY_PATH is used to load ICU libraries and value of the 'variables_order' setting
in php.ini doesn't contain letter 'E' (missing 'E' means "do not register Environment
variables");

Building

Let's assume that you have installed PHP to /opt/php5/ and ICU is installed to /opt/icu/. Run
the following commands:

$ /opt/php5/bin/phpize

$./configure --with-php-config=/opt/php5/bin/php-config --with-icu-dir=/opt/icu

$ make

If your ICU is installed to a non-standard directory then you might want to specify its location in
LD_LIBRARY_PATH environment variable so that dynamic linker can find it:

http://www.icu-project.org/

$ export LD_LIBRARY_PATH=/opt/icu/lib

Otherwise, if PHP and ICU are installed to their default locations, then the additional options to
`configure' are not needed.

Resource Types

This extension has no resource types defined.

Predefined Constants

INTL_MAX_LOCALE_LEN (integer)
Limit on locale length, set to 64 in PHP code. Locale names longer than this limit will not
be accepted.

Examples

Basic usage of this extension

Each module provides two kind of APIs: a procedural one and an object oriented one. Both
are actually identical and described in the corresponding document.

Note

All input strings must be in UTF-8 encoding. All output strings are also in UTF-8.

Example #1472 - Example of using the procedural API

<?php

$coll = collator_create('en_US');

$result = collator_compare($coll, "string#1", "string#2");

?>

Example #1473 - Example of using the object-oriented API

<?php

$coll = new Collator('en_US');

$al = $coll->getLocale(Locale::ACTUAL_LOCALE);

echo "Actual locale: $al\n";

$formatter = new NumberFormatter('en_US', NumberFormatter::DECIMAL);

echo $formatter->format(1234567);

?>

intl Functions

grapheme_extract

grapheme_extract -- Function to extract a sequence of default grapheme clusters from a text
buffer, which must be encoded in UTF-8.

Description

Procedural style

string grapheme_extract (string $haystack, int $size [, int $extract_type [, int $start [, int
&$next]]])

Function to extract a sequence of default grapheme clusters from a text buffer, which must be
encoded in UTF-8.

Parameters

haystack

String to search.

size

Maximum number items - based on the $extract_type - to return.

extract_type

Defines the type of units referred to by the $size parameter:

• GRAPHEME_EXTR_COUNT (default) - $size is the number of default grapheme
clusters to extract.

• GRAPHEME_EXTR_MAXBYTES - $size is the maximum number of bytes returned.
• GRAPHEME_EXTR_MAXCHARS - $size is the maximum number of UTF-8

characters returned.

start

Starting position in $haystack in bytes - if given, it must be zero or a positive value that is
less than or equal to the length of $haystack in bytes. The default is zero. If $start does not
point to the first byte of a UTF-8 character, the start position is moved to the next character
boundary.

next

Reference to a value that will be set to the next starting position. When the call returns,
this may point to the first byte position past the end of the string.

Return Values

A string starting at offset $start and ending on a default grapheme cluster boundary that
conforms to the $size and $extract_type specified.

Examples

Example #1474 - grapheme_extract() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print urlencode(grapheme_extract($char_a_ring_nfd . $char_o_diaeresis_nfd, 1,
GRAPHEME_EXTR_COUNT, 2));

?>

The above example will output:

o%CC%88

See Also

• grapheme_substr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_stripos

grapheme_stripos -- Find position (in grapheme units) of first occurrence of a case-insensitive
string

Description

Procedural style

int grapheme_stripos (string $haystack, string $needle [, int $offset])

Find position (in grapheme units) of first occurrence of a case-insensitive string

Parameters

haystack

The string to look in. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

offset

The optional $offset parameter allows you to specify where in haystack to start searching
as an offset in grapheme units (not bytes or characters). If not given, the default is zero.
The position returned is still relative to the beginning of haystack regardless of the value of
$offset.

Return Values

Returns the position as an integer. If needle is not found, grapheme_stripos() will return
boolean FALSE.

Examples

Example #1475 - grapheme_stripos() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

$char_O_diaeresis_nfd = "O\xCC\x88"; // 'LATIN CAPITAL LETTER O WITH DIAERESIS'
(U+00D6) normalization form "D"

print grapheme_stripos($char_a_ring_nfd . $char_a_ring_nfd .
$char_o_diaeresis_nfd, $char_O_diaeresis_nfd);

?>

The above example will output:

2

See Also

• grapheme_stristr()
• grapheme_strpos()
• grapheme_strripos()
• grapheme_strrpos()
• grapheme_strstr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_stristr

grapheme_stristr -- Returns part of haystack string from the first occurrence of
case-insensitive needle to the end of haystack.

Description

Procedural style

string grapheme_stristr (string $haystack, string $needle [, boolean $before_needle])

Returns part of haystack string from the first occurrence of case-insensitive needle to the end
of haystack.

Parameters

haystack

The input string. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

before_needle

If TRUE (the default is FALSE), grapheme_strstr() returns the part of the haystack before
the first occurence of the needle.

Return Values

Returns the portion of $haystack, or FALSE if $needle is not found.

Examples

Example #1476 - grapheme_stristr() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

$char_O_diaeresis_nfd = "O\xCC\x88"; // 'LATIN CAPITAL LETTER O WITH DIAERESIS'
(U+00D6) normalization form "D"

print urlencode(grapheme_stristr($char_a_ring_nfd . $char_o_diaeresis_nfd .
$char_a_ring_nfd, $char_O_diaeresis_nfd));

?>

The above example will output:

o%CC%88a%CC%8A

See Also

• grapheme_stripos()
• grapheme_strpos()
• grapheme_strripos()
• grapheme_strrpos()
• grapheme_strstr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_strlen

grapheme_strlen -- Get string length in grapheme units

Description

Procedural style

int grapheme_strlen (string $input)

Get string length in grapheme units (not bytes or characters)

Parameters

input

The string being measured for length. It must be a valid UTF-8 string.

Return Values

The length of the string on success, and 0 if the string is empty.

Examples

Example #1477 - grapheme_strlen() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print grapheme_strlen('abc' . $char_a_ring_nfd . $char_o_diaeresis_nfd .
$char_a_ring_nfd);

?>

The above example will output:

6

See Also

• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_strpos

grapheme_strpos -- Find position (in grapheme units) of first occurrence of a string

Description

Procedural style

int grapheme_strpos (string $haystack, string $needle [, int $offset])

Find position (in grapheme units) of first occurrence of a string

Parameters

haystack

The string to look in. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

offset

The optional $offset parameter allows you to specify where in $haystack to start searching
as an offset in grapheme units (not bytes or characters). If not given, the default is zero.
The position returned is still relative to the beginning of haystack regardless of the value of
$offset.

Return Values

Returns the position as an integer. If needle is not found, strpos() will return boolean FALSE.

Examples

Example #1478 - grapheme_strpos() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print grapheme_strpos($char_a_ring_nfd . $char_a_ring_nfd .
$char_o_diaeresis_nfd, $char_o_diaeresis_nfd);

?>

The above example will output:

2

See Also

• grapheme_stripos()
• grapheme_stristr()
• grapheme_strripos()
• grapheme_strrpos()
• grapheme_strstr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_strripos

grapheme_strripos -- Find position (in grapheme units) of last occurrence of a case-insensitive
string

Description

Procedural style

int grapheme_strripos (string $haystack, string $needle [, int $offset])

Find position (in grapheme units) of last occurrence of a case-insensitive string

Parameters

haystack

The string to look in. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

offset

The optional $offset parameter allows you to specify where in $haystack to start searching
as an offset in grapheme units (not bytes or characters). If not given, the default is zero.
The position returned is still relative to the beginning of haystack regardless of the value of
$offset.

Return Values

Returns the position as an integer. If needle is not found, grapheme_strripos() will return
boolean FALSE.

Examples

Example #1479 - grapheme_strripos() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

$char_O_diaeresis_nfd = "O\xCC\x88"; // 'LATIN CAPITAL LETTER O WITH DIAERESIS'
(U+00D6) normalization form "D"

print grapheme_strripos($char_a_ring_nfd . $char_o_diaeresis_nfd .
$char_o_diaeresis_nfd, $char_O_diaeresis_nfd);

?>

The above example will output:

2

See Also

• grapheme_stripos()
• grapheme_stristr()
• grapheme_strpos()
• grapheme_strrpos()
• grapheme_strstr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_strrpos

grapheme_strrpos -- Find position (in grapheme units) of last occurrence of a string

Description

Procedural style

int grapheme_strrpos (string $haystack, string $needle [, int $offset])

Find position (in grapheme units) of last occurrence of a string

Parameters

haystack

The string to look in. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

offset

The optional $offset parameter allows you to specify where in $haystack to start searching
as an offset in grapheme units (not bytes or characters). If not given, the default is zero.
The position returned is still relative to the beginning of haystack regardless of the value of
$offset.

Return Values

Returns the position as an integer. If needle is not found, grapheme_strrpos() will return
boolean FALSE.

Examples

Example #1480 - grapheme_strrpos() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print grapheme_strrpos($char_a_ring_nfd . $char_o_diaeresis_nfd .
$char_o_diaeresis_nfd, $char_o_diaeresis_nfd);

?>

The above example will output:

2

See Also

• grapheme_stripos()
• grapheme_stristr()
• grapheme_strpos()
• grapheme_strripos()
• grapheme_strstr()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_strstr

grapheme_strstr -- Returns part of haystack string from the first occurrence of needle to the
end of haystack.

Description

Procedural style

string grapheme_strstr (string $haystack, string $needle [, boolean $before_needle])

Returns part of haystack string from the first occurrence of needle to the end of haystack.

Parameters

haystack

The input string. Must be valid UTF-8.

needle

The string to look for. Must be valid UTF-8.

before_needle

If TRUE (the default is FALSE), grapheme_strstr() returns the part of the haystack before
the first occurence of the needle.

Return Values

Returns the portion of string, or FALSE if needle is not found.

Examples

Example #1481 - grapheme_strstr() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print urlencode(grapheme_stristr($char_a_ring_nfd . $char_o_diaeresis_nfd .
$char_a_ring_nfd, $char_o_diaeresis_nfd));

?>

The above example will output:

o%CC%88a%CC%8A

See Also

• grapheme_stristr()
• grapheme_stripos()
• grapheme_strpos()
• grapheme_strripos()
• grapheme_strrpos()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

grapheme_substr

grapheme_substr -- Return part of a string

Description

Procedural style

int grapheme_substr (string $string, int $start [, int $length])

Return part of a string

Parameters

string

The input string. Must be valid UTF-8.

start

Start position in default grapheme units. If $start is non-negative, the returned string will
start at the $start'th position in $string, counting from zero. If $start is negative, the
returned string will start at the $start'th grapheme unit from the end of string.

length

Length in grapheme units. If $length is given and is positive, the string returned will contain
at most $length grapheme units beginning from $start (depending on the length of string).
If $string is less than or equal to $start grapheme units long, FALSE will be returned. If
$length is given and is negative, then that many grapheme units will be omitted from the
end of string (after the start position has been calculated when a start is negative). If $start
denotes a position beyond this truncation, an empty string will be returned.

Return Values

Returns the extracted part of $string.

Examples

Example #1482 - grapheme_substr() example

< ?php

$char_a_ring_nfd = "a\xCC\x8A"; // 'LATIN SMALL LETTER A WITH RING ABOVE'
(U+00E5) normalization form "D"

$char_o_diaeresis_nfd = "o\xCC\x88"; // 'LATIN SMALL LETTER O WITH DIAERESIS'
(U+00F6) normalization form "D"

print urlencode(grapheme_substr("ao" . $char_a_ring_nfd . "bc" .
$char_o_diaeresis_nfd . "O", 2, -1));

?>

The above example will output:

a%CC%8Abco%CC%88

See Also

• grapheme_extract()
• grapheme_extractB()
• » Unicode Text Segmentation: Grapheme Cluster Boundaries

http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

intl_error_name

intl_error_name -- Get symbolic name for a given error code

Description

string intl_error_name (integer $error_code)

Return ICU error code name.

Parameters

error_code

ICU error code.

Return Values

The returned string will be the same as the name of the error code constant.

Examples

Example #1483 - intl_error_name() example

<?php

$coll = collator_create('en_RU');

$err_code = collator_get_error_code($coll);

printf("Symbolic name for %d is %s\n.", $err_code, intl_error_name($err_code)
);

?>

The above example will output something similar to:

Symbolic name for -128 is U_USING_FALLBACK_WARNING.

See Also

• intl_is_failure()
• intl_get_error_code()
• intl_get_error_message()

intl_get_error_code

intl_get_error_code -- Get the last error code

Description

integer intl_get_error_code (void)

Useful to handle errors occured in static methods when there's no object to get error code
from.

Return Values

Error code returned by the last API function call.

Examples

Example #1484 - intl_get_error_code() example

<?php

$coll = collator_create('<bad_param>');

if(!$coll) {

 handle_error(intl_get_error_code());

}

?>

See Also

• intl_is_failure()
• intl_error_name()
• intl_get_error_message()
• collator_get_error_code()
• numfmt_get_error_code()

intl_get_error_message

intl_get_error_message -- Get description of the last error

Description

string intl_get_error_message (void)

Get error message from last internationalization function called.

Return Values

Description of an error occurred in the last API function call.

Examples

Example #1485 - intl_get_error_message() example

<?php

if(Collator::getAvailableLocales() === false) {

 show_error(intl_get_error_message());

}

?>

See Also

• intl_error_name()
• intl_get_error_code()
• intl_is_failure()
• collator_get_error_message()
• numfmt_get_error_message()

intl_is_failure

intl_is_failure -- Check whether the given error code indicates failure

Description

bool intl_is_failure (integer $error_code)

Parameters

error_code

is a value that returned by functions: intl_get_error_code(), collator_get_error_code().

Return Values

TRUE if it the code indicates some failure, and FALSE in case of success or a warning.

Examples

Example #1486 - intl_is_failure() example

<?php

function check($err_code)

{

 var_export(intl_is_failure($err_code));

 echo "\n";

}

check(U_ZERO_ERROR);

check(U_USING_FALLBACK_WARNING);

check(U_ILLEGAL_ARGUMENT_ERROR);

?>

The above example will output something similar to:

false

false

true

See Also

• intl_get_error_code()
• collator_get_error_code()
• Collator-getErrorCode()

The Collator class

Introduction

Provides string comparison capability with support for appropriate locale-sensitive sort
orderings.

Class synopsis

Collator

Collator {

/* Methods */

Collator::__construct (string $locale)

bool Collator::asort (array &$arr [, integer $sort_flag])

integer Collator::compare (string $str1, string $str2)

static Collator Collator::create (string $locale)

integer Collator::getAttribute (integer $attr)

integer Collator::getErrorCode (void)

string Collator::getErrorMessage (void)

string Collator::getLocale ([integer $type])

integer Collator::getStrength (void)

bool Collator::setAttribute (integer $attr, integer $val)

bool Collator::setStrength (integer $strength)

bool Collator::sortWithSortKeys (array &$arr)

bool Collator::sort (array &$arr [, integer $sort_flag])
}

Predefined Constants

Collator::FRENCH_COLLATION (integer)
Sort strings with different accents from the back of the string. This attribute is automatically
set to On for the French locales and a few others. Users normally would not need to
explicitly set this attribute. There is a string comparison performance cost when it is set On
, but sort key length is unaffected. Possible values are:

• Collator::ON
• Collator::OFF (default)
• Collator::DEFAULT_VALUE

Example #1487 - FRENCH_COLLATION rules

• F=OFF cote < coté < côte < côté
• F=ON cote < côte < coté < côté

Collator::ALTERNATE_HANDLING (integer)
The Alternate attribute is used to control the handling of the socalled variable characters in
the UCA: whitespace, punctuation and symbols. If Alternate is set to NonIgnorable (N),
then differences among these characters are of the same importance as differences
among letters. If Alternate is set to Shifted (S), then these characters are of only minor
importance. The Shifted value is often used in combination with Strength set to
Quaternary. In such a case, whitespace, punctuation, and symbols are considered when
comparing strings, but only if all other aspects of the strings (base letters, accents, and
case) are identical. If Alternate is not set to Shifted, then there is no difference between a
Strength of 3 and a Strength of 4. For more information and examples, see
Variable_Weighting in the » UCA. The reason the Alternate values are not simply On and
Off is that additional Alternate values may be added in the future. The UCA option Blanked
is expressed with Strength set to 3, and Alternate set to Shifted. The default for most
locales is NonIgnorable. If Shifted is selected, it may be slower if there are many strings
that are the same except for punctuation; sort key length will not be affected unless the
strength level is also increased. Possible values are:

• Collator::NON_IGNORABLE (default)
• Collator::SHIFTED
• Collator::DEFAULT_VALUE

Example #1488 - ALTERNATE_HANDLING rules

• S=3, A=N di Silva < Di Silva < diSilva < U.S.A. < USA

http://www.unicode.org/reports/tr10/

• S=3, A=S di Silva = diSilva < Di Silva < U.S.A. = USA
• S=4, A=S di Silva < diSilva < Di Silva < U.S.A. < USA

Collator::CASE_FIRST (integer)
The Case_First attribute is used to control whether uppercase letters come before
lowercase letters or vice versa, in the absence of other differences in the strings. The
possible values are Uppercase_First (U) and Lowercase_First (L), plus the standard
Default and Off. There is almost no difference between the Off and Lowercase_First
options in terms of results, so typically users will not use Lowercase_First: only Off or
Uppercase_First. (People interested in the detailed differences between X and L should
consult the Collation Customization). Specifying either L or U won't affect string
comparison performance, but will affect the sort key length. Possible values are:

• Collator::OFF (default)
• Collator::LOWER_FIRST
• Collator::UPPER_FIRST
• Collator:DEFAULT

Example #1489 - CASE_FIRST rules

• C=X or C=L "china" < "China" < "denmark" < "Denmark"
• C=U "China" < "china" < "Denmark" < "denmark"

Collator::CASE_LEVEL (integer)
The Case_Level attribute is used when ignoring accents but not case. In such a situation,
set Strength to be Primary, and Case_Level to be On. In most locales, this setting is Off by
default. There is a small string comparison performance and sort key impact if this attribute
is set to be On. Possible values are:

• Collator::OFF (default)
• Collator::ON
• Collator::DEFAULT_VALUE

Example #1490 - CASE_LEVEL rules

• S=1, E=X role = Role = rôle
• S=1, E=O role = rôle < Role

Collator::NORMALIZATION_MODE (integer)
The Normalization setting determines whether text is thoroughly normalized or not in
comparison. Even if the setting is off (which is the default for many locales), text as
represented in common usage will compare correctly (for details, see UTN #5). Only if the
accent marks are in noncanonical order will there be a problem. If the setting is On, then
the best results are guaranteed for all possible text input. There is a medium string
comparison performance cost if this attribute is On, depending on the frequency of
sequences that require normalization. There is no significant effect on sort key length. If
the input text is known to be in NFD or NFKD normalization forms, there is no need to
enable this Normalization option. Possible values are:

• Collator::OFF (default)
• Collator::ON
• Collator::DEFAULT_VALUE

Collator::STRENGTH (integer)
The ICU Collation Service supports many levels of comparison (named "Levels", but also
known as "Strengths"). Having these categories enables ICU to sort strings precisely
according to local conventions. However, by allowing the levels to be selectively
employed, searching for a string in text can be performed with various matching
conditions. For more detailed information, see collator_set_strength() chapter. Possible
values are:

• Collator::PRIMARY
• Collator::SECONDARY
• Collator::TERTIARY (default)
• Collator::QUATERNARY
• Collator::IDENTICAL
• Collator::DEFAULT_VALUE

Collator::HIRAGANA_QUATERNARY_MODE (integer)
Compatibility with JIS x 4061 requires the introduction of an additional level to distinguish
Hiragana and Katakana characters. If compatibility with that standard is required, then this
attribute should be set On, and the strength set to Quaternary. This will affect sort key
length and string comparison string comparison performance. Possible values are:

• Collator::OFF (default)
• Collator::ON
• Collator::DEFAULT_VALUE

Collator::NUMERIC_COLLATION (integer)
When turned on, this attribute generates a collation key for the numeric value of substrings
of digits. This is a way to get '100' to sort AFTER '2'. Possible values are:

• Collator::OFF (default)
• Collator::ON
• Collator::DEFAULT_VALUE

Collator::DEFAULT_VALUE (integer)

Collator::PRIMARY (integer)

Collator::SECONDARY (integer)

Collator::TERTIARY (integer)

Collator::DEFAULT_STRENGTH (integer)

Collator::QUATERNARY (integer)

Collator::IDENTICAL (integer)

Collator::OFF (integer)

Collator::ON (integer)

Collator::SHIFTED (integer)

Collator::NON_IGNORABLE (integer)

Collator::LOWER_FIRST (integer)

Collator::UPPER_FIRST (integer)

Collator::asort

collator_asort

Collator::asort -- collator_asort -- Sort array maintaining index association

Description

Object oriented style

bool Collator::asort (array &$arr [, integer $sort_flag])

Procedural style

bool collator_asort (Collator $coll, array &$arr [, integer $sort_flag])

This function sorts an array such that array indices maintain their correlation with the array
elements they are associated with. This is used mainly when sorting associative arrays where
the actual element order is significant. Array elements will have sort order according to current
locale rules.

Equivalent to standard PHP asort().

Parameters

coll

Collator object.

arr

Array of strings to sort.

sort_flag

Optional sorting type, one of the following:

• Collator::SORT_REGULAR - compare items normally (don't change types)

• Collator::SORT_NUMERIC - compare items numerically

• Collator::SORT_STRING - compare items as strings

Default $sort_flag value is Collator::SORT_REGULAR. It is also used if an invalid
$sort_flag value has been specified.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1491 - collator_asort() example

<?php

$coll = collator_create('en_US');

$arr = array(

 'a' => '100',

 'b' => '50',

 'c' => '7'

);

collator_asort($coll, $arr, Collator::SORT_NUMERIC);

var_export($arr);

collator_asort($coll, $arr, Collator::SORT_STRING);

var_export($arr);

?>

The above example will output:

array (

 'c' => '7',

 'b' => '50',

 'a' => '100',

)array (

 'a' => '100',

 'b' => '50',

 'c' => '7',

)

See Also

• Collator constants
• collator_sort()
• collator_sort_with_sort_keys()

Collator::compare

collator_compare

Collator::compare -- collator_compare -- Compare two Unicode strings

Description

Object oriented style

integer Collator::compare (string $str1, string $str2)

Procedural style

integer collator_compare (Collator $coll, string $str1, string $str2)

Compare two Unicode strings according to collation rules.

Parameters

coll

Collator object.

str1

The first string to compare.

str2

The second string to compare.

Return Values

Return comparison result:

• 1 if str1 is greater than str2;

• 0 if str1 is equal to str2;

• -1 if str1 is less than str2.

On error boolean FALSE is returned.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value which

evaluates to FALSE, such as 0 or "". Please read the section on Booleans for more
information. Use the === operator for testing the return value of this function.

Examples

Example #1492 - collator_compare() example

<?php

$s1 = 'Hello';

$s2 = 'hello';

$coll = collator_create('en_US');

$res = collator_compare($coll, $s1, $s2);

if ($res === false) {

 echo collator_get_error_message($coll);

} else if($res > 0) {

 echo "s1 is greater than s2\n";

} else if($res < 0) {

 echo "s1 is less than s2\n";

} else {

 echo "s1 is equal to s2\n";

?>

The above example will output:

 s1 is greater than s2

See Also

• collator_sort()

Collator::__construct

Collator::__construct -- Create a collator

Description

Collator::__construct (string $locale)

Creates a new instance of Collator.

Parameters

locale

The locale whose collation rules should be used. Special values for locales can be passed
in - if null is passed for the locale, the default locale collation rules will be used. If empty
string ("") or "root" are passed, UCA rules will be used. The Locale attribute is typically the
most important attribute for correct sorting and matching, according to the user
expectations in different countries and regions. The default » UCA ordering will only sort a
few languages such as Dutch and Portuguese correctly ("correctly" meaning according to
the normal expectations for users of the languages). Otherwise, you need to supply the
locale to UCA in order to properly collate text for a given language. Thus a locale needs to
be supplied so as to choose a collator that is correctly tailored for that locale. The choice of
a locale will automatically preset the values for all of the attributes to something that is
reasonable for that locale. Thus most of the time the other attributes do not need to be
explicitly set. In some cases, the choice of locale will make a difference in string
comparison performance and/or sort key length.

Return Values

Returns Collator instance.

Errors/Exceptions

Returns an "empty" object on error. You can use intl_get_error_code() and/or
intl_get_error_message() to know what happened.

Examples

Example #1493 - Collator::__construct() example

<?php

$coll = new Collator('en_CA');

?>

http://www.unicode.org/reports/tr10/

See Also

• Collator::create()
• collator_create()

Collator::create

collator_create

Collator::create -- collator_create -- Create a collator

Description

Object oriented style

static Collator Collator::create (string $locale)

Procedural style

Collator collator_create (string $locale)

The strings will be compared using the options already specified.

Parameters

locale

The locale containing the required collation rules. Special values for locales can be passed
in - if null is passed for the locale, the default locale collation rules will be used. If empty
string ("") or "root" are passed, UCA rules will be used.

Return Values

Return new instance of Collator object, or NULL on error.

Examples

Example #1494 - collator_create() example

<?php

$coll = collator_create('en_US');

if(!isset($coll)) {

 printf("Collator creation failed: %s\n", intl_get_error_message());

 exit(1);

}

?>

See Also

• Collator::__construct()

Collator::getAttribute

collator_get_attribute

Collator::getAttribute -- collator_get_attribute -- Get collation attribute value

Description

Object oriented style

integer Collator::getAttribute (integer $attr)

Procedural style

integer collator_get_attribute (Collator $coll, integer $attr)

Get a value of an integer collator attribute.

Parameters

coll

Collator object.

attr

Attribute to get value for.

Return Values

Attribute value, or boolean FALSE on error.

Examples

Example #1495 - collator_get_attribute() example

<?php

$coll = collator_create('en_CA');

$val = collator_get_attribute($coll, Collator::NUMERIC_COLLATION);

if($val === false)

{

 // Handle error.

}

?>

See Also

• Collator constants
• collator_set_attribute()
• collator_get_strength()

Collator::getErrorCode

collator_get_error_code

Collator::getErrorCode -- collator_get_error_code -- Get collator's last error code

Description

Object oriented style

integer Collator::getErrorCode (void)

Procedural style

integer collator_get_error_code (Collator $coll)

Parameters

coll

Collator object.

Return Values

Error code returned by the last Collator API function call.

Examples

Example #1496 - collator_get_error_code() example

<?php

$coll = collator_create('en_US');

if(collator_get_attribute($coll, Collator::FRENCH_COLLATION) === false)

 handle_error(collator_get_error_code());

?>

See Also

• collator_get_error_message()

Collator::getErrorMessage

collator_get_error_message

Collator::getErrorMessage -- collator_get_error_message -- Get text for collator's last error
code

Description

Object oriented style

string Collator::getErrorMessage (void)

Procedural style

string collator_get_error_message (Collator $coll)

Retrieves the message for the last error.

Parameters

coll

Collator object.

Return Values

Description of an error occurred in the last Collator API function call.

Examples

Example #1497 - collator_get_error_message() example

<?php

$coll = collator_create('lt');

if(collator_compare($coll, 'y', 'k') === false) {

 echo collator_get_error_message($coll);

}

?>

See Also

• collator_get_error_code()

Collator::getLocale

collator_get_locale

Collator::getLocale -- collator_get_locale -- Get the locale name of the collator

Description

Object oriented style

string Collator::getLocale ([integer $type])

Procedural style

string collator_get_locale (Collator $coll, integer $type)

Get collector locale name.

Parameters

coll

Collator object.

type

You can choose between valid and actual locale (Locale::VALID_LOCALE and
Locale::ACTUAL_LOCALE, respectively). The default is the actual locale.

Return Values

Real locale name from which the collation data comes. If the collator was instantiated from
rules or an error occurred, returns boolean FALSE.

Examples

Example #1498 - collator_get_locale() example

<?php

$coll = collator_create('en_US_California');

$res_val = collator_get_locale($coll, Locale::VALID_LOCALE);

$res_act = collator_get_locale($coll, Locale::ACTUAL_LOCALE);

printf("Valid locale name: %s\nActual locale name: %s\n",

 $res_req, $res_val, $res_act);

?>

The above example will output:

Requested locale name: en_US_California

Valid locale name: en_US

Actual locale name: en

See Also

• collator_create()

Collator::getStrength

collator_get_strength

Collator::getStrength -- collator_get_strength -- Get current collation strength

Description

Object oriented style

integer Collator::getStrength (void)

Procedural style

integer collator_get_strength (Collator $coll)

Parameters

coll

Collator object.

Return Values

Returns current collation strength, or boolean FALSE on error.

Examples

Example #1499 - collator_get_strength() example

<?php

$coll = collator_create('en_US');

$strength = collator_get_strength($coll);

?>

The above example will output:

// TODO

See Also

• Collator constants
• collator_set_strength()
• collator_get_attribute()

Collator::setAttribute

collator_set_attribute

Collator::setAttribute -- collator_set_attribute -- Set collation attribute

Description

Object oriented style

bool Collator::setAttribute (integer $attr, integer $val)

Procedural style

bool collator_set_attribute (Collator $coll, integer $attr, integer $val)

Parameters

coll

Collator object.

attr

Attribute.

val

Attribute value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1500 - collator_set_attribute() example

<?php

$coll = collator_create('en_CA');

$val = collator_get_attribute($coll, Collator::NUMERIC_COLLATION);

if ($val === false) {

 // Handle error.

} elseif ($val === Collator::ON) {

 // Do something useful.

}

?>

See Also

• Collator constants
• collator_get_attribute()
• collator_set_strength()

Collator::setStrength

collator_set_strength

Collator::setStrength -- collator_set_strength -- Set collation strength

Description

Object oriented style

bool Collator::setStrength (integer $strength)

Procedural style

bool collator_set_strength (Collator $coll, integer $strength)

The » ICU Collation Service supports many levels of comparison (named "Levels", but also
known as "Strengths"). Having these categories enables ICU to sort strings precisely
according to local conventions. However, by allowing the levels to be selectively employed,
searching for a string in text can be performed with various matching conditions.

• Primary Level: Typically, this is used to denote differences between base characters (for
example, "a" < "b"). It is the strongest difference. For example, dictionaries are divided into
different sections by base character. This is also called the level1 strength.

• Secondary Level: Accents in the characters are considered secondary differences (for
example, "as" < "às" < "at"). Other differences between letters can also be considered
secondary differences, depending on the language. A secondary difference is ignored
when there is a primary difference anywhere in the strings. This is also called the level2
strength.

Note

Note: In some languages (such as Danish), certain accented letters are considered to
be separate base characters. In most languages, however, an accented letter only has
a secondary difference from the unaccented version of that letter.

• Tertiary Level: Upper and lower case differences in characters are distinguished at the
tertiary level (for example, "ao" < "Ao" < "aò"). In addition, a variant of a letter differs from
the base form on the tertiary level (such as "A" and " "). Another example is the difference
between large and small Kana. A tertiary difference is ignored when there is a primary or
secondary difference anywhere in the strings. This is also called the level3 strength.

• Quaternary Level: When punctuation is ignored (see Ignoring Punctuations) at level 13,
an additional level can be used to distinguish words with and without punctuation (for
example, "ab" < "a-b" < "aB"). This difference is ignored when there is a primary,

http://www.icu-project.org/

secondary or tertiary difference. This is also known as the level4 strength. The quaternary
level should only be used if ignoring punctuation is required or when processing Japanese
text (see Hiragana processing).

• Identical Level: When all other levels are equal, the identical level is used as a tiebreaker.
The Unicode code point values of the NFD form of each string are compared at this level,
just in case there is no difference at levels 14. For example, Hebrew cantillation marks are
only distinguished at this level. This level should be used sparingly, as only code point
values differences between two strings is an extremely rare occurrence. Using this level
substantially decreases the performance for both incremental comparison and sort key
generation (as well as increasing the sort key length). It is also known as level 5 strength.

For example, people may choose to ignore accents or ignore accents and case when
searching for text. Almost all characters are distinguished by the first three levels, and in most
locales the default value is thus Tertiary. However, if Alternate is set to be Shifted, then the
Quaternary strength can be used to break ties among whitespace, punctuation, and symbols
that would otherwise be ignored. If very fine distinctions among characters are required, then
the Identical strength can be used (for example, Identical Strength distinguishes between the
Mathematical Bold Small A and the Mathematical Italic Small A.). However, using levels higher
than Tertiary the Identical strength result in significantly longer sort keys, and slower string
comparison performance for equal strings.

Parameters

coll

Collator object.

strength

Strength to set. Possible values are:

• Collator::PRIMARY

• Collator::SECONDARY

• Collator::TERTIARY

• Collator::QUATERNARY

• Collator::IDENTICAL

• Collator::DEFAULT

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1501 - collator_set_strength() example

<?php

$arr = array('aò', 'Ao', 'ao');

$coll = collator_create('en_US');

// Sort array using default strength.

collator_sort($coll, $arr);

var_export($arr);

// Sort array using primary strength.

collator_set_strength($coll, Collator::PRIMARY);

collator_sort($coll, $arr);

var_export($arr);

?>

The above example will output:

array (

 0 => 'ao',

 1 => 'Ao',

 2 => 'aò',

)

array (

 0 => 'aò',

 1 => 'Ao',

 2 => 'ao',

)

See Also

• Collator constants
• collator_get_strength()

Collator::sortWithSortKeys

collator_sort_with_sort_keys

Collator::sortWithSortKeys -- collator_sort_with_sort_keys -- Sort array using specified collator
and sort keys

Description

Object oriented style

bool Collator::sortWithSortKeys (array &$arr)

Procedural style

bool collator_sort_with_sort_keys (Collator $coll, array &$arr)

Similar to collator_sort() but uses ICU sorting keys produced by ucol_getSortKey() to gain
more speed on large arrays.

Parameters

coll

Collator object.

arr

Array of strings to sort

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1502 - collator_sort_with_sort_keys() example

<?php

$arr = array('Köpfe', 'Kypper', 'Kopfe');

$coll = collator_create('sv');

collator_sort_with_sort_keys($coll, $arr);

var_export($arr);

?>

The above example will output:

array (

 0 => 'Kopfe',

 1 => 'Kypper',

 2 => 'Köpfe',

)

See Also

• Collator constants
• collator_sort()
• collator_asort()

Collator::sort

collator_sort

Collator::sort -- collator_sort -- Sort array using specified collator

Description

Object oriented style

bool Collator::sort (array &$arr [, integer $sort_flag])

Procedural style

bool collator_sort (Collator $coll, array &$arr [, integer $sort_flag])

This function sorts an array according to current locale rules.

Equivalent to standard PHP sort().

Parameters

coll

Collator object.

arr

Array of strings to sort.

sort_flag

Optional sorting type, one of the following:

• Collator::SORT_REGULAR - compare items normally (don't change types)

• Collator::SORT_NUMERIC - compare items numerically

• Collator::SORT_STRING - compare items as strings

Default sorting type is Collator::SORT_REGULAR.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1503 - collator_sort() example

<?php

$coll = collator_create('en_US');

$arr = array('at', 'às', 'as');

var_export($arr);

collator_sort($coll, $arr);

var_export($arr);

?>

The above example will output:

array (

 0 => 'at',

 1 => 'às',

 2 => 'as',

)array (

 0 => 'as',

 1 => 'às',

 2 => 'at',

)

See Also

• Collator constants
• collator_asort()
• collator_sort_with_sort_keys()

The NumberFormatter class

Introduction

Programs store and operate on numbers using a locale-independent binary representation.
When displaying or printing a number it is converted to a locale-specific string. For example,
the number 12345.67 is "12,345.67" in the US, "12 345,67" in France and "12.345,67" in
Germany.

By invoking the methods provided by the NumberFormatter class, you can format numbers,
currencies, and percentages according to the specified or default locale. NumberFormatter is
locale-sensitive so you need to create a new NumberFormatter for each locale.
NumberFormatter methods format primitive-type numbers, such as double and output the
number as a locale-specific string.

For currencies you can use currency format type to create a formatter that returns a string with
the formatted number and the appropriate currency sign. Of course, the NumberFormatter
class is unaware of exchange rates so, the number output is the same regardless of the
specified currency. This means that the same number has different monetary values
depending on the currency locale. If the number is 9988776.65 the results will be:

• 9 988 776,65 ? in France
• 9.988.776,65 ? in Germany
• $9,988,776.65 in the United States

In order to format percentages, create a locale-specific formatter with percentage format type.
With this formatter, a decimal fraction such as 0.75 is displayed as 75%.

For more complex formatting, like spelled-out numbers, the rule-based number formatters are
used.

Class synopsis

NumberFormatter

NumberFormatter {

/* Methods */

NumberFormatter::__construct (string $locale, integer $style [, string $pattern])

static NumberFormatter NumberFormatter::create (string $locale, integer $style [,

string $pattern])

string NumberFormatter::formatCurrency (double $value, string $currency)

string NumberFormatter::format (number $value [, integer $type])

integer NumberFormatter::getAttribute (integer $attr)

integer NumberFormatter::getErrorCode (void)

string NumberFormatter::getErrorMessage (void)

string NumberFormatter::getLocale ([integer $type])

string NumberFormatter::getPattern (void)

string NumberFormatter::getSymbol (integer $attr)

string NumberFormatter::getTextAttribute (integer $attr)

double NumberFormatter::parseCurrency (string $value, string &$currency [, integer
&$position])

mixed NumberFormatter::parse (string $value [, integer $type [, integer &$position]])

bool NumberFormatter::setAttribute (integer $attr, integer $value)

bool NumberFormatter::setPattern (string $pattern)

bool NumberFormatter::setSymbol (integer $attr, string $value)

bool NumberFormatter::setTextAttribute (integer $attr, string $value)
}

Predefined Constants

These styles are used by the numfmt_create() to define the type of the formatter.
NumberFormatter::PATTERN_DECIMAL (integer)

Decimal format defined by pattern

NumberFormatter::DECIMAL (integer)
Decimal format

NumberFormatter::CURRENCY (integer)
Currency format

NumberFormatter::PERCENT (integer)
Percent format

NumberFormatter::SCIENTIFIC (integer)

Scientific format

NumberFormatter::SPELLOUT (integer)
Spellout rule-based format

NumberFormatter::ORDINAL (integer)
Ordinal rule-based format

NumberFormatter::DURATION (integer)
Duration rule-based format

NumberFormatter::PATTERN_RULEBASED (integer)
Rule-based format defined by pattern

NumberFormatter::DEFAULT_STYLE (integer)
Default format for the locale

NumberFormatter::IGNORE (integer)
Alias for PATTERN_DECIMAL

These constants define how the numbers are parsed or formatted. They should be used as
arguments to numfmt_format() and numfmt_parse().
NumberFormatter::TYPE_DEFAULT (integer)

Derive the type from variable type

NumberFormatter::TYPE_INT32 (integer)
Format/parse as 32-bit integer

NumberFormatter::TYPE_INT64 (integer)
Format/parse as 64-bit integer

NumberFormatter::TYPE_DOUBLE (integer)
Format/parse as floating point value

NumberFormatter::TYPE_CURRENCY (integer)
Format/parse as currency value

Number format attribute used by numfmt_get_attribute() and numfmt_set_attribute().
NumberFormatter::PARSE_INT_ONLY (integer)

Parse integers only.

NumberFormatter::GROUPING_USED (integer)
Use grouping separator.

NumberFormatter::DECIMAL_ALWAYS_SHOWN (integer)
Always show decimal point.

NumberFormatter::MAX_INTEGER_DIGITS (integer)

Maximum integer digits.

NumberFormatter::MIN_INTEGER_DIGITS (integer)
Minimum integer digits.

NumberFormatter::INTEGER_DIGITS (integer)
Integer digits.

NumberFormatter::MAX_FRACTION_DIGITS (integer)
Maximum fraction digits.

NumberFormatter::MIN_FRACTION_DIGITS (integer)
Minimum fraction digits.

NumberFormatter::FRACTION_DIGITS (integer)
Fraction digits.

NumberFormatter::MULTIPLIER (integer)
Multiplier.

NumberFormatter::GROUPING_SIZE (integer)
Grouping size.

NumberFormatter::ROUNDING_MODE (integer)
Rounding Mode.

NumberFormatter::ROUNDING_INCREMENT (integer)
Rounding increment.

NumberFormatter::FORMAT_WIDTH (integer)
The width to which the output of format() is padded.

NumberFormatter::PADDING_POSITION (integer)
The position at which padding will take place. See pad position constants for possible
argument values.

NumberFormatter::SECONDARY_GROUPING_SIZE (integer)
Secondary grouping size.

NumberFormatter::SIGNIFICANT_DIGITS_USED (integer)
Use significant digits.

NumberFormatter::MIN_SIGNIFICANT_DIGITS (integer)
Minimum significant digits.

NumberFormatter::MAX_SIGNIFICANT_DIGITS (integer)
Maximum significant digits.

NumberFormatter::LENIENT_PARSE (integer)
Lenient parse mode used by rule-based formats.

Number format text attribute used by numfmt_get_text_attribute() and
numfmt_set_text_attribute().
NumberFormatter::POSITIVE_PREFIX (integer)

Positive prefix.

NumberFormatter::POSITIVE_SUFFIX (integer)
Positive suffix.

NumberFormatter::NEGATIVE_PREFIX (integer)
Negative prefix.

NumberFormatter::NEGATIVE_SUFFIX (integer)
Negative suffix.

NumberFormatter::PADDING_CHARACTER (integer)
The character used to pad to the format width.

NumberFormatter::CURRENCY_CODE (integer)
The ISO currency code.

NumberFormatter::DEFAULT_RULESET (integer)
The default rule set. This is only available with rule-based formatters.

NumberFormatter::PUBLIC_RULESETS (integer)
The public rule sets. This is only available with rule-based formatters. This is a read-only
attribute. The public rulesets are returned as a single string, with each ruleset name
delimited by ';' (semicolon).

Number format symbols used by numfmt_get_symbol() and numfmt_set_symbol().
NumberFormatter::DECIMAL_SEPARATOR_SYMBOL (integer)

The decimal separator.

NumberFormatter::GROUPING_SEPARATOR_SYMBOL (integer)
The grouping separator.

NumberFormatter::PATTERN_SEPARATOR_SYMBOL (integer)
The pattern separator.

NumberFormatter::PERCENT_SYMBOL (integer)
The percent sign.

NumberFormatter::ZERO_DIGIT_SYMBOL (integer)
Zero.

NumberFormatter::DIGIT_SYMBOL (integer)
Character representing a digit in the pattern.

NumberFormatter::MINUS_SIGN_SYMBOL (integer)
The minus sign.

NumberFormatter::PLUS_SIGN_SYMBOL (integer)
The plus sign.

NumberFormatter::CURRENCY_SYMBOL (integer)
The currency symbol.

NumberFormatter::INTL_CURRENCY_SYMBOL (integer)
The international currency symbol.

NumberFormatter::MONETARY_SEPARATOR_SYMBOL (integer)
The monetary separator.

NumberFormatter::EXPONENTIAL_SYMBOL (integer)
The exponential symbol.

NumberFormatter::PERMILL_SYMBOL (integer)
Per mill symbol.

NumberFormatter::PAD_ESCAPE_SYMBOL (integer)
Escape padding character.

NumberFormatter::INFINITY_SYMBOL (integer)
Infinity symbol.

NumberFormatter::NAN_SYMBOL (integer)
Not-a-number symbol.

NumberFormatter::SIGNIFICANT_DIGIT_SYMBOL (integer)
Significant digit symbol.

NumberFormatter::MONETARY_GROUPING_SEPARATOR_SYMBOL (integer)
The monetary grouping separator.

Rounding mode values used by numfmt_get_attribute() and numfmt_set_attribute() with
NumberFormatter::ROUNDING_MODE attribute.
NumberFormatter::ROUND_CEILING (integer)

Rounding mode to round towards positive infinity.

NumberFormatter::ROUND_DOWN (integer)
Rounding mode to round towards zero.

NumberFormatter::ROUND_FLOOR (integer)
Rounding mode to round towards negative infinity.

NumberFormatter::ROUND_HALFDOWN (integer)
Rounding mode to round towards "nearest neighbor" unless both neighbors are
equidistant, in which case round down.

NumberFormatter::ROUND_HALFEVEN (integer)
Rounding mode to round towards the "nearest neighbor" unless both neighbors are

equidistant, in which case, round towards the even neighbor.

NumberFormatter::ROUND_HALFUP (integer)
Rounding mode to round towards "nearest neighbor" unless both neighbors are
equidistant, in which case round up.

NumberFormatter::ROUND_UP (integer)
Rounding mode to round away from zero.

Pad position values used by numfmt_get_attribute() and numfmt_set_attribute() with
NumberFormatter::PADDING_POSITION attribute.
NumberFormatter::PAD_AFTER_PREFIX (integer)

Pad characters inserted after the prefix.

NumberFormatter::PAD_AFTER_SUFFIX (integer)
Pad characters inserted after the suffix.

NumberFormatter::PAD_BEFORE_PREFIX (integer)
Pad characters inserted before the prefix.

NumberFormatter::PAD_BEFORE_SUFFIX (integer)
Pad characters inserted before the suffix.

See Also

• » ICU formatting documentation
• » ICU number formatters
• » ICU decimal formatters
• » ICU rule-based number formatters

http://icu-project.org/userguide/formatParse.html
http://icu-project.org/userguide/formatNumbers.html
http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#_details
http://www.icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html#_details

NumberFormatter::create

numfmt_create

NumberFormatter::__construct

NumberFormatter::create -- numfmt_create -- NumberFormatter::__construct -- Create a
number formatter

Description

Object oriented style (method)

static NumberFormatter NumberFormatter::create (string $locale, integer $style [, string
$pattern])

Procedural style

NumberFormatter numfmt_create (string $locale, integer $style [, string $pattern])

Object oriented style (constructor):

NumberFormatter::__construct (string $locale, integer $style [, string $pattern])

Creates a number formatter.

Parameters

locale

Locale in which the number would be formatted (locale name, e.g. en_CA).

style

Style of the formatting, one of the format style constants. If
NumberFormatter::PATTERN_DECIMAL or
NumberFormatter::PATTERN_RULEBASED is passed then the number format is
opened using the given pattern, which must conform to the syntax described in » ICU
DecimalFormat documentation or » ICU RuleBasedNumberFormat documentation,
respectively.

pattern

Pattern string in case chosen style requires pattern.

Return Values

Returns NumberFormatter object or FALSE on error.

http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#_details
http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#_details
http://www.icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html#_details

Examples

Example #1504 - numfmt_create() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

$fmt = numfmt_create('it', NumberFormatter::SPELLOUT);

echo numfmt_format($fmt, 1142)."\n";

?>

Example #1505 - NumberFormatter() example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo $fmt->format(1234567.891234567890000)."\n";

$fmt = new NumberFormatter('it', NumberFormatter::SPELLOUT);

echo $fmt->format(1142)."\n";

?>

The above example will output:

1.234.567,891

millicentoquarantadue

See Also

• numfmt_format()
• numfmt_parse()

NumberFormatter::formatCurrency

numfmt_format_currency

NumberFormatter::formatCurrency -- numfmt_format_currency -- Format a currency value

Description

Object oriented style

string NumberFormatter::formatCurrency (double $value, string $currency)

Procedural style

string numfmt_format_currency (NumberFormatter $fmt, double $value, string $currency)

Format the currency value according to the formatter rules.

Parameters

fmt

NumberFormatter object.

value

The numeric currency value.

currency

The 3-letter ISO 4217 currency code indicating the currency to use.

Return Values

String representing the formatted currency value.

Examples

Example #1506 - numfmt_format_currency() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::CURRENCY);

echo numfmt_format_currency($fmt, 1234567.891234567890000, "EUR")."\n";

echo numfmt_format_currency($fmt, 1234567.891234567890000, "RUR")."\n";

$fmt = numfmt_create('ru_RU', NumberFormatter::CURRENCY);

echo numfmt_format_currency($fmt, 1234567.891234567890000, "EUR")."\n";

echo numfmt_format_currency($fmt, 1234567.891234567890000, "RUR")."\n";

?>

Example #1507 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::CURRENCY);

echo $fmt->formatCurrency(1234567.891234567890000, "EUR")."\n";

echo $fmt->formatCurrency(1234567.891234567890000, "RUR")."\n";

$fmt = new NumberFormatter('ru_RU', NumberFormatter::CURRENCY);

echo $fmt->formatCurrency(1234567.891234567890000, "EUR")."\n";

echo $fmt->formatCurrency(1234567.891234567890000, "RUR")."\n";

?>

The above example will output:

1.234.567,89 ?

1.234.567,89 RUR

1 234 567,89?

1 234 567,89?.

See Also

• numfmt_get_error_code()
• numfmt_format()
• numfmt_parse_currency()

NumberFormatter::format

numfmt_format

NumberFormatter::format -- numfmt_format -- Format a number

Description

Object oriented style

string NumberFormatter::format (number $value [, integer $type])

Procedural style

string numfmt_format (NumberFormatter $fmt, number $value [, integer $type])

Format a numeric value according to the formatter rules.

Parameters

fmt

NumberFormatter object.

value

The value to format. Can be integer or double, other values will be converted to a numeric
value.

type

The formatting type to use.

Return Values

Returns the string containing formatted value, or FALSE on error.

Examples

Example #1508 - numfmt_format() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

$data = numfmt_format($fmt, 1234567.891234567890000);

if(intl_is_failure(numfmt_format($fmt))) {

 report_error("Formatter error");

}

?>

Example #1509 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

$fmt->format(1234567.891234567890000);

if(intl_is_failure($fmt->getErrorCode()) {

 report_error("Formatter error");

}

?>

The above example will output:

1.234.567,891

See Also

• numfmt_get_error_code()
• numfmt_format_currency()
• numfmt_parse()

NumberFormatter::getAttribute

numfmt_get_attribute

NumberFormatter::getAttribute -- numfmt_get_attribute -- Get an attribute

Description

Object oriented style

integer NumberFormatter::getAttribute (integer $attr)

Procedural style

integer numfmt_get_attribute (NumberFormatter $fmt, integer $attr)

Get a numeric attribute associated with the formatter. An example of a numeric attribute is the
number of integer digits the formatter will produce.

Parameters

fmt

NumberFormatter object.

attr

Attribute specifier - one of the numeric attribute constants.

Return Values

Return attribute value on success, or FALSE on error.

Examples

Example #1510 - numfmt_get_attribute() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Digits: ".numfmt_get_attribute($fmt,
NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_attribute($fmt, NumberFormatter::MAX_FRACTION_DIGITS, 2);

echo "Digits: ".numfmt_get_attribute($fmt,
NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

Example #1511 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Digits: ".$fmt->getAttribute(NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setAttribute(NumberFormatter::MAX_FRACTION_DIGITS, 2);

echo "Digits: ".$fmt->getAttribute(NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Digits: 3

1.234.567,891

Digits: 2

1.234.567,89

See Also

• numfmt_get_error_code()
• numfmt_get_text_attribute()
• numfmt_set_attribute()

NumberFormatter::getErrorCode

numfmt_get_error_code

NumberFormatter::getErrorCode -- numfmt_get_error_code -- Get formatter's last error code.

Description

Object oriented style

integer NumberFormatter::getErrorCode (void)

Procedural style

integer numfmt_get_error_code (NumberFormatter $fmt)

Get error code from the last function performed by the formatter.

Parameters

fmt

NumberFormatter object.

Return Values

Returns error code from last formatter call.

Examples

Example #1512 - numfmt_get_error_code() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

$data = numfmt_format($fmt, 1234567.891234567890000);

if(intl_is_failure(numfmt_get_error_code($fmt))) {

 report_error("Formatter error");

}

?>

Example #1513 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

$fmt->format(1234567.891234567890000);

if(intl_is_failure($fmt->getErrorCode()) {

 report_error("Formatter error");

}

?>

See Also

• numfmt_get_error_message()
• intl_get_error_code()
• intl_is_failure()

NumberFormatter::getErrorMessage

numfmt_get_error_message

NumberFormatter::getErrorMessage -- numfmt_get_error_message -- Get formatter's last
error message.

Description

Object oriented style

string NumberFormatter::getErrorMessage (void)

Procedural style

string numfmt_get_error_message (NumberFormatter $fmt)

Get error message from the last function performed by the formatter.

Parameters

fmt

NumberFormatter object.

Return Values

Returns error message from last formatter call.

Examples

Example #1514 - numfmt_get_error_message() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

$data = numfmt_format($fmt, 1234567.891234567890000);

if(intl_is_failure(numfmt_get_error_code($fmt))) {

 report_error("Formatter error");

}

?>

Example #1515 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

$fmt->format(1234567.891234567890000);

if(intl_is_failure($fmt->getErrorCode()) {

 report_error("Formatter error");

}

?>

See Also

• numfmt_get_error_code()
• intl_get_error_code()
• intl_is_failure()

NumberFormatter::getLocale

numfmt_get_locale

NumberFormatter::getLocale -- numfmt_get_locale -- Get formatter locale

Description

Object oriented style

string NumberFormatter::getLocale ([integer $type])

Procedural style

string numfmt_get_locale (NumberFormatter $fmt [, integer $type])

Get formatter locale name.

Parameters

fmt

NumberFormatter object.

type

You can choose between valid and actual locale (Locale::VALID_LOCALE,
Locale::ACTUAL_LOCALE, respectively). The default is the actual locale.

Return Values

The locale name used to create the formatter.

Examples

Example #1516 - numfmt_get_locale() example

<?php

$req = 'fr_FR_PARIS';

$fmt = numfmt_create($req, NumberFormatter::DECIMAL);

$res_val = numfmt_get_locale($fmt, Locale::VALID_LOCALE);

$res_act = numfmt_get_locale($fmt, Locale::ACTUAL_LOCALE);

printf("Requested locale name: %s\nValid locale name: %s\nActual locale name:
%s\n",

 $req, $res_val, $res_act);

?>

The above example will output:

Requested locale name: fr_FR_PARIS

Valid locale name: fr_FR

Actual locale name: fr

See Also

• numfmt_create()
• numfmt_get_error_code()

NumberFormatter::getPattern

numfmt_get_pattern

NumberFormatter::getPattern -- numfmt_get_pattern -- Get formatter pattern

Description

Object oriented style

string NumberFormatter::getPattern (void)

Procedural style

string numfmt_get_pattern (NumberFormatter $fmt)

Extract pattern used by the formatter.

Parameters

fmt

NumberFormatter object.

Return Values

Pattern string that is used by the formatter, or FALSE if an error happens.

Examples

Example #1517 - numfmt_get_pattern() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Pattern: ".numfmt_get_pattern($fmt)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_pattern($fmt, "#0.# kg");

echo "Pattern: ".numfmt_get_pattern($fmt)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

Example #1518 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Pattern: ".$fmt->getPattern()."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setPattern("#0.# kg");

echo "Pattern: ".$fmt->getPattern()."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Pattern: #,##0.###

1.234.567,891

Pattern: #0.# kg

1234567,9 kg

See Also

• numfmt_get_error_code()
• numfmt_set_pattern()
• numfmt_create()

NumberFormatter::getSymbol

numfmt_get_symbol

NumberFormatter::getSymbol -- numfmt_get_symbol -- Get a symbol value

Description

Object oriented style

string NumberFormatter::getSymbol (integer $attr)

Procedural style

string numfmt_get_symbol (NumberFormatter $fmt, integer $attr)

Get a symbol associated with the formatter. The formatter uses symbols to represent the
special locale-dependent characters in a number, for example the percent sign. This API is not
supported for rule-based formatters.

Parameters

fmt

NumberFormatter object.

attr

Symbol specifier, one of the format symbol constants.

Return Values

The symbol string or FALSE on error.

Examples

Example #1519 - numfmt_get_symbol() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Sep: ".numfmt_get_symbol($fmt,
NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_symbol($fmt, NumberFormatter::GROUPING_SEPARATOR_SYMBOL, "*");

echo "Sep: ".numfmt_get_symbol($fmt,
NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

Example #1520 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Sep: ".$fmt->getSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL, "*");

echo "Sep: ".$fmt->getSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Sep: .

1.234.567,891

Sep: *

1*234*567,891

See Also

• numfmt_get_error_code()
• numfmt_set_symbol()

NumberFormatter::getTextAttribute

numfmt_get_text_attribute

NumberFormatter::getTextAttribute -- numfmt_get_text_attribute -- Get a text attribute

Description

Object oriented style

string NumberFormatter::getTextAttribute (integer $attr)

Procedural style

string numfmt_get_text_attribute (NumberFormatter $fmt, integer $attr)

Get a text attribute associated with the formatter. An example of a text attribute is the suffix for
positive numbers. If the formatter does not understand the attributre,
U_UNSUPPORTED_ERROR error is produced. Rule-based formatters only understand
NumberFormatter::DEFAULT_RULESET and NumberFormatter::PUBLIC_RULESETS.

Parameters

fmt

NumberFormatter object.

attr

Attribute specifier - one of the text attribute constants.

Return Values

Return attribute value on success, or FALSE on error.

Examples

Example #1521 - numfmt_get_text_attribute() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Prefix: ".numfmt_get_text_attribute($fmt,
NumberFormatter::NEGATIVE_PREFIX)."\n";

echo numfmt_format($fmt, -1234567.891234567890000)."\n";

numfmt_set_text_attribute($fmt, NumberFormatter::NEGATIVE_PREFIX, "MINUS");

echo "Prefix: ".numfmt_get_text_attribute($fmt,
NumberFormatter::NEGATIVE_PREFIX)."\n";

echo numfmt_format($fmt, -1234567.891234567890000)."\n";

?>

Example #1522 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Prefix: ".$fmt->getTextAttribute(NumberFormatter::NEGATIVE_PREFIX)."\n";

echo $fmt->format(-1234567.891234567890000)."\n";

$fmt->setTextAttribute(NumberFormatter::NEGATIVE_PREFIX, "MINUS");

echo "Prefix: ".$fmt->getTextAttribute(NumberFormatter::NEGATIVE_PREFIX)."\n";

echo $fmt->format(-1234567.891234567890000)."\n";

?>

The above example will output:

Prefix: -

-1.234.567,891

Prefix: MINUS

MINUS1.234.567,891

See Also

• numfmt_get_error_code()
• numfmt_get_attribute()
• numfmt_set_text_attribute()

NumberFormatter::parseCurrency

numfmt_parse_currency

NumberFormatter::parseCurrency -- numfmt_parse_currency -- Parse a currency number

Description

Object oriented style

double NumberFormatter::parseCurrency (string $value, string &$currency [, integer &$
position])

Procedural style

double numfmt_parse_currency (NumberFormatter $fmt, string $value, string &$currency
[, integer &$position])

Parse a string into a double and a currency using the current formatter.

Parameters

fmt

NumberFormatter object.

position

Parameter to receive the currency name (3-letter ISO 4217 currency code).

position

Offset in the string at which to begin parsing. On return, this value will hold the offset at
which parsing ended.

Return Values

The parsed numeric value or FALSE on error.

Examples

Example #1523 - numfmt_parse_currency() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::CURRENCY);

$num = "1.234.567,89 $";

echo "We have ".numfmt_parse_currency($fmt, $num, $curr)." in $curr\n";

?>

Example #1524 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::CURRENCY);

$num = "1.234.567,89 $";

echo "We have ".$fmt->parseCurrency($num, $curr)." in $curr\n";

?>

The above example will output:

We have 1234567.89 in USD

See Also

• numfmt_get_error_code()
• numfmt_parse()
• numfmt_format_currency()

NumberFormatter::parse

numfmt_parse

NumberFormatter::parse -- numfmt_parse -- Parse a number

Description

Object oriented style

mixed NumberFormatter::parse (string $value [, integer $type [, integer &$position]])

Procedural style

mixed numfmt_parse (NumberFormatter $fmt, string $value [, integer $type [, integer &$
position]])

Parse a string into a number using the current formatter rules.

Parameters

fmt

NumberFormatter object.

type

The formatting type to use. By default, NumberFormatter::TYPE_DOUBLE is used.

position

Offset in the string at which to begin parsing. On return, this value will hold the offset at
which parsing ended.

Return Values

The value of the parsed number or FALSE on error.

Examples

Example #1525 - numfmt_parse() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

$num = "1.234.567,891";

echo numfmt_parse($fmt, $num)."\n";

echo numfmt_parse($fmt, $num, NumberFormatter::TYPE_INT32)."\n";

?>

Example #1526 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

$num = "1.234.567,891";

echo $fmt->parse($num)."\n";

echo $fmt->parse($num, NumberFormatter::TYPE_INT32)."\n";

?>

The above example will output:

1234567.891

1234567

See Also

• numfmt_get_error_code()
• numfmt_format()
• numfmt_parse_currency()

NumberFormatter::setAttribute

numfmt_set_attribute

NumberFormatter::setAttribute -- numfmt_set_attribute -- Set an attribute

Description

Object oriented style

bool NumberFormatter::setAttribute (integer $attr, integer $value)

Procedural style

bool numfmt_set_attribute (NumberFormatter $fmt, integer $attr, integer $value)

Set a numeric attribute associated with the formatter. An example of a numeric attribute is the
number of integer digits the formatter will produce.

Parameters

fmt

NumberFormatter object.

attr

Attribute specifier - one of the numeric attribute constants.

value

The attribute value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1527 - numfmt_set_attribute() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Digits: ".numfmt_get_attribute($fmt,
NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_attribute($fmt, NumberFormatter::MAX_FRACTION_DIGITS, 2);

echo "Digits: ".numfmt_get_attribute($fmt,

NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

Example #1528 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Digits: ".$fmt->getAttribute(NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setAttribute(NumberFormatter::MAX_FRACTION_DIGITS, 2);

echo "Digits: ".$fmt->getAttribute(NumberFormatter::MAX_FRACTION_DIGITS)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Digits: 3

1.234.567,891

Digits: 2

1.234.567,89

See Also

• numfmt_get_error_code()
• numfmt_get_attribute()
• numfmt_set_text_attribute()

NumberFormatter::setPattern

numfmt_set_pattern

NumberFormatter::setPattern -- numfmt_set_pattern -- Set formatter pattern

Description

Object oriented style

bool NumberFormatter::setPattern (string $pattern)

Procedural style

bool numfmt_set_pattern (NumberFormatter $fmt, string $pattern)

Set the pattern used by the formatter. Can not be used on a rule-based formatter.

Parameters

fmt

NumberFormatter object.

pattern

Pattern in syntax described in » ICU DecimalFormat documentation.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1529 - numfmt_set_pattern() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Pattern: ".numfmt_get_pattern($fmt)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_pattern($fmt, "#0.# kg");

echo "Pattern: ".numfmt_get_pattern($fmt)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#_details

Example #1530 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Pattern: ".$fmt->getPattern()."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setPattern("#0.# kg");

echo "Pattern: ".$fmt->getPattern()."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Pattern: #,##0.###

1.234.567,891

Pattern: #0.# kg

1234567,9 kg

See Also

• numfmt_get_error_code()
• numfmt_create()
• numfmt_get_pattern()

NumberFormatter::setSymbol

numfmt_set_symbol

NumberFormatter::setSymbol -- numfmt_set_symbol -- Set a symbol value

Description

Object oriented style

bool NumberFormatter::setSymbol (integer $attr, string $value)

Procedural style

bool numfmt_set_symbol (NumberFormatter $fmt, integer $attr, string $value)

Set a symbol associated with the formatter. The formatter uses symbols to represent the
special locale-dependent characters in a number, for example the percent sign. This API is not
supported for rule-based formatters.

Parameters

fmt

NumberFormatter object.

attr

Symbol specifier, one of the format symbol constants.

value

Text for the symbol.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1531 - numfmt_set_symbol() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Sep: ".numfmt_get_symbol($fmt,
NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

numfmt_set_symbol($fmt, NumberFormatter::GROUPING_SEPARATOR_SYMBOL, "*");

echo "Sep: ".numfmt_get_symbol($fmt,
NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo numfmt_format($fmt, 1234567.891234567890000)."\n";

?>

Example #1532 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Sep: ".$fmt->getSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

$fmt->setSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL, "*");

echo "Sep: ".$fmt->getSymbol(NumberFormatter::GROUPING_SEPARATOR_SYMBOL)."\n";

echo $fmt->format(1234567.891234567890000)."\n";

?>

The above example will output:

Sep: .

1.234.567,891

Sep: *

1*234*567,891

See Also

• numfmt_get_error_code()
• numfmt_get_symbol()

NumberFormatter::setTextAttribute

numfmt_set_text_attribute

NumberFormatter::setTextAttribute -- numfmt_set_text_attribute -- Set a text attribute

Description

Object oriented style

bool NumberFormatter::setTextAttribute (integer $attr, string $value)

Procedural style

bool numfmt_set_text_attribute (NumberFormatter $fmt, integer $attr, string $value)

Set a text attribute associated with the formatter. An example of a text attribute is the suffix for
positive numbers. If the formatter does not understand the attribute,
U_UNSUPPORTED_ERROR error is produced. Rule-based formatters only understand
NumberFormatter::DEFAULT_RULESET and NumberFormatter::PUBLIC_RULESETS.

Parameters

fmt

NumberFormatter object.

attr

Attribute specifier - one of the text attribute constants.

value

Text for the attribute value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1533 - numfmt_set_text_attribute() example

<?php

$fmt = numfmt_create('de_DE', NumberFormatter::DECIMAL);

echo "Prefix: ".numfmt_get_text_attribute($fmt,
NumberFormatter::NEGATIVE_PREFIX)."\n";

echo numfmt_format($fmt, -1234567.891234567890000)."\n";

numfmt_set_text_attribute($fmt, NumberFormatter::NEGATIVE_PREFIX, "MINUS");

echo "Prefix: ".numfmt_get_text_attribute($fmt,
NumberFormatter::NEGATIVE_PREFIX)."\n";

echo numfmt_format($fmt, -1234567.891234567890000)."\n";

?>

Example #1534 - OO example

<?php

$fmt = new NumberFormatter('de_DE', NumberFormatter::DECIMAL);

echo "Prefix: ".$fmt->getTextAttribute(NumberFormatter::NEGATIVE_PREFIX)."\n";

echo $fmt->format(-1234567.891234567890000)."\n";

$fmt->setTextAttribute(NumberFormatter::NEGATIVE_PREFIX, "MINUS");

echo "Prefix: ".$fmt->getTextAttribute(NumberFormatter::NEGATIVE_PREFIX)."\n";

echo $fmt->format(-1234567.891234567890000)."\n";

?>

The above example will output:

Prefix: -

-1.234.567,891

Prefix: MINUS

MINUS1.234.567,891

See Also

• numfmt_get_error_code()
• numfmt_get_text_attribute()
• numfmt_set_attribute()

The Locale class

Introduction

A "Locale" is an identifier used to get language, culture, or regionally-specific behavior from an
API. PHP locales are organized and identified the same way that the CLDR locales used by
ICU (and many vendors of Unix-like operating systems, the Mac, Java, and so forth) use.
Locales are identified using RFC 4646 language tags (which use hyphen, not underscore) in
addition to the more traditional underscore-using identifiers. Unless otherwise noted the
functions in this class are tolerant of both formats.

Examples of identifiers include:

• en-US (English, United States)
• zh-Hant-TW (Chinese, Traditional Script, Taiwan)
• fr-CA, fr-FR (French for Canada and France respectively)

The Locale class (and related procedural functions) are used to interact with locale
identifiers--to verify that an ID is well-formed, valid, etc. The extensions used by CLDR in UAX
#35 (and inherited by ICU) are valid and used wherever they would be in ICU normally.

Locales cannot be instantiated as objects. All of the functions/methods provided are static.

The null or empty string obtains the "root" locale. The "root" locale is equivalent to
"en_US_POSIX" in CLDR. Language tags (and thus locale identifiers) are case insensitive.
There exists a canonicalization function to make case match the specification.

Class synopsis

Locale

Locale {

/* Methods */

static string Locale::composeLocale (array $subtags)

static boolean Locale::filterMatches (string $langtag, string $locale)

static array Locale::getAllVariants (string $locale)

static string Locale::getDefault (void)

static string Locale::getDisplayLanguage (string $locale [, string $in_locale])

static string Locale::getDisplayName (string $locale [, string $in_locale])

static string Locale::getDisplayRegion (string $locale [, string $in_locale])

static string Locale::getDisplayScript (string $locale [, string $in_locale])

static string Locale::getDisplayVariant (string $locale [, string $in_locale])

static array Locale::getKeywords (string $locale)

static string Locale::getPrimaryLanguage (string $locale)

static string Locale::getRegion (string $locale)

static string Locale::getScript (string $locale)

static string Locale::lookup (array $langtag, string $locale, string $default)

static array Locale::parseLocale (string $locale)

static boolean Locale::setDefault (string $locale)
}

Predefined Constants

These constants define how the Locale
Locale::DEFAULT_LOCALE (string)

Used with the getLocale methods of the various locale affected classes, such as numfmt.

Locale::ACTUAL_LOCALE (string)
This is locale the data actually comes from.

Locale::VALID_LOCALE (string)
This is the most specific locale supported by ICU.

These constants define how the Locales are parsed or composed. They should be used as
keys in the argument array to locale_compose() and are returned from locale_parse() as
keys of the returned associative array.
Locale::LANG_TAG (string)

Language subtag

Locale::EXTLANG_TAG (string)
Extended language subtag

Locale::SCRIPT_TAG (string)
Script subtag

Locale::REGION_TAG (string)
Region subtag

Locale::VARIANT_TAG (string)
Variant subtag

Locale::GRANDFATHERED_LANG_TAG (string)
Grandfathered Language subtag

Locale::PRIVATE_TAG (string)
Private subtag

See Also

• » RFC 4646 - Tags for Identifying Languages
• » RFC 4647 - Matching of Language Tags
• » Unicode CLDR Project:Common Locale Data Repository
• » IANA Language Subtags Registry
• » ICU User Guide - Locale
• » ICU Locale api

http://www.faqs.org/rfcs/rfc4646
http://www.faqs.org/rfcs/rfc4647
http://www.unicode.org/cldr/
http://www.iana.org/assignments/language-subtag-registry
http://www.icu-project.org/userguide/locale.html
http://www.icu-project.org/apiref/icu4c/uloc_8h.html#_details

Locale::composeLocale

locale_compose_locale

Locale::composeLocale -- locale_compose_locale -- Returns a correctly ordered and delimited
locale ID

Description

Object oriented style

static string Locale::composeLocale (array $subtags)

Procedural style

string locale_compose_locale (array $subtags)

Returns a correctly ordered and delimited locale ID the keys identify the particular locale ID
subtags, and the values are the associated subtag values.

Parameters

subtags

an array containing a list of key-value pairs, where the keys identify the particular locale ID
subtags, and the values are the associated subtag values.

Note

The 'variant' and 'private' subtags can take maximum 15 values whereas 'extlang' can
take maximum 3 values.e.g. Variants are allowed with the suffix ranging from 0-14
Hence the keys for the input array can be variant0, variant1, ...,variant14 .In the
returned locale id, the subtag is ordered by suffix resulting in variant0 followed by
variant1 followed by variant2 and so on.

Return Values

The corresponding locale identifier.

Examples

Example #1535 - locale_compose_locale() example

<?php

$arr = array(

 'language'=>'en' ,

 'script' =>'Hans' ,

 'region' =>'CN',

 'variant2'=>'rozaj' ,

 'variant1'=>'nedis' ,

 'private1'=>'prv1' ,

 'private2'=>'prv2'

);

echo locale_compose($arr);

?>

Example #1536 - OO example

<?php

$arr = array(

 'language'=>'en' ,

 'script' =>'Hans' ,

 'region' =>'CN',

 'variant2'=>'rozaj' ,

 'variant1'=>'nedis' ,

 'private1'=>'prv1' ,

 'private2'=>'prv2'

);

echo Locale::composeLocale($arr);

?>

The above example will output:

Locale: en_Hans_CN_nedis_rozaj_x_prv1_prv2

See Also

• locale_parse()

Locale::filterMatches

locale_filter_matches

Locale::filterMatches -- locale_filter_matches -- Checks if a $langtag filter matches with $locale
according to

Description

Object oriented style

static boolean Locale::filterMatches (string $langtag, string $locale)

Procedural style

boolean locale_filter_matches (string $langtag, string $locale)

Checks if a $langtag filter matches with $locale according to RFC 4647's basic filtering
algorithm

Parameters

langtag

The language tag to check

locale

The language range to check against

Return Values

TRUE if $locale matches $langtag FALSE otherwise.

Examples

Example #1537 - locale_filter_matches() example

<?php

echo (locale_filter_matches('de-DEVA','de-DE', false)) ? "Matches" : "Does not
match";

echo '; ';

echo (locale_filter_matches('de-DE_1996','de-DE', false)) ? "Matches" : "Does
not match";

?>

Example #1538 - OO example

<?php

echo (Locale::filter_matches('de-DEVA','de-DE', false)) ? "Matches" : "Does not
match";

echo '; ';

echo (Locale::filter_matches('de-DE-1996','de-DE', false)) ? "Matches" : "Does
not match";

?>

The above example will output:

Does not match; Matches

See Also

• locale_lookup()

Locale::getAllVariants

locale_get_all_variants

Locale::getAllVariants -- locale_get_all_variants -- Gets the variants for the input locale

Description

Object oriented style

static array Locale::getAllVariants (string $locale)

Procedural style

array locale_get_all_variants (string $locale)

Gets the variants for the input locale

Parameters

locale

The locale to extract the variants from

Return Values

The array containing the list of all variants subtag for the locale or NULL if not present

Examples

Example #1539 - locale_get_all_variants() example

<?php

$arr = locale_get_all_variants('sl_IT_NEDIS_ROJAZ_1901');

var_export($arr);

?>

Example #1540 - OO example

<?php

$arr = Locale::getAllVariants('sl_IT_NEDIS_ROJAZ_1901');

var_export($arr);

?>

The above example will output:

array (

 0 => 'NEDIS',

 1 => 'ROJAZ',

 2 => '1901',	

)

See Also

• locale_get_primary_language()
• locale_get_script()
• locale_get_region()

Locale::getDefault

locale_get_default

Locale::getDefault -- locale_get_default -- Gets the default locale value from the INTL global
'default_locale'

Description

Object oriented style

static string Locale::getDefault (void)

Procedural style

string locale_get_default (void)

Gets the default locale value. At the PHP initialization this value is set to 'intl.default_locale'
value from php.ini if that value exists or from ICU's function uloc_getDefault().

Parameters

Return Values

The current runtime locale

Examples

Example #1541 - locale_get_default() example

<?php

ini_set('intl.default_locale', 'de-DE');

echo locale_get_default();

echo '; ';

locale_set_default('fr');

echo locale_get_default();

?>

Example #1542 - OO example

<?php

ini_set('intl.default_locale', 'de-DE');

echo Locale::getDefault();

echo '; ';

Locale::setDefault('fr');

echo Locale::getDefault();

?>

The above example will output:

de-DE; fr

See Also

• locale_set_default()

Locale::getDisplayLanguage

locale_get_display_language

Locale::getDisplayLanguage -- locale_get_display_language -- Returns an appropriately
localized display name for language of the inputlocale

Description

Object oriented style

static string Locale::getDisplayLanguage (string $locale [, string $in_locale])

Procedural style

string locale_get_display_language (string $locale [, string $in_locale])

Returns an appropriately localized display name for language of the input locale. If is NULL
then the default locale is used.

Parameters

locale

The locale to return a display language for

in_locale

Optional format locale to use to display the language name

Return Values

display name of the language for the $locale in the format appropriate for $in_locale.

Examples

Example #1543 - locale_get_display_language() example

<?php

echo locale_get_display_language('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo locale_get_display_language('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo locale_get_display_language('sl-Latn-IT-nedis', 'de');

?>

Example #1544 - OO example

<?php

echo Locale::getDisplayLanguage('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo Locale::getDisplayLanguage('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo Locale::getDisplayLanguage('sl-Latn-IT-nedis', 'de');

?>

The above example will output:

Slovenian;

slov\xc3\xa8ne;

Slowenisch

See Also

• locale_get_display_name()
• locale_get_display_script()
• locale_get_display_region()
• locale_get_display_variant()

Locale::getDisplayName

locale_get_display_name

Locale::getDisplayName -- locale_get_display_name -- Returns an appropriately localized
display name for the input locale

Description

Object oriented style

static string Locale::getDisplayName (string $locale [, string $in_locale])

Procedural style

string locale_get_display_name (string $locale [, string $in_locale])

Returns an appropriately localized display name for the input locale. If is NULL then the
default locale is used.

Parameters

locale

The locale to return a display name for.

in_locale

optional format locale

Return Values

Display name of the locale in the format appropriate for $in_locale.

Examples

Example #1545 - locale_get_display_name() example

<?php

echo locale_get_display_name('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo locale_get_display_name('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo locale_get_display_name('sl-Latn-IT-nedis', 'de');

?>

Example #1546 - OO example

<?php

echo Locale::getDisplayName('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo Locale::getDisplayName('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo Locale::getDisplayName('sl-Latn-IT-nedis', 'de');

?>

The above example will output:

Slovenian (Latin, Italy, Natisone dialect);

slov\xc3\xa8ne (latin, Italie, dialecte de Natisone;

Slowenisch (Lateinisch, Italien, NEDIS)

See Also

• locale_get_display_language()
• locale_get_display_script()
• locale_get_display_region()
• locale_get_display_variant()

Locale::getDisplayRegion

locale_get_display_region

Locale::getDisplayRegion -- locale_get_display_region -- Returns an appropriately localized
display name for region of the input locale

Description

Object oriented style

static string Locale::getDisplayRegion (string $locale [, string $in_locale])

Procedural style

string locale_get_display_region (string $locale [, string $in_locale])

Returns an appropriately localized display name for region of the input locale. If is NULL then
the default locale is used.

Parameters

locale

The locale to return a display region for.

in_locale

Optional format locale to use to display the region name

Return Values

display name of the region for the $locale in the format appropriate for $in_locale.

Examples

Example #1547 - locale_get_display_region() example

<?php

echo locale_get_display_region('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo locale_get_display_region('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo locale_get_display_region('sl-Latn-IT-nedis', 'de');

?>

Example #1548 - OO example

<?php

echo Locale::getDisplayRegion('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo Locale::getDisplayRegion('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo Locale::getDisplayRegion('sl-Latn-IT-nedis', 'de');

?>

The above example will output:

Italy;

Italie;

Italien

See Also

• locale_get_display_name()
• locale_get_display_language()
• locale_get_display_script()
• locale_get_display_variant()

Locale::getDisplayScript

locale_get_display_script

Locale::getDisplayScript -- locale_get_display_script -- Returns an appropriately localized
display name for script of the input locale

Description

Object oriented style

static string Locale::getDisplayScript (string $locale [, string $in_locale])

Procedural style

string locale_get_display_script (string $locale [, string $in_locale])

Returns an appropriately localized display name for script of the input locale. If is NULL then
the default locale is used.

Parameters

locale

The locale to return a display script for

in_locale

Optional format locale to use to display the script name

Return Values

Display name of the script for the $locale in the format appropriate for $in_locale.

Examples

Example #1549 - locale_get_display_script() example

<?php

echo locale_get_display_script('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo locale_get_display_script('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo locale_get_display_script('sl-Latn-IT-nedis', 'de');

?>

Example #1550 - OO example

<?php

echo Locale::getDisplayScript('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo Locale::getDisplayScript('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo Locale::getDisplayScript('sl-Latn-IT-nedis', 'de');

?>

The above example will output:

Latin;

latin;

Lateinisch

See Also

• locale_get_display_name()
• locale_get_display_language()
• locale_get_display_region()
• locale_get_display_variant()

Locale::getDisplayVariant

locale_get_display_variant

Locale::getDisplayVariant -- locale_get_display_variant -- Returns an appropriately localized
display name for variants of the input locale

Description

Object oriented style

static string Locale::getDisplayVariant (string $locale [, string $in_locale])

Procedural style

string locale_get_display_variant (string $locale [, string $in_locale])

Returns an appropriately localized display name for variants of the input locale. If is NULL
then the default locale is used.

Parameters

locale

The locale to return a display variant for

in_locale

Optional format locale to use to display the variant name

Return Values

Display name of the variant for the $locale in the format appropriate for $in_locale.

Examples

Example #1551 - locale_get_display_variant() example

<?php

echo locale_get_display_variant('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo locale_get_display_variant('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo locale_get_display_variant('sl-Latn-IT-nedis', 'de');

?>

Example #1552 - OO example

<?php

echo Locale::getDisplayVariant('sl-Latn-IT-nedis', 'en');

echo ";\n";

echo Locale::getDisplayVariant('sl-Latn-IT-nedis', 'fr');

echo ";\n";

echo Locale::getDisplayVariant('sl-Latn-IT-nedis', 'de');

?>

The above example will output:

Natisone dialect;

dialecte de Natisone;

NEDIS

See Also

• locale_get_display_name()
• locale_get_display_language()
• locale_get_display_script()
• locale_get_display_region()

Locale::getKeywords

locale_get_keywords

Locale::getKeywords -- locale_get_keywords -- Gets the keywords for the input locale

Description

Object oriented style

static array Locale::getKeywords (string $locale)

Procedural style

array locale_get_keywords (string $locale)

Gets the keywords for the input locale.

Parameters

locale

The locale to extract the keywords from

Return Values

Associative array containing the keyword-value pairs for this locale

Examples

Example #1553 - locale_get_keywords() example

<?php

$keywords_arr = locale_get_keywords('de_DE@currency=EUR;collation=PHONEBOOK');

if ($keywords_arr) {

 foreach ($keywords_arr as $key => $value) {

 echo "$key = $value\n";

 }

}

?>

Example #1554 - OO example

<?php

$keywords_arr = Locale::getKeywords('de_DE@currency=EUR;collation=PHONEBOOK');

if ($keywords_arr) {

 foreach($keywords_arr as $key => $value){

 echo "$key = $value\n";

 }

}

?>

The above example will output:

collation = PHONEBOOK

currency = EUR

See Also

• locale_get_all_variants()

Locale::getPrimaryLanguage

locale_get_primary_language

Locale::getPrimaryLanguage -- locale_get_primary_language -- Gets the primary language for
the input locale

Description

Object oriented style

static string Locale::getPrimaryLanguage (string $locale)

Procedural style

string locale_get_primary_language (string $locale)

Gets the primary language for the input locale

Parameters

locale

The locale to extract the primary language code from

Return Values

The language code associated with the language or NULL in case of error.

Examples

Example #1555 - locale_get_primary_language() example

<?php

echo locale_get_primary_language('zh-Hant');

?>

Example #1556 - OO example

<?php

echo Locale::getPrimaryLanguage('zh-Hant');

?>

The above example will output:

zh

See Also

• locale_get_script()
• locale_get_region()
• locale_get_all_variants()

Locale::getRegion

locale_get_region

Locale::getRegion -- locale_get_region -- Gets the region for the input locale

Description

Object oriented style

static string Locale::getRegion (string $locale)

Procedural style

string locale_get_region (string $locale)

Gets the region for the input locale.

Parameters

locale

The locale to extract the region code from

Return Values

The region subtag for the locale or NULL if not present

Examples

Example #1557 - locale_get_region() example

<?php

echo locale_get_region('de-CH-1901');

?>

Example #1558 - OO example

<?php

echo Locale::getRegion('de-CH-1901');

?>

The above example will output:

CH

See Also

• locale_get_primary_language()
• locale_get_script()
• locale_get_all_variants()

Locale::getScript

locale_get_script

Locale::getScript -- locale_get_script -- Gets the script for the input locale

Description

Object oriented style

static string Locale::getScript (string $locale)

Procedural style

string locale_get_script (string $locale)

Gets the script for the input locale.

Parameters

locale

The locale to extract the script code from

Return Values

The script subtag for the locale or NULL if not present

Examples

Example #1559 - locale_get_script() example

<?php

echo locale_get_script('sr-Cyrl');

?>

Example #1560 - OO example

<?php

echo Locale::getScript('sr-Cyrl');

?>

The above example will output:

Cyrl

See Also

• locale_get_primary_language()
• locale_get_region()
• locale_get_all_variants()

Locale::lookup

locale_lookup

Locale::lookup -- locale_lookup -- Searches the language tag list for the best match to the
language

Description

Object oriented style

static string Locale::lookup (array $langtag, string $locale, string $default)

Procedural style

string locale_lookup (array $langtag, string $locale, string $default)

Searches the items in langtag for the best match to the language range specified in locale
according to RFC 4647's lookup algorithm.

Parameters

langtag

An array containing a list of language tags to compare to locale. Maximum 100 items
allowed.

locale

The locale to use as the language range when matching.

default

The locale to use if no match is found.

Return Values

The closest matching language tag or default value.

Examples

Example #1561 - locale_lookup() example

<?php

$arr = array(

 'de-DEVA',

 'de-DE-1996',

 'de',

 'de-De'

);

echo locale_lookup($arr, 'de-DE-1996-x-prv1-prv2', 'en_US');

?>

Example #1562 - OO example

<?php

$arr = array(

 'de-DEVA',

 'de-DE-1996',

 'de',

 'de-De'

);

echo Locale::lookup($arr, 'de-DE-1996-x-prv1-prv2', 'en_US');

?>

The above example will output:

de_de_1996

See Also

• locale_filter_matches()

Locale::parseLocale

locale_parse_locale

Locale::parseLocale -- locale_parse_locale -- Returns a key-value array of locale ID subtag
elements.

Description

Object oriented style

static array Locale::parseLocale (string $locale)

Procedural style

array locale_parse_locale (string $locale)

Returns a key-value array of locale ID subtag elements.

Parameters

locale

The locale to extract the subtag array from. Note: The 'variant' and 'private' subtags can
take maximum 15 values whereas 'extlang' can take maximum 3 values.

Return Values

Returns an array containing a list of key-value pairs, where the keys identify the particular
locale ID subtags, and the values are the associated subtag values. The array will be ordered
as the locale id subtags e.g. in the locale id if variants are '-varX-varY-varZ' then the returned
array will have variant0=>varX , variant1=>varY , variant2=>varZ

Examples

Example #1563 - locale_parse_locale() example

<?php

$arr = locale_parse('sl-Latn-IT-nedis');

if ($arr) {

 foreach ($arr as $key => $value) {

 echo "$key : $value , ";

 }

}

?>

Example #1564 - OO example

<?php

$arr = Locale::parseLocale('sl-Latn-IT-nedis');

if ($arr) {

 foreach ($arr as $key => $value) {

 echo "$key : $value , ";

 }

}

?>

The above example will output:

language : sl , script : Latn , region : IT , variant0 : NEDIS ,

See Also

• compose_locale()

Locale::setDefault

locale_set_default

Locale::setDefault -- locale_set_default -- sets the default runtime locale

Description

Object oriented style

static boolean Locale::setDefault (string $locale)

Procedural style

boolean locale_set_default (string $locale)

Sets the default runtime locale to $locale. This changes the value of INTL global
'default_locale' locale identifier. UAX #35 extensions are accepted.

Parameters

locale

Is a BCP 47 compliant language tag containing the

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1565 - locale_set_default() example

<?php

locale_set_default('de-DE');

echo locale_get_default();

?>

Example #1566 - OO example

<?php

Locale::setDefault('de-DE');

echo Locale::getDefault();

?>

The above example will output:

de-DE

See Also

• locale_get_default()

The Normalizer class

Introduction

Normalization is a process that involves transforming characters and sequences of characters
into a formally-defined underlying representation. This process is most important when text
needs to be compared for sorting and searching, but it is also used when storing text to ensure
that the text is stored in a consistent representation.

The Unicode Consortium has defined a number of normalization forms reflecting the various
needs of applications:

• Normalization Form D (NFD) - Canonical Decomposition
• Normalization Form C (NFC) - Canonical Decomposition followed by Canonical

Composition
• Normalization Form KD (NFKD) - Compatibility Decomposition
• Normalization Form KC (NFKC) - Compatibility Decomposition followed by Canonical

Composition
The different forms are defined in terms of a set of transformations on the text, transformations
that are expressed by both an algorithm and a set of data files.

Class synopsis

Normalizer

Normalizer {

/* Methods */

static boolean Normalizer::isNormalized (string $input [, string $form])

static string Normalizer::normalize (string $input [, string $form])
}

Predefined Constants

The following constants define the normalization form used by the normalizer:
Normalizer::FORM_C (string)

Normalization Form C (NFC) - Canonical Decomposition followed by Canonical
Composition

Normalizer::FORM_D (string)

Normalization Form D (NFD) - Canonical Decomposition

Normalizer::FORM_KC (string)
Normalization Form KC (NFKC) - Compatibility Decomposition, followed by Canonical
Composition

Normalizer::FORM_KD (string)
Normalization Form KD (NFKD) - Compatibility Decomposition

Normalizer::NONE (string)
No decomposition/composition

Normalizer::OPTION_DEFAULT (string)
Default normalization options

See Also

• » Unicode Normalization
• » Unicode Normalization FAQ
• » ICU User Guide - Normalization
• » ICU API Reference - Normalization

http://unicode.org/reports/tr15/
http://unicode.org/faq/normalization.html
http://www.icu-project.org/userguide/normalization.html
http://www.icu-project.org/apiref/icu4c/unorm_8h.html

Normalizer::isNormalized

normalizer_is_normalized

Normalizer::isNormalized -- normalizer_is_normalized -- Checks if the provided string is
already in the specified normalization form.

Description

Object oriented style

static boolean Normalizer::isNormalized (string $input [, string $form])

Procedural style

boolean normalizer_is_normalized (string $input [, string $form])

Checks if the provided string is already in the specified normalization form.

Parameters

input

The input string to normalize

form

One of the normalization forms. Defaults to Normalizer::FORM_C.

Return Values

TRUE if normalized, FALSE otherwise or if there an error

Examples

Example #1567 - normalizer_is_normalized() example

<?php

$char_A_ring = "\xC3\x85";	// 'LATIN CAPITAL LETTER A WITH RING ABOVE' (U+00C5)

$char_combining_ring_above = "\xCC\x8A"; // 'COMBINING RING ABOVE' (U+030A)

$char_orig = 'A' . $char_combining_ring_above;

$char_norm = normalizer_normalize('A' . $char_combining_ring_above,
Normalizer::FORM_C);

echo (normalizer_is_normalized($char_orig, Normalizer::FORM_C)) ? "normalized"
: "not normalized";

echo '; ';

echo (normalizer_is_normalized($char_norm, Normalizer::FORM_C)) ? "normalized"
: "not normalized";

?>

Example #1568 - OO example

<?php

$char_A_ring = "\xC3\x85";	// 'LATIN CAPITAL LETTER A WITH RING ABOVE' (U+00C5)

$char_combining_ring_above = "\xCC\x8A"; // 'COMBINING RING ABOVE' (U+030A)

$char_orig = 'A' . $char_combining_ring_above;

$char_norm = Normalizer::normalize('A' . $char_combining_ring_above,
Normalizer::FORM_C);

echo (Normalizer::isNormalized($char_orig, Normalizer::FORM_C)) ? "normalized"
: "not normalized";

echo '; ';

echo (Normalizer::isNormalized($char_norm, Normalizer::FORM_C)) ? "normalized"
: "not normalized";

?>

The above example will output:

not normalized; normalized

See Also

• normalizer_normalize()

Normalizer::normalize

normalizer_normalize

Normalizer::normalize -- normalizer_normalize -- Normalizes the input provided and returns
the normalized string

Description

Object oriented style

static string Normalizer::normalize (string $input [, string $form])

Procedural style

string normalizer_normalize (string $input [, string $form])

Normalizes the input provided and returns the normalized string

Parameters

input

The input string to normalize

form

One of the normalization forms. If not provided the default is Normalizer::FORM_C.

Return Values

The normalized string or NULL if an error occurred.

Examples

Example #1569 - normalizer_normalize() example

<?php

$char_A_ring = "\xC3\x85";	// 'LATIN CAPITAL LETTER A WITH RING ABOVE' (U+00C5)

$char_combining_ring_above = "\xCC\x8A"; // 'COMBINING RING ABOVE' (U+030A)

$char_1 = normalizer_normalize($char_A_ring, Normalizer::FORM_C);

$char_2 = normalizer_normalize('A' . $char_combining_ring_above,
Normalizer::FORM_C);

echo urlencode($char_1);

echo ' ';

echo urlencode($char_2);

?>

Example #1570 - OO example

<?php

$char_A_ring = "\xC3\x85";	// 'LATIN CAPITAL LETTER A WITH RING ABOVE' (U+00C5)

$char_combining_ring_above = "\xCC\x8A"; // 'COMBINING RING ABOVE' (U+030A)

$char_1 = Normalizer::normalize($char_A_ring, Normalizer::FORM_C);

$char_2 = Normalizer::normalize('A' . $char_combining_ring_above,
Normalizer::FORM_C);

echo urlencode($char_1);

echo ' ';

echo urlencode($char_2);

?>

The above example will output:

%C3%85 %C3%85

See Also

• normalizer_is_normalized()

The MessageFormatter class

Introduction

MessageFormatter is a concrete class that enables users to produce concatenated,
language-neutral messages. The methods supplied in this class are used to build all the
messages that are seen by end users.

The MessageFormatter class assembles messages from various fragments (such as text
fragments, numbers, and dates) supplied by the program. Because of the MessageFormatter
class, the program does not need to know the order of the fragments. The class uses the
formatting specifications for the fragments to assemble them into a message that is contained
in a single string within a resource bundle. For example, MessageFormatter enables you to
print the phrase "Finished printing x out of y files..." in a manner that still allows for flexibility in
translation.

Previously, an end user message was created as a sentence and handled as a string. This
procedure created problems for localizers because the sentence structure, word order,
number format and so on are very different from language to language. The language-neutral
way to create messages keeps each part of the message separate and provides keys to the
data. Using these keys, the MessageFormatter class can concatenate the parts of the
message, localize them, and display a well-formed string to the end user.

MessageFormatter takes a set of objects, formats them, and then inserts the formatted strings
into the pattern at the appropriate places. Choice formats can be used in conjunction with
MessageFormatter to handle plurals, match numbers, and select from an array of items.
Typically, the message format will come from resources and the arguments will be dynamically
set at runtime.

Class synopsis

MessageFormatter

MessageFormatter {

/* Methods */

MessageFormatter::__construct (string $locale, string $pattern)

MessageFormatter MessageFormatter::create (string $locale, string $pattern)

static string MessageFormatter::formatMessage (string $locale, string $pattern, array
$args)

string MessageFormatter::format (array $args)

integer MessageFormatter::getErrorCode (void)

string MessageFormatter::getErrorMessage (void)

string MessageFormatter::getLocale (void)

string MessageFormatter::getPattern (void)

static array MessageFormatter::parseMessage (string $locale, string $value)

array MessageFormatter::parse (string $value)

boolean MessageFormatter::setPattern (string $pattern)
}

See Also

• » ICU formatting documentation
• » ICU message formatting description
• » ICU message formatters
• » ICU choice formatters

http://icu-project.org/userguide/formatParse.html
http://icu-project.org/userguide/formatMessages.html
http://icu-project.org/apiref/icu4c/classMessageFormat.html#_details
http://icu-project.org/apiref/icu4c/classChoiceFormat.html#_details

MessageFormatter::create

MessageFormatter::__construct

msgfmt_create

MessageFormatter::create -- MessageFormatter::__construct -- msgfmt_create -- Constructs a
new Message Formatter

Description

Object oriented style (method)

MessageFormatter MessageFormatter::create (string $locale, string $pattern)

Object oriented style (constructor):

MessageFormatter::__construct (string $locale, string $pattern)

Procedural style

MessageFormatter msgfmt_create (string $locale, string $pattern)

Constructs a new Message Formatter

Parameters

locale

The locale to use when formatting arguments

pattern

The pattern string to stick arguments into. The pattern uses an 'apostrophe-friendly'
syntax; it is run through » umsg_autoQuoteApostrophe before being interpreted.

Return Values

The formatter object

Examples

Example #1571 - msgfmt_create() example

<?php

http://www.icu-project.org/apiref/icu4c/umsg_8h.html#9da796210146ff51d395affe4928f0b7

$fmt = msgfmt_create("en_US", "{0,number,integer} monkeys on {1,number,integer}
trees make {2,number} monkeys per tree");

echo msgfmt_format($fmt, array(4560, 123, 4560/123));

$fmt = msgfmt_create("de", "{0,number,integer} Affen über {1,number,integer}
Bäume um {2,number} Affen pro Baum");

echo msgfmt_format($fmt, array(4560, 123, 4560/123));

?>

Example #1572 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree");

echo $fmt->format(array(4560, 123, 4560/123));

$fmt = new MessageFormatter("de", "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum");

echo $fmt->format(array(4560, 123, 4560/123));

?>

The above example will output:

4,560 monkeys on 123 trees make 37.073 monkeys per tree

4.560 Affen über 123 Bäume um 37,073 Affen pro Baum

See Also

• msgfmt_format()
• msgfmt_parse()
• msgfmt_get_error_code()
• msgfmt_get_error_message()

MessageFormatter::formatMessage

msgfmt_format_message

MessageFormatter::formatMessage -- msgfmt_format_message -- Quick format message

Description

Object oriented style

static string MessageFormatter::formatMessage (string $locale, string $pattern, array $
args)

Procedural style

string msgfmt_format_message (string $locale, string $pattern, array $args)

Quick formatting function that formats the string without having to explicitly create the
formatter object. Use this function when the format operation is done only once and does not
need and parameters or state to be kept.

Parameters

locale

The locale to use for formatting locale-dependent parts

pattern

The pattern string to insert things into. The pattern uses an 'apostrophe-friendly' syntax; it
is run through » umsg_autoQuoteApostrophe before being interpreted.

args

The array of values to insert into the format string

Return Values

The formatted pattern string or FALSE if an error occurred

Examples

Example #1573 - msgfmt_format_message() example

<?php

echo msgfmt_format_message("en_US", "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree", array(4560, 123,
4560/123));

http://www.icu-project.org/apiref/icu4c/umsg_8h.html#9da796210146ff51d395affe4928f0b7

echo msgfmt_format_message("de", "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum", array(4560, 123,
4560/123));

Example #1574 - OO example

<?php

echo msgfmt_format_message("en_US", "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree", array(4560, 123,
4560/123));

echo msgfmt_format_message("de", "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum", array(4560, 123,
4560/123));

?>

The above example will output:

4,560 monkeys on 123 trees make 37.073 monkeys per tree

4.560 Affen über 123 Bäume um 37,073 Affen pro Baum

See Also

• msgfmt_create()
• msgfmt_parse()
• msgfmt_get_error_code()
• msgfmt_get_error_message()

MessageFormatter::format

msgfmt_format

MessageFormatter::format -- msgfmt_format -- Format the message

Description

Object oriented style

string MessageFormatter::format (array $args)

Procedural style

string msgfmt_format (MessageFormatter $fmt, array $args)

Format the message by substituting the data into the format string according to the locale
rules

Parameters

fmt

The message formatter

args

Arguments to insert into the format string

Return Values

The formatted string, or FALSE if an error occurred

Examples

Example #1575 - msgfmt_format() example

<?php

$fmt = msgfmt_create("en_US", "{0,number,integer} monkeys on {1,number,integer}
trees make {2,number} monkeys per tree");

echo msgfmt_format($fmt, array(4560, 123, 4560/123));

$fmt = msgfmt_create("de", "{0,number,integer} Affen über {1,number,integer}
Bäume um {2,number} Affen pro Baum");

echo msgfmt_format($fmt, array(4560, 123, 4560/123));

?>

Example #1576 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree");

echo $fmt->format(array(4560, 123, 4560/123));

$fmt = new MessageFormatter("de", "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum");

echo $fmt->format(array(4560, 123, 4560/123));

?>

The above example will output:

4,560 monkeys on 123 trees make 37.073 monkeys per tree

4.560 Affen über 123 Bäume um 37,073 Affen pro Baum

See Also

• msgfmt_create()
• msgfmt_parse()
• msgfmt_format_message()
• msgfmt_get_error_code()
• msgfmt_get_error_message()

MessageFormatter::getErrorCode

msgfmt_get_error_code

MessageFormatter::getErrorCode -- msgfmt_get_error_code -- Get the error code from last
operation

Description

Object oriented style

integer MessageFormatter::getErrorCode (void)

Procedural style

integer msgfmt_get_error_code (MessageFormatter $fmt)

Get the error code from last operation.

Parameters

fmt

The message formatter

Return Values

The error code, one of UErrorCode values. Initial value is U_ZERO_ERROR.

Examples

Example #1577 - msgfmt_get_error_code() example

<?php

$fmt = msgfmt_create("en_US", "{0, number} monkeys on {1, number} trees");

$str = msgfmt_format($fmt, array());

if(!$str) {

 echo "ERROR: ".msgfmt_get_error_message($fmt) . " (" .
msgfmt_get_error_code($fmt) . ")\n";

}

?>

Example #1578 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0, number} monkeys on {1, number}
trees");

$str = $fmt->format(array());

if(!$str) {

 echo "ERROR: ".$fmt->getErrorMessage() . " (" . $fmt->getErrorCode() . ")\n";

}

?>

The above example will output:

ERROR: msgfmt_format: not enough parameters: U_ILLEGAL_ARGUMENT_ERROR (1)

See Also

• msgfmt_get_error_message()
• intl_get_error_code()
• intl_is_failure()

MessageFormatter::getErrorMessage

msgfmt_get_error_message

MessageFormatter::getErrorMessage -- msgfmt_get_error_message -- Get the error text from
the last operation

Description

Object oriented style

string MessageFormatter::getErrorMessage (void)

Procedural style

string msgfmt_get_error_message (MessageFormatter $fmt)

Get the error text from the last operation.

Parameters

fmt

The message formatter

Return Values

Description of the last error.

Examples

Example #1579 - msgfmt_get_error_message() example

<?php

$fmt = msgfmt_create("en_US", "{0, number} monkeys on {1, number} trees");

$str = msgfmt_format($fmt, array());

if(!$str) {

 echo "ERROR: ".msgfmt_get_error_message($fmt) . " (" .
msgfmt_get_error_code($fmt) . ")\n";

}

?>

Example #1580 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0, number} monkeys on {1, number}
trees");

$str = $fmt->format(array());

if(!$str) {

 echo "ERROR: ".$fmt->getErrorMessage() . " (" . $fmt->getErrorCode() . ")\n";

}

?>

The above example will output:

ERROR: msgfmt_format: not enough parameters: U_ILLEGAL_ARGUMENT_ERROR (1)

See Also

• msgfmt_get_error_code()
• intl_get_error_code()
• intl_is_failure()

MessageFormatter::getLocale

msgfmt_get_locale

MessageFormatter::getLocale -- msgfmt_get_locale -- Get the locale for which the formatter
was created.

Description

Object oriented style

string MessageFormatter::getLocale (void)

Procedural style

string msgfmt_get_locale (NumberFormatter $formatter)

Get the locale for which the formatter was created.

Parameters

formatter

The formatter resource

Return Values

The locale name

Examples

Example #1581 - msgfmt_get_locale() example

<?php

$fmt = msgfmt_create('en_US', "Number {0,number}");

echo msgfmt_get_locale($fmt);

?>

Example #1582 - OO example

<?php

$fmt = new MessageFormatter('en_US', "Number {0,number}");

echo $fmt->getLocale();

?>

The above example will output:

en_US

See Also

• msgfmt_create()

MessageFormatter::getPattern

msgfmt_get_pattern

MessageFormatter::getPattern -- msgfmt_get_pattern -- Get the pattern used by the formatter

Description

Object oriented style

string MessageFormatter::getPattern (void)

Procedural style

string msgfmt_get_pattern (MessageFormatter $fmt)

Get the pattern used by the formatter

Parameters

fmt

The message formatter

Return Values

The pattern string for this message formatter

Examples

Example #1583 - msgfmt_get_pattern() example

<?php

$fmt = msgfmt_create("en_US", "{0, number} monkeys on {1, number} trees");

echo "Default pattern: '" . msgfmt_get_pattern($fmt) . "'\n";

echo "Formatting result: " . msgfmt_format($fmt, array(123, 456)) . "\n";

msgfmt_set_pattern($fmt, "{0, number} trees hosting {1, number} monkeys");

echo "New pattern: '" . msgfmt_get_pattern($fmt) . "'\n";

echo "Formatted number: " . msgfmt_format($fmt, array(123, 456)) . "\n";

?>

Example #1584 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0, number} monkeys on {1, number} trees"
);

echo "Default pattern: '" . $fmt->getPattern() . "'\n";

echo "Formatting result: " . $fmt->format(array(123, 456)) . "\n";

$fmt->setPattern("{0, number} trees hosting {1, number} monkeys");

echo "New pattern: '" . $fmt->getPattern() . "'\n";

echo "Formatted number: " . $fmt->format(array(123, 456)) . "\n";

?>

The above example will output:

Default pattern: '{0,number} monkeys on {1,number} trees'

Formatting result: 123 monkeys on 456 trees

New pattern: '{0,number} trees hosting {1,number} monkeys'

Formatted number: 123 trees hosting 456 monkeys

See Also

• msgfmt_create()
• msgfmt_set_pattern()

MessageFormatter::parseMessage

msgfmt_parse_message

MessageFormatter::parseMessage -- msgfmt_parse_message -- Quick parse input string

Description

Object oriented style

static array MessageFormatter::parseMessage (string $locale, string $value)

Procedural style

array msgfmt_parse_message (string $locale, string $value)

Parses input string without explicitly creating the formatter object. Use this function when the
format operation is done only once and does not need and parameters or state to be kept.

Parameters

locale

The locale to use for parsing locale-dependent parts

value

The string to parse for items

Return Values

An array containing items extracted, or FALSE on error

Examples

Example #1585 - msgfmt_parse_message() example

<?php

$fmt = msgfmt_parse_message('en_US', "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree",

 "4,560 monkeys on 123 trees make 37.073 monkeys per
tree");

var_export($res);

$fmt = msgfmt_parse_message('de', "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum",

 "4.560 Affen über 123 Bäume um 37,073 Affen pro
Baum");

var_export($res);

?>

Example #1586 - OO example

<?php

$fmt = MessageFormatter::parseMessage('en_US', "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree",

 "4,560 monkeys on 123 trees make 37.073 monkeys per
tree");

var_export($res);

$fmt = MessageFormatter::parseMessage('de', "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum",

 "4.560 Affen über 123 Bäume um 37,073 Affen pro
Baum");

var_export($res);

?>

The above example will output:

array (

 0 => 4560,

 1 => 123,

 2 => 37.073,

)

array (

 0 => 4560,

 1 => 123,

 2 => 37.073,

)

See Also

• msgfmt_create()
• msgfmt_format_message()
• msgfmt_parse()

MessageFormatter::parse

msgfmt_parse

MessageFormatter::parse -- msgfmt_parse -- Parse input string according to pattern

Description

Object oriented style

array MessageFormatter::parse (string $value)

Procedural style

array msgfmt_parse (MessageFormatter $fmt, string $value)

Parses input string and return any extracted items as an array.

Parameters

fmt

The message formatter

value

The string to parse

Return Values

An array containing the items extracted, or FALSE on error

Examples

Example #1587 - msgfmt_parse() example

<?php

$fmt = msgfmt_create('en_US', "{0,number,integer} monkeys on {1,number,integer}
trees make {2,number} monkeys per tree");

$res = msgfmt_parse($fmt, "4,560 monkeys on 123 trees make 37.073 monkeys per
tree");

var_export($res);

$fmt = msgfmt_create('de', "{0,number,integer} Affen über {1,number,integer}
Bäume um {2,number} Affen pro Baum");

$res = msgfmt_parse($fmt, "4.560 Affen über 123 Bäume um 37,073 Affen pro
Baum");

var_export($res);

?>

Example #1588 - OO example

<?php

$fmt = new MessageFormatter('en_US', "{0,number,integer} monkeys on
{1,number,integer} trees make {2,number} monkeys per tree");

$res = $fmt->parse("4,560 monkeys on 123 trees make 37.073 monkeys per tree");

var_export($res);

$fmt = new MessageFormatter('de', "{0,number,integer} Affen über
{1,number,integer} Bäume um {2,number} Affen pro Baum");

$res = $fmt->parse("4.560 Affen über 123 Bäume um 37,073 Affen pro Baum");

var_export($res);

?>

The above example will output:

array (

 0 => 4560,

 1 => 123,

 2 => 37.073,

)

array (

 0 => 4560,

 1 => 123,

 2 => 37.073,

)

See Also

• msgfmt_create()
• msgfmt_format()
• msgfmt_parse_message()

MessageFormatter::setPattern

msgfmt_set_pattern

MessageFormatter::setPattern -- msgfmt_set_pattern -- Set the pattern used by the formatter

Description

Object oriented style

boolean MessageFormatter::setPattern (string $pattern)

Procedural style

boolean msgfmt_set_pattern (MessageFormatter $fmt, string $pattern)

Set the pattern used by the formatter

Parameters

fmt

The message formatter

pattern

The pattern string to use in this message formatter. The pattern uses an
'apostrophe-friendly' syntax; it is run through » umsg_autoQuoteApostrophe before being
interpreted.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1589 - msgfmt_set_pattern() example

<?php

$fmt = msgfmt_create("en_US", "{0, number} monkeys on {1, number} trees");

echo "Default pattern: '" . msgfmt_get_pattern($fmt) . "'\n";

echo "Formatting result: " . msgfmt_format($fmt, array(123, 456)) . "\n";

msgfmt_set_pattern($fmt, "{0, number} trees hosting {1, number} monkeys");

echo "New pattern: '" . msgfmt_get_pattern($fmt) . "'\n";

echo "Formatted number: " . msgfmt_format($fmt, array(123, 456)) . "\n";

?>

http://www.icu-project.org/apiref/icu4c/umsg_8h.html#9da796210146ff51d395affe4928f0b7

Example #1590 - OO example

<?php

$fmt = new MessageFormatter("en_US", "{0, number} monkeys on {1, number} trees"
);

echo "Default pattern: '" . $fmt->getPattern() . "'\n";

echo "Formatting result: " . $fmt->format(array(123, 456)) . "\n";

$fmt->setPattern("{0, number} trees hosting {1, number} monkeys");

echo "New pattern: '" . $fmt->getPattern() . "'\n";

echo "Formatted number: " . $fmt->format(array(123, 456)) . "\n";

?>

The above example will output:

Default pattern: '{0,number} monkeys on {1,number} trees'

Formatting result: 123 monkeys on 456 trees

New pattern: '{0,number} trees hosting {1,number} monkeys'

Formatted number: 123 trees hosting 456 monkeys

See Also

• msgfmt_create()
• msgfmt_get_pattern()

The IntlDateFormatter class

Introduction

Date Formatter is a concrete class that enables locale-dependent formatting/parsing of dates
using pattern strings and/or canned patterns.

This class represents the ICU date formatting functionality. It allows users to display dates in a
localized format or to parse strings into PHP date values using pattern strings and/or canned
patterns.

Class synopsis

IntlDateFormatter

IntlDateFormatter {

/* Methods */

IntlDateFormatter::__construct (string $locale, integer $datetype, integer $timetype [,
string $timezone [, integer $calendar [, string $pattern]]])

static IntlDateFormatter IntlDateFormatter::create (string $locale, integer $datetype,
integer $timetype [, string $timezone [, integer $calendar [, string $pattern]]])

string IntlDateFormatter::format (mixed $value)

integer IntlDateFormatter::getCalendar (void)

integer IntlDateFormatter::getDateType (void)

integer IntlDateFormatter::getErrorCode (void)

string IntlDateFormatter::getErrorMessage (void)

string IntlDateFormatter::getLocale ([integer $which])

string IntlDateFormatter::getPattern (void)

integer IntlDateFormatter::getTimeType (void)

string IntlDateFormatter::getTimeZoneId (void)

boolean IntlDateFormatter::isLenient (void)

array IntlDateFormatter::localtime (string $value, integer $parse_pos)

integer IntlDateFormatter::parse (string $value, integer $parse_pos)

boolean IntlDateFormatter::setCalendar (integer $which)

boolean IntlDateFormatter::setLenient (boolean $lenient)

boolean IntlDateFormatter::setPattern (string $pattern)

boolean IntlDateFormatter::setTimeZoneId (string $zone)
}

See Also

• » ICU Date formatter

Predefined Constants

These constants are used to specify different formats in the constructor for DateType and
TimeType.
IntlDateFormatter::NONE (string)

Do not include this element

IntlDateFormatter::FULL (string)
Completely specified style (Tuesday, April 12, 1952 AD or 3:30:42pm PST)

IntlDateFormatter::LONG (string)
Long style (January 12, 1952 or 3:30:32pm)

IntlDateFormatter::MEDIUM (string)
Medium style (Jan 12, 1952)

IntlDateFormatter::SHORT (string)
Most abbreviated style, only essential data (12/13/52 or 3:30pm)

The following int constants are used to specify the calendar. These calendars are all based
directly on the Gregorian calendar. Non-Gregorian calendars need to be specified in locale.
Examples might include locale="hi@calendar=BUDDHIST".
IntlDateFormatter::TRADITIONAL (string)

Non-Gregorian Calendar

http://www.icu-project.org/apiref/icu4c/classDateFormat.html#_details

IntlDateFormatter::GREGORIAN (string)
Gregorian Calendar

IntlDateFormatter::create

datefmt_create

IntlDateFormatter::__construct

IntlDateFormatter::create -- datefmt_create -- IntlDateFormatter::__construct -- Create a date
formatter

Description

Object oriented style

static IntlDateFormatter IntlDateFormatter::create (string $locale, integer $datetype,
integer $timetype [, string $timezone [, integer $calendar [, string $pattern]]])

Object oriented style (constructor)

IntlDateFormatter::__construct (string $locale, integer $datetype, integer $timetype [,
string $timezone [, integer $calendar [, string $pattern]]])

Procedural style

IntlDateFormatter datefmt_create (string $locale, integer $datetype, integer $timetype [,
string $timezone [, integer $calendar [, string $pattern]]])

Create a date formatter

Parameters

locale

Locale to use when formatting or parsing.

datetype

Date type to use (none, short, medium, long, full). This is one of the IntlDateFormatter
constants.

timetype

Time type to use (none, short, medium, long, full). This is one of the IntlDateFormatter
constants.

timezone

Time zone ID, default is system default.

calendar

Calendar to use for formatting or parsing; default is Gregorian. This is one of the

IntlDateFormatter calendar constants.

pattern

Optional pattern to use when formatting or parsing

Return Values

Examples

Example #1591 - datefmt_create() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second Formatted output is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "First Formatted output with pattern is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "Second Formatted output with pattern is ".datefmt_format($fmt , 0);

?>

Example #1592 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First Formatted output is ".$fmt->format(0);

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second Formatted output is ".$fmt->format(0);

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "First Formatted output with pattern is ".$fmt->format(0);

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN , "MM/dd/yyyy");

echo "Second Formatted output with pattern is ".$fmt->format(0);

?>

The above example will output:

First Formatted output is Wednesday, December 31, 1969 4:00:00 PM PT

Second Formatted output is Mittwoch, 31. Dezember 1969 16:00 Uhr GMT-08:00

First Formatted output with pattern is 12/31/1969

Second Formatted output with pattern is 12/31/1969

See Also

• datefmt_format()
• datefmt_parse()
• datefmt_get_error_code()
• datefmt_get_error_message()

IntlDateFormatter::format

datefmt_format

IntlDateFormatter::format -- datefmt_format -- Format the date/time value as a string

Description

Object oriented style

string IntlDateFormatter::format (mixed $value)

Procedural style

string datefmt_format (IntlDateFormatter $fmt, mixed $value)

Formats the time value as a string.

Parameters

fmt

The date formatter resource.

value

Value to format. Can be integer for an Unix timestamp value (seconds since epoch, UTC)
or array for a localtime() array.

Return Values

The formatted string or, if an error occurred, FALSE.

Examples

Example #1593 - datefmt_format() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second Formatted output is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("en_US"

,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "First Formatted output with pattern is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "Second Formatted output with pattern is ".datefmt_format($fmt , 0);

?>

Example #1594 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First Formatted output is ".$fmt->format(0);

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second Formatted output is ".$fmt->format(0);

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "First Formatted output with pattern is ".$fmt->format(0);

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN , "MM/dd/yyyy");

echo "Second Formatted output with pattern is ".$fmt->format(0);

?>

The above example will output:

First Formatted output is Wednesday, December 31, 1969 4:00:00 PM PT

Second Formatted output is Mittwoch, 31. Dezember 1969 16:00 Uhr GMT-08:00

First Formatted output with pattern is 12/31/1969

Second Formatted output with pattern is 12/31/1969

See Also

• datefmt_create()
• datefmt_parse()
• datefmt_get_error_code()
• datefmt_get_error_message()

IntlDateFormatter::getCalendar

datefmt_get_calendar

IntlDateFormatter::getCalendar -- datefmt_get_calendar -- Get the calendar used for the
IntlDateFormatter

Description

Object oriented style

integer IntlDateFormatter::getCalendar (void)

Procedural style

integer datefmt_get_calendar (IntlDateFormatter $fmt)

Parameters

fmt

The formatter resource

Return Values

The calendar being used by the formatter.

Examples

Example #1595 - datefmt_get_calendar() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "calendar of the formatter is : ".datefmt_get_calendar($fmt);

datefmt_set_calendar($fmt,IntlDateFormatter::TRADITIONAL);

echo "Now calendar of the formatter is : ".datefmt_get_calendar($fmt);

?>

Example #1596 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "calendar of the formatter is : ".$fmt->getCalendar();

$fmt->setCalendar(IntlDateFormatter::TRADITIONAL);

echo "Now calendar of the formatter is : ".$fmt->getCalendar();

?>

The above example will output:

calendar of the formatter is : 1

Now calendar of the formatter is : 0

See Also

• datefmt_set_calendar()
• datefmt_create()

IntlDateFormatter::getDateType

datefmt_get_datetype

IntlDateFormatter::getDateType -- datefmt_get_datetype -- Get the datetype used for the
IntlDateFormatter

Description

Object oriented style

integer IntlDateFormatter::getDateType (void)

Procedural style

integer datefmt_get_datetype (IntlDateFormatter $fmt)

Returns date type used by the formatter.

Parameters

fmt

The formatter resource.

Return Values

The current date type value of the formatter.

Examples

Example #1597 - datefmt_get_datetype() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "datetype of the formatter is : ".datefmt_get_datetype($fmt);

echo "First Formatted output with datetype is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("en_US"
,IntlDateFormatter::SHORT,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDate
Formatter::GREGORIAN);

echo "Now datetype of the formatter is : ".datefmt_get_datetype($fmt);

echo "Second Formatted output with datetype is ".datefmt_format($fmt , 0);

?>

Example #1598 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "datetype of the formatter is : ".$fmt->getDateType();

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::SHORT,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDate
Formatter::GREGORIAN);

echo "Now datetype of the formatter is : ".$fmt->getDateType();

echo "Second Formatted output is ".datefmt_format($fmt , 0);

?>

The above example will output:

datetype of the formatter is : 0

First Formatted output is Wednesday, December 31, 1969 4:00:00 PM PT

Now datetype of the formatter is : 2

Second Formatted output is 12/31/69 4:00:00 PM PT

See Also

• datefmt_get_timetype()
• datefmt_create()

IntlDateFormatter::getErrorCode

datefmt_get_error_code

IntlDateFormatter::getErrorCode -- datefmt_get_error_code -- Get the error code from last
operation

Description

Object oriented style

integer IntlDateFormatter::getErrorCode (void)

Procedural style

integer datefmt_get_error_code (IntlDateFormatter $fmt)

Get the error code from last operation. Returns error code from the last number formatting
operation.

Parameters

fmt

The formatter resource.

Return Values

The error code, one of UErrorCode values. Initial value is U_ZERO_ERROR.

Examples

Example #1599 - datefmt_get_error_code() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$str = datefmt_format($fmt);

if(!$str) {

 echo "ERROR: ".datefmt_get_error_message($fmt) . " (" .
datefmt_get_error_code($fmt) . ")\n";

}

?>

Example #1600 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$str = $fmt->format();

if(!$str) {

 echo "ERROR: ".$fmt->getErrorMessage() . " (" . $fmt->getErrorCode() . ")\n";

}

?>

The above example will output:

ERROR: U_ZERO_ERROR (0)

See Also

• datefmt_get_error_message()
• intl_get_error_code()
• intl_is_failure()

IntlDateFormatter::getErrorMessage

datefmt_get_error_message

IntlDateFormatter::getErrorMessage -- datefmt_get_error_message -- Get the error text from
the last operation.

Description

Object oriented style

string IntlDateFormatter::getErrorMessage (void)

Procedural style

string datefmt_get_error_message (IntlDateFormatter $fmt)

Get the error text from the last operation.

Parameters

fmt

The formatter resource.

Return Values

Description of the last error.

Examples

Example #1601 - datefmt_get_error_message() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$str = datefmt_format($fmt);

if(!$str) {

 echo "ERROR: ".datefmt_get_error_message($fmt) . " (" .
datefmt_get_error_code($fmt) . ")\n";

}

?>

Example #1602 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$str = $fmt->format();

if(!$str) {

 echo "ERROR: ".$fmt->getErrorMessage() . " (" . $fmt->getErrorCode() . ")\n";

}

?>

The above example will output:

ERROR: U_ZERO_ERROR (0)

See Also

• datefmt_get_error_code()
• intl_get_error_code()
• intl_is_failure()

IntlDateFormatter::getLocale

datefmt_get_locale

IntlDateFormatter::getLocale -- datefmt_get_locale -- Get the locale used by formatter

Description

Object oriented style

string IntlDateFormatter::getLocale ([integer $which])

Procedural style

string datefmt_get_locale (IntlDateFormatter $fmt [, integer $which])

Get locale used by the formatter.

Parameters

fmt

The formatter resource

hich

You can choose between valid and actual locale (Locale::VALID_LOCALE,
Locale::ACTUAL_LOCALE, respectively). The default is the actual locale.

Return Values

the locale of this formatter or 'false' if error

Examples

Example #1603 - datefmt_get_locale() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "locale of the formatter is : ".datefmt_get_locale($fmt);

echo "First Formatted output is ".datefmt_format($fmt , 0);

echo "locale of the formatter is : ".datefmt_get_locale($fmt);

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second Formatted output is ".datefmt_format($fmt , 0);

?>

Example #1604 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "locale of the formatter is : ".$fmt->getLocale();

echo "First Formatted output is ".$fmt->format(0);

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "locale of the formatter is : ".$fmt->getLocale();

echo "Second Formatted output is ".$fmt->format(0);

?>

The above example will output:

locale of the formatter is : en

First Formatted output is Wednesday, December 31, 1969 4:00:00 PM PT

locale of the formatter is : de

Second Formatted output is Mittwoch, 31. Dezember 1969 16:00 Uhr GMT-08:00

See Also

• datefmt_create()

IntlDateFormatter::getPattern

datefmt_get_pattern

IntlDateFormatter::getPattern -- datefmt_get_pattern -- Get the pattern used for the
IntlDateFormatter

Description

Object oriented style

string IntlDateFormatter::getPattern (void)

Procedural style

string datefmt_get_pattern (IntlDateFormatter $fmt)

Get pattern used by the formatter.

Parameters

fmt

The formatter resource.

Return Values

The pattern string being used to format/parse.

Examples

Example #1605 - datefmt_get_pattern() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "pattern of the formatter is : ".datefmt_get_pattern($fmt);

echo "First Formatted output with pattern is ".datefmt_format($fmt , 0);

datefmt_set_pattern($fmt,'yyyymmdd hh:mm:ss z');

echo "Now pattern of the formatter is : ".datefmt_get_pattern($fmt);

echo "Second Formatted output with pattern is ".datefmt_format($fmt , 0);

?>

Example #1606 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN,"MM/dd/yyyy");

echo "pattern of the formatter is : ".$fmt->getPattern();

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt->setPattern('yyyymmdd hh:mm:ss z');

echo "Now pattern of the formatter is : ".$fmt->getPattern();

echo "Second Formatted output is ".datefmt_format($fmt , 0);

?>

The above example will output:

pattern of the formatter is : MM/dd/yyyy

First Formatted output is 12/31/1969

Now pattern of the formatter is : yyyymmdd hh:mm:ss z

Second Formatted output is 19690031 04:00:00 PST

See Also

• datefmt_set_pattern()
• datefmt_create()

IntlDateFormatter::getTimeType

datefmt_get_timetype

IntlDateFormatter::getTimeType -- datefmt_get_timetype -- Get the timetype used for the
IntlDateFormatter

Description

Object oriented style

integer IntlDateFormatter::getTimeType (void)

Procedural style

integer datefmt_get_timetype (IntlDateFormatter $fmt)

Return time type used by the formatter.

Parameters

fmt

The formatter resource.

Return Values

The current date type value of the formatter.

Examples

Example #1607 - datefmt_get_timetype() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timetype of the formatter is : ".datefmt_get_timetype($fmt);

echo "First Formatted output with timetype is ".datefmt_format($fmt , 0);

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::SHORT,'America/Los_Angeles',IntlDate
Formatter::GREGORIAN);

echo "Now timetype of the formatter is : ".datefmt_get_timetype($fmt);

echo "Second Formatted output with timetype is ".datefmt_format($fmt , 0);

?>

Example #1608 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timetype of the formatter is : ".$fmt->getTimeType();

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::SHORT,'America/Los_Angeles',IntlDate
Formatter::GREGORIAN);

echo "Now timetype of the formatter is : ".$fmt->getTimeType();

echo "Second Formatted output is ".datefmt_format($fmt , 0);

?>

The above example will output:

timetype of the formatter is : 0

First Formatted output is Wednesday, December 31, 1969 4:00:00 PM PT

Now timetype of the formatter is : 3

Second Formatted output is Wednesday, December 31, 1969 4:00 PM

See Also

• datefmt_get_datetype()
• datefmt_create()

IntlDateFormatter::getTimeZoneId

datefmt_get_timezone_id

IntlDateFormatter::getTimeZoneId -- datefmt_get_timezone_id -- Get the timezone-id used for
the IntlDateFormatter

Description

Object oriented style

string IntlDateFormatter::getTimeZoneId (void)

Procedural style

string datefmt_get_timezone_id (IntlDateFormatter $fmt)

Get the timezone-id used for the IntlDateFormatter.

Parameters

fmt

The formatter resource.

Return Values

ID string for the time zone used by this formatter.

Examples

Example #1609 - datefmt_get_timezone_id() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timezone_id of the formatter is : ".datefmt_get_timezone_id($fmt);

datefmt_set_timezone_id($fmt,'CN');

echo "Now timezone_id of the formatter is : ".datefmt_get_timezone_id($fmt);

?>

Example #1610 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timezone_id of the formatter is : ".$fmt->getTimezoneId();

$fmt->setTimezoneId('CN');

echo "Now timezone_id of the formatter is : ".$fmt->getTimezoneId();

?>

The above example will output:

timezone_id of the formatter is : America/Los_Angeles

Now timezone_id of the formatter is : CN

See Also

• datefmt_set_timezone_id()
• datefmt_create()

IntlDateFormatter::isLenient

datefmt_is_lenient

IntlDateFormatter::isLenient -- datefmt_is_lenient -- Get the lenient used for the
IntlDateFormatter

Description

Object oriented style

boolean IntlDateFormatter::isLenient (void)

Procedural style

boolean datefmt_is_lenient (IntlDateFormatter $fmt)

Check if the parser is strict or lenient in interpretting inputs that do not match the pattern
exactly.

Parameters

fmt

The formatter resource.

Return Values

TRUE if parser is lenient, FALSE if parser is strict. By default the parser is strict.

Examples

Example #1611 - datefmt_is_lenient() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGO

RIAN ,"dd/mm/yyyy");

echo "lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

datefmt_parse($fmt,"35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "

.datefmt_parse($fmt,"35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

datefmt_set_lenient($fmt,false);

echo "Now lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

datefmt_parse($fmt,"35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.datefmt_parse($fmt,"35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

?>

Example #1612 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GRE

GORIAN,"dd/mm/yyyy");

echo "lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

$fmt->parse("35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.$fmt->parse("35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

$fmt->setLenient(FALSE);

echo "Now lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

$fmt->parse("35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.$fmt->parse("35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

?>

The above example will output:

lenient of the formatter is : TRUE

Trying to do parse('35/13/1971').

Result is : -2147483

Now lenient of the formatter is : FALSE

Trying to do parse('35/13/1971').

Result is : Error_msg is : Date parsing failed: U_PARSE_ERROR Error_code is : 9

See Also

• datefmt_set_lenient()
• datefmt_create()

IntlDateFormatter::localtime

datefmt_localtime

IntlDateFormatter::localtime -- datefmt_localtime -- Parse string to a field-based time value

Description

Object oriented style

array IntlDateFormatter::localtime (string $value, integer $parse_pos)

Procedural style

array datefmt_localtime (IntlDateFormatter $fmt, string $value, integer $parse_pos)

Converts string $value to a field-based time value (an array of various fields), starting at
$parse_pos and consuming as much of the input value as possible.

Parameters

fmt

The formatter resource

value

string to convert to a time

parse_pos

Position at which to start the parsing in $value (zero-based). If no error occurs before
$value is consumed, $parse_pos will contain -1 otherwise it will contain the position at
which parsing ended . If $parse_pos > strlen($value), the parse fails immediately.

Return Values

Localtime compatible array of integers : contains 24 hour clock value in tm_hour field

Examples

Example #1613 - datefmt_localtime() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$arr = datefmt_localtime($fmt, "Wednesday, December 31, 1969 4:00:00 PM PT",0);

echo "First parsed output is ";

if ($arr) {

 foreach ($arr as $key => $value) {

 echo "$key : $value , ";

 }

}

?>

Example #1614 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

$arr = $fmt->localtime("Wednesday, December 31, 1969 4:00:00 PM PT",0);

echo "First parsed output is ";

if ($arr) {

 foreach ($arr as $key => $value) {

 echo "$key : $value , ";

 }

}

?>

The above example will output:

First parsed output is tm_sec : 0 , tm_min : 0 , tm_hour : 16 , tm_year : 1969 ,

tm_mday : 31 , tm_wday : 4 , tm_yday : 365 , tm_mon : 11 , tm_isdst : 0 ,

See Also

• datefmt_create()
• datefmt_format()
• datefmt_parse()
• datefmt_get_error_code()
• datefmt_get_error_message()

IntlDateFormatter::parse

datefmt_parse

IntlDateFormatter::parse -- datefmt_parse -- Parse string to a timestamp value

Description

Object oriented style

integer IntlDateFormatter::parse (string $value, integer $parse_pos)

Procedural style

integer datefmt_parse (IntlDateFormatter $fmt, string $value, integer $parse_pos)

Converts string $value to an incremental time value, starting at $parse_pos and consuming as
much of the input value as possible.

Parameters

fmt

The formatter resource

value

string to convert to a time

parse_pos

Position at which to start the parsing in $value (zero-based). If no error occurs before
$value is consumed, $parse_pos will contain -1 otherwise it will contain the position at
which parsing ended (and the error occurred). This variable will contain the end position if
the parse fails. If $parse_pos > strlen($value), the parse fails immediately.

Return Values

timestamp parsed value

Examples

Example #1615 - datefmt_parse() example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First parsed output is ".$fmt->parse("Wednesday, December 31, 1969 4:00:00
PM PT");

$fmt = new IntlDateFormatter("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second parsed output is ".$fmt->parse("Mittwoch, 31. Dezember 1969 16:00
Uhr GMT-08:00");

?>

Example #1616 - OO example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "First parsed output is ".datefmt_parse($fmt , "Wednesday, December 20,
1989 4:00:00 PM PT");

$fmt = datefmt_create("de-DE"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "Second parsed output is ".datefmt_parse($fmt , "Mittwoch, 20. Dezember
1989 16:00 Uhr GMT-08:00");

?>

The above example will output:

First parsed output is 630201600

Second parsed output is 630201600

See Also

• datefmt_create()
• datefmt_format()
• datefmt_localtime()
• datefmt_get_error_code()
• datefmt_get_error_message()

IntlDateFormatter::setCalendar

datefmt_set_calendar

IntlDateFormatter::setCalendar -- datefmt_set_calendar -- sets the calendar used to the
appropriate calendar, which must be

Description

Object oriented style

boolean IntlDateFormatter::setCalendar (integer $which)

Procedural style

boolean datefmt_set_calendar (IntlDateFormatter $fmt, integer $which)

Sets the calendar used by the formatter.

Parameters

fmt

The formatter resource.

which

The calendar to use. Default is IntlDateFormatter::GREGORIAN.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1617 - datefmt_set_calendar() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "calendar of the formatter is : ".datefmt_get_calendar($fmt);

datefmt_set_calendar($fmt,IntlDateFormatter::TRADITIONAL);

echo "Now calendar of the formatter is : ".datefmt_get_calendar($fmt);

?>

Example #1618 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "calendar of the formatter is : ".$fmt->getCalendar();

$fmt->setCalendar(IntlDateFormatter::TRADITIONAL);

echo "Now calendar of the formatter is : ".$fmt->getCalendar();

?>

The above example will output:

calendar of the formatter is : 1

Now calendar of the formatter is : 0

See Also

• datefmt_get_calendar()
• datefmt_create()

IntlDateFormatter::setLenient

datefmt_set_lenient

IntlDateFormatter::setLenient -- datefmt_set_lenient -- Set the leniency of the parser

Description

Object oriented style

boolean IntlDateFormatter::setLenient (boolean $lenient)

Procedural style

boolean datefmt_set_lenient (IntlDateFormatter $fmt, boolean $lenient)

Define if the parser is strict or lenient in interpretting inputs that do not match the pattern
exactly. Enabling lenient parsing allows the parser to accept otherwise flawed date or time
patterns, parsing as much as possible to obtain a value. Extra space, unrecognized tokens, or
invalid values ("Feburary 30th") are not accepted.

Parameters

fmt

The formatter resource

lenient

Sets whether the parser is lenient or not, default is FALSE (strict).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1619 - datefmt_set_lenient() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGO

RIAN ,"dd/mm/yyyy");

echo "lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

datefmt_parse($fmt,"35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.datefmt_parse($fmt,"35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

datefmt_set_lenient($fmt,false);

echo "Now lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

datefmt_parse($fmt,"35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.datefmt_parse($fmt,"35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

?>

Example #1620 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GRE

GORIAN,"dd/mm/yyyy");

echo "lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

$fmt->parse("35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.$fmt->parse("35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

$fmt->setLenient(FALSE);

echo "Now lenient of the formatter is : ";

if($fmt->isLenient()){

 echo('TRUE');

}else{

 echo('FALSE');

}

$fmt->parse("35/13/1971");

echo "\n Trying to do parse('35/13/1971').Result is : "
.$fmt->parse("35/13/1971");

if(intl_get_error_code() !=0){

 echo "Error_msg is : ".intl_get_error_message();

 echo "Error_code is : ".intl_get_error_code();

}

?>

The above example will output:

lenient of the formatter is : TRUE

Trying to do parse('35/13/1971').

Result is : -2147483

Now lenient of the formatter is : FALSE

Trying to do parse('35/13/1971').

Result is : Error_msg is : Date parsing failed: U_PARSE_ERROR Error_code is : 9

See Also

• datefmt_is_lenient()
• datefmt_create()

IntlDateFormatter::setPattern

datefmt_set_pattern

IntlDateFormatter::setPattern -- datefmt_set_pattern -- Set the pattern used for the
IntlDateFormatter

Description

Object oriented style

boolean IntlDateFormatter::setPattern (string $pattern)

Procedural style

boolean datefmt_set_pattern (IntlDateFormatter $fmt, string $pattern)

Set the pattern used for the IntlDateFormatter.

Parameters

fmt

The formatter resource.

pattern

New pattern string to use.

Return Values

Returns TRUE on success or FALSE on failure. Bad formatstrings are usually the cause of the
failure.

Examples

Example #1621 - datefmt_set_pattern() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN ,"MM/dd/yyyy");

echo "pattern of the formatter is : ".datefmt_get_pattern($fmt);

echo "First Formatted output with pattern is ".datefmt_format($fmt , 0);

datefmt_set_pattern($fmt,'yyyymmdd hh:mm:ss z');

echo "Now pattern of the formatter is : ".datefmt_get_pattern($fmt);

echo "Second Formatted output with pattern is ".datefmt_format($fmt , 0);

?>

Example #1622 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN,"MM/dd/yyyy");

echo "pattern of the formatter is : ".$fmt->getPattern();

echo "First Formatted output is ".datefmt_format($fmt , 0);

$fmt->setPattern('yyyymmdd hh:mm:ss z');

echo "Now pattern of the formatter is : ".$fmt->getPattern();

echo "Second Formatted output is ".datefmt_format($fmt , 0);

?>

The above example will output:

pattern of the formatter is : MM/dd/yyyy

First Formatted output with pattern is 12/31/1969

Now pattern of the formatter is : yyyymmdd hh:mm:ss z

Second Formatted output with pattern is 19690031 04:00:00 PST

See Also

• datefmt_get_pattern()
• datefmt_create()

IntlDateFormatter::setTimeZoneId

datefmt_set_timezone_id

IntlDateFormatter::setTimeZoneId -- datefmt_set_timezone_id -- Sets the time zone to use

Description

Object oriented style

boolean IntlDateFormatter::setTimeZoneId (string $zone)

Procedural style

boolean datefmt_set_timezone_id (IntlDateFormatter $fmt, string $zone)

Sets the time zone to use.

Parameters

fmt

The formatter resource.

zone

The time zone ID string of the time zone to use. If NULL or the empty string, the default
time zone for the runtime is used.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1623 - datefmt_set_timezone_id() example

<?php

$fmt = datefmt_create("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timezone_id of the formatter is : ".datefmt_get_timezone_id($fmt);

datefmt_set_timezone_id($fmt,'CN');

echo "Now timezone_id of the formatter is : ".datefmt_get_timezone_id($fmt);

?>

Example #1624 - OO example

<?php

$fmt = new IntlDateFormatter("en_US"
,IntlDateFormatter::FULL,IntlDateFormatter::FULL,'America/Los_Angeles',IntlDateF
ormatter::GREGORIAN);

echo "timezone_id of the formatter is : ".$fmt->getTimezoneId();

$fmt->setTimezoneId('CN');

echo "Now timezone_id of the formatter is : ".$fmt->getTimezoneId();

?>

The above example will output:

timezone_id of the formatter is : America/Los_Angeles

Now timezone_id of the formatter is : CN

See Also

• datefmt_get_timezone_id()
• datefmt_create()

Multibyte String

Introduction

While there are many languages in which every necessary character can be represented by a
one-to-one mapping to an 8-bit value, there are also several languages which require so many
characters for written communication that they cannot be contained within the range a mere
byte can code (A byte is made up of eight bits. Each bit can contain only two distinct values,
one or zero. Because of this, a byte can only represent 256 unique values (two to the power of
eight)). Multibyte character encoding schemes were developed to express more than 256
characters in the regular bytewise coding system.

When you manipulate (trim, split, splice, etc.) strings encoded in a multibyte encoding, you
need to use special functions since two or more consecutive bytes may represent a single
character in such encoding schemes. Otherwise, if you apply a non-multibyte-aware string
function to the string, it probably fails to detect the beginning or ending of the multibyte
character and ends up with a corrupted garbage string that most likely loses its original
meaning.

mbstring provides multibyte specific string functions that help you deal with multibyte
encodings in PHP. In addition to that, mbstring handles character encoding conversion
between the possible encoding pairs. mbstring is designed to handle Unicode-based
encodings such as UTF-8 and UCS-2 and many single-byte encodings for convenience (listed
below).

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

mbstring is a non-default extension. This means it is not enabled by default. You must
explicitly enable the module with the configure option. See the Install section for details.

The following configure options are related to the mbstring module.

• --enable-mbstring: Enable mbstring functions. This option is required to use mbstring
functions. libmbfl is necesarry for mbstring. libmbfl is bundled with mbstring. If libmbfl is
already installed on the system, --with-libmbfl[=DIR] can be specified to use the installed
library. As of PHP 4.3.0, mbstring extension provides enhanced support for Simplified
Chinese, Traditional Chinese, Korean, and Russian in addition to Japanese. For PHP
4.3.3 or before, To enable that feature, you will have to supply either one of the following
options to the LANG parameter of --enable-mbstring=LANG; --enable-mbstring=cn for
Simplified Chinese support, --enable-mbstring=tw for Traditional Chinese support,
--enable-mbstring=kr for Korean support, --enable-mbstring=ru for Russian support, and
--enable-mbstring=ja for Japanese support (default). To enable all supported encoding,
use --enable-mbstring=all.

Note

As of PHP 4.3.4, all supported encoding by libmbfl is enabled with --enable-mbstring.

• --enable-mbstr-enc-trans: Enable HTTP input character encoding conversion using
mbstring conversion engine. If this feature is enabled, HTTP input character encoding may
be converted to mbstring.internal_encoding automatically.

Note

As of PHP 4.3.0, the option --enable-mbstr-enc-trans was eliminated and replaced with
the runtime setting mbstring.encoding_translation. HTTP input character encoding
conversion is enabled when this is set to On (the default is Off).

• --disable-mbregex: Disable regular expression functions with multibyte character support.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

mbstring configuration options

Name Default Changeable Changelog

mbstring.language "neutral" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.detect_orde
r

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.http_input "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.http_output "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.internal_enc
oding

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.script_enco
ding

NULL PHP_INI_ALL Available since PHP
4.3.0.

mbstring.substitute_c
haracter

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.func_overlo
ad

"0" PHP_INI_PERDIR PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.2.0.

mbstring.encoding_tr
anslation

"0" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.strict_detect
ion

"0" PHP_INI_ALL Available since PHP
5.1.2.

For the definition of the PHP_INI_* constants, please refer to ini_set().

Here's a short explanation of the configuration directives.

mbstring.language string
The default national language setting (NLS) used in mbstring. Note that this option
automagically defines mbstring.internal_encoding and mbstring.internal_encoding
should be placed after mbstring.language in php.ini

mbstring.encoding_translation boolean
Enables the transparent character encoding filter for the incoming HTTP queries,
which performs detection and conversion of the input encoding to the internal
character encoding.

mbstring.internal_encoding string
Defines the default internal character encoding.

mbstring.http_input string
Defines the default HTTP input character encoding.

mbstring.http_output string
Defines the default HTTP output character encoding.

mbstring.detect_order string
Defines default character code detection order. See also mb_detect_order().

mbstring.substitute_character string
Defines character to substitute for invalid character encoding.

mbstring.func_overload string
Overloads a set of single byte functions by the mbstring counterparts. See Function
overloading for more information.

mbstring.strict_detection boolean
Enables the strict encoding detection.

According to the » HTML 4.01 specification, Web browsers are allowed to encode a form
being submitted with a character encoding different from the one used for the page. See
mb_http_input() to detect character encoding used by browsers.

Although popular browsers are capable of giving a reasonably accurate guess to the
character encoding of a given HTML document, it would be better to set the charset
parameter in the Content-Type HTTP header to the appropriate value by header() or
default_charset ini setting.

Example #1625 - php.ini setting examples

; Set default language

mbstring.language = Neutral; Set default language to Neutral(UTF-8)
(default)

mbstring.language = English; Set default language to English

mbstring.language = Japanese; Set default language to Japanese

;; Set default internal encoding

;; Note: Make sure to use character encoding works with PHP

mbstring.internal_encoding = UTF-8 ; Set internal encoding to UTF-8

;; HTTP input encoding translation is enabled.

mbstring.encoding_translation = On

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accept-charset

;; Set default HTTP input character encoding

;; Note: Script cannot change http_input setting.

mbstring.http_input = pass ; No conversion.

mbstring.http_input = auto ; Set HTTP input to auto

 ; "auto" is expanded to
"ASCII,JIS,UTF-8,EUC-JP,SJIS"

mbstring.http_input = SJIS ; Set HTTP2 input to SJIS

mbstring.http_input = UTF-8,SJIS,EUC-JP ; Specify order

;; Set default HTTP output character encoding

mbstring.http_output = pass ; No conversion

mbstring.http_output = UTF-8 ; Set HTTP output encoding to UTF-8

;; Set default character encoding detection order

mbstring.detect_order = auto ; Set detect order to auto

mbstring.detect_order = ASCII,JIS,UTF-8,SJIS,EUC-JP ; Specify order

;; Set default substitute character

mbstring.substitute_character = 12307 ; Specify Unicode value

mbstring.substitute_character = none ; Do not print character

mbstring.substitute_character = long ; Long Example: U+3000,JIS+7E7E

Example #1626 - php.ini setting for EUC-JP users

;; Disable Output Buffering

output_buffering = Off

;; Set HTTP header charset

default_charset = EUC-JP

;; Set default language to Japanese

mbstring.language = Japanese

;; HTTP input encoding translation is enabled.

mbstring.encoding_translation = On

;; Set HTTP input encoding conversion to auto

mbstring.http_input = auto

;; Convert HTTP output to EUC-JP

mbstring.http_output = EUC-JP

;; Set internal encoding to EUC-JP

mbstring.internal_encoding = EUC-JP

;; Do not print invalid characters

mbstring.substitute_character = none

Example #1627 - php.ini setting for SJIS users

;; Enable Output Buffering

output_buffering = On

;; Set mb_output_handler to enable output conversion

output_handler = mb_output_handler

;; Set HTTP header charset

default_charset = Shift_JIS

;; Set default language to Japanese

mbstring.language = Japanese

;; Set http input encoding conversion to auto

mbstring.http_input = auto

;; Convert to SJIS

mbstring.http_output = SJIS

;; Set internal encoding to EUC-JP

mbstring.internal_encoding = EUC-JP

;; Do not print invalid characters

mbstring.substitute_character = none

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MB_OVERLOAD_MAIL (integer)

MB_OVERLOAD_STRING (integer)

MB_OVERLOAD_REGEX (integer)

MB_CASE_UPPER (integer)

MB_CASE_LOWER (integer)

MB_CASE_TITLE (integer)

Summaries of supported encodings

Summaries of supported encodings
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: ISO 10646
Description: The Universal Character Set with 31-bit code space, standardized as UCS-4
by ISO/IEC 10646. It is kept synchronized with the latest version of the Unicode code map.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: UCS-4
Description: See above.
Additional note: In contrast to UCS-4, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: ISO-10646-UCS-4
Underlying character set: UCS-4
Description: See above.
Additional note: In contrast to UCS-4, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: The Universal Character Set with 16-bit code space, standardized as UCS-2
by ISO/IEC 10646. It is kept synchronized with the latest version of the unicode code map.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: See above.
Additional note: In contrast to UCS-2, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: ISO-10646-UCS-2
Underlying character set: UCS-2
Description: See above.
Additional note: In contrast to UCS-2, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-32
Underlying character set: Unicode
Description: Unicode Transformation Format of 32-bit unit width, whose encoding space
refers to the Unicode's codeset standard. This encoding scheme wasn't identical to UCS-4
because the code space of Unicode were limited to a 21-bit value.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: UTF-32BE
Underlying character set: Unicode
Description: See above
Additional note: In contrast to UTF-32, strings are always assumed to be in big endian
form.

Name in the IANA character set registry: UTF-32LE
Underlying character set: Unicode
Description: See above
Additional note: In contrast to UTF-32, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-16
Underlying character set: Unicode
Description: Unicode Transformation Format of 16-bit unit width. It's worth a note that
UTF-16 is no longer the same specification as UCS-2 because the surrogate mechanism
has been introduced since Unicode 2.0 and UTF-16 now refers to a 21-bit code space.
Additional note: If this name is used in the encoding conversion facility, the converter
attempts to identify by the preceding BOM (byte order mark)in which endian the
subsequent bytes are represented.
Name in the IANA character set registry: UTF-16BE
Underlying character set: Unicode
Description: See above.
Additional note: In contrast to UTF-16, strings are always assumed to be in big endian
form.
Name in the IANA character set registry: UTF-16LE
Underlying character set: Unicode
Description: See above.
Additional note: In contrast to UTF-16, strings are always assumed to be in little endian
form.
Name in the IANA character set registry: UTF-8
Underlying character set: Unicode / UCS
Description: Unicode Transformation Format of 8-bit unit width.
Additional note: none
Name in the IANA character set registry: UTF-7
Underlying character set: Unicode
Description: A mail-safe transformation format of Unicode, specified in » RFC2152.
Additional note: none
Name in the IANA character set registry: (none)
Underlying character set: Unicode
Description: A variant of UTF-7 which is specialized for use in the » IMAP protocol.
Additional note: none
Name in the IANA character set registry: US-ASCII (preferred MIME name) / iso-ir-6 /
ANSI_X3.4-1986 / ISO_646.irv:1991 / ASCII / ISO646-US / us / IBM367 / CP367 / csASCII
Underlying character set: ASCII / ISO 646
Description: American Standard Code for Information Interchange is a commonly-used
7-bit encoding. Also standardized as an international standard, ISO 646.
Additional note: (none)
Name in the IANA character set registry: EUC-JP (preferred MIME name) /
Extended_UNIX_Code_Packed_Format_for_Japanese / csEUCPkdFmtJapanese
Underlying character set: Compound of US-ASCII / JIS X0201:1997 (hankaku kana part)
/ JIS X0208:1990 / JIS X0212:1990
Description: As you see the name is derived from an abbreviation of Extended UNIX
Code Packed Format for Japanese, this encoding is mostly used on UNIX or alike
platforms. The original encoding scheme, Extended UNIX Code, is designed on the basis
of ISO 2022.
Additional note: The character set referred to by EUC-JP is different to IBM932 / CP932,
which are used by OS/2® and Microsoft® Windows®. For information interchange with
those platforms, use EUCJP-WIN instead.

http://www.faqs.org/rfcs/rfc2152
http://www.faqs.org/rfcs/rfc3501

Name in the IANA character set registry: Shift_JIS (preferred MIME name) / MS_Kanji /
csShift_JIS
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997
Description: Shift_JIS was developed in early 80's, at the time personal Japanese word
processors were brought into the market, in order to maintain compatiblities with the
legacy encoding scheme JIS X 0201:1976. According to the IANA definition the codeset of
Shift_JIS is slightly different to IBM932 / CP932. However, the names "SJIS" / "Shift_JIS"
are often wrongly used to refer to these codesets.
Additional note: For the CP932 codemap, use SJIS-WIN instead.
Name in the IANA character set registry: (none)
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997 / IBM
extensions / NEC extensions
Description: While this "encoding" uses the same encoding scheme as EUC-JP, the
underlying character set is different. That is, some code points map to different characters
than EUC-JP.
Additional note: none
Name in the IANA character set registry: Windows-31J / csWindows31J
Underlying character set: Compound of JIS X0201:1997 / JIS X0208:1997 / IBM
extensions / NEC extensions
Description: While this "encoding" uses the same encoding scheme as Shift_JIS, the
underlying character set is different. That means some code points map to different
characters than Shift_JIS.
Additional note: (none)
Name in the IANA character set registry: ISO-2022-JP (preferred MIME name) /
csISO2022JP
Underlying character set: US-ASCII / JIS X0201:1976 / JIS X0208:1978 / JIS
X0208:1983
Description: » RFC1468
Additional note: (none)
Name in the IANA character set registry: JIS
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-1
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-2
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-3
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-4
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-5
Underlying character set:
Description:

http://www.faqs.org/rfcs/rfc1468

Additional note:
Name in the IANA character set registry: ISO-8859-6
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-7
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-8
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-9
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-10
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-13
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-14
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-8859-15
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte2be
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte2le
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte4be
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: byte4le
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: BASE64
Underlying character set:
Description:

Additional note:
Name in the IANA character set registry: HTML-ENTITIES
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: 7bit
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: 8bit
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-CN
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP936
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: HZ
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-TW
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP950
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: BIG-5
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: EUC-KR
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: UHC (CP949)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: ISO-2022-KR
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: Windows-1251 (CP1251)
Underlying character set:
Description:

Additional note:
Name in the IANA character set registry: Windows-1252 (CP1252)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: CP866 (IBM866)
Underlying character set:
Description:
Additional note:
Name in the IANA character set registry: KOI8-R
Underlying character set:
Description:
Additional note:

Basics of Japanese multi-byte encodings

Japanese characters can only be represented by multibyte encodings, and multiple
encoding standards are used depending on platform and text purpose. To make matters
worse, these encoding standards differ slightly from one another. In order to create a web
application which would be usable in a Japanese environment, a developer has to keep
these complexities in mind to ensure that the proper character encodings are used.

• Storage for a character can be up to six bytes

• Most Japanese multibyte characters appear twice as wide as single-byte characters.
These characters are called "zen-kaku" in Japanese, which means "full width". Other,
narrower, characters are called "han-kaku", which means "half width". The graphical
properties of the characters, however, depends upon the type faces used to display
them.

• Some character encodings use shift(escape) sequences defined in ISO-2022 to switch
the code map of the specific code area (00h to 7fh).

• ISO-2022-JP should be used in SMTP/NNTP, and headers and entities should be
reencoded as per RFC requirements. Although those are not requisites, it's still a good
idea because several popular user agents cannot recognize any other encoding
methods.

• Web pages created for mobile phone services such as » i-mode, » Vodafone live!, or
» EZweb are supposed to use Shift_JIS.

http://www.nttdocomo.com/corebiz/services/imode/
http://www.vodafone.jp/english/live/
http://www.au.kddi.com/english/ezweb/
http://www.au.kddi.com/english/ezweb/

HTTP Input and Output

HTTP input/output character encoding conversion may convert binary data also. Users are
supposed to control character encoding conversion if binary data is used for HTTP
input/output.

Note

In PHP 4.3.2 or earlier versions, there was a limitation in this functionality that mbstring
does not perform character encoding conversion in POST data if the enctype attribute
in the form element is set to multipart/form-data. So you have to convert the incoming
data by yourself in this case if necessary.

Beginning with PHP 4.3.3, if enctype for HTML form is set to multipart/form-data and
mbstring.encoding_translation is set to On in php.ini the POST'ed variables and the
names of uploaded files will be converted to the internal character encoding as well.
However, the conversion isn't applied to the query keys.

• HTTP Input There is no way to control HTTP input character conversion from a PHP
script. To disable HTTP input character conversion, it has to be done in php.ini.

Example #1628 - Disable HTTP input conversion in php.ini

;; Disable HTTP Input conversion

mbstring.http_input = pass

;; Disable HTTP Input conversion (PHP 4.3.0 or higher)

mbstring.encoding_translation = Off

When using PHP as an Apache module, it is possible to override those settings in
each Virtual Host directive in httpd.conf or per directory with.htaccess. Refer to the
Configuration section and Apache Manual for details.

• HTTP Output There are several ways to enable output character encoding conversion.
One is using php.ini, another is using ob_start() with mb_output_handler() as the
ob_start callback function.

Example #1629 - php.ini setting example

;; Enable output character encoding conversion for all PHP pages

;; Enable Output Buffering

output_buffering = On

;; Set mb_output_handler to enable output conversion

output_handler = mb_output_handler

Example #1630 - Script example

<?php

// Enable output character encoding conversion only for this page

// Set HTTP output character encoding to SJIS

mb_http_output('SJIS');

// Start buffering and specify "mb_output_handler" as

// callback function

ob_start('mb_output_handler');

?>

Supported Character Encodings

Currently the following character encodings are supported by the mbstring module. Any of
those Character encodings can be specified in the encoding parameter of mbstring
functions.

The following character encodings are supported in this PHP extension:

• UCS-4

• UCS-4BE

• UCS-4LE

• UCS-2

• UCS-2BE

• UCS-2LE

• UTF-32

• UTF-32BE

• UTF-32LE

• UTF-16

• UTF-16BE

• UTF-16LE

• UTF-7

• UTF7-IMAP

• UTF-8

• ASCII

• EUC-JP

• SJIS

• eucJP-win

• SJIS-win

• ISO-2022-JP

• JIS

• ISO-8859-1

• ISO-8859-2

• ISO-8859-3

• ISO-8859-4

• ISO-8859-5

• ISO-8859-6

• ISO-8859-7

• ISO-8859-8

• ISO-8859-9

• ISO-8859-10

• ISO-8859-13

• ISO-8859-14

• ISO-8859-15

• byte2be

• byte2le

• byte4be

• byte4le

• BASE64

• HTML-ENTITIES

• 7bit

• 8bit

• EUC-CN

• CP936

• HZ

• EUC-TW

• CP950

• BIG-5

• EUC-KR

• UHC (CP949)

• ISO-2022-KR

• Windows-1251 (CP1251)

• Windows-1252 (CP1252)

• CP866 (IBM866)

• KOI8-R

Any php.ini entry which accepts an encoding name can also use the values " auto " and "
pass ". mbstring functions which accept an encoding name can also use the value " auto ".

If " pass " is set, no character encoding conversion is performed.

If " auto " is set, it is expanded to the list of encodings defined per the NLS. For instance, if
the NLS is set to Japanese, the value is assumed to be " ASCII,JIS,UTF-8,EUC-JP,SJIS ".

See also mb_detect_order()

Function Overloading Feature

You might often find it difficult to get an existing PHP application to work in a given
multibyte environment. This happens because most PHP applications out there are written
with the standard string functions such as substr(), which are known to not properly handle
multibyte-encoded strings.

mbstring supports a 'function overloading' feature which enables you to add multibyte
awareness to such an application without code modification by overloading multibyte
counterparts on the standard string functions. For example, mb_substr() is called instead
of substr() if function overloading is enabled. This feature makes it easy to port
applications that only support single-byte encodings to a multibyte environment in many
cases.

To use function overloading, set mbstring.func_overload in php.ini to a positive value that
represents a combination of bitmasks specifying the categories of functions to be
overloaded. It should be set to 1 to overload the mail() function. 2 for string functions, 4 for
regular expression functions. For example, if it is set to 7, mail, strings and regular
expression functions will be overloaded. The list of overloaded functions are shown below.

Functions to be overloaded

value of
mbstring.func_overload

original function overloaded function

1 mail() mb_send_mail()

2 strlen() mb_strlen()

2 strpos() mb_strpos()

2 strrpos() mb_strrpos()

2 substr() mb_substr()

2 strtolower() mb_strtolower()

2 strtoupper() mb_strtoupper()

2 substr_count() mb_substr_count()

4 ereg() mb_ereg()

4 eregi() mb_eregi()

4 ereg_replace() mb_ereg_replace()

4 eregi_replace() mb_eregi_replace()

4 split() mb_split()

Note

It is not recommended to use the function overloading option in the per-directory
context, because it's not confirmed yet to be stable enough in a production
environment and may lead to undefined behaviour.

PHP Character Encoding Requirements

Encodings of the following types are safely used with PHP.

• A singlebyte encoding,

• which has ASCII-compatible (ISO646 compatible) mappings for the characters in
range of 00h to 7fh.

• A multibyte encoding,

• which has ASCII-compatible mappings for the characters in range of 00h to 7fh.

• which don't use ISO2022 escape sequences.

• which don't use a value from 00h to 7fh in any of the compounded bytes that
represents a single character.

These are examples of character encodings that are unlikely to work with PHP.

JIS, SJIS, ISO-2022-JP, BIG-5

Although PHP scripts written in any of those encodings might not work, especially in the
case where encoded strings appear as identifiers or literals in the script, you can almost
avoid using these encodings by setting up the mbstring 's transparent encoding filter
function for incoming HTTP queries.

Note

It's highly discouraged to use SJIS, BIG5, CP936, CP949 and GB18030 for the internal
encoding unless you are familiar with the parser, the scanner and the character
encoding.

Note

If you are connecting to a database with PHP, it is recommended that you use the
same character encoding for both the database and the internal encoding for ease of
use and better performance.

If you are using PostgreSQL, the character encoding used in the database and the one
used in PHP may differ as it supports automatic character set conversion between the
backend and the frontend.

Multibyte String Functions

References

Multibyte character encoding schemes and their related issues are fairly complicated, and
are beyond the scope of this documentation. Please refer to the following URLs and other
resources for further information regarding these topics.

• Unicode materials » http://www.unicode.org/

• Japanese/Korean/Chinese character information
» http://examples.oreilly.com/cjkvinfo/doc/cjk.inf

http://www.unicode.org/
http://examples.oreilly.com/cjkvinfo/doc/cjk.inf
http://examples.oreilly.com/cjkvinfo/doc/cjk.inf

mb_check_encoding

mb_check_encoding -- Check if the string is valid for the specified encoding

Description

bool mb_check_encoding ([string $var [, string $encoding]])

Checks if the specified byte stream is valid for the specified encoding. It is useful to
prevent so-called "Invalid Encoding Attack".

Parameters

var

The byte stream to check. If it is omitted, this function checks all the input from the
beginning of the request.

encoding

The expected encoding.

Return Values

Returns TRUE on success or FALSE on failure.

mb_convert_case

mb_convert_case -- Perform case folding on a string

Description

string mb_convert_case (string $str, int $mode [, string $encoding])

Performs case folding on a string, converted in the way specified by mode.

Parameters

str

The string being converted.

mode

The mode of the conversion. It can be one of MB_CASE_UPPER,
MB_CASE_LOWER, or MB_CASE_TITLE.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

A case folded version of string converted in the way specified by mode.

Unicode

By contrast to the standard case folding functions such as strtolower() and strtoupper(),
case folding is performed on the basis of the Unicode character properties. Thus the
behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as A-umlaut (Ä).

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

Examples

Example #1631 - mb_convert_case() example

<?php

$str = "mary had a Little lamb and she loved it so";

$str = mb_convert_case($str, MB_CASE_UPPER, "UTF-8");

echo $str; // Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

$str = mb_convert_case($str, MB_CASE_TITLE, "UTF-8");

echo $str; // Prints Mary Had A Little Lamb And She Loved It So

?>

See Also

• mb_strtolower()
• mb_strtoupper()
• strtolower()
• strtoupper()
• ucfirst()
• ucwords()

mb_convert_encoding

mb_convert_encoding -- Convert character encoding

Description

string mb_convert_encoding (string $str, string $to_encoding [, mixed $from_encoding
])

Converts the character encoding of string str to to_encoding from optionally
from_encoding.

Parameters

str

The string being encoded.

to_encoding

The type of encoding that str is being converted to.

from_encoding

Is specified by character code names before conversion. It is either an array, or a
comma separated enumerated list. If from_encoding is not specified, the internal
encoding will be used. " auto " may be used, which expands to
"ASCII,JIS,UTF-8,EUC-JP,SJIS".

Return Values

The encoded string.

Examples

Example #1632 - mb_convert_encoding() example

<?php

/* Convert internal character encoding to SJIS */

$str = mb_convert_encoding($str, "SJIS");

/* Convert EUC-JP to UTF-7 */

$str = mb_convert_encoding($str, "UTF-7", "EUC-JP");

/* Auto detect encoding from JIS, eucjp-win, sjis-win, then convert str to
UCS-2LE */

$str = mb_convert_encoding($str, "UCS-2LE", "JIS, eucjp-win, sjis-win");

/* "auto" is expanded to "ASCII,JIS,UTF-8,EUC-JP,SJIS" */

$str = mb_convert_encoding($str, "EUC-JP", "auto");

?>

See Also

• mb_detect_order()

mb_convert_kana

mb_convert_kana -- Convert "kana" one from another ("zen-kaku", "han-kaku" and more)

Description

string mb_convert_kana (string $str [, string $option [, string $encoding]])

Performs a "han-kaku" - "zen-kaku" conversion for string str. This function is only useful
for Japanese.

Parameters

str

The string being converted.

option

The conversion option. The default value is "KV". Specify with a combination of
following options. The default value is KV.

Applicable Conversion Options

Option Meaning

r Convert "zen-kaku" alphabets to "han-kaku"

R Convert "han-kaku" alphabets to "zen-kaku"

n Convert "zen-kaku" numbers to "han-kaku"

N Convert "han-kaku" numbers to "zen-kaku"

a Convert "zen-kaku" alphabets and numbers
to "han-kaku"

A Convert "han-kaku" alphabets and numbers
to "zen-kaku" (Characters included in "a",
"A" options are U+0021 - U+007E excluding
U+0022, U+0027, U+005C, U+007E)

s Convert "zen-kaku" space to "han-kaku"
(U+3000 -> U+0020)

S Convert "han-kaku" space to "zen-kaku"
(U+0020 -> U+3000)

k Convert "zen-kaku kata-kana" to "han-kaku
kata-kana"

K Convert "han-kaku kata-kana" to "zen-kaku
kata-kana"

h Convert "zen-kaku hira-gana" to "han-kaku
kata-kana"

H Convert "han-kaku kata-kana" to "zen-kaku
hira-gana"

c Convert "zen-kaku kata-kana" to "zen-kaku
hira-gana"

C Convert "zen-kaku hira-gana" to "zen-kaku
kata-kana"

V Collapse voiced sound notation and convert
them into a character. Use with "K","H"

encoding

The encoding parameter is the character encoding. If it is omitted, the internal character
encoding value will be used.

Return Values

The converted string.

Examples

Example #1633 - mb_convert_kana() example

<?php

/* Convert all "kana" to "zen-kaku" "kata-kana" */

$str = mb_convert_kana($str, "KVC");

/* Convert "han-kaku" "kata-kana" to "zen-kaku" "kata-kana"

 and "zen-kaku" alpha-numeric to "han-kaku" */

$str = mb_convert_kana($str, "KVa");

?>

mb_convert_variables

mb_convert_variables -- Convert character code in variable(s)

Description

string mb_convert_variables (string $to_encoding, mixed $from_encoding, mixed &$vars [,
mixed &$...])

Converts character encoding of variables vars in encoding from_encoding to encoding
to_encoding.

mb_convert_variables() join strings in Array or Object to detect encoding, since encoding
detection tends to fail for short strings. Therefore, it is impossible to mix encoding in single
array or object.

Parameters

to_encoding

The encoding that the string is being converted to.

from_encoding

from_encoding is specified as an array or comma separated string, it tries to detect
encoding from from-coding. When from_encoding is omitted, detect_order is used.

vars

vars is the reference to the variable being converted. String, Array and Object are
accepted. mb_convert_variables() assumes all parameters have the same encoding.

...

Additional vars.

Return Values

The character encoding before conversion for success, or FALSE for failure.

Examples

Example #1634 - mb_convert_variables() example

<?php

/* Convert variables $post1, $post2 to internal encoding */

$interenc = mb_internal_encoding();

$inputenc = mb_convert_variables($interenc, "ASCII,UTF-8,SJIS-win", $post1,
$post2);

?>

mb_decode_mimeheader

mb_decode_mimeheader -- Decode string in MIME header field

Description

string mb_decode_mimeheader (string $str)

Decodes encoded-word string str in MIME header.

Parameters

str

The string being decoded.

Return Values

The decoded string in internal character encoding.

See Also

• mb_encode_mimeheader()

mb_decode_numericentity

mb_decode_numericentity -- Decode HTML numeric string reference to character

Description

string mb_decode_numericentity (string $str, array $convmap [, string $encoding])

Convert numeric string reference of string str in a specified block to character.

Parameters

str

The string being decoded.

convmap

convmap is an array that specifies the code area to convert.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal character
encoding value will be used.

Return Values

The converted string.

Examples

Example #1635 - convmap example

$convmap = array (

 int start_code1, int end_code1, int offset1, int mask1,

 int start_code2, int end_code2, int offset2, int mask2,

 int start_codeN, int end_codeN, int offsetN, int maskN);

// Specify Unicode value for start_codeN and end_codeN

// Add offsetN to value and take bit-wise 'AND' with maskN,

// then convert value to numeric string reference.

See Also

• mb_encode_numericentity()

mb_detect_encoding

mb_detect_encoding -- Detect character encoding

Description

string mb_detect_encoding (string $str [, mixed $encoding_list [, bool $strict]])

Detects character encoding in string str.

Parameters

str

The string being detected.

encoding_list

encoding_list is list of character encoding. Encoding order may be specified by array or
comma separated list string. If encoding_list is omitted, detect_order is used.

strict

strict specifies whether to use the strict encoding detection or not. Default is FALSE.

Return Values

The detected character encoding.

Examples

Example #1636 - mb_detect_encoding() example

<?php

/* Detect character encoding with current detect_order */

echo mb_detect_encoding($str);

/* "auto" is expanded to "ASCII,JIS,UTF-8,EUC-JP,SJIS" */

echo mb_detect_encoding($str, "auto");

/* Specify encoding_list character encoding by comma separated list */

echo mb_detect_encoding($str, "JIS, eucjp-win, sjis-win");

/* Use array to specify encoding_list */

$ary[] = "ASCII";

$ary[] = "JIS";

$ary[] = "EUC-JP";

echo mb_detect_encoding($str, $ary);

?>

See Also

• mb_detect_order()

mb_detect_order

mb_detect_order -- Set/Get character encoding detection order

Description

mixed mb_detect_order ([mixed $encoding_list])

Sets the automatic character encoding detection order to encoding_list.

Parameters

encoding_list

encoding_list is an array or comma separated list of character encoding. ("auto" is
expanded to "ASCII, JIS, UTF-8, EUC-JP, SJIS") If encoding_list is omitted, it returns
the current character encoding detection order as array. This setting affects
mb_detect_encoding() and mb_send_mail(). mbstring currently implements the following
encoding detection filters. If there is an invalid byte sequence for the following encodings,
encoding detection will fail. UTF-8, UTF-7, ASCII, EUC-JP, SJIS, eucJP-win, SJIS-win, JIS
, ISO-2022-JP For ISO-8859-*, mbstring always detects as ISO-8859-*. For UTF-16,
UTF-32, UCS2 and UCS4, encoding detection will fail always.

Example #1637 - Useless detect order example

; Always detect as ISO-8859-1

detect_order = ISO-8859-1, UTF-8

; Always detect as UTF-8, since ASCII/UTF-7 values are

; valid for UTF-8

detect_order = UTF-8, ASCII, UTF-7

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1638 - mb_detect_order() examples

<?php

/* Set detection order by enumerated list */

mb_detect_order("eucjp-win,sjis-win,UTF-8");

/* Set detection order by array */

$ary[] = "ASCII";

$ary[] = "JIS";

$ary[] = "EUC-JP";

mb_detect_order($ary);

/* Display current detection order */

echo implode(", ", mb_detect_order());

?>

See Also

• mb_internal_encoding()
• mb_http_input()
• mb_http_output()
• mb_send_mail()

mb_encode_mimeheader

mb_encode_mimeheader -- Encode string for MIME header

Description

string mb_encode_mimeheader (string $str [, string $charset [, string $transfer_encoding
[, string $linefeed [, int $indent]]]])

Encodes a given string str by the MIME header encoding scheme.

Parameters

str

The string being encoded.

charset

charset specifies the name of the character set in which str is represented in. The default
value is determined by the current NLS setting (mbstring.language).

transfer_encoding

transfer_encoding specifies the scheme of MIME encoding. It should be either "B"
(Base64) or "Q" (Quoted-Printable). Falls back to "B" if not given.

linefeed

linefeed specifies the EOL (end-of-line) marker with which mb_encode_mimeheader()
performs line-folding (a » RFC term, the act of breaking a line longer than a certain length
into multiple lines. The length is currently hard-coded to 74 characters). Falls back to "\r\n"
(CRLF) if not given.

indent

Return Values

A converted version of the string represented in ASCII.

ChangeLog

Version Description

5.0.0 The indent parameter was added.

http://www.faqs.org/rfcs/rfc2822

Examples

Example #1639 - mb_encode_mimeheader() example

<?php

$name = ""; // kanji

$mbox = "kru";

$doma = "gtinn.mon";

$addr = mb_encode_mimeheader($name, "UTF-7", "Q") . " <" . $mbox . "@" .
$doma . ">";

echo $addr;

?>

Notes

Note

This function isn't designed to break lines at higher-level contextual break points (word
boundaries, etc.). This behaviour may clutter up the original string with unexpected
spaces.

See Also

• mb_decode_mimeheader()

mb_encode_numericentity

mb_encode_numericentity -- Encode character to HTML numeric string reference

Description

string mb_encode_numericentity (string $str, array $convmap [, string $encoding])

Converts specified character codes in string str from HTML numeric character reference
to character code.

Parameters

str

The string being encoded.

convmap

convmap is array specifies code area to convert.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The converted string.

Examples

Example #1640 - convmap example

$convmap = array (

int start_code1, int end_code1, int offset1, int mask1,

int start_code2, int end_code2, int offset2, int mask2,

........

int start_codeN, int end_codeN, int offsetN, int maskN);

// Specify Unicode value for start_codeN and end_codeN

// Add offsetN to value and take bit-wise 'AND' with maskN, then

// it converts value to numeric string reference.

Examples

Example #1641 - mb_encode_numericentity() example

<?php

/* Convert Left side of ISO-8859-1 to HTML numeric character reference */

$convmap = array(0x80, 0xff, 0, 0xff);

$str = mb_encode_numericentity($str, $convmap, "ISO-8859-1");

/* Convert user defined SJIS-win code in block 95-104 to numeric

 string reference */

$convmap = array(

 0xe000, 0xe03e, 0x1040, 0xffff,

 0xe03f, 0xe0bb, 0x1041, 0xffff,

 0xe0bc, 0xe0fa, 0x1084, 0xffff,

 0xe0fb, 0xe177, 0x1085, 0xffff,

 0xe178, 0xe1b6, 0x10c8, 0xffff,

 0xe1b7, 0xe233, 0x10c9, 0xffff,

 0xe234, 0xe272, 0x110c, 0xffff,

 0xe273, 0xe2ef, 0x110d, 0xffff,

 0xe2f0, 0xe32e, 0x1150, 0xffff,

 0xe32f, 0xe3ab, 0x1151, 0xffff);

$str = mb_encode_numericentity($str, $convmap, "sjis-win");

?>

See Also

• mb_decode_numericentity()

mb_ereg_match

mb_ereg_match -- Regular expression match for multibyte string

Description

bool mb_ereg_match (string $pattern, string $string [, string $option])

A regular expression match for a multibyte string

Parameters

pattern

The regular expression pattern.

string

The string being evaluated.

option

Return Values

Returns TRUE if string matches the regular expression pattern, FALSE if not.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_ereg_replace

mb_ereg_replace -- Replace regular expression with multibyte support

Description

string mb_ereg_replace (string $pattern, string $replacement, string $string [, string $
option])

Scans string for matches to pattern, then replaces the matched text with replacement

Parameters

pattern

The regular expression pattern. Multibyte characters may be used in pattern.

replacement

The replacement text.

string

The string being checked.

option

Matching condition can be set by option parameter. If i is specified for this parameter,
the case will be ignored. If x is specified, white space will be ignored. If m is specified,
match will be executed in multiline mode and line break will be included in '.'. If p is
specified, match will be executed in POSIX mode, line break will be considered as
normal character. If e is specified, replacement string will be evaluated as PHP
expression.

Return Values

The resultant string on success, or FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_eregi_replace()

mb_ereg_search_getpos

mb_ereg_search_getpos -- Returns start point for next regular expression match

Description

int mb_ereg_search_getpos (void)

Returns the start point for the next regular expression match.

Parameters

This function has no parameters.

Return Values

mb_ereg_search_getpos() returns the point to start regular expression match for
mb_ereg_search(), mb_ereg_search_pos(), mb_ereg_search_regs(). The position is
represented by bytes from the head of string.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_setpos()

mb_ereg_search_getregs

mb_ereg_search_getregs -- Retrieve the result from the last multibyte regular expression
match

Description

array mb_ereg_search_getregs (void)

Retrieve the result from the last multibyte regular expression match

Parameters

This function has no parameters.

Return Values

An array including the sub-string of matched part by last mb_ereg_search(),
mb_ereg_search_pos(), mb_ereg_search_regs(). If there are some matches, the first
element will have the matched sub-string, the second element will have the first part
grouped with brackets, the third element will have the second part grouped with brackets,
and so on. It returns FALSE on error;

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_init

mb_ereg_search_init -- Setup string and regular expression for a multibyte regular
expression match

Description

bool mb_ereg_search_init (string $string [, string $pattern [, string $option]])

mb_ereg_search_init() sets string and pattern for a multibyte regular expression. These
values are used for mb_ereg_search(), mb_ereg_search_pos(), and
mb_ereg_search_regs().

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_regs()

mb_ereg_search_pos

mb_ereg_search_pos -- Returns position and length of a matched part of the multibyte
regular expression for a predefined multibyte string

Description

array mb_ereg_search_pos ([string $pattern [, string $option]])

Returns position and length of a matched part of the multibyte regular expression for a
predefined multibyte string

The string for match is specified by mb_ereg_search_init(). If it is not specified, the
previous one will be used.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

An array including the position of a matched part for a multibyte regular expression. The
first element of the array will be the beginning of matched part, the second element will be
length (bytes) of matched part. It returns FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_regs

mb_ereg_search_regs -- Returns the matched part of a multibyte regular expression

Description

array mb_ereg_search_regs ([string $pattern [, string $option]])

Returns the matched part of a multibyte regular expression.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

mb_ereg_search_regs() executes the multibyte regular expression match, and if there are
some matched part, it returns an array including substring of matched part as first element,
the first grouped part with brackets as second element, the second grouped part as third
element, and so on. It returns FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search_setpos

mb_ereg_search_setpos -- Set start point of next regular expression match

Description

bool mb_ereg_search_setpos (int $position)

mb_ereg_search_setpos() sets the starting point of a match for mb_ereg_search().

Parameters

position

The position to set.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg_search

mb_ereg_search -- Multibyte regular expression match for predefined multibyte string

Description

bool mb_ereg_search ([string $pattern [, string $option]])

Performs a multibyte regular expression match for a predefined multibyte string.

Parameters

pattern

The search pattern.

option

The search option.

Return Values

mb_ereg_search() returns TRUE if the multibyte string matches with the regular
expression, or FALSE otherwise. The string for matching is set by mb_ereg_search_init().
If pattern is not specified, the previous one is used.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_search_init()

mb_ereg

mb_ereg -- Regular expression match with multibyte support

Description

int mb_ereg (string $pattern, string $string [, array $regs])

Executes the regular expression match with multibyte support.

Parameters

pattern

The search pattern.

string

The search string.

regs

Contains a substring of the matched string.

Return Values

Executes the regular expression match with multibyte support, and returns 1 if matches
are found. If the optional regs parameter was specified, the function returns the byte
length of matched part, and the array regs will contain the substring of matched string.
The function returns 1 if it matches with the empty string. If no matches are found or an
error happens, FALSE will be returned.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_eregi()

mb_eregi_replace

mb_eregi_replace -- Replace regular expression with multibyte support ignoring case

Description

string mb_eregi_replace (string $pattern, string $replace, string $string [, string $
option])

Scans string for matches to pattern, then replaces the matched text with replacement.

Parameters

pattern

The regular expression pattern. Multibyte characters may be used. The case will be
ignored.

replace

The replacement text.

string

The searched string.

option

option has the same meaning as in mb_ereg_replace().

Return Values

The resultant string or FALSE on error.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg_replace()

mb_eregi

mb_eregi -- Regular expression match ignoring case with multibyte support

Description

int mb_eregi (string $pattern, string $string [, array $regs])

Executes the case insensitive regular expression match with multibyte support.

Parameters

pattern

The regular expression pattern.

string

The string being searched.

regs

Contains a substring of the matched string.

Return Values

Executes the regular expression match with multibyte support, and returns 1 if matches
are found. If the optional regs parameter was specified, the function returns the byte
length of matched part, and the array regs will contain the substring of matched string.
The function returns 1 if it matches with the empty string. If no matches are found or an
error happens, FALSE will be returned.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_get_info

mb_get_info -- Get internal settings of mbstring

Description

mixed mb_get_info ([string $type])

mb_get_info() returns the internal setting parameters of mbstring.

Parameters

type

If type isn't specified or is specified to "all", an array having the elements
"internal_encoding", "http_output", "http_input", "func_overload", "mail_charset",
"mail_header_encoding", "mail_body_encoding" will be returned. If type is specified
as "http_output", "http_input", "internal_encoding", "func_overload", the specified
setting parameter will be returned.

Return Values

An array of type information if type is not specified, otherwise a specific type.

ChangeLog

Version Description

5.1.3 The element types "mail_charset",
"mail_header_encoding", and
"mail_body_encoding" were made available.

See Also

• mb_regex_encoding()
• mb_http_output()

mb_http_input

mb_http_input -- Detect HTTP input character encoding

Description

mixed mb_http_input ([string $type])

Detects the HTTP input character encoding.

Parameters

type

Input string specifies the input type. "G" for GET, "P" for POST, "C" for COOKIE, "S"
for string, "L" for list, and "I" for the whole list (will return array). If type is omitted, it
returns the last input type processed.

Return Values

The character encoding name, as per the type. If mb_http_input() does not process
specified HTTP input, it returns FALSE.

See Also

• mb_internal_encoding()
• mb_http_output()
• mb_detect_order()

mb_http_output

mb_http_output -- Set/Get HTTP output character encoding

Description

mixed mb_http_output ([string $encoding])

Set/Get the HTTP output character encoding. Output after this function is converted to
encoding.

Parameters

encoding

If encoding is set, mb_http_output() sets the HTTP output character encoding to
encoding. If encoding is omitted, mb_http_output() returns the current HTTP output
character encoding.

Return Values

If encoding is omitted, mb_http_output() returns the current HTTP output character
encoding. Otherwise, Returns TRUE on success or FALSE on failure.

See Also

• mb_internal_encoding()
• mb_http_input()
• mb_detect_order()

mb_internal_encoding

mb_internal_encoding -- Set/Get internal character encoding

Description

mixed mb_internal_encoding ([string $encoding])

Set/Get the internal character encoding

Parameters

encoding

encoding is the character encoding name used for the HTTP input character encoding
conversion, HTTP output character encoding conversion, and the default character
encoding for string functions defined by the mbstring module.

Return Values

If encoding is set, then Returns TRUE on success or FALSE on failure. If encoding is
omitted, then the current character encoding name is returned.

Examples

Example #1642 - mb_internal_encoding() example

<?php

/* Set internal character encoding to UTF-8 */

mb_internal_encoding("UTF-8");

/* Display current internal character encoding */

echo mb_internal_encoding();

?>

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_http_input()
• mb_http_output()
• mb_detect_order()

mb_language

mb_language -- Set/Get current language

Description

mixed mb_language ([string $language])

Set/Get the current language.

Parameters

language

Used for encoding e-mail messages. Valid languages are "Japanese",
"ja","English","en" and "uni" (UTF-8). mb_send_mail() uses this setting to encode
e-mail. Language and its setting is ISO-2022-JP/Base64 for Japanese, UTF-8/Base64
for uni, ISO-8859-1/quoted printable for English.

Return Values

If language is set and language is valid, it returns TRUE. Otherwise, it returns FALSE.
When language is omitted, it returns the language name as a string. If no language is set
previously, it then returns FALSE.

See Also

• mb_send_mail()

mb_list_encodings

mb_list_encodings -- Returns an array of all supported encodings

Description

array mb_list_encodings (void)

Returns an array containing all supported encodings.

Parameters

This function has no parameters.

Return Values

Returns a numerically indexed array.

Errors/Exceptions

This function does not emit any errors.

Examples

Example #1643 - mb_list_encodings() example

<?php

print_r(mb_list_encodings());

?>

The above example will output something similar to:

Array

(

 [0] => pass

 [1] => auto

 [2] => wchar

 [3] => byte2be

 [4] => byte2le

 [5] => byte4be

 [6] => byte4le

 [7] => BASE64

 [8] => UUENCODE

 [9] => HTML-ENTITIES

 [10] => Quoted-Printable

 [11] => 7bit

 [12] => 8bit

 [13] => UCS-4

 [14] => UCS-4BE

 [15] => UCS-4LE

 [16] => UCS-2

 [17] => UCS-2BE

 [18] => UCS-2LE

 [19] => UTF-32

 [20] => UTF-32BE

 [21] => UTF-32LE

 [22] => UTF-16

 [23] => UTF-16BE

 [24] => UTF-16LE

 [25] => UTF-8

 [26] => UTF-7

 [27] => UTF7-IMAP

 [28] => ASCII

 [29] => EUC-JP

 [30] => SJIS

 [31] => eucJP-win

 [32] => SJIS-win

 [33] => JIS

 [34] => ISO-2022-JP

 [35] => Windows-1252

 [36] => ISO-8859-1

 [37] => ISO-8859-2

 [38] => ISO-8859-3

 [39] => ISO-8859-4

 [40] => ISO-8859-5

 [41] => ISO-8859-6

 [42] => ISO-8859-7

 [43] => ISO-8859-8

 [44] => ISO-8859-9

 [45] => ISO-8859-10

 [46] => ISO-8859-13

 [47] => ISO-8859-14

 [48] => ISO-8859-15

 [49] => EUC-CN

 [50] => CP936

 [51] => HZ

 [52] => EUC-TW

 [53] => BIG-5

 [54] => EUC-KR

 [55] => UHC

 [56] => ISO-2022-KR

 [57] => Windows-1251

 [58] => CP866

 [59] => KOI8-R

)

mb_output_handler

mb_output_handler -- Callback function converts character encoding in output buffer

Description

string mb_output_handler (string $contents, int $status)

mb_output_handler() is ob_start() callback function. mb_output_handler() converts
characters in the output buffer from internal character encoding to HTTP output character
encoding.

Parameters

contents

The contents of the output buffer.

status

The status of the output buffer.

Return Values

The converted string.

ChangeLog

Version Description

4.1.0
This handler now adds the charset HTTP
header when the following conditions are
met:

• Does not set Content-Type, using
header().

• The default MIME type begins with text/.

• The mbstring.http_input setting is
something other than pass.

Examples

Example #1644 - mb_output_handler() example

<?php

mb_http_output("UTF-8");

ob_start("mb_output_handler");

?>

Notes

Note

If you want to output some binary data such as image from PHP script with PHP 4.3.0
or later, Content-Type: header must be send using header() before any binary data
was send to client (e.g. header("Content-Type: image/png")). If Content-Type: header
was send, output character encoding conversion will not be performed.

Note that if 'Content-Type: text/*' was send using header(), the sending data is
regarded as text, encoding conversion will be performed using character encoding
settings.

If you want to output some binary data such as image from PHP script with PHP 4.2.x
or earlier, you must set output encoding to "pass" using mb_http_output().

See Also

• ob_start()

mb_parse_str

mb_parse_str -- Parse GET/POST/COOKIE data and set global variable

Description

bool mb_parse_str (string $encoded_string [, array &$result])

Parses GET/POST/COOKIE data and sets global variables. Since PHP does not provide
raw POST/COOKIE data, it can only be used for GET data for now. It parses URL
encoded data, detects encoding, converts coding to internal encoding and set values to
the result array or global variables.

Parameters

encoded_string

The URL encoded data.

result

An array containing decoded and character encoded converted values.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mb_detect_order()
• mb_internal_encoding()

mb_preferred_mime_name

mb_preferred_mime_name -- Get MIME charset string

Description

string mb_preferred_mime_name (string $encoding)

Get a MIME charset string for a specific encoding.

Parameters

encoding

The encoding being checked.

Return Values

The MIME charset string for character encoding encoding.

Examples

Example #1645 - mb_preferred_mime_string() example

<?php

$outputenc = "sjis-win";

mb_http_output($outputenc);

ob_start("mb_output_handler");

header("Content-Type: text/html; charset=" .
mb_preferred_mime_name($outputenc));

?>

mb_regex_encoding

mb_regex_encoding -- Returns current encoding for multibyte regex as string

Description

mixed mb_regex_encoding ([string $encoding])

Returns the current encoding for a multibyte regex as a string.

Parameters

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the character encoding used by multibyte regex functions.

See Also

• mb_internal_encoding()
• mb_ereg()

mb_regex_set_options

mb_regex_set_options -- Set/Get the default options for mbregex functions

Description

string mb_regex_set_options ([string $options])

Sets the default options described by options for multibyte regex functions.

Parameters

options

The options to set.

Return Values

The previous options. If options is omitted, it returns the string that describes the current
options.

See Also

• mb_split()
• mb_ereg()
• mb_eregi()

mb_send_mail

mb_send_mail -- Send encoded mail

Description

bool mb_send_mail (string $to, string $subject, string $message [, string $
additional_headers [, string $additional_parameter]])

Sends email. Headers and messages are converted and encoded according to the
mb_language() setting. It's a wrapper function for mail(), so see also mail() for details.

Parameters

to

The mail addresses being sent to. Multiple recipients may be specified by putting a
comma between each address in to. This parameter is not automatically encoded.

subject

The subject of the mail.

message

The message of the mail.

additional_headers

additional_headers is inserted at the end of the header. This is typically used to add
extra headers. Multiple extra headers are separated with a newline ("\n").

additional_parameter

additional_parameter is a MTA command line parameter. It is useful when setting the
correct Return-Path header when using sendmail.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.0.0 The Content-Type and
Content-Transfer-Encoding headers may be
redefined as of PHP 5.0.0. Before this time,
the values defined by mb_language() are
always used.

See Also

• mail()
• mb_encode_mimeheade()
• mb_language()

mb_split

mb_split -- Split multibyte string using regular expression

Description

array mb_split (string $pattern, string $string [, int $limit])

Split a multibyte string using regular expression pattern and returns the result as an
array.

Parameters

pattern

The regular expression pattern.

string

The string being split.

limit

If optional parameter limit is specified, it will be split in limit elements as maximum.

Return Values

The result as an array.

Notes

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_regex_encoding()
• mb_ereg()

mb_strcut

mb_strcut -- Get part of string

Description

string mb_strcut (string $str, int $start [, int $length [, string $encoding]])

mb_strcut() performs equivalent operation as mb_substr() with different method. If start
position is multi-byte character's second byte or larger, it starts from first byte of multi-byte
character.

It subtracts string from str that is shorter than length AND character that is not part of
multi-byte string or not being middle of shift sequence.

Parameters

str

The string being cut.

start

The position that begins the cut.

length

The string being decoded.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

mb_strcut() returns the portion of str specified by the start and length parameters.

See Also

• mb_substr()
• mb_internal_encoding()

mb_strimwidth

mb_strimwidth -- Get truncated string with specified width

Description

string mb_strimwidth (string $str, int $start, int $width [, string $trimmarker [, string $
encoding]])

Truncates string str to specified width.

Parameters

str

The string being decoded.

start

The start position offset. Number of characters from the beginning of string. (First
character is 0)

width

The width of the desired trim.

trimmarker

A string that is added to the end of string when string is truncated.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The truncated string. If trimmarker is set, trimmarker is appended to the return value.

Examples

Example #1646 - mb_strimwidth() example

<?php

$str = mb_strimwidth($str, 0, 40, "..>");

?>

See Also

• mb_strwidth()
• mb_internal_encoding()

mb_stripos

mb_stripos -- Finds position of first occurrence of a string within another, case insensitive

Description

int mb_stripos (string $haystack, string $needle [, int $offset [, string $encoding]])

mb_stripos() returns the numeric position of the first occurrence of needle in the haystack
string. Unlike mb_strpos(), mb_stripos() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the position of the first occurrence of needle

needle

The string to find in haystack

offset

The position in haystack to start searching

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Return the numeric position of the first occurrence of needle in the haystack string, or
FALSE if needle is not found.

See Also

• stripos()
• strpos()
• mb_strpos()

mb_stristr

mb_stristr -- Finds first occurrence of a string within another, case insensitive

Description

string mb_stristr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_stristr() finds the first occurrence of needle in haystack and returns the portion of
haystack. Unlike mb_strstr(), mb_stristr() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the first occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the first occurrence of needle. If set to FALSE, it
returns all of haystack from the first occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack, or FALSE if needle is not found.

See Also

• stristr()
• strstr()
• mb_strstr()

mb_strlen

mb_strlen -- Get string length

Description

int mb_strlen (string $str [, string $encoding])

Gets the length of a string.

Parameters

str

The string being checked for length.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the number of characters in string str having character encoding encoding. A
multi-byte character is counted as 1.

See Also

• mb_internal_encoding()
• strlen()

mb_strpos

mb_strpos -- Find position of first occurrence of string in a string

Description

int mb_strpos (string $haystack, string $needle [, int $offset [, string $encoding]])

Finds position of the first occurrence of a string in a string.

Performs a multi-byte safe strpos() operation based on number of characters. The first
character's position is 0, the second character position is 1, and so on.

Parameters

haystack

The string being checked.

needle

The position counted from the beginning of haystack.

offset

The search offset. If it is not specified, 0 is used.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the numeric position of the first occurrence of needle in the haystack string. If
needle is not found, it returns FALSE.

See Also

• mb_()
• mb_internal_encoding()
• strpos()

mb_strrchr

mb_strrchr -- Finds the last occurrence of a character in a string within another

Description

string mb_strrchr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strrchr() finds the last occurrence of needle in haystack and returns the portion of
haystack. If needle is not found, it returns FALSE.

Parameters

haystack

The string from which to get the last occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the last occurrence of needle. If set to FALSE, it
returns all of haystack from the last occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack. or FALSE if needle is not found.

See Also

• strrchr()
• mb_strstr()
• mb_strrichr()

mb_strrichr

mb_strrichr -- Finds the last occurrence of a character in a string within another, case
insensitive

Description

string mb_strrichr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strrichr() finds the last occurrence of needle in haystack and returns the portion of
haystack. Unlike mb_strrchr(), mb_strrichr() is case-insensitive. If needle is not found, it
returns FALSE.

Parameters

haystack

The string from which to get the last occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the last occurrence of needle. If set to FALSE, it
returns all of haystack from the last occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack. or FALSE if needle is not found.

See Also

• mb_stristr()
• mb_strrchr()

mb_strripos

mb_strripos -- Finds position of last occurrence of a string within another, case insensitive

Description

int mb_strripos (string $haystack, string $needle [, int $offset [, string $encoding]])

mb_strripos() performs multi-byte safe strripos() operation based on number of characters.
needle position is counted from the beginning of haystack. First character's position is 0.
Second character position is 1. Unlike mb_strrpos(), mb_strripos() is case-insensitive.

Parameters

haystack

The string from which to get the position of the last occurrence of needle

needle

The string to find in haystack

offset

The position in haystack to start searching

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Return the numeric position of the last occurrence of needle in the haystack string, or
FALSE if needle is not found.

See Also

• strripos()
• strrpos()
• mb_strrpos()

mb_strrpos

mb_strrpos -- Find position of last occurrence of a string in a string

Description

int mb_strrpos (string $haystack, string $needle [, int $offset [, string $encoding]])

Performs a multibyte safe strrpos() operation based on the number of characters. needle
position is counted from the beginning of haystack. First character's position is 0. Second
character position is 1.

Parameters

haystack

The string being checked, for the last occurrence of needle

needle

The string to find in haystack.

offset

May be specified to begin searching an arbitrary number of characters into the string.
Negative values will stop searching at an arbitrary point prior to the end of the string.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

Returns the numeric position of the last occurrence of needle in the haystack string. If
needle is not found, it returns FALSE.

ChangeLog

Version Description

5.2.0 Added the optional parameter offset.

Notes

Note

The encoding parameter was moved from the third position to the fourth in PHP 5.2.0.
For backward compatibility, encoding can be specified as the third parameter, but
doing so is deprecated and will be removed in the future.

Note

The internal encoding or the character encoding specified by mb_regex_encoding() will
be used as the character encoding for this function.

See Also

• mb_strpos()
• mb_internal_encoding()
• strrpos()

mb_strstr

mb_strstr -- Finds first occurrence of a string within another

Description

string mb_strstr (string $haystack, string $needle [, bool $part [, string $encoding]])

mb_strstr() finds the first occurrence of needle in haystack and returns the portion of
haystack. If needle is not found, it returns FALSE.

Parameters

haystack

The string from which to get the first occurrence of needle

needle

The string to find in haystack

part

Determines which portion of haystack this function returns. If set to TRUE, it returns all
of haystack from the beginning to the first occurrence of needle. If set to FALSE, it
returns all of haystack from the first occurrence of needle to the end, Default value is
FALSE.

encoding

Character encoding name to use. If it is omitted, internal character encoding is used.

Return Values

Returns the portion of haystack, or FALSE if needle is not found.

See Also

• stristr()
• strstr()
• mb_stristr()

mb_strtolower

mb_strtolower -- Make a string lowercase

Description

string mb_strtolower (string $str [, string $encoding])

Returns str with all alphabetic characters converted to lowercase.

Parameters

str

The string being lowercased.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

str with all alphabetic characters converted to lowercase.

Unicode

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

By contrast to strtolower(), 'alphabetic' is determined by the Unicode character properties.
Thus the behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as A-umlaut (Ä).

Examples

Example #1647 - mb_strtolower() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = mb_strtolower($str);

echo $str; // Prints mary had a little lamb and she loved it so

?>

See Also

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

• mb_strtoupper()
• mb_convert_case()
• strtolower()

mb_strtoupper

mb_strtoupper -- Make a string uppercase

Description

string mb_strtoupper (string $str [, string $encoding])

Returns str with all alphabetic characters converted to uppercase.

Parameters

str

The string being uppercased.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

str with all alphabetic characters converted to uppercase.

Unicode

For more information about the Unicode properties, please see
» http://www.unicode.org/unicode/reports/tr21/.

By contrast to strtoupper(), 'alphabetic' is determined by the Unicode character properties.
Thus the behaviour of this function is not affected by locale settings and it can convert any
characters that have 'alphabetic' property, such as a-umlaut (ä).

Examples

Example #1648 - mb_strtoupper() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = mb_strtoupper($str);

echo $str; // Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

?>

See Also

http://www.unicode.org/unicode/reports/tr21/
http://www.unicode.org/unicode/reports/tr21/

• mb_strtolower()
• mb_convert_case()
• strtoupper()

mb_strwidth

mb_strwidth -- Return width of string

Description

int mb_strwidth (string $str [, string $encoding])

Returns the width of string str.

Multi-byte characters are usually twice the width of single byte characters.

Characters width

Chars Width

U+0000 - U+0019 0

U+0020 - U+1FFF 1

U+2000 - U+FF60 2

U+FF61 - U+FF9F 1

U+FFA0 - 2

Parameters

str

The string being decoded.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The width of string str.

See Also

• mb_strimwidth()
• mb_internal_encoding()

mb_substitute_character

mb_substitute_character -- Set/Get substitution character

Description

mixed mb_substitute_character ([mixed $substrchar])

Specifies a substitution character when input character encoding is invalid or character
code does not exist in output character encoding. Invalid characters may be substituted
NULL (no output), string or integer value (Unicode character code value).

This setting affects mb_convert_encoding(), mb_convert_variables(), mb_output_handler()
, and mb_send_mail().

Parameters

substrchar

Specify the Unicode value as an integer, or as one of the following string s:

• "none" : no output

• "long" : Output character code value (Example: U+3000,JIS+7E7E)

Return Values

If substchar is set, it returns TRUE for success, otherwise returns FALSE. If substchar is
not set, it returns the Unicode value, or " none " or " long ".

Examples

Example #1649 - mb_substitute_character() example

<?php

/* Set with Unicode U+3013 (GETA MARK) */

mb_substitute_character(0x3013);

/* Set hex format */

mb_substitute_character("long");

/* Display current setting */

echo mb_substitute_character();

?>

mb_substr_count

mb_substr_count -- Count the number of substring occurrences

Description

int mb_substr_count (string $haystack, string $needle [, string $encoding])

Counts the number of times the needle substring occurs in the haystack string.

Parameters

haystack

The string being checked.

needle

The string being found.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

The number of times the needle substring occurs in the haystack string.

Examples

Example #1650 - mb_substr_count() example

<?php

echo mb_substr_count("This is a test", "is"); // prints out 2

?>

See Also

• mb_strpos()
• mb_substr()
• substr_count()

mb_substr

mb_substr -- Get part of string

Description

string mb_substr (string $str, int $start [, int $length [, string $encoding]])

Performs a multi-byte safe substr() operation based on number of characters. Position is
counted from the beginning of str. First character's position is 0. Second character
position is 1, and so on.

Parameters

str

The string being checked.

start

The first position used in str.

length

The maximum length of the returned string.

encoding

The encoding parameter is the character encoding. If it is omitted, the internal
character encoding value will be used.

Return Values

mb_substr() returns the portion of str specified by the start and length parameters.

See Also

• mb_strcut()
• mb_internal_encoding()

Pspell

Introduction

These functions allow you to check the spelling of a word and offer suggestions.

Installing/Configuring

Requirements

To compile PHP with pspell support, you need the aspell library, available from
» http://aspell.sourceforge.net/.

Installation

If you have the libraries needed add the --with-pspell[=dir] option when compiling PHP.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: aspell-15.dll from the bin folder of the
aspell installation.

Win32 support is available only in PHP 4.3.3 and later versions. Also, at least aspell
version 0.50 is required.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://aspell.sourceforge.net/
http://aspell.sourceforge.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PSPELL_FAST (integer)

PSPELL_NORMAL (integer)

PSPELL_BAD_SPELLERS (integer)

PSPELL_RUN_TOGETHER (integer)

Pspell Functions

pspell_add_to_personal

pspell_add_to_personal -- Add the word to a personal wordlist

Description

bool pspell_add_to_personal (int $dictionary_link, string $word)

pspell_add_to_personal() adds a word to the personal wordlist. If you used
pspell_new_config() with pspell_config_personal() to open the dictionary, you can save the
wordlist later with pspell_save_wordlist().

Parameters

dictionary_link

word

The added word.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1651 - pspell_add_to_personal()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

$pspell_link = pspell_new_config($pspell_config);

pspell_add_to_personal($pspell_link, "Vlad");

pspell_save_wordlist($pspell_link);

?>

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_add_to_session

pspell_add_to_session -- Add the word to the wordlist in the current session

Description

bool pspell_add_to_session (int $dictionary_link, string $word)

pspell_add_to_session() adds a word to the wordlist associated with the current session. It
is very similar to pspell_add_to_personal()

Parameters

dictionary_link

word

The added word.

Return Values

Returns TRUE on success or FALSE on failure.

pspell_check

pspell_check -- Check a word

Description

bool pspell_check (int $dictionary_link, string $word)

pspell_check() checks the spelling of a word.

Parameters

dictionary_link

word

The tested word.

Return Values

Returns TRUE if the spelling is correct, FALSE if not.

Examples

Example #1652 - pspell_check() Example

<?php

$pspell_link = pspell_new("en");

if (pspell_check($pspell_link, "testt")) {

 echo "This is a valid spelling";

} else {

 echo "Sorry, wrong spelling";

}

?>

pspell_clear_session

pspell_clear_session -- Clear the current session

Description

bool pspell_clear_session (int $dictionary_link)

pspell_clear_session() clears the current session. The current wordlist becomes blank,
and, for example, if you try to save it with pspell_save_wordlist(), nothing happens.

Parameters

dictionary_link

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1653 - pspell_add_to_personal() Example

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

$pspell_link = pspell_new_config($pspell_config);

pspell_add_to_personal($pspell_link, "Vlad");

pspell_clear_session($pspell_link);

pspell_save_wordlist($pspell_link); //"Vlad" will not be saved

?>

pspell_config_create

pspell_config_create -- Create a config used to open a dictionary

Description

int pspell_config_create (string $language [, string $spelling [, string $jargon [, string
$encoding]]])

Create a config used to open a dictionary.

pspell_config_create() has a very similar syntax to pspell_new(). In fact, using
pspell_config_create() immediately followed by pspell_new_config() will produce the exact
same result. However, after creating a new config, you can also use pspell_config_*()
functions before calling pspell_new_config() to take advantage of some advanced
functionality.

For more information and examples, check out inline manual pspell website:
» http://aspell.net/.

Parameters

language

The language parameter is the language code which consists of the two letter ISO 639
language code and an optional two letter ISO 3166 country code after a dash or
underscore.

spelling

The spelling parameter is the requested spelling for languages with more than one
spelling such as English. Known values are 'american', 'british', and 'canadian'.

jargon

The jargon parameter contains extra information to distinguish two different words lists
that have the same language and spelling parameters.

encoding

The encoding parameter is the encoding that words are expected to be in. Valid values
are 'utf-8', 'iso8859-*', 'koi8-r', 'viscii', 'cp1252', 'machine unsigned 16', 'machine
unsigned 32'. This parameter is largely untested, so be careful when using.

Return Values

Retuns a pspell config identifier, or FALSE on error.

Examples

http://aspell.net/
http://aspell.net/

Example #1654 - pspell_config_create()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

pspell_config_repl($pspell_config, "/var/dictionaries/custom.repl");

$pspell_link = pspell_new_personal($pspell_config, "en");

?>

pspell_config_data_dir

pspell_config_data_dir -- location of language data files

Description

bool pspell_config_data_dir (int $conf, string $directory)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

pspell_config_dict_dir

pspell_config_dict_dir -- Location of the main word list

Description

bool pspell_config_dict_dir (int $conf, string $directory)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

pspell_config_ignore

pspell_config_ignore -- Ignore words less than N characters long

Description

bool pspell_config_ignore (int $dictionary_link, int $n)

pspell_config_ignore() should be used on a config before calling pspell_new_config(). This
function allows short words to be skipped by the spell checker.

Parameters

dictionary_link

n

Words less than n characters will be skipped.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1655 - pspell_config_ignore()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_ignore($pspell_config, 5);

$pspell_link = pspell_new_config($pspell_config);

pspell_check($pspell_link, "abcd"); //will not result in an error

?>

pspell_config_mode

pspell_config_mode -- Change the mode number of suggestions returned

Description

bool pspell_config_mode (int $dictionary_link, int $mode)

pspell_config_mode() should be used on a config before calling pspell_new_config(). This
function determines how many suggestions will be returned by pspell_suggest().

Parameters

dictionary_link

mode

The mode parameter is the mode in which spellchecker will work. There are several
modes available:

• PSPELL_FAST - Fast mode (least number of suggestions)

• PSPELL_NORMAL - Normal mode (more suggestions)

• PSPELL_BAD_SPELLERS - Slow mode (a lot of suggestions)

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1656 - pspell_config_mode() Example

<?php

$pspell_config = pspell_config_create("en");

pspell_config_mode($pspell_config, PSPELL_FAST);

$pspell_link = pspell_new_config($pspell_config);

pspell_check($pspell_link, "thecat");

?>

pspell_config_personal

pspell_config_personal -- Set a file that contains personal wordlist

Description

bool pspell_config_personal (int $dictionary_link, string $file)

Set a file that contains personal wordlist. The personal wordlist will be loaded and used in
addition to the standard one after you call pspell_new_config(). The file is also the file
where pspell_save_wordlist() will save personal wordlist to.

pspell_config_personal() should be used on a config before calling pspell_new_config().

Parameters

dictionary_link

file

The personal wordlist. If the file does not exist, it will be created. The file should be
writable by whoever PHP runs as (e.g. nobody).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1657 - pspell_config_personal()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

$pspell_link = pspell_new_config($pspell_config);

pspell_check($pspell_link, "thecat");

?>

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_config_repl

pspell_config_repl -- Set a file that contains replacement pairs

Description

bool pspell_config_repl (int $dictionary_link, string $file)

Set a file that contains replacement pairs.

The replacement pairs improve the quality of the spellchecker. When a word is misspelled,
and a proper suggestion was not found in the list, pspell_store_replacement() can be used
to store a replacement pair and then pspell_save_wordlist() to save the wordlist along with
the replacement pairs.

pspell_config_repl() should be used on a config before calling pspell_new_config().

Parameters

dictionary_link

file

The file should be writable by whoever PHP runs as (e.g. nobody).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1658 - pspell_config_repl()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

pspell_config_repl($pspell_config, "/var/dictionaries/custom.repl");

$pspell_link = pspell_new_config($pspell_config);

pspell_check($pspell_link, "thecat");

?>

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_config_runtogether

pspell_config_runtogether -- Consider run-together words as valid compounds

Description

bool pspell_config_runtogether (int $dictionary_link, bool $flag)

This function determines whether run-together words will be treated as legal compounds.
That is, "thecat" will be a legal compound, although there should be a space between the
two words. Changing this setting only affects the results returned by pspell_check();
pspell_suggest() will still return suggestions.

pspell_config_runtogether() should be used on a config before calling pspell_new_config().

Parameters

dictionary_link

flag

TRUE if run-together words should be treated as legal compounds, FALSE otherwise.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1659 - pspell_config_runtogether()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_runtogether($pspell_config, true);

$pspell_link = pspell_new_config($pspell_config);

pspell_check($pspell_link, "thecat");

?>

pspell_config_save_repl

pspell_config_save_repl -- Determine whether to save a replacement pairs list along with
the wordlist

Description

bool pspell_config_save_repl (int $dictionary_link, bool $flag)

pspell_config_save_repl() determines whether pspell_save_wordlist() will save the
replacement pairs along with the wordlist. Usually there is no need to use this function
because if pspell_config_repl() is used, the replacement pairs will be saved by
pspell_save_wordlist() anyway, and if it is not, the replacement pairs will not be saved.

pspell_config_save_repl() should be used on a config before calling pspell_new_config().

Parameters

dictionary_link

flag

TRUE if replacement pairs should be saved, FALSE otherwise.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_new_config

pspell_new_config -- Load a new dictionary with settings based on a given config

Description

int pspell_new_config (int $config)

pspell_new_config() opens up a new dictionary with settings specified in a config, created
with pspell_config_create() and modified with pspell_config_*() functions. This method
provides you with the most flexibility and has all the functionality provided by pspell_new()
and pspell_new_personal().

Parameters

config

The config parameter is the one returned by pspell_config_create() when the config
was created.

Return Values

Returns a dictionary link identifier on success.

Examples

Example #1660 - pspell_new_config()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

pspell_config_repl($pspell_config, "/var/dictionaries/custom.repl");

$pspell_link = pspell_new_config($pspell_config);

?>

pspell_new_personal

pspell_new_personal -- Load a new dictionary with personal wordlist

Description

int pspell_new_personal (string $personal, string $language [, string $spelling [, string
$jargon [, string $encoding [, int $mode]]]])

pspell_new_personal() opens up a new dictionary with a personal wordlist. The wordlist
can be modified and saved with pspell_save_wordlist(), if desired. However, the
replacement pairs are not saved. In order to save replacement pairs, you should create a
config using pspell_config_create(), set the personal wordlist file with
pspell_config_personal(), set the file for replacement pairs with pspell_config_repl(), and
open a new dictionary with pspell_new_config().

For more information and examples, check out inline manual pspell website:
» http://aspell.net/.

Parameters

personal

The file where words added to the personal list will be stored. It should be an absolute
filename beginning with '/' because otherwise it will be relative to $HOME, which is
"/root" for most systems, and is probably not what you want.

language

The language code which consists of the two letter ISO 639 language code and an
optional two letter ISO 3166 country code after a dash or underscore.

spelling

The requested spelling for languages with more than one spelling such as English.
Known values are 'american', 'british', and 'canadian'.

jargon

Extra information to distinguish two different words lists that have the same language
and spelling parameters.

encoding

The encoding that words are expected to be in. Valid values are utf-8, iso8859-*, koi8-r
, viscii, cp1252, machine unsigned 16, machine unsigned 32.

mode

The mode in which spellchecker will work. There are several modes available:

• PSPELL_FAST - Fast mode (least number of suggestions)

• PSPELL_NORMAL - Normal mode (more suggestions)

http://aspell.net/
http://aspell.net/

• PSPELL_BAD_SPELLERS - Slow mode (a lot of suggestions)

• PSPELL_RUN_TOGETHER - Consider run-together words as legal compounds.
That is, "thecat" will be a legal compound, although there should be a space
between the two words. Changing this setting only affects the results returned by
pspell_check(); pspell_suggest() will still return suggestions.

Mode is a bitmask constructed from different constants listed above. However,
PSPELL_FAST, PSPELL_NORMAL and PSPELL_BAD_SPELLERS are mutually
exclusive, so you should select only one of them.

Return Values

Returns the dictionary link identifier for use in other pspell functions.

Examples

Example #1661 - pspell_new_personal()

<?php

$pspell_link = pspell_new_personal ("/var/dictionaries/custom.pws",

 "en", "", "", "", PSPELL_FAST|PSPELL_RUN_TOGETHER);

?>

pspell_new

pspell_new -- Load a new dictionary

Description

int pspell_new (string $language [, string $spelling [, string $jargon [, string $encoding
[, int $mode]]]])

pspell_new() opens up a new dictionary and returns the dictionary link identifier for use in
other pspell functions.

For more information and examples, check out inline manual pspell website:
» http://aspell.net/.

Parameters

language

The language parameter is the language code which consists of the two letter ISO 639
language code and an optional two letter ISO 3166 country code after a dash or
underscore.

spelling

The spelling parameter is the requested spelling for languages with more than one
spelling such as English. Known values are 'american', 'british', and 'canadian'.

jargon

The jargon parameter contains extra information to distinguish two different words lists
that have the same language and spelling parameters.

encoding

The encoding parameter is the encoding that words are expected to be in. Valid values
are 'utf-8', 'iso8859-*', 'koi8-r', 'viscii', 'cp1252', 'machine unsigned 16', 'machine
unsigned 32'. This parameter is largely untested, so be careful when using.

mode

The mode parameter is the mode in which spellchecker will work. There are several
modes available:

• PSPELL_FAST - Fast mode (least number of suggestions)

• PSPELL_NORMAL - Normal mode (more suggestions)

• PSPELL_BAD_SPELLERS - Slow mode (a lot of suggestions)

• PSPELL_RUN_TOGETHER - Consider run-together words as legal compounds.
That is, "thecat" will be a legal compound, although there should be a space
between the two words. Changing this setting only affects the results returned by
pspell_check(); pspell_suggest() will still return suggestions.

http://aspell.net/
http://aspell.net/

Mode is a bitmask constructed from different constants listed above. However,
PSPELL_FAST, PSPELL_NORMAL and PSPELL_BAD_SPELLERS are mutually
exclusive, so you should select only one of them.

Return Values

Returns the dictionary link identifier on success, or FALSE on failure.

Examples

Example #1662 - pspell_new()

<?php

$pspell_link = pspell_new("en", "", "", "",

 (PSPELL_FAST|PSPELL_RUN_TOGETHER));

?>

pspell_save_wordlist

pspell_save_wordlist -- Save the personal wordlist to a file

Description

bool pspell_save_wordlist (int $dictionary_link)

pspell_save_wordlist() saves the personal wordlist from the current session. The location
of files to be saved specified with pspell_config_personal() and (optionally)
pspell_config_repl().

Parameters

dictionary_link

A dictionary link identifier opened with pspell_new_personal().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1663 - pspell_add_to_personal()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/tmp/dicts/newdict");

$pspell_link = pspell_new_config($pspell_config);

pspell_add_to_personal($pspell_link, "Vlad");

pspell_save_wordlist($pspell_link);

?>

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_store_replacement

pspell_store_replacement -- Store a replacement pair for a word

Description

bool pspell_store_replacement (int $dictionary_link, string $misspelled, string $
correct)

pspell_store_replacement() stores a replacement pair for a word, so that replacement can
be returned by pspell_suggest() later. In order to be able to take advantage of this
function, you have to use pspell_new_personal() to open the dictionary. In order to
permanently save the replacement pair, you have to use pspell_config_personal() and
pspell_config_repl() to set the path where to save your custom wordlists, and then use
pspell_save_wordlist() for the changes to be written to disk.

Parameters

dictionary_link

A dictionary link identifier, opened with pspell_new_personal()

misspelled

The misspelled word.

correct

The fixed spelling for the misspelled word.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1664 - pspell_store_replacement()

<?php

$pspell_config = pspell_config_create("en");

pspell_config_personal($pspell_config, "/var/dictionaries/custom.pws");

pspell_config_repl($pspell_config, "/var/dictionaries/custom.repl");

$pspell_link = pspell_new_config($pspell_config);

pspell_store_replacement($pspell_link, $misspelled, $correct);

pspell_save_wordlist($pspell_link);

?>

Notes

Note

This function will not work unless you have pspell .11.2 and aspell .32.5 or later.

pspell_suggest

pspell_suggest -- Suggest spellings of a word

Description

array pspell_suggest (int $dictionary_link, string $word)

pspell_suggest() returns an array of possible spellings for the given word.

Parameters

dictionary_link

word

The tested word.

Return Values

Returns an array of possible spellings.

Examples

Example #1665 - pspell_suggest() example

<?php

$pspell_link = pspell_new("en");

if (!pspell_check($pspell_link, "testt")) {

 $suggestions = pspell_suggest($pspell_link, "testt");

 foreach ($suggestions as $suggestion) {

 echo "Possible spelling: $suggestion
";

 }

}

?>

GNU Recode

Introduction

This module contains an interface to the GNU Recode library. The GNU Recode library
converts files between various coded character sets and surface encodings. When this
cannot be achieved exactly, it may get rid of the offending characters or fall back on
approximations. The library recognises or produces nearly 150 different character sets and
is able to convert files between almost any pair. Most » RFC 1345 character sets are
supported.

Note

This extension is not available on Windows platforms.

http://www.faqs.org/rfcs/rfc1345

Installing/Configuring

Requirements

You must have GNU Recode 3.5 or higher installed on your system. You can download
the package from » http://directory.fsf.org/All_GNU_Packages/recode.html.

Warning

The Recode library version 3.6 adds weird characters behind converted strings under
certain circumstances. Thus it's safer to use Recode v3.5 or one of the available
alternatives like the iconv or mbstring extension.

Installation

To be able to use the functions defined in this module you must compile your PHP
interpreter using the --with-recode[=DIR] option.

Warning

Crashes and startup problems of PHP may be encountered when loading the recode
as extension after loading any extension of mysql or imap. Loading the recode before
those extension has proved to fix the problem. This is due a technical problem that
both the c-client library used by imap and recode have their own hash_lookup()
function and both mysql and recode have their own hash_insert function.

Warning

The IMAP, recode, YAZ and Cyrus extensions cannot be used in conjuction, because
they share the same internal symbols.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://directory.fsf.org/All_GNU_Packages/recode.html

Predefined Constants

This extension has no constants defined.

Recode Functions

recode_file

recode_file -- Recode from file to file according to recode request

Description

bool recode_file (string $request, resource $input, resource $output)

Recode the file referenced by file handle input into the file referenced by file handle
output according to the recode request.

Parameters

request

The desired recode request type

input

A local file handle resource for the input

output

A local file handle resource for the output

Return Values

Returns FALSE, if unable to comply, TRUE otherwise.

Examples

Example #1666 - Basic recode_file() example

<?php

$input = fopen('input.txt', 'r');

$output = fopen('output.txt', 'w');

recode_file("us..flat", $input, $output);

?>

Notes

This function does not currently process file handles referencing remote files (URLs). Both
file handles must refer to local files.

See Also

• fopen()

recode_string

recode_string -- Recode a string according to a recode request

Description

string recode_string (string $request, string $string)

Recode the string string according to the recode request request.

Parameters

request

The desired recode request type

string

The string to be recoded

Return Values

Returns the recoded string or FALSE, if unable to perform the recode request.

Examples

Example #1667 - Basic recode_string() example

<?php

echo recode_string("us..flat", "The following character has a diacritical
mark: á");

?>

Notes

A simple recode request may be "lat1..iso646-de".

See Also

• The GNU Recode documentation of your installation for detailed instructions about
recode requests.

recode

recode -- Alias of recode_string()

Description

This function is an alias of: recode_string().

Unicode

Introduction

Unicode Support.

Warning

This extension is still in development and it isn't available to public yet.

Installing/Configuring

Requirements

» ICU 3.4 or later is required.

Installation

First you should download and install ICU:

Example #1668 - install ICU on Unix

./configure --disable-threads --enable-extras --enable-icuio --enable-layout

make && make install

Then checkout latest PHP and configure it --with-icu-dir=<dir> option, where <dir> was the
dir to where you installed ICU. You don't need to explicitly use this option if you install ICU
to a standard location.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Unicode Configuration Options

Name Default Changeable Changelog

unicode.fallback_enc
oding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.from_error_
mode

"2" PHP_INI_ALL Available since PHP
6.0.0.

unicode.from_error_s
ubst_char

"3f" PHP_INI_ALL Available since PHP
6.0.0.

unicode.http_input_e
ncoding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.output_enco
ding

NULL PHP_INI_ALL Available since PHP
6.0.0.

http://icu.sourceforge.net/

unicode.runtime_enc
oding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.script_encodi
ng

NULL PHP_INI_ALL Available since PHP
6.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

unicode.output_encoding string
Default encoding for output.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

constant value description

U_INVALID_STOP 0 stop at first invalid character

U_INVALID_SKIP 1 skip invalid characters

U_INVALID_SUBSTITUTE 2 replace invalid characters

U_INVALID_ESCAPE 3 escape invalid characters

Unicode Functions

unicode_decode

unicode_decode -- Convert a binary string into a Unicode string

Description

unicode unicode_decode (string $input, string $encoding [, int $errmode])

Convert a binary string encoded in encoding to a unicode string.

Parameters

input

Try string that is converted.

encoding

The encoding of input.

errmode

Conversion error mode. This parameter determines the action to take when the
converter cannot convert a character. For a list of available modes, refer to
unicode_set_error_mode(). If the parameter is not set, the global error mode is used.

Return Values

A unicode string or FALSE on failure.

Errors/Exceptions

Emits a E_WARNING level error if a converter cannot be created for the desired encoding
.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_set_error_mode()
• unicode_semantics()
• unicode_encode()

unicode_encode

unicode_encode -- Convert a unicode string in any encoding

Description

string unicode_encode (unicode $input, string $encoding [, int $errmode])

Takes a unicode string and converts it to a string in the specified encoding.

Parameters

input

The unicode string that is converted.

encoding

The new encoding for input.

errmode

Conversion error mode. This parameter determines the action to take when the
converter cannot convert a character. For a list of available modes, refer to
unicode_set_error_mode(). If the parameter is not set, the global error mode is used.

Return Values

A string on success, or FALSE on failure.

Errors/Exceptions

Emits a E_WARNING level error if a converter cannot be created for the desired encoding
.

Examples

Example #1669 - A unicode_encode() example

Note: The characters will be seen instead of entities in the output.

<?php

header ('Content-Type: text/plain; charset=ISO-8859-2');

$encoded = unicode_encode ('\u0150\u0179', 'ISO-8859-2');

echo 'Unicode semantics: ', ini_get ('unicode_semantics'), PHP_EOL;

echo 'The string itself:', $encoded, PHP_EOL;

echo 'The length of the string: ', strlen ($encoded);

?>

The above example will output something similar to:

Unicode semantics: 1

The string itself: ŐŹ

The length of the string: 2

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_set_error_mode()
• unicode_semantics()
• unicode_decode()

unicode_get_error_mode

unicode_get_error_mode -- Get the error mode for strings conversions

Description

int unicode_get_error_mode (int $direction)

Return the current error mode for string conversions in direction.

Parameters

direction

Get the error mode for conversion direction. This can either be FROM_UNICODE or
TO_UNICODE. See unicode_set_error_mode() for more details.

Return Values

This function returns one of the error mode constants or FALSE on failure.

Errors/Exceptions

Emits a E_WARNING level error if direction is invalid.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_set_error_mode()
• unicode_encode()
• unicode_decode()

unicode_get_subst_char

unicode_get_subst_char -- Get the substitution character for string conversion errors

Description

unicode unicode_get_subst_char (void)

Return the substitution character for string conversion errors set by
unicode_set_subst_char().

Return Values

The unicode substitution character is returned.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_set_error_mode()
• unicode_set_subst_char()

unicode_set_error_mode

unicode_set_error_mode -- Set the error mode for strings conversions

Description

bool unicode_set_error_mode (int $direction, int $mode)

This function sets the error mode for string conversions between different encodings. An
error can occur during conversion when an illegal character is encountered or if a
character cannot be represented into the new encoding. By default, when an error is
encountered, the conversion stops.

Parameters

direction

The direction sets the conversion direction to which the error mode will apply. This
can either be FROM_UNICODE, which will set the error mode for conversions from a
unicode string to a binary string or TO_UNICODE, which will set the error mode for
conversions from a binary string to a unicode string.

mode

mode determines how the conversion errors are handled. It should be one of the
following constants:

Available modes

Mode Description

U_CONV_ERROR_STOP Stop the conversion. This is the default
mode.

U_CONV_ERROR_SKIP Skip the character.

U_CONV_ERROR_SUBST Substitute the character. The substituting
character can be set with
unicode_set_subst_char().

U_CONV_ERROR_ESCAPE_UNICODE Escape the faulty bytes and represent them
in the Unicode character format.

U_CONV_ERROR_ESCAPE_ICU Escape the faulty bytes and represent them
in the ICU character format.

U_CONV_ERROR_ESCAPE_JAVA Escape the faulty bytes and print them in the
Java character format.

U_CONV_ERROR_ESCAPE_XML_DEC Escape the faulty bytes and represent them

in decimal format.

U_CONV_ERROR_ESCAPE_XML_HEX Escape the faulty bytes and represent them
in hexadecimal format.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Emits a E_WARNING level error if the direction or the mode are invalid.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_encode()
• unicode_decode()

unicode_set_subst_char

unicode_set_subst_char -- Set the substitution character for string conversion errors

Description

bool unicode_set_subst_char (unicode $character)

When converting a string from or to unicode, an invalid or unconvertable character may be
encountered. When the conversion error mode is set to U_CONV_ERROR_SUBST, the
character that caused the error is substituted by a character set by this function. The default
substitution character is ?.

Parameters

character

The substitution character to use.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Emits a E_WARNING level error if character is invalid.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• unicode_set_error_mode()
• unicode_get_error_mode()
• unicode_encode()
• unicode_decode()

Image Processing and Generation

Exchangeable image information

Introduction

With the exif extension you are able to work with image meta data. For example, you may use
exif functions to read meta data of pictures taken from digital cameras by working with
information stored in the headers of the JPEG and TIFF images.

Installing/Configuring

Requirements

Your PHP must be compiled in with --enable-exif. PHP does not require any additional library
for the exif module. Windows users must also have the mbstring extension enabled.

Installation

To enable exif-support configure PHP with --enable-exif

Windows users must enable both the php_mbstring.dll and php_exif.dll DLL's in php.ini. The
php_mbstring.dll DLL must be loaded before the php_exif.dll DLL so adjust your php.ini
accordingly.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Exif supports automatically conversion for Unicode and JIS character encodings of user
comments when module mbstring is available. This is done by first decoding the comment
using the specified characterset. The result is then encoded with another characterset which
should match your HTTP output.

Exif configuration options

Name Default Changeable Changelog

exif.encode_unicode "ISO-8859-15" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_unicode
_motorola

"UCS-2BE" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_unicode
_intel

"UCS-2LE" PHP_INI_ALL Available since PHP
4.3.0.

exif.encode_jis "" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_jis_moto
rola

"JIS" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_jis_intel "JIS" PHP_INI_ALL Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

exif.encode_unicode string
exif.encode_unicode defines the characterset UNICODE user comments are handled.
This defaults to ISO-8859-15 which should work for most non Asian countries. The
setting can be empty or must be an encoding supported by mbstring. If it is empty the
current internal encoding of mbstring is used.

exif.decode_unicode_motorola string
exif.decode_unicode_motorola defines the image internal characterset for Unicode
encoded user comments if image is in motorola byte order (big-endian). This setting
cannot be empty but you can specify a list of encodings supported by mbstring. The
default is UCS-2BE.

exif.decode_unicode_intel string
exif.decode_unicode_intel defines the image internal characterset for Unicode
encoded user comments if image is in intel byte order (little-endian). This setting
cannot be empty but you can specify a list of encodings supported by mbstring. The
default is UCS-2LE.

exif.encode_jis string
exif.encode_jis defines the characterset JIS user comments are handled. This defaults
to an empty value which forces the functions to use the current internal encoding of
mbstring.

exif.decode_jis_motorola string
exif.decode_jis_motorola defines the image internal characterset for JIS encoded user
comments if image is in motorola byte order (big-endian). This setting cannot be empty
but you can specify a list of encodings supported by mbstring. The default is JIS.

exif.decode_jis_intel string
exif.decode_jis_intel defines the image internal characterset for JIS encoded user
comments if image is in intel byte order (little-endian). This setting cannot be empty but
you can specify a list of encodings supported by mbstring. The default is JIS.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

EXIF_USE_MBSTRING (integer)

The exif_imagetype() lists several related built-in constants.

Exif Functions

exif_imagetype

exif_imagetype -- Determine the type of an image

Description

int exif_imagetype (string $filename)

exif_imagetype() reads the first bytes of an image and checks its signature.

exif_imagetype() can be used to avoid calls to other exif functions with unsupported file
types or in conjunction with $_SERVER['HTTP_ACCEPT'] to check whether or not the
viewer is able to see a specific image in the browser.

Parameters

filename

The image being checked.

Return Values

When a correct signature is found, the appropriate constant value will be returned
otherwise the return value is FALSE. The return value is the same value that
getimagesize() returns in index 2 but exif_imagetype() is much faster.

ChangeLog

Version Description

4.3.2 Support for JPC, JP2, JPX, JB2, XBM, and
WBMP

4.3.0 Support for SWC

Predefined Constants

The following constants are defined, and represent possible exif_imagetype() return
values:

Imagetype Constants

Value Constant

1 IMAGETYPE_GIF

2 IMAGETYPE_JPEG

3 IMAGETYPE_PNG

4 IMAGETYPE_SWF

5 IMAGETYPE_PSD

6 IMAGETYPE_BMP

7 IMAGETYPE_TIFF_II (intel byte order)

8 IMAGETYPE_TIFF_MM (motorola byte
order)

9 IMAGETYPE_JPC

10 IMAGETYPE_JP2

11 IMAGETYPE_JPX

12 IMAGETYPE_JB2

13 IMAGETYPE_SWC

14 IMAGETYPE_IFF

15 IMAGETYPE_WBMP

16 IMAGETYPE_XBM

Examples

Example #1670 - exif_imagetype() example

<?php

if (exif_imagetype('image.gif') != IMAGETYPE_GIF) {

 echo 'The picture is not a gif';

}

?>

See Also

• getimagesize()

exif_read_data

exif_read_data -- Reads the EXIF headers from JPEG or TIFF

Description

array exif_read_data (string $filename [, string $sections [, bool $arrays [, bool $
thumbnail]]])

exif_read_data() reads the EXIF headers from a JPEG or TIFF image file. This way you
can read meta data generated by digital cameras.

Exif headers tend to be present in JPEG/TIFF images generated by digital cameras, but
unfortunately each digital camera maker has a different idea of how to actually tag their
images, so you can't always rely on a specific Exif header being present.

Height and Width are computed the same way getimagesize() does so their values must
not be part of any header returned. Also, html is a height/width text string to be used inside
normal HTML.

When an Exif header contains a Copyright note, this itself can contain two values. As the
solution is inconsistent in the Exif 2.10 standard, the COMPUTED section will return both
entries Copyright.Photographer and Copyright.Editor while the IFD0 sections contains the
byte array with the NULL character that splits both entries. Or just the first entry if the
datatype was wrong (normal behaviour of Exif). The COMPUTED will also contain the
entry Copyright which is either the original copyright string, or a comma separated list of
the photo and editor copyright.

The tag UserComment has the same problem as the Copyright tag. It can store two
values. First the encoding used, and second the value itself. If so the IFD section only
contains the encoding or a byte array. The COMPUTED section will store both in the
entries UserCommentEncoding and UserComment. The entry UserComment is available
in both cases so it should be used in preference to the value in IFD0 section.

exif_read_data() also validates EXIF data tags according to the EXIF specification (
» http://exif.org/Exif2-2.PDF, page 20).

Note

Windows ME/XP can both wipe the Exif headers when connecting to a camera. More
information available at » http://www.canon.co.jp/Imaging/NOTICE/011214-e.html.

Parameters

filename

The name of the image file being read. This cannot be an URL.

http://exif.org/Exif2-2.PDF
http://exif.org/Exif2-2.PDF
http://www.canon.co.jp/Imaging/NOTICE/011214-e.html

sections

Is a comma separated list of sections that need to be present in file to produce a result
array. If none of the requested sections could be found the return value is FALSE.

FILE FileName, FileSize, FileDateTime,
SectionsFound

COMPUTED html, Width, Height, IsColor, and more if
available. Height and Width are computed
the same way getimagesize() does so their
values must not be part of any header
returned. Also, html is a height/width text
string to be used inside normal HTML.

ANY_TAG Any information that has a Tag e.g. IFD0,
EXIF, ...

IFD0 All tagged data of IFD0. In normal imagefiles
this contains image size and so forth.

THUMBNAIL A file is supposed to contain a thumbnail if it
has a second IFD. All tagged information
about the embedded thumbnail is stored in
this section.

COMMENT Comment headers of JPEG images.

EXIF The EXIF section is a sub section of IFD0. It
contains more detailed information about an
image. Most of these entries are digital
camera related.

arrays

Specifies whether or not each section becomes an array. The sections COMPUTED,
THUMBNAIL, and COMMENT always become arrays as they may contain values whose
names conflict with other sections.

thumbnail

When set to TRUE the thumbnail itself is read. Otherwise, only the tagged data is read.

Return Values

It returns an associative array where the array indexes are the header names and the array
values are the values associated with those headers. If no data can be returned,
exif_read_data() will return FALSE.

ChangeLog

Version Description

4.3.0 Can read all embedded IFD data including
arrays (returned as such). Also the size of
an embedded thumbnail is returned in a
THUMBNAIL subarray, and can return
thumbnails in TIFF format. Also, there is no
longer a maximum length for returned
values (not until the memory limit has been
reached)

4.3.0 If PHP has mbstring support, the user
comment can automatically change
encoding. Also, if the user comment uses
Unicode or JIS encoding this encoding will
automatically be changed according to the
exif ini settings in php.ini

4.3.0 If the image contains any IFD0 data then
COMPUTED contains the entry
ByteOrderMotorola which is 0 for
little-endian (intel) and 1 for big-endian
(motorola) byte order. Also, COMPUTED
and UserComment no longer only contain
the first copyright entry if the datatype was
wrong.

Examples

Example #1671 - exif_read_data() example

<?php

echo "test1.jpg:
\n";

$exif = exif_read_data('tests/test1.jpg', 'IFD0');

echo $exif===false ? "No header data found.
\n" : "Image contains
headers
\n";

$exif = exif_read_data('tests/test2.jpg', 0, true);

echo "test2.jpg:
\n";

foreach ($exif as $key => $section) {

 foreach ($section as $name => $val) {

 echo "$key.$name: $val
\n";

 }

}

?>

The first call fails because the image has no header information.

The above example will output something similar to:

test1.jpg:

No header data found.

test2.jpg:

FILE.FileName: test2.jpg

FILE.FileDateTime: 1017666176

FILE.FileSize: 1240

FILE.FileType: 2

FILE.SectionsFound: ANY_TAG, IFD0, THUMBNAIL, COMMENT

COMPUTED.html: width="1" height="1"

COMPUTED.Height: 1

COMPUTED.Width: 1

COMPUTED.IsColor: 1

COMPUTED.ByteOrderMotorola: 1

COMPUTED.UserComment: Exif test image.

COMPUTED.UserCommentEncoding: ASCII

COMPUTED.Copyright: Photo (c) M.Boerger, Edited by M.Boerger.

COMPUTED.Copyright.Photographer: Photo (c) M.Boerger

COMPUTED.Copyright.Editor: Edited by M.Boerger.

IFD0.Copyright: Photo (c) M.Boerger

IFD0.UserComment: ASCII

THUMBNAIL.JPEGInterchangeFormat: 134

THUMBNAIL.JPEGInterchangeFormatLength: 523

COMMENT.0: Comment #1.

COMMENT.1: Comment #2.

COMMENT.2: Comment #3end

THUMBNAIL.JPEGInterchangeFormat: 134

THUMBNAIL.Thumbnail.Height: 1

THUMBNAIL.Thumbnail.Height: 1

See Also

• exif_thumbnail()
• getimagesize()

exif_tagname

exif_tagname -- Get the header name for an index

Description

string exif_tagname (string $index)

Warning

This function is currently not documented; only its argument list is available.

Parameters

index

The image index

Return Values

Returns the header name, or FALSE if index is undefined.

See Also

• exif_imagetype()

exif_thumbnail

exif_thumbnail -- Retrieve the embedded thumbnail of a TIFF or JPEG image

Description

string exif_thumbnail (string $filename [, int &$width [, int &$height [, int &$imagetype]
]])

exif_thumbnail() reads the embedded thumbnail of a TIFF or JPEG image.

If you want to deliver thumbnails through this function, you should send the mimetype
information using the header() function.

It is possible that exif_thumbnail() cannot create an image but can determine its size. In
this case, the return value is FALSE but width and height are set.

Parameters

filename

The name of the image file being read. This image contains an embedded thumbnail.

width

The return width of the returned thumbnail.

height

The returned height of the returned thumbnail.

imagetype

The returned image type of the returned thumbnail. This is either TIFF or JPEG.

Return Values

Returns the embedded thumbnail, or FALSE if the image contains no thumbnail.

ChangeLog

Version Description

4.3.0 The optional parameters width, height,
and imagetype all became available.

4.3.0 May return thumbnails in the TIFF format.

Examples

Example #1672 - exif_thumbnail() example

<?php

if (array_key_exists('file', $_REQUEST)) {

 $image = exif_thumbnail($_REQUEST['file'], $width, $height, $type);

} else {

 $image = false;

}

if ($image!==false) {

 header('Content-type: ' .image_type_to_mime_type($type));

 echo $image;

 exit;

} else {

 // no thumbnail available, handle the error here

 echo 'No thumbnail available';

}

?>

See Also

• exif_read_data()
• image_type_to_mime_type()

read_exif_data

read_exif_data -- Alias of exif_read_data()

Description

This function is an alias of: exif_read_data().

Image Processing (GD)

Introduction

PHP is not limited to creating just HTML output. It can also be used to create and
manipulate image files in a variety of different image formats, including gif, png, jpg, wbmp,
and xpm. Even more convenient, PHP can output image streams directly to a browser.
You will need to compile PHP with the GD library of image functions for this to work. GD
and PHP may also require other libraries, depending on which image formats you want to
work with.

You can use the image functions in PHP to get the size of JPEG, GIF, PNG, SWF, TIFF
and JPEG2000 images.

With the exif extension, you are able to work with information stored in headers of JPEG
and TIFF images. This way you can read meta data generated by digital cameras. The exif
functions do not require the GD library.

Note

Read the requirements section about how to expand image capabilities to read, write
and modify images. To read meta data of pictures taken by digital cameras you need
the above mentioned exif extension.

Installing/Configuring

Requirements

If you have the GD library (available at » http://www.libgd.org/) you will also be able to
create and manipulate images.

The format of images you are able to manipulate depend on the version of GD you install,
and any other libraries GD might need to access those image formats. Versions of GD
older than gd-1.6 support GIF format images, and do not support PNG, where versions
greater than gd-1.6 and less than gd-2.0.28 support PNG, not GIF. GIF support was
re-enabled in gd-2.0.28.

Note

Since PHP 4.3 there is a bundled version of the GD lib. This bundled version has some
additional features like alpha blending, and should be used in preference to the
external library since its codebase is better maintained and more stable.

Note

Support for GD 1.x has been removed as of PHP 6.0.0, which requires GD 2.0.33 or
later.

You may wish to enhance GD to handle more image formats.

Supported image formats

Image format Library to download Notes

gif Only supported in GD
versions older than gd-1.6
and newer than gd-2.0.28.
Read-only GIF support is
available with PHP 4.3.0 and
the bundled GD-library. Write
support is available since
PHP 4.3.9 and PHP 5.0.1.

jpeg-6b » ftp://ftp.uu.net/graphics/jpe
g/

When buliding the jpeg-v6b
library (prior to building PHP)
you must use the
--enable-shared option in the
configure step. If you do not,

http://www.libgd.org/
ftp://ftp.uu.net/graphics/jpeg/
ftp://ftp.uu.net/graphics/jpeg/

you will receive an error
saying libjpeg.(a|so) not
found when you get to the
configure step of building
PHP.

png » http://www.libpng.org/pub/p
ng/libpng.html

Only supported in GD
versions greater than gd-1.6.

xpm » ftp://metalab.unc.edu/pub/L
inux/libs/X/!INDEX.html

It's likely you have this library
already available, if your
system has an installed
X-Environment.

You may wish to enhance GD to deal with different fonts. The following font libraries are
supported:

Supported font libraries

Font library Download Notes

FreeType 1.x » http://www.freetype.org/ Support removed as of PHP
6.0.0

FreeType 2 » http://www.freetype.org/

T1lib » ftp://sunsite.unc.edu/pub/Li
nux/libs/graphics/)

Support for Postscript Type 1
fonts.

Installation

To enable GD-support configure PHP --with-gd[=DIR], where DIR is the GD base install
directory. To use the recommended bundled version of the GD library (which was first
bundled in PHP 4.3.0), use the configure option --with-gd. GD library requires libpng and
libjpeg to compile.

In Windows, you'll include the GD2 DLL php_gd2.dll as an extension in php.ini. The GD1
DLL php_gd.dll was removed in PHP 4.3.2. Also note that the preferred truecolor image
functions, such as imagecreatetruecolor(), require GD2.

Enhance the capabilities of GD to handle more image formats by specifying the
--with-XXXX configure switch to your PHP configure line.

Supported image formats

Image Format Configure Switch

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
ftp://metalab.unc.edu/pub/Linux/libs/X/!INDEX.html
ftp://metalab.unc.edu/pub/Linux/libs/X/!INDEX.html
http://www.freetype.org/
http://www.freetype.org/
ftp://sunsite.unc.edu/pub/Linux/libs/graphics/
ftp://sunsite.unc.edu/pub/Linux/libs/graphics/

jpeg-6b To enable support for jpeg-6b add
--with-jpeg-dir=DIR.

png To enable support for png add
--with-png-dir=DIR. Note, libpng requires the
zlib library, therefore add
--with-zlib-dir[=DIR] to your configure line.

xpm To enable support for xpm add
--with-xpm-dir=DIR. If configure is not able
to find the required libraries, you may add
the path to your X11 libraries.

Note

When compiling PHP with libpng, you must use the same version that was linked with
the GD library.

Enhance the capabilities of GD to deal with different fonts by specifying the --with-XXXX
configure switch to your PHP configure line.

Supported font libraries

Font library Configure Switch

FreeType 1.x To enable support for FreeType 1.x add
--with-ttf[=DIR].

FreeType 2 To enable support for FreeType 2 add
--with-freetype-dir=DIR.

T1lib To enable support for T1lib (Postscript Type
1 fonts) add --with-t1lib[=DIR].

Native TrueType string function To enable support for native TrueType string
function add --enable-gd-native-ttf.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Image Configure Options

Name Default Changeable Changelog

gd.jpeg_ignore_warni
ng

"0" PHP_INI_ALL Available since PHP
5.1.3.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

gd.jpeg_ignore_warning bool
Ignore warnings created by jpeg2wbmp() and imagecreatefromjpeg()

See also the exif configuration directives.

Warning

Image functions are very memory intensive. Be sure to set memory_limit high enough.

Resource Types

This extension defines two resource types: an image identifier and a font identifier.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

GD_VERSION (string)
The GD version PHP was compiled against. (Available as of PHP 5.2.4)

GD_MAJOR_VERSION (integer)
The GD major version PHP was compiled against. (Available as of PHP 5.2.4)

GD_MINOR_VERSION (integer)
The GD minor version PHP was compiled against. (Available as of PHP 5.2.4)

GD_RELEASE_VERSION (integer)
The GD release version PHP was compiled against. (Available as of PHP 5.2.4)

GD_EXTRA_VERSION (string)
The GD "extra" version (beta/rc..) PHP was compiled against. (Available as of PHP
5.2.4)

IMG_GIF (integer)
Used as a return value by imagetypes()

IMG_JPG (integer)
Used as a return value by imagetypes()

IMG_JPEG (integer)
Used as a return value by imagetypes()

Note

This constant has the same value as IMG_JPG

IMG_PNG (integer)
Used as a return value by imagetypes()

IMG_WBMP (integer)
Used as a return value by imagetypes()

IMG_XPM (integer)
Used as a return value by imagetypes()

IMG_COLOR_TILED (integer)
Special color option which can be used in stead of color allocated with
imagecolorallocate() or imagecolorallocatealpha()

IMG_COLOR_STYLED (integer)

Special color option which can be used in stead of color allocated with
imagecolorallocate() or imagecolorallocatealpha()

IMG_COLOR_BRUSHED (integer)
Special color option which can be used in stead of color allocated with
imagecolorallocate() or imagecolorallocatealpha()

IMG_COLOR_STYLEDBRUSHED (integer)
Special color option which can be used in stead of color allocated with
imagecolorallocate() or imagecolorallocatealpha()

IMG_COLOR_TRANSPARENT (integer)
Special color option which can be used in stead of color allocated with
imagecolorallocate() or imagecolorallocatealpha()

IMG_ARC_ROUNDED (integer)
A style constant used by the imagefilledarc() function.

Note

This constant has the same value as IMG_ARC_PIE

IMG_ARC_PIE (integer)
A style constant used by the imagefilledarc() function.

IMG_ARC_CHORD (integer)
A style constant used by the imagefilledarc() function.

IMG_ARC_NOFILL (integer)
A style constant used by the imagefilledarc() function.

IMG_ARC_EDGED (integer)
A style constant used by the imagefilledarc() function.

IMG_GD2_RAW (integer)
A type constant used by the imagegd2() function.

IMG_GD2_COMPRESSED (integer)
A type constant used by the imagegd2() function.

IMG_EFFECT_REPLACE (integer)
Alpha blending effect used by the imagelayereffect() function.

IMG_EFFECT_ALPHABLEND (integer)
Alpha blending effect used by the imagelayereffect() function.

IMG_EFFECT_NORMAL (integer)
Alpha blending effect used by the imagelayereffect() function.

IMG_EFFECT_OVERLAY (integer)

Alpha blending effect used by the imagelayereffect() function.

IMG_FILTER_NEGATE (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_GRAYSCALE (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_BRIGHTNESS (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_CONTRAST (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_COLORIZE (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_EDGEDETECT (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_GAUSSIAN_BLUR (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_SELECTIVE_BLUR (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_EMBOSS (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_MEAN_REMOVAL (integer)
Special GD filter used by the imagefilter() function.

IMG_FILTER_SMOOTH (integer)
Special GD filter used by the imagefilter() function.

IMAGETYPE_GIF (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_JPEG (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_PNG (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_SWF (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_PSD (integer)

Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_BMP (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_WBMP (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_XBM (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_TIFF_II (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_TIFF_MM (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_IFF (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_JB2 (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_JPC (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_JP2 (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_JPX (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_SWC (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions.

IMAGETYPE_ICO (integer)
Image type constant used by the image_type_to_mime_type() and
image_type_to_extension() functions. (Available as of PHP 5.3.0)

PNG_NO_FILTER (integer)

A special PNG filter, used by the imagepng() function.

PNG_FILTER_NONE (integer)
A special PNG filter, used by the imagepng() function.

PNG_FILTER_SUB (integer)
A special PNG filter, used by the imagepng() function.

PNG_FILTER_UP (integer)
A special PNG filter, used by the imagepng() function.

PNG_FILTER_AVG (integer)
A special PNG filter, used by the imagepng() function.

PNG_FILTER_PAETH (integer)
A special PNG filter, used by the imagepng() function.

PNG_ALL_FILTERS (integer)
A special PNG filter, used by the imagepng() function.

Examples

Example #1673 - PNG creation with PHP

<?php

header("Content-type: image/png");

$string = $_GET['text'];

$im = imagecreatefrompng("images/button1.png");

$orange = imagecolorallocate($im, 220, 210, 60);

$px = (imagesx($im) - 7.5 * strlen($string)) / 2;

imagestring($im, 3, $px, 9, $string, $orange);

imagepng($im);

imagedestroy($im);

?>

This example would be called from a page with a tag like: <img
src="button.php?text=text">. The above button.php script then takes this "text" string and
overlays it on top of a base image which in this case is "images/button1.png" and outputs
the resulting image. This is a very convenient way to avoid having to draw new button
images every time you want to change the text of a button. With this method they are
dynamically generated.

GD Functions

gd_info

gd_info -- Retrieve information about the currently installed GD library

Description

array gd_info (void)

Gets information about the version and capabilities of the installed GD library.

Return Values

Returns an associative array.

Elements of array returned by gd_info()

Attribute Meaning

GD Version string value describing the installed libgd
version.

Freetype Support boolean value. TRUE if Freetype Support is
installed.

Freetype Linkage string value describing the way in which
Freetype was linked. Expected values are:
'with freetype', 'with TTF library', and 'with
unknown library'. This element will only be
defined if Freetype Support evaluated to
TRUE.

T1Lib Support boolean value. TRUE if T1Lib support is
included.

GIF Read Support boolean value. TRUE if support for reading
GIF images is included.

GIF Create Support boolean value. TRUE if support for creating
GIF images is included.

JPG Support boolean value. TRUE if JPG support is
included.

PNG Support boolean value. TRUE if PNG support is
included.

WBMP Support boolean value. TRUE if WBMP support is

included.

XBM Support boolean value. TRUE if XBM support is
included.

Examples

Example #1674 - Using gd_info()

<?php

var_dump(gd_info());

?>

The above example will output something similar to:

array(9) {

 ["GD Version"]=>

 string(24) "bundled (2.0 compatible)"

 ["FreeType Support"]=>

 bool(false)

 ["T1Lib Support"]=>

 bool(false)

 ["GIF Read Support"]=>

 bool(true)

 ["GIF Create Support"]=>

 bool(false)

 ["JPG Support"]=>

 bool(false)

 ["PNG Support"]=>

 bool(true)

 ["WBMP Support"]=>

 bool(true)

 ["XBM Support"]=>

 bool(false)

}

See Also

• imagepng()
• imagejpeg()
• imagegif()
• imagewbmp()
• imagetypes()

getimagesize

getimagesize -- Get the size of an image

Description

array getimagesize (string $filename [, array &$imageinfo])

The getimagesize() function will determine the size of any given image file and return the
dimensions along with the file type and a height/width text string to be used inside a
normal HTML IMG tag and the correspondant HTTP content type.

getimagesize() can also return some more information in imageinfo parameter.

Note

Note that JPC and JP2 are capable of having components with different bit depths. In
this case, the value for "bits" is the highest bit depth encountered. Also, JP2 files may
contain multiple JPEG 2000 codestreams. In this case, getimagesize() returns the
values for the first codestream it encounters in the root of the file.

Note

The information about icons are retreived from the icon with the highest bitrate.

Parameters

filename

This parameter specifies the file you wish to retrieve information about. It can
reference a local file or (configuration permitting) a remote file using one of the
supported streams.

imageinfo

This optional parameter allows you to extract some extended information from the
image file. Currently, this will return the different JPG APP markers as an associative
array. Some programs use these APP markers to embed text information in images. A
very common one is to embed » IPTC information in the APP13 marker. You can use
the iptcparse() function to parse the binary APP13 marker into something readable.

Return Values

Returns an array with 5 elements.

http://www.iptc.org/

Index 0 and 1 contains respectively the width and the height of the image.

Note

Some formats may contain no image or may contain multiple images. In these cases,
getimagesize() might not be able to properly determine the image size. getimagesize()
will return zero for width and height in these cases.

Index 2 is one of the IMAGETYPE_XXX constants indicating the type of the image.

Index 3 is a text string with the correct height="yyy" width="xxx" string that can be used
directly in an IMG tag.

mime is the correspondant MIME type of the image. This information can be used to
deliver images with correct the HTTP Content-type header:

Example #1675 - getimagesize() and MIME types

<?php

$size = getimagesize($filename);

$fp = fopen($filename, "rb");

if ($size && $fp) {

 header("Content-type: {$size['mime']}");

 fpassthru($fp);

 exit;

} else {

 // error

}

?>

channels will be 3 for RGB pictures and 4 for CMYK pictures. bits is the number of bits for
each color. However, for some image types, the presence of these values can be a bit
confusing. As an example, GIF always uses 3 channels per pixel, but the number of bits
per pixel cannot be calculated for an animated GIF with a global color table.

On failure, FALSE is returned.

Errors/Exceptions

If accessing the filename image is impossible, or if it isn't a valid picture, getimagesize()
will generate an error of level E_WARNING. On read error, getimagesize() will generate
an error of level E_NOTICE.

ChangeLog

Version Description

5.3.0 Added icon support.

5.2.3 Read errors generated by this function
downgraded to E_NOTICE from
E_WARNING.

4.3.2 Support for JPC, JP2, JPX, JB2, XBM, and
WBMP became available.

4.3.2 JPEG 2000 support was added for the
imageinfo parameter.

4.3.0 bits and channels are present for other
image types, too.

4.3.0 mime was added.

4.3.0 Support for SWC was added.

4.2.0 Support for TIFF was added.

4.0.5 URL support was added.

Examples

Example #1676 - getimagesize (file)

<?php

list($width, $height, $type, $attr) = getimagesize("img/flag.jpg");

echo "";

?>

Example #1677 - getimagesize (URL)

<?php

$size = getimagesize("http://www.example.com/gifs/logo.gif");

// if the file name has space in it, encode it properly

$size = getimagesize("http://www.example.com/gifs/lo%20go.gif");

?>

Example #1678 - getimagesize() returning IPTC

<?php

$size = getimagesize("testimg.jpg", $info);

if (isset($info["APP13"])) {

 $iptc = iptcparse($info["APP13"]);

 var_dump($iptc);

}

?>

Notes

Note

The getimagesize() function does not require the GD image library.

See Also

• image_type_to_mime_type()
• exif_imagetype()
• exif_read_data()
• exif_thumbnail()

image_type_to_extension

image_type_to_extension -- Get file extension for image type

Description

string image_type_to_extension (int $imagetype [, bool $include_dot])

Returns the extension for the given IMAGETYPE_XXX constant.

Parameters

imagetype

One of the IMAGETYPE_XXX constant.

include_dot

Whether to prepend a dot to the extension or not. Default to TRUE.

Return Values

A string with the extension corresponding to the given image type.

image_type_to_mime_type

image_type_to_mime_type -- Get Mime-Type for image-type returned by getimagesize,
exif_read_data, exif_thumbnail, exif_imagetype

Description

string image_type_to_mime_type (int $imagetype)

The image_type_to_mime_type() function will determine the Mime-Type for an
IMAGETYPE constant.

Parameters

imagetype

One of the IMAGETYPE_XXX constants

Return Values

The returned values are as follows

Returned values Constants

imagetype Returned value

IMAGETYPE_GIF image/gif

IMAGETYPE_JPEG image/jpeg

IMAGETYPE_PNG image/png

IMAGETYPE_SWF application/x-shockwave-flash

IMAGETYPE_PSD image/psd

IMAGETYPE_BMP image/bmp

IMAGETYPE_TIFF_II (intel byte order) image/tiff

IMAGETYPE_TIFF_MM (motorola byte
order)

image/tiff

IMAGETYPE_JPC application/octet-stream

IMAGETYPE_JP2 image/jp2

IMAGETYPE_JPX application/octet-stream

IMAGETYPE_JB2 application/octet-stream

IMAGETYPE_SWC application/x-shockwave-flash

IMAGETYPE_IFF image/iff

IMAGETYPE_WBMP image/vnd.wap.wbmp

IMAGETYPE_XBM image/xbm

IMAGETYPE_ICO image/vnd.microsoft.icon

Examples

Example #1679 - image_type_to_mime_type (file)

<?php

header("Content-type: " . image_type_to_mime_type(IMAGETYPE_PNG));

?>

Notes

Note

This function does not require the GD image library.

See Also

• getimagesize()
• exif_imagetype()
• exif_read_data()
• exif_thumbnail()

image2wbmp

image2wbmp -- Output image to browser or file

Description

bool image2wbmp (resource $image [, string $filename [, int $threshold]])

image2wbmp() outputs or save a WBMP version of the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

Path to the saved file. If not given, the raw image stream will be outputed directly.

threshold

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1680 - image2wbmp() example

<?php

$file = 'php.png';

$image = imagecreatefrompng($file);

header('Content-type: ' . image_type_to_mime_type(IMAGETYPE_WBMP));

image2wbmp($image); // output the stream directly

?>

Notes

Note

WBMP support is only available if PHP was compiled against GD-1.8 or later.

See Also

• imagewbmp()

imagealphablending

imagealphablending -- Set the blending mode for an image

Description

bool imagealphablending (resource $image, bool $blendmode)

imagealphablending() allows for two different modes of drawing on truecolor images. In
blending mode, the alpha channel component of the color supplied to all drawing function,
such as imagesetpixel() determines how much of the underlying color should be allowed to
shine through. As a result, gd automatically blends the existing color at that point with the
drawing color, and stores the result in the image. The resulting pixel is opaque. In
non-blending mode, the drawing color is copied literally with its alpha channel information,
replacing the destination pixel. Blending mode is not available when drawing on palette
images.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

blendmode

Whether to enable the blending mode or not. Default to FALSE.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

imageantialias

imageantialias -- Should antialias functions be used or not

Description

bool imageantialias (resource $image, bool $on)

Activate the fast drawing antialiased methods for lines and wired polygons. It does not
support alpha components. It works using a direct blend operation. It works only with
truecolor images.

Thickness and styled are not supported.

Using antialiased primitives with transparent background color can end with some
unexpected results. The blend method uses the background color as any other colors. The
lack of alpha component support does not allow an alpha based antialiasing method.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

on

Whether to enable antialiasing or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

See Also

• imagecreatetruecolor()

imagearc

imagearc -- Draws an arc

Description

bool imagearc (resource $image, int $cx, int $cy, int $width, int $height, int $start, int
$end, int $color)

imagearc() draws an arc of circle centered at the given coordinates.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

cx

x-coordinate of the center

cy

y-coordinate of the center

width

The arc width

height

The arc height

start

The arc start angle, in degrees.

end

The arc end angle, in degrees. 0° is located at the three-o'clock position, and the arc is
drawn clockwise.

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1681 - Drawing a circle with imagearc()

<?php

// create a 200*200 image

$img = imagecreatetruecolor(200, 200);

// allocate some colors

$white = imagecolorallocate($img, 255, 255, 255);

$red = imagecolorallocate($img, 255, 0, 0);

$green = imagecolorallocate($img, 0, 255, 0);

$blue = imagecolorallocate($img, 0, 0, 255);

// draw the head

imagearc($img, 100, 100, 200, 200, 0, 360, $white);

// mouth

imagearc($img, 100, 100, 150, 150, 25, 155, $red);

// left and then the right eye

imagearc($img, 60, 75, 50, 50, 0, 360, $green);

imagearc($img, 140, 75, 50, 50, 0, 360, $blue);

// output image in the browser

header("Content-type: image/png");

imagepng($img);

// free memory

imagedestroy($img);

?>

The above example will output something similar to:

See Also

• imagefilledarc()
• imageellipse()
• imagefilledellipse()

imagechar

imagechar -- Draw a character horizontally

Description

bool imagechar (resource $image, int $font, int $x, int $y, string $c, int $color)

imagechar() draws the first character of c in the image identified by image with its
upper-left at x, y (top left is 0, 0) with the color color.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

x

x-coordinate of the start

y

y-coordinate of the start

c

The character to draw

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1682 - imagechar() example

<?php

$im = imagecreate(100, 100);

$string = 'PHP';

$bg = imagecolorallocate($im, 255, 255, 255);

$black = imagecolorallocate($im, 0, 0, 0);

// prints a black "P" in the top left corner

imagechar($im, 1, 0, 0, $string, $black);

header('Content-type: image/png');

imagepng($im);

?>

The above example will output something similar to:

See Also

• imagecharup()
• imageloadfont()

imagecharup

imagecharup -- Draw a character vertically

Description

bool imagecharup (resource $image, int $font, int $x, int $y, string $c, int $color)

Draws the character c vertically at the specified coordinate on the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

x

x-coordinate of the start

y

y-coordinate of the start

c

The character to draw

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1683 - imagecharup() example

<?php

$im = imagecreate(100, 100);

$string = 'Note that the first letter is a N';

$bg = imagecolorallocate($im, 255, 255, 255);

$black = imagecolorallocate($im, 0, 0, 0);

// prints a black "Z" on a white background

imagecharup($im, 3, 10, 10, $string, $black);

header('Content-type: image/png');

imagepng($im);

?>

The above example will output something similar to:

See Also

• imagechar()
• imageloadfont()

imagecolorallocate

imagecolorallocate -- Allocate a color for an image

Description

int imagecolorallocate (resource $image, int $red, int $green, int $blue)

Returns a color identifier representing the color composed of the given RGB components.

imagecolorallocate() must be called to create each color that is to be used in the image
represented by image.

Note

The first call to imagecolorallocate() fills the background color in palette-based images
- images created using imagecreate().

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component
These parameters are integers between 0 and 255 or hexadecimals between 0x00 and
0xFF.

Return Values

A color identifier or FALSE if the allocation failed.

ChangeLog

Version Description

Prior to 5.1.3 Returns -1 if the allocation failed.

Examples

Example #1684 - imagecolorallocate() example

<?php

$im = imagecreate(100, 100);

// sets background to red

$background = imagecolorallocate($im, 255, 0, 0);

// sets some colors

$white = imagecolorallocate($im, 255, 255, 255);

$black = imagecolorallocate($im, 0, 0, 0);

// hexadecimal way

$white = imagecolorallocate($im, 0xFF, 0xFF, 0xFF);

$black = imagecolorallocate($im, 0x00, 0x00, 0x00);

?>

See Also

• imagecolorallocatealpha()
• imagecolordeallocate()

imagecolorallocatealpha

imagecolorallocatealpha -- Allocate a color for an image

Description

int imagecolorallocatealpha (resource $image, int $red, int $green, int $blue, int $
alpha)

imagecolorallocatealpha() behaves identically to imagecolorallocate() with the addition of
the transparency parameter alpha.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

alpha

A value between 0 and 127. 0 indicates completely opaque while 127 indicates
completely transparent.

The colors parameters are integers between 0 and 255 or hexadecimals between 0x00
and 0xFF.

Return Values

A color identifier or FALSE if the allocation failed.

ChangeLog

Version Description

Prior to 5.1.3 Returns -1 if the allocation failed.

Examples

Example #1685 - Example of using imagecolorallocatealpha()

<?php

$size = 300;

$image=imagecreatetruecolor($size, $size);

// something to get a white background with black border

$back = imagecolorallocate($image, 255, 255, 255);

$border = imagecolorallocate($image, 0, 0, 0);

imagefilledrectangle($image, 0, 0, $size - 1, $size - 1, $back);

imagerectangle($image, 0, 0, $size - 1, $size - 1, $border);

$yellow_x = 100;

$yellow_y = 75;

$red_x = 120;

$red_y = 165;

$blue_x = 187;

$blue_y = 125;

$radius = 150;

// allocate colors with alpha values

$yellow = imagecolorallocatealpha($image, 255, 255, 0, 75);

$red = imagecolorallocatealpha($image, 255, 0, 0, 75);

$blue = imagecolorallocatealpha($image, 0, 0, 255, 75);

// drawing 3 overlapped circle

imagefilledellipse($image, $yellow_x, $yellow_y, $radius, $radius, $yellow);

imagefilledellipse($image, $red_x, $red_y, $radius, $radius, $red);

imagefilledellipse($image, $blue_x, $blue_y, $radius, $radius, $blue);

// don't forget to output a correct header!

header('Content-type: image/png');

// and finally, output the result

imagepng($image);

imagedestroy($image);

?>

The above example will output something similar to:

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecolorallocate()
• imagecolordeallocate()

imagecolorat

imagecolorat -- Get the index of the color of a pixel

Description

int imagecolorat (resource $image, int $x, int $y)

Returns the index of the color of the pixel at the specified location in the image specified
by image.

If PHP is compiled against GD library 2.0 or higher and the image is a truecolor image, this
function returns the RGB value of that pixel as integer. Use bitshifting and masking to
access the distinct red, green and blue component values:

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x

x-coordinate of the point

y

y-coordinate of the point

Return Values

Returns the index of the color.

Examples

Example #1686 - Access distinct RGB values

<?php

$im = imagecreatefrompng("php.png");

$rgb = imagecolorat($im, 10, 15);

$r = ($rgb >> 16) & 0xFF;

$g = ($rgb >> 8) & 0xFF;

$b = $rgb & 0xFF;

?>

The above example will output something similar to:

int(119)

int(123)

int(180)

See Also

• imagecolorset()
• imagecolorsforindex()

imagecolorclosest

imagecolorclosest -- Get the index of the closest color to the specified color

Description

int imagecolorclosest (resource $image, int $red, int $green, int $blue)

Returns the index of the color in the palette of the image which is "closest" to the specified
RGB value.

The "distance" between the desired color and each color in the palette is calculated as if
the RGB values represented points in three-dimensional space.

If you created the image from a file, only colors used in the image are resolved. Colors
present only in the pallete are not resolved.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component
The colors parameters are integers between 0 and 255 or hexadecimals between 0x00
and 0xFF.

Return Values

Returns the index of the closest color, in the palette of the image, to the specified one

See Also

• imagecolorexact()

imagecolorclosestalpha

imagecolorclosestalpha -- Get the index of the closest color to the specified color + alpha

Description

int imagecolorclosestalpha (resource $image, int $red, int $green, int $blue, int $alpha
)

Returns the index of the color in the palette of the image which is "closest" to the specified
RGB value and alpha level.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

alpha

A value between 0 and 127. 0 indicates completely opaque while 127 indicates
completely transparent.

The colors parameters are integers between 0 and 255 or hexadecimals between 0x00
and 0xFF.

Return Values

Returns the index of the closest color in the palette.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecolorexactalpha()

imagecolorclosesthwb

imagecolorclosesthwb -- Get the index of the color which has the hue, white and blackness

Description

int imagecolorclosesthwb (resource $image, int $red, int $green, int $blue)

Get the index of the color which has the hue, white and blacknessnearest the given color.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

Return Values

Returns an integer with the index of the color which has the hue, white and blackness
nearest the given color.

Examples

Example #1687 - Example of using imagecolorclosesthwb()

<?php

$im = imagecreatefromgif('php.gif');

echo 'HWB: ' . imagecolorclosesthwb($im, 116, 115, 152);

imagedestroy($im);

?>

The above example will output something similar to:

HWB: 33

Notes

Note

This function is not implemented on Windows platforms.

imagecolordeallocate

imagecolordeallocate -- De-allocate a color for an image

Description

bool imagecolordeallocate (resource $image, int $color)

De-allocates a color previously allocated with imagecolorallocate() or
imagecolorallocatealpha().

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

color

The color identifier

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1688 - Using imagecolordeallocate()

<?php

$white = imagecolorallocate($im, 255, 255, 255);

imagecolordeallocate($im, $white);

?>

See Also

• imagecolorallocate()
• imagecolorallocatealpha()

imagecolorexact

imagecolorexact -- Get the index of the specified color

Description

int imagecolorexact (resource $image, int $red, int $green, int $blue)

Returns the index of the specified color in the palette of the image.

If you created the image from a file, only colors used in the image are resolved. Colors
present only in the pallete are not resolved.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

Return Values

Returns the index of the specified color in the palette, or -1 if the color does not exist.

See Also

• imagecolorclosest()

imagecolorexactalpha

imagecolorexactalpha -- Get the index of the specified color + alpha

Description

int imagecolorexactalpha (resource $image, int $red, int $green, int $blue, int $alpha)

Returns the index of the specified color+alpha in the palette of the image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

alpha

A value between 0 and 127. 0 indicates completely opaque while 127 indicates
completely transparent.

The colors parameters are integers between 0 and 255 or hexadecimals between 0x00
and 0xFF.

Return Values

Returns the index of the specified color+alpha in the palette of the image, or -1 if the color
does not exist in the image's palette.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecolorclosestalpha()

imagecolormatch

imagecolormatch -- Makes the colors of the palette version of an image more closely
match the true color version

Description

bool imagecolormatch (resource $image1, resource $image2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

image1

A truecolor image link resource

image2

A palette image link resource pointing to an image that has the same size as image1

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecreatetruecolor()

imagecolorresolve

imagecolorresolve -- Get the index of the specified color or its closest possible alternative

Description

int imagecolorresolve (resource $image, int $red, int $green, int $blue)

This function is guaranteed to return a color index for a requested color, either the exact
color or the closest possible alternative.

If you created the image from a file, only colors used in the image are resolved. Colors
present only in the pallete are not resolved.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

Return Values

Returns a color index.

See Also

• imagecolorclosest()

imagecolorresolvealpha

imagecolorresolvealpha -- Get the index of the specified color + alpha or its closest
possible alternative

Description

int imagecolorresolvealpha (resource $image, int $red, int $green, int $blue, int $alpha
)

This function is guaranteed to return a color index for a requested color, either the exact
color or the closest possible alternative.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

red

Value of red component

green

Value of green component

blue

Value of blue component

alpha

A value between 0 and 127. 0 indicates completely opaque while 127 indicates
completely transparent.

The colors parameters are integers between 0 and 255 or hexadecimals between 0x00
and 0xFF.

Return Values

Returns a color index.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecolorclosestalpha()

imagecolorset

imagecolorset -- Set the color for the specified palette index

Description

void imagecolorset (resource $image, int $index, int $red, int $green, int $blue)

This sets the specified index in the palette to the specified color. This is useful for creating
flood-fill-like effects in palleted images without the overhead of performing the actual
flood-fill.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

index

An index in the palette

red

Value of red component

green

Value of green component

blue

Value of blue component

Return Values

No value is returned.

See Also

• imagecolorat()

imagecolorsforindex

imagecolorsforindex -- Get the colors for an index

Description

array imagecolorsforindex (resource $image, int $index)

Gets the color for a specified index.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

index

Return Values

Returns an associative array with red, green, blue and alpha keys that contain the
appropriate values for the specified color index.

Examples

Example #1689 - imagecolorsforindex() example

<?php

// open an image

$im = imagecreatefrompng('nexen.png');

// get a color

$start_x = 40;

$start_y = 50;

$color_index = imagecolorat($im, $start_x, $start_y);

// make it human readable

$color_tran = imagecolorsforindex($im, $color_index);

// what is it ?

print_r($color_tran);

?>

The above example will output something similar to:

Array

(

 [red] => 226

 [green] => 222

 [blue] => 252

 [alpha] => 0

)

See Also

• imagecolorat()
• imagecolorexact()

imagecolorstotal

imagecolorstotal -- Find out the number of colors in an image's palette

Description

int imagecolorstotal (resource $image)

Returns the number of colors in an image palette.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

Return Values

Returns the number of colors in the specified image's palette or 0 for truecolor images.

See Also

• imagecolorat()
• imagecolorsforindex()
• imageistruecolor()

imagecolortransparent

imagecolortransparent -- Define a color as transparent

Description

int imagecolortransparent (resource $image [, int $color])

Sets the transparent color in the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

color

A color identifier created with imagecolorallocate()

Return Values

The identifier of the new (or current, if none is specified) transparent color is returned.

Notes

Note

Transparency is copied only with imagecopymerge() and true color images, not with
imagecopy() or pallete images.

Note

The transparent color is a property of the image, transparency is not a property of the
color. Once you have set a color to be the transparent color, any regions of the image
in that color that were drawn previously will be transparent.

imageconvolution

imageconvolution -- Apply a 3x3 convolution matrix, using coefficient and offset

Description

bool imageconvolution (resource $image, array $matrix, float $div, float $offset)

Applies a convolution matrix on the image, using the given coefficient and offset.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

matrix

A 3x3 matrix: an array of three arrays of three floats.

div

The divisor of the result of the convolution, used for normalization.

offset

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1690 - Embossing the PHP.net logo

<?php

$image = imagecreatefromgif('http://www.php.net/images/php.gif');

$emboss = array(array(2, 0, 0), array(0, -1, 0), array(0, 0, -1));

imageconvolution($image, $emboss, 1, 127);

header('Content-Type: image/png');

imagepng($image, null, 9);

?>

The above example will output:

Example #1691 - Gaussian blur

<?php

$image = imagecreatetruecolor(180,40);

// Writes the text and apply a gaussian blur on the image

imagestring($image, 5, 10, 8, 'Gaussian Blur Text', 0x00ff00);

$gaussian = array(array(1.0, 2.0, 1.0), array(2.0, 4.0, 2.0), array(1.0,
2.0, 1.0));

imageconvolution($image, $gaussian, 16, 0);

// Rewrites the text for comparison

imagestring($image, 5, 10, 18, 'Gaussian Blur Text', 0x00ff00);

header('Content-Type: image/png');

imagepng($image, null, 9);

?>

The above example will output:

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

See Also

• imagefilter()

imagecopy

imagecopy -- Copy part of an image

Description

bool imagecopy (resource $dst_im, resource $src_im, int $dst_x, int $dst_y, int $src_x
, int $src_y, int $src_w, int $src_h)

Copy a part of src_im onto dst_im starting at the x,y coordinates src_x, src_y with a
width of src_w and a height of src_h. The portion defined will be copied onto the x,y
coordinates, dst_x and dst_y.

Parameters

dst_im

Destination image link resource

src_im

Source image link resource

dst_x

x-coordinate of destination point

dst_y

y-coordinate of destination point

src_x

x-coordinate of source point

src_y

y-coordinate of source point

src_w

Source width

src_h

Source height

Return Values

Returns TRUE on success or FALSE on failure.

imagecopymerge

imagecopymerge -- Copy and merge part of an image

Description

bool imagecopymerge (resource $dst_im, resource $src_im, int $dst_x, int $dst_y, int
$src_x, int $src_y, int $src_w, int $src_h, int $pct)

Copy a part of src_im onto dst_im starting at the x,y coordinates src_x, src_y with a
width of src_w and a height of src_h. The portion defined will be copied onto the x,y
coordinates, dst_x and dst_y.

Parameters

dst_im

Destination image link resource

src_im

Source image link resource

dst_x

x-coordinate of destination point

dst_y

y-coordinate of destination point

src_x

x-coordinate of source point

src_y

y-coordinate of source point

src_w

Source width

src_h

Source height

pct

The two images will be merged according to pct which can range from 0 to 100. When
pct = 0, no action is taken, when 100 this function behaves identically to imagecopy()
for pallete images, while it implements alpha transparency for true colour images.

Return Values

Returns TRUE on success or FALSE on failure.

imagecopymergegray

imagecopymergegray -- Copy and merge part of an image with gray scale

Description

bool imagecopymergegray (resource $dst_im, resource $src_im, int $dst_x, int $dst_y
, int $src_x, int $src_y, int $src_w, int $src_h, int $pct)

imagecopymergegray() copy a part of src_im onto dst_im starting at the x,y coordinates
src_x, src_y with a width of src_w and a height of src_h. The portion defined will be
copied onto the x,y coordinates, dst_x and dst_y.

This function is identical to imagecopymerge() except that when merging it preserves the
hue of the source by converting the destination pixels to gray scale before the copy
operation.

Parameters

dst_im

Destination image link resource

src_im

Source image link resource

dst_x

x-coordinate of destination point

dst_y

y-coordinate of destination point

src_x

x-coordinate of source point

src_y

y-coordinate of source point

src_w

Source width

src_h

Source height

pct

The two images will be merged according to pct which can range from 0 to 100. When
pct = 0, no action is taken, when 100 this function behaves identically to imagecopy()
for pallete images, while it implements alpha transparency for true colour images.

Return Values

Returns TRUE on success or FALSE on failure.

imagecopyresampled

imagecopyresampled -- Copy and resize part of an image with resampling

Description

bool imagecopyresampled (resource $dst_image, resource $src_image, int $dst_x, int
$dst_y, int $src_x, int $src_y, int $dst_w, int $dst_h, int $src_w, int $src_h)

imagecopyresampled() copies a rectangular portion of one image to another image,
smoothly interpolating pixel values so that, in particular, reducing the size of an image still
retains a great deal of clarity.

In other words, imagecopyresampled() will take an rectangular area from src_image of
width src_w and height src_h at position (src_x, src_y) and place it in a rectangular
area of dst_image of width dst_w and height dst_h at position (dst_x, dst_y).

If the source and destination coordinates and width and heights differ, appropriate
stretching or shrinking of the image fragment will be performed. The coordinates refer to
the upper left corner. This function can be used to copy regions within the same image (if
dst_image is the same as src_image) but if the regions overlap the results will be
unpredictable.

Parameters

dst_im

Destination image link resource

src_im

Source image link resource

dst_x

x-coordinate of destination point

dst_y

y-coordinate of destination point

src_x

x-coordinate of source point

src_y

y-coordinate of source point

dst_w

Destination width

dst_h

Destination height

src_w

Source width

src_h

Source height

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1692 - Simple example

This example will resample an image to half its original size.

<?php

// The file

$filename = 'test.jpg';

$percent = 0.5;

// Content type

header('Content-type: image/jpeg');

// Get new dimensions

list($width, $height) = getimagesize($filename);

$new_width = $width * $percent;

$new_height = $height * $percent;

// Resample

$image_p = imagecreatetruecolor($new_width, $new_height);

$image = imagecreatefromjpeg($filename);

imagecopyresampled($image_p, $image, 0, 0, 0, 0, $new_width, $new_height,
$width, $height);

// Output

imagejpeg($image_p, null, 100);

?>

The above example will output something similar to:

Example #1693 - Resampling an image proportionally

This example will display an image with the maximum width, or height, of 200 pixels.

<?php

// The file

$filename = 'test.jpg';

// Set a maximum height and width

$width = 200;

$height = 200;

// Content type

header('Content-type: image/jpeg');

// Get new dimensions

list($width_orig, $height_orig) = getimagesize($filename);

$ratio_orig = $width_orig/$height_orig;

if ($width/$height > $ratio_orig) {

 $width = $height*$ratio_orig;

} else {

 $height = $width/$ratio_orig;

}

// Resample

$image_p = imagecreatetruecolor($width, $height);

$image = imagecreatefromjpeg($filename);

imagecopyresampled($image_p, $image, 0, 0, 0, 0, $width, $height,
$width_orig, $height_orig);

// Output

imagejpeg($image_p, null, 100);

?>

The above example will output something similar to:

Notes

Note

There is a problem due to palette image limitations (255+1 colors). Resampling or
filtering an image commonly needs more colors than 255, a kind of approximation is
used to calculate the new resampled pixel and its color. With a palette image we try to
allocate a new color, if that failed, we choose the closest (in theory) computed color.
This is not always the closest visual color. That may produce a weird result, like blank
(or visually blank) images. To skip this problem, please use a truecolor image as a
destination image, such as one created by imagecreatetruecolor().

See Also

imagecopyresized()

imagecopyresized

imagecopyresized -- Copy and resize part of an image

Description

bool imagecopyresized (resource $dst_image, resource $src_image, int $dst_x, int $
dst_y, int $src_x, int $src_y, int $dst_w, int $dst_h, int $src_w, int $src_h)

imagecopyresized() copies a rectangular portion of one image to another image.
dst_image is the destination image, src_image is the source image identifier.

In other words, imagecopyresized() will take an rectangular area from src_image of width
src_w and height src_h at position (src_x, src_y) and place it in a rectangular area of
dst_image of width dst_w and height dst_h at position (dst_x, dst_y).

If the source and destination coordinates and width and heights differ, appropriate
stretching or shrinking of the image fragment will be performed. The coordinates refer to
the upper left corner. This function can be used to copy regions within the same image (if
dst_image is the same as src_image) but if the regions overlap the results will be
unpredictable.

Parameters

dst_im

Destination image link resource

src_im

Source image link resource

dst_x

x-coordinate of destination point

dst_y

y-coordinate of destination point

src_x

x-coordinate of source point

src_y

y-coordinate of source point

dst_w

Destination width

dst_h

Destination height

src_w

Source width

src_h

Source height

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1694 - Resizing an image

This example will display the image at half size.

<?php

// File and new size

$filename = 'test.jpg';

$percent = 0.5;

// Content type

header('Content-type: image/jpeg');

// Get new sizes

list($width, $height) = getimagesize($filename);

$newwidth = $width * $percent;

$newheight = $height * $percent;

// Load

$thumb = imagecreatetruecolor($newwidth, $newheight);

$source = imagecreatefromjpeg($filename);

// Resize

imagecopyresized($thumb, $source, 0, 0, 0, 0, $newwidth, $newheight, $width,
$height);

// Output

imagejpeg($thumb);

?>

The above example will output something similar to:

The image will be output at half size, though better quality could be obtained using
imagecopyresampled().

Notes

Note

There is a problem due to palette image limitations (255+1 colors). Resampling or
filtering an image commonly needs more colors than 255, a kind of approximation is
used to calculate the new resampled pixel and its color. With a palette image we try to
allocate a new color, if that failed, we choose the closest (in theory) computed color.
This is not always the closest visual color. That may produce a weird result, like blank
(or visually blank) images. To skip this problem, please use a truecolor image as a
destination image, such as one created by imagecreatetruecolor().

See Also

imagecopyresampled()

imagecreate

imagecreate -- Create a new palette based image

Description

resource imagecreate (int $width, int $height)

imagecreate() returns an image identifier representing a blank image of specified size.

We recommend the use of imagecreatetruecolor().

Parameters

width

The image width

height

The image height

Return Values

Returns an image resource identifier on success, FALSE on errors.

Examples

Example #1695 - Creating a new GD image stream and outputting an image.

<?php

header("Content-type: image/png");

$im = @imagecreate(110, 20)

 or die("Cannot Initialize new GD image stream");

$background_color = imagecolorallocate($im, 0, 0, 0);

$text_color = imagecolorallocate($im, 233, 14, 91);

imagestring($im, 1, 5, 5, "A Simple Text String", $text_color);

imagepng($im);

imagedestroy($im);

?>

The above example will output something similar to:

See Also

• imagedestroy()
• imagecreatetruecolor()

imagecreatefromgd2

imagecreatefromgd2 -- Create a new image from GD2 file or URL

Description

resource imagecreatefromgd2 (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromgd2part

imagecreatefromgd2part -- Create a new image from a given part of GD2 file or URL

Description

resource imagecreatefromgd2part (string $filename, int $srcX, int $srcY, int $width,
int $height)

Warning

This function is currently not documented; only its argument list is available.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

srcX

srcY

width

height

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromgd

imagecreatefromgd -- Create a new image from GD file or URL

Description

resource imagecreatefromgd (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Notes

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromgif

imagecreatefromgif -- Create a new image from file or URL

Description

resource imagecreatefromgif (string $filename)

imagecreatefromgif() returns an image identifier representing the image obtained from the
given filename.

To ease debugging the following example will produce an error GIF:

Example #1696 - Example to handle an error during creation

<?php

function LoadGif ($imgname)

{

 $im = @imagecreatefromgif ($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = imagecreatetruecolor (150, 30); /* Create a blank image */

 $bgc = imagecolorallocate ($im, 255, 255, 255);

 $tc = imagecolorallocate ($im, 0, 0, 0);

 imagefilledrectangle ($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 imagestring ($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

header("Content-Type: image/gif");

$img = LoadGif("bogus.image");

imagegif($img);

?>

The above example will output something similar to:

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Path to the GIF image

Return Values

Returns an image resource identifier on success, FALSE on errors.

Notes

Note

GIF support was removed from the GD library in Version 1.6, and added back in
Version 2.0.28. This function is not available between these versions.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromjpeg

imagecreatefromjpeg -- Create a new image from file or URL

Description

resource imagecreatefromjpeg (string $filename)

imagecreatefromjpeg() returns an image identifier representing the image obtained from
the given filename.

On failure imagecreatefromjpeg() outputs an error message, which unfortunately displays
as a broken link in a browser. To ease debugging the following example will produce an
error JPEG:

Example #1697 - Example to handle an error during creation

<?php

function LoadJpeg($imgname)

{

 $im = @imagecreatefromjpeg($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = imagecreatetruecolor(150, 30); /* Create a black image */

 $bgc = imagecolorallocate($im, 255, 255, 255);

 $tc = imagecolorallocate($im, 0, 0, 0);

 imagefilledrectangle($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 imagestring($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

header("Content-Type: image/jpeg");

$img = LoadJpeg("bogus.image");

imagejpeg($img);

?>

The above example will output something similar to:

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Path to the JPEG image

Return Values

Returns an image resource identifier on success, FALSE on errors.

Notes

Note

JPEG support is only available if PHP was compiled against GD-1.8 or later.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefrompng

imagecreatefrompng -- Create a new image from file or URL

Description

resource imagecreatefrompng (string $filename)

imagecreatefrompng() returns an image identifier representing the image obtained from
the given filename.

imagecreatefrompng() returns an empty string on failure. It also outputs an error message,
which unfortunately displays as a broken link in a browser. To ease debugging the
following example will produce an error PNG:

Example #1698 - Example to handle an error during creation

<?php

function LoadPNG($imgname)

{

 $im = @imagecreatefrompng($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = imagecreatetruecolor(150, 30); /* Create a blank image */

 $bgc = imagecolorallocate($im, 255, 255, 255);

 $tc = imagecolorallocate($im, 0, 0, 0);

 imagefilledrectangle($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 imagestring($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

header("Content-Type: image/png");

$img = LoadPNG("bogus.image");

imagepng($img);

?>

The above example will output something similar to:

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Path to the PNG image

Return Values

Returns an image resource identifier on success, FALSE on errors.

Notes

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromstring

imagecreatefromstring -- Create a new image from the image stream in the string

Description

resource imagecreatefromstring (string $data)

imagecreatefromstring() returns an image identifier representing the image obtained from
the given data These types will be automatically detected if your build of PHP supports
them: JPEG, PNG, GIF, WBMP, and GD2.

Parameters

image

A string containing the image data

Return Values

An image resource will be returned on success. FALSE is returned if the image type is
unsupported, the data is not in a recognised format, or the image is corrupt and cannot be
loaded.

Examples

Example #1699 - imagecreatefromstring() example

<?php

$data = 'iVBORw0KGgoAAAANSUhEUgAAABwAAAASCAMAAAB/2U7WAAAABl'

 . 'BMVEUAAAD///+l2Z/dAAAASUlEQVR4XqWQUQoAIAxC2/0vXZDr'

 . 'EX4IJTRkb7lobNUStXsB0jIXIAMSsQnWlsV+wULF4Avk9fLq2r'

 . '8a5HSE35Q3eO2XP1A1wQkZSgETvDtKdQAAAABJRU5ErkJggg==';

$data = base64_decode($data);

$im = imagecreatefromstring($data);

if ($im !== false) {

 header('Content-Type: image/png');

 imagepng($im);

}

else {

 echo 'An error occurred.';

}

?>

The above example will output something similar to:

See Also

• imagecreatefromjpeg()
• imagecreatefrompng()
• imagecreatefromgif()
• imagecreatetruecolor()

imagecreatefromwbmp

imagecreatefromwbmp -- Create a new image from file or URL

Description

resource imagecreatefromwbmp (string $filename)

imagecreatefromwbmp() returns an image identifier representing the image obtained from
the given filename.

imagecreatefromwbmp() returns an empty string on failure. It also outputs an error
message, which unfortunately displays as a broken link in a browser. To ease debugging
the following example will produce an error WBMP:

Example #1700 - Example to handle an error during creation

<?php

function LoadWBMP($imgname)

{

 $im = @imagecreatefromwbmp($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = imagecreatetruecolor (20, 20); /* Create a blank image */

 $bgc = imagecolorallocate($im, 255, 255, 255);

 $tc = imagecolorallocate($im, 0, 0, 0);

 imagefilledrectangle($im, 0, 0, 10, 10, $bgc);

 /* Output an errmsg */

 imagestring($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

?>

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Path to the WBMP image

Return Values

Returns an image resource identifier on success, FALSE on errors.

Notes

Note

WBMP support is only available if PHP was compiled against GD-1.8 or later.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatefromxbm

imagecreatefromxbm -- Create a new image from file or URL

Description

resource imagecreatefromxbm (string $filename)

imagecreatefromxbm() returns an image identifier representing the image obtained from
the given filename.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

Parameters

filename

Path to the XBM image

Return Values

Returns an image resource identifier on success, FALSE on errors.

imagecreatefromxpm

imagecreatefromxpm -- Create a new image from file or URL

Description

resource imagecreatefromxpm (string $filename)

imagecreatefromxpm() returns an image identifier representing the image obtained from
the given filename.

Tip

A URL can be used as a filename with this function if the fopen wrappers have been
enabled. See fopen() for more details on how to specify the filename and List of
Supported Protocols/Wrappers for a list of supported URL protocols.

Parameters

filename

Path to the XPM image

Return Values

Returns an image resource identifier on success, FALSE on errors.

Return Values

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

Warning

Windows versions of PHP prior to PHP 4.3.0 do not support access of remote files via
this function, even if allow_url_fopen is enabled.

imagecreatetruecolor

imagecreatetruecolor -- Create a new true color image

Description

resource imagecreatetruecolor (int $width, int $height)

imagecreatetruecolor() returns an image identifier representing a black image of the
specified size.

Depending on your PHP and GD versions this function is defined or not. With PHP 4.0.6
through 4.1.x this function always exists if the GD module is loaded, but calling it without
GD2 being installed PHP will issue a fatal error and exit. With PHP 4.2.x this behaviour is
different in issuing a warning instead of an error. Other versions only define this function, if
the correct GD version is installed.

Parameters

width

Image width

height

Image height

Return Values

Returns an image resource identifier on success, FALSE on errors.

Examples

Example #1701 - Creating a new GD image stream and outputting an image.

<?php

header ("Content-type: image/png");

$im = @imagecreatetruecolor(120, 20)

 or die("Cannot Initialize new GD image stream");

$text_color = imagecolorallocate($im, 233, 14, 91);

imagestring($im, 1, 5, 5, "A Simple Text String", $text_color);

imagepng($im);

imagedestroy($im);

?>

The above example will output something similar to:

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Note

This function will not work with GIF file formats.

See Also

• imagedestroy()
• imagecreate()

imagedashedline

imagedashedline -- Draw a dashed line

Description

bool imagedashedline (resource $image, int $x1, int $y1, int $x2, int $y2, int $color)

This function is deprecated. Use combination of imagesetstyle() and imageline() instead.

imagedestroy

imagedestroy -- Destroy an image

Description

bool imagedestroy (resource $image)

imagedestroy() frees any memory associated with image image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

Return Values

Returns TRUE on success or FALSE on failure.

imageellipse

imageellipse -- Draw an ellipse

Description

bool imageellipse (resource $image, int $cx, int $cy, int $width, int $height, int $color)

Draws an ellipse centered at the specified coordinates.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

cx

x-coordinate of the center

cy

y-coordinate of the center

width

The ellipse width

height

The ellipse height

color

The color of the ellipse. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1702 - imageellipse() example

<?php

// create a blank image

$image = imagecreatetruecolor(400, 300);

// fill the background color

$bg = imagecolorallocate($image, 0, 0, 0);

// choose a color for the ellipse

$col_ellipse = imagecolorallocate($image, 255, 255, 255);

// draw the ellipse

imageellipse($image, 200, 150, 300, 200, $col_ellipse);

// output the picture

header("Content-type: image/png");

imagepng($image);

?>

The above example will output something similar to:

Notes

Note

This function requires GD 2.0.2 or later.

See Also

• imagefilledellipse()
• imagearc()

imagefill

imagefill -- Flood fill

Description

bool imagefill (resource $image, int $x, int $y, int $color)

Performs a flood fill starting at the given coordinate (top left is 0, 0) with the given color in
the image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x

x-coordinate of start point

y

y-coordinate of start point

color

The fill color. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1703 - imagefill() example

<?php

$im = imagecreatetruecolor(100, 100);

// sets background to red

$red = imagecolorallocate($im, 255, 0, 0);

imagefill($im, 0, 0, $red);

header('Content-type: image/png');

imagepng($im);

imagedestroy($im);

?>

The above example will output something similar to:

See Also

• imagecolorallocate()

imagefilledarc

imagefilledarc -- Draw a partial ellipse and fill it

Description

bool imagefilledarc (resource $image, int $cx, int $cy, int $width, int $height, int $
start, int $end, int $color, int $style)

Draws a partial ellipse centered at the specified coordinate in the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

cx

x-coordinate of the center

cy

y-coordinate of the center

width

The arc width

height

The arc height

start

The arc start angle, in degrees.

end

The arc end angle, in degrees. 0° is located at the three-o'clock position, and the arc is
drawn clockwise.

color

A color identifier created with imagecolorallocate()

style

A bitwise OR of the following possibilities:

• IMG_ARC_PIE

• IMG_ARC_CHORD

• IMG_ARC_NOFILL

• IMG_ARC_EDGED

IMG_ARC_PIE and IMG_ARC_CHORD are mutually exclusive; IMG_ARC_CHORD
just connects the starting and ending angles with a straight line, while IMG_ARC_PIE
produces a rounded edge. IMG_ARC_NOFILL indicates that the arc or chord should
be outlined, not filled. IMG_ARC_EDGED, used together with IMG_ARC_NOFILL,
indicates that the beginning and ending angles should be connected to the center - this
is a good way to outline (rather than fill) a 'pie slice'.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1704 - Creating a 3D looking pie

<?php

// create image

$image = imagecreatetruecolor(100, 100);

// allocate some solors

$white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);

$gray = imagecolorallocate($image, 0xC0, 0xC0, 0xC0);

$darkgray = imagecolorallocate($image, 0x90, 0x90, 0x90);

$navy = imagecolorallocate($image, 0x00, 0x00, 0x80);

$darknavy = imagecolorallocate($image, 0x00, 0x00, 0x50);

$red = imagecolorallocate($image, 0xFF, 0x00, 0x00);

$darkred = imagecolorallocate($image, 0x90, 0x00, 0x00);

// make the 3D effect

for ($i = 60; $i > 50; $i--) {

 imagefilledarc($image, 50, $i, 100, 50, 0, 45, $darknavy, IMG_ARC_PIE);

 imagefilledarc($image, 50, $i, 100, 50, 45, 75 , $darkgray, IMG_ARC_PIE);

 imagefilledarc($image, 50, $i, 100, 50, 75, 360 , $darkred, IMG_ARC_PIE);

}

imagefilledarc($image, 50, 50, 100, 50, 0, 45, $navy, IMG_ARC_PIE);

imagefilledarc($image, 50, 50, 100, 50, 45, 75 , $gray, IMG_ARC_PIE);

imagefilledarc($image, 50, 50, 100, 50, 75, 360 , $red, IMG_ARC_PIE);

// flush image

header('Content-type: image/png');

imagepng($image);

imagedestroy($image);

?>

The above example will output something similar to:

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

imagefilledellipse

imagefilledellipse -- Draw a filled ellipse

Description

bool imagefilledellipse (resource $image, int $cx, int $cy, int $width, int $height, int $
color)

Draws an ellipse centered at the specified coordinate on the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

cx

x-coordinate of the center

cy

y-coordinate of the center

width

The ellipse width

height

The ellipse height

color

The fill color. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1705 - imagefilledellipse() example

<?php

// create a blank image

$image = imagecreatetruecolor(400, 300);

// fill the background color

$bg = imagecolorallocate($image, 0, 0, 0);

// choose a color for the ellipse

$col_ellipse = imagecolorallocate($image, 255, 255, 255);

// draw the white ellipse

imagefilledellipse($image, 200, 150, 300, 200, $col_ellipse);

// output the picture

header("Content-type: image/png");

imagepng($image);

?>

The above example will output something similar to:

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imageellipse()
• imagefilledarc()

imagefilledpolygon

imagefilledpolygon -- Draw a filled polygon

Description

bool imagefilledpolygon (resource $image, array $points, int $num_points, int $color)

imagefilledpolygon() creates a filled polygon in the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

points

An array containing the x and y coordinates of the polygons vertices consecutively

num_points

Total number of vertices, which must be bigger than 3

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1706 - imagefilledpolygon() example

<?php

// set up array of points for polygon

$values = array(

 40, 50, // Point 1 (x, y)

 20, 240, // Point 2 (x, y)

 60, 60, // Point 3 (x, y)

 240, 20, // Point 4 (x, y)

 50, 40, // Point 5 (x, y)

 10, 10 // Point 6 (x, y)

);

// create image

$image = imagecreatetruecolor(250, 250);

// some colors

$bg = imagecolorallocate($image, 200, 200, 200);

$blue = imagecolorallocate($image, 0, 0, 255);

// draw a polygon

imagefilledpolygon($image, $values, 6, $blue);

// flush image

header('Content-type: image/png');

imagepng($image);

imagedestroy($image);

?>

The above example will output something similar to:

imagefilledrectangle

imagefilledrectangle -- Draw a filled rectangle

Description

bool imagefilledrectangle (resource $image, int $x1, int $y1, int $x2, int $y2, int $color
)

Creates a rectangle filled with color in the given image starting at point 1 and ending at
point 2. 0, 0 is the top left corner of the image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x1

x-coordinate for point 1

y1

y-coordinate for point 1

x2

x-coordinate for point 2

y2

y-coordinate for point 2

color

The fill color. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

imagefilltoborder

imagefilltoborder -- Flood fill to specific color

Description

bool imagefilltoborder (resource $image, int $x, int $y, int $border, int $color)

imagefilltoborder() performs a flood fill whose border color is defined by border. The
starting point for the fill is x, y (top left is 0, 0) and the region is filled with color color.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x

x-coordinate of start

y

y-coordinate of start

border

The border color. A color identifier created with imagecolorallocate()

color

The fill color. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

imagefilter

imagefilter -- Applies a filter to an image

Description

bool imagefilter (resource $image, int $filtertype [, int $arg1 [, int $arg2 [, int $arg3 [,
int $arg4]]]])

imagefilter() applies the given filter filtertype on the image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filtertype

filtertype can be one of the following:

• IMG_FILTER_NEGATE: Reverses all colors of the image.

• IMG_FILTER_GRAYSCALE: Converts the image into grayscale.

• IMG_FILTER_BRIGHTNESS: Changes the brightness of the image. Use arg1 to
set the level of brightness.

• IMG_FILTER_CONTRAST: Changes the contrast of the image. Use arg1 to set
the level of contrast.

• IMG_FILTER_COLORIZE: Like IMG_FILTER_GRAYSCALE, except you can
specify the color. Use arg1, arg2 and arg3 in the form of red, blue, green and
arg4 for the alpha channel. The range for each color is 0 to 255.

• IMG_FILTER_EDGEDETECT: Uses edge detection to highlight the edges in the
image.

• IMG_FILTER_EMBOSS: Embosses the image.

• IMG_FILTER_GAUSSIAN_BLUR: Blurs the image using the Gaussian method.

• IMG_FILTER_SELECTIVE_BLUR: Blurs the image.

• IMG_FILTER_MEAN_REMOVAL: Uses mean removal to achieve a "sketchy"
effect.

• IMG_FILTER_SMOOTH: Makes the image smoother. Use arg1 to set the level of
smoothness.

arg1

arg2

arg3

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.5 Alpha support for IMG_FILTER_COLORIZE
was added.

Examples

Example #1707 - imagefilter() grayscale example

<?php

$im = imagecreatefrompng('dave.png');

if ($im && imagefilter($im, IMG_FILTER_GRAYSCALE)) {

 echo 'Image converted to grayscale.';

 imagepng($im, 'dave.png');

} else {

 echo 'Conversion to grayscale failed.';

}

imagedestroy($im);

?>

Example #1708 - imagefilter() brightness example

<?php

$im = imagecreatefrompng('sean.png');

if ($im && imagefilter($im, IMG_FILTER_BRIGHTNESS, 20)) {

 echo 'Image brightness changed.';

 imagepng($im, 'sean.png');

} else {

 echo 'Image brightness change failed.';

}

imagedestroy($im);

?>

Example #1709 - imagefilter() colorize example

<?php

$im = imagecreatefrompng('philip.png');

/* R, G, B, so 0, 255, 0 is green */

if ($im && imagefilter($im, IMG_FILTER_COLORIZE, 0, 255, 0)) {

 echo 'Image successfully shaded green.';

 imagepng($im, 'philip.png');

} else {

 echo 'Green shading failed.';

}

imagedestroy($im);

?>

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

See Also

• imageconvolution()

imagefontheight

imagefontheight -- Get font height

Description

int imagefontheight (int $font)

Returns the pixel height of a character in the specified font.

Parameters

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

Return Values

Returns the height of the pixel.

See Also

• imagefontwidth()
• imageloadfont()

imagefontwidth

imagefontwidth -- Get font width

Description

int imagefontwidth (int $font)

Returns the pixel width of a character in font.

Parameters

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

Return Values

Returns the width of the pixel

See Also

• imagefontheight()
• imageloadfont()

imageftbbox

imageftbbox -- Give the bounding box of a text using fonts via freetype2

Description

array imageftbbox (float $size, float $angle, string $font_file, string $text [, array $
extrainfo])

Warning

This function is currently not documented; only its argument list is available.

Parameters

size

angle

font_file

text

extrainfo

Return Values

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Note

This function is only available if PHP is compiled with freetype support (
--with-freetype-dir=DIR)

ChangeLog

Version Description

4.3.5 extrainfo was made optional.

imagefttext

imagefttext -- Write text to the image using fonts using FreeType 2

Description

array imagefttext (resource $image, float $size, float $angle, int $x, int $y, int $color,
string $font_file, string $text [, array $extrainfo])

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

size

The font size to use in points

angle

The angle in degrees, with 0 degrees being left-to-right reading text. Higher values
represent a counter-clockwise rotation. For example, a value of 90 would result in
bottom-to-top reading text.

x

The coordinates given by x and y will define the basepoint of the first character
(roughly the lower-left corner of the character). This is different from the imagestring(),
where x and y define the upper-left corner of the first character. For example, "top left"
is 0, 0.

y

The y-ordinate. This sets the position of the fonts baseline, not the very bottom of the
character.

color

The index of the desired color for the text, see imagecolorexact()

font_file

The full path to the font being used.

text

Text to be inserted into image.

extrainfo

Return Values

This function returns an array defining the four points of the box, starting in the lower left
and moving counter-clockwise:

0 lower left x-coordinate

1 lower left y-coordinate

2 lower right x-coordinate

3 lower right y-coordinate

4 upper right x-coordinate

5 upper right y-coordinate

6 upper left x-coordinate

7 upper left y-coordinate

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Note

This function is only available if PHP is compiled with freetype support (
--with-freetype-dir=DIR)

ChangeLog

Version Description

4.3.5 extrainfo was made optional.

imagegammacorrect

imagegammacorrect -- Apply a gamma correction to a GD image

Description

bool imagegammacorrect (resource $image, float $inputgamma, float $outputgamma)

Applies gamma correction to the given gd image given an input and an output gamma.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

inputgamma

The input gamma

outputgamma

The output gamma

Return Values

Returns TRUE on success or FALSE on failure.

imagegd2

imagegd2 -- Output GD2 image to browser or file

Description

bool imagegd2 (resource $image [, string $filename [, int $chunk_size [, int $type]]])

Outputs a GD2 image to the given filename.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

chunk_size

type

Either IMG_GD2_RAW or IMG_GD2_COMPRESSED. Default is IMG_GD2_RAW.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

Note

The GD2 format is commonly used to allow fast loading of parts of images. Note that
the GD2 format is only usable in GD2-compatible applications.

ChangeLog

Version Description

4.3.2 chunk_size and type were added.

See Also

• imagegd()

imagegd

imagegd -- Output GD image to browser or file

Description

bool imagegd (resource $image [, string $filename])

Outputs a GD image to the given filename.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The GD format is commonly used to allow fast loading of parts of images. Note that the
GD format is only usable in GD-compatible applications.

See Also

• imagegd2()

imagegif

imagegif -- Output image to browser or file

Description

bool imagegif (resource $image [, string $filename])

imagegif() creates the GIF file in filename from the image image. The image argument is
the return from the imagecreate() or imagecreatefrom* function.

The image format will be GIF87a unless the image has been made transparent with
imagecolortransparent(), in which case the image format will be GIF89a.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Since all GIF support was removed from the GD library in version 1.6, this function is
not available if you are using that version of the GD library. Support is expected to
return in a version subsequent to the rerelease of GIF support in the GD library in mid
2004. For more information, see the » GD Project site.

The following code snippet allows you to write more portable PHP applications by
auto-detecting the type of GD support which is available. Replace the sequence
header ("Content-type: image/gif"); imagegif ($im); by the more flexible sequence:

<?php

if (function_exists("imagegif")) {

 header("Content-type: image/gif");

 imagegif($im);

} elseif (function_exists("imagejpeg")) {

http://www.libgd.org/

 header("Content-type: image/jpeg");

 imagejpeg($im, "", 0.5);

} elseif (function_exists("imagepng")) {

 header("Content-type: image/png");

 imagepng($im);

} elseif (function_exists("imagewbmp")) {

 header("Content-type: image/vnd.wap.wbmp");

 imagewbmp($im);

} else {

 die("No image support in this PHP server");

}

?>

Note

As of version 3.0.18 and 4.0.2 you can use the function imagetypes() in place of
function_exists() for checking the presence of the various supported image formats:

<?php

if (imagetypes() & IMG_GIF) {

 header ("Content-type: image/gif");

 imagegif ($im);

} elseif (imagetypes() & IMG_JPG) {

 /* ... etc. */

}

?>

See Also

• imagepng()
• imagewbmp()
• imagejpeg()
• imagetypes()

imagegrabscreen

imagegrabscreen -- Captures the whole screen

Description

resource imagegrabscreen (void)

Grabs a screenshot of the whole screen.

Return Values

Returns an image resource identifier on success, FALSE on failure.

Examples

Example #1710 - imagegrabscreen() example

This example demonstrates how to take a screenshot of the current screen and save it
as a png image.

<?php

$im = imagegrabscreen();

imagepng($im, "myscreenshot.png");

?>

Notes

Note

This function is only available on Windows.

See Also

• imagegrabwindow()

imagegrabwindow

imagegrabwindow -- Captures a window

Description

resource imagegrabwindow (int $window [, int $client_area])

Grabs a window or its client area using a windows handle (HWND property in COM
instance)

Parameters

window

The HWND window ID

client_area

Include the client area of the application window

Return Values

Returns an image resource identifier on success, FALSE on failure.

Errors/Exceptions

E_NOTICE is issued if window_handle is invalid window handle. E_WARNING is issued if
the Windows API is too old.

Examples

Example #1711 - imagegrabwindow() example

Capture a window (IE for example)

<?php

$browser = new COM("InternetExplorer.Application");

$handle = $browser->HWND;

$browser->Visible = true;

$im = imagegrabwindow($handle);

$browser->Quit();

imagepng($im, "iesnap.png");

?>

Capture a window (IE for example) but with its content

<?php

$browser = new COM("InternetExplorer.Application");

$handle = $browser->HWND;

$browser->Visible = true;

$browser->Navigate("http://www.libgd.org");

/* Still working? */

while ($browser->Busy) {

 com_message_pump(4000);

}

$im = imagegrabwindow($handle, 0);

$browser->Quit();

imagepng($im, "iesnap.png");

?>

Notes

Note

This function is only available on Windows.

See Also

• imagegrabscreen()

imageinterlace

imageinterlace -- Enable or disable interlace

Description

int imageinterlace (resource $image [, int $interlace])

imageinterlace() turns the interlace bit on or off.

If the interlace bit is set and the image is used as a JPEG image, the image is created as a
progressive JPEG.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

interlace

If non-zero, the image will be interlaced, else the interlace bit is turned off.

Return Values

Returns 1 if the interlace bit is set for the image, 0 otherwise.

imageistruecolor

imageistruecolor -- Finds whether an image is a truecolor image

Description

bool imageistruecolor (resource $image)

imageistruecolor() finds whether the image image is a truecolor image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

Return Values

Returns TRUE if the image is truecolor, FALSE otherwise.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagecreatetruecolor()

imagejpeg

imagejpeg -- Output image to browser or file

Description

bool imagejpeg (resource $image [, string $filename [, int $quality]])

imagejpeg() creates a JPEG file from the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly. To skip this argument in order to provide the quality parameter, use NULL.

quality

quality is optional, and ranges from 0 (worst quality, smaller file) to 100 (best quality,
biggest file). The default is the default IJG quality value (about 75).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

JPEG support is only available if PHP was compiled against GD-1.8 or later.

Note

If you want to output Progressive JPEGs, you need to set interlacing on with
imageinterlace().

See Also

• imagepng()
• imagegif()
• imagewbmp()
• imageinterlace()
• imagetypes()

imagelayereffect

imagelayereffect -- Set the alpha blending flag to use the bundled libgd layering effects

Description

bool imagelayereffect (resource $image, int $effect)

Set the alpha blending flag to use the bundled libgd layering effects.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

effect

One of the following constants:
IMG_EFFECT_REPLACE

Use pixel replacement (equivalent of passing TRUE to imagealphablending())

IMG_EFFECT_ALPHABLEND
Use normal pixel blending (equivalent of passing FALSE to imagealphablending())

IMG_EFFECT_NORMAL
Same as IMG_EFFECT_ALPHABLEND.

IMG_EFFECT_OVERLAY
Overlay has the effect that black background pixels will remain black, white
background pixels will remain white, but grey background pixels will take the colour
of the foreground pixel.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

imageline

imageline -- Draw a line

Description

bool imageline (resource $image, int $x1, int $y1, int $x2, int $y2, int $color)

imageline() draws a line between the two given points.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x1

x-coordinate for first point

y1

y-coordinate for first point

x2

x-coordinate for second point

y2

y-coordinate for second point

color

The line color. A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1712 - Drawing a thick line

<?php

function imagelinethick($image, $x1, $y1, $x2, $y2, $color, $thick = 1)

{

 /* this way it works well only for orthogonal lines

 imagesetthickness($image, $thick);

 return imageline($image, $x1, $y1, $x2, $y2, $color);

 */

 if ($thick == 1) {

 return imageline($image, $x1, $y1, $x2, $y2, $color);

 }

 $t = $thick / 2 - 0.5;

 if ($x1 == $x2 || $y1 == $y2) {

 return imagefilledrectangle($image, round(min($x1, $x2) - $t),
round(min($y1, $y2) - $t), round(max($x1, $x2) + $t), round(max($y1, $y2) +
$t), $color);

 }

 $k = ($y2 - $y1) / ($x2 - $x1); //y = kx + q

 $a = $t / sqrt(1 + pow($k, 2));

 $points = array(

 round($x1 - (1+$k)*$a), round($y1 + (1-$k)*$a),

 round($x1 - (1-$k)*$a), round($y1 - (1+$k)*$a),

 round($x2 + (1+$k)*$a), round($y2 - (1-$k)*$a),

 round($x2 + (1-$k)*$a), round($y2 + (1+$k)*$a),

);

 imagefilledpolygon($image, $points, 4, $color);

 return imagepolygon($image, $points, 4, $color);

}

?>

See Also

• imagecreatetruecolor()
• imagecolorallocate()

imageloadfont

imageloadfont -- Load a new font

Description

int imageloadfont (string $file)

imageloadfont() loads a user-defined bitmap and returns its identifier.

Parameters

file

The font file format is currently binary and architecture dependent. This means you
should generate the font files on the same type of CPU as the machine you are
running PHP on.

Font file format

byte position C data type description

byte 0-3 int number of characters in the
font

byte 4-7 int value of first character in the
font (often 32 for space)

byte 8-11 int pixel width of each character

byte 12-15 int pixel height of each
character

byte 16- char array with character data,
one byte per pixel in each
character, for a total of
(nchars*width*height) bytes.

Return Values

The font identifier which is always bigger than 5 to avoid conflicts with built-in fonts or FALSE
on errors.

Examples

Example #1713 - Using imageloadfont

<?php

header("Content-type: image/png");

$im = imagecreatetruecolor(50, 20);

$black = imagecolorallocate($im, 0, 0, 0);

$white = imagecolorallocate($im, 255, 255, 255);

imagefilledrectangle($im, 0, 0, 49, 19, $white);

$font = imageloadfont("04b.gdf");

imagestring($im, $font, 0, 0, "Hello", $black);

imagepng($im);

?>

See Also

• imagefontwidth()
• imagefontheight()

imagepalettecopy

imagepalettecopy -- Copy the palette from one image to another

Description

void imagepalettecopy (resource $destination, resource $source)

imagepalettecopy() copies the palette from the source image to the destination image.

Parameters

destination

The destination image resource

source

The source image resource

Return Values

No value is returned.

imagepng

imagepng -- Output a PNG image to either the browser or a file

Description

bool imagepng (resource $image [, string $filename [, int $quality [, int $filters]]])

Outputs or saves a PNG image from the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

Note

NULL is invalid if the quality and filters arguments are not used.

quality

Compression level: from 0 (no compression) to 9.

filters

Allows reducing the PNG file size. It is a bitmask field which may be set to any
combination of the PNG_FILTER_XXX constants. PNG_NO_FILTER or
PNG_ALL_FILTERS may also be used to respectively disable or activate all filters.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.1.3 Added the filters parameter.

5.1.2 Added the quality parameter.

Examples

<?php

$im = imagecreatefrompng("test.png");

imagepng($im);

?>

See Also

• imagegif()
• imagewbmp()
• imagejpeg()
• imagetypes()

imagepolygon

imagepolygon -- Draws a polygon

Description

bool imagepolygon (resource $image, array $points, int $num_points, int $color)

imagepolygon() creates a polygon in the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

points

An array containing the polygon's vertices, i.e. points[0] = x0, points[1] = y0, points[2] =
x1, points[3] = y1, etc.

num_points

Total number of points (vertices)

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1714 - imagepolygon() example

<?php

// create a blank image

$image = imagecreatetruecolor(400, 300);

// fill the background color

$bg = imagecolorallocate($image, 0, 0, 0);

// choose a color for the polygon

$col_poly = imagecolorallocate($image, 255, 255, 255);

// draw the polygon

imagepolygon($image, array (

 0, 0,

 100, 200,

 300, 200

),

 3,

 $col_poly);

// output the picture

header("Content-type: image/png");

imagepng($image);

?>

The above example will output something similar to:

See Also

• imagecreate()
• imagecreatetruecolor()

imagepsbbox

imagepsbbox -- Give the bounding box of a text rectangle using PostScript Type1 fonts

Description

array imagepsbbox (string $text, int $font, int $size)

array imagepsbbox (string $text, int $font, int $size, int $space, int $tightness, float
$angle)

Gives the bounding box of a text rectangle using PostScript Type1 fonts.

The bounding box is calculated using information available from character metrics, and
unfortunately tends to differ slightly from the results achieved by actually rasterizing the
text. If the angle is 0 degrees, you can expect the text to need 1 pixel more to every
direction.

Parameters

text

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

size

size is expressed in pixels.

space

Allows you to change the default value of a space in a font. This amount is added to
the normal value and can also be negative. Expressed in character space units, where
1 unit is 1/1000th of an em-square.

tightness

tightness allows you to control the amount of white space between characters. This
amount is added to the normal character width and can also be negative. Expressed in
character space units, where 1 unit is 1/1000th of an em-square.

angle

angle is in degrees.

Return Values

Returns an array containing the following elements:

0 left x-coordinate

1 upper y-coordinate

2 right x-coordinate

3 lower y-coordinate

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

See Also

• imagepstext()

imagepsencodefont

imagepsencodefont -- Change the character encoding vector of a font

Description

bool imagepsencodefont (resource $font_index, string $encodingfile)

Loads a character encoding vector from a file and changes the fonts encoding vector to it.
As a PostScript fonts default vector lacks most of the character positions above 127, you'll
definitely want to change this if you use an other language than English.

If you find yourself using this function all the time, a much better way to define the
encoding is to set ps.default_encoding in the configuration file to point to the right
encoding file and all fonts you load will automatically have the right encoding.

Parameters

font_index

encodingfile

The exact format of this file is described in T1libs documentation. T1lib comes with two
ready-to-use files, IsoLatin1.enc and IsoLatin2.enc.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

imagepsextendfont

imagepsextendfont -- Extend or condense a font

Description

bool imagepsextendfont (int $font_index, float $extend)

Extend or condense a font (font_index), if the value of the extend parameter is less
than one you will be condensing the font.

Parameters

font_index

extend

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

imagepsfreefont

imagepsfreefont -- Free memory used by a PostScript Type 1 font

Description

bool imagepsfreefont (resource $fontindex)

imagepsfreefont() frees memory used by a PostScript Type 1 font.

Parameters

fontindex

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

See Also

• imagepsloadfont()

imagepsloadfont

imagepsloadfont -- Load a PostScript Type 1 font from file

Description

resource imagepsloadfont (string $filename)

Load a PostScript Type 1 font from the given filename.

Parameters

filename

Return Values

In the case everything went right, a valid font index will be returned and can be used for
further purposes. Otherwise the function returns FALSE.

Examples

Example #1715 - imagepsloadfont() example

<?php

header("Content-type: image/png");

$im = imagecreatetruecolor(350, 45);

$black = imagecolorallocate($im, 0, 0, 0);

$white = imagecolorallocate($im, 255, 255, 255);

imagefilledrectangle($im, 0, 0, 349, 44, $white);

$font = imagepsloadfont("bchbi.pfb"); // or locate your .pfb files on your
machine

imagepstext($im, "Testing... It worked!", $font, 32, $white, $black, 32,
32);

imagepsfreefont($font);

imagepng($im);

imagedestroy($im);

?>

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

See Also

• imagepsfreefont()

imagepsslantfont

imagepsslantfont -- Slant a font

Description

bool imagepsslantfont (resource $font_index, float $slant)

Slant a given font given.

Parameters

font_index

slant

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

imagepstext

imagepstext -- Draws a text over an image using PostScript Type1 fonts

Description

array imagepstext (resource $image, string $text, resource $font, int $size, int $
foreground, int $background, int $x, int $y [, int $space [, int $tightness [, float $angle [,
int $antialias_steps]]]])

Draws a text on an image using PostScript Type1 fonts.

Refer to PostScript documentation about fonts and their measuring system if you have
trouble understanding how this works.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

text

The text to be written.

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

size

size is expressed in pixels.

foreground

The color in which the text will be painted.

background

The color to which the text will try to fade in with antialiasing. No pixels with the color
background are actually painted, so the background image does not need to be of solid
color.

x

x-coordinate for the lower-left corner of the first character

y

y-coordinate for the lower-left corner of the first character

space

Allows you to change the default value of a space in a font. This amount is added to

the normal value and can also be negative. Expressed in character space units, where
1 unit is 1/1000th of an em-square.

tightness

tightness allows you to control the amount of white space between characters. This
amount is added to the normal character width and can also be negative. Expressed in
character space units, where 1 unit is 1/1000th of an em-square.

angle

angle is in degrees.

antialias_steps

Allows you to control the number of colours used for antialiasing text. Allowed values
are 4 and 16. The higher value is recommended for text sizes lower than 20, where the
effect in text quality is quite visible. With bigger sizes, use 4. It's less computationally
intensive.

Return Values

This function returns an array containing the following elements:

0 lower left x-coordinate

1 lower left y-coordinate

2 upper right x-coordinate

3 upper right y-coordinate

Notes

Note

This function is only available if PHP is compiled using --with-t1lib[=DIR].

See Also

• imagepsbbox()

imagerectangle

imagerectangle -- Draw a rectangle

Description

bool imagerectangle (resource $image, int $x1, int $y1, int $x2, int $y2, int $color)

imagerectangle() creates a rectangle starting at the specified coordinates.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x1

Upper left x coordinate

y1

Upper left y coordinate 0, 0 is the top left corner of the image.

x2

Bottom right x coordinate

y2

Bottom right y coordinate

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

imagerotate

imagerotate -- Rotate an image with a given angle

Description

resource imagerotate (resource $source_image, float $angle, int $bgd_color [, int $
ignore_transparent])

Rotates the source_image image using the given angle in degrees.

The center of rotation is the center of the image, and the rotated image is scaled down so
that the whole rotated image fits in the destination image - the edges are not clipped.

Parameters

source_image

The source image link

angle

Rotation angle, in degrees.

bgd_color

Specifies the color of the uncovered zone after the rotation

ignore_transparent

If set and non-zero, transparent colors are ignored (otherwise kept).

Return Values

ChangeLog

Version Description

5.1.0 ignore_transparent was added.

Examples

Example #1716 - Rotate an image 180 degrees

This example rotates an image 180 degrees - upside down.

<?php

// File and rotation

$filename = 'test.jpg';

$degrees = 180;

// Content type

header('Content-type: image/jpeg');

// Load

$source = imagecreatefromjpeg($filename);

// Rotate

$rotate = imagerotate($source, $degrees, 0);

// Output

imagejpeg($rotate);

?>

The above example will output something similar to:

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

imagesavealpha

imagesavealpha -- Set the flag to save full alpha channel information (as opposed to
single-color transparency) when saving PNG images

Description

bool imagesavealpha (resource $image, bool $saveflag)

imagesavealpha() sets the flag to attempt to save full alpha channel information (as
opposed to single-color transparency) when saving PNG images.

You have to unset alphablending (imagealphablending($im, false)), to use it.

Alpha channel is not supported by all browsers, if you have problem with your browser, try
to load your script with an alpha channel compliant browser, e.g. latest Mozilla.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

saveflag

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

See Also

• imagealphablending()

imagesetbrush

imagesetbrush -- Set the brush image for line drawing

Description

bool imagesetbrush (resource $image, resource $brush)

imagesetbrush() sets the brush image to be used by all line drawing functions (such as
imageline() and imagepolygon()) when drawing with the special colors
IMG_COLOR_BRUSHED or IMG_COLOR_STYLEDBRUSHED.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

brush

An image resource

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

You need not take special action when you are finished with a brush, but if you destroy
the brush image, you must not use the IMG_COLOR_BRUSHED or
IMG_COLOR_STYLEDBRUSHED colors until you have set a new brush image!

imagesetpixel

imagesetpixel -- Set a single pixel

Description

bool imagesetpixel (resource $image, int $x, int $y, int $color)

imagesetpixel() draws a pixel at the specified coordinate.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

x

x-coordinate

y

y-coordinate

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1717 - imagesetpixel() example

A random drawing that ends with a regular picture.

<?php

$x = 200;

$y = 200;

$gd = imagecreatetruecolor($x, $y);

$corners[0] = array('x' => 100, 'y' => 10);

$corners[1] = array('x' => 0, 'y' => 190);

$corners[2] = array('x' => 200, 'y' => 190);

$red = imagecolorallocate($gd, 255, 0, 0);

for ($i = 0; $i < 100000; $i++) {

 imagesetpixel($gd, round($x),round($y), $red);

 $a = rand(0, 2);

 $x = ($x + $corners[$a]['x']) / 2;

 $y = ($y + $corners[$a]['y']) / 2;

}

header('Content-Type: image/png');

imagepng($gd);

?>

The above example will output something similar to:

See Also

• imagecreatetruecolor()
• imagecolorallocate()

imagesetstyle

imagesetstyle -- Set the style for line drawing

Description

bool imagesetstyle (resource $image, array $style)

imagesetstyle() sets the style to be used by all line drawing functions (such as imageline()
and imagepolygon()) when drawing with the special color IMG_COLOR_STYLED or lines
of images with color IMG_COLOR_STYLEDBRUSHED.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

style

An array of pixel colors. You can use the IMG_COLOR_TRANSPARENT constant to
add a transparent pixel.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Following example script draws a dashed line from upper left to lower right corner of the
canvas:

Example #1718 - imagesetstyle() example

<?php

header("Content-type: image/jpeg");

$im = imagecreatetruecolor(100, 100);

$w = imagecolorallocate($im, 255, 255, 255);

$red = imagecolorallocate($im, 255, 0, 0);

/* Draw a dashed line, 5 red pixels, 5 white pixels */

$style = array($red, $red, $red, $red, $red, $w, $w, $w, $w, $w);

imagesetstyle($im, $style);

imageline($im, 0, 0, 100, 100, IMG_COLOR_STYLED);

/* Draw a line of happy faces using imagesetbrush() with imagesetstyle */

$style = array($w, $w, $w, $w, $w, $w, $w, $w, $w, $w, $w, $w, $red);

imagesetstyle($im, $style);

$brush =

imagecreatefrompng("http://www.libpng.org/pub/png/images/smile.happy.png");

$w2 = imagecolorallocate($brush, 255, 255, 255);

imagecolortransparent($brush, $w2);

imagesetbrush($im, $brush);

imageline($im, 100, 0, 0, 100, IMG_COLOR_STYLEDBRUSHED);

imagejpeg($im);

imagedestroy($im);

?>

The above example will output something similar to:

See Also

• imagesetbrush()
• imageline()

imagesetthickness

imagesetthickness -- Set the thickness for line drawing

Description

bool imagesetthickness (resource $image, int $thickness)

imagesetthickness() sets the thickness of the lines drawn when drawing rectangles,
polygons, ellipses etc. etc. to thickness pixels.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

thickness

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

imagesettile

imagesettile -- Set the tile image for filling

Description

bool imagesettile (resource $image, resource $tile)

imagesettile() sets the tile image to be used by all region filling functions (such as
imagefill() and imagefilledpolygon()) when filling with the special color
IMG_COLOR_TILED.

A tile is an image used to fill an area with a repeated pattern. Any GD image can be used
as a tile, and by setting the transparent color index of the tile image with
imagecolortransparent(), a tile allows certain parts of the underlying area to shine through
can be created.

Note

You need not take special action when you are finished with a tile, but if you destroy
the tile image, you must not use the IMG_COLOR_TILED color until you have set a
new tile image!

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

tile

The image resource to be used as a tile

Return Values

Returns TRUE on success or FALSE on failure.

imagestring

imagestring -- Draw a string horizontally

Description

bool imagestring (resource $image, int $font, int $x, int $y, string $string, int $color)

Draws a string at the given coordinates.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

x

x-coordinate of the upper left corner

y

y-coordinate of the upper left corner

string

The string to be written

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1719 - imagestring() example

<?php

// create a 100*30 image

$im = imagecreate(100, 30);

// white background and blue text

$bg = imagecolorallocate($im, 255, 255, 255);

$textcolor = imagecolorallocate($im, 0, 0, 255);

// write the string at the top left

imagestring($im, 5, 0, 0, "Hello world!", $textcolor);

// output the image

header("Content-type: image/png");

imagepng($im);

?>

The above example will output something similar to:

See Also

• imageloadfont()
• imagettftext()

imagestringup

imagestringup -- Draw a string vertically

Description

bool imagestringup (resource $image, int $font, int $x, int $y, string $string, int $
color)

Draws a string vertically at the given coordinates.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

font

Can be 1, 2, 3, 4, 5 for built-in fonts in latin2 encoding (where higher numbers
corresponding to larger fonts) or any of your own font identifiers registered with
imageloadfont().

x

x-coordinate of the upper left corner

y

y-coordinate of the upper left corner

string

The string to be written

color

A color identifier created with imagecolorallocate()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imageloadfont()

imagesx

imagesx -- Get image width

Description

int imagesx (resource $image)

Returns the width of the given image resource.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

Return Values

Return the width of the image or FALSE on errors.

Examples

Example #1720 - Using imagesx()

<?php

// create a 300*200 image

$img = imagecreatetruecolor(300, 200);

echo imagesx($img); // 300

?>

See Also

• imagecreatetruecolor()
• getimagesize()
• imagesy()

imagesy

imagesy -- Get image height

Description

int imagesy (resource $image)

Returns the height of the given image resource.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

Return Values

Return the height of the image or FALSE on errors.

Examples

Example #1721 - Using imagesy()

<?php

// create a 300*200 image

$img = imagecreatetruecolor(300, 200);

echo imagesy($img); // 200

?>

See Also

• imagecreatetruecolor()
• getimagesize()
• imagesx()

imagetruecolortopalette

imagetruecolortopalette -- Convert a true color image to a palette image

Description

bool imagetruecolortopalette (resource $image, bool $dither, int $ncolors)

imagetruecolortopalette() converts a truecolor image to a palette image. The code for this
function was originally drawn from the Independent JPEG Group library code, which is
excellent. The code has been modified to preserve as much alpha channel information as
possible in the resulting palette, in addition to preserving colors as well as possible. This
does not work as well as might be hoped. It is usually best to simply produce a truecolor
output image instead, which guarantees the highest output quality.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

dither

Indicates if the image should be dithered - if it is TRUE then dithering will be used
which will result in a more speckled image but with better color approximation.

ncolors

Sets the maximum number of colors that should be retained in the palette.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires GD 2.0.1 or later (2.0.28 or later is recommended).

imagettfbbox

imagettfbbox -- Give the bounding box of a text using TrueType fonts

Description

array imagettfbbox (float $size, float $angle, string $fontfile, string $text)

This function calculates and returns the bounding box in pixels for a TrueType text.

Parameters

size

The font size in pixels

angle

Angle in degrees in which text will be measured

fontfile

The name of the TrueType font file (can be a URL). Depending on which version of the
GD library that PHP is using, it may attempt to search for files that do not begin with a
leading '/' by appending '.ttf' to the filename and searching along a library-defined font
path

text

The string to be measured

Return Values

imagettfbbox() returns an array with 8 elements representing four points making the
bounding box of the text:

0 lower left corner, X position

1 lower left corner, Y position

2 lower right corner, X position

3 lower right corner, Y position

4 upper right corner, X position

5 upper right corner, Y position

6 upper left corner, X position

7 upper left corner, Y position

The points are relative to the text regardless of the angle, so "upper left" means in the top
left-hand corner seeing the text horizontally.

See Also

Note

This function requires both the GD library and the » FreeType library.

See Also

• imagettftext()

http://www.freetype.org/

imagettftext

imagettftext -- Write text to the image using TrueType fonts

Description

array imagettftext (resource $image, float $size, float $angle, int $x, int $y, int $color,
string $fontfile, string $text)

Writes the given text into the image using TrueType fonts.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

size

The font size. Depending on your version of GD, this should be specified as the pixel
size (GD1) or point size (GD2)

angle

The angle in degrees, with 0 degrees being left-to-right reading text. Higher values
represent a counter-clockwise rotation. For example, a value of 90 would result in
bottom-to-top reading text.

x

The coordinates given by x and y will define the basepoint of the first character
(roughly the lower-left corner of the character). This is different from the imagestring(),
where x and y define the upper-left corner of the first character. For example, "top left"
is 0, 0.

y

The y-ordinate. This sets the position of the fonts baseline, not the very bottom of the
character.

color

The color index. Using the negative of a color index has the effect of turning off
antialiasing. See imagecolorallocate()

fontfile

The path to the TrueType font you wish to use. Depending on which version of the GD
library PHP is using, when fontfile does not begin with a leading / then.ttf will be
appended to the filename and the library will attempt to search for that filename along
a library-defined font path. When using versions of the GD library lower than 2.0.18, a
space character, rather than a semicolon, was used as the 'path separator' for different
font files. Unintentional use of this feature will result in the warning message: Warning:
Could not find/open font. For these affected versions, the only solution is moving the

font to a path which does not contain spaces. In many cases where a font resides in
the same directory as the script using it the following trick will alleviate any include
problems.
<?php

// Set the enviroment variable for GD

putenv('GDFONTPATH=' . realpath('.'));

 The y-ordinate. This sets the position of the fonts baseline, not

 the very bottom of the character.

// Name the font to be used (note the lack of the .ttf extension)

$font = 'SomeFont';

?>

text

The text string in UTF-8 encoding. May include decimal numeric character references
(of the form: €) to access characters in a font beyond position 127. The
hexadecimal format (like ©) is supported as of PHP 5.2.0. Strings in UTF-8
encoding can be passed directly. Named entities, such as ©, are not supported.
Consider using html_entity_decode() to decode these named entities into UTF-8
strings (html_entity_decode() supports this as of PHP 5.0.0). If a character is used in
the string which is not supported by the font, a hollow rectangle will replace the
character.

Return Values

Returns an array with 8 elements representing four points making the bounding box of the
text. The order of the points is lower left, lower right, upper right, upper left. The points are
relative to the text regardless of the angle, so "upper left" means in the top left-hand corner
when you see the text horizontally.

Examples

Example #1722 - imagettftext() example

This example script will produce a white PNG 400x30 pixels, with the words
"Testing..." in black (with grey shadow), in the font Arial.

<?php

// Set the content-type

header("Content-type: image/png");

// Create the image

$im = imagecreatetruecolor(400, 30);

// Create some colors

$white = imagecolorallocate($im, 255, 255, 255);

$grey = imagecolorallocate($im, 128, 128, 128);

$black = imagecolorallocate($im, 0, 0, 0);

imagefilledrectangle($im, 0, 0, 399, 29, $white);

// The text to draw

$text = 'Testing...';

// Replace path by your own font path

$font = 'arial.ttf';

// Add some shadow to the text

imagettftext($im, 20, 0, 11, 21, $grey, $font, $text);

// Add the text

imagettftext($im, 20, 0, 10, 20, $black, $font, $text);

// Using imagepng() results in clearer text compared with imagejpeg()

imagepng($im);

imagedestroy($im);

?>

The above example will output something similar to:

Notes

Note

This function requires both the GD library and the » FreeType library.

See Also

• imagettfbbox()

http://www.freetype.org/

imagetypes

imagetypes -- Return the image types supported by this PHP build

Description

int imagetypes (void)

Returns the image types supported by the current PHP installation.

Return Values

Returns a bit-field corresponding to the image formats supported by the version of GD
linked into PHP. The following bits are returned, IMG_GIF | IMG_JPG | IMG_PNG |
IMG_WBMP | IMG_XPM.

Examples

Example #1723 - Checking for PNG support

<?php

if (imagetypes() & IMG_PNG) {

 echo "PNG Support is enabled";

}

?>

imagewbmp

imagewbmp -- Output image to browser or file

Description

bool imagewbmp (resource $image [, string $filename [, int $foreground]])

imagewbmp() outputs or save a WBMP version of the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

foreground

You can set the foreground color with this parameter by setting an identifier obtained
from imagecolorallocate(). The default foreground color is black.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

WBMP support is only available if PHP was compiled against GD-1.8 or later.

See Also

• image2wbmp()
• imagepng()
• imagegif()
• imagejpeg()
• imagetypes()

imagexbm

imagexbm -- Output XBM image to browser or file

Description

bool imagexbm (resource $image, string $filename [, int $foreground])

Outputs or save an XBM version of the given image.

Parameters

image

An image resource, returned by one of the image creation functions, such as
imagecreatetruecolor().

filename

The path to save the file to. If not set or NULL, the raw image stream will be outputted
directly.

foreground

You can set the foreground color with this parameter by setting an identifier obtained
from imagecolorallocate(). The default foreground color is black.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available if PHP is compiled with the bundled version of the GD
library.

iptcembed

iptcembed -- Embed binary IPTC data into a JPEG image

Description

mixed iptcembed (string $iptcdata, string $jpeg_file_name [, int $spool])

Warning

This function is currently not documented; only its argument list is available.

Parameters

iptcdata

jpeg_file_name

spool

iptcparse

iptcparse -- Parse a binary IPTC block into single tags.

Description

array iptcparse (string $iptcblock)

Parses an » IPTC block into its single tags.

Parameters

iptcblock

A binary IPTC block

Return Values

Returns an array using the tagmarker as an index and the value as the value. It returns
FALSE on error or if no IPTC data was found.

See Also

• getimagesize() for an example

http://www.iptc.org/

jpeg2wbmp

jpeg2wbmp -- Convert JPEG image file to WBMP image file

Description

bool jpeg2wbmp (string $jpegname, string $wbmpname, int $dest_height, int $dest_width,
int $threshold)

Converts a JPEG file into a WBMP file.

Parameters

jpegname

Path to JPEG file

wbmpname

Path to destination WBMP file

dest_height

Destination image height

dest_width

Destination image width

threshold

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

WBMP support is only available if PHP was compiled against GD-1.8 or later.

Note

JPEG support is only available if PHP was compiled against GD-1.8 or later.

See Also

• png2wbmp()

png2wbmp

png2wbmp -- Convert PNG image file to WBMP image file

Description

bool png2wbmp (string $pngname, string $wbmpname, int $dest_height, int $dest_width,
int $threshold)

Converts a PNG file into a WBMP file.

Parameters

pngname

Path to PNG file

wbmpname

Path to destination WBMP file

dest_height

Destination image height

dest_width

Destination image width

threshold

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

WBMP support is only available if PHP was compiled against GD-1.8 or later.

See Also

• jpeg2wbmp()

Image Processing (ImageMagick)

Introduction

Imagick is a native php extension to create and modify images using the ImageMagick
API.

ImageMagick® is a software suite to create, edit, and compose bitmap images.. It can
read, convert and write images in a variety of formats (over 100) including DPX, EXR, GIF,
JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and TIFF.

Copyright 1999-2007 ImageMagick Studio LLC, a non-profit organization dedicated to
making software imaging solutions freely available.

Installing/Configuring

Requirements

Installation requirements on Windows

Version information does not differ from that above. There are binaries available from
http://imagemagick.org/ so that you can load this extension on Windows without need for a
compiler.

Installation requirements on other platforms

PHP >= 5.1.3 and ImageMagick >= 6.2.4 is required. The amount of formats supported is
by Imagick is entirely dependent upon the amount of formats supported by your
ImageMagick installation. For example, Imagemagick requires ghostscript to conduct PDF
operations.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/imagick.

Note

The official name of this extension is imagick.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/imagick
http://pecl.php.net/package/imagick
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.
Colortype constants
imagick::COLOR_BLACK (integer)

imagick::COLOR_BLUE (integer)

imagick::COLOR_CYAN (integer)
Cyan

imagick::COLOR_GREEN (integer)
Green

imagick::COLOR_RED (integer)
Red

imagick::COLOR_YELLOW (integer)
Yellow

imagick::COLOR_MAGENTA (integer)
Magenta

imagick::COLOR_OPACITY (integer)
Opacity

imagick::COLOR_ALPHA (integer)
Alpha

imagick::COLOR_FUZZ (integer)
Fuzz

Dispose type constants
imagick::DISPOSE_UNRECOGNIZED (integer)

Unrecognized

imagick::DISPOSE_UNRECOGNIZED (integer)
Unrecognized

imagick::DISPOSE_UNDEFINED (integer)
Undefined

imagick::DISPOSE_NONE (integer)
None

imagick::DISPOSE_BACKGROUND (integer)
Background

imagick::DISPOSE_PREVIOUS (integer)
Previous

Composite Operator Constants
imagick::COMPOSITE_OVER (integer)

Overlay one image over the next

imagick::COMPOSITE_IN (integer)
Replaces the inside of one layer with another

imagick::COMPOSITE_OUT (integer)
Replaces the outside of one layer with another

imagick::COMPOSITE_ATOP (integer)
Composites the inside of one layer with the other

imagick::COMPOSITE_XOR (integer)
The part of the source that lies outside of the destination is combined with the part of
the destination that lies outside the source.

imagick::COMPOSITE_PLUS (integer)
The source is added to the destination and replaces the destination.

imagick::COMPOSITE_MINUS (integer)
The source is subtracted to the destination and replaces the destination.

imagick::COMPOSITE_ADD (integer)
Deprecated

imagick::COMPOSITE_SUBTRACT (integer)
Deprecated

imagick::COMPOSITE_DIFFERENCE (integer)
The difference in color values. Good for comparing images.

imagick::COMPOSITE_BUMPMAP (integer)
The same as COMPOSITE_MULTIPLY, except the source is converted to greyscale
first.

imagick::COMPOSITE_COPY (integer)
Simply place the source on top of the destination.

imagick::COMPOSITE_DISPLACE (integer)

imagick::COMPOSITE_DEFAULT (integer)

Montage Mode constants
imagick::MONTAGEMODE_FRAME (integer)

imagick::MONTAGEMODE_UNFRAME (integer)

imagick::MONTAGEMODE_CONCATENATE (integer)

Style constants
imagick::STYLE_NORMAL (integer)

imagick::STYLE_ITALIC (integer)

imagick::STYLE_OBLIQUE (integer)

imagick::STYLE_ANY (integer)

Filter constants
imagick::FILTER_UNDEFINED (integer)

imagick::FILTER_POINT (integer)

imagick::FILTER_BOX (integer)

imagick::FILTER_TRIANGLE (integer)

imagick::FILTER_HERMITE (integer)

imagick::FILTER_HANNING (integer)

imagick::FILTER_HAMMING (integer)

imagick::FILTER_BLACKMAN (integer)

imagick::FILTER_GAUSSIAN (integer)

imagick::FILTER_QUADRATIC (integer)

imagick::FILTER_CUBIC (integer)

imagick::FILTER_CATROM (integer)

imagick::FILTER_MITCHELL (integer)

imagick::FILTER_LANCZOS (integer)

imagick::FILTER_BESSEL (integer)

imagick::FILTER_SINC (integer)

Image type constants
imagick::IMGTYPE_UNDEFINED (integer)

imagick::IMGTYPE_BILEVEL (integer)

imagick::IMGTYPE_GRAYSCALE (integer)

imagick::IMGTYPE_GRAYSCALEMATTE (integer)

imagick::IMGTYPE_PALETTE (integer)

imagick::IMGTYPE_PALETTEMATTE (integer)

imagick::IMGTYPE_TRUECOLOR (integer)

imagick::IMGTYPE_TRUECOLORMATTE (integer)

imagick::IMGTYPE_COLORSEPARATION (integer)

imagick::IMGTYPE_COLORSEPARATIONMATTE (integer)

imagick::IMGTYPE_OPTIMIZE (integer)

Resolution constants
imagick::RESOLUTION_UNDEFINED (integer)

imagick::RESOLUTION_PIXELSPERINCH (integer)

imagick::RESOLUTION_PIXELSPERCENTIMETER (integer)

Compression constants
imagick::COMPRESSION_UNDEFINED (integer)

imagick::COMPRESSION_NO (integer)

imagick::COMPRESSION_BZIP (integer)

imagick::COMPRESSION_FAX (integer)

imagick::COMPRESSION_GROUP4 (integer)

imagick::COMPRESSION_JPEG (integer)

imagick::COMPRESSION_JPEG2000 (integer)

imagick::COMPRESSION_LOSSLESSJPEG (integer)

imagick::COMPRESSION_LZW (integer)

imagick::COMPRESSION_RLE (integer)

imagick::COMPRESSION_ZIP (integer)

Paint constants
imagick::PAINT_POINT (integer)

imagick::PAINT_REPLACE (integer)

imagick::PAINT_FLOODFILL (integer)

imagick::PAINT_FILLTOBORDER (integer)

imagick::PAINT_RESET (integer)

Gravity constants
imagick::GRAVITY_NORTHWEST (integer)

imagick::GRAVITY_NORTH (integer)

imagick::GRAVITY_NORTHEAST (integer)

imagick::GRAVITY_WEST (integer)

imagick::GRAVITY_CENTER (integer)

imagick::GRAVITY_EAST (integer)

imagick::GRAVITY_SOUTHWEST (integer)

imagick::GRAVITY_SOUTH (integer)

imagick::GRAVITY_SOUTHEAST (integer)

Stretch constants
imagick::STRETCH_NORMAL (integer)

imagick::STRETCH_ULTRACONDENSED (integer)

imagick::STRETCH_CONDENSED (integer)

imagick::STRETCH_SEMICONDENSED (integer)

imagick::STRETCH_SEMIEXPANDED (integer)

imagick::STRETCH_EXPANDED (integer)

imagick::STRETCH_EXTRAEXPANDED (integer)

imagick::STRETCH_ULTRAEXPANDED (integer)

imagick::STRETCH_ANY (integer)

Align constants
imagick::ALIGN_UNDEFINED (integer)

imagick::ALIGN_LEFT (integer)

imagick::ALIGN_CENTER (integer)

imagick::ALIGN_RIGHT (integer)

Decoration constants
imagick::DECORATION_NO (integer)

imagick::DECORATION_UNDERLINE (integer)

imagick::DECORATION_OVERLINE (integer)

imagick::DECORATION_LINETROUGH (integer)

Noise constants
imagick::NOISE_UNIFORM (integer)

imagick::NOISE_GAUSSIAN (integer)

imagick::NOISE_MULTIPLICATIVEGAUSSIAN (integer)

imagick::NOISE_IMPULSE (integer)

imagick::NOISE_LAPLACIAN (integer)

imagick::NOISE_POISSON (integer)

Channel constants
imagick::CHANNEL_UNDEFINED (integer)

imagick::CHANNEL_RED (integer)

imagick::CHANNEL_GRAY (integer)

imagick::CHANNEL_CYAN (integer)

imagick::CHANNEL_GREEN (integer)

imagick::CHANNEL_MAGENTA (integer)

imagick::CHANNEL_BLUE (integer)

imagick::CHANNEL_YELLOW (integer)

imagick::CHANNEL_ALPHA (integer)

imagick::CHANNEL_OPACITY (integer)

imagick::CHANNEL_MATTE (integer)

imagick::CHANNEL_BLACK (integer)

imagick::CHANNEL_INDEX (integer)

imagick::CHANNEL_ALL (integer)

Metric constants
imagick::METRIC_UNDEFINED (integer)

imagick::METRIC_MEANABSOLUTEERROR (integer)

imagick::METRIC_MEANSQUAREERROR (integer)

imagick::METRIC_PEAKABSOLUTEERROR (integer)

imagick::METRIC_PEAKSIGNALTONOISERATIO (integer)

imagick::METRIC_ROOTMEANSQUAREDERROR (integer)

Pixel constants
imagick::PIXEL_CHAR (integer)

imagick::PIXEL_DOUBLE (integer)

imagick::PIXEL_FLOAT (integer)

imagick::PIXEL_INTEGER (integer)

imagick::PIXEL_LONG (integer)

imagick::PIXEL_QUANTUM (integer)

imagick::PIXEL_SHORT (integer)

Evaluate Operator constants
imagick::EVALUATE_UNDEFINED (integer)

imagick::EVALUATE_ADD (integer)

imagick::EVALUATE_AND (integer)

imagick::EVALUATE_DIVIDE (integer)

imagick::EVALUATE_LEFTSHIFT (integer)

imagick::EVALUATE_MAX (integer)

imagick::EVALUATE_MIN (integer)

imagick::EVALUATE_MULTIPLY (integer)

imagick::EVALUATE_OR (integer)

imagick::EVALUATE_RIGHTSHIFT (integer)

imagick::EVALUATE_SET (integer)

imagick::EVALUATE_SUBTRACT (integer)

imagick::EVALUATE_XOR (integer)

Colorspace constants
imagick::COLORSPACE_UNDEFINED (integer)

imagick::COLORSPACE_RGB (integer)

imagick::COLORSPACE_GRAY (integer)

imagick::COLORSPACE_TRANSPARENT (integer)

imagick::COLORSPACE_OHTA (integer)

imagick::COLORSPACE_LAB (integer)

imagick::COLORSPACE_XYZ (integer)

imagick::COLORSPACE_YCBCR (integer)

imagick::COLORSPACE_YCC (integer)

imagick::COLORSPACE_YIQ (integer)

imagick::COLORSPACE_YPBPR (integer)

imagick::COLORSPACE_YUV (integer)

imagick::COLORSPACE_CMYK (integer)

imagick::COLORSPACE_SRGB (integer)

imagick::COLORSPACE_HSB (integer)

imagick::COLORSPACE_HSL (integer)

imagick::COLORSPACE_HWB (integer)

imagick::COLORSPACE_REC601LUMA (integer)

imagick::COLORSPACE_REC709LUMA (integer)

imagick::COLORSPACE_LOG (integer)

Virtual Pixel Method constants
imagick::VIRTUALPIXELMETHOD_UNDEFINED (integer)

imagick::VIRTUALPIXELMETHOD_BACKGROUND (integer)

imagick::VIRTUALPIXELMETHOD_CONSTANT (integer)

imagick::VIRTUALPIXELMETHOD_EDGE (integer)

imagick::VIRTUALPIXELMETHOD_MIRROR (integer)

imagick::VIRTUALPIXELMETHOD_TILE (integer)

imagick::VIRTUALPIXELMETHOD_TRANSPARENT (integer)

Preview constants
imagick::PREVIEW_UNDEFINED (integer)

imagick::PREVIEW_ROTATE (integer)

imagick::PREVIEW_SHEAR (integer)

imagick::PREVIEW_ROLL (integer)

imagick::PREVIEW_HUE (integer)

imagick::PREVIEW_SATURATION (integer)

imagick::PREVIEW_BRIGHTNESS (integer)

imagick::PREVIEW_GAMMA (integer)

imagick::PREVIEW_SPIFF (integer)

imagick::PREVIEW_DULL (integer)

imagick::PREVIEW_GRAYSCALE (integer)

imagick::PREVIEW_QUANTIZE (integer)

imagick::PREVIEW_DESPECKLE (integer)

imagick::PREVIEW_REDUCENOISE (integer)

imagick::PREVIEW_ADDNOISE (integer)

imagick::PREVIEW_SHARPEN (integer)

imagick::PREVIEW_BLUR (integer)

imagick::PREVIEW_THRESHOLD (integer)

imagick::PREVIEW_EDGEDETECT (integer)

imagick::PREVIEW_SPREAD (integer)

imagick::PREVIEW_SOLARIZE (integer)

imagick::PREVIEW_SHADE (integer)

imagick::PREVIEW_RAISE (integer)

imagick::PREVIEW_SEGMENT (integer)

imagick::PREVIEW_SWIRL (integer)

imagick::PREVIEW_IMPLODE (integer)

imagick::PREVIEW_WAVE (integer)

imagick::PREVIEW_OILPAINT (integer)

imagick::PREVIEW_CHARCOALDRAWING (integer)

imagick::PREVIEW_JPEG (integer)

Rendering Intent constants
imagick::RENDERINGINTENT_UNDEFINED (integer)

imagick::RENDERINGINTENT_SATURATION (integer)

imagick::RENDERINGINTENT_PERCEPTUAL (integer)

imagick::RENDERINGINTENT_ABSOLUTE (integer)

imagick::RENDERINGINTENT_RELATIVE (integer)

Interlace constants (imagick::INTERLACE_GIF, imagick::INTERLACE_JPEG,
imagick::INTERLACE_PNG are only available if Imagick is compiled against
Imagemagick 6.3.5 or newer)
imagick::INTERLACE_UNDEFINED (integer)

imagick::INTERLACE_NO (integer)

imagick::INTERLACE_LINE (integer)

imagick::INTERLACE_PLANE (integer)

imagick::INTERLACE_PARTITION (integer)

imagick::INTERLACE_JPEG (integer)

imagick::INTERLACE_GIF (integer)

imagick::INTERLACE_PNG (integer)

Fillrule constants
imagick::FILLRULE_UNDEFINED (integer)

imagick::FILLRULE_EVENODD (integer)

imagick::FILLRULE_NONZERO (integer)

Pathunit constants
imagick::PATHUNITS_UNDEFINED (integer)

imagick::PATHUNITS_USERSPACE (integer)

imagick::PATHUNITS_USERSPACEONUSE (integer)

imagick::PATHUNITS_OBJECTBOUNDINGBOX (integer)

Linecap constants
imagick::LINECAP_UNDEFINED (integer)

imagick::LINECAP_BUTT (integer)

imagick::LINECAP_ROUND (integer)

imagick::LINECAP_SQUARE (integer)

Line Join constants
imagick::LINEJOIN_UNDEFINED (integer)

imagick::LINEJOIN_MITER (integer)

imagick::LINEJOIN_ROUND (integer)

imagick::LINEJOIN_BEVEL (integer)

Resourcetype constants
imagick::RESOURCETYPE_UNDEFINED (integer)

imagick::RESOURCETYPE_AREA (integer)

imagick::RESOURCETYPE_DISK (integer)

imagick::RESOURCETYPE_FILE (integer)

imagick::RESOURCETYPE_MAP (integer)

imagick::RESOURCETYPE_MEMORY (integer)

Layer Method constants (available if compiled against ImageMagick 6.3.3 or later)
imagick::LAYERMETHOD_UNDEFINED (integer)

imagick::LAYERMETHOD_COALESCE (integer)

imagick::LAYERMETHOD_COMPAREANY (integer)

imagick::LAYERMETHOD_COMPARECLEAR (integer)

imagick::LAYERMETHOD_COMPAREOVERLAY (integer)

imagick::LAYERMETHOD_DISPOSE (integer)

imagick::LAYERMETHOD_OPTIMIZE (integer)

imagick::LAYERMETHOD_OPTIMIZEIMAGE (integer)

imagick::LAYERMETHOD_OPTIMIZEPLUS (integer)

imagick::LAYERMETHOD_OPTIMIZETRANS (integer)

imagick::LAYERMETHOD_REMOVEDUPS (integer)

imagick::LAYERMETHOD_REMOVEZERO (integer)

imagick::LAYERMETHOD_COMPOSITE (integer)

Orientation constants (available if compiled against ImageMagick 6.3.4 or later)
imagick::ORIENTATION_UNDEFINED (integer)

imagick::ORIENTATION_TOPLEFT (integer)

imagick::ORIENTATION_TOPRIGHT (integer)

imagick::ORIENTATION_BOTTOMRIGHT (integer)

imagick::ORIENTATION_BOTTOMLEFT (integer)

imagick::ORIENTATION_LEFTTOP (integer)

imagick::ORIENTATION_RIGHTTOP (integer)

imagick::ORIENTATION_RIGHTBOTTOM (integer)

imagick::ORIENTATION_LEFTBOTTOM (integer)

Distortion constants (available if compiled against ImageMagick 6.3.6 or later)
imagick::DISTORTION_UNDEFINED (integer)

imagick::DISTORTION_AFFINE (integer)

imagick::DISTORTION_AFFINEPROJECTION (integer)

imagick::DISTORTION_ARC (integer)

imagick::DISTORTION_BILINEAR (integer)

imagick::DISTORTION_PERSPECTIVE (integer)

imagick::DISTORTION_PERSPECTIVEPROJECTION (integer)

imagick::DISTORTION_SCALEROTATETRANSLATE (integer)

Examples

Examples

Imagick makes image manipulation in PHP extremely easy through an OO interface. Here
is a quick example on how to make a thumbnail:

Example #1724 - Creating a thumbnail in Imagick

<?php

header('Content-type: image/jpeg');

$image = new Imagick('image.jpg');

// If 0 is provided as a width or height parameter,

// aspect ratio is maintained

$image->thumbnailImage(100, 0);

echo $image;

?>

Using SPL and other OO features supported in Imagick, it can be simple to resize all files
in a directory (useful for batch resizing large digital camera images to be web viewable).
Here we use resize, as we might want to retain certain meta-data:

Example #1725 - Make a thumbnail of all JPG files in a directory

<?php

$images = new Imagick(glob('images/*.JPG'));

foreach($images as $image) {

 // Providing 0 forces thumbnailImage to maintain aspect ratio

 $image->thumbnailImage(1024,0);

}

$images->writeImages();

?>

This is an example of creating a reflection of an image. The reflection is created by flipping
the image and overlaying a gradient on it. Then both, the original image and the reflection
is overlayed on a canvas.

Example #1726 - Creating a reflection of an image

<?php

/* Read the image */

$im = new Imagick("test.png");

/* Thumbnail the image */

$im->thumbnailImage(200, null);

/* Create a border for the image */

$im->borderImage(new ImagickPixel("white"), 5, 5);

/* Clone the image and flip it */

$reflection = $im->clone();

$reflection->flipImage();

/* Create gradient. It will be overlayd on the reflection */

$gradient = new Imagick();

/* Gradient needs to be large enough for the image and the borders */

$gradient->newPseudoImage($reflection->getImageWidth() + 10,
$reflection->getImageHeight() + 10, "gradient:transparent-black");

/* Composite the gradient on the reflection */

$reflection->compositeImage($gradient, imagick::COMPOSITE_OVER, 0, 0);

/* Add some opacity. Requires ImageMagick 6.2.9 or later */

$reflection->setImageOpacity(0.3);

/* Create an empty canvas */

$canvas = new Imagick();

/* Canvas needs to be large enough to hold the both images */

$width = $im->getImageWidth() + 40;

$height = ($im->getImageHeight() * 2) + 30;

$canvas->newImage($width, $height, new ImagickPixel("black"));

$canvas->setImageFormat("png");

/* Composite the original image and the reflection on the canvas */

$canvas->compositeImage($im, imagick::COMPOSITE_OVER, 20, 10);

$canvas->compositeImage($reflection, imagick::COMPOSITE_OVER, 20,
$im->getImageHeight() + 10);

/* Output the image*/

header("Content-Type: image/png");

echo $canvas;

?>

This example illustrates how to use fill patterns during drawing.

Example #1727 - Filling text with gradient

<?php

/* Create a new imagick object */

$im = new Imagick();

/* Create new image. This will be used as fill pattern */

$im->newPseudoImage(50, 50, "gradient:red-black");

/* Create imagickdraw object */

$draw = new ImagickDraw();

/* Start a new pattern called "gradient" */

$draw->pushPattern('gradient', 0, 0, 50, 50);

/* Composite the gradient on the pattern */

$draw->composite(Imagick::COMPOSITE_OVER, 0, 0, 50, 50, $im);

/* Close the pattern */

$draw->popPattern();

/* Use the pattern called "gradient" as the fill */

$draw->setFillPatternURL('#gradient');

/* Set font size to 52 */

$draw->setFontSize(52);

/* Annotate some text */

$draw->annotation(20, 50, "Hello World!");

/* Create a new canvas object and a white image */

$canvas = new Imagick();

$canvas->newImage(350, 70, "white");

/* Draw the ImagickDraw on to the canvas */

$canvas->drawImage($draw);

/* 1px black border around the image */

$canvas->borderImage('black', 1, 1);

/* Set the format to PNG */

$canvas->setImageFormat('png');

/* Output the image */

header("Content-Type: image/png");

echo $canvas;

?>

The Imagick class

Class synopsis

Imagick

Imagick implements Iterator, Traversable {

bool Imagick::adaptiveBlurImage (float $radius, float $sigma [, int $channel])

bool Imagick::adaptiveResizeImage (int $columns, int $rows [, bool $fit])

bool Imagick::adaptiveSharpenImage (float $radius, float $sigma [, int $channel])

bool Imagick::adaptiveThresholdImage (int $width, int $height, int $offset)

bool Imagick::addImage (Imagick $source)

bool Imagick::addNoiseImage (int $noise_type [, int $channel])

bool Imagick::affineTransformImage (ImagickDraw $matrix)

bool Imagick::annotateImage (ImagickDraw $draw_settings, float $x, float $y, float
$angle, string $text)

Imagick Imagick::appendImages (bool $stack)

Imagick Imagick::averageImages (void)

bool Imagick::blackThresholdImage (mixed $threshold)

bool Imagick::blurImage (float $radius, float $sigma [, int $channel])

bool Imagick::borderImage (mixed $bordercolor, int $width, int $height)

bool Imagick::charcoalImage (float $radius, float $sigma)

bool Imagick::chopImage (int $width, int $height, int $x, int $y)

bool Imagick::clear (void)

bool Imagick::clipImage (void)

bool Imagick::clipPathImage (string $pathname, bool $inside)

Imagick Imagick::clone (void)

bool Imagick::clutImage (Imagick $lookup_table [, int $channel])

Imagick Imagick::coalesceImages (void)

bool Imagick::colorFloodfillImage (mixed $fill, float $fuzz, mixed $bordercolor,
int $x, int $y)

bool Imagick::colorizeImage (mixed $colorize, mixed $opacity)

Imagick Imagick::combineImages (int $channelType)

bool Imagick::commentImage (string $comment)

Imagick Imagick::compareImageChannels (Imagick $image, int $channelType, int $
metricType)

Imagick Imagick::compareImageLayers (int $method)

array Imagick::compareImages (Imagick $compare, int $metric)

bool Imagick::compositeImage (Imagick $composite_object, int $composite, int $x,
int $y [, int $channel])

Imagick Imagick::__construct ([mixed $files])

bool Imagick::contrastImage (bool $sharpen)

bool Imagick::contrastStretchImage (float $black_point, float $white_point [, int $
channel])

bool Imagick::convolveImage (array $kernel [, int $channel])

bool Imagick::cropImage (int $width, int $height, int $x, int $y)

bool Imagick::cropThumbnailImage (int $width, int $height)

Imagick Imagick::current (void)

bool Imagick::cycleColormapImage (int $displace)

bool Imagick::deconstructImages (void)

bool Imagick::despeckleImage (void)

bool Imagick::destroy (void)

bool Imagick::displayImage (string $servername)

bool Imagick::displayImages (string $servername)

bool Imagick::distortImage (int $method, array $arguments, bool $bestfit)

bool Imagick::drawImage (ImagickDraw $draw)

bool Imagick::edgeImage (float $radius)

bool Imagick::embossImage (float $radius, float $sigma)

bool Imagick::enhanceImage (void)

bool Imagick::equalizeImage (void)

bool Imagick::evaluateImage (int $op, float $constant [, int $channel])

Imagick Imagick::flattenImages (void)

bool Imagick::flipImage (void)

bool Imagick::flopImage (void)

bool Imagick::frameImage (mixed $matte_color, int $width, int $height, int $
inner_bevel, int $outer_bevel)

Imagick Imagick::fxImage (string $expression [, int $channel])

bool Imagick::gammaImage (float $gamma [, int $channel])

bool Imagick::gaussianBlurImage (float $radius, float $sigma [, int $channel])

int Imagick::getCompression (void)

int Imagick::getCompressionQuality (void)

string Imagick::getCopyright (void)

string Imagick::getFilename (void)

string Imagick::getFormat (void)

string Imagick::getHomeURL (void)

Imagick Imagick::getImage (void)

ImagickPixel Imagick::getImageBackgroundColor (void)

string Imagick::getImageBlob (void)

ImagickPixel Imagick::getImageBluePrimary (float $x, float $y)

ImagickPixel Imagick::getImageBorderColor (void)

int Imagick::getImageChannelDepth (int $channelType)

float Imagick::getImageChannelDistortion (Imagick $reference, int $channel, int $
metric)

array Imagick::getImageChannelExtrema (int $channel)

array Imagick::getImageChannelMean (int $channel)

array Imagick::getImageChannelStatistics (void)

ImagickPixel Imagick::getImageColormapColor (int $index)

int Imagick::getImageColors (void)

int Imagick::getImageColorspace (void)

int Imagick::getImageCompose (void)

int Imagick::getImageDelay (void)

int Imagick::getImageDepth (void)

int Imagick::getImageDispose (void)

float Imagick::getImageDistortion (MagickWand $reference, int $metric)

array Imagick::getImageExtrema (void)

string Imagick::getImageFilename (void)

string Imagick::getImageFormat (void)

float Imagick::getImageGamma (void)

array Imagick::getImageGeometry (void)

array Imagick::getImageGreenPrimary (void)

int Imagick::getImageHeight (void)

array Imagick::getImageHistogram (void)

int Imagick::getImageIndex (void)

int Imagick::getImageInterlaceScheme (void)

int Imagick::getImageInterpolateMethod (void)

int Imagick::getImageIterations (void)

int Imagick::getImageLength (void)

string Imagick::getImageMagickLicense (void)

int Imagick::getImageMatte (void)

ImagickPixel Imagick::getImageMatteColor (void)

int Imagick::getImageOrientation (void)

array Imagick::getImagePage (void)

ImagickPixel Imagick::getImagePixelColor (int $x, int $y)

string Imagick::getImageProfile (string $name)

array Imagick::getImageProfiles ([string $pattern [, bool $only_names]])

array Imagick::getImageProperties ([string $pattern [, bool $only_names]])

string Imagick::getImageProperty (string $name)

array Imagick::getImageRedPrimary (void)

Imagick Imagick::getImageRegion (int $width, int $height, int $x, int $y)

int Imagick::getImageRenderingIntent (void)

array Imagick::getImageResolution (void)

int Imagick::getImageScene (void)

string Imagick::getImageSignature (void)

int Imagick::getImageSize (void)

int Imagick::getImageTicksPerSecond (void)

float Imagick::getImageTotalInkDensity (void)

int Imagick::getImageType (void)

int Imagick::getImageUnits (void)

int Imagick::getImageVirtualPixelMethod (void)

array Imagick::getImageWhitePoint (void)

int Imagick::getImageWidth (void)

int Imagick::getInterlaceScheme (void)

int Imagick::getIteratorIndex (void)

int Imagick::getNumberImages (void)

string Imagick::getOption (string $key)

string Imagick::getPackageName (void)

array Imagick::getPage (void)

ImagickPixelIterator Imagick::getPixelIterator (void)

ImagickPixelIterator Imagick::getPixelRegionIterator (int $x, int $y, int $columns, int
$rows)

array Imagick::getQuantumDepth (void)

array Imagick::getQuantumRange (void)

string Imagick::getReleaseDate (void)

int Imagick::getResource (int $type)

int Imagick::getResourceLimit (int $type)

array Imagick::getSamplingFactors (void)

array Imagick::getSize (void)

int Imagick::getSizeOffset (void)

array Imagick::getVersion (void)

bool Imagick::hasNextImage (void)

bool Imagick::hasPreviousImage (void)

array Imagick::identifyImage ([bool $appendRawOutput])

bool Imagick::implodeImage (float $radius)

bool Imagick::labelImage (string $label)

bool Imagick::levelImage (float $blackPoint, float $gamma, float $whitePoint [, int $
channel])

bool Imagick::linearStretchImage (float $blackPoint, float $whitePoint)

bool Imagick::magnifyImage (void)

bool Imagick::mapImage (Imagick $map, bool $dither)

bool Imagick::matteFloodfillImage (float $alpha, float $fuzz, mixed $bordercolor,
int $x, int $y)

bool Imagick::medianFilterImage (float $radius)

bool Imagick::minifyImage (void)

bool Imagick::modulateImage (float $brightness, float $saturation, float $hue)

Imagick Imagick::montageImage (ImagickDraw $draw, string $tile_geometry, string
$thumbnail_geometry, int $mode, string $frame)

Imagick Imagick::morphImages (int $number_frames)

Imagick Imagick::mosaicImages (void)

bool Imagick::motionBlurImage (float $radius, float $sigma, float $angle)

bool Imagick::negateImage (bool $gray [, int $channel])

bool Imagick::newImage (int $cols, int $rows, mixed $background [, string $format]
)

bool Imagick::newPseudoImage (int $columns, int $rows, string $pseudoString)

bool Imagick::nextImage (void)

bool Imagick::normalizeImage ([int $channel])

bool Imagick::oilPaintImage (float $radius)

bool Imagick::optimizeImageLayers (void)

bool Imagick::paintFloodfillImage (mixed $fill, float $fuzz, mixed $bordercolor,
int $x, int $y)

bool Imagick::paintOpaqueImage (mixed $target, mixed $fill, float $fuzz [, int $
channel])

bool Imagick::paintTransparentImage (mixed $target, float $alpha, float $fuzz)

bool Imagick::pingImage (string $filename)

bool Imagick::pingImageBlob (string $image)

bool Imagick::pingImageFile (resource $filehandle [, string $fileName])

bool Imagick::polaroidImage (ImagickDraw $properties, float $angle)

bool Imagick::posterizeImage (int $levels, bool $dither)

bool Imagick::previewImages (int $preview)

bool Imagick::previousImage (void)

bool Imagick::profileImage (string $name, string $profile)

bool Imagick::quantizeImage (int $numberColors, int $colorspace, int $treedepth,
bool $dither, bool $measureError)

bool Imagick::quantizeImages (int $numberColors, int $colorspace, int $treedepth,
bool $dither, bool $measureError)

array Imagick::queryFontMetrics (ImagickDraw $properties, string $text [, bool $
multiline])

array Imagick::queryFonts ([string $pattern])

array Imagick::queryFormats ([string $pattern])

bool Imagick::radialBlurImage (float $angle [, int $channel])

bool Imagick::raiseImage (int $width, int $height, int $x, int $y, bool $raise)

bool Imagick::randomThresholdImage (float $low, float $high [, int $channel])

bool Imagick::readImage (string $filename)

bool Imagick::readImageBlob (string $image [, string $filename])

bool Imagick::readImageFile (resource $filehandle [, string $fileName])

bool Imagick::reduceNoiseImage (float $radius)

bool Imagick::removeImage (void)

string Imagick::removeImageProfile (string $name)

bool Imagick::render (void)

bool Imagick::resampleImage (float $x_resolution, float $y_resolution, int $
filter, float $blur)

bool Imagick::resizeImage (int $columns, int $rows, int $filter, float $blur [, bool $
fit])

bool Imagick::rollImage (int $x, int $y)

bool Imagick::rotateImage (mixed $background, float $degrees)

bool Imagick::roundCorners (float $x_rounding, float $y_rounding [, float $
stroke_width [, float $displace [, float $size_correction]]])

bool Imagick::sampleImage (int $columns, int $rows)

bool Imagick::scaleImage (int $cols, int $rows [, bool $fit])

bool Imagick::separateImageChannel (int $channel)

bool Imagick::sepiaToneImage (float $threshold)

bool Imagick::setBackgroundColor (mixed $background)

bool Imagick::setCompression (int $compression)

bool Imagick::setCompressionQuality (int $quality)

bool Imagick::setFilename (string $filename)

bool Imagick::setFirstIterator (void)

bool Imagick::setFormat (string $format)

bool Imagick::setImage (Imagick $replace)

bool Imagick::setImageBackgroundColor (mixed $background)

bool Imagick::setImageBias (float $bias)

bool Imagick::setImageBluePrimary (float $x, float $y)

bool Imagick::setImageBorderColor (mixed $border)

bool Imagick::setImageChannelDepth (int $channel, int $depth)

bool Imagick::setImageColormapColor (int $index, ImagickPixel $color)

bool Imagick::setImageColorspace (int $colorspace)

bool Imagick::setImageCompose (int $compose)

bool Imagick::setImageCompression (int $compression)

bool Imagick::setImageDelay (int $delay)

bool Imagick::setImageDepth (int $depth)

bool Imagick::setImageDispose (int $dispose)

bool Imagick::setImageExtent (int $columns, int $rows)

bool Imagick::setImageFilename (string $filename)

bool Imagick::setImageFormat (string $format)

bool Imagick::setImageGamma (float $gamma)

bool Imagick::setImageGreenPrimary (float $x, float $y)

bool Imagick::setImageIndex (int $index)

bool Imagick::setImageInterlaceScheme (int $interlace_scheme)

bool Imagick::setImageInterpolateMethod (int $method)

bool Imagick::setImageIterations (int $iterations)

bool Imagick::setImageMatte (bool $matte)

bool Imagick::setImageMatteColor (mixed $matte)

bool Imagick::setImageOpacity (float $opacity)

bool Imagick::setImageOrientation (int $orientation)

bool Imagick::setImagePage (int $width, int $height, int $x, int $y)

bool Imagick::setImageProfile (string $name, string $profile)

bool Imagick::setImageProperty (string $name, string $value)

bool Imagick::setImageRedPrimary (float $x, float $y)

bool Imagick::setImageRenderingIntent (int $rendering_intent)

bool Imagick::setImageResolution (float $x_resolution, float $y_resolution)

bool Imagick::setImageScene (int $scene)

bool Imagick::setImageTicksPerSecond (int $ticks_per-second)

bool Imagick::setImageType (int $image_type)

bool Imagick::setImageUnits (int $units)

bool Imagick::setImageVirtualPixelMethod (int $method)

bool Imagick::setImageWhitePoint (float $x, float $y)

bool Imagick::setInterlaceScheme (int $interlace_scheme)

bool Imagick::setIteratorIndex (int $index)

bool Imagick::setLastIterator (void)

bool Imagick::setOption (string $key, string $value)

bool Imagick::setPage (int $width, int $height, int $x, int $y)

bool Imagick::setResolution (float $x_resolution, float $y_resolution)

bool Imagick::setResourceLimit (int $type, int $limit)

bool Imagick::setSamplingFactors (array $factors)

bool Imagick::setSize (int $columns, int $rows)

bool Imagick::setSizeOffset (int $columns, int $rows, int $offset)

bool Imagick::setType (int $image_type)

bool Imagick::shadeImage (bool $gray, float $azimuth, float $elevation)

bool Imagick::shadowImage (float $opacity, float $sigma, int $x, int $y)

bool Imagick::sharpenImage (float $radius, float $sigma [, int $channel])

bool Imagick::shaveImage (int $columns, int $rows)

bool Imagick::shearImage (mixed $background, float $x_shear, float $y_shear)

bool Imagick::sigmoidalContrastImage (bool $sharpen, float $alpha, float $beta [,
int $channel])

bool Imagick::sketchImage (float $radius, float $sigma, float $angle)

bool Imagick::solarizeImage (int $threshold)

bool Imagick::spliceImage (int $width, int $height, int $x, int $y)

bool Imagick::spreadImage (float $radius)

Imagick Imagick::steganoImage (Imagick $watermark_wand, int $offset)

bool Imagick::stereoImage (Imagick $offset_wand)

bool Imagick::stripImage (void)

bool Imagick::swirlImage (float $degrees)

bool Imagick::textureImage (Imagick $texture_wand)

bool Imagick::thresholdImage (float $threshold [, int $channel])

bool Imagick::thumbnailImage (int $columns, int $rows [, bool $fit])

bool Imagick::tintImage (mixed $tint, mixed $opacity)

Imagick Imagick::transformImage (string $crop, string $geometry)

bool Imagick::transverseImage (void)

bool Imagick::trimImage (float $fuzz)

bool Imagick::uniqueImageColors (void)

bool Imagick::unsharpMaskImage (float $radius, float $sigma, float $amount, float
$threshold [, int $channel])

bool Imagick::valid (void)

bool Imagick::vignetteImage (float $blackPoint, float $whitePoint, int $x, int $y)

bool Imagick::waveImage (float $amplitude, float $length)

bool Imagick::whiteThresholdImage (mixed $threshold)

bool Imagick::writeImage ([string $filename])

bool Imagick::writeImages (string $filename, bool $adjoin)
}

Image methods and global methods

The Imagick class has the ability to hold and operate on multiple images simultaneously.
This is achieved through an internal stack. There is always an internal pointer that points
at the current image. Some functions operate on all images in the Imagick class, but most
operate only on the current image in the internal stack. As a convention, method names
can contain the word Image to denote they affect only the current image in the stack.

Class Methods

Because there are so many methods, here is a handy list of methods, somewhat reduced
to their general purpose:

Class methods by purpose

Image effects Get methods Set methods Read/write
images

Other

adaptiveBlurIma
ge

getCompression setBackgroundC
olor

__construct clear

adaptiveResizeI
mage

getFilename setCompression
Quality

addImage clone

adaptiveSharpen
Image

getFormat setCompression appendImages current

adaptiveTreshold
Image

getImageBackgr
oundColor

setFilename getFilename destroy

addNoiseImage getImageBlob setFormat getFormat getCopyright

affinetransformi
mage

getImageBluePri
mary

setImageBackgr
oundColor

getImageFilena
me

getHomeURL

annotateImage getImageBorder
Color

setFirstIterator getImageFormat commentImage

averageImages getImageChanne
lDepth

setImageBias getImage getNumberImag
es

blackThresholdI
mage

getImageChanne
lDistortion

setImageBluePri
mary

setImageFilenam
e

getReleaseDate

blurImage getImageChanne
lExtrema

setImageBorder
Color

setImageFormat getVersion

borderImage getImageChanne
lMean

setImageChanne
lDepth

readImageFile hasNextImage

charcoalImage getImageChanne
lStatistics

setImageColorm
apColor

readImage hasPreviousIma
ge

chopImage getImageColorm
apColor

setImageColorS
pace

writeImages labelImage

clipImage getImageColorsp
ace

setImageCompo
se

writeImage newImage

clipPathImage getImageColors setImageCompre
ssion

newPseudoImag
e

coalesceImages getImageCompo
se

setImageDelay nextImage

colorFloodFillIma
ge

getImageDelay setImageDepth pingImageBlob

colorizeImage getImageDepth setImageDispos
e

pingImageFile

combineImages getImageDispos
e

setImageDispos
e

pingImage

compareImageC
hannels

getImageDistorti
on

setImageExtent previousImage

compareImageL
ayers

getImageExtrem
a

setImageFilenam
e

profileImage

compositeImage getImageFilena
me

setImageFormat queryFormats

contrastImage getImageFormat setImageGamma removeImagePro

file

constrastStretchI
mage

getImageGamm
a

setImageGreenP
rimary

removeImage

convolveImage getImageGeome
try

setImageIndex setFirstIterator

cropImage getImageGreenP
rimary

setImageInterpol
ateMethod

setImageIndex

cycleColormapI
mage

getImageHeight setImageIteratio
ns

valid

deconstructImag
es

getImageHistogr
am

setImageMatteC
olor

drawImage getImageIndex setImageMatte

edgeImage getImageInterlac
eScheme

setImagePage

embossImage getImageInterpol
ateMethod

setImageProfile

enhanceImage getImageIteratio
ns

setImagePropert
y

equalizeImage getImageMatteC
olor

setImageRedPri
mary

evaluateImage getImageMatte setImageRenderi
ngIntent

flattenImages getImagePage setImageResolut
ion

flipImage getImagePixelCo
lor

setImageScene

flopImage getImageProfile setImageTicksPe
rSecond

imageImage getImagePropert
y

setImageType

fxImage getImageRedPri
mary

setImageUnits

gammaImage getImageRegion setImageVirtualP
ixelMethod

gaussianBlurIma
ge

getImageRenderi
ngIntent

setImageWhitep
oint

implodeImage getImageResolut
ion

setInterlaceSche
me

levelImage getImageScene setOption

linearStretchIma
ge

getImageSignatu
re

setPage

magnifyImage getImageTicksP
erSecond

setResolution

matteFloodFilleI
mage

getImageTotalIn
kDensity

setResourceLimi
t

medianFilterIma
ge

getImageType setSamplingFact
ors

minifyImage getImageUnits setSizeOffset

modulateImage getImageVirtualP
ixelMethod

setSize

montageImage getImageWhitep
oint

setType

morphImages getImageWidth

mosaicImages getImage

motionBlurImage getInterlaceSche
me

negateImage getNumberImag
es

normalizeImage getOption

oilPaintImage getPackageNam
e

optimizeImageLa
yers

getPage

paintOpaqueIma
ge

getPixelIterator

paintTransparent
Image

getPixelRegionIt
erator

posterizeImage getQuantumDept
h

radialBlurImage getQuantumRan
ge

raiseImage getResourceLimi
t

randomThreshol
dImage

getResource

reduceNoiseIma
ge

getSamplingFact
ors

render getSizeOffset

resampleImage getSize

resizeImage identifyImage

rollImage getImageSize

rotateImage

sampleImage

scaleImage

separateImageC
hannel

sepiaToneImage

shadeImage

shadowImage

sharpenImage

shaveImage

shearImage

sigmoidalContra
stImage

sketchImage

solarizeImage

spliceImage

spreadImage

steganoImage

stereoImage

stripImage

swirlImage

textureImage

thresholdImage

thumbnailImage

tintImage

transverseImage

trimImage

uniqueImageCol
ors

unsharpMaskIma
ge

vignetteImage

waveImage

whiteThresholdI
mage

Imagick::adaptiveBlurImage

Imagick::adaptiveBlurImage -- Adds adaptive blur filter to image

Description

bool Imagick::adaptiveBlurImage (float $radius, float $sigma [, int $channel])

Adds an adaptive blur filter to image. The intensity of an adaptive blur depends is
dramatically decreased at edge of the image, whereas a standard blur is uniform across
the image.

Parameters

radius

The radius of the Gaussian, in pixels, not counting the center pixel. Provide a value of
0 and the radius will be chosen automagically.

sigma

The standard deviation of the Gaussian, in pixels.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1728 - Using Imagick::adaptiveBlurImage():

Adaptively blur an image, then display to the browser.

<?php

header('Content-type: image/jpeg');

$image = new Imagick('test.jpg');

$image->adaptiveBlurImage(5,3);

echo $image;

?>

See Also

• Imagick::blurImage()
• Imagick::motionBlurImage()
• Imagick::radialBlurImage()

Imagick::adaptiveResizeImage

Imagick::adaptiveResizeImage -- Adaptively resize image with data dependent
triangulation

Description

bool Imagick::adaptiveResizeImage (int $columns, int $rows [, bool $fit])

Adaptively resize image with data-dependent triangulation. Avoids blurring across sharp
color changes. Most useful when used to shrink images slightly to a slightly smaller "web
size"; may not look good when a full-sized image is adaptively resized to a thumbnail.

Parameters

columns

The number of columns in the scaled image.

rows

The number of rows in the scaled image.

fit

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Added optional fit parameter. This method
now supports proportional scaling. Pass
zero as either parameter for proportional
scaling.

Examples

Example #1729 - Using Imagick::adaptiveResizeImage()

Resize an image to a standard size for the web. This method works best when resizing
to a size only slightly smaller than the previous image size.

<?php

header('Content-type: image/jpeg');

$image = new Imagick('image.jpg');

$image->adaptiveResizeImage(1024,768);

echo $image;

?>

See Also

• Imagick::chopImage()
• Imagick::cropImage()
• Imagick::magnifyImage()
• Imagick::minifyImage()
• Imagick::resizeImage()
• Imagick::scaleImage()
• Imagick::shaveImage()
• Imagick::thumbnailImage()
• Imagick::trimImage()

Imagick::adaptiveSharpenImage

Imagick::adaptiveSharpenImage -- Adaptively sharpen the image

Description

bool Imagick::adaptiveSharpenImage (float $radius, float $sigma [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Adaptively sharpen the image by sharpening more intensely near image edges and less
intensely far from edges.

Parameters

radius

The radius of the Gaussian, in pixels, not counting the center pixel. Use 0 for
auto-select.

sigma

The standard deviation of the Gaussian, in pixels.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Examples

Example #1730 - A Imagick::adaptiveSharpenImage() example

Adaptively sharpen the image with radius 2 and sigma 1.

<?php

try {

 $image = new Imagick('image.png');

 $image->adaptiveSharpenImage(2,1);

} catch(ImagickException $e) {

 echo 'Error: ' , $e->getMessage();

 die();

}

header('Content-type: image/png');

echo $image;

?>

See Also

• Imagick::sharpenImage()

Imagick::adaptiveThresholdImage

Imagick::adaptiveThresholdImage -- Selects a threshold for each pixel based on a range of
intensity

Description

bool Imagick::adaptiveThresholdImage (int $width, int $height, int $offset)

Selects an individual threshold for each pixel based on the range of intensity values in its
local neighborhood. This allows for thresholding of an image whose global intensity
histogram doesn't contain distinctive peaks.

Parameters

width

Width of the local neighborhood.

height

Height of the local neighborhood.

offset

The mean offset

Return Values

Returns TRUE on success.

Imagick::addImage

Imagick::addImage -- Adds new image to Imagick object image list

Description

bool Imagick::addImage (Imagick $source)

Warning

This function is currently not documented; only its argument list is available.

Adds new image to Imagick object from the current position of the source object. After the
operation iterator position is moved at the end of the list.

Parameters

source

The source Imagick object

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::addNoiseImage

Imagick::addNoiseImage -- Adds random noise to the image

Description

bool Imagick::addNoiseImage (int $noise_type [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Adds random noise to the image.

Parameters

noise_type

The type of the noise. Refer to this list of noise constants.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::affineTransformImage

Imagick::affineTransformImage -- Transforms an image

Description

bool Imagick::affineTransformImage (ImagickDraw $matrix)

Warning

This function is currently not documented; only its argument list is available.

Transforms an image as dictated by the affine matrix.

Parameters

matrix

The affine matrix

Return Values

Returns TRUE on success.

Imagick::annotateImage

Imagick::annotateImage -- Annotates an image with text

Description

bool Imagick::annotateImage (ImagickDraw $draw_settings, float $x, float $y, float $
angle, string $text)

Warning

This function is currently not documented; only its argument list is available.

Annotates an image with text.

Parameters

draw_settings

The ImagickDraw object that contains settings for drawing the text

x

Horizontal offset in pixels to the left of text

y

Vertical offset in pixels to the baseline of text

angle

The angle at which to write the text

text

The string to draw

Return Values

Returns TRUE on success.

Examples

Example #1731 - Using Imagick::annotateImage():

Annotate text on an empty image

<?php

/* Create some objects */

$image = new Imagick();

$draw = new ImagickDraw();

$pixel = new ImagickPixel('gray');

/* New image */

$image->newImage(800, 75, $pixel);

/* Black text */

$pixel->setColor('black');

/* Font properties */

$draw->setFont('Bookman-DemiItalic');

$draw->setFontSize(30);

/* Create text */

$image->annotateImage($draw, 10, 45, 0, 'The quick brown fox jumps over the
lazy dog');

/* Give image a format */

$image->setImageFormat('png');

/* Output the image with headers */

header('Content-type: image/png');

echo $image;

?>

See Also

• ImagickDraw::annotation()
• ImagickDraw::setFont()

Imagick::appendImages

Imagick::appendImages -- Append a set of images

Description

Imagick Imagick::appendImages (bool $stack)

Warning

This function is currently not documented; only its argument list is available.

Append a set of images.

Parameters

stack

The direction of the stack (top to bottom or bottom to top)

Return Values

Returns Imagick instance on success, throws ImagickException on failure.

Imagick::averageImages

Imagick::averageImages -- Average a set of images

Description

Imagick Imagick::averageImages (void)

Warning

This function is currently not documented; only its argument list is available.

Average a set of images.

Return Values

Returns a new Imagick object on success, throws ImagickException on failure.

Imagick::blackThresholdImage

Imagick::blackThresholdImage -- Forces all pixels below the threshold into black

Description

bool Imagick::blackThresholdImage (mixed $threshold)

Warning

This function is currently not documented; only its argument list is available.

Is like Imagick::thresholdImage() but forces all pixels below the threshold into black while
leaving all pixels above the threshold unchanged.

Parameters

threshold

The threshold below which everything turns black

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as a parameter. Previous versions allow
only an ImagickPixel object.

Imagick::blurImage

Imagick::blurImage -- Adds blur filter to image

Description

bool Imagick::blurImage (float $radius, float $sigma [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Adds blur filter to image. Optional third parameter to blur a specific channel.

Parameters

radius

Blur radius

sigma

Standard deviation

channel

The Channeltype constant. When not supplied, all channels are blurred.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1732 - Using Imagick::blurImage():

Blur an image, then display to the browser.

<?php

header('Content-type: image/jpeg');

$image = new Imagick('test.jpg');

$image->blurImage(5,3);

echo $image;

?>

See Also

• Imagick::adaptiveBlurImage()
• Imagick::motionBlurImage()
• Imagick::radialBlurImage()

Imagick::borderImage

Imagick::borderImage -- Surrounds the image with a border

Description

bool Imagick::borderImage (mixed $bordercolor, int $width, int $height)

Warning

This function is currently not documented; only its argument list is available.

Surrounds the image with a border of the color defined by the bordercolor ImagickPixel
object.

Parameters

bordercolor

ImagickPixel object or a string containing the border color

width

Border width

height

Border height

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter. Previous versions
allow only an ImagickPixel object.

Imagick::charcoalImage

Imagick::charcoalImage -- Simulates a charcoal drawing

Description

bool Imagick::charcoalImage (float $radius, float $sigma)

Warning

This function is currently not documented; only its argument list is available.

Simulates a charcoal drawing.

Parameters

radius

The radius of the Gaussian, in pixels, not counting the center pixel

sigma

The standard deviation of the Gaussian, in pixels

Return Values

Returns TRUE on success.

Imagick::chopImage

Imagick::chopImage -- Removes a region of an image and trims

Description

bool Imagick::chopImage (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Removes a region of an image and collapses the image to occupy the removed portion.

Parameters

width

Width of the chopped area

height

Height of the chopped area

x

X origo of the chopped area

y

Y origo of the chopped area

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1733 - Using Imagick::chopImage():

Example of using Imagick::chopImage

<?php

/* Create some objects */

$image = new Imagick();

$pixel = new ImagickPixel('gray');

/* New image */

$image->newImage(400, 200, $pixel);

/* Chop image */

$image->chopImage(200, 200, 0, 0);

/* Give image a format */

$image->setImageFormat('png');

/* Output the image with headers */

header('Content-type: image/png');

echo $image;

?>

See Also

• Imagick::cropImage()

Imagick::clear

Imagick::clear -- Clears all resources associated to Imagick object

Description

bool Imagick::clear (void)

Warning

This function is currently not documented; only its argument list is available.

Clears all resources associated to Imagick object

Return Values

Returns TRUE on success.

Imagick::clipImage

Imagick::clipImage -- Clips along the first path from the 8BIM profile

Description

bool Imagick::clipImage (void)

Warning

This function is currently not documented; only its argument list is available.

Clips along the first path from the 8BIM profile, if present.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::clipPathImage

Imagick::clipPathImage -- Clips along the named paths from the 8BIM profile

Description

bool Imagick::clipPathImage (string $pathname, bool $inside)

Warning

This function is currently not documented; only its argument list is available.

Clips along the named paths from the 8BIM profile, if present. Later operations take effect
inside the path. It may be a number if preceded with #, to work on a numbered path, e.g.,
"#1" to use the first path.

Parameters

pathname

The name of the path

inside

If TRUE later operations take effect inside clipping path. Otherwise later operations
take effect outside clipping path.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::clone

Imagick::clone -- Makes an exact copy of the Imagick object

Description

Imagick Imagick::clone (void)

Warning

This function is currently not documented; only its argument list is available.

Makes an exact copy of the Imagick object.

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

Imagick::clutImage

Imagick::clutImage -- Replaces colors in the image from a color lookup table

Description

bool Imagick::clutImage (Imagick $lookup_table [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Replaces colors in the image from a color lookup table. Optional second parameter to
replace colors in a specific channel. This method is available if Imagick is compiled against
ImageMagick 6.3.5-7 or newer.

Parameters

lookup_table

Imagick object containing the color lookup table

channel

The Channeltype constant. When not supplied, all channels are replaced.

Return Values

Returns TRUE on success.

Examples

Example #1734 - Using Imagick::clutImage():

Replace colors in the image from a color lookup table.

<?php

$image = new Imagick('test.jpg');

$clut = new Imagick();

$clut->newImage(1, 1, new ImagickPixel('black'));

$image->clutImage($clut);

$image->writeImage('test_out.jpg');

?>

See Also

• Imagick::adaptiveBlurImage()
• Imagick::motionBlurImage()
• Imagick::radialBlurImage()

Imagick::coalesceImages

Imagick::coalesceImages -- Composites a set of images

Description

Imagick Imagick::coalesceImages (void)

Warning

This function is currently not documented; only its argument list is available.

Composites a set of images while respecting any page offsets and disposal methods. GIF,
MIFF, and MNG animation sequences typically start with an image background and each
subsequent image varies in size and offset. Returns a new Imagick object where each
image in the sequence is the same size as the first and composited with the next image in
the sequence.

Return Values

Returns a new Imagick object on success, throws ImagickException on failure.

Errors/Exceptions

Throws ImagickException on error.

Imagick::colorFloodfillImage

Imagick::colorFloodfillImage -- Changes the color value of any pixel that matches target

Description

bool Imagick::colorFloodfillImage (mixed $fill, float $fuzz, mixed $bordercolor, int $
x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Changes the color value of any pixel that matches target and is an immediate neighbor.

Parameters

fill

ImagickPixel object containing the fill color

fuzz

The amount of fuzz. For example, set fuzz to 10 and the color red at intensities of 100
and 102 respectively are now interpreted as the same color for the purposes of the
floodfill.

bordercolor

ImagickPixel object containing the border color

x

X start position of the floodfill

y

Y start position of the floodfill

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as first and third parameter. Previous
versions allow only an ImagickPixel object.

Imagick::colorizeImage

Imagick::colorizeImage -- Blends the fill color with the image

Description

bool Imagick::colorizeImage (mixed $colorize, mixed $opacity)

Warning

This function is currently not documented; only its argument list is available.

Blends the fill color with each pixel in the image.

Parameters

colorize

ImagickPixel object or a string containing the colorize color

opacity

ImagickPixel object or an float containing the opacity value. 1.0 is fully opaque and 0.0
is fully transparent.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter and a float
representing the opacity value as the
second parameter. Previous versions allow
only an ImagickPixel objects.

Imagick::combineImages

Imagick::combineImages -- Combines one or more images into a single image

Description

Imagick Imagick::combineImages (int $channelType)

Warning

This function is currently not documented; only its argument list is available.

Combines one or more images into a single image. The grayscale value of the pixels of
each image in the sequence is assigned in order to the specified channels of the combined
image. The typical ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc.

Parameters

channelType

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::commentImage

Imagick::commentImage -- Adds a comment to your image

Description

bool Imagick::commentImage (string $comment)

Warning

This function is currently not documented; only its argument list is available.

Adds a comment to your image.

Parameters

comment

The comment to add

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1735 - Using Imagick::commentImage():

Commenting an image and retrieving the comment:

<?php

/* Create new Imagick object */

$im = new imagick();

/* Create an empty image */

$im->newImage(100, 100, new ImagickPixel("red"));

/* Add comment to the image */

$im->commentImage("Hello World!");

/* Display the comment */

echo $im->getImageProperty("comment");

?>

Imagick::compareImageChannels

Imagick::compareImageChannels -- Returns the difference in one or more images

Description

Imagick Imagick::compareImageChannels (Imagick $image, int $channelType, int $
metricType)

Warning

This function is currently not documented; only its argument list is available.

Compares one or more images and returns the difference image.

Parameters

image

Imagick object containing the image to compare.

channelType

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

metricType

One of the metric type constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::compareImageLayers

Imagick::compareImageLayers -- Returns the maximum bounding region between images

Description

Imagick Imagick::compareImageLayers (int $method)

Warning

This function is currently not documented; only its argument list is available.

Compares each image with the next in a sequence and returns the maximum bounding
region of any pixel differences it discovers.

Parameters

method

One of the layer method constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::compareImages

Imagick::compareImages -- Compares an image to a reconstructed image

Description

array Imagick::compareImages (Imagick $compare, int $metric)

Warning

This function is currently not documented; only its argument list is available.

Returns an array containing a reconstructed image and the difference between images.

Parameters

compare

An image to compare to.

metric

Provide a valid metric type constant. Refer to this list of metic constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1736 - Using Imagick::compareImages():

Compare images and display the reconstructed image

<?php

$image1 = new imagick("image1.png");

$image2 = new imagick("image2.png");

$result = $image1->compareImage($image2, Imagick::METRIC_MEANSQUAREERROR);

$result[0]->setImageFormat("png");

header("Content-Type: image/png");

echo $result[0];

?>

Imagick::compositeImage

Imagick::compositeImage -- Composite one image onto another

Description

bool Imagick::compositeImage (Imagick $composite_object, int $composite, int $x, int
$y [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Composite one image onto another at the specified offset.

Parameters

composite_object

Imagick object which holds the composite image

compose

Composite operator. See Composite Operator Constants

x

The column offset of the composited image

y

The row offset of the composited image

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::__construct

Imagick::__construct -- The Imagick constructor

Description

Imagick Imagick::__construct ([mixed $files])

Warning

This function is currently not documented; only its argument list is available.

The Imagick constructor

Parameters

files

The path to an image to load or array of paths

Return Values

Returns a new Imagick object on success, throws ImagickException on failure.

Imagick::contrastImage

Imagick::contrastImage -- Change the contrast of the image

Description

bool Imagick::contrastImage (bool $sharpen)

Warning

This function is currently not documented; only its argument list is available.

Enhances the intensity differences between the lighter and darker elements of the image.
Set sharpen to a value other than 0 to increase the image contrast otherwise the contrast
is reduced.

Parameters

sharpen

The sharpen value

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::contrastStretchImage

Imagick::contrastStretchImage -- Enhances the contrast of a color image

Description

bool Imagick::contrastStretchImage (float $black_point, float $white_point [, int $
channel])

Warning

This function is currently not documented; only its argument list is available.

Enhances the contrast of a color image by adjusting the pixels color to span the entire
range of colors available

Parameters

black_point

The black point.

white_point

The white point.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::convolveImage

Imagick::convolveImage -- Applies a custom convolution kernel to the image

Description

bool Imagick::convolveImage (array $kernel [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Applies a custom convolution kernel to the image.

Parameters

kernel

The convolution kernel

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::cropImage

Imagick::cropImage -- Extracts a region of the image

Description

bool Imagick::cropImage (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Extracts a region of the image.

Parameters

width

The width of the crop

height

The height of the crop

x

The X coordinate of the cropped region's top left corner

y

The Y coordinate of the cropped region's top left corner

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::cropThumbnailImage

Imagick::cropThumbnailImage -- Creates a crop thumbnail

Description

bool Imagick::cropThumbnailImage (int $width, int $height)

Warning

This function is currently not documented; only its argument list is available.

Creates a fixed size thumbnail by first scaling the image down and cropping a specified
area from the center.

Parameters

width

The width of the thumbnail

height

The Height of the thumbnail

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::current

Imagick::current -- Returns a reference to the current Imagick object

Description

Imagick Imagick::current (void)

Warning

This function is currently not documented; only its argument list is available.

Returns reference to the current imagick object with image pointer at the correct
sequence.

Return Values

Returns self on success, throws ImagickException on failure.

Imagick::cycleColormapImage

Imagick::cycleColormapImage -- Displaces an image's colormap

Description

bool Imagick::cycleColormapImage (int $displace)

Warning

This function is currently not documented; only its argument list is available.

Displaces an image's colormap by a given number of positions. If you cycle the colormap a
number of times you can produce a psychedelic effect.

Parameters

displace

The amount to displace the colormap.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::deconstructImages

Imagick::deconstructImages -- Returns certain pixel differences between images

Description

bool Imagick::deconstructImages (void)

Warning

This function is currently not documented; only its argument list is available.

Compares each image with the next in a sequence and returns the maximum bounding
region of any pixel differences it discovers.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::despeckleImage

Imagick::despeckleImage -- Reduces the speckle noise in an image

Description

bool Imagick::despeckleImage (void)

Warning

This function is currently not documented; only its argument list is available.

Reduces the speckle noise in an image while perserving the edges of the original image.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::destroy

Imagick::destroy -- Destroys the Imagick object

Description

bool Imagick::destroy (void)

Warning

This function is currently not documented; only its argument list is available.

Destroys the Imagick object and frees all resources associated with it.

Return Values

Returns TRUE on success.

Imagick::displayImage

Imagick::displayImage -- Displays an image

Description

bool Imagick::displayImage (string $servername)

Warning

This function is currently not documented; only its argument list is available.

This method displays an image on a X server.

Parameters

servername

The X server name

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::displayImages

Imagick::displayImages -- Displays an image or image sequence

Description

bool Imagick::displayImages (string $servername)

Warning

This function is currently not documented; only its argument list is available.

Displays an image or image sequence on a X server.

Parameters

servername

The X server name

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::distortImage

Imagick::distortImage -- Distorts an image using various distortion methods

Description

bool Imagick::distortImage (int $method, array $arguments, bool $bestfit)

Distorts an image using various distortion methods, by mapping color lookups of the
source image to a new destination image usally of the same size as the source image,
unless 'bestfit' is set to TRUE.

If 'bestfit' is enabled, and distortion allows it, the destination image is adjusted to ensure
the whole source 'image' will just fit within the final destination image, which will be sized
and offset accordingly. Also in many cases the virtual offset of the source image will be
taken into account in the mapping.

This functionality is present if Imagick is compiled against ImageMagick 6.3.6 or later.

Parameters

method

The method of image distortion. See distortion constants

arguments

The arguments for this distortion method

bestfit

Attempt to resize destination to fit distorted source

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1737 - Using Imagick::distortImage():

Distort an image and write it to the disk.

<?php

$im = new imagick("example.jpg");

$im->distortImage(Imagick::DISTORTION_PERSPECTIVE, array(7,40, 4,30,
4,124, 4,123, 85,122, 100,123, 85,2, 100,30), true);

$im->writeImage("example_out.jpg");

?>

See Also

• Imagick::blurImage()
• Imagick::motionBlurImage()
• Imagick::radialBlurImage()

Imagick::drawImage

Imagick::drawImage -- Renders the ImagickDraw object on the current image

Description

bool Imagick::drawImage (ImagickDraw $draw)

Warning

This function is currently not documented; only its argument list is available.

Renders the ImagickDraw object on the current image.

Parameters

draw

The drawing operations to render on the image.

Return Values

Returns TRUE on success.

Imagick::edgeImage

Imagick::edgeImage -- Enhance edges within the image

Description

bool Imagick::edgeImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Enhance edges within the image with a convolution filter of the given radius. Use radius 0
and it will be auto-selected.

Parameters

radius

The radius of the operation.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::embossImage

Imagick::embossImage -- Returns a grayscale image with a three-dimensional effect

Description

bool Imagick::embossImage (float $radius, float $sigma)

Warning

This function is currently not documented; only its argument list is available.

Returns a grayscale image with a three-dimensional effect. We convolve the image with a
Gaussian operator of the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and it will choose a suitable
radius for you.

Parameters

radius

The radius of the effect

sigma

The sigma of the effect

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::enhanceImage

Imagick::enhanceImage -- Improves the quality of a noisy image

Description

bool Imagick::enhanceImage (void)

Warning

This function is currently not documented; only its argument list is available.

Applies a digital filter that improves the quality of a noisy image.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::equalizeImage

Imagick::equalizeImage -- Equalizes the image histogram

Description

bool Imagick::equalizeImage (void)

Warning

This function is currently not documented; only its argument list is available.

Equalizes the image histogram.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::evaluateImage

Imagick::evaluateImage -- Applies an expression to an image

Description

bool Imagick::evaluateImage (int $op, float $constant [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Applys an arithmetic, relational, or logical expression to an image. Use these operators to
lighten or darken an image, to increase or decrease contrast in an image, or to produce
the "negative" of an image.

Parameters

op

The operator

constant

The value of the operator

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::flattenImages

Imagick::flattenImages -- Merges a sequence of images

Description

Imagick Imagick::flattenImages (void)

Warning

This function is currently not documented; only its argument list is available.

Merges a sequence of images. This is useful for combining Photoshop layers into a single
image.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::flipImage

Imagick::flipImage -- Creates a vertical mirror image

Description

bool Imagick::flipImage (void)

Warning

This function is currently not documented; only its argument list is available.

Creates a vertical mirror image by reflecting the pixels around the central x-axis.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::flopImage

Imagick::flopImage -- Creates a horizontal mirror image

Description

bool Imagick::flopImage (void)

Warning

This function is currently not documented; only its argument list is available.

Creates a horizontal mirror image by reflecting the pixels around the central y-axis.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::frameImage

Imagick::frameImage -- Adds a simulated three-dimensional border

Description

bool Imagick::frameImage (mixed $matte_color, int $width, int $height, int $
inner_bevel, int $outer_bevel)

Warning

This function is currently not documented; only its argument list is available.

Adds a simulated three-dimensional border around the image. The width and height
specify the border width of the vertical and horizontal sides of the frame. The inner and
outer bevels indicate the width of the inner and outer shadows of the frame.

Parameters

matte_color

ImagickPixel object or a string representing the matte color

width

The width of the border

height

The height of the border

inner_bevel

The inner bevel width

outer_bevel

The outer bevel width

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter. Previous versions
allow only an ImagickPixel object.

Imagick::fxImage

Imagick::fxImage -- Evaluate expression for each pixel in the image

Description

Imagick Imagick::fxImage (string $expression [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Evaluate expression for each pixel in the image. Consult » The Fx Special Effects Image
Operator for more information.

Parameters

expression

The expression.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

http://imagemagick.org/script/fx.php
http://imagemagick.org/script/fx.php

Imagick::gammaImage

Imagick::gammaImage -- Gamma-corrects an image

Description

bool Imagick::gammaImage (float $gamma [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Gamma-corrects an image. The same image viewed on different devices will have
perceptual differences in the way the image's intensities are represented on the screen.
Specify individual gamma levels for the red, green, and blue channels, or adjust all three
with the gamma parameter. Values typically range from 0.8 to 2.3.

Parameters

gamma

The amount of gamma-correction.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::gaussianBlurImage

Imagick::gaussianBlurImage -- Blurs an image

Description

bool Imagick::gaussianBlurImage (float $radius, float $sigma [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Blurs an image. We convolve the image with a Gaussian operator of the given radius and
standard deviation (sigma). For reasonable results, the radius should be larger than sigma.
Use a radius of 0 and selects a suitable radius for you.

Parameters

radius

The radius of the Gaussian, in pixels, not counting the center pixel.

sigma

The standard deviation of the Gaussian, in pixels.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getCompression

Imagick::getCompression -- Gets the object compression type

Description

int Imagick::getCompression (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the object compression type.

Return Values

Returns TRUE on success.

Imagick::getCompressionQuality

Imagick::getCompressionQuality -- Gets the object compression quality

Description

int Imagick::getCompressionQuality (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the object compression quality.

Return Values

Returns TRUE on success.

Imagick::getCopyright

Imagick::getCopyright -- Returns the ImageMagick API copyright as a string

Description

string Imagick::getCopyright (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the ImageMagick API copyright as a string.

Return Values

Returns a string containing the copyright notice of Imagemagick and Magickwand C API.

Imagick::getFilename

Imagick::getFilename -- The filename associated with an image sequence

Description

string Imagick::getFilename (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the filename associated with an image sequence.

Return Values

Returns a string on success, throws ImagickException on failure.

Imagick::getFormat

Imagick::getFormat -- Returns the format of the Imagick object

Description

string Imagick::getFormat (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the format of the Imagick object.

Return Values

Returns the format of the image and throwns an ImagickException on failure.

Imagick::getHomeURL

Imagick::getHomeURL -- Returns the ImageMagick home URL

Description

string Imagick::getHomeURL (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the ImageMagick home URL.

Return Values

Returns a link to the imagemagick homepage.

Imagick::getImage

Imagick::getImage -- Returns a new Imagick object

Description

Imagick Imagick::getImage (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a new Imagick object with the current image sequence.

Return Values

Returns a new Imagick object with the current image sequence, throwing
ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageBackgroundColor

Imagick::getImageBackgroundColor -- Returns the image background color

Description

ImagickPixel Imagick::getImageBackgroundColor (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image background color.

Return Values

Returns an ImagickPixel set to the background color of the image, throws
ImagickException on failure.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageBlob

Imagick::getImageBlob -- Returns the image sequence as a blob

Description

string Imagick::getImageBlob (void)

Warning

This function is currently not documented; only its argument list is available.

Implements direct to memory image formats. It returns the image sequence as a string.
The format of the image determines the format of the returned blob (GIF, JPEG, PNG,
etc.). To return a different image format, use Imagick::setImageFormat().

Return Values

Returns a string containing the image. On failure, throws ImagickException.

Imagick::getImageBluePrimary

Imagick::getImageBluePrimary -- Returns the chromaticy blue primary point

Description

ImagickPixel Imagick::getImageBluePrimary (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Returns the chromaticy blue primary point for the image.

Parameters

x

The chromaticity blue primary x-point.

y

The chromaticity blue primary x-point.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageBorderColor

Imagick::getImageBorderColor -- Returns the image border color

Description

ImagickPixel Imagick::getImageBorderColor (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image border color.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageChannelDepth

Imagick::getImageChannelDepth -- Gets the depth for a particular image channel

Description

int Imagick::getImageChannelDepth (int $channelType)

Warning

This function is currently not documented; only its argument list is available.

Gets the depth for a particular image channel.

Parameters

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::getImageChannelDistortion

Imagick::getImageChannelDistortion -- Compares image channels of an image to a
reconstructed image

Description

float Imagick::getImageChannelDistortion (Imagick $reference, int $channel, int $
metric)

Warning

This function is currently not documented; only its argument list is available.

Compares one or more image channels of an image to a reconstructed image and returns
the specified distortion metric.

Parameters

reference

Imagick object to compare to.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

metric

One of the metric type constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageChannelExtrema

Imagick::getImageChannelExtrema -- Gets the extrema for one or more image channels

Description

array Imagick::getImageChannelExtrema (int $channel)

Warning

This function is currently not documented; only its argument list is available.

Gets the extrema for one or more image channels. Return value is an associative array
with the keys "minima" and "maxima".

Parameters

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageChannelMean

Imagick::getImageChannelMean -- Gets the mean and standard deviation

Description

array Imagick::getImageChannelMean (int $channel)

Warning

This function is currently not documented; only its argument list is available.

Gets the mean and standard deviation of one or more image channels. Return value is an
associative array with the keys "mean" and "standardDeviation".

Parameters

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageChannelStatistics

Imagick::getImageChannelStatistics -- Returns statistics for each channel in the image

Description

array Imagick::getImageChannelStatistics (void)

Warning

This function is currently not documented; only its argument list is available.

Returns statistics for each channel in the image. The statistics include the channel depth,
its minima and maxima, the mean, and the standard deviation. You can access the red
channel mean, for example, like this:

Return Values

Returns TRUE on success.

Imagick::getImageColormapColor

Imagick::getImageColormapColor -- Returns the color of the specified colormap index

Description

ImagickPixel Imagick::getImageColormapColor (int $index)

Warning

This function is currently not documented; only its argument list is available.

Returns the color of the specified colormap index.

Parameters

index

The offset into the image colormap.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageColors

Imagick::getImageColors -- Gets the number of unique colors in the image

Description

int Imagick::getImageColors (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the number of unique colors in the image.

Return Values

Returns TRUE on success.

Imagick::getImageColorspace

Imagick::getImageColorspace -- Gets the image colorspace

Description

int Imagick::getImageColorspace (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image colorspace.

Return Values

Returns TRUE on success.

Imagick::getImageCompose

Imagick::getImageCompose -- Returns the composite operator associated with the image

Description

int Imagick::getImageCompose (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the composite operator associated with the image.

Return Values

Returns TRUE on success.

Imagick::getImageDelay

Imagick::getImageDelay -- Gets the image delay

Description

int Imagick::getImageDelay (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image delay.

Return Values

Returns the image delay and throws ImagickException on failure.

Imagick::getImageDepth

Imagick::getImageDepth -- Gets the image depth

Description

int Imagick::getImageDepth (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image depth.

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

Imagick::getImageDispose

Imagick::getImageDispose -- Gets the image disposal method

Description

int Imagick::getImageDispose (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image disposal method.

Return Values

Returns the dispose method on success, throws an ImagickException on failure.

Imagick::getImageDistortion

Imagick::getImageDistortion -- Compares an image to a reconstructed image

Description

float Imagick::getImageDistortion (MagickWand $reference, int $metric)

Warning

This function is currently not documented; only its argument list is available.

Compares an image to a reconstructed image and returns the specified distortion metric.

Parameters

reference

Imagick object to compare to.

metric

One of the metric type constants.

Return Values

Returns the distortion metric used on the image (or the best guess thereof). Throws an
exception on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageExtrema

Imagick::getImageExtrema -- Gets the extrema for the image

Description

array Imagick::getImageExtrema (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the extrema for the image. Returns an associative array with the keys "min" and
"max".

Return Values

Returns an associative array with the keys "min" and "max". Throws ImagickException on
failure.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageFilename

Imagick::getImageFilename -- Returns the filename of a particular image in a sequence

Description

string Imagick::getImageFilename (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the filename of a particular image in a sequence.

Return Values

Returns a string with the filename of the image. Throws an ImagickException on failure.

Imagick::getImageFormat

Imagick::getImageFormat -- Returns the format of a particular image in a sequence

Description

string Imagick::getImageFormat (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the format of a particular image in a sequence.

Return Values

Returns a string containing the image format on success, throws ImagickException on
failure.

Imagick::getImageGamma

Imagick::getImageGamma -- Gets the image gamma

Description

float Imagick::getImageGamma (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image gamma.

Return Values

Returns the image gamma on success, throws ImagickException on failure.

Imagick::getImageGeometry

Imagick::getImageGeometry -- Gets the width and height as an associative array

Description

array Imagick::getImageGeometry (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the width and height as an associative array.

Return Values

Returns an array with the width/height of the image, throws ImagickException on error.

Imagick::getImageGreenPrimary

Imagick::getImageGreenPrimary -- Returns the chromaticy green primary point

Description

array Imagick::getImageGreenPrimary (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the chromaticy green primary point. Returns an array with the keys "x" and "y".

Return Values

Returns an array with the keys "x" and "y" on success, throws an ImagickException on
failure.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageHeight

Imagick::getImageHeight -- Returns the image height

Description

int Imagick::getImageHeight (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image height.

Return Values

Returns the image height in pixels, throws ImagickException on error.

Imagick::getImageHistogram

Imagick::getImageHistogram -- Gets the image histogram

Description

array Imagick::getImageHistogram (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image histogram as an array of ImagickPixel objects.

Return Values

Returns the image histogram as an array of ImagickPixel objects, throwing
ImagickException on error.

Imagick::getImageIndex

Imagick::getImageIndex -- Gets the index of the current active image

Description

int Imagick::getImageIndex (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the index of the current active image within the Imagick object. This method has
been deprecated. See Imagick::getIteratorIndex

Return Values

Returns an integer containing the index of the image in the stack, throwing
ImagickException on error.

Imagick::getImageInterlaceScheme

Imagick::getImageInterlaceScheme -- Gets the image interlace scheme

Description

int Imagick::getImageInterlaceScheme (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image interlace scheme.

Return Values

Returns the interlace scheme as an integer on success, throwing ImagickException on
failure.

Imagick::getImageInterpolateMethod

Imagick::getImageInterpolateMethod -- Returns the interpolation method

Description

int Imagick::getImageInterpolateMethod (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the interpolation method for the sepcified image.

Return Values

Returns the interpolate method on success, throws ImagickException on error.

Imagick::getImageIterations

Imagick::getImageIterations -- Gets the image iterations

Description

int Imagick::getImageIterations (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image iterations.

Return Values

Returns the image iterations as an integer, throws ImagickException on failure.

Imagick::getImageLength

Imagick::getImageLength -- Returns the image length in bytes

Description

int Imagick::getImageLength (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image length in bytes

Return Values

Returns an int containing the current image size.

Imagick::getImageMagickLicense

Imagick::getImageMagickLicense -- Returns a string containing the ImageMagick license

Description

string Imagick::getImageMagickLicense (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a string containing the ImageMagick license

Return Values

Returns a string containing the ImageMagick license.

Imagick::getImageMatte

Imagick::getImageMatte -- Return if the image has a matte channel

Description

int Imagick::getImageMatte (void)

Warning

This function is currently not documented; only its argument list is available.

Returns TRUE if the image has a matte channel otherwise false.

Return Values

Returns TRUE on success or FALSE on failure.

Imagick::getImageMatteColor

Imagick::getImageMatteColor -- Returns the image matte color

Description

ImagickPixel Imagick::getImageMatteColor (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image matte color.

Return Values

Returns ImagickPixel object on success and throws ImagickException on failure.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageOrientation

Imagick::getImageOrientation -- Gets the image orientation.

Description

int Imagick::getImageOrientation (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image orientation. The return value is one of the orientation constants.

Return Values

Returns an int on success, throws ImagickException on failure.

Imagick::getImagePage

Imagick::getImagePage -- Returns the page geometry

Description

array Imagick::getImagePage (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the page geometry associated with the image in an array with the keys "width",
"height", "x", and "y".

Return Values

Returns the page geometry associated with the image in an array with the keys "width",
"height", "x", and "y".

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImagePixelColor

Imagick::getImagePixelColor -- Returns the color of the specified pixel

Description

ImagickPixel Imagick::getImagePixelColor (int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Returns the color of the specified pixel.

Parameters

x

The x-coordinate of the pixel

y

The y-coordinate of the pixel

Return Values

Returns an ImagickPixel instance for the color at the coordinates given, throws
ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageProfile

Imagick::getImageProfile -- Returns the named image profile

Description

string Imagick::getImageProfile (string $name)

Warning

This function is currently not documented; only its argument list is available.

Returns the named image profile.

Parameters

name

The name of the profile to return.

Return Values

Returns a string containing the image profile, throws ImagickException on error.

Imagick::getImageProfiles

Imagick::getImageProfiles -- Returns the image profiles

Description

array Imagick::getImageProfiles ([string $pattern [, bool $only_names]])

Warning

This function is currently not documented; only its argument list is available.

Returns all associated profiles that match the pattern. If TRUE is passed as second
parameter only the profile names are returned. This method is present if Imagick is
compiled against ImageMagick 6.3.5-9 or later.

Parameters

pattern

The pattern for profile names. Defaults to "*"

only_names

Whether to return only profile names

Return Values

Returns an array containing the image profiles or profile names.

Imagick::getImageProperties

Imagick::getImageProperties -- Returns the image properties

Description

array Imagick::getImageProperties ([string $pattern [, bool $only_names]])

Warning

This function is currently not documented; only its argument list is available.

Returns all associated properties that match the pattern. If TRUE is passed as second
parameter only the property names are returned. This method is present if Imagick is
compiled against ImageMagick 6.3.5-9 or later.

Parameters

pattern

The pattern for property names. Defaults to "*"

only_names

Whether to return only property names

Return Values

Returns an array containing the image properties or property names.

Examples

Example #1738 - Using Imagick::getImageProperties():

An example of extracting EXIF information.

<?php

/* Create the object */

$im = new imagick("/path/to/example.jpg");

/* Get the EXIF information */

$exifArray = $im->getImageProperties("exif:*");

/* Loop trough the exif properties */

foreach ($exifArray as $name => $property)

{

 echo "{$name} => {$property}
\n";

}

?>

Imagick::getImageProperty

Imagick::getImageProperty -- Returns the named image property

Description

string Imagick::getImageProperty (string $name)

Warning

This function is currently not documented; only its argument list is available.

Returns the named image profile.

Parameters

name

name of the property (for example Exif:DateTime)

Return Values

Returns a string containing the image property, false if a property with the given name
does not exist.

Imagick::getImageRedPrimary

Imagick::getImageRedPrimary -- Returns the chromaticy red primary point

Description

array Imagick::getImageRedPrimary (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the chromaticy red primary point as an array with the keys "x" and "y".

Return Values

Returns the chromaticy red primary point as an array with the keys "x" and "y", throwing
ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageRegion

Imagick::getImageRegion -- Extracts a region of the image

Description

Imagick Imagick::getImageRegion (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Extracts a region of the image and returns it as a a new Imagick object.

Parameters

width

The width of the extracted region.

height

The height of the extracted region.

x

X-coordinate of the top-left corner of the extracted region.

y

Y-coordinate of the top-left corner of the extracted region.

Return Values

Extracts a region of the image and returns it as a a new wand, throwing ImagickException
on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageRenderingIntent

Imagick::getImageRenderingIntent -- Gets the image rendering intent

Description

int Imagick::getImageRenderingIntent (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image rendering intent.

Return Values

Returns the image rendering intent, throwing ImagickException on error.

Imagick::getImageResolution

Imagick::getImageResolution -- Gets the image X and Y resolution

Description

array Imagick::getImageResolution (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image X and Y resolution.

Return Values

Returns the resolution as an array and throws ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageScene

Imagick::getImageScene -- Gets the image scene

Description

int Imagick::getImageScene (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image scene.

Return Values

Returns the image scene, throwing ImagickException on error.

Imagick::getImageSignature

Imagick::getImageSignature -- Generates an SHA-256 message digest

Description

string Imagick::getImageSignature (void)

Warning

This function is currently not documented; only its argument list is available.

Generates an SHA-256 message digest for the image pixel stream.

Return Values

Returns a string containing the SHA-256 hash of the file, throwing an ImagickException on
error.

Imagick::getImageSize

Imagick::getImageSize -- Returns the image length in bytes

Description

int Imagick::getImageSize (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image length in bytes

Return Values

Returns an int containing the current image size.

Imagick::getImageTicksPerSecond

Imagick::getImageTicksPerSecond -- Gets the image ticks-per-second

Description

int Imagick::getImageTicksPerSecond (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image ticks-per-second.

Return Values

Returns the image ticks-per-second, throwing ImagickException on error.

Imagick::getImageTotalInkDensity

Imagick::getImageTotalInkDensity -- Gets the image total ink density

Description

float Imagick::getImageTotalInkDensity (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image total ink density.

Return Values

Returns the image total ink density of the image, throwing ImagickException on error.

Imagick::getImageType

Imagick::getImageType -- Gets the potential image type

Description

int Imagick::getImageType (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the potential image type.

Return Values

Retruns the potential image type, throwing ImagickException on error.

Imagick::getImageUnits

Imagick::getImageUnits -- Gets the image units of resolution

Description

int Imagick::getImageUnits (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the image units of resolution.

Return Values

Returns the image units of resolution, throwing ImagickException on failure.

Imagick::getImageVirtualPixelMethod

Imagick::getImageVirtualPixelMethod -- Returns the virtual pixel method

Description

int Imagick::getImageVirtualPixelMethod (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the virtual pixel method for the specified image.

Return Values

Returns the virtual pixel method on success, ImagickException on failure.

Imagick::getImageWhitePoint

Imagick::getImageWhitePoint -- Returns the chromaticy white point

Description

array Imagick::getImageWhitePoint (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the chromaticy white point as an associative array with the keys "x" and "y".

Return Values

Returns the chromaticy white point as an associative array with the keys "x" and "y",
throws ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::getImageWidth

Imagick::getImageWidth -- Returns the image width

Description

int Imagick::getImageWidth (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the image width.

Return Values

Returns the image width, throwing ImagickException on error.

Imagick::getInterlaceScheme

Imagick::getInterlaceScheme -- Gets the object interlace scheme

Description

int Imagick::getInterlaceScheme (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the object interlace scheme.

Return Values

Gets the wand interlace scheme, throwing ImagickException on error.

Imagick::getIteratorIndex

Imagick::getIteratorIndex -- Gets the index of the current active image

Description

int Imagick::getIteratorIndex (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the index of the current active image within the Imagick object.

Return Values

Returns an integer containing the index of the image in the stack, throwing
ImagickException on error.

Imagick::getNumberImages

Imagick::getNumberImages -- Returns the number of images in the object

Description

int Imagick::getNumberImages (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the number of images associated with Imagick object.

Return Values

Returns the number of images associated with Imagick object, throwing ImagickException
on failure.

Imagick::getOption

Imagick::getOption -- Returns a value associated with the specified key

Description

string Imagick::getOption (string $key)

Warning

This function is currently not documented; only its argument list is available.

Returns a value associated within the object for the specified key.

Parameters

key

The name of the option

Return Values

Returns a value associated with a wand and the specified key, throwing ImagickException
on error.

Imagick::getPackageName

Imagick::getPackageName -- Returns the ImageMagick package name

Description

string Imagick::getPackageName (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the ImageMagick package name.

Return Values

Returns the ImageMagick package name as a string, throwing ImagickException on error.

Imagick::getPage

Imagick::getPage -- Returns the page geometry

Description

array Imagick::getPage (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the page geometry associated with the Imagick object in an associative array with
the keys "width", "height", "x", and "y".

Return Values

Returns the page geometry associated with the Imagick object in an associative array with
the keys "width", "height", "x", and "y", throwing ImagickException on error.

Imagick::getPixelIterator

Imagick::getPixelIterator -- Returns a MagickPixelIterator

Description

ImagickPixelIterator Imagick::getPixelIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a MagickPixelIterator.

Return Values

Returns an ImagickPixelIterator on success, throwing ImagickException on failure.

Imagick::getPixelRegionIterator

Imagick::getPixelRegionIterator -- Get an ImagickPixelIterator for an image section

Description

ImagickPixelIterator Imagick::getPixelRegionIterator (int $x, int $y, int $columns, int $
rows)

Warning

This function is currently not documented; only its argument list is available.

Get an ImagickPixelIterator for an image section.

Parameters

x

The x-coordinate of the region.

y

The y-coordinate of the region.

columns

The width of the region.

rows

The height of the region.

Return Values

Returns an ImagickPixelIterator for an image section, throwing ImagickException on error.

Imagick::getQuantumDepth

Imagick::getQuantumDepth -- Gets the quantum depth

Description

array Imagick::getQuantumDepth (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the Imagick quantum depth as a string.

Return Values

Returns the Imagick quantum depth as a string, throwing ImagickException on error.

Imagick::getQuantumRange

Imagick::getQuantumRange -- Returns the Imagick quantum range

Description

array Imagick::getQuantumRange (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the Imagick quantum range as a string.

Return Values

Returns the Imagick quantum range as a string, throwing ImagickException on error.

Imagick::getReleaseDate

Imagick::getReleaseDate -- Returns the ImageMagick release date

Description

string Imagick::getReleaseDate (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the ImageMagick release date as a string.

Return Values

Returns the ImageMagick release date as a string, throwing ImagickException on error.

Imagick::getResource

Imagick::getResource -- Returns the specified resource's memory usage

Description

int Imagick::getResource (int $type)

Warning

This function is currently not documented; only its argument list is available.

Returns the specified resource's memory usage in megabytes.

Parameters

type

Refer to the list of resourcetype constants.

Return Values

Returns the specified resource's memory usage in megabytes, throwing ImagickException
on error.

Imagick::getResourceLimit

Imagick::getResourceLimit -- Returns the specified resource limit

Description

int Imagick::getResourceLimit (int $type)

Warning

This function is currently not documented; only its argument list is available.

Returns the specified resource limit in megabytes.

Parameters

type

Refer to the list of resourcetype constants.

Return Values

Returns the specified resource limit in megabytes, throwing ImagickException on error.

Imagick::getSamplingFactors

Imagick::getSamplingFactors -- Gets the horizontal and vertical sampling factor

Description

array Imagick::getSamplingFactors (void)

Warning

This function is currently not documented; only its argument list is available.

Gets the horizontal and vertical sampling factor.

Return Values

Returns an associative array with the horizontal and vertical sampling factors of the image.
Throws ImagickException on error.

Imagick::getSize

Imagick::getSize -- Returns the size associated with the Imagick object

Description

array Imagick::getSize (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the size associated with the Imagick object as an array with the keys "columns"
and "rows".

Return Values

Returns the size associated with the Imagick object as an array with the keys "columns"
and "rows".

Imagick::getSizeOffset

Imagick::getSizeOffset -- Returns the size offset

Description

int Imagick::getSizeOffset (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the size offset associated with the Imagick object.

Return Values

Returns the size offset associated with the Imagick object, throwing ImagickException on
error.

Imagick::getVersion

Imagick::getVersion -- Returns the ImageMagick API version

Description

array Imagick::getVersion (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the ImageMagick API version as a string and as a number.

Return Values

Returns the ImageMagick API version as a string and as a number, throwing
ImagickException on error.

Imagick::hasNextImage

Imagick::hasNextImage -- Checks if the object has more images

Description

bool Imagick::hasNextImage (void)

Warning

This function is currently not documented; only its argument list is available.

Returns TRUE if the object has more images when traversing the list in the forward
direction.

Return Values

Returns TRUE if the object has more images when traversing the list in the forward
direction, returns FALSE if there are none.

Imagick::hasPreviousImage

Imagick::hasPreviousImage -- Checks if the object has a previous image

Description

bool Imagick::hasPreviousImage (void)

Warning

This function is currently not documented; only its argument list is available.

Returns TRUE if the object has more images when traversing the list in the reverse
direction

Return Values

Returns TRUE if the object has more images when traversing the list in the reverse
direction, returns FALSE if there are none.

Imagick::identifyImage

Imagick::identifyImage -- Identifies an image and fetches attributes

Description

array Imagick::identifyImage ([bool $appendRawOutput])

Warning

This function is currently not documented; only its argument list is available.

Identifies an image and returns the attributes. Attributes include the image width, height,
size, and others.

Parameters

appendRawOutput

Return Values

Identifies an image and returns the attributes. Attributes include the image width, height,
size, and others. Throws ImagickException on error.

Errors/Exceptions

Throws ImagickException on error.

Imagick::implodeImage

Imagick::implodeImage -- Creates a new image as a copy

Description

bool Imagick::implodeImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Creates a new image that is a copy of an existing one with the image pixels "imploded" by
the specified percentage.

Parameters

radius

The radius of the implode

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::labelImage

Imagick::labelImage -- Adds a label to an image

Description

bool Imagick::labelImage (string $label)

Warning

This function is currently not documented; only its argument list is available.

Adds a label to an image.

Parameters

label

The label to add

Return Values

Returns TRUE on success.

Imagick::levelImage

Imagick::levelImage -- Adjusts the levels of an image

Description

bool Imagick::levelImage (float $blackPoint, float $gamma, float $whitePoint [, int $
channel])

Warning

This function is currently not documented; only its argument list is available.

Adjusts the levels of an image by scaling the colors falling between specified white and
black points to the full available quantum range. The parameters provided represent the
black, mid, and white points. The black point specifies the darkest color in the image.
Colors darker than the black point are set to zero. Mid point specifies a gamma correction
to apply to the image. White point specifies the lightest color in the image. Colors brighter
than the white point are set to the maximum quantum value.

Parameters

blackPoint

The image black point

gamma

The gamma value

whitePoint

The image white point

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::linearStretchImage

Imagick::linearStretchImage -- Stretches with saturation the image intensity

Description

bool Imagick::linearStretchImage (float $blackPoint, float $whitePoint)

Warning

This function is currently not documented; only its argument list is available.

Stretches with saturation the image intensity.

Parameters

blackPoint

The image black point

whitePoint

The image white point

Return Values

Returns TRUE on success.

Imagick::magnifyImage

Imagick::magnifyImage -- Scales an image proportionally 2x

Description

bool Imagick::magnifyImage (void)

Warning

This function is currently not documented; only its argument list is available.

Is a convenience method that scales an image proportionally to twice its original size.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::mapImage

Imagick::mapImage -- Replaces the colors of an image with the closest color from a
reference image.

Description

bool Imagick::mapImage (Imagick $map, bool $dither)

Warning

This function is currently not documented; only its argument list is available.

Parameters

map

dither

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::matteFloodfillImage

Imagick::matteFloodfillImage -- Changes the transparency value of a color

Description

bool Imagick::matteFloodfillImage (float $alpha, float $fuzz, mixed $bordercolor, int $
x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Changes the transparency value of any pixel that matches target and is an immediate
neighbor. If the method FillToBorderMethod is specified, the transparency value is
changed for any neighbor pixel that does not match the bordercolor member of image.

Parameters

alpha

The level of transparency: 1.0 is fully opaque and 0.0 is fully transparent.

fuzz

The fuzz member of image defines how much tolerance is acceptable to consider two
colors as the same.

bordercolor

An ImagickPixel object or string representing the border color.

x

The starting x coordinate of the operation.

y

The starting y coordinate of the operation.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the third parameter. Previous versions
allow only an ImagickPixel object.

Imagick::medianFilterImage

Imagick::medianFilterImage -- Applies a digital filter

Description

bool Imagick::medianFilterImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Applies a digital filter that improves the quality of a noisy image. Each pixel is replaced by
the median in a set of neighboring pixels as defined by radius.

Parameters

radius

The radius of the pixel neighborhood.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::minifyImage

Imagick::minifyImage -- Scales an image proportionally to half its size

Description

bool Imagick::minifyImage (void)

Warning

This function is currently not documented; only its argument list is available.

Is a convenience method that scales an image proportionally to one-half its original size

Return Values

Returns TRUE on success.

Imagick::modulateImage

Imagick::modulateImage -- Control the brightness, saturation, and hue

Description

bool Imagick::modulateImage (float $brightness, float $saturation, float $hue)

Warning

This function is currently not documented; only its argument list is available.

Lets you control the brightness, saturation, and hue of an image. Hue is the percentage of
absolute rotation from the current position. For example 50 results in a counter-clockwise
rotation of 90 degrees, 150 results in a clockwise rotation of 90 degrees, with 0 and 200
both resulting in a rotation of 180 degrees.

Parameters

brightness

saturation

hue

Return Values

Returns TRUE on success.

Imagick::montageImage

Imagick::montageImage -- Creates a composite image

Description

Imagick Imagick::montageImage (ImagickDraw $draw, string $tile_geometry, string $
thumbnail_geometry, int $mode, string $frame)

Warning

This function is currently not documented; only its argument list is available.

Creates a composite image by combining several separate images. he images are tiled on
the composite image with the name of the image optionally appearing just below the
individual tile.

Parameters

draw

The font name, size, and color are obtained from this object.

tile_geometry

The number of tiles per row and page (e.g. 6x4+0+0).

thumbnail_geometry

Preferred image size and border size of each thumbnail (e.g. 120x120+4+3>).

mode

Thumbnail framing mode, see Montage Mode constants.

frame

Surround the image with an ornamental border (e.g. 15x15+3+3). The frame color is
that of the thumbnail's matte color.

Return Values

Returns TRUE on success.

Imagick::morphImages

Imagick::morphImages -- Method morphs a set of images

Description

Imagick Imagick::morphImages (int $number_frames)

Warning

This function is currently not documented; only its argument list is available.

Method morphs a set of images. Both the image pixels and size are linearly interpolated to
give the appearance of a meta-morphosis from one image to the next.

Parameters

number_frames

The number of in-between images to generate.

Return Values

This method returns a new Imagick object on success and throws an ImagickException on
error.

Imagick::mosaicImages

Imagick::mosaicImages -- Forms a mosaic from images

Description

Imagick Imagick::mosaicImages (void)

Warning

This function is currently not documented; only its argument list is available.

Inlays an image sequence to form a single coherent picture. It returns a wand with each
image in the sequence composited at the location defined by the page offset of the image.

Return Values

Returns TRUE on success.

Imagick::motionBlurImage

Imagick::motionBlurImage -- Simulates motion blur

Description

bool Imagick::motionBlurImage (float $radius, float $sigma, float $angle)

Warning

This function is currently not documented; only its argument list is available.

Simulates motion blur. We convolve the image with a Gaussian operator of the given
radius and standard deviation (sigma). For reasonable results, radius should be larger
than sigma. Use a radius of 0 and MotionBlurImage() selects a suitable radius for you.
Angle gives the angle of the blurring motion.

Parameters

radius

The radius of the Gaussian, in pixels, not counting the center pixel.

sigma

The standard deviation of the Gaussian, in pixels.

angle

Apply the effect along this angle.

Return Values

Returns TRUE on success.

Imagick::negateImage

Imagick::negateImage -- Negates the colors in the reference image

Description

bool Imagick::negateImage (bool $gray [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Negates the colors in the reference image. The Grayscale option means that only
grayscale values within the image are negated.

Parameters

gray

Whether to only negate grayscale pixels within the image.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::newImage

Imagick::newImage -- Creates a new image

Description

bool Imagick::newImage (int $cols, int $rows, mixed $background [, string $format])

Warning

This function is currently not documented; only its argument list is available.

Creates a new image and associates ImagickPixel value as background color

Parameters

cols

Columns in the new image

rows

Rows in the new image

background

The background color used for this image

format

Image format. This parameter was added in Imagick version 2.0.1.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the third parameter. Previous versions

allow only an ImagickPixel object.

Examples

Example #1739 - Using Imagick::newImage():

Create a new image and display it.

<?php

$image = new Imagick();

$image->newImage(100, 100, new ImagickPixel('red'));

$image->setImageFormat('png');

header('Content-type: image/png');

echo $image;

?>

Imagick::newPseudoImage

Imagick::newPseudoImage -- Creates a new image

Description

bool Imagick::newPseudoImage (int $columns, int $rows, string $pseudoString)

Warning

This function is currently not documented; only its argument list is available.

Creates a new image using ImageMagick pseudo-formats.

Parameters

columns

columns in the new image

rows

rows in the new image

pseudoString

string containing pseudo image defition.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::nextImage

Imagick::nextImage -- Moves to the next image

Description

bool Imagick::nextImage (void)

Warning

This function is currently not documented; only its argument list is available.

Associates the next image in the image list with an Imagick object.

Return Values

Returns TRUE on success.

Imagick::normalizeImage

Imagick::normalizeImage -- Enhances the contrast of a color image

Description

bool Imagick::normalizeImage ([int $channel])

Warning

This function is currently not documented; only its argument list is available.

Enhances the contrast of a color image by adjusting the pixels color to span the entire
range of colors available.

Parameters

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::oilPaintImage

Imagick::oilPaintImage -- Simulates an oil painting

Description

bool Imagick::oilPaintImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Applies a special effect filter that simulates an oil painting. Each pixel is replaced by the
most frequent color occurring in a circular region defined by radius.

Parameters

radius

The radius of the circular neighborhood.

Return Values

Returns TRUE on success.

Imagick::optimizeImageLayers

Imagick::optimizeImageLayers -- Removes repeated portions of images to optimize

Description

bool Imagick::optimizeImageLayers (void)

Warning

This function is currently not documented; only its argument list is available.

Compares each image the GIF disposed forms of the previous image in the sequence.
From this it attempts to select the smallest cropped image to replace each frame, while
preserving the results of the animation.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::colorFloodfillImage

Imagick::colorFloodfillImage -- Changes the color value of any pixel that matches target

Description

bool Imagick::paintFloodfillImage (mixed $fill, float $fuzz, mixed $bordercolor, int $
x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Changes the color value of any pixel that matches target and is an immediate neighbor.

Parameters

fill

ImagickPixel object or a string containing the fill color

fuzz

The amount of fuzz. For example, set fuzz to 10 and the color red at intensities of 100
and 102 respectively are now interpreted as the same color for the purposes of the
floodfill.

bordercolor

ImagickPixel object or a string containing the border color

x

X start position of the floodfill

y

Y start position of the floodfill

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Imagick::paintOpaqueImage

Imagick::paintOpaqueImage -- Change any pixel that matches color

Description

bool Imagick::paintOpaqueImage (mixed $target, mixed $fill, float $fuzz [, int $
channel])

Warning

This function is currently not documented; only its argument list is available.

Changes any pixel that matches color with the color defined by fill.

Parameters

target

Change this target color to the fill color within the image. An ImagickPixel object or a
string representing the target color.

fill

An ImagickPixel object or a string representing the fill color.

fuzz

The fuzz member of image defines how much tolerance is acceptable to consider two
colors as the same.

channel

Provide any channel constant that is valid for your channel mode. To apply to more
than one channel, combine channeltype constants using bitwise operators. Defaults to
Imagick::CHANNEL_ALL. Refer to this list of channel constants.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as first and second parameter. Previous
versions allow only an ImagickPixel object.

Imagick::paintTransparentImage

Imagick::paintTransparentImage -- Changes any pixel that matches color with the color
defined by fill

Description

bool Imagick::paintTransparentImage (mixed $target, float $alpha, float $fuzz)

Warning

This function is currently not documented; only its argument list is available.

Changes any pixel that matches color with the color defined by fill.

Parameters

target

Change this target color to specified opacity value within the image.

alpha

The level of transparency: 1.0 is fully opaque and 0.0 is fully transparent.

fuzz

The fuzz member of image defines how much tolerance is acceptable to consider two
colors as the same.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter. Previous versions
allow only an ImagickPixel object.

Imagick::pingImage

Imagick::pingImage -- Fetch basic attributes about the image

Description

bool Imagick::pingImage (string $filename)

Warning

This function is currently not documented; only its argument list is available.

This method can be used to query image width, height, size, and format without reading
the whole image in to memory.

Parameters

filename

The filename to read the information from.

Return Values

Returns TRUE on success.

Imagick::pingImageBlob

Imagick::pingImageBlob -- Quickly fetch attributes

Description

bool Imagick::pingImageBlob (string $image)

Warning

This function is currently not documented; only its argument list is available.

This method can be used to query image width, height, size, and format without reading
the whole image to memory.

Parameters

image

A string containing the image.

Return Values

Returns TRUE on success.

Imagick::pingImageFile

Imagick::pingImageFile -- Get basic image attributes in a lightweight manner

Description

bool Imagick::pingImageFile (resource $filehandle [, string $fileName])

Warning

This function is currently not documented; only its argument list is available.

This method can be used to query image width, height, size, and format without reading
the whole image to memory.

Parameters

filehandle

An open filehandle to the image.

fileName

Optional filename for this image.

Return Values

Returns TRUE on success.

Imagick::polaroidImage

Imagick::polaroidImage -- Simulates a Polaroid picture

Description

bool Imagick::polaroidImage (ImagickDraw $properties, float $angle)

Warning

This function is currently not documented; only its argument list is available.

Simulates a Polaroid picture. This method is available if you compile Imagick against
ImageMagick 6.3.2 or later.

Parameters

properties

The polaroid properties

angle

The polaroid angle

Return Values

Returns TRUE on success.

Imagick::posterizeImage

Imagick::posterizeImage -- Reduces the image to a limited number of color level

Description

bool Imagick::posterizeImage (int $levels, bool $dither)

Warning

This function is currently not documented; only its argument list is available.

Reduces the image to a limited number of color level.

Parameters

levels

dither

Return Values

Returns TRUE on success.

Imagick::previewImages

Imagick::previewImages -- Quickly pin-point appropriate parameters for image processing

Description

bool Imagick::previewImages (int $preview)

Warning

This function is currently not documented; only its argument list is available.

Tiles 9 thumbnails of the specified image with an image processing operation applied at
varying strengths. This is helpful to quickly pin-point an appropriate parameter for an
image processing operation.

Parameters

preview

Preview type. See Preview type constants

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::previousImage

Imagick::previousImage -- Move to the previous image in the object

Description

bool Imagick::previousImage (void)

Warning

This function is currently not documented; only its argument list is available.

Assocates the previous image in an image list with the Imagick object.

Return Values

Returns TRUE on success.

Imagick::profileImage

Imagick::profileImage -- Adds or removes a profile from an image

Description

bool Imagick::profileImage (string $name, string $profile)

Warning

This function is currently not documented; only its argument list is available.

Adds or removes a ICC, IPTC, or generic profile from an image. If the profile is NULL, it is
removed from the image otherwise added. Use a name of '*' and a profile of NULL to
remove all profiles from the image.

Parameters

name

profile

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::quantizeImage

Imagick::quantizeImage -- Analyzes the colors within a reference image

Description

bool Imagick::quantizeImage (int $numberColors, int $colorspace, int $treedepth, bool
$dither, bool $measureError)

Warning

This function is currently not documented; only its argument list is available.

Parameters

numberColors

colorspace

treedepth

dither

measureError

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::quantizeImages

Imagick::quantizeImages -- Analyzes the colors within a sequence of images

Description

bool Imagick::quantizeImages (int $numberColors, int $colorspace, int $treedepth,
bool $dither, bool $measureError)

Warning

This function is currently not documented; only its argument list is available.

Parameters

numberColors

colorspace

treedepth

dither

measureError

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::queryFontMetrics

Imagick::queryFontMetrics -- Returns an array representing the font metrics

Description

array Imagick::queryFontMetrics (ImagickDraw $properties, string $text [, bool $
multiline])

Warning

This function is currently not documented; only its argument list is available.

Returns a multi-dimensional array representing the font metrics.

Parameters

properties

ImagickDraw object containing font properties

text

The text

multiline

Multiline parameter. If left empty it is autodetected

Return Values

Returns an array containing the formats supported by Imagick, throws ImagickException
on error.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1740 - Using Imagick::queryFontMetrics():

Query the metrics for the text and dump the results on the screen.

<?php

/* Create a new Imagick object */

$im = new Imagick();

/* Create an ImagickDraw object */

$draw = new ImagickDraw();

/* Set the font */

$draw->setFont('/path/to/font.ttf');

/* Dump the font metrics, autodetect multiline */

var_dump($im->queryFontMetrics($draw, "Hello World!"));

?>

Imagick::queryFonts

Imagick::queryFonts -- Returns the configured fonts

Description

array Imagick::queryFonts ([string $pattern])

Warning

This function is currently not documented; only its argument list is available.

Returns formats supported by Imagick.

Parameters

pattern

The query pattern

Return Values

Returns an array containing the configured fonts, throws ImagickException on error.

Imagick::queryFormats

Imagick::queryFormats -- Returns formats supported by Imagick

Description

array Imagick::queryFormats ([string $pattern])

Warning

This function is currently not documented; only its argument list is available.

Returns formats supported by Imagick.

Parameters

pattern

Return Values

Returns an array containing the formats supported by Imagick, throws ImagickException
on error.

Imagick::radialBlurImage

Imagick::radialBlurImage -- Radial blurs an image

Description

bool Imagick::radialBlurImage (float $angle [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Radial blurs an image.

Parameters

angle

channel

Return Values

Returns TRUE on success.

Imagick::raiseImage

Imagick::raiseImage -- Creates a simulated 3d button-like effect

Description

bool Imagick::raiseImage (int $width, int $height, int $x, int $y, bool $raise)

Warning

This function is currently not documented; only its argument list is available.

Creates a simulated three-dimensional button-like effect by lightening and darkening the
edges of the image. Members width and height of raise_info define the width of the vertical
and horizontal edge of the effect.

Parameters

width

height

x

y

raise

Return Values

Returns TRUE on success.

Imagick::randomThresholdImage

Imagick::randomThresholdImage -- Creates a high-contrast, two-color image

Description

bool Imagick::randomThresholdImage (float $low, float $high [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Changes the value of individual pixels based on the intensity of each pixel compared to
threshold. The result is a high-contrast, two color image.

Parameters

low

high

channel

Return Values

Returns TRUE on success.

Imagick::readImage

Imagick::readImage -- Reads image from filename

Description

bool Imagick::readImage (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Reads image from filename

Parameters

filename

Return Values

Returns TRUE on success.

Imagick::readImageBlob

Imagick::readImageBlob -- Reads image from a binary string

Description

bool Imagick::readImageBlob (string $image [, string $filename])

Warning

This function is currently not documented; only its argument list is available.

Reads image from a binary string

Parameters

image

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::readImageFile

Imagick::readImageFile -- Reads image from open filehandle

Description

bool Imagick::readImageFile (resource $filehandle [, string $fileName])

Warning

This function is currently not documented; only its argument list is available.

Reads image from open filehandle

Parameters

filehandle

fileName

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::reduceNoiseImage

Imagick::reduceNoiseImage -- Smooths the contours of an image

Description

bool Imagick::reduceNoiseImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Smooths the contours of an image while still preserving edge information. The algorithm
works by replacing each pixel with its neighbor closest in value. A neighbor is defined by
radius. Use a radius of 0 and Imagick::reduceNoiseImage() selects a suitable radius for
you.

Parameters

radius

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::removeImage

Imagick::removeImage -- Removes an image from the image list

Description

bool Imagick::removeImage (void)

Warning

This function is currently not documented; only its argument list is available.

Removes an image from the image list.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::removeImageProfile

Imagick::removeImageProfile -- Removes the named image profile and returns it

Description

string Imagick::removeImageProfile (string $name)

Warning

This function is currently not documented; only its argument list is available.

Removes the named image profile and returns it.

Parameters

name

Return Values

Returns a string containing the profile of the image, throwing ImagickException on error.

Imagick::render

Imagick::render -- Renders all preceding drawing commands

Description

bool Imagick::render (void)

Warning

This function is currently not documented; only its argument list is available.

Renders all preceding drawing commands.

Return Values

Returns TRUE on success.

Imagick::resampleImage

Imagick::resampleImage -- Resample image to desired resolution

Description

bool Imagick::resampleImage (float $x_resolution, float $y_resolution, int $filter,
float $blur)

Warning

This function is currently not documented; only its argument list is available.

Resample image to desired resolution.

Parameters

x_resolution

y_resolution

filter

blur

Return Values

Returns TRUE on success.

Imagick::resizeImage

Imagick::resizeImage -- Scales an image

Description

bool Imagick::resizeImage (int $columns, int $rows, int $filter, float $blur [, bool $fit
])

Warning

This function is currently not documented; only its argument list is available.

Scales an image to the desired dimensions with a filter.

Parameters

columns

Width of the image

rows

Height of the image

filter

Refer to the list of filter constants.

blur

The blur factor where > 1 is blurry, < 1 is sharp.

fit

Optional fit paramater. Defaults to false.

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Added optional fit parameter. This method
now supports proportional scaling. Pass

zero as either parameter for proportional
scaling.

Imagick::rollImage

Imagick::rollImage -- Offsets an image

Description

bool Imagick::rollImage (int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Offsets an image as defined by x and y.

Parameters

x

The X offset.

y

The Y offset.

Return Values

Returns TRUE on success.

Imagick::rotateImage

Imagick::rotateImage -- Rotates an image

Description

bool Imagick::rotateImage (mixed $background, float $degrees)

Warning

This function is currently not documented; only its argument list is available.

Rotates an image the specified number of degrees. Empty triangles left over from rotating
the image are filled with the background color.

Parameters

background

The background color

degrees

The number of degrees to rotate the image

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter. Previous versions
allow only an ImagickPixel object.

Imagick::roundCorners

Imagick::roundCorners -- Rounds image corners

Description

bool Imagick::roundCorners (float $x_rounding, float $y_rounding [, float $
stroke_width [, float $displace [, float $size_correction]]])

Warning

This function is currently not documented; only its argument list is available.

Rounds image corners. Three last parameters are optional and rarely needed.

Parameters

x_rounding

x rounding

y_rounding

y rounding

stroke_width

stroke width

displace

image displace

size_correction

sise correction

Return Values

Returns TRUE on success.

Imagick::sampleImage

Imagick::sampleImage -- Scales an image with pixel sampling

Description

bool Imagick::sampleImage (int $columns, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Scales an image to the desired dimensions with pixel sampling. Unlike other scaling
methods, this method does not introduce any additional color into the scaled image.

Parameters

columns

rows

Return Values

Returns TRUE on success.

Imagick::scaleImage

Imagick::scaleImage -- Scales the size of an image

Description

bool Imagick::scaleImage (int $cols, int $rows [, bool $fit])

Warning

This function is currently not documented; only its argument list is available.

Scales the size of an image to the given dimensions. The other parameter will be
calculated if 0 is passed as either param.

Parameters

cols

rows

fit

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Added optional fit parameter. This method
now supports proportional scaling. Pass
zero as either parameter for proportional
scaling.

Imagick::separateImageChannel

Imagick::separateImageChannel -- Separates a channel from the image

Description

bool Imagick::separateImageChannel (int $channel)

Warning

This function is currently not documented; only its argument list is available.

Separates a channel from the image and returns a grayscale image. A channel is a
particular color component of each pixel in the image.

Parameters

channel

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::sepiaToneImage

Imagick::sepiaToneImage -- Sepia tones an image

Description

bool Imagick::sepiaToneImage (float $threshold)

Warning

This function is currently not documented; only its argument list is available.

Applies a special effect to the image, similar to the effect achieved in a photo darkroom by
sepia toning. Threshold ranges from 0 to QuantumRange and is a measure of the extent of
the sepia toning. A threshold of 80 is a good starting point for a reasonable tone.

Parameters

threshold

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setBackgroundColor

Imagick::setBackgroundColor -- Sets the object's default background color

Description

bool Imagick::setBackgroundColor (mixed $background)

Warning

This function is currently not documented; only its argument list is available.

Sets the object's default background color.

Parameters

background

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as a parameter. Previous versions allow
only an ImagickPixel object.

Imagick::setCompression

Imagick::setCompression -- Sets the object's default compression type

Description

bool Imagick::setCompression (int $compression)

Warning

This function is currently not documented; only its argument list is available.

Sets the object's default compression type

Parameters

compression

Return Values

Returns TRUE on success.

Imagick::setCompressionQuality

Imagick::setCompressionQuality -- Sets the object's default compression quality

Description

bool Imagick::setCompressionQuality (int $quality)

Warning

This function is currently not documented; only its argument list is available.

Sets the object's default compression quality.

Parameters

quality

Return Values

Returns TRUE on success.

Imagick::setFilename

Imagick::setFilename -- Sets the filename before you read or write the image

Description

bool Imagick::setFilename (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Sets the filename before you read or write an image file.

Parameters

filename

Return Values

Returns TRUE on success.

Imagick::setFirstIterator

Imagick::setFirstIterator -- Sets the Imagick iterator to the first image

Description

bool Imagick::setFirstIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Sets the Imagick iterator to the first image.

Return Values

Returns TRUE on success.

Imagick::setFormat

Imagick::setFormat -- Sets the format of the Imagick object

Description

bool Imagick::setFormat (string $format)

Warning

This function is currently not documented; only its argument list is available.

Sets the format of the Imagick object.

Parameters

format

Return Values

Returns TRUE on success.

Imagick::setImage

Imagick::setImage -- Replaces image in the object

Description

bool Imagick::setImage (Imagick $replace)

Warning

This function is currently not documented; only its argument list is available.

Replaces the current image sequence with the image from replace object.

Parameters

replace

The replace Imagick object

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1741 - A Imagick::setImage() example

An example of using Imagick::setImage()

<?php

/* Create the objects */

$image = new Imagick('source.jpg');

$replace = new Imagick('replace.jpg');

/* source.jpg is replaced with replace.jpg */

$image->setImage($replace);

/* output the image */

header('Content-type: image/jpeg');

echo $image;

?>

Imagick::setImageBackgroundColor

Imagick::setImageBackgroundColor -- Sets the image background color

Description

bool Imagick::setImageBackgroundColor (mixed $background)

Warning

This function is currently not documented; only its argument list is available.

Sets the image background color.

Parameters

background

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the parameter. Previous versions allow
only an ImagickPixel object.

Imagick::setImageBias

Imagick::setImageBias -- Sets the image bias for any method that convolves an image

Description

bool Imagick::setImageBias (float $bias)

Warning

This function is currently not documented; only its argument list is available.

Sets the image bias for any method that convolves an image (e.g.
Imagick::ConvolveImage()).

Parameters

bias

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageBluePrimary

Imagick::setImageBluePrimary -- Sets the image chromaticity blue primary point

Description

bool Imagick::setImageBluePrimary (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the image chromaticity blue primary point.

Parameters

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageBorderColor

Imagick::setImageBorderColor -- Sets the image border color

Description

bool Imagick::setImageBorderColor (mixed $border)

Warning

This function is currently not documented; only its argument list is available.

Sets the image border color.

Parameters

border

The border color

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as a parameter. Previous versions allow
only an ImagickPixel object.

Imagick::setImageChannelDepth

Imagick::setImageChannelDepth -- Sets the depth of a particular image channel

Description

bool Imagick::setImageChannelDepth (int $channel, int $depth)

Warning

This function is currently not documented; only its argument list is available.

Sets the depth of a particular image channel.

Parameters

channel

depth

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageColormapColor

Imagick::setImageColormapColor -- Sets the color of the specified colormap index

Description

bool Imagick::setImageColormapColor (int $index, ImagickPixel $color)

Warning

This function is currently not documented; only its argument list is available.

Sets the color of the specified colormap index.

Parameters

index

color

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageColorspace

Imagick::setImageColorspace -- Sets the image colorspace

Description

bool Imagick::setImageColorspace (int $colorspace)

Warning

This function is currently not documented; only its argument list is available.

Sets the image colorspace.

Parameters

colorspace

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageCompose

Imagick::setImageCompose -- Sets the image composite operator

Description

bool Imagick::setImageCompose (int $compose)

Warning

This function is currently not documented; only its argument list is available.

Sets the image composite operator, useful for specifying how to composite the image
thumbnail when using the Imagick::montageImage() method.

Parameters

compose

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageCompression

Imagick::setImageCompression -- Sets the image compression

Description

bool Imagick::setImageCompression (int $compression)

Warning

This function is currently not documented; only its argument list is available.

Sets the image compression.

Parameters

compression

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageDelay

Imagick::setImageDelay -- Sets the image delay

Description

bool Imagick::setImageDelay (int $delay)

Warning

This function is currently not documented; only its argument list is available.

Sets the image delay.

Parameters

delay

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageDepth

Imagick::setImageDepth -- Sets the image depth

Description

bool Imagick::setImageDepth (int $depth)

Warning

This function is currently not documented; only its argument list is available.

Sets the image depth.

Parameters

depth

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageDispose

Imagick::setImageDispose -- Sets the image disposal method

Description

bool Imagick::setImageDispose (int $dispose)

Warning

This function is currently not documented; only its argument list is available.

Sets the image disposal method.

Parameters

dispose

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageExtent

Imagick::setImageExtent -- Sets the image size

Description

bool Imagick::setImageExtent (int $columns, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Sets the image size (i.e. columns & rows).

Parameters

columns

rows

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageFilename

Imagick::setImageFilename -- Sets the filename of a particular image

Description

bool Imagick::setImageFilename (string $filename)

Warning

This function is currently not documented; only its argument list is available.

Sets the filename of a particular image in a sequence.

Parameters

filename

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageFormat

Imagick::setImageFormat -- Sets the format of a particular image

Description

bool Imagick::setImageFormat (string $format)

Warning

This function is currently not documented; only its argument list is available.

Sets the format of a particular image in a sequence.

Parameters

format

String presentation of the image format. Format support depends on the ImageMagick
installation.

Return Values

Returns TRUE on success.

Imagick::setImageGamma

Imagick::setImageGamma -- Sets the image gamma

Description

bool Imagick::setImageGamma (float $gamma)

Warning

This function is currently not documented; only its argument list is available.

Sets the image gamma.

Parameters

gamma

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageGreenPrimary

Imagick::setImageGreenPrimary -- Sets the image chromaticity green primary point

Description

bool Imagick::setImageGreenPrimary (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the image chromaticity green primary point.

Parameters

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageIndex

Imagick::setImageIndex -- Set the iterator position

Description

bool Imagick::setImageIndex (int $index)

Warning

This function is currently not documented; only its argument list is available.

Set the iterator to the position in the image list specified with the index parameter.

This method has been deprecated. See Imagick::setIteratorIndex

Parameters

index

The position to set the iterator to

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageInterlaceScheme

Imagick::setImageInterlaceScheme -- Sets the image compression

Description

bool Imagick::setImageInterlaceScheme (int $interlace_scheme)

Warning

This function is currently not documented; only its argument list is available.

Sets the image compression.

Parameters

interlace_scheme

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageInterpolateMethod

Imagick::setImageInterpolateMethod -- Sets the image interpolate pixel method

Description

bool Imagick::setImageInterpolateMethod (int $method)

Warning

This function is currently not documented; only its argument list is available.

Sets the image interpolate pixel method.

Parameters

method

Return Values

Returns TRUE on success.

Imagick::setImageIterations

Imagick::setImageIterations -- Sets the image iterations

Description

bool Imagick::setImageIterations (int $iterations)

Warning

This function is currently not documented; only its argument list is available.

Sets the image iterations.

Parameters

iterations

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageMatte

Imagick::setImageMatte -- Sets the image matte channel

Description

bool Imagick::setImageMatte (bool $matte)

Warning

This function is currently not documented; only its argument list is available.

Sets the image matte channel.

Parameters

matte

Return Values

Returns TRUE on success.

Imagick::setImageMatteColor

Imagick::setImageMatteColor -- Sets the image matte color

Description

bool Imagick::setImageMatteColor (mixed $matte)

Warning

This function is currently not documented; only its argument list is available.

Sets the image matte color.

Parameters

matte

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the parameter. Previous versions allow
only an ImagickPixel object.

Imagick::setImageOpacity

Imagick::setImageOpacity -- Sets the image opacity level

Description

bool Imagick::setImageOpacity (float $opacity)

Warning

This function is currently not documented; only its argument list is available.

Sets the image to the specified opacity level. This method is present if Imagick is compiled
against ImageMagick 6.3.1 or later.

Parameters

opacity

The level of transparency: 1.0 is fully opaque and 0.0 is fully transparent.

Return Values

Returns TRUE on success.

Examples

Example #1742 - A Imagick::setImageOpacity() example

An example of using Imagick::setImageOpacity()

<?php

/* Create the object */

$image = new Imagick('source.png');

/* Set the opacity */

$image->setImageOpacity(0.7);

/* output the image */

header('Content-type: image/png');

echo $image;

?>

Imagick::setImageOrientation

Imagick::setImageOrientation -- Sets the image orientation.

Description

bool Imagick::setImageOrientation (int $orientation)

Warning

This function is currently not documented; only its argument list is available.

Sets the image orientation.

Parameters

orientation

One of the orientation constants

Return Values

Returns TRUE on success.

Imagick::setImagePage

Imagick::setImagePage -- Sets the page geometry of the image

Description

bool Imagick::setImagePage (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the page geometry of the image.

Parameters

width

height

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageProfile

Imagick::setImageProfile -- Adds a named profile to the Imagick object

Description

bool Imagick::setImageProfile (string $name, string $profile)

Warning

This function is currently not documented; only its argument list is available.

Adds a named profile to the Imagick object. If a profile with the same name already exists,
it is replaced. This method differs from the Imagick::ProfileImage() method in that it does
not apply any CMS color profiles.

Parameters

name

profile

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageProperty

Imagick::setImageProperty -- Sets an image property

Description

bool Imagick::setImageProperty (string $name, string $value)

Warning

This function is currently not documented; only its argument list is available.

Sets a named property to the image.

Parameters

name

value

Return Values

Returns TRUE on success.

Imagick::setImageRedPrimary

Imagick::setImageRedPrimary -- Sets the image chromaticity red primary point

Description

bool Imagick::setImageRedPrimary (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the image chromaticity red primary point.

Parameters

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageRenderingIntent

Imagick::setImageRenderingIntent -- Sets the image rendering intent

Description

bool Imagick::setImageRenderingIntent (int $rendering_intent)

Warning

This function is currently not documented; only its argument list is available.

Sets the image rendering intent.

Parameters

rendering_intent

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageResolution

Imagick::setImageResolution -- Sets the image resolution

Description

bool Imagick::setImageResolution (float $x_resolution, float $y_resolution)

Warning

This function is currently not documented; only its argument list is available.

Sets the image resolution.

Parameters

x_resolution

y_resolution

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageScene

Imagick::setImageScene -- Sets the image scene

Description

bool Imagick::setImageScene (int $scene)

Warning

This function is currently not documented; only its argument list is available.

Sets the image scene.

Parameters

scene

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setImageTicksPerSecond

Imagick::setImageTicksPerSecond -- Sets the image ticks-per-second

Description

bool Imagick::setImageTicksPerSecond (int $ticks_per-second)

Warning

This function is currently not documented; only its argument list is available.

Sets the image ticks-per-second.

Parameters

ticks_per-second

Return Values

Returns TRUE on success.

Imagick::setImageType

Imagick::setImageType -- Sets the image type

Description

bool Imagick::setImageType (int $image_type)

Warning

This function is currently not documented; only its argument list is available.

Sets the image type.

Parameters

image_type

Return Values

Returns TRUE on success.

Imagick::setImageUnits

Imagick::setImageUnits -- Sets the image units of resolution

Description

bool Imagick::setImageUnits (int $units)

Warning

This function is currently not documented; only its argument list is available.

Sets the image units of resolution.

Parameters

units

Return Values

Returns TRUE on success.

Imagick::setImageVirtualPixelMethod

Imagick::setImageVirtualPixelMethod -- Sets the image virtual pixel method

Description

bool Imagick::setImageVirtualPixelMethod (int $method)

Warning

This function is currently not documented; only its argument list is available.

Sets the image virtual pixel method.

Parameters

method

Return Values

Returns TRUE on success.

Imagick::setImageWhitePoint

Imagick::setImageWhitePoint -- Sets the image chromaticity white point

Description

bool Imagick::setImageWhitePoint (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the image chromaticity white point.

Parameters

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::setInterlaceScheme

Imagick::setInterlaceScheme -- Sets the image compression

Description

bool Imagick::setInterlaceScheme (int $interlace_scheme)

Warning

This function is currently not documented; only its argument list is available.

Sets the image compression.

Parameters

interlace_scheme

Return Values

Returns TRUE on success.

Imagick::setIteratorIndex

Imagick::setIteratorIndex -- Set the iterator position

Description

bool Imagick::setIteratorIndex (int $index)

Warning

This function is currently not documented; only its argument list is available.

Set the iterator to the position in the image list specified with the index parameter

Parameters

index

The position to set the iterator to

Return Values

Returns TRUE on success.

Imagick::setLastIterator

Imagick::setLastIterator -- Sets the Imagick iterator to the last image

Description

bool Imagick::setLastIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Sets the Imagick iterator to the last image.

Return Values

Returns TRUE on success.

Imagick::setOption

Imagick::setOption -- Set an option

Description

bool Imagick::setOption (string $key, string $value)

Warning

This function is currently not documented; only its argument list is available.

Associates one or options with the wand.

Parameters

key

value

Return Values

Returns TRUE on success.

Imagick::setPage

Imagick::setPage -- Sets the page geometry of the Imagick object

Description

bool Imagick::setPage (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Sets the page geometry of the Imagick object.

Parameters

width

height

x

y

Return Values

Returns TRUE on success.

Imagick::setResolution

Imagick::setResolution -- Sets the image resolution

Description

bool Imagick::setResolution (float $x_resolution, float $y_resolution)

Warning

This function is currently not documented; only its argument list is available.

Sets the image resolution.

Parameters

x_resolution

y_resolution

Return Values

Returns TRUE on success.

Imagick::setResourceLimit

Imagick::setResourceLimit -- Sets the limit for a particular resource in megabytes

Description

bool Imagick::setResourceLimit (int $type, int $limit)

Warning

This function is currently not documented; only its argument list is available.

Sets the limit for a particular resource in megabytes.

Parameters

type

limit

Return Values

Returns TRUE on success.

Imagick::setSamplingFactors

Imagick::setSamplingFactors -- Sets the image sampling factors

Description

bool Imagick::setSamplingFactors (array $factors)

Warning

This function is currently not documented; only its argument list is available.

Sets the image sampling factors.

Parameters

factors

Return Values

Returns TRUE on success.

Imagick::setSize

Imagick::setSize -- Sets the size of the Imagick object

Description

bool Imagick::setSize (int $columns, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Sets the size of the Imagick object. Set it before you read a raw image format such as
RGB, GRAY, or CMYK.

Parameters

columns

rows

Return Values

Returns TRUE on success.

Imagick::setSizeOffset

Imagick::setSizeOffset -- Sets the size and offset of the Imagick object

Description

bool Imagick::setSizeOffset (int $columns, int $rows, int $offset)

Warning

This function is currently not documented; only its argument list is available.

Sets the size and offset of the Imagick object. Set it before you read a raw image format
such as RGB, GRAY, or CMYK.

Parameters

columns

rows

offset

Return Values

Returns TRUE on success.

Imagick::setType

Imagick::setType -- Sets the image type attribute

Description

bool Imagick::setType (int $image_type)

Warning

This function is currently not documented; only its argument list is available.

Sets the image type attribute.

Parameters

image_type

Return Values

Returns TRUE on success.

Imagick::shadeImage

Imagick::shadeImage -- Creates a 3D effect

Description

bool Imagick::shadeImage (bool $gray, float $azimuth, float $elevation)

Warning

This function is currently not documented; only its argument list is available.

Shines a distant light on an image to create a three-dimensional effect. You control the
positioning of the light with azimuth and elevation; azimuth is measured in degrees off the
x axis and elevation is measured in pixels above the Z axis.

Parameters

gray

azimuth

elevation

Return Values

Returns TRUE on success.

Imagick::shadowImage

Imagick::shadowImage -- Simulates an image shadow

Description

bool Imagick::shadowImage (float $opacity, float $sigma, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Simulates an image shadow.

Parameters

opacity

sigma

x

y

Return Values

Returns TRUE on success.

Imagick::sharpenImage

Imagick::sharpenImage -- Sharpens an image

Description

bool Imagick::sharpenImage (float $radius, float $sigma [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Sharpens an image. We convolve the image with a Gaussian operator of the given radius
and standard deviation (sigma). For reasonable results, the radius should be larger than
sigma. Use a radius of 0 and selects a suitable radius for you.

Parameters

radius

sigma

channel

Return Values

Returns TRUE on success.

Imagick::shaveImage

Imagick::shaveImage -- Shaves pixels from the image edges

Description

bool Imagick::shaveImage (int $columns, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Shaves pixels from the image edges. It allocates the memory necessary for the new Image
structure and returns a pointer to the new image.

Parameters

columns

rows

Return Values

Returns TRUE on success.

Imagick::shearImage

Imagick::shearImage -- Creating a parallelogram

Description

bool Imagick::shearImage (mixed $background, float $x_shear, float $y_shear)

Warning

This function is currently not documented; only its argument list is available.

Slides one edge of an image along the X or Y axis, creating a parallelogram. An X
direction shear slides an edge along the X axis, while a Y direction shear slides an edge
along the Y axis. The amount of the shear is controlled by a shear angle. For X direction
shears, x_shear is measured relative to the Y axis, and similarly, for Y direction shears
y_shear is measured relative to the X axis. Empty triangles left over from shearing the
image are filled with the background color.

Parameters

background

The background color

x_shear

The number of degrees to shear on the x axis

y_shear

The number of degrees to shear on the y axis

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter. Previous versions
allow only an ImagickPixel object.

Imagick::sigmoidalContrastImage

Imagick::sigmoidalContrastImage -- Adjusts the contrast of an image

Description

bool Imagick::sigmoidalContrastImage (bool $sharpen, float $alpha, float $beta [, int $
channel])

Warning

This function is currently not documented; only its argument list is available.

Adjusts the contrast of an image with a non-linear sigmoidal contrast algorithm. Increase
the contrast of the image using a sigmoidal transfer function without saturating highlights
or shadows. Contrast indicates how much to increase the contrast (0 is none; 3 is typical;
20 is pushing it); mid-point indicates where midtones fall in the resultant image (0 is white;
50 is middle-gray; 100 is black). Set sharpen to TRUE to increase the image contrast
otherwise the contrast is reduced.

Parameters

sharpen

alpha

beta

channel

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::sketchImage

Imagick::sketchImage -- Simulates a pencil sketch

Description

bool Imagick::sketchImage (float $radius, float $sigma, float $angle)

Warning

This function is currently not documented; only its argument list is available.

Simulates a pencil sketch. We convolve the image with a Gaussian operator of the given
radius and standard deviation (sigma). For reasonable results, radius should be larger
than sigma. Use a radius of 0 and Imagick::sketchImage() selects a suitable radius for you.
Angle gives the angle of the blurring motion.

Parameters

radius

sigma

angle

Return Values

Returns TRUE on success.

Imagick::solarizeImage

Imagick::solarizeImage -- Applies a solarizing effect to the image

Description

bool Imagick::solarizeImage (int $threshold)

Warning

This function is currently not documented; only its argument list is available.

Applies a special effect to the image, similar to the effect achieved in a photo darkroom by
selectively exposing areas of photo sensitive paper to light. Threshold ranges from 0 to
QuantumRange and is a measure of the extent of the solarization.

Parameters

threshold

Return Values

Returns TRUE on success.

Imagick::spliceImage

Imagick::spliceImage -- Splices a solid color into the image

Description

bool Imagick::spliceImage (int $width, int $height, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Splices a solid color into the image.

Parameters

width

height

x

y

Return Values

Returns TRUE on success.

Imagick::spreadImage

Imagick::spreadImage -- Randomly displaces each pixel in a block

Description

bool Imagick::spreadImage (float $radius)

Warning

This function is currently not documented; only its argument list is available.

Special effects method that randomly displaces each pixel in a block defined by the radius
parameter.

Parameters

radius

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::steganoImage

Imagick::steganoImage -- Hides a digital watermark within the image

Description

Imagick Imagick::steganoImage (Imagick $watermark_wand, int $offset)

Warning

This function is currently not documented; only its argument list is available.

Hides a digital watermark within the image. Recover the hidden watermark later to prove
that the authenticity of an image. Offset defines the start position within the image to hide
the watermark.

Parameters

watermark_wand

offset

Return Values

Returns TRUE on success.

Imagick::stereoImage

Imagick::stereoImage -- Composites two images

Description

bool Imagick::stereoImage (Imagick $offset_wand)

Warning

This function is currently not documented; only its argument list is available.

Composites two images and produces a single image that is the composite of a left and
right image of a stereo pair.

Parameters

offset_wand

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::stripImage

Imagick::stripImage -- Strips an image of all profiles and comments

Description

bool Imagick::stripImage (void)

Warning

This function is currently not documented; only its argument list is available.

Strips an image of all profiles and comments.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::swirlImage

Imagick::swirlImage -- Swirls the pixels about the center of the image

Description

bool Imagick::swirlImage (float $degrees)

Warning

This function is currently not documented; only its argument list is available.

Swirls the pixels about the center of the image, where degrees indicates the sweep of the
arc through which each pixel is moved. You get a more dramatic effect as the degrees
move from 1 to 360.

Parameters

degrees

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::textureImage

Imagick::textureImage -- Repeatedly tiles the texture image

Description

bool Imagick::textureImage (Imagick $texture_wand)

Warning

This function is currently not documented; only its argument list is available.

Repeatedly tiles the texture image across and down the image canvas.

Parameters

texture_wand

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::thresholdImage

Imagick::thresholdImage -- Changes the value of individual pixels based on a threshold

Description

bool Imagick::thresholdImage (float $threshold [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Changes the value of individual pixels based on the intensity of each pixel compared to
threshold. The result is a high-contrast, two color image.

Parameters

threshold

channel

Return Values

Returns TRUE on success.

Imagick::thumbnailImage

Imagick::thumbnailImage -- Changes the size of an image

Description

bool Imagick::thumbnailImage (int $columns, int $rows [, bool $fit])

Warning

This function is currently not documented; only its argument list is available.

Changes the size of an image to the given dimensions and removes any associated
profiles. The goal is to produce small low cost thumbnail images suited for display on the
Web. If TRUE is given as a third parameter then columns and rows parameters are used
as maximums for each side. Both sides will be scaled down until the match or are smaller
than the parameter given for the side.

Parameters

columns

Image width

rows

Image height

fit

Whether to force maximum values

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::tintImage

Imagick::tintImage -- Applies a color vector to each pixel in the image

Description

bool Imagick::tintImage (mixed $tint, mixed $opacity)

Warning

This function is currently not documented; only its argument list is available.

Applies a color vector to each pixel in the image. The length of the vector is 0 for black and
white and at its maximum for the midtones. The vector weighing function is
f(x)=(1-(4.0*((x-0.5)*(x-0.5)))).

Parameters

tint

opacity

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as the first parameter and a float
representing the opacity value as the
second parameter. Previous versions allow
only an ImagickPixel objects.

Imagick::transformImage

Imagick::transformImage -- Convenience method for setting crop size and the image
geometry

Description

Imagick Imagick::transformImage (string $crop, string $geometry)

Warning

This function is currently not documented; only its argument list is available.

A convenience method for setting crop size and the image geometry from strings

Parameters

crop

A crop geometry string. This geometry defines a subregion of the image to crop.

geometry

An image geometry string. This geometry defines the final size of the image.

Return Values

Returns TRUE on success.

Examples

Example #1743 - Using Imagick::transformImage():

The example creates a 100x100 black image.

<?php

$image = new Imagick();

$image->newImage(300, 200, "black");

$new_image = $image->transformImage("100x100", "100x100");

$new_image->writeImage('test_out.jpg');

?>

See Also

• Imagick::adaptiveBlurImage()
• Imagick::motionBlurImage()
• Imagick::radialBlurImage()

Imagick::transverseImage

Imagick::transverseImage -- Creates a horizontal mirror image

Description

bool Imagick::transverseImage (void)

Warning

This function is currently not documented; only its argument list is available.

Creates a horizontal mirror image by reflecting the pixels around the central y-axis while
rotating them 270-degrees.

Return Values

Returns TRUE on success.

Imagick::trimImage

Imagick::trimImage -- Remove edges from the image

Description

bool Imagick::trimImage (float $fuzz)

Warning

This function is currently not documented; only its argument list is available.

Remove edges that are the background color from the image.

Parameters

fuzz

By default target must match a particular pixel color exactly. However, in many cases
two colors may differ by a small amount. The fuzz member of image defines how much
tolerance is acceptable to consider two colors as the same.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Examples

Example #1744 - Using Imagick::trimImage():

Trim an image, then display to the browser.

<?php

/* Create the object and read the image in */

$im = new Imagick("image.jpg");

/* Trim the image. */

$im->trimImage(0);

/* Ouput the image */

header("Content-Type: image/" . $im->getImageFormat());

echo $im;

?>

Imagick::uniqueImageColors

Imagick::uniqueImageColors -- Discards all but one of any pixel color

Description

bool Imagick::uniqueImageColors (void)

Warning

This function is currently not documented; only its argument list is available.

Discards all but one of any pixel color.

Return Values

Returns TRUE on success.

Imagick::unsharpMaskImage

Imagick::unsharpMaskImage -- Sharpens an image

Description

bool Imagick::unsharpMaskImage (float $radius, float $sigma, float $amount, float $
threshold [, int $channel])

Warning

This function is currently not documented; only its argument list is available.

Sharpens an image. We convolve the image with a Gaussian operator of the given radius
and standard deviation (sigma). For reasonable results, radius should be larger than
sigma. Use a radius of 0 and Imagick::UnsharpMaskImage() selects a suitable radius for
you.

Parameters

radius

sigma

amount

threshold

channel

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::valid

Imagick::valid -- Checks if the current item is valid

Description

bool Imagick::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if the current item is valid.

Return Values

Returns TRUE on success.

Imagick::vignetteImage

Imagick::vignetteImage -- Adds vignette filter to the image

Description

bool Imagick::vignetteImage (float $blackPoint, float $whitePoint, int $x, int $y)

Warning

This function is currently not documented; only its argument list is available.

Adds vignette filter to the image.

Parameters

blackPoint

whitePoint

x

y

Return Values

Returns TRUE on success.

Imagick::waveImage

Imagick::waveImage -- Adds wave filter to the image

Description

bool Imagick::waveImage (float $amplitude, float $length)

Warning

This function is currently not documented; only its argument list is available.

Adds wave filter to the image.

Parameters

amplitude

length

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws ImagickException on error.

Imagick::whiteThresholdImage

Imagick::whiteThresholdImage -- Force all pixels above the threshold into white

Description

bool Imagick::whiteThresholdImage (mixed $threshold)

Warning

This function is currently not documented; only its argument list is available.

Is like Imagick::ThresholdImage() but force all pixels above the threshold into white while
leaving all pixels below the threshold unchanged.

Parameters

threshold

Return Values

Returns TRUE on success.

ChangeLog

Version Description

2.1.0 Now allows a string representing the color
as a parameter. Previous versions allow
only an ImagickPixel object.

Imagick::writeImage

Imagick::writeImage -- Writes an image to the specified filename

Description

bool Imagick::writeImage ([string $filename])

Warning

This function is currently not documented; only its argument list is available.

Writes an image to the specified filename. If the filename parameter is NULL, the image is
written to the filename set by Imagick::ReadImage() or Imagick::SetImageFilename().

Parameters

filename

Return Values

Returns TRUE on success.

Imagick::writeImages

Imagick::writeImages -- Writes an image or image sequence

Description

bool Imagick::writeImages (string $filename, bool $adjoin)

Warning

This function is currently not documented; only its argument list is available.

Writes an image or image sequence.

Parameters

filename

adjoin

Return Values

Returns TRUE on success.

The ImagickDraw class

Class synopsis

ImagickDraw

ImagickDraw {

bool ImagickDraw::affine (array $affine)

bool ImagickDraw::annotation (float $x, float $y, string $text)

bool ImagickDraw::arc (float $sx, float $sy, float $ex, float $ey, float $sd, float $ed)

bool ImagickDraw::bezier (array $coordinates)

bool ImagickDraw::circle (float $ox, float $oy, float $px, float $py)

bool ImagickDraw::clear (void)

ImagickDraw ImagickDraw::clone (void)

bool ImagickDraw::color (float $x, float $y, int $paintMethod)

bool ImagickDraw::comment (string $comment)

bool ImagickDraw::composite (int $compose, float $x, float $y, float $width, float $
height, Imagick $compositeWand)

ImagickDraw ImagickDraw::__construct (void)

bool ImagickDraw::destroy (void)

bool ImagickDraw::ellipse (float $ox, float $oy, float $rx, float $ry, float $start,
float $end)

string ImagickDraw::getClipPath (void)

int ImagickDraw::getClipRule (void)

int ImagickDraw::getClipUnits (void)

ImagickPixel ImagickDraw::getFillColor (void)

float ImagickDraw::getFillOpacity (void)

int ImagickDraw::getFillRule (void)

string ImagickDraw::getFont (void)

string ImagickDraw::getFontFamily (void)

float ImagickDraw::getFontSize (void)

int ImagickDraw::getFontStyle (void)

int ImagickDraw::getFontWeight (void)

int ImagickDraw::getGravity (void)

bool ImagickDraw::getStrokeAntialias (void)

ImagickPixel ImagickDraw::getStrokeColor (ImagickPixel $stroke_color)

array ImagickDraw::getStrokeDashArray (void)

float ImagickDraw::getStrokeDashOffset (void)

int ImagickDraw::getStrokeLineCap (void)

int ImagickDraw::getStrokeLineJoin (void)

int ImagickDraw::getStrokeMiterLimit (void)

float ImagickDraw::getStrokeOpacity (void)

float ImagickDraw::getStrokeWidth (void)

int ImagickDraw::getTextAlignment (void)

bool ImagickDraw::getTextAntialias (void)

int ImagickDraw::getTextDecoration (void)

string ImagickDraw::getTextEncoding (void)

ImagickPixel ImagickDraw::getTextUnderColor (void)

string ImagickDraw::getVectorGraphics (void)

bool ImagickDraw::line (float $sx, float $sy, float $ex, float $ey)

bool ImagickDraw::matte (float $x, float $y, int $paintMethod)

bool ImagickDraw::pathClose (void)

bool ImagickDraw::pathCurveToAbsolute (float $x1, float $y1, float $x2, float $y2,
float $x, float $y)

bool ImagickDraw::pathCurveToQuadraticBezierAbsolute (float $x1, float $y1,
float $x, float $y)

bool ImagickDraw::pathCurveToQuadraticBezierRelative (float $x1, float $y1, float
$x, float $y)

bool ImagickDraw::pathCurveToQuadraticBezierSmoothAbsolute (float $x, float
$y)

bool ImagickDraw::pathCurveToQuadraticBezierSmoothRelative (float $x, float $
y)

bool ImagickDraw::pathCurveToRelative (float $x1, float $y1, float $x2, float $y2,
float $x, float $y)

bool ImagickDraw::pathCurveToSmoothAbsolute (float $x2, float $y2, float $x,
float $y)

bool ImagickDraw::pathCurveToSmoothRelative (float $x2, float $y2, float $x, float
$y)

bool ImagickDraw::pathEllipticArcAbsolute (float $rx, float $ry, float $
x_axis_rotation, bool $large_arc_flag, bool $sweep_flag, float $x, float $y)

bool ImagickDraw::pathEllipticArcRelative (float $rx, float $ry, float $
x_axis_rotation, bool $large_arc_flag, bool $sweep_flag, float $x, float $y)

bool ImagickDraw::pathFinish (void)

bool ImagickDraw::pathLineToAbsolute (float $x, float $y)

bool ImagickDraw::pathLineToHorizontalAbsolute (float $x)

bool ImagickDraw::pathLineToHorizontalRelative (float $x)

bool ImagickDraw::pathLineToRelative (float $x, float $y)

bool ImagickDraw::pathLineToVerticalAbsolute (float $y)

bool ImagickDraw::pathLineToVerticalRelative (float $y)

bool ImagickDraw::pathMoveToAbsolute (float $x, float $y)

bool ImagickDraw::pathMoveToRelative (float $x, float $y)

bool ImagickDraw::pathStart (void)

bool ImagickDraw::point (float $x, float $y)

bool ImagickDraw::polygon (array $coordinates)

bool ImagickDraw::polyline (array $coordinates)

bool ImagickDraw::pop (void)

bool ImagickDraw::popClipPath (void)

bool ImagickDraw::popDefs (void)

bool ImagickDraw::popPattern (void)

bool ImagickDraw::push (void)

bool ImagickDraw::pushClipPath (string $clip_mask_id)

bool ImagickDraw::pushDefs (void)

bool ImagickDraw::pushPattern (string $pattern_id, float $x, float $y, float $width,
float $height)

bool ImagickDraw::rectangle (float $x1, float $y1, float $x2, float $y2)

bool ImagickDraw::render (void)

bool ImagickDraw::rotate (float $degrees)

bool ImagickDraw::roundRectangle (float $x1, float $y1, float $x2, float $y2, float $
rx, float $ry)

bool ImagickDraw::scale (float $x, float $y)

bool ImagickDraw::setClipPath (string $clip_mask)

bool ImagickDraw::setClipRule (int $fill_rule)

bool ImagickDraw::setClipUnits (int $clip_units)

bool ImagickDraw::setFillAlpha (float $opacity)

bool ImagickDraw::setFillColor (ImagickPixel $fill_pixel)

bool ImagickDraw::setFillOpacity (float $fillOpacity)

bool ImagickDraw::setFillPatternURL (string $fill_url)

bool ImagickDraw::setFillRule (int $fill_rule)

bool ImagickDraw::setFont (string $font_name)

bool ImagickDraw::setFontFamily (string $font_family)

bool ImagickDraw::setFontSize (float $pointsize)

bool ImagickDraw::setFontStretch (int $fontStretch)

bool ImagickDraw::setFontStyle (int $style)

bool ImagickDraw::setFontWeight (int $font_weight)

bool ImagickDraw::setGravity (int $gravity)

bool ImagickDraw::setStrokeAlpha (float $opacity)

bool ImagickDraw::setStrokeAntialias (bool $stroke_antialias)

bool ImagickDraw::setStrokeColor (ImagickPixel $stroke_pixel)

bool ImagickDraw::setStrokeDashArray (array $dashArray)

bool ImagickDraw::setStrokeDashOffset (float $dash_offset)

bool ImagickDraw::setStrokeLineCap (int $linecap)

bool ImagickDraw::setStrokeLineJoin (int $linejoin)

bool ImagickDraw::setStrokeMiterLimit (int $miterlimit)

bool ImagickDraw::setStrokeOpacity (float $stroke_opacity)

bool ImagickDraw::setStrokePatternURL (string $stroke_url)

bool ImagickDraw::setStrokeWidth (float $stroke_width)

bool ImagickDraw::setTextAlignment (int $alignment)

bool ImagickDraw::setTextAntialias (bool $antiAlias)

bool ImagickDraw::setTextDecoration (int $decoration)

bool ImagickDraw::setTextEncoding (string $encoding)

bool ImagickDraw::setTextUnderColor (ImagickPixel $under_color)

bool ImagickDraw::setVectorGraphics (string $xml)

bool ImagickDraw::setViewbox (int $x1, int $y1, int $x2, int $y2)

bool ImagickDraw::skewX (float $degrees)

bool ImagickDraw::skewY (float $degrees)

bool ImagickDraw::translate (float $x, float $y)
}

ImagickDraw::affine

ImagickDraw::affine -- Adjusts the current affine transformation matrix

Description

bool ImagickDraw::affine (array $affine)

Warning

This function is currently not documented; only its argument list is available.

Adjusts the current affine transformation matrix with the specified affine transformation
matrix.

Parameters

affine

Affine matrix parameters

Return Values

No value is returned.

ImagickDraw::annotation

ImagickDraw::annotation -- Draws text on the image

Description

bool ImagickDraw::annotation (float $x, float $y, string $text)

Warning

This function is currently not documented; only its argument list is available.

Draws text on the image.

Parameters

x

The x coordinate where text is drawn

y

The y coordinate where text is drawn

text

The text to draw on the image

Return Values

No value is returned.

ImagickDraw::arc

ImagickDraw::arc -- Draws an arc

Description

bool ImagickDraw::arc (float $sx, float $sy, float $ex, float $ey, float $sd, float $ed)

Warning

This function is currently not documented; only its argument list is available.

Draws an arc falling within a specified bounding rectangle on the image.

Parameters

sx

Starting x ordinate of bounding rectangle

sy

starting y ordinate of bounding rectangle

ex

ending x ordinate of bounding rectangle

ey

ending y ordinate of bounding rectangle

sd

starting degrees of rotation

ed

ending degrees of rotation

Return Values

No value is returned.

ImagickDraw::bezier

ImagickDraw::bezier -- Draws a bezier curve

Description

bool ImagickDraw::bezier (array $coordinates)

Warning

This function is currently not documented; only its argument list is available.

Draws a bezier curve through a set of points on the image.

Parameters

coordinates

Multidimensional array like array(array('x' => 1, 'y' => 2), array('x' => 3, 'y' => 4))

Return Values

No value is returned.

ImagickDraw::circle

ImagickDraw::circle -- Draws a circle

Description

bool ImagickDraw::circle (float $ox, float $oy, float $px, float $py)

Warning

This function is currently not documented; only its argument list is available.

Draws a circle on the image.

Parameters

ox

origin x coordinate

oy

origin y coordinate

px

perimeter x coordinate

py

perimeter y coordinate

Return Values

No value is returned.

ImagickDraw::clear

ImagickDraw::clear -- Clears the ImagickDraw

Description

bool ImagickDraw::clear (void)

Warning

This function is currently not documented; only its argument list is available.

Clears the ImagickDraw object of any accumulated commands, and resets the settings it
contains to their defaults.

Return Values

Returns an ImagickDraw object.

ImagickDraw::clone

ImagickDraw::clone -- Makes an exact copy of the specified ImagickDraw object

Description

ImagickDraw ImagickDraw::clone (void)

Warning

This function is currently not documented; only its argument list is available.

Makes an exact copy of the specified ImagickDraw object.

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

ImagickDraw::color

ImagickDraw::color -- Draws color on image

Description

bool ImagickDraw::color (float $x, float $y, int $paintMethod)

Warning

This function is currently not documented; only its argument list is available.

Draws color on image using the current fill color, starting at specified position, and using
specified paint method.

Parameters

x

x coordinate of the paint

y

y coordinate of the paint

paintMethod

one of the PAINT_ constants

Return Values

No value is returned.

ImagickDraw::comment

ImagickDraw::comment -- Adds a comment

Description

bool ImagickDraw::comment (string $comment)

Warning

This function is currently not documented; only its argument list is available.

Adds a comment to a vector output stream.

Parameters

comment

The comment string to add to vector output stream

Return Values

No value is returned.

ImagickDraw::composite

ImagickDraw::composite -- Composites an image onto the current image

Description

bool ImagickDraw::composite (int $compose, float $x, float $y, float $width, float $
height, Imagick $compositeWand)

Warning

This function is currently not documented; only its argument list is available.

Composites an image onto the current image, using the specified composition operator,
specified position, and at the specified size.

Parameters

compose

composition operator. One of COMPOSITE_ constants

x

x coordinate of the top left corner

y

y coordinate of the top left corner

width

width of the composition image

height

height of the composition image

compositeWand

the Imagick object where composition image is taken from

Return Values

Returns TRUE on success.

ImagickDraw::__construct

ImagickDraw::__construct -- The ImagickDraw constructor

Description

ImagickDraw ImagickDraw::__construct (void)

Warning

This function is currently not documented; only its argument list is available.

The ImagickDraw constructor

Return Values

No value is returned.

ImagickDraw::destroy

ImagickDraw::destroy -- Frees all associated resources

Description

bool ImagickDraw::destroy (void)

Warning

This function is currently not documented; only its argument list is available.

Frees all resources associated with the ImagickDraw object.

Return Values

No value is returned.

ImagickDraw::ellipse

ImagickDraw::ellipse -- Draws an ellipse on the image

Description

bool ImagickDraw::ellipse (float $ox, float $oy, float $rx, float $ry, float $start, float $
end)

Warning

This function is currently not documented; only its argument list is available.

Draws an ellipse on the image.

Parameters

ox

oy

rx

ry

start

end

Return Values

No value is returned.

ImagickDraw::getClipPath

ImagickDraw::getClipPath -- Obtains the current clipping path ID

Description

string ImagickDraw::getClipPath (void)

Warning

This function is currently not documented; only its argument list is available.

Obtains the current clipping path ID.

Return Values

Returns a string containing the clip path ID or false if no clip path exists.

ImagickDraw::getClipRule

ImagickDraw::getClipRule -- Returns the current polygon fill rule

Description

int ImagickDraw::getClipRule (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the current polygon fill rule to be used by the clipping path.

Return Values

Returns one of the FILLRULE_ constants.

ImagickDraw::getClipUnits

ImagickDraw::getClipUnits -- Returns the interpretation of clip path units

Description

int ImagickDraw::getClipUnits (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the interpretation of clip path units.

Return Values

Returns an int on success.

ImagickDraw::getFillColor

ImagickDraw::getFillColor -- Returns the fill color

Description

ImagickPixel ImagickDraw::getFillColor (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the fill color used for drawing filled objects.

Return Values

Returns an ImagickPixel object.

ImagickDraw::getFillOpacity

ImagickDraw::getFillOpacity -- Returns the opacity used when drawing

Description

float ImagickDraw::getFillOpacity (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the opacity used when drawing using the fill color or fill texture. Fully opaque is
1.0.

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

ImagickDraw::getFillRule

ImagickDraw::getFillRule -- Returns the fill rule

Description

int ImagickDraw::getFillRule (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the fill rule used while drawing polygons.

Return Values

Returns a FILLRULE_ constant

ImagickDraw::getFont

ImagickDraw::getFont -- Returns the font

Description

string ImagickDraw::getFont (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a string specifying the font used when annotating with text.

Return Values

Returns a string on success and false if no font is set.

ImagickDraw::getFontFamily

ImagickDraw::getFontFamily -- Returns the font family

Description

string ImagickDraw::getFontFamily (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the font family to use when annotating with text.

Return Values

Returns the font family currently selected or false if font family is not set.

ImagickDraw::getFontSize

ImagickDraw::getFontSize -- Returns the font pointsize

Description

float ImagickDraw::getFontSize (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the font pointsize used when annotating with text.

Return Values

Returns the font size associated with the current ImagickDraw object.

ImagickDraw::getFontStyle

ImagickDraw::getFontStyle -- Returns the font style

Description

int ImagickDraw::getFontStyle (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the font style used when annotating with text.

Return Values

Returns the font style constant (STYLE_) associated with the ImagickDraw object or 0 if no
style is set.

ImagickDraw::getFontWeight

ImagickDraw::getFontWeight -- Returns the font weight

Description

int ImagickDraw::getFontWeight (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the font weight used when annotating with text.

Return Values

Returns an int on success and 0 if no weight is set.

ImagickDraw::getGravity

ImagickDraw::getGravity -- Returns the text placement gravity

Description

int ImagickDraw::getGravity (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the text placement gravity used when annotating with text.

Return Values

Returns a GRAVITY_ constant on success and 0 if no gravity is set.

ImagickDraw::getStrokeAntialias

ImagickDraw::getStrokeAntialias -- Returns the current stroke antialias setting

Description

bool ImagickDraw::getStrokeAntialias (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the current stroke antialias setting. Stroked outlines are antialiased by default.
When antialiasing is disabled stroked pixels are thresholded to determine if the stroke
color or underlying canvas color should be used.

Return Values

Returns TRUE if antialiasing is on and false if it is off.

ImagickDraw::getStrokeColor

ImagickDraw::getStrokeColor -- Returns the color used for stroking object outlines

Description

ImagickPixel ImagickDraw::getStrokeColor (ImagickPixel $stroke_color)

Warning

This function is currently not documented; only its argument list is available.

Returns the color used for stroking object outlines.

Parameters

stroke_color

Return Values

Returns an ImagickPixel object which describes the color.

ImagickDraw::getStrokeDashArray

ImagickDraw::getStrokeDashArray -- Returns an array representing the pattern of dashes
and gaps used to stroke paths

Description

array ImagickDraw::getStrokeDashArray (void)

Warning

This function is currently not documented; only its argument list is available.

Returns an array representing the pattern of dashes and gaps used to stroke paths.

Return Values

Returns an array on success and empty array if not set.

ImagickDraw::getStrokeDashOffset

ImagickDraw::getStrokeDashOffset -- Returns the offset into the dash pattern to start the
dash

Description

float ImagickDraw::getStrokeDashOffset (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the offset into the dash pattern to start the dash.

Return Values

Returns a float representing the offset and 0 if it's not set.

ImagickDraw::getStrokeLineCap

ImagickDraw::getStrokeLineCap -- Returns the shape to be used at the end of open
subpaths when they are stroked

Description

int ImagickDraw::getStrokeLineCap (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the shape to be used at the end of open subpaths when they are stroked.

Return Values

Returns one of the LINECAP_ constants or 0 if stroke linecap is not set.

ImagickDraw::getStrokeLineJoin

ImagickDraw::getStrokeLineJoin -- Returns the shape to be used at the corners of paths
when they are stroked

Description

int ImagickDraw::getStrokeLineJoin (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the shape to be used at the corners of paths (or other vector shapes) when they
are stroked.

Return Values

Returns one of the LINEJOIN_ constants or 0 if stroke line join is not set.

ImagickDraw::getStrokeMiterLimit

ImagickDraw::getStrokeMiterLimit -- Returns the stroke miter limit

Description

int ImagickDraw::getStrokeMiterLimit (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the miter limit. When two line segments meet at a sharp angle and miter joins
have been specified for 'lineJoin', it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miterLimit' imposes a limit on the ratio of the
miter length to the 'lineWidth'.

Return Values

Returns an int describing the miter limit and 0 if no miter limit is set.

ImagickDraw::getStrokeOpacity

ImagickDraw::getStrokeOpacity -- Returns the opacity of stroked object outlines

Description

float ImagickDraw::getStrokeOpacity (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the opacity of stroked object outlines.

Return Values

Returns a double describing the opacity.

ImagickDraw::getStrokeWidth

ImagickDraw::getStrokeWidth -- Returns the width of the stroke used to draw object
outlines

Description

float ImagickDraw::getStrokeWidth (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the width of the stroke used to draw object outlines.

Return Values

Returns a double describing the stroke width.

ImagickDraw::getTextAlignment

ImagickDraw::getTextAlignment -- Returns the text alignment

Description

int ImagickDraw::getTextAlignment (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the alignment applied when annotating with text.

Return Values

Returns one of the ALIGN_ constants and 0 if no align is set.

ImagickDraw::getTextAntialias

ImagickDraw::getTextAntialias -- Returns the current text antialias setting

Description

bool ImagickDraw::getTextAntialias (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the current text antialias setting, which determines whether text is antialiased.
Text is antialiased by default.

Return Values

Returns TRUE if text is antialiased and false if not.

ImagickDraw::getTextDecoration

ImagickDraw::getTextDecoration -- Returns the text decoration

Description

int ImagickDraw::getTextDecoration (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the decoration applied when annotating with text.

Return Values

Returns one of the DECORATION_ constants and 0 if no decoration is set.

ImagickDraw::getTextEncoding

ImagickDraw::getTextEncoding -- Returns the code set used for text annotations

Description

string ImagickDraw::getTextEncoding (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a string which specifies the code set used for text annotations.

Return Values

Returns a string specifying the code set or false if text encoding is not set.

ImagickDraw::getTextUnderColor

ImagickDraw::getTextUnderColor -- Returns the text under color

Description

ImagickPixel ImagickDraw::getTextUnderColor (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the color of a background rectangle to place under text annotations.

Return Values

Returns an ImagickPixel object describing the color.

ImagickDraw::getVectorGraphics

ImagickDraw::getVectorGraphics -- Returns a string containing vector graphics

Description

string ImagickDraw::getVectorGraphics (void)

Warning

This function is currently not documented; only its argument list is available.

Returns a string which specifies the vector graphics generated by any graphics calls made
since the ImagickDraw object was instantiated.

Return Values

Returns a string containing the vector graphics.

ImagickDraw::line

ImagickDraw::line -- Draws a line

Description

bool ImagickDraw::line (float $sx, float $sy, float $ex, float $ey)

Warning

This function is currently not documented; only its argument list is available.

Draws a line on the image using the current stroke color, stroke opacity, and stroke width.

Parameters

sx

starting x coordinate

sy

starting y coordinate

ex

ending x coordinate

ey

ending y coordinate

Return Values

No value is returned.

ImagickDraw::matte

ImagickDraw::matte -- Paints on the image's opacity channel

Description

bool ImagickDraw::matte (float $x, float $y, int $paintMethod)

Warning

This function is currently not documented; only its argument list is available.

Paints on the image's opacity channel in order to set effected pixels to transparent. to
influence the opacity of pixels.

Parameters

x

x coordinate of the matte

y

y coordinate of the matte

paintMethod

PAINT_ constant

Return Values

What the function returns, first on success, then on failure. See also the &return.success;
entity

ImagickDraw::pathClose

ImagickDraw::pathClose -- Adds a path element to the current path

Description

bool ImagickDraw::pathClose (void)

Warning

This function is currently not documented; only its argument list is available.

Adds a path element to the current path which closes the current subpath by drawing a
straight line from the current point to the current subpath's most recent starting point
(usually, the most recent moveto point).

Return Values

No value is returned.

ImagickDraw::pathCurveToAbsolute

ImagickDraw::pathCurveToAbsolute -- Draws a cubic Bezier curve

Description

bool ImagickDraw::pathCurveToAbsolute (float $x1, float $y1, float $x2, float $y2, float
$x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a cubic Bezier curve from the current point to (x,y) using (x1,y1) as the control point
at the beginning of the curve and (x2,y2) as the control point at the end of the curve using
absolute coordinates. At the end of the command, the new current point becomes the final
(x,y) coordinate pair used in the polybezier.

Parameters

x1

x coordinate of the first control point

y1

y coordinate of the first control point

x2

x coordinate of the second control point

y2

y coordinate of the first control point

x

x coordinate of the curve end

y

y coordinate of the curve end

Return Values

No value is returned.

ImagickDraw::pathCurveToQuadraticBezierAbsolu
te

ImagickDraw::pathCurveToQuadraticBezierAbsolute -- Draws a quadratic Bezier curve

Description

bool ImagickDraw::pathCurveToQuadraticBezierAbsolute (float $x1, float $y1, float $
x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a quadratic Bezier curve from the current point to (x,y) using (x1,y1) as the control
point using absolute coordinates. At the end of the command, the new current point
becomes the final (x,y) coordinate pair used in the polybezier.

Parameters

x1

x coordinate of the control point

y1

y coordinate of the control point

x

x coordinate of the end point

y

y coordinate of the end point

Return Values

No value is returned.

ImagickDraw::pathCurveToQuadraticBezierRelativ
e

ImagickDraw::pathCurveToQuadraticBezierRelative -- Draws a quadratic Bezier curve

Description

bool ImagickDraw::pathCurveToQuadraticBezierRelative (float $x1, float $y1, float $x,
float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a quadratic Bezier curve from the current point to (x,y) using (x1,y1) as the control
point using relative coordinates. At the end of the command, the new current point
becomes the final (x,y) coordinate pair used in the polybezier.

Parameters

x1

starting x coordinate

y1

starting y coordinate

x

ending x coordinate

y

ending y coordinate

Return Values

No value is returned.

ImagickDraw::pathCurveToQuadraticBezierSmoot
hAbsolute

ImagickDraw::pathCurveToQuadraticBezierSmoothAbsolute -- Draws a quadratic Bezier
curve

Description

bool ImagickDraw::pathCurveToQuadraticBezierSmoothAbsolute (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a quadratic Bezier curve (using relative coordinates) from the current point to (x,y).
The control point is assumed to be the reflection of the control point on the previous
command relative to the current point. (If there is no previous command or if the previous
command was not a DrawPathCurveToQuadraticBezierAbsolute,
DrawPathCurveToQuadraticBezierRelative,
DrawPathCurveToQuadraticBezierSmoothAbsolut or
DrawPathCurveToQuadraticBezierSmoothRelative, assume the control point is coincident
with the current point.). At the end of the command, the new current point becomes the
final (x,y) coordinate pair used in the polybezier.

Parameters

x

ending x coordinate

y

ending y coordinate

Return Values

No value is returned.

ImagickDraw::pathCurveToQuadraticBezierSmoot
hRelative

ImagickDraw::pathCurveToQuadraticBezierSmoothRelative -- Draws a quadratic Bezier
curve

Description

bool ImagickDraw::pathCurveToQuadraticBezierSmoothRelative (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a quadratic Bezier curve (using relative coordinates) from the current point to (x, y).
The control point is assumed to be the reflection of the control point on the previous
command relative to the current point. (If there is no previous command or if the previous
command was not a DrawPathCurveToQuadraticBezierAbsolute,
DrawPathCurveToQuadraticBezierRelative,
DrawPathCurveToQuadraticBezierSmoothAbsolut or
DrawPathCurveToQuadraticBezierSmoothRelative, assume the control point is coincident
with the current point). At the end of the command, the new current point becomes the
final (x, y) coordinate pair used in the polybezier.

Parameters

x

ending x coordinate

y

ending y coordinate

Return Values

No value is returned.

ImagickDraw::pathCurveToRelative

ImagickDraw::pathCurveToRelative -- Draws a cubic Bezier curve

Description

bool ImagickDraw::pathCurveToRelative (float $x1, float $y1, float $x2, float $y2, float
$x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a cubic Bezier curve from the current point to (x,y) using (x1,y1) as the control point
at the beginning of the curve and (x2,y2) as the control point at the end of the curve using
relative coordinates. At the end of the command, the new current point becomes the final
(x,y) coordinate pair used in the polybezier.

Parameters

x1

x coordinate of starting control point

y1

y coordinate of starting control point

x2

x coordinate of ending control point

y2

y coordinate of ending control point

x

ending x coordinate

y

ending y coordinate

Return Values

No value is returned.

ImagickDraw::pathCurveToSmoothAbsolute

ImagickDraw::pathCurveToSmoothAbsolute -- Draws a cubic Bezier curve

Description

bool ImagickDraw::pathCurveToSmoothAbsolute (float $x2, float $y2, float $x, float $
y)

Warning

This function is currently not documented; only its argument list is available.

Draws a cubic Bezier curve from the current point to (x,y) using absolute coordinates. The
first control point is assumed to be the reflection of the second control point on the
previous command relative to the current point. (If there is no previous command or if the
previous command was not an DrawPathCurveToAbsolute, DrawPathCurveToRelative,
DrawPathCurveToSmoothAbsolute or DrawPathCurveToSmoothRelative, assume the first
control point is coincident with the current point.) (x2,y2) is the second control point (i.e.,
the control point at the end of the curve). At the end of the command, the new current point
becomes the final (x,y) coordinate pair used in the polybezier.

Parameters

x2

x coordinate of the second control point

y2

y coordinate of the second control point

x

x coordinate of the ending point

y

y coordinate of the ending point

Return Values

No value is returned.

ImagickDraw::pathCurveToSmoothRelative

ImagickDraw::pathCurveToSmoothRelative -- Draws a cubic Bezier curve

Description

bool ImagickDraw::pathCurveToSmoothRelative (float $x2, float $y2, float $x, float $y
)

Warning

This function is currently not documented; only its argument list is available.

Draws a cubic Bezier curve from the current point to (x,y) using relative coordinates. The
first control point is assumed to be the reflection of the second control point on the
previous command relative to the current point. (If there is no previous command or if the
previous command was not an DrawPathCurveToAbsolute, DrawPathCurveToRelative,
DrawPathCurveToSmoothAbsolute or DrawPathCurveToSmoothRelative, assume the first
control point is coincident with the current point.) (x2,y2) is the second control point (i.e.,
the control point at the end of the curve). At the end of the command, the new current point
becomes the final (x,y) coordinate pair used in the polybezier.

Parameters

x2

x coordinate of the second control point

y2

y coordinate of the second control point

x

x coordinate of the ending point

y

y coordinate of the ending point

Return Values

No value is returned.

ImagickDraw::pathEllipticArcAbsolute

ImagickDraw::pathEllipticArcAbsolute -- Draws an elliptical arc

Description

bool ImagickDraw::pathEllipticArcAbsolute (float $rx, float $ry, float $
x_axis_rotation, bool $large_arc_flag, bool $sweep_flag, float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws an elliptical arc from the current point to (x, y) using absolute coordinates. The size
and orientation of the ellipse are defined by two radii (rx, ry) and an xAxisRotation, which
indicates how the ellipse as a whole is rotated relative to the current coordinate system.
The center (cx, cy) of the ellipse is calculated automatically to satisfy the constraints
imposed by the other parameters. largeArcFlag and sweepFlag contribute to the automatic
calculations and help determine how the arc is drawn. If largeArcFlag is TRUE then draw
the larger of the available arcs. If sweepFlag is true, then draw the arc matching a
clock-wise rotation.

Parameters

rx

x radius

ry

y radius

x_axis_rotation

x axis rotation

large_arc_flag

large arc flag

sweep_flag

sweep flag

x

x coordinate

y

y coordinate

Return Values

No value is returned.

ImagickDraw::pathEllipticArcRelative

ImagickDraw::pathEllipticArcRelative -- Draws an elliptical arc

Description

bool ImagickDraw::pathEllipticArcRelative (float $rx, float $ry, float $x_axis_rotation
, bool $large_arc_flag, bool $sweep_flag, float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws an elliptical arc from the current point to (x, y) using relative coordinates. The size
and orientation of the ellipse are defined by two radii (rx, ry) and an xAxisRotation, which
indicates how the ellipse as a whole is rotated relative to the current coordinate system.
The center (cx, cy) of the ellipse is calculated automatically to satisfy the constraints
imposed by the other parameters. largeArcFlag and sweepFlag contribute to the automatic
calculations and help determine how the arc is drawn. If largeArcFlag is TRUE then draw
the larger of the available arcs. If sweepFlag is true, then draw the arc matching a
clock-wise rotation.

Parameters

rx

x radius

ry

y radius

x_axis_rotation

x axis rotation

large_arc_flag

large arc flag

sweep_flag

sweep flag

x

x coordinate

y

y coordinate

Return Values

No value is returned.

ImagickDraw::pathFinish

ImagickDraw::pathFinish -- Terminates the current path

Description

bool ImagickDraw::pathFinish (void)

Warning

This function is currently not documented; only its argument list is available.

Terminates the current path.

Return Values

No value is returned.

ImagickDraw::pathLineToAbsolute

ImagickDraw::pathLineToAbsolute -- Draws a line path

Description

bool ImagickDraw::pathLineToAbsolute (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a line path from the current point to the given coordinate using absolute
coordinates. The coordinate then becomes the new current point.

Parameters

x

starting x coordinate

y

ending x coordinate

Return Values

No value is returned.

ImagickDraw::pathLineToHorizontalAbsolute

ImagickDraw::pathLineToHorizontalAbsolute -- Draws a horizontal line path

Description

bool ImagickDraw::pathLineToHorizontalAbsolute (float $x)

Warning

This function is currently not documented; only its argument list is available.

Draws a horizontal line path from the current point to the target point using absolute
coordinates. The target point then becomes the new current point.

Parameters

x

x coordinate

Return Values

No value is returned.

ImagickDraw::pathLineToHorizontalRelative

ImagickDraw::pathLineToHorizontalRelative -- Draws a horizontal line

Description

bool ImagickDraw::pathLineToHorizontalRelative (float $x)

Warning

This function is currently not documented; only its argument list is available.

Draws a horizontal line path from the current point to the target point using relative
coordinates. The target point then becomes the new current point.

Parameters

x

x coordinate

Return Values

No value is returned.

ImagickDraw::pathLineToRelative

ImagickDraw::pathLineToRelative -- Draws a line path

Description

bool ImagickDraw::pathLineToRelative (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a line path from the current point to the given coordinate using relative coordinates.
The coordinate then becomes the new current point.

Parameters

x

starting x coordinate

y

starting y coordinate

Return Values

No value is returned.

ImagickDraw::pathLineToVerticalAbsolute

ImagickDraw::pathLineToVerticalAbsolute -- Draws a vertical line

Description

bool ImagickDraw::pathLineToVerticalAbsolute (float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a vertical line path from the current point to the target point using absolute
coordinates. The target point then becomes the new current point.

Parameters

y

y coordinate

Return Values

No value is returned.

ImagickDraw::pathLineToVerticalRelative

ImagickDraw::pathLineToVerticalRelative -- Draws a vertical line path

Description

bool ImagickDraw::pathLineToVerticalRelative (float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a vertical line path from the current point to the target point using relative
coordinates. The target point then becomes the new current point.

Parameters

y

y coordinate

Return Values

No value is returned.

ImagickDraw::pathMoveToAbsolute

ImagickDraw::pathMoveToAbsolute -- Starts a new sub-path

Description

bool ImagickDraw::pathMoveToAbsolute (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Starts a new sub-path at the given coordinate using absolute coordinates. The current
point then becomes the specified coordinate.

Parameters

x

x coordinate of the starting point

y

y coordinate of the starting point

Return Values

No value is returned.

ImagickDraw::pathMoveToRelative

ImagickDraw::pathMoveToRelative -- Starts a new sub-path

Description

bool ImagickDraw::pathMoveToRelative (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Starts a new sub-path at the given coordinate using relative coordinates. The current point
then becomes the specified coordinate.

Parameters

x

target x coordinate

y

target y coordinate

Return Values

No value is returned.

ImagickDraw::pathStart

ImagickDraw::pathStart -- Declares the start of a path drawing list

Description

bool ImagickDraw::pathStart (void)

Warning

This function is currently not documented; only its argument list is available.

Declares the start of a path drawing list which is terminated by a matching
DrawPathFinish() command. All other DrawPath commands must be enclosed between a
and a DrawPathFinish() command. This is because path drawing commands are
subordinate commands and they do not function by themselves.

Return Values

No value is returned.

ImagickDraw::point

ImagickDraw::point -- Draws a point

Description

bool ImagickDraw::point (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Draws a point using the current stroke color and stroke thickness at the specified
coordinates.

Parameters

x

point's x coordinate

y

point's y coordinate

Return Values

No value is returned.

ImagickDraw::polygon

ImagickDraw::polygon -- Draws a polygon

Description

bool ImagickDraw::polygon (array $coordinates)

Warning

This function is currently not documented; only its argument list is available.

Draws a polygon using the current stroke, stroke width, and fill color or texture, using the
specified array of coordinates.

Parameters

coordinates

multidimensional array like array(array('x' => 3, 'y' => 4), array('x' => 2, 'y' => 6));

Return Values

Returns TRUE on success.

ImagickDraw::polyline

ImagickDraw::polyline -- Draws a polyline

Description

bool ImagickDraw::polyline (array $coordinates)

Warning

This function is currently not documented; only its argument list is available.

Draws a polyline using the current stroke, stroke width, and fill color or texture, using the
specified array of coordinates.

Parameters

coordinates

array of x and y coordinates: array(array('x' => 4, 'y' => 6), array('x' => 8, 'y' => 10))

Return Values

Returns TRUE on success.

ImagickDraw::pop

ImagickDraw::pop -- Destroys the current ImagickDraw in the stack, and returns to the
previously pushed ImagickDraw

Description

bool ImagickDraw::pop (void)

Warning

This function is currently not documented; only its argument list is available.

Destroys the current ImagickDraw in the stack, and returns to the previously pushed
ImagickDraw. Multiple ImagickDraws may exist. It is an error to attempt to pop more
ImagickDraws than have been pushed, and it is proper form to pop all ImagickDraws
which have been pushed.

Return Values

Returns TRUE on success and false on failure.

ImagickDraw::popClipPath

ImagickDraw::popClipPath -- Terminates a clip path definition

Description

bool ImagickDraw::popClipPath (void)

Warning

This function is currently not documented; only its argument list is available.

Terminates a clip path definition.

Return Values

No value is returned.

ImagickDraw::popDefs

ImagickDraw::popDefs -- Terminates a definition list

Description

bool ImagickDraw::popDefs (void)

Warning

This function is currently not documented; only its argument list is available.

Terminates a definition list.

Return Values

No value is returned.

ImagickDraw::popPattern

ImagickDraw::popPattern -- Terminates a pattern definition

Description

bool ImagickDraw::popPattern (void)

Warning

This function is currently not documented; only its argument list is available.

Terminates a pattern definition.

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::push

ImagickDraw::push -- Clones the current ImagickDraw and pushes it to the stack

Description

bool ImagickDraw::push (void)

Warning

This function is currently not documented; only its argument list is available.

Clones the current ImagickDraw to create a new ImagickDraw, which is then added to the
ImagickDraw stack. The original drawing ImagickDraw(s) may be returned to by invoking
pop(). The ImagickDraws are stored on a ImagickDraw stack. For every Pop there must
have already been an equivalent Push.

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::pushClipPath

ImagickDraw::pushClipPath -- Starts a clip path definition

Description

bool ImagickDraw::pushClipPath (string $clip_mask_id)

Warning

This function is currently not documented; only its argument list is available.

Starts a clip path definition which is comprized of any number of drawing commands and
terminated by a ImagickDraw::popClipPath() command.

Parameters

clip_mask_id

Clip mask Id

Return Values

No value is returned.

ImagickDraw::pushDefs

ImagickDraw::pushDefs -- Indicates that following commands create named elements for
early processing

Description

bool ImagickDraw::pushDefs (void)

Warning

This function is currently not documented; only its argument list is available.

Indicates that commands up to a terminating ImagickDraw::popDefs() command create
named elements (e.g. clip-paths, textures, etc.) which may safely be processed earlier for
the sake of efficiency.

Return Values

No value is returned.

ImagickDraw::pushPattern

ImagickDraw::pushPattern -- Indicates that subsequent commands up to a
ImagickDraw::opPattern() command comprise the definition of a named pattern

Description

bool ImagickDraw::pushPattern (string $pattern_id, float $x, float $y, float $width,
float $height)

Warning

This function is currently not documented; only its argument list is available.

Indicates that subsequent commands up to a DrawPopPattern() command comprise the
definition of a named pattern. The pattern space is assigned top left corner coordinates, a
width and height, and becomes its own drawing space. Anything which can be drawn may
be used in a pattern definition. Named patterns may be used as stroke or brush definitions.

Parameters

pattern_id

the pattern Id

x

x coordinate of the top-left corner

y

y coordinate of the top-left corner

width

width of the pattern

height

height of the pattern

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::rectangle

ImagickDraw::rectangle -- Draws a rectangle

Description

bool ImagickDraw::rectangle (float $x1, float $y1, float $x2, float $y2)

Warning

This function is currently not documented; only its argument list is available.

Draws a rectangle given two coordinates and using the current stroke, stroke width, and fill
settings.

Parameters

x1

x coordinate of the top left corner

y1

y coordinate of the top left corner

x2

x coordinate of the bottom right corner

y2

y coordinate of the bottom right corner

Return Values

No value is returned.

ImagickDraw::render

ImagickDraw::render -- Renders all preceding drawing commands onto the image

Description

bool ImagickDraw::render (void)

Warning

This function is currently not documented; only its argument list is available.

Renders all preceding drawing commands onto the image.

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::rotate

ImagickDraw::rotate -- Applies the specified rotation to the current coordinate space

Description

bool ImagickDraw::rotate (float $degrees)

Warning

This function is currently not documented; only its argument list is available.

Applies the specified rotation to the current coordinate space.

Parameters

degrees

degrees to rotate

Return Values

No value is returned.

ImagickDraw::roundRectangle

ImagickDraw::roundRectangle -- Draws a rounted rectangle

Description

bool ImagickDraw::roundRectangle (float $x1, float $y1, float $x2, float $y2, float $rx,
float $ry)

Warning

This function is currently not documented; only its argument list is available.

Draws a rounted rectangle given two coordinates, x & y corner radiuses and using the
current stroke, stroke width, and fill settings.

Parameters

x1

x coordinate of the top left corner

y1

y coordinate of the top left corner

x2

x coordinate of the bottom right

y2

y coordinate of the bottom right

rx

x rounding

ry

y rounding

Return Values

No value is returned.

ImagickDraw::scale

ImagickDraw::scale -- Adjusts the scaling factor

Description

bool ImagickDraw::scale (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Adjusts the scaling factor to apply in the horizontal and vertical directions to the current
coordinate space.

Parameters

x

horizontal factor

y

vertical factor

Return Values

No value is returned.

ImagickDraw::setClipPath

ImagickDraw::setClipPath -- Associates a named clipping path with the image

Description

bool ImagickDraw::setClipPath (string $clip_mask)

Warning

This function is currently not documented; only its argument list is available.

Associates a named clipping path with the image. Only the areas drawn on by the clipping
path will be modified as long as it remains in effect.

Parameters

clip_mask

the clipping path name

Return Values

No value is returned.

ImagickDraw::setClipRule

ImagickDraw::setClipRule -- Set the polygon fill rule to be used by the clipping path

Description

bool ImagickDraw::setClipRule (int $fill_rule)

Warning

This function is currently not documented; only its argument list is available.

Set the polygon fill rule to be used by the clipping path.

Parameters

fill_rule

FILLRULE_ constant

Return Values

No value is returned.

ImagickDraw::setClipUnits

ImagickDraw::setClipUnits -- Sets the interpretation of clip path units

Description

bool ImagickDraw::setClipUnits (int $clip_units)

Warning

This function is currently not documented; only its argument list is available.

Sets the interpretation of clip path units.

Parameters

clip_units

the number of clip units

Return Values

No value is returned.

ImagickDraw::setFillAlpha

ImagickDraw::setFillAlpha -- Sets the opacity to use when drawing using the fill color or fill
texture

Description

bool ImagickDraw::setFillAlpha (float $opacity)

Warning

This function is currently not documented; only its argument list is available.

Sets the opacity to use when drawing using the fill color or fill texture. Fully opaque is 1.0.

Parameters

opacity

fill alpha

Return Values

No value is returned.

ImagickDraw::setFillColor

ImagickDraw::setFillColor -- Sets the fill color to be used for drawing filled objects

Description

bool ImagickDraw::setFillColor (ImagickPixel $fill_pixel)

Warning

This function is currently not documented; only its argument list is available.

Sets the fill color to be used for drawing filled objects.

Parameters

fill_pixel

ImagickPixel to use to set the color

Return Values

No value is returned.

ImagickDraw::setFillOpacity

ImagickDraw::setFillOpacity -- Sets the opacity to use when drawing using the fill color or
fill texture

Description

bool ImagickDraw::setFillOpacity (float $fillOpacity)

Warning

This function is currently not documented; only its argument list is available.

Sets the opacity to use when drawing using the fill color or fill texture. Fully opaque is 1.0.

Parameters

fillOpacity

the fill opacity

Return Values

No value is returned.

ImagickDraw::setFillPatternURL

ImagickDraw::setFillPatternURL -- Sets the URL to use as a fill pattern for filling objects

Description

bool ImagickDraw::setFillPatternURL (string $fill_url)

Warning

This function is currently not documented; only its argument list is available.

Sets the URL to use as a fill pattern for filling objects. Only local URLs ("#identifier") are
supported at this time. These local URLs are normally created by defining a named fill
pattern with DrawPushPattern/DrawPopPattern.

Parameters

fill_url

URL to use to obtain fill pattern.

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::setFillRule

ImagickDraw::setFillRule -- Sets the fill rule to use while drawing polygons

Description

bool ImagickDraw::setFillRule (int $fill_rule)

Warning

This function is currently not documented; only its argument list is available.

Sets the fill rule to use while drawing polygons.

Parameters

fill_rule

FILLRULE_ constant

Return Values

No value is returned.

ImagickDraw::setFont

ImagickDraw::setFont -- Sets the fully-specified font to use when annotating with text

Description

bool ImagickDraw::setFont (string $font_name)

Warning

This function is currently not documented; only its argument list is available.

Sets the fully-specified font to use when annotating with text.

Parameters

font_name

Return Values

Returns TRUE on success.

ImagickDraw::setFontFamily

ImagickDraw::setFontFamily -- Sets the font family to use when annotating with text

Description

bool ImagickDraw::setFontFamily (string $font_family)

Warning

This function is currently not documented; only its argument list is available.

Sets the font family to use when annotating with text.

Parameters

font_family

the font family

Return Values

Returns TRUE on success.

ImagickDraw::setFontSize

ImagickDraw::setFontSize -- Sets the font pointsize to use when annotating with text

Description

bool ImagickDraw::setFontSize (float $pointsize)

Warning

This function is currently not documented; only its argument list is available.

Sets the font pointsize to use when annotating with text.

Parameters

pointsize

the point size

Return Values

No value is returned.

ImagickDraw::setFontStretch

ImagickDraw::setFontStretch -- Sets the font stretch to use when annotating with text

Description

bool ImagickDraw::setFontStretch (int $fontStretch)

Warning

This function is currently not documented; only its argument list is available.

Sets the font stretch to use when annotating with text. The AnyStretch enumeration acts
as a wild-card "don't care" option.

Parameters

fontStretch

STRETCH_ constant

Return Values

No value is returned.

ImagickDraw::setFontStyle

ImagickDraw::setFontStyle -- Sets the font style to use when annotating with text

Description

bool ImagickDraw::setFontStyle (int $style)

Warning

This function is currently not documented; only its argument list is available.

Sets the font style to use when annotating with text. The AnyStyle enumeration acts as a
wild-card "don't care" option.

Parameters

style

STYLETYPE_ constant

Return Values

No value is returned.

ImagickDraw::setFontWeight

ImagickDraw::setFontWeight -- Sets the font weight

Description

bool ImagickDraw::setFontWeight (int $font_weight)

Warning

This function is currently not documented; only its argument list is available.

Sets the font weight to use when annotating with text.

Parameters

font_weight

Return Values

ImagickDraw::setGravity

ImagickDraw::setGravity -- Sets the text placement gravity

Description

bool ImagickDraw::setGravity (int $gravity)

Warning

This function is currently not documented; only its argument list is available.

Sets the text placement gravity to use when annotating with text.

Parameters

gravity

GRAVITY_ constant

Return Values

No value is returned.

ImagickDraw::setStrokeAlpha

ImagickDraw::setStrokeAlpha -- Specifies the opacity of stroked object outlines

Description

bool ImagickDraw::setStrokeAlpha (float $opacity)

Warning

This function is currently not documented; only its argument list is available.

Specifies the opacity of stroked object outlines.

Parameters

opacity

opacity

Return Values

No value is returned.

ImagickDraw::setStrokeAntialias

ImagickDraw::setStrokeAntialias -- Controls whether stroked outlines are antialiased

Description

bool ImagickDraw::setStrokeAntialias (bool $stroke_antialias)

Warning

This function is currently not documented; only its argument list is available.

Controls whether stroked outlines are antialiased. Stroked outlines are antialiased by
default. When antialiasing is disabled stroked pixels are thresholded to determine if the
stroke color or underlying canvas color should be used.

Parameters

stroke_antialias

the antialias setting

Return Values

No value is returned.

ImagickDraw::setStrokeColor

ImagickDraw::setStrokeColor -- Sets the color used for stroking object outlines

Description

bool ImagickDraw::setStrokeColor (ImagickPixel $stroke_pixel)

Warning

This function is currently not documented; only its argument list is available.

Sets the color used for stroking object outlines.

Parameters

stroke_pixel

the stroke color

Return Values

No value is returned.

ImagickDraw::setStrokeDashArray

ImagickDraw::setStrokeDashArray -- Specifies the pattern of dashes and gaps used to
stroke paths

Description

bool ImagickDraw::setStrokeDashArray (array $dashArray)

Warning

This function is currently not documented; only its argument list is available.

Specifies the pattern of dashes and gaps used to stroke paths. The strokeDashArray
represents an array of numbers that specify the lengths of alternating dashes and gaps in
pixels. If an odd number of values is provided, then the list of values is repeated to yield an
even number of values. To remove an existing dash array, pass a zero number_elements
argument and null dash_array. A typical strokeDashArray_ array might contain the
members 5 3 2.

Parameters

dashArray

array of floats

Return Values

Returns TRUE on success.

ImagickDraw::setStrokeDashOffset

ImagickDraw::setStrokeDashOffset -- Specifies the offset into the dash pattern to start the
dash

Description

bool ImagickDraw::setStrokeDashOffset (float $dash_offset)

Warning

This function is currently not documented; only its argument list is available.

Specifies the offset into the dash pattern to start the dash.

Parameters

dash_offset

dash offset

Return Values

No value is returned.

ImagickDraw::setStrokeLineCap

ImagickDraw::setStrokeLineCap -- Specifies the shape to be used at the end of open
subpaths when they are stroked

Description

bool ImagickDraw::setStrokeLineCap (int $linecap)

Warning

This function is currently not documented; only its argument list is available.

Specifies the shape to be used at the end of open subpaths when they are stroked.

Parameters

linecap

LINECAP_ constant

Return Values

No value is returned.

ImagickDraw::setStrokeLineJoin

ImagickDraw::setStrokeLineJoin -- Specifies the shape to be used at the corners of paths
when they are stroked

Description

bool ImagickDraw::setStrokeLineJoin (int $linejoin)

Warning

This function is currently not documented; only its argument list is available.

Specifies the shape to be used at the corners of paths (or other vector shapes) when they
are stroked.

Parameters

linejoin

LINEJOIN_ constant

Return Values

No value is returned.

ImagickDraw::setStrokeMiterLimit

ImagickDraw::setStrokeMiterLimit -- Specifies the miter limit

Description

bool ImagickDraw::setStrokeMiterLimit (int $miterlimit)

Warning

This function is currently not documented; only its argument list is available.

Specifies the miter limit. When two line segments meet at a sharp angle and miter joins
have been specified for 'lineJoin', it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miterLimit' imposes a limit on the ratio of the
miter length to the 'lineWidth'.

Parameters

miterlimit

the miter limit

Return Values

No value is returned.

ImagickDraw::setStrokeOpacity

ImagickDraw::setStrokeOpacity -- Specifies the opacity of stroked object outlines

Description

bool ImagickDraw::setStrokeOpacity (float $stroke_opacity)

Warning

This function is currently not documented; only its argument list is available.

Specifies the opacity of stroked object outlines.

Parameters

stroke_opacity

stroke opacity. 1.0 is fully opaque

Return Values

No value is returned.

ImagickDraw::setStrokePatternURL

ImagickDraw::setStrokePatternURL -- Sets the pattern used for stroking object outlines

Description

bool ImagickDraw::setStrokePatternURL (string $stroke_url)

Warning

This function is currently not documented; only its argument list is available.

Sets the pattern used for stroking object outlines.

Parameters

stroke_url

stroke URL

Return Values

imagick.imagickdraw.return.success;

ImagickDraw::setStrokeWidth

ImagickDraw::setStrokeWidth -- Sets the width of the stroke used to draw object outlines

Description

bool ImagickDraw::setStrokeWidth (float $stroke_width)

Warning

This function is currently not documented; only its argument list is available.

Sets the width of the stroke used to draw object outlines.

Parameters

stroke_width

stroke width

Return Values

No value is returned.

ImagickDraw::setTextAlignment

ImagickDraw::setTextAlignment -- Specifies a text alignment

Description

bool ImagickDraw::setTextAlignment (int $alignment)

Warning

This function is currently not documented; only its argument list is available.

Specifies a text alignment to be applied when annotating with text.

Parameters

alignment

ALIGN_ constant

Return Values

No value is returned.

ImagickDraw::setTextAntialias

ImagickDraw::setTextAntialias -- Controls whether text is antialiased

Description

bool ImagickDraw::setTextAntialias (bool $antiAlias)

Warning

This function is currently not documented; only its argument list is available.

Controls whether text is antialiased. Text is antialiased by default.

Parameters

antiAlias

Return Values

No value is returned.

ImagickDraw::setTextDecoration

ImagickDraw::setTextDecoration -- Specifies a decoration

Description

bool ImagickDraw::setTextDecoration (int $decoration)

Warning

This function is currently not documented; only its argument list is available.

Specifies a decoration to be applied when annotating with text.

Parameters

decoration

DECORATION_ constant

Return Values

No value is returned.

ImagickDraw::setTextEncoding

ImagickDraw::setTextEncoding -- Specifies specifies the text code set

Description

bool ImagickDraw::setTextEncoding (string $encoding)

Warning

This function is currently not documented; only its argument list is available.

Specifies specifies the code set to use for text annotations. The only character encoding
which may be specified at this time is "UTF-8" for representing Unicode as a sequence of
bytes. Specify an empty string to set text encoding to the system's default. Successful text
annotation using Unicode may require fonts designed to support Unicode.

Parameters

encoding

the encoding name

Return Values

No value is returned.

ImagickDraw::setTextUnderColor

ImagickDraw::setTextUnderColor -- Specifies the color of a background rectangle

Description

bool ImagickDraw::setTextUnderColor (ImagickPixel $under_color)

Warning

This function is currently not documented; only its argument list is available.

Specifies the color of a background rectangle to place under text annotations.

Parameters

under_color

the under color

Return Values

No value is returned.

ImagickDraw::setVectorGraphics

ImagickDraw::setVectorGraphics -- Sets the vector graphics

Description

bool ImagickDraw::setVectorGraphics (string $xml)

Warning

This function is currently not documented; only its argument list is available.

Sets the vector graphics associated with the specified ImagickDraw object. Use this
method with ImagickDraw::getVectorGraphics() as a method to persist the vector graphics
state.

Parameters

xml

xml containing the vector graphics

Return Values

Returns TRUE on success or FALSE on failure.

ImagickDraw::setViewbox

ImagickDraw::setViewbox -- Sets the overall canvas size

Description

bool ImagickDraw::setViewbox (int $x1, int $y1, int $x2, int $y2)

Warning

This function is currently not documented; only its argument list is available.

Sets the overall canvas size to be recorded with the drawing vector data. Usually this will
be specified using the same size as the canvas image. When the vector data is saved to
SVG or MVG formats, the viewbox is use to specify the size of the canvas image that a
viewer will render the vector data on.

Parameters

x1

left x coordinate

y1

left y coordinate

x2

right x coordinate

y2

right y coordinate

Return Values

No value is returned.

ImagickDraw::skewX

ImagickDraw::skewX -- Skews the current coordinate system in the horizontal direction

Description

bool ImagickDraw::skewX (float $degrees)

Warning

This function is currently not documented; only its argument list is available.

Skews the current coordinate system in the horizontal direction.

Parameters

degrees

degrees to skew

Return Values

No value is returned.

ImagickDraw::skewY

ImagickDraw::skewY -- Skews the current coordinate system in the vertical direction

Description

bool ImagickDraw::skewY (float $degrees)

Warning

This function is currently not documented; only its argument list is available.

Skews the current coordinate system in the vertical direction.

Parameters

degrees

degrees to skew

Return Values

No value is returned.

ImagickDraw::translate

ImagickDraw::translate -- Applies a translation to the current coordinate system

Description

bool ImagickDraw::translate (float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Applies a translation to the current coordinate system which moves the coordinate system
origin to the specified coordinate.

Parameters

x

horizontal translation

y

vertical translation

Return Values

No value is returned.

The ImagickPixel class

Class synopsis

ImagickPixel

ImagickPixel {

bool ImagickPixel::clear (void)

ImagickPixel ImagickPixel::__construct ([string $color])

bool ImagickPixel::destroy (void)

array ImagickPixel::getColor ([bool $normalized])

string ImagickPixel::getColorAsString (void)

int ImagickPixel::getColorCount (void)

float ImagickPixel::getColorValue (int $color)

array ImagickPixel::getHSL (void)

bool ImagickPixel::isSimilar (ImagickPixel $color, float $fuzz)

bool ImagickPixel::setColor (string $color)

bool ImagickPixel::setColorValue (int $color, float $value)

bool ImagickPixel::setHSL (float $hue, float $saturation, float $luminosity)
}

ImagickPixel::clear

ImagickPixel::clear -- Clears resources associated with this object

Description

bool ImagickPixel::clear (void)

Warning

This function is currently not documented; only its argument list is available.

Clears the ImagickPixel object, leaving it in a fresh state. This also unsets any color
associated with the object.

Return Values

Returns TRUE on success.

ImagickPixel::__construct

ImagickPixel::__construct -- The ImagickPixel constructor

Description

ImagickPixel ImagickPixel::__construct ([string $color])

Warning

This function is currently not documented; only its argument list is available.

Constructs an ImagickPixel object. If a color is specified, the object is constructed and then
initialised with that color before being returned.

Parameters

color

The optional color string to use as the initial value of this object.

Return Values

Returns an ImagickPixel object on success, throwing ImagickPixelException on failure.

ImagickPixel::destroy

ImagickPixel::destroy -- Deallocates resources associated with this object

Description

bool ImagickPixel::destroy (void)

Warning

This function is currently not documented; only its argument list is available.

Deallocates any resources used by the ImagickPixel object, and unsets any associated
color. The object should not be used after the destroy function has been called.

Return Values

Returns TRUE on success.

ImagickPixel::getColor

ImagickPixel::getColor -- Returns the color

Description

array ImagickPixel::getColor ([bool $normalized])

Warning

This function is currently not documented; only its argument list is available.

Returns the color described by the ImagickPixel object, as an array. If the color has an
opacity channel set, this is provided as a fourth value in the list.

Parameters

normalized

Normalize the color values

Return Values

An array of channel values, each normalized if TRUE is given as param. Throws
ImagickPixelException on error.

ImagickPixel::getColorAsString

ImagickPixel::getColorAsString -- Returns the color as a string

Description

string ImagickPixel::getColorAsString (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the color of the ImagickPixel object as a string.

Parameters

Return Values

Returns the color of the ImagickPixel object as a string.

ImagickPixel::getColorCount

ImagickPixel::getColorCount -- Returns the color count associated with this color

Description

int ImagickPixel::getColorCount (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the color count associated with this color.

Return Values

Returns the color count as an integer on success, throws ImagickPixelException on failure.

ImagickPixel::getColorValue

ImagickPixel::getColorValue -- Gets the normalized value of the provided color channel

Description

float ImagickPixel::getColorValue (int $color)

Warning

This function is currently not documented; only its argument list is available.

Retrieves the value of the color channel specified, as a floating-point number between 0
and 1.

Parameters

color

The channel to check, specified as one of the Imagick channel constants.

Return Values

The value of the channel, as a normalized floating-point number, throwing
ImagickPixelException on error.

ImagickPixel::getHSL

ImagickPixel::getHSL -- Returns the normalized HSL color of the ImagickPixel object

Description

array ImagickPixel::getHSL (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the normalized HSL color described by the ImagickPixel object, with each of the
three values as floating point numbers between 0.0 and 1.0.

Return Values

Returns the HSL value in an array with the keys "hue", "saturation", and "luminosity".
Throws ImagickPixelException on failure.

ImagickPixel::isSimilar

ImagickPixel::isSimilar -- Check the distance between this color and another

Description

bool ImagickPixel::isSimilar (ImagickPixel $color, float $fuzz)

Warning

This function is currently not documented; only its argument list is available.

Checks the distance between the color described by this ImagickPixel object and that of
the provided object, by plotting their RGB values on the color cube. If the distance
between the two points is less than the fuzz value given, the colors are similar.

Parameters

color

The ImagickPixel object to compare this object against.

fuzz

The maximum distance within which to consider these colors as similar. The
theoretical maximum for this value is the square root of three (1.732).

Return Values

Returns TRUE on success.

ImagickPixel::setColor

ImagickPixel::setColor -- Sets the color

Description

bool ImagickPixel::setColor (string $color)

Warning

This function is currently not documented; only its argument list is available.

Sets the color described by the ImagickPixel object, with a string (e.g. "blue", "#0000ff",
"rgb(0,0,255)", "cmyk(100,100,100,10)", etc.).

Parameters

color

The color definition to use in order to initialise the ImagickPixel object.

Return Values

Returns TRUE if the specified color was set, FALSE otherwise.

ImagickPixel::setColorValue

ImagickPixel::setColorValue -- Sets the normalized value of one of the channels

Description

bool ImagickPixel::setColorValue (int $color, float $value)

Warning

This function is currently not documented; only its argument list is available.

Sets the value of the specified channel of this object to the provided value, which should
be between 0 and 1. This function can be used to provide an opacity channel to an
ImagickPixel object.

Parameters

color

One of the Imagick channel color constants.

value

The value to set this channel to, ranging from 0 to 1.

Return Values

Returns TRUE on success.

ImagickPixel::setHSL

ImagickPixel::setHSL -- Sets the normalized HSL color

Description

bool ImagickPixel::setHSL (float $hue, float $saturation, float $luminosity)

Warning

This function is currently not documented; only its argument list is available.

Sets the color described by the ImagickPixel object using normalized values for hue,
saturation and luminosity.

Parameters

hue

The normalized value for hue, described as a fractional arc (between 0 and 1) of the
hue circle, where the zero value is red.

saturation

The normalized value for saturation, with 1 as full saturation.

luminosity

The normalized value for luminosity, on a scale from black at 0 to white at 1, with the
full HS value at 0.5 luminosity.

Return Values

Returns TRUE on success.

The ImagickPixelIterator class

Class synopsis

ImagickPixelIterator

ImagickPixelIterator {

bool ImagickPixelIterator::clear (void)

ImagickPixelIterator ImagickPixelIterator::__construct (Imagick $wand)

bool ImagickPixelIterator::destroy (void)

array ImagickPixelIterator::getCurrentIteratorRow (void)

int ImagickPixelIterator::getIteratorRow (void)

array ImagickPixelIterator::getNextIteratorRow (void)

array ImagickPixelIterator::getPreviousIteratorRow (void)

bool ImagickPixelIterator::newPixelIterator (Imagick $wand)

bool ImagickPixelIterator::newPixelRegionIterator (Imagick $wand, int $x, int $y,
int $columns, int $rows)

bool ImagickPixelIterator::resetIterator (void)

bool ImagickPixelIterator::setIteratorFirstRow (void)

bool ImagickPixelIterator::setIteratorLastRow (void)

bool ImagickPixelIterator::setIteratorRow (int $row)

bool ImagickPixelIterator::syncIterator (void)
}

ImagickPixelIterator::clear

ImagickPixelIterator::clear -- Clear resources associated with a PixelIterator

Description

bool ImagickPixelIterator::clear (void)

Warning

This function is currently not documented; only its argument list is available.

Clear resources associated with a PixelIterator.

Return Values

Returns TRUE on success.

ImagickPixelIterator::__construct

ImagickPixelIterator::__construct -- The ImagickPixelIterator constructor

Description

ImagickPixelIterator ImagickPixelIterator::__construct (Imagick $wand)

Warning

This function is currently not documented; only its argument list is available.

The ImagickPixelIterator constructor

Return Values

Returns TRUE on success.

ImagickPixelIterator::destroy

ImagickPixelIterator::destroy -- Deallocates resources associated with a PixelIterator

Description

bool ImagickPixelIterator::destroy (void)

Warning

This function is currently not documented; only its argument list is available.

Deallocates resources associated with a PixelIterator.

Return Values

Returns TRUE on success.

ImagickPixelIterator::getCurrentIteratorRow

ImagickPixelIterator::getCurrentIteratorRow -- Returns the current row of ImagickPixel
objects

Description

array ImagickPixelIterator::getCurrentIteratorRow (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the current row as an array of ImagickPixel objects from the pixel iterator.

Return Values

Returns a row as an array of ImagickPixel objects that can themselves be iterated.

ImagickPixelIterator::getIteratorRow

ImagickPixelIterator::getIteratorRow -- Returns the current pixel iterator row

Description

int ImagickPixelIterator::getIteratorRow (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the current pixel iterator row.

Return Values

Returns the integer offset of the row, throwing ImagickPixelIteratorException on error.

ImagickPixelIterator::getNextIteratorRow

ImagickPixelIterator::getNextIteratorRow -- Returns the next row of the pixel iterator

Description

array ImagickPixelIterator::getNextIteratorRow (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the next row as an array of pixel wands from the pixel iterator.

Return Values

Returns ana row as an array of ImagickPixel objects, throwing
ImagickPixelIteratorException on error.

ImagickPixelIterator::getPreviousIteratorRow

ImagickPixelIterator::getPreviousIteratorRow -- Returns the previous row

Description

array ImagickPixelIterator::getPreviousIteratorRow (void)

Warning

This function is currently not documented; only its argument list is available.

Returns the previous row as an array of pixel wands from the pixel iterator.

Return Values

Returns the previous row as an array of ImagickPixelWand objects from the
ImagickPixelIterator, throwing ImagickPixelIteratorException on error.

ImagickPixelIterator::newPixelIterator

ImagickPixelIterator::newPixelIterator -- Returns a new pixel iterator

Description

bool ImagickPixelIterator::newPixelIterator (Imagick $wand)

Warning

This function is currently not documented; only its argument list is available.

Returns a new pixel iterator.

Return Values

Returns TRUE on success. Throwing ImagickPixelIteratorException.

ImagickPixelIterator::newPixelRegionIterator

ImagickPixelIterator::newPixelRegionIterator -- Returns a new pixel iterator

Description

bool ImagickPixelIterator::newPixelRegionIterator (Imagick $wand, int $x, int $y, int $
columns, int $rows)

Warning

This function is currently not documented; only its argument list is available.

Returns a new pixel iterator.

Parameters

wand

x

y

columns

rows

Return Values

Returns a new ImagickPixelIterator on success; on failure, throws
ImagickPixelIteratorException.

ImagickPixelIterator::resetIterator

ImagickPixelIterator::resetIterator -- Resets the pixel iterator

Description

bool ImagickPixelIterator::resetIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Resets the pixel iterator. Use it in conjunction with
ImagickPixelIterator::getNextIteratorRow() to iterate over all the pixels in a pixel container.

Return Values

Returns TRUE on success.

ImagickPixelIterator::setIteratorFirstRow

ImagickPixelIterator::setIteratorFirstRow -- Sets the pixel iterator to the first pixel row

Description

bool ImagickPixelIterator::setIteratorFirstRow (void)

Warning

This function is currently not documented; only its argument list is available.

Sets the pixel iterator to the first pixel row.

Return Values

Returns TRUE on success.

ImagickPixelIterator::setIteratorLastRow

ImagickPixelIterator::setIteratorLastRow -- Sets the pixel iterator to the last pixel row

Description

bool ImagickPixelIterator::setIteratorLastRow (void)

Warning

This function is currently not documented; only its argument list is available.

Sets the pixel iterator to the last pixel row.

Return Values

Returns TRUE on success.

ImagickPixelIterator::setIteratorRow

ImagickPixelIterator::setIteratorRow -- Set the pixel iterator row

Description

bool ImagickPixelIterator::setIteratorRow (int $row)

Warning

This function is currently not documented; only its argument list is available.

Set the pixel iterator row.

Parameters

row

Return Values

Returns TRUE on success.

ImagickPixelIterator::syncIterator

ImagickPixelIterator::syncIterator -- Syncs the pixel iterator

Description

bool ImagickPixelIterator::syncIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Syncs the pixel iterator.

Return Values

Returns TRUE on success.

Mail Related Extensions

Cyrus IMAP administration

Introduction

Note

This extension is not available on Windows platforms.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To enable Cyrus IMAP support and to use these functions you have to compile PHP with
the --with-cyrus option.

Warning

The IMAP, recode, YAZ and Cyrus extensions cannot be used in conjuction, because
they share the same internal symbols.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a Cyrus IMAP connection identifier returned by cyrus_connect().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CYRUS_CONN_NONSYNCLITERAL (integer)

CYRUS_CONN_INITIALRESPONSE (integer)

CYRUS_CALLBACK_NUMBERED (integer)

CYRUS_CALLBACK_NOLITERAL (integer)

Cyrus Functions

cyrus_authenticate

cyrus_authenticate -- Authenticate against a Cyrus IMAP server

Description

void cyrus_authenticate (resource $connection [, string $mechlist [, string $service [,
string $user [, int $minssf [, int $maxssf [, string $authname [, string $password]]]]]]])

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

cyrus_bind

cyrus_bind -- Bind callbacks to a Cyrus IMAP connection

Description

bool cyrus_bind (resource $connection, array $callbacks)

Binds callbacks to a Cyrus IMAP connection.

Parameters

connection

The connection handle.

callbacks

An array of callbacks.

Return Values

Returns TRUE on success or FALSE on failure.

cyrus_close

cyrus_close -- Close connection to a Cyrus IMAP server

Description

bool cyrus_close (resource $connection)

Closes the connection to a Cyrus IMAP server.

Parameters

connection

The connection handle.

Return Values

Returns TRUE on success or FALSE on failure.

cyrus_connect

cyrus_connect -- Connect to a Cyrus IMAP server

Description

resource cyrus_connect ([string $host [, string $port [, int $flags]]])

Connects to a Cyrus IMAP server.

Parameters

host

The Cyrus IMAP host name.

port

The port number.

flags

Return Values

Returns a connection handler on success, or FALSE on failure.

cyrus_query

cyrus_query -- Send a query to a Cyrus IMAP server

Description

array cyrus_query (resource $connection, string $query)

Sends a query to a Cyrus IMAP server.

Parameters

connection

The connection handle.

query

The query string.

Return Values

Returns an associative array with the following keys: text, msgno, and keyword.

cyrus_unbind

cyrus_unbind -- Unbind ...

Description

bool cyrus_unbind (resource $connection, string $trigger_name)

Warning

This function is currently not documented; only its argument list is available.

Parameters

connection

The connection handle.

trigger_name

The trigger name.

Return Values

Returns TRUE on success or FALSE on failure.

IMAP, POP3 and NNTP

Introduction

These functions enable you to operate with the IMAP protocol, as well as the NNTP, POP3
and local mailbox access methods.

Be warned however, that some of IMAP functions will not work correctly with the POP
protocol.

Installing/Configuring

Requirements

This extension requires the c-client library to be installed. Grab the latest version from
» ftp://ftp.cac.washington.edu/imap/ and compile it.

It's important that you do not copy the IMAP source files directly into the system include
directory as there may be conflicts. Instead, create a new directory inside the system
include directory, such as /usr/local/imap-2000b/ (location and name depend on your setup
and IMAP version), and inside this new directory create additional directories named lib/
and include/. From the c-client directory from your IMAP source tree, copy all the *.h files
into include/ and all the *.c files into lib/. Additionally when you compiled IMAP, a file
named c-client.a was created. Also put this in the lib/ directory but rename it as libc-client.a
.

Note

To build the c-client library with SSL or/and Kerberos support read the docs supplied
with the package.

Note

In Mandrake Linux, the IMAP library (libc-client.a) is compiled without Kerberos
support. A separate version with SSL (client-PHP4.a) is installed. The library must be
recompiled in order to add Kerberos support.

Installation

To get these functions to work, you have to compile PHP with --with-imap[=DIR], where
DIR is the c-client install prefix. From our example above, you would use
--with-imap=/usr/local/imap-2000b. This location depends on where you created this
directory according to the description above. Windows users may include the php_imap.dll
DLL in php.ini. IMAP is not supported on systems earlier that Windows 2000. This is
because it uses encryption functions in order to enable SSL connections to the mail
servers.

Note

Depending how the c-client was configured, you might also need to add
--with-imap-ssl=/path/to/openssl/ and/or --with-kerberos=/path/to/kerberos into the PHP
configure line.

ftp://ftp.cac.washington.edu/imap/
ftp://ftp.cac.washington.edu/imap/

Warning

The IMAP, recode, YAZ and Cyrus extensions cannot be used in conjuction, because
they share the same internal symbols.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

NIL (integer)

OP_DEBUG (integer)

OP_READONLY (integer)
Open mailbox read-only

OP_ANONYMOUS (integer)
Don't use or update a.newsrc for news (NNTP only)

OP_SHORTCACHE (integer)

OP_SILENT (integer)

OP_PROTOTYPE (integer)

OP_HALFOPEN (integer)
For IMAP and NNTP names, open a connection but don't open a mailbox.

OP_EXPUNGE (integer)

OP_SECURE (integer)

CL_EXPUNGE (integer)
silently expunge the mailbox before closing when calling imap_close()

FT_UID (integer)
The parameter is a UID

FT_PEEK (integer)
Do not set the \Seen flag if not already set

FT_NOT (integer)

FT_INTERNAL (integer)
The return string is in internal format, will not canonicalize to CRLF.

FT_PREFETCHTEXT (integer)

ST_UID (integer)
The sequence argument contains UIDs instead of sequence numbers

ST_SILENT (integer)

ST_SET (integer)

CP_UID (integer)
the sequence numbers contain UIDS

CP_MOVE (integer)
Delete the messages from the current mailbox after copying with imap_mail_copy()

SE_UID (integer)
Return UIDs instead of sequence numbers

SE_FREE (integer)

SE_NOPREFETCH (integer)
Don't prefetch searched messages

SO_FREE (integer)

SO_NOSERVER (integer)

SA_MESSAGES (integer)

SA_RECENT (integer)

SA_UNSEEN (integer)

SA_UIDNEXT (integer)

SA_UIDVALIDITY (integer)

SA_ALL (integer)

LATT_NOINFERIORS (integer)

This mailbox has no "children" (there are no mailboxes below this one).

LATT_NOSELECT (integer)
This is only a container, not a mailbox - you cannot open it.

LATT_MARKED (integer)
This mailbox is marked. Only used by UW-IMAPD.

LATT_UNMARKED (integer)
This mailbox is not marked. Only used by UW-IMAPD.

SORTDATE (integer)
Sort criteria for imap_sort(): message Date

SORTARRIVAL (integer)
Sort criteria for imap_sort(): arrival date

SORTFROM (integer)
Sort criteria for imap_sort(): mailbox in first From address

SORTSUBJECT (integer)
Sort criteria for imap_sort(): message subject

SORTTO (integer)
Sort criteria for imap_sort(): mailbox in first To address

SORTCC (integer)
Sort criteria for imap_sort(): mailbox in first cc address

SORTSIZE (integer)
Sort criteria for imap_sort(): size of message in octets

TYPETEXT (integer)

TYPEMULTIPART (integer)

TYPEMESSAGE (integer)

TYPEAPPLICATION (integer)

TYPEAUDIO (integer)

TYPEIMAGE (integer)

TYPEVIDEO (integer)

TYPEOTHER (integer)

ENC7BIT (integer)

ENC8BIT (integer)

ENCBINARY (integer)

ENCBASE64 (integer)

ENCQUOTEDPRINTABLE (integer)

ENCOTHER (integer)

IMAP_OPENTIMEOUT (integer)

IMAP_READTIMEOUT (integer)

IMAP_WRITETIMEOUT (integer)

IMAP_CLOSETIMEOUT (integer)

LATT_REFERRAL (integer)

LATT_HASCHILDREN (integer)

LATT_HASNOCHILDREN (integer)

TYPEMODEL (integer)

IMAP Functions

See Also

This document can't go into detail on all the topics touched by the provided functions.
Further information is provided by the documentation of the c-client library source (
docs/internal.txt). and the following RFC documents:

• » RFC2821: Simple Mail Transfer Protocol (SMTP).

• » RFC2822: Standard for ARPA internet text messages.

• » RFC2060: Internet Message Access Protocol (IMAP) Version 4rev1.

• » RFC1939: Post Office Protocol Version 3 (POP3).

• » RFC977: Network News Transfer Protocol (NNTP).

• » RFC2076: Common Internet Message Headers.

• » RFC2045, » RFC2046, » RFC2047, » RFC2048 &» RFC2049: Multipurpose Internet
Mail Extensions (MIME).

A detailed overview is also available in the books » Programming Internet Email by David
Wood and » Managing IMAP by Dianna Mullet & Kevin Mullet.

http://www.faqs.org/rfcs/rfc2821
http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2060
http://www.faqs.org/rfcs/rfc1939
http://www.faqs.org/rfcs/rfc977
http://www.faqs.org/rfcs/rfc2076
http://www.faqs.org/rfcs/rfc2045
http://www.faqs.org/rfcs/rfc2046
http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2048
http://www.faqs.org/rfcs/rfc2049
http://www.oreilly.com/catalog/progintemail/noframes.html
http://www.oreilly.com/catalog/mimap/noframes.html

imap_8bit

imap_8bit -- Convert an 8bit string to a quoted-printable string

Description

string imap_8bit (string $string)

Convert an 8bit string to a quoted-printable string (according to » RFC2045, section 6.7).

Parameters

string

The 8bit string to convert

Return Values

Returns a quoted-printable string.

See Also

• imap_qprint()

http://www.faqs.org/rfcs/rfc2045

imap_alerts

imap_alerts -- Returns all IMAP alert messages that have occurred

Description

array imap_alerts (void)

Returns all of the IMAP alert messages generated since the last imap_alerts() call, or the
beginning of the page.

When imap_alerts() is called, the alert stack is subsequently cleared. The IMAP
specification requires that these messages be passed to the user.

Return Values

Returns an array of all of the IMAP alert messages generated or FALSE if no alert
messages are available.

See Also

• imap_errors()

imap_append

imap_append -- Append a string message to a specified mailbox

Description

bool imap_append (resource $imap_stream, string $mailbox, string $message [, string $
options])

Appends a string message to the specified mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

message

The message to be append, as a string When talking to the Cyrus IMAP server, you
must use "\r\n" as your end-of-line terminator instead of "\n" or the operation will fail

options

If provided, the options will also be written to the mailbox

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1745 - imap_append() example

<?php

$stream = imap_open("{imap.example.org}INBOX.Drafts", "username",
"password");

$check = imap_check($stream);

echo "Msg Count before append: ". $check->Nmsgs . "\n";

imap_append($stream, "{imap.example.org}INBOX.Drafts"

 , "From: me@example.com\r\n"

 . "To: you@example.com\r\n"

 . "Subject: test\r\n"

 . "\r\n"

 . "this is a test message, please ignore\r\n"

);

$check = imap_check($stream);

echo "Msg Count after append : ". $check->Nmsgs . "\n";

imap_close($stream);

?>

imap_base64

imap_base64 -- Decode BASE64 encoded text

Description

string imap_base64 (string $text)

Decodes the given BASE-64 encoded text.

Parameters

text

The encoded text

Return Values

Returns the decoded message as a string.

See Also

• imap_binary()
• base64_encode()
• base64_decode()
• » RFC2045, Section 6.8

http://www.faqs.org/rfcs/rfc2045

imap_binary

imap_binary -- Convert an 8bit string to a base64 string

Description

string imap_binary (string $string)

Convert an 8bit string to a base64 string according to » RFC2045, Section 6.8.

Parameters

string

The 8bit string

Return Values

Returns a base64 encoded string.

See Also

• imap_base64()

http://www.faqs.org/rfcs/rfc2045

imap_body

imap_body -- Read the message body

Description

string imap_body (resource $imap_stream, int $msg_number [, int $options])

imap_body() returns the body of the message, numbered msg_number in the current
mailbox.

imap_body() will only return a verbatim copy of the message body. To extract single parts
of a multipart MIME-encoded message you have to use imap_fetchstructure() to analyze
its structure and imap_fetchbody() to extract a copy of a single body component.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

options

The optional options are a bit mask with one or more of the following:

• FT_UID - The msg_number is a UID

• FT_PEEK - Do not set the \Seen flag if not already set

• FT_INTERNAL - The return string is in internal format, will not canonicalize to
CRLF.

Return Values

Returns the body of the specified message, as a string.

imap_bodystruct

imap_bodystruct -- Read the structure of a specified body section of a specific message

Description

object imap_bodystruct (resource $imap_stream, int $msg_number, string $section)

Read the structure of a specified body section of a specific message.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

section

The body section to read

Return Values

Returns the information in an object, for a detailed description of the object structure and
properties see imap_fetchstructure().

See Also

• imap_fetchstructure()

imap_check

imap_check -- Check current mailbox

Description

object imap_check (resource $imap_stream)

Checks information about the current mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns the information in an object with following properties:

• Date - current system time formatted according to » RFC2822

• Driver - protocol used to access this mailbox: POP3, IMAP, NNTP

• Mailbox - the mailbox name

• Nmsgs - number of messages in the mailbox

• Recent - number of recent messages in the mailbox

Returns FALSE on failure.

Examples

Example #1746 - imap_check() example

<?php

$imap_obj = imap_check($imap_stream);

var_dump($imap_obj);

?>

The above example will output something similar to:

object(stdClass)(5) {

 ["Date"]=>

http://www.faqs.org/rfcs/rfc2822

 string(37) "Wed, 10 Dec 2003 17:56:54 +0100 (CET)"

 ["Driver"]=>

 string(4) "imap"

 ["Mailbox"]=>

 string(54)

 "{www.example.com:143/imap/user="foo@example.com"}INBOX"

 ["Nmsgs"]=>

 int(1)

 ["Recent"]=>

 int(0)

}

imap_clearflag_full

imap_clearflag_full -- Clears flags on messages

Description

bool imap_clearflag_full (resource $imap_stream, string $sequence, string $flag [, string
$options])

This function causes a store to delete the specified flag to the flags set for the messages
in the specified sequence.

Parameters

imap_stream

An IMAP stream returned by imap_open().

sequence

A sequence of message numbers. You can enumerate desired messages with the X,Y
syntax, or retrieve all messages within an interval with the X:Y syntax

flag

The flags which you can unset are "\\Seen", "\\Answered", "\\Flagged", "\\Deleted", and
"\\Draft" (as defined by » RFC2060)

options

options are a bit mask and may contain the single option:

• ST_UID - The sequence argument contains UIDs instead of sequence numbers

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_setflag_full()

http://www.faqs.org/rfcs/rfc2060

imap_close

imap_close -- Close an IMAP stream

Description

bool imap_close (resource $imap_stream [, int $flag])

Closes the imap stream.

Parameters

imap_stream

An IMAP stream returned by imap_open().

flag

If set to CL_EXPUNGE, the function will silently expunge the mailbox before closing,
removing all messages marked for deletion. You can achieve the same thing by using
imap_expunge()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_open()

imap_createmailbox

imap_createmailbox -- Create a new mailbox

Description

bool imap_createmailbox (resource $imap_stream, string $mailbox)

Creates a new mailbox specified by mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information. Names containing
international characters should be encoded by imap_utf7_encode()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1747 - imap_createmailbox() example

<?php

$mbox = imap_open("{imap.example.org}", "username", "password", OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$name1 = "phpnewbox";

$name2 = imap_utf7_encode("phpnewböx");

$newname = $name1;

echo "Newname will be '$name1'
\n";

// we will now create a new mailbox "phptestbox" in your inbox folder,

// check its status after creation and finaly remove it to restore

// your inbox to its initial state

if (@imap_createmailbox($mbox,
imap_utf7_encode("{imap.example.org}INBOX.$newname"))) {

 $status = @imap_status($mbox, "{imap.example.org}INBOX.$newname",
SA_ALL);

 if ($status) {

 echo "your new mailbox '$name1' has the following status:
\n";

 echo "Messages: " . $status->messages . "
\n";

 echo "Recent: " . $status->recent . "
\n";

 echo "Unseen: " . $status->unseen . "
\n";

 echo "UIDnext: " . $status->uidnext . "
\n";

 echo "UIDvalidity:" . $status->uidvalidity . "
\n";

 if (imap_renamemailbox($mbox, "{imap.example.org}INBOX.$newname",
"{imap.example.org}INBOX.$name2")) {

 echo "renamed new mailbox from '$name1' to '$name2'
\n";

 $newname = $name2;

 } else {

 echo "imap_renamemailbox on new mailbox failed: " .
imap_last_error() . "
\n";

 }

 } else {

 echo "imap_status on new mailbox failed: " . imap_last_error() . "
\n";

 }

 if (@imap_deletemailbox($mbox, "{imap.example.org}INBOX.$newname")) {

 echo "new mailbox removed to restore initial state
\n";

 } else {

 echo "imap_deletemailbox on new mailbox failed: " . implode("
\n", imap_errors()) . "
\n";

 }

} else {

 echo "could not create new mailbox: " . implode("
\n",
imap_errors()) . "
\n";

}

imap_close($mbox);

?>

See Also

• imap_renamemailbox()
• imap_deletemailbox()

imap_delete

imap_delete -- Mark a message for deletion from current mailbox

Description

bool imap_delete (resource $imap_stream, int $msg_number [, int $options])

Marks messages listed in msg_number for deletion. Messages marked for deletion will stay
in the mailbox until either imap_expunge() is called or imap_close() is called with the
optional parameter CL_EXPUNGE.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

options

You can set the FT_UID which tells the function to treat the msg_number argument as
an UID.

Return Values

Returns TRUE.

Examples

Example #1748 - imap_delete() example

<?php

$mbox = imap_open("{imap.example.org}INBOX", "username", "password")

 or die("Can't connect: " . imap_last_error());

$check = imap_mailboxmsginfo($mbox);

echo "Messages before delete: " . $check->Nmsgs . "
\n";

imap_delete($mbox, 1);

$check = imap_mailboxmsginfo($mbox);

echo "Messages after delete: " . $check->Nmsgs . "
\n";

imap_expunge($mbox);

$check = imap_mailboxmsginfo($mbox);

echo "Messages after expunge: " . $check->Nmsgs . "
\n";

imap_close($mbox);

?>

Notes

Note

POP3 mailboxes do not have their message flags saved between connections, so
imap_expunge() must be called during the same connection in order for messages
marked for deletion to actually be purged.

See Also

• imap_undelete()
• imap_expunge()
• imap_close()

imap_deletemailbox

imap_deletemailbox -- Delete a mailbox

Description

bool imap_deletemailbox (resource $imap_stream, string $mailbox)

Deletes the specified mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_createmailbox()
• imap_renamemailbox()
• imap_open() for the format of mbox

imap_errors

imap_errors -- Returns all of the IMAP errors that have occured

Description

array imap_errors (void)

Gets all of the IMAP errors (if any) that have occurred during this page request or since the
error stack was reset.

When imap_errors() is called, the error stack is subsequently cleared.

Return Values

This function returns an array of all of the IMAP error messages generated since the last
imap_errors() call, or the beginning of the page. Returns FALSE if no error messages are
available.

See Also

• imap_last_error()
• imap_alerts()

imap_expunge

imap_expunge -- Delete all messages marked for deletion

Description

bool imap_expunge (resource $imap_stream)

Deletes all the messages marked for deletion by imap_delete(), imap_mail_move(), or
imap_setflag_full().

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns TRUE.

imap_fetch_overview

imap_fetch_overview -- Read an overview of the information in the headers of the given
message

Description

array imap_fetch_overview (resource $imap_stream, string $sequence [, int $options])

This function fetches mail headers for the given sequence and returns an overview of their
contents.

Parameters

imap_stream

An IMAP stream returned by imap_open().

sequence

A message sequence description. You can enumerate desired messages with the X,Y
syntax, or retrieve all messages within an interval with the X:Y syntax

options

sequence will contain a sequence of message indices or UIDs, if this parameter is set
to FT_UID.

Return Values

Returns an array of objects describing one message header each. The object will only
define a property if it exists. The possible properties are:

• subject - the messages subject

• from - who sent it

• to - recipient

• date - when was it sent

• message_id - Message-ID

• references - is a reference to this message id

• in_reply_to - is a reply to this message id

• size - size in bytes

• uid - UID the message has in the mailbox

• msgno - message sequence number in the mailbox

• recent - this message is flagged as recent

• flagged - this message is flagged

• answered - this message is flagged as answered

• deleted - this message is flagged for deletion

• seen - this message is flagged as already read

• draft - this message is flagged as being a draft

Examples

Example #1749 - imap_fetch_overview() example

<?php

$mbox = imap_open("{imap.example.org:143}INBOX", "username", "password")

 or die("can't connect: " . imap_last_error());

$MC = imap_check($mbox);

// Fetch an overview for all messages in INBOX

$result = imap_fetch_overview($mbox,"1:{$MC->Nmsgs}",0);

foreach ($result as $overview) {

 echo "#{$overview->msgno} ({$overview->date}) - From: {$overview->from}

 {$overview->subject}\n";

}

imap_close($mbox);

?>

See Also

• imap_fetchheader()

imap_fetchbody

imap_fetchbody -- Fetch a particular section of the body of the message

Description

string imap_fetchbody (resource $imap_stream, int $msg_number, string $part_number [,
int $options])

Fetch of a particular section of the body of the specified messages. Body parts are not
decoded by this function.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

part_number

The part number. It is a string of integers delimited by period which index into a body
part list as per the IMAP4 specification

options

A bitmask with one or more of the following:

• FT_UID - The msg_number is a UID

• FT_PEEK - Do not set the \Seen flag if not already set

• FT_INTERNAL - The return string is in internal format, will not canonicalize to
CRLF.

Return Values

Returns a particular section of the body of the specified messages as a text string.

See Also

• imap_savebody()
• imap_fetchstructure()

imap_fetchheader

imap_fetchheader -- Returns header for a message

Description

string imap_fetchheader (resource $imap_stream, int $msg_number [, int $options])

This function causes a fetch of the complete, unfiltered » RFC2822 format header of the
specified message.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

options

The possible options are:

• FT_UID - The msgno argument is a UID

• FT_INTERNAL - The return string is in "internal" format, without any attempt to
canonicalize to CRLF newlines

• FT_PREFETCHTEXT - The RFC822.TEXT should be pre-fetched at the same
time. This avoids an extra RTT on an IMAP connection if a full message text is
desired (e.g. in a "save to local file" operation)

Return Values

Returns the header of the specified message as a text string.

See Also

• imap_fetch_overview()

http://www.faqs.org/rfcs/rfc2822

imap_fetchstructure

imap_fetchstructure -- Read the structure of a particular message

Description

object imap_fetchstructure (resource $imap_stream, int $msg_number [, int $options])

Fetches all the structured information for a given message.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

options

This optional parameter only has a single option, FT_UID, which tells the function to
treat the msg_number argument as a UID.

Return Values

Returns an object includes the envelope, internal date, size, flags and body structure along
with a similar object for each mime attachment. The structure of the returned objects is as
follows:

Returned Objects for imap_fetchstructure()

type Primary body type

encoding Body transfer encoding

ifsubtype TRUE if there is a subtype string

subtype MIME subtype

ifdescription TRUE if there is a description string

description Content description string

ifid TRUE if there is an identification string

id Identification string

lines Number of lines

bytes Number of bytes

ifdisposition TRUE if there is a disposition string

disposition Disposition string

ifdparameters TRUE if the dparameters array exists

dparameters An array of objects where each object has
an "attribute" and a "value" property
corresponding to the parameters on the
Content-disposition MIME header.

ifparameters TRUE if the parameters array exists

parameters An array of objects where each object has
an "attribute" and a "value" property.

parts An array of objects identical in structure to
the top-level object, each of which
corresponds to a MIME body part.

Primary body type

0 text

1 multipart

2 message

3 application

4 audio

5 image

6 video

7 other

Transfer encodings

0 7BIT

1 8BIT

2 BINARY

3 BASE64

4 QUOTED-PRINTABLE

5 OTHER

See Also

• imap_fetchbody()
• imap_bodystruct()

imap_get_quota

imap_get_quota -- Retrieve the quota level settings, and usage statics per mailbox

Description

array imap_get_quota (resource $imap_stream, string $quota_root)

Retrieve the quota level settings, and usage statics per mailbox.

For a non-admin user version of this function, please see the imap_get_quotaroot()
function of PHP.

Parameters

imap_stream

An IMAP stream returned by imap_open().

quota_root

quota_root should normally be in the form of user.name where name is the mailbox
you wish to retrieve information about.

Return Values

Returns an array with integer values limit and usage for the given mailbox. The value of
limit represents the total amount of space allowed for this mailbox. The usage value
represents the mailboxes current level of capacity. Will return FALSE in the case of failure.

As of PHP 4.3, the function more properly reflects the functionality as dictated by the
» RFC2087. The array return value has changed to support an unlimited number of
returned resources (i.e. messages, or sub-folders) with each named resource receiving an
individual array key. Each key value then contains an another array with the usage and
limit values within it.

For backwards compatibility reasons, the original access methods are still available for
use, although it is suggested to update.

Examples

Example #1750 - imap_get_quota() example

<?php

$mbox = imap_open("{imap.example.org}", "mailadmin", "password",
OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

http://www.faqs.org/rfcs/rfc2087
http://www.faqs.org/rfcs/rfc2087

$quota_value = imap_get_quota($mbox, "user.kalowsky");

if (is_array($quota_value)) {

 echo "Usage level is: " . $quota_value['usage'];

 echo "Limit level is: " . $quota_value['limit'];

}

imap_close($mbox);

?>

Example #1751 - imap_get_quota() 4.3 or greater example

<?php

$mbox = imap_open("{imap.example.org}", "mailadmin", "password",
OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$quota_values = imap_get_quota($mbox, "user.kalowsky");

if (is_array($quota_values)) {

 $storage = $quota_values['STORAGE'];

 echo "STORAGE usage level is: " . $storage['usage'];

 echo "STORAGE limit level is: " . $storage['limit'];

 $message = $quota_values['MESSAGE'];

 echo "MESSAGE usage level is: " . $message['usage'];

 echo "MESSAGE limit is: " . $message['limit'];

 /* ... */

}

imap_close($mbox);

?>

Notes

This function is currently only available to users of the c-client2000 or greater library.

The given imap_stream must be opened as the mail administrator, other wise this function
will fail.

See Also

• imap_open()
• imap_set_quota()
• imap_get_quotaroot()

imap_get_quotaroot

imap_get_quotaroot -- Retrieve the quota settings per user

Description

array imap_get_quotaroot (resource $imap_stream, string $quota_root)

Retrieve the quota settings per user. The limit value represents the total amount of space
allowed for this user's total mailbox usage. The usage value represents the user's current
total mailbox capacity.

Parameters

imap_stream

An IMAP stream returned by imap_open().

quota_root

quota_root should normally be in the form of which mailbox (i.e. INBOX).

Return Values

Returns an array of integer values pertaining to the specified user mailbox. All values
contain a key based upon the resource name, and a corresponding array with the usage
and limit values within.

This function will return FALSE in the case of call failure, and an array of information about
the connection upon an un-parsable response from the server.

Examples

Example #1752 - imap_get_quotaroot() example

<?php

$mbox = imap_open("{imap.example.org}", "kalowsky", "password", OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$quota = imap_get_quotaroot($mbox, "INBOX");

if (is_array($quota)) {

 $storage = $quota_values['STORAGE'];

 echo "STORAGE usage level is: " . $storage['usage'];

 echo "STORAGE limit level is: " . $storage['limit'];

 $message = $quota_values['MESSAGE'];

 echo "MESSAGE usage level is: " . $message['usage'];

 echo "MESSAGE limit level is: " . $message['limit'];

 /* ... */

}

imap_close($mbox);

?>

Notes

This function is currently only available to users of the c-client2000 or greater library.

The imap_stream should be opened as the user whose mailbox you wish to check.

See Also

• imap_open()
• imap_set_quota()
• imap_get_quota()

imap_getacl

imap_getacl -- Gets the ACL for a given mailbox

Description

array imap_getacl (resource $imap_stream, string $mailbox)

Gets the ACL for a given mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

Return Values

Returns an associative array of "folder" => "acl" pairs.

Examples

Example #1753 - imap_getacl() example

<?php

print_r(imap_getacl($conn_id, 'user.joecool'));

?>

The above example will output something similar to:

Array

(

 [asubfolder] => lrswipcda

 [anothersubfolder] => lrswipcda

)

Notes

This function is currently only available to users of the c-client2000 or greater library.

See Also

• imap_setacl()

imap_getmailboxes

imap_getmailboxes -- Read the list of mailboxes, returning detailed information on each
one

Description

array imap_getmailboxes (resource $imap_stream, string $ref, string $pattern)

Gets information on the mailboxes.

Parameters

imap_stream

An IMAP stream returned by imap_open().

ref

ref should normally be just the server specification as described in imap_open()

pattern

Specifies where in the mailbox hierarchy to start searching. There are two special
characters you can pass as part of the pattern: '*' and '%'. '*' means to return all
mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy.
'%' means to return the current level only. '%' as the pattern parameter will return only
the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the
~/mail directory, but none in subfolders of that directory.

Return Values

Returns an array of objects containing mailbox information. Each object has the attributes
name, specifying the full name of the mailbox; delimiter, which is the hierarchy delimiter
for the part of the hierarchy this mailbox is in; and attributes. Attributes is a bitmask
that can be tested against:

• LATT_NOINFERIORS - This mailbox has no "children" (there are no mailboxes below
this one).

• LATT_NOSELECT - This is only a container, not a mailbox - you cannot open it.

• LATT_MARKED - This mailbox is marked. Only used by UW-IMAPD.

• LATT_UNMARKED - This mailbox is not marked. Only used by UW-IMAPD.

Examples

Example #1754 - imap_getmailboxes() example

<?php

$mbox = imap_open("{imap.example.org}", "username", "password", OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$list = imap_getmailboxes($mbox, "{imap.example.org}", "*");

if (is_array($list)) {

 foreach ($list as $key => $val) {

 echo "($key) ";

 echo imap_utf7_decode($val->name) . ",";

 echo "'" . $val->delimiter . "',";

 echo $val->attributes . "
\n";

 }

} else {

 echo "imap_getmailboxes failed: " . imap_last_error() . "\n";

}

imap_close($mbox);

?>

See Also

• imap_getsubscribed()

imap_getsubscribed

imap_getsubscribed -- List all the subscribed mailboxes

Description

array imap_getsubscribed (resource $imap_stream, string $ref, string $pattern)

Gets information on the subscribeds mailboxes.

Identical to imap_getmailboxes(), except that it only returns mailboxes that the user is
subscribed to.

Parameters

imap_stream

An IMAP stream returned by imap_open().

ref

ref should normally be just the server specification as described in imap_open()

pattern

Specifies where in the mailbox hierarchy to start searching. There are two special
characters you can pass as part of the pattern: '*' and '%'. '*' means to return all
mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy.
'%' means to return the current level only. '%' as the pattern parameter will return only
the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the
~/mail directory, but none in subfolders of that directory.

Return Values

Returns an array of objects containing mailbox information. Each object has the attributes
name, specifying the full name of the mailbox; delimiter, which is the hierarchy delimiter
for the part of the hierarchy this mailbox is in; and attributes. Attributes is a bitmask
that can be tested against:

• LATT_NOINFERIORS - This mailbox has no "children" (there are no mailboxes below
this one).

• LATT_NOSELECT - This is only a container, not a mailbox - you cannot open it.

• LATT_MARKED - This mailbox is marked. Only used by UW-IMAPD.

• LATT_UNMARKED - This mailbox is not marked. Only used by UW-IMAPD.

imap_header

imap_header -- Alias of imap_headerinfo()

Description

This function is an alias of: imap_headerinfo().

imap_headerinfo

imap_headerinfo -- Read the header of the message

Description

object imap_headerinfo (resource $imap_stream, int $msg_number [, int $fromlength [,
int $subjectlength [, string $defaulthost]]])

Gets information about the given message number by reading its headers.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

fromlength

Number of characters for the fetchfrom property. Must be greater than or equal to zero.

subjectlength

Number of characters for the fetchsubject property Must be greater than or equal to
zero.

defaulthost

Return Values

Returns the information in an object with following properties:

• toaddress - full to: line, up to 1024 characters

• to - an array of objects from the To: line, with the following properties: personal, adl,
mailbox, and host

• fromaddress - full from: line, up to 1024 characters

• from - an array of objects from the From: line, with the following properties: personal,
adl, mailbox, and host

• ccaddress - full cc: line, up to 1024 characters

• cc - an array of objects from the Cc: line, with the following properties: personal, adl,
mailbox, and host

• bccaddress - full bcc: line, up to 1024 characters

• bcc - an array of objects from the Bcc: line, with the following properties: personal, adl,
mailbox, and host

• reply_toaddress - full Reply-To: line, up to 1024 characters

• reply_to - an array of objects from the Reply-To: line, with the following properties:
personal, adl, mailbox, and host

• senderaddress - full sender: line, up to 1024 characters

• sender - an array of objects from the Sender: line, with the following properties:
personal, adl, mailbox, and host

• return_pathaddress - full Return-Path: line, up to 1024 characters

• return_path - an array of objects from the Return-Path: line, with the following
properties: personal, adl, mailbox, and host

• remail -

• date - The message date as found in its headers

• Date - Same as date

• subject - The message subject

• Subject - Same a subject

• in_reply_to -

• message_id -

• newsgroups -

• followup_to -

• references -

• Recent - R if recent and seen, N if recent and not seen, ' ' if not recent.

• Unseen - U if not seen AND not recent, ' ' if seen OR not seen and recent

• Flagged - F if flagged, ' ' if not flagged

• Answered - A if answered, ' ' if unanswered

• Deleted - D if deleted, ' ' if not deleted

• Draft - X if draft, ' ' if not draft

• Msgno - The message number

• MailDate -

• Size - The message size

• udate - mail message date in Unix time

• fetchfrom - from line formatted to fit fromlength characters

• fetchsubject - subject line formatted to fit subjectlength characters

See Also

• imap_fetch_overview()

imap_headers

imap_headers -- Returns headers for all messages in a mailbox

Description

array imap_headers (resource $imap_stream)

Returns headers for all messages in a mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns an array of string formatted with header info. One element per mail message.

imap_last_error

imap_last_error -- Gets the last IMAP error that occurred during this page request

Description

string imap_last_error (void)

Gets the full text of the last IMAP error message that occurred on the current page. The
error stack is untouched; calling imap_last_error() subsequently, with no intervening
errors, will return the same error.

Return Values

Returns the full text of the last IMAP error message that occurred on the current page.
Returns FALSE if no error messages are available.

See Also

• imap_errors()

imap_list

imap_list -- Read the list of mailboxes

Description

array imap_list (resource $imap_stream, string $ref, string $pattern)

Read the list of mailboxes.

Parameters

imap_stream

An IMAP stream returned by imap_open().

ref

ref should normally be just the server specification as described in imap_open().

pattern

Specifies where in the mailbox hierarchy to start searching. There are two special
characters you can pass as part of the pattern: '*' and '%'. '*' means to return all
mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy.
'%' means to return the current level only. '%' as the pattern parameter will return only
the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the
~/mail directory, but none in subfolders of that directory.

Return Values

Returns an array containing the names of the mailboxes.

Examples

Example #1755 - imap_list() example

<?php

$mbox = imap_open("{imap.example.org}", "username", "password", OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$list = imap_list($mbox, "{imap.example.org}", "*");

if (is_array($list)) {

 foreach ($list as $val) {

 echo imap_utf7_decode($val) . "\n";

 }

} else {

 echo "imap_list failed: " . imap_last_error() . "\n";

}

imap_close($mbox);

?>

See Also

• imap_getmailboxes()
• imap_lsub()

imap_listmailbox

imap_listmailbox -- Alias of imap_list()

Description

This function is an alias of: imap_list().

imap_listscan

imap_listscan -- Returns the list of mailboxes that matches the given text

Description

array imap_listscan (resource $imap_stream, string $ref, string $pattern, string $
content)

Returns an array containing the names of the mailboxes that have content in the text of
the mailbox.

This function is similar to imap_listmailbox(), but it will additionally check for the presence
of the string content inside the mailbox data.

Parameters

imap_stream

An IMAP stream returned by imap_open().

ref

ref should normally be just the server specification as described in imap_open()

pattern

Specifies where in the mailbox hierarchy to start searching. There are two special
characters you can pass as part of the pattern: '*' and '%'. '*' means to return all
mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy.
'%' means to return the current level only. '%' as the pattern parameter will return only
the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the
~/mail directory, but none in subfolders of that directory

content

The searched string

Return Values

Returns an array containing the names of the mailboxes that have content in the text of
the mailbox.

See Also

• imap_listmailbox()
• imap_search()

imap_listsubscribed

imap_listsubscribed -- Alias of imap_lsub()

Description

This function is an alias of: imap_lsub().

imap_lsub

imap_lsub -- List all the subscribed mailboxes

Description

array imap_lsub (resource $imap_stream, string $ref, string $pattern)

Gets an array of all the mailboxes that you have subscribed.

Parameters

imap_stream

An IMAP stream returned by imap_open().

ref

ref should normally be just the server specification as described in imap_open()

pattern

Specifies where in the mailbox hierarchy to start searching. There are two special
characters you can pass as part of the pattern: '*' and '%'. '*' means to return all
mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy.
'%' means to return the current level only. '%' as the pattern parameter will return only
the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the
~/mail directory, but none in subfolders of that directory.

Return Values

Returns an array of all the subscribed mailboxes.

See Also

• imap_list()
• imap_getmailboxes()

imap_mail_compose

imap_mail_compose -- Create a MIME message based on given envelope and body
sections

Description

string imap_mail_compose (array $envelope, array $body)

Create a MIME message based on the given envelope and body sections.

Parameters

envelope

An associative array of headers fields

body

An indexed array of bodies A body is an associative array which can consist of the
following keys: "type", "encoding", "subtype", "description" and "contents.data"

Return Values

Returns the MIME message.

Examples

Example #1756 - imap_mail_compose() example

<?php

$envelope["from"]= "joe@example.com";

$envelope["to"] = "foo@example.com";

$envelope["cc"] = "bar@example.com";

$part1["type"] = TYPEMULTIPART;

$part1["subtype"] = "mixed";

$filename = "/tmp/imap.c.gz";

$fp = fopen($filename, "r");

$contents = fread($fp, filesize($filename));

fclose($fp);

$part2["type"] = TYPEAPPLICATION;

$part2["encoding"] = ENCBINARY;

$part2["subtype"] = "octet-stream";

$part2["description"] = basename($filename);

$part2["contents.data"] = $contents;

$part3["type"] = TYPETEXT;

$part3["subtype"] = "plain";

$part3["description"] = "description3";

$part3["contents.data"] = "contents.data3\n\n\n\t";

$body[1] = $part1;

$body[2] = $part2;

$body[3] = $part3;

echo nl2br(imap_mail_compose($envelope, $body));

?>

imap_mail_copy

imap_mail_copy -- Copy specified messages to a mailbox

Description

bool imap_mail_copy (resource $imap_stream, string $msglist, string $mailbox [, int $
options])

Copies mail messages specified by msglist to specified mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msglist

msglist is a range not just message numbers (as described in » RFC2060).

mailbox

The mailbox name, see imap_open() for more information

options

options is a bitmask of one or more of

• CP_UID - the sequence numbers contain UIDS

• CP_MOVE - Delete the messages from the current mailbox after copying

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_mail_move()

http://www.faqs.org/rfcs/rfc2060

imap_mail_move

imap_mail_move -- Move specified messages to a mailbox

Description

bool imap_mail_move (resource $imap_stream, string $msglist, string $mailbox [, int $
options])

Moves mail messages specified by msglist to the specified mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

msglist

msglist is a range not just message numbers (as described in » RFC2060).

mailbox

The mailbox name, see imap_open() for more information

options

options is a bitmask and may contain the single option:

• CP_UID - the sequence numbers contain UIDS

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_mail_copy()

http://www.faqs.org/rfcs/rfc2060

imap_mail

imap_mail -- Send an email message

Description

bool imap_mail (string $to, string $subject, string $message [, string $
additional_headers [, string $cc [, string $bcc [, string $rpath]]]])

This function allows sending of emails with correct handling of Cc and Bcc receivers.

The parameters to, cc and bcc are all strings and are all parsed as » RFC822 address
lists.

Parameters

to

The receiver

subject

The mail subject

message

The mail body

additional_headers

As string with additional headers to be set on the mail

cc

bcc

The receivers specified in bcc will get the mail, but are excluded from the headers.

rpath

Use this parameter to specify return path upon mail delivery failure. This is useful when
using PHP as a mail client for multiple users.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mail()

http://www.faqs.org/rfcs/rfc822

imap_mailboxmsginfo

imap_mailboxmsginfo -- Get information about the current mailbox

Description

object imap_mailboxmsginfo (resource $imap_stream)

Checks the current mailbox status on the server. It is similar to imap_status(), but will
additionally sum up the size of all messages in the mailbox, which will take some
additional time to execute.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns the information in an object with following properties:

Mailbox properties

Date date of last change

Driver driver

Mailbox name of the mailbox

Nmsgs number of messages

Recent number of recent messages

Unread number of unread messages

Deleted number of deleted messages

Size mailbox size

Returns FALSE on failure.

Examples

Example #1757 - imap_mailboxmsginfo() example

<?php

$mbox = imap_open("{imap.example.org}INBOX", "username", "password")

 or die("can't connect: " . imap_last_error());

$check = imap_mailboxmsginfo($mbox);

if ($check) {

 echo "Date: " . $check->Date . "
\n" ;

 echo "Driver: " . $check->Driver . "
\n" ;

 echo "Mailbox: " . $check->Mailbox . "
\n" ;

 echo "Messages: " . $check->Nmsgs . "
\n" ;

 echo "Recent: " . $check->Recent . "
\n" ;

 echo "Unread: " . $check->Unread . "
\n" ;

 echo "Deleted: " . $check->Deleted . "
\n" ;

 echo "Size: " . $check->Size . "
\n" ;

} else {

 echo "imap_check() failed: " . imap_last_error() . "
\n";

}

imap_close($mbox);

?>

imap_mime_header_decode

imap_mime_header_decode -- Decode MIME header elements

Description

array imap_mime_header_decode (string $text)

Decodes MIME message header extensions that are non ASCII text (see » RFC2047).

Parameters

text

The MIME text

Return Values

The decoded elements are returned in an array of objects, where each object has two
properties, charset and text.

If the element hasn't been encoded, and in other words is in plain US-ASCII, the charset
property of that element is set to default.

Examples

Example #1758 - imap_mime_header_decode() example

<?php

$text = "=?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@example.com>";

$elements = imap_mime_header_decode($text);

for ($i=0; $i<count($elements); $i++) {

 echo "Charset: {$elements[$i]->charset}\n";

 echo "Text: {$elements[$i]->text}\n\n";

}

?>

The above example will output:

Charset: ISO-8859-1

Text: Keld Jørn Simonsen

Charset: default

Text: <keld@example.com>

http://www.faqs.org/rfcs/rfc2047

In the above example we would have two elements, whereas the first element had
previously been encoded with ISO-8859-1, and the second element would be plain
US-ASCII.

See Also

• imap_utf8()

imap_msgno

imap_msgno -- Gets the message sequence number for the given UID

Description

int imap_msgno (resource $imap_stream, int $uid)

Returns the message sequence number for the given uid.

This function is the inverse of imap_uid().

Parameters

imap_stream

An IMAP stream returned by imap_open().

uid

The message UID

Return Values

Returns the message sequence number for the given uid.

See Also

• imap_uid()

imap_num_msg

imap_num_msg -- Gets the number of messages in the current mailbox

Description

int imap_num_msg (resource $imap_stream)

Gets the number of messages in the current mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Return the number of messages in the current mailbox, as an integer.

See Also

• imap_num_recent()
• imap_status()

imap_num_recent

imap_num_recent -- Gets the number of recent messages in current mailbox

Description

int imap_num_recent (resource $imap_stream)

Gets the number of recent messages in the current mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns the number of recent messages in the current mailbox, as an integer.

See Also

• imap_num_msg()
• imap_status()

imap_open

imap_open -- Open an IMAP stream to a mailbox

Description

resource imap_open (string $mailbox, string $username, string $password [, int $options
[, int $n_retries]])

Opens an IMAP stream to a mailbox.

This function can also be used to open streams to POP3 and NNTP servers, but some
functions and features are only available on IMAP servers.

Parameters

mailbox

A mailbox name consists of a server and a mailbox path on this server. The special
name INBOX stands for the current users personal mailbox. Mailbox names that
contain international characters besides those in the printable ASCII space have to be
encoded width imap_utf7_encode(). The server part, which is enclosed in '{' and '}',
consists of the servers name or ip address, an optional port (prefixed by ':'), and an
optional protocol specification (prefixed by '/'). The server part is mandatory in all
mailbox parameters. All names which start with { are remote names, and are in the
form "{" remote_system_name [":" port] [flags] "}" [mailbox_name] where:

• remote_system_name - Internet domain name or bracketed IP address of server.

• port - optional TCP port number, default is the default port for that service

• flags - optional flags, see following table.

• mailbox_name - remote mailbox name, default is INBOX

Optional flags for names

Flag Description

/service= service mailbox access service, default is "imap"

/user= user remote user name for login on the server

/authuser= user remote authentication user; if specified this
is the user name whose password is used
(e.g. administrator)

/anonymous remote access as anonymous user

/debug record protocol telemetry in application's
debug log

/secure do not transmit a plaintext password over
the network

/imap, /imap2, /imap2bis, /imap4,
/imap4rev1

equivalent to /service=imap

/pop3 equivalent to /service=pop3

/nntp equivalent to /service=nntp

/norsh do not use rsh or ssh to establish a
preauthenticated IMAP session

/ssl use the Secure Socket Layer to encrypt the
session

/validate-cert validate certificates from TLS/SSL server
(this is the default behavior)

/novalidate-cert do not validate certificates from TLS/SSL
server, needed if server uses self-signed
certificates

/tls force use of start-TLS to encrypt the
session, and reject connection to servers
that do not support it

/notls do not do start-TLS to encrypt the session,
even with servers that support it

/readonly request read-only mailbox open (IMAP only;
ignored on NNTP, and an error with SMTP
and POP3)

username

The user name

password

The password associated with the username

options

The options are a bit mask with one or more of the following:

• OP_READONLY - Open mailbox read-only

• OP_ANONYMOUS - Don't use or update a.newsrc for news (NNTP only)

• OP_HALFOPEN - For IMAP and NNTP names, open a connection but don't open a

mailbox.

• CL_EXPUNGE - Expunge mailbox automatically upon mailbox close (see also
imap_delete() and imap_expunge())

• OP_DEBUG - Debug protocol negotiations

• OP_SHORTCACHE - Short (elt-only) caching

• OP_SILENT - Don't pass up events (internal use)

• OP_PROTOTYPE - Return driver prototype

• OP_SECURE - Don't do non-secure authentication

n_retries

Number of maximum connect attempts

Return Values

Returns an IMAP stream on success or FALSE on error.

ChangeLog

Version Description

5.2.0 n_retries added

Examples

Example #1759 - Different use of imap_open()

<?php

// To connect to an IMAP server running on port 143 on the local machine,

// do the following:

$mbox = imap_open("{localhost:143}INBOX", "user_id", "password");

// To connect to a POP3 server on port 110 on the local server, use:

$mbox = imap_open ("{localhost:110/pop3}INBOX", "user_id", "password");

// To connect to an SSL IMAP or POP3 server, add /ssl after the protocol

// specification:

$mbox = imap_open ("{localhost:993/imap/ssl}INBOX", "user_id", "password");

// To connect to an SSL IMAP or POP3 server with a self-signed certificate,

// add /ssl/novalidate-cert after the protocol specification:

$mbox = imap_open ("{localhost:995/pop3/ssl/novalidate-cert}", "user_id",
"password");

// To connect to an NNTP server on port 119 on the local server, use:

$nntp = imap_open ("{localhost:119/nntp}comp.test", "", "");

// To connect to a remote server replace "localhost" with the name or the

// IP address of the server you want to connect to.

?>

Example #1760 - imap_open() example

<?php

$mbox = imap_open("{imap.example.org:143}", "username", "password");

echo "<h1>Mailboxes</h1>\n";

$folders = imap_listmailbox($mbox, "{imap.example.org:143}", "*");

if ($folders == false) {

 echo "Call failed
\n";

} else {

 foreach ($folders as $val) {

 echo $val . "
\n";

 }

}

echo "<h1>Headers in INBOX</h1>\n";

$headers = imap_headers($mbox);

if ($headers == false) {

 echo "Call failed
\n";

} else {

 foreach ($headers as $val) {

 echo $val . "
\n";

 }

}

imap_close($mbox);

?>

See Also

• imap_close()

imap_ping

imap_ping -- Check if the IMAP stream is still active

Description

bool imap_ping (resource $imap_stream)

imap_ping() pings the stream to see if it's still active. It may discover new mail; this is the
preferred method for a periodic "new mail check" as well as a "keep alive" for servers
which have inactivity timeout.

Parameters

imap_stream

An IMAP stream returned by imap_open().

Return Values

Returns TRUE if the stream is still alive, FALSE otherwise.

Examples

Example #1761 - imap_ping() Example

<?php

$imap = imap_open("{imap.example.org}", "mailadmin", "password");

// after some sleeping

if (!imap_ping($imap)) {

 // do some stuff to reconnect

}

?>

imap_qprint

imap_qprint -- Convert a quoted-printable string to an 8 bit string

Description

string imap_qprint (string $string)

Convert a quoted-printable string to an 8 bit string according to » RFC2045, section 6.7.

Parameters

string

A quoted-printable string

Return Values

Returns an 8 bits string.

See Also

• imap_8bit()

http://www.faqs.org/rfcs/rfc2045

imap_renamemailbox

imap_renamemailbox -- Rename an old mailbox to new mailbox

Description

bool imap_renamemailbox (resource $imap_stream, string $old_mbox, string $new_mbox
)

This function renames on old mailbox to new mailbox (see imap_open() for the format of
mbox names).

Parameters

imap_stream

An IMAP stream returned by imap_open().

old_mbox

The old mailbox name, see imap_open() for more information

new_mbox

The new mailbox name, see imap_open() for more information

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_createmailbox()
• imap_deletemailbox()

imap_reopen

imap_reopen -- Reopen IMAP stream to new mailbox

Description

bool imap_reopen (resource $imap_stream, string $mailbox [, int $options [, int $
n_retries]])

Reopens the specified stream to a new mailbox on an IMAP or NNTP server.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

options

The options are a bit mask with one or more of the following:

• OP_READONLY - Open mailbox read-only

• OP_ANONYMOUS - Don't use or update a.newsrc for news (NNTP only)

• OP_HALFOPEN - For IMAP and NNTP names, open a connection but don't open
a mailbox.

• OP_EXPUNGE - Silently expunge recycle stream

• CL_EXPUNGE - Expunge mailbox automatically upon mailbox close (see also
imap_delete() and imap_expunge())

n_retries

Number of maximum connect attempts

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.0 n_retries added

Examples

Example #1762 - imap_reopen() example

<?php

$mbox = imap_open("{imap.example.org:143}INBOX", "username", "password") or
die(implode(", ", imap_errors()));

// ...

imap_reopen($mbox, "{imap.example.org:143}INBOX.Sent") or die(implode(", ",
imap_errors()));

// ..

?>

imap_rfc822_parse_adrlist

imap_rfc822_parse_adrlist -- Parses an address string

Description

array imap_rfc822_parse_adrlist (string $address, string $default_host)

Parses the address string as defined in » RFC2822 and for each address.

Parameters

address

A string containing addresses

default_host

The default host name

Return Values

Returns an array of objects. The objects properties are:

• mailbox - the mailbox name (username)

• host - the host name

• personal - the personal name

• adl - at domain source route

Examples

Example #1763 - imap_rfc822_parse_adrlist() example

<?php

$address_string = "Joe Doe <doe@example.com>, postmaster@example.com, root";

$address_array = imap_rfc822_parse_adrlist($address_string, "example.com");

if (!is_array($address_array) || count($address_array) < 1) {

 die("something is wrong\n");

}

foreach ($address_array as $id => $val) {

 echo "# $id\n";

http://www.faqs.org/rfcs/rfc2822

 echo " mailbox : " . $val->mailbox . "\n";

 echo " host : " . $val->host . "\n";

 echo " personal: " . $val->personal . "\n";

 echo " adl : " . $val->adl . "\n";

}

?>

The above example will output:

0

 mailbox : doe

 host : example.com

 personal: Joe Doe

 adl :

1

 mailbox : postmaster

 host : example.com

 personal:

 adl :

2

 mailbox : root

 host : example.com

 personal:

 adl :

See Also

• imap_rfc822_parse_headers()

imap_rfc822_parse_headers

imap_rfc822_parse_headers -- Parse mail headers from a string

Description

object imap_rfc822_parse_headers (string $headers [, string $defaulthost])

Gets an object of various header elements, similar to imap_header().

Parameters

headers

The parsed headers data

defaulthost

The default host name

Return Values

Returns an object similar to the one returned by imap_header(), except for the flags and
other properties that come from the IMAP server.

See Also

• imap_rfc822_parse_adrlist()

imap_rfc822_write_address

imap_rfc822_write_address -- Returns a properly formatted email address given the
mailbox, host, and personal info

Description

string imap_rfc822_write_address (string $mailbox, string $host, string $personal)

Returns a properly formatted email address as defined in » RFC2822 given the needed
information.

Parameters

mailbox

The mailbox name, see imap_open() for more information

host

The email host part

personal

The name of the account owner

Return Values

Returns a string properly formatted email address as defined in » RFC2822.

Examples

Example #1764 - imap_rfc822_write_address() example

<?php

echo imap_rfc822_write_address("hartmut", "example.com", "Hartmut
Holzgraefe");

?>

The above example will output:

Hartmut Holzgraefe <hartmut@example.com>

http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2822

imap_savebody

imap_savebody -- Save a specific body section to a file

Description

bool imap_savebody (resource $imap_stream, mixed $file, int $msg_number [, string $
part_number [, int $options]])

Saves a part or the whole body of the specified message.

Parameters

imap_stream

An IMAP stream returned by imap_open().

file

The path to the saved file as a string, or a valid file descriptor returned by fopen().

msg_number

The message number

part_number

The part number. It is a string of integers delimited by period which index into a body
part list as per the IMAP4 specification

options

A bitmask with one or more of the following:

• FT_UID - The msg_number is a UID

• FT_PEEK - Do not set the \Seen flag if not already set

• FT_INTERNAL - The return string is in internal format, will not canonicalize to
CRLF.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_fetchbody()

imap_scanmailbox

imap_scanmailbox -- Alias of imap_listscan()

Description

This function is an alias of: imap_listscan().

imap_search

imap_search -- This function returns an array of messages matching the given search
criteria

Description

array imap_search (resource $imap_stream, string $criteria [, int $options [, string $
charset]])

This function performs a search on the mailbox currently opened in the given imap stream.

For example, to match all unanswered messages sent by Mom, you'd use:
"UNANSWERED FROM mom". Searches appear to be case insensitive. This list of criteria
is from a reading of the UW c-client source code and may be incomplete or inaccurate
(see also » RFC2060, section 6.4.4).

Parameters

imap_stream

An IMAP stream returned by imap_open().

criteria

A string, delimited by spaces, in which the following keywords are allowed. Any
multi-word arguments (e.g. FROM "joey smith") must be quoted.

• ALL - return all messages matching the rest of the criteria

• ANSWERED - match messages with the \\ANSWERED flag set

• BCC "string" - match messages with "string" in the Bcc: field

• BEFORE "date" - match messages with Date: before "date"

• BODY "string" - match messages with "string" in the body of the message

• CC "string" - match messages with "string" in the Cc: field

• DELETED - match deleted messages

• FLAGGED - match messages with the \\FLAGGED (sometimes referred to as
Important or Urgent) flag set

• FROM "string" - match messages with "string" in the From: field

• KEYWORD "string" - match messages with "string" as a keyword

• NEW - match new messages

• OLD - match old messages

• ON "date" - match messages with Date: matching "date"

• RECENT - match messages with the \\RECENT flag set

http://www.faqs.org/rfcs/rfc2060

• SEEN - match messages that have been read (the \\SEEN flag is set)

• SINCE "date" - match messages with Date: after "date"

• SUBJECT "string" - match messages with "string" in the Subject:

• TEXT "string" - match messages with text "string"

• TO "string" - match messages with "string" in the To:

• UNANSWERED - match messages that have not been answered

• UNDELETED - match messages that are not deleted

• UNFLAGGED - match messages that are not flagged

• UNKEYWORD "string" - match messages that do not have the keyword "string"

• UNSEEN - match messages which have not been read yet

options

Valid values for options are SE_UID, which causes the returned array to contain UIDs
instead of messages sequence numbers.

charset

Return Values

Returns an array of message numbers or UIDs.

Return FALSE if it does not understand the search criteria or no messages have been
found.

ChangeLog

Version Description

4.3.3 The charset parameter was added

See Also

• imap_listscan()

imap_set_quota

imap_set_quota -- Sets a quota for a given mailbox

Description

bool imap_set_quota (resource $imap_stream, string $quota_root, int $quota_limit)

Sets an upper limit quota on a per mailbox basis.

Parameters

imap_stream

An IMAP stream returned by imap_open().

quota_root

The mailbox to have a quota set. This should follow the IMAP standard format for a
mailbox: user.name.

quota_limit

The maximum size (in KB) for the quota_root

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1765 - imap_set_quota() example

<?php

$mbox = imap_open("{imap.example.org:143}", "mailadmin", "password");

if (!imap_set_quota($mbox, "user.kalowsky", 3000)) {

 echo "Error in setting quota\n";

 return;

}

imap_close($mbox);

?>

Notes

This function is currently only available to users of the c-client2000 or greater library.

The given imap_stream must be opened as the mail administrator, other wise this function
will fail.

See Also

• imap_open()
• imap_get_quota()

imap_setacl

imap_setacl -- Sets the ACL for a giving mailbox

Description

bool imap_setacl (resource $imap_stream, string $mailbox, string $id, string $rights)

Sets the ACL for a giving mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

id

The user to give the rights to.

rights

The rights to give to the user. Passing an empty string will delete acl.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

This function is currently only available to users of the c-client2000 or greater library.

See Also

• imap_getacl()

imap_setflag_full

imap_setflag_full -- Sets flags on messages

Description

bool imap_setflag_full (resource $imap_stream, string $sequence, string $flag [, int $
options])

Causes a store to add the specified flag to the flags set for the messages in the specified
sequence.

Parameters

imap_stream

An IMAP stream returned by imap_open().

sequence

A sequence of message numbers. You can enumerate desired messages with the X,Y
syntax, or retrieve all messages within an interval with the X:Y syntax

flag

The flags which you can set are \\Seen, \\Answered, \\Flagged, \\Deleted, and \\Draft
as defined by » RFC2060.

options

A bit mask that may contain the single option:

• ST_UID - The sequence argument contains UIDs instead of sequence numbers

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1766 - imap_setflag_full() example

<?php

$mbox = imap_open("{imap.example.org:143}", "username", "password")

 or die("can't connect: " . imap_last_error());

$status = imap_setflag_full($mbox, "2,5", "\\Seen \\Flagged");

http://www.faqs.org/rfcs/rfc2060

echo gettype($status) . "\n";

echo $status . "\n";

imap_close($mbox);

?>

See Also

• imap_clearflag_full()

imap_sort

imap_sort -- Gets and sort messages

Description

array imap_sort (resource $imap_stream, int $criteria, int $reverse [, int $options [,
string $search_criteria [, string $charset]]])

Gets and sorts message numbers by the given parameters.

Parameters

imap_stream

An IMAP stream returned by imap_open().

criteria

Criteria can be one (and only one) of the following:

• SORTDATE - message Date

• SORTARRIVAL - arrival date

• SORTFROM - mailbox in first From address

• SORTSUBJECT - message subject

• SORTTO - mailbox in first To address

• SORTCC - mailbox in first cc address

• SORTSIZE - size of message in octets

reverse

Set this to 1 for reverse sorting

options

The options are a bitmask of one or more of the following:

• SE_UID - Return UIDs instead of sequence numbers

• SE_NOPREFETCH - Don't prefetch searched messages

search_criteria

charset

Return Values

Returns an array of message numbers sorted by the given parameters.

ChangeLog

Version Description

4.3.3 The charset parameter was added

imap_status

imap_status -- Returns status information on a mailbox

Description

object imap_status (resource $imap_stream, string $mailbox, int $options)

Gets status information about the given mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

options

Valid flags are:

• SA_MESSAGES - set status->messages to the number of messages in the
mailbox

• SA_RECENT - set status->recent to the number of recent messages in the mailbox

• SA_UNSEEN - set status->unseen to the number of unseen (new) messages in
the mailbox

• SA_UIDNEXT - set status->uidnext to the next uid to be used in the mailbox

• SA_UIDVALIDITY - set status->uidvalidity to a constant that changes when uids
for the mailbox may no longer be valid

• SA_ALL - set all of the above

Return Values

This function returns an object containing status information. The object has the following
properties: messages, recent, unseen, uidnext, and uidvalidity.

flags is also set, which contains a bitmask which can be checked against any of the above
constants.

Examples

Example #1767 - imap_status() example

<?php

$mbox = imap_open("{imap.example.com}", "username", "password", OP_HALFOPEN)

 or die("can't connect: " . imap_last_error());

$status = imap_status($mbox, "{imap.example.org}INBOX", SA_ALL);

if ($status) {

 echo "Messages: " . $status->messages . "
\n";

 echo "Recent: " . $status->recent . "
\n";

 echo "Unseen: " . $status->unseen . "
\n";

 echo "UIDnext: " . $status->uidnext . "
\n";

 echo "UIDvalidity:" . $status->uidvalidity . "
\n";

} else {

 echo "imap_status failed: " . imap_last_error() . "\n";

}

imap_close($mbox);

?>

imap_subscribe

imap_subscribe -- Subscribe to a mailbox

Description

bool imap_subscribe (resource $imap_stream, string $mailbox)

Subscribe to a new mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_unsubscribe()

imap_thread

imap_thread -- Returns a tree of threaded message

Description

array imap_thread (resource $imap_stream [, int $options])

Gets a tree of a threaded message.

Parameters

imap_stream

An IMAP stream returned by imap_open().

options

Return Values

imap_thread() returns an associative array containing a tree of messages threaded by
REFERENCES, or FALSE on error.

Every message in the current mailbox will be represented by three entries in the resulting
array:

• $thread["XX.num"] - current message number

• $thread["XX.next"]

• $thread["XX.branch"]

Examples

Example #1768 - imap_thread() Example

<?php

// Here we're outputting the threads of a newsgroup, in HTML

$nntp = imap_open('{news.example.com:119/nntp}some.newsgroup', '', '');

$threads = imap_thread($nntp);

foreach ($threads as $key => $val) {

 $tree = explode('.', $key);

 if ($tree[1] == 'num') {

 $header = imap_headerinfo($nntp, $val);

 echo "\n\t" . $header->fromaddress . "\n";

 } elseif ($tree[1] == 'branch') {

 echo "\t\n\n";

 }

}

imap_close($nntp);

?>

imap_timeout

imap_timeout -- Set or fetch imap timeout

Description

mixed imap_timeout (int $timeout_type [, int $timeout])

Sets or fetchs the imap timeout.

Parameters

timeout_type

One of the following: IMAP_OPENTIMEOUT, IMAP_READTIMEOUT,
IMAP_WRITETIMEOUT, or IMAP_CLOSETIMEOUT.

timeout

The timeout, in seconds.

Return Values

If the timeout parameter is set, this function returns TRUE on success and FALSE on
failure.

If timeout is not provided or evaluates to -1, the current timeout value of timeout_type is
returned as an integer.

Examples

Example #1769 - imap_timeout() example

<?php

echo "The current read timeout is " . imap_timeout(IMAP_READTIMEOUT) . "\n";

?>

imap_uid

imap_uid -- This function returns the UID for the given message sequence number

Description

int imap_uid (resource $imap_stream, int $msg_number)

This function returns the UID for the given message sequence number. An UID is a unique
identifier that will not change over time while a message sequence number may change
whenever the content of the mailbox changes.

This function is the inverse of imap_msgno().

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number.

Return Values

The UID of the given message.

Notes

Note

This function is not supported by POP3 mailboxes.

See Also

• imap_msgno()

imap_undelete

imap_undelete -- Unmark the message which is marked deleted

Description

bool imap_undelete (resource $imap_stream, int $msg_number [, int $flags])

Removes the deletion flag for a specified message, which is set by imap_delete() or
imap_mail_move().

Parameters

imap_stream

An IMAP stream returned by imap_open().

msg_number

The message number

flags

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_delete()
• imap_mail_move()

imap_unsubscribe

imap_unsubscribe -- Unsubscribe from a mailbox

Description

bool imap_unsubscribe (string $imap_stream, string $mailbox)

Unsubscribe from the specified mailbox.

Parameters

imap_stream

An IMAP stream returned by imap_open().

mailbox

The mailbox name, see imap_open() for more information

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• imap_subscribe()

imap_utf7_decode

imap_utf7_decode -- Decodes a modified UTF-7 encoded string

Description

string imap_utf7_decode (string $text)

Decodes modified UTF-7 text into ISO-8859-1 string.

This function is needed to decode mailbox names that contain certain characters which
are not in range of printable ASCII characters.

Parameters

text

A modified UTF-7 encoding string, as defined in » RFC 2060, section 5.1.3 (original
UTF-7 was defined in » RFC1642).

Return Values

Returns a string that is encoded in ISO-8859-1 and consists of the same sequence of
characters in text, or FALSE if text contains invalid modified UTF-7 sequence or text
contains a character that is not part of ISO-8859-1 character set.

See Also

• imap_utf7_encode()

http://www.faqs.org/rfcs/rfc2060
http://www.faqs.org/rfcs/rfc1642

imap_utf7_encode

imap_utf7_encode -- Converts ISO-8859-1 string to modified UTF-7 text

Description

string imap_utf7_encode (string $data)

Converts data to modified UTF-7 text.

This is needed to encode mailbox names that contain certain characters which are not in
range of printable ASCII characters.

Parameters

data

An ISO-8859-1 string.

Return Values

Returns data encoded with the modified UTF-7 encoding as defined in » RFC 2060,
section 5.1.3 (original UTF-7 was defined in » RFC1642).

See Also

• imap_utf7_decode()

http://www.faqs.org/rfcs/rfc2060
http://www.faqs.org/rfcs/rfc1642

imap_utf8

imap_utf8 -- Converts MIME-encoded text to UTF-8

Description

string imap_utf8 (string $mime_encoded_text)

Converts the given mime_encoded_text to UTF-8.

Parameters

mime_encoded_text

A MIME encoded string. MIME encoding method and the UTF-8 specification are
described in » RFC2047 and » RFC2044 respectively.

Return Values

Returns an UTF-8 encoded string.

See Also

• imap_mime_header_decode()

http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2044

Mail

Introduction

The mail() function allows you to send mail.

Installing/Configuring

Requirements

For the Mail functions to be available, PHP must have access to the sendmail binary on
your system during compile time. If you use another mail program, such as qmail or
postfix, be sure to use the appropriate sendmail wrappers that come with them. PHP will
first look for sendmail in your PATH, and then in the following:
/usr/bin:/usr/sbin:/usr/etc:/etc:/usr/ucblib:/usr/lib. It's highly recommended to have sendmail
available from your PATH. Also, the user that compiled PHP must have permission to
access the sendmail binary.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Mail configuration options

Name Default Changeable Changelog

SMTP "localhost" PHP_INI_ALL

smtp_port "25" PHP_INI_ALL Available since PHP
4.3.0.

sendmail_from NULL PHP_INI_ALL

sendmail_path "/usr/sbin/sendmail -t
-i"

PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

SMTP string
Used under Windows only: host name or IP address of the SMTP server PHP should
use for mail sent with the mail() function.

smtp_port int

Used under Windows only: Number of the port to connect to the server specified with
the SMTP setting when sending mail with mail(); defaults to 25. Only available since
PHP 4.3.0.

sendmail_from string
Which "From:" mail address should be used in mail sent from PHP under Windows.
This directive also sets the "Return-Path:" header.

sendmail_path string
Where the sendmail program can be found, usually /usr/sbin/sendmail or
/usr/lib/sendmail. configure does an honest attempt of locating this one for you and set
a default, but if it fails, you can set it here. Systems not using sendmail should set this
directive to the sendmail wrapper/replacement their mail system offers, if any. For
example, » Qmail users can normally set it to /var/qmail/bin/sendmail or
/var/qmail/bin/qmail-inject. qmail-inject does not require any option to process mail
correctly. This directive works also under Windows. If set, smtp, smtp_port and
sendmail_from are ignored and the specified command is executed.

Resource Types

This extension has no resource types defined.

http://www.qmail.org/

Predefined Constants

This extension has no constants defined.

Mail Functions

ezmlm_hash

ezmlm_hash -- Calculate the hash value needed by EZMLM

Description

int ezmlm_hash (string $addr)

ezmlm_hash() calculates the hash value needed when keeping EZMLM mailing lists in a
MySQL database.

Parameters

addr

The email address that's being hashed.

Return Values

The hash value of addr.

Examples

Example #1770 - Calculating the hash and subscribing a user

<?php

$user = "joecool@example.com";

$hash = ezmlm_hash($user);

$query = sprintf("INSERT INTO sample VALUES (%s, '%s')", $hash, $user);

$db->query($query); // using PHPLIB db interface

?>

mail

mail -- Send mail

Description

bool mail (string $to, string $subject, string $message [, string $additional_headers [,
string $additional_parameters]])

Sends an email.

Parameters

to

Receiver, or receivers of the mail. The formatting of this string must comply with » RFC
2822. Some examples are:

• user@example.com
• user@example.com, anotheruser@example.com
• User <user@example.com>
• User <user@example.com>, Another User <anotheruser@example.com>

subject

Subject of the email to be sent.

Caution

This must not contain any newline characters, or the mail may not be sent properly.

message

Message to be sent. Each line should be separated with a LF (\n). Lines should not be
larger than 70 characters.

Caution

(Windows only) When PHP is talking to a SMTP server directly, if a full stop is
found on the start of a line, it is removed. To counter-act this, replace these
occurrences with a double dot.
<?php

$text = str_replace("\n.", "\n..", $text);

?>

additional_headers (optional)

http://www.faqs.org/rfcs/rfc2822
http://www.faqs.org/rfcs/rfc2822

String to be inserted at the end of the email header. This is typically used to add extra
headers (From, Cc, and Bcc). Multiple extra headers should be separated with a CRLF
(\r\n).

Note

When sending mail, the mail must contain a From header. This can be set with the
additional_headers parameter, or a default can be set in php.ini.

Failing to do this will result in an error message similar to Warning: mail():
"sendmail_from" not set in php.ini or custom "From:" header missing. The From
header sets also Return-Path under Windows.

Note

If messages are not received, try using a LF (\n) only. Some poor quality Unix mail
transfer agents replace LF by CRLF automatically (which leads to doubling CR if
CRLF is used). This should be a last resort, as it does not comply with » RFC 2822
.

additional_parameters (optional)
The additional_parameters parameter can be used to pass an additional parameter
to the program configured to use when sending mail using the sendmail_path
configuration setting. For example, this can be used to set the envelope sender
address when using sendmail with the -f sendmail option. The user that the webserver
runs as should be added as a trusted user to the sendmail configuration to prevent a
'X-Warning' header from being added to the message when the envelope sender (-f) is
set using this method. For sendmail users, this file is /etc/mail/trusted-users.

Return Values

Returns TRUE if the mail was successfully accepted for delivery, FALSE otherwise.

It is important to note that just because the mail was accepted for delivery, it does NOT
mean the mail will actually reach the intended destination.

ChangeLog

Version Description

4.3.0 (Windows only) All custom headers (like From, Cc, Bcc and
Date) are supported, and are not
case-sensitive. (As custom headers are not
interpreted by the MTA in the first place, but

http://www.faqs.org/rfcs/rfc2822

are parsed by PHP, PHP < 4.3 only
supported the Cc header element and was
case-sensitive).

4.2.3 The additional_parameters parameter is
disabled in safe_mode and the mail()
function will expose a warning message and
return FALSE when used.

4.0.5 The additional_parameters parameter was
added.

Examples

Example #1771 - Sending mail.

Using mail() to send a simple email:

<?php

// The message

$message = "Line 1\nLine 2\nLine 3";

// In case any of our lines are larger than 70 characters, we should use
wordwrap()

$message = wordwrap($message, 70);

// Send

mail('caffinated@example.com', 'My Subject', $message);

?>

Example #1772 - Sending mail with extra headers.

The addition of basic headers, telling the MUA the From and Reply-To addresses:

<?php

$to = 'nobody@example.com';

$subject = 'the subject';

$message = 'hello';

$headers = 'From: webmaster@example.com' . "\r\n" .

 'Reply-To: webmaster@example.com' . "\r\n" .

 'X-Mailer: PHP/' . phpversion();

mail($to, $subject, $message, $headers);

?>

Example #1773 - Sending mail with an additional command line parameter.

The additional_parameters parameter can be used to pass an additional parameter
to the program configured to use when sending mail using the sendmail_path.

<?php

mail('nobody@example.com', 'the subject', 'the message', null,

 '-fwebmaster@example.com');

?>

Example #1774 - Sending HTML email

It is also possible to send HTML email with mail().

<?php

// multiple recipients

$to = 'aidan@example.com' . ', '; // note the comma

$to .= 'wez@example.com';

// subject

$subject = 'Birthday Reminders for August';

// message

$message = '

<html>

<head>

 <title>Birthday Reminders for August</title>

</head>

<body>

 <p>Here are the birthdays upcoming in August!</p>

 <table>

 <tr>

 <th>Person</th><th>Day</th><th>Month</th><th>Year</th>

 </tr>

 <tr>

 <td>Joe</td><td>3rd</td><td>August</td><td>1970</td>

 </tr>

 <tr>

 <td>Sally</td><td>17th</td><td>August</td><td>1973</td>

 </tr>

 </table>

</body>

</html>

';

// To send HTML mail, the Content-type header must be set

$headers = 'MIME-Version: 1.0' . "\r\n";

$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

// Additional headers

$headers .= 'To: Mary <mary@example.com>, Kelly <kelly@example.com>' .
"\r\n";

$headers .= 'From: Birthday Reminder <birthday@example.com>' . "\r\n";

$headers .= 'Cc: birthdayarchive@example.com' . "\r\n";

$headers .= 'Bcc: birthdaycheck@example.com' . "\r\n";

// Mail it

mail($to, $subject, $message, $headers);

?>

Note

If intending to send HTML or otherwise Complex mails, it is recommended to use
the PEAR package » PEAR::Mail_Mime.

Notes

Note

The Windows implementation of mail() differs in many ways from the Unix
implementation. First, it doesn't use a local binary for composing messages but only
operates on direct sockets which means a MTA is needed listening on a network
socket (which can either on the localhost or a remote machine).

Second, the custom headers like From:, Cc:, Bcc: and Date: are not interpreted by the
MTA in the first place, but are parsed by PHP.

As such, the to parameter should not be an address in the form of "Something
<someone@example.com>". The mail command may not parse this properly while
talking with the MTA.

Note

Email with attachments and special types of content (e.g. HTML) can be sent using
this function. This is accomplished via MIME-encoding - for more information, see this
» Zend article or the » PEAR Mime Classes.

Note

It is worth noting that the mail() function is not suitable for larger volumes of email in a
loop. This function opens and closes an SMTP socket for each email, which is not very
efficient.

For the sending of large amounts of email, see the » PEAR::Mail, and
» PEAR::Mail_Queue packages.

http://pear.php.net/package/Mail_Mime
http://www.zend.com/zend/spotlight/sendmimeemailpart1.php
http://www.zend.com/zend/spotlight/sendmimeemailpart1.php
http://pear.php.net/package/Mail_Mime
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail_Queue
http://pear.php.net/package/Mail_Queue

Note

The following RFCs may be useful: » RFC 1896, » RFC 2045, » RFC 2046, » RFC
2047, » RFC 2048, » RFC 2049, and » RFC 2822.

See Also

• imap_mail()
• » PEAR::Mail
• » PEAR::Mail_Mime

http://www.faqs.org/rfcs/rfc1896
http://www.faqs.org/rfcs/rfc2045
http://www.faqs.org/rfcs/rfc2046
http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2047
http://www.faqs.org/rfcs/rfc2048
http://www.faqs.org/rfcs/rfc2049
http://www.faqs.org/rfcs/rfc2822
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail_Mime

Mailparse

Introduction

Mailparse is an extension for parsing and working with email messages. It can deal with
» RFC 822 and » RFC 2045 (MIME) compliant messages.

Mailparse is stream based, which means that it does not keep in-memory copies of the
files it processes - so it is very resource efficient when dealing with large messages.

Note

Mailparse requires the mbstring extension, and mbstring must be loaded before
mailparse.

This extension has been moved to the » PECL repository and is no longer bundled with
PHP as of PHP 4.2.0.

http://www.faqs.org/rfcs/rfc822
http://www.faqs.org/rfcs/rfc822
http://www.faqs.org/rfcs/rfc2045
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/mailparse.

In order to use these functions you must compile PHP with mailparse support by using the
--enable-mailparse configure option.

Windows users will enable php_mailparse.dll inside of php.ini in order to use these
functions. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Mailparse configuration options

Name Default Changeable Changelog

mailparse.def_charse
t

"us-ascii" PHP_INI_ALL Available since PHP
4.1.0. Removed in
PHP 4.2.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/mailparse
http://pecl.php.net/package/mailparse
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MAILPARSE_EXTRACT_OUTPUT (integer)

MAILPARSE_EXTRACT_STREAM (integer)

MAILPARSE_EXTRACT_RETURN (integer)

Mailparse Functions

mailparse_determine_best_xfer_encoding

mailparse_determine_best_xfer_encoding -- Gets the best way of encoding

Description

string mailparse_determine_best_xfer_encoding (resource $fp)

Figures out the best way of encoding the content read from the given file pointer.

Parameters

fp

A valid file pointer, which must be seek-able.

Return Values

Returns one of the character encodings supported by the mbstring module.

Examples

Example #1775 - mailparse_determine_best_xfer_encoding() example

<?php

$fp = fopen('somemail.eml', 'r');

echo 'Best encoding: ' . mailparse_determine_best_xfer_encoding($fp);

?>

The above example will output something similar to:

Best encoding: 7bit

mailparse_msg_create

mailparse_msg_create -- Create a mime mail resource

Description

resource mailparse_msg_create (void)

Create a MIME mail resource.

Return Values

Returns a handle that can be used to parse a message.

See Also

• mailparse_msg_free()
• mailparse_msg_parse_file()

mailparse_msg_extract_part_file

mailparse_msg_extract_part_file -- Extracts/decodes a message section

Description

string mailparse_msg_extract_part_file (resource $mimemail, mixed $filename [,
callback $callbackfunc])

Extracts/decodes a message section from the supplied filename.

The contents of the section will be decoded according to their transfer encoding - base64,
quoted-printable and uuencoded text are supported.

Parameters

mimemail

A valid MIME resource, created with mailparse_msg_create().

filename

Can be a file name or a valid stream resource.

callbackfunc

If set, this must be either a valid callback that will be passed the extracted section, or
NULL to make this function return the extracted section. If not specified, the contents
will be sent to "stdout".

Return Values

If callbackfunc is not NULL returns TRUE on success.

If callbackfunc is set to NULL, returns the extracted section as a string.

Returns FALSE on error.

See Also

• mailparse_msg_extract_part()
• mailparse_msg_extract_whole_part_file()

mailparse_msg_extract_part

mailparse_msg_extract_part -- Extracts/decodes a message section

Description

void mailparse_msg_extract_part (resource $mimemail, string $msgbody [, callback $
callbackfunc])

Warning

This function is currently not documented; only its argument list is available.

Parameters

mimemail

A valid MIME resource.

msgbody

callbackfunc

Return Values

No value is returned.

See Also

• mailparse_msg_extract_part_file()
• mailparse_msg_extract_whole_part_file()

mailparse_msg_extract_whole_part_file

mailparse_msg_extract_whole_part_file -- Extracts a message section including headers
without decoding the transfer encoding

Description

string mailparse_msg_extract_whole_part_file (resource $mimemail, string $filename
[, callback $callbackfunc])

Warning

This function is currently not documented; only its argument list is available.

Parameters

mimemail

A valid MIME resource.

filename

callbackfunc

Return Values

See Also

• mailparse_msg_extract_part()
• mailparse_msg_extract_part_file()

mailparse_msg_free

mailparse_msg_free -- Frees a MIME resource

Description

bool mailparse_msg_free (resource $mimemail)

Frees a MIME resource.

Parameters

mimemail

A valid MIME resource allocated by mailparse_msg_create() or
mailparse_msg_parse_file().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• mailparse_msg_create()
• mailparse_msg_parse_file()

mailparse_msg_get_part_data

mailparse_msg_get_part_data -- Returns an associative array of info about the message

Description

array mailparse_msg_get_part_data (resource $mimemail)

Warning

This function is currently not documented; only its argument list is available.

Parameters

mimemail

A valid MIME resource.

mailparse_msg_get_part

mailparse_msg_get_part -- Returns a handle on a given section in a mimemessage

Description

resource mailparse_msg_get_part (resource $mimemail, string $mimesection)

Warning

This function is currently not documented; only its argument list is available.

Parameters

mimemail

A valid MIME resource.

mimesection

mailparse_msg_get_structure

mailparse_msg_get_structure -- Returns an array of mime section names in the supplied
message

Description

array mailparse_msg_get_structure (resource $mimemail)

Warning

This function is currently not documented; only its argument list is available.

Parameters

mimemail

A valid MIME resource.

mailparse_msg_parse_file

mailparse_msg_parse_file -- Parses a file

Description

resource mailparse_msg_parse_file (string $filename)

Parses a file. This is the optimal way of parsing a mail file that you have on disk.

Parameters

filename

Path to the file holding the message. The file is opened and streamed through the
parser.

Return Values

Returns a MIME resource representing the structure, or FALSE on error.

See Also

• mailparse_msg_free()
• mailparse_msg_create()

mailparse_msg_parse

mailparse_msg_parse -- Incrementally parse data into buffer

Description

bool mailparse_msg_parse (resource $mimemail, string $data)

Incrementally parse data into the supplied mime mail resource.

This function allow you to stream portions of a file at a time, rather than read and parse the
whole thing.

Parameters

mimemail

A valid MIME resource.

data

Return Values

Returns TRUE on success or FALSE on failure.

mailparse_rfc822_parse_addresses

mailparse_rfc822_parse_addresses -- Parse RFC 822 compliant addresses

Description

array mailparse_rfc822_parse_addresses (string $addresses)

Parses a » RFC 822 compliant recipient list, such as that found in the To: header.

Parameters

addresses

A string containing addresses, like in: Wez Furlong <wez@example.com>,
doe@example.com

Note

This string must not include the header name.

Return Values

Returns an array of associative arrays with the following keys for each recipient:

display The recipient name, for display purpose. If
this part is not set for a recipient, this key
will hold the same value as address.

address The email address

is_group TRUE if the recipient is a newsgroup,
FALSE otherwise.

Examples

Example #1776 - mailparse_rfc822_parse_addresses() example

<?php

$to = 'Wez Furlong <wez@example.com>, doe@example.com';

var_dump(mailparse_rfc822_parse_addresses($to));

http://www.faqs.org/rfcs/rfc822

?>

The above example will output:

array(2) {

 [0]=>

 array(3) {

 ["display"]=>

 string(11) "Wez Furlong"

 ["address"]=>

 string(15) "wez@example.com"

 ["is_group"]=>

 bool(false)

 }

 [1]=>

 array(3) {

 ["display"]=>

 string(15) "doe@example.com"

 ["address"]=>

 string(15) "doe@example.com"

 ["is_group"]=>

 bool(false)

 }

}

mailparse_stream_encode

mailparse_stream_encode -- Streams data from source file pointer, apply encoding and
write to destfp

Description

bool mailparse_stream_encode (resource $sourcefp, resource $destfp, string $
encoding)

Streams data from the source file pointer, apply encoding and write to the destination file
pointer.

Parameters

sourcefp

A valid file handle. The file is streamed through the parser.

destfp

The destination file handle in which the encoded data will be written.

encoding

One of the character encodings supported by the mbstring module.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1777 - mailparse_stream_encode() example

<?php

// email.eml contents: hello, this is some text=hello.

$fp = fopen('email.eml', 'r');

$dest = tmpfile();

mailparse_stream_encode($fp, $dest, "quoted-printable");

rewind($dest);

// Display new file contents

fpassthru($dest);

?>

The above example will output:

hello, this is some text=3Dhello.

mailparse_uudecode_all

mailparse_uudecode_all -- Scans the data from fp and extract each embedded uuencoded
file

Description

array mailparse_uudecode_all (resource $fp)

Scans the data from the given file pointer and extract each embedded uuencoded file into
a temporary file.

Parameters

fp

A valid file pointer.

Return Values

Returns an array of associative arrays listing filename information.

filename Path to the temporary file name created

origfilename The original filename, for uuencoded parts
only

The first filename entry is the message body. The next entries are the decoded uuencoded
files.

Examples

Example #1778 - mailparse_uudecode_all() example

<?php

$text = <<<EOD

To: fred@example.com

hello, this is some text hello.

blah blah blah.

begin 644 test.txt

/=&AI<R!I<R!A('1E<W0*

`

end

EOD;

$fp = tmpfile();

fwrite($fp, $text);

$data = mailparse_uudecode_all($fp);

echo "BODY\n";

readfile($data[0]["filename"]);

echo "UUE ({$data[1]['origfilename']})\n";

readfile($data[1]["filename"]);

// Clean up

unlink($data[0]["filename"]);

unlink($data[1]["filename"]);

?>

The above example will output:

BODY

To: fred@example.com

hello, this is some text hello.

blah blah blah.

UUE (test.txt)

this is a test

vpopmail

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

This extension has been moved from PHP as of PHP 4.3.0 and now vpopmail lives in
» PECL.

http://pecl.php.net/package/vpopmail
http://pecl.php.net/package/vpopmail

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

As of PHP 4, these functions are only available if PHP was configured with
--with-vpopmail[=DIR].

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

vpopmail Functions

vpopmail_add_alias_domain_ex

vpopmail_add_alias_domain_ex -- Add alias to an existing virtual domain

Description

bool vpopmail_add_alias_domain_ex (string $olddomain, string $newdomain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_add_alias_domain

vpopmail_add_alias_domain -- Add an alias for a virtual domain

Description

bool vpopmail_add_alias_domain (string $domain, string $aliasdomain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_add_domain_ex

vpopmail_add_domain_ex -- Add a new virtual domain

Description

bool vpopmail_add_domain_ex (string $domain, string $passwd [, string $quota [, string
$bounce [, bool $apop]]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_add_domain

vpopmail_add_domain -- Add a new virtual domain

Description

bool vpopmail_add_domain (string $domain, string $dir, int $uid, int $gid)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_add_user

vpopmail_add_user -- Add a new user to the specified virtual domain

Description

bool vpopmail_add_user (string $user, string $domain, string $password [, string $gecos
[, bool $apop]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_alias_add

vpopmail_alias_add -- Insert a virtual alias

Description

bool vpopmail_alias_add (string $user, string $domain, string $alias)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_alias_del_domain

vpopmail_alias_del_domain -- Deletes all virtual aliases of a domain

Description

bool vpopmail_alias_del_domain (string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_alias_del

vpopmail_alias_del -- Deletes all virtual aliases of a user

Description

bool vpopmail_alias_del (string $user, string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_alias_get_all

vpopmail_alias_get_all -- Get all lines of an alias for a domain

Description

array vpopmail_alias_get_all (string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_alias_get

vpopmail_alias_get -- Get all lines of an alias for a domain

Description

array vpopmail_alias_get (string $alias, string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_auth_user

vpopmail_auth_user -- Attempt to validate a username/domain/password

Description

bool vpopmail_auth_user (string $user, string $domain, string $password [, string $apop
])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_del_domain_ex

vpopmail_del_domain_ex -- Delete a virtual domain

Description

bool vpopmail_del_domain_ex (string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_del_domain

vpopmail_del_domain -- Delete a virtual domain

Description

bool vpopmail_del_domain (string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_del_user

vpopmail_del_user -- Delete a user from a virtual domain

Description

bool vpopmail_del_user (string $user, string $domain)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_error

vpopmail_error -- Get text message for last vpopmail error

Description

string vpopmail_error (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_passwd

vpopmail_passwd -- Change a virtual user's password

Description

bool vpopmail_passwd (string $user, string $domain, string $password [, bool $apop])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

vpopmail_set_user_quota

vpopmail_set_user_quota -- Sets a virtual user's quota

Description

bool vpopmail_set_user_quota (string $user, string $domain, string $quota)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Mathematical Extensions

BCMath Arbitrary Precision Mathematics

Introduction

For arbitrary precision mathematics PHP offers the Binary Calculator which supports
numbers of any size and precision, represented as strings.

Installing/Configuring

Requirements

Since PHP 4.0.4, libbcmath is bundled with PHP. You don't need any external libraries for
this extension.

Installation

These functions are only available if PHP was configured with --enable-bcmath.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

BC math configuration options

Name Default Changeable Changelog

bcmath.scale "0" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

bcmath.scale integer
Number of decimal digits for all bcmath functions. See also bcscale().

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

BC Math Functions

bcadd

bcadd -- Add two arbitrary precision numbers

Description

string bcadd (string $left_operand, string $right_operand [, int $scale])

Sums left_operand and right_operand.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

The sum of the two operands, as a string.

Examples

Example #1779 - bcadd() example

<?php

$a = '1.234';

$b = '5';

echo bcadd($a, $b); // 6

echo bcadd($a, $b, 4); // 6.2340

?>

See Also

• bcsub()

bccomp

bccomp -- Compare two arbitrary precision numbers

Description

int bccomp (string $left_operand, string $right_operand [, int $scale])

Compares the left_operand to the right_operand and returns the result as an integer.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

The optional scale parameter is used to set the number of digits after the decimal
place which will be used in the comparison.

Return Values

Returns 0 if the two operands are equal, 1 if the left_operand is larger than the
right_operand, -1 otherwise.

Examples

Example #1780 - bccomp() example

<?php

echo bccomp('1', '2') . "\n"; // -1

echo bccomp('1.00001', '1', 3); // 0

echo bccomp('1.00001', '1', 5); // 1

?>

bcdiv

bcdiv -- Divide two arbitrary precision numbers

Description

string bcdiv (string $left_operand, string $right_operand [, int $scale])

Divides the left_operand by the right_operand.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

Returns the result of the division as a string, or NULL if right_operand is 0.

Examples

Example #1781 - bcdiv() example

<?php

echo bcdiv('105', '6.55957', 3); // 16.007

?>

See Also

• bcmul()

bcmod

bcmod -- Get modulus of an arbitrary precision number

Description

string bcmod (string $left_operand, string $modulus)

Get the modulus of the left_operand using modulus.

Parameters

left_operand

The left operand, as a string.

modulus

The modulus, as a string.

Return Values

Returns the modulus as a string, or NULL if modulus is 0.

Examples

Example #1782 - bcmod() example

<?php

echo bcmod('4', '2'); // 0

echo bcmod('2', '4'); // 2

?>

See Also

• bcdiv()

bcmul

bcmul -- Multiply two arbitrary precision number

Description

string bcmul (string $left_operand, string $right_operand [, int $scale])

Multiply the left_operand by the right_operand.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

Returns the result as a string.

Examples

Example #1783 - bcmul() example

<?php

echo bcmul('1.34747474747', '35', 3); // 47.161

echo bcmul('2', '4'); // 8

?>

See Also

• bcdiv()

bcpow

bcpow -- Raise an arbitrary precision number to another

Description

string bcpow (string $left_operand, string $right_operand [, int $scale])

Raise left_operand to the power right_operand.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

Returns the result as a string.

Examples

Example #1784 - bcpow() example

<?php

echo bcpow('4.2', '3', 2); // 74.08

?>

See Also

• bcpowmod()
• bcsqrt()

bcpowmod

bcpowmod -- Raise an arbitrary precision number to another, reduced by a specified
modulus

Description

string bcpowmod (string $left_operand, string $right_operand, string $modulus [, int $
scale])

Use the fast-exponentiation method to raise left_operand to the power right_operand
with respect to the modulus modulus.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

modulus

The modulus, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

Returns the result as a string, or NULL if modulus is 0.

Notes

Note

Because this method uses the modulus operation, non-natural numbers may give
unexpected results. A natural number is any positive non-zero integer.

Examples

The following two statements are functionally identical. The bcpowmod() version however,
executes in less time and can accept larger parameters.

<?php

$a = bcpowmod($x, $y, $mod);

$b = bcmod(bcpow($x, $y), $mod);

// $a and $b are equal to each other.

?>

See Also

• bcpow()
• bcmod()

bcscale

bcscale -- Set default scale parameter for all bc math functions

Description

bool bcscale (int $scale)

Sets the default scale parameter for all subsequent bc math functions that do not explicitly
specify a scale parameter.

Parameters

scale

The scale factor.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1785 - bcscale() example

<?php

// default scale : 3

bcscale(3);

echo bcdiv('105', '6.55957'); // 16.007

// this is the same without bcscale()

echo bcdiv('105', '6.55957', 3); // 16.007

?>

bcsqrt

bcsqrt -- Get the square root of an arbitrary precision number

Description

string bcsqrt (string $operand [, int $scale])

Return the square root of the operand.

Parameters

operand

The operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

Returns the square root as a string, or NULL if operand is negative.

Examples

Example #1786 - bcsqrt() example

<?php

echo bcsqrt('2', 3); // 1.414

?>

See Also

• bcpow()

bcsub

bcsub -- Subtract one arbitrary precision number from another

Description

string bcsub (string $left_operand, string $right_operand [, int $scale])

Subtracts the right_operand from the left_operand.

Parameters

left_operand

The left operand, as a string.

right_operand

The right operand, as a string.

scale

This optional parameter is used to set the number of digits after the decimal place in
the result. You can also set the global default scale for all functions by using bcscale().

Return Values

The result of the substraction, as a string.

Examples

Example #1787 - bcsub() example

<?php

$a = '1.234';

$b = '5';

echo bcsub($a, $b); // -3

echo bcsub($a, $b, 4); // -3.7660

?>

See Also

• bcadd()

GNU Multiple Precision

Introduction

These functions allow you to work with arbitrary-length integers using the GNU MP library.

These functions have been added in PHP 4.0.4.

Note

Most GMP functions accept GMP number arguments, defined as resource below.
However, most of these functions will also accept numeric and string arguments, given
that it is possible to convert the latter to a number. Also, if there is a faster function that
can operate on integer arguments, it would be used instead of the slower function
when the supplied arguments are integers. This is done transparently, so the bottom
line is that you can use integers in every function that expects GMP number. See also
the gmp_init() function.

Warning

If you want to explicitly specify a large integer, specify it as a string. If you don't do that,
PHP will interpret the integer-literal first, possibly resulting in loss of precision, even
before GMP comes into play.

Note

This extension is available on Windows platforms since PHP 5.1.0.

Installing/Configuring

Requirements

You can download the GMP library from » http://www.swox.com/gmp/. This site also has
the GMP manual available.

You will need GMP version 2 or better to use these functions. Some functions may require
more recent version of the GMP library.

Installation

In order to have these functions available, you must compile PHP with GMP support by
using the --with-gmp option.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

Most GPM functions operate on or return GMP number resources.

http://www.swox.com/gmp/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

GMP_ROUND_ZERO (integer)

GMP_ROUND_PLUSINF (integer)

GMP_ROUND_MINUSINF (integer)

GMP_VERSION (string)
The GMP library version

Examples

Example #1788 - Factorial function using GMP

<?php

function fact($x)

{

 $return = 1;

 for ($i=2; $i < $x; $i++) {

 $return = gmp_mul($return, $i);

 }

 return $return;

}

echo gmp_strval(fact(1000)) . "\n";

?>

This will calculate factorial of 1000 (pretty big number) very fast.

GMP Functions

See Also

More mathematical functions can be found in the Mathematical Extensions section

gmp_abs

gmp_abs -- Absolute value

Description

resource gmp_abs (resource $a)

Get the absolute value of a number.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Returns the absolute value of a, as a GMP number.

Examples

Example #1789 - gmp_abs() example

<?php

$abs1 = gmp_abs("274982683358");

$abs2 = gmp_abs("-274982683358");

echo gmp_strval($abs1) . "\n";

echo gmp_strval($abs2) . "\n";

?>

The above example will output:

274982683358

274982683358

gmp_add

gmp_add -- Add numbers

Description

resource gmp_add (resource $a, resource $b)

Add two numbers.

Parameters

a

A number that will be added. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

b

A number that will be added. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

Return Values

A GMP number representing the sum of the arguments.

Examples

Example #1790 - gmp_add() example

<?php

$sum = gmp_add("123456789012345", "76543210987655");

echo gmp_strval($sum) . "\n";

?>

The above example will output:

200000000000000

gmp_and

gmp_and -- Bitwise AND

Description

resource gmp_and (resource $a, resource $b)

Calculates bitwise AND of two GMP numbers.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number representing the bitwise AND comparison.

Examples

Example #1791 - gmp_and() example

<?php

$and1 = gmp_and("0xfffffffff4", "0x4");

$and2 = gmp_and("0xfffffffff4", "0x8");

echo gmp_strval($and1) . "\n";

echo gmp_strval($and2) . "\n";

?>

The above example will output:

4

0

gmp_clrbit

gmp_clrbit -- Clear bit

Description

void gmp_clrbit (resource &$a, int $index)

Clears (sets to 0) bit index in a. The index starts at 0.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

index

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1792 - gmp_clrbit() example

<?php

$a = gmp_init("0xff");

gmp_clrbit($a, 0); // index starts at 0, least significant bit

echo gmp_strval($a) . "\n";

?>

The above example will output:

254

Notes

Note

Unlike most of the other GMP functions, gmp_clrbit() must be called with a GMP
resource that already exists (using gmp_init() for example). One will not be

automatically created.

See Also

• gmp_setbit()
• gmp_testbit()

gmp_cmp

gmp_cmp -- Compare numbers

Description

int gmp_cmp (resource $a, resource $b)

Compares two numbers.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Returns a positive value if a > b, zero if a = b and a negative value if a < b.

Examples

Example #1793 - gmp_cmp() example

<?php

$cmp1 = gmp_cmp("1234", "1000"); // greater than

$cmp2 = gmp_cmp("1000", "1234"); // less than

$cmp3 = gmp_cmp("1234", "1234"); // equal to

echo "$cmp1 $cmp2 $cmp3\n";

?>

The above example will output:

1 -1 0

gmp_com

gmp_com -- Calculates one's complement

Description

resource gmp_com (resource $a)

Returns the one's complement of a.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Returns the one's complement of a, as a GMP number.

Examples

Example #1794 - gmp_com() example

<?php

$com = gmp_com("1234");

echo gmp_strval($com) . "\n";

?>

The above example will output:

-1235

gmp_div_q

gmp_div_q -- Divide numbers

Description

resource gmp_div_q (resource $a, resource $b [, int $round])

Divides a by b and returns the integer result.

Parameters

a

The number being divided. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

b

The number that a is being divided by. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

round

The result rounding is defined by the round, which can have the following values:

• GMP_ROUND_ZERO: The result is truncated towards 0.

• GMP_ROUND_PLUSINF: The result is rounded towards +infinity.

• GMP_ROUND_MINUSINF: The result is rounded towards -infinity.

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1795 - gmp_div_q() example

<?php

$div1 = gmp_div_q("100", "5");

echo gmp_strval($div1) . "\n";

$div2 = gmp_div_q("1", "3");

echo gmp_strval($div2) . "\n";

$div3 = gmp_div_q("1", "3", GMP_ROUND_PLUSINF);

echo gmp_strval($div3) . "\n";

$div4 = gmp_div_q("-1", "4", GMP_ROUND_PLUSINF);

echo gmp_strval($div4) . "\n";

$div5 = gmp_div_q("-1", "4", GMP_ROUND_MINUSINF);

echo gmp_strval($div5) . "\n";

?>

The above example will output:

20

0

1

0

-1

Notes

Note

This function can also be called as gmp_div().

See Also

• gmp_div_r()
• gmp_div_qr()

gmp_div_qr

gmp_div_qr -- Divide numbers and get quotient and remainder

Description

array gmp_div_qr (resource $n, resource $d [, int $round])

The function divides n by d.

Parameters

n

The number being divided. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

d

The number that n is being divided by. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

round

See the gmp_div_q() function for description of the round argument.

Return Values

Returns an array, with the first element being [n/d] (the integer result of the division) and
the second being (n - [n/d] * d) (the remainder of the division).

Examples

Example #1796 - Division of GMP numbers

<?php

$a = gmp_init("0x41682179fbf5");

$res = gmp_div_qr($a, "0xDEFE75");

printf("Result is: q - %s, r - %s",

 gmp_strval($res[0]), gmp_strval($res[1]));

?>

See Also

• gmp_div_q()
• gmp_div_r()

gmp_div_r

gmp_div_r -- Remainder of the division of numbers

Description

resource gmp_div_r (resource $n, resource $d [, int $round])

Calculates remainder of the integer division of n by d. The remainder has the sign of the n
argument, if not zero.

Parameters

n

The number being divided. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

d

The number that n is being divided by. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

round

See the gmp_div_q() function for description of the round argument.

Return Values

The remainder, as a GMP number.

Examples

Example #1797 - gmp_div_r() example

<?php

$div = gmp_div_r("105", "20");

echo gmp_strval($div) . "\n";

?>

The above example will output:

5

See Also

• gmp_div_q()
• gmp_div_qr()

gmp_div

gmp_div -- Alias of gmp_div_q()

Description

This function is an alias of: gmp_div_q().

gmp_divexact

gmp_divexact -- Exact division of numbers

Description

resource gmp_divexact (resource $n, resource $d)

Divides n by d, using fast "exact division" algorithm. This function produces correct results
only when it is known in advance that d divides n.

Parameters

n

The number being divided. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

d

The number that a is being divided by. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1798 - gmp_divexact() example

<?php

$div1 = gmp_divexact("10", "2");

echo gmp_strval($div1) . "\n";

$div2 = gmp_divexact("10", "3"); // bogus result

echo gmp_strval($div2) . "\n";

?>

The above example will output:

5

2863311534

gmp_fact

gmp_fact -- Factorial

Description

resource gmp_fact (int $a)

Calculates factorial (a!) of a.

Parameters

a

The factorial number. It can be either a GMP number resource, or a numeric string
given that it is possible to convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1799 - gmp_fact() example

<?php

$fact1 = gmp_fact(5); // 5 * 4 * 3 * 2 * 1

echo gmp_strval($fact1) . "\n";

$fact2 = gmp_fact(50); // 50 * 49 * 48, ... etc

echo gmp_strval($fact2) . "\n";

?>

The above example will output:

120

30414093201713378043612608166064768844377641568960512000000000000

gmp_gcd

gmp_gcd -- Calculate GCD

Description

resource gmp_gcd (resource $a, resource $b)

Calculate greatest common divisor of a and b. The result is always positive even if either
of, or both, input operands are negative.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A positive GMP number that divides into both a and b.

Examples

Example #1800 - gmp_gcd() example

<?php

$gcd = gmp_gcd("12", "21");

echo gmp_strval($gcd) . "\n";

?>

The above example will output:

3

gmp_gcdext

gmp_gcdext -- Calculate GCD and multipliers

Description

array gmp_gcdext (resource $a, resource $b)

Calculates g, s, and t, such that a*s + b*t = g = gcd(a,b), where gcd is the greatest
common divisor. Returns an array with respective elements g, s and t.

This function can be used to solve linear Diophantine equations in two variables. These
are equations that allow only integer solutions and have the form: a*x + b*y = c. For more
information, go to the » "Diophantine Equation" page at MathWorld

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

An array of GMP numbers.

Examples

Example #1801 - Solving a linear Diophantine equation

<?php

// Solve the equation a*s + b*t = g

// where a = 12, b = 21, g = gcd(12, 21) = 3

$a = gmp_init(12);

$b = gmp_init(21);

$g = gmp_gcd($a, $b);

$r = gmp_gcdext($a, $b);

$check_gcd = (gmp_strval($g) == gmp_strval($r['g']));

$eq_res = gmp_add(gmp_mul($a, $r['s']), gmp_mul($b, $r['t']));

$check_res = (gmp_strval($g) == gmp_strval($eq_res));

if ($check_gcd && $check_res) {

http://mathworld.wolfram.com/DiophantineEquation.html

 $fmt = "Solution: %d*%d + %d*%d = %d\n";

 printf($fmt, gmp_strval($a), gmp_strval($r['s']), gmp_strval($b),

 gmp_strval($r['t']), gmp_strval($r['g']));

} else {

 echo "Error while solving the equation\n";

}

// output: Solution: 12*2 + 21*-1 = 3

?>

gmp_hamdist

gmp_hamdist -- Hamming distance

Description

int gmp_hamdist (resource $a, resource $b)

Returns the hamming distance between a and b. Both operands should be non-negative.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number. It should be positive.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number. It should be positive.

Return Values

A GMP number resource.

Examples

Example #1802 - gmp_hamdist() example

<?php

$ham1 = gmp_init("1001010011", 2);

$ham2 = gmp_init("1011111100", 2);

echo gmp_hamdist($ham1, $ham2) . "\n";

/* hamdist is equivilent to: */

echo gmp_popcount(gmp_xor($ham1, $ham2)) . "\n";

?>

The above example will output:

6

6

See Also

• gmp_popcount()
• gmp_xor()

gmp_init

gmp_init -- Create GMP number

Description

resource gmp_init (mixed $number [, int $base])

Creates a GMP number from an integer or string.

Parameters

number

An integer or a string. The string representation can be decimal, hexadecimal or octal.

base

The base. Defaults to 0. The base may vary from 2 to 36. If base is 0 (default value),
the actual base is determined from the leading characters: if the first two characters
are 0x or 0X, hexadecimal is assumed, otherwise if the first character is "0", octal is
assumed, otherwise decimal is assumed.

Return Values

A GMP number resource.

ChangeLog

Version Description

4.1.0 The optional base parameter was added.

Examples

Example #1803 - Creating GMP number

<?php

$a = gmp_init(123456);

$b = gmp_init("0xFFFFDEBACDFEDF7200");

?>

Notes

Note

It is not necessary to call this function if you want to use integer or string in place of
GMP number in GMP functions, like gmp_add(). Function arguments are automatically
converted to GMP numbers, if such conversion is possible and needed, using the
same rules as gmp_init().

gmp_intval

gmp_intval -- Convert GMP number to integer

Description

int gmp_intval (resource $gmpnumber)

This function allows to convert GMP number to integer.

Parameters

gmpnumber

A GMP number.

Return Values

An integer value of gmpnumber.

Examples

Example #1804 - gmp_intval() example

<?php

// displays correct result

echo gmp_intval("2147483647") . "\n";

// displays wrong result, above PHP integer limit

echo gmp_intval("2147483648") . "\n";

// displays correct result

echo gmp_strval("2147483648") . "\n";

?>

The above example will output:

2147483647

2147483647

2147483648

Notes

Warning

This function returns a useful result only if the number actually fits the PHP integer
(i.e., signed long type). If you want just to print the GMP number, use gmp_strval().

gmp_invert

gmp_invert -- Inverse by modulo

Description

resource gmp_invert (resource $a, resource $b)

Computes the inverse of a modulo b.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number on success or FALSE if an inverse does not exist.

Examples

Example #1805 - gmp_invert() example

<?php

echo gmp_invert("5", "10"); // no inverse, outputs nothing, result is FALSE

$invert = gmp_invert("5", "11");

echo gmp_strval($invert) . "\n";

?>

The above example will output:

9

gmp_jacobi

gmp_jacobi -- Jacobi symbol

Description

int gmp_jacobi (resource $a, resource $p)

Computes » Jacobi symbol of a and p. p should be odd and must be positive.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

p

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number. Should be odd and must be positive.

Return Values

A GMP number resource.

Examples

Example #1806 - gmp_jacobi() example

<?php

echo gmp_jacobi("1", "3") . "\n";

echo gmp_jacobi("2", "3") . "\n";

?>

The above example will output:

1

0

http://primes.utm.edu/glossary/page.php?sort=JacobiSymbol

gmp_legendre

gmp_legendre -- Legendre symbol

Description

int gmp_legendre (resource $a, resource $p)

Compute the » Legendre symbol of a and p. p should be odd and must be positive.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

p

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number. Should be odd and must be positive.

Return Values

A GMP number resource.

Examples

Example #1807 - gmp_legendre() example

<?php

echo gmp_legendre("1", "3") . "\n";

echo gmp_legendre("2", "3") . "\n";

?>

The above example will output:

1

0

http://primes.utm.edu/glossary/page.php?sort=LegendreSymbol

gmp_mod

gmp_mod -- Modulo operation

Description

resource gmp_mod (resource $n, resource $d)

Calculates n modulo d. The result is always non-negative, the sign of d is ignored.

Parameters

n

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

d

The modulo that is being evaluated. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1808 - gmp_mod() example

<?php

$mod = gmp_mod("8", "3");

echo gmp_strval($mod) . "\n";

?>

The above example will output:

2

gmp_mul

gmp_mul -- Multiply numbers

Description

resource gmp_mul (resource $a, resource $b)

Multiplies a by b and returns the result.

Parameters

a

A number that will be multiplied by b. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

b

A number that will be multiplied by a. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1809 - gmp_mul() example

<?php

$mul = gmp_mul("12345678", "2000");

echo gmp_strval($mul) . "\n";

?>

The above example will output:

24691356000

gmp_neg

gmp_neg -- Negate number

Description

resource gmp_neg (resource $a)

Returns the negative value of a number.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Returns - a, as a GMP number.

Examples

Example #1810 - gmp_neg() example

<?php

$neg1 = gmp_neg("1");

echo gmp_strval($neg1) . "\n";

$neg2 = gmp_neg("-1");

echo gmp_strval($neg2) . "\n";

?>

The above example will output:

-1

1

gmp_nextprime

gmp_nextprime -- Find next prime number

Description

resource gmp_nextprime (int $a)

Find next prime number

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Return the next prime number greater than a, as a GMP number.

Examples

Example #1811 - gmp_nextprime() example

<?php

$prime1 = gmp_nextprime(10); // next prime number greater than 10

$prime2 = gmp_nextprime(-1000); // next prime number greater than -1000

echo gmp_strval($prime1) . "\n";

echo gmp_strval($prime2) . "\n";

?>

The above example will output:

11

-997

Notes

Note

This function uses a probabilistic algorithm to identify primes and chances to get a
composite number are extremely small.

gmp_or

gmp_or -- Bitwise OR

Description

resource gmp_or (resource $a, resource $b)

Calculates bitwise inclusive OR of two GMP numbers.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1812 - gmp_or() example

<?php

$or1 = gmp_or("0xfffffff2", "4");

echo gmp_strval($or1, 16) . "\n";

$or2 = gmp_or("0xfffffff2", "2");

echo gmp_strval($or2, 16) . "\n";

?>

The above example will output:

fffffff6

fffffff2

gmp_perfect_square

gmp_perfect_square -- Perfect square check

Description

bool gmp_perfect_square (resource $a)

Check if a number is a perfect square.

Parameters

a

The number being checked as a perfect square. It can be either a GMP number
resource, or a numeric string given that it is possible to convert the latter to a number.

Return Values

Returns TRUE if a is a perfect square, FALSE otherwise.

Examples

Example #1813 - gmp_perfect_square() example

<?php

// 3 * 3, perfect square

var_dump(gmp_perfect_square("9"));

// not a perfect square

var_dump(gmp_perfect_square("7"));

// 1234567890 * 1234567890, perfect square

var_dump(gmp_perfect_square("1524157875019052100"));

?>

The above example will output:

bool(true)

bool(false)

bool(true)

See Also

• gmp_sqrt()
• gmp_sqrtrem()

gmp_popcount

gmp_popcount -- Population count

Description

int gmp_popcount (resource $a)

Get the population count.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

The population count of a, as an integer.

Examples

Example #1814 - gmp_popcount() example

<?php

$pop1 = gmp_init("10000101", 2); // 3 1's

echo gmp_popcount($pop1) . "\n";

$pop2 = gmp_init("11111110", 2); // 7 1's

echo gmp_popcount($pop2) . "\n";

?>

The above example will output:

3

7

gmp_pow

gmp_pow -- Raise number into power

Description

resource gmp_pow (resource $base, int $exp)

Raise base into power exp.

Parameters

base

The base number. It can be either a GMP number resource, or a numeric string given
that it is possible to convert the latter to a number.

exp

The positive power to raise the base.

Return Values

The new (raised) number, as a GMP number. The case of 0^0 yields 1.

Examples

Example #1815 - gmp_pow() example

<?php

$pow1 = gmp_pow("2", 31);

echo gmp_strval($pow1) . "\n";

$pow2 = gmp_pow("0", 0);

echo gmp_strval($pow2) . "\n";

$pow3 = gmp_pow("2", -1); // Negative exp, generates warning

echo gmp_strval($pow3) . "\n";

?>

The above example will output:

2147483648

1

gmp_powm

gmp_powm -- Raise number into power with modulo

Description

resource gmp_powm (resource $base, resource $exp, resource $mod)

Calculate (base raised into power exp) modulo mod. If exp is negative, result is
undefined.

Parameters

base

The base number. It can be either a GMP number resource, or a numeric string given
that it is possible to convert the latter to a number.

exp

The positive power to raise the base. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

mod

The modulo. It can be either a GMP number resource, or a numeric string given that it
is possible to convert the latter to a number.

Return Values

The new (raised) number, as a GMP number.

Examples

Example #1816 - gmp_powm() example

<?php

$pow1 = gmp_powm("2", "31", "2147483649");

echo gmp_strval($pow1) . "\n";

?>

The above example will output:

2147483648

gmp_prob_prime

gmp_prob_prime -- Check if number is "probably prime"

Description

int gmp_prob_prime (resource $a [, int $reps])

The function uses Miller-Rabin's probabilistic test to check if a number is a prime.

Parameters

a

The number being checked as a prime. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

reps

Reasonable values of reps vary from 5 to 10 (default being 10); a higher value lowers
the probability for a non-prime to pass as a "probable" prime. It can be either a GMP
number resource, or a numeric string given that it is possible to convert the latter to a
number.

Return Values

If this function returns 0, a is definitely not prime. If it returns 1, then a is "probably" prime.
If it returns 2, then a is surely prime.

Examples

Example #1817 - gmp_prob_prime() example

<?php

// definitely not a prime

echo gmp_prob_prime("6") . "\n";

// probably a prime

echo gmp_prob_prime("1111111111111111111") . "\n";

// definitely a prime

echo gmp_prob_prime("11") . "\n";

?>

The above example will output:

0

1

2

gmp_random

gmp_random -- Random number

Description

resource gmp_random (int $limiter)

Generate a random number. The number will be between zero and the number of bits per
limb multiplied by limiter. If limiter is negative, negative numbers are generated.

A limb is an internal GMP mechanism. The number of bits in a limb is not static, and can
vary from system to system. Generally, the number of bits in a limb is either 16 or 32, but
this is not guaranteed.

Parameters

limiter

The limiter. It can be either a GMP number resource, or a numeric string given that it is
possible to convert the latter to a number.

Return Values

A random GMP number.

Examples

Example #1818 - gmp_random() example

<?php

$rand1 = gmp_random(1); // random number from 0 to 1 * bits per limb

$rand2 = gmp_random(2); // random number from 0 to 2 * bits per limb

echo gmp_strval($rand1) . "\n";

echo gmp_strval($rand2) . "\n";

?>

The above example will output:

1915834968

8642564075890328087

gmp_scan0

gmp_scan0 -- Scan for 0

Description

int gmp_scan0 (resource $a, int $start)

Scans a, starting with bit start, towards more significant bits, until the first clear bit is
found.

Parameters

a

The number to scan. It can be either a GMP number resource, or a numeric string
given that it is possible to convert the latter to a number.

start

The starting bit.

Return Values

Returns the index of the found bit, as an integer. The index starts from 0.

Examples

Example #1819 - gmp_scan0() example

<?php

// "0" bit is found at position 3. index starts at 0

$s1 = gmp_init("10111", 2);

echo gmp_scan0($s1, 0) . "\n";

// "0" bit is found at position 7. index starts at 5

$s2 = gmp_init("101110000", 2);

echo gmp_scan0($s2, 5) . "\n";

?>

The above example will output:

3

7

gmp_scan1

gmp_scan1 -- Scan for 1

Description

int gmp_scan1 (resource $a, int $start)

Scans a, starting with bit start, towards more significant bits, until the first set bit is found.

Parameters

a

The number to scan. It can be either a GMP number resource, or a numeric string
given that it is possible to convert the latter to a number.

start

The starting bit.

Return Values

Returns the index of the found bit, as an integer. If no set bit is found, -1 is returned.

Examples

Example #1820 - gmp_scan1() example

<?php

// "1" bit is found at position 3. index starts at 0

$s1 = gmp_init("01000", 2);

echo gmp_scan1($s1, 0) . "\n";

// "1" bit is found at position 9. index starts at 5

$s2 = gmp_init("01000001111", 2);

echo gmp_scan1($s2, 5) . "\n";

?>

The above example will output:

3

9

gmp_setbit

gmp_setbit -- Set bit

Description

void gmp_setbit (resource &$a, int $index [, bool $set_clear])

Sets bit index in a.

Parameters

a

The number being set to. It can be either a GMP number resource, or a numeric string
given that it is possible to convert the latter to a number.

index

The set bit.

set_clear

Defines if the bit is set to 0 or 1. By default the bit is set to 1. Index starts at 0.

Return Values

A GMP number resource.

Examples

Example #1821 - gmp_setbit() example

<?php

$a = gmp_init("0xfd");

gmp_setbit($a, 1); // index starts at 0

echo gmp_strval($a) . "\n";

?>

The above example will output:

255

Notes

Note

Unlike most of the other GMP functions, gmp_setbit() must be called with a GMP
resource that already exists (using gmp_init() for example). One will not be
automatically created.

See Also

• gmp_clrbit()
• gmp_testbit()

gmp_sign

gmp_sign -- Sign of number

Description

int gmp_sign (resource $a)

Checks the sign of a number.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

Returns 1 if a is positive, -1 if a is negative, and 0 if a is zero.

Examples

Example #1822 - gmp_sign() example

<?php

// positive

echo gmp_sign("500") . "\n";

// negative

echo gmp_sign("-500") . "\n";

// zero

echo gmp_sign("0") . "\n";

?>

The above example will output:

1

-1

0

gmp_sqrt

gmp_sqrt -- Calculate square root

Description

resource gmp_sqrt (resource $a)

Calculates square root of a.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

The integer portion of the square root, as a GMP number.

Examples

Example #1823 - gmp_sqrt() example

<?php

$sqrt1 = gmp_sqrt("9");

$sqrt2 = gmp_sqrt("7");

$sqrt3 = gmp_sqrt("1524157875019052100");

echo gmp_strval($sqrt1) . "\n";

echo gmp_strval($sqrt2) . "\n";

echo gmp_strval($sqrt3) . "\n";

?>

The above example will output:

3

2

1234567890

gmp_sqrtrem

gmp_sqrtrem -- Square root with remainder

Description

array gmp_sqrtrem (resource $a)

Calculate the square root of a number, with remainder.

Parameters

a

The number being square rooted. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

Return Values

Returns array where first element is the integer square root of a and the second is the
remainder (i.e., the difference between a and the first element squared).

Examples

Example #1824 - gmp_sqrtrem() example

<?php

list($sqrt1, $sqrt1rem) = gmp_sqrtrem("9");

list($sqrt2, $sqrt2rem) = gmp_sqrtrem("7");

list($sqrt3, $sqrt3rem) = gmp_sqrtrem("1048576");

echo gmp_strval($sqrt1) . ", " . gmp_strval($sqrt1rem) . "\n";

echo gmp_strval($sqrt2) . ", " . gmp_strval($sqrt2rem) . "\n";

echo gmp_strval($sqrt3) . ", " . gmp_strval($sqrt3rem) . "\n";

?>

The above example will output:

3, 0

2, 3

1024, 0

gmp_strval

gmp_strval -- Convert GMP number to string

Description

string gmp_strval (resource $gmpnumber [, int $base])

Convert GMP number to string representation in base base. The default base is 10.

Parameters

gmpnumber

The GMP number that will be converted to a string. It can be either a GMP number
resource, or a numeric string given that it is possible to convert the latter to a number.

base

The base of the returned number. The default base is 10. Allowed values for the base
are from 2 to 36.

Return Values

The number, as a string.

Examples

Example #1825 - Converting a GMP number to a string

<?php

$a = gmp_init("0x41682179fbf5");

printf("Decimal: %s, 36-based: %s", gmp_strval($a), gmp_strval($a,36));

?>

gmp_sub

gmp_sub -- Subtract numbers

Description

resource gmp_sub (resource $a, resource $b)

Subtracts b from a and returns the result.

Parameters

a

The number being subtracted from. It can be either a GMP number resource, or a
numeric string given that it is possible to convert the latter to a number.

b

The number subtracted from a. It can be either a GMP number resource, or a numeric
string given that it is possible to convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1826 - gmp_sub() example

<?php

$sub = gmp_sub("281474976710656", "4294967296"); // 2^48 - 2^32

echo gmp_strval($sub) . "\n";

?>

The above example will output:

281470681743360

gmp_testbit

gmp_testbit -- Tests if a bit is set

Description

bool gmp_testbit (resource $a, int $index)

Tests if the specified bit is set.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

index

The bit to test

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

E_WARNING is issued when index is less than zero.

Examples

Example #1827 - gmp_testbit() example

<?php

$n = gmp_init("1000000");

var_dump(gmp_testbit($n, 1));

gmp_setbit($n, 1);

var_dump(gmp_testbit($n, 1));

?>

The above example will output:

bool(false)

bool(true)

See Also

• gmp_setbit()
• gmp_clrbit()

gmp_xor

gmp_xor -- Bitwise XOR

Description

resource gmp_xor (resource $a, resource $b)

Calculates bitwise exclusive OR (XOR) of two GMP numbers.

Parameters

a

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

b

It can be either a GMP number resource, or a numeric string given that it is possible to
convert the latter to a number.

Return Values

A GMP number resource.

Examples

Example #1828 - gmp_xor() example

<?php

$xor1 = gmp_init("1101101110011101", 2);

$xor2 = gmp_init("0110011001011001", 2);

$xor3 = gmp_xor($xor1, $xor2);

echo gmp_strval($xor3, 2) . "\n";

?>

The above example will output:

1011110111000100

Mathematical Functions

Introduction

These math functions will only handle values within the range of the integer and float types
on your computer (this corresponds currently to the C types long resp. double). If you need
to handle bigger numbers, take a look at the arbitrary precision math functions.

See also the manual page on arithmetic operators.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are always available as part of the PHP core.

Math constants

Constant Value Description

M_PI 3.14159265358979323846 Pi

M_E 2.7182818284590452354 e

M_LOG2E 1.4426950408889634074 log_2 e

M_LOG10E 0.43429448190325182765 log_10 e

M_LN2 0.69314718055994530942 log_e 2

M_LN10 2.30258509299404568402 log_e 10

M_PI_2 1.57079632679489661923 pi/2

M_PI_4 0.78539816339744830962 pi/4

M_1_PI 0.31830988618379067154 1/pi

M_2_PI 0.63661977236758134308 2/pi

M_SQRTPI 1.77245385090551602729 sqrt(pi) [5.2.0]

M_2_SQRTPI 1.12837916709551257390 2/sqrt(pi)

M_SQRT2 1.41421356237309504880 sqrt(2)

M_SQRT3 1.73205080756887729352 sqrt(3) [5.2.0]

M_SQRT1_2 0.70710678118654752440 1/sqrt(2)

M_LNPI 1.14472988584940017414 log_e(pi) [5.2.0]

M_EULER 0.57721566490153286061 Euler constant [5.2.0]

Only M_PI is available in PHP versions up to and including PHP 4.0.0. All other constants
are available starting with PHP 4.0.0. Constants labeled [5.2.0] were added in PHP 5.2.0.

Math Functions

abs

abs -- Absolute value

Description

number abs (mixed $number)

Returns the absolute value of number.

Parameters

number

The numeric value to process

Return Values

The absoulte value of number. If the argument number is of type float, the return type is
also float, otherwise it is integer (as float usually has a bigger value range than integer).

Examples

Example #1829 - abs() example

<?php

$abs = abs(-4.2); // $abs = 4.2; (double/float)

$abs2 = abs(5); // $abs2 = 5; (integer)

$abs3 = abs(-5); // $abs3 = 5; (integer)

?>

acos

acos -- Arc cosine

Description

float acos (float $arg)

Returns the arc cosine of arg in radians. acos() is the complementary function of cos(),
which means that a==cos(acos(a)) for every value of a that is within acos() ' range.

Parameters

arg

The argument to process

Return Values

The arc consine of arg in radians.

See Also

• cos()
• acosh()
• asin()
• atan()

acosh

acosh -- Inverse hyperbolic cosine

Description

float acosh (float $arg)

Returns the inverse hyperbolic cosine of arg, i.e. the value whose hyperbolic cosine is
arg.

Parameters

arg

The value to process

Return Values

The inverse hyperbolic cosine of arg

ChangeLog

Version Description

5.3.0 This function is now available on all
platforms

See Also

• cosh()
• acos()
• asinh()
• atanh()

asin

asin -- Arc sine

Description

float asin (float $arg)

Returns the arc sine of arg in radians. asin() is the complementary function of sin(), which
means that a==sin(asin(a)) for every value of a that is within asin() 's range.

Parameters

arg

The argument to process

Return Values

The arc sine of arg in radians

See Also

• sin()
• asinh()
• acos()
• atan()

asinh

asinh -- Inverse hyperbolic sine

Description

float asinh (float $arg)

Returns the inverse hyperbolic sine of arg, i.e. the value whose hyperbolic sine is arg.

Parameters

arg

The argument to process

Return Values

The inverse hyperbolic sine of arg

ChangeLog

Version Description

5.3.0 This function is now available on all
platforms

See Also

• sinh()
• asin()
• acosh()
• atanh()

atan2

atan2 -- Arc tangent of two variables

Description

float atan2 (float $y, float $x)

This function calculates the arc tangent of the two variables x and y. It is similar to
calculating the arc tangent of y / x, except that the signs of both arguments are used to
determine the quadrant of the result.

The function returns the result in radians, which is between -PI and PI (inclusive).

Parameters

y

Dividend parameter

x

Divisor parameter

Return Values

The arc tangent of y / x in radians.

See Also

• atan()

atan

atan -- Arc tangent

Description

float atan (float $arg)

Returns the arc tangent of arg in radians. atan() is the complementary function of tan(),
which means that a==tan(atan(a)) for every value of a that is within atan() 's range.

Parameters

arg

The argument to process

Return Values

The arc tangent of arg in radians.

See Also

• tan()
• atanh()
• asin()
• acos()

atanh

atanh -- Inverse hyperbolic tangent

Description

float atanh (float $arg)

Returns the inverse hyperbolic tangent of arg, i.e. the value whose hyperbolic tangent is
arg.

Parameters

arg

The argument to process

Return Values

Inverse hyperbolic tangent of arg

ChangeLog

Version Description

5.3.0 This function is now available on all
platforms

See Also

• tanh()
• atan()
• asinh()
• acosh()

base_convert

base_convert -- Convert a number between arbitrary bases

Description

string base_convert (string $number, int $frombase, int $tobase)

Returns a string containing number represented in base tobase. The base in which number
is given is specified in frombase. Both frombase and tobase have to be between 2 and
36, inclusive. Digits in numbers with a base higher than 10 will be represented with the
letters a-z, with a meaning 10, b meaning 11 and z meaning 35.

Warning

base_convert() may lose precision on large numbers due to properties related to the
internal "double" or "float" type used. Please see the Floating point numbers section in
the manual for more specific information and limitations.

Parameters

number

The number to convert

frombase

The base number is in

tobase

The base to convert number to

Return Values

number converted to base tobase

Examples

Example #1830 - base_convert() example

<?php

$hexadecimal = 'A37334';

echo base_convert($hexadecimal, 16, 2);

?>

The above example will output:

101000110111001100110100

See Also

• intval()

bindec

bindec -- Binary to decimal

Description

number bindec (string $binary_string)

Returns the decimal equivalent of the binary number represented by the binary_string
argument.

bindec() converts a binary number to an integer or, if needed for size reasons, float.

Parameters

binary_string

The binary string to convert

Return Values

The decimal value of binary_string

ChangeLog

Version Description

Since 4.1.0 The function can now convert numbers that
are too large to fit into the platforms integer
type, larger values are returned as float in
that case.

Examples

Example #1831 - bindec() example

<?php

echo bindec('110011') . "\n";

echo bindec('000110011') . "\n";

echo bindec('111');

?>

The above example will output:

51

51

7

See Also

• decbin()
• octdec()
• hexdec()
• base_convert()

ceil

ceil -- Round fractions up

Description

float ceil (float $value)

Returns the next highest integer value by rounding up value if necessary.

Parameters

value

The value to round

Return Values

value rounded up to the next highest integer. The return value of ceil() is still of type float
as the value range of float is usually bigger than that of integer.

Examples

Example #1832 - ceil() example

<?php

echo ceil(4.3); // 5

echo ceil(9.999); // 10

echo ceil(-3.14); // -3

?>

See Also

• floor()
• round()

cos

cos -- Cosine

Description

float cos (float $arg)

cos() returns the cosine of the arg parameter. The arg parameter is in radians.

Parameters

arg

An angle in radians

Return Values

The cosine of arg

Examples

Example #1833 - cos() example

<?php

echo cos(M_PI); // -1

?>

See Also

• acos()
• sin()
• tan()
• deg2rad()

cosh

cosh -- Hyperbolic cosine

Description

float cosh (float $arg)

Returns the hyperbolic cosine of arg, defined as (exp(arg) + exp(-arg))/2.

Parameters

arg

The argument to process

Return Values

The hyperbolic cosine of arg

See Also

• cos()
• acosh()
• sinh()
• cosh()

decbin

decbin -- Decimal to binary

Description

string decbin (int $number)

Returns a string containing a binary representation of the given number argument. The
largest number that can be converted is 4294967295 in decimal resulting to a string of 32
1's.

Parameters

number

Decimal value to convert

Return Values

Binary string representation of number

Examples

Example #1834 - decbin() example

<?php

echo decbin(12) . "\n";

echo decbin(26);

?>

The above example will output:

1100

11010

See Also

• bindec()
• decoct()
• dechex()
• base_convert()

dechex

dechex -- Decimal to hexadecimal

Description

string dechex (int $number)

Returns a string containing a hexadecimal representation of the given number argument.
The largest number that can be converted is 4294967295 in decimal resulting to "ffffffff".

Parameters

number

Decimal value to convert

Return Values

Hexadecimal string representation of number

Examples

Example #1835 - dechex() example

<?php

echo dechex(10) . "\n";

echo dechex(47);

?>

The above example will output:

a

2f

See Also

• hexdec()
• decbin()
• decoct()
• base_convert()

decoct

decoct -- Decimal to octal

Description

string decoct (int $number)

Returns a string containing an octal representation of the given number argument. The
largest number that can be converted is 4294967295 in decimal resulting to
"37777777777".

Parameters

number

Decimal value to convert

Return Values

Octal string representation of number

Examples

Example #1836 - decoct() example

<?php

echo decoct(15) . "\n";

echo decoct(264);

?>

The above example will output:

17

410

See Also

• octdec()
• decbin()
• dechex()
• base_convert()

deg2rad

deg2rad -- Converts the number in degrees to the radian equivalent

Description

float deg2rad (float $number)

This function converts number from degrees to the radian equivalent.

Parameters

number

Angular value in degrees

Return Values

The radian equivalent of number

Examples

Example #1837 - deg2rad() example

<?php

echo deg2rad(45); // 0.785398163397

var_dump(deg2rad(45) === M_PI_4); // bool(true)

?>

See Also

• rad2deg()

exp

exp -- Calculates the exponent of e

Description

float exp (float $arg)

Returns e raised to the power of arg.

Note

'e' is the base of the natural system of logarithms, or approximately 2.718282.

Parameters

arg

The argument to process

Return Values

'e' raised to the power of arg

Examples

Example #1838 - exp() example

<?php

echo exp(12) . "\n";

echo exp(5.7);

?>

The above example will output:

1.6275E+005

298.87

See Also

• log()
• pow()

expm1

expm1 -- Returns exp(number) - 1, computed in a way that is accurate even when the
value of number is close to zero

Description

float expm1 (float $arg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

expm1() returns the equivalent to 'exp(arg) - 1' computed in a way that is accurate even
if the value of arg is near zero, a case where 'exp (arg) - 1' would be inaccurate due to
subtraction of two numbers that are nearly equal.

Parameters

arg

The argument to process

Return Values

'e' to the power of arg minus one

ChangeLog

Version Description

5.3.0 This function is now available on all
platforms

See Also

• log1p()

• exp()

floor

floor -- Round fractions down

Description

float floor (float $value)

Returns the next lowest integer value by rounding down value if necessary.

Parameters

number

The numeric value to round

Return Values

value rounded to the next lowest integer. The return value of floor() is still of type float
because the value range of float is usually bigger than that of integer.

Examples

Example #1839 - floor() example

<?php

echo floor(4.3); // 4

echo floor(9.999); // 9

echo floor(-3.14); // -4

?>

See Also

• ceil()
• round()

fmod

fmod -- Returns the floating point remainder (modulo) of the division of the arguments

Description

float fmod (float $x, float $y)

Returns the floating point remainder of dividing the dividend (x) by the divisor (y). The
reminder (r) is defined as: x = i * y + r, for some integer i. If y is non-zero, r has the same
sign as x and a magnitude less than the magnitude of y.

Parameters

x

The dividend

y

The divisor

Return Values

The floating point remainder of x / y

Examples

Example #1840 - Using fmod()

<?php

$x = 5.7;

$y = 1.3;

$r = fmod($x, $y);

// $r equals 0.5, because 4 * 1.3 + 0.5 = 5.7

?>

getrandmax

getrandmax -- Show largest possible random value

Description

int getrandmax (void)

Returns the maximum value that can be returned by a call to rand().

Return Values

The largest possible random value returned by rand()

See Also

• rand()
• srand()
• mt_getrandmax()

hexdec

hexdec -- Hexadecimal to decimal

Description

number hexdec (string $hex_string)

Returns the decimal equivalent of the hexadecimal number represented by the
hex_string argument. hexdec() converts a hexadecimal string to a decimal number.

hexdec() will ignore any non-hexadecimal characters it encounters.

Parameters

hex_string

The hexadecimal string to convert

Return Values

The decimal representation of hex_string

ChangeLog

Version Description

Since 4.1.0 The function can now convert values that
are to big for the platforms integer type, it
will return the value as float instead in that
case.

Examples

Example #1841 - hexdec() example

<?php

var_dump(hexdec("See"));

var_dump(hexdec("ee"));

// both print "int(238)"

var_dump(hexdec("that")); // print "int(10)"

var_dump(hexdec("a0")); // print "int(160)"

?>

See Also

• dechex()
• bindec()
• octdec()
• base_convert()

hypot

hypot -- Calculate the length of the hypotenuse of a right-angle triangle

Description

float hypot (float $x, float $y)

hypot() returns the length of the hypotenuse of a right-angle triangle with sides of length x
and y, or the distance of the point (x, y) from the origin. This is equivalent to sqrt(x*x +
y*y).

Parameters

x

Length of first side

y

Length of second side

Return Values

Calculated length of the hypotenuse

is_finite

is_finite -- Finds whether a value is a legal finite number

Description

bool is_finite (float $val)

Checks whether val is a legal finite on this platform.

Parameters

val

The value to check

Return Values

TRUE if val is a legal finite number within the allowed range for a PHP float on this
platform, else FALSE.

See Also

• is_infinite()
• is_nan()

is_infinite

is_infinite -- Finds whether a value is infinite

Description

bool is_infinite (float $val)

Returns TRUE if val is infinite (positive or negative), like the result of log(0) or any value
too big to fit into a float on this platform.

Parameters

val

The value to check

Return Values

TRUE if val is infinite, else FALSE.

See Also

• is_finite()
• is_nan()

is_nan

is_nan -- Finds whether a value is not a number

Description

bool is_nan (float $val)

Checks whether val is 'not a number', like the result of acos(1.01).

Parameters

val

The value to check

Return Values

Returns TRUE if val is 'not a number', else FALSE.

See Also

• is_finite()
• is_infinite()

lcg_value

lcg_value -- Combined linear congruential generator

Description

float lcg_value (void)

lcg_value() returns a pseudo random number in the range of (0, 1). The function combines
two CGs with periods of 2^31 - 85 and 2^31 - 249. The period of this function is equal to
the product of both primes.

Return Values

A pseudo random float value in the range of (0, 1)

See Also

• rand()
• mt_rand()

log10

log10 -- Base-10 logarithm

Description

float log10 (float $arg)

Returns the base-10 logarithm of arg.

Parameters

arg

The argument to process

Return Values

The base-10 logaritm of arg

See Also

• log()

log1p

log1p -- Returns log(1 + number), computed in a way that is accurate even when the value
of number is close to zero

Description

float log1p (float $number)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

log1p() returns log(1 + number) computed in a way that is accurante even when the value
of number is close to zero. log() might only return log(1) in this case due to lack of
precision.

Parameters

number

The argument to process

Return Values

log(1 + number)

ChangeLog

Version Description

5.3.0 This function is now available on all
platforms

See Also

• expm1()

• log()
• log10()

log

log -- Natural logarithm

Description

float log (float $arg [, float $base])

If the optional base parameter is specified, log() returns log base arg, otherwise log()
returns the natural logarithm of arg.

Parameters

arg

The value to calculate the logarithm for

base

The optional logarithmic base to use (defaults to 'e' and so to the natural logarithm).

Return Values

The logarithm of arg to base, if given, or the natural logarithm.

ChangeLog

Version Description

Since 4.3.0 The optinal parameter base became
available. For older versions you can
calculate the logarithm in base b of a
number n, but using the mathematical
identity: log b (n) = log(n)/log(b), where log
is the neperian (or natural) logarithm.

See Also

• log10()
• exp()
• pow()

max

max -- Find highest value

Description

mixed max (array $values)

mixed max (mixed $value1, mixed $value2 [, mixed $value3...])

If the first and only parameter is an array, max() returns the highest value in that array. If at
least two parameters are provided, max() returns the biggest of these values.

Note

PHP will evaluate a non-numeric string as 0 if compared to integer, but still return the
string if it's seen as the numerically highest value. If multiple arguments evaluate to 0,
max() will return a numeric 0 if given, else the alphabetical highest string value will be
returned.

Parameters

values

An array containing the values.

Return Values

max() returns the numerically highest of the parameter values.

Examples

Example #1842 - Example uses of max()

<?php

echo max(1, 3, 5, 6, 7); // 7

echo max(array(2, 4, 5)); // 5

echo max(0, 'hello'); // 0

echo max('hello', 0); // hello

echo max(-1, 'hello'); // hello

// With multiple arrays, max compares from left to right

// so in our example: 2 == 2, but 4 < 5

$val = max(array(2, 4, 8), array(2, 5, 7)); // array(2, 5, 7)

// If both an array and non-array are given, the array

// is always returned as it's seen as the largest

$val = max('string', array(2, 5, 7), 42); // array(2, 5, 7)

?>

See Also

• min()
• count()

min

min -- Find lowest value

Description

mixed min (array $values)

mixed min (mixed $value1, mixed $value2 [, mixed $value3...])

If the first and only parameter is an array, min() returns the lowest value in that array. If at
least two parameters are provided, min() returns the smallest of these values.

Note

PHP will evaluate a non-numeric string as 0 if compared to integer, but still return the
string if it's seen as the numerically lowest value. If multiple arguments evaluate to 0,
min() will return the lowest alphanumerical string value if any strings are given, else a
numeric 0 is returned.

Parameters

values

An array containing the values.

Return Values

min() returns the numerically lowest of the parameter values.

Examples

Example #1843 - Example uses of min()

<?php

echo min(2, 3, 1, 6, 7); // 1

echo min(array(2, 4, 5)); // 2

echo min(0, 'hello'); // 0

echo min('hello', 0); // hello

echo min('hello', -1); // -1

// With multiple arrays, min compares from left to right

// so in our example: 2 == 2, but 4 < 5

$val = min(array(2, 4, 8), array(2, 5, 1)); // array(2, 4, 8)

// If both an array and non-array are given, the array

// is never returned as it's considered the largest

$val = min('string', array(2, 5, 7), 42); // string

?>

See Also

• max()
• count()

mt_getrandmax

mt_getrandmax -- Show largest possible random value

Description

int mt_getrandmax (void)

Returns the maximum value that can be returned by a call to mt_rand().

Return Values

Returns the maximum random value returned by mt_rand()

See Also

• mt_rand()
• mt_srand()
• getrandmax()

mt_rand

mt_rand -- Generate a better random value

Description

int mt_rand (void)

int mt_rand (int $min, int $max)

Many random number generators of older libcs have dubious or unknown characteristics
and are slow. By default, PHP uses the libc random number generator with the rand()
function. The mt_rand() function is a drop-in replacement for this. It uses a random number
generator with known characteristics using the » Mersenne Twister, which will produce
random numbers four times faster than what the average libc rand() provides.

If called without the optional min, max arguments mt_rand() returns a pseudo-random
value between 0 and RAND_MAX. If you want a random number between 5 and 15
(inclusive), for example, use mt_rand (5, 15).

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()
or mt_srand() as this is now done automatically.

Parameters

min

Optional lowest value to be returned (default: 0)

max

Optional highest value to be returned (default: RAND_MAX)

Return Values

A random integer value between min (or 0) and max (or RAND_MAX, inclusive)

ChangeLog

Version Description

Since 3.0.7 In versions before 3.0.7 the meaning of max

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

was range. To get the same results in these
versions the short example should be rand
(5, 11) to get a random number between 5
and 15.

Examples

Example #1844 - mt_rand() example

<?php

echo mt_rand() . "\n";

echo mt_rand() . "\n";

echo mt_rand(5, 15);

?>

The above example will output something similar to:

1604716014

1478613278

6

See Also

• mt_srand()
• mt_getrandmax()
• rand()

mt_srand

mt_srand -- Seed the better random number generator

Description

void mt_srand ([int $seed])

Seeds the random number generator with seed or with a random value if no seed is given.

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()
or mt_srand() as this is now done automatically.

Parameters

seed

An optional seed value

ChangeLog

Version Description

Since 4.2.0 The seed becomes optional and defaults to
a random value if omitted.

Since 5.2.1 The Mersenne Twister implementation in
PHP now uses a new seeding algorithm by
Richard Wagner. Identical seeds no longer
produce the same sequence of values they
did in previous versions. This behavior is not
expected to change again, but it is
considered unsafe to rely upon it
nonetheless.

Examples

Example #1845 - mt_srand() example

<?php

// seed with microseconds

function make_seed()

{

 list($usec, $sec) = explode(' ', microtime());

 return (float) $sec + ((float) $usec * 100000);

}

mt_srand(make_seed());

$randval = mt_rand();

?>

See Also

• mt_rand()
• mt_getrandmax()
• srand()

octdec

octdec -- Octal to decimal

Description

number octdec (string $octal_string)

Returns the decimal equivalent of the octal number represented by the octal_string
argument.

Parameters

octal_string

The octal string to convert

Return Values

The decimal representation of octal_string

ChangeLog

Version Description

Since 4.1.0 The function can now convert numbers that
are too large to fit into the platforms integer
type, larger values are returned as float in
that case.

Examples

Example #1846 - octdec() example

<?php

echo octdec('77') . "\n";

echo octdec(decoct(45));

?>

The above example will output:

63

45

See Also

• decoct()
• bindec()
• hexdec()
• base_convert()

pi

pi -- Get value of pi

Description

float pi (void)

Returns an approximation of pi. The returned float has a precision based on the precision
directive in php.ini, which defaults to 14. Also, you can use the M_PI constant which yields
identical results to pi().

Return Values

The value of pi as float.

Examples

Example #1847 - pi() example

<?php

echo pi(); // 3.1415926535898

echo M_PI; // 3.1415926535898

?>

pow

pow -- Exponential expression

Description

number pow (number $base, number $exp)

Returns base raised to the power of exp.

Warning

In PHP 4.0.6 and earlier pow() always returned a float, and did not issue warnings.

Parameters

base

The base to use

exp

The exponent

Return Values

base raised to the power of exp. If the result can be represented as integer it will be
returned as type integer, else it will be returned as type float. If the power cannot be
computed FALSE will be returned instead.

ChangeLog

Version Description

Since 4.0.6 The function will now return integer results if
possible, before this it always returned a
float result. For older versions, you may
receive a bogus result for complex numbers.

Since 4.2.0 PHP stops to emit a warning if the value
can't be computed, it will now silently return
FALSE only.

Examples

Example #1848 - Some examples of pow()

<?php

var_dump(pow(2, 8)); // int(256)

echo pow(-1, 20); // 1

echo pow(0, 0); // 1

echo pow(-1, 5.5); // PHP >4.0.6 NAN

echo pow(-1, 5.5); // PHP <=4.0.6 1.#IND

?>

See Also

• exp()
• sqrt()
• bcpow()
• gmp_pow()

rad2deg

rad2deg -- Converts the radian number to the equivalent number in degrees

Description

float rad2deg (float $number)

This function converts number from radian to degrees.

Parameters

number

A radian value

Return Values

The equivalent of number in degrees

Examples

Example #1849 - rad2deg() example

<?php

echo rad2deg(M_PI_4); // 45

?>

See Also

• deg2rad()

rand

rand -- Generate a random integer

Description

int rand (void)

int rand (int $min, int $max)

If called without the optional min, max arguments rand() returns a pseudo-random integer
between 0 and RAND_MAX. If you want a random number between 5 and 15 (inclusive),
for example, use rand (5, 15).

Note

On some platforms (such as Windows) RAND_MAX is only 32768. If you require a
range larger than 32768, specifying min and max will allow you to create a range larger
than RAND_MAX, or consider using mt_rand() instead.

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()
or mt_srand() as this is now done automatically.

Parameters

min

The lowest value to return (default: 0)

max

The highest value to return (default: RAND_MAX)

Return Values

A pseudo random value between min (or 0) and max (or RAND_MAX, inclusive).

ChangeLog

Version Description

Since 3.0.7 In versions before 3.0.7 the meaning of max
was range. To get the same results in these
versions the short example should be rand
(5, 11) to get a random number between 5
and 15.

Examples

Example #1850 - rand() example

<?php

echo rand() . "\n";

echo rand() . "\n";

echo rand(5, 15);

?>

The above example will output something similar to:

7771

22264

11

See Also

• srand()
• getrandmax()
• mt_rand()

round

round -- Rounds a float

Description

float round (float $val [, int $precision])

Returns the rounded value of val to specified precision (number of digits after the
decimal point). precision can also be negative or zero (default).

Note

PHP doesn't handle strings like "12,300.2" correctly by default. See converting from
strings.

Note

The precision parameter was introduced in PHP 4.

Parameters

val

The value to round

precision

The optional number of decimal digits to round to, defaults to 0

Return Values

The rounded value

Examples

Example #1851 - round() examples

<?php

echo round(3.4); // 3

echo round(3.5); // 4

echo round(3.6); // 4

echo round(3.6, 0); // 4

echo round(1.95583, 2); // 1.96

echo round(1241757, -3); // 1242000

echo round(5.045, 2); // 5.05

echo round(5.055, 2); // 5.06

?>

See Also

• ceil()
• floor()
• number_format()

sin

sin -- Sine

Description

float sin (float $arg)

sin() returns the sine of the arg parameter. The arg parameter is in radians.

Parameters

arg

A value in radians

Return Values

The sine of arg

Examples

Example #1852 - sin() example

<?php

// Precision depends on your precision directive

echo sin(deg2rad(60)); // 0.866025403 ...

echo sin(60); // -0.304810621 ...

?>

See Also

• asin()
• sinh()
• cos()
• tan()
• deg2rad()

sinh

sinh -- Hyperbolic sine

Description

float sinh (float $arg)

Returns the hyperbolic sine of arg, defined as (exp(arg) - exp(-arg))/2.

Parameters

arg

The argument to process

Return Values

The hyperbolic sine of arg

See Also

• sin()
• asinh()
• cosh()
• tanh()

sqrt

sqrt -- Square root

Description

float sqrt (float $arg)

Returns the square root of arg.

Parameters

arg

The argument to process

Return Values

The square root of arg or the special value NAN for negative numbers.

Examples

Example #1853 - sqrt() example

<?php

// Precision depends on your precision directive

echo sqrt(9); // 3

echo sqrt(10); // 3.16227766 ...

?>

See Also

• pow()

srand

srand -- Seed the random number generator

Description

void srand ([int $seed])

Seeds the random number generator with seed or with a random value if no seed is given.

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()
or mt_srand() as this is now done automatically.

Parameters

seed

Optional seed value

ChangeLog

Version Description

Since 4.2.0 The seed becomes optional and defaults to
a random value if omitted.

Examples

Example #1854 - srand() example

<?php

// seed with microseconds

function make_seed()

{

 list($usec, $sec) = explode(' ', microtime());

 return (float) $sec + ((float) $usec * 100000);

}

srand(make_seed());

$randval = rand();

?>

See Also

• rand()
• getrandmax()
• mt_srand()

tan

tan -- Tangent

Description

float tan (float $arg)

tan() returns the tangent of the arg parameter. The arg parameter is in radians.

Parameters

arg

The argument to process in radians

Return Values

The tangent of arg

Examples

Example #1855 - tan() example

<?php

echo tan(M_PI_4); // 1

?>

See Also

• atan()
• atan2()
• sin()
• cos()
• tanh()
• deg2rad()

tanh

tanh -- Hyperbolic tangent

Description

float tanh (float $arg)

Returns the hyperbolic tangent of arg, defined as sinh(arg)/cosh(arg).

Parameters

arg

The argument to process

Return Values

The hyperbolic tangent of arg

See Also

• tan()
• atanh()
• sinh()
• cosh()

Statistics

Introduction

This is the statistics extension. It contains few dozens of functions useful for statistical
computations. It is a wrapper around 2 scientific libraries, namely DCDFLIB (Library of C
routines for Cumulative Distributions Functions, Inverses, and Other parameters) by B.
Brown & J. Lavato and RANDLIB by Barry Brown, James Lavato & Kathy Russell.
Includes CD and PD functions.

Installing/Configuring

Requirements

No external libraries are needed. The extension comes bundled with the libraries used.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/stats.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/stats
http://pecl.php.net/package/stats
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

This extension has no constants defined.

Statistic Functions

stats_absolute_deviation

stats_absolute_deviation -- Returns the absolute deviation of an array of values

Description

float stats_absolute_deviation (array $a)

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

Return Values

stats_cdf_beta

stats_cdf_beta -- CDF function for BETA Distribution. Calculates any one parameter of the
beta distribution given values for the others.

Description

float stats_cdf_beta (float $par1, float $par2, float $par3, int $which)

Method Cumulative distribution function (P) is calculated directly by code associated with
the following reference. DiDinato, A. R. and Morris, A. H. Algorithm 708: Significant Digit
Computation of the Incomplete Beta Function Ratios. ACM Trans. Math. Softw. 18 (1993),
360-373. Computation of other parameters involve a search for a value that produces the
desired value of P. The search relies on the monotinicity of P with the other parameter.
Note The beta density is proportional to t^(A-1) * (1-t)^(B-1) Arguments P -- The integral
from 0 to X of the chi-square distribution. Input range: [0, 1]. Q -- 1-P. Input range: [0, 1]. P
+ Q = 1.0. X -- Upper limit of integration of beta density. Input range: [0,1]. Search range:
[0,1] Y -- 1-X. Input range: [0,1]. Search range: [0,1] X + Y = 1.0. A -- The first parameter of
the beta density. Input range: (0, +infinity). Search range: [1D-100,1D100] B -- The second
parameter of the beta density. Input range: (0, +infinity). Search range: [1D-100,1D100]
STATUS -- 0 if calculation completed correctly -I if input parameter number I is out of
range 1 if answer appears to be lower than lowest search bound 2 if answer appears to be
higher than greatest search bound 3 if P + Q .ne. 1 4 if X + Y .ne. 1 BOUND -- Undefined if
STATUS is 0 Bound exceeded by parameter number I if STATUS is negative. Lower
search bound if STATUS is 1. Upper search bound if STATUS is 2.

Parameters

par1

par2

par3

which

Integer indicating which of the next four argument values is to be calculated from the
others. Legal range: 1..4 iwhich = 1 : Calculate P and Q from X,Y,A and B iwhich = 2 :
Calculate X and Y from P,Q,A and B iwhich = 3 : Calculate A from P,Q,X,Y and B
iwhich = 4 : Calculate B from P,Q,X,Y and A

Return Values

STATUS -- 0 if calculation completed correctly -I if input parameter number I is out of
range 1 if answer appears to be lower than lowest search bound 2 if answer appears to be

higher than greatest search bound 3 if P + Q .ne. 1 4 if X + Y .ne. 1

stats_cdf_binomial

stats_cdf_binomial -- Calculates any one parameter of the binomial distribution given
values for the others.

Description

float stats_cdf_binomial (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_cauchy

stats_cdf_cauchy -- Not documented

Description

float stats_cdf_cauchy (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_chisquare

stats_cdf_chisquare -- Calculates any one parameter of the chi-square distribution given
values for the others.

Description

float stats_cdf_chisquare (float $par1, float $par2, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

which

Return Values

stats_cdf_exponential

stats_cdf_exponential -- Not documented

Description

float stats_cdf_exponential (float $par1, float $par2, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

which

Return Values

stats_cdf_f

stats_cdf_f -- Calculates any one parameter of the F distribution given values for the
others.

Description

float stats_cdf_f (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_gamma

stats_cdf_gamma -- Calculates any one parameter of the gamma distribution given values
for the others.

Description

float stats_cdf_gamma (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_laplace

stats_cdf_laplace -- Not documented

Description

float stats_cdf_laplace (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_logistic

stats_cdf_logistic -- Not documented

Description

float stats_cdf_logistic (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_negative_binomial

stats_cdf_negative_binomial -- Calculates any one parameter of the negative binomial
distribution given values for the others.

Description

float stats_cdf_negative_binomial (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_noncentral_chisquare

stats_cdf_noncentral_chisquare -- Calculates any one parameter of the non-central
chi-square distribution given values for the others.

Description

float stats_cdf_noncentral_chisquare (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_noncentral_f

stats_cdf_noncentral_f -- Calculates any one parameter of the Non-central F distribution
given values for the others.

Description

float stats_cdf_noncentral_f (float $par1, float $par2, float $par3, float $par4, int $
which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

par4

which

Return Values

stats_cdf_poisson

stats_cdf_poisson -- Calculates any one parameter of the Poisson distribution given values
for the others.

Description

float stats_cdf_poisson (float $par1, float $par2, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

which

Return Values

stats_cdf_t

stats_cdf_t -- Calculates any one parameter of the T distribution given values for the
others.

Description

float stats_cdf_t (float $par1, float $par2, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

which

Return Values

stats_cdf_uniform

stats_cdf_uniform -- Not documented

Description

float stats_cdf_uniform (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_cdf_weibull

stats_cdf_weibull -- Not documented

Description

float stats_cdf_weibull (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_covariance

stats_covariance -- Computes the covariance of two data sets

Description

float stats_covariance (array $a, array $b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

b

Return Values

stats_den_uniform

stats_den_uniform -- Not documented

Description

float stats_den_uniform (float $x, float $a, float $b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

a

b

Return Values

stats_dens_beta

stats_dens_beta -- Not documented

Description

float stats_dens_beta (float $x, float $a, float $b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

a

b

Return Values

stats_dens_cauchy

stats_dens_cauchy -- Not documented

Description

float stats_dens_cauchy (float $x, float $ave, float $stdev)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

ave

stdev

Return Values

stats_dens_chisquare

stats_dens_chisquare -- Not documented

Description

float stats_dens_chisquare (float $x, float $dfr)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

dfr

Return Values

stats_dens_exponential

stats_dens_exponential -- Not documented

Description

float stats_dens_exponential (float $x, float $scale)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

scale

Return Values

stats_dens_f

stats_dens_f --

Description

float stats_dens_f (float $x, float $dfr1, float $dfr2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

dfr1

dfr2

Return Values

stats_dens_gamma

stats_dens_gamma -- Not documented

Description

float stats_dens_gamma (float $x, float $shape, float $scale)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

shape

scale

Return Values

stats_dens_laplace

stats_dens_laplace -- Not documented

Description

float stats_dens_laplace (float $x, float $ave, float $stdev)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

ave

stdev

Return Values

stats_dens_logistic

stats_dens_logistic -- Not documented

Description

float stats_dens_logistic (float $x, float $ave, float $stdev)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

ave

stdev

Return Values

stats_dens_negative_binomial

stats_dens_negative_binomial -- Not documented

Description

float stats_dens_negative_binomial (float $x, float $n, float $pi)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

n

pi

Return Values

stats_dens_normal

stats_dens_normal -- Not documented

Description

float stats_dens_normal (float $x, float $ave, float $stdev)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

ave

stdev

Return Values

stats_dens_pmf_binomial

stats_dens_pmf_binomial -- Not documented

Description

float stats_dens_pmf_binomial (float $x, float $n, float $pi)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

n

pi

Return Values

stats_dens_pmf_hypergeometric

stats_dens_pmf_hypergeometric --

Description

float stats_dens_pmf_hypergeometric (float $n1, float $n2, float $N1, float $N2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

n1

n2

N1

N2

Return Values

stats_dens_pmf_poisson

stats_dens_pmf_poisson -- Not documented

Description

float stats_dens_pmf_poisson (float $x, float $lb)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

lb

Return Values

stats_dens_t

stats_dens_t -- Not documented

Description

float stats_dens_t (float $x, float $dfr)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

dfr

Return Values

stats_dens_weibull

stats_dens_weibull -- Not documented

Description

float stats_dens_weibull (float $x, float $a, float $b)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

a

b

Return Values

stats_harmonic_mean

stats_harmonic_mean -- Returns the harmonic mean of an array of values

Description

number stats_harmonic_mean (array $a)

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

Return Values

stats_kurtosis

stats_kurtosis -- Computes the kurtosis of the data in the array

Description

float stats_kurtosis (array $a)

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

Return Values

stats_rand_gen_beta

stats_rand_gen_beta -- Generates beta random deviate

Description

float stats_rand_gen_beta (float $a, float $b)

Returns a random deviate from the beta distribution with parameters A and B. The density
of the beta is x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x <. Method R. C. H. Cheng.

Parameters

a

b

Return Values

stats_rand_gen_chisquare

stats_rand_gen_chisquare -- Generates random deviate from the distribution of a
chisquare with "df" degrees of freedom random variable.

Description

float stats_rand_gen_chisquare (float $df)

Warning

This function is currently not documented; only its argument list is available.

Parameters

df

Return Values

stats_rand_gen_exponential

stats_rand_gen_exponential -- Generates a single random deviate from an exponential
distribution with mean "av"

Description

float stats_rand_gen_exponential (float $av)

Warning

This function is currently not documented; only its argument list is available.

Parameters

av

Return Values

stats_rand_gen_f

stats_rand_gen_f -- Generates a random deviate

Description

float stats_rand_gen_f (float $dfn, float $dfd)

Generates a random deviate from the F (variance ratio) distribution with "dfn" degrees of
freedom in the numerator and "dfd" degrees of freedom in the denominator. Method :
directly generates ratio of chisquare variates.

Parameters

dfn

dfd

Return Values

stats_rand_gen_funiform

stats_rand_gen_funiform -- Generates uniform float between low (exclusive) and high
(exclusive)

Description

float stats_rand_gen_funiform (float $low, float $high)

Warning

This function is currently not documented; only its argument list is available.

Parameters

low

high

Return Values

stats_rand_gen_gamma

stats_rand_gen_gamma -- Generates random deviates from a gamma distribution

Description

float stats_rand_gen_gamma (float $a, float $r)

Generates random deviates from the gamma distribution whose density is
(A**R)/Gamma(R) * X**(R-1) * Exp(-A*X).

Parameters

a

location parameter of Gamma distribution (a > 0).

r

shape parameter of Gamma distribution (r > 0).

Return Values

stats_rand_gen_ibinomial_negative

stats_rand_gen_ibinomial_negative -- Generates a single random deviate from a negative
binomial distribution. Arguments : n - the number of trials in the negative binomial
distribution from which a random deviate is to be generated (n > 0), p - the probability of
an event (0 < p < 1)).

Description

int stats_rand_gen_ibinomial_negative (int $n, float $p)

Warning

This function is currently not documented; only its argument list is available.

Parameters

n

p

Return Values

stats_rand_gen_ibinomial

stats_rand_gen_ibinomial -- Generates a single random deviate from a binomial
distribution whose number of trials is "n" (n >= 0) and whose probability of an event in
each trial is "pp" ([0;1]). Method : algorithm BTPE

Description

int stats_rand_gen_ibinomial (int $n, float $pp)

Warning

This function is currently not documented; only its argument list is available.

Parameters

n

pp

Return Values

stats_rand_gen_int

stats_rand_gen_int -- Generates random integer between 1 and 2147483562

Description

int stats_rand_gen_int (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

stats_rand_gen_ipoisson

stats_rand_gen_ipoisson -- Generates a single random deviate from a Poisson distribution
with mean "mu" (mu >= 0.0).

Description

int stats_rand_gen_ipoisson (float $mu)

Warning

This function is currently not documented; only its argument list is available.

Parameters

mu

Return Values

stats_rand_gen_iuniform

stats_rand_gen_iuniform -- Generates integer uniformly distributed between LOW
(inclusive) and HIGH (inclusive)

Description

int stats_rand_gen_iuniform (int $low, int $high)

Warning

This function is currently not documented; only its argument list is available.

Parameters

low

high

Return Values

stats_rand_gen_noncenral_chisquare

stats_rand_gen_noncenral_chisquare -- Generates random deviate from the distribution of
a noncentral chisquare with "df" degrees of freedom and noncentrality parameter "xnonc".
d must be >= 1.0, xnonc must >= 0.0

Description

float stats_rand_gen_noncenral_chisquare (float $df, float $xnonc)

Warning

This function is currently not documented; only its argument list is available.

Parameters

df

xnonc

Return Values

stats_rand_gen_noncentral_f

stats_rand_gen_noncentral_f -- Generates a random deviate from the noncentral F
(variance ratio) distribution with "dfn" degrees of freedom in the numerator, and "dfd"
degrees of freedom in the denominator, and noncentrality parameter "xnonc". Method :
directly generates ratio of noncentral numerator chisquare variate to central denominator
chisquare variate.

Description

float stats_rand_gen_noncentral_f (float $dfn, float $dfd, float $xnonc)

Warning

This function is currently not documented; only its argument list is available.

Parameters

dfn

dfd

xnonc

Return Values

stats_rand_gen_noncentral_t

stats_rand_gen_noncentral_t -- Generates a single random deviate from a noncentral T
distribution

Description

float stats_rand_gen_noncentral_t (float $df, float $xnonc)

Warning

This function is currently not documented; only its argument list is available.

Parameters

df

xnonc

Return Values

stats_rand_gen_normal

stats_rand_gen_normal -- Generates a single random deviate from a normal distribution
with mean, av, and standard deviation, sd (sd >= 0). Method : Renames SNORM from
TOMS as slightly modified by BWB to use RANF instead of SUNIF.

Description

float stats_rand_gen_normal (float $av, float $sd)

Warning

This function is currently not documented; only its argument list is available.

Parameters

av

sd

Return Values

stats_rand_gen_t

stats_rand_gen_t -- Generates a single random deviate from a T distribution

Description

float stats_rand_gen_t (float $df)

Warning

This function is currently not documented; only its argument list is available.

Parameters

df

Return Values

stats_rand_get_seeds

stats_rand_get_seeds -- Not documented

Description

array stats_rand_get_seeds (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

stats_rand_phrase_to_seeds

stats_rand_phrase_to_seeds -- generate two seeds for the RGN random number
generator

Description

array stats_rand_phrase_to_seeds (string $phrase)

Warning

This function is currently not documented; only its argument list is available.

Parameters

phrase

Return Values

stats_rand_ranf

stats_rand_ranf -- Returns a random floating point number from a uniform distribution over
0 - 1 (endpoints of this interval are not returned) using the current generator

Description

float stats_rand_ranf (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

Return Values

stats_rand_setall

stats_rand_setall -- Not documented

Description

void stats_rand_setall (int $iseed1, int $iseed2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

iseed1

iseed2

Return Values

stats_skew

stats_skew -- Computes the skewness of the data in the array

Description

float stats_skew (array $a)

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

Return Values

stats_standard_deviation

stats_standard_deviation -- Returns the standard deviation

Description

float stats_standard_deviation (array $a [, bool $sample])

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

sample

Return Values

stats_stat_binomial_coef

stats_stat_binomial_coef -- Not documented

Description

float stats_stat_binomial_coef (int $x, int $n)

Warning

This function is currently not documented; only its argument list is available.

Parameters

x

n

Return Values

stats_stat_correlation

stats_stat_correlation -- Not documented

Description

float stats_stat_correlation (array $arr1, array $arr2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

arr1

arr2

Return Values

stats_stat_gennch

stats_stat_gennch -- Not documented

Description

float stats_stat_gennch (int $n)

Warning

This function is currently not documented; only its argument list is available.

Parameters

n

Return Values

stats_stat_independent_t

stats_stat_independent_t -- Not documented

Description

float stats_stat_independent_t (array $arr1, array $arr2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

arr1

arr2

Return Values

stats_stat_innerproduct

stats_stat_innerproduct --

Description

float stats_stat_innerproduct (array $arr1, array $arr2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

arr1

arr2

Return Values

stats_stat_noncentral_t

stats_stat_noncentral_t -- Calculates any one parameter of the noncentral t distribution
give values for the others.

Description

float stats_stat_noncentral_t (float $par1, float $par2, float $par3, int $which)

Warning

This function is currently not documented; only its argument list is available.

Parameters

par1

par2

par3

which

Return Values

stats_stat_paired_t

stats_stat_paired_t -- Not documented

Description

float stats_stat_paired_t (array $arr1, array $arr2)

Warning

This function is currently not documented; only its argument list is available.

Parameters

arr1

arr2

Return Values

stats_stat_percentile

stats_stat_percentile -- Not documented

Description

float stats_stat_percentile (float $df, float $xnonc)

Warning

This function is currently not documented; only its argument list is available.

Parameters

df

xnonc

Return Values

stats_stat_powersum

stats_stat_powersum -- Not documented

Description

float stats_stat_powersum (array $arr, float $power)

Warning

This function is currently not documented; only its argument list is available.

Parameters

arr

power

Return Values

stats_variance

stats_variance -- Returns the population variance

Description

float stats_variance (array $a [, bool $sample])

Warning

This function is currently not documented; only its argument list is available.

Parameters

a

sample

Return Values

Non-Text MIME Output

Forms Data Format

Introduction

Forms Data Format (FDF) is a format for handling forms within PDF documents. You
should read the documentation at » http://partners.adobe.com/asn/acrobat/forms.jsp for
more information on what FDF is and how it is used in general.

The general idea of FDF is similar to HTML forms. The difference is basically the format
how data is transmitted to the server when the submit button is pressed (this is actually the
Form Data Format) and the format of the form itself (which is the Portable Document
Format, PDF). Processing the FDF data is one of the features provided by the fdf
functions. But there is more. One may as well take an existing PDF form and populated
the input fields with data without modifying the form itself. In such a case one would create
a FDF document (fdf_create()) set the values of each input field (fdf_set_value()) and
associate it with a PDF form (fdf_set_file()). Finally it has to be sent to the browser with
MimeType application/vnd.fdf. The Acrobat reader plugin of your browser recognizes the
MimeType, reads the associated PDF form and fills in the data from the FDF document.

If you look at an FDF-document with a text editor you will find a catalogue object with the
name FDF. Such an object may contain a number of entries like Fields, F, Status etc.. The
most commonly used entries are Fields which points to a list of input fields, and F which
contains the filename of the PDF-document this data belongs to. Those entries are
referred to in the FDF documentation as /F-Key or /Status-Key. Modifying this entries is
done by functions like fdf_set_file() and fdf_set_status(). Fields are modified with
fdf_set_value(), fdf_set_opt() etc..

http://partners.adobe.com/asn/acrobat/forms.jsp

Installing/Configuring

Requirements

You need the FDF toolkit SDK available from
» http://partners.adobe.com/asn/acrobat/forms.jsp. As of PHP 4.3.0 you need at least SDK
version 5.0. The FDF toolkit library is available in binary form only, platforms supported by
Adobe are Win32, Linux, Solaris and AIX.

Installation

You must compile PHP with --with-fdftk[=DIR].

Note

If you run into problems configuring PHP with fdftk support, check whether the header
file fdftk.h and the library libfdftk.so are at the right place. The configure script supports
both the directory structure of the FDF SDK distribution and the usual DIR/include /
DIR/lib layout, so you can point it either directly to the unpacked distribution directory
or put the header file and the appropriate library for your platform into e.g.
/usr/local/include and /usr/local/lib and configure with --with-fdftk=/usr/local.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: fdftk.dll

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

Most fdf functions require a fdf resource as their first parameter. A fdf resource is a

http://partners.adobe.com/asn/acrobat/forms.jsp
http://partners.adobe.com/asn/acrobat/forms.jsp

handle to an opened fdf file. fdf resources may be obtained using fdf_create(), fdf_open()
and fdf_open_string().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FDFValue (integer)

FDFStatus (integer)

FDFFile (integer)

FDFID (integer)

FDFFf (integer)

FDFSetFf (integer)

FDFClearFf (integer)

FDFFlags (integer)

FDFSetF (integer)

FDFClrF (integer)

FDFAP (integer)

FDFAS (integer)

FDFAction (integer)

FDFAA (integer)

FDFAPRef (integer)

FDFIF (integer)

FDFEnter (integer)

FDFExit (integer)

FDFDown (integer)

FDFUp (integer)

FDFFormat (integer)

FDFValidate (integer)

FDFKeystroke (integer)

FDFCalculate (integer)

FDFNormalAP (integer)

FDFRolloverAP (integer)

FDFDownAP (integer)

Examples

The following examples shows just the evaluation of form data.

Example #1856 - Evaluating a FDF document

<?php

// Open fdf from input string provided by the extension

// The pdf form contained several input text fields with the names

// volume, date, comment, publisher, preparer, and two checkboxes

// show_publisher and show_preparer.

$fdf = fdf_open_string($HTTP_FDF_DATA);

$volume = fdf_get_value($fdf, "volume");

echo "The volume field has the value '$volume'
";

$date = fdf_get_value($fdf, "date");

echo "The date field has the value '$date'
";

$comment = fdf_get_value($fdf, "comment");

echo "The comment field has the value '$comment'
";

if (fdf_get_value($fdf, "show_publisher") == "On") {

 $publisher = fdf_get_value($fdf, "publisher");

 echo "The publisher field has the value '$publisher'
";

} else

 echo "Publisher shall not be shown.
";

if (fdf_get_value($fdf, "show_preparer") == "On") {

 $preparer = fdf_get_value($fdf, "preparer");

 echo "The preparer field has the value '$preparer'
";

} else

 echo "Preparer shall not be shown.
";

fdf_close($fdf);

?>

FDF Functions

fdf_add_doc_javascript

fdf_add_doc_javascript -- Adds javascript code to the FDF document

Description

bool fdf_add_doc_javascript (resource $fdf_document, string $script_name, string $
script_code)

Adds a script to the FDF, which Acrobat then adds to the doc-level scripts of a document,
once the FDF is imported into it.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

script_name

The script name.

script_code

The script code. It is strongly suggested to use \r for linebreaks within the script code.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1857 - Adding JavaScript code to a FDF

<?php

$fdf = fdf_create();

fdf_add_doc_javascript($fdf, "PlusOne", "function PlusOne(x)\r{\r return
x+1;\r}\r");

fdf_save($fdf);

?>

will create a FDF like this:

%FDF-1.2

%âãÏÓ

1 0 obj

<<

/FDF << /JavaScript << /Doc [(PlusOne)(function PlusOne\(x\)\r{\r return
x+1;\r}\r)] >> >>

>>

endobj

trailer

<<

/Root 1 0 R

>>

%%EOF

fdf_add_template

fdf_add_template -- Adds a template into the FDF document

Description

bool fdf_add_template (resource $fdf_document, int $newpage, string $filename, string
$template, int $rename)

Warning

This function is currently not documented; only its argument list is available.

fdf_close

fdf_close -- Close an FDF document

Description

void fdf_close (resource $fdf_document)

Closes the FDF document.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

No value is returned.

See Also

• fdf_open()

fdf_create

fdf_create -- Create a new FDF document

Description

resource fdf_create (void)

Creates a new FDF document.

This function is needed if one would like to populate input fields in a PDF document with
data.

Return Values

Returns a FDF document handle, or FALSE on error.

Examples

Example #1858 - Populating a PDF document

<?php

$outfdf = fdf_create();

fdf_set_value($outfdf, "volume", $volume, 0);

fdf_set_file($outfdf, "http:/testfdf/resultlabel.pdf");

fdf_save($outfdf, "outtest.fdf");

fdf_close($outfdf);

Header("Content-type: application/vnd.fdf");

$fp = fopen("outtest.fdf", "r");

fpassthru($fp);

unlink("outtest.fdf");

?>

See Also

• fdf_close()
• fdf_save()
• fdf_open()

fdf_enum_values

fdf_enum_values -- Call a user defined function for each document value

Description

bool fdf_enum_values (resource $fdf_document, callback $function [, mixed $userdata
])

Warning

This function is currently not documented; only its argument list is available.

fdf_errno

fdf_errno -- Return error code for last fdf operation

Description

int fdf_errno (void)

Gets the error code set by the last FDF function call.

A textual description of the error may be obtained using with fdf_error().

Return Values

Returns the error code as an integer, or zero if there was no errors.

See Also

• fdf_error()

fdf_error

fdf_error -- Return error description for FDF error code

Description

string fdf_error ([int $error_code])

Gets a textual description for the FDF error code given in error_code.

Parameters

error_code

An error code obtained with fdf_errno(). If not provided, this function uses the internal
error code set by the last operation.

Return Values

Returns the error message as a string, or the string no error if nothing went wrong.

See Also

• fdf_errno()

fdf_get_ap

fdf_get_ap -- Get the appearance of a field

Description

bool fdf_get_ap (resource $fdf_document, string $field, int $face, string $filename)

Gets the appearance of a field (i.e. the value of the /AP key) and stores it in a file.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

field

face

The possible values are FDFNormalAP, FDFRolloverAP and FDFDownAP.

filename

The appearance will be stored in this parameter.

Return Values

Returns TRUE on success or FALSE on failure.

fdf_get_attachment

fdf_get_attachment -- Extracts uploaded file embedded in the FDF

Description

array fdf_get_attachment (resource $fdf_document, string $fieldname, string $savepath
)

Extracts a file uploaded by means of the "file selection" field fieldname and stores it under
savepath.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

savepath

May be the name of a plain file or an existing directory in which the file is to be created
under its original name. Any existing file under the same name will be overwritten.

Note

There seems to be no other way to find out the original filename but to store the file
using a directory as savepath and check for the basename it was stored under.

Return Values

The returned array contains the following fields:

• path - path were the file got stored

• size - size of the stored file in bytes

• type - mimetype if given in the FDF

Examples

Example #1859 - Storing an uploaded file

<?php

 $fdf = fdf_open_string($HTTP_FDF_DATA);

 $data = fdf_get_attachment($fdf, "filename", "/tmpdir");

 echo "The uploaded file is stored in $data[path]";

?>

fdf_get_encoding

fdf_get_encoding -- Get the value of the /Encoding key

Description

string fdf_get_encoding (resource $fdf_document)

Gets the value of the /Encoding key.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

Returns the encoding as a string. An empty string is returned if the default
PDFDocEncoding/Unicode scheme is used.

See Also

• fdf_set_encoding()

fdf_get_file

fdf_get_file -- Get the value of the /F key

Description

string fdf_get_file (resource $fdf_document)

Gets the value of the /F key.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

Returns the key value, as a string.

See Also

• fdf_set_file()

fdf_get_flags

fdf_get_flags -- Gets the flags of a field

Description

int fdf_get_flags (resource $fdf_document, string $fieldname, int $whichflags)

Warning

This function is currently not documented; only its argument list is available.

fdf_get_opt

fdf_get_opt -- Gets a value from the opt array of a field

Description

mixed fdf_get_opt (resource $fdf_document, string $fieldname [, int $element])

Warning

This function is currently not documented; only its argument list is available.

fdf_get_status

fdf_get_status -- Get the value of the /STATUS key

Description

string fdf_get_status (resource $fdf_document)

Gets the value of the /STATUS key.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

Returns the key value, as a string.

See Also

• fdf_set_status()

fdf_get_value

fdf_get_value -- Get the value of a field

Description

mixed fdf_get_value (resource $fdf_document, string $fieldname [, int $which])

Gets the value for the requested field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

which

Elements of an array field can be retrieved by passing this optional parameter, starting
at zero. For non-array fields, this parameter will be ignored.

Return Values

Returns the field value.

ChangeLog

Version Description

4.3.0 Support for arrays and the which parameter
were added.

See Also

• fdf_set_value()

fdf_get_version

fdf_get_version -- Gets version number for FDF API or file

Description

string fdf_get_version ([resource $fdf_document])

Return the FDF version for the given document, or the toolkit API version number if no
parameter is given.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

Returns the version as a string. For the current FDF toolkit 5.0 the API version number is
5.0 and the document version number is either 1.2, 1.3 or 1.4.

See Also

• fdf_set_version()

fdf_header

fdf_header -- Sets FDF-specific output headers

Description

void fdf_header (void)

This is a convenience function to set appropriate HTTP headers for FDF output. It sets the
Content-type: to application/vnd.fdf.

Return Values

No value is returned.

fdf_next_field_name

fdf_next_field_name -- Get the next field name

Description

string fdf_next_field_name (resource $fdf_document [, string $fieldname])

Gets the name of the field after the given field. This name can be used with several
functions.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string. If not given, the first field will be assumed.

Return Values

Returns the field name as a string.

Examples

Example #1860 - Detecting all fieldnames in a FDF

<?php

$fdf = fdf_open($HTTP_FDF_DATA);

for ($field = fdf_next_field_name($fdf);

 $field != "";

 $field = fdf_next_field_name($fdf, $field)) {

 echo "field: $field\n";

}

?>

See Also

• fdf_get_value()

fdf_open_string

fdf_open_string -- Read a FDF document from a string

Description

resource fdf_open_string (string $fdf_data)

Reads form data from a string.

You can use fdf_open_string() together with $HTTP_FDF_DATA to process FDF form
input from a remote client.

Parameters

fdf_data

The data as returned from a PDF form or created using fdf_create() and
fdf_save_string().

Return Values

Returns a FDF document handle, or FALSE on error.

Examples

Example #1861 - Accessing the form data

<?php

$fdf = fdf_open_string($HTTP_FDF_DATA);

/* ... */

fdf_close($fdf);

?>

See Also

• fdf_open()
• fdf_close()
• fdf_create()
• fdf_save_string()

fdf_open

fdf_open -- Open a FDF document

Description

resource fdf_open (string $filename)

Opens a file with form data.

You can also use fdf_open_string() to process the results of a PDF form POST request.

Parameters

filename

Path to the FDF file. This file must contain the data as returned from a PDF form or
created using fdf_create() and fdf_save().

Return Values

Returns a FDF document handle, or FALSE on error.

Examples

Example #1862 - Accessing the form data

<?php

// Save the FDF data into a temp file

$fdffp = fopen("test.fdf", "w");

fwrite($fdffp, $HTTP_FDF_DATA, strlen($HTTP_FDF_DATA));

fclose($fdffp);

// Open temp file and evaluate data

$fdf = fdf_open("test.fdf");

/* ... */

fdf_close($fdf);

?>

See Also

• fdf_open_string()
• fdf_close()

• fdf_create()
• fdf_save()

fdf_remove_item

fdf_remove_item -- Sets target frame for form

Description

bool fdf_remove_item (resource $fdf_document, string $fieldname, int $item)

Warning

This function is currently not documented; only its argument list is available.

fdf_save_string

fdf_save_string -- Returns the FDF document as a string

Description

string fdf_save_string (resource $fdf_document)

Returns the FDF document as a string.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

Return Values

Returns the document as a string, or FALSE on error.

Examples

Example #1863 - Retrieving FDF as a string

<?php

$fdf = fdf_create();

fdf_set_value($fdf, "foo", "bar");

$str = fdf_save_string($fdf);

fdf_close($fdf);

echo $str;

?>

The above example will output:

%FDF-1.2

%âãÏÓ

1 0 obj

<<

/FDF << /Fields 2 0 R >>

>>

endobj

2 0 obj

[

<< /T (foo)/V (bar)>>

]

endobj

trailer

<<

/Root 1 0 R

>>

%%EOF

See Also

• fdf_open_string()
• fdf_close()
• fdf_create()
• fdf_save()

fdf_save

fdf_save -- Save a FDF document

Description

bool fdf_save (resource $fdf_document [, string $filename])

Saves a FDF document.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

filename

If provided, the resulting FDF will be written in this parameter. Otherwise, this function
will write the FDF to the default PHP output stream.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_close()
• fdf_create()
• fdf_save_string()

fdf_set_ap

fdf_set_ap -- Set the appearance of a field

Description

bool fdf_set_ap (resource $fdf_document, string $field_name, int $face, string $
filename, int $page_number)

Sets the appearance of a field (i.e. the value of the /AP key).

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

field_name

face

The possible values FDFNormalAP, FDFRolloverAP and FDFDownAP.

filename

page_number

Return Values

Returns TRUE on success or FALSE on failure.

fdf_set_encoding

fdf_set_encoding -- Sets FDF character encoding

Description

bool fdf_set_encoding (resource $fdf_document, string $encoding)

Sets the character encoding for the FDF document.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

encoding

The encoding name. The following values are supported: " Shift-JIS ", " UHC ", " GBK "
and " BigFive ". An empty string resets the encoding to the default
PDFDocEncoding/Unicode scheme.

Return Values

Returns TRUE on success or FALSE on failure.

fdf_set_file

fdf_set_file -- Set PDF document to display FDF data in

Description

bool fdf_set_file (resource $fdf_document, string $url [, string $target_frame])

Selects a different PDF document to display the form results in then the form it originated
from.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

url

Should be given as an absolute URL.

target_frame

Use this parameter to specify the frame in which the document will be displayed. You
can also set the default value for this parameter using fdf_set_target_frame().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1864 - Passing FDF data to a second form

<?php

 /* set content type for Adobe FDF */

 fdf_header();

 /* start new fdf */

 $fdf = fdf_create();

 /* set field "foo" to value "bar" */

 fdf_set_value($fdf, "foo", "bar");

 /* tell client to display FDF data using "fdf_form.pdf" */

 fdf_set_file($fdf, "http://www.example.com/fdf_form.pdf");

 /* output fdf */

 fdf_save($fdf);

 /* clean up */

 fdf_close($fdf);

?>

See Also

• fdf_get_file()
• fdf_set_target_frame()

fdf_set_flags

fdf_set_flags -- Sets a flag of a field

Description

bool fdf_set_flags (resource $fdf_document, string $fieldname, int $whichFlags, int $
newFlags)

Sets certain flags of the given field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

whichFlags

newFlags

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_set_opt()

fdf_set_javascript_action

fdf_set_javascript_action -- Sets an javascript action of a field

Description

bool fdf_set_javascript_action (resource $fdf_document, string $fieldname, int $
trigger, string $script)

Sets a javascript action for the given field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

trigger

script

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_set_submit_form_action()

fdf_set_on_import_javascript

fdf_set_on_import_javascript -- Adds javascript code to be executed when Acrobat opens
the FDF

Description

bool fdf_set_on_import_javascript (resource $fdf_document, string $script, bool $
before_data_import)

Warning

This function is currently not documented; only its argument list is available.

See Also

• fdf_add_doc_javascript()
• fdf_set_javascript_action()

fdf_set_opt

fdf_set_opt -- Sets an option of a field

Description

bool fdf_set_opt (resource $fdf_document, string $fieldname, int $element, string $str1
, string $str2)

Sets options of the given field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

element

str1

str2

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_set_flags()

fdf_set_status

fdf_set_status -- Set the value of the /STATUS key

Description

bool fdf_set_status (resource $fdf_document, string $status)

Sets the value of the /STATUS key. When a client receives a FDF with a status set it will
present the value in an alert box.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

status

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_get_status()

fdf_set_submit_form_action

fdf_set_submit_form_action -- Sets a submit form action of a field

Description

bool fdf_set_submit_form_action (resource $fdf_document, string $fieldname, int $
trigger, string $script, int $flags)

Sets a submit form action for the given field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

trigger

script

flags

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_set_javascript_action()

fdf_set_target_frame

fdf_set_target_frame -- Set target frame for form display

Description

bool fdf_set_target_frame (resource $fdf_document, string $frame_name)

Sets the target frame to display a result PDF defined with fdf_save_file() in.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

frame_name

The frame name, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_save_file()

fdf_set_value

fdf_set_value -- Set the value of a field

Description

bool fdf_set_value (resource $fdf_document, string $fieldname, mixed $value [, int $
isName])

Sets the value for the given field.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

fieldname

Name of the FDF field, as a string.

value

This parameter will be stored as a string unless it is an array. In this case all array
elements will be stored as a value array.

isName

Note

In older versions of the FDF toolkit last parameter determined if the field value was
to be converted to a PDF Name (= 1) or set to a PDF String (= 0).

The value is no longer used in the current toolkit version 5.0. For compatibility
reasons it is still supported as an optional parameter beginning with PHP 4.3, but
ignored internally.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.0 Support for arrays in the value parameter
was added.

See Also

• fdf_get_value()
• fdf_remove_item()

fdf_set_version

fdf_set_version -- Sets version number for a FDF file

Description

bool fdf_set_version (resource $fdf_document, string $version)

Sets the FDF version for the given document.

Some features supported by this extension are only available in newer FDF versions.

Parameters

fdf_document

The FDF document handle, returned by fdf_create(), fdf_open() or fdf_open_string().

version

The version number. For the current FDF toolkit 5.0, this may be either 1.2, 1.3 or 1.4.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fdf_get_version()

GNU Privacy Guard

Introduction

This module allows you to interact with » gnupg.

http://www.gnupg.org/

Installing/Configuring

Requirements

The gnupg extension requires PHP 4.3. To use this extension in an OO style, PHP 5 is
required.

This extension requires the » gpgme library

Installation

The gnupg-extension is not bundled with PHP. It is a » PECL extension and can be
located here: » http://pecl.php.net/package/gnupg.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.gnupg.org/(en)/download/index.html#gpgme
http://pecl.php.net/
http://pecl.php.net/package/gnupg

Predefined Constants

GNUPG_SIG_MODE_NORMAL (integer)

GNUPG_SIG_MODE_DETACH (integer)

GNUPG_SIG_MODE_CLEAR (integer)

GNUPG_VALIDITY_UNKNOWN (integer)

GNUPG_VALIDITY_UNDEFINED (integer)

GNUPG_VALIDITY_NEVER (integer)

GNUPG_VALIDITY_MARGINAL (integer)

GNUPG_VALIDITY_FULL (integer)

GNUPG_VALIDITY_ULTIMATE (integer)

GNUPG_PROTOCOL_OpenPGP (integer)

GNUPG_PROTOCOL_CMS (integer)

GNUPG_SIGSUM_VALID (integer)

GNUPG_SIGSUM_GREEN (integer)

GNUPG_SIGSUM_RED (integer)

GNUPG_SIGSUM_KEY_REVOKED (integer)

GNUPG_SIGSUM_KEY_EXPIRED (integer)

GNUPG_SIGSUM_KEY_MISSING (integer)

GNUPG_SIGSUM_SIG_EXPIRED (integer)

GNUPG_SIGSUM_CRL_MISSING (integer)

GNUPG_SIGSUM_CRL_TOO_OLD (integer)

GNUPG_SIGSUM_BAD_POLICY (integer)

GNUPG_SIGSUM_SYS_ERROR (integer)

GNUPG_ERROR_WARNING (integer)

GNUPG_ERROR_EXCEPTION (integer)

GNUPG_ERROR_SILENT (integer)

Examples

Clearsign text

This example will clearsign a given text.

Example #1865 - gnupg clearsign example (procedural)

<?php

// init gnupg

$res = gnupg_init();

// not really needed. Clearsign is default

gnupg_setsignmode($res,GNUPG_SIG_MODE_CLEAR);

// add key with passphrase 'test' for signing

gnupg_addsignkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

// sign

$signed = gnupg_sign($res,"just a test");

echo $signed;

?>

Example #1866 - gnupg clearsign example (OO)

<?php

// new class

$gnupg = new gnupg();

// not really needed. Clearsign is default

$gnupg->setsignmode(gnupg::SIG_MODE_CLEAR);

// add key with passphrase 'test' for signing

$gnupg->addsignkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

// sign

$signed = $gnupg->sign("just a test");

echo $signed;

?>

Example #1867 - keylistiterator

This extension also comes with an Iterator for your keyring.

<?php

// create a new iterator for listing all public keys that matches 'example'

$iterator = new gnupg_keylistiterator("example");

foreach($iterator as $fingerprint => $userid){

 echo $fingerprint." -> ".$userid."\n";

}

?>

GnuPG Functions

Notes

This extension makes use of the keyring of the current user. This keyring is normally
located in ~./.gnupg/. To specify a custom location, store the path to the keyring in the
environment variable GNUPGHOME. See putenv for more information how to do this.

Some functions require the specification of a key. This specification can be anything that
refers to an unique key (userid, key-id, fingerprint, ...). This documentation uses the
fingerprint in all examples.

gnupg_adddecryptkey

gnupg_adddecryptkey -- Add a key for decryption

Description

bool gnupg_adddecryptkey (resource $identifier, string $fingerprint, string $
passphrase)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

fingerprint

The fingerprint key.

passphrase

The pass phrase.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1868 - Procedural gnupg_adddecryptkey() example

<?php

$res = gnupg_init();

gnupg_adddecryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

?>

Example #1869 - OO gnupg_adddecryptkey() example

<?php

$gpg = new gnupg();

$gpg -> adddecryptkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

?>

gnupg_addencryptkey

gnupg_addencryptkey -- Add a key for encryption

Description

bool gnupg_addencryptkey (resource $identifier, string $fingerprint)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

fingerprint

The fingerprint key.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1870 - Procedural gnupg_addencryptkey() example

<?php

$res = gnupg_init();

gnupg_addencryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC");

?>

Example #1871 - OO gnupg_addencryptkey() example

<?php

$gpg = new gnupg();

$gpg -> addencryptkey("8660281B6051D071D94B5B230549F9DC851566DC");

?>

gnupg_addsignkey

gnupg_addsignkey -- Add a key for signing

Description

bool gnupg_addsignkey (resource $identifier, string $fingerprint [, string $
passphrase])

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

fingerprint

The fingerprint key.

passphrase

The pass phrase.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1872 - Procedural gnupg_addsignkey() example

<?php

$res = gnupg_init();

gnupg_addsignkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

?>

Example #1873 - OO gnupg_addsignkey() example

<?php

$gpg = new gnupg();

$gpg -> addsignkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

?>

gnupg_cleardecryptkeys

gnupg_cleardecryptkeys -- Removes all keys which were set for decryption before

Description

bool gnupg_cleardecryptkeys (resource $identifier)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1874 - Procedural gnupg_cleardecryptkeys() example

<?php

$res = gnupg_init();

gnupg_cleardecryptkeys($res);

?>

Example #1875 - OO gnupg_cleardecryptkeys() example

<?php

$gpg = new gnupg();

$gpg -> cleardecryptkeys();

?>

gnupg_clearencryptkeys

gnupg_clearencryptkeys -- Removes all keys which were set for encryption before

Description

bool gnupg_clearencryptkeys (resource $identifier)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1876 - Procedural gnupg_clearencryptkeys() example

<?php

$res = gnupg_init();

gnupg_clearencryptkeys($res);

?>

Example #1877 - OO gnupg_clearencryptkeys() example

<?php

$gpg = new gnupg();

$gpg -> clearencryptkeys();

?>

gnupg_clearsignkeys

gnupg_clearsignkeys -- Removes all keys which were set for signing before

Description

bool gnupg_clearsignkeys (resource $identifier)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1878 - Procedural gnupg_clearsignkeys() example

<?php

$res = gnupg_init();

gnupg_clearsignkeys($res);

?>

Example #1879 - OO gnupg_clearsignkeys() example

<?php

$gpg = new gnupg();

$gpg -> clearsignkeys();

?>

gnupg_decrypt

gnupg_decrypt -- Decrypts a given text

Description

string gnupg_decrypt (resource $identifier, string $text)

Decrypts the given text with the keys, which were set with gnupg_adddecryptkey before.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

text

The text being decrypted.

Return Values

On success, this function returns the decrypted text. On failure, this function returns
FALSE.

Examples

Example #1880 - Procedural gnupg_decrypt() example

<?php

$res = gnupg_init();

gnupg_adddecryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

$plain = gnupg_decrypt($res,$encrypted_text);

echo $plain;

?>

Example #1881 - OO gnupg_encrypt() example

<?php

$gpg = new gnupg();

$gpg -> adddecryptkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

$plain = $gpg -> decrypt($encrypted_text);

echo $plain;

?>

gnupg_decryptverify

gnupg_decryptverify -- Decrypts and verifies a given text

Description

array gnupg_decryptverify (resource $identifier, string $text, string &$plaintext)

Decrypts and verifies a given text and returns information about the signature.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

text

The text being decrypted.

plaintext

The parameter plaintext gets filled with the decrypted text.

Return Values

On success, this function returns information about the signature and fills the plaintext
parameter with the decrypted text. On failure, this function returns FALSE.

Examples

Example #1882 - Procedural gnupg_decryptverify() example

<?php

$plaintext = "";

$res = gnupg_init();

gnupg_adddecryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

$info = gnupg_decryptverify($res,$text,$plaintext);

print_r($info);

?>

Example #1883 - OO gnupg_decryptverify() example

<?php

$plaintext = "";

$gpg = new gnupg();

$gpg -> adddecryptkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

$info = $gpg -> decryptverify($text,$plaintext);

print_r($info);

?>

gnupg_encrypt

gnupg_encrypt -- Encrypts a given text

Description

string gnupg_encrypt (resource $identifier, string $plaintext)

Encrypts the given plaintext with the keys, which were set with gnupg_addencryptkey
before and returns the encrypted text.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

plaintext

The text being encrypted.

Return Values

On success, this function returns the encrypted text. On failure, this function returns
FALSE.

Examples

Example #1884 - Procedural gnupg_encrypt() example

<?php

$res = gnupg_init();

gnupg_addencryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC");

$enc = gnupg_encrypt($res, "just a test");

echo $enc;

?>

Example #1885 - OO gnupg_encrypt() example

<?php

$gpg = new gnupg();

$gpg -> addencryptkey("8660281B6051D071D94B5B230549F9DC851566DC");

$enc = $gpg -> encrypt("just a test");

echo $enc;

?>

gnupg_encryptsign

gnupg_encryptsign -- Encrypts and signs a given text

Description

string gnupg_encryptsign (resource $identifier, string $plaintext)

Encrypts and signs the given plaintext with the keys, which were set with
gnupg_addsignkey and gnupg_addencryptkey before and returns the encrypted and
signed text.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

plaintext

The text being encrypted.

Return Values

On success, this function returns the encrypted and signed text. On failure, this function
returns FALSE.

Examples

Example #1886 - Procedural gnupg_encryptsign() example

<?php

$res = gnupg_init();

gnupg_addencryptkey($res,"8660281B6051D071D94B5B230549F9DC851566DC");

gnupg_addsignkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

$enc = gnupg_encryptsign($res, "just a test");

echo $enc;

?>

Example #1887 - OO gnupg_encryptsign() example

<?php

$gpg = new gnupg();

$gpg -> addencryptkey("8660281B6051D071D94B5B230549F9DC851566DC");

$gpg -> addsignkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

$enc = $gpg -> encryptsign("just a test");

echo $enc;

?>

gnupg_export

gnupg_export -- Exports a key

Description

string gnupg_export (resource $identifier, string $fingerprint)

Exports the key fingerprint.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

fingerprint

The fingerprint key.

Return Values

On success, this function returns the keydata. On failure, this function returns FALSE.

Examples

Example #1888 - Procedural gnupg_export() example

<?php

$res = gnupg_init();

$export = gnupg_export($res,"8660281B6051D071D94B5B230549F9DC851566DC");

echo $export;

?>

Example #1889 - OO gnupg_export() example

<?php

$gpg = new gnupg();

$export = $gpg -> export("8660281B6051D071D94B5B230549F9DC851566DC");

?>

gnupg_geterror

gnupg_geterror -- Returns the errortext, if a function fails

Description

string gnupg_geterror (resource $identifier)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

Return Values

Returns an errortext, if an error has occurred, otherwise FALSE.

Examples

Example #1890 - Procedural gnupg_geterror() example

<?php

$res = gnupg_init();

echo gnupg_geterror($res);

?>

Example #1891 - OO gnupg_geterror() example

<?php

$gpg = new gnupg();

echo $gpg -> geterror();

?>

gnupg_getprotocol

gnupg_getprotocol -- Returns the currently active protocol for all operations

Description

int gnupg_getprotocol (resource $identifier)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

Return Values

Returns the currently active protocol, which can be one of
GNUPG_PROTOCOL_OpenPGP or GNUPG_PROTOCOL_CMS.

Examples

Example #1892 - Procedural gnupg_getprotocol() example

<?php

$res = gnupg_init();

echo gnupg_getprotocol($res);

?>

Example #1893 - OO gnupg_getprotocol() example

<?php

$gpg = new gnupg();

echo $gpg -> getprotocol();

?>

gnupg_import

gnupg_import -- Imports a key

Description

array gnupg_import (resource $identifier, string $keydata)

Imports the key keydata and returns an array with information about the importprocess.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

keydata

The data key that is being imported.

Return Values

On success, this function returns and info-array about the importprocess. On failure, this
function returns FALSE.

Examples

Example #1894 - Procedural gnupg_import() example

<?php

$res = gnupg_init();

$info = gnupg_import($res,$keydata);

print_r($info);

?>

Example #1895 - OO gnupg_import() example

<?php

$gpg = new gnupg();

$info = $gpg -> import($keydata);

print_r($info);

?>

gnupg_init

gnupg_init -- Initialize a connection

Description

resource gnupg_init (void)

Parameters

This function has no parameters.

Return Values

A GnuPG resource connection used by other GnuPG functions.

Examples

Example #1896 - Procedural gnupg_init() example

<?php

$res = gnupg_init();

?>

Example #1897 - OO gnupg initializer example

<?php

$gpg = new gnupg();

?>

gnupg_keyinfo

gnupg_keyinfo -- Returns an array with information about all keys that matches the given
pattern

Description

array gnupg_keyinfo (resource $identifier, string $pattern)

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

pattern

The pattern being checked against the keys.

Return Values

Returns an array with information about all keys that matches the given pattern or FALSE,
if an error has occurred.

Examples

Example #1898 - Procedural gnupg_keyinfo() example

<?php

$res = gnupg_init();

$info = gnupg_keyinfo($res, 'test');

print_r($info);

?>

Example #1899 - OO gnupg_keyinfo() example

<?php

$gpg = new gnupg();

$info = $gpg -> keyinfo("test");

print_r($info);

?>

gnupg_setarmor

gnupg_setarmor -- Toggle armored output

Description

bool gnupg_setarmor (resource $identifier, int $armor)

Toggle the armored output.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

armor

Pass a non-zero integer-value to this function to enable armored-output (default). Pass
0 to disable armored output.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1900 - Procedural gnupg_setarmor() example

<?php

$res = gnupg_init();

gnupg_setarmor($res,1); // enable armored output;

gnupg_setarmor($res,0); // disable armored output;

?>

Example #1901 - OO gnupg_setarmor() example

<?php

$gpg = new gnupg();

$gpg -> setarmor(1); // enable armored output;

$gpg -> setarmor(0); // disable armored output;

?>

gnupg_seterrormode

gnupg_seterrormode -- Sets the mode for error_reporting

Description

void gnupg_seterrormode (resource $identifier, int $errormode)

Sets the mode for error_reporting.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

errormode

The error mode. errormode takes a constant indicating what type of error_reporting
should be used. The possible values are GNUPG_ERROR_WARNING,
GNUPG_ERROR_EXCEPTION and GNUPG_ERROR_SILENT. By default
GNUPG_ERROR_SILENT is used.

Return Values

No value is returned.

Examples

Example #1902 - Procedural gnupg_seterrormode() example

<?php

$res = gnupg_init();

gnupg_seterrormode($res,GNUPG_ERROR_WARNING); // raise a PHP-Warning in case
of an error

?>

Example #1903 - OO gnupg_seterrormode() example

<?php

$gpg = new gnupg();

$gpg -> seterrormode(gnupg::ERROR_EXCEPTION); // throw an exception in case
of an error

?>

gnupg_setsignmode

gnupg_setsignmode -- Sets the mode for signing

Description

bool gnupg_setsignmode (resource $identifier, int $signmode)

Sets the mode for signing.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

sigmode

The mode for signing. signmode takes a constant indicating what type of signature
should be produced. The possible values are GNUPG_SIG_MODE_NORMAL,
GNUPG_SIG_MODE_DETACH and GNUPG_SIG_MODE_CLEAR. By default
GNUPG_SIG_MODE_CLEAR is used.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1904 - Procedural gnupg_setsignmode() example

<?php

$res = gnupg_init();

gnupg_setsignmode($res,GNUPG_SIG_MODE_DETACH); // produce a detached
signature

?>

Example #1905 - OO gnupg_setsignmode() example

<?php

$gpg = new gnupg();

$gpg -> setsignmode(gnupg::SIG_MODE_DETACH); // produce a detached signature

?>

gnupg_sign

gnupg_sign -- Signs a given text

Description

string gnupg_sign (resource $identifier, string $plaintext)

Signs the given plaintext with the keys, which were set with gnupg_addsignkey before
and returns the signed text or the signature, depending on what was set with
gnupg_setsignmode.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

plaintext

The plain text being signed.

Return Values

On success, this function returns the signed text or the signature. On failure, this function
returns FALSE.

Examples

Example #1906 - Procedural gnupg_sign() example

<?php

$res = gnupg_init();

gnupg_addsignkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");

$signed = gnupg_sign($res, "just a test");

echo $signed;

?>

Example #1907 - OO gnupg_sign() example

<?php

$gpg = new gnupg();

$gpg -> setsignkey("8660281B6051D071D94B5B230549F9DC851566DC","test");

$signed = $gpg -> sign("just a test");

echo $signed;

?>

gnupg_verify

gnupg_verify -- Verifies a signed text

Description

array gnupg_verify (resource $identifier, string $signed_text, string $signature [,
string &$plaintext])

Verifies the given signed_text and returns information about the signature.

Parameters

identifier

The gnupg identifier, from a call to gnupg_init() or gnupg.

signed_text

The signed text.

signature

The signature. To verify a clearsigned text, set signature to FALSE.

plaintext

The plain text. If this optional parameter is passed, it is filled with the plain text.

Return Values

On success, this function returns informations about the signature. On failure, this function
returns FALSE.

Examples

Example #1908 - Procedural gnupg_verify() example

<?php

$plaintext = "";

$res = gnupg_init();

// clearsigned

$info = gnupg_verify($res,$signed_text,false,$plaintext);

print_r($info);

// detached signature

$info = gnupg_verify($res,$signed_text,$signature);

print_r($info);

?>

Example #1909 - OO gnupg_verify() example

<?php

$plaintext = "";

$gpg = new gnupg();

// clearsigned

$info = $gpg -> verify($signed_text,false,$plaintext);

print_r($info);

// detached signature

$info = $gpg -> verify($signed_text,$signature);

print_r($info);

?>

Haru PDF

Introduction

The PECL/haru extension provides bindings to the libHaru library. libHaru is a free, cross
platform, and Open Source library for generating PDF files.

The Haru library (libHaru) may be found here: » http://libharu.org.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://libharu.org

Installing/Configuring

Requirements

You need to install libharu first to be able to use PECL/haru. PECL/haru is tested with
libharu 2.0.8, older versions might or might not work for you. PECL/haru also requires PHP
5.1.3 or newer.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/haru.

The latest PECL/haru Win32 DLL can be downloaded here: » php_haru.dll.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/haru
http://pecl.php.net/package/haru
http://pecl4win.php.net/ext.php/php_haru.dll

Predefined Constants

This extension has no constants defined.

Examples

Basic PECL/haru example

Example #1910 - Fancy "Hello world"

<?php

$doc = new HaruDoc;

$doc->setPageMode(HaruDoc::PAGE_MODE_USE_THUMBS); /* show thumbnails */

$page = $doc->addPage(); /* add page to the document */

$page->setSize(HaruPage::SIZE_A4, HaruPage::LANDSCAPE); /* set the page to
use A4 landscape format */

$courier = $doc->getFont("Courier-Bold"); /* we'll use the bundled font a
few lines below */

$page->setRGBStroke(0, 0, 0); /* set colors */

$page->setRGBFill(0.7, 0.8, 0.9);

$page->rectangle(150, 150, 550, 250); /* draw a rectangle */

$page->fillStroke(); /* fill and stroke it */

$page->setDash(array(3, 3), 0); /* set dash style for lines at this page */

$page->setFontAndSize($courier, 60); /* set font and size */

$page->setRGBStroke(0.5, 0.5, 0.1); /* set line color */

$page->setRGBFill(1, 1, 1); /* set filling color */

$page->setTextRenderingMode(HaruPage::FILL_THEN_STROKE); /* fill and stroke
text */

/* print the text */

$page->beginText();

$page->textOut(210, 270, "Hello World!");

$page->endText();

$doc->save("/tmp/test.pdf"); /* save the document into a file */

?>

Open the result document in your favourite PDF viewer and you should see a light-blue
rectangle and white "Hello World!" on it.

Builtin Fonts And Encodings

Builtin Fonts

These Base14 fonts are built-in into PDF and all viewers can display them. Using these
fonts may decrease the size of the result file and make the processing faster, avoiding
loading external fonts. However the fonts support only latin1 character set and you have to
load external fonts if you need to use an other character set.

The Base14 fonts:

• Courier

• Courier-Bold

• Courier-Oblique

• Courier-BoldOblique

• Helvetica

• Helvetica-Bold

• Helvetica-Oblique

• Helvetica-BoldOblique

• Times-Roman

• Times-Bold

• Times-Italic

• Times-BoldItalic

• Symbol

• ZapfDingbats

Builtin Encodings

Single-byte character set encodings

Name Description

StandardEncoding The default encoding of PDF.

MacRomanEncoding The standard encoding of Mac OS.

WinAnsiEncoding The standard encoding of Windows.

FontSpecific The font built-in encoding.

ISO8859-2 Latin2 (East European)

ISO8859-3 Latin3 (South European)

ISO8859-4 Latin4 (North European)

ISO8859-5 Cyrillic

ISO8859-6 Arabic

ISO8859-7 Greek

ISO8859-8 Hebrew

ISO8859-9 Latin5 (Turkish)

ISO8859-10 Latin6 (Nordic)

ISO8859-11 Thai

ISO8859-13 Latin7 (Baltic Rim)

ISO8859-14 Latin8 (Celtic)

ISO8859-15 Latin9

ISO8859-16 Latin10

CP1250 MS Windows Codepage 1250.

CP1251 MS Windows Codepage 1251.

CP1252 MS Windows Codepage 1252.

CP1253 MS Windows Codepage 1253.

CP1254 MS Windows Codepage 1254.

CP1255 MS Windows Codepage 1255.

CP1256 MS Windows Codepage 1256.

CP1257 MS Windows Codepage 1257.

CP1258 MS Windows Codepage 1258.

KOI8-R Cyrillic character set.

Multi-byte character set encodings

Name Description

GB-EUC-H EUC-CN encoding.

GB-EUC-V Vertical writing version of GB-EUC-H.

GBK-EUC-H Microsoft Code Page 936 (lfCharSet 0x86)
GBK encoding.

GBK-EUC-V Vertical writing version of GBK-EUC-H.

ETen-B5-H Microsoft Code Page 950 (lfCharSet 0x88)
Big Five character set with ETen extensions.

ETen-B5-V Vertical writing version of ETen-B5-H.

90ms-RKSJ-H Microsoft Code Page 932, JIS X 0208
character.

90ms-RKSJ-V Vertical writing version of 90ms-RKSJ-V.

90msp-RKSJ-H Microsoft Code Page 932, JIS X 0208
character (proportional).

EUC-H JIS X 0208 character set, EUC-JP encoding.

EUC-V Vertical writing version of EUC-H.

KSC-EUC-H KS X 1001:1992 character set, EUC-KR
encoding.

KSC-EUC-V Vertical writing version of KSC-EUC-V.

KSCms-UHC-H Microsoft Code Page 949 (lfCharSet 0x81),
KS X 1001:1992 character set plus 8822
additional hangul, Unified Hangul Code
(UHC) encoding (proportional).

KSCms-UHC-HW-H Microsoft Code Page 949 (lfCharSet 0x81),
KS X 1001:1992 character set plus 8822
additional hangul, Unified Hangul Code
(UHC) encoding (fixed width).

KSCms-UHC-HW-V Vertical writing version of
KSCms-UHC-HW-H.

The HaruException class

Introduction

Haru PDF Exception Class.

Class synopsis

HaruException

HaruException extends Exception {
}

HaruException

HaruException -- Dummy page

The HaruDoc class

Introduction

Haru PDF Document Class.

Class synopsis

HaruDoc

HaruDoc {

/* Methods */

object HaruDoc::addPage (void)

bool HaruDoc::addPageLabel (int $first_page, int $style, int $first_num [, string
$prefix])

void HaruDoc::__construct (void)

object HaruDoc::createOutline (string $title [, object $parent_outline [, object $
encoder]])

object HaruDoc::getCurrentEncoder (void)

object HaruDoc::getCurrentPage (void)

object HaruDoc::getEncoder (string $encoding)

object HaruDoc::getFont (string $fontname [, string $encoding])

string HaruDoc::getInfoAttr (int $type)

int HaruDoc::getPageLayout (void)

int HaruDoc::getPageMode (void)

int HaruDoc::getStreamSize (void)

object HaruDoc::insertPage (object $page)

object HaruDoc::loadJPEG (string $filename)

object HaruDoc::loadPNG (string $filename [, bool $deferred])

object HaruDoc::loadRaw (string $filename, int $width, int $height, int $
color_space)

string HaruDoc::loadTTC (string $fontfile, int $index [, bool $embed])

string HaruDoc::loadTTF (string $fontfile [, bool $embed])

string HaruDoc::loadType1 (string $afmfile [, string $pfmfile])

bool HaruDoc::output (void)

string HaruDoc::readFromStream (int $bytes)

bool HaruDoc::resetError (void)

bool HaruDoc::resetStream (void)

bool HaruDoc::save (string $file)

bool HaruDoc::saveToStream (void)

bool HaruDoc::setCompressionMode (int $mode)

bool HaruDoc::setCurrentEncoder (string $encoding)

bool HaruDoc::setEncryptionMode (int $mode [, int $key_len])

bool HaruDoc::setInfoAttr (int $type, string $info)

bool HaruDoc::setInfoDateAttr (int $type, int $year, int $month, int $day, int $hour,
int $min, int $sec, string $ind, int $off_hour, int $off_min)

bool HaruDoc::setOpenAction (object $destination)

bool HaruDoc::setPageLayout (int $layout)

bool HaruDoc::setPageMode (int $mode)

bool HaruDoc::setPagesConfiguration (int $page_per_pages)

bool HaruDoc::setPassword (string $owner_password, string $user_password)

bool HaruDoc::setPermission (int $permission)

bool HaruDoc::useCNSEncodings (void)

bool HaruDoc::useCNSFonts (void)

bool HaruDoc::useCNTEncodings (void)

bool HaruDoc::useCNTFonts (void)

bool HaruDoc::useJPEncodings (void)

bool HaruDoc::useJPFonts (void)

bool HaruDoc::useKREncodings (void)

bool HaruDoc::useKRFonts (void)
}

Predefined Constants

Type Name Description

int HaruDoc::CS_DEVICE_GRA
Y

int HaruDoc::CS_DEVICE_RGB

int HaruDoc::CS_DEVICE_CMY
K

int HaruDoc::CS_CAL_GRAY

int HaruDoc::CS_CAL_RGB

int HaruDoc::CS_LAB

int HaruDoc::CS_ICC_BASED

int HaruDoc::CS_SEPARATION

int HaruDoc::CS_DEVICE_N

int HaruDoc::CS_INDEXED

int HaruDoc::CS_PATTERN

int HaruDoc::ENABLE_READ

int HaruDoc::ENABLE_PRINT

int HaruDoc::ENABLE_EDIT_A
LL

int HaruDoc::ENABLE_COPY

int HaruDoc::ENABLE_EDIT

int HaruDoc::ENCRYPT_R2

int HaruDoc::ENCRYPT_R3

int HaruDoc::INFO_AUTHOR

int HaruDoc::INFO_CREATOR

int HaruDoc::INFO_TITLE

int HaruDoc::INFO_SUBJECT

int HaruDoc::INFO_KEYWORD
S

int HaruDoc::INFO_CREATION
_DATE

int HaruDoc::INFO_MOD_DATE

int HaruDoc::COMP_NONE

int HaruDoc::COMP_TEXT

int HaruDoc::COMP_IMAGE

int HaruDoc::COMP_METADAT
A

int HaruDoc::COMP_ALL

int HaruDoc::PAGE_LAYOUT_
SINGLE

int HaruDoc::PAGE_LAYOUT_
ONE_COLUMN

int HaruDoc::PAGE_LAYOUT_T
WO_COLUMN_LEFT

int HaruDoc::PAGE_LAYOUT_T
WO_COLUMN_RIGHT

int HaruDoc::PAGE_MODE_US
E_NONE

int HaruDoc::PAGE_MODE_US
E_OUTLINE

int HaruDoc::PAGE_MODE_US
E_THUMBS

int HaruDoc::PAGE_MODE_FU
LL_SCREEN

HaruDoc::addPage

HaruDoc::addPage -- Add new page to the document

Description

object HaruDoc::addPage (void)

Adds a new page to the document.

Parameters

This function has no parameters.

Return Values

Returns a new HaruPage instance.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: insertPage()

HaruDoc::addPageLabel

HaruDoc::addPageLabel -- Set the numbering style for the specified range of pages

Description

bool HaruDoc::addPageLabel (int $first_page, int $style, int $first_num [, string $
prefix])

Set the numbering style for the specified range of pages.

Parameters

first_page

The first page included into the labeling range.

style

The numbering style. The following values are allowed:

• HaruPage::NUM_STYLE_DECIMAL - page label is displayed using decimal
numerals.

• HaruPage::NUM_STYLE_UPPER_ROMAN - page label is displayed using
uppercase Roman numerals.

• HaruPage::NUM_STYLE_LOWER_ROMAN - page label is displayed using
lowercase Roman numerals.

• HaruPage::NUM_STYLE_UPPER_LETTER - page label is displayed using
uppercase letters (from A to Z).

• HaruPage::NUM_STYLE_LOWER_LETTERS - page label is displayed using
lowercase letters (from a to z).

first_num

The first page number in this range.

prefix

The prefix for the page label. Optional, empty by default.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::__construct

HaruDoc::__construct -- Construct new HaruDoc instance

Description

void HaruDoc::__construct (void)

Constructs new HaruDoc instance.

Parameters

This function has no parameters.

Return Values

No value is returned.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::createOutline

HaruDoc::createOutline -- Create a HaruOutline instance

Description

object HaruDoc::createOutline (string $title [, object $parent_outline [, object $
encoder]])

Create a HaruOutline instance.

Parameters

title

The caption of new outline object.

parent_outline

A valid HaruOutline instance or NULL.

encoder

A valid HaruEncoder instance or NULL.

Return Values

Returns a new HaruOutline instance.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::getCurrentEncoder

HaruDoc::getCurrentEncoder -- Get HaruEncoder currently used in the document

Description

object HaruDoc::getCurrentEncoder (void)

Get the HaruEncoder currently used in the document.

Parameters

This function has no parameters.

Return Values

Returns HaruEncoder currently used in the document or FALSE if encoder is not set.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setCurrentEncoder()

HaruDoc::getCurrentPage

HaruDoc::getCurrentPage -- Return current page of the document

Description

object HaruDoc::getCurrentPage (void)

Get current page of the document.

Parameters

This function has no parameters.

Return Values

Returns HaruPage instance on success or FALSE if there is no current page at the
moment.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::getEncoder

HaruDoc::getEncoder -- Get HaruEncoder instance for the specified encoding

Description

object HaruDoc::getEncoder (string $encoding)

Get the HaruEncoder instance for the specified encoding.

Parameters

encoding

The encoding name. See Builtin Encodings for the list of allowed values.

Return Values

Returns a HaruEncoder instance for the specified encoding.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setCurrentEncoder()
• HaruDoc :: getCurrentEncoder()

HaruDoc::getFont

HaruDoc::getFont -- Get HaruFont instance

Description

object HaruDoc::getFont (string $fontname [, string $encoding])

Get a HaruFont instance.

Parameters

fontname

The name of the font. See Builtin Fonts for the list of builtin fonts. You can also use the
name of a font loaded via HaruDoc :: loadTTF(), HaruDoc :: loadTTC() and HaruDoc ::
loadType1().

encoding

The encoding to use. See Builtin Encodings for the list of supported encodings.

Return Values

Returns a HaruFont instance with the specified fontname and encoding.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setFontAndSize()
• HaruPage :: getCurrentFont()

HaruDoc::getInfoAttr

HaruDoc::getInfoAttr -- Get current value of the specified document attribute

Description

string HaruDoc::getInfoAttr (int $type)

Get the current value of the specified document attribute.

Parameters

type

The type of the attribute. The following values are available:

• HaruDoc::INFO_AUTHOR
• HaruDoc::INFO_CREATOR
• HaruDoc::INFO_TITLE
• HaruDoc::INFO_SUBJECT
• HaruDoc::INFO_KEYWORDS
• HaruDoc::INFO_CREATION_DATE
• HaruDoc::INFO_MOD_DATE

Return Values

Returns the string value of the specified document attribute.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setInfoAttr()
• HaruDoc :: setInfoDateAttr()

HaruDoc::getPageLayout

HaruDoc::getPageLayout -- Get current page layout

Description

int HaruDoc::getPageLayout (void)

Get the current page layout. See HaruDoc :: setPageLayout() for the list of possible
values.

Parameters

This function has no parameters.

Return Values

Returns the page layout currently set in the document or FALSE if page layout was not
set. See HaruDoc :: setPageLayout() for the list of possible values.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setPageLayout()

HaruDoc::getPageMode

HaruDoc::getPageMode -- Get current page mode

Description

int HaruDoc::getPageMode (void)

Get the current page mode. See HaruDoc :: setPageMode() for the list of possible values.

Parameters

This function has no parameters.

Return Values

Returns the page mode currently set in the document. See HaruDoc :: setPageMode() for
the list of possible values.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setPageMode()

HaruDoc::getStreamSize

HaruDoc::getStreamSize -- Get the size of the temporary stream

Description

int HaruDoc::getStreamSize (void)

Get the size of the temporary stream.

Parameters

This function has no parameters.

Return Values

Returns the size of the data in the temporary stream of the document. The size is zero if
the document was not saved to the temporary stream.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: saveToStream()
• HaruDoc :: resetStream()
• HaruDoc :: readFromStream()

HaruDoc::insertPage

HaruDoc::insertPage -- Insert new page just before the specified page

Description

object HaruDoc::insertPage (object $page)

Creates a new page and inserts just before the specified page.

Parameters

page

A valid HaruPage instance.

Return Values

Returns a new HaruPage instance.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: addPage()

HaruDoc::loadJPEG

HaruDoc::loadJPEG -- Load a JPEG image.

Description

object HaruDoc::loadJPEG (string $filename)

Loads the specified JPEG image.

Parameters

filename

A valid JPEG image file.

Return Values

Returns a new HaruImage instance.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadPNG()
• HaruDoc :: loadRAW()

HaruDoc::loadPNG

HaruDoc::loadPNG -- Load PNG image and return HaruImage instance

Description

object HaruDoc::loadPNG (string $filename [, bool $deferred])

Loads a PNG image.

Libharu might be built without libpng support, in this case each call to this function would
result in exception.

Parameters

filename

The name of a PNG image file.

deferred

Do not load data immediately. Defaults to FALSE. You can set deferred parameter to
TRUE for deferred data loading, in this case only size and color are loaded
immediately.

Return Values

Returns a HaruImage instance.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadJPEG()
• HaruDoc :: loadRAW()

HaruDoc::loadRaw

HaruDoc::loadRaw -- Load a RAW image

Description

object HaruDoc::loadRaw (string $filename, int $width, int $height, int $color_space)

Loads a RAW image.

Parameters

filename

The name of a RAW image file.

width

The width of the image.

height

The height of the image.

color_space

The color space of the image. Can be one of the following values:

• HaruDoc::CS_DEVICE_GRAY
• HaruDoc::CS_DEVICE_RGB
• HaruDoc::CS_DEVICE_CMYK

Return Values

Returns a HaruImage instance.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadJPEG()
• HaruDoc :: loadPNG()

HaruDoc::loadTTC

HaruDoc::loadTTC -- Load the font with the specified index from TTC file

Description

string HaruDoc::loadTTC (string $fontfile, int $index [, bool $embed])

Loads the TrueType font with the specified index from a TrueType collection file.

Parameters

fontfile

The TrueType collection file.

index

The index of the font in the collection file.

embed

When set to TRUE, the glyph data of the font is embedded into the PDF file, otherwise
only the matrix data is included. Defaults to FALSE.

Return Values

Returns the name of the loaded font on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadTTF()
• HaruDoc :: loadType1()

HaruDoc::loadTTF

HaruDoc::loadTTF -- Load TTF font file

Description

string HaruDoc::loadTTF (string $fontfile [, bool $embed])

Loads the given TTF file and (optionally) embed its data into the document.

Parameters

fontfile

The TTF file to load.

embed

When set to TRUE, the glyph data of the font is embedded into the PDF file, otherwise
only the matrix data is included. Defaults to FALSE.

Return Values

Returns the name of the loaded font on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadTTC()
• HaruDoc :: loadType1()

HaruDoc::loadType1

HaruDoc::loadType1 -- Load Type1 font

Description

string HaruDoc::loadType1 (string $afmfile [, string $pfmfile])

Loads Type1 font from the given file and registers it in the PDF document.

Parameters

afmfile

Path to an AFM file.

pfmfile

Path to a PFA/PFB file, optional. If it's not set only the glyph data of the font is
embedded into the PDF document.

Return Values

Returns the name of the loaded font on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: loadTTC()
• HaruDoc :: loadTTF()

HaruDoc::output

HaruDoc::output -- Write the document data to the output buffer

Description

bool HaruDoc::output (void)

Writes the document data into standard output.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: save()

HaruDoc::readFromStream

HaruDoc::readFromStream -- Read data from the temporary stream

Description

string HaruDoc::readFromStream (int $bytes)

Read data from the temporary stream.

Parameters

bytes

The bytes parameter specifies how many bytes to read, though the stream may
contain less bytes than requested.

Return Values

Returns data from the temporary stream.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: saveToStream()
• HaruDoc :: resetStream()
• HaruDoc :: getStreamSize()

HaruDoc::resetError

HaruDoc::resetError -- Reset error state of the document handle

Description

bool HaruDoc::resetError (void)

Once an error code is set, most of the operations, including I/O processing functions
cannot be performed. In case if you want to continue after the cause of the error has been
fixed, you have to invoke this function in order to reset the document error state.

Parameters

This function has no parameters.

Return Values

Always succeeds and returns TRUE.

HaruDoc::resetStream

HaruDoc::resetStream -- Rewind the temporary stream

Description

bool HaruDoc::resetStream (void)

Rewinds the temporary stream of the document.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: saveToStream()
• HaruDoc :: getStreamSize()
• HaruDoc :: readFromStream()

HaruDoc::save

HaruDoc::save -- Save the document into the specified file

Description

bool HaruDoc::save (string $file)

Saves the document into the specified file.

Parameters

file

The file to save the document to.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: output()

HaruDoc::saveToStream

HaruDoc::saveToStream -- Save the document into a temporary stream

Description

bool HaruDoc::saveToStream (void)

Saves the document data into a temporary stream.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: resetStream()
• HaruDoc :: getStreamSize()
• HaruDoc :: readFromStream()

HaruDoc::setCompressionMode

HaruDoc::setCompressionMode -- Set compression mode for the document

Description

bool HaruDoc::setCompressionMode (int $mode)

Defines compression mode for the document. In case when libharu was compiled without
Zlib support this function will always throw HaruException.

Parameters

mode

The compression mode to use. The value is a combination of the following flags:

• HaruDoc::COMP_NONE - all contents is not compressed.
• HaruDoc::COMP_TEXT - compress the text data.
• HaruDoc::COMP_IMAGE - compress the image data.
• HaruDoc::COMP_METADATA - compress other data (fonts, cmaps).
• HaruDoc::COMP_ALL - compress all data.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::setCurrentEncoder

HaruDoc::setCurrentEncoder -- Set the current encoder for the document

Description

bool HaruDoc::setCurrentEncoder (string $encoding)

Defines the encoder currently used in the document.

Parameters

encoding

The name of the encoding to use. See Builtin Encodings for the list of allowed values.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::setEncryptionMode

HaruDoc::setEncryptionMode -- Set encryption mode for the document

Description

bool HaruDoc::setEncryptionMode (int $mode [, int $key_len])

Defines encryption mode for the document. The encryption mode cannot be set before
setting the password.

Parameters

mode

The encryption mode to use. Can be one of the following:

• HaruDoc::ENCRYPT_R2 - use "revision2" algorithm.
• HaruDoc::ENCRYPT_R3 - use "revision3" algorithm. Using this value bumps the

version of PDF to 1.4.

key_len

The encryption key length in bytes. This parameter is optional and used only when
mode is HaruDoc::ENCRYPT_R3. The default value is 5 (40bit).

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setPassword()
• HaruDoc :: setPermission()

HaruDoc::setInfoAttr

HaruDoc::setInfoAttr -- Set the info attribute of the document

Description

bool HaruDoc::setInfoAttr (int $type, string $info)

Defines an info attribute. Uses the current encoding of the document.

Parameters

type

The type of the attribute. Can be one of the following:

• HaruDoc::INFO_AUTHOR
• HaruDoc::INFO_CREATOR
• HaruDoc::INFO_TITLE
• HaruDoc::INFO_SUBJECT
• HaruDoc::INFO_KEYWORDS

info

The value of the attribute.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setInfoDateAttr()

HaruDoc::setInfoDateAttr

HaruDoc::setInfoDateAttr -- Set the datetime info attributes of the document

Description

bool HaruDoc::setInfoDateAttr (int $type, int $year, int $month, int $day, int $hour, int
$min, int $sec, string $ind, int $off_hour, int $off_min)

Sets the datetime info attributes of the document.

Parameters

type

The type of the attribute. Can be one of the following:

• HaruDoc::INFO_CREATION_DATE
• HaruDoc::INFO_MOD_DATE

year

month

Between 1 and 12.

day

Between 1 and 31, 30, 29 or 28 (different for each month).

hour

Between 0 and 23.

min

Between 0 and 59.

sec

Between 0 and 59.

ind

The timezone relation to UTC, can be "", " ", "+", "-" and "Z".

off_hour

If ind is not " " or "", values between 0 and 23 are valid. Otherwise, this parameter is
ignored.

off_min

If ind is not " " or "", values between 0 and 59 are valid. Otherwise, this parameter is
ignored.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setInfoAttr()

HaruDoc::setOpenAction

HaruDoc::setOpenAction -- Define which page is shown when the document is opened

Description

bool HaruDoc::setOpenAction (object $destination)

Defines wich page should be shown when the document is opened.

Parameters

destination

A valid HaruDestination instance.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::setPageLayout

HaruDoc::setPageLayout -- Set how pages should be displayed

Description

bool HaruDoc::setPageLayout (int $layout)

Defines how pages should be displayed.

Parameters

layout

The following values are accepted:

• HaruDoc::PAGE_LAYOUT_SINGLE - only one page is displayed.
• HaruDoc::PAGE_LAYOUT_ONE_COLUMN - display the pages in one column.
• HaruDoc::PAGE_LAYOUT_TWO_COLUMN_LEFT - display pages in two

columns, first page left.
• HaruDoc::PAGE_LAYOUT_TWO_COLUMN_RIGHT - display pages in two

columns, first page right.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: getPageLayout()

HaruDoc::setPageMode

HaruDoc::setPageMode -- Set how the document should be displayed

Description

bool HaruDoc::setPageMode (int $mode)

Defines how the document should be displayed.

Parameters

mode

The following values are accepted:

• HaruDoc::PAGE_MODE_USE_NONE - display the document with neither outline
nor thumbnail.

• HaruDoc::PAGE_MODE_USE_OUTLINE - display the document with outline
pane.

• HaruDoc::PAGE_MODE_USE_THUMBS - display the document with thumbnail
pane.

• HaruDoc::PAGE_MODE_FULL_SCREEN - display the document with full screen
mode.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: getPageMode()

HaruDoc::setPagesConfiguration

HaruDoc::setPagesConfiguration -- Set the number of pages per set of pages

Description

bool HaruDoc::setPagesConfiguration (int $page_per_pages)

By default the document has one pages object as a root for all pages. All page objects are
create as branches of this object. One pages object can contain only 8191, therefore the
maximum number of pages per document is 8191. But you can change that fact by setting
page_per_pages parameter, so that the root pages object contains 8191 more pages (not
page) objects, which in turn contain 8191 pages each. So the maximum number of pages
in the document becomes 8191* page_per_pages.

Parameters

page_per_pages

The numbers of pages that a pages object can contain.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDoc::setPassword

HaruDoc::setPassword -- Set owner and user passwords for the document

Description

bool HaruDoc::setPassword (string $owner_password, string $user_password)

Defines owner and user passwords for the document. Setting the passwords makes the
document contents encrypted.

Parameters

owner_password

The password of the owner, which can change permissions of the document. Empty
password is not accepted. Owner's password cannot be the same as the user's
password.

user_password

The password of the user. Can be empty.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setEncryptionMode()
• HaruDoc :: setPermission()

HaruDoc::setPermission

HaruDoc::setPermission -- Set permissions for the document

Description

bool HaruDoc::setPermission (int $permission)

Defines permissions for the document.

Parameters

permission

The values is a combination of these flags:

• HaruDoc::ENABLE_READ - user can read the document.
• HaruDoc::ENABLE_PRINT - user can print the document.
• HaruDoc::ENABLE_EDIT_ALL - user can edit the contents of the document other

than annotations and form fields.
• HaruDoc::ENABLE_COPY - user can copy the text and the graphics of the

document.
• HaruDoc::ENABLE_EDIT - user can add or modify the annotations and form fields

of the document.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: setPassword()
• HaruDoc :: setEncryptionMode()

HaruDoc::useCNSEncodings

HaruDoc::useCNSEncodings -- Enable Chinese simplified encodings

Description

bool HaruDoc::useCNSEncodings (void)

Enables Chinese simplified encodings.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useCNSFonts()

HaruDoc::useCNSFonts

HaruDoc::useCNSFonts -- Enable builtin Chinese simplified fonts

Description

bool HaruDoc::useCNSFonts (void)

Enables builtin Chinese simplified fonts.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useCNSEncodings()

HaruDoc::useCNTEncodings

HaruDoc::useCNTEncodings -- Enable Chinese traditional encodings

Description

bool HaruDoc::useCNTEncodings (void)

Enables Chinese traditional encodings.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useCNTFonts()

HaruDoc::useCNTFonts

HaruDoc::useCNTFonts -- Enable builtin Chinese traditional fonts

Description

bool HaruDoc::useCNTFonts (void)

Enables builtin Chinese traditional fonts.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useCNTEncodings()

HaruDoc::useJPEncodings

HaruDoc::useJPEncodings -- Enable Japanese encodings

Description

bool HaruDoc::useJPEncodings (void)

Enables Japanese encodings.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useJPFonts()

HaruDoc::useJPFonts

HaruDoc::useJPFonts -- Enable builtin Japanese fonts

Description

bool HaruDoc::useJPFonts (void)

Enables builtin Japanese fonts.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useJPEncodings()

HaruDoc::useKREncodings

HaruDoc::useKREncodings -- Enable Korean encodings

Description

bool HaruDoc::useKREncodings (void)

Enables Korean encodings.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useKRFonts()

HaruDoc::useKRFonts

HaruDoc::useKRFonts -- Enable builtin Korean fonts

Description

bool HaruDoc::useKRFonts (void)

Enables builtin Korean fonts.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: useKREncodings()

The HaruPage class

Introduction

Haru PDF Page Class.

Class synopsis

HaruPage

HaruPage {

/* Methods */

bool HaruPage::arc (float $x, float $y, float $ray, float $ang1, float $ang2)

bool HaruPage::beginText (void)

bool HaruPage::circle (float $x, float $y, float $ray)

bool HaruPage::closePath (void)

bool HaruPage::concat (float $a, float $b, float $c, float $d, float $x, float $y)

object HaruPage::createDestination (void)

object HaruPage::createLinkAnnotation (array $rectangle, object $destination)

object HaruPage::createTextAnnotation (array $rectangle, string $text [, object $
encoder])

object HaruPage::createURLAnnotation (array $rectangle, string $url)

bool HaruPage::curveTo2 (float $x2, float $y2, float $x3, float $y3)

bool HaruPage::curveTo3 (float $x1, float $y1, float $x3, float $y3)

bool HaruPage::curveTo (float $x1, float $y1, float $x2, float $y2, float $x3, float $y3
)

bool HaruPage::drawImage (object $image, float $x, float $y, float $width, float $
height)

bool HaruPage::ellipse (float $x, float $y, float $xray, float $yray)

bool HaruPage::endPath (void)

bool HaruPage::endText (void)

bool HaruPage::eofill (void)

bool HaruPage::eoFillStroke ([bool $close_path])

bool HaruPage::fill (void)

bool HaruPage::fillStroke ([bool $close_path])

float HaruPage::getCharSpace (void)

array HaruPage::getCMYKFill (void)

array HaruPage::getCMYKStroke (void)

object HaruPage::getCurrentFont (void)

float HaruPage::getCurrentFontSize (void)

array HaruPage::getCurrentPos (void)

array HaruPage::getCurrentTextPos (void)

array HaruPage::getDash (void)

int HaruPage::getFillingColorSpace (void)

float HaruPage::getFlatness (void)

int HaruPage::getGMode (void)

float HaruPage::getGrayFill (void)

float HaruPage::getGrayStroke (void)

float HaruPage::getHeight (void)

float HaruPage::getHorizontalScaling (void)

int HaruPage::getLineCap (void)

int HaruPage::getLineJoin (void)

float HaruPage::getLineWidth (void)

float HaruPage::getMiterLimit (void)

array HaruPage::getRGBFill (void)

array HaruPage::getRGBStroke (void)

int HaruPage::getStrokingColorSpace (void)

float HaruPage::getTextLeading (void)

array HaruPage::getTextMatrix (void)

int HaruPage::getTextRenderingMode (void)

float HaruPage::getTextRise (void)

float HaruPage::getTextWidth (string $text)

array HaruPage::getTransMatrix (void)

float HaruPage::getWidth (void)

float HaruPage::getWordSpace (void)

bool HaruPage::lineTo (float $x, float $y)

int HaruPage::measureText (string $text, float $width [, bool $wordwrap])

bool HaruPage::moveTextPos (float $x, float $y [, bool $set_leading])

bool HaruPage::moveTo (float $x, float $y)

bool HaruPage::moveToNextLine (void)

bool HaruPage::rectangle (float $x, float $y, float $width, float $height)

bool HaruPage::setCharSpace (float $char_space)

bool HaruPage::setCMYKFill (float $c, float $m, float $y, float $k)

bool HaruPage::setCMYKStroke (float $c, float $m, float $y, float $k)

bool HaruPage::setDash (array $pattern, int $phase)

bool HaruPage::setFlatness (float $flatness)

bool HaruPage::setFontAndSize (object $font, float $size)

bool HaruPage::setGrayFill (float $value)

bool HaruPage::setGrayStroke (float $value)

bool HaruPage::setHeight (float $height)

bool HaruPage::setHorizontalScaling (float $scaling)

bool HaruPage::setLineCap (int $cap)

bool HaruPage::setLineJoin (int $join)

bool HaruPage::setLineWidth (float $width)

bool HaruPage::setMiterLimit (float $limit)

bool HaruPage::setRGBFill (float $r, float $g, float $b)

bool HaruPage::setRGBStroke (float $r, float $g, float $b)

bool HaruPage::setRotate (int $angle)

bool HaruPage::setSize (int $size, int $direction)

bool HaruPage::setSlideShow (int $type, float $disp_time, float $trans_time)

bool HaruPage::setTextLeading (float $text_leading)

bool HaruPage::setTextMatrix (float $a, float $b, float $c, float $d, float $x, float $y
)

bool HaruPage::setTextRenderingMode (int $mode)

bool HaruPage::setTextRise (float $rise)

bool HaruPage::setWidth (float $width)

bool HaruPage::setWordSpace (float $word_space)

bool HaruPage::showText (string $text)

bool HaruPage::showTextNextLine (string $text [, float $word_space [, float $
char_space]])

bool HaruPage::stroke ([bool $close_path])

bool HaruPage::textOut (float $x, float $y, string $text)

bool HaruPage::textRect (float $left, float $top, float $right, float $bottom, string
$text [, int $align])

}

Predefined Constants

Type Name Description

int HaruPage::GMODE_PAGE_
DESCRIPTION

int HaruPage::GMODE_TEXT_
OBJECT

int HaruPage::GMODE_PATH_
OBJECT

int HaruPage::GMODE_CLIPPI
NG_PATH

int HaruPage::GMODE_SHADI
NG

int HaruPage::GMODE_INLINE
_IMAGE

int HaruPage::GMODE_EXTER
NAL_OBJECT

int HaruPage::BUTT_END

int HaruPage::ROUND_END

int HaruPage::PROJECTING_S
CUARE_END

int HaruPage::MITER_JOIN

int HaruPage::ROUND_JOIN

int HaruPage::BEVEL_JOIN

int HaruPage::FILL

int HaruPage::STROKE

int HaruPage::FILL_THEN_STR
OKE

int HaruPage::INVISIBLE

int HaruPage::FILL_CLIPPING

int HaruPage::STROKE_CLIPPI
NG

int HaruPage::FILL_STROKE_C
LIPPING

int HaruPage::CLIPPING

int HaruPage::TALIGN_LEFT

int HaruPage::TALIGN_RIGHT

int HaruPage::TALIGN_CENTE
R

int HaruPage::TALIGN_JUSTIF
Y

int HaruPage::SIZE_LETTER

int HaruPage::SIZE_LEGAL

int HaruPage::SIZE_A3

int HaruPage::SIZE_A4

int HaruPage::SIZE_A5

int HaruPage::SIZE_B4

int HaruPage::SIZE_B5

int HaruPage::SIZE_EXECUTIV
E

int HaruPage::SIZE_US4x6

int HaruPage::SIZE_US4x8

int HaruPage::SIZE_US5x7

int HaruPage::SIZE_COMM10

int HaruPage::PORTRAIT

int HaruPage::LANDSCAPE

int HaruPage::TS_WIPE_LIGHT

int HaruPage::TS_WIPE_UP

int HaruPage::TS_WIPE_LEFT

int HaruPage::TS_WIPE_DOW
N

int HaruPage::TS_BARN_DOO
RS_HORIZONTAL_OUT

int HaruPage::TS_BARN_DOO

RS_HORIZONTAL_IN

int HaruPage::TS_BARN_DOO
RS_VERTICAL_OUT

int HaruPage::TS_BARN_DOO
RS_VERTICAL_IN

int HaruPage::TS_BOX_OUT

int HaruPage::TS_BOX_IN

int HaruPage::TS_BLINDS_HO
RIZONTAL

int HaruPage::TS_BLINDS_VE
RTICAL

int HaruPage::TS_DISSOLVE

int HaruPage::TS_GLITTER_RI
GHT

int HaruPage::TS_GLITTER_D
OWN

int HaruPage::TS_GLITTER_T
OP_LEFT_TO_BOTTOM_RI
GHT

int HaruPage::TS_REPLACE

int HaruPage::NUM_STYLE_DE
CIMAL

int HaruPage::NUM_STYLE_UP
PER_ROMAN

int HaruPage::NUM_STYLE_LO
WER_ROMAN

int HaruPage::NUM_STYLE_UP
PER_LETTERS

int HaruPage::NUM_STYLE_LO
WER_LETTERS

HaruPage::arc

HaruPage::arc -- Append an arc to the current path

Description

bool HaruPage::arc (float $x, float $y, float $ray, float $ang1, float $ang2)

Appends an arc to the current path.

Parameters

x

Horizontal coordinate of the center.

y

Vertical coordinate of the center.

ray

The ray of the arc.

ang1

The angle of the beginning.

ang2

The angle of the end. Must be greater than ang1.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::beginText

HaruPage::beginText -- Begin a text object and set the current text position to (0,0)

Description

bool HaruPage::beginText (void)

Begins new text object and sets the current text position to (0,0).

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::circle

HaruPage::circle -- Append a circle to the current path

Description

bool HaruPage::circle (float $x, float $y, float $ray)

Appends a circle to the current path.

Parameters

x

Horizontal coordinate of the center point.

y

Vertical coordinate of the center point.

ray

The ray of the circle.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::closePath

HaruPage::closePath -- Append a straight line from the current point to the start point of
the path

Description

bool HaruPage::closePath (void)

Appends a straight line from the current point to the start point of the path.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::concat

HaruPage::concat -- Concatenate current transformation matrix of the page and the
specified matrix

Description

bool HaruPage::concat (float $a, float $b, float $c, float $d, float $x, float $y)

Concatenates current transformation matrix of the page and the specified matrix.

Parameters

a

b

c

d

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::createDestination

HaruPage::createDestination -- Create new HaruDestination instance

Description

object HaruPage::createDestination (void)

Create a new HaruDestination instance.

Parameters

This function has no parameters.

Return Values

Returns a new HaruDestination instance.

Errors/Exceptions

Throws HaruException on error.

HaruPage::createLinkAnnotation

HaruPage::createLinkAnnotation -- Create new HaruAnnotation instance

Description

object HaruPage::createLinkAnnotation (array $rectangle, object $destination)

Creates a new HaruAnnotation instance.

Parameters

rectangle

An array with 4 coordinates of the clickable area.

destination

Valid HaruDestination instance.

Return Values

Returns a new HaruAnnotation instance.

Errors/Exceptions

Throws HaruException on error.

HaruPage::createTextAnnotation

HaruPage::createTextAnnotation -- Create new HaruAnnotation instance

Description

object HaruPage::createTextAnnotation (array $rectangle, string $text [, object $
encoder])

Creates a new HaruAnnotation instance.

Parameters

rectangle

An array with 4 coordinates of the annotation area.

text

The text to be displayed.

encoder

Optional HaruEncoder instance.

Return Values

Returns a new HaruAnnotation instance.

Errors/Exceptions

Throws HaruException on error.

HaruPage::createURLAnnotation

HaruPage::createURLAnnotation -- Create and return new HaruAnnotation instance

Description

object HaruPage::createURLAnnotation (array $rectangle, string $url)

Creates a new HaruAnnotation instance.

Parameters

rectangle

An array with 4 coordinates of the clickable area.

url

The URL to open.

Return Values

Returns a new HaruAnnotation instance.

Errors/Exceptions

Throws HaruException on error.

HaruPage::curveTo2

HaruPage::curveTo2 -- Append a Bezier curve to the current path

Description

bool HaruPage::curveTo2 (float $x2, float $y2, float $x3, float $y3)

Appends a Bezier curve to the current path. The current point and the point (x2, y2) are
used as the control points for the Bezier curve and current point is moved to the point (x3,
y3).

Parameters

x2

A Bezier curve control point.

y2

A Bezier curve control point.

x3

The current point moves here.

x3

The current point moves here.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::curveTo3

HaruPage::curveTo3 -- Append a Bezier curve to the current path

Description

bool HaruPage::curveTo3 (float $x1, float $y1, float $x3, float $y3)

Appends a Bezier curve to the current path. The point (x1, y1) and the point (x3, y3) are
used as the control points for a Bezier curve and current point is moved to the point (x3,
y3).

Parameters

x1

A Bezier curve control point.

y1

A Bezier curve control point.

x3

The current point moves here.

x3

The current point moves here.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::curveTo

HaruPage::curveTo -- Append a Bezier curve to the current path

Description

bool HaruPage::curveTo (float $x1, float $y1, float $x2, float $y2, float $x3, float $y3)

Append a Bezier curve to the current path. The point (x1, y1) and the point (x2, y2) are
used as the control points for a Bezier curve and current point is moved to the point (x3,
y3).

Parameters

x1

A Bezier curve control point.

y1

A Bezier curve control point.

x2

A Bezier curve control point.

y2

A Bezier curve control point.

x3

The current point moves here.

x3

The current point moves here.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::drawImage

HaruPage::drawImage -- Show image at the page

Description

bool HaruPage::drawImage (object $image, float $x, float $y, float $width, float $height
)

Show image at the page.

Parameters

image

Valid HaruImage instance.

x

The left border of the area where the image is displayed.

y

The lower border of the area where the image is displayed.

width

The width of the image area.

height

The height of the image area.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::ellipse

HaruPage::ellipse -- Append an ellipse to the current path

Description

bool HaruPage::ellipse (float $x, float $y, float $xray, float $yray)

Appends an ellipse to the current path.

Parameters

x

Horizontal coordinate of the center.

y

Vertical coordinate of the center.

xray

The ray of the ellipse in the x direction.

yray

The ray of the ellipse in the y direction.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::endPath

HaruPage::endPath -- End current path object without filling and painting operations

Description

bool HaruPage::endPath (void)

Ends current path object without performing filling and painting operations.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::endText

HaruPage::endText -- End current text object

Description

bool HaruPage::endText (void)

Finalizes current text object.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::eofill

HaruPage::eofill -- Fill current path using even-odd rule

Description

bool HaruPage::eofill (void)

Fills current path using even-odd rule.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::eoFillStroke

HaruPage::eoFillStroke -- Fill current path using even-odd rule, then paint the path

Description

bool HaruPage::eoFillStroke ([bool $close_path])

Fills current path using even-odd rule, then paints the path.

Parameters

close_path

Optional parameter. When set to TRUE, the function closes the current path. Default to
FALSE.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::fill

HaruPage::fill -- Fill current path using nonzero winding number rule

Description

bool HaruPage::fill (void)

Fills current path using nonzero winding number rule.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::fillStroke

HaruPage::fillStroke -- Fill current path using nonzero winding number rule, then paint the
path

Description

bool HaruPage::fillStroke ([bool $close_path])

Fills current path using nonzero winding number rule, then paints the path.

Parameters

close_path

Optional parameter. When set to TRUE, the function closes the current path. Default to
FALSE.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCharSpace

HaruPage::getCharSpace -- Get the current value of character spacing

Description

float HaruPage::getCharSpace (void)

Get the current value of character spacing.

Parameters

This function has no parameters.

Return Values

Returns the current value of character spacing.

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCMYKFill

HaruPage::getCMYKFill -- Get the current filling color

Description

array HaruPage::getCMYKFill (void)

Returns the current filling color.

Parameters

This function has no parameters.

Return Values

Returns the current filling color as an array with 4 elements ("c", "m", "y" and "k").

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCMYKStroke

HaruPage::getCMYKStroke -- Get the current stroking color

Description

array HaruPage::getCMYKStroke (void)

Get the current stroking color.

Parameters

This function has no parameters.

Return Values

Returns the current stroking color as an array with 4 elements ("c", "m", "y" and "k").

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCurrentFont

HaruPage::getCurrentFont -- Get the currently used font

Description

object HaruPage::getCurrentFont (void)

Get the currently used font.

Parameters

This function has no parameters.

Return Values

Returns the currently used font as an instance of HaruFont.

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCurrentFontSize

HaruPage::getCurrentFontSize -- Get the current font size

Description

float HaruPage::getCurrentFontSize (void)

Get the current font size.

Parameters

This function has no parameters.

Return Values

Returns the current font size.

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCurrentPos

HaruPage::getCurrentPos -- Get the current position for path painting

Description

array HaruPage::getCurrentPos (void)

Get the current position for path painting.

Parameters

This function has no parameters.

Return Values

Returns the current position for path painting as an array of with two elements - "x" and
"y".

Errors/Exceptions

Throws HaruException on error.

HaruPage::getCurrentTextPos

HaruPage::getCurrentTextPos -- Get the current position for text printing

Description

array HaruPage::getCurrentTextPos (void)

Get the current position for text printing.

Parameters

This function has no parameters.

Return Values

Returns the current position for text printing as an array with 2 elements - "x" and "y".

Errors/Exceptions

Throws HaruException on error.

HaruPage::getDash

HaruPage::getDash -- Get the current dash pattern

Description

array HaruPage::getDash (void)

Get the current dash pattern. See HaruPage :: setDash() for more information on dash
patterns.

Parameters

This function has no parameters.

Return Values

Returns the current dash pattern as an array of two elements - "pattern" and "phase" or
FALSE if dash pattern was not set.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setDash()

HaruPage::getFillingColorSpace

HaruPage::getFillingColorSpace -- Get the current filling color space

Description

int HaruPage::getFillingColorSpace (void)

Get the current filling color space.

Parameters

This function has no parameters.

Return Values

Returns the current filling color space. The result value is one of the following:

• HaruDoc::CS_DEVICE_GRAY
• HaruDoc::CS_DEVICE_RGB
• HaruDoc::CS_DEVICE_CMYK
• HaruDoc::CS_CAL_GRAY
• HaruDoc::CS_CAL_RGB
• HaruDoc::CS_LAB
• HaruDoc::CS_ICC_BASED
• HaruDoc::CS_SEPARATION
• HaruDoc::CS_DEVICE_N
• HaruDoc::CS_INDEXED
• HaruDoc::CS_PATTERN

Errors/Exceptions

Throws HaruException on error.

HaruPage::getFlatness

HaruPage::getFlatness -- Get the flatness of the page

Description

float HaruPage::getFlatness (void)

Get the flatness of the page.

Parameters

This function has no parameters.

Return Values

Returns the flatness of the page.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setFlatness()

HaruPage::getGMode

HaruPage::getGMode -- Get the current graphics mode

Description

int HaruPage::getGMode (void)

Get the current graphics mode.

Parameters

This function has no parameters.

Return Values

Returns the current graphics mode. The result value is one of the following:

• HaruPage::GMODE_PAGE_DESCRIPTION
• HaruPage::GMODE_TEXT_OBJECT
• HaruPage::GMODE_PATH_OBJECT
• HaruPage::GMODE_CLIPPING_PATH
• HaruPage::GMODE_SHADING
• HaruPage::GMODE_INLINE_IMAGE
• HaruPage::GMODE_EXTERNAL_OBJECT

Errors/Exceptions

Throws HaruException on error.

HaruPage::getGrayFill

HaruPage::getGrayFill -- Get the current filling color

Description

float HaruPage::getGrayFill (void)

Get the current filling color.

Parameters

This function has no parameters.

Return Values

Returns the current filling color.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setGrayFill()

HaruPage::getGrayStroke

HaruPage::getGrayStroke -- Get the current stroking color

Description

float HaruPage::getGrayStroke (void)

Get the current stroking color.

Parameters

This function has no parameters.

Return Values

Returns the current stroking color.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setGrayStroke()

HaruPage::getHeight

HaruPage::getHeight -- Get the height of the page

Description

float HaruPage::getHeight (void)

Get the height of the page.

Parameters

This function has no parameters.

Return Values

Returns the height of the page.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setHeight()

HaruPage::getHorizontalScaling

HaruPage::getHorizontalScaling -- Get the current value of horizontal scaling

Description

float HaruPage::getHorizontalScaling (void)

Get the current value of the horizontal scaling.

Parameters

This function has no parameters.

Return Values

Returns the current value of horizontal scaling.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setHorizontalScaling()

HaruPage::getLineCap

HaruPage::getLineCap -- Get the current line cap style

Description

int HaruPage::getLineCap (void)

Get the current line cap style.

Parameters

This function has no parameters.

Return Values

Returns the current line cap style. The result value is one of the following:

• HaruPage::BUTT_END - the line is squared off at the endpoint of the path.
• HaruPage::ROUND_END - the end of the line becomes a semicircle with center in the

end point of the path.
• HaruPage::PROJECTING_SCUARE_END - the line continues to the point that

exceeds half of the stroke width the end point.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setLineCap()

HaruPage::getLineJoin

HaruPage::getLineJoin -- Get the current line join style

Description

int HaruPage::getLineJoin (void)

Get the current line join style.

Parameters

This function has no parameters.

Return Values

Returns the current line join style. The result value is one of the following:

• HaruPage::MITER_JOIN
• HaruPage::ROUND_JOIN
• HaruPage::BEVEL_JOIN

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setLineJoin()

HaruPage::getLineWidth

HaruPage::getLineWidth -- Get the current line width

Description

float HaruPage::getLineWidth (void)

Get the current line width.

Parameters

This function has no parameters.

Return Values

Returns the current line width.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setLineWidth()

HaruPage::getMiterLimit

HaruPage::getMiterLimit -- Get the value of miter limit

Description

float HaruPage::getMiterLimit (void)

Get the value of the miter limit.

Parameters

This function has no parameters.

Return Values

Returns the value of the miter limit.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setMiterLimit()

HaruPage::getRGBFill

HaruPage::getRGBFill -- Get the current filling color

Description

array HaruPage::getRGBFill (void)

Get the current filling color.

Parameters

This function has no parameters.

Return Values

Returns the current filling color as an array with 3 elements: "r", "g" and "b".

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setRGBFill()

HaruPage::getRGBStroke

HaruPage::getRGBStroke -- Get the current stroking color

Description

array HaruPage::getRGBStroke (void)

Get the current stroking color.

Parameters

This function has no parameters.

Return Values

Returns the current stroking color.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setRGBStroke()

HaruPage::getStrokingColorSpace

HaruPage::getStrokingColorSpace -- Get the current stroking color space

Description

int HaruPage::getStrokingColorSpace (void)

Get the current stroking color space.

Parameters

This function has no parameters.

Return Values

Returns the current stroking color space. The list of return values is the same as for
HaruPage :: getFillingColorSpace().

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getFillingColorSpace()

HaruPage::getTextLeading

HaruPage::getTextLeading -- Get the current value of line spacing

Description

float HaruPage::getTextLeading (void)

Get the current value of line spacing.

Parameters

This function has no parameters.

Return Values

Returns the current value of line spacing.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setTextLeading()

HaruPage::getTextMatrix

HaruPage::getTextMatrix -- Get the current text transformation matrix of the page

Description

array HaruPage::getTextMatrix (void)

Get the current text transformation matrix of the page.

Return Values

Returns the current text transformation matrix of the page as an array of 6 elements: "a",
"b", "c", "d", "x" and "y".

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setTextMatrix()

HaruPage::getTextRenderingMode

HaruPage::getTextRenderingMode -- Get the current text rendering mode

Description

int HaruPage::getTextRenderingMode (void)

Get the current text rendering mode.

Parameters

This function has no parameters.

Return Values

Returns the current text rendering mode. The result value is one of the following:

• HaruPage::FILL
• HaruPage::STROKE
• HaruPage::FILL_THEN_STROKE
• HaruPage::INVISIBLE
• HaruPage::FILL_CLIPPING
• HaruPage::STROKE_CLIPPING
• HaruPage::FILL_STROKE_CLIPPING
• HaruPage::CLIPPING

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setTextRenderingMode()

HaruPage::getTextRise

HaruPage::getTextRise -- Get the current value of text rising

Description

float HaruPage::getTextRise (void)

Get the current value of text rising.

Parameters

This function has no parameters.

Return Values

Returns the current value of text rising.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setTextRise()

HaruPage::getTextWidth

HaruPage::getTextWidth -- Get the width of the text using current fontsize, character
spacing and word spacing

Description

float HaruPage::getTextWidth (string $text)

Get the width of the text using current fontsize, character spacing and word spacing

Parameters

text

The text to measure.

Return Values

Returns the width of the text using current fontsize, character spacing and word spacing.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: measureText()

HaruPage::getTransMatrix

HaruPage::getTransMatrix -- Get the current transformation matrix of the page

Description

array HaruPage::getTransMatrix (void)

Get the current transformation matrix of the page.

Parameters

This function has no parameters.

Return Values

Returns the current transformation matrix of the page as an array of 6 elements: "a", "b",
"c", "d", "x" and "y".

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: concat()

HaruPage::getWidth

HaruPage::getWidth -- Get the width of the page

Description

float HaruPage::getWidth (void)

Get the width of the page.

Parameters

This function has no parameters.

Return Values

Returns the width of the page.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setWidth()

HaruPage::getWordSpace

HaruPage::getWordSpace -- Get the current value of word spacing

Description

float HaruPage::getWordSpace (void)

Get the current value of word spacing.

Parameters

This function has no parameters.

Return Values

Returns the current value of word spacing.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setWordSpace()

HaruPage::lineTo

HaruPage::lineTo -- Draw a line from the current point to the specified point

Description

bool HaruPage::lineTo (float $x, float $y)

Draws a line from the current point to the specified point.

Parameters

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: curveTo()
• HaruPage :: curveTo2()
• HaruPage :: curveTo3()

HaruPage::measureText

HaruPage::measureText -- Calculate the number of characters which can be included
within the specified width

Description

int HaruPage::measureText (string $text, float $width [, bool $wordwrap])

Get the number of characters which can be included within the specified width.

Parameters

text

The text to measure.

width

The width of the area to put the text to.

wordwrap

When this parameter is set to TRUE the function "emulates" word wrapping and
doesn't include the part of the current word if reached the end of the area. Defaults to
FALSE.

Return Values

Returns the number of characters which can be included within the specified width.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruFont :: measureText()

HaruPage::moveTextPos

HaruPage::moveTextPos -- Move text position to the specified offset

Description

bool HaruPage::moveTextPos (float $x, float $y [, bool $set_leading])

Moves text position to the specified offset. If the start position of the current line is (x1, y1),
the start of the next line is (x1 + x, y1 + y).

Parameters

x

The specified text position offset.

y

The specified text position offset.

set_leading

If set to TRUE, the function sets the text leading to - y. The default value of
set_leading is FALSE.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: moveToNextLine()

HaruPage::moveTo

HaruPage::moveTo -- Set starting point for new drawing path

Description

bool HaruPage::moveTo (float $x, float $y)

Defines starting point for new drawing path.

Parameters

x

A new starting point coordinate.

y

A new starting point coordinate.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::moveToNextLine

HaruPage::moveToNextLine -- Move text position to the start of the next line

Description

bool HaruPage::moveToNextLine (void)

Moves text position to the start of the next line.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: moveTextPos()

HaruPage::rectangle

HaruPage::rectangle -- Append a rectangle to the current path

Description

bool HaruPage::rectangle (float $x, float $y, float $width, float $height)

Appends a rectangle to the current drawing path.

Parameters

x

The left border of the rectangle.

y

The lower border of the rectangle.

width

The width of the rectangle.

height

The height of the rectangle.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::setCharSpace

HaruPage::setCharSpace -- Set character spacing for the page

Description

bool HaruPage::setCharSpace (float $char_space)

Defines character spacing for the page.

Parameters

char_space

The new character spacing for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getCharSpace()

HaruPage::setCMYKFill

HaruPage::setCMYKFill -- Set filling color for the page

Description

bool HaruPage::setCMYKFill (float $c, float $m, float $y, float $k)

Defines filling color for the page.

Parameters

c

m

y

k

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getCMYKFill()

HaruPage::setCMYKStroke

HaruPage::setCMYKStroke -- Set stroking color for the page

Description

bool HaruPage::setCMYKStroke (float $c, float $m, float $y, float $k)

Defines stroking color for the page.

Parameters

c

m

y

k

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getCMYKStroke()

HaruPage::setDash

HaruPage::setDash -- Set the dash pattern for the page

Description

bool HaruPage::setDash (array $pattern, int $phase)

Defines the dash pattern for the page.

Parameters

pattern

An array (8 elements max) which contains a pattern of dashes and gaps used for lines
on the page.

phase

The phase on which the pattern begins.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getDash()

HaruPage::setFlatness

HaruPage::setFlatness -- Set flatness for the page

Description

bool HaruPage::setFlatness (float $flatness)

Defines flatness for the page.

Parameters

flatness

The defined flatness for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getFlatness()

HaruPage::setFontAndSize

HaruPage::setFontAndSize -- Set font and fontsize for the page

Description

bool HaruPage::setFontAndSize (object $font, float $size)

Defines current font and its size for the page.

Parameters

font

A valid HaruFont instance.

size

The size of the font.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruDoc :: getFont()

HaruPage::setGrayFill

HaruPage::setGrayFill -- Set filling color for the page

Description

bool HaruPage::setGrayFill (float $value)

Defines filling color for the page.

Parameters

value

The value of gray level between 0 and 1.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getGrayFill()

HaruPage::setGrayStroke

HaruPage::setGrayStroke -- Sets stroking color for the page

Description

bool HaruPage::setGrayStroke (float $value)

Defines stroking color for the page.

Parameters

value

The value of gray level between 0 and 1.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getGrayStroke()

HaruPage::setHeight

HaruPage::setHeight -- Set height of the page

Description

bool HaruPage::setHeight (float $height)

Defines height of the page.

Parameters

height

The defined height for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getHeight()

HaruPage::setHorizontalScaling

HaruPage::setHorizontalScaling -- Set horizontal scaling for the page

Description

bool HaruPage::setHorizontalScaling (float $scaling)

Set the horizontal scaling for the page.

Parameters

scaling

The horizontal scaling for text showing on the page. The initial value is 100.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getHorizontalScaling()

HaruPage::setLineCap

HaruPage::setLineCap -- Set the shape to be used at the ends of lines

Description

bool HaruPage::setLineCap (int $cap)

Defines the shape to be used at the ends of lines.

Parameters

cap

Must be one of the following values:

• HaruPage::BUTT_END - the line is squared off at the endpoint of the path.
• HaruPage::ROUND_END - the end of the line becomes a semicircle with center in

the end point of the path.
• HaruPage::PROJECTING_SCUARE_END - the line continues to the point that

exceeds half of the stroke width the end point.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getLineCap()

HaruPage::setLineJoin

HaruPage::setLineJoin -- Set line join style for the page

Description

bool HaruPage::setLineJoin (int $join)

Defines line join style for the page.

Parameters

join

Must be one of the following values:

• HaruPage::MITER_JOIN
• HaruPage::ROUND_JOIN
• HaruPage::BEVEL_JOIN

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getLineJoin()

HaruPage::setLineWidth

HaruPage::setLineWidth -- Set line width for the page

Description

bool HaruPage::setLineWidth (float $width)

Defines line width for the page.

Parameters

width

The defined line width for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getLineWidth()

HaruPage::setMiterLimit

HaruPage::setMiterLimit -- Set the current value of the miter limit of the page

Description

bool HaruPage::setMiterLimit (float $limit)

Set the current value of the miter limit of the page.

Parameters

limit

Defines the current value of the miter limit of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getMiterLimit()

HaruPage::setRGBFill

HaruPage::setRGBFill -- Set filling color for the page

Description

bool HaruPage::setRGBFill (float $r, float $g, float $b)

Defines filling color for the page. All values must be between 0 and 1.

Parameters

r

g

b

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getRGBFill()

HaruPage::setRGBStroke

HaruPage::setRGBStroke -- Set stroking color for the page

Description

bool HaruPage::setRGBStroke (float $r, float $g, float $b)

Defines stroking color for the page. All values must be between 0 and 1.

Parameters

r

g

b

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getRGBStroke()

HaruPage::setRotate

HaruPage::setRotate -- Set rotation angle of the page

Description

bool HaruPage::setRotate (int $angle)

Defines rotation angle of the page.

Parameters

angle

Must be a multiple of 90 degrees.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::setSize

HaruPage::setSize -- Set size and direction of the page

Description

bool HaruPage::setSize (int $size, int $direction)

Changes size and direction of the page to a predefined format.

Parameters

size

Must be one of the following values:

• HaruPage::SIZE_LETTER
• HaruPage::SIZE_LEGAL
• HaruPage::SIZE_A3
• HaruPage::SIZE_A4
• HaruPage::SIZE_A5
• HaruPage::SIZE_B4
• HaruPage::SIZE_B5
• HaruPage::SIZE_EXECUTIVE
• HaruPage::SIZE_US4x6
• HaruPage::SIZE_US4x8
• HaruPage::SIZE_US5x7
• HaruPage::SIZE_COMM10

direction

Must be one of the following values:

• HaruPage::PORTRAIT
• HaruPage::LANDSCAPE

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: setWidth()
• HaruPage :: setHeight()

HaruPage::setSlideShow

HaruPage::setSlideShow -- Set transition style for the page

Description

bool HaruPage::setSlideShow (int $type, float $disp_time, float $trans_time)

Defines transition style for the page.

Parameters

type

Must be one of the following values:

• HaruPage::TS_WIPE_RIGHT
• HaruPage::TS_WIPE_LEFT
• HaruPage::TS_WIPE_UP
• HaruPage::TS_WIPE_DOWN
• HaruPage::TS_BARN_DOORS_HORIZONTAL_OUT
• HaruPage::TS_BARN_DOORS_HORIZONTAL_IN
• HaruPage::TS_BARN_DOORS_VERTICAL_OUT
• HaruPage::TS_BARN_DOORS_VERTICAL_IN
• HaruPage::TS_BOX_OUT
• HaruPage::TS_BOX_IN
• HaruPage::TS_BLINDS_HORIZONTAL
• HaruPage::TS_BLINDS_VERTICAL
• HaruPage::TS_DISSOLVE
• HaruPage::TS_GLITTER_RIGHT
• HaruPage::TS_GLITTER_DOWN
• HaruPage::TS_GLITTER_TOP_LEFT_TO_BOTTOM_RIGHT
• HaruPage::TS_REPLACE

disp_time

The display duration of the page in seconds.

trans_time

The duration of the transition effect in seconds.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::setTextLeading

HaruPage::setTextLeading -- Set text leading (line spacing) for the page

Description

bool HaruPage::setTextLeading (float $text_leading)

Set the text leading (line spacing) for the page.

Parameters

text_leading

Defines line spacing for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getTextLeading()

HaruPage::setTextMatrix

HaruPage::setTextMatrix -- Set the current text transformation matrix of the page

Description

bool HaruPage::setTextMatrix (float $a, float $b, float $c, float $d, float $x, float $y)

Defines the text transformation matrix of the page.

Parameters

a

b

c

d

x

y

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getTextMatrix()

HaruPage::setTextRenderingMode

HaruPage::setTextRenderingMode -- Set text rendering mode for the page

Description

bool HaruPage::setTextRenderingMode (int $mode)

Defines text rendering mode for the page.

Parameters

mode

Must be one of the following values:

• HaruPage::FILL
• HaruPage::STROKE
• HaruPage::FILL_THEN_STROKE
• HaruPage::INVISIBLE
• HaruPage::FILL_CLIPPING
• HaruPage::STROKE_CLIPPING
• HaruPage::FILL_STROKE_CLIPPING
• HaruPage::CLIPPING

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getTextRenderingMode()

HaruPage::setTextRise

HaruPage::setTextRise -- Set the current value of text rising

Description

bool HaruPage::setTextRise (float $rise)

Set the current value of text rising.

Parameters

rise

Defines the current value of text rising.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getTextRise()

HaruPage::setWidth

HaruPage::setWidth -- Set width of the page

Description

bool HaruPage::setWidth (float $width)

Set the width of the page.

Parameters

width

Defines width of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getWidth()

HaruPage::setWordSpace

HaruPage::setWordSpace -- Set word spacing for the page

Description

bool HaruPage::setWordSpace (float $word_space)

Set the word spacing for the page.

Parameters

word_space

Defines word spacing for the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: getWordSpace()

HaruPage::showText

HaruPage::showText -- Print text at the current position of the page

Description

bool HaruPage::showText (string $text)

Prints out the text at the current position of the page.

Parameters

text

The text to show.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: showTextNextLine()
• HaruPage :: textOut()

HaruPage::showTextNextLine

HaruPage::showTextNextLine -- Move the current position to the start of the next line and
print the text

Description

bool HaruPage::showTextNextLine (string $text [, float $word_space [, float $
char_space]])

Moves the current position to the start of the next line and print out the text.

Parameters

text

The text to show.

word_space

The word spacing.

char_space

The character spacing.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: showText()
• HaruPage :: textOut()

HaruPage::stroke

HaruPage::stroke -- Paint current path

Description

bool HaruPage::stroke ([bool $close_path])

Paints the current path.

Parameters

close_path

Closes the current path if set to TRUE. Defaults to FALSE.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruPage::textOut

HaruPage::textOut -- Print the text on the specified position

Description

bool HaruPage::textOut (float $x, float $y, string $text)

Prints the text on the specified position.

Parameters

x

y

text

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: showTextNextLine()
• HaruPage :: showText()

HaruPage::textRect

HaruPage::textRect -- Print the text inside the specified region

Description

bool HaruPage::textRect (float $left, float $top, float $right, float $bottom, string $
text [, int $align])

Prints the text inside the specified region.

Parameters

left

Left border of the text area.

top

Top border of the text area.

right

Right border of the text area.

bottom

Lower border of the text area.

text

The text to print.

align

Text alignment. Must be one of the following values:

• HaruPage::TALING_LEFT
• HaruPage::TALING_RIGHT
• HaruPage::TALING_CENTER
• HaruPage::TALING_JUSTIFY

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

See Also

• HaruPage :: showTextNextLine()
• HaruPage :: showText()
• HaruPage :: textOut()

The HaruFont class

Introduction

Haru PDF Font Class.

Class synopsis

HaruFont

HaruFont {

/* Methods */

int HaruFont::getAscent (void)

int HaruFont::getCapHeight (void)

int HaruFont::getDescent (void)

string HaruFont::getEncodingName (void)

string HaruFont::getFontName (void)

array HaruFont::getTextWidth (string $text)

int HaruFont::getUnicodeWidth (int $character)

int HaruFont::getXHeight (void)

int HaruFont::measureText (string $text, float $width, float $font_size, float $
char_space, float $word_space [, bool $word_wrap])

}

HaruFont::getAscent

HaruFont::getAscent -- Get the vertical ascent of the font

Description

int HaruFont::getAscent (void)

Get the vertical ascent of the font.

Parameters

This function has no parameters.

Return Values

Returns the vertical ascent of the font.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getCapHeight

HaruFont::getCapHeight -- Get the distance from the baseline of uppercase letters

Description

int HaruFont::getCapHeight (void)

Get the distance from the baseline of uppercase letters.

Parameters

This function has no parameters.

Return Values

Returns the distance from the baseline of uppercase letters.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getDescent

HaruFont::getDescent -- Get the vertical descent of the font

Description

int HaruFont::getDescent (void)

Get the vertical descent of the font.

Parameters

This function has no parameters.

Return Values

Return the vertical descent of the font.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getEncodingName

HaruFont::getEncodingName -- Get the name of the encoding

Description

string HaruFont::getEncodingName (void)

Get the name of the font encoding.

Parameters

This function has no parameters.

Return Values

Returns the name of the font encoding.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getFontName

HaruFont::getFontName -- Get the name of the font

Description

string HaruFont::getFontName (void)

Get the name of the font.

Parameters

This function has no parameters.

Return Values

Returns the name of the font.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getTextWidth

HaruFont::getTextWidth -- Get the total width of the text, number of characters, number of
words and number of spaces

Description

array HaruFont::getTextWidth (string $text)

Get the total width of the text, number of characters, number of words and number of
spaces.

Parameters

text

The text to measure.

Return Values

Returns the total width of the text, number of characters, number of words and number of
spaces in the given text.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getUnicodeWidth

HaruFont::getUnicodeWidth -- Get the width of the character in the font

Description

int HaruFont::getUnicodeWidth (int $character)

Get the width of the character in the font.

Parameters

character

The code of the character.

Return Values

Returns the width of the character in the font.

Errors/Exceptions

Throws HaruException on error.

HaruFont::getXHeight

HaruFont::getXHeight -- Get the distance from the baseline of lowercase letters

Description

int HaruFont::getXHeight (void)

Gets the distance from the baseline of lowercase letters.

Parameters

This function has no parameters.

Return Values

Returns the distance from the baseline of lowercase letters.

Errors/Exceptions

Throws HaruException on error.

HaruFont::measureText

HaruFont::measureText -- Calculate the number of characters which can be included
within the specified width

Description

int HaruFont::measureText (string $text, float $width, float $font_size, float $
char_space, float $word_space [, bool $word_wrap])

Calculate the number of characters which can be included within the specified width.

Parameters

text

The text to fit the width.

width

The width of the area to put the text to.

font_size

The size of the font.

char_space

The character spacing.

word_space

The word spacing.

word_wrap

When this parameter is set to TRUE the function "emulates" word wrapping and
doesn't include the part of the current word if reached the end of the area. Defaults to
FALSE.

Return Values

Returns the number of characters which can be included within the specified width.

Errors/Exceptions

Throws HaruException on error.

The HaruImage class

Introduction

Haru PDF Image Class.

Class synopsis

HaruImage

HaruImage {

/* Methods */

int HaruImage::getBitsPerComponent (void)

string HaruImage::getColorSpace (void)

int HaruImage::getHeight (void)

array HaruImage::getSize (void)

int HaruImage::getWidth (void)

bool HaruImage::setColorMask (int $rmin, int $rmax, int $gmin, int $gmax, int $bmin,
int $bmax)

bool HaruImage::setMaskImage (object $mask_image)
}

HaruImage::getBitsPerComponent

HaruImage::getBitsPerComponent -- Get the number of bits used to describe each color
component of the image

Description

int HaruImage::getBitsPerComponent (void)

Gets the number of bits used to describe each color component of the image.

Parameters

This function has no parameters.

Return Values

Returns the number of bits used to describe each color component of the image.

Errors/Exceptions

Throws HaruException on error.

HaruImage::getColorSpace

HaruImage::getColorSpace -- Get the name of the color space

Description

string HaruImage::getColorSpace (void)

Get the name of the color space.

Parameters

This function has no parameters.

Return Values

Returns the name of the color space of the image. The name is one of the following
values:

• "DeviceGray"
• "DeviceRGB"
• "DeviceCMYK"
• "Indexed"

Errors/Exceptions

Throws HaruException on error.

HaruImage::getHeight

HaruImage::getHeight -- Get the height of the image

Description

int HaruImage::getHeight (void)

Get the height of the image.

Parameters

This function has no parameters.

Return Values

Returns the height of the image.

Errors/Exceptions

Throws HaruException on error.

HaruImage::getSize

HaruImage::getSize -- Get size of the image

Description

array HaruImage::getSize (void)

Get the size of the image.

Parameters

This function has no parameters.

Return Values

Returns an array with two elements: width and height, which contain appropriate
dimensions of the image.

Errors/Exceptions

Throws HaruException on error.

HaruImage::getWidth

HaruImage::getWidth -- Get the width of the image

Description

int HaruImage::getWidth (void)

Get the width of the image.

Parameters

This function has no parameters.

Return Values

Returns the width of the image.

Errors/Exceptions

Throws HaruException on error.

HaruImage::setColorMask

HaruImage::setColorMask -- Set the color mask of the image

Description

bool HaruImage::setColorMask (int $rmin, int $rmax, int $gmin, int $gmax, int $bmin, int
$bmax)

Defines the transparent color of the image using the RGB range values. The color within
the range is displayed as a transparent color. The color space of the image must be RGB.

Parameters

rmin

The lower limit of red. Must be between 0 and 255.

rmax

The upper limit of red. Must be between 0 and 255.

gmin

The lower limit of green. Must be between 0 and 255.

gmax

The upper limit of green. Must be between 0 and 255.

bmin

The lower limit of blue. Must be between 0 and 255.

bmax

The upper limit of blue. Must be between 0 and 255.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruImage::setMaskImage

HaruImage::setMaskImage -- Set the image mask

Description

bool HaruImage::setMaskImage (object $mask_image)

Sets the image used as image-mask. It must be 1bit gray-scale color image.

Parameters

mask_image

A valid HaruImage instance.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

The HaruEncoder class

Introduction

Haru PDF Encoder Class.

Class synopsis

HaruEncoder

HaruEncoder {

/* Methods */

int HaruEncoder::getByteType (string $text, int $index)

int HaruEncoder::getType (void)

int HaruEncoder::getUnicode (int $character)

int HaruEncoder::getWritingMode (void)
}

Predefined Constants

Type Name Description

int HaruEncoder::TYPE_SINGL
E_BYTE

int HaruEncoder::TYPE_DOUB
LE_BYTE

int HaruEncoder::TYPE_UNINIT
IALIZED

int HaruEncoder::UNKNOWN

int HaruEncoder::WMODE_HO
RIZONTAL

int HaruEncoder::WMODE_VER
TICAL

int HaruEncoder::BYTE_TYPE_
SINGLE

int HaruEncoder::BYTE_TYPE_
LEAD

int HaruEncoder::BYTE_TYPE_
TRAIL

int HaruEncoder::BYTE_TYPE_
UNKNOWN

HaruEncoder::getByteType

HaruEncoder::getByteType -- Get the type of the byte in the text

Description

int HaruEncoder::getByteType (string $text, int $index)

Get the type of the byte in the text.

Parameters

text

The text.

index

The position in the text.

Return Values

Returns the type of the byte in the text on the specified position. The result is one of the
following values:

• HaruEncoder::BYTE_TYPE_SINGLE - single byte character.
• HaruEncoder::BYTE_TYPE_LEAD - lead byte of a double-byte character.
• HaruEncoder::BYTE_TYPE_TRAIL - trailing byte of a double-byte character.
• HaruEncoder::BYTE_TYPE_UNKNOWN - invalid encoder or cannot detect the byte

type.

Errors/Exceptions

Throws HaruException on error.

HaruEncoder::getType

HaruEncoder::getType -- Get the type of the encoder

Description

int HaruEncoder::getType (void)

Get the type of the encoder.

Parameters

This function has no parameters.

Return Values

Returns the type of the encoder. The result is one of the following values:

• HaruEncoder::TYPE_SINGLE_BYTE - the encoder is for single byte characters.
• HaruEncoder::TYPE_DOUBLE_BYTE - the encoder is for multibyte characters.
• HaruEncoder::TYPE_UNINITIALIZED - the encoder is not initialized.
• HaruEncoder::UNKNOWN - the encoder is invalid.

Errors/Exceptions

Throws HaruException on error.

HaruEncoder::getUnicode

HaruEncoder::getUnicode -- Convert the specified character to unicode

Description

int HaruEncoder::getUnicode (int $character)

Converts the specified character to unicode.

Parameters

character

The character code to convert.

Return Values

Errors/Exceptions

Throws HaruException on error.

HaruEncoder::getWritingMode

HaruEncoder::getWritingMode -- Get the writing mode of the encoder

Description

int HaruEncoder::getWritingMode (void)

Get the writing mode of the encoder.

Parameters

This function has no parameters.

Return Values

Returns the writing mode of the encoder. The result value is on of the following:

• HaruEncoder::WMODE_HORIZONTAL - horizontal writing mode.
• HaruEncoder::WMODE_VERTICAL - vertical writing mode.

Errors/Exceptions

Throws HaruException on error.

The HaruOutline class

Introduction

Haru PDF Outline Class.

Class synopsis

HaruOutline

HaruOutline {

/* Methods */

bool HaruOutline::setDestination (object $destination)

bool HaruOutline::setOpened (bool $opened)
}

HaruOutline::setDestination

HaruOutline::setDestination -- Set the destination for the outline

Description

bool HaruOutline::setDestination (object $destination)

Sets a destination object which becomes a target to jump to when the outline is clicked.

Parameters

destination

A valid HaruDestination instance.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruOutline::setOpened

HaruOutline::setOpened -- Set the initial state of the outline

Description

bool HaruOutline::setOpened (bool $opened)

Defines whether this node is opened or not when the outline is displayed for the first time.

Parameters

opened

TRUE means open, FALSE - closed.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

The HaruAnnotation class

Introduction

Haru PDF Annotation Class.

Class synopsis

HaruAnnotation

HaruAnnotation {

/* Methods */

bool HaruAnnotation::setBorderStyle (float $width, int $dash_on, int $dash_off)

bool HaruAnnotation::setHighlightMode (int $mode)

bool HaruAnnotation::setIcon (int $icon)

bool HaruAnnotation::setOpened (bool $opened)
}

Predefined Constants

Type Name Description

int HaruAnnotation::NO_HIGHLI
GHT

int HaruAnnotation::INVERT_B
OX

int HaruAnnotation::INVERT_B
ORDER

int HaruAnnotation::DOWN_AP
PEARANCE

int HaruAnnotation::ICON_COM
MENT

int HaruAnnotation::ICON_KEY

int HaruAnnotation::ICON_NOT
E

int HaruAnnotation::ICON_HEL
P

int HaruAnnotation::ICON_NEW
_PARAGRAPH

int HaruAnnotation::ICON_PAR
AGRAPH

int HaruAnnotation::ICON_INSE
RT

HaruAnnotation::setBorderStyle

HaruAnnotation::setBorderStyle -- Set the border style of the annotation

Description

bool HaruAnnotation::setBorderStyle (float $width, int $dash_on, int $dash_off)

Defines the style of the border of the annotation. This function may be used with link
annotations only.

Parameters

width

The width of the border line.

dash_on

The dash style.

dash_off

The dash style.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruAnnotation::setHighlightMode

HaruAnnotation::setHighlightMode -- Set the highlighting mode of the annotation

Description

bool HaruAnnotation::setHighlightMode (int $mode)

Defines the appearance of the annotation when clicked. This function may be used with
link annotations only.

Parameters

mode

The highlighting mode of the annotation. Can take only these values:

• HaruAnnotation::NO_HIGHLIGHT - no highlighting.
• HaruAnnotation::INVERT_BOX - invert the contents of the annotation.
• HaruAnnotation::INVERT_BORDER - invert the border of the annotation.
• HaruAnnotation::DOWN_APPEARANCE - dent the annotation.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruAnnotation::setIcon

HaruAnnotation::setIcon -- Set the icon style of the annotation

Description

bool HaruAnnotation::setIcon (int $icon)

Defines the style of the annotation icon. This function may be used with text annotations
only.

Parameters

icon

The style of the icon. Can take only these values:

• HaruAnnotation::ICON_COMMENT
• HaruAnnotation::ICON_KEY
• HaruAnnotation::ICON_NOTE
• HaruAnnotation::ICON_HELP
• HaruAnnotation::ICON_NEW_PARAGRAPH
• HaruAnnotation::ICON_PARAGRAPH
• HaruAnnotation::ICON_INSERT

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruAnnotation::setOpened

HaruAnnotation::setOpened -- Set the initial state of the annotation

Description

bool HaruAnnotation::setOpened (bool $opened)

Defines whether the annotation is initially displayed open. This function may be used with
text annotations only.

Parameters

opened

TRUE means the annotation is initially displayed open, FALSE - means it's closed.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

The HaruDestination class

Introduction

Haru PDF Destination Class.

Class synopsis

HaruDestination

HaruDestination {

/* Methods */

bool HaruDestination::setFit (void)

bool HaruDestination::setFitB (void)

bool HaruDestination::setFitBH (float $top)

bool HaruDestination::setFitBV (float $left)

bool HaruDestination::setFitH (float $top)

bool HaruDestination::setFitR (float $left, float $bottom, float $right, float $top)

bool HaruDestination::setFitV (float $left)

bool HaruDestination::setXYZ (float $left, float $top, float $zoom)
}

HaruDestination::setFit

HaruDestination::setFit -- Set the appearance of the page to fit the window

Description

bool HaruDestination::setFit (void)

Defines the appearance of the page to fit the window.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitB

HaruDestination::setFitB -- Set the appearance of the page to fit the bounding box of the
page within the window

Description

bool HaruDestination::setFitB (void)

Defines the appearance of the page to fit the bounding box of the page within the window.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitBH

HaruDestination::setFitBH -- Set the appearance of the page to fit the width of the
bounding box

Description

bool HaruDestination::setFitBH (float $top)

Defines the appearance of the page to magnifying to fit the width of the bounding box and
setting the top position of the page to the value of top.

Parameters

top

The top coordinates of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitBV

HaruDestination::setFitBV -- Set the appearance of the page to fit the height of the
boudning box

Description

bool HaruDestination::setFitBV (float $left)

Defines the appearance of the page to magnifying to fit the height of the bounding box and
setting the left position of the page to the value of left.

Parameters

left

The left coordinates of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitH

HaruDestination::setFitH -- Set the appearance of the page to fit the window width

Description

bool HaruDestination::setFitH (float $top)

Defines the appearance of the page to fit the window width and sets the top position of the
page to the value of top.

Parameters

top

The top position of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitR

HaruDestination::setFitR -- Set the appearance of the page to fit the specified rectangle

Description

bool HaruDestination::setFitR (float $left, float $bottom, float $right, float $top)

Defines the appearance of the page to fit the rectangle by the parameters.

Parameters

left

The left coordinates of the page.

bottom

The bottom coordinates of the page.

right

The right coordinates of the page.

top

The top coordinates of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setFitV

HaruDestination::setFitV -- Set the appearance of the page to fit the window height

Description

bool HaruDestination::setFitV (float $left)

Defines the appearance of the page to fit the window height.

Parameters

left

The left position of the page.

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

HaruDestination::setXYZ

HaruDestination::setXYZ -- Set the appearance of the page

Description

bool HaruDestination::setXYZ (float $left, float $top, float $zoom)

Defines the appearance of the page using three parameters: left, top and zoom.

Parameters

left

The left position of the page.

top

The top position of the page.

zoom

The magnification factor. The value must be between 0.08 (8%) and 32 (3200%).

Return Values

Returns TRUE on success.

Errors/Exceptions

Throws HaruException on error.

Ming (flash)

Introduction

First of all: Ming is not an acronym. Ming is an open-source (LGPL) library which allows
you to create SWF ("Flash") format movies. Ming supports almost all of Flash 4's features,
including: shapes, gradients, bitmaps (pngs and jpegs), morphs ("shape tweens"), text,
buttons, actions, sprites ("movie clips"), streaming mp3, and color transforms --the only
thing that's missing is sound events.

Note that all values specifying length, distance, size, etc. are in "twips", twenty units per
pixel. That's pretty much arbitrary, though, since the player scales the movie to whatever
pixel size is specified in the embed/object tag, or the entire frame if not embedded.

Ming offers a number of advantages over the existing PHP/libswf module. You can use
Ming anywhere you can compile the code, whereas libswf is closed-source and only
available for a few platforms, Windows not one of them. Ming provides some insulation
from the mundane details of the SWF file format, wrapping the movie elements in PHP
objects. Also, Ming is still being maintained; if there's a feature that you want to see, just
let us know at » http://ming.sourceforge.net/.

Ming was added in PHP 4.0.5.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://ming.sourceforge.net/

Installing/Configuring

Requirements

To use Ming with PHP, you first need to build and install the Ming library. Source code and
installation instructions are available at the Ming home page: » http://ming.sourceforge.net/
along with examples, a small tutorial, and the latest news.

Download the ming archive. Unpack the archive. Go in the Ming directory. make. make
install.

This will build libming.so and install it into /usr/lib/, and copy ming.h into /usr/include/. Edit
the PREFIX= line in the Makefile to change the installation directory.

Installation

Example #1911 - built into PHP (Unix)
mkdir <phpdir>/ext/ming

 cp php_ext/* <phpdir>/ext/ming

 cd <phpdir>

 ./buildconf

 ./configure --with-ming <other config options>

Build and install PHP as usual, restart web server if necessary.

Now either just add extension=php_ming.so to your php.ini file, or put dl('php_ming.so'); at
the head of all of your Ming scripts.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://ming.sourceforge.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MING_NEW (integer)

MING_ZLIB (integer)

SWFBUTTON_HIT (integer)

SWFBUTTON_DOWN (integer)

SWFBUTTON_OVER (integer)

SWFBUTTON_UP (integer)

SWFBUTTON_MOUSEUPOUTSIDE (integer)

SWFBUTTON_DRAGOVER (integer)

SWFBUTTON_DRAGOUT (integer)

SWFBUTTON_MOUSEUP (integer)

SWFBUTTON_MOUSEDOWN (integer)

SWFBUTTON_MOUSEOUT (integer)

SWFBUTTON_MOUSEOVER (integer)

SWFFILL_RADIAL_GRADIENT (integer)

SWFFILL_LINEAR_GRADIENT (integer)

SWFFILL_TILED_BITMAP (integer)

SWFFILL_CLIPPED_BITMAP (integer)

SWFTEXTFIELD_HASLENGTH (integer)

SWFTEXTFIELD_NOEDIT (integer)

SWFTEXTFIELD_PASSWORD (integer)

SWFTEXTFIELD_MULTILINE (integer)

SWFTEXTFIELD_WORDWRAP (integer)

SWFTEXTFIELD_DRAWBOX (integer)

SWFTEXTFIELD_NOSELECT (integer)

SWFTEXTFIELD_HTML (integer)

SWFTEXTFIELD_ALIGN_LEFT (integer)

SWFTEXTFIELD_ALIGN_RIGHT (integer)

SWFTEXTFIELD_ALIGN_CENTER (integer)

SWFTEXTFIELD_ALIGN_JUSTIFY (integer)

SWFACTION_ONLOAD (integer)

SWFACTION_ENTERFRAME (integer)

SWFACTION_UNLOAD (integer)

SWFACTION_MOUSEMOVE (integer)

SWFACTION_MOUSEDOWN (integer)

SWFACTION_MOUSEUP (integer)

SWFACTION_KEYDOWN (integer)

SWFACTION_KEYUP (integer)

SWFACTION_DATA (integer)

Examples

SWFAction Examples

This simple example will move the red square across the window.

Example #1912 - swfaction() example

<?php

 $s = new SWFShape();

 $f = $s->addFill(0xff, 0, 0);

 $s->setRightFill($f);

 $s->movePenTo(-500, -500);

 $s->drawLineTo(500, -500);

 $s->drawLineTo(500, 500);

 $s->drawLineTo(-500, 500);

 $s->drawLineTo(-500, -500);

 $p = new SWFSprite();

 $i = $p->add($s);

 $i->setDepth(1);

 $p->nextFrame();

 for ($n=0; $n<5; ++$n) {

 $i->rotate(-15);

 $p->nextFrame();

 }

 $m = new SWFMovie();

 $m->setBackground(0xff, 0xff, 0xff);

 $m->setDimension(6000, 4000);

 $i = $m->add($p);

 $i->setDepth(1);

 $i->moveTo(-500,2000);

 $i->setName("box");

 $m->add(new SWFAction("/box.x += 3;"));

 $m->nextFrame();

 $m->add(new SWFAction("gotoFrame(0); play();"));

 $m->nextFrame();

 header('Content-type: application/x-shockwave-flash');

 $m->output();

?>

This simple example tracks down your mouse on the screen.

Example #1913 - swfaction() example

<?php

 $m = new SWFMovie();

 $m->setRate(36.0);

 $m->setDimension(1200, 800);

 $m->setBackground(0, 0, 0);

 /* mouse tracking sprite - empty, but follows mouse so we can

 get its x and y coordinates */

 $i = $m->add(new SWFSprite());

 $i->setName('mouse');

 $m->add(new SWFAction("

 startDrag('/mouse', 1); /* '1' means lock sprite to the mouse */

 "));

 /* might as well turn off antialiasing, since these are just squares. */

 $m->add(new SWFAction("

 this.quality = 0;

 "));

 /* morphing box */

 $r = new SWFMorph();

 $s = $r->getShape1();

 /* Note this is backwards from normal shapes. No idea why. */

 $s->setLeftFill($s->addFill(0xff, 0xff, 0xff));

 $s->movePenTo(-40, -40);

 $s->drawLine(80, 0);

 $s->drawLine(0, 80);

 $s->drawLine(-80, 0);

 $s->drawLine(0, -80);

 $s = $r->getShape2();

 $s->setLeftFill($s->addFill(0x00, 0x00, 0x00));

 $s->movePenTo(-1, -1);

 $s->drawLine(2, 0);

 $s->drawLine(0, 2);

 $s->drawLine(-2, 0);

 $s->drawLine(0, -2);

 /* sprite container for morphing box -

 this is just a timeline w/ the box morphing */

 $box = new SWFSprite();

 $box->add(new SWFAction("

 stop();

 "));

 $i = $box->add($r);

 for ($n=0; $n<=20; ++$n) {

 $i->setRatio($n/20);

 $box->nextFrame();

 }

 /* this container sprite allows us to use the same action code many times
*/

 $cell = new SWFSprite();

 $i = $cell->add($box);

 $i->setName('box');

 $cell->add(new SWFAction("

 setTarget('box');

 /* ...x means the x coordinate of the parent, i.e. (..).x */

 dx = (/mouse.x + random(6)-3 - ...x)/5;

 dy = (/mouse.y + random(6)-3 - ...y)/5;

 gotoFrame(int(dx*dx + dy*dy));

 "));

 $cell->nextFrame();

 $cell->add(new SWFAction("

 gotoFrame(0);

 play();

 "));

 $cell->nextFrame();

 /* finally, add a bunch of the cells to the movie */

 for ($x=0; $x<12; ++$x) {

 for ($y=0; $y<8; ++$y) {

 $i = $m->add($cell);

 $i->moveTo(100*$x+50, 100*$y+50);

 }

 }

 $m->nextFrame();

 $m->add(new SWFAction("

 gotoFrame(1);

 play();

 "));

 header('Content-type: application/x-shockwave-flash');

 $m->output();

?>

Same as above, but with nice colored balls...

Example #1914 - swfaction() example

<?php

 $m = new SWFMovie();

 $m->setDimension(11000, 8000);

 $m->setBackground(0x00, 0x00, 0x00);

 $m->add(new SWFAction("

this.quality = 0;

/frames.visible = 0;

startDrag('/mouse', 1);

 "));

 // mouse tracking sprite

 $t = new SWFSprite();

 $i = $m->add($t);

 $i->setName('mouse');

 $g = new SWFGradient();

 $g->addEntry(0, 0xff, 0xff, 0xff, 0xff);

 $g->addEntry(0.1, 0xff, 0xff, 0xff, 0xff);

 $g->addEntry(0.5, 0xff, 0xff, 0xff, 0x5f);

 $g->addEntry(1.0, 0xff, 0xff, 0xff, 0);

 // gradient shape thing

 $s = new SWFShape();

 $f = $s->addFill($g, SWFFILL_RADIAL_GRADIENT);

 $f->scaleTo(0.03);

 $s->setRightFill($f);

 $s->movePenTo(-600, -600);

 $s->drawLine(1200, 0);

 $s->drawLine(0, 1200);

 $s->drawLine(-1200, 0);

 $s->drawLine(0, -1200);

 // need to make this a sprite so we can multColor it

 $p = new SWFSprite();

 $p->add($s);

 $p->nextFrame();

 // put the shape in here, each frame a different color

 $q = new SWFSprite();

 $q->add(new SWFAction("gotoFrame(random(7)+1); stop();"));

 $i = $q->add($p);

 $i->multColor(1.0, 1.0, 1.0);

 $q->nextFrame();

 $i->multColor(1.0, 0.5, 0.5);

 $q->nextFrame();

 $i->multColor(1.0, 0.75, 0.5);

 $q->nextFrame();

 $i->multColor(1.0, 1.0, 0.5);

 $q->nextFrame();

 $i->multColor(0.5, 1.0, 0.5);

 $q->nextFrame();

 $i->multColor(0.5, 0.5, 1.0);

 $q->nextFrame();

 $i->multColor(1.0, 0.5, 1.0);

 $q->nextFrame();

 // finally, this one contains the action code

 $p = new SWFSprite();

 $i = $p->add($q);

 $i->setName('frames');

 $p->add(new SWFAction("

dx = (/:mousex-/:lastx)/3 + random(10)-5;

dy = (/:mousey-/:lasty)/3;

x = /:mousex;

y = /:mousey;

alpha = 100;

 "));

 $p->nextFrame();

 $p->add(new SWFAction("

this.x = x;

this.y = y;

this.alpha = alpha;

x += dx;

y += dy;

dy += 3;

alpha -= 8;

 "));

 $p->nextFrame();

 $p->add(new SWFAction("prevFrame(); play();"));

 $p->nextFrame();

 $i = $m->add($p);

 $i->setName('frames');

 $m->nextFrame();

 $m->add(new SWFAction("

lastx = mousex;

lasty = mousey;

mousex = /mouse.x;

mousey = /mouse.y;

++num;

if (num == 11)

 num = 1;

removeClip('char' & num);

duplicateClip(/frames, 'char' & num, num);

 "));

 $m->nextFrame();

 $m->add(new SWFAction("prevFrame(); play();"));

 header('Content-type: application/x-shockwave-flash');

 $m->output();

?>

SWFSPrite basic examples

This simple example will spin gracefully a big red square.

Example #1915 - swfsprite() example

<?php

$s = new SWFShape();

$s->setRightFill($s->addFill(0xff, 0, 0));

$s->movePenTo(-500, -500);

$s->drawLineTo(500, -500);

$s->drawLineTo(500, 500);

$s->drawLineTo(-500, 500);

$s->drawLineTo(-500, -500);

$p = new SWFSprite();

$i = $p->add($s);

$p->nextFrame();

$i->rotate(15);

$p->nextFrame();

$i->rotate(15);

$p->nextFrame();

$i->rotate(15);

$p->nextFrame();

$i->rotate(15);

$p->nextFrame();

$i->rotate(15);

$p->nextFrame();

$m = new SWFMovie();

$i = $m->add($p);

$i->moveTo(1500, 1000);

$i->setName("blah");

$m->setBackground(0xff, 0xff, 0xff);

$m->setDimension(3000, 2000);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

Ming Functions

ming_keypress

ming_keypress -- Returns the action flag for keyPress(char)

Description

int ming_keypress (string $char)

Warning

This function is currently not documented; only its argument list is available.

ming_setcubicthreshold

ming_setcubicthreshold -- Set cubic threshold

Description

void ming_setcubicthreshold (int $threshold)

Sets the threshold error for drawing cubic beziers.

Parameters

threshold

The Threshold. Lower is more accurate, hence larger file size.

Return Values

No value is returned.

ming_setscale

ming_setscale -- Set the global scaling factor.

Description

void ming_setscale (int $scale)

Sets the scale of the output SWF. Inside the SWF file, coordinates are measured in
TWIPS, rather than PIXELS. There are 20 TWIPS in 1 pixel.

Parameters

scale

The scale to be set.

Return Values

No value is returned.

ming_setswfcompression

ming_setswfcompression -- Sets the SWF output compression

Description

void ming_setswfcompression (int $level)

Sets the SWF output compression level.

Parameters

level

The new compression level. Should be a value between 1 and 9 inclusive.

Return Values

No value is returned.

ming_useconstants

ming_useconstants -- Use constant pool

Description

void ming_useconstants (int $use)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

ming_useswfversion

ming_useswfversion -- Sets the SWF version

Description

void ming_useswfversion (int $version)

Sets the SWF version to be used in the movie. This affect the bahaviour of Action Script.

Parameters

version

SWF version to use.

Return Values

No value is returned.

Examples

Example #1916 - ming_useswfversion() example

<?php

$movie = new SWFMovie();

ming_useswfversion(4); // Flash 4

?>

The SWFAction class

Introduction

SWFAction.

Class synopsis

SWFAction

SWFAction {

/* Methods */

SWFAction __construct (string $script)
}

Description

The script syntax is based on the C language, but with a lot taken out- the SWF bytecode
machine is just too simpleminded to do a lot of things we might like. For instance, we can't
implement function calls without a tremendous amount of hackery because the jump
bytecode has a hardcoded offset value. No pushing your calling address to the stack and
returning- every function would have to know exactly where to return to.

So what's left? The compiler recognises the following tokens:

• break

• for

• continue

• if

• else

• do

• while

There is no typed data; all values in the SWF action machine are stored as strings. The
following functions can be used in expressions:

time()
Returns the number of milliseconds (?) elapsed since the movie started.

random(seed)
Returns a pseudo-random number in the range 0-seed.

length(expr)
Returns the length of the given expression.

int(number)
Returns the given number rounded down to the nearest integer.

concat(expr, expr)
Returns the concatenation of the given expressions.

ord(expr)
Returns the ASCII code for the given character

chr(num)
Returns the character for the given ASCII code

substr(string, location, length)
Returns the substring of length length at location location of the given string string.

Additionally, the following commands may be used:
duplicateClip(clip, name, depth)

Duplicate the named movie clip (aka sprite). The new movie clip has name name and
is at depth depth.

removeClip(expr)
Removes the named movie clip.

trace(expr)
Write the given expression to the trace log. Doubtful that the browser plugin does
anything with this.

startDrag(target, lock, [left, top, right, bottom])
Start dragging the movie clip target. The lock argument indicates whether to lock the
mouse (?)- use 0 (FALSE) or 1 (TRUE). Optional parameters define a bounding
area for the dragging.

stopDrag()
Stop dragging my heart around. And this movie clip, too.

callFrame(expr)
Call the named frame as a function.

getURL(url, target, [method])
Load the given URL into the named target. The target argument corresponds to
HTML document targets (such as "_top" or "_blank"). The optional method argument
can be POST or GET if you want to submit variables back to the server.

loadMovie(url, target)
Load the given URL into the named target. The target argument can be a frame
name (I think), or one of the magical values "_level0" (replaces current movie) or
"_level1" (loads new movie on top of current movie).

nextFrame()
Go to the next frame.

prevFrame()
Go to the last (or, rather, previous) frame.

play()
Start playing the movie.

stop()
Stop playing the movie.

toggleQuality()
Toggle between high and low quality.

stopSounds()
Stop playing all sounds.

gotoFrame(num)
Go to frame number num. Frame numbers start at 0.

gotoFrame(name)
Go to the frame named name. Which does a lot of good, since I haven't added frame
labels yet.

setTarget(expr)
Sets the context for action. Or so they say- I really have no idea what this does.

And there's one weird extra thing. The expression frameLoaded(num) can be used in if
statements and while loops to check if the given frame number has been loaded yet. Well,
it's supposed to, anyway, but I've never tested it and I seriously doubt it actually works.
You can just use /:framesLoaded instead.

Movie clips (all together now- aka sprites) have properties. You can read all of them (or
can you?), you can set some of them, and here they are:

• x

• y

• xScale

• yScale

• currentFrame - (read-only)

• totalFrames - (read-only)

• alpha - transparency level

• visible - 1=on, 0=off (?)

• width - (read-only)

• height - (read-only)

• rotation

• target - (read-only) (???)

• framesLoaded - (read-only)

• name

• dropTarget - (read-only) (???)

• url - (read-only) (???)

• highQuality - 1=high, 0=low (?)

• focusRect - (???)

• soundBufTime - (???)

So, setting a sprite's x position is as simple as /box.x = 100;. Why the slash in front of the
box, though? That's how flash keeps track of the sprites in the movie, just like a Unix
filesystem- here it shows that box is at the top level. If the sprite named box had another
sprite named biff inside of it, you'd set its x position with /box/biff.x = 100;. At least, I think
so; correct me if I'm wrong here.

SWFAction->__construct()

SWFAction->__construct() -- Creates a new SWFAction

Description

SWFAction

SWFAction __construct (string $script)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new SWFAction and compiles the given script in it.

Parameters

script

An ActionScript snippet to associate with the SWFAction. See SWFAction for more
details.

The SWFBitmap class

Introduction

SWFBitmap.

Class synopsis

SWFBitmap

SWFBitmap {

/* Methods */

SWFBitmap __construct (mixed $file [, mixed $alphafile])

float getHeight (void)

float getWidth (void)
}

SWFBitmap->__construct()

SWFBitmap->__construct() -- Loads Bitmap object

Description

SWFBitmap

SWFBitmap __construct (mixed $file [, mixed $alphafile])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates the new SWFBitmap object from the given file.

Parameters

For both parameters you can provide a file pointer returned by fopen() or the image data,
as a binary string.
file

Note

We can only deal with baseline (frame 0) jpegs, no baseline optimized or
progressive scan jpegs!

You can't import png images directly, though- have to use the png2dbl utility to make a
dbl ("define bits lossless") file from the png. The reason for this is that I don't want a
dependency on the png library in ming- autoconf should solve this, but that's not set up
yet.

alphafile

An MSK file to be used as an alpha mask for a JPEG image.

Examples

Example #1917 - Importing a DBL file

<?php

$s = new SWFShape();

$f = $s->addFill(new SWFBitmap(file_get_contents("image.dbl")));

$s->setRightFill($f);

$s->drawLine(32, 0);

$s->drawLine(0, 32);

$s->drawLine(-32, 0);

$s->drawLine(0, -32);

$m = new SWFMovie();

$m->setDimension(32, 32);

$m->add($s);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

Example #1918 - Using an alpha mask

<?php

$s = new SWFShape();

// .msk file generated with "gif2mask" utility

$f = $s->addFill(new SWFBitmap(file_get_contents("alphafill.jpg"),
file_get_contents("alphafill.msk")));

$s->setRightFill($f);

$s->drawLine(640, 0);

$s->drawLine(0, 480);

$s->drawLine(-640, 0);

$s->drawLine(0, -480);

$c = new SWFShape();

$c->setRightFill($c->addFill(0x99, 0x99, 0x99));

$c->drawLine(40, 0);

$c->drawLine(0, 40);

$c->drawLine(-40, 0);

$c->drawLine(0, -40);

$m = new SWFMovie();

$m->setDimension(640, 480);

$m->setBackground(0xcc, 0xcc, 0xcc);

// draw checkerboard background

for ($y=0; $y<480; $y+=40) {

 for ($x=0; $x<640; $x+=80) {

 $i = $m->add($c);

 $i->moveTo($x, $y);

 }

 $y+=40;

 for ($x=40; $x<640; $x+=80) {

 $i = $m->add($c);

 $i->moveTo($x, $y);

 }

}

$m->add($s);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFBitmap->getHeight()

SWFBitmap->getHeight() -- Returns the bitmap's height

Description

SWFBitmap

float getHeight (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the bitmap's height.

Return Values

Returns the bitmap height in pixels.

See Also

• SWFBitmap->getWidth()

SWFBitmap->getWidth()

SWFBitmap->getWidth() -- Returns the bitmap's width

Description

SWFBitmap

float getWidth (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the bitmap's width.

Return Values

Returns the bitmap width in pixels.

See Also

• SWFBitmap->getHeight()

The SWFButton class

Introduction

SWFButton.

Class synopsis

SWFButton

SWFButton {

/* Methods */

void addAction (SWFAction $action, int $flags)

SWFSoundInstance addASound (SWFSound $sound, int $flags)

void addShape (SWFShape $shape, int $flags)

SWFButton __construct (void)

void setAction (SWFAction $action)

void setDown (SWFShape $shape)

void setHit (SWFShape $shape)

void setMenu (int $flag)

void setOver (SWFShape $shape)

void setUp (SWFShape $shape)
}

SWFButton->addAction()

SWFButton->addAction() -- Adds an action

Description

SWFButton

void addAction (SWFAction $action, int $flags)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Adds the given action to the button for the given conditions.

Parameters

action

An SWFAction, returned by SWFAction->__construct().

flags

The following flags are valid: SWFBUTTON_MOUSEOVER,
SWFBUTTON_MOUSEOUT, SWFBUTTON_MOUSEUP,
SWFBUTTON_MOUSEUPOUTSIDE, SWFBUTTON_MOUSEDOWN,
SWFBUTTON_DRAGOUT and SWFBUTTON_DRAGOVER.

Return Values

No value is returned.

See Also

• SWFButton->addShape()
• SWFAction

SWFButton->addASound()

SWFButton->addASound() -- Associates a sound with a button transition

Description

SWFButton

SWFSoundInstance addASound (SWFSound $sound, int $flags)

Warning

This function is currently not documented; only its argument list is available.

SWFButton->addShape()

SWFButton->addShape() -- Adds a shape to a button

Description

SWFButton

void addShape (SWFShape $shape, int $flags)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Adds the given shape to the button.

Parameters

shape

An SWFShape instance

flags

The following flags are valid: SWFBUTTON_UP, SWFBUTTON_OVER,
SWFBUTTON_DOWN and SWFBUTTON_HIT. SWFBUTTON_HIT isn't ever
displayed, it defines the hit region for the button. That is, everywhere the hit shape
would be drawn is considered a "touchable" part of the button.

Return Values

No value is returned.

SWFButton->__construct()

SWFButton->__construct() -- Creates a new Button

Description

SWFButton

SWFButton __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new Button.

Examples

This simple example will show your usual interactions with buttons : rollover, rollon,
mouseup, mousedown, noaction.

Example #1919 - Usual interactions with buttons

<?php

$f = new SWFFont("_serif");

$p = new SWFSprite();

function label($string)

{

 global $f;

 $t = new SWFTextField();

 $t->setFont($f);

 $t->addString($string);

 $t->setHeight(200);

 $t->setBounds(3200, 200);

 return $t;

}

function addLabel($string)

{

 global $p;

 $i = $p->add(label($string));

 $p->nextFrame();

 $p->remove($i);

}

$p->add(new SWFAction("stop();"));

addLabel("NO ACTION");

addLabel("SWFBUTTON_MOUSEUP");

addLabel("SWFBUTTON_MOUSEDOWN");

addLabel("SWFBUTTON_MOUSEOVER");

addLabel("SWFBUTTON_MOUSEOUT");

addLabel("SWFBUTTON_MOUSEUPOUTSIDE");

addLabel("SWFBUTTON_DRAGOVER");

addLabel("SWFBUTTON_DRAGOUT");

function rect($r, $g, $b)

{

 $s = new SWFShape();

 $s->setRightFill($s->addFill($r, $g, $b));

 $s->drawLine(600, 0);

 $s->drawLine(0, 600);

 $s->drawLine(-600, 0);

 $s->drawLine(0, -600);

 return $s;

}

$b = new SWFButton();

$b->addShape(rect(0xff, 0, 0), SWFBUTTON_UP | SWFBUTTON_HIT);

$b->addShape(rect(0, 0xff, 0), SWFBUTTON_OVER);

$b->addShape(rect(0, 0, 0xff), SWFBUTTON_DOWN);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(1);"),

 SWFBUTTON_MOUSEUP);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(2);"),

 SWFBUTTON_MOUSEDOWN);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(3);"),

 SWFBUTTON_MOUSEOVER);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(4);"),

 SWFBUTTON_MOUSEOUT);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(5);"),

 SWFBUTTON_MOUSEUPOUTSIDE);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(6);"),

 SWFBUTTON_DRAGOVER);

$b->addAction(new SWFAction("setTarget('/label'); gotoFrame(7);"),

 SWFBUTTON_DRAGOUT);

$m = new SWFMovie();

$m->setDimension(4000, 3000);

$i = $m->add($p);

$i->setName("label");

$i->moveTo(400, 1900);

$i = $m->add($b);

$i->moveTo(400, 900);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

This simple example will enables you to drag draw a big red button on the windows. No
drag-and-drop, just moving around.

Example #1920 - Drag example

<?php

$s = new SWFShape();

$s->setRightFill($s->addFill(0xff, 0, 0));

$s->drawLine(1000,0);

$s->drawLine(0,1000);

$s->drawLine(-1000,0);

$s->drawLine(0,-1000);

$b = new SWFButton();

$b->addShape($s, SWFBUTTON_HIT | SWFBUTTON_UP | SWFBUTTON_DOWN |
SWFBUTTON_OVER);

$b->addAction(new SWFAction("startDrag('/test', 0);"), // '0' means don't
lock to mouse

 SWFBUTTON_MOUSEDOWN);

$b->addAction(new SWFAction("stopDrag();"),

 SWFBUTTON_MOUSEUP | SWFBUTTON_MOUSEUPOUTSIDE);

$p = new SWFSprite();

$p->add($b);

$p->nextFrame();

$m = new SWFMovie();

$i = $m->add($p);

$i->setName('test');

$i->moveTo(1000,1000);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFButton->setAction()

SWFButton->setAction() -- Sets the action

Description

SWFButton

void setAction (SWFAction $action)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the action to be performed when the button is clicked.

This is a shortcut for SWFButton->addAction() called with the SWFBUTTON_MOUSEUP
flag.

Parameters

action

An SWFAction, returned by SWFAction->__construct().

Return Values

No value is returned.

See Also

• SWFButton->addAction()
• SWFAction

SWFButton->setDown()

SWFButton->setDown() -- Alias for addShape(shape, SWFBUTTON_DOWN)

Description

SWFButton

void setDown (SWFShape $shape)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfbutton->setdown() alias for addShape(shape, SWFBUTTON_DOWN).

Return Values

No value is returned.

See Also

• SWFButton->addShape()
• SWFAction

SWFButton->setHit()

SWFButton->setHit() -- Alias for addShape(shape, SWFBUTTON_HIT)

Description

SWFButton

void setHit (SWFShape $shape)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfbutton->sethit() alias for addShape(shape, SWFBUTTON_HIT).

Return Values

No value is returned.

See Also

• SWFButton->addShape()
• SWFAction

SWFButton->setMenu()

SWFButton->setMenu() -- enable track as menu button behaviour

Description

SWFButton

void setMenu (int $flag)

Warning

This function is currently not documented; only its argument list is available.

Parameters

flag

This parameter can be used for a slight different behavior of buttons. You can set it to
0 (off) or 1 (on).

Return Values

No value is returned.

SWFButton->setOver()

SWFButton->setOver() -- Alias for addShape(shape, SWFBUTTON_OVER)

Description

SWFButton

void setOver (SWFShape $shape)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfbutton->setover() alias for addShape(shape, SWFBUTTON_OVER).

Return Values

No value is returned.

See Also

• SWFButton->addShape()
• SWFAction

SWFButton->setUp()

SWFButton->setUp() -- Alias for addShape(shape, SWFBUTTON_UP)

Description

SWFButton

void setUp (SWFShape $shape)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfbutton->setup() alias for addShape(shape, SWFBUTTON_UP).

Return Values

No value is returned.

See Also

• SWFButton->addShape()
• SWFAction

The SWFDisplayItem class

Introduction

SWFDisplayItem.

Class synopsis

SWFDisplayItem

SWFDisplayItem {

/* Methods */

void addAction (SWFAction $action, int $flags)

void addColor (int $red, int $green, int $blue [, int $a])

void endMask (void)

float getRot (void)

float getX (void)

float getXScale (void)

float getXSkew (void)

float getY (void)

float getYScale (void)

float getYSkew (void)

void move (int $dx, int $dy)

void moveTo (int $x, int $y)

void multColor (int $red, int $green, int $blue [, int $a])

void remove (void)

void rotate (float $angle)

void rotateTo (float $angle)

void scale (int $dx, int $dy)

void scaleTo (int $x [, int $y])

void setDepth (float $depth)

void setMaskLevel (int $level)

void setMatrix (float $a, float $b, float $c, float $d, float $x, float $y)

void setName (string $name)

void setRatio (float $ratio)

void skewX (float $ddegrees)

void skewXTo (float $degrees)

void skewY (float $ddegrees)

void skewYTo (float $degrees)
}

SWFDisplayItem->addAction()

SWFDisplayItem->addAction() -- Adds this SWFAction to the given SWFSprite instance

Description

SWFDisplayItem

void addAction (SWFAction $action, int $flags)

Warning

This function is currently not documented; only its argument list is available.

Parameters

action

An SWFAction, returned by SWFAction->__construct().

flags

Return Values

No value is returned.

See Also

• SWFAction

SWFDisplayItem->addColor()

SWFDisplayItem->addColor() -- Adds the given color to this item's color transform

Description

SWFDisplayItem

void addColor (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->addcolor() adds the color to this item's color transform. The color is
given in its RGB form.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

Return Values

No value is returned.

SWFDisplayItem->endMask()

SWFDisplayItem->endMask() -- Another way of defining a MASK layer

Description

SWFDisplayItem

void endMask (void)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFDisplayItem->getRot()

SWFDisplayItem->getRot() --

Description

SWFDisplayItem

float getRot (void)

Warning

This function is currently not documented; only its argument list is available.

SWFDisplayItem->getX()

SWFDisplayItem->getX() --

Description

SWFDisplayItem

float getX (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getY()

SWFDisplayItem->getXScale()

SWFDisplayItem->getXScale() --

Description

SWFDisplayItem

float getXScale (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getYScale()

SWFDisplayItem->getXSkew()

SWFDisplayItem->getXSkew() --

Description

SWFDisplayItem

float getXSkew (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getYSkew()

SWFDisplayItem->getY()

SWFDisplayItem->getY() --

Description

SWFDisplayItem

float getY (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getX()

SWFDisplayItem->getYScale()

SWFDisplayItem->getYScale() --

Description

SWFDisplayItem

float getYScale (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getXScale()

SWFDisplayItem->getYSkew()

SWFDisplayItem->getYSkew() --

Description

SWFDisplayItem

float getYSkew (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFDisplayItem->getXSkew()

SWFDisplayItem->move()

SWFDisplayItem->move() -- Moves object in relative coordinates

Description

SWFDisplayItem

void move (int $dx, int $dy)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->move() moves the current object by (dx, dy) from its current position.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->moveTo()

SWFDisplayItem->moveTo()

SWFDisplayItem->moveTo() -- Moves object in global coordinates

Description

SWFDisplayItem

void moveTo (int $x, int $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->moveto() moves the current object to (x, y) in global coordinates.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->move()

SWFDisplayItem->multColor()

SWFDisplayItem->multColor() -- Multiplies the item's color transform

Description

SWFDisplayItem

void multColor (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->multcolor() multiplies the item's color transform by the given values.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Parameters

These parameters are integers between 0 and 255 or hexadecimals between 0x00 and
0xFF:
red

Value of red component

green

Value of green component

blue

Value of blue component

a

Value of alpha component

Return Values

No value is returned.

Examples

This simple example will modify your picture's atmosphere to Halloween (use a landscape
or bright picture).

Example #1921 - swfdisplayitem->multcolor() example

<?php

$b = new SWFBitmap(file_get_contents("backyard.jpg"));

// note use your own picture :-)

$s = new SWFShape();

$s->setRightFill($s->addFill($b));

$s->drawLine($b->getWidth(), 0);

$s->drawLine(0, $b->getHeight());

$s->drawLine(-$b->getWidth(), 0);

$s->drawLine(0, -$b->getHeight());

$m = new SWFMovie();

$m->setDimension($b->getWidth(), $b->getHeight());

$i = $m->add($s);

for ($n=0; $n<=20; ++$n) {

 $i->multColor(1.0-$n/10, 1.0, 1.0);

 $i->addColor(0xff*$n/20, 0, 0);

 $m->nextFrame();

}

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFDisplayItem->remove()

SWFDisplayItem->remove() -- Removes the object from the movie

Description

SWFDisplayItem

void remove (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->remove() removes this object from the movie's display list.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFMovie->add()

SWFDisplayItem->rotate()

SWFDisplayItem->rotate() -- Rotates in relative coordinates

Description

SWFDisplayItem

void rotate (float $angle)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->rotate() rotates the current object by angle degrees from its current
rotation.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->rotateTo()

SWFDisplayItem->rotateTo()

SWFDisplayItem->rotateTo() -- Rotates the object in global coordinates

Description

SWFDisplayItem

void rotateTo (float $angle)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->rotateto() set the current object rotation to angle degrees in global
coordinates.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

Examples

This example bring three rotating string from the background to the foreground. Pretty
nice.

Example #1922 - swfdisplayitem->rotateto() example

<?php

$thetext = "ming!";

$f = new SWFFont("Bauhaus 93.fdb");

$m = new SWFMovie();

$m->setRate(24.0);

$m->setDimension(2400, 1600);

$m->setBackground(0xff, 0xff, 0xff);

// functions with huge numbers of arbitrary

// arguments are always a good idea! Really!

function text($r, $g, $b, $a, $rot, $x, $y, $scale, $string)

{

 global $f, $m;

 $t = new SWFText();

 $t->setFont($f);

 $t->setColor($r, $g, $b, $a);

 $t->setHeight(960);

 $t->moveTo(-($f->getWidth($string))/2, $f->getAscent()/2);

 $t->addString($string);

 // we can add properties just like a normal PHP var,

 // as long as the names aren't already used.

 // e.g., we can't set $i->scale, because that's a function

 $i = $m->add($t);

 $i->x = $x;

 $i->y = $y;

 $i->rot = $rot;

 $i->s = $scale;

 $i->rotateTo($rot);

 $i->scale($scale, $scale);

 // but the changes are local to the function, so we have to

 // return the changed object. kinda weird..

 return $i;

}

function step($i)

{

 $oldrot = $i->rot;

 $i->rot = 19*$i->rot/20;

 $i->x = (19*$i->x + 1200)/20;

 $i->y = (19*$i->y + 800)/20;

 $i->s = (19*$i->s + 1.0)/20;

 $i->rotateTo($i->rot);

 $i->scaleTo($i->s, $i->s);

 $i->moveTo($i->x, $i->y);

 return $i;

}

// see? it sure paid off in legibility:

$i1 = text(0xff, 0x33, 0x33, 0xff, 900, 1200, 800, 0.03, $thetext);

$i2 = text(0x00, 0x33, 0xff, 0x7f, -560, 1200, 800, 0.04, $thetext);

$i3 = text(0xff, 0xff, 0xff, 0x9f, 180, 1200, 800, 0.001, $thetext);

for ($i=1; $i<=100; ++$i) {

 $i1 = step($i1);

 $i2 = step($i2);

 $i3 = step($i3);

 $m->nextFrame();

}

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

See Also

• SWFDisplayItem->rotate()

SWFDisplayItem->scale()

SWFDisplayItem->scale() -- Scales the object in relative coordinates

Description

SWFDisplayItem

void scale (int $dx, int $dy)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->scale() scales the current object by (dx, dy) from its current size.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->scaleTo()

SWFDisplayItem->scaleTo()

SWFDisplayItem->scaleTo() -- Scales the object in global coordinates

Description

SWFDisplayItem

void scaleTo (int $x [, int $y])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->scaleto() scales the current object to (x, y) in global coordinates.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->scale()

SWFDisplayItem->setDepth()

SWFDisplayItem->setDepth() -- Sets z-order

Description

SWFDisplayItem

void setDepth (float $depth)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->setdepth() sets the object's z-order to depth. Depth defaults to the
order in which instances are created (by adding a shape/text to a movie)- newer ones are
on top of older ones. If two objects are given the same depth, only the later-defined one
can be moved.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

SWFDisplayItem->setMaskLevel()

SWFDisplayItem->setMaskLevel() -- Defines a MASK layer at level

Description

SWFDisplayItem

void setMaskLevel (int $level)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFDisplayItem->setMatrix()

SWFDisplayItem->setMatrix() -- Sets the item's transform matrix

Description

SWFDisplayItem

void setMatrix (float $a, float $b, float $c, float $d, float $x, float $y)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFDisplayItem->setName()

SWFDisplayItem->setName() -- Sets the object's name

Description

SWFDisplayItem

void setName (string $name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->setname() sets the object's name to name, for targetting with action
script. Only useful on sprites.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

SWFDisplayItem->setRatio()

SWFDisplayItem->setRatio() -- Sets the object's ratio

Description

SWFDisplayItem

void setRatio (float $ratio)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->setratio() sets the object's ratio to ratio. Obviously only useful for
morphs.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

Examples

This simple example will morph nicely three concentric circles.

Example #1923 - swfdisplayitem->setname() example

<?php

$p = new SWFMorph();

$g = new SWFGradient();

$g->addEntry(0.0, 0, 0, 0);

$g->addEntry(0.16, 0xff, 0xff, 0xff);

$g->addEntry(0.32, 0, 0, 0);

$g->addEntry(0.48, 0xff, 0xff, 0xff);

$g->addEntry(0.64, 0, 0, 0);

$g->addEntry(0.80, 0xff, 0xff, 0xff);

$g->addEntry(1.00, 0, 0, 0);

$s = $p->getShape1();

$f = $s->addFill($g, SWFFILL_RADIAL_GRADIENT);

$f->scaleTo(0.05);

$s->setLeftFill($f);

$s->movePenTo(-160, -120);

$s->drawLine(320, 0);

$s->drawLine(0, 240);

$s->drawLine(-320, 0);

$s->drawLine(0, -240);

$g = new SWFGradient();

$g->addEntry(0.0, 0, 0, 0);

$g->addEntry(0.16, 0xff, 0, 0);

$g->addEntry(0.32, 0, 0, 0);

$g->addEntry(0.48, 0, 0xff, 0);

$g->addEntry(0.64, 0, 0, 0);

$g->addEntry(0.80, 0, 0, 0xff);

$g->addEntry(1.00, 0, 0, 0);

$s = $p->getShape2();

$f = $s->addFill($g, SWFFILL_RADIAL_GRADIENT);

$f->scaleTo(0.05);

$f->skewXTo(1.0);

$s->setLeftFill($f);

$s->movePenTo(-160, -120);

$s->drawLine(320, 0);

$s->drawLine(0, 240);

$s->drawLine(-320, 0);

$s->drawLine(0, -240);

$m = new SWFMovie();

$m->setDimension(320, 240);

$i = $m->add($p);

$i->moveTo(160, 120);

for ($n=0; $n<=1.001; $n+=0.01) {

 $i->setRatio($n);

 $m->nextFrame();

}

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFDisplayItem->skewX()

SWFDisplayItem->skewX() -- Sets the X-skew

Description

SWFDisplayItem

void skewX (float $ddegrees)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->skewx() adds ddegrees to current x-skew.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->skewXTo()
• SWFDisplayItem->skewY()
• SWFDisplayItem->skewYTo()

SWFDisplayItem->skewXTo()

SWFDisplayItem->skewXTo() -- Sets the X-skew

Description

SWFDisplayItem

void skewXTo (float $degrees)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->skewxto() sets the x-skew to degrees. For degrees is 1.0, it means a
45-degree forward slant. More is more forward, less is more backward.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->skewX()
• SWFDisplayItem->skewY()
• SWFDisplayItem->skewYTo()

SWFDisplayItem->skewY()

SWFDisplayItem->skewY() -- Sets the Y-skew

Description

SWFDisplayItem

void skewY (float $ddegrees)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->skewy() adds ddegrees to current y-skew.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->skewYTo()
• SWFDisplayItem->skewX()
• SWFDisplayItem->skewXTo()

SWFDisplayItem->skewYTo()

SWFDisplayItem->skewYTo() -- Sets the Y-skew

Description

SWFDisplayItem

void skewYTo (float $degrees)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfdisplayitem->skewyto() sets the y-skew to degrees. For degrees is 1.0, it means a
45-degree forward slant. More is more upward, less is more downward.

The object may be a swfshape(), a swfbutton(), a swftext() or a swfsprite() object. It
must have been added using the swfmovie->add().

Return Values

No value is returned.

See Also

• SWFDisplayItem->skewY()
• SWFDisplayItem->skewX()
• SWFDisplayItem->skewXTo()

The SWFFill class

Introduction

The SWFFill object allows you to transform (scale, skew, rotate) bitmap and gradient fills.

swffill objects are created by the SWFShape->addFill() method.

Class synopsis

SWFFill

SWFFill {

/* Methods */

void moveTo (int $x, int $y)

void rotateTo (float $angle)

void scaleTo (int $x [, int $y])

void skewXTo (float $x)

void skewYTo (float $y)
}

SWFFill->moveTo()

SWFFill->moveTo() -- Moves fill origin

Description

SWFFill

void moveTo (int $x, int $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Moves the fill origin to the given global coordinates.

Parameters

x

X-coordinate

y

Y-coordinate

Return Values

No value is returned.

SWFFill->rotateTo()

SWFFill->rotateTo() -- Sets fill's rotation

Description

SWFFill

void rotateTo (float $angle)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the fill rotation to the given angle.

Parameters

angle

The rotation angle, in degreess.

Return Values

No value is returned.

SWFFill->scaleTo()

SWFFill->scaleTo() -- Sets fill's scale

Description

SWFFill

void scaleTo (int $x [, int $y])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the fill scale to the given coordinates.

Parameters

x

X-coordinate

y

Y-coordinate

Return Values

No value is returned.

SWFFill->skewXTo()

SWFFill->skewXTo() -- Sets fill x-skew

Description

SWFFill

void skewXTo (float $x)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the fill x-skew to x.

Parameters

x

When x is 1.0, it is a 45-degree forward slant. More is more forward, less is more
backward.

Return Values

No value is returned.

See Also

• SWFFill->skewYTo()

SWFFill->skewYTo()

SWFFill->skewYTo() -- Sets fill y-skew

Description

SWFFill

void skewYTo (float $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the fill y-skew to y.

Parameters

y

When y is 1.0, it is a 45-degree upward slant. More is more upward, less is more
downward.

Return Values

No value is returned.

See Also

• SWFFill->skewXTo()

The SWFFont class

Introduction

The SWFFont object represent a reference to the font definition, for us with
SWFText->setFont() and SWFTextField->setFont().

Class synopsis

SWFFont

SWFFont {

/* Methods */

SWFFont __construct (string $filename)

float getAscent (void)

float getDescent (void)

float getLeading (void)

string getShape (int $code)

float getUTF8Width (string $string)

float getWidth (string $string)
}

SWFFont->__construct()

SWFFont->__construct() -- Loads a font definition

Description

SWFFont

SWFFont __construct (string $filename)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

If filename is the name of an FDB file (i.e., it ends in ".fdb"), load the font definition found
in said file. Otherwise, create a browser-defined font reference.

FDB ("font definition block") is a very simple wrapper for the SWF DefineFont2 block which
contains a full description of a font. One may create FDB files from SWT Generator
template files with the included makefdb utility- look in the util directory off the main ming
distribution directory.

Browser-defined fonts don't contain any information about the font other than its name. It is
assumed that the font definition will be provided by the movie player. The fonts _serif,
_sans, and _typewriter should always be available. For example:
<?php

$f = newSWFFont("_sans");

?>
will give you the standard sans-serif font, probably the same as what you'd get with <font
name="sans-serif"> in HTML.

SWFFont->getAscent()

SWFFont->getAscent() -- Returns the ascent of the font, or 0 if not available

Description

SWFFont

float getAscent (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFFont->getDescent()

SWFFont->getDescent()

SWFFont->getDescent() -- Returns the descent of the font, or 0 if not available

Description

SWFFont

float getDescent (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFFont->getAscent()

SWFFont->getLeading()

SWFFont->getLeading() -- Returns the leading of the font, or 0 if not available

Description

SWFFont

float getLeading (void)

Warning

This function is currently not documented; only its argument list is available.

SWFFont->getShape()

SWFFont->getShape() -- Returns the glyph shape of a char as a text string

Description

SWFFont

string getShape (int $code)

Warning

This function is currently not documented; only its argument list is available.

SWFFont->getUTF8Width()

SWFFont->getUTF8Width() -- Calculates the width of the given string in this font at full
height

Description

SWFFont

float getUTF8Width (string $string)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFFont->getWidth()

SWFFont->getWidth()

SWFFont->getWidth() -- Returns the string's width

Description

SWFFont

float getWidth (string $string)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swffont->getwidth() returns the string string 's width, using font's default scaling. You'll
probably want to use the swftext() version of this method which uses the text object's
scale.

See Also

• SWFFont->getUTF8Width()

The SWFFontChar class

Introduction

SWFFontChar.

Class synopsis

SWFFontChar

SWFFontChar {

/* Methods */

void addChars (string $char)

void addUTF8Chars (string $char)
}

SWFFontChar->addChars()

SWFFontChar->addChars() -- Adds characters to a font for exporting font

Description

SWFFontChar

void addChars (string $char)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFFontChar->addUTF8Chars()

SWFFontChar->addUTF8Chars()

SWFFontChar->addUTF8Chars() -- Adds characters to a font for exporting font

Description

SWFFontChar

void addUTF8Chars (string $char)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFFontChar->addChars()

The SWFGradient class

Introduction

SWFGradient.

Class synopsis

SWFGradient

SWFGradient {

/* Methods */

void addEntry (float $ratio, int $red, int $green, int $blue [, int $a])

SWFGradient __construct (void)
}

SWFGradient->addEntry()

SWFGradient->addEntry() -- Adds an entry to the gradient list

Description

SWFGradient

void addEntry (float $ratio, int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfgradient->addentry() adds an entry to the gradient list. ratio is a number between 0
and 1 indicating where in the gradient this color appears. Thou shalt add entries in order of
increasing ratio.

red, green, blue is a color (RGB mode). Last parameter a is optional.

Return Values

No value is returned.

SWFGradient->__construct()

SWFGradient->__construct() -- Creates a gradient object

Description

SWFGradient

SWFGradient __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfgradient() creates a new SWFGradient object.

After you've added the entries to your gradient, you can use the gradient in a shape fill
with the swfshape->addfill() method.

SWFGradient has the following methods : swfgradient->addentry().

This simple example will draw a big black-to-white gradient as background, and a reddish
disc in its center.

Example #1924 - swfgradient() example

<?php

 $m = new SWFMovie();

 $m->setDimension(320, 240);

 $s = new SWFShape();

 // first gradient- black to white

 $g = new SWFGradient();

 $g->addEntry(0.0, 0, 0, 0);

 $g->addEntry(1.0, 0xff, 0xff, 0xff);

 $f = $s->addFill($g, SWFFILL_LINEAR_GRADIENT);

 $f->scaleTo(0.01);

 $f->moveTo(160, 120);

 $s->setRightFill($f);

 $s->drawLine(320, 0);

 $s->drawLine(0, 240);

 $s->drawLine(-320, 0);

 $s->drawLine(0, -240);

 $m->add($s);

 $s = new SWFShape();

 // second gradient- radial gradient from red to transparent

 $g = new SWFGradient();

 $g->addEntry(0.0, 0xff, 0, 0, 0xff);

 $g->addEntry(1.0, 0xff, 0, 0, 0);

 $f = $s->addFill($g, SWFFILL_RADIAL_GRADIENT);

 $f->scaleTo(0.005);

 $f->moveTo(160, 120);

 $s->setRightFill($f);

 $s->drawLine(320, 0);

 $s->drawLine(0, 240);

 $s->drawLine(-320, 0);

 $s->drawLine(0, -240);

 $m->add($s);

 header('Content-type: application/x-shockwave-flash');

 $m->output();

?>

The SWFMorph class

Introduction

The methods here are sort of weird. It would make more sense to just have
newSWFMorph(shape1, shape2);, but as things are now, shape2 needs to know that it's
the second part of a morph. (This, because it starts writing its output as soon as it gets
drawing commands- if it kept its own description of its shapes and wrote on completion this
and some other things would be much easier.)

Class synopsis

SWFMorph

SWFMorph {

/* Methods */

SWFMorph __construct (void)

SWFShape getShape1 (void)

SWFShape getShape2 (void)
}

SWFMorph->__construct()

SWFMorph->__construct() -- Creates a new SWFMorph object

Description

SWFMorph

SWFMorph __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new SWFMorph object.

Also called a "shape tween". This thing lets you make those tacky twisting things that
make your computer choke. Oh, joy!

Examples

This simple example will morph a big red square into a smaller blue black-bordered
square.

Example #1925 - swfmorph() example

<?php

 $p = new SWFMorph();

 $s = $p->getShape1();

 $s->setLine(0, 0, 0, 0);

 /* Note that this is backwards from normal shapes (left instead of right).

 I have no idea why, but this seems to work.. */

 $s->setLeftFill($s->addFill(0xff, 0, 0));

 $s->movePenTo(-1000,-1000);

 $s->drawLine(2000,0);

 $s->drawLine(0,2000);

 $s->drawLine(-2000,0);

 $s->drawLine(0,-2000);

 $s = $p->getShape2();

 $s->setLine(60,0,0,0);

 $s->setLeftFill($s->addFill(0, 0, 0xff));

 $s->movePenTo(0,-1000);

 $s->drawLine(1000,1000);

 $s->drawLine(-1000,1000);

 $s->drawLine(-1000,-1000);

 $s->drawLine(1000,-1000);

 $m = new SWFMovie();

 $m->setDimension(3000,2000);

 $m->setBackground(0xff, 0xff, 0xff);

 $i = $m->add($p);

 $i->moveTo(1500,1000);

 for ($r=0.0; $r<=1.0; $r+=0.1) {

 $i->setRatio($r);

 $m->nextFrame();

 }

 header('Content-type: application/x-shockwave-flash');

 $m->output();

?>

SWFMorph->getShape1()

SWFMorph->getShape1() -- Gets a handle to the starting shape

Description

SWFMorph

SWFShape getShape1 (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Gets the morph's starting shape.

Return Values

Returns a SWFShape object.

See Also

• SWFMorph->getShape2()

SWFMorph->getShape2()

SWFMorph->getShape2() -- Gets a handle to the ending shape

Description

SWFMorph

SWFShape getShape2 (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Gets the morph's ending shape.

Return Values

Returns a SWFShape object.

See Also

• SWFMorph->getShape1()

The SWFMovie class

Introduction

SWFMovie is a movie object representing an SWF movie.

Class synopsis

SWFMovie

SWFMovie {

/* Methods */

mixed add (object $instance)

void addExport (SWFCharacter $char, string $name)

mixed addFont (SWFFont $font)

SWFMovie __construct (int $version)

SWFSprite importChar (string $libswf, string $name)

SWFFontChar importFont (string $libswf, string $name)

void labelFrame (string $label)

void nextFrame (void)

int output ([int $compression])

void remove (object $instance)

int save (string $filename [, int $compression])

int saveToFile (stream $x [, int $compression])

void setbackground (int $red, int $green, int $blue)

void setDimension (int $width, int $height)

void setFrames (int $number)

void setRate (int $rate)

SWFSoundInstance startSound (SWFSound $sound)

void stopSound (SWFSound $sound)

int streamMP3 (mixed $mp3file [, float $skip])

void writeExports (void)
}

SWFMovie->add()

SWFMovie->add() -- Adds any type of data to a movie

Description

SWFMovie

mixed add (object $instance)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Adds an SWF object instance to the current movie.

Parameters

instance

Any type of object instance, like SWFShape, SWFText, SWFFont.

Return Values

For displayable types (shape, text, button, sprite), this returns an SWFDisplayItem, a
handle to the object in a display list. Thus, you can add the same shape to a movie
multiple times and get separate handles back for each separate instance.

See Also

• SWFMovie->remove()

SWFMovie->addExport()

SWFMovie->addExport() --

Description

SWFMovie

void addExport (SWFCharacter $char, string $name)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFMovie->addFont()

SWFMovie->addFont() --

Description

SWFMovie

mixed addFont (SWFFont $font)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFMovie->__construct()

SWFMovie->__construct() -- Creates a new movie object, representing an SWF version 4
movie

Description

SWFMovie

SWFMovie __construct (int $version)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new movie object, representing an SWF movie.

Parameters

version

The desired SWF version. Default is 4.

SWFMovie->importChar()

SWFMovie->importChar() --

Description

SWFMovie

SWFSprite importChar (string $libswf, string $name)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFMovie->importFont()

SWFMovie->importFont()

SWFMovie->importFont() --

Description

SWFMovie

SWFFontChar importFont (string $libswf, string $name)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFMovie->importChar()

SWFMovie->labelFrame()

SWFMovie->labelFrame() -- Labels a frame

Description

SWFMovie

void labelFrame (string $label)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFMovie->nextFrame()

SWFMovie->nextFrame() -- Moves to the next frame of the animation

Description

SWFMovie

void nextFrame (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Moves to the next frame of the animation.

Return Values

No value is returned.

SWFMovie->output()

SWFMovie->output() -- Dumps your lovingly prepared movie out

Description

SWFMovie

int output ([int $compression])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Dumps the SWFMovie.

Don't forget to send the Content-Type HTTP header file before using this function, in order
to display the movie in a browser.

Parameters

compression

The compression level can be a value between 0 and 9, defining the SWF
compression similar to gzip compression. This parameter is only available as of Flash
MX (6).

Return Values

Return the number of bytes written or FALSE on error.

Examples

Example #1926 - Displaying your $movie in a browser

<?php

header('Content-type: application/x-shockwave-flash');

$movie->output();

?>

See Also

• SWFMovie->save()
• SWFMovie->saveToFile()

SWFMovie->remove()

SWFMovie->remove() -- Removes the object instance from the display list

Description

SWFMovie

void remove (object $instance)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Removes the given object instance from the display list.

Return Values

No value is returned.

See Also

• SWFMovie->add()

SWFMovie->save()

SWFMovie->save() -- Saves the SWF movie in a file

Description

SWFMovie

int save (string $filename [, int $compression])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Saves the SWF movie to the specified filename.

Parameters

filename

The path to the saved SWF document.

compression

The compression level can be a value between 0 and 9, defining the SWF
compression similar to gzip compression. This parameter is only available as of Flash
MX (6).

Return Values

Return the number of bytes written or FALSE on error.

See Also

• SWFMovie->output()
• SWFMovie->saveToFile()

SWFMovie->saveToFile()

SWFMovie->saveToFile() --

Description

SWFMovie

int saveToFile (stream $x [, int $compression])

Warning

This function is currently not documented; only its argument list is available.

Parameters

X

compression

The compression level can be a value between 0 and 9, defining the SWF
compression similar to gzip compression. This parameter is only available as of Flash
MX (6).

Return Values

Return the number of bytes written or FALSE on error.

See Also

• SWFMovie->output()
• SWFMovie->save()

SWFMovie->setbackground()

SWFMovie->setbackground() -- Sets the background color

Description

SWFMovie

void setbackground (int $red, int $green, int $blue)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the background color.

Why is there no rgba version? Think about it, you might want to let the HTML background
show through. There's a way to do that, but it only works on IE4. Search the
» http://www.macromedia.com/ site for details.

Parameters

These parameters are integers between 0 and 255 or hexadecimals between 0x00 and
0xFF:
red

Value of red component

green

Value of green component

blue

Value of blue component

Return Values

No value is returned.

http://www.macromedia.com/
http://www.macromedia.com/

SWFMovie->setDimension()

SWFMovie->setDimension() -- Sets the movie's width and height

Description

SWFMovie

void setDimension (int $width, int $height)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the movie's dimension to the specified width and height.

Parameters

width

The movie width.

height

The movie height.

Return Values

No value is returned.

SWFMovie->setFrames()

SWFMovie->setFrames() -- Sets the total number of frames in the animation

Description

SWFMovie

void setFrames (int $number)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the total number of frames in the animation to the given number.

Parameters

number

The number of frames.

Return Values

No value is returned.

SWFMovie->setRate()

SWFMovie->setRate() -- Sets the animation's frame rate

Description

SWFMovie

void setRate (int $rate)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Sets the frame rate to the specified rate.

Animation will slow down if the player can't render frames fast enough- unless there's a
streaming sound, in which case display frames are sacrificed to keep sound from skipping.

Parameters

rate

The frame rate, in frame per seconds.

Return Values

No value is returned.

SWFMovie->startSound()

SWFMovie->startSound() --

Description

SWFMovie

SWFSoundInstance startSound (SWFSound $sound)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFMovie->stopSound()

SWFMovie->stopSound()

SWFMovie->stopSound() --

Description

SWFMovie

void stopSound (SWFSound $sound)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFMovie->startSound()

SWFMovie->streamMP3()

SWFMovie->streamMP3() -- Streams a MP3 file

Description

SWFMovie

int streamMP3 (mixed $mp3file [, float $skip])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Streams the given MP3 file mp3file.

This method is not very robust in dealing with oddities (can skip over an initial ID3 tag, but
that's about it).

Note that the movie isn't smart enough to put enough frames in to contain the entire mp3
stream- you'll have to add (length of song * frames per second) frames to get the entire
stream in.

Parameters

mp3file

Can be a file pointer returned by fopen() or the MP3 data, as a binary string.

skip

Number of seconds to skip.

Return Values

Return number of frames.

ChangeLog

Version Description

5.2.0 skip added

Examples

Example #1927 - Streaming example

<?php

$m = new SWFMovie();

$m->setRate(12.0);

$m->streamMp3(file_get_contents("distortobass.mp3"));

// use your own MP3

// The file is 11.85 seconds at 12.0 fps = 142 frames

$m->setFrames(142);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFMovie->writeExports()

SWFMovie->writeExports() --

Description

SWFMovie

void writeExports (void)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

The SWFPrebuiltClip class

Introduction

SWFPrebuiltClip.

Class synopsis

SWFPrebuiltClip

SWFPrebuiltClip {

/* Methods */

SWFPrebuiltClip __construct ([string $file])
}

SWFPrebuiltClip->__construct()

SWFPrebuiltClip->__construct() -- Returns a SWFPrebuiltClip object

Description

SWFPrebuiltClip

SWFPrebuiltClip __construct ([string $file])

Warning

This function is currently not documented; only its argument list is available.

The SWFShape class

Introduction

SWFShape.

Class synopsis

SWFShape

SWFShape {

/* Methods */

SWFFill addFill (int $red, int $green, int $blue [, int $a])

SWFShape __construct (void)

void drawArc (float $r, float $startAngle, float $endAngle)

void drawCircle (float $r)

int drawCubic (float $bx, float $by, float $cx, float $cy, float $dx, float $dy)

int drawCubicTo (float $bx, float $by, float $cx, float $cy, float $dx, float $dy)

int drawCurve (int $controldx, int $controldy, int $anchordx, int $anchordy [, int $
targetdx], int $targetdy)

int drawCurveTo (int $controlx, int $controly, int $anchorx, int $anchory [, int $
targetx], int $targety)

void drawGlyph (SWFFont $font, string $character [, int $size])

void drawLine (int $dx, int $dy)

void drawLineTo (int $x, int $y)

void movePen (int $dx, int $dy)

void movePenTo (int $x, int $y)

void setLeftFill (SWFGradient $fill)

void setLine (SWFShape $shape)

void setRightFill (SWFGradient $fill)
}

SWFShape->addFill()

SWFShape->addFill() -- Adds a solid fill to the shape

Description

SWFShape

SWFFill addFill (int $red, int $green, int $blue [, int $a])

SWFFill addFill (SWFBitmap $bitmap [, int $flags])

SWFFill addFill (SWFGradient $gradient [, int $flags])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

SWFShape->addFill() adds a solid fill to the shape's list of fill styles.
SWFShape->addFill() accepts three different types of arguments.

red, green, blue is a color (RGB mode). Last parameter a is optional.

The bitmap argument is an SWFBitmap() object. The flags argument can be one of the
following values: SWFFILL_CLIPPED_BITMAP, SWFFILL_TILED_BITMAP,
SWFFILL_LINEAR_GRADIENT or SWFFILL_RADIAL_GRADIENT. Default is
SWFFILL_TILED_BITMAP for SWFBitmap and SWFFILL_LINEAR_GRADIENT for
SWFGradient.

The gradient argument is an SWFGradient() object. The flags argument can be one of
the following values : SWFFILL_RADIAL_GRADIENT or SWFFILL_LINEAR_GRADIENT.
Default is SWFFILL_LINEAR_GRADIENT. I'm sure about this one. Really.

SWFShape->addFill() returns an SWFFill() object for use with the
SWFShape->setLeftFill() and SWFShape->setRightFill() functions described below.

Examples

This simple example will draw a frame on a bitmap. Ah, here's another buglet in the flash
player- it doesn't seem to care about the second shape's bitmap's transformation in a
morph. According to spec, the bitmap should stretch along with the shape in this example..

Example #1928 - SWFShape->addFill() example

<?php

$p = new SWFMorph();

$b = new SWFBitmap(file_get_contents("alphafill.jpg"));

// use your own bitmap

$width = $b->getWidth();

$height = $b->getHeight();

$s = $p->getShape1();

$f = $s->addFill($b, SWFFILL_TILED_BITMAP);

$f->moveTo(-$width/2, -$height/4);

$f->scaleTo(1.0, 0.5);

$s->setLeftFill($f);

$s->movePenTo(-$width/2, -$height/4);

$s->drawLine($width, 0);

$s->drawLine(0, $height/2);

$s->drawLine(-$width, 0);

$s->drawLine(0, -$height/2);

$s = $p->getShape2();

$f = $s->addFill($b, SWFFILL_TILED_BITMAP);

// these two have no effect!

$f->moveTo(-$width/4, -$height/2);

$f->scaleTo(0.5, 1.0);

$s->setLeftFill($f);

$s->movePenTo(-$width/4, -$height/2);

$s->drawLine($width/2, 0);

$s->drawLine(0, $height);

$s->drawLine(-$width/2, 0);

$s->drawLine(0, -$height);

$m = new SWFMovie();

$m->setDimension($width, $height);

$i = $m->add($p);

$i->moveTo($width/2, $height/2);

for ($n=0; $n<1.001; $n+=0.03) {

 $i->setRatio($n);

 $m->nextFrame();

}

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

See Also

• SWFShape->setLeftFill()

• SWFShape->setRightFill()

SWFShape->__construct()

SWFShape->__construct() -- Creates a new shape object

Description

SWFShape

SWFShape __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Created a new SWFShape object.

Examples

This simple example will draw a big red elliptic quadrant.

Example #1929 - swfshape() example

<?php

$s = new SWFShape();

$s->setLine(40, 0x7f, 0, 0);

$s->setRightFill($s->addFill(0xff, 0, 0));

$s->movePenTo(200, 200);

$s->drawLineTo(6200, 200);

$s->drawLineTo(6200, 4600);

$s->drawCurveTo(200, 4600, 200, 200);

$m = new SWFMovie();

$m->setDimension(6400, 4800);

$m->setRate(12.0);

$m->add($s);

$m->nextFrame();

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFShape->drawArc()

SWFShape->drawArc() -- Draws an arc of radius r centered at the current location, from
angle startAngle to angle endAngle measured clockwise from 12 o'clock

Description

SWFShape

void drawArc (float $r, float $startAngle, float $endAngle)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFShape->drawCircle()

SWFShape->drawCircle()

SWFShape->drawCircle() -- Draws a circle of radius r centered at the current location, in a
counter-clockwise fashion

Description

SWFShape

void drawCircle (float $r)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFShape->drawCubic()

SWFShape->drawCubic() -- Draws a cubic bezier curve using the current position and the
three given points as control points

Description

SWFShape

int drawCubic (float $bx, float $by, float $cx, float $cy, float $dx, float $dy)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFShape->drawCubicTo()

SWFShape->drawCubicTo()

SWFShape->drawCubicTo() -- Draws a cubic bezier curve using the current position and
the three given points as control points

Description

SWFShape

int drawCubicTo (float $bx, float $by, float $cx, float $cy, float $dx, float $dy)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFShape->drawCubic()

SWFShape->drawCurve()

SWFShape->drawCurve() -- Draws a curve (relative)

Description

SWFShape

int drawCurve (int $controldx, int $controldy, int $anchordx, int $anchordy [, int $
targetdx], int $targetdy)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->drawcurve() draws a quadratic curve (using the current line style,set by
swfshape->setline()) from the current pen position to the relative position (anchorx,
anchory) using relative control point (controlx, controly). That is, head towards the
control point, then smoothly turn to the anchor point.

With 6 parameters, it draws a cubic bezier to point (x+ targetdx, x+ targetdy) with
control points (x+ controldx, y+ controldy) and (x+ anchordx, y+ anchordy).

See Also

• SWFShape->drawCurve()

SWFShape->drawCurveTo()

SWFShape->drawCurveTo() -- Draws a curve

Description

SWFShape

int drawCurveTo (int $controlx, int $controly, int $anchorx, int $anchory [, int $
targetx], int $targety)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->drawcurveto() draws a quadratic curve (using the current line style, set by
swfshape->setline()) from the current pen position to (anchorx, anchory) using (
controlx, controly) as a control point. That is, head towards the control point, then
smoothly turn to the anchor point.

With 6 parameters, it draws a cubic bezier to point (targetx, targety) with control points
(controlx, controly) and (anchorx, anchory).

See Also

• SWFShape->drawCurveTo()

SWFShape->drawGlyph()

SWFShape->drawGlyph() -- Draws the first character in the given string into the shape
using the glyph definition from the given font

Description

SWFShape

void drawGlyph (SWFFont $font, string $character [, int $size])

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFShape->drawLine()

SWFShape->drawLine() -- Draws a line (relative)

Description

SWFShape

void drawLine (int $dx, int $dy)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->drawline() draws a line (using the current line style set by
swfshape->setline()) from the current pen position to displacement (dx, dy).

Return Values

No value is returned.

See Also

• SWFShape->drawLineTo()

SWFShape->drawLineTo()

SWFShape->drawLineTo() -- Draws a line

Description

SWFShape

void drawLineTo (int $x, int $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->setrightfill() draws a line (using the current line style, set by
swfshape->setline()) from the current pen position to point (x, y) in the shape's
coordinate space.

Return Values

No value is returned.

See Also

• SWFShape->drawLine()

SWFShape->movePen()

SWFShape->movePen() -- Moves the shape's pen (relative)

Description

SWFShape

void movePen (int $dx, int $dy)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->setrightfill() move the shape's pen from coordinates (current x,current y) to
(current x + dx, current y + dy) in the shape's coordinate space.

Return Values

No value is returned.

See Also

• SWFShape->movePenTo()

SWFShape->movePenTo()

SWFShape->movePenTo() -- Moves the shape's pen

Description

SWFShape

void movePenTo (int $x, int $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->setrightfill() move the shape's pen to (x, y) in the shape's coordinate
space.

Return Values

No value is returned.

See Also

• SWFShape->movePen()

SWFShape->setLeftFill()

SWFShape->setLeftFill() -- Sets left rasterizing color

Description

SWFShape

void setLeftFill (SWFGradient $fill)

void setLeftFill (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

What this nonsense is about is, every edge segment borders at most two fills. When
rasterizing the object, it's pretty handy to know what those fills are ahead of time, so the
swf format requires these to be specified.

swfshape->setleftfill() sets the fill on the left side of the edge- that is, on the interior if
you're defining the outline of the shape in a counter-clockwise fashion. The fill object is an
SWFFill object returned from one of the addFill functions above.

This seems to be reversed when you're defining a shape in a morph, though. If your
browser crashes, just try setting the fill on the other side.

Shortcut for swfshape->setleftfill($s->addfill($r, $g, $b [, $a]));.

Return Values

No value is returned.

See Also

• SWFShape->setRightFill()

SWFShape->setLine()

SWFShape->setLine() -- Sets the shape's line style

Description

SWFShape

void setLine (SWFShape $shape)

void setLine (int $width, int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfshape->setline() sets the shape's line style. width is the line's width. If width is 0, the
line's style is removed (then, all other arguments are ignored). If width > 0, then line's
color is set to red, green, blue. Last parameter a is optional.

You must declare all line styles before you use them (see example).

Return Values

No value is returned.

Examples

This simple example will draw a big "!#%*@", in funny colors and gracious style.

Example #1930 - swfshape->setline() example

<?php

$s = new SWFShape();

$f1 = $s->addFill(0xff, 0, 0);

$f2 = $s->addFill(0xff, 0x7f, 0);

$f3 = $s->addFill(0xff, 0xff, 0);

$f4 = $s->addFill(0, 0xff, 0);

$f5 = $s->addFill(0, 0, 0xff);

// bug: have to declare all line styles before you use them

$s->setLine(40, 0x7f, 0, 0);

$s->setLine(40, 0x7f, 0x3f, 0);

$s->setLine(40, 0x7f, 0x7f, 0);

$s->setLine(40, 0, 0x7f, 0);

$s->setLine(40, 0, 0, 0x7f);

$f = new SWFFont('Techno.fdb');

$s->setRightFill($f1);

$s->setLine(40, 0x7f, 0, 0);

$s->drawGlyph($f, '!');

$s->movePen($f->getWidth('!'), 0);

$s->setRightFill($f2);

$s->setLine(40, 0x7f, 0x3f, 0);

$s->drawGlyph($f, '#');

$s->movePen($f->getWidth('#'), 0);

$s->setRightFill($f3);

$s->setLine(40, 0x7f, 0x7f, 0);

$s->drawGlyph($f, '%');

$s->movePen($f->getWidth('%'), 0);

$s->setRightFill($f4);

$s->setLine(40, 0, 0x7f, 0);

$s->drawGlyph($f, '*');

$s->movePen($f->getWidth('*'), 0);

$s->setRightFill($f5);

$s->setLine(40, 0, 0, 0x7f);

$s->drawGlyph($f, '@');

$m = new SWFMovie();

$m->setDimension(3000,2000);

$m->setRate(12.0);

$i = $m->add($s);

$i->moveTo(1500-$f->getWidth("!#%*@")/2, 1000+$f->getAscent()/2);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

Return Values

No value is returned.

SWFShape->setRightFill()

SWFShape->setRightFill() -- Sets right rasterizing color

Description

SWFShape

void setRightFill (SWFGradient $fill)

void setRightFill (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Shortcut for swfshape->setrightfill($s->addfill($r, $g, $b [, $a]));.

Return Values

No value is returned.

See Also

• SWFShape->setLeftFill()

The SWFSound class

Introduction

SWFSound.

Class synopsis

SWFSound

SWFSound {

/* Methods */

SWFSound __construct (string $filename, int $flags)
}

SWFSound

SWFSound -- Returns a new SWFSound object from given file

Description

SWFSound

SWFSound __construct (string $filename, int $flags)

Warning

This function is currently not documented; only its argument list is available.

The SWFSoundInstance class

Introduction

SWFSoundInstance objects are returned by the SWFSprite->startSound() and
SWFMovie->startSound() methods.

Class synopsis

SWFSoundInstance

SWFSoundInstance {

/* Methods */

void loopCount (int $point)

void loopInPoint (int $point)

void loopOutPoint (int $point)

void noMultiple (void)
}

SWFSoundInstance->loopCount()

SWFSoundInstance->loopCount() --

Description

SWFSoundInstance

void loopCount (int $point)

Warning

This function is currently not documented; only its argument list is available.

Parameters

point

Return Values

No value is returned.

See Also

• SWFSoundInstance->loopOutPoint()

SWFSoundInstance->loopInPoint()

SWFSoundInstance->loopInPoint() --

Description

SWFSoundInstance

void loopInPoint (int $point)

Warning

This function is currently not documented; only its argument list is available.

Parameters

point

Return Values

No value is returned.

See Also

• SWFSoundInstance->loopOutPoint()

SWFSoundInstance->loopOutPoint()

SWFSoundInstance->loopOutPoint() --

Description

SWFSoundInstance

void loopOutPoint (int $point)

Warning

This function is currently not documented; only its argument list is available.

Parameters

point

Return Values

No value is returned.

See Also

• SWFSoundInstance->loopInPoint()

SWFSoundInstance->noMultiple()

SWFSoundInstance->noMultiple() --

Description

SWFSoundInstance

void noMultiple (void)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

The SWFSprite class

Introduction

An SWFSprite is also known as a "movie clip", this allows one to create objects which are
animated in their own timelines. Hence, the sprite has most of the same methods as the
movie.

Class synopsis

SWFSprite

SWFSprite {

/* Methods */

void add (object $object)

SWFSprite __construct (void)

void labelFrame (string $label)

void nextFrame (void)

void remove (object $object)

void setFrames (int $number)

SWFSoundInstance startSound (SWFSound $sount)

void stopSound (SWFSound $sount)
}

SWFSprite->add()

SWFSprite->add() -- Adds an object to a sprite

Description

SWFSprite

void add (object $object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfsprite->add() adds a swfshape(), a swfbutton(), a swftext(), a swfaction() or a
swfsprite() object.

For displayable types (swfshape(), swfbutton(), swftext(), swfaction() or swfsprite()),
this returns a handle to the object in a display list.

Return Values

No value is returned.

SWFSprite->__construct()

SWFSprite->__construct() -- Creates a movie clip (a sprite)

Description

SWFSprite

SWFSprite __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new SWFSprite object.

SWFSprite->labelFrame()

SWFSprite->labelFrame() -- Labels frame

Description

SWFSprite

void labelFrame (string $label)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFSprite->nextFrame()

SWFSprite->nextFrame() -- Moves to the next frame of the animation

Description

SWFSprite

void nextFrame (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfsprite->setframes() moves to the next frame of the animation.

Return Values

No value is returned.

SWFSprite->remove()

SWFSprite->remove() -- Removes an object to a sprite

Description

SWFSprite

void remove (object $object)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfsprite->remove() remove a swfshape(), a swfbutton(), a swftext(), a swfaction() or
a swfsprite() object from the sprite.

Return Values

No value is returned.

SWFSprite->setFrames()

SWFSprite->setFrames() -- Sets the total number of frames in the animation

Description

SWFSprite

void setFrames (int $number)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swfsprite->setframes() sets the total number of frames in the animation to
numberofframes.

Return Values

No value is returned.

SWFSprite->startSound()

SWFSprite->startSound() --

Description

SWFSprite

SWFSoundInstance startSound (SWFSound $sount)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFSprite->stopSound()

SWFSprite->stopSound()

SWFSprite->stopSound() --

Description

SWFSprite

void stopSound (SWFSound $sount)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFSprite->startSound()

The SWFText class

Introduction

SWFText.

Class synopsis

SWFText

SWFText {

/* Methods */

void addString (string $string)

void addUTF8String (string $text)

void __construct (void)

float getAscent (void)

float getDescent (void)

float getLeading (void)

float getUTF8Width (string $string)

float getWidth (string $string)

void moveTo (int $x, int $y)

void setColor (int $red, int $green, int $blue [, int $a])

void setFont (string $font)

void setHeight (int $height)

void setSpacing (float $spacing)
}

SWFText->addString()

SWFText->addString() -- Draws a string

Description

SWFText

void addString (string $string)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftext->addstring() draws the string string at the current pen (cursor) location. Pen is
at the baseline of the text; i.e., ascending text is in the -y direction.

Return Values

No value is returned.

See Also

• SWFText->addUTF8String()

SWFText->addUTF8String()

SWFText->addUTF8String() -- Writes the given text into this SWFText object at the current
pen position, using the current font, height, spacing, and color

Description

SWFText

void addUTF8String (string $text)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFText->addString()

SWFText->__construct()

SWFText->__construct() -- Creates a new SWFText object

Description

SWFText

void __construct (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Creates a new SWFText object, fresh for manipulating.

Examples

This simple example will draw a big yellow "PHP generates Flash with Ming" text, on white
background.

Example #1931 - swftext() example

<?php

$f = new SWFFont("Techno.fdb");

$t = new SWFText();

$t->setFont($f);

$t->moveTo(200, 2400);

$t->setColor(0xff, 0xff, 0);

$t->setHeight(1200);

$t->addString("PHP generates Flash with Ming!!");

$m = new SWFMovie();

$m->setDimension(5400, 3600);

$m->add($t);

header('Content-type: application/x-shockwave-flash');

$m->output();

?>

SWFText->getAscent()

SWFText->getAscent() -- Returns the ascent of the current font at its current size, or 0 if
not available

Description

SWFText

float getAscent (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFText->getDescent()

SWFText->getDescent()

SWFText->getDescent() -- Returns the descent of the current font at its current size, or 0 if
not available

Description

SWFText

float getDescent (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFText->getAscent()

SWFText->getLeading()

SWFText->getLeading() -- Returns the leading of the current font at its current size, or 0 if
not available

Description

SWFText

float getLeading (void)

Warning

This function is currently not documented; only its argument list is available.

SWFText->getUTF8Width()

SWFText->getUTF8Width() -- calculates the width of the given string in this text objects
current font and size

Description

SWFText

float getUTF8Width (string $string)

Warning

This function is currently not documented; only its argument list is available.

See Also

• SWFText->getWidth()

SWFText->getWidth()

SWFText->getWidth() -- Computes string's width

Description

SWFText

float getWidth (string $string)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Returns the rendered width of the string at the text object's current font, scale, and
spacing settings.

See Also

• SWFText->getUTF8Width()

SWFText->moveTo()

SWFText->moveTo() -- Moves the pen

Description

SWFText

void moveTo (int $x, int $y)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftext->moveto() moves the pen (or cursor, if that makes more sense) to (x, y) in text
object's coordinate space. If either is zero, though, value in that dimension stays the same.
Annoying, should be fixed.

Return Values

No value is returned.

SWFText->setColor()

SWFText->setColor() -- Sets the current text color

Description

SWFText

void setColor (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Changes the current text color.

Parameters

These parameters are integers between 0 and 255 or hexadecimals between 0x00 and
0xFF:
red

Value of red component

green

Value of green component

blue

Value of blue component

a

Value of alpha component

Return Values

No value is returned.

SWFText->setFont()

SWFText->setFont() -- Sets the current font

Description

SWFText

void setFont (string $font)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftext->setfont() sets the current font to font.

Return Values

No value is returned.

SWFText->setHeight()

SWFText->setHeight() -- Sets the current font height

Description

SWFText

void setHeight (int $height)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftext->setheight() sets the current font height to height. Default is 240.

Return Values

No value is returned.

SWFText->setSpacing()

SWFText->setSpacing() -- Sets the current font spacing

Description

SWFText

void setSpacing (float $spacing)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftext->setspacing() sets the current font spacing to spacing. Default is 1.0. 0 is all of
the letters written at the same point. This doesn't really work that well because it inflates
the advance across the letter, doesn't add the same amount of spacing between the
letters. I should try and explain that better, prolly. Or just fix the damn thing to do constant
spacing. This was really just a way to figure out how letter advances work, anyway.. So
nyah.

Return Values

No value is returned.

The SWFTextField class

Introduction

SWFTextField.

Class synopsis

SWFTextField

SWFTextField {

/* Methods */

void addChars (string $chars)

void addString (string $string)

void align (int $alignement)

SWFTextField __construct ([int $flags])

void setBounds (int $width, int $height)

void setColor (int $red, int $green, int $blue [, int $a])

void setFont (string $font)

void setHeight (int $height)

void setIndentation (int $width)

void setLeftMargin (int $width)

void setLineSpacing (int $height)

void setMargins (int $left, int $right)

void setName (string $name)

void setPadding (float $padding)

void setRightMargin (int $width)

}

SWFTextField->addChars()

SWFTextField->addChars() -- adds characters to a font that will be available within a
textfield

Description

SWFTextField

void addChars (string $chars)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

See Also

• SWFTextField->addString()

SWFTextField->addString()

SWFTextField->addString() -- Concatenates the given string to the text field

Description

SWFTextField

void addString (string $string)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setname() concatenates the string string to the text field.

Return Values

No value is returned.

SWFTextField->align()

SWFTextField->align() -- Sets the text field alignment

Description

SWFTextField

void align (int $alignement)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->align() sets the text field alignment to alignement. Valid values for
alignement are : SWFTEXTFIELD_ALIGN_LEFT, SWFTEXTFIELD_ALIGN_RIGHT,
SWFTEXTFIELD_ALIGN_CENTER and SWFTEXTFIELD_ALIGN_JUSTIFY.

Return Values

No value is returned.

SWFTextField->__construct()

SWFTextField->__construct() -- Creates a text field object

Description

SWFTextField

SWFTextField __construct ([int $flags])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield() creates a new text field object. Text Fields are less flexible than swftext()
objects- they can't be rotated, scaled non-proportionally, or skewed, but they can be used
as form entries, and they can use browser-defined fonts.

The optional flags change the text field's behavior. It has the following possibles values :

• SWFTEXTFIELD_DRAWBOX draws the outline of the textfield

• SWFTEXTFIELD_HASLENGTH

• SWFTEXTFIELD_HTML allows text markup using HTML-tags

• SWFTEXTFIELD_MULTILINE allows multiple lines

• SWFTEXTFIELD_NOEDIT indicates that the field shouldn't be user-editable

• SWFTEXTFIELD_NOSELECT makes the field non-selectable

• SWFTEXTFIELD_PASSWORD obscures the data entry

• SWFTEXTFIELD_WORDWRAP allows text to wrap

Flags are combined with the bitwise OR operation. For example,
<?php

$t = newSWFTextField(SWFTEXTFIELD_PASSWORD | SWFTEXTFIELD_NOEDIT);

?>
creates a totally useless non-editable password field.

SWFTextField has the following methods : swftextfield->setfont(),
swftextfield->setbounds(), swftextfield->align(), swftextfield->setheight(),
swftextfield->setleftmargin(), swftextfield->setrightmargin(),
swftextfield->setmargins(), swftextfield->setindentation(),

swftextfield->setlinespacing(), swftextfield->setcolor(), swftextfield->setname() and
swftextfield->addstring().

SWFTextField->setBounds()

SWFTextField->setBounds() -- Sets the text field width and height

Description

SWFTextField

void setBounds (int $width, int $height)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setbounds() sets the text field width to width and height to height. If you
don't set the bounds yourself, Ming makes a poor guess at what the bounds are.

Return Values

No value is returned.

SWFTextField->setColor()

SWFTextField->setColor() -- Sets the color of the text field

Description

SWFTextField

void setColor (int $red, int $green, int $blue [, int $a])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setcolor() sets the color of the text field. Default is fully opaque black. Color
is represented using RGB system.

Parameters

These parameters are integers between 0 and 255 or hexadecimals between 0x00 and
0xFF:
red

Value of red component

green

Value of green component

blue

Value of blue component

a

Value of alpha component

Return Values

No value is returned.

SWFTextField->setFont()

SWFTextField->setFont() -- Sets the text field font

Description

SWFTextField

void setFont (string $font)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setfont() sets the text field font to the [browser-defined?] font font.

Return Values

No value is returned.

SWFTextField->setHeight()

SWFTextField->setHeight() -- Sets the font height of this text field font

Description

SWFTextField

void setHeight (int $height)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setheight() sets the font height of this text field font to the given height
height. Default is 240.

Return Values

No value is returned.

SWFTextField->setIndentation()

SWFTextField->setIndentation() -- Sets the indentation of the first line

Description

SWFTextField

void setIndentation (int $width)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setindentation() sets the indentation of the first line in the text field, to
width.

Return Values

No value is returned.

SWFTextField->setLeftMargin()

SWFTextField->setLeftMargin() -- Sets the left margin width of the text field

Description

SWFTextField

void setLeftMargin (int $width)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setleftmargin() sets the left margin width of the text field to width. Default
is 0.

Return Values

No value is returned.

SWFTextField->setLineSpacing()

SWFTextField->setLineSpacing() -- Sets the line spacing of the text field

Description

SWFTextField

void setLineSpacing (int $height)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setlinespacing() sets the line spacing of the text field to the height of
height. Default is 40.

Return Values

No value is returned.

SWFTextField->setMargins()

SWFTextField->setMargins() -- Sets the margins width of the text field

Description

SWFTextField

void setMargins (int $left, int $right)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setmargins() set both margins at once, for the man on the go.

Return Values

No value is returned.

SWFTextField->setName()

SWFTextField->setName() -- Sets the variable name

Description

SWFTextField

void setName (string $name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setname() sets the variable name of this text field to name, for form posting
and action scripting purposes.

Return Values

No value is returned.

SWFTextField->setPadding()

SWFTextField->setPadding() -- Sets the padding of this textfield

Description

SWFTextField

void setPadding (float $padding)

Warning

This function is currently not documented; only its argument list is available.

Return Values

No value is returned.

SWFTextField->setRightMargin()

SWFTextField->setRightMargin() -- Sets the right margin width of the text field

Description

SWFTextField

void setRightMargin (int $width)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

swftextfield->setrightmargin() sets the right margin width of the text field to width.
Default is 0.

Return Values

No value is returned.

The SWFVideoStream class

Introduction

SWFVideoStream.

Class synopsis

SWFVideoStream

SWFVideoStream {

/* Methods */

SWFVideoStream __construct ([string $file])

int getNumFrames (void)

void setDimension (int $x, int $y)
}

SWFVideoStream->__construct()

SWFVideoStream->__construct() -- Returns a SWFVideoStream object

Description

SWFVideoStream

SWFVideoStream __construct ([string $file])

Warning

This function is currently not documented; only its argument list is available.

SWFVideoStream->getNumFrames()

SWFVideoStream->getNumFrames() -- Returns the number of frames in the video

Description

SWFVideoStream

int getNumFrames (void)

This function returns the number of video-frames of a SWFVideoStream.

Return Values

Returns the number of frames, as an integer

SWFVideoStream->setDimension()

SWFVideoStream->setDimension() -- Sets video dimension

Description

SWFVideoStream

void setDimension (int $x, int $y)

Sets the width and height for streamed videos.

Parameters

x

Width in pixels.

y

Height in pixels.

Return Values

No value is returned.

PDF

Introduction

The PDF functions in PHP can create PDF files using the PDFlib library which was initially
created by Thomas Merz and is now maintained by » PDFlib GmbH.

The documentation in this section is only meant to be an overview of the available
functions in the PDFlib library and should not be considered an exhaustive reference. For
the full and detailed explanation of each function, consult the PDFlib Reference Manual
which is included in all PDFlib packages distributed by PDFlib GmbH. It provides a very
good overview of what PDFlib is capable of doing and contains the most up-to-date
documentation of all functions.

For a jump start we urge you to take a look at the programming samples which are
contained in all PDFlib distribution packages. These samples demonstrate basic text,
vector, and graphics output as well as higher-level functions, such as the PDF import
facility (PDI).

All of the functions in PDFlib and the PHP module have identical function names and
parameters. Unless configured otherwise, all lengths and coordinates are measured in
PostScript points. There are generally 72 PostScript points to an inch, but this depends on
the output resolution. Please see the PDFlib Reference Manual included in the PDFlib
distribution for a more thorough explanation of the coordinate system used.

With version 6, PDFlib offers an object-oriented API for PHP 5 in addition to the
function-oriented API for PHP 4. The main difference is the following:

In PHP 4, first a PDF resource has to be retrieved with a function call like

$p = PDF_new().

This PDF resource is used as the first parameter in all further function calls, such as in

PDF_begin_document($p, "", "").

In PHP 5 however, a PDFlib object is created with

$p = new PDFlib().

This object offers all PDFlib API functions as methods, e.g. as with

$p->begin_document("", "").

In addition, exceptions have been introduced in PHP 5 which are supported by PDFlib 6
and later as well.

Please see the examples below for more information.

http://www.pdflib.com/products/pdflib-family/

Note

If you're interested in alternative free PDF generators that do not utilize external PDF
libraries, see this related FAQ.

Installing/Configuring

Requirements

PDFlib Lite is available as open source. However, the PDFlib Lite license allows free use
only under certain conditions. PDFlib Lite supports a subset of PDFlib's functionality;
please see the PDFlib web site for details. The full version of PDFlib is available for
download at » http://www.pdflib.com/products/pdflib-family/, but requires that you purchase
a license for commercial use.

Issues with older versions of PDFlib

Any version of PHP 4 after March 9, 2000 does not support versions of PDFlib older than
3.0.

PDFlib 4.0 or greater is supported by PHP 4.3.0 and later.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: » http://pecl.php.net/package/pdflib
.

To get these functions to work in PHP < 4.3.9, you have to compile PHP with
--with-pdflib[=DIR]. DIR is the PDFlib base install directory, defaults to /usr/local.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

PDF_new() creates a new PDFlib object required by most PDF functions.

http://www.pdflib.com/products/pdflib-family/
http://pecl.php.net/
http://pecl.php.net/package/pdflib

Predefined Constants

This extension has no constants defined.

Examples

Basic Usage Examples

Most of the functions are fairly easy to use. The most difficult part is probably creating your
first PDF document. The following example should help to get you started. It is developed
for PHP 4 and creates the file hello.pdf with one page. It defines some document info field
contents, loads the Helvetica-Bold font and outputs the text "Hello world! (says PHP)".

Example #1932 - Hello World example from PDFlib distribution for PHP 4

<?php

$p = PDF_new();

/* open new PDF file; insert a file name to create the PDF on disk */

if (PDF_begin_document($p, "", "") == 0) {

 die("Error: " . PDF_get_errmsg($p));

}

PDF_set_info($p, "Creator", "hello.php");

PDF_set_info($p, "Author", "Rainer Schaaf");

PDF_set_info($p, "Title", "Hello world (PHP)!");

PDF_begin_page_ext($p, 595, 842, "");

$font = PDF_load_font($p, "Helvetica-Bold", "winansi", "");

PDF_setfont($p, $font, 24.0);

PDF_set_text_pos($p, 50, 700);

PDF_show($p, "Hello world!");

PDF_continue_text($p, "(says PHP)");

PDF_end_page_ext($p, "");

PDF_end_document($p, "");

$buf = PDF_get_buffer($p);

$len = strlen($buf);

header("Content-type: application/pdf");

header("Content-Length: $len");

header("Content-Disposition: inline; filename=hello.pdf");

print $buf;

PDF_delete($p);

?>

The following example comes with the PDFlib distribution for PHP 5. It uses the new
exception handling and object encapsulation features available in PHP 5. It creates the file
hello.pdf with one page. It defines some document info field contents, loads the

Helvetica-Bold font and outputs the text "Hello world! (says PHP)".

Example #1933 - Hello World example from PDFlib distribution for PHP 5

<?php

try {

 $p = new PDFlib();

 /* open new PDF file; insert a file name to create the PDF on disk */

 if ($p->begin_document("", "") == 0) {

 die("Error: " . $p->get_errmsg());

 }

 $p->set_info("Creator", "hello.php");

 $p->set_info("Author", "Rainer Schaaf");

 $p->set_info("Title", "Hello world (PHP)!");

 $p->begin_page_ext(595, 842, "");

 $font = $p->load_font("Helvetica-Bold", "winansi", "");

 $p->setfont($font, 24.0);

 $p->set_text_pos(50, 700);

 $p->show("Hello world!");

 $p->continue_text("(says PHP)");

 $p->end_page_ext("");

 $p->end_document("");

 $buf = $p->get_buffer();

 $len = strlen($buf);

 header("Content-type: application/pdf");

 header("Content-Length: $len");

 header("Content-Disposition: inline; filename=hello.pdf");

 print $buf;

}

catch (PDFlibException $e) {

 die("PDFlib exception occurred in hello sample:\n" .

 "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": " .

 $e->get_errmsg() . "\n");

}

catch (Exception $e) {

 die($e);

}

$p = 0;

?>

PDF Functions

Remarks about Deprecated PDFlib Functions

Starting with PHP 4.0.5, the PHP extension for PDFlib is officially supported by PDFlib
GmbH. This means that all the functions described in the PDFlib Reference Manual are
supported by PHP 4 with exactly the same meaning and the same parameters. However,
with PDFlib Version 5.0.4 or higher all parameters have to be specified. For compatibility
reasons, this binding for PDFlib still supports most of the deprecated functions, but they
should be replaced by their new versions. PDFlib GmbH will not support any problems
arising from the use of these deprecated functions. The documentation in this section
indicates old functions as "Deprecated" and gives the replacement function to be used
instead.

PDF_activate_item

PDF_activate_item -- Activate structure element or other content item

Description

bool PDF_activate_item (resource $pdfdoc, int $id)

Activates a previously created structure element or other content item. Returns TRUE on
success or FALSE on failure.

PDF_add_annotation

PDF_add_annotation -- Add annotation [deprecated]

Description

This function is deprecated, use PDF_create_annotation() with type=Text instead.

PDF_add_bookmark

PDF_add_bookmark -- Add bookmark for current page [deprecated]

Description

This function is deprecated since PDFlib version 6, use PDF_create_bookmark() instead.

PDF_add_launchlink

PDF_add_launchlink -- Add launch annotation for current page [deprecated]

Description

bool PDF_add_launchlink (resource $pdfdoc, float $llx, float $lly, float $urx, float $
ury, string $filename)

Adds a link to a web resource.

This function is deprecated since PDFlib version 6, use PDF_create_action() with
type=Launch and PDF_create_annotation() with type=Link instead.

PDF_add_locallink

PDF_add_locallink -- Add link annotation for current page [deprecated]

Description

bool PDF_add_locallink (resource $pdfdoc, float $lowerleftx, float $lowerlefty, float
$upperrightx, float $upperrighty, int $page, string $dest)

Add a link annotation to a target within the current PDF file. Returns TRUE on success or
FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_create_action() with
type=GoTo and PDF_create_annotation() with type=Link instead.

PDF_add_nameddest

PDF_add_nameddest -- Create named destination

Description

bool PDF_add_nameddest (resource $pdfdoc, string $name, string $optlist)

Creates a named destination on an arbitrary page in the current document. Returns TRUE
on success or FALSE on failure.

PDF_add_note

PDF_add_note -- Set annotation for current page [deprecated]

Description

bool PDF_add_note (resource $pdfdoc, float $llx, float $lly, float $urx, float $ury,
string $contents, string $title, string $icon, int $open)

Sets an annotation for the current page. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_create_annotation() with
type=Text instead.

PDF_add_outline

PDF_add_outline -- Add bookmark for current page [deprecated]

Description

This function is deprecated, use PDF_create_bookmark() instead.

PDF_add_pdflink

PDF_add_pdflink -- Add file link annotation for current page [deprecated]

Description

bool PDF_add_pdflink (resource $pdfdoc, float $bottom_left_x, float $bottom_left_y,
float $up_right_x, float $up_right_y, string $filename, int $page, string $dest)

Add a file link annotation to a PDF target. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_create_action() with
type=GoToR and PDF_create_annotation() with type=Link instead.

PDF_add_table_cell

PDF_add_table_cell -- Add a cell to a new or existing table

Description

int PDF_add_table_cell (resource $pdfdoc, int $table, int $column, int $row, string $
text, string $optlist)

Adds a cell to a new or existing table.

PDF_add_textflow

PDF_add_textflow -- Create Textflow or add text to existing Textflow

Description

int PDF_add_textflow (resource $pdfdoc, int $textflow, string $text, string $optlist)

Creates a Textflow object, or adds text and explicit options to an existing Textflow.

PDF_add_thumbnail

PDF_add_thumbnail -- Add thumbnail for current page

Description

bool PDF_add_thumbnail (resource $pdfdoc, int $image)

Adds an existing image as thumbnail for the current page. Returns TRUE on success or
FALSE on failure.

PDF_add_weblink

PDF_add_weblink -- Add weblink for current page [deprecated]

Description

bool PDF_add_weblink (resource $pdfdoc, float $lowerleftx, float $lowerlefty, float $
upperrightx, float $upperrighty, string $url)

Adds a weblink annotation to a target url on the Web. Returns TRUE on success or
FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_create_action() with
type=URI and PDF_create_annotation() with type=Link instead.

PDF_arc

PDF_arc -- Draw a counterclockwise circular arc segment

Description

bool PDF_arc (resource $p, float $x, float $y, float $r, float $alpha, float $beta)

Adds a counterclockwise circular arc.

PDF_arcn

PDF_arcn -- Draw a clockwise circular arc segment

Description

bool PDF_arcn (resource $p, float $x, float $y, float $r, float $alpha, float $beta)

Except for the drawing direction, this function behaves exactly like PDF_arc().

PDF_attach_file

PDF_attach_file -- Add file attachment for current page [deprecated]

Description

bool PDF_attach_file (resource $pdfdoc, float $llx, float $lly, float $urx, float $ury,
string $filename, string $description, string $author, string $mimetype, string $icon)

Adds a file attachment annotation. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_create_annotation() with
type=FileAttachment instead.

PDF_begin_document

PDF_begin_document -- Create new PDF file

Description

int PDF_begin_document (resource $pdfdoc, string $filename, string $optlist)

Creates a new PDF file subject to various options.

PDF_begin_font

PDF_begin_font -- Start a Type 3 font definition

Description

bool PDF_begin_font (resource $pdfdoc, string $filename, float $a, float $b, float $c,
float $d, float $e, float $f, string $optlist)

Starts a Type 3 font definition.

PDF_begin_glyph

PDF_begin_glyph -- Start glyph definition for Type 3 font

Description

bool PDF_begin_glyph (resource $pdfdoc, string $glyphname, float $wx, float $llx, float
$lly, float $urx, float $ury)

Starts a glyph definition for a Type 3 font.

PDF_begin_item

PDF_begin_item -- Open structure element or other content item

Description

int PDF_begin_item (resource $pdfdoc, string $tag, string $optlist)

Opens a structure element or other content item with attributes supplied as options.

PDF_begin_layer

PDF_begin_layer -- Start layer

Description

bool PDF_begin_layer (resource $pdfdoc, int $layer)

Starts a layer for subsequent output on the page. Returns TRUE on success or FALSE on
failure.

This function requires PDF 1.5.

PDF_begin_page_ext

PDF_begin_page_ext -- Start new page

Description

bool PDF_begin_page_ext (resource $pdfdoc, float $width, float $height, string $
optlist)

Adds a new page to the document, and specifies various options. The parameters width
and height are the dimensions of the new page in points. Returns TRUE on success or
FALSE on failure.

Common Page Sizes in Points

name size

A0 2380?3368

A1 1684?2380

A2 1190?1684

A3 842?1190

A4 595?842

A5 421?595

A6 297?421

B5 501?709

letter (8.5"?11") 612?792

legal (8.5"?14") 612?1008

ledger (17"?11") 1224?792

11"?17" 792?1224

PDF_begin_page

PDF_begin_page -- Start new page [deprecated]

Description

bool PDF_begin_page (resource $pdfdoc, float $width, float $height)

Adds a new page to the document. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_begin_page_ext() instead.

PDF_begin_pattern

PDF_begin_pattern -- Start pattern definition

Description

int PDF_begin_pattern (resource $pdfdoc, float $width, float $height, float $xstep, float
$ystep, int $painttype)

Starts a new pattern definition.

PDF_begin_template_ext

PDF_begin_template_ext -- Start template definition

Description

int PDF_begin_template_ext (resource $pdfdoc, float $width, float $height, string $
optlist)

Starts a new template definition.

PDF_begin_template

PDF_begin_template -- Start template definition [deprecated]

Description

int PDF_begin_template (resource $pdfdoc, float $width, float $height)

Starts a new template definition.

This function is deprecated since PDFlib version 7, use PDF_begin_template_ext()
instead.

PDF_circle

PDF_circle -- Draw a circle

Description

bool PDF_circle (resource $pdfdoc, float $x, float $y, float $r)

Adds a circle. Returns TRUE on success or FALSE on failure.

PDF_clip

PDF_clip -- Clip to current path

Description

bool PDF_clip (resource $p)

Uses the current path as clipping path, and terminate the path. Returns TRUE on success
or FALSE on failure.

PDF_close_image

PDF_close_image -- Close image

Description

bool PDF_close_image (resource $p, int $image)

Closes an image retrieved with the PDF_open_image() function.

PDF_close_pdi_page

PDF_close_pdi_page -- Close the page handle

Description

bool PDF_close_pdi_page (resource $p, int $page)

Closes the page handle, and frees all page-related resources. Returns TRUE on success
or FALSE on failure.

PDF_close_pdi

PDF_close_pdi -- Close the input PDF document [deprecated]

Description

bool PDF_close_pdi (resource $p, int $doc)

Closes all open page handles, and closes the input PDF document. Returns TRUE on
success or FALSE on failure.

This function is deprecated since PDFlib version 7, use PDF_close_pdi_document()
instead.

PDF_close

PDF_close -- Close pdf resource [deprecated]

Description

bool PDF_close (resource $p)

Closes the generated PDF file, and frees all document-related resources. Returns TRUE
on success or FALSE on failure.

This function is deprecated since PDFlib version 6, use PDF_end_document() instead.

PDF_closepath_fill_stroke

PDF_closepath_fill_stroke -- Close, fill and stroke current path

Description

bool PDF_closepath_fill_stroke (resource $p)

Closes the path, fills, and strokes it. Returns TRUE on success or FALSE on failure.

PDF_closepath_stroke

PDF_closepath_stroke -- Close and stroke path

Description

bool PDF_closepath_stroke (resource $p)

Closes the path, and strokes it. Returns TRUE on success or FALSE on failure.

PDF_closepath

PDF_closepath -- Close current path

Description

bool PDF_closepath (resource $p)

Closes the current path. Returns TRUE on success or FALSE on failure.

PDF_concat

PDF_concat -- Concatenate a matrix to the CTM

Description

bool PDF_concat (resource $p, float $a, float $b, float $c, float $d, float $e, float $f)

Concatenates a matrix to the current transformation matrix (CTM). Returns TRUE on
success or FALSE on failure.

PDF_continue_text

PDF_continue_text -- Output text in next line

Description

bool PDF_continue_text (resource $p, string $text)

Prints text at the next line. Returns TRUE on success or FALSE on failure.

PDF_create_3dview

PDF_create_3dview -- Create 3D view

Description

int PDF_create_3dview (resource $pdfdoc, string $username, string $optlist)

Creates a 3D view.

This function requires PDF 1.6.

PDF_create_action

PDF_create_action -- Create action for objects or events

Description

int PDF_create_action (resource $pdfdoc, string $type, string $optlist)

Creates an action which can be applied to various objects and events.

PDF_create_annotation

PDF_create_annotation -- Create rectangular annotation

Description

bool PDF_create_annotation (resource $pdfdoc, float $llx, float $lly, float $urx, float
$ury, string $type, string $optlist)

Creates a rectangular annotation on the current page.

PDF_create_bookmark

PDF_create_bookmark -- Create bookmark

Description

int PDF_create_bookmark (resource $pdfdoc, string $text, string $optlist)

Creates a bookmark subject to various options.

PDF_create_field

PDF_create_field -- Create form field

Description

bool PDF_create_field (resource $pdfdoc, float $llx, float $lly, float $urx, float $ury,
string $name, string $type, string $optlist)

Creates a form field on the current page subject to various options.

PDF_create_fieldgroup

PDF_create_fieldgroup -- Create form field group

Description

bool PDF_create_fieldgroup (resource $pdfdoc, string $name, string $optlist)

Creates a form field group subject to various options.

PDF_create_gstate

PDF_create_gstate -- Create graphics state object

Description

int PDF_create_gstate (resource $pdfdoc, string $optlist)

Creates a graphics state object subject to various options.

PDF_create_pvf

PDF_create_pvf -- Create PDFlib virtual file

Description

bool PDF_create_pvf (resource $pdfdoc, string $filename, string $data, string $optlist
)

Creates a named virtual read-only file from data provided in memory.

PDF_create_textflow

PDF_create_textflow -- Create textflow object

Description

int PDF_create_textflow (resource $pdfdoc, string $text, string $optlist)

Preprocesses text for later formatting and creates a textflow object.

PDF_curveto

PDF_curveto -- Draw Bezier curve

Description

bool PDF_curveto (resource $p, float $x1, float $y1, float $x2, float $y2, float $x3, float
$y3)

Draws a Bezier curve from the current point, using 3 more control points. Returns TRUE
on success or FALSE on failure.

PDF_define_layer

PDF_define_layer -- Create layer definition

Description

int PDF_define_layer (resource $pdfdoc, string $name, string $optlist)

Creates a new layer definition.

This function requires PDF 1.5.

PDF_delete_pvf

PDF_delete_pvf -- Delete PDFlib virtual file

Description

int PDF_delete_pvf (resource $pdfdoc, string $filename)

Deletes a named virtual file and frees its data structures (but not the contents).

PDF_delete_table

PDF_delete_table -- Delete table object

Description

bool PDF_delete_table (resource $pdfdoc, int $table, string $optlist)

Deletes a table and all associated data structures.

PDF_delete_textflow

PDF_delete_textflow -- Delete textflow object

Description

bool PDF_delete_textflow (resource $pdfdoc, int $textflow)

Deletes a textflow and the associated data structures.

PDF_delete

PDF_delete -- Delete PDFlib object

Description

bool PDF_delete (resource $pdfdoc)

Deletes a PDFlib object, and frees all internal resources. Returns TRUE on success or
FALSE on failure.

PDF_encoding_set_char

PDF_encoding_set_char -- Add glyph name and/or Unicode value

Description

bool PDF_encoding_set_char (resource $pdfdoc, string $encoding, int $slot, string $
glyphname, int $uv)

Adds a glyph name and/or Unicode value to a custom encoding.

PDF_end_document

PDF_end_document -- Close PDF file

Description

bool PDF_end_document (resource $pdfdoc, string $optlist)

Closes the generated PDF file and applies various options.

PDF_end_font

PDF_end_font -- Terminate Type 3 font definition

Description

bool PDF_end_font (resource $pdfdoc)

Terminates a Type 3 font definition.

PDF_end_glyph

PDF_end_glyph -- Terminate glyph definition for Type 3 font

Description

bool PDF_end_glyph (resource $pdfdoc)

Terminates a glyph definition for a Type 3 font.

PDF_end_item

PDF_end_item -- Close structure element or other content item

Description

bool PDF_end_item (resource $pdfdoc, int $id)

Closes a structure element or other content item.

PDF_end_layer

PDF_end_layer -- Deactivate all active layers

Description

bool PDF_end_layer (resource $pdfdoc)

Deactivates all active layers. Returns TRUE on success or FALSE on failure.

This function requires PDF 1.5.

PDF_end_page_ext

PDF_end_page_ext -- Finish page

Description

bool PDF_end_page_ext (resource $pdfdoc, string $optlist)

Finishes a page, and applies various options. Returns TRUE on success or FALSE on
failure.

PDF_end_page

PDF_end_page -- Finish page

Description

bool PDF_end_page (resource $p)

Finishes the page. Returns TRUE on success or FALSE on failure.

PDF_end_pattern

PDF_end_pattern -- Finish pattern

Description

bool PDF_end_pattern (resource $p)

Finishes the pattern definition. Returns TRUE on success or FALSE on failure.

PDF_end_template

PDF_end_template -- Finish template

Description

bool PDF_end_template (resource $p)

Finishes a template definition. Returns TRUE on success or FALSE on failure.

PDF_endpath

PDF_endpath -- End current path

Description

bool PDF_endpath (resource $p)

Ends the current path without filling or stroking it.

PDF_fill_imageblock

PDF_fill_imageblock -- Fill image block with variable data

Description

int PDF_fill_imageblock (resource $pdfdoc, int $page, string $blockname, int $image,
string $optlist)

Fills an image block with variable data according to its properties.

This function is only available in the PDFlib Personalization Server (PPS).

PDF_fill_pdfblock

PDF_fill_pdfblock -- Fill PDF block with variable data

Description

int PDF_fill_pdfblock (resource $pdfdoc, int $page, string $blockname, int $contents,
string $optlist)

Fills a PDF block with variable data according to its properties.

This function is only available in the PDFlib Personalization Server (PPS).

PDF_fill_stroke

PDF_fill_stroke -- Fill and stroke path

Description

bool PDF_fill_stroke (resource $p)

Fills and strokes the current path with the current fill and stroke color. Returns TRUE on
success or FALSE on failure.

PDF_fill_textblock

PDF_fill_textblock -- Fill text block with variable data

Description

int PDF_fill_textblock (resource $pdfdoc, int $page, string $blockname, string $text,
string $optlist)

Fills a text block with variable data according to its properties.

This function is only available in the PDFlib Personalization Server (PPS).

PDF_fill

PDF_fill -- Fill current path

Description

bool PDF_fill (resource $p)

Fills the interior of the current path with the current fill color. Returns TRUE on success or
FALSE on failure.

PDF_findfont

PDF_findfont -- Prepare font for later use [deprecated]

Description

int PDF_findfont (resource $p, string $fontname, string $encoding, int $embed)

Search for a font and prepare it for later use with PDF_setfont(). The metrics will be
loaded, and if embed is nonzero, the font file will be checked, but not yet used. encoding is
one of builtin, macroman, winansi, host, a user-defined encoding name or the name of a
CMap. Parameter embed is optional before PHP 4.3.5 or with PDFlib less than 5.

This function is deprecated since PDFlib version 5, use PDF_load_font() instead.

PDF_fit_image

PDF_fit_image -- Place image or template

Description

bool PDF_fit_image (resource $pdfdoc, int $image, float $x, float $y, string $optlist)

Places an image or template on the page, subject to various options. Returns TRUE on
success or FALSE on failure.

PDF_fit_pdi_page

PDF_fit_pdi_page -- Place imported PDF page

Description

bool PDF_fit_pdi_page (resource $pdfdoc, int $page, float $x, float $y, string $optlist)

Places an imported PDF page on the page, subject to various options. Returns TRUE on
success or FALSE on failure.

PDF_fit_table

PDF_fit_table -- Place table on page

Description

string PDF_fit_table (resource $pdfdoc, int $table, float $llx, float $lly, float $urx,
float $ury, string $optlist)

Places a table on the page fully or partially.

PDF_fit_textflow

PDF_fit_textflow -- Format textflow in rectangular area

Description

string PDF_fit_textflow (resource $pdfdoc, int $textflow, float $llx, float $lly, float $
urx, float $ury, string $optlist)

Formats the next portion of a textflow into a rectangular area.

PDF_fit_textline

PDF_fit_textline -- Place single line of text

Description

bool PDF_fit_textline (resource $pdfdoc, string $text, float $x, float $y, string $optlist
)

Places a single line of text on the page, subject to various options. Returns TRUE on
success or FALSE on failure.

PDF_get_apiname

PDF_get_apiname -- Get name of unsuccessfull API function

Description

string PDF_get_apiname (resource $pdfdoc)

Gets the name of the API function which threw the last exception or failed.

PDF_get_buffer

PDF_get_buffer -- Get PDF output buffer

Description

string PDF_get_buffer (resource $p)

Fetches the buffer containing the generated PDF data.

PDF_get_errmsg

PDF_get_errmsg -- Get error text

Description

string PDF_get_errmsg (resource $pdfdoc)

Gets the text of the last thrown exception or the reason for a failed function call.

PDF_get_errnum

PDF_get_errnum -- Get error number

Description

int PDF_get_errnum (resource $pdfdoc)

Gets the number of the last thrown exception or the reason for a failed function call.

PDF_get_font

PDF_get_font -- Get font [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_get_value() with the
parameter font instead.

PDF_get_fontname

PDF_get_fontname -- Get font name [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_get_parameter() with the
parameter fontname instead.

PDF_get_fontsize

PDF_get_fontsize -- Font handling [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_get_value() with the
parameter fontsize instead.

PDF_get_image_height

PDF_get_image_height -- Get image height [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_get_value() with the
parameter imageheight instead.

PDF_get_image_width

PDF_get_image_width -- Get image width [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_get_value() with the
parameter imagewidth instead.

PDF_get_majorversion

PDF_get_majorversion -- Get major version number [deprecated]

Description

int PDF_get_majorversion (void)

This function is deprecated since PDFlib version 5, use PDF_get_value() with the
parameter major instead.

PDF_get_minorversion

PDF_get_minorversion -- Get minor version number [deprecated]

Description

int PDF_get_minorversion (void)

Returns the minor version number of the PDFlib version.

This function is deprecated since PDFlib version 5, use PDF_get_value() with the
parameter minor instead.

PDF_get_parameter

PDF_get_parameter -- Get string parameter

Description

string PDF_get_parameter (resource $p, string $key, float $modifier)

Gets the contents of some PDFlib parameter with string type.

PDF_get_pdi_parameter

PDF_get_pdi_parameter -- Get PDI string parameter [deprecated]

Description

string PDF_get_pdi_parameter (resource $p, string $key, int $doc, int $page, int $
reserved)

Gets the contents of a PDI document parameter with string type.

This function is deprecated since PDFlib version 7, use PDF_pcos_get_string() instead.

PDF_get_pdi_value

PDF_get_pdi_value -- Get PDI numerical parameter [deprecated]

Description

float PDF_get_pdi_value (resource $p, string $key, int $doc, int $page, int $reserved)

Gets the contents of a PDI document parameter with numerical type.

This function is deprecated since PDFlib version 7, use PDF_pcos_get_number() instead.

PDF_get_value

PDF_get_value -- Get numerical parameter

Description

float PDF_get_value (resource $p, string $key, float $modifier)

Gets the value of some PDFlib parameter with numerical type.

PDF_info_font

PDF_info_font -- Query detailed information about a loaded font

Description

float PDF_info-font (resource $pdfdoc, int $font, string $keyword, string $optlist)

Queries detailed information about a loaded font.

PDF_info_matchbox

PDF_info_matchbox -- Query matchbox information

Description

float PDF_info_matchbox (resource $pdfdoc, string $boxname, int $num, string $keyword
)

Queries information about a matchbox on the current page.

PDF_info_table

PDF_info_table -- Retrieve table information

Description

float PDF_info_table (resource $pdfdoc, int $table, string $keyword)

Retrieves table information related to the most recently placed table instance.

PDF_info_textflow

PDF_info_textflow -- Query textflow state

Description

float PDF_info_textflow (resource $pdfdoc, int $textflow, string $keyword)

Queries the current state of a textflow.

PDF_info_textline

PDF_info_textline -- Perform textline formatting and query metrics

Description

float PDF_info_textline (resource $pdfdoc, string $text, string $keyword, string $
optlist)

Performs textline formatting and queries the resulting metrics.

PDF_initgraphics

PDF_initgraphics -- Reset graphic state

Description

bool PDF_initgraphics (resource $p)

Reset all color and graphics state parameters to their defaults. Returns TRUE on success
or FALSE on failure.

PDF_lineto

PDF_lineto -- Draw a line

Description

bool PDF_lineto (resource $p, float $x, float $y)

Draws a line from the current point to another point. Returns TRUE on success or FALSE
on failure.

PDF_load_3ddata

PDF_load_3ddata -- Load 3D model

Description

int PDF_load_3ddata (resource $pdfdoc, string $filename, string $optlist)

Loads a 3D model from a disk-based or virtual file.

This function requires PDF 1.6.

PDF_load_font

PDF_load_font -- Search and prepare font

Description

int PDF_load_font (resource $pdfdoc, string $fontname, string $encoding, string $
optlist)

Searches for a font and prepares it for later use.

PDF_load_iccprofile

PDF_load_iccprofile -- Search and prepare ICC profile

Description

int PDF_load_iccprofile (resource $pdfdoc, string $profilename, string $optlist)

Searches for an ICC profile, and prepares it for later use.

PDF_load_image

PDF_load_image -- Open image file

Description

int PDF_load_image (resource $pdfdoc, string $imagetype, string $filename, string $
optlist)

Opens a disk-based or virtual image file subject to various options.

PDF_makespotcolor

PDF_makespotcolor -- Make spot color

Description

int PDF_makespotcolor (resource $p, string $spotname)

Finds a built-in spot color name, or makes a named spot color from the current fill color.
Returns TRUE on success or FALSE on failure.

PDF_moveto

PDF_moveto -- Set current point

Description

bool PDF_moveto (resource $p, float $x, float $y)

Sets the current point for graphics output. Returns TRUE on success or FALSE on failure.

PDF_new

PDF_new -- Create PDFlib object

Description

resource PDF_new ()

Creates a new PDFlib object with default settings.

PDF_open_ccitt

PDF_open_ccitt -- Open raw CCITT image [deprecated]

Description

int PDF_open_ccitt (resource $pdfdoc, string $filename, int $width, int $height, int $
BitReverse, int $k, int $Blackls1)

Opens a raw CCITT image.

This function is deprecated since PDFlib version 5, use PDF_load_image() instead.

PDF_open_file

PDF_open_file -- Create PDF file [deprecated]

Description

bool PDF_open_file (resource $p, string $filename)

Creates a new PDF file using the supplied file name. Returns TRUE on success or FALSE
on failure.

This function is deprecated since PDFlib version 6, use PDF_begin_document() instead.

PDF_open_gif

PDF_open_gif -- Open GIF image [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_load_image() instead.

PDF_open_image_file

PDF_open_image_file -- Read image from file [deprecated]

Description

int PDF_open_image_file (resource $p, string $imagetype, string $filename, string $
stringparam, int $intparam)

Opens an image file.

This function is deprecated since PDFlib version 5, use PDF_load_image() with the
colorize, ignoremask, invert, mask, masked, and page options instead.

PDF_open_image

PDF_open_image -- Use image data [deprecated]

Description

int PDF_open_image (resource $p, string $imagetype, string $source, string $data, int $
length, int $width, int $height, int $components, int $bpc, string $params)

Uses image data from a variety of data sources.

This function is deprecated since PDFlib version 5, use virtual files and PDF_load_image()
instead.

PDF_open_jpeg

PDF_open_jpeg -- Open JPEG image [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_load_image() instead.

PDF_open_memory_image

PDF_open_memory_image -- Open image created with PHP's image functions [not
supported]

Description

int PDF_open_memory_image (resource $p, resource $image)

This function is not supported by PDFlib GmbH.

PDF_open_pdi_page

PDF_open_pdi_page -- Prepare a page

Description

int PDF_open_pdi_page (resource $p, int $doc, int $pagenumber, string $optlist)

Prepares a page for later use with PDF_fit_pdi_page().

PDF_open_pdi

PDF_open_pdi -- Open PDF file [deprecated]

Description

int PDF_open_pdi (resource $pdfdoc, string $filename, string $optlist, int $len)

Opens a disk-based or virtual PDF document and prepares it for later use.

This function is deprecated since PDFlib version 7, use PDF_open_pdi_document()
instead.

PDF_open_tiff

PDF_open_tiff -- Open TIFF image [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_load_image() instead.

PDF_pcos_get_number

PDF_pcos_get_number -- Get value of pCOS path with type number or boolean

Description

float PDF_pcos_get_number (resource $p, int $doc, string $path)

Gets the value of a pCOS path with type number or boolean.

PDF_pcos_get_stream

PDF_pcos_get_stream -- Get contents of pCOS path with type stream, fstream, or string

Description

string PDF_pcos_get_stream (resource $p, int $doc, string $optlist, string $path)

Gets the contents of a pCOS path with type stream, fstream, or string.

PDF_pcos_get_string

PDF_pcos_get_string -- Get value of pCOS path with type name, string, or boolean

Description

string PDF_pcos_get_string (resource $p, int $doc, string $path)

Gets the value of a pCOS path with type name, string, or boolean.

PDF_place_image

PDF_place_image -- Place image on the page [deprecated]

Description

bool PDF_place_image (resource $pdfdoc, int $image, float $x, float $y, float $scale)

Places an image and scales it. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 5, use PDF_fit_image() instead.

PDF_place_pdi_page

PDF_place_pdi_page -- Place PDF page [deprecated]

Description

bool PDF_place_pdi_page (resource $pdfdoc, int $page, float $x, float $y, float $sx,
float $sy)

Places a PDF page and scales it. Returns TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 5, use PDF_fit_pdi_page() instead.

PDF_process_pdi

PDF_process_pdi -- Process imported PDF document

Description

int PDF_process_pdi (resource $pdfdoc, int $doc, int $page, string $optlist)

Processes certain elements of an imported PDF document.

PDF_rect

PDF_rect -- Draw rectangle

Description

bool PDF_rect (resource $p, float $x, float $y, float $width, float $height)

Draws a rectangle. Returns TRUE on success or FALSE on failure.

PDF_restore

PDF_restore -- Restore graphics state

Description

bool PDF_restore (resource $p)

Restores the most recently saved graphics state. Returns TRUE on success or FALSE on
failure.

PDF_resume_page

PDF_resume_page -- Resume page

Description

bool PDF_resume_page (resource $pdfdoc, string $optlist)

Resumes a page to add more content to it.

PDF_rotate

PDF_rotate -- Rotate coordinate system

Description

bool PDF_rotate (resource $p, float $phi)

Rotates the coordinate system. Returns TRUE on success or FALSE on failure.

PDF_save

PDF_save -- Save graphics state

Description

bool PDF_save (resource $p)

Saves the current graphics state. Returns TRUE on success or FALSE on failure.

PDF_scale

PDF_scale -- Scale coordinate system

Description

bool PDF_scale (resource $p, float $sx, float $sy)

Scales the coordinate system. Returns TRUE on success or FALSE on failure.

PDF_set_border_color

PDF_set_border_color -- Set border color of annotations [deprecated]

Description

bool PDF_set_border_color (resource $p, float $red, float $green, float $blue)

Sets the border color for all kinds of annotations. Returns TRUE on success or FALSE on
failure.

This function is deprecated since PDFlib version 6, use the option annotcolor in
PDF_create_annotation() instead.

PDF_set_border_dash

PDF_set_border_dash -- Set border dash style of annotations [deprecated]

Description

bool PDF_set_border_dash (resource $pdfdoc, float $black, float $white)

Sets the border dash style for all kinds of annotations. Returns TRUE on success or
FALSE on failure.

This function is deprecated since PDFlib version 6, use the option dasharray in
PDF_create_annotation() instead.

PDF_set_border_style

PDF_set_border_style -- Set border style of annotations [deprecated]

Description

bool PDF_set_border_style (resource $pdfdoc, string $style, float $width)

Sets the border style for all kinds of annotations. Returns TRUE on success or FALSE on
failure.

This function is deprecated since PDFlib version 6, use the options borderstyle and
linewidth in PDF_create_annotation() instead.

PDF_set_char_spacing

PDF_set_char_spacing -- Set character spacing [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with parameter
charspacing instead.

PDF_set_duration

PDF_set_duration -- Set duration between pages [deprecated]

Description

This function is deprecated since PDFlib version 3, use the duration option in
PDF_begin_page_ext() or PDF_end_page_ext() instead.

PDF_set_gstate

PDF_set_gstate -- Activate graphics state object

Description

bool PDF_set_gstate (resource $pdfdoc, int $gstate)

Activates a graphics state object.

PDF_set_horiz_scaling

PDF_set_horiz_scaling -- Set horizontal text scaling [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with parameter
horizscaling instead.

PDF_set_info_author

PDF_set_info_author -- Fill the author document info field [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_info() instead.

PDF_set_info_creator

PDF_set_info_creator -- Fill the creator document info field [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_info() instead.

PDF_set_info_keywords

PDF_set_info_keywords -- Fill the keywords document info field [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_info() instead.

PDF_set_info_subject

PDF_set_info_subject -- Fill the subject document info field [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_info() instead.

PDF_set_info_title

PDF_set_info_title -- Fill the title document info field [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_info() instead.

PDF_set_info

PDF_set_info -- Fill document info field

Description

bool PDF_set_info (resource $p, string $key, string $value)

Fill document information field key with value. Returns TRUE on success or FALSE on
failure.

PDF_set_layer_dependency

PDF_set_layer_dependency -- Define relationships among layers

Description

bool PDF_set_layer_dependency (resource $pdfdoc, string $type, string $optlist)

Defines hierarchical and group relationships among layers. Returns TRUE on success or
FALSE on failure.

This function requires PDF 1.5.

PDF_set_leading

PDF_set_leading -- Set distance between text lines [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with the
parameter leading instead.

PDF_set_parameter

PDF_set_parameter -- Set string parameter

Description

bool PDF_set_parameter (resource $p, string $key, string $value)

Sets some PDFlib parameter with string type. Returns TRUE on success or FALSE on
failure.

PDF_set_text_matrix

PDF_set_text_matrix -- Set text matrix [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_scale(), PDF_translate(),
PDF_rotate(), or PDF_skew() instead.

PDF_set_text_pos

PDF_set_text_pos -- Set text position

Description

bool PDF_set_text_pos (resource $p, float $x, float $y)

Sets the position for text output on the page. Returns TRUE on success or FALSE on
failure.

PDF_set_text_rendering

PDF_set_text_rendering -- Determine text rendering [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with the
textrendering parameter instead.

PDF_set_text_rise

PDF_set_text_rise -- Set text rise [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with the
textrise parameter instead.

PDF_set_value

PDF_set_value -- Set numerical parameter

Description

bool PDF_set_value (resource $p, string $key, float $value)

Sets the value of some PDFlib parameter with numerical type. Returns TRUE on success
or FALSE on failure.

PDF_set_word_spacing

PDF_set_word_spacing -- Set spacing between words [deprecated]

Description

This function is deprecated since PDFlib version 3, use PDF_set_value() with the
wordspacing parameter instead.

PDF_setcolor

PDF_setcolor -- Set fill and stroke color

Description

bool PDF_setcolor (resource $p, string $fstype, string $colorspace, float $c1, float $c2,
float $c3, float $c4)

Sets the current color space and color. Returns TRUE on success or FALSE on failure.

PDF_setdash

PDF_setdash -- Set simple dash pattern

Description

bool PDF_setdash (resource $pdfdoc, float $b, float $w)

Sets the current dash pattern to b black and w white units. Returns TRUE on success or
FALSE on failure.

PDF_setdashpattern

PDF_setdashpattern -- Set dash pattern

Description

bool PDF_setdashpattern (resource $pdfdoc, string $optlist)

Sets a dash pattern defined by an option list. Returns TRUE on success or FALSE on
failure.

PDF_setflat

PDF_setflat -- Set flatness

Description

bool PDF_setflat (resource $pdfdoc, float $flatness)

Sets the flatness parameter. Returns TRUE on success or FALSE on failure.

PDF_setfont

PDF_setfont -- Set font

Description

bool PDF_setfont (resource $pdfdoc, int $font, float $fontsize)

Sets the current font in the specified size, using a font handle returned by
PDF_load_font(). Returns TRUE on success or FALSE on failure.

PDF_setgray_fill

PDF_setgray_fill -- Set fill color to gray [deprecated]

Description

bool PDF_setgray_fill (resource $p, float $g)

Sets the current fill color to a gray value between 0 and 1 inclusive. Returns TRUE on
success or FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_setgray_stroke

PDF_setgray_stroke -- Set stroke color to gray [deprecated]

Description

bool PDF_setgray_stroke (resource $p, float $g)

Sets the current stroke color to a gray value between 0 and 1 inclusive. Returns TRUE on
success or FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_setgray

PDF_setgray -- Set color to gray [deprecated]

Description

bool PDF_setgray (resource $p, float $g)

Sets the current fill and stroke color to a gray value between 0 and 1 inclusive. Returns
TRUE on success or FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_setlinecap

PDF_setlinecap -- Set linecap parameter

Description

bool PDF_setlinecap (resource $p, int $linecap)

Sets the linecap parameter to control the shape at the end of a path with respect to
stroking.

PDF_setlinejoin

PDF_setlinejoin -- Set linejoin parameter

Description

bool PDF_setlinejoin (resource $p, int $value)

Sets the linejoin parameter to specify the shape at the corners of paths that are stroked.
Returns TRUE on success or FALSE on failure.

PDF_setlinewidth

PDF_setlinewidth -- Set line width

Description

bool PDF_setlinewidth (resource $p, float $width)

Sets the current line width. Returns TRUE on success or FALSE on failure.

PDF_setmatrix

PDF_setmatrix -- Set current transformation matrix

Description

bool PDF_setmatrix (resource $p, float $a, float $b, float $c, float $d, float $e, float $f)

Explicitly sets the current transformation matrix. Returns TRUE on success or FALSE on
failure.

PDF_setmiterlimit

PDF_setmiterlimit -- Set miter limit

Description

bool PDF_setmiterlimit (resource $pdfdoc, float $miter)

Sets the miter limit.Returns TRUE on success or FALSE on failure.

PDF_setpolydash

PDF_setpolydash -- Set complicated dash pattern [deprecated]

Description

This function is deprecated since PDFlib version 5, use PDF_setdashpattern() instead.

PDF_setrgbcolor_fill

PDF_setrgbcolor_fill -- Set fill rgb color values [deprecated]

Description

bool PDF_setrgbcolor_fill (resource $p, float $red, float $green, float $blue)

Sets the current fill color to the supplied RGB values. Returns TRUE on success or
FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_setrgbcolor_stroke

PDF_setrgbcolor_stroke -- Set stroke rgb color values [deprecated]

Description

bool PDF_setrgbcolor_stroke (resource $p, float $red, float $green, float $blue)

Sets the current stroke color to the supplied RGB values. Returns TRUE on success or
FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_setrgbcolor

PDF_setrgbcolor -- Set fill and stroke rgb color values [deprecated]

Description

bool PDF_setrgbcolor (resource $p, float $red, float $green, float $blue)

Sets the current fill and stroke color to the supplied RGB values. Returns TRUE on
success or FALSE on failure.

This function is deprecated since PDFlib version 4, use PDF_setcolor() instead.

PDF_shading_pattern

PDF_shading_pattern -- Define shading pattern

Description

int PDF_shading_pattern (resource $pdfdoc, int $shading, string $optlist)

Defines a shading pattern using a shading object.

This function requires PDF 1.4 or above.

PDF_shading

PDF_shading -- Define blend

Description

int PDF_shading (resource $pdfdoc, string $shtype, float $x0, float $y0, float $x1, float
$y1, float $c1, float $c2, float $c3, float $c4, string $optlist)

Defines a blend from the current fill color to another color.

This function requires PDF 1.4 or above.

PDF_shfill

PDF_shfill -- Fill area with shading

Description

bool PDF_shfill (resource $pdfdoc, int $shading)

Fills an area with a shading, based on a shading object.

This function requires PDF 1.4 or above.

PDF_show_boxed

PDF_show_boxed -- Output text in a box [deprecated]

Description

int PDF_show_boxed (resource $p, string $text, float $left, float $top, float $width,
float $height, string $mode, string $feature)

This function is deprecated since PDFlib version 6, use PDF_fit_textline() for single lines,
or the PDF_*_textflow() functions for multi-line formatting instead.

PDF_show_xy

PDF_show_xy -- Output text at given position

Description

bool PDF_show_xy (resource $p, string $text, float $x, float $y)

Prints text in the current font. Returns TRUE on success or FALSE on failure.

PDF_show

PDF_show -- Output text at current position

Description

bool PDF_show (resource $pdfdoc, string $text)

Prints text in the current font and size at the current position. Returns TRUE on success
or FALSE on failure.

PDF_skew

PDF_skew -- Skew the coordinate system

Description

bool PDF_skew (resource $p, float $alpha, float $beta)

Skews the coordinate system in x and y direction by alpha and beta degrees. Returns
TRUE on success or FALSE on failure.

PDF_stringwidth

PDF_stringwidth -- Return width of text

Description

float PDF_stringwidth (resource $p, string $text, int $font, float $fontsize)

Returns the width of text in an arbitrary font.

PDF_stroke

PDF_stroke -- Stroke path

Description

bool PDF_stroke (resource $p)

Strokes the path with the current color and line width, and clear it. Returns TRUE on
success or FALSE on failure.

PDF_suspend_page

PDF_suspend_page -- Suspend page

Description

bool PDF_suspend_page (resource $pdfdoc, string $optlist)

Suspends the current page so that it can later be resumed with PDF_resume_page().

PDF_translate

PDF_translate -- Set origin of coordinate system

Description

bool PDF_translate (resource $p, float $tx, float $ty)

Translates the origin of the coordinate system.

PDF_utf16_to_utf8

PDF_utf16_to_utf8 -- Convert string from UTF-16 to UTF-8

Description

string PDF_utf16_to_utf8 (resource $pdfdoc, string $utf16string)

Converts a string from UTF-16 format to UTF-8.

PDF_utf32_to_utf16

PDF_utf32_to_utf16 -- Convert string from UTF-32 to UTF-16

Description

string PDF_utf32_to_utf16 (resource $pdfdoc, string $utf32string, string $ordering)

Converts a string from UTF-32 format to UTF-16.

PDF_utf8_to_utf16

PDF_utf8_to_utf16 -- Convert string from UTF-8 to UTF-16

Description

string PDF_utf8_to_utf16 (resource $pdfdoc, string $utf8string, string $ordering)

Converts a string from UTF-8 format to UTF-16.

PostScript document creation

Introduction

This module allows to create PostScript documents. It has many similarities with the pdf
extension. Actually the API is almost identical and one can in many cases just replace the
prefix of each function from pdf_ to ps_. This also works for functions which has no
meaning in the PostScript document (like adding hyperlinks) but will have an effect if the
document is converted to PDF.

Documents created by this extension are sometimes even superior to documents created
with the pdf extension, because pslib's text rendering functions can handle kerning,
hyphenation and ligatures which results in much better output of boxed text.

Installing/Configuring

Requirements

You need at least PHP 4.3.0 and pslib >= 0.1.12. The ps library (pslib) is available at
» http://pslib.sourceforge.net/.

Installation

A short installation note: just type

$ pecl install ps

in your console.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a PostScript document resource returned by ps_new().

http://pslib.sourceforge.net/
http://pslib.sourceforge.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following two tables lists all constants defined by the ps extension.

Contants for line caps

Name Meaning

ps_LINECAP_BUTT

ps_LINECAP_ROUND

ps_LINECAP_SQUARED

Contants for line joins

Name Meaning

ps_LINEJOIN_MITER

ps_LINEJOIN_ROUND

ps_LINEJOIN_BEVEL

PS Functions

Contact Information

If you have comments, bugfixes, enhancements for either this extension or pslib then
please drop me a mail » steinm@php.net. Any help is very welcome.

mailto:steinm@php.net

ps_add_bookmark

ps_add_bookmark -- Add bookmark to current page

Description

int ps_add_bookmark (resource $psdoc, string $text [, int $parent [, int $open]])

Adds a bookmark for the current page. Bookmarks usually appear in PDF-Viewers left of
the page in a hierarchical tree. Clicking on a bookmark will jump to the given page.

The bookmark has no meaning if the document is printed or viewed, but it will be used if
the document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text used for displaying the bookmark.

parent

A bookmark previously created by this function which is used as the parent of the new
bookmark.

open

If open is unequal to zero the bookmark will be shown open by the pdf viewer.

Return Values

The returned value is a reference for the bookmark. It is only used if the bookmark shall be
used as a parent. The value is greater zero if the function succeeds. In case of an error
zero will be returned.

See Also

• ps_add_launchlink()
• ps_add_pdflink()
• ps_add_weblink()

ps_add_launchlink

ps_add_launchlink -- Adds link which launches file

Description

bool ps_add_launchlink (resource $psdoc, float $llx, float $lly, float $urx, float $ury,
string $filename)

Places a hyperlink at the given position pointing to a file program which is being started
when clicked on. The hyperlink's source position is a rectangle with its lower left corner at
(llx, lly) and its upper right corner at (urx, ury). The rectangle has by default a thin blue
border.

The hyperlink will not be visible if the document is printed or viewed but it will show up if
the document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

llx

The x-coordinate of the lower left corner.

lly

The y-coordinate of the lower left corner.

urx

The x-coordinate of the upper right corner.

ury

The y-coordinate of the upper right corner.

filename

The path of the program to be started, when the link is clicked on.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_add_locallink()

• ps_add_pdflink()
• ps_add_weblink()

ps_add_locallink

ps_add_locallink -- Adds link to a page in the same document

Description

bool ps_add_locallink (resource $psdoc, float $llx, float $lly, float $urx, float $ury, int
$page, string $dest)

Places a hyperlink at the given position pointing to a page in the same document. Clicking
on the link will jump to the given page. The first page in a document has number 1.

The hyperlink's source position is a rectangle with its lower left corner at (llx, lly) and
its upper right corner at (urx, ury). The rectangle has by default a thin blue border.

The hyperlink will not be visible if the document is printed or viewed but it will show up if
the document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

llx

The x-coordinate of the lower left corner.

lly

The y-coordinate of the lower left corner.

urx

The x-coordinate of the upper right corner.

ury

The y-coordinate of the upper right corner.

page

The number of the page displayed when clicking on the link.

dest

The parameter dest determines how the document is being viewed. It can be fitpage,
fitwidth, fitheight, or fitbbox.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_add_launchlink()
• ps_add_pdflink()
• ps_add_weblink()

ps_add_note

ps_add_note -- Adds note to current page

Description

bool ps_add_note (resource $psdoc, float $llx, float $lly, float $urx, float $ury, string
$contents, string $title, string $icon, int $open)

Adds a note at a certain position on the page. Notes are like little rectangular sheets with
text on it, which can be placed anywhere on a page. They are shown either folded or
unfolded. If unfolded, the specified icon is used as a placeholder.

The note will not be visible if the document is printed or viewed but it will show up if the
document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

llx

The x-coordinate of the lower left corner.

lly

The y-coordinate of the lower left corner.

urx

The x-coordinate of the upper right corner.

ury

The y-coordinate of the upper right corner.

contents

The text of the note.

title

The title of the note as displayed in the header of the note.

icon

The icon shown if the note is folded. This parameter can be set to comment, insert,
note, paragraph, newparagraph, key, or help.

open

If open is unequal to zero the note will be shown unfolded after opening the document
with a pdf viewer.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_add_pdflink()
• ps_add_launchlink()
• ps_add_locallink()
• ps_add_weblink()

ps_add_pdflink

ps_add_pdflink -- Adds link to a page in a second pdf document

Description

bool ps_add_pdflink (resource $psdoc, float $llx, float $lly, float $urx, float $ury,
string $filename, int $page, string $dest)

Places a hyperlink at the given position pointing to a second pdf document. Clicking on the
link will branch to the document at the given page. The first page in a document has
number 1.

The hyperlink's source position is a rectangle with its lower left corner at (llx, lly) and
its upper right corner at (urx, ury). The rectangle has by default a thin blue border.

The hyperlink will not be visible if the document is printed or viewed but it will show up if
the document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

llx

The x-coordinate of the lower left corner.

lly

The y-coordinate of the lower left corner.

urx

The x-coordinate of the upper right corner.

ury

The y-coordinate of the upper right corner.

filename

The name of the pdf document to be opened when clicking on this link.

page

The page number of the destination pdf document

dest

The parameter dest determines how the document is being viewed. It can be fitpage,
fitwidth, fitheight, or fitbbox.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_add_launchlink()
• ps_add_locallink()
• ps_add_weblink()

ps_add_weblink

ps_add_weblink -- Adds link to a web location

Description

bool ps_add_weblink (resource $psdoc, float $llx, float $lly, float $urx, float $ury,
string $url)

Places a hyperlink at the given position pointing to a web page. The hyperlink's source
position is a rectangle with its lower left corner at (llx, lly) and its upper right corner at (
urx, ury). The rectangle has by default a thin blue border.

The hyperlink will not be visible if the document is printed or viewed but it will show up if
the document is converted to pdf by either Acrobat Distiller? or Ghostview.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

llx

The x-coordinate of the lower left corner.

lly

The y-coordinate of the lower left corner.

urx

The x-coordinate of the upper right corner.

ury

The y-coordinate of the upper right corner.

url

The url of the hyperlink to be opened when clicking on this link, e.g. http://www.php.net
.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_add_launchlink()
• ps_add_locallink()

• ps_add_pdflink()

ps_arc

ps_arc -- Draws an arc counterclockwise

Description

bool ps_arc (resource $psdoc, float $x, float $y, float $radius, float $alpha, float $beta)

Draws a portion of a circle with at middle point at (x, y). The arc starts at an angle of
alpha and ends at an angle of beta. It is drawn counterclockwise (use ps_arcn() to draw
clockwise). The subpath added to the current path starts on the arc at angle alpha and
ends on the arc at angle beta.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

The x-coordinate of the circle's middle point.

y

The y-coordinate of the circle's middle point.

radius

The radius of the circle

alpha

The start angle given in degrees.

beta

The end angle given in degrees.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_arcn()

ps_arcn

ps_arcn -- Draws an arc clockwise

Description

bool ps_arcn (resource $psdoc, float $x, float $y, float $radius, float $alpha, float $beta
)

Draws a portion of a circle with at middle point at (x, y). The arc starts at an angle of
alpha and ends at an angle of beta. It is drawn clockwise (use ps_arc() to draw
counterclockwise). The subpath added to the current path starts on the arc at angle beta
and ends on the arc at angle alpha.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

The x-coordinate of the circle's middle point.

y

The y-coordinate of the circle's middle point.

radius

The radius of the circle

alpha

The starting angle given in degrees.

beta

The end angle given in degrees.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_arc()

ps_begin_page

ps_begin_page -- Start a new page

Description

bool ps_begin_page (resource $psdoc, float $width, float $height)

Starts a new page. Although the parameters width and height imply a different page size
for each page, this is not possible in PostScript. The first call of ps_begin_page() will set
the page size for the whole document. Consecutive calls will have no effect, except for
creating a new page. The situation is different if you intent to convert the PostScript
document into PDF. This function places pdfmarks into the document which can set the
size for each page indiviually. The resulting PDF document will have different page sizes.

Though PostScript does not know different page sizes, pslib places a bounding box for
each page into the document. This size is evaluated by some PostScript viewers and will
have precedence over the BoundingBox in the Header of the document. This can lead to
unexpected results when you set a BoundingBox whose lower left corner is not (0, 0),
because the bounding box of the page will always have a lower left corner (0, 0) and
overwrites the global setting.

Each page is encapsulated into save/restore. This means, that most of the settings made
on one page will not be retained on the next page.

If there is up to the first call of ps_begin_page() no call of ps_findfont(), then the header of
the PostScript document will be output and the bounding box will be set to the size of the
first page. The lower left corner of the bounding box is set to (0, 0). If ps_findfont() was
called before, then the header has been output already, and the document will not have a
valid bounding box. In order to prevent this, one should call ps_set_info() to set the info
field BoundingBox and possibly Orientation before any ps_findfont() or ps_begin_page()
calls.

Note

Up to version 0.2.6 of pslib, this function will always overwrite the BoundingBox and
Orientation, if it has been set before with ps_set_info() and ps_findfont() has not been
called before.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

width

The width of the page in pixel, e.g. 596 for A4 format.

height

The height of the page in pixel, e.g. 842 for A4 format.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_end_page()
• ps_findfont()
• ps_set_info()

ps_begin_pattern

ps_begin_pattern -- Start a new pattern

Description

int ps_begin_pattern (resource $psdoc, float $width, float $height, float $xstep, float $
ystep, int $painttype)

Starts a new pattern. A pattern is like a page containing e.g. a drawing which can be used
for filling areas. It is used like a color by calling ps_setcolor() and setting the color space to
pattern.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

width

The width of the pattern in pixel.

height

The height of the pattern in pixel.

x-step

The distance in pixel of placements of the pattern in horizontal direction.

y-step

The distance in pixel of placements of the pattern in vertical direction.

painttype

Must be 1 or 2.

Return Values

The identifier of the pattern or FALSE in case of an error.

Examples

Example #1934 - Creating and using a pattern

<?php

$ps = ps_new();

if (!ps_open_file($ps, "pattern.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_parameter($ps, "warning", "true");

ps_set_info($ps, "Creator", "pattern.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Pattern example");

$pspattern = ps_begin_pattern($ps, 10.0, 10.0, 10.0, 10.0, 1);

ps_setlinewidth($ps, 0.2);

ps_setcolor($ps, "stroke", "rgb", 0.0, 0.0, 1.0, 0.0);

ps_moveto($ps, 0, 0);

ps_lineto($ps, 7, 7);

ps_stroke($ps);

ps_moveto($ps, 0, 7);

ps_lineto($ps, 7, 0);

ps_stroke($ps);

ps_end_pattern($ps);

ps_begin_page($ps, 596, 842);

ps_setcolor($ps, "both", "pattern", $pspattern, 0.0, 0.0, 0.0);

ps_rect($ps, 50, 400, 200, 200);

ps_fill($ps);

ps_end_page($ps);

ps_close($ps);

ps_delete($ps);

?>

See Also

• ps_end_pattern()
• ps_setcolor()
• ps_shading_pattern()

ps_begin_template

ps_begin_template -- Start a new template

Description

int ps_begin_template (resource $psdoc, float $width, float $height)

Starts a new template. A template is called a form in the postscript language. It is created
similar to a pattern but used like an image. Templates are often used for drawings which
are placed several times through out the document, e.g. like a company logo. All drawing
functions may be used within a template. The template will not be drawn until it is placed
by ps_place_image().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

width

The width of the template in pixel.

height

The height of the template in pixel.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1935 - Creating and using a template

<?php

$ps = ps_new();

if (!ps_open_file($ps, "template.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_parameter($ps, "warning", "true");

ps_set_info($ps, "Creator", "template.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Template example");

$pstemplate = ps_begin_template($ps, 30.0, 30.0);

ps_moveto($ps, 0, 0);

ps_lineto($ps, 30, 30);

ps_moveto($ps, 0, 30);

ps_lineto($ps, 30, 0);

ps_stroke($ps);

ps_end_template($ps);

ps_begin_page($ps, 596, 842);

ps_place_image($ps, $pstemplate, 20.0, 20.0, 1.0);

ps_place_image($ps, $pstemplate, 50.0, 30.0, 0.5);

ps_place_image($ps, $pstemplate, 70.0, 70.0, 0.6);

ps_place_image($ps, $pstemplate, 30.0, 50.0, 1.3);

ps_end_page($ps);

ps_close($ps);

ps_delete($ps);

?>

See Also

• ps_end_template()

ps_circle

ps_circle -- Draws a circle

Description

bool ps_circle (resource $psdoc, float $x, float $y, float $radius)

Draws a circle with its middle point at (x, y). The circle starts and ends at position (x +
radius, y). If this function is called outside a path it will start a new path. If it is called
within a path it will add the circle as a subpath. If the last drawing operation does not end
in point (x + radius, y) then there will be a gap in the path.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

The x-coordinate of the circle's middle point.

y

The y-coordinate of the circle's middle point.

radius

The radius of the circle

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_arc()
• ps_arcn()

ps_clip

ps_clip -- Clips drawing to current path

Description

bool ps_clip (resource $psdoc)

Takes the current path and uses it to define the border of a clipping area. Everything
drawn outside of that area will not be visible.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_closepath()

ps_close_image

ps_close_image -- Closes image and frees memory

Description

void ps_close_image (resource $psdoc, int $imageid)

Closes an image and frees its resources. Once an image is closed it cannot be used
anymore.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

imageid

Resource identifier of the image as returned by ps_open_image() or
ps_open_image_file().

Return Values

Returns NULL on success or FALSE on failure.

See Also

• ps_open_image()
• ps_open_image_file()

ps_close

ps_close -- Closes a PostScript document

Description

bool ps_close (resource $psdoc)

Closes the PostScript document.

This function writes the trailer of the PostScript document. It also writes the bookmark tree.
ps_close() does not free any resources, which is done by ps_delete().

This function is also called by ps_delete() if it has not been called before.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_open_file()
• ps_delete()

ps_closepath_stroke

ps_closepath_stroke -- Closes and strokes path

Description

bool ps_closepath_stroke (resource $psdoc)

Connects the last point with first point of a path and draws the resulting closed line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_closepath()

ps_closepath

ps_closepath -- Closes path

Description

bool ps_closepath (resource $psdoc)

Connects the last point with the first point of a path. The resulting path can be used for
stroking, filling, clipping, etc..

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_clip()
• ps_closepath_stroke()

ps_continue_text

ps_continue_text -- Continue text in next line

Description

bool ps_continue_text (resource $psdoc, string $text)

Output a text one line below the last line. The line spacing is taken from the value "leading"
which must be set with ps_set_value(). The actual position of the text is determined by the
values "textx" and "texty" which can be requested with ps_get_value()

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text to output.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_show()
• ps_show_xy()
• ps_show_boxed()

ps_curveto

ps_curveto -- Draws a curve

Description

bool ps_curveto (resource $psdoc, float $x1, float $y1, float $x2, float $y2, float $x3,
float $y3)

Add a section of a cubic Bézier curve described by the three given control points to the
current path.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x1

x-coordinate of first control point.

y1

y-coordinate of first control point.

x2

x-coordinate of second control point.

y2

y-coordinate of second control point.

x3

x-coordinate of third control point.

y3

y-coordinate of third control point.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_lineto()

ps_delete

ps_delete -- Deletes all resources of a PostScript document

Description

bool ps_delete (resource $psdoc)

Mainly frees memory used by the document. Also closes a file, if it was not closed before
with ps_close(). You should in any case close the file with ps_close() before, because
ps_close() not just closes the file but also outputs a trailor containing PostScript comments
like the number of pages in the document and adding the bookmark hierarchy.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_close()

ps_end_page

ps_end_page -- End a page

Description

bool ps_end_page (resource $psdoc)

Ends a page which was started with ps_begin_page(). Ending a page will leave the current
drawing context, which e.g. requires to reload fonts if they were loading within the page,
and to set many other drawing parameters like the line width, or color..

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_begin_page()

ps_end_pattern

ps_end_pattern -- End a pattern

Description

bool ps_end_pattern (resource $psdoc)

Ends a pattern which was started with ps_begin_pattern(). Once a pattern has been
ended, it can be used like a color to fill areas.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_begin_pattern()

ps_end_template

ps_end_template -- End a template

Description

bool ps_end_template (resource $psdoc)

Ends a template which was started with ps_begin_template(). Once a template has been
ended, it can be used like an image.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_begin_template()

ps_fill_stroke

ps_fill_stroke -- Fills and strokes the current path

Description

bool ps_fill_stroke (resource $psdoc)

Fills and draws the path constructed with previously called drawing functions like
ps_lineto().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_fill()
• ps_stroke()

ps_fill

ps_fill -- Fills the current path

Description

bool ps_fill (resource $psdoc)

Fills the path constructed with previously called drawing functions like ps_lineto().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_fill_stroke()
• ps_stroke()

ps_findfont

ps_findfont -- Loads a font

Description

int ps_findfont (resource $psdoc, string $fontname, string $encoding [, bool $embed])

Loads a font for later use. Before text is output with a loaded font it must be set with
ps_setfont(). This function needs the adobe font metric file in order to calculate the space
used up by the characters. A font which is loaded within a page will only be available on
that page. Fonts which are to be used in the complete document have to be loaded before
the first call of ps_begin_page(). Calling ps_findfont() between pages will make that font
available for all following pages.

The name of the afm file must be fontname.afm. If the font shall be embedded the file
fontname.pfb containing the font outline must be present as well.

Calling ps_findfont() before the first page requires to output the postscript header which
includes the BoundingBox for the whole document. Usually the BoundingBox is set with
the first call of ps_begin_page() which now comes after ps_findfont(). Consequently the
BoundingBox has not been set and a warning will be issued when ps_findfont() is called.
In order to prevent this situation, one should call ps_set_parameter() to set the
BoundingBox before ps_findfont() is called.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

fontname

The name of the font.

encoding

ps_findfont() will try to load the file passed in the parameter encoding. Encoding files
are of the same syntax as those used by dvips(1). They contain a font encoding vector
(which is currently not used but must be present) and a list of extra ligatures to extend
the list of ligatures derived from the afm file. encoding can be NULL or the empty
string if the default encoding (TeXBase1) shall be used. If the encoding is set to builtin
then there will be no reencoding and the font specific encoding will be used. This is
very useful with symbol fonts.

embed

If set to a value >0 the font will be embedded into the document. This requires the font
outline (.pfb file) to be present.

Return Values

Returns the identifier of the font or zero in case of an error. The identifier is a positive
number.

See Also

• ps_begin_page()
• ps_setfont()

ps_get_buffer

ps_get_buffer -- Fetches the full buffer containig the generated PS data

Description

string ps_get_buffer (resource $psdoc)

This function is not implemented yet. It will always return an empty string. The idea for a
later implementation is to write the contents of the postscript file into an internal buffer if in
memory creation is requested, and retrieve the buffer content with this function. Currently,
documents created in memory are send to the browser without buffering.

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

See Also

• ps_open_file()

ps_get_parameter

ps_get_parameter -- Gets certain parameters

Description

string ps_get_parameter (resource $psdoc, string $name [, float $modifier])

Gets several parameters which were directly set by ps_set_parameter() or indirectly by
one of the other functions. Parameters are by definition string values. This function cannot
be used to retrieve resources which were also set by ps_set_parameter().

The parameter name can have the following values.

fontname
The name of the currently active font or the font whose identifier is passed in
parameter modifier.

fontencoding
The encoding of the currently active font.

dottedversion
The version of the underlying pslib library in the format <major>.<minor>.<subminor>

scope
The current drawing scope. Can be object, document, null, page, pattern, path,
template, prolog, font, glyph.

ligaturedisolvechar
The character which dissolves a ligature. If your are using a font which contains the
ligature `ff' and `|' is the char to dissolve the ligature, then `f|f' will result in two `f'
instead of the ligature `ff'.

imageencoding
The encoding used for encoding images. Can be either hex or 85. hex encoding uses
two bytes in the postscript file each byte in the image. 85 stand for Ascii85 encoding.

linenumbermode
Set to paragraph if lines are numbered within a paragraph or box if they are numbered
within the surrounding box.

linebreak
Only used if text is output with ps_show_boxed(). If set to true a carriage return will
add a line break.

parbreak
Only used if text is output with ps_show_boxed(). If set to true a carriage return will
start a new paragraph.

hyphenation
Only used if text is output with ps_show_boxed(). If set to true the paragraph will be
hyphenated if a hypen dictionary is set and exists.

hyphendict
Filename of the dictionary used for hyphenation pattern.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

name

Name of the parameter.

modifier

An identifier needed if a parameter of a resource is requested, e.g. the size of an
image. In such a case the resource id is passed.

Return Values

Returns the value of the parameter or FALSE in case of an error.

See Also

• ps_set_parameter()

ps_get_value

ps_get_value -- Gets certain values

Description

float ps_get_value (resource $psdoc, string $name [, float $modifier])

Gets several values which were set by ps_set_value(). Values are by definition float
values.

The parameter name can have the following values.

fontsize
The size of the currently active font or the font whose identifier is passed in parameter
modifier.

font
The currently active font itself.

imagewidth
The width of the image whose id is passed in the parameter modifier.

imageheight
The height of the image whose id is passed in the parameter modifier.

capheight
The height of a capital M in the currently active font or the font whose identifier is
passed in parameter modifier.

ascender
The ascender of the currently active font or the font whose identifier is passed in
parameter modifier.

descender
The descender of the currently active font or the font whose identifier is passed in
parameter modifier.

italicangle
The italicangle of the currently active font or the font whose identifier is passed in
parameter modifier.

underlineposition
The underlineposition of the currently active font or the font whose identifier is passed
in parameter modifier.

underlinethickness
The underlinethickness of the currently active font or the font whose identifier is

passed in parameter modifier.

textx
The current x-position for text output.

texty
The current y-position for text output.

textrendering
The current mode for text rendering.

textrise
The space by which text is risen above the base line.

leading
The distance between text lines in points.

wordspacing
The space between words as a multiple of the width of a space char.

charspacing
The space between chars. If charspacing is != 0.0 ligatures will always be dissolved.

hyphenminchars
Minimum number of chars hyphenated at the end of a word.

parindent
Indention of the first n line in a paragraph.

numindentlines
Number of line in a paragraph to indent if parindent != 0.0.

parskip
Distance between paragraphs.

linenumberspace
Overall space in front of each line for the line number.

linenumbersep
Space between the line and the line number.

major
The major version number of pslib.

minor
The minor version number of pslib.

subminor, revision
The subminor version number of pslib.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

name

Name of the value.

modifier

The parameter modifier specifies the resource for which the value is to be retrieved.
This can be the id of a font or an image.

Return Values

Returns the value of the parameter or FALSE.

See Also

• ps_set_value()

ps_hyphenate

ps_hyphenate -- Hyphenates a word

Description

array ps_hyphenate (resource $psdoc, string $text)

Hyphenates the passed word. ps_hyphenate() evaluates the value hyphenminchars (set
by ps_set_value()) and the parameter hyphendict (set by ps_set_parameter()).
hyphendict must be set before calling this function.

This function requires the locale category LC_CTYPE to be set properly. This is done
when the extension is initialized by using the environment variables. On Unix systems read
the man page of locale for more information.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

text should not contain any non alpha characters. Possible positions for breaks are
returned in an array of interger numbers. Each number is the position of the char in
text after which a hyphenation can take place.

Return Values

An array of integers indicating the position of possible breaks in the text or FALSE in case
of an error.

Examples

Example #1936 - Hyphennate a text

<?php

$word = "Koordinatensystem";

$psdoc = ps_new();

ps_set_parameter($psdoc, "hyphendict", "hyph_de.dic");

$hyphens = ps_hyphenate($psdoc, $word);

for($i=0; $i<strlen($word); $i++) {

 echo $word[$i];

 if(in_array($i, $hyphens))

 echo "-";

}

ps_delete($psdoc);

?>

The above example will output:

Ko-ordi-na-ten-sys-tem

See Also

• ps_show_boxed()
• locale(1)

ps_include_file

ps_include_file -- Reads an external file with raw PostScript code

Description

bool ps_include_file (resource $psdoc, string $file)

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

file

Return Values

Returns TRUE on success or FALSE on failure.

ps_lineto

ps_lineto -- Draws a line

Description

bool ps_lineto (resource $psdoc, float $x, float $y)

Adds a straight line from the current point to the given coordinates to the current path. Use
ps_moveto() to set the starting point of the line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

x-coordinate of the end point of the line.

y

y-coordinate of the end point of the line.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1937 - Drawing a rectangle

<?php

$ps = ps_new();

if (!ps_open_file($ps, "rectangle.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "rectangle.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Lineto example");

ps_begin_page($ps, 596, 842);

ps_moveto($ps, 100, 100);

ps_lineto($ps, 100, 200);

ps_lineto($ps, 200, 200);

ps_lineto($ps, 200, 100);

ps_lineto($ps, 100, 100);

ps_stroke($ps);

ps_end_page($ps);

ps_delete($ps);

?>

See Also

• ps_moveto()

ps_makespotcolor

ps_makespotcolor -- Create spot color

Description

int ps_makespotcolor (resource $psdoc, string $name [, float $reserved])

Creates a spot color from the current fill color. The fill color must be defined in rgb, cmyk or
gray colorspace. The spot color name can be an arbitrary name. A spot color can be set
as any color with ps_setcolor(). When the document is not printed but displayed by an
postscript viewer the given color in the specified color space is use.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

name

Name of the spot color, e.g. Pantone 5565.

Return Values

The id of the new spot color or 0 in case of an error.

Examples

Example #1938 - Creating and using a spot color

<?php

$ps = ps_new();

if (!ps_open_file($ps, "spotcolor.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "spotcolor.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Spot color example");

ps_begin_page($ps, 596, 842);

ps_setcolor($ps, "fill", "cmyk", 0.37, 0.0, 0.34, 0.34);

$spotcolor = ps_makespotcolor($ps, "PANTONE 5565 C", 0);

ps_setcolor($ps, "fill", "spot", $spotcolor, 0.5, 0.0, 0.0);

ps_moveto($ps, 100, 100);

ps_lineto($ps, 100, 200);

ps_lineto($ps, 200, 200);

ps_lineto($ps, 200, 100);

ps_lineto($ps, 100, 100);

ps_fill($ps);

ps_end_page($ps);

ps_delete($ps);

?>

This example creates the spot color "PANTONE 5565 C" which is a darker green
(olive) and fills a rectangle with 50% intensity.

See Also

• ps_setcolor()

ps_moveto

ps_moveto -- Sets current point

Description

bool ps_moveto (resource $psdoc, float $x, float $y)

Sets the current point to new coordinates. If this is the first call of ps_moveto() after a
previous path has been ended then it will start a new path. If this function is called in the
middle of a path it will just set the current point and start a subpath.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

x-coordinate of the point to move to.

y

y-coordinate of the point to move to.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_lineto()

ps_new

ps_new -- Creates a new PostScript document object

Description

resource ps_new (void)

Creates a new document instance. It does not create the file on disk or in memory, it just
sets up everything. ps_new() is usually followed by a call of ps_open_file() to actually
create the postscript document.

Return Values

Resource of PostScript document or FALSE on failure. The return value is passed to all
other functions as the first argument.

See Also

• ps_delete()

ps_open_file

ps_open_file -- Opens a file for output

Description

bool ps_open_file (resource $psdoc [, string $filename])

Creates a new file on disk and writes the PostScript document into it. The file will be
closed when ps_close() is called.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

filename

The name of the postscript file. If filename is not passed the document will be created
in memory and all output will go straight to the browser.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_close()

ps_open_image_file

ps_open_image_file -- Opens image from file

Description

int ps_open_image_file (resource $psdoc, string $type, string $filename [, string $
stringparam [, int $intparam]])

Loads an image for later use.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The type of the image. Possible values are png, jpeg, or eps.

filename

The name of the file containing the image data.

stringparam

Not used.

intparam

Not used.

Return Values

Returns identifier of image or zero in case of an error. The identifier is a positive number
greater than 0.

See Also

• ps_open_image()
• ps_place_image()
• ps_close_image()

ps_open_image

ps_open_image -- Reads an image for later placement

Description

int ps_open_image (resource $psdoc, string $type, string $source, string $data, int $
lenght, int $width, int $height, int $components, int $bpc, string $params)

Reads an image which is already available in memory. The parameter source is currently
not evaluated and assumed to be memory. The image data is a sequence of pixels starting
in th upper left corner and ending in the lower right corner. Each pixel consists of
components color components, and each component has bpc bits.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The type of the image. Possible values are png, jpeg, or eps.

source

Not used.

data

The image data.

length

The length of the image data.

width

The width of the image.

height

The height of the image.

components

The number of components for each pixel. This can be 1 (gray scale images), 3 (rgb
images), or 4 (cmyk, rgba images).

bpc

Number of bits per component (quite often 8).

params

Return Values

Returns identifier of image or zero in case of an error. The identifier is a positive number
greater than 0.

See Also

• ps_open_image_file()
• ps_place_image()
• ps_close_image()

ps_open_memory_image

ps_open_memory_image -- Takes an GD image and returns an image for placement in a
PS document

Description

int ps_open_memory_image (resource $psdoc, int $gd)

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

gd

ps_place_image

ps_place_image -- Places image on the page

Description

bool ps_place_image (resource $psdoc, int $imageid, float $x, float $y, float $scale)

Places a formerly loaded image on the page. The image can be scaled. If the image shall
be rotated as well, you will have to rotate the coordinate system before with ps_rotate().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

imageid

The resource identifier of the image as returned by ps_open_image() or
ps_open_image_file().

x

x-coordinate of the lower left corner of the image.

y

y-coordinate of the lower left corner of the image.

scale

The scaling factor for the image. A scale of 1.0 will result in a resolution of 72 dpi,
because each pixel is equivalent to 1 point.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_open_image()
• ps_open_image_file()

ps_rect

ps_rect -- Draws a rectangle

Description

bool ps_rect (resource $psdoc, float $x, float $y, float $width, float $height)

Draws a rectangle with its lower left corner at (x, y). The rectangle starts and ends in its
lower left corner. If this function is called outside a path it will start a new path. If it is called
within a path it will add the rectangle as a subpath. If the last drawing operation does not
end in the lower left corner then there will be a gap in the path.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

x-coordinate of the lower left corner of the rectangle.

y

y-coordinate of the lower left corner of the rectangle.

width

The width of the image.

height

The height of the image.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_arc()
• ps_cirle()
• ps_lineto()

ps_restore

ps_restore -- Restore previously save context

Description

bool ps_restore (resource $psdoc)

Restores a previously saved graphics context. Any call of ps_save() must be accompanied
by a call to ps_restore(). All coordinate transformations, line style settings, color settings,
etc. are being restored to the state before the call of ps_save().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_save()

ps_rotate

ps_rotate -- Sets rotation factor

Description

bool ps_rotate (resource $psdoc, float $rot)

Sets the rotation of the coordinate system.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

rot

Angle of rotation in degree.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1939 - Rotation of the coordinate system

<?php

function rectangle($ps) {

 ps_moveto($ps, 0, 0);

 ps_lineto($ps, 0, 50);

 ps_lineto($ps, 50, 50);

 ps_lineto($ps, 50, 0);

 ps_lineto($ps, 0, 0);

 ps_stroke($ps);

}

$ps = ps_new();

if (!ps_open_file($ps, "rotation.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "rotation.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Rotation example");

ps_set_info($ps, "BoundingBox", "0 0 596 842");

$psfont = ps_findfont($ps, "Helvetica", "", 0);

ps_begin_page($ps, 596, 842);

ps_set_text_pos($ps, 100, 100);

ps_save($ps);

ps_translate($ps, 100, 100);

ps_rotate($ps, 45);

rectangle($ps);

ps_restore($ps);

ps_setfont($ps, $psfont, 8.0);

ps_show($ps, "Text without rotation");

ps_end_page($ps);

ps_delete($ps);

?>

The above example illustrates a very common way of rotating a graphic (in this case
just a rectangle) by simply rotating the coordinate system. Since the graphic's
coordinate system assumes (0,0) to be the origin, the page coordinate system is also
translated to place the graphics not on the edge of the page. Pay attention to the order
of ps_translate() and ps_rotate(). In the above case the rectancle is rotated around the
point (100, 100) in the untranslated coordinate system. Switching the two statements
has a completely different result.

In order to output the following text at the original position, all modifications of the
coordinate system are encapsulated in ps_save() and ps_restore().

See Also

• ps_scale()
• ps_translate()

ps_save

ps_save -- Save current context

Description

bool ps_save (resource $psdoc)

Saves the current graphics context, containing colors, translation and rotation settings and
some more. A saved context can be restored with ps_restore().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_restore()

ps_scale

ps_scale -- Sets scaling factor

Description

bool ps_scale (resource $psdoc, float $x, float $y)

Sets horizontal and vertical scaling of the coordinate system.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

Scaling factor in horizontal direction.

y

Scaling factor in vertical direction.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_rotate()
• ps_translate()

ps_set_border_color

ps_set_border_color -- Sets color of border for annotations

Description

bool ps_set_border_color (resource $psdoc, float $red, float $green, float $blue)

Links added with one of the functions ps_add_weblink(), ps_add_pdflink(), etc. will be
displayed with a surounded rectangle when the postscript document is converted to pdf
and viewed in a pdf viewer. This rectangle is not visible in the postscript document. This
function sets the color of the rectangle's border line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

red

The red component of the border color.

green

The green component of the border color.

blue

The blue component of the border color.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_set_border_dash()
• ps_set_border_style()

ps_set_border_dash

ps_set_border_dash -- Sets length of dashes for border of annotations

Description

bool ps_set_border_dash (resource $psdoc, float $black, float $white)

Links added with one of the functions ps_add_weblink(), ps_add_pdflink(), etc. will be
displayed with a surounded rectangle when the postscript document is converted to pdf
and viewed in a pdf viewer. This rectangle is not visible in the postscript document. This
function sets the length of the black and white portion of a dashed border line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

black

The length of the dash.

white

The length of the gap between dashes.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_set_border_color()
• ps_set_border_style()

ps_set_border_style

ps_set_border_style -- Sets border style of annotations

Description

bool ps_set_border_style (resource $psdoc, string $style, float $width)

Links added with one of the functions ps_add_weblink(), ps_add_pdflink(), etc. will be
displayed with a surounded rectangle when the postscript document is converted to pdf
and viewed in a pdf viewer. This rectangle is not visible in the postscript document. This
function sets the appearance and width of the border line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

style

style can be solid or dashed.

width

The line width of the border.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_set_border_color()
• ps_set_border_dash()

ps_set_info

ps_set_info -- Sets information fields of document

Description

bool ps_set_info (resource $p, string $key, string $val)

Sets certain information fields of the document. This fields will be shown as a comment in
the header of the PostScript file. If the document is converted to pdf this fields will also be
used for the document information.

The BoundingBox is usually set to the value given to the first page. This only works if
ps_findfont() has not been called before. In such cases the BoundingBox would be left
unset unless you set it explicitly with this function.

This function will have no effect anymore when the header of the postscript file has been
already written. It must be called before the first page or the first call of ps_findfont().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

key

The name of the information field to set. The values which can be set are Keywords,
Subject, Title, Creator, Author, BoundingBox, and Orientation. Be aware that some of
them has a meaning to PostScript viewers.

value

The value of the information field. The field Orientation can be set to either Portrait or
Landscape. The BoundingBox is a string consisting of four numbers. The first two
numbers are the coordinates of the lower left corner of the page. The last two numbers
are the coordinates of the upper right corner.

Note

Up to version 0.2.6 of pslib, the BoundingBox and Orientation will be overwritten by
ps_begin_page(), unless ps_findfont() has been called before.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_findfont()
• ps_begin_page()

ps_set_parameter

ps_set_parameter -- Sets certain parameters

Description

bool ps_set_parameter (resource $psdoc, string $name, string $value)

Sets several parameters which are used by many functions. Parameters are by definition
string values.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

name

For a list of possible names see ps_get_parameter().

value

The value of the parameter.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_get_parameters()
• ps_set_value()

ps_set_text_pos

ps_set_text_pos -- Sets position for text output

Description

bool ps_set_text_pos (resource $psdoc, float $x, float $y)

Set the position for the next text output. You may alternatively set the x and y value
separately by calling ps_set_value() and choosing textx respectively texty as the value
name.

If you want to output text at a certain position it is more convenient to use ps_show_xy()
instead of setting the text position and calling ps_show().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

x-coordinate of the new text position.

y

y-coordinate of the new text position.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1940 - Placing text at a given position

<?php

$ps = ps_new();

if (!ps_open_file($ps, "text.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "rectangle.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Text placement example");

ps_begin_page($ps, 596, 842);

$psfont = ps_findfont($ps, "Helvetica", "", 0);

ps_setfont($ps, $psfont, 8.0);

ps_show_xy($ps, "Some text at (100, 100)", 100, 100);

ps_set_value($ps, "textx", 100);

ps_set_value($ps, "texty", 120);

ps_show($ps, "Some text at (100, 120)");

ps_end_page($ps);

ps_delete($ps);

?>

See Also

• ps_set_value()
• ps_show()

ps_set_value

ps_set_value -- Sets certain values

Description

bool ps_set_value (resource $psdoc, string $name, float $value)

Sets several values which are used by many functions. Parameters are by definition float
values.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

name

The name can be one of the following:
textrendering

The way how text is shown.

textx
The x coordinate for text output.

texty
The y coordinate for text output.

wordspacing
The distance between words relative to the width of a space.

leading
The distance between lines in pixels.

value

The value of the parameter.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_get_value()

• ps_set_parameter()

ps_setcolor

ps_setcolor -- Sets current color

Description

bool ps_setcolor (resource $psdoc, string $type, string $colorspace, float $c1, float $c2
, float $c3, float $c4)

Sets the color for drawing, filling, or both.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The parameter type can be both, fill, or fillstroke.

colorspace

The colorspace should be one of gray, rgb, cmyk, spot, pattern. Depending on the
colorspace either only the first, the first three or all parameters will be used.

c1

Depending on the colorspace this is either the red component (rgb), the cyan
component (cmyk), the gray value (gray), the identifier of the spot color or the identifier
of the pattern.

c2

Depending on the colorspace this is either the green component (rgb), the magenta
component (cmyk).

c3

Depending on the colorspace this is either the blue component (rgb), the yellow
component (cmyk).

c4

This must only be set in cmyk colorspace and specifies the black component.

Bugs

The second parameter is currently not always evaluated. The color is sometimes set for
filling and drawing just as if fillstroke were passed.

Return Values

Returns TRUE on success or FALSE on failure.

ps_setdash

ps_setdash -- Sets appearance of a dashed line

Description

bool ps_setdash (resource $psdoc, float $on, float $off)

Sets the length of the black and white portions of a dashed line.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

on

The length of the dash.

off

The length of the gap between dashes.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setpolydash()

ps_setflat

ps_setflat -- Sets flatness

Description

bool ps_setflat (resource $psdoc, float $value)

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

value

The value must be between 0.2 and 1.

Return Values

Returns TRUE on success or FALSE on failure.

ps_setfont

ps_setfont -- Sets font to use for following output

Description

bool ps_setfont (resource $psdoc, int $fontid, float $size)

Sets a font, which has to be loaded before with ps_findfont(). Outputting text without
setting a font results in an error.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

fontid

The font identifier as returned by ps_findfont().

size

The size of the font.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_findfont()
• ps_set_text_pos() for an example.

ps_setgray

ps_setgray -- Sets gray value

Description

bool ps_setgray (resource $psdoc, float $gray)

Sets the gray value for all following drawing operations.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

gray

The value must be between 0 (white) and 1 (black).

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setcolor()

ps_setlinecap

ps_setlinecap -- Sets appearance of line ends

Description

bool ps_setlinecap (resource $psdoc, int $type)

Sets how line ends look like.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The type of line ends. Possible values are PS_LINECAP_BUTT,
PS_LINECAP_ROUND, or PS_LINECAP_SQUARED.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setlinejoin()
• ps_setlinewidth()
• ps_setmiterlimit()

ps_setlinejoin

ps_setlinejoin -- Sets how contected lines are joined

Description

bool ps_setlinejoin (resource $psdoc, int $type)

Sets how lines are joined.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The way lines are joined. Possible values are PS_LINEJOIN_MITER,
PS_LINEJOIN_ROUND, or PS_LINEJOIN_BEVEL.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setlinecap()
• ps_setlinewidth()
• ps_setmiterlimit()

ps_setlinewidth

ps_setlinewidth -- Sets width of a line

Description

bool ps_setlinewidth (resource $psdoc, float $width)

Sets the line width for all following drawing operations.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

width

The width of lines in points.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setlinecap()
• ps_setlinejoin()
• ps_setmiterlimit()

ps_setmiterlimit

ps_setmiterlimit -- Sets the miter limit

Description

bool ps_setmiterlimit (resource $psdoc, float $value)

If two lines join in a small angle and the line join is set to PS_LINEJOIN_MITER, then the
resulting spike will be very long. The miter limit is the maximum ratio of the miter length
(the length of the spike) and the line width.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

value

The maximum ratio between the miter length and the line width. Larger values (> 10)
will result in very long spikes when two lines meet in a small angle. Keep the default
unless you know what you are doing.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_setlinecap()
• ps_setlinejoin()
• ps_setlinewidth()

ps_setoverprintmode

ps_setoverprintmode -- Sets overprint mode

Description

bool ps_setoverprintmode (resource $psdoc, int $mode)

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

mode

Return Values

Returns TRUE on success or FALSE on failure.

ps_setpolydash

ps_setpolydash -- Sets appearance of a dashed line

Description

bool ps_setpolydash (resource $psdoc, float $arr)

Sets the length of the black and white portions of a dashed line. ps_setpolydash() is used
to set more complicated dash patterns.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

arr

arr is a list of length elements alternately for the black and white portion.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1941 - Drawing a dashed line

<?php

$ps = ps_new();

if (!ps_open_file($ps, "polydash.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "polydash.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Poly dash example");

ps_begin_page($ps, 596, 842);

ps_setpolydash($ps, array(10, 5, 2, 5));

ps_moveto($ps, 100, 100);

ps_lineto($ps, 200, 200);

ps_stroke($ps);

ps_end_page($ps);

ps_delete($ps);

?>

This example draws a line with a 10 and 2 points long line, and gaps of 5 points
inbetween.

See Also

• ps_setdash()

ps_shading_pattern

ps_shading_pattern -- Creates a pattern based on a shading

Description

int ps_shading_pattern (resource $psdoc, int $shadingid, string $optlist)

Creates a pattern based on a shading, which has to be created before with ps_shading().
Shading patterns can be used like regular patterns.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

shadingid

The identifier of a shading previously created with ps_shading().

optlist

This argument is not currently used.

Return Values

The identifier of the pattern or FALSE in case of an error.

See Also

• ps_shading()
• ps_shfill()

ps_shading

ps_shading -- Creates a shading for later use

Description

int ps_shading (resource $psdoc, string $type, float $x0, float $y0, float $x1, float $y1,
float $c1, float $c2, float $c3, float $c4, string $optlist)

Creates a shading, which can be used by ps_shfill() or ps_shading_pattern().

The color of the shading can be in any color space except for pattern.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

type

The type of shading can be either radial or axial. Each shading starts with the current
fill color and ends with the given color values passed in the parameters c1 to c4 (see
ps_setcolor() for their meaning).

x0, x1, y0, y1

The coordinates x0, y0, x1, y1 are the start and end point of the shading. If the type
of shading is radial the two points are the middle points of a starting and ending circle.

c1, c2, c3, c4

See ps_setcolor() for their meaning.

optlist

If the shading is of type radial the optlist must also contain the parameters r0 and r1
with the radius of the start and end circle.

Return Values

Returns the identifier of the pattern or FALSE in case of an error.

See Also

• ps_shading_pattern()
• ps_shfill()

ps_shfill

ps_shfill -- Fills an area with a shading

Description

bool ps_shfill (resource $psdoc, int $shadingid)

Fills an area with a shading, which has to be created before with ps_shading(). This is an
alternative way to creating a pattern from a shading ps_shading_pattern() and using the
pattern as the filling color.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

shadingid

The identifier of a shading previously created with ps_shading().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_shading()
• ps_shading_pattern()

ps_show_boxed

ps_show_boxed -- Output text in a box

Description

int ps_show_boxed (resource $psdoc, string $text, float $left, float $bottom, float $
width, float $height, string $hmode [, string $feature])

Outputs a text in a given box. The lower left corner of the box is at (left, bottom). Line
breaks will be inserted where needed. Multiple spaces are treated as one. Tabulators are
treated as spaces.

The text will be hyphenated if the parameter hyphenation is set to true and the parameter
hyphendict contains a valid filename for a hyphenation file. The line spacing is taken from
the value leading. Paragraphs can be separated by an empty line just like in TeX. If the
value parindent is set to value > 0.0 then the first n lines will be indented. The number n of
lines is set by the parameter numindentlines. In order to prevent indenting of the first m
paragraphs set the value parindentskip to a positive number.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text to be output into the given box.

left

x-coordinate of the lower left corner of the box.

bottom

y-coordinate of the lower left corner of the box.

width

Width of the box.

height

Height of the box.

hmode

The parameter hmode can be "justify", "fulljustify", "right", "left", or "center". The
difference of "justify" and "fulljustify" just affects the last line of the box. In fulljustify
mode the last line will be left and right justified unless this is also the last line of
paragraph. In justify mode it will always be left justified.

feature

Used parameters

The output of ps_show_boxed() can be configured with several parameters and values
which must be set with either ps_set_parameter() or ps_set_value(). Beside the
parameters and values which affect text output, the following parameters and values are
evaluated.
leading (value)

Distance between baselines of two consecutive lines.

linebreak (parameter)
Set to "true" if you want a carriage return to start a new line instead of treating it as a
space. Defaults to "false".

parbreak (parameter)
Set to "true" if you want a carriage return on a single line to start a new paragraph
instead of treating it as a space. Defaults to "true".

hyphenation (parameter)
Set to "true" in order to turn hyphenation on. This requires a dictionary to be set with
the parameter "hyphendict". Defaults to "false".

hyphendict (parameter)
Filename of the dictionary used for hyphenation pattern (see below).

hyphenminchar (value)
The number of chars which must at least be left over before or after the hyphen. This
implies that only words of at least two times this value will be hyphenated. The default
value is three. Setting a value of zero will result in the default value.

parindent (value)
Set the amount of space in pixel for indenting the first m lines of a paragraph. m can be
set with the value "numindentlines".

parskip (value)
Set the amount of extra space in pixel between paragraphs. Defaults to 0 which will
result in a normal line distance.

numindentlines (value)
Number of lines from the start of the paragraph which will be indented. Defaults to 1.

parindentskip (value)
Number of paragraphs in the box whose first lines will not be indented. This defaults to
0. This is useful for paragraphs right after a section heading or text being continued in
a second box. In both case one would set this to 1.

linenumbermode (parameter)
Set how lines are to be numbered. Possible values are "box" for numbering lines in the
whole box or "paragraph" to number lines within each paragraph.

linenumberspace (value)
The space for the column left of the numbered line containing the line number. The line

number will be right justified into this column. Defaults to 20.

linenumbersep (value)
The space between the column with line numbers and the line itself. Defaults to 5.

Hyphenation

Text is hyphenated if the parameter hyphenation is set to true and a valid hyphenation
dictionary is set. pslib does not ship its own hyphenation dictionary but uses one from
openoffice, scribus or koffice. You can find their dictionaries for different languages in one
of the following directories if the software is installed:

• /usr/share/apps/koffice/hyphdicts/
• /usr/lib/scribus/dicts/
• /usr/lib/openoffice/share/dict/ooo/

Currently scribus appears to have the most complete hyphenation dictionaries.

Return Values

Number of characters that could not be written.

See Also

• ps_continue_text()

ps_show_xy2

ps_show_xy2 -- Output text at position

Description

bool ps_show_xy2 (resource $psdoc, string $text, int $len, float $xcoor, float $ycoor)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

ps_show_xy

ps_show_xy -- Output text at given position

Description

bool ps_show_xy (resource $psdoc, string $text, float $x, float $y)

Output a text at the given text position.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text to be output.

x

x-coordinate of the lower left corner of the box surrounding the text.

y

y-coordinate of the lower left corner of the box surrounding the text.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_continue_text()
• ps_show()

ps_show2

ps_show2 -- Output a text at current position

Description

bool ps_show2 (resource $psdoc, string $text, int $len)

Warning

This function is currently not documented; only its argument list is available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

len

Return Values

Returns TRUE on success or FALSE on failure.

ps_show

ps_show -- Output text

Description

bool ps_show (resource $psdoc, string $text)

Output a text at the current text position. The text position can be set by storing the x and y
coordinates into the values textx and texty with the function ps_set_value(). The function
will issue an error if a font was not set before with ps_setfont().

ps_show() evaluates the following parameters and values as set by ps_set_parameter()
and ps_set_value().

charspacing (value)
Distance between two consecutive glyphs. If this value is unequal to zero then all
ligatures will be resolved. Values less than zero are allowed.

kerning (parameter)
Setting this parameter to "false" will turn off kerning. Kerning is turned on by default.

ligatures (parameter)
Setting this parameter to "false" will turn off the use of ligatures. Ligatures are turned
on by default.

underline (parameter)
Setting this parameter to "true" will turn on underlining. Underlining is turned off by
default.

overline (parameter)
Setting this parameter to "true" will turn on overlining. Overlining is turned off by
default.

strikeout (parameter)
Setting this parameter to "true" will turn on striking out. Striking out is turned off by
default.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text to be output.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_continue_text()
• ps_show_xy()
• ps_setfont()

ps_string_geometry

ps_string_geometry -- Gets geometry of a string

Description

array ps_string_geometry (resource $psdoc, string $text [, int $fontid [, float $size]]
)

This function is similar to ps_stringwidth() but returns an array of dimensions containing
the width, ascender, and descender of the text.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text for which the geometry is to be calculated.

fontid

The identifier of the font to be used. If not font is specified the current font will be used.

size

The size of the font. If no size is specified the current size is used.

Return Values

An array of the dimensions of a string. The element 'width' contains the width of the string
as returned by ps_stringwidth(). The element 'descender' contains the maximum
descender and 'ascender' the maximum ascender of the string.

See Also

• ps_continue_text()
• ps_stringwidth()

ps_stringwidth

ps_stringwidth -- Gets width of a string

Description

float ps_stringwidth (resource $psdoc, string $text [, int $fontid [, float $size]])

Calculates the width of a string in points if it was output in the given font and font size. This
function needs an Adobe font metrics file to calculate the precise width. If kerning is turned
on, it will be taken into account.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

text

The text for which the width is to be calculated.

fontid

The identifier of the font to be used. If not font is specified the current font will be used.

size

The size of the font. If no size is specified the current size is used.

Return Values

Width of a string in points.

See Also

• ps_string_geometry()

ps_stroke

ps_stroke -- Draws the current path

Description

bool ps_stroke (resource $psdoc)

Draws the path constructed with previously called drawing functions like ps_lineto().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_closepath_stroke()
• ps_fill()
• ps_fill_stroke()

ps_symbol_name

ps_symbol_name -- Gets name of a glyph

Description

string ps_symbol_name (resource $psdoc, int $ord [, int $fontid])

This function needs an Adobe font metrics file to know which glyphs are available.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

ord

The parameter ord is the position of the glyph in the font encoding vector.

fontid

The identifier of the font to be used. If not font is specified the current font will be used.

Return Values

The name of a glyph in the given font.

See Also

• ps_symbol()
• ps_symbol_width()

ps_symbol_width

ps_symbol_width -- Gets width of a glyph

Description

float ps_symbol_width (resource $psdoc, int $ord [, int $fontid [, float $size]])

Calculates the width of a glyph in points if it was output in the given font and font size. This
function needs an Adobe font metrics file to calculate the precise width.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

ord

The position of the glyph in the font encoding vector.

fontid

The identifier of the font to be used. If not font is specified the current font will be used.

size

The size of the font. If no size is specified the current size is used.

Return Values

The width of a glyph in points.

See Also

• ps_symbol()
• ps_symbol_name()

ps_symbol

ps_symbol -- Output a glyph

Description

bool ps_symbol (resource $psdoc, int $ord)

Output the glyph at position ord in the font encoding vector of the current font. The font
encoding for a font can be set when loading the font with ps_findfont().

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

ord

The position of the glyph in the font encoding vector.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ps_symbol_name()
• ps_symbol_width()

ps_translate

ps_translate -- Sets translation

Description

bool ps_translate (resource $psdoc, float $x, float $y)

Sets a new initial point of the coordinate system.

Parameters

psdoc

Resource identifier of the postscript file as returned by ps_new().

x

x-coordinate of the origin of the translated coordinate system.

y

y-coordinate of the origin of the translated coordinate system.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1942 - Translation of the coordinate system

<?php

function rectangle($ps) {

 ps_moveto($ps, 0, 0);

 ps_lineto($ps, 0, 50);

 ps_lineto($ps, 50, 50);

 ps_lineto($ps, 50, 0);

 ps_lineto($ps, 0, 0);

 ps_stroke($ps);

}

$ps = ps_new();

if (!ps_open_file($ps, "translate.ps")) {

 print "Cannot open PostScript file\n";

 exit;

}

ps_set_info($ps, "Creator", "translate.php");

ps_set_info($ps, "Author", "Uwe Steinmann");

ps_set_info($ps, "Title", "Translated example");

ps_set_info($ps, "BoundingBox", "0 0 596 842");

$psfont = ps_findfont($ps, "Helvetica", "", 0);

ps_begin_page($ps, 596, 842);

ps_set_text_pos($ps, 100, 100);

ps_translate($ps, 500, 750);

rectangle($ps);

ps_translate($ps, -500, -750);

ps_setfont($ps, $psfont, 8.0);

ps_show($ps, "Text at initial position");

ps_end_page($ps);

ps_begin_page($ps, 596, 842);

ps_set_text_pos($ps, 100, 100);

ps_save($ps);

ps_translate($ps, 500, 750);

rectangle($ps);

ps_restore($ps);

ps_setfont($ps, $psfont, 8.0);

ps_show($ps, "Text at initial position");

ps_end_page($ps);

ps_delete($ps);

?>

The above example demonstrates two possible ways to place a graphic (in this case
just a rectangle) at any position on the page, while the graphic itself uses its own
coordinate system. The trick is to change the origin of the current coordinate system
before drawing the rectangle. The translation has to undone after the graphic has been
drawn.

On the second page a slightly different and more elegant approach is applied. Instead
of undoing the translation with a second call of ps_translate() the graphics context is
saved before modifying the coordinate system and restored after drawing the
rectangle.

See Also

• ps_scale()
• ps_rotate()

RPM Header Reading

Introduction

This module allows you to read the meta information stored in the headers of a » RedHat
Package Manager (» RPM) file.

http://www.redhat.com/
http://www.rpm.org/

Installing/Configuring

Requirements

The RPMReader extension requires PHP 5.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/rpmreader.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There is one resource type used by the RPMReader module. The resource is a file pointer
which identifies the RPM file with which to work.

http://pecl.php.net/
http://pecl.php.net/package/rpmreader
http://pecl.php.net/package/rpmreader

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following list of constants are used to obtain information using the rpm_get_tag()
function. These constants represent the tag number to be retrieved from the RPM file's
header section. Descriptions are given below as to what data the tag number constants
reference.

RPMREADER_MINIMUM (integer)
The minimum valid value of any RPM tag number.

RPMREADER_NAME (integer)
The name of the RPM package.

RPMREADER_VERSION (integer)
The version of the RPM package.

RPMREADER_RELEASE (integer)
The release of the RPM package.

RPMREADER_EPOCH (integer)

RPMREADER_SERIAL (integer)

RPMREADER_SUMMARY (integer)
The summary text of the RPM package.

RPMREADER_DESCRIPTION (integer)
The full description text of the RPM package.

RPMREADER_BUILDTIME (integer)
The date and time when the RPM package was built.

RPMREADER_BUILDHOST (integer)
The name of the host on which the RPM package was built.

RPMREADER_INSTALLTIME (integer)

RPMREADER_SIZE (integer)
The size of the RPM package.

RPMREADER_DISTRIBUTION (integer)

RPMREADER_VENDOR (integer)

RPMREADER_GIF (integer)

RPMREADER_XPM (integer)

RPMREADER_LICENSE (integer)

RPMREADER_COPYRIGHT (integer)

RPMREADER_PACKAGER (integer)

RPMREADER_GROUP (integer)

RPMREADER_SOURCE (integer)

RPMREADER_PATCH (integer)

RPMREADER_URL (integer)

RPMREADER_OS (integer)

RPMREADER_ARCH (integer)

RPMREADER_PREIN (integer)

RPMREADER_POSTIN (integer)

RPMREADER_PREUN (integer)

RPMREADER_POSTUN (integer)

RPMREADER_OLDFILENAMES (integer)
The list of files in an RPM package (deprecated format). The correct way is now to use
a combination of 3 tags (RPMREADER_BASENAMES, RPMREADER_DIRINDEXES,
RPMREADER_DIRNAMES) in what RPM now calls "CompressedFileNames". This tag

is still used in older RPM files that did not use the "CompressedFileNames" method
and is maintained for backward compatibility.

RPMREADER_FILESIZES (integer)

RPMREADER_FILESTATES (integer)

RPMREADER_FILEMODES (integer)

RPMREADER_FILERDEVS (integer)

RPMREADER_FILEMTIMES (integer)

RPMREADER_FILEMD5S (integer)

RPMREADER_FILELINKTOS (integer)

RPMREADER_FILEFLAGS (integer)

RPMREADER_FILEUSERNAME (integer)

RPMREADER_FILEGROUPNAME (integer)

RPMREADER_ICON (integer)

RPMREADER_SOURCERPM (integer)

RPMREADER_FILEVERIFYFLAGS (integer)

RPMREADER_ARCHIVESIZE (integer)

RPMREADER_PROVIDENAME (integer)

RPMREADER_PROVIDES (integer)

RPMREADER_REQUIREFLAGS (integer)

RPMREADER_REQUIRENAME (integer)

RPMREADER_REQUIREVERSION (integer)

RPMREADER_CONFLICTFLAGS (integer)

RPMREADER_CONFLICTNAME (integer)

RPMREADER_CONFLICTVERSION (integer)

RPMREADER_EXCLUDEARCH (integer)

RPMREADER_EXCLUDEOS (integer)

RPMREADER_EXCLUSIVEARCH (integer)

RPMREADER_EXCLUSIVEOS (integer)

RPMREADER_RPMVERSION (integer)

RPMREADER_TRIGGERSCRIPTS (integer)

RPMREADER_TRIGGERNAME (integer)

RPMREADER_TRIGGERVERSION (integer)

RPMREADER_TRIGGERFLAGS (integer)

RPMREADER_TRIGGERINDEX (integer)

RPMREADER_VERIFYSCRIPT (integer)

RPMREADER_CHANGELOGTIME (integer)
The list of dates from changelog entries.

RPMREADER_CHANGELOGNAME (integer)

The list of changelog entry names.

RPMREADER_CHANGELOGTEXT (integer)
The list of the text from changelog entries.

RPMREADER_PREINPROG (integer)

RPMREADER_POSTINPROG (integer)

RPMREADER_PREUNPROG (integer)

RPMREADER_POSTUNPROG (integer)

RPMREADER_BUILDARCHS (integer)

RPMREADER_OBSOLETENAME (integer)

RPMREADER_OBSOLETES (integer)

RPMREADER_VERIFYSCRIPTPROG (integer)

RPMREADER_TRIGGERSCRIPTPROG (integer)

RPMREADER_COOKIE (integer)

RPMREADER_FILEDEVICES (integer)

RPMREADER_FILEINODES (integer)

RPMREADER_FILELANGS (integer)

RPMREADER_PREFIXES (integer)

RPMREADER_INSTPREFIXES (integer)

RPMREADER_PROVIDEFLAGS (integer)

RPMREADER_PROVIDEVERSION (integer)

RPMREADER_OBSOLETEFLAGS (integer)

RPMREADER_OBSOLETEVERSION (integer)

RPMREADER_DIRINDEXES (integer)
The list of indices that relate directory names to files in the RPM package. This tag is
used in conjunction with RPMREADER_BASENAMES and
RPMREADER_DIRNAMES to reconstruct filenames in the RPM package stored with
the new "CompressedFileNames" method in RPM.

RPMREADER_BASENAMES (integer)
The list of the names of files in the RPM package without path information. This tag is
used in conjunction with RPMREADER_DIRINDEXES and RPMREADER_DIRNAMES
to reconstruct filenames in the RPM package stored with the new
"CompressedFileNames" method in RPM.

RPMREADER_DIRNAMES (integer)
The list of directory names used by files in the RPM package. This tag is used in
conjunction with RPMREADER_BASENAMES and RPMREADER_DIRINDEXES to
reconstruct filenames in the RPM package stored with the new
"CompressedFileNames" method in RPM.

RPMREADER_OPTFLAGS (integer)

RPMREADER_DISTURL (integer)

RPMREADER_PAYLOADFORMAT (integer)

RPMREADER_PAYLOADCOMPRESSOR (integer)

RPMREADER_PAYLOADFLAGS (integer)

RPMREADER_INSTALLCOLOR (integer)

RPMREADER_INSTALLTID (integer)

RPMREADER_REMOVETID (integer)

RPMREADER_RHNPLATFORM (integer)

RPMREADER_PLATFORM (integer)

RPMREADER_PATCHESNAME (integer)

RPMREADER_PATCHESFLAGS (integer)

RPMREADER_PATCHESVERSION (integer)

RPMREADER_CACHECTIME (integer)

RPMREADER_CACHEPKGPATH (integer)

RPMREADER_CACHEPKGSIZE (integer)

RPMREADER_CACHEPKGMTIME (integer)

RPMREADER_FILECOLORS (integer)

RPMREADER_FILECLASS (integer)

RPMREADER_CLASSDICT (integer)

RPMREADER_FILEDEPENDSX (integer)

RPMREADER_FILEDEPENDSN (integer)

RPMREADER_DEPENDSDICT (integer)

RPMREADER_SOURCEPKGID (integer)

RPMREADER_FILECONTEXTS (integer)

RPMREADER_FSCONTEXTS (integer)

RPMREADER_RECONTEXTS (integer)

RPMREADER_POLICIES (integer)

RPMREADER_MAXIMUM (integer)
The maximum valid value of any RPM tag number.

Examples

Basic usage

This example will open an RPM file and read the name, version, and release from the
RPM file, echo the results, and close the RPM file.

Example #1943 - Basic RPMReader Example

<?php

$filename = "/path/to/file.rpm";

// open file

$rpmr = rpm_open($filename);

// get "Name" tag

$name = rpm_get_tag($rpmr, RPMREADER_NAME);

// get "Version" tag

$ver = rpm_get_tag($rpmr, RPMREADER_VERSION);

// get "Release" tag

$rel = rpm_get_tag($rpmr, RPMREADER_RELEASE);

echo "$name-$ver-$rel
\n";

// close file

rpm_close($rpmr);

?>

RPM Reader Functions

rpm_close

rpm_close -- Closes an RPM file

Description

bool rpm_close (resource $rpmr)

rpm_close() will close an RPM file pointer.

Parameters

rpmr

A file pointer resource successfully opened by rpm_open().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1944 - rpm_close() example

<?php

$file = "/path/to/file.rpm";

$rpmr = rpm_open($file);

rpm_close($rpmr);

?>

See Also

• rpm_open()

rpm_get_tag

rpm_get_tag -- Retrieves a header tag from an RPM file

Description

mixed rpm_get_tag (resource $rpmr, int $tagnum)

rpm_get_tag() will retrieve a given tag from the RPM file's header and return it.

Parameters

rpmr

A file pointer resource successfully opened by rpm_open().

tagnum

The tag number to retrieve from the RPM header. This value can be specified using
the list of constants defined by this module.

Return Values

The return value can be of various types depending on the tagnum supplied to the
function.

Examples

Example #1945 - rpm_get_tag() example

<?php

$file = "/path/to/file.rpm";

$rpmr = rpm_open($file);

$name = rpm_get_tag($rpmr, RPMREADER_NAME);

echo "$name
\n";

rpm_close($rpmr);

?>

See Also

• rpm_open()
• rpm_close()

rpm_is_valid

rpm_is_valid -- Tests a filename for validity as an RPM file

Description

bool rpm_is_valid (string $filename)

rpm_is_valid() will test an RPM file for validity as an RPM file. This is not the same as
rpm_open() as it only checks the file for validity but does not return a file pointer to be used
by further functions.

Parameters

filename

The filename of the RPM file you wish to check for validity.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1946 - rpm_is_valid() example

<?php

$file = "/path/to/file.rpm";

if (rpm_is_valid($file)) {

 echo "File is recognized as an RPM file.
\n";

}

else {

 echo "File is not recognized as an RPM file.
\n";

}

?>

rpm_open

rpm_open -- Opens an RPM file

Description

resource rpm_open (string $filename)

rpm_open() will open an RPM file and will determine if the file is a valid RPM file.

Parameters

filename

The filename of the RPM file you wish to open.

Return Values

If the open succeeds, then rpm_open() will return a file pointer resource to the newly
opened file. On error, the function will return FALSE.

Examples

Example #1947 - rpm_open() example

<?php

$file = "/path/to/file.rpm";

$rpmr = rpm_open($file);

rpm_close($rpmr);

?>

See Also

• rpm_close()

rpm_version

rpm_version -- Returns a string representing the current version of the rpmreader
extension

Description

string rpm_version (void)

rpm_version() will return the current version of the rpmreader extension.

Return Values

rpm_version() will return a string representing the rpmreader version currently loaded in
PHP.

Examples

Example #1948 - rpm_version() example

<?php

$rpmr_ver = rpm_version();

echo "$rpmr_ver
\n";

?>

Shockwave Flash

Introduction

PHP offers the ability to create Shockwave Flash files via Paul Haeberli's libswf module.

Note

SWF support was added in PHP 4 RC2.

The libswf does not have support for Windows. The development of that library has
been stopped, and the source is not available to port it to another systems.

For up to date SWF support take a look at the MING functions.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

http://pecl.php.net/

Installing/Configuring

Requirements

You need the libswf library to compile PHP with support for this extension. You can
download libswf at » ftp://ftp.sgi.com/sgi/graphics/grafica/flash/.

Installation

Once you have libswf all you need to do is to configure --with-swf[=DIR] where DIR is a
location containing the directories include and lib. The include directory has to contain the
swf.h file and the lib directory has to contain the libswf.a file. If you unpack the libswf
distribution the two files will be in one directory. Consequently you will have to copy the
files to the proper location manually.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

ftp://ftp.sgi.com/sgi/graphics/grafica/flash/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

MOD_COLOR (integer)

MOD_MATRIX (integer)

TYPE_PUSHBUTTON (integer)

TYPE_MENUBUTTON (integer)

BSHitTest (float)

BSDown (float)

BSOver (float)

BSUp (float)

OverDowntoIdle (integer)

IdletoOverDown (integer)

OutDowntoIdle (integer)

OutDowntoOverDown (integer)

OverDowntoOutDown (integer)

OverUptoOverDown (integer)

OverUptoIdle (integer)

IdletoOverUp (integer)

ButtonEnter (integer)

ButtonExit (integer)

MenuEnter (integer)

MenuExit (integer)

Examples

Basic Usage

Once you've successfully installed PHP with Shockwave Flash support you can then go
about creating Shockwave files from PHP. You would be surprised at what you can do,
take the following code:

Example #1949 - SWF example

<?php

swf_openfile("test.swf", 256, 256, 30, 1, 1, 1);

swf_ortho2(-100, 100, -100, 100);

swf_defineline(1, -70, 0, 70, 0, .2);

swf_definerect(4, 60, -10, 70, 0, 0);

swf_definerect(5, -60, 0, -70, 10, 0);

swf_addcolor(0, 0, 0, 0);

swf_definefont(10, "Mod");

swf_fontsize(5);

swf_fontslant(10);

swf_definetext(11, "This be Flash wit PHP!", 1);

swf_pushmatrix();

swf_translate(-50, 80, 0);

swf_placeobject(11, 60);

swf_popmatrix();

for ($i = 0; $i < 30; $i++) {

 $p = $i/(30-1);

 swf_pushmatrix();

 swf_scale(1-($p*.9), 1, 1);

 swf_rotate(60*$p, 'z');

 swf_translate(20+20*$p, $p/1.5, 0);

 swf_rotate(270*$p, 'z');

 swf_addcolor($p, 0, $p/1.2, -$p);

 swf_placeobject(1, 50);

 swf_placeobject(4, 50);

 swf_placeobject(5, 50);

 swf_popmatrix();

 swf_showframe();

}

for ($i = 0; $i < 30; $i++) {

 swf_removeobject(50);

 if (($i%4) == 0) {

 swf_showframe();

 }

}

swf_startdoaction();

swf_actionstop();

swf_enddoaction();

swf_closefile();

?>

SWF Functions

swf_actiongeturl

swf_actiongeturl -- Get a URL from a Shockwave Flash movie

Description

void swf_actiongeturl (string $url, string $target)

Gets the URL specified by the parameter url with the given target.

Parameters

url

The URL, as a string.

target

The target, as a string.

Return Values

No value is returned.

swf_actiongotoframe

swf_actiongotoframe -- Play a frame and then stop

Description

void swf_actiongotoframe (int $framenumber)

The swf_actiongotoframe() function will go to the frame specified by framenumber, play it,
and then stop.

Parameters

framenumber

The frame number.

Return Values

No value is returned.

swf_actiongotolabel

swf_actiongotolabel -- Display a frame with the specified label

Description

void swf_actiongotolabel (string $label)

The swf_actiongotolabel() function displays the frame with the label given by the label
parameter and then stops.

Parameters

label

The frame label.

Return Values

No value is returned.

swf_actionnextframe

swf_actionnextframe -- Go forward one frame

Description

void swf_actionnextframe (void)

Go forward one frame.

Return Values

No value is returned.

See Also

• swf_actionprevframe()

swf_actionplay

swf_actionplay -- Start playing the flash movie from the current frame

Description

void swf_actionplay (void)

Start playing the flash movie from the current frame.

Return Values

No value is returned.

See Also

• swf_actionstop()

swf_actionprevframe

swf_actionprevframe -- Go backwards one frame

Description

void swf_actionprevframe (void)

Go backwards one frame.

Return Values

No value is returned.

See Also

• swf_actionnextframe()

swf_actionsettarget

swf_actionsettarget -- Set the context for actions

Description

void swf_actionsettarget (string $target)

Sets the context for all actions. You can use this to control other flash movies that are
currently playing.

Parameters

target

The target, as a string.

Return Values

No value is returned.

swf_actionstop

swf_actionstop -- Stop playing the flash movie at the current frame

Description

void swf_actionstop (void)

Stop playing the flash movie at the current frame.

Return Values

No value is returned.

See Also

• swf_actionplay()

swf_actiontogglequality

swf_actiontogglequality -- Toggle between low and high quality

Description

void swf_actiontogglequality (void)

Toggle the flash movie between high and low quality.

Return Values

No value is returned.

swf_actionwaitforframe

swf_actionwaitforframe -- Skip actions if a frame has not been loaded

Description

void swf_actionwaitforframe (int $framenumber, int $skipcount)

The swf_actionwaitforframe() function will check to see if the frame, specified by the
framenumber parameter has been loaded, if not it will skip the number of actions specified
by the skipcount parameter. This can be useful for "Loading..." type animations.

Parameters

framenumber

The frame number.

skipcount

The number of actions to skip.

Return Values

No value is returned.

swf_addbuttonrecord

swf_addbuttonrecord -- Controls location, appearance and active area of the current
button

Description

void swf_addbuttonrecord (int $states, int $shapeid, int $depth)

Allow you to define the specifics of using a button.

Parameters

states

Defines what states the button can have, these can be any or all of the following
constants: BSHitTest, BSDown, BSOver or BSUp.

shapeid

The second parameter, the shapeid is the look of the button, this is usually the object
id of the shape of the button.

depth

This parameter is the placement of the button in the current frame.

Return Values

No value is returned.

Examples

Example #1950 - swf_addbuttonrecord() example

<?php

swf_startButton($objid, TYPE_MENUBUTTON);

swf_addButtonRecord(BSDown|BSOver, $buttonImageId, 340);

swf_onCondition(MenuEnter);

swf_actionGetUrl("http://www.example.com", "_level1");

swf_onCondition(MenuExit);

swf_actionGetUrl("", "_level1");

swf_endButton();

?>

swf_addcolor

swf_addcolor -- Set the global add color to the rgba value specified

Description

void swf_addcolor (float $r, float $g, float $b, float $a)

Sets the global add color to the specified color. This color is then implicitly used by the
swf_placeobject(), swf_modifyobject() and swf_addbuttonrecord() functions.

The color of the object will be add by the given values when the object is written to the
screen.

Parameters

r

Red value

g

Green value

b

Blue value

a

Alpha value

These parameters can be either positive or negative.

Return Values

No value is returned.

swf_closefile

swf_closefile -- Close the current Shockwave Flash file

Description

void swf_closefile ([int $return_file])

Close a file that was opened by the swf_openfile() function.

Parameters

return_file

If set then the contents of the SWF file are returned from the function.

Return Values

No value is returned.

Examples

Example #1951 - Creating a simple flash file based on user input and outputting
it and saving it in a database

<?php

// The $text variable is submitted by the

// user

// Global variables for database

// access (used in the swf_savedata() function)

$DBHOST = "localhost";

$DBUSER = "sterling";

$DBPASS = "secret";

swf_openfile("php://stdout", 256, 256, 30, 1, 1, 1);

 swf_definefont(10, "Ligon-Bold");

 swf_fontsize(12);

 swf_fontslant(10);

 swf_definetext(11, $text, 1);

 swf_pushmatrix();

 swf_translate(-50, 80, 0);

 swf_placeobject(11, 60);

 swf_popmatrix();

 swf_showframe();

 swf_startdoaction();

 swf_actionstop();

 swf_enddoaction();

$data = swf_closefile(1);

$data ?

 swf_savedata($data) :

 die("Error could not save SWF file");

// void swf_savedata(string data)

// Save the generated file a database

// for later retrieval

function swf_savedata($data)

{

 global $DBHOST,

 $DBUSER,

 $DBPASS;

 $dbh = @mysql_connect($DBHOST, $DBUSER, $DBPASS);

 if (!$dbh) {

 die (sprintf("Error [%d]: %s",

 mysql_errno(), mysql_error()));

 }

 $stmt = "INSERT INTO swf_files (file) VALUES ('$data')";

 $sth = @mysql_query($stmt, $dbh);

 if (!$sth) {

 die (sprintf("Error [%d]: %s",

 mysql_errno(), mysql_error()));

 }

 @mysql_free_result($sth);

 @mysql_close($dbh);

}

?>

See Also

• swf_openfile()

swf_definebitmap

swf_definebitmap -- Define a bitmap

Description

void swf_definebitmap (int $objid, string $image_name)

The swf_definebitmap() function defines a bitmap given an image.

Parameters

objid

An SWF object id.

image_name

A GIF, JPEG, RGB or FI image. The image will be converted into a Flash JPEG or
Flash color map format.

Return Values

No value is returned.

swf_definefont

swf_definefont -- Defines a font

Description

void swf_definefont (int $fontid, string $fontname)

The swf_definefont() function defines a font parameter and gives it the specified id. It then
sets the font given by fontname to the current font.

Parameters

fontid

The id to be given to the font.

fontname

The font so be set as current font.

Return Values

No value is returned.

See Also

• swf_definetext()

swf_defineline

swf_defineline -- Define a line

Description

void swf_defineline (int $objid, float $x1, float $y1, float $x2, float $y2, float $width)

Defines a line.

Parameters

objid

The object id.

x1

x-coordinate of start point.

y1

y-coordinate of start point.

x2

x-coordinate of end point.

y2

y-coordinate of end point.

width

The line width.

Return Values

No value is returned.

swf_definepoly

swf_definepoly -- Define a polygon

Description

void swf_definepoly (int $objid, array $coords, int $npoints, float $width)

Defines a polygon given an array of x, y coordinates.

Parameters

objid

The object id.

coords

An array of x, y coordinates.

npoints

The number of overall points that are contained in the array given by coords

width

The width of the polygon's border, if set to 0.0 the polygon is filled.

Return Values

No value is returned.

swf_definerect

swf_definerect -- Define a rectangle

Description

void swf_definerect (int $objid, float $x1, float $y1, float $x2, float $y2, float $width)

Defines a rectangle with an upper left hand coordinate and a lower right hand coordinate.

Parameters

objid

The object id.

x1

x-coordinate of upper left point.

y1

y-coordinate of upper left point.

x2

x-coordinate of lower right point.

y2

y-coordinate of lower right point.

width

Width of the rectangles border, if the width is 0.0 then the rectangle is filled.

Return Values

No value is returned.

swf_definetext

swf_definetext -- Define a text string

Description

void swf_definetext (int $objid, string $str, int $docenter)

Defines a text string using the current font and font size.

Parameters

objid

The object id.

str

The text, as a string.

docenter

The docenter is where the word is centered, if docenter is 1, then the word is
centered in x.

Return Values

No value is returned.

Examples

Example #1952 - Horizontal text example

<?php

$Xposition = 50;

$Yposition = 50;

$Zposition = 0;

$Obj_depth = 1;

$char = 'THIS IS THE TEXT';

swf_pushmatrix();

swf_definefont (swf_nextid(), "Mod");

swf_fontsize(10);

$secondid = swf_nextid();

swf_definetext($secondid, $char, 1);

swf_translate($Xposition, $Yposition, Zposition);

swf_placeobject($secondid, $Obj_depth);

swf_popmatrix();

?>

See Also

• swf_definefont()

swf_endbutton

swf_endbutton -- End the definition of the current button

Description

void swf_endbutton (void)

The swf_endbutton() function ends the definition of the current button.

Return Values

No value is returned.

See Also

• swf_startbutton()

swf_enddoaction

swf_enddoaction -- End the current action

Description

void swf_enddoaction (void)

Ends the current action started by the swf_startdoaction() function.

Return Values

No value is returned.

See Also

• swf_startdoaction()

swf_endshape

swf_endshape -- Completes the definition of the current shape

Description

void swf_endshape (void)

The swf_endshape() completes the definition of the current shape.

Return Values

No value is returned.

See Also

• swf_startshape()

swf_endsymbol

swf_endsymbol -- End the definition of a symbol

Description

void swf_endsymbol (void)

Ends the definition of a symbol that was started by the swf_startsymbol() function.

Return Values

No value is returned.

See Also

• swf_startsymbol()

swf_fontsize

swf_fontsize -- Change the font size

Description

void swf_fontsize (float $size)

Changes the font size to the value given by the size parameter.

Parameters

size

The font size, as an integer.

Return Values

No value is returned.

swf_fontslant

swf_fontslant -- Set the font slant

Description

void swf_fontslant (float $slant)

Set the current font slant to the angle indicated by the slant parameter.

Parameters

slant

Positive values create a forward slant, negative values create a negative slant.

Return Values

No value is returned.

swf_fonttracking

swf_fonttracking -- Set the current font tracking

Description

void swf_fonttracking (float $tracking)

Set the font tracking to the value specified by the tracking parameter. This function is
used to increase the spacing between letters and text, positive values increase the space
and negative values decrease the space between letters.

Parameters

tracking

The font tracking.

Return Values

No value is returned.

swf_getbitmapinfo

swf_getbitmapinfo -- Get information about a bitmap

Description

array swf_getbitmapinfo (int $bitmapid)

Returns information about a bitmap.

Parameters

bitmapid

The bitmap id.

Return Values

Returns an array with the following elements:

• "size" - The size in bytes of the bitmap.

• "width" - The width in pixels of the bitmap.

• "height" - The height in pixels of the bitmap.

swf_getfontinfo

swf_getfontinfo -- Gets font information

Description

array swf_getfontinfo (void)

Gets information about the font by giving the height in pixels of a capital A and a lowercase
x.

Return Values

Returns an associative array with the following parameters:

• Aheight - The height in pixels of a capital A.

• xheight - The height in pixels of a lowercase x.

swf_getframe

swf_getframe -- Get the frame number of the current frame

Description

int swf_getframe (void)

The swf_getframe() function gets the number of the current frame.

Return Values

Returns the current frame number, as an integer.

See Also

• swf_setframe()

swf_labelframe

swf_labelframe -- Label the current frame

Description

void swf_labelframe (string $name)

Labels the current frame with the given name.

Parameters

name

The frame label.

Return Values

No value is returned.

swf_lookat

swf_lookat -- Define a viewing transformation

Description

void swf_lookat (float $view_x, float $view_y, float $view_z, float $reference_x, float $
reference_y, float $reference_z, float $twist)

Defines a viewing transformation by giving the viewing position and the coordinates of a
reference point in the scene.

Parameters

view_x

x-coordinate for the viewing position

view_y

y-coordinate for the viewing position

view_z

z-coordinate for the viewing position

reference_x

x-coordinate for the reference point

reference_y

y-coordinate for the reference point

reference_z

z-coordinate for the reference point

twist

Controls the rotation along with viewer's z axis.

Return Values

No value is returned.

Examples

Example #1953 - A simple 3D-rotation around a text

<?php

header('Content-type: application/x-shockwave-flash');

swf_openfile("php://stdout", 320, 200, 25, 1, 1, 1);

swf_ortho(-100, 100, -100, 100, -100, 100); // create 3D coordinates

swf_definefont(0, "Pix3");

swf_addcolor(0, 0, 0, 1);

swf_fontsize(10);

swf_fonttracking(0.2);

for ($i = 0; $i < 628; $i += 8) {

 $j = $i / 100;

 swf_pushmatrix();

 swf_translate(0, 0, 0);

 swf_perspective(100, 1, 0, 10);

 swf_lookat(sin($j) * 60, 50, cos($j) * 60, 0, 0, 0, 0);

 swf_definetext (1, 'HotKey@', 0);

 swf_translate(-50,0,0);

 swf_placeobject(1,10);

 swf_definetext(2, 'example.com', 0);

 swf_translate(55, 0, 0);

 swf_placeobject(2, 11);

 swf_showframe();

 swf_removeobject(10);

 swf_removeobject(11);

 swf_popmatrix();

}

swf_closefile();

?>

swf_modifyobject

swf_modifyobject -- Modify an object

Description

void swf_modifyobject (int $depth, int $how)

Updates the position and/or color of the object at the specified depth.

Parameters

depth

The depth, as an integer.

how

Determines what is updated. how can either be the constant MOD_MATRIX or
MOD_COLOR or it can be a combination of both. MOD_COLOR uses the current
mulcolor (specified by the function swf_mulcolor()) and addcolor (specified by the
function swf_addcolor()) to color the object. MOD_MATRIX uses the current matrix to
position the object.

Return Values

No value is returned.

swf_mulcolor

swf_mulcolor -- Sets the global multiply color to the rgba value specified

Description

void swf_mulcolor (float $r, float $g, float $b, float $a)

Sets the global multiply color to the given one. This color is then implicitly used by the
swf_placeobject(), swf_modifyobject() and swf_addbuttonrecord() functions.

The color of the object will be multiplied by the given color values when the object is
written to the screen.

Parameters

r

Red value

g

Green value

b

Blue value

a

Alpha value

These parameters can be either positive or negative.

Return Values

No value is returned.

swf_nextid

swf_nextid -- Returns the next free object id

Description

int swf_nextid (void)

The swf_nextid() function returns the next available object id.

Return Values

Returns the id, as an integer.

swf_oncondition

swf_oncondition -- Describe a transition used to trigger an action list

Description

void swf_oncondition (int $transition)

The swf_oncondition() function describes a transition that will trigger an action list.

Parameters

transition

There are several types of possible transitions, the following are for buttons defined as
TYPE_MENUBUTTON:

• IdletoOverUp

• OverUptoIdle

• OverUptoOverDown

• OverDowntoOverUp

• IdletoOverDown

• OutDowntoIdle

• MenuEnter (IdletoOverUp|IdletoOverDown)

• MenuExit (OverUptoIdle|OverDowntoIdle)

For TYPE_PUSHBUTTON there are the following options:

• IdletoOverUp

• OverUptoIdle

• OverUptoOverDown

• OverDowntoOverUp

• OverDowntoOutDown

• OutDowntoOverDown

• OutDowntoIdle

• ButtonEnter (IdletoOverUp|OutDowntoOverDown)

• ButtonExit (OverUptoIdle|OverDowntoOutDown)

Return Values

No value is returned.

swf_openfile

swf_openfile -- Open a new Shockwave Flash file

Description

void swf_openfile (string $filename, float $width, float $height, float $framerate, float
$r, float $g, float $b)

Opens a new file. This must be the first function you call, otherwise your script will not
work.

Parameters

filename

The path to the SWF file. If you want to send your output to the screen, set this to
php://stdout.

width

The movie width

height

The movie height

framerate

The frame rate.

r

Red value for the background.

g

Green value for the background.

b

Blue value for the background.

Return Values

No value is returned.

ChangeLog

Version Description

4.0.1 Support for php://stdout was added.

See Also

• swf_closefile()

swf_ortho2

swf_ortho2 -- Defines 2D orthographic mapping of user coordinates onto the current
viewport

Description

void swf_ortho2 (float $xmin, float $xmax, float $ymin, float $ymax)

Defines a two dimensional orthographic mapping of user coordinates onto the current
viewport, this defaults to one to one mapping of the area of the Flash movie.

If a perspective transformation is desired, swf_perspective() can be used.

Parameters

xmin

xmax

ymin

ymax

Return Values

No value is returned.

See Also

• swf_ortho()

swf_ortho

swf_ortho -- Defines an orthographic mapping of user coordinates onto the current
viewport

Description

void swf_ortho (float $xmin, float $xmax, float $ymin, float $ymax, float $zmin, float $zmax
)

Defines an 3D orthographic mapping of user coordinates onto the current viewport.

Parameters

xmin

xmax

ymin

ymax

zmin

zmax

Return Values

No value is returned.

See Also

• swf_ortho2()

swf_perspective

swf_perspective -- Define a perspective projection transformation

Description

void swf_perspective (float $fovy, float $aspect, float $near, float $far)

Defines a perspective projection transformation.

Note

Various distortion artifacts may appear when performing a perspective projection, this
is because Flash players only have a two dimensional matrix. Some are not to pretty.

Parameters

fovy

A field-of-view angle in the y direction.

aspect

The aspect ratio of the viewport that is being drawn onto.

near

The near clipping plane.

far

The far clipping plane.

Return Values

No value is returned.

swf_placeobject

swf_placeobject -- Place an object onto the screen

Description

void swf_placeobject (int $objid, int $depth)

Places the object in the current frame at a specified depth.

This uses the current mulcolor (specified by swf_mulcolor()) and the current addcolor
(specified by swf_addcolor()) to color the object and it uses the current matrix to position
the object.

Parameters

objid

The object id.

depth

Must be between 1 and 65535.

Return Values

No value is returned.

swf_polarview

swf_polarview -- Define the viewer's position with polar coordinates

Description

void swf_polarview (float $dist, float $azimuth, float $incidence, float $twist)

The swf_polarview() function defines the viewer's position in polar coordinates.

Parameters

dist

The distance between the viewpoint to the world space origin.

azimuth

Defines the azimuthal angle in the x,y coordinate plane, measured in distance from the
y axis.

incidence

Defines the angle of incidence in the y,z plane, measured in distance from the z axis.
The incidence angle is defined as the angle of the viewport relative to the z axis.

twist

Specifies the amount that the viewpoint is to be rotated about the line of sight using the
right hand rule.

Return Values

No value is returned.

swf_popmatrix

swf_popmatrix -- Restore a previous transformation matrix

Description

void swf_popmatrix (void)

Pushes the current transformation matrix back onto the stack.

Return Values

No value is returned.

See Also

• swf_pushmatrix()

swf_posround

swf_posround -- Enables or Disables the rounding of the translation when objects are
placed or moved

Description

void swf_posround (int $round)

Enables or disables the rounding of the translation when objects are placed or moved,
there are times when text becomes more readable because rounding has been enabled.

Parameters

round

Whether to enable rounding or not, if set to the value of 1, then rounding is enabled, if
set to 0 then rounding is disabled.

Return Values

No value is returned.

swf_pushmatrix

swf_pushmatrix -- Push the current transformation matrix back unto the stack

Description

void swf_pushmatrix (void)

Pushes the current transformation matrix back onto the stack.

Return Values

No value is returned.

See Also

• swf_popmatrix()

swf_removeobject

swf_removeobject -- Remove an object

Description

void swf_removeobject (int $depth)

Removes the last object drawn at the depth specified by depth.

Parameters

depth

The depth, as an integer.

Return Values

No value is returned.

swf_rotate

swf_rotate -- Rotate the current transformation

Description

void swf_rotate (float $angle, string $axis)

Rotates the current transformation by a given angle around the given axis.

Parameters

angle

The rotation angle.

axis

The axis. Valid values axis are x (the x axis), y (the y axis) or z (the z axis).

Return Values

No value is returned.

swf_scale

swf_scale -- Scale the current transformation

Description

void swf_scale (float $x, float $y, float $z)

The swf_scale() scales curve coordinates by the given value.

Parameters

x

x scale factor.

y

y scale factor.

z

z scale factor.

Return Values

No value is returned.

swf_setfont

swf_setfont -- Change the current font

Description

void swf_setfont (int $fontid)

The swf_setfont() sets the current font to the value given by the fontid parameter.

Parameters

fontid

The font identifier.

Return Values

No value is returned.

swf_setframe

swf_setframe -- Switch to a specified frame

Description

void swf_setframe (int $framenumber)

Changes the active frame to the specified on.

Parameters

framenumber

The frame number to be set.

Return Values

No value is returned.

See Also

• swf_getframe()

swf_shapearc

swf_shapearc -- Draw a circular arc

Description

void swf_shapearc (float $x, float $y, float $r, float $ang1, float $ang2)

Draws a circular arc.

Parameters

x

x-coordinate of the center.

y

y-coordinate of the center.

r

The arc radius.

ang1

The start angle.

ang2

The end angle.

Return Values

No value is returned.

swf_shapecurveto3

swf_shapecurveto3 -- Draw a cubic bezier curve

Description

void swf_shapecurveto3 (float $x1, float $y1, float $x2, float $y2, float $x3, float $y3)

Draw a cubic bezier curve using the given coordinates.

The current position is then set to the x3, y3 coordinate.

Parameters

x1

x-coordinate of the first off curve control point.

y1

y-coordinate of the first off curve control point.

x2

x-coordinate of the second off curve control point.

y2

y-coordinate of the second off curve control point.

x3

x-coordinate of the endpoint.

y3

y-coordinate of the endpoint.

Return Values

No value is returned.

See Also

• swf_shapecurveto()

swf_shapecurveto

swf_shapecurveto -- Draw a quadratic bezier curve between two points

Description

void swf_shapecurveto (float $x1, float $y1, float $x2, float $y2)

Draws a quadratic bezier curve from the current location, though the two given points.

The current position is then set to the point defined by the x2 and y2 parameters.

Parameters

x1

x-coordinate of the first point.

y1

y-coordinate of the first point.

x2

x-coordinate of the second point.

y2

y-coordinate of the second point.

Return Values

No value is returned.

See Also

• swf_shapecurveto3()

swf_shapefillbitmapclip

swf_shapefillbitmapclip -- Set current fill mode to clipped bitmap

Description

void swf_shapefillbitmapclip (int $bitmapid)

Sets the fill to bitmap clipped, empty spaces will be filled by the bitmap.

Parameters

bitmapid

The bitmap id.

Return Values

No value is returned.

See Also

• swf_shapefillbitmaptile()

swf_shapefillbitmaptile

swf_shapefillbitmaptile -- Set current fill mode to tiled bitmap

Description

void swf_shapefillbitmaptile (int $bitmapid)

Sets the fill to bitmap tile, empty spaces will be filled by the bitmap.

Parameters

bitmapid

The bitmap id.

Return Values

No value is returned.

See Also

• swf_shapefillbitmapclip()

swf_shapefilloff

swf_shapefilloff -- Turns off filling

Description

void swf_shapefilloff (void)

Turns off filling for the current shape.

Return Values

No value is returned.

swf_shapefillsolid

swf_shapefillsolid -- Set the current fill style to the specified color

Description

void swf_shapefillsolid (float $r, float $g, float $b, float $a)

Sets the current fill style to solid, and then sets the fill color to the given color.

Parameters

r

Red value

g

Green value

b

Blue value

a

Alpha value

Return Values

No value is returned.

swf_shapelinesolid

swf_shapelinesolid -- Set the current line style

Description

void swf_shapelinesolid (float $r, float $g, float $b, float $a, float $width)

Sets the current line style to the given color and width.

Parameters

r

Red value

g

Green value

b

Blue value

a

Alpha value

width

The line width. If 0.0 is given then no lines are drawn.

Return Values

No value is returned.

swf_shapelineto

swf_shapelineto -- Draw a line

Description

void swf_shapelineto (float $x, float $y)

Draws a line to the x and y coordinates. The current position is then set to that point.

Parameters

x

x-coordinate of the target.

y

y-coordinate of the target.

Return Values

No value is returned.

swf_shapemoveto

swf_shapemoveto -- Move the current position

Description

void swf_shapemoveto (float $x, float $y)

Moves the current position to the given point.

Parameters

x

x-coordinate of the target.

y

y-coordinate of the target.

Return Values

No value is returned.

swf_showframe

swf_showframe -- Display the current frame

Description

void swf_showframe (void)

Outputs the current frame.

Return Values

No value is returned.

swf_startbutton

swf_startbutton -- Start the definition of a button

Description

void swf_startbutton (int $objid, int $type)

Starts the definition of a button.

Parameters

objid

The object id.

type

Can either be TYPE_MENUBUTTON or TYPE_PUSHBUTTON. The
TYPE_MENUBUTTON constant allows the focus to travel from the button when the
mouse is down, TYPE_PUSHBUTTON does not allow the focus to travel when the
mouse is down.

Return Values

No value is returned.

See Also

• swf_endbutton()

swf_startdoaction

swf_startdoaction -- Start a description of an action list for the current frame

Description

void swf_startdoaction (void)

Starts the description of an action list for the current frame. This must be called before
actions are defined for the current frame.

Return Values

No value is returned.

See Also

• swf_enddoaction()

swf_startshape

swf_startshape -- Start a complex shape

Description

void swf_startshape (int $objid)

Starts a complex shape.

Parameters

objid

The object id.

Return Values

No value is returned.

See Also

• swf_endshape()

swf_startsymbol

swf_startsymbol -- Define a symbol

Description

void swf_startsymbol (int $objid)

Defines an object id as a symbol. Symbols are tiny flash movies that can be played
simultaneously.

Parameters

objid

The object id you want to define as a symbol.

Return Values

No value is returned.

See Also

• swf_endsymbol()

swf_textwidth

swf_textwidth -- Get the width of a string

Description

float swf_textwidth (string $str)

Gives the width of the string in pixels, using the current font and font size.

Parameters

str

The string.

Return Values

Returns the line width, as a float.

swf_translate

swf_translate -- Translate the current transformations

Description

void swf_translate (float $x, float $y, float $z)

Translates the current transformation by the given values.

Parameters

x

x value.

y

y value.

z

z value.

Return Values

No value is returned.

swf_viewport

swf_viewport -- Select an area for future drawing

Description

void swf_viewport (float $xmin, float $xmax, float $ymin, float $ymax)

Selects an area for future drawing for xmin to xmax and ymin to ymax, if this function is not
called the area defaults to the size of the screen.

Parameters

xmin

xmax

ymin

ymax

Return Values

No value is returned.

Swish Indexing

Introduction

The swish extension provides the bindings for Swish-e API. Swish-e stands for "Simple
Web Indexing System for Humans - Enhanced" and is an open source system for indexing
and search. Swish-e itself is licensed under GPL license, but uses a clause that allows
applications to link against the library if every copy of the combined work is accompanied
by the URL to Swish-e source code. Here it is: » http://swish-e.org.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://swish-e.org

Installing/Configuring

Requirements

PECL/swish requires PHP 5.1.3 or newer.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/swish.

The latest PECL/swish Win32 DLL can be downloaded here: » php_swish.dll.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/swish
http://pecl.php.net/package/swish
http://pecl4win.php.net/ext.php/php_swish.dll

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Swish::META_TYPE_UNDEF (integer)

Swish::META_TYPE_STRING (integer)

Swish::META_TYPE_ULONG (integer)

Swish::META_TYPE_DATE (integer)

Swish::IN_FILE_BIT (integer)

Swish::IN_TITLE_BIT (integer)

Swish::IN_HEAD_BIT (integer)

Swish::IN_BODY_BIT (integer)

Swish::IN_COMMENTS_BIT (integer)

Swish::IN_HEADER_BIT (integer)

Swish::IN_EMPHASIZED_BIT (integer)

Swish::IN_META_BIT (integer)

Swish::IN_FILE (integer)

Swish::IN_TITLE (integer)

Swish::IN_HEAD (integer)

Swish::IN_BODY (integer)

Swish::IN_COMMENTS (integer)

Swish::IN_HEADER (integer)

Swish::IN_EMPHASIZED (integer)

Swish::IN_META (integer)

Swish::IN_ALL (integer)

Examples

Basic usage

Example #1954 - Basic search query

<?php

try {

 $swish = new Swish("index.swish-e");

 $results = $swish->query("test OR text");

 echo "Found ", $results->hits, " results\n";

 while ($result = $results->nextResult()) {

 var_dump($result);

 break; //break after the first result

 }

} catch (SwishException $e) {

 echo "Error: ", $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

Found 9 results

object(SwishResult)#3 (8) {

 ["swishreccount"]=>

 int(1)

 ["swishrank"]=>

 int(1000)

 ["swishfilenum"]=>

 int(10)

 ["swishdbfile"]=>

 string(13) "index.swish-e"

 ["swishdocpath"]=>

 string(23) "README.SUBMITTING_PATCH"

 ["swishtitle"]=>

 NULL

 ["swishdocsize"]=>

 int(4557)

 ["swishlastmodified"]=>

 int(1072136752)

}

Swish Functions

Swish::__construct

Swish::__construct -- Construct a Swish object

Description

void Swish::__construct (string $index_names)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

index_names

The list of index files separated by spaces.

Return Values

No value is returned.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1955 - A Swish::__construct() example

<?php

try {

 $swish = new Swish("index1 index2");

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

foreach ($swish->indexes as $index) {

 var_dump($index["name"]);

 var_dump($index["headers"]["Total Words"]);

}

?>

The above example will output something similar to:

string(6) "index1"

int(1888)

string(6) "index2"

int(2429)

Swish->getMetaList

Swish->getMetaList -- Get the list of meta entries for the index

Description

array Swish->getMetaList (string $index_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

index_name

The name of the index file.

Return Values

Returns an array of meta entries for the given index.

Examples

Example #1956 - Basic Swish->getMetaList() example

<?php

try {

 $swish = new Swish("index.swish-e");

 var_dump($swish->getMetaList("index.swish-e"));

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

array(1) {

 [0]=>

 array(3) {

 ["Name"]=>

 string(12) "swishdefault"

 ["Type"]=>

 int(0)

 ["ID"]=>

 int(1)

 }

}

Swish->getPropertyList

Swish->getPropertyList -- Get the list of properties for the index

Description

array Swish->getPropertyList (string $index_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

index_name

The name of the index file.

Return Values

Returns an array of properties for the given index.

Examples

Example #1957 - Basic Swish->getPropertyList() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $properties = $swish->getPropertyList("index.swish-e");

 foreach ($properties as $prop) {

 echo $prop["Name"],"\n";

 }

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

swishreccount

swishrank

swishfilenum

swishdbfile

swishdocpath

swishtitle

swishdocsize

swishlastmodified

Swish->prepare

Swish->prepare -- Prepare a search query

Description

object Swish->prepare ([string $query])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Prepare and return a search object, which you can later use for unlimited number of
queries.

Parameters

query

Optional query string. The query can be also set using SwishSearch->execute()
method.

Return Values

Returns SwishSearch object.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1958 - Basic Swish->prepare() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare("search query");

 $results = $search->execute();

 echo "Found: ", $results->hits, " hits\n";

 $results = $search->execute("new search");

 echo "Found: ", $results->hits, " hits\n";

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

Found: 2 hits

Found: 5 hits

Swish->query

Swish->query -- Execute a query and return results object

Description

object Swish->query (string $query)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

A quick method to execute a search with default parameters.

Parameters

query

Query string.

Return Values

Returns SwishResults object.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1959 - Basic Swish->query() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $results = $swish->query("test query");

 echo "Found: ", $results->hits, " hits\n";

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

Found: 1 hits

SwishResult->getMetaList

SwishResult->getMetaList -- Get a list of meta entries

Description

array SwishResult->getMetaList (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return Values

Returns the same array as swish->getmetalist(), but uses the index file from the result
handle.

SwishResult->stem

SwishResult->stem -- Stems the given word

Description

array SwishResult->stem (string $word)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Stems the word based on the fuzzy mode used during indexing. Each result object is
linked with its index, so the results are based on this index.

Parameters

word

The word to stem.

Return Values

Returns array containing the stemmed word variants (usually just one).

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1960 - Basic SwishResult->stem() example

<?php

try {

 $swish = new Swish("ext/swish/tests/index.swish-e");

 $results = $swish->query("testing OR others");

 if ($result = $results->nextResult()) {

 var_dump($result->stem("testing")); //the results fully depend on the
stemmer used in the index

 var_dump($result->stem("others"));

 }

} catch (SwishException $e) {

 echo "Error: ", $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

array(1) {

 [0]=>

 string(4) "test"

}

array(1) {

 [0]=>

 string(5) "other"

}

SwishResults->getParsedWords

SwishResults->getParsedWords -- Get an array of parsed words

Description

array SwishResults->getParsedWords (string $index_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

indexi_name

The name of the index used to initialize Swish object.

Return Values

An array of parsed words with stopwords removed. The list of parsed words may be useful
for highlighting search terms in the results.

Examples

Example #1961 - Basic SwishResults->getParsedWords() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $results = $swish->query("'some characters' and numbers");

 var_dump($results->getParsedWords("index.swish-e"));

 var_dump($results->indexes[0]['parsed_words']); //same result in a
different way

} catch (SwishException $e) {

 echo "Error: ", $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

array(4) {

 [0]=>

 string(4) "some"

 [1]=>

 string(10) "characters"

 [2]=>

 string(3) "and"

 [3]=>

 string(7) "numbers"

}

array(4) {

 [0]=>

 string(4) "some"

 [1]=>

 string(10) "characters"

 [2]=>

 string(3) "and"

 [3]=>

 string(7) "numbers"

}

SwishResults->getRemovedStopwords

SwishResults->getRemovedStopwords -- Get an array of stopwords removed from the
query

Description

array SwishResults->getRemovedStopwords (string $index_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

index_name

The name of the index used to initialize Swish object.

Return Values

Returns array of stopwords removed from the query.

SwishResults->nextResult

SwishResults->nextResult -- Get the next search result

Description

object SwishResults->nextResult (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Return Values

Returns the next SwishResult object in the result set or FALSE if there are no more results
available.

Examples

Example #1962 - Basic SwishResults->nextResult() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("lost");

 while($result = $results->nextResult()) {

 /* do something with the result object */

 }

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

SwishResults->seekResult

SwishResults->seekResult -- Set current seek pointer to the given position

Description

int SwishResults->seekResult (int $position)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

position

Zero-based position number. Cannot be less than zero.

Return Values

Returns new position value on success.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1963 - Basic SwishResults->seekResult() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("lost");

 var_dump($results->seekResult(0)); //this will succeed

 var_dump($results->seekResult(100)); //this will fail

} catch (SwishException $e) {

 echo "Error: ", $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

int(0)

Error: No more results

SwishSearch->execute

SwishSearch->execute -- Execute the search and get the results

Description

object SwishSearch->execute ([string $query])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Searches the index file(s) based on the parameters set in the search object.

Parameters

query

The query string is an optional parameter, it can be also set using Swish->prepare()
method. The query string is preserved between executions, so you can set it once, but
execute the search multiple times.

Return Values

Returns SwishResults object.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1964 - Basic SwishSearch->execute() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("query");

 echo "First query found: ", $results->hits, " hits\n";

 $results = $search->execute("new OR query");

 echo "Second query found: ", $results->hits, " hits\n";

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 2 hits

Second query found: 12 hits

SwishSearch->resetLimit

SwishSearch->resetLimit -- Reset the search limits

Description

void SwishSearch->resetLimit (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Reset the search limits previous set by SwishSearch->setLimit.

Return Values

No value is returned.

Examples

Example #1965 - Basic SwishSearch->resetLimit() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("time");

 echo "First query found: ", $results->hits, " hits\n";

 $search->setLimit("swishdocsize", "3000", "6000"); //limit by document
size, from 3000 to 6000 bytes

 $results = $search->execute("time");

 echo "Second query found: ", $results->hits, " hits\n";

 $search->resetLimit();

 $results = $search->execute("time");

 echo "Third query found: ", $results->hits, " hits\n";

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 5 hits

Second query found: 2 hits

Third query found: 5 hits

SwishSearch->setLimit

SwishSearch->setLimit -- Set the search limits

Description

void SwishSearch->setLimit (string $property, string $low, string $high)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

property

Search result property name.

low

The lowest value of the property.

high

The highest value of the property.

Return Values

No value is returned.

Errors/Exceptions

Throws SwishException on error.

Examples

Example #1966 - Basic SwishSearch->setLimit() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("time");

 echo "First query found: ", $results->hits, " hits\n";

 $i = 0;

 while($result = $results->nextResult()) {

 echo "Hit #", ++$i, " - ", $result->swishdocsize, " bytes\n";

 }

 $search->setLimit("swishdocsize", "3000", "6000"); //limit by document
size, from 3000 to 6000 bytes

 $results = $search->execute("time");

 echo "Second query found: ", $results->hits, " hits\n";

 $i = 0;

 while($result = $results->nextResult()) {

 echo "Hit #", ++$i, " - ", $result->swishdocsize, " bytes\n";

 }

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 5 hits

Hit #1 - 4261 bytes

Hit #2 - 37937 bytes

Hit #3 - 7126 bytes

Hit #4 - 15427 bytes

Hit #5 - 4768 bytes

Second query found: 2 hits

Hit #1 - 4261 bytes

Hit #2 - 4768 bytes

SwishSearch->setPhraseDelimiter

SwishSearch->setPhraseDelimiter -- Set the phrase delimiter

Description

void SwishSearch->setPhraseDelimiter (string $delimiter)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

delimiter

Phrase delimiter character. The default delimiter is double-quotes.

Return Values

No value is returned.

Examples

Example #1967 - Basic SwishSearch->setPhraseDelimiter() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute('"every time"'); //looking for "every time"

 echo "First query found: ", $results->hits, " hits\n";

 $search->setPhraseDelimiter("'");

 $results = $search->execute("'every time'"); //the same query, but using
different delimiter

 echo "Second query found: ", $results->hits, " hits\n";

 $search->setPhraseDelimiter('"');

 $results = $search->execute("'every time'"); //looking for "every" and
"time"

 echo "Third query found: ", $results->hits, " hits\n";

 //let's look at parsed words

 var_dump($results->getParsedWords("index.swish-e"));

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 1 hits

Second query found: 1 hits

Third query found: 2 hits

array(2) {

 [0]=>

 string(5) "every"

 [1]=>

 string(4) "time"

}

SwishSearch->setSort

SwishSearch->setSort -- Set the sort order

Description

void SwishSearch->setSort (string $sort)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

sort

Sort order of the results is a string containing name of a result property combined with
sort direction ("asc" or "desc"). Examples: "swishrank desc", "swishdocpath asc",
"swishtitle asc", "swishdocsize desc", "swishlastmodified desc" etc.

Return Values

No value is returned.

Examples

Example #1968 - Basic SwishSearch->setSort() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("time");

 echo "First query found: ", $results->hits, " hits\n";

 $i = 0;

 while($result = $results->nextResult()) {

 echo "Hit #", ++$i, " - ", $result->swishdocsize, " bytes\n";

 }

 $search->setSort("swishdocsize desc"); //sort by document size

 $results = $search->execute("time");

 echo "Second query found: ", $results->hits, " hits\n";

 $i = 0;

 while($result = $results->nextResult()) {

 echo "Hit #", ++$i, " - ", $result->swishdocsize, " bytes\n";

 }

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 5 hits

Hit #1 - 4261 bytes

Hit #2 - 37937 bytes

Hit #3 - 7126 bytes

Hit #4 - 15427 bytes

Hit #5 - 4768 bytes

Second query found: 5 hits

Hit #1 - 37937 bytes

Hit #2 - 15427 bytes

Hit #3 - 7126 bytes

Hit #4 - 4768 bytes

Hit #5 - 4261 bytes

SwishSearch->setStructure

SwishSearch->setStructure -- Set the structure flag in the search object

Description

void SwishSearch->setStructure (int $structure)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

structure

The structure flag a bitmask is used to limit search to certain parts of HTML documents
(like title, meta, body etc.). Its possible values are listed below. To combine several
values use bitwise OR operator, see example below.

• Swish::IN_FILE

• Swish::IN_TITLE

• Swish::IN_HEAD

• Swish::IN_BODY

• Swish::IN_COMMENTS

• Swish::IN_HEADER

• Swish::IN_EMPHASIZED

• Swish::IN_META

Return Values

No value is returned.

Examples

Example #1969 - Basic SwishSearch->setStructure() example

<?php

try {

 $swish = new Swish("index.swish-e");

 $search = $swish->prepare();

 $results = $search->execute("time");

 echo "First query found: ", $results->hits, " hits\n";

 $search->setStructure(Swish::IN_TITLE|Swish::IN_HEAD); //search in title
and head

 $results = $search->execute("time");

 echo "Second query found: ", $results->hits, " hits\n";

 $search->setStructure(Swish::IN_ALL); //search in whole document, the
default value

 $results = $search->execute("time");

 echo "Third query found: ", $results->hits, " hits\n";

} catch (SwishException $e) {

 echo $e->getMessage(), "\n";

}

?>

The above example will output something similar to:

First query found: 5 hits

Second query found: 0 hits

Third query found: 5 hits

Process Control Extensions

System program execution

Introduction

Those functions provide means to execute commands on the system itself, and means to
secure such commands.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a process resource, returned by proc_open().

Predefined Constants

This extension has no constants defined.

Program execution Functions

Notes

Warning

Open files with lock (especially open sessions) should be closed before executing a
program in the background.

See Also

These functions are also closely related to the backtick operator. Also, while in safe mode
you must consider the safe_mode_exec_dir directive.

escapeshellarg

escapeshellarg -- Escape a string to be used as a shell argument

Description

string escapeshellarg (string $arg)

escapeshellarg() adds single quotes around a string and quotes/escapes any existing
single quotes allowing you to pass a string directly to a shell function and having it be
treated as a single safe argument. This function should be used to escape individual
arguments to shell functions coming from user input. The shell functions include exec(),
system() and the backtick operator.

Parameters

arg

The argument that will be escaped.

Return Values

The escaped string.

Examples

Example #1970 - escapeshellarg() example

<?php

system('ls '.escapeshellarg($dir));

?>

See Also

• escapeshellcmd()
• exec()
• popen()
• system()
• backtick operator

escapeshellcmd

escapeshellcmd -- Escape shell metacharacters

Description

string escapeshellcmd (string $command)

escapeshellcmd() escapes any characters in a string that might be used to trick a shell
command into executing arbitrary commands. This function should be used to make sure
that any data coming from user input is escaped before this data is passed to the exec() or
system() functions, or to the backtick operator.

Following characters are preceded by a backslash: #&;`|*?~<>^()[]{}$\, \x0A and \xFF. '
and " are escaped only if they are not paired. In Windows, all these characters plus % are
replaced by a space instead.

Parameters

command

The command that will be escaped.

Return Values

The escaped string.

Examples

Example #1971 - escapeshellcmd() example

<?php

$e = escapeshellcmd($userinput);

// here we don't care if $e has spaces

system("echo $e");

$f = escapeshellcmd($filename);

// and here we do, so we use quotes

system("touch \"/tmp/$f\"; ls -l \"/tmp/$f\"");

?>

See Also

• escapeshellarg()
• exec()
• popen()
• system()
• backtick operator

exec

exec -- Execute an external program

Description

string exec (string $command [, array &$output [, int &$return_var]])

exec() executes the given command.

Parameters

command

The command that will be executed.

output

If the output argument is present, then the specified array will be filled with every line
of output from the command. Trailing whitespace, such as \n, is not included in this
array. Note that if the array already contains some elements, exec() will append to the
end of the array. If you do not want the function to append elements, call unset() on the
array before passing it to exec().

return_var

If the return_var argument is present along with the output argument, then the return
status of the executed command will be written to this variable.

Return Values

The last line from the result of the command. If you need to execute a command and have
all the data from the command passed directly back without any interference, use the
passthru() function.

To get the output of the executed command, be sure to set and use the output parameter.

Examples

Example #1972 - An exec() example

<?php

// outputs the username that owns the running php/httpd process

// (on a system with the "whoami" executable in the path)

echo exec('whoami');

?>

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• system()
• passthru()
• escapeshellcmd()
• pcntl_exec()
• backtick operator

passthru

passthru -- Execute an external program and display raw output

Description

void passthru (string $command [, int &$return_var])

The passthru() function is similar to the exec() function in that it executes a command. This
function should be used in place of exec() or system() when the output from the Unix
command is binary data which needs to be passed directly back to the browser. A
common use for this is to execute something like the pbmplus utilities that can output an
image stream directly. By setting the Content-type to image/gif and then calling a pbmplus
program to output a gif, you can create PHP scripts that output images directly.

Parameters

command

The command that will be executed.

return_var

If the return_var argument is present, the return status of the Unix command will be
placed here.

Return Values

No value is returned.

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• exec()
• system()
• popen()
• escapeshellcmd()
• backtick operator

proc_close

proc_close -- Close a process opened by proc_open() and return the exit code of that
process.

Description

int proc_close (resource $process)

proc_close() is similar to pclose() except that it only works on processes opened by
proc_open(). proc_close() waits for the process to terminate, and returns its exit code. If
you have open pipes to that process, you should fclose() them prior to calling this function
in order to avoid a deadlock - the child process may not be able to exit while the pipes are
open.

Parameters

process

The proc_open() resource that will be closed.

Return Values

Returns the termination status of the process that was run.

proc_get_status

proc_get_status -- Get information about a process opened by proc_open()

Description

array proc_get_status (resource $process)

proc_get_status() fetches data about a process opened using proc_open().

Parameters

process

The proc_open() resource that will be evaluated.

Return Values

An array of collected information on success, and FALSE on failure. The returned array
contains the following elements:

element type description

command string The command string that
was passed to proc_open().

pid int process id

running bool TRUE if the process is still
running, FALSE if it has
terminated.

signaled bool TRUE if the child process
has been terminated by an
uncaught signal. Always set
to FALSE on Windows.

stopped bool TRUE if the child process
has been stopped by a
signal. Always set to FALSE
on Windows.

exitcode int The exit code returned by the
process (which is only
meaningful if running is
FALSE). Only first call of

this function return real
value, next calls return -1.

termsig int The number of the signal that
caused the child process to
terminate its execution (only
meaningful if signaled is
TRUE).

stopsig int The number of the signal that
caused the child process to
stop its execution (only
meaningful if stopped is
TRUE).

See Also

• proc_open()

proc_nice

proc_nice -- Change the priority of the current process

Description

bool proc_nice (int $increment)

proc_nice() changes the priority of the current process by the amount specified in
increment. A positive increment will lower the priority of the current process, whereas a
negative increment will raise the priority.

proc_nice() is not related to proc_open() and its associated functions in any way.

Parameters

increment

The increment value of the priority change.

Return Values

Returns TRUE on success or FALSE on failure. If an error occurs, like the user lacks
permission to change the priority, an error of level E_WARNING is also generated.

Notes

Note

Availability

proc_nice() will only exist if your system has 'nice' capabilities. 'nice' conforms to:
SVr4, SVID EXT, AT&T, X/OPEN, BSD 4.3. This means that proc_nice() is not
available on Windows.

proc_open

proc_open -- Execute a command and open file pointers for input/output

Description

resource proc_open (string $cmd, array $descriptorspec, array &$pipes [, string $cwd [,
array $env [, array $other_options]]])

proc_open() is similar to popen() but provides a much greater degree of control over the
program execution.

Parameters

cmd

The command to execute

descriptorspec

An indexed array where the key represents the descriptor number and the value
represents how PHP will pass that descriptor to the child process. 0 is stdin, 1 is
stdout, while 2 is stderr. The currently supported pipe types are file and pipe. The file
descriptor numbers are not limited to 0, 1 and 2 - you may specify any valid file
descriptor number and it will be passed to the child process. This allows your script to
interoperate with other scripts that run as "co-processes". In particular, this is useful for
passing passphrases to programs like PGP, GPG and openssl in a more secure
manner. It is also useful for reading status information provided by those programs on
auxiliary file descriptors.

pipes

Will be set to an indexed array of file pointers that correspond to PHP's end of any
pipes that are created.

cwd

The initial working dir for the command. This must be an absolute directory path, or
NULL if you want to use the default value (the working dir of the current PHP process)

env

An array with the environment variables for the command that will be run, or NULL to
use the same environment as the current PHP process

other_options

Allows you to specify additional options. Currently supported options include:

• suppress_errors (windows only): suppresses errors generated by this function
when it's set to TRUE

• bypass_shell (windows only): bypass cmd.exe shell when set to TRUE
• context: stream context used when opening files (created with

stream_context_create())

• binary_pipes: open pipes in binary mode, instead of using the usual
stream_encoding

Return Values

Returns a resource representing the process, which should be freed using proc_close()
when you are finished with it. On failure returns FALSE.

ChangeLog

Version Description

6.0.0 Added the context and binary_pipes options
to the other_options parameter.

5.2.1 Added the bypass_shell option to the
other_options parameter.

5.0.0 Added the cwd, env and other_options
parameters.

Examples

Example #1973 - A proc_open() example

<?php

$descriptorspec = array(

 0 => array("pipe", "r"), // stdin is a pipe that the child will read from

 1 => array("pipe", "w"), // stdout is a pipe that the child will write to

 2 => array("file", "/tmp/error-output.txt", "a") // stderr is a file to
write to

);

$cwd = '/tmp';

$env = array('some_option' => 'aeiou');

$process = proc_open('php', $descriptorspec, $pipes, $cwd, $env);

if (is_resource($process)) {

 // $pipes now looks like this:

 // 0 => writeable handle connected to child stdin

 // 1 => readable handle connected to child stdout

 // Any error output will be appended to /tmp/error-output.txt

 fwrite($pipes[0], '<?php print_r($_ENV); ?>');

 fclose($pipes[0]);

 echo stream_get_contents($pipes[1]);

 fclose($pipes[1]);

 // It is important that you close any pipes before calling

 // proc_close in order to avoid a deadlock

 $return_value = proc_close($process);

 echo "command returned $return_value\n";

}

?>

The above example will output something similar to:

Array

(

 [some_option] => aeiou

 [PWD] => /tmp

 [SHLVL] => 1

 [_] => /usr/local/bin/php

)

command returned 0

Notes

Note

Windows compatibility: Descriptors beyond 2 (stderr) are made available to the child
process as inheritable handles, but since the Windows architecture does not associate
file descriptor numbers with low-level handles, the child process does not (yet) have a
means of accessing those handles. Stdin, stdout and stderr work as expected.

Note

If you only need a uni-directional (one-way) process pipe, use popen() instead, as it is
much easier to use.

See Also

• popen()
• exec()
• system()
• passthru()
• stream_select()
• The backtick operator

proc_terminate

proc_terminate -- Kills a process opened by proc_open

Description

bool proc_terminate (resource $process [, int $signal])

Signals a process (created using proc_open()) that it should terminate. proc_terminate()
returns immediately and does not wait for the process to terminate.

proc_terminate() allows you terminate the process and continue with other tasks. You may
poll the process (to see if it has stopped yet) by using the proc_get_status() function.
However this is only possible with PHP 5.2.2 or newer, as previous versions destroyed the
given process resource.

Parameters

process

The proc_open() resource that will be closed.

signal

This optional parameter is only useful on POSIX operating systems; you may specify a
signal to send to the process using the kill(2) system call. The default is SIGTERM.

Return Values

Returns the termination status of the process that was run.

See Also

• proc_open()
• proc_close()
• proc_get_status()

shell_exec

shell_exec -- Execute command via shell and return the complete output as a string

Description

string shell_exec (string $cmd)

This function is identical to the backtick operator.

Parameters

cmd

The command that will be executed.

Return Values

The output from the executed command.

Examples

Example #1974 - A shell_exec() example

<?php

$output = shell_exec('ls -lart');

echo "<pre>$output</pre>";

?>

Notes

Note

This function is disabled when PHP is running in safe mode.

See Also

• exec()
• escapeshellcmd()

system

system -- Execute an external program and display the output

Description

string system (string $command [, int &$return_var])

system() is just like the C version of the function in that it executes the given command and
outputs the result.

The system() call also tries to automatically flush the web server's output buffer after each
line of output if PHP is running as a server module.

If you need to execute a command and have all the data from the command passed
directly back without any interference, use the passthru() function.

Parameters

command

The command that will be executed.

return_var

If the return_var argument is present, then the return status of the executed
command will be written to this variable.

Return Values

Returns the last line of the command output on success, and FALSE on failure.

Examples

Example #1975 - system() example

<?php

echo '<pre>';

// Outputs all the result of shellcommand "ls", and returns

// the last output line into $last_line. Stores the return value

// of the shell command in $retval.

$last_line = system('ls', $retval);

// Printing additional info

echo '

</pre>

<hr />Last line of the output: ' . $last_line . '

<hr />Return value: ' . $retval;

?>

Notes

Warning

When allowing user-supplied data to be passed to this function, use escapeshellarg()
or escapeshellcmd() to ensure that users cannot trick the system into executing
arbitrary commands.

Note

If a program is started with this function, in order for it to continue running in the
background, the output of the program must be redirected to a file or another output
stream. Failing to do so will cause PHP to hang until the execution of the program
ends.

Note

When safe mode is enabled, you can only execute files within the safe_mode_exec_dir
. For practical reasons, it is currently not allowed to have.. components in the path to
the executable.

Warning

With safe mode enabled, the command string is escaped with escapeshellcmd(). Thus,
echo y | echo x becomes echo y \| echo x.

See Also

• exec()
• passthru()
• popen()
• escapeshellcmd()
• pcntl_exec()
• backtick operator

Expect

Introduction

This extension allows to interact with processes through PTY. You may consider using the
expect:// wrapper with the filesystem functions which provide a simpler and more intuitive
interface.

Installing/Configuring

Requirements

This module uses the functions of the » expect library. You need libexpect version >=
5.43.0.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/expect.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. In order to use these functions you must compile PHP
with expect support by using the --with-expect[=DIR] configure option.

Windows users will enable php_expect.dll inside of php.ini in order to use these functions.
In PHP 4 this DLL resides in the extensions/ directory within the PHP Windows binaries
download. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

In order to configure expect extension, there are configuration options in the configuration
file php.ini.

Expect Configure Options

Name Default Changeable Changelog

expect.timeout "10" PHP_INI_ALL

expect.loguser "1" PHP_INI_ALL

expect.logfile "" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

http://expect.nist.gov/
http://pecl.php.net/
http://pecl.php.net/package/expect
http://pecl.php.net/package/expect
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

expect.timeout integer
The timeout period for waiting for the data, when using the expect_expectl() function. A
value of "-1" disables a timeout from occurring.

Note

A value of "0" causes the expect_expectl() function to return immediately.

expect.loguser boolean
Whether expect should send any output from the spawned process to stdout. Since
interactive programs typically echo their input, this usually suffices to show both sides
of the conversation.

expect.logfile string
Name of the file, where the output from the spawned process will be written. If this file
doesn't exist, it will be created.

Note

If this configuration is not empty, the output is written regardless of the value of
expect.loguser.

Resource Types

expect_popen() returns an open PTY stream used by expect_expectl().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

EXP_GLOB (integer)
Indicates that the pattern is a glob-style string pattern.

EXP_EXACT (integer)
Indicates that the pattern is an exact string.

EXP_REGEXP (integer)
Indicates that the pattern is a regexp-style string pattern.

EXP_EOF (integer)
Value, returned by expect_expectl(), when EOF is reached.

EXP_TIMEOUT (integer)
Value, returned by expect_expectl() upon timeout of seconds, specified in value of
expect.timeout

EXP_FULLBUFFER (integer)
Value, returned by expect_expectl() if no pattern have been matched.

Examples

Expect Usage Examples

Example #1976 - Expect Usage Example

This example connects to the remote host via SSH, and prints the remote uptime.

<?php

ini_set("expect.loguser", "Off");

$stream = fopen("expect://ssh root@remotehost uptime", "r");

$cases = array (

 array (0 => "password:", 1 => PASSWORD)

);

switch (expect_expectl ($stream, $cases)) {

 case PASSWORD:

 fwrite ($stream, "password\n");

 break;

 default:

 die ("Error was occurred while connecting to the remote host!\n");

}

while ($line = fgets($stream)) {

 print $line;

}

fclose ($stream);

?>

The following example connects to the remote host, determines whether installed OS is for
32 or 64 bit, then runs update for specific package.

Example #1977 - Another Expect Usage Example

<?php

ini_set("expect.timeout", -1);

ini_set("expect.loguser", "Off");

$stream = expect_popen("ssh root@remotehost");

while (true) {

 switch (expect_expectl ($stream, array (

 array ("password:", PASSWORD), // SSH is asking for password

 array ("yes/no)?", YESNO), // SSH is asking whether to store the
host entry

 array ("~$ ", SHELL, EXP_EXACT), // We've got the shell!

))) {

 case PASSWORD:

 fwrite ($stream, "secret\n");

 break;

 case YESNO:

 fwrite ($stream, "yes\n");

 break;

 case SHELL:

 fwrite ($stream, "uname -a\n");

 while (true) {

 switch (expect_expectl ($stream, array (

 array ("~$ ", SHELL, EXP_EXACT), // We've got the
shell!

 array ("^Linux.*$", UNAME, EXP_REGEXP), // uname
-a output

), $match)) {

 case UNAME:

 $uname .= $match[0];

 break;

 case SHELL:

 // Run update:

 if (strstr ($uname, "x86_64")) {

 fwrite ($stream, "rpm -Uhv
http://mirrorsite/somepath/some_64bit.rpm\n");

 } else {

 fwrite ($stream, "rpm -Uhv
http://mirrorsite/somepath/some_32bit.rpm\n");

 }

 fwrite ($stream, "exit\n");

 break 2;

 case EXP_TIMEOUT:

 case EXP_EOF:

 break 2;

 default:

 die ("Error has occurred!\n");

 }

 }

 break 2;

 case EXP_TIMEOUT:

 case EXP_EOF:

 break 2;

 default:

 die ("Error has occurred!\n");

 }

}

fclose ($stream);

?>

Expect Functions

expect_expectl

expect_expectl -- Waits until the output from a process matches one of the patterns, a
specified time period has passed, or an EOF is seen

Description

int expect_expectl (resource $expect, array $cases [, array &$match])

Waits until the output from a process matches one of the patterns, a specified time period
has passed, or an EOF is seen.

If match is provided, then it is filled with the result of search. The matched string can be
found in match[0]. The match substrings (according to the parentheses) in the original
pattern can be found in match[1], match[2], and so on, up to match[9] (the limitation of
libexpect).

Parameters

expect

An Expect stream, previously opened with expect_popen().

cases

An array of expect cases. Each expect case is an indexed array, as described in the
following table:

Expect Case Array

Index Key Value Type Description Is Mandatory Default Value

0 string pattern, that will
be matched
against the
output from the
stream

yes

1 mixed value, that will be
returned by this
function, if the
pattern matches

yes

2 integer pattern type, one
of: EXP_GLOB,
EXP_EXACT or
EXP_REGEXP

no EXP_GLOB

Return Values

Returns value associated with the pattern that was matched.

On failure this function returns: EXP_EOF, EXP_TIMEOUT or EXP_FULLBUFFER

ChangeLog

Version Description

0.2.1 Prior to version 0.2.1, in match parameter a
match string was returned, not an array of
match substrings.

Examples

Example #1978 - expect_expectl() example

<?php

// Copies file from remote host:

ini_set ("expect.timeout", 30);

$stream = fopen ("expect://scp user@remotehost:/var/log/messages
/home/user/messages.txt", "r");

$cases = array (

 array (0 => "password:", 1 => PASSWORD),

 array (0 => "yes/no)?", 1 => YESNO)

);

while (true) {

switch (expect_expectl ($stream, $cases))

{

 case PASSWORD:

 fwrite ($stream, "password\n");

 break;

 case YESNO:

 fwrite ($stream, "yes\n");

 break;

 case EXP_TIMEOUT:

 case EXP_EOF:

 break 2;

 default:

 die ("Error has occurred!\n");

}

}

fclose ($stream);

?>

See Also

• expect_popen()

expect_popen

expect_popen -- Execute command via Bourne shell, and open the PTY stream to the
process

Description

resource expect_popen (string $command)

Execute command via Bourne shell, and open the PTY stream to the process.

Parameters

command

Command to execute.

Return Values

Returns an open PTY stream to the process'es stdio, stdout and stderr.

On failure this function returns FALSE.

Examples

Example #1979 - expect_popen() example

<?php

// Login to the PHP.net CVS repository:

$stream = expect_popen ("cvs -d :pserver:anonymous@cvs.php.net:/repository
login");

sleep (3);

fwrite ($stream, "phpfi\n");

fclose ($stream);

?>

See Also

• popen()

Process Control

Introduction

Process Control support in PHP implements the Unix style of process creation, program
execution, signal handling and process termination. Process Control should not be
enabled within a web server environment and unexpected results may happen if any
Process Control functions are used within a web server environment.

This documentation is intended to explain the general usage of each of the Process
Control functions. For detailed information about Unix process control you are encouraged
to consult your systems documentation including fork(2), waitpid(2) and signal(2) or a
comprehensive reference such as Advanced Programming in the UNIX Environment by W.
Richard Stevens (Addison-Wesley).

PCNTL now uses ticks as the signal handle callback mechanism, which is much faster
than the previous mechanism. This change follows the same semantics as using "user
ticks". You use the declare() statement to specify the locations in your program where
callbacks are allowed to occur. This allows you to minimize the overhead of handling
asynchronous events. In the past, compiling PHP with pcntl enabled would always incur
this overhead, whether or not your script actually used pcntl.

There is one adjustment that all pcntl scripts prior to PHP 4.3.0 must make for them to
work which is to either to use declare() on a section where you wish to allow callbacks or
to just enable it across the entire script using the new global syntax of declare().

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Process Control support in PHP is not enabled by default. You have to compile the CGI or
CLI version of PHP with --enable-pcntl configuration option when compiling PHP to enable
Process Control support.

Note

Currently, this module will not function on non-Unix platforms (Windows).

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The following list of signals are supported by the Process Control functions. Please see
your systems signal(7) man page for details of the default behavior of these signals.

WNOHANG (integer)

WUNTRACED (integer)

SIG_IGN (integer)

SIG_DFL (integer)

SIG_ERR (integer)

SIGHUP (integer)

SIGINT (integer)

SIGQUIT (integer)

SIGILL (integer)

SIGTRAP (integer)

SIGABRT (integer)

SIGIOT (integer)

SIGBUS (integer)

SIGFPE (integer)

SIGKILL (integer)

SIGUSR1 (integer)

SIGSEGV (integer)

SIGUSR2 (integer)

SIGPIPE (integer)

SIGALRM (integer)

SIGTERM (integer)

SIGSTKFLT (integer)

SIGCLD (integer)

SIGCHLD (integer)

SIGCONT (integer)

SIGSTOP (integer)

SIGTSTP (integer)

SIGTTIN (integer)

SIGTTOU (integer)

SIGURG (integer)

SIGXCPU (integer)

SIGXFSZ (integer)

SIGVTALRM (integer)

SIGPROF (integer)

SIGWINCH (integer)

SIGPOLL (integer)

SIGIO (integer)

SIGPWR (integer)

SIGSYS (integer)

SIGBABY (integer)

Examples

This example forks off a daemon process with a signal handler.

Example #1980 - Process Control Example

<?php

declare(ticks=1);

$pid = pcntl_fork();

if ($pid == -1) {

 die("could not fork");

} else if ($pid) {

 exit(); // we are the parent

} else {

 // we are the child

}

// detatch from the controlling terminal

if (posix_setsid() == -1) {

 die("could not detach from terminal");

}

// setup signal handlers

pcntl_signal(SIGTERM, "sig_handler");

pcntl_signal(SIGHUP, "sig_handler");

// loop forever performing tasks

while (1) {

 // do something interesting here

}

function sig_handler($signo)

{

 switch ($signo) {

 case SIGTERM:

 // handle shutdown tasks

 exit;

 break;

 case SIGHUP:

 // handle restart tasks

 break;

 default:

 // handle all other signals

 }

}

?>

PCNTL Functions

See Also

A look at the section about POSIX functions may be useful.

pcntl_alarm

pcntl_alarm -- Set an alarm clock for delivery of a signal

Description

int pcntl_alarm (int $seconds)

Creates a timer that will send a SIGALRM signal to the process after the given number of
seconds. Any call to pcntl_alarm() will cancel any previously set alarm.

Parameters

seconds

The number of seconds to wait. If seconds is zero, no new alarm is created.

Return Values

Returns the time in seconds that any previously scheduled alarm had remaining before it
was to be delivered, or 0 if there was no previously scheduled alarm.

pcntl_exec

pcntl_exec -- Executes specified program in current process space

Description

void pcntl_exec (string $path [, array $args [, array $envs]])

Executes the program with the given arguments.

Parameters

path

path must be the path to a binary executable or a script with a valid path pointing to an
executable in the shebang (#!/usr/local/bin/perl for example) as the first line. See your
system's man execve(2) page for additional information.

args

args is an array of argument strings passed to the program.

envs

envs is an array of strings which are passed as environment to the program. The array
is in the format of name => value, the key being the name of the environmental
variable and the value being the value of that variable.

Return Values

Returns FALSE on error and does not return on success.

pcntl_fork

pcntl_fork -- Forks the currently running process

Description

int pcntl_fork (void)

The pcntl_fork() function creates a child process that differs from the parent process only
in its PID and PPID. Please see your system's fork(2) man page for specific details as to
how fork works on your system.

Return Values

On success, the PID of the child process is returned in the parent's thread of execution,
and a 0 is returned in the child's thread of execution. On failure, a -1 will be returned in the
parent's context, no child process will be created, and a PHP error is raised.

Examples

Example #1981 - pcntl_fork() example

<?php

$pid = pcntl_fork();

if ($pid == -1) {

 die('could not fork');

} else if ($pid) {

 // we are the parent

 pcntl_wait($status); //Protect against Zombie children

} else {

 // we are the child

}

?>

See Also

• pcntl_waitpid()
• pcntl_signal()

pcntl_getpriority

pcntl_getpriority -- Get the priority of any process

Description

int pcntl_getpriority ([int $pid [, int $process_identifier]])

pcntl_getpriority() gets the priority of pid. Because priority levels can differ between
system types and kernel versions, please see your system's getpriority(2) man page for
specific details.

Parameters

pid

If not specified, the pid of the current process is used.

process_identifier

One of PRIO_PGRP, PRIO_USER or PRIO_PROCESS.

Return Values

pcntl_getpriority() returns the priority of the process or FALSE on error. A lower numerical
value causes more favorable scheduling.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

See Also

• pcntl_setpriority()

pcntl_setpriority

pcntl_setpriority -- Change the priority of any process

Description

bool pcntl_setpriority (int $priority [, int $pid [, int $process_identifier]])

pcntl_setpriority() sets the priority of pid.

Parameters

priority

priority is generally a value in the range -20 to 20. The default priority is 0 while a
lower numerical value causes more favorable scheduling. Because priority levels can
differ between system types and kernel versions, please see your system's
setpriority(2) man page for specific details.

pid

If not specified, the pid of the current process is used.

process_identifier

One of PRIO_PGRP, PRIO_USER or PRIO_PROCESS.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• pcntl_getpriority()

pcntl_signal

pcntl_signal -- Installs a signal handler

Description

bool pcntl_signal (int $signo, callback $handler [, bool $restart_syscalls])

The pcntl_signal() function installs a new signal handler for the signal indicated by signo.

Parameters

signo

The signal number.

handler

The signal handler which may be the name of a user created function, or method, or
either of the two global constants SIG_IGN or SIG_DFL.

Note

Note that when you set a handler to an object method, that object's reference
count is increased which makes it persist until you either change the handler to
something else, or your script ends.

restart_syscalls

Specifies whether system call restarting should be used when this signal arrives and
defaults to TRUE.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.0 The restart_syscalls parameter was
added.

4.3.0 The ability to use an object method as a
callback became available.

4.3.0 As of PHP 4.3.0 PCNTL uses ticks as the
signal handle callback mechanism, which is
much faster than the previous mechanism.
This change follows the same semantics as
using " user ticks ". You must use the
declare() statement to specify the locations
in your program where callbacks are
allowed to occur for the signal handler to
function properly (as used in the above
example).

Examples

Example #1982 - pcntl_signal() example

<?php

// tick use required as of PHP 4.3.0

declare(ticks = 1);

// signal handler function

function sig_handler($signo)

{

 switch ($signo) {

 case SIGTERM:

 // handle shutdown tasks

 exit;

 break;

 case SIGHUP:

 // handle restart tasks

 break;

 case SIGUSR1:

 echo "Caught SIGUSR1...\n";

 break;

 default:

 // handle all other signals

 }

}

echo "Installing signal handler...\n";

// setup signal handlers

pcntl_signal(SIGTERM, "sig_handler");

pcntl_signal(SIGHUP, "sig_handler");

pcntl_signal(SIGUSR1, "sig_handler");

// or use an object, available as of PHP 4.3.0

// pcntl_signal(SIGUSR1, array($obj, "do_something");

echo"Generating signal SIGTERM to self...\n";

// send SIGUSR1 to current process id

posix_kill(posix_getpid(), SIGUSR1);

echo "Done\n"

?>

See Also

• pcntl_fork()
• pcntl_waitpid()

pcntl_wait

pcntl_wait -- Waits on or returns the status of a forked child

Description

int pcntl_wait (int &$status [, int $options])

The wait function suspends execution of the current process until a child has exited, or
until a signal is delivered whose action is to terminate the current process or to call a
signal handling function. If a child has already exited by the time of the call (a so-called
"zombie" process), the function returns immediately. Any system resources used by the
child are freed. Please see your system's wait(2) man page for specific details as to how
wait works on your system.

Note

This function is equivalent to calling pcntl_waitpid() with a -1 pid and no options.

Parameters

status

pcntl_wait() will store status information in the status parameter which can be
evaluated using the following functions: pcntl_wifexited(), pcntl_wifstopped(),
pcntl_wifsignaled(), pcntl_wexitstatus(), pcntl_wtermsig() and pcntl_wstopsig().

options

If wait3 is available on your system (mostly BSD-style systems), you can provide the
optional options parameter. If this parameter is not provided, wait will be used for the
system call. If wait3 is not available, providing a value for options will have no effect.
The value of options is the value of zero or more of the following two constants OR
'ed together:

Possible values for options

WNOHANG Return immediately if no child has exited.

WUNTRACED Return for children which are stopped, and
whose status has not been reported.

Return Values

pcntl_wait() returns the process ID of the child which exited, -1 on error or zero if WNOHANG

was provided as an option (on wait3-available systems) and no child was available.

See Also

• pcntl_fork()
• pcntl_signal()
• pcntl_wifexited()
• pcntl_wifstopped()
• pcntl_wifsignaled()
• pcntl_wexitstatus()
• pcntl_wtermsig()
• pcntl_wstopsig()
• pcntl_waitpid()

pcntl_waitpid

pcntl_waitpid -- Waits on or returns the status of a forked child

Description

int pcntl_waitpid (int $pid, int &$status [, int $options])

Suspends execution of the current process until a child as specified by the pid argument has
exited, or until a signal is delivered whose action is to terminate the current process or to call a
signal handling function.

If a child as requested by pid has already exited by the time of the call (a so-called "zombie"
process), the function returns immediately. Any system resources used by the child are freed.
Please see your system's waitpid(2) man page for specific details as to how waitpid works on
your system.

Parameters

pid

The value of pid can be one of the following:

possible values for pid

< -1 wait for any child process whose process
group ID is equal to the absolute value of
pid.

-1 wait for any child process; this is the same
behaviour that the wait function exhibits.

0 wait for any child process whose process
group ID is equal to that of the calling
process.

> 0 wait for the child whose process ID is equal
to the value of pid.

Note

Specifying -1 as the pid is equivalent to the functionality pcntl_wait() provides (minus
options).

status

pcntl_waitpid() will store status information in the status parameter which can be
evaluated using the following functions: pcntl_wifexited(), pcntl_wifstopped(),
pcntl_wifsignaled(), pcntl_wexitstatus(), pcntl_wtermsig() and pcntl_wstopsig().

options

The value of options is the value of zero or more of the following two global constants OR
'ed together:

possible values for options

WNOHANG return immediately if no child has exited.

WUNTRACED return for children which are stopped, and
whose status has not been reported.

Return Values

pcntl_waitpid() returns the process ID of the child which exited, -1 on error or zero if
WNOHANG was used and no child was available

See Also

• pcntl_fork()
• pcntl_signal()
• pcntl_wifexited()
• pcntl_wifstopped()
• pcntl_wifsignaled()
• pcntl_wexitstatus()
• pcntl_wtermsig()
• pcntl_wstopsig()

pcntl_wexitstatus

pcntl_wexitstatus -- Returns the return code of a terminated child

Description

int pcntl_wexitstatus (int $status)

Returns the return code of a terminated child. This function is only useful if pcntl_wifexited()
returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the return code, as an integer.

See Also

• pcntl_waitpid()
• pcntl_wifexited()

pcntl_wifexited

pcntl_wifexited -- Checks if status code represents a normal exit

Description

bool pcntl_wifexited (int $status)

Checks whether the child status code represents a normal exit.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child status code represents a normal exit, FALSE otherwise.

See Also

• pcntl_waitpid()
• pcntl_wexitstatus()

pcntl_wifsignaled

pcntl_wifsignaled -- Checks whether the status code represents a termination due to a signal

Description

bool pcntl_wifsignaled (int $status)

Checks whether the child process exited because of a signal which was not caught.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child process exited because of a signal which was not caught, FALSE
otherwise.

See Also

• pcntl_waitpid()
• pcntl_signal()

pcntl_wifstopped

pcntl_wifstopped -- Checks whether the child process is currently stopped

Description

bool pcntl_wifstopped (int $status)

Checks whether the child process which caused the return is currently stopped; this is only
possible if the call to pcntl_waitpid() was done using the option WUNTRACED.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns TRUE if the child process which caused the return is currently stopped, FALSE
otherwise.

See Also

• pcntl_waitpid()

pcntl_wstopsig

pcntl_wstopsig -- Returns the signal which caused the child to stop

Description

int pcntl_wstopsig (int $status)

Returns the number of the signal which caused the child to stop. This function is only useful if
pcntl_wifstopped() returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the signal number.

See Also

• pcntl_waitpid()
• pcntl_wifstopped()

pcntl_wtermsig

pcntl_wtermsig -- Returns the signal which caused the child to terminate

Description

int pcntl_wtermsig (int $status)

Returns the number of the signal that caused the child process to terminate. This function is
only useful if pcntl_wifsignaled() returned TRUE.

Parameters

status

The status parameter is the status parameter supplied to a successful call to
pcntl_waitpid().

Return Values

Returns the signal number, as an integer.

See Also

• pcntl_waitpid()
• pcntl_signal()
• pcntl_wifsignaled()

POSIX

Introduction

This module contains an interface to those functions defined in the IEEE 1003.1 (POSIX.1)
standards document which are not accessible through other means.

Warning

Sensitive data can be retrieved with the POSIX functions, e.g. posix_getpwnam() and
friends. None of the POSIX function perform any kind of access checking when safe mode
is enabled. It's therefore strongly advised to disable the POSIX extension at all (use
--disable-posix in your configure line) if you're operating in such an environment.

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

POSIX functions are enabled by default. You can disable POSIX-like functions with
--disable-posix.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

POSIX_F_OK (integer)
Check whether the file exists.

POSIX_R_OK (integer)
Check whether the file exists and has read permissions.

POSIX_W_OK (integer)
Check whether the file exists and has write permissions.

POSIX_X_OK (integer)
Check whether the file exists and has execute permissions.

POSIX_S_IFBLK (integer)
Block special file

POSIX_S_IFCHR (integer)
Character special file

POSIX_S_IFIFO (integer)
FIFO (named pipe) special file

POSIX_S_IFREG (integer)
Normal file

POSIX_S_IFSOCK (integer)
Socket

Note

These constants are available since PHP 5.1.0. Please also note that some of them may
not be available in your system.

POSIX Functions

See Also

The section about Process Control Functions maybe of interest for you.

posix_access

posix_access -- Determine accessibility of a file

Description

bool posix_access (string $file [, int $mode])

posix_access() checks the user's permission of a file.

Parameters

file

The name of the file to be tested.

mode

A mask consisting of one or more of POSIX_F_OK, POSIX_R_OK, POSIX_W_OK and
POSIX_X_OK. Defaults to POSIX_F_OK. POSIX_R_OK, POSIX_W_OK and
POSIX_X_OK request checking whether the file exists and has read, write and execute
permissions, respectively. POSIX_F_OK just requests checking for the existence of the
file.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #1983 - posix_access() example

This example will check if the $file is readable and writable, otherwise will print an error
message.

<?php

$file = 'some_file';

if (posix_access($file, POSIX_R_OK | POSIX_W_OK)) {

 echo 'The file is readable and writable!';

} else {

 $error = posix_get_last_error();

 echo "Error $error: " . posix_strerror($error);

}

?>

Notes

Note

When safe mode is enabled, PHP checks whether the files or directories being operated
upon have the same UID (owner) as the script that is being executed.

See Also

• posix_get_last_error()
• posix_strerror()

posix_ctermid

posix_ctermid -- Get path name of controlling terminal

Description

string posix_ctermid (void)

Generates a string which is the pathname for the current controlling terminal for the process.
On error this will set errno, which can be checked using posix_get_last_error()

Return Values

Upon successful completion, returns string of the pathname to the current controlling terminal.
Otherwise FALSE is returned and errno is set, which can be checked with
posix_get_last_error().

Examples

Example #1984 - posix_ctermid() example

This example will display the path to the current TTY.

<?php

echo "I am running from ".posix_ctermid();

?>

See Also

• posix_ttyname()
• posix_get_last_error()

posix_get_last_error

posix_get_last_error -- Retrieve the error number set by the last posix function that failed

Description

int posix_get_last_error (void)

Retrieve the error number set by the last posix function that failed. The system error message
associated with the errno may be checked with posix_strerror().

Return Values

Returns the errno (error number) set by the last posix function that failed. If no errors exist, 0 is
returned.

Examples

Example #1985 - posix_get_last_error() example

This example attempt to kill a bogus process id, which will set the last error. We will then
print out the last errno.

<?php

posix_kill(999459,SIGKILL);

echo 'Your error returned was '.posix_get_last_error(); //Your error was ___

?>

See Also

• posix_strerror()

posix_getcwd

posix_getcwd -- Pathname of current directory

Description

string posix_getcwd (void)

Gets the absolute pathname of the script's current working directory. On error, it sets errno
which can be checked using posix_get_last_error()

Return Values

Returns a string of the absolute pathname on success. On error, returns FALSE and sets
errno which can be checked with posix_get_last_error().

Examples

Example #1986 - posix_getcwd() example

This example will return the absolute path of the current working directory of the script.

<?php

echo 'My current working directory is '.posix_getcwd();

?>

Notes

Note

This function can fail on

• Read or Search permission was denied

• Pathname no longer exists

posix_getegid

posix_getegid -- Return the effective group ID of the current process

Description

int posix_getegid (void)

Return the numeric effective group ID of the current process.

Return Values

Returns an integer of the effective group ID.

Examples

Example #1987 - posix_getegid() example

This example will print out the effective group id, once it is changed with posix_setegid().

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

Notes

posix_getegid() is different than posix_getgid() because effective group ID can be changed by
a calling process using posix_setegid().

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getgid() get real group id.
• posix_setgid() change the effective group id

posix_geteuid

posix_geteuid -- Return the effective user ID of the current process

Description

int posix_geteuid (void)

Return the numeric effective user ID of the current process. See also posix_getpwuid() for
information on how to convert this into a useable username.

Return Values

Returns the user id, as an integer

Examples

Example #1988 - posix_geteuid() example

This example will show the current user id then set the effective user id to a separate id
using posix_seteuid(), then show the difference between the real id and the effective id.

<?php

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10001

posix_seteuid(10000);

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10000

?>

See Also

• posix_getpwuid() for more information about the user.
• posix_getuid() get real user id.
• posix_setuid() change the effective user id
• POSIX man page GETEUID(2)

posix_getgid

posix_getgid -- Return the real group ID of the current process

Description

int posix_getgid (void)

Return the numeric real group ID of the current process.

Return Values

Returns the real group id, as an integer.

Examples

Example #1989 - posix_getgid() example

This example will print out the real group id, even once the effective group id has been
changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getegid() get effective group id.
• posix_setgid() change the effective group id
• POSIX man page GETGID(2)

posix_getgrgid

posix_getgrgid -- Return info about a group by group id

Description

array posix_getgrgid (int $gid)

Gets information about a group provided its id.

Parameters

gid

The group id.

Return Values

The array elements returned are:

The group information array

Element Description

name The name element contains the name of the
group. This is a short, usually less than 16
character "handle" of the group, not the real,
full name.

passwd The passwd element contains the group's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

gid Group ID, should be the same as the gid
parameter used when calling the function,
and hence redundant.

members This consists of an array of string 's for all
the members in the group.

ChangeLog

Version Description

4.2.0 Prior to this version, members was simply
an integer representing the number of
members in the group, and the member
names were returned with numerical
indices.

Examples

Example #1990 - Example use of posix_getgrgid()

<?php

$groupid = posix_getegid();

$groupinfo = posix_getgrgid($groupid);

print_r($groupinfo);

?>

The above example will output something similar to:

Array

(

 [name] => toons

 [passwd] => x

 [members] => Array

 (

 [0] => tom

 [1] => jerry

)

 [gid] => 42

)

See Also

• posix_getegid()
• posix_getgrnam()
• filegroup()
• stat()
• safe_mode_gid
• POSIX man page GETGRNAM(3)

posix_getgrnam

posix_getgrnam -- Return info about a group by name

Description

array posix_getgrnam (string $name)

Gets information about a group provided its name.

Parameters

name

The name of the group

Return Values

The array elements returned are:

The group information array

Element Description

name The name element contains the name of the
group. This is a short, usually less than 16
character "handle" of the group, not the real,
full name. This should be the same as the
name parameter used when calling the
function, and hence redundant.

passwd The passwd element contains the group's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

gid Group ID of the group in numeric form.

members This consists of an array of string 's for all
the members in the group.

ChangeLog

Version Description

4.2.0 Prior to this version, members was simply
an integer representing the number of
members in the group, and the member
names were returned with numerical
indices.

Examples

Example #1991 - Example use of posix_getgrnam()

<?php

$groupinfo = posix_getgrnam("toons");

print_r($groupinfo);

?>

The above example will output something similar to:

Array

(

 [name] => toons

 [passwd] => x

 [members] => Array

 (

 [0] => tom

 [1] => jerry

)

 [gid] => 42

)

See Also

• posix_getegid()
• posix_getgrgid()
• filegroup()
• stat()
• safe_mode_gid
• POSIX man page GETGRNAM(3)

posix_getgroups

posix_getgroups -- Return the group set of the current process

Description

array posix_getgroups (void)

Gets the group set of the current process.

Return Values

Returns an array of integers containing the numeric group ids of the group set of the
current process.

Examples

Example #1992 - Example use of posix_getgroups()

<?php

$groups = posix_getgroups();

print_r($groups);

?>

The above example will output something similar to:

Array

(

 [0] => 4

 [1] => 20

 [2] => 24

 [3] => 25

 [4] => 29

 [5] => 30

 [6] => 33

 [7] => 44

 [8] => 46

 [9] => 104

 [10] => 109

 [11] => 110

 [12] => 1000

)

See Also

• posix_getgrgid()

posix_getlogin

posix_getlogin -- Return login name

Description

string posix_getlogin (void)

Returns the login name of the user owning the current process.

Return Values

Returns the login name of the user, as a string.

Examples

Example #1993 - Example use of posix_getlogin()

<?php

echo posix_getlogin(); //apache

?>

See Also

• posix_getpwnam()
• POSIX man page GETLOGIN(3)

posix_getpgid

posix_getpgid -- Get process group id for job control

Description

int posix_getpgid (int $pid)

Returns the process group identifier of the process pid.

Parameters

pid

The process id.

Return Values

Returns the identifier, as an integer.

Examples

Example #1994 - Example use of posix_getpgid()

<?php

$pid = posix_getppid();

echo posix_getpgid($pid); //35

?>

Notes

Note

This is a not POSIX function, but is common on BSD and System V systems. If the
system does not support this function, then it will not be included at compile time. This
may be checked with function_exists().

See Also

• posix_getppid()

• man page SETPGID(2)

posix_getpgrp

posix_getpgrp -- Return the current process group identifier

Description

int posix_getpgrp (void)

Return the process group identifier of the current process.

Return Values

Returns the identifier, as an integer.

See Also

• POSIX.1 and the getpgrp(2) manual page on the POSIX system for more information
on process groups.

posix_getpid

posix_getpid -- Return the current process identifier

Description

int posix_getpid (void)

Return the process identifier of the current process.

Return Values

Returns the identifier, as an integer.

Examples

Example #1995 - Example use of posix_getpid()

<?php

echo posix_getpid(); //8805

?>

See Also

• posix_kill() to kill a process.
• POSIX man page GETPID(2)

posix_getppid

posix_getppid -- Return the parent process identifier

Description

int posix_getppid (void)

Return the process identifier of the parent process of the current process.

Return Values

Returns the identifier, as an integer.

Examples

Example #1996 - Example use of posix_getppid()

<?php

echo posix_getppid(); //8259

?>

posix_getpwnam

posix_getpwnam -- Return info about a user by username

Description

array posix_getpwnam (string $username)

Returns an array of information about the given user.

Parameters

username

An alphanumeric username.

Return Values

The array elements returned are:

The user information array

Element Description

name The name element contains the username
of the user. This is a short, usually less than
16 character "handle" of the user, not the
real, full name. This should be the same as
the username parameter used when calling
the function, and hence redundant.

passwd The passwd element contains the user's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

uid User ID of the user in numeric form.

gid The group ID of the user. Use the function
posix_getgrgid() to resolve the group name
and a list of its members.

gecos GECOS is an obsolete term that refers to
the finger information field on a Honeywell
batch processing system. The field,
however, lives on, and its contents have
been formalized by POSIX. The field
contains a comma separated list containing

the user's full name, office phone, office
number, and home phone number. On most
systems, only the user's full name is
available.

dir This element contains the absolute path to
the home directory of the user.

shell The shell element contains the absolute
path to the executable of the user's default
shell.

Examples

Example #1997 - Example use of posix_getpwnam()

<?php

$userinfo = posix_getpwnam("tom");

print_r($userinfo);

?>

The above example will output something similar to:

Array

(

 [name] => tom

 [passwd] => x

 [uid] => 10000

 [gid] => 42

 [geocs] => "tom,,,"

 [dir] => "/home/tom"

 [shell] => "/bin/bash"

)

See Also

• posix_getpwuid()
• POSIX man page GETPWNAM(3)

posix_getpwuid

posix_getpwuid -- Return info about a user by user id

Description

array posix_getpwuid (int $uid)

Returns an array of information about the user referenced by the given user ID.

Parameters

uid

The user identifier.

Return Values

Returns an associative array with the following elements:

The user information array

Element Description

name The name element contains the username
of the user. This is a short, usually less than
16 character "handle" of the user, not the
real, full name.

passwd The passwd element contains the user's
password in an encrypted format. Often, for
example on a system employing "shadow"
passwords, an asterisk is returned instead.

uid User ID, should be the same as the uid
parameter used when calling the function,
and hence redundant.

gid The group ID of the user. Use the function
posix_getgrgid() to resolve the group name
and a list of its members.

gecos GECOS is an obsolete term that refers to
the finger information field on a Honeywell
batch processing system. The field,
however, lives on, and its contents have
been formalized by POSIX. The field
contains a comma separated list containing

the user's full name, office phone, office
number, and home phone number. On most
systems, only the user's full name is
available.

dir This element contains the absolute path to
the home directory of the user.

shell The shell element contains the absolute
path to the executable of the user's default
shell.

Examples

Example #1998 - Example use of posix_getpwuid()

<?php

$userinfo = posix_getpwuid(10000);

print_r($userinfo);

?>

The above example will output something similar to:

Array

(

 [name] => tom

 [passwd] => x

 [uid] => 10000

 [gid] => 42

 [geocs] => "tom,,,"

 [dir] => "/home/tom"

 [shell] => "/bin/bash"

)

See Also

• posix_getpwnam()
• POSIX man page GETPWNAM(3)

posix_getrlimit

posix_getrlimit -- Return info about system resource limits

Description

array posix_getrlimit (void)

posix_getrlimit() returns an array of information about the current resource's soft and hard
limits.

Each resource has an associated soft and hard limit. The soft limit is the value that the
kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft
limit. An unprivileged process may only set its soft limit to a value from 0 to the hard limit,
and irreversibly lower its hard limit.

Return Values

Returns an associative array of elements for each limit that is defined. Each limit has a soft
and a hard limit.

List of possible limits returned

Limit name Limit description

core The maximum size of the core file. When 0,
not core files are created. When core files
are larger than this size, they will be
truncated at this size.

totalmem The maximum size of the memory of the
process, in bytes.

virtualmem The maximum size of the virtual memory for
the process, in bytes.

data The maximum size of the data segment for
the process, in bytes.

stack The maximum size of the process stack, in
bytes.

rss The maximum number of virtual pages
resident in RAM

maxproc The maximum number of processes that
can be created for the real user ID of the
calling process.

memlock The maximum number of bytes of memory
that may be locked into RAM.

cpu The amount of time the process is allowed
to use the CPU.

filesize The maximum size of the data segment for
the process, in bytes.

openfiles One more than the maximum number of
open file descriptors.

Examples

Example #1999 - Example use of posix_getrlimit()

<?php

$limits = posix_getrlimit();

print_r($limits);

?>

The above example will output something similar to:

Array

(

 [soft core] => 0

 [hard core] => unlimited

 [soft data] => unlimited

 [hard data] => unlimited

 [soft stack] => 8388608

 [hard stack] => unlimited

 [soft totalmem] => unlimited

 [hard totalmem] => unlimited

 [soft rss] => unlimited

 [hard rss] => unlimited

 [soft maxproc] => unlimited

 [hard maxproc] => unlimited

 [soft memlock] => unlimited

 [hard memlock] => unlimited

 [soft cpu] => unlimited

 [hard cpu] => unlimited

 [soft filesize] => unlimited

 [hard filesize] => unlimited

 [soft openfiles] => 1024

 [hard openfiles] => 1024

)

Notes

Note

This is a not POSIX function, but is common on BSD and System V systems. If the
system does not support this function, then it will not be included at compile time. This
may be checked with function_exists().

See Also

• man page GETRLIMIT(2)

posix_getsid

posix_getsid -- Get the current sid of the process

Description

int posix_getsid (int $pid)

Return the session id of the process pid. The session id of a process is the process group
id of the session leader.

Parameters

pid

The process identifier. If set to 0, the current process is assumed. If an invalid pid is
specified, then FALSE is returned and an error is set which can be checked with
posix_get_last_error().

Return Values

Returns the identifier, as an integer.

Examples

Example #2000 - Example use of posix_getsid()

<?php

$pid = posix_getpid();

echo posix_getsid($pid); //8805

?>

See Also

• posix_getpgid()
• posix_setsid()
• POSIX man page GETSID(2)

posix_getuid

posix_getuid -- Return the real user ID of the current process

Description

int posix_getuid (void)

Return the numeric real user ID of the current process.

Return Values

Returns the user id, as an integer

Examples

Example #2001 - Example use of posix_getuid()

<?php

echo posix_getuid(); //10000

?>

See Also

• posix_getpwuid() for information on how to convert this into a useable username
• POSIX man page GETUID(2)

posix_initgroups

posix_initgroups -- Calculate the group access list

Description

bool posix_initgroups (string $name, int $base_group_id)

Calculates the group access list for the user specified in name.

Parameters

name

The user to calculate the list for.

base_group_id

Typically the group number from the password file.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• The Unix manual page for initgroups(3).

posix_isatty

posix_isatty -- Determine if a file descriptor is an interactive terminal

Description

bool posix_isatty (int $fd)

Determines if the file descriptor fd refers to a valid terminal type device.

Parameters

fd

The file descriptor.

Return Values

Returns TRUE if fd is an open descriptor connected to a terminal and FALSE otherwise.

See Also

• posix_ttyname()

posix_kill

posix_kill -- Send a signal to a process

Description

bool posix_kill (int $pid, int $sig)

Send the signal sig to the process with the process identifier pid.

Parameters

pid

The process identifier.

sig

One of the PCNTL signals constants.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• The kill(2) manual page of the POSIX system, which contains additional information
about negative process identifiers, the special pid 0, the special pid -1, and the signal
number 0.

posix_mkfifo

posix_mkfifo -- Create a fifo special file (a named pipe)

Description

bool posix_mkfifo (string $pathname, int $mode)

posix_mkfifo() creates a special FIFO file which exists in the file system and acts as a
bidirectional communication endpoint for processes.

Parameters

pathname

Path to the FIFO file.

mode

The second parameter mode has to be given in octal notation (e.g. 0644). The
permission of the newly created FIFO also depends on the setting of the current
umask(). The permissions of the created file are (mode & ~umask).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

When safe mode is enabled, PHP checks whether the files or directories being
operated upon have the same UID (owner) as the script that is being executed.

posix_mknod

posix_mknod -- Create a special or ordinary file (POSIX.1)

Description

bool posix_mknod (string $pathname, int $mode [, int $major [, int $minor]])

Creates a special or ordinary file.

Parameters

pathname

The file to create

mode

This parameter is constructed by a bitwise OR between file type (one of the following
constants: POSIX_S_IFREG, POSIX_S_IFCHR, POSIX_S_IFBLK, POSIX_S_IFIFO
or POSIX_S_IFSOCK) and permissions.

major

The major device kernel identifier (required to pass when using S_IFCHR or S_IFBLK
).

minor

The minor device kernel identifier (defaults to 0).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2002 - A posix_mknod() example

<?php

$file = '/tmp/tmpfile'; // file name

$type = POSIX_S_IFBLK; // file type

$permissions = 0777; // octal

$major = 1;

$minor = 8; // /dev/random

if (!posix_mknod($file, $type | $permissions, $major, $minor)) {

 die('Error ' . posix_get_last_error() . ': ' .
posix_strerror(posix_get_last_error()));

}

?>

See Also

• posix_mkfifo()

posix_setegid

posix_setegid -- Set the effective GID of the current process

Description

bool posix_setegid (int $gid)

Set the effective group ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

gid

The group id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2003 - posix_setegid() example

This example will print out the effective group id, once changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setegid(40);

echo 'My real group id is '.posix_getgid(); //20

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert a group id into a useable group
name

• posix_getgid() get real group id.
• posix_setgid() change the effective group id

posix_seteuid

posix_seteuid -- Set the effective UID of the current process

Description

bool posix_seteuid (int $uid)

Set the real user ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

uid

The user id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• posix_setgid()

posix_setgid

posix_setgid -- Set the GID of the current process

Description

bool posix_setgid (int $gid)

Set the real group ID of the current process. This is a privileged function and needs
appropriate privileges (usually root) on the system to be able to perform this function. The
appropriate order of function calls is posix_setgid() first, posix_setuid() last.

Note

If the caller is a super user, this will also set the effective group id.

Parameters

gid

The group id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2004 - posix_setgid() example

This example will print out the effective group id, once it is changed.

<?php

echo 'My real group id is '.posix_getgid(); //20

posix_setgid(40);

echo 'My real group id is '.posix_getgid(); //40

echo 'My effective group id is '.posix_getegid(); //40

?>

See Also

• posix_getgrgid() for information on how to convert this into a useable group name
• posix_getgid() get real group id.

posix_setpgid

posix_setpgid -- Set process group id for job control

Description

bool posix_setpgid (int $pid, int $pgid)

Let the process pid join the process group pgid.

Parameters

pid

The process id.

pgid

The process group id.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• See POSIX.1 and the setsid(2) manual page on the POSIX system for more
informations on process groups and job control.

posix_setsid

posix_setsid -- Make the current process a session leader

Description

int posix_setsid (void)

Make the current process a session leader.

Return Values

Returns the session id, or -1 on errors.

See Also

• The POSIX.1 and the setsid(2) manual page on the POSIX system for more
information on process groups and job control.

posix_setuid

posix_setuid -- Set the UID of the current process

Description

bool posix_setuid (int $uid)

Set the real user ID of the current process. This is a privileged function that needs
appropriate privileges (usually root) on the system to be able to perform this function.

Parameters

uid

The user id.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2005 - posix_setuid() example

This example will show the currrent user id and then set it to a different value.

<?php

echo posix_getuid()."\n"; //10001

echo posix_geteuid()."\n"; //10001

posix_setuid(10000);

echo posix_getuid()."\n"; //10000

echo posix_geteuid()."\n"; //10000

?>

See Also

• posix_setgid()
• posix_seteuid()
• posix_getuid()
• posix_geteuid()

posix_strerror

posix_strerror -- Retrieve the system error message associated with the given errno

Description

string posix_strerror (int $errno)

Returns the POSIX system error message associated with the given errno. You may get
the errno parameter by calling posix_get_last_error().

Parameters

errno

A POSIX error number, returned by posix_get_last_error(). If set to 0, then the string
"Success" is returned.

Return Values

Returns the error message, as a string.

Examples

Example #2006 - posix_strerror() example

This example will attempt to kill a process which does not exist, then will print out the
corresponding error message.

<?php

posix_kill(50,SIGKILL);

echo posix_strerror(posix_get_last_error())."\n";

?>

The above example will output something similar to:

No such process

See Also

• posix_get_last_error()

posix_times

posix_times -- Get process times

Description

array posix_times (void)

Gets information about the current CPU usage.

Return Values

Returns a hash of strings with information about the current process CPU usage. The
indices of the hash are:

• ticks - the number of clock ticks that have elapsed since reboot.

• utime - user time used by the current process.

• stime - system time used by the current process.

• cutime - user time used by current process and children.

• cstime - system time used by current process and children.

Notes

Warning

This function isn't reliable to use, it may return negative values for high times.

Examples

Example #2007 - Example use of posix_times()

<?php

$times = posix_times();

print_r($times);

?>

The above example will output something similar to:

Array

(

 [ticks] => 25814410

 [utime] => 1

 [stime] => 1

 [cutime] => 0

 [cstime] => 0

)

posix_ttyname

posix_ttyname -- Determine terminal device name

Description

string posix_ttyname (int $fd)

Returns a string for the absolute path to the current terminal device that is open on the file
descriptor fd.

Parameters

fd

The file descriptor.

Return Values

On success, returns a string of the absolute path of the fd. On failure, returns FALSE

posix_uname

posix_uname -- Get system name

Description

array posix_uname (void)

Gets information about the system.

Posix requires that assumptions must not be made about the format of the values, e.g. the
assumption that a release may contain three digits or anything else returned by this
function.

Return Values

Returns a hash of strings with information about the system. The indices of the hash are

• sysname - operating system name (e.g. Linux)

• nodename - system name (e.g. valiant)

• release - operating system release (e.g. 2.2.10)

• version - operating system version (e.g. #4 Tue Jul 20 17:01:36 MEST 1999)

• machine - system architecture (e.g. i586)

• domainname - DNS domainname (e.g. example.com)

domainname is a GNU extension and not part of POSIX.1, so this field is only available on
GNU systems or when using the GNU libc.

Examples

Example #2008 - Example use of posix_uname()

<?php

$uname=posix_uname();

print_r($uname);

?>

The above example will output something similar to:

Array

(

 [sysname] => Linux

 [nodename] => funbox

 [release] => 2.6.20-15-server

 [version] => #2 SMP Sun Apr 15 07:41:34 UTC 2007

 [machine] => i686

)

Semaphore, Shared Memory and IPC

Introduction

This module provides wrappers for the System V IPC family of functions. It includes
semaphores, shared memory and inter-process messaging (IPC).

Semaphores may be used to provide exclusive access to resources on the current
machine, or to limit the number of processes that may simultaneously use a resource.

This module provides also shared memory functions using System V shared memory.
Shared memory may be used to provide access to global variables. Different
httpd-daemons and even other programs (such as Perl, C, ...) are able to access this data
to provide a global data-exchange. Remember, that shared memory is NOT safe against
simultaneous access. Use semaphores for synchronization.

Limits of Shared Memory by the Unix OS

SHMMAX max size of shared memory, normally
131072 bytes

SHMMIN minimum size of shared memory, normally 1
byte

SHMMNI max amount of shared memory segments
on a system, normally 100

SHMSEG max amount of shared memory segments
per process, normally 6

The messaging functions may be used to send and receive messages to/from other
processes. They provide a simple and effective means of exchanging data between
processes, without the need for setting up an alternative using Unix domain sockets.

Note

This extension is not available on Windows platforms.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Support for this functions are not enabled by default. To enable System V semaphore
support compile PHP with the option --enable-sysvsem. To enable the System V shared
memory support compile PHP with the option --enable-sysvshm. To enable the System V
messages support compile PHP with the option --enable-sysvmsg.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Semaphore Configuration Options

Name Default Changeable Changelog

sysvmsg.value "42" PHP_INI_ALL

sysvmsg.string "foobar" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

System V message constants

Constant Type Changelog

MSG_IPC_NOWAIT integer

MSG_EAGAIN integer As of 5.2.0

MSG_ENOMSG integer As of 5.2.0

MSG_NOERROR integer

MSG_EXCEPT integer

Semaphore Functions

ftok

ftok -- Convert a pathname and a project identifier to a System V IPC key

Description

int ftok (string $pathname, string $proj)

The function converts the pathname of an existing accessible file and a project identifier
into an integer for use with for example shmop_open() and other System V IPC keys.

Parameters

pathname

Path to an accessible file.

proj

Project identifier. This must be a one character string.

Return Values

On success the return value will be the created key value, otherwise -1 is returned.

See Also

• shmop_open()
• sem_get()

msg_get_queue

msg_get_queue -- Create or attach to a message queue

Description

resource msg_get_queue (int $key [, int $perms])

msg_get_queue() returns an id that can be used to access the System V message queue
with the given key. The first call creates the message queue with the optional perms. A
second call to msg_get_queue() for the same key will return a different message queue
identifier, but both identifiers access the same underlying message queue.

Parameters

key

Message queue numeric ID

perms

Queue permissions. Default to 0666. If the message queue already exists, the perms
will be ignored.

Return Values

Returns a resource handle that can be used to access the System V message queue.

See Also

• msg_remove_queue()
• msg_receive()
• msg_send()
• msg_stat_queue()
• msg_set_queue()

msg_queue_exists

msg_queue_exists -- Check wether a message queue exists

Description

bool msg_queue_exists (int $key)

Checks wether the message queue key exists.

Parameters

key

Queue key.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()

msg_receive

msg_receive -- Receive a message from a message queue

Description

bool msg_receive (resource $queue, int $desiredmsgtype, int &$msgtype, int $maxsize,
mixed &$message [, bool $unserialize [, int $flags [, int &$errorcode]]])

msg_receive() will receive the first message from the specified queue of the type specified
by desiredmsgtype.

Parameters

queue

desiredmsgtype

If desiredmsgtype is 0, the message from the front of the queue is returned. If
desiredmsgtype is greater than 0, then the first message of that type is returned. If
desiredmsgtype is less than 0, the first message on the queue with the lowest type less
than or equal to the absolute value of desiredmsgtype will be read. If no messages
match the criteria, your script will wait until a suitable message arrives on the queue.
You can prevent the script from blocking by specifying MSG_IPC_NOWAIT in the
flags parameter.

msgtype

The type of the message that was received will be stored in this parameter.

maxsize

The maximum size of message to be accepted is specified by the maxsize; if the
message in the queue is larger than this size the function will fail (unless you set flags
as described below).

message

The received message will be stored in message, unless there were errors receiving
the message.

unserialize

unserialize defaults to TRUE; if it is set to TRUE, the message is treated as though it
was serialized using the same mechanism as the session module. The message will
be unserialized and then returned to your script. This allows you to easily receive
arrays or complex object structures from other PHP scripts, or if you are using the
WDDX serializer, from any WDDX compatible source. If unserialize is FALSE, the
message will be returned as a binary-safe string.

flags

The optional flags allows you to pass flags to the low-level msgrcv system call. It

defaults to 0, but you may specify one or more of the following values (by adding or
ORing them together).

Flag values for msg_receive

MSG_IPC_NOWAIT If there are no messages of the
desiredmsgtype, return immediately and do
not wait. The function will fail and return an
integer value corresponding to
MSG_ENOMSG.

MSG_EXCEPT Using this flag in combination with a
desiredmsgtype greater than 0 will cause
the function to receive the first message that
is not equal to desiredmsgtype.

MSG_NOERROR If the message is longer than maxsize,
setting this flag will truncate the message to
maxsize and will not signal an error.

errorcode

If the function fails, the optional errorcode will be set to the value of the system errno
variable.

Return Values

Returns TRUE on success or FALSE on failure.

Upon successful completion the message queue data structure is updated as follows:
msg_lrpid is set to the process-ID of the calling process, msg_qnum is decremented by 1 and
msg_rtime is set to the current time.

See Also

• msg_remove_queue()
• msg_send()
• msg_stat_queue()
• msg_set_queue()

msg_remove_queue

msg_remove_queue -- Destroy a message queue

Description

bool msg_remove_queue (resource $queue)

msg_remove_queue() destroys the message queue specified by the queue. Only use this
function when all processes have finished working with the message queue and you need to
release the system resources held by it.

Parameters

queue

Message queue resource handle

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_get_queue()
• msg_receive()
• msg_stat_queue()
• msg_set_queue()

msg_send

msg_send -- Send a message to a message queue

Description

bool msg_send (resource $queue, int $msgtype, mixed $message [, bool $serialize [, bool $
blocking [, int &$errorcode]]])

msg_send() sends a message of type msgtype (which MUST be greater than 0) to the
message queue specified by queue.

Parameters

queue

msgtype

message

serialize

The optional serialize controls how the message is sent. serialize defaults to TRUE
which means that the message is serialized using the same mechanism as the session
module before being sent to the queue. This allows complex arrays and objects to be sent
to other PHP scripts, or if you are using the WDDX serializer, to any WDDX compatible
client.

blocking

If the message is too large to fit in the queue, your script will wait until another process
reads messages from the queue and frees enough space for your message to be sent.
This is called blocking; you can prevent blocking by setting the optional blocking
parameter to FALSE, in which case msg_send() will immediately return FALSE if the
message is too big for the queue, and set the optional errorcode to MSG_EAGAIN,
indicating that you should try to send your message again a little later on.

errorcode

Return Values

Returns TRUE on success or FALSE on failure.

Upon successful completion the message queue data structure is updated as follows:
msg_lspid is set to the process-ID of the calling process, msg_qnum is incremented by 1 and

msg_stime is set to the current time.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()
• msg_set_queue()

msg_set_queue

msg_set_queue -- Set information in the message queue data structure

Description

bool msg_set_queue (resource $queue, array $data)

msg_set_queue() allows you to change the values of the msg_perm.uid, msg_perm.gid,
msg_perm.mode and msg_qbytes fields of the underlying message queue data structure.

Changing the data structure will require that PHP be running as the same user that created
the queue, owns the queue (as determined by the existing msg_perm.xxx fields), or be
running with root privileges. root privileges are required to raise the msg_qbytes values above
the system defined limit.

Parameters

queue

Message queue resource handle

data

You specify the values you require by setting the value of the keys that you require in the
data array.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• msg_remove_queue()
• msg_receive()
• msg_stat_queue()
• msg_get_queue()

msg_stat_queue

msg_stat_queue -- Returns information from the message queue data structure

Description

array msg_stat_queue (resource $queue)

msg_stat_queue() returns the message queue meta data for the message queue specified by
the queue. This is useful, for example, to determine which process sent the message that was
just received.

Parameters

queue

Message queue resource handle

Return Values

The return value is an array whose keys and values have the following meanings:

Array structure for msg_stat_queue

msg_perm.uid The uid of the owner of the queue.

msg_perm.gid The gid of the owner of the queue.

msg_perm.mode The file access mode of the queue.

msg_stime The time that the last message was sent to
the queue.

msg_rtime The time that the last message was
received from the queue.

msg_ctime The time that the queue was last changed.

msg_qnum The number of messages waiting to be read
from the queue.

msg_qbytes The number of bytes of space currently
available in the queue to hold sent
messages until they are received.

msg_lspid The pid of the process that sent the last
message to the queue.

msg_lrpid The pid of the process that received the last
message from the queue.

See Also

• msg_remove_queue()
• msg_receive()
• msg_get_queue()
• msg_set_queue()

sem_acquire

sem_acquire -- Acquire a semaphore

Description

bool sem_acquire (resource $sem_identifier)

sem_acquire() blocks (if necessary) until the semaphore can be acquired. A process
attempting to acquire a semaphore which it has already acquired will block forever if
acquiring the semaphore would cause its maximum number of semaphore to be
exceeded.

After processing a request, any semaphores acquired by the process but not explicitly
released will be released automatically and a warning will be generated.

Parameters

sem_identifier

sem_identifier is a semaphore resource, obtained from sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_release()

sem_get

sem_get -- Get a semaphore id

Description

resource sem_get (int $key [, int $max_acquire [, int $perm [, int $auto_release]]])

sem_get() returns an id that can be used to access the System V semaphore with the
given key.

A second call to sem_get() for the same key will return a different semaphore identifier, but
both identifiers access the same underlying semaphore.

Parameters

key

max_acquire

The number of processes that can acquire the semaphore simultaneously is set to
max_acquire (defaults to 1).

perm

The semaphore permissions. Defaults to 0666. Actually this value is set only if the
process finds it is the only process currently attached to the semaphore.

auto_release

Specifies if the semaphore should be automatically released on request shutdown.

Return Values

Returns a positive semaphore identifier on success, or FALSE on error.

ChangeLog

Version Description

4.3.0 The auto_release parameter was added.

See Also

• sem_acquire()
• sem_release()
• ftok()

sem_release

sem_release -- Release a semaphore

Description

bool sem_release (resource $sem_identifier)

sem_release() releases the semaphore if it is currently acquired by the calling process,
otherwise a warning is generated.

After releasing the semaphore, sem_acquire() may be called to re-acquire it.

Parameters

sem_identifier

A Semaphore resource handle as returned by sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_acquire()

sem_remove

sem_remove -- Remove a semaphore

Description

bool sem_remove (resource $sem_identifier)

sem_remove() removes the given semaphore.

After removing the semaphore, it is no more accessible.

Parameters

sem_identifier

A semaphore resource identifier as returned by sem_get().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• sem_get()
• sem_release()
• sem_acquire()

shm_attach

shm_attach -- Creates or open a shared memory segment

Description

int shm_attach (int $key [, int $memsize [, int $perm]])

shm_attach() returns an id that can be used to access the System V shared memory with
the given key, the first call creates the shared memory segment with memsize and the
optional perm-bits perm.

A second call to shm_attach() for the same key will return a different shared memory
identifier, but both identifiers access the same underlying shared memory. memsize and
perm will be ignored.

Parameters

key

A numeric shared memory segment ID

memsize

The memory size. If not provided, default to the sysvshm.init_mem in the php.ini,
otherwise 10000 bytes.

perm

The optional permission bits. Default to 0666.

Return Values

Returns a shared memory segment identifier.

See Also

• shm_detach()
• ftok()

shm_detach

shm_detach -- Disconnects from shared memory segment

Description

bool shm_detach (int $shm_identifier)

shm_detach() disconnects from the shared memory given by the shm_identifier created
by shm_attach(). Remember, that shared memory still exist in the Unix system and the
data is still present.

Parameters

shm_identifier

A shared memory resource handle as returned by shm_attach()

Return Values

shm_detach() always returns TRUE.

See Also

• shm_attach()
• shm_remove()
• shm_remove_var()

shm_get_var

shm_get_var -- Returns a variable from shared memory

Description

mixed shm_get_var (int $shm_identifier, int $variable_key)

shm_get_var() returns the variable with a given variable_key, in the given shared
memory segment. The variable is still present in the shared memory.

Parameters

shm_identifier

Shared memory segment, obtained from shm_attach().

variable_key

The variable key.

Return Values

Returns the variable with the given key.

shm_put_var

shm_put_var -- Inserts or updates a variable in shared memory

Description

bool shm_put_var (int $shm_identifier, int $variable_key, mixed $variable)

shm_put_var() inserts or updates the variable with the given variable_key.

Warnings (E_WARNING level) will be issued if shm_identifier is not a valid SysV shared
memory index or if there was not enough shared memory remaining to complete your
request.

Parameters

shm_identifier

A shared memory resource handle as returned by shm_attach()

variable_key

The variable key.

variable

The variable. All variable-types are supported.

Return Values

Returns TRUE on success or FALSE on failure.

shm_remove_var

shm_remove_var -- Removes a variable from shared memory

Description

bool shm_remove_var (int $shm_identifier, int $variable_key)

Removes a variable with a given variable_key and frees the occupied memory.

Parameters

shm_identifier

The shared memory identifier as returned by shm_attach()

variable_key

The variable key.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• shm_remove()

shm_remove

shm_remove -- Removes shared memory from Unix systems

Description

bool shm_remove (int $shm_identifier)

shm_remove() removes the shared memory shm_identifier. All data will be destroyed.

Parameters

shm_identifier

The shared memory identifier as returned by shm_attach()

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• shm_remove_var()

Shared Memory

Introduction

Shmop is an easy to use set of functions that allows PHP to read, write, create and delete
Unix shared memory segments.

Note

Versions of Windows previous to Windows 2000 do not support shared memory.
Under Windows, Shmop will only work when PHP is running as a web server module,
such as Apache or IIS (CLI and CGI will not work).

Note

In PHP 4.0.3, these functions were prefixed by shm rather than shmop.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To use shmop you will need to compile PHP with the --enable-shmop parameter in your
configure line.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Example #2009 - Shared Memory Operations Overview

<?php

// Create 100 byte shared memory block with system id of 0xff3

$shm_id = shmop_open(0xff3, "c", 0644, 100);

if (!$shm_id) {

 echo "Couldn't create shared memory segment\n";

}

// Get shared memory block's size

$shm_size = shmop_size($shm_id);

echo "SHM Block Size: " . $shm_size . " has been created.\n";

// Lets write a test string into shared memory

$shm_bytes_written = shmop_write($shm_id, "my shared memory block", 0);

if ($shm_bytes_written != strlen("my shared memory block")) {

 echo "Couldn't write the entire length of data\n";

}

// Now lets read the string back

$my_string = shmop_read($shm_id, 0, $shm_size);

if (!$my_string) {

 echo "Couldn't read from shared memory block\n";

}

echo "The data inside shared memory was: " . $my_string . "\n";

//Now lets delete the block and close the shared memory segment

if (!shmop_delete($shm_id)) {

 echo "Couldn't mark shared memory block for deletion.";

}

shmop_close($shm_id);

?>

Shared Memory Functions

shmop_close

shmop_close -- Close shared memory block

Description

void shmop_close (int $shmid)

shmop_close() is used to close a shared memory block.

Parameters

shmid

The shared memory block identifier created by shmop_open()

Return Values

No value is returned.

Examples

Example #2010 - Closing shared memory block

<?php

shmop_close($shm_id);

?>

This example will close shared memory block identified by $shm_id.

See Also

• shmop_open()

shmop_delete

shmop_delete -- Delete shared memory block

Description

bool shmop_delete (int $shmid)

shmop_delete() is used to delete a shared memory block.

Parameters

shmid

The shared memory block identifier created by shmop_open()

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2011 - Deleting shared memory block

<?php

shmop_delete($shm_id);

?>

This example will delete shared memory block identified by $shm_id.

shmop_open

shmop_open -- Create or open shared memory block

Description

int shmop_open (int $key, string $flags, int $mode, int $size)

shmop_open() can create or open a shared memory block.

Parameters

key

System's id for the shared memory block. Can be passed as a decimal or hex.

flags

The flags that you can use:

• "a" for access (sets SHM_RDONLY for shmat) use this flag when you need to
open an existing shared memory segment for read only

• "c" for create (sets IPC_CREATE) use this flag when you need to create a new
shared memory segment or if a segment with the same key exists, try to open it for
read and write

• "w" for read & write access use this flag when you need to read and write to a
shared memory segment, use this flag in most cases.

• "n" create a new memory segment (sets IPC_CREATE|IPC_EXCL) use this flag
when you want to create a new shared memory segment but if one already exists
with the same flag, fail. This is useful for security purposes, using this you can
prevent race condition exploits.

mode

The permissions that you wish to assign to your memory segment, those are the same
as permission for a file. Permissions need to be passed in octal form, like for example
0644

size

The size of the shared memory block you wish to create in bytes

Note

Note: the 3rd and 4th should be entered as 0 if you are opening an existing memory
segment.

Return Values

On success shmop_open() will return an id that you can use to access the shared memory
segment you've created. FALSE is returned on failure.

Examples

Example #2012 - Create a new shared memory block

<?php

$shm_key = ftok(__FILE__, 't');

$shm_id = shmop_open($shm_key, "c", 0644, 100);

?>

This example opened a shared memory block with a system id returned by ftok().

See Also

• shmop_close()
• shmop_delete()

shmop_read

shmop_read -- Read data from shared memory block

Description

string shmop_read (int $shmid, int $start, int $count)

shmop_read() will read a string from shared memory block.

Parameters

shmid

The shared memory block identifier created by shmop_open()

start

Offset from which to start reading

count

The number of bytes to read

Return Values

Returns the data or FALSE on failure.

Examples

Example #2013 - Reading shared memory block

<?php

$shm_data = shmop_read($shm_id, 0, 50);

?>

This example will read 50 bytes from shared memory block and place the data inside
$shm_data.

See Also

• shmop_write()

shmop_size

shmop_size -- Get size of shared memory block

Description

int shmop_size (int $shmid)

shmop_size() is used to get the size, in bytes of the shared memory block.

Parameters

shmid

The shared memory block identifier created by shmop_open()

Return Values

Returns an int, which represents the number of bytes the shared memory block occupies.

Examples

Example #2014 - Getting the size of the shared memory block

<?php

$shm_size = shmop_size($shm_id);

?>

This example will put the size of shared memory block identified by $shm_id into
$shm_size.

shmop_write

shmop_write -- Write data into shared memory block

Description

int shmop_write (int $shmid, string $data, int $offset)

shmop_write() will write a string into shared memory block.

Parameters

shmid

The shared memory block identifier created by shmop_open()

data

A string to write into shared memory block

offset

Specifies where to start writing data inside the shared memory segment.

Return Values

The size of the written data, or FALSE on failure.

Examples

Example #2015 - Writing to shared memory block

<?php

$shm_bytes_written = shmop_write($shm_id, $my_string, 0);

?>

This example will write data inside $my_string into shared memory block,
$shm_bytes_written will contain the number of bytes written.

See Also

• shmop_read()

Other Basic Extensions

Geo IP Location

Introduction

The GeoIP extension allows you to find the location of an IP address. City, State, Country,
Longitude, Latitude, and other information as all, such as ISP and connection type can be
obtained with the help of GeoIP.

Installing/Configuring

Requirements

This extension requires the GeoIP C library version 1.4.0 or higher to be installed. You can
grab the latest version from » http://www.maxmind.com/app/c and compile it yourself.

By default, you will only have access to the Free GeoIP Country or GeoLite City
databases. While this module can work with other types of database, you must buy a
commercial license from » Maxmind.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/geoip.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.maxmind.com/app/c
http://www.maxmind.com/
http://pecl.php.net/
http://pecl.php.net/package/geoip
http://pecl.php.net/package/geoip

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

GEOIP_COUNTRY_EDITION (integer)

GEOIP_REGION_EDITION_REV0 (integer)

GEOIP_CITY_EDITION_REV0 (integer)

GEOIP_ORG_EDITION (integer)

GEOIP_ISP_EDITION (integer)

GEOIP_CITY_EDITION_REV1 (integer)

GEOIP_REGION_EDITION_REV1 (integer)

GEOIP_PROXY_EDITION (integer)

GEOIP_ASNUM_EDITION (integer)

GEOIP_NETSPEED_EDITION (integer)

GEOIP_DOMAIN_EDITION (integer)

The following constants are for net speed:

GEOIP_UNKNOWN_SPEED (integer)

GEOIP_DIALUP_SPEED (integer)

GEOIP_CABLEDSL_SPEED (integer)

GEOIP_CORPORATE_SPEED (integer)

GeoIP Functions

geoip_country_code_by_name

geoip_country_code_by_name -- Get the two letter country code

Description

string geoip_country_code_by_name (string $hostname)

The geoip_country_code_by_name() function will return the two letter country code
corresponding to a hostname or an IP address.

Parameters

hostname

The hostname or IP address whose location is to be looked-up.

Return Values

Returns the two letter ISO country code on success, or FALSE if the address cannot be
found in the database.

Examples

Example #2016 - A geoip_country_code_by_name() example

This will print where the host example.com is located.

<?php

$country = geoip_country_code_by_name('www.example.com');

if ($country) {

 echo 'This host is located in: ' . $country;

}

?>

The above example will output:

This host is located in: US

See Also

• geoip_country_code3_by_name()

• geoip_country_name_by_name()

geoip_country_code3_by_name

geoip_country_code3_by_name -- Get the three letter country code

Description

string geoip_country_code3_by_name (string $hostname)

The geoip_country_code3_by_name() function will return the three letter country code
corresponding to a hostname or an IP address.

Parameters

hostname

The hostname or IP address whose location is to be looked-up.

Return Values

Returns the three letter country code on success, or FALSE if the address cannot be
found in the database.

Examples

Example #2017 - A geoip_country_code3_by_name() example

This will print where the host example.com is located.

<?php

$country = geoip_country_code3_by_name('www.example.com');

if ($country) {

 echo 'This host is located in: ' . $country;

}

?>

The above example will output:

This host is located in: USA

See Also

• geoip_country_code_by_name()

• geoip_country_name_by_name()

geoip_country_name_by_name

geoip_country_name_by_name -- Get the full country name

Description

string geoip_country_name_by_name (string $hostname)

The geoip_country_name_by_name() function will return the full country name
corresponding to a hostname or an IP address.

Parameters

hostname

The hostname or IP address whose location is to be looked-up.

Return Values

Returns the country name on success, or FALSE if the address cannot be found in the
database.

Examples

Example #2018 - A geoip_country_name_by_name() example

This will print where the host example.com is located.

<?php

$country = geoip_country_name_by_name('www.example.com');

if ($country) {

 echo 'This host is located in: ' . $country;

}

?>

The above example will output:

This host is located in: United States

See Also

• geoip_country_code_by_name()

• geoip_country_code3_by_name()

geoip_database_info

geoip_database_info -- Get GeoIP Database information

Description

string geoip_database_info ([int $database])

The geoip_database_info() function returns the corresponding GeoIP Database version as
it is defined inside the binary file.

If this function is called without arguments, it returns the version of the GeoIP Free Country
Edition.

Parameters

database

The database type as an integer. You can use the various constants defined with this
extension (ie: GEOIP_*_EDITION).

Return Values

Returns the corresponding database version, or NULL on error.

Examples

Example #2019 - A geoip_region_by_name() example

This will output the current database version string.

<?php

print geoip_database_info(GEOIP_COUNTRY_EDITION);

?>

The above example will output:

GEO-106FREE 20060801 Build 1 Copyright (c) 2006 MaxMind LLC All Rights
Reserved

geoip_db_avail

geoip_db_avail -- Determine if GeoIP Database is available

Description

bool geoip_db_avail (int $database)

The geoip_db_avail() function returns if the corresponding GeoIP Database is available
and can be opened on disk.

It does not indicate if the file is a proper database, only if it is readable.

Parameters

database

The database type as an integer. You can use the various constants defined with this
extension (ie: GEOIP_*_EDITION).

Return Values

Returns TRUE is database exists, FALSE if not found, or NULL on error.

Examples

Example #2020 - A geoip_db_avail() example

This will output the current database version string.

<?php

if (geoip_db_avail(GEOIP_COUNTRY_EDITION))

 print geoip_database_info(GEOIP_COUNTRY_EDITION);

?>

The above example will output:

GEO-106FREE 20080801 Build 1 Copyright (c) 2006 MaxMind LLC All Rights
Reserved

geoip_db_filename

geoip_db_filename -- Returns the filename of the corresponding GeoIP Database

Description

string geoip_db_filename (int $database)

The geoip_db_filename() function returns the filename of the corresponding GeoIP
Database.

It does not indicate if the file exists or not on disk, only where the library is looking for the
database.

Parameters

database

The database type as an integer. You can use the various constants defined with this
extension (ie: GEOIP_*_EDITION).

Return Values

Returns the filename of the corresponding database, or NULL on error.

Examples

Example #2021 - A geoip_db_filename() example

This will output the filename of the corresponding database.

<?php

print geoip_db_filename(GEOIP_COUNTRY_EDITION);

?>

The above example will output:

/usr/share/GeoIP/GeoIP.dat

geoip_db_get_all_info

geoip_db_get_all_info -- Returns detailed informations about all GeoIP database types

Description

array geoip_db_get_all_info (void)

The geoip_db_get_all_info() function will return detailed informations as a
multi-dimensional array about all the GeoIP database types.

This function is available even if no databases are installed. It will simply list them as
non-available.

The names of the different keys of the returning associative array are as follows:

• "available" -- Boolean, indicate if DB is available (see geoip_db_avail())

• "description" -- The database description

• "filename" -- The database filename on disk (see geoip_db_filename())

Return Values

Returns the associative array.

Examples

Example #2022 - A geoip_db_get_all_info() example

This will print the array containing all the informations.

<?php

$infos = geoip_db_get_all_info();

if (is_array($infos)) {

 var_dump($infos);

}

?>

The above example will output:

array(11) {

 [1]=>

 array(3) {

 ["available"]=>

 bool(true)

 ["description"]=>

 string(21) "GeoIP Country Edition"

 ["filename"]=>

 string(32) "/usr/share/GeoIP/GeoIP.dat"

 }

[...]

 [11]=>

 array(3) {

 ["available"]=>

 bool(false)

 ["description"]=>

 string(25) "GeoIP Domain Name Edition"

 ["filename"]=>

 string(38) "/usr/share/GeoIP/GeoIPDomain.dat"

 }

}

Example #2023 - A geoip_db_get_all_info() example

You can use the various constants as keys to get only parts of the information.

<?php

$infos = geoip_db_get_all_info();

if ($infos[GEOIP_COUNTRY_EDITION]['available']) {

 echo $infos[GEOIP_COUNTRY_EDITION]['description'];

}

?>

The above example will output:

GeoIP Country Edition

geoip_id_by_name

geoip_id_by_name -- Get the Internet connection speed

Description

int geoip_id_by_name (string $hostname)

The geoip_id_by_name() function will return the country and region corresponding to a
hostname or an IP address.

The return value is numeric and can be compared to the following constants:

• GEOIP_UNKNOWN_SPEED

• GEOIP_DIALUP_SPEED

• GEOIP_CABLEDSL_SPEED

• GEOIP_CORPORATE_SPEED

Parameters

hostname

The hostname or IP address whose net speed is to be looked-up.

Return Values

Returns the net speed.

Examples

Example #2024 - A geoip_id_by_name() example

This will output the net speed of the host example.com.

<?php

$netspeed = geoip_id_by_name('www.example.com');

echo 'The connection type is ';

switch ($netspeed) {

 case GEOIP_DIALUP_SPEED:

 echo 'dial-up';

 break;

 case GEOIP_CABLEDSL_SPEED:

 echo 'cable or DSL';

 break;

 case GEOIP_CORPORATE_SPEED:

 echo 'corporate';

 break;

 case GEOIP_UNKNOWN_SPEED:

 default:

 echo 'unknown';

}

?>

The above example will output:

The connection type is corporate

geoip_isp_by_name

geoip_isp_by_name -- Get the Internet Service Provider (ISP) name

Description

string geoip_isp_by_name (string $hostname)

The geoip_isp_by_name() function will return the name of the Internet Service Provider
(ISP) that an IP is assigned to.

This function is currently only available to users who have bought a commercial GeoIP ISP
Edition. A warning will be issued if the proper database cannot be located.

Parameters

hostname

The hostname or IP address.

Return Values

Returns the ISP name on success, or FALSE if the address cannot be found in the
database.

Examples

Example #2025 - A geoip_isp_by_name() example

This will print the ISP name of host example.com.

<?php

$isp = geoip_isp_by_name('www.example.com');

if ($isp) {

 echo 'This host IP is from ISP: ' . $isp;

}

?>

The above example will output:

This host IP is allocated to: ICANN c/o Internet Assigned Numbers Authority

geoip_org_by_name

geoip_org_by_name -- Get the organization name

Description

string geoip_org_by_name (string $hostname)

The geoip_org_by_name() function will return the name of the organization that an IP is
assigned to.

This function is currently only available to users who have bought a commercial GeoIP
Organization, ISP or AS Edition. A warning will be issued if the proper database cannot be
located.

Parameters

hostname

The hostname or IP address.

Return Values

Returns the organization name on success, or FALSE if the address cannot be found in
the database.

Examples

Example #2026 - A geoip_org_by_name() example

This will print to whom the host example.com IP is allocated.

<?php

$org = geoip_country_code_by_name('www.example.com');

if ($org) {

 echo 'This host IP is allocated to: ' . $org;

}

?>

The above example will output:

This host IP is allocated to: ICANN c/o Internet Assigned Numbers Authority

geoip_record_by_name

geoip_record_by_name -- Returns the detailed City information found in the GeoIP
Database

Description

array geoip_record_by_name (string $hostname)

The geoip_record_by_name() function will return the record information corresponding to a
hostname or an IP address.

This function is available for both GeoLite City Edition and commercial GeoIP City Edition.
A warning will be issued if the proper database cannot be located.

The names of the different keys of the returning associative array are as follows:

• "country_code" -- Two letter country code (see geoip_country_code_by_name())

• "region" -- The region code (ex: CA for California)

• "city" -- The city.

• "postal_code" -- The Postal Code, FSA or Zip Code.

• "latitude" -- The Latitude as signed double.

• "longitude" -- The Longitude as signed double.

• "dma_code"

• "area_code" -- The PSTN area code (ex: 212)

Parameters

hostname

The hostname or IP address whose record is to be looked-up.

Return Values

Returns the associative array on success, or FALSE if the address cannot be found in the
database.

Examples

Example #2027 - A geoip_record_by_name() example

This will print the array containing the record of host example.com.

<?php

$record = geoip_record_by_name('www.example.com');

if ($record) {

 print_r($record);

}

?>

The above example will output:

Array

(

 [country_code] => US

 [region] => CA

 [city] => Marina Del Rey

 [postal_code] =>

 [latitude] => 33.9776992798

 [longitude] => -118.435096741

 [dma_code] => 803

 [area_code] => 310

)

geoip_region_by_name

geoip_region_by_name -- Get the country code and region

Description

array geoip_region_by_name (string $hostname)

The geoip_region_by_name() function will return the country and region corresponding to
a hostname or an IP address.

This function is currently only available to users who have bought a commercial GeoIP
Region Edition. A warning will be issued if the proper database cannot be located.

The names of the different keys of the returning associative array are as follows:

• "country_code" -- Two letter country code (see geoip_country_code_by_name())

• "region" -- The region code (ex: CA for California)

Parameters

hostname

The hostname or IP address whose region is to be looked-up.

Return Values

Returns the associative array on success, or FALSE if the address cannot be found in the
database.

Examples

Example #2028 - A geoip_region_by_name() example

This will print the array containing the country code and region of the host
example.com.

<?php

$region = geoip_region_by_name('www.example.com');

if ($region) {

 print_r($region);

}

?>

The above example will output:

Array

(

 [country_code] => US

 [region] => CA

)

JavaScript Object Notation

Introduction

This extension implements the » JavaScript Object Notation (JSON) data-interchange
format. The decoding is handled by a parser based on the JSON_checker by Douglas
Crockford.

http://www.json.org/

Installing/Configuring

Requirements

As of PHP 5.2.0, the JSON extension is bundled and compiled into PHP by default.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/json

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/json
http://pecl.php.net/package/json

Predefined Constants

This extension has no constants defined.

JSON Functions

json_decode

json_decode -- Decodes a JSON string

Description

mixed json_decode (string $json [, bool $assoc])

Takes a JSON encoded string and converts it into a PHP variable.

Parameters

json

The json string being decoded.

assoc

When TRUE, returned object s will be converted into associative array s.

Return Values

Returns an object or if the optional assoc parameter is TRUE, an associative array is
instead returned.

Examples

Example #2029 - json_decode() examples

<?php

$json = '{"a":1,"b":2,"c":3,"d":4,"e":5}';

var_dump(json_decode($json));

var_dump(json_decode($json, true));

?>

The above example will output:

object(stdClass)#1 (5) {

 ["a"] => int(1)

 ["b"] => int(2)

 ["c"] => int(3)

 ["d"] => int(4)

 ["e"] => int(5)

}

array(5) {

 ["a"] => int(1)

 ["b"] => int(2)

 ["c"] => int(3)

 ["d"] => int(4)

 ["e"] => int(5)

}

Example #2030 - Another example

<?php

$json = '{"foo-bar": 12345}';

$obj = json_decode($json);

print $obj->{'foo-bar'}; // 12345

?>

Notes

Caution

This function will return false if the JSON encoded data is deeper than 127 elements.

ChangeLog

Version Description

5.2.3 The nesting limit was increased from 20 to
128

See Also

• json_encode()

json_encode

json_encode -- Returns the JSON representation of a value

Description

string json_encode (mixed $value)

Returns a string containing the JSON representation of value.

Parameters

value

The value being encoded. Can be any type except a resource. This function only
works with UTF-8 encoded data.

Return Values

Returns a JSON encoded string on success.

ChangeLog

Version Description

5.2.1 Added support to JSON encode basic types

Examples

Example #2031 - A json_encode() example

<?php

$arr = array ('a'=>1,'b'=>2,'c'=>3,'d'=>4,'e'=>5);

echo json_encode($arr);

?>

The above example will output:

{"a":1,"b":2,"c":3,"d":4,"e":5}

See Also

• json_decode()

Miscellaneous Functions

Introduction

These functions were placed here because none of the other categories seemed to fit.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Misc. Configuration Options

Name Default Changeable Changelog

ignore_user_abort "0" PHP_INI_ALL

highlight.string "#DD0000" PHP_INI_ALL

highlight.comment "#FF8000" PHP_INI_ALL

highlight.keyword "#007700" PHP_INI_ALL

highlight.bg "#FFFFFF" PHP_INI_ALL Removed in PHP
6.0.0.

highlight.default "#0000BB" PHP_INI_ALL

highlight.html "#000000" PHP_INI_ALL

browscap NULL PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

ignore_user_abort boolean
FALSE by default. If changed to TRUE scripts will not be terminated after a client has
aborted their connection. See also ignore_user_abort().

highlight.bg string highlight.comment string highlight.default string highlight.html
string highlight.keyword string highlight.string string

Colors for Syntax Highlighting mode. Anything that's acceptable in <font
color="??????"> would work.

browscap string
Name (e.g.: browscap.ini) and location of browser capabilities file. See also
get_browser().

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CONNECTION_ABORTED (integer)

CONNECTION_NORMAL (integer)

CONNECTION_TIMEOUT (integer)

__COMPILER_HALT_OFFSET__ (integer)
Added in PHP 5.1.

Misc. Functions

connection_aborted

connection_aborted -- Check whether client disconnected

Description

int connection_aborted (void)

Checks whether the client disconnected.

Return Values

Returns 1 if client disconnected, 0 otherwise.

See Also

• connection_status()
• ignore_user_abort()
• Connection Handling for a complete description of connection handling in PHP.

connection_status

connection_status -- Returns connection status bitfield

Description

int connection_status (void)

Gets the connection status bitfield.

Return Values

Returns the connection status bitfield, which can be used against the CONNECTION_XXX
constants to determine the connection status.

See Also

• connection_aborted()
• ignore_user_abort()
• Connection Handling for a complete description of connection handling in PHP.

connection_timeout

connection_timeout -- Check if the script timed out

Description

int connection_timeout (void)

Determines whether the script timed out.

Return Values

Returns 1 if the script timed out, 0 otherwise.

Notes

Warning

Deprecated

This function is deprecated, and doesn't even exist anymore as of 4.0.5.

See Also

• connection_status()
• Connection Handling for a complete description of connection handling in PHP.

constant

constant -- Returns the value of a constant

Description

mixed constant (string $name)

Return the value of the constant indicated by name.

constant() is useful if you need to retrieve the value of a constant, but do not know its
name. I.e. it is stored in a variable or returned by a function.

This function works also with class constants.

Parameters

name

The constant name.

Return Values

Returns the value of the constant, or NULL if the constant is not defined.

Examples

Example #2032 - constant() example

<?php

define("MAXSIZE", 100);

echo MAXSIZE;

echo constant("MAXSIZE"); // same thing as the previous line

interface bar {

 const test = 'foobar!';

}

class foo {

 const test = 'foobar!';

}

$const = 'test';

var_dump(constant('bar::'. $const)); // string(7) "foobar!"

var_dump(constant('foo::'. $const)); // string(7) "foobar!"

?>

See Also

• define()
• defined()
• The section on Constants

define

define -- Defines a named constant

Description

bool define (string $name, mixed $value [, bool $case_insensitive])

Defines a named constant at runtime.

Parameters

name

The name of the constant.

value

The value of the constant; only scalar and null values are allowed. Scalar values are
integer, float, string or boolean values.

case_insensitive

If set to TRUE, the constant will be defined case-insensitive. The default behaviour is
case-sensitive; i.e. CONSTANT and Constant represent different values.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2033 - Defining Constants

<?php

define("CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

echo Constant; // outputs "Constant" and issues a notice.

define("GREETING", "Hello you.", true);

echo GREETING; // outputs "Hello you."

echo Greeting; // outputs "Hello you."

?>

See Also

• defined()
• constant()
• The section on Constants

defined

defined -- Checks whether a given named constant exists

Description

bool defined (string $name)

Checks whether the given constant exists and is defined.

Note

If you want to see if a variable exists, use isset() as defined() only applies to constants.
If you want to see if a function exists, use function_exists().

Parameters

name

The constant name.

Return Values

Returns TRUE if the named constant given by name has been defined, FALSE otherwise.

Examples

Example #2034 - Checking Constants

<?php

/* Note the use of quotes, this is important. This example is checking

* if the string 'CONSTANT' is the name of a constant named CONSTANT */

if (defined('CONSTANT')) {

 echo CONSTANT;

}

?>

See Also

• define()

• constant()
• get_defined_constants()
• function_exists()
• The section on Constants

die

die -- Equivalent to exit()

Description

This language construct is equivalent to exit().

eval

eval -- Evaluate a string as PHP code

Description

mixed eval (string $code_str)

Evaluates the string given in code_str as PHP code. Among other things, this can be
useful for storing code in a database text field for later execution.

There are some factors to keep in mind when using eval(). Remember that the string
passed must be valid PHP code, including things like terminating statements with a
semicolon so the parser doesn't die on the line after the eval(), and properly escaping
things in code_str. To mix HTML output and PHP code you can use a closing PHP tag to
leave PHP mode.

Also remember that variables given values under eval() will retain these values in the main
script afterwards.

Parameters

code_str

The code string to be evaluated. code_str does not have to contain PHP Opening
tags. A return statement will immediately terminate the evaluation of the string .

Return Values

eval() returns NULL unless return is called in the evaluated code, in which case the value
passed to return is returned. If there is a parse error in the evaluated code, eval() returns
FALSE and execution of the following code continues normally. It is not possible to catch a
parse error in eval() using set_error_handler().

Examples

Example #2035 - eval() example - simple text merge

<?php

$string = 'cup';

$name = 'coffee';

$str = 'This is a $string with my $name in it.';

echo $str. "\n";

eval("\$str = \"$str\";");

echo $str. "\n";

?>

The above example will output:

This is a $string with my $name in it.

This is a cup with my coffee in it.

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Tip

As with anything that outputs its result directly to the browser, the output-control
functions can be used to capture the output of this function, and save it in a string (for
example).

Note

In case of a fatal error in the evaluated code, the whole script exits.

See Also

• call_user_func()

exit

exit -- Output a message and terminate the current script

Description

void exit ([string $status])

void exit (int $status)

Terminates execution of the script.

Parameters

status

If status is a string, this function prints the status just before exiting. If status is an
integer, that value will also be used as the exit status. Exit statuses should be in the
range 0 to 254, the exit status 255 is reserved by PHP and shall not be used. The
status 0 is used to terminate the program successfully.

Note

PHP >= 4.2.0 does NOT print the status if it is an integer.

Return Values

No value is returned.

Examples

Example #2036 - exit() example

<?php

$filename = '/path/to/data-file';

$file = fopen($filename, 'r')

 or exit("unable to open file ($filename)");

?>

Example #2037 - exit() status example

<?php

//exit program normally

exit;

exit();

exit(0);

//exit with an error code

exit(1);

exit(0376); //octal

?>

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Note

This language construct is equivalent to die().

See Also

• register_shutdown_function()

get_browser

get_browser -- Tells what the user's browser is capable of

Description

mixed get_browser ([string $user_agent [, bool $return_array]])

Attempts to determine the capabilities of the user's browser, by looking up the browser's
information in the browscap.ini file.

Parameters

user_agent

The User Agent to be analyzed. By default, the value of HTTP User-Agent header is
used; however, you can alter this (i.e., look up another browser's info) by passing this
parameter. You can bypass this parameter with a NULL value.

return_array

If set to TRUE, this function will return an array instead of an object.

Return Values

The information is returned in an object or an array which will contain various data
elements representing, for instance, the browser's major and minor version numbers and
ID string; TRUE / FALSE values for features such as frames, JavaScript, and cookies; and
so forth.

The cookies value simply means that the browser itself is capable of accepting cookies
and does not mean the user has enabled the browser to accept cookies or not. The only
way to test if cookies are accepted is to set one with setcookie(), reload, and check for the
value.

ChangeLog

Version Description

4.3.2 The optional parameter return_array was
added.

Examples

Example #2038 - Listing all information about the users browser

<?php

echo $_SERVER['HTTP_USER_AGENT'] . "\n\n";

$browser = get_browser(null, true);

print_r($browser);

?>

The above example will output something similar to:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7) Gecko/20040803
Firefox/0.9.3

Array

(

 [browser_name_regex] => ^mozilla/5\.0 (windows; .; windows nt 5\.1;
.*rv:.*) gecko/.* firefox/0\.9.*$

 [browser_name_pattern] => Mozilla/5.0 (Windows; ?; Windows NT 5.1; *rv:*)
Gecko/* Firefox/0.9*

 [parent] => Firefox 0.9

 [platform] => WinXP

 [browser] => Firefox

 [version] => 0.9

 [majorver] => 0

 [minorver] => 9

 [css] => 2

 [frames] => 1

 [iframes] => 1

 [tables] => 1

 [cookies] => 1

 [backgroundsounds] =>

 [vbscript] =>

 [javascript] => 1

 [javaapplets] => 1

 [activexcontrols] =>

 [cdf] =>

 [aol] =>

 [beta] => 1

 [win16] =>

 [crawler] =>

 [stripper] =>

 [wap] =>

 [netclr] =>

)

Notes

Note

In order for this to work, your browscap configuration setting in php.ini must point to the
correct location of the browscap.ini file on your system.

browscap.ini is not bundled with PHP, but you may find an up-to-date
» php_browscap.ini file here.

While browscap.ini contains information on many browsers, it relies on user updates to
keep the database current. The format of the file is fairly self-explanatory.

http://browsers.garykeith.com/downloads.asp
http://browsers.garykeith.com/downloads.asp

__halt_compiler

__halt_compiler -- Halts the compiler execution

Description

void __halt_compiler (void)

Halts the execution of the compiler. This can be useful to embed data in PHP scripts, like
the installation files.

Byte position of the data start can be determined by the __COMPILER_HALT_OFFSET__
constant which is defined only if there is a __halt_compiler() presented in the file.

Return Values

No value is returned.

Examples

Example #2039 - A __halt_compiler() example

<?php

// open this file

$fp = fopen(__FILE__, 'r');

// seek file pointer to data

fseek($fp, __COMPILER_HALT_OFFSET__);

// and output it

var_dump(stream_get_contents($fp));

// the end of the script execution

__halt_compiler();the installation data (eg. tar, gz, PHP, etc.)

Notes

Note

__halt_compiler() can only be used from the outermost scope.

highlight_file

highlight_file -- Syntax highlighting of a file

Description

mixed highlight_file (string $filename [, bool $return])

Prints out or returns a syntax highlighted version of the code contained in filename using
the colors defined in the built-in syntax highlighter for PHP.

Many servers are configured to automatically highlight files with a phps extension. For
example, example.phps when viewed will show the syntax highlighted source of the file.
To enable this, add this line to the httpd.conf:

AddType application/x-httpd-php-source .phps

Parameters

filename

Path to the PHP file to be highlighted.

return

Set this parameter to TRUE to make this function return the highlighted code.

Return Values

If return is set to TRUE, returns the highlighted code as a string instead of printing it out.
Otherwise, it will return TRUE on success, FALSE on failure.

ChangeLog

Version Description

4.2.1 This function is now also affected by
safe_mode and open_basedir.

4.2.0 The return parameter was added.

Notes

Caution

Care should be taken when using the highlight_file() function to make sure that you do
not inadvertently reveal sensitive information such as passwords or any other type of
information that might create a potential security risk.

Note

This function uses internal output buffering with this parameter so it can not be used
inside an ob_start() callback function.

See Also

• highlight_string()

highlight_string

highlight_string -- Syntax highlighting of a string

Description

mixed highlight_string (string $str [, bool $return])

Outputs or returns a syntax highlighted version of the given PHP code using the colors
defined in the built-in syntax highlighter for PHP.

Parameters

str

The PHP code to be highligthed. This should include the opening tag.

return

Set this parameter to TRUE to make this function return the highlighted code.

Return Values

If return is set to TRUE, returns the highlighted code as a string instead of printing it out.
Otherwise, it will return TRUE on success, FALSE on failure.

ChangeLog

Version Description

4.2.0 The return parameter was added.

Examples

Example #2040 - highlight_string() example

<?php

highlight_string('<?php phpinfo(); ?>');

?>

The above example will output (in PHP 4):

<code>

<?php phpinfo();
?>

</code>

The above example will output (in PHP 5):

<code>

<?php phpinfo<span style="color:
#007700">(); ?>

</code>

Notes

Note

This function uses internal output buffering with this parameter so it can not be used
inside an ob_start() callback function.

See Also

• highlight_file()

ignore_user_abort

ignore_user_abort -- Set whether a client disconnect should abort script execution

Description

int ignore_user_abort ([bool $setting])

Sets whether a client disconnect should cause a script to be aborted.

Parameters

setting

If not set, the function will only return the current setting.

Return Values

Returns the previous setting, as a boolean.

Notes

PHP will not detect that the user has aborted the connection until an attempt is made to
send information to the client. Simply using an echo statement does not guarantee that
information is sent, see flush().

See Also

• connection_aborted()
• connection_status()
• Connection Handling for a complete description of connection handling in PHP.

pack

pack -- Pack data into binary string

Description

string pack (string $format [, mixed $args [, mixed $...]])

Pack given arguments into binary string according to format.

The idea for this function was taken from Perl and all formatting codes work the same as in
Perl However, there are some formatting codes that are missing such as Perl's "u" format
code.

Note that the distinction between signed and unsigned values only affects the function
unpack(), where as function pack() gives the same result for signed and unsigned format
codes.

Also note that PHP internally stores integer values as signed values of a
machine-dependent size. If you give it an unsigned integer value too large to be stored
that way it is converted to a float which often yields an undesired result.

Parameters

format

The format string consists of format codes followed by an optional repeater argument.
The repeater argument can be either an integer value or * for repeating to the end of
the input data. For a, A, h, H the repeat count specifies how many characters of one
data argument are taken, for @ it is the absolute position where to put the next data,
for everything else the repeat count specifies how many data arguments are
consumed and packed into the resulting binary string. Currently implemented formats
are:

pack() format characters

Code Description

a NUL-padded string

A SPACE-padded string

h Hex string, low nibble first

H Hex string, high nibble first

c signed char

C unsigned char

s signed short (always 16 bit, machine byte
order)

S unsigned short (always 16 bit, machine byte
order)

n unsigned short (always 16 bit, big endian
byte order)

v unsigned short (always 16 bit, little endian
byte order)

i signed integer (machine dependent size and
byte order)

I unsigned integer (machine dependent size
and byte order)

l signed long (always 32 bit, machine byte
order)

L unsigned long (always 32 bit, machine byte
order)

N unsigned long (always 32 bit, big endian
byte order)

V unsigned long (always 32 bit, little endian
byte order)

f float (machine dependent size and
representation)

d double (machine dependent size and
representation)

x NUL byte

X Back up one byte

@ NUL-fill to absolute position

args

Return Values

Returns a binary string containing data.

Examples

Example #2041 - pack() example

<?php

$binarydata = pack("nvc*", 0x1234, 0x5678, 65, 66);

?>

The resulting binary string will be 6 bytes long and contain the byte sequence 0x12, 0x34,
0x78, 0x56, 0x41, 0x42.

See Also

• unpack()

php_check_syntax

php_check_syntax -- Check the PHP syntax of (and execute) the specified file

Description

bool php_check_syntax (string $filename [, string &$error_message])

Performs a syntax (lint) check on the specified filename testing for scripting errors.

This is similar to using php -l from the commandline except that this function will execute (but
not output) the checked filename.

For example, if a function is defined in filename, this defined function will be available to the
file that executed php_check_syntax(), but output from filename will be suppressed.

Note

For technical reasons, this function is deprecated and removed from PHP. Instead, use
php -l somefile.php from the commandline.

Parameters

filename

The name of the file being checked.

error_message

If the error_message parameter is used, it will contain the error message generated by the
syntax check. error_message is passed by reference.

Return Values

Returns TRUE if the lint check passed, and FALSE if the link check failed or if filename
cannot be opened.

ChangeLog

Version Description

5.0.5 This function was removed from PHP.

5.0.3 Calling exit() after php_check_syntax()

resulted in a Segfault.

5.0.1 error_message is passed by reference.

Examples

php -l somefile.php

The above example will output something similar to:

PHP Parse error: unexpected T_STRING in /tmp/somefile.php on line 81

See Also

• include()
• is_readable()

php_strip_whitespace

php_strip_whitespace -- Return source with stripped comments and whitespace

Description

string php_strip_whitespace (string $filename)

Returns the PHP source code in filename with PHP comments and whitespace removed.
This may be useful for determining the amount of actual code in your scripts compared
with the amount of comments. This is similar to using php -w from the commandline.

Parameters

filename

Path to the PHP file.

Return Values

The stripped source code will be returned on success, or an empty string on failure.

Note

This function works as described as of PHP 5.0.1. Before this it would only return an
empty string. For more information on this bug and its prior behavior, see bug report
» #29606.

Examples

Example #2042 - php_strip_whitespace() example

<?php

// PHP comment here

/*

* Another PHP comment

*/

echo php_strip_whitespace(__FILE__);

// Newlines are considered whitespace, and are removed too:

do_nothing();

?>

The above example will output:

http://bugs.php.net/29606
http://bugs.php.net/29606

<?php

echo php_strip_whitespace(__FILE__); do_nothing(); ?>

Notice the PHP comments are gone, as are the whitespace and newline after the first
echo statement.

show_source

show_source -- Alias of highlight_file()

Description

This function is an alias of: highlight_file().

sleep

sleep -- Delay execution

Description

int sleep (int $seconds)

Delays the program execution for the given number of seconds.

Parameters

seconds

Halt time in seconds.

Return Values

Returns zero on success, or FALSE on errors.

Errors/Exceptions

If the specified number of seconds is negative, this function will generate a E_WARNING.

Examples

Example #2043 - sleep() example

<?php

// current time

echo date('h:i:s') . "\n";

// sleep for 10 seconds

sleep(10);

// wake up !

echo date('h:i:s') . "\n";

?>

This example will output (after 10 seconds)

05:31:23

05:31:33

See Also

usleep(), set_time_limit()

sys_getloadavg

sys_getloadavg -- Gets system load average

Description

array sys_getloadavg (void)

Returns three samples representing the average system load (the number of processes in
the system run queue) over the last 1, 5 and 15 minutes, respectively.

Return Values

Returns an array with three samples (last 1, 5 and 15 minutes).

Examples

Example #2044 - A sys_getloadavg() example

<?php

$load = sys_getloadavg();

if ($load[0] > 80) {

 header('HTTP/1.1 503 Too busy, try again later');

 die('Server too busy. Please try again later.');

}

?>

Notes

Note

This function is not implemented on Windows platforms.

time_nanosleep

time_nanosleep -- Delay for a number of seconds and nanoseconds

Description

mixed time_nanosleep (int $seconds, int $nanoseconds)

Delays program execution for the given number of seconds and nanoseconds.

Parameters

seconds

Must be a positive integer.

nanoseconds

Must be a positive integer less than 1 billion.

Return Values

Returns TRUE on success or FALSE on failure.

If the delay was interrupted by a signal, an associative array will be returned with the
components:

• seconds - number of seconds remaining in the delay

• nanoseconds - number of nanoseconds remaining in the delay

Examples

Example #2045 - time_nanosleep() example

<?php

// Careful! This won't work as expected if an array is returned

if (time_nanosleep(0, 500000000)) {

 echo "Slept for half a second.\n";

}

// This is better:

if (time_nanosleep(0, 500000000) === true) {

 echo "Slept for half a second.\n";

}

// And this is the best:

$nano = time_nanosleep(2, 100000);

if ($nano === true) {

 echo "Slept for 2 seconds, 100 milliseconds.\n";

} elseif ($nano === false) {

 echo "Sleeping failed.\n";

} elseif (is_array($nano)) {

 $seconds = $nano['seconds'];

 $nanoseconds = $nano['nanoseconds'];

 echo "Interrupted by a signal.\n";

 echo "Time remaining: $seconds seconds, $nanoseconds nanoseconds.";

}

?>

Notes

Note

This function is not implemented on Windows platforms.

See Also

sleep(), usleep(), set_time_limit()

time_sleep_until

time_sleep_until -- Make the script sleep until the specified time

Description

bool time_sleep_until (float $timestamp)

Makes the script sleep until the specified timestamp.

Parameters

timestamp

The timestamp when the script should wake.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

If the specified timestamp is in the past, this function will generate a E_WARNING.

Examples

Example #2046 - A time_sleep_until() example

<?php

//returns false and generates a warning

var_dump(time_sleep_until(time()-1));

// may only work on faster computers, will sleep up to 0.2 seconds

var_dump(time_sleep_until(time()+0.2));

?>

Notes

Note

All signals will be delivered after the script wakes up.

Note

This function is not implemented on Windows platforms.

See Also

• sleep()
• usleep()
• time_nanosleep()

uniqid

uniqid -- Generate a unique ID

Description

string uniqid ([string $prefix [, bool $more_entropy]])

Gets a prefixed unique identifier based on the current time in microseconds.

Parameters

prefix

Can be useful, for instance, if you generate identifiers simultaneously on several hosts
that might happen to generate the identifier at the same microsecond. With an empty
prefix, the returned string will be 13 characters long. If more_entropy is TRUE, it will
be 23 characters.

more_entropy

If set to TRUE, uniqid() will add additional entropy (using the combined linear
congruential generator) at the end of the return value, which should make the results
more unique.

Return Values

Returns the unique identifier, as a string.

Examples

If you need a unique identifier or token and you intend to give out that token to the user via
the network (i.e. session cookies), it is recommended that you use something along these
lines:

This will create a 32 character identifier (a 128 bit hex number) that is extremely difficult to
predict.

Example #2047 - uniqid() Example

<?php

// no prefix

// works only in PHP 5 and later versions

$token = md5(uniqid());

// better, difficult to guess

$better_token = md5(uniqid(rand(), true));

?>

ChangeLog

Version Description

5.0.0 The prefix parameter was made optional.

4.3.1 The limit of 114 characters long for prefix
was raised.

unpack

unpack -- Unpack data from binary string

Description

array unpack (string $format, string $data)

Unpacks from a binary string into an array according to the given format.

unpack() works slightly different from Perl as the unpacked data is stored in an associative
array. To accomplish this you have to name the different format codes and separate them
by a slash /.

Parameters

format

See pack() for an explanation of the format codes.

data

The packed data.

Return Values

Returns an associative array containing unpacked elements of binary string.

Examples

Example #2048 - unpack() example

<?php

$array = unpack("c2chars/nint", $binarydata);

?>

The resulting array will contain the entries "chars1", "chars2" and "int".

Notes

Caution

Note that PHP internally stores integral values as signed. If you unpack a large
unsigned long and it is of the same size as PHP internally stored values the result will

be a negative number even though unsigned unpacking was specified.

See Also

• pack()

usleep

usleep -- Delay execution in microseconds

Description

void usleep (int $micro_seconds)

Delays program execution for the given number of micro seconds.

Parameters

micro_seconds

Halt time in micro seconds. A micro second is one millionth of a second.

Return Values

No value is returned.

ChangeLog

Version Description

5.0.0 This function now works on Windows
systems.

Examples

Example #2049 - usleep() example

<?php

// Current time

echo date('h:i:s') . "\n";

// wait for 2 seconds

usleep(2000000);

// back!

echo date('h:i:s') . "\n";

?>

The above example will output:

11:13:28

11:13:30

See Also

• sleep()
• set_time_limit()

Parsekit

Introduction

These functions allow runtime analysis of opcodes compiled from PHP scripts.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/parsekit.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/parsekit
http://pecl.php.net/package/parsekit
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PARSEKIT_QUIET (int)
Return full detail, but without unnecessary NULL entries.

PARSEKIT_SIMPLE (int)
Return shorthand opcode notation.

PARSEKIT_EXTENDED_VALUE (int)
Opnode Flag

PARSEKIT_RESULT_CONST (int)
Opnode Flag

PARSEKIT_RESULT_EA_TYPE (int)
Opnode Flag

PARSEKIT_RESULT_JMP_ADDR (int)
Opnode Flag

PARSEKIT_RESULT_OPARRAY (int)
Opnode Flag

PARSEKIT_RESULT_OPLINE (int)
Opnode Flag

PARSEKIT_RESULT_VAR (int)
Opnode Flag

PARSEKIT_USAGE_UNKNOWN (int)
Opnode Flag

PARSEKIT_ZEND_INTERNAL_CLASS (int)
Class Type

PARSEKIT_ZEND_USER_CLASS (int)
Class Type

PARSEKIT_ZEND_EVAL_CODE (int)
Function Type

PARSEKIT_ZEND_INTERNAL_FUNCTION (int)
Function Type

PARSEKIT_ZEND_OVERLOADED_FUNCTION (int)
Function Type

PARSEKIT_ZEND_OVERLOADED_FUNCTION_TEMPORARY (int) PHP >= 5.0.0
Function Type

PARSEKIT_ZEND_USER_FUNCTION (int)
Function Type

PARSEKIT_IS_CONST (int)
Node Type

PARSEKIT_IS_TMP_VAR (int)
Node Type

PARSEKIT_IS_UNUSED (int)
Node Type

PARSEKIT_IS_VAR (int)
Node Type

PARSEKIT_ZEND_ADD (int)
Opcode

PARSEKIT_ZEND_ADD_ARRAY_ELEMENT (int)
Opcode

PARSEKIT_ZEND_ADD_CHAR (int)
Opcode

PARSEKIT_ZEND_ADD_INTERFACE (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ADD_STRING (int)
Opcode

PARSEKIT_ZEND_ADD_VAR (int)
Opcode

PARSEKIT_ZEND_ASSIGN (int)
Opcode

PARSEKIT_ZEND_ASSIGN_ADD (int)
Opcode

PARSEKIT_ZEND_ASSIGN_BW_AND (int)
Opcode

PARSEKIT_ZEND_ASSIGN_BW_OR (int)
Opcode

PARSEKIT_ZEND_ASSIGN_BW_XOR (int)
Opcode

PARSEKIT_ZEND_ASSIGN_CONCAT (int)

Opcode

PARSEKIT_ZEND_ASSIGN_DIM (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ASSIGN_DIV (int)
Opcode

PARSEKIT_ZEND_ASSIGN_MOD (int)
Opcode

PARSEKIT_ZEND_ASSIGN_MUL (int)
Opcode

PARSEKIT_ZEND_ASSIGN_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ASSIGN_REF (int)
Opcode

PARSEKIT_ZEND_ASSIGN_SL (int)
Opcode

PARSEKIT_ZEND_ASSIGN_SR (int)
Opcode

PARSEKIT_ZEND_ASSIGN_SUB (int)
Opcode

PARSEKIT_ZEND_BEGIN_SILENCE (int)
Opcode

PARSEKIT_ZEND_BOOL (int)
Opcode

PARSEKIT_ZEND_BOOL_NOT (int)
Opcode

PARSEKIT_ZEND_BOOL_XOR (int)
Opcode

PARSEKIT_ZEND_BRK (int)
Opcode

PARSEKIT_ZEND_BW_AND (int)
Opcode

PARSEKIT_ZEND_BW_NOT (int)
Opcode

PARSEKIT_ZEND_BW_OR (int)
Opcode

PARSEKIT_ZEND_BW_XOR (int)
Opcode

PARSEKIT_ZEND_CASE (int)
Opcode

PARSEKIT_ZEND_CAST (int)
Opcode

PARSEKIT_ZEND_CATCH (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_CLONE (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_CONCAT (int)
Opcode

PARSEKIT_ZEND_CONT (int)
Opcode

PARSEKIT_ZEND_DECLARE_CLASS (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_DECLARE_FUNCTION (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_DECLARE_INHERITED_CLASS (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_DIV (int)
Opcode

PARSEKIT_ZEND_DO_FCALL (int)
Opcode

PARSEKIT_ZEND_DO_FCALL_BY_NAME (int)
Opcode

PARSEKIT_ZEND_ECHO (int)
Opcode

PARSEKIT_ZEND_END_SILENCE (int)
Opcode

PARSEKIT_ZEND_EXIT (int)
Opcode

PARSEKIT_ZEND_EXT_FCALL_BEGIN (int)
Opcode

PARSEKIT_ZEND_EXT_FCALL_END (int)

Opcode

PARSEKIT_ZEND_EXT_NOP (int)
Opcode

PARSEKIT_ZEND_EXT_STMT (int)
Opcode

PARSEKIT_ZEND_FETCH_CLASS (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_FETCH_CONSTANT (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_FUNC_ARG (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_IS (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_R (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_RW (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_TMP_VAR (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_UNSET (int)
Opcode

PARSEKIT_ZEND_FETCH_DIM_W (int)
Opcode

PARSEKIT_ZEND_FETCH_FUNC_ARG (int)
Opcode

PARSEKIT_ZEND_FETCH_IS (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_FUNC_ARG (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_IS (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_R (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_RW (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_UNSET (int)
Opcode

PARSEKIT_ZEND_FETCH_OBJ_W (int)
Opcode

PARSEKIT_ZEND_FETCH_R (int)
Opcode

PARSEKIT_ZEND_FETCH_RW (int)
Opcode

PARSEKIT_ZEND_FETCH_UNSET (int)
Opcode

PARSEKIT_ZEND_FETCH_W (int)
Opcode

PARSEKIT_ZEND_FE_FETCH (int)
Opcode

PARSEKIT_ZEND_FE_RESET (int)
Opcode

PARSEKIT_ZEND_FREE (int)
Opcode

PARSEKIT_ZEND_HANDLE_EXCEPTION (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_IMPORT_CLASS (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_IMPORT_CONST (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_IMPORT_FUNCTION (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_INCLUDE_OR_EVAL (int)
Opcode

PARSEKIT_ZEND_INIT_ARRAY (int)
Opcode

PARSEKIT_ZEND_INIT_CTOR_CALL (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_INIT_FCALL_BY_NAME (int)
Opcode

PARSEKIT_ZEND_INIT_METHOD_CALL (int) PHP >= 5.0.0

Opcode

PARSEKIT_ZEND_INIT_STATIC_METHOD_CALL (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_INIT_STRING (int)
Opcode

PARSEKIT_ZEND_INSTANCEOF (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ISSET_ISEMPTY (int) PHP < 5.0.0
Opcode

PARSEKIT_ZEND_ISSET_ISEMPTY_DIM_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ISSET_ISEMPTY_PROP_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_ISSET_ISEMPTY_VAR (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_IS_EQUAL (int)
Opcode

PARSEKIT_ZEND_IS_IDENTICAL (int)
Opcode

PARSEKIT_ZEND_IS_NOT_EQUAL (int)
Opcode

PARSEKIT_ZEND_IS_NOT_IDENTICAL (int)
Opcode

PARSEKIT_ZEND_IS_SMALLER (int)
Opcode

PARSEKIT_ZEND_IS_SMALLER_OR_EQUAL (int)
Opcode

PARSEKIT_ZEND_JMP (int)
Opcode

PARSEKIT_ZEND_JMPNZ (int)
Opcode

PARSEKIT_ZEND_JMPNZ_EX (int)
Opcode

PARSEKIT_ZEND_JMPZ (int)
Opcode

PARSEKIT_ZEND_JMPZNZ (int)
Opcode

PARSEKIT_ZEND_JMPZ_EX (int)
Opcode

PARSEKIT_ZEND_JMP_NO_CTOR (int)
Opcode

PARSEKIT_ZEND_MOD (int)
Opcode

PARSEKIT_ZEND_MUL (int)
Opcode

PARSEKIT_ZEND_NEW (int)
Opcode

PARSEKIT_ZEND_NOP (int)
Opcode

PARSEKIT_ZEND_OP_DATA (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_POST_DEC (int)
Opcode

PARSEKIT_ZEND_POST_DEC_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_POST_INC (int)
Opcode

PARSEKIT_ZEND_POST_INC_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_PRE_DEC (int)
Opcode

PARSEKIT_ZEND_PRE_DEC_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_PRE_INC (int)
Opcode

PARSEKIT_ZEND_PRE_INC_OBJ (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_PRINT (int)
Opcode

PARSEKIT_ZEND_QM_ASSIGN (int)

Opcode

PARSEKIT_ZEND_RAISE_ABSTRACT_ERROR (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_RECV (int)
Opcode

PARSEKIT_ZEND_RECV_INIT (int)
Opcode

PARSEKIT_ZEND_RETURN (int)
Opcode

PARSEKIT_ZEND_SEND_REF (int)
Opcode

PARSEKIT_ZEND_SEND_VAL (int)
Opcode

PARSEKIT_ZEND_SEND_VAR (int)
Opcode

PARSEKIT_ZEND_SEND_VAR_NO_REF (int)
Opcode

PARSEKIT_ZEND_SL (int)
Opcode

PARSEKIT_ZEND_SR (int)
Opcode

PARSEKIT_ZEND_SUB (int)
Opcode

PARSEKIT_ZEND_SWITCH_FREE (int)
Opcode

PARSEKIT_ZEND_THROW (int) PHP >= 5.0.0
Opcode

PARSEKIT_ZEND_TICKS (int)
Opcode

PARSEKIT_ZEND_UNSET_DIM_OBJ (int)
Opcode

PARSEKIT_ZEND_UNSET_VAR (int)
Opcode

PARSEKIT_ZEND_VERIFY_ABSTRACT_CLASS (int) PHP >= 5.0.0
Opcode

Parsekit Functions

parsekit_compile_file

parsekit_compile_file -- Compile a string of PHP code and return the resulting op array

Description

array parsekit_compile_file (string $filename [, array &$errors [, int $options]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

filename

A string containing the name of the file to compile. Similar to the argument to include()
.

errors

A 2D hash of errors (including fatal errors) encountered during compilation. Returned
by reference.

options

One of either PARSEKIT_QUIET or PARSEKIT_SIMPLE. To produce varying
degrees of verbosity in the returned output.

Return Values

Returns a complex multi-layer array structure as detailed below.

Examples

Example #2050 - parsekit_compile_file() example

<?php

var_dump(parsekit_compile_file('hello_world.php', $errors,
PARSEKIT_SIMPLE));

?>

The above example will output:

array(5) {

 [0]=>

 string(37) "ZEND_ECHO UNUSED 'Hello World' UNUSED"

 [1]=>

 string(30) "ZEND_RETURN UNUSED NULL UNUSED"

 [2]=>

 string(42) "ZEND_HANDLE_EXCEPTION UNUSED UNUSED UNUSED"

 ["function_table"]=>

 NULL

 ["class_table"]=>

 NULL

}

See Also

• parsekit_compile_string()

parsekit_compile_string

parsekit_compile_string -- Compile a string of PHP code and return the resulting op array

Description

array parsekit_compile_string (string $phpcode [, array &$errors [, int $options]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

phpcode

A string containing phpcode. Similar to the argument to eval().

errors

A 2D hash of errors (including fatal errors) encountered during compilation. Returned
by reference.

options

One of either PARSEKIT_QUIET or PARSEKIT_SIMPLE. To produce varying
degrees of verbosity in the returned output.

Return Values

Returns a complex multi-layer array structure as detailed below.

Examples

Example #2051 - parsekit_compile_string() example

<?php

 $ops = parsekit_compile_string('

echo "Foo\n";

', $errors, PARSEKIT_QUIET);

 var_dump($ops);

?>

The above example will output:

array(20) {

 ["type"]=>

 int(4)

 ["type_name"]=>

 string(14) "ZEND_EVAL_CODE"

 ["fn_flags"]=>

 int(0)

 ["num_args"]=>

 int(0)

 ["required_num_args"]=>

 int(0)

 ["pass_rest_by_reference"]=>

 bool(false)

 ["uses_this"]=>

 bool(false)

 ["line_start"]=>

 int(0)

 ["line_end"]=>

 int(0)

 ["return_reference"]=>

 bool(false)

 ["refcount"]=>

 int(1)

 ["last"]=>

 int(3)

 ["size"]=>

 int(3)

 ["T"]=>

 int(0)

 ["last_brk_cont"]=>

 int(0)

 ["current_brk_cont"]=>

 int(-1)

 ["backpatch_count"]=>

 int(0)

 ["done_pass_two"]=>

 bool(true)

 ["filename"]=>

 string(17) "Parsekit Compiler"

 ["opcodes"]=>

 array(3) {

 [8594800]=>

 array(5) {

 ["opcode"]=>

 int(40)

 ["opcode_name"]=>

 string(9) "ZEND_ECHO"

 ["flags"]=>

 int(768)

 ["op1"]=>

 array(3) {

 ["type"]=>

 int(1)

 ["type_name"]=>

 string(8) "IS_CONST"

 ["constant"]=>

 &string(4) "Foo

"

 }

 ["lineno"]=>

 int(2)

 }

 ["859484C"]=>

 array(6) {

 ["opcode"]=>

 int(62)

 ["opcode_name"]=>

 string(11) "ZEND_RETURN"

 ["flags"]=>

 int(16777984)

 ["op1"]=>

 array(3) {

 ["type"]=>

 int(1)

 ["type_name"]=>

 string(8) "IS_CONST"

 ["constant"]=>

 &NULL

 }

 ["extended_value"]=>

 int(0)

 ["lineno"]=>

 int(3)

 }

 [8594898]=>

 array(4) {

 ["opcode"]=>

 int(149)

 ["opcode_name"]=>

 string(21) "ZEND_HANDLE_EXCEPTION"

 ["flags"]=>

 int(0)

 ["lineno"]=>

 int(3)

 }

 }

}

See Also

• parsekit_compile_file()

parsekit_func_arginfo

parsekit_func_arginfo -- Return information regarding function argument(s)

Description

array parsekit_func_arginfo (mixed $function)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

function

A string describing a function, or an array describing a class/method.

Return Values

Returns an array containing argument information.

Examples

Example #2052 - parsekit_func_arginfo() example

<?php

function foo($bar, stdClass $baz, &$bomb, $bling = false) {

}

var_dump(parsekit_func_arginfo('foo'));

?>

The above example will output:

array(4) {

 [0]=>

 array(3) {

 ["name"]=>

 string(3) "bar"

 ["allow_null"]=>

 bool(true)

 ["pass_by_reference"]=>

 bool(false)

 }

 [1]=>

 array(4) {

 ["name"]=>

 string(3) "baz"

 ["class_name"]=>

 string(8) "stdClass"

 ["allow_null"]=>

 bool(false)

 ["pass_by_reference"]=>

 bool(false)

 }

 [2]=>

 array(3) {

 ["name"]=>

 string(4) "bomb"

 ["allow_null"]=>

 bool(true)

 ["pass_by_reference"]=>

 bool(true)

 }

 [3]=>

 array(3) {

 ["name"]=>

 string(5) "bling"

 ["allow_null"]=>

 bool(true)

 ["pass_by_reference"]=>

 bool(false)

 }

}

Standard PHP Library (SPL)

Introduction

SPL is a collection of interfaces and classes that are meant to solve standard problems.

Tip

A more detailed documentation of SPL can be found » here.

http://www.php.net/~helly/php/ext/spl/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This extension is available and compiled by default in PHP 5.0.0.

Note

As of PHP 5.3.0 this extension can no longer be disabled and is therefore always
available.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Warning

SPL uses class constants since PHP 5.1. Prior releases use global constants in the
form RIT_LEAVES_ONLY.

RecursiveIteratorIterator::LEAVES_ONLY (integer)

RecursiveIteratorIterator::SELF_FIRST (integer)

RecursiveIteratorIterator::CHILD_FIRST (integer)

CachingIterator::CALL_TOSTRING (integer)

CachingIterator::CATCH_GET_CHILD (integer)

Datastructures

SPL provies a set of standard datastructures. They are grouped here by their underlying
implementation which usually defines their general field of application.

Doubly Linked Lists

A Doubly Linked List (DLL) is a list of nodes linked in both directions to each others.
Iterator's operations, access to both ends, addition or removal of nodes have a cost of
O(1) when the underlying structure is a DLL. It hence provides a decent implementation for
stacks and queues.

• SplDoublyLinkedList

• SplStack

• SplQueue

Heaps

Heaps are tree-like structures that follow the heap-property: each node is greater than or
equal to its children, when compared using the implemented compare method which is
global to the heap.

• SplHeap

• SplMaxHeap

• SplMinHeap

• SplPriorityQueue

SPL Functions

class_implements

class_implements -- Return the interfaces which are implemented by the given class

Description

array class_implements (mixed $class [, bool $autoload])

This function returns an array with the names of the interfaces that the given class and its
parents implement.

Parameters

class

An object (class instance) or a string (class name).

autoload

Whether to allow this function to load the class automatically through the __autoload
magic method. Defaults to TRUE.

Return Values

An array on success, or FALSE on error.

ChangeLog

Version Description

5.1.0 Added the option to pass the class
parameter as a string. Added the autoload
parameter.

Examples

Example #2053 - class_implements() example

<?php

interface foo { }

class bar implements foo {}

print_r(class_implements(new bar));

// since PHP 5.1.0 you may also specify the parameter as a string

print_r(class_implements('bar'));

function __autoload($class_name) {

 require_once $class_name . '.php';

}

// use __autoload to load the 'not_loaded' class

print_r(class_implements('not_loaded', true));

?>

The above example will output something similar to:

Array

(

 [foo] => foo

)

Array

(

 [interface_of_not_loaded] => interface_of_not_loaded

)

See Also

• class_parents()
• get_declared_interfaces()

class_parents

class_parents -- Return the parent classes of the given class

Description

array class_parents (mixed $class [, bool $autoload])

This function returns an array with the name of the parent classes of the given class.

Parameters

class

An object (class instance) or a string (class name).

autoload

Whether to allow this function to load the class automatically through the __autoload
magic method. Defaults to TRUE.

Return Values

An array on success, or FALSE on error.

ChangeLog

Version Description

5.1.0 Added the option to pass the class
parameter as a string. Added the autoload
parameter.

Examples

Example #2054 - class_parents() example

<?php

class foo { }

class bar extends foo {}

print_r(class_parents(new bar));

// since PHP 5.1.0 you may also specify the parameter as a string

print_r(class_parents('bar'));

function __autoload($class_name) {

 require_once $class_name . '.php';

}

// use __autoload to load the 'not_loaded' class

print_r(class_parents('not_loaded', true));

?>

The above example will output something similar to:

Array

(

 [foo] => foo

)

Array

(

 [parent_of_not_loaded] => parent_of_not_loaded

)

See Also

• class_implements()

iterator_count

iterator_count -- Count the elements in an iterator

Description

int iterator_count (IteratorAggregate $iterator)

Warning

This function is currently not documented; only its argument list is available.

Count the elements in an iterator.

Parameters

iterator

The iterator being counted.

Return Values

The number of elements in iterator.

iterator_to_array

iterator_to_array -- Copy the iterator into an array

Description

array iterator_to_array (IteratorAggregate $iterator [, bool $use_keys])

Warning

This function is currently not documented; only its argument list is available.

Count the elements in an iterator.

Parameters

iterator

The iterator being counted.

use_keys

Return Values

The number of elements in iterator.

spl_autoload_call

spl_autoload_call -- Try all registered __autoload() function to load the requested class

Description

void spl_autoload_call (string $class_name)

This function can be used to manually search for a class or interface using the registered
__autoload functions.

Parameters

class_name

The class name being searched.

Return Values

No value is returned.

spl_autoload_extensions

spl_autoload_extensions -- Register and return default file extensions for spl_autoload

Description

string spl_autoload_extensions ([string $file_extensions])

This function can modify and check the file extensions that the built in __autoload()
fallback function spl_autoload() will be using.

Parameters

file_extensions

When calling without an argument, it simply returns the current list of extensions each
separated by comma. To modify the list of file extensions, simply invoke the functions
with the new list of file extensions to use in a single string with each extensions
separated by comma.

Return Values

A comma delimitated list of default file extensions for spl_autoload().

spl_autoload_functions

spl_autoload_functions -- Return all registered __autoload() functions

Description

array spl_autoload_functions (void)

Get all registered __autoload() functions.

Parameters

This function has no parameters.

Return Values

An array of all registered __autoload functions. If the autoload stack is not activated then
the return value is FALSE. If no function is registered the return value will be an empty
array.

spl_autoload_register

spl_autoload_register -- Register given function as __autoload() implementation

Description

bool spl_autoload_register ([callback $autoload_function])

Register a function with the spl provided __autoload stack. If the stack is not yet activated
it will be activated.

If your code has an existing __autoload function then this function must be explicitly
registered on the __autoload stack. This is because spl_autoload_register() will effectively
replace the engine cache for the __autoload function by either spl_autoload() or
spl_autoload_call().

Parameters

autoload_function

The autoload function being registered. If no parameter is provided, then the default
implementation of spl_autoload() will be registered.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2055 - spl_autoload_register() example

<?php

namespace Foobar;

class Foo {

 static public function test($name) {

 print '[['. $name .']]';

 }

}

spl_autoload_register(__NAMESPACE__ .'::Foo::test'); // As of PHP 5.3.0

new InexistentClass;

?>

The above example will output something similar to:

[[Foobar::InexistentClass]]

Fatal error: Class 'Foobar::InexistentClass' not found in ...

spl_autoload_unregister

spl_autoload_unregister -- Unregister given function as __autoload() implementation

Description

bool spl_autoload_unregister (mixed $autoload_function)

Unregister a function from the spl provided __autoload stack. If the stack is activated and
empty after unregistering the given function then it will be deactivated.

When this function results in the autoload stack being activated an existing __autoload
function will not be reactivated.

Parameters

autoload_function

The autoload function being unregistered.

Return Values

Returns TRUE on success or FALSE on failure.

spl_autoload

spl_autoload -- Default implementation for __autoload()

Description

void spl_autoload (string $class_name [, string $file_extensions])

This function is intended to be used as a default implementation for __autoload(). If
nothing else is specified and autoload_register() is called without any parameters then this
functions will be used for any later call to __autoload().

Parameters

class_name

file_extensions

By default it checks all include paths to contain filenames built up by the lowercase
class name appended by the filename extensions .inc and .php.

Return Values

No value is returned.

spl_classes

spl_classes -- Return available SPL classes

Description

array spl_classes (void)

This function returns an array with the current available SPL classes.

Examples

Example #2056 - spl_classes() example

<?php

print_r(spl_classes());

?>

The above example will output something similar to:

Array

(

 [ArrayObject] => ArrayObject

 [ArrayIterator] => ArrayIterator

 [CachingIterator] => CachingIterator

 [RecursiveCachingIterator] => RecursiveCachingIterator

 [DirectoryIterator] => DirectoryIterator

 [FilterIterator] => FilterIterator

 [LimitIterator] => LimitIterator

 [ParentIterator] => ParentIterator

 [RecursiveDirectoryIterator] => RecursiveDirectoryIterator

 [RecursiveIterator] => RecursiveIterator

 [RecursiveIteratorIterator] => RecursiveIteratorIterator

 [SeekableIterator] => SeekableIterator

 [SimpleXMLIterator] => SimpleXMLIterator

)

spl_object_hash

spl_object_hash -- Return hash id for given object

Description

string spl_object_hash (object $obj)

This function returns an unique identifier for the object. This id can be used as a hash key
for storing objects or for identifying an object.

Parameters

object

Any object.

Return Values

A string that is unique for each object and is always the same for the same object.

Examples

Example #2057 - A spl_object_hash() example

<?php

$id = spl_object_hash($object);

$storage[$id] = $object;

?>

The ArrayIterator class

Introduction

This iterator allows to unset and modify values and keys while iterating over Arrays and
Objects.

When you want to iterate over the same array multiple times you need to instanciate
ArrayObject and let it create ArrayIterator instances that refer to it either by using foreach
or by calling its getIterator() method manually.

Class synopsis

ArrayIterator

ArrayIterator implements Iterator, Traversable, ArrayAccess, SeekableIterator, Countable {

/* Methods */

mixed ArrayIterator::current (void)

mixed ArrayIterator::key (void)

void ArrayIterator::next (void)

void ArrayIterator::rewind (void)

void ArrayIterator::seek (int $position)

bool ArrayIterator::valid (void)
}

ArrayIterator::current

ArrayIterator::current -- Return current array entry

Description

mixed ArrayIterator::current (void)

Get the current array entry.

Parameters

This function has no parameters.

Return Values

The current array entry.

Examples

Example #2058 - ArrayIterator::current() example

<?php

$array = array('1' => 'one',

 '2' => 'two',

 '3' => 'three');

$arrayobject = new ArrayObject($array);

for($iterator = $arrayobject->getIterator();

 $iterator->valid();

 $iterator->next()) {

 echo $iterator->key() . ' => ' . $iterator->current() . "\n";

}

?>

The above example will output:

1 => one

2 => two

3 => three

ArrayIterator::key

ArrayIterator::key -- Return current array key

Description

mixed ArrayIterator::key (void)

This function returns the current array key

Parameters

This function has no parameters.

Return Values

The current array key.

Examples

Example #2059 - ArrayIterator::key() example

<?php

$array = array('key' => 'value');

$arrayobject = new ArrayObject($array);

$iterator = $arrayobject->getIterator();

echo $iterator->key(); //key

?>

ArrayIterator::next

ArrayIterator::next -- Move to next entry

Description

void ArrayIterator::next (void)

The iterator to the next entry.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2060 - ArrayIterator::next() example

<?php

$arrayobject = new ArrayObject();

$arrayobject[] = 'zero';

$arrayobject[] = 'one';

$iterator = $arrayobject->getIterator();

while($iterator->valid()) {

 echo $iterator->key() . ' => ' . $iterator->current() . "\n";

 $iterator->next();

}

?>

The above example will output:

0 => zero

1 => one

ArrayIterator::rewind

ArrayIterator::rewind -- Rewind array back to the start

Description

void ArrayIterator::rewind (void)

This rewinds the iterator to the beginning.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2061 - ArrayIterator::rewind() example

<?php

$arrayobject = new ArrayObject();

$arrayobject[] = 'zero';

$arrayobject[] = 'one';

$arrayobject[] = 'two';

$iterator = $arrayobject->getIterator();

$iterator->next();

echo $iterator->key(); //1

$iterator->rewind(); //rewinding to the begining

echo $iterator->key(); //0

?>

ArrayIterator::seek

ArrayIterator::seek -- Seek to position

Description

void ArrayIterator::seek (int $position)

Warning

This function is currently not documented; only its argument list is available.

Parameters

position

The position to seek to.

Return Values

No value is returned.

ArrayIterator::valid

ArrayIterator::valid -- Check whether array contains more entries

Description

bool ArrayIterator::valid (void)

Checks if the array contains any more entries.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2062 - ArrayIterator::valid() example

<?php

$array = array('1' => 'one');

$arrayobject = new ArrayObject($array);

$iterator = $arrayobject->getIterator();

var_dump($iterator->valid()); //bool(true)

$iterator->next(); // advance to the next item

//bool(false) because there is only one array element

var_dump($iterator->valid());

?>

The ArrayObject class

Introduction

...

Class synopsis

ArrayObject

ArrayObject implements IteratorAggregate, Traversable, ArrayAccess, Countable {

/* Methods */

ArrayObject::__construct (mixed $input)

void ArrayObject::append (mixed $newval)

int ArrayObject::count (void)

ArrayIterator ArrayObject::getIterator (void)

bool ArrayObject::offsetExists (mixed $index)

mixed ArrayObject::offsetGet (mixed $index)

void ArrayObject::offsetSet (mixed $index, mixed $newval)

void ArrayObject::offsetUnset (mixed $index)
}

ArrayObject::append

ArrayObject::append -- Appends the value

Description

void ArrayObject::append (mixed $newval)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

ArrayObject::__construct

ArrayObject::__construct -- Construct a new array object

Description

ArrayObject::__construct (mixed $input)

This constructs a new array object.

Parameters

input

The input parameter accepts an array or another ArrayObject.

Return Values

No value is returned.

Examples

Example #2063 - ArrayObject::__construct() example

<?php

$array = array('1' => 'one',

 '2' => 'two',

 '3' => 'three');

$arrayobject = new ArrayObject($array);

var_dump($arrayobject);

?>

The above example will output:

object(ArrayObject)#1 (3) {

 [1]=>

 string(3) "one"

 [2]=>

 string(3) "two"

 [3]=>

 string(5) "three"

}

ArrayObject::count

ArrayObject::count -- Get the number of elements in the Iterator

Description

int ArrayObject::count (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The number of elements in the Iterator.

ArrayObject::getIterator

ArrayObject::getIterator -- Create a new iterator from an ArrayObject instance

Description

ArrayIterator ArrayObject::getIterator (void)

Create a new iterator from an ArrayObject instance.

Parameters

This function has no parameters.

Return Values

An iterator from an ArrayObject.

Examples

Example #2064 - ArrayObject::getIterator() example

<?php

$array = array('1' => 'one',

 '2' => 'two',

 '3' => 'three');

$arrayobject = new ArrayObject($array);

$iterator = $arrayobject->getIterator();

while($iterator->valid()) {

 echo $iterator->key() . ' => ' . $iterator->current() . "\n";

 $iterator->next();

}

?>

The above example will output:

1 => one

2 => two

3 => three

ArrayObject::offsetExists

ArrayObject::offsetExists -- Returns whether the requested $index exists

Description

bool ArrayObject::offsetExists (mixed $index)

Warning

This function is currently not documented; only its argument list is available.

Parameters

index

The index being checked.

Return Values

TRUE if the requested $index exists, otherwise FALSE

ArrayObject::offsetGet

ArrayObject::offsetGet -- Returns the value at the specified $index

Description

mixed ArrayObject::offsetGet (mixed $index)

Warning

This function is currently not documented; only its argument list is available.

Parameters

index

The index with the value.

Return Values

The value at the specified $index.

ArrayObject::offsetSet

ArrayObject::offsetSet -- Sets the value at the specified $index to $newval

Description

void ArrayObject::offsetSet (mixed $index, mixed $newval)

Warning

This function is currently not documented; only its argument list is available.

Sets the value at the specified index to newval.

Parameters

index

The index being set.

newval

The new value for the index.

Return Values

No value is returned.

ArrayObject::offsetUnset

ArrayObject::offsetUnset -- Unsets the value at the specified $index

Description

void ArrayObject::offsetUnset (mixed $index)

Warning

This function is currently not documented; only its argument list is available.

Unsets the value at the specified index.

Parameters

index

The index being unset.

Return Values

No value is returned.

The CachingIterator class

Introduction

...

Class synopsis

CachingIterator

CachingIterator extends IteratorIterator implements OuterIterator, Traversable, Iterator,
ArrayAccess, Countable {

/* Methods */

bool CachingIterator::hasNext (void)

void CachingIterator::next (void)

void CachingIterator::rewind (void)

string CachingIterator::__toString (void)

bool CachingIterator::valid (void)
}

CachingIterator::hasNext

CachingIterator::hasNext -- Check whether the inner iterator has a valid next element

Description

bool CachingIterator::hasNext (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

CachingIterator::next

CachingIterator::next -- Move the iterator forward

Description

void CachingIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Move the iterator forward.

Parameters

This function has no parameters.

Return Values

No value is returned.

CachingIterator::rewind

CachingIterator::rewind -- Rewind the iterator

Description

void CachingIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Rewind the iterator.

Parameters

This function has no parameters.

Return Values

No value is returned.

CachingIterator::__toString

CachingIterator::__toString -- Return the string representation of the current element

Description

string CachingIterator::__toString (void)

Warning

This function is currently not documented; only its argument list is available.

Get the string representation of the current element.

Parameters

This function has no parameters.

Return Values

The string representation of the current element.

CachingIterator::valid

CachingIterator::valid -- Check whether the current element is valid

Description

bool CachingIterator::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Check whether the current element is valid.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

The RecursiveCachingIterator class

Introduction

...

Class synopsis

RecursiveCachingIterator

RecursiveCachingIterator extends CachingIterator implements Countable, ArrayAccess,
Iterator, Traversable, OuterIterator, RecursiveIterator {

/* Methods */

RecursiveCachingIterator RecursiveCachingIterator::getChildren (void)

boolean RecursiveCachingIterator::hasChildren (void)

/* Inherits */

bool CachingIterator::hasNext (void)

void CachingIterator::next (void)

void CachingIterator::rewind (void)

string CachingIterator::__toString (void)

bool CachingIterator::valid (void)
}

RecursiveCachingIterator::getChildren

RecursiveCachingIterator::getChildren -- Return the inner iterator's children as a
RecursiveCachingIterator

Description

RecursiveCachingIterator RecursiveCachingIterator::getChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The inner iterator's children, as a RecursiveCachingIterator.

RecursiveCachingIterator::hasChildren

RecursiveCachingIterator::hasChildren -- Check whether the current element of the inner
iterator has children

Description

boolean RecursiveCachingIterator::hasChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the inner iterator has children, otherwise FALSE

The DirectoryIterator class

Introduction

...

Class synopsis

DirectoryIterator

DirectoryIterator extends SplFileInfo implements Iterator, Traversable {

/* Methods */

DirectoryIterator::__construct (string $path)

DirectoryIterator DirectoryIterator::current (void)

int DirectoryIterator::getATime (void)

int DirectoryIterator::getCTime (void)

string DirectoryIterator::getFilename (void)

int DirectoryIterator::getGroup (void)

int DirectoryIterator::getInode (void)

int DirectoryIterator::getMTime (void)

int DirectoryIterator::getOwner (void)

string DirectoryIterator::getPath (void)

string DirectoryIterator::getPathname (void)

int DirectoryIterator::getPerms (void)

int DirectoryIterator::getSize (void)

string DirectoryIterator::getType (void)

bool DirectoryIterator::isDir (void)

bool DirectoryIterator::isDot (void)

bool DirectoryIterator::isExecutable (void)

bool DirectoryIterator::isFile (void)

bool DirectoryIterator::isLink (void)

bool DirectoryIterator::isReadable (void)

bool DirectoryIterator::isWritable (void)

string DirectoryIterator::key (void)

void DirectoryIterator::next (void)

void DirectoryIterator::rewind (void)

string DirectoryIterator::valid (void)
}

DirectoryIterator::__construct

DirectoryIterator::__construct -- Constructs a new dir iterator from a path

Description

DirectoryIterator::__construct (string $path)

Warning

This function is currently not documented; only its argument list is available.

Constructs a new dir iterator from a path.

Parameters

path

The path.

Return Values

No value is returned.

DirectoryIterator::current

DirectoryIterator::current -- Return this (needed for Iterator interface)

Description

DirectoryIterator DirectoryIterator::current (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Return this (needed for Iterator interface).

DirectoryIterator::getATime

DirectoryIterator::getATime -- Get last access time of file

Description

int DirectoryIterator::getATime (void)

Warning

This function is currently not documented; only its argument list is available.

Get the last access time of file.

Parameters

This function has no parameters.

Return Values

The last access time of the file.

DirectoryIterator::getCTime

DirectoryIterator::getCTime -- Get inode modification time of file

Description

int DirectoryIterator::getCTime (void)

Warning

This function is currently not documented; only its argument list is available.

Get the inode modification time of file.

Parameters

This function has no parameters.

Return Values

The last modification time of the file.

DirectoryIterator::getFilename

DirectoryIterator::getFilename -- Return filename of current dir entry

Description

string DirectoryIterator::getFilename (void)

Warning

This function is currently not documented; only its argument list is available.

Get the filename of the current dir entry.

Parameters

This function has no parameters.

Return Values

The filename of the current dir entry.

DirectoryIterator::getGroup

DirectoryIterator::getGroup -- Get file group

Description

int DirectoryIterator::getGroup (void)

Warning

This function is currently not documented; only its argument list is available.

Get the files group.

Parameters

This function has no parameters.

Return Values

The file group of the file.

DirectoryIterator::getInode

DirectoryIterator::getInode -- Get file inode

Description

int DirectoryIterator::getInode (void)

Warning

This function is currently not documented; only its argument list is available.

Get the inode of the file.

Parameters

This function has no parameters.

Return Values

The inode of the file.

DirectoryIterator::getMTime

DirectoryIterator::getMTime -- Get last modification time of file

Description

int DirectoryIterator::getMTime (void)

Warning

This function is currently not documented; only its argument list is available.

Get the last modification time of the file.

Parameters

This function has no parameters.

Return Values

The last modification time of the file.

DirectoryIterator::getOwner

DirectoryIterator::getOwner -- Get file owner

Description

int DirectoryIterator::getOwner (void)

Warning

This function is currently not documented; only its argument list is available.

Get the owner of the file.

Parameters

This function has no parameters.

Return Values

The file owner of the file.

DirectoryIterator::getPath

DirectoryIterator::getPath -- Return directory path

Description

string DirectoryIterator::getPath (void)

Warning

This function is currently not documented; only its argument list is available.

Get the directory path.

Parameters

This function has no parameters.

Return Values

The directory path.

DirectoryIterator::getPathname

DirectoryIterator::getPathname -- Return path and filename of current dir entry

Description

string DirectoryIterator::getPathname (void)

Warning

This function is currently not documented; only its argument list is available.

Get the path and filename of the current dir entry.

Parameters

This function has no parameters.

Return Values

The path and filename of current dir entry.

DirectoryIterator::getPerms

DirectoryIterator::getPerms -- Get file permissions

Description

int DirectoryIterator::getPerms (void)

Warning

This function is currently not documented; only its argument list is available.

Get the permissions of the file.

Parameters

This function has no parameters.

Return Values

The file permissions of the file.

DirectoryIterator::getSize

DirectoryIterator::getSize -- Get file size

Description

int DirectoryIterator::getSize (void)

Warning

This function is currently not documented; only its argument list is available.

Get the file size.

Parameters

This function has no parameters.

Return Values

The size of the file.

DirectoryIterator::getType

DirectoryIterator::getType -- Get file type

Description

string DirectoryIterator::getType (void)

Warning

This function is currently not documented; only its argument list is available.

Get the file type.

Parameters

This function has no parameters.

Return Values

The type of the file.

DirectoryIterator::isDir

DirectoryIterator::isDir -- Returns true if file is directory

Description

bool DirectoryIterator::isDir (void)

Warning

This function is currently not documented; only its argument list is available.

Check if the file is a directory.

Parameters

This function has no parameters.

Return Values

TRUE if it is a directory, otherwise FALSE

DirectoryIterator::isDot

DirectoryIterator::isDot -- Returns true if current entry is '.' or '..'

Description

bool DirectoryIterator::isDot (void)

Warning

This function is currently not documented; only its argument list is available.

Check whether it's a directory and either. or...

Parameters

This function has no parameters.

Return Values

TRUE if the entry is. or.., otherwise FALSE

DirectoryIterator::isExecutable

DirectoryIterator::isExecutable -- Returns true if file is executable

Description

bool DirectoryIterator::isExecutable (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if the file is executable.

Parameters

This function has no parameters.

Return Values

TRUE if the entry is executable, otherwise FALSE

DirectoryIterator::isFile

DirectoryIterator::isFile -- Returns true if file is a regular file

Description

bool DirectoryIterator::isFile (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if it's a regular file.

Parameters

This function has no parameters.

Return Values

TRUE if the entry is a regular file, otherwise FALSE

DirectoryIterator::isLink

DirectoryIterator::isLink -- Returns true if file is symbolic link

Description

bool DirectoryIterator::isLink (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if the entry is a symbolic link.

Parameters

This function has no parameters.

Return Values

TRUE if the entry is a symbolic link, otherwise FALSE

DirectoryIterator::isReadable

DirectoryIterator::isReadable -- Returns true if file can be read

Description

bool DirectoryIterator::isReadable (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if the entry is readable.

Parameters

This function has no parameters.

Return Values

TRUE if the file is readable, otherwise FALSE

DirectoryIterator::isWritable

DirectoryIterator::isWritable -- Returns true if file can be written

Description

bool DirectoryIterator::isWritable (void)

Warning

This function is currently not documented; only its argument list is available.

Checks if the entry is writable.

Parameters

This function has no parameters.

Return Values

TRUE if the file is writable, otherwise FALSE

DirectoryIterator::key

DirectoryIterator::key -- Return current dir entry

Description

string DirectoryIterator::key (void)

Warning

This function is currently not documented; only its argument list is available.

Get the current dir entry.

Parameters

This function has no parameters.

Return Values

The current dir entry.

DirectoryIterator::next

DirectoryIterator::next -- Move to next entry

Description

void DirectoryIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Move to the next entry.

Parameters

This function has no parameters.

Return Values

No value is returned.

DirectoryIterator::rewind

DirectoryIterator::rewind -- Rewind dir back to the start

Description

void DirectoryIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Rewind dir back to the start.

Parameters

This function has no parameters.

Return Values

No value is returned.

DirectoryIterator::valid

DirectoryIterator::valid -- Check whether dir contains more entries

Description

string DirectoryIterator::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Check whether dir contains more entries.

Parameters

This function has no parameters.

Return Values

No value is returned.

The FilterIterator class

Introduction

...

Class synopsis

FilterIterator

abstract FilterIterator extends IteratorIterator implements OuterIterator, Traversable,
Iterator {

/* Methods */

mixed FilterIterator::current (void)

Iterator FilterIterator::getInnerIterator (void)

mixed FilterIterator::key (void)

void FilterIterator::next (void)

void FilterIterator::rewind (void)

bool FilterIterator::valid (void)
}

FilterIterator::current

FilterIterator::current -- Get the current element value

Description

mixed FilterIterator::current (void)

Warning

This function is currently not documented; only its argument list is available.

Get the current element value.

Parameters

This function has no parameters.

Return Values

The current element value.

See Also

• FilterIterator::key()
• FilterIterator::next()

FilterIterator::getInnerIterator

FilterIterator::getInnerIterator -- Get the inner iterator

Description

Iterator FilterIterator::getInnerIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Get the inner iterator.

Parameters

This function has no parameters.

Return Values

The inner iterator.

FilterIterator::key

FilterIterator::key -- Get the current key

Description

mixed FilterIterator::key (void)

Warning

This function is currently not documented; only its argument list is available.

Get the current key.

Parameters

This function has no parameters.

Return Values

The current key.

See Also

• FilterIterator::next()
• FilterIterator::current()

FilterIterator::next

FilterIterator::next -- Move the iterator forward

Description

void FilterIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Move the iterator forward.

Parameters

This function has no parameters.

Return Values

No value is returned.

See Also

• FilterIterator::current()
• FilterIterator::next()

FilterIterator::rewind

FilterIterator::rewind -- Rewind the iterator

Description

void FilterIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Rewind the iterator.

Parameters

This function has no parameters.

Return Values

No value is returned.

See Also

• FilterIterator::current()
• FilterIterator::key()
• FilterIterator::next()

FilterIterator::valid

FilterIterator::valid -- Check whether the current element is valid

Description

bool FilterIterator::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Checks whether the current element is valid.

Parameters

This function has no parameters.

Return Values

TRUE if the current element is valid, otherwise FALSE

The LimitIterator class

Introduction

...

Class synopsis

LimitIterator

LimitIterator extends IteratorIterator implements OuterIterator, Traversable, Iterator {

/* Methods */

int LimitIterator::getPosition (void)

void LimitIterator::next (void)

void LimitIterator::rewind (void)

void LimitIterator::seek (int $position)

bool LimitIterator::valid (void)
}

LimitIterator::getPosition

LimitIterator::getPosition -- Return the current position

Description

int LimitIterator::getPosition (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current position.

LimitIterator::next

LimitIterator::next -- Move the iterator forward

Description

void LimitIterator::next (void)

Moves the iterator forward.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

LimitIterator::rewind

LimitIterator::rewind -- Rewind the iterator to the specified starting offset

Description

void LimitIterator::rewind (void)

Rewinds the iterator to the specified starting offset.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

LimitIterator::seek

LimitIterator::seek -- Seek to the given position

Description

void LimitIterator::seek (int $position)

Warning

This function is currently not documented; only its argument list is available.

Parameters

position

The position being seeked to.

Return Values

No value is returned.

LimitIterator::valid

LimitIterator::valid -- Check whether the current element is valid

Description

bool LimitIterator::valid (void)

Checks whether the current element is valid.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

The ParentIterator class

Introduction

...

Class synopsis

ParentIterator

ParentIterator extends RecursiveFilterIterator implements RecursiveIterator, OuterIterator,
Traversable, Iterator {

/* Methods */

ParentIterator ParentIterator::getChildren (void)

bool ParentIterator::hasChildren (void)

void ParentIterator::next (void)

void ParentIterator::rewind (void)
}

ParentIterator::getChildren

ParentIterator::getChildren -- Return the inner iterator's children contained in a
ParentIterator

Description

ParentIterator ParentIterator::getChildren (void)

Get the the inner iterator's children contained in a ParentIterator.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

An object.

ParentIterator::hasChildren

ParentIterator::hasChildren -- Check whether the inner iterator's current element has
children

Description

bool ParentIterator::hasChildren (void)

Check whether the inner iterator's current element has children.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

ParentIterator::next

ParentIterator::next -- Move the iterator forward

Description

void ParentIterator::next (void)

Moves the iterator forward.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

ParentIterator::rewind

ParentIterator::rewind -- Rewind the iterator

Description

void ParentIterator::rewind (void)

Rewinds the iterator.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

The RecursiveDirectoryIterator class

Introduction

...

Class synopsis

RecursiveDirectoryIterator

RecursiveDirectoryIterator extends DirectoryIterator implements Traversable, Iterator,
RecursiveIterator {

/* Methods */

object RecursiveDirectoryIterator::getChildren (void)

bool RecursiveDirectoryIterator::hasChildren ([bool $allow_links])

string RecursiveDirectoryIterator::key (void)

void RecursiveDirectoryIterator::next (void)

void RecursiveDirectoryIterator::rewind (void)

/* Inherits */

DirectoryIterator DirectoryIterator::current (void)

int DirectoryIterator::getATime (void)

int DirectoryIterator::getCTime (void)

string DirectoryIterator::getFilename (void)

int DirectoryIterator::getGroup (void)

int DirectoryIterator::getInode (void)

int DirectoryIterator::getMTime (void)

int DirectoryIterator::getOwner (void)

string DirectoryIterator::getPath (void)

string DirectoryIterator::getPathname (void)

int DirectoryIterator::getPerms (void)

int DirectoryIterator::getSize (void)

string DirectoryIterator::getType (void)

bool DirectoryIterator::isDir (void)

bool DirectoryIterator::isDot (void)

bool DirectoryIterator::isExecutable (void)

bool DirectoryIterator::isFile (void)

bool DirectoryIterator::isLink (void)

bool DirectoryIterator::isReadable (void)

bool DirectoryIterator::isWritable (void)

string DirectoryIterator::key (void)

void DirectoryIterator::next (void)

void DirectoryIterator::rewind (void)

string DirectoryIterator::valid (void)
}

RecursiveDirectoryIterator::getChildren

RecursiveDirectoryIterator::getChildren -- Returns an iterator for the current entry if it is a
directory

Description

object RecursiveDirectoryIterator::getChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

An iterator for the current entry, if it is a directory.

RecursiveDirectoryIterator::hasChildren

RecursiveDirectoryIterator::hasChildren -- Returns whether current entry is a directory and
not '.' or '..'

Description

bool RecursiveDirectoryIterator::hasChildren ([bool $allow_links])

Warning

This function is currently not documented; only its argument list is available.

Parameters

allow_links

Return Values

Returns whether the current entry is a directory, but not '.' or '..'

RecursiveDirectoryIterator::key

RecursiveDirectoryIterator::key -- Return path and filename of current dir entry

Description

string RecursiveDirectoryIterator::key (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The path and filename of the current dir entry.

RecursiveDirectoryIterator::next

RecursiveDirectoryIterator::next -- Move to next entry

Description

void RecursiveDirectoryIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

RecursiveDirectoryIterator::rewind

RecursiveDirectoryIterator::rewind -- Rewind dir back to the start

Description

void RecursiveDirectoryIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

The RecursiveIteratorIterator class

Introduction

...

Class synopsis

RecursiveIteratorIterator

RecursiveIteratorIterator implements OuterIterator, Traversable, Iterator {

/* Methods */

mixed RecursiveIteratorIterator::current (void)

int RecursiveIteratorIterator::getDepth (void)

RecursiveIterator RecursiveIteratorIterator::getSubIterator (void)

mixed RecursiveIteratorIterator::key (void)

void RecursiveIteratorIterator::next (void)

void RecursiveIteratorIterator::rewind (void)

boolean RecursiveIteratorIterator::valid (void)
}

RecursiveIteratorIterator::current

RecursiveIteratorIterator::current -- Access the current element value

Description

mixed RecursiveIteratorIterator::current (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current elements value.

RecursiveIteratorIterator::getDepth

RecursiveIteratorIterator::getDepth -- Get the current depth of the recursive iteration

Description

int RecursiveIteratorIterator::getDepth (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current depth of the recursive iteration.

RecursiveIteratorIterator::getSubIterator

RecursiveIteratorIterator::getSubIterator -- The current active sub iterator

Description

RecursiveIterator RecursiveIteratorIterator::getSubIterator (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current active sub iterator.

RecursiveIteratorIterator::key

RecursiveIteratorIterator::key -- Access the current key

Description

mixed RecursiveIteratorIterator::key (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current key.

RecursiveIteratorIterator::next

RecursiveIteratorIterator::next -- Move forward to the next element

Description

void RecursiveIteratorIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

RecursiveIteratorIterator::rewind

RecursiveIteratorIterator::rewind -- Rewind the iterator to the first element of the top level
inner iterator

Description

void RecursiveIteratorIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

RecursiveIteratorIterator::valid

RecursiveIteratorIterator::valid -- Check whether the current position is valid

Description

boolean RecursiveIteratorIterator::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the current position is valid, otherwise FALSE

The SimpleXMLIterator class

Introduction

...

Class synopsis

SimpleXMLIterator

SimpleXMLIterator extends SimpleXMLElement implements RecursiveIterator,
Traversable, Iterator, Countable {

/* Methods */

mixed SimpleXMLIterator::current (void)

object SimpleXMLIterator::getChildren (void)

bool SimpleXMLIterator::hasChildren (void)

mixed SimpleXMLIterator::key (void)

void SimpleXMLIterator::next (void)

void SimpleXMLIterator::rewind (void)

bool SimpleXMLIterator::valid (void)
}

SimpleXMLIterator::current

SimpleXMLIterator::current -- Return current SimpleXML entry

Description

mixed SimpleXMLIterator::current (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current SimpleXML entry.

SimpleXMLIterator::getChildren

SimpleXMLIterator::getChildren -- Returns an iterator for the current entry if it is a
SimpleXML object

Description

object SimpleXMLIterator::getChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

An iterator for the current entry, if it is a SimpleXML object.

SimpleXMLIterator::hasChildren

SimpleXMLIterator::hasChildren -- Returns whether current entry is a SimpleXML object

Description

bool SimpleXMLIterator::hasChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the current entry is a SimpleXML object, otherwise FALSE

SimpleXMLIterator::key

SimpleXMLIterator::key -- Return current SimpleXML key

Description

mixed SimpleXMLIterator::key (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The current SimpleXML key.

SimpleXMLIterator::next

SimpleXMLIterator::next -- Move to next entry

Description

void SimpleXMLIterator::next (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

SimpleXMLIterator::rewind

SimpleXMLIterator::rewind -- Rewind SimpleXML back to the start

Description

void SimpleXMLIterator::rewind (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

No value is returned.

SimpleXMLIterator::valid

SimpleXMLIterator::valid -- Check whether SimpleXML contains more entries

Description

bool SimpleXMLIterator::valid (void)

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if contains more SimpleXML entries, otherwise FALSE

The SplDoublyLinkedList class

Introduction

The SplDoublyLinkedList class provides the main functionalities of a doubly linked list.

Class synopsis

SplDoublyLinkedList

SplDoublyLinkedList implements Iterator, ArrayAccess, Countable {

/* Methods */

SplDoublyLinkedList::__construct (void)

mixed SplDoublyLinkedList::bottom (void)

int SplDoublyLinkedList::count (void)

mixed SplDoublyLinkedList::current (void)

int SplDoublyLinkedList::getIteratorMode (void)

bool SplDoublyLinkedList::isEmpty (void)

mixed SplDoublyLinkedList::key (void)

void SplDoublyLinkedList::next (void)

bool SplDoublyLinkedList::offsetExists (mixed $index)

mixed SplDoublyLinkedList::offsetGet (mixed $index)

void SplDoublyLinkedList::offsetSet (mixed $index, mixed $newval)

void SplDoublyLinkedList::offsetUnset (mixed $index)

mixed SplDoublyLinkedList::pop (void)

void SplDoublyLinkedList::push (mixed $value)

void SplDoublyLinkedList::rewind (void)

void SplDoublyLinkedList::setIteratorMode (int $mode)

mixed SplDoublyLinkedList::shift (void)

mixed SplDoublyLinkedList::top (void)

void SplDoublyLinkedList::unshift (mixed $value)

bool SplDoublyLinkedList::valid (void)
}

SplDoublyLinkedList::bottom

SplDoublyLinkedList::bottom -- Peaks at the node from the beginning of the doubly linked
list

Description

mixed SplDoublyLinkedList::bottom (void)

Parameters

This function has no parameters.

Return Values

The value of the first node.

SplDoublyLinkedList::__construct

SplDoublyLinkedList::__construct -- Constructs a new doubly linked list

Description

SplDoublyLinkedList::__construct (void)

This constructs a new empty doubly linked list.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2065 - SplDoublyLinkedList::__construct() example

<?php

$dll = new SplDoublyLinkedList();

$dll->push(2);

$dll->push(3);

$dll->unshift(5);

var_dump($dll);

?>

The above example will output:

object(SplDoublyLinkedList)#1 (2) {

 ["flags":"SplDoublyLinkedList":private]=>

 int(0)

 ["dllist":"SplDoublyLinkedList":private]=>

 array(3) {

 [0]=>

 int(5)

 [1]=>

 int(2)

 [2]=>

 int(3)

 }

}

SplDoublyLinkedList::count

SplDoublyLinkedList::count -- Counts the number of elements in the doubly linked list.

Description

int SplDoublyLinkedList::count (void)

Parameters

This function has no parameters.

Return Values

Returns the number of elements in the doubly linked list.

SplDoublyLinkedList::current

SplDoublyLinkedList::current -- Return current array entry

Description

mixed SplDoublyLinkedList::current (void)

Get the current doubly linked list node.

Parameters

This function has no parameters.

Return Values

The current node value.

SplDoublyLinkedList::getIteratorMode

SplDoublyLinkedList::getIteratorMode -- Returns the mode of iteration

Description

int SplDoublyLinkedList::getIteratorMode (void)

Parameters

This function has no parameters.

Return Values

Returns the different modes and flags that affect the iteration.

SplDoublyLinkedList::isEmpty

SplDoublyLinkedList::isEmpty -- Checks whether the doubly linked list is empty.

Description

bool SplDoublyLinkedList::isEmpty (void)

Parameters

This function has no parameters.

Return Values

Returns whether the doubly linked list is empty.

SplDoublyLinkedList::key

SplDoublyLinkedList::key -- Return current node index

Description

mixed SplDoublyLinkedList::key (void)

This function returns the current node index

Parameters

This function has no parameters.

Return Values

The current node index.

SplDoublyLinkedList::next

SplDoublyLinkedList::next -- Move to next entry

Description

void SplDoublyLinkedList::next (void)

Move the iterator to the next node.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplDoublyLinkedList::offsetExists

SplDoublyLinkedList::offsetExists -- Returns whether the requested $index exists

Description

bool SplDoublyLinkedList::offsetExists (mixed $index)

Parameters

index

The index being checked.

Return Values

TRUE if the requested index exists, otherwise FALSE

SplDoublyLinkedList::offsetGet

SplDoublyLinkedList::offsetGet -- Returns the value at the specified $index

Description

mixed SplDoublyLinkedList::offsetGet (mixed $index)

Parameters

index

The index with the value.

Return Values

The value at the specified index.

SplDoublyLinkedList::offsetSet

SplDoublyLinkedList::offsetSet -- Sets the value at the specified $index to $newval

Description

void SplDoublyLinkedList::offsetSet (mixed $index, mixed $newval)

Sets the value at the specified index to newval.

Parameters

index

The index being set.

newval

The new value for the index.

Return Values

No value is returned.

SplDoublyLinkedList::offsetUnset

SplDoublyLinkedList::offsetUnset -- Unsets the value at the specified $index

Description

void SplDoublyLinkedList::offsetUnset (mixed $index)

Unsets the value at the specified index.

Parameters

index

The index being unset.

Return Values

No value is returned.

SplDoublyLinkedList::pop

SplDoublyLinkedList::pop -- Pops a node from the end of the doubly linked list

Description

mixed SplDoublyLinkedList::pop (void)

Parameters

This function has no parameters.

Return Values

The value of the popped node.

SplDoublyLinkedList::push

SplDoublyLinkedList::push -- Pushes an element at the end of the doubly linked list

Description

void SplDoublyLinkedList::push (mixed $value)

Pushes value at the end of the doubly linked list.

Parameters

value

The value to push.

Return Values

No value is returned.

SplDoublyLinkedList::rewind

SplDoublyLinkedList::rewind -- Rewind iterator back to the start

Description

void SplDoublyLinkedList::rewind (void)

This rewinds the iterator to the beginning.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplDoublyLinkedList::setIteratorMode

SplDoublyLinkedList::setIteratorMode -- Sets the mode of iteration

Description

void SplDoublyLinkedList::setIteratorMode (int $mode)

Parameters

mode

There are two orthogonal sets of modes that can be set:

• The direction of the iteration (either one or the other):

• SplDoublyLnkedList::IT_MODE_LIFO (Stack style)

• SplDoublyLnkedList::IT_MODE_FIFO (Queue style)

• The behavior of the iterator (either one or the other):

• SplDoublyLnkedList::IT_MODE_DELETE (Elements are deleted by the
iterator)

• SplDoublyLnkedList::IT_MODE_KEEP (Elements are traversed by the
iterator)

The default mode is: SplDoublyLnkedList::IT_MODE_FIFO |
SplDoublyLnkedList::IT_MODE_KEEP

Return Values

No value is returned.

SplDoublyLinkedList::shift

SplDoublyLinkedList::shift -- Shifts a node from the beginning of the doubly linked list

Description

mixed SplDoublyLinkedList::shift (void)

Parameters

This function has no parameters.

Return Values

The value of the shifted node.

SplDoublyLinkedList::top

SplDoublyLinkedList::top -- Peaks at the node from the end of the doubly linked list

Description

mixed SplDoublyLinkedList::top (void)

Parameters

This function has no parameters.

Return Values

The value of the last node.

SplDoublyLinkedList::unshift

SplDoublyLinkedList::unshift -- Prepends the doubly linked list with an element

Description

void SplDoublyLinkedList::unshift (mixed $value)

Prepends value at the beginning of the doubly linked list.

Parameters

value

The value to unshift.

Return Values

No value is returned.

SplDoublyLinkedList::valid

SplDoublyLinkedList::valid -- Check whether the doubly linked list contains more nodes

Description

bool SplDoublyLinkedList::valid (void)

Checks if the doubly linked list contains any more nodes.

Parameters

This function has no parameters.

Return Values

Returns TRUE if the doubly linked list contains any more nodes, FALSE otherwise.

The SplStack class

Introduction

The SplStack class provides the main functionalities of a stack implemented using a
doubly linked list.

Class synopsis

SplStack

SplStack extends SplDoublyLinkedList implements Iterator, ArrayAccess, Countable {

/* Methods */

SplStack::__construct (void)

void SplStack::setIteratorMode (int $mode)

/* Inherited methods */

mixed SplDoublyLinkedList::bottom (void)

int SplDoublyLinkedList::count (void)

mixed SplDoublyLinkedList::current (void)

int SplDoublyLinkedList::getIteratorMode (void)

bool SplDoublyLinkedList::isEmpty (void)

mixed SplDoublyLinkedList::key (void)

void SplDoublyLinkedList::next (void)

bool SplDoublyLinkedList::offsetExists (mixed $index)

mixed SplDoublyLinkedList::offsetGet (mixed $index)

void SplDoublyLinkedList::offsetSet (mixed $index, mixed $newval)

void SplDoublyLinkedList::offsetUnset (mixed $index)

mixed SplDoublyLinkedList::pop (void)

void SplDoublyLinkedList::push (mixed $value)

void SplDoublyLinkedList::rewind (void)

void SplDoublyLinkedList::setIteratorMode (int $mode)

mixed SplDoublyLinkedList::shift (void)

mixed SplDoublyLinkedList::top (void)

void SplDoublyLinkedList::unshift (mixed $value)

bool SplDoublyLinkedList::valid (void)
}

SplStack::__construct

SplStack::__construct -- Constructs a new stack implemented using a doubly linked list

Description

SplStack::__construct (void)

This constructs a new empty stack.

Note

This method automatically sets the iterator mode to
SplDoublyLinkedList::IT_MODE_LIFO.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2066 - SplStack::__construct() example

<?php

$q = new SplStack();

$q[] = 1;

$q[] = 2;

$q[] = 3;

foreach ($q as $elem) {

echo $elem."\n";

}

?>

The above example will output:

3

2

1

SplStack::setIteratorMode

SplStack::setIteratorMode -- Sets the mode of iteration

Description

void SplStack::setIteratorMode (int $mode)

Parameters

mode

There is only one iteration parameter you can modify.

• The behavior of the iterator (either one or the other):

• SplDoublyLnkedList::IT_MODE_DELETE (Elements are deleted by the iterator)

• SplDoublyLnkedList::IT_MODE_KEEP (Elements are traversed by the iterator)

The default mode is 0x2 : SplDoublyLnkedList::IT_MODE_LIFO |
SplDoublyLnkedList::IT_MODE_KEEP

Warning

The direction of iteration can no longer be changer for SplStacks. Trying to do so
will result in a RuntimeException being thrown.

Return Values

No value is returned.

The SplQueue class

Introduction

The SplQueue class provides the main functionalities of a queue implemented using a
doubly linked list.

Class synopsis

SplQueue

SplQueue extends SplDoublyLinkedList implements Iterator, ArrayAccess, Countable {

/* Methods */

SplQueue::__construct (void)

mixed SplQueue::dequeue (void)

void SplQueue::enqueue (mixed $value)

void SplQueue::setIteratorMode (int $mode)

/* Inherited methods */

mixed SplDoublyLinkedList::bottom (void)

int SplDoublyLinkedList::count (void)

mixed SplDoublyLinkedList::current (void)

int SplDoublyLinkedList::getIteratorMode (void)

bool SplDoublyLinkedList::isEmpty (void)

mixed SplDoublyLinkedList::key (void)

void SplDoublyLinkedList::next (void)

bool SplDoublyLinkedList::offsetExists (mixed $index)

mixed SplDoublyLinkedList::offsetGet (mixed $index)

void SplDoublyLinkedList::offsetSet (mixed $index, mixed $newval)

void SplDoublyLinkedList::offsetUnset (mixed $index)

mixed SplDoublyLinkedList::pop (void)

void SplDoublyLinkedList::push (mixed $value)

void SplDoublyLinkedList::rewind (void)

void SplDoublyLinkedList::setIteratorMode (int $mode)

mixed SplDoublyLinkedList::shift (void)

mixed SplDoublyLinkedList::top (void)

void SplDoublyLinkedList::unshift (mixed $value)

bool SplDoublyLinkedList::valid (void)
}

SplQueue::__construct

SplQueue::__construct -- Constructs a new queue implemented using a doubly linked list

Description

SplQueue::__construct (void)

This constructs a new empty queue.

Note

This method automatically sets the iterator mode to
SplDoublyLinkedList::IT_MODE_FIFO.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2067 - SplQueue::__construct() example

<?php

$q = new SplQueue();

$q[] = 1;

$q[] = 2;

$q[] = 3;

foreach ($q as $elem) {

echo $elem."\n";

}

?>

The above example will output:

1

2

3

Example #2068 - Efficiently handling tasks with SplQueue

<?php

$q = new SplQueue();

$q->setIteratorMode(SplQueue::IT_MODE_DELETE);

// ... enqueue some tasks on the queue ...

// process them

foreach ($q as $task) {

 // ... process $task ...

 // add new tasks on the queue

 $q[] = $newTask;

 // ...

}

?>

SplQueue::dequeue

SplQueue::dequeue -- Dequeues a node from the queue

Description

mixed SplQueue::dequeue (void)

Dequeues value from the top of of the queue.

Note

SplQueue::dequeue is an alias of SplDoublyLinkedList::shift.

Parameters

This function has no parameters.

Return Values

The value of the dequeued node.

SplQueue::enqueue

SplQueue::enqueue -- Adds an element to the queue.

Description

void SplQueue::enqueue (mixed $value)

Enqueues value at the end of the queue.

Note

SplQueue::enqueue is an alias of SplDoublyLinkedList::push.

Parameters

value

The value to enqueue.

Return Values

No value is returned.

SplQueue::setIteratorMode

SplQueue::setIteratorMode -- Sets the mode of iteration

Description

void SplQueue::setIteratorMode (int $mode)

Parameters

mode

There is only one iteration parameter you can modify.

• The behavior of the iterator (either one or the other):

• SplDoublyLnkedList::IT_MODE_DELETE (Elements are deleted by the iterator)

• SplDoublyLnkedList::IT_MODE_KEEP (Elements are traversed by the iterator)

The default mode is 0x0 : SplDoublyLnkedList::IT_MODE_FIFO |
SplDoublyLnkedList::IT_MODE_KEEP

Warning

The direction of iteration can no longer be changer for SplQueues. Trying to do so
will result in a RuntimeException being thrown.

Return Values

No value is returned.

The SplHeap class

Introduction

The SplHeap class provides the main functionalities of an Heap.

Class synopsis

SplHeap

abstract SplHeap implements Iterator, Countable {

/* Methods */

SplHeap::__construct (void)

abstract int SplHeap::compare (mixed $value1, mixed $value2)

int SplHeap::count (void)

mixed SplHeap::current (void)

mixed SplHeap::extract (void)

void SplHeap::insert (mixed $value)

bool SplHeap::isEmpty (void)

mixed SplHeap::key (void)

void SplHeap::next (void)

void SplHeap::recoverFromCorruption (void)

void SplHeap::rewind (void)

mixed SplHeap::top (void)

bool SplHeap::valid (void)
}

SplHeap::compare

SplHeap::compare -- Compare elements in order to place them correctly in the heap while
sifting up.

Description

abstract int SplHeap::compare (mixed $value1, mixed $value2)

Compare value1 with value2.

Warning

Throwing exceptions in SplHeap::compare can corrupt the Heap and place it in an
blocked state. You can unblock is by calling SplHeap::recoverFromCorruption.
However, some elements might not be placed correctly and it may hence break the
heap-property.

Parameters

value1

The value of the first node being compared.

value2

The value of the second node being compared.

Return Values

Result of the comparison, positive integer if value1 is greater than value2, 0 if they are
equal, negative integer otherwise.

Note

Having multiple elements with the same value in a Heap is not recommended. They
will end up in an arbitrary relative position.

SplHeap::__construct

SplHeap::__construct -- Constructs a new empty heap

Description

SplHeap::__construct (void)

This constructs a new empty heap.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplHeap::count

SplHeap::count -- Counts the number of elements in the heap.

Description

int SplHeap::count (void)

Parameters

This function has no parameters.

Return Values

Returns the number of elements in the heap.

SplHeap::current

SplHeap::current -- Return current node pointed by the iterator

Description

mixed SplHeap::current (void)

Get the current datastructure node.

Parameters

This function has no parameters.

Return Values

The current node value.

SplHeap::extract

SplHeap::extract -- Extracts a node from top of the heap and sift up.

Description

mixed SplHeap::extract (void)

Parameters

This function has no parameters.

Return Values

The value of the extracted node.

SplHeap::insert

SplHeap::insert -- Inserts an element in the heap by sifting it up.

Description

void SplHeap::insert (mixed $value)

Insert value in the heap.

Parameters

value

The value to insert.

Return Values

No value is returned.

SplHeap::isEmpty

SplHeap::isEmpty -- Checks whether the heap is empty.

Description

bool SplHeap::isEmpty (void)

Parameters

This function has no parameters.

Return Values

Returns whether the heap is empty.

SplHeap::key

SplHeap::key -- Return current node index

Description

mixed SplHeap::key (void)

This function returns the current node index

Parameters

This function has no parameters.

Return Values

The current node index.

SplHeap::next

SplHeap::next -- Move to the next node

Description

void SplHeap::next (void)

Extracts the top node from the heap.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplHeap::recoverFromCorruption

SplHeap::recoverFromCorruption -- Recover from the corrupted state and allow further
actions on the heap.

Description

void SplHeap::recoverFromCorruption (void)

Parameters

This function has no parameters.

Return Values

No value is returned.

SplHeap::rewind

SplHeap::rewind -- Rewind iterator back to the start (no-op)

Description

void SplHeap::rewind (void)

This rewinds the iterator to the beginning. This is a no-op for heaps as the iterator is virtual
and in fact never moves from the top of the heap.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplHeap::top

SplHeap::top -- Peaks at the node from the top of the heap

Description

mixed SplHeap::top (void)

Parameters

This function has no parameters.

Return Values

The value of the node on the top.

SplHeap::valid

SplHeap::valid -- Check whether the heap contains more nodes

Description

bool SplHeap::valid (void)

Checks if the heap contains any more nodes.

Parameters

This function has no parameters.

Return Values

Returns TRUE if the heap contains any more nodes, FALSE otherwise.

The SplMaxHeap class

Introduction

The SplMaxHeap class provides the main functionalities of a heap, keeping the maximum
on the top.

Class synopsis

SplMaxHeap

SplMaxHeap extends SplHeap implements Iterator, Countable {

/* Methods */

void SplMaxHeap::compare (mixed $value1, mixed $value2)

/* Inherited methods */

abstract int SplHeap::compare (mixed $value1, mixed $value2)

int SplHeap::count (void)

mixed SplHeap::current (void)

mixed SplHeap::extract (void)

void SplHeap::insert (mixed $value)

bool SplHeap::isEmpty (void)

mixed SplHeap::key (void)

void SplHeap::next (void)

void SplHeap::recoverFromCorruption (void)

void SplHeap::rewind (void)

mixed SplHeap::top (void)

bool SplHeap::valid (void)
}

SplMaxHeap::compare

SplMaxHeap::compare -- Compare elements in order to place them correctly in the heap
while sifting up.

Description

void SplMaxHeap::compare (mixed $value1, mixed $value2)

Compare value1 with value2.

Parameters

value1

The value of the first node being compared.

value2

The value of the second node being compared.

Return Values

Result of the comparison, positive integer if value1 is greater than value2, 0 if they are
equal, negative integer otherwise.

Note

Having multiple elements with the same value in a Heap is not recommended. They
will end up in an arbitrary relative position.

The SplMinHeap class

Introduction

The SplMinHeap class provides the main functionalities of a heap, keeping the minimum
on the top.

Class synopsis

SplMinHeap

SplMinHeap extends SplHeap implements Iterator, Countable {

/* Methods */

void SplMinHeap::compare (mixed $value1, mixed $value2)

/* Inherited methods */

abstract int SplHeap::compare (mixed $value1, mixed $value2)

int SplHeap::count (void)

mixed SplHeap::current (void)

mixed SplHeap::extract (void)

void SplHeap::insert (mixed $value)

bool SplHeap::isEmpty (void)

mixed SplHeap::key (void)

void SplHeap::next (void)

void SplHeap::recoverFromCorruption (void)

void SplHeap::rewind (void)

mixed SplHeap::top (void)

bool SplHeap::valid (void)
}

SplMinHeap::compare

SplMinHeap::compare -- Compare elements in order to place them correctly in the heap
while sifting up.

Description

void SplMinHeap::compare (mixed $value1, mixed $value2)

Compare value1 with value2.

Parameters

value1

The value of the first node being compared.

value2

The value of the second node being compared.

Return Values

Result of the comparison, positive integer if value1 is lower than value2, 0 if they are
equal, negative integer otherwise.

Note

Having multiple elements with the same value in a Heap is not recommended. They
will end up in an arbitrary relative position.

The SplPriorityQueue class

Introduction

The SplPriorityQueue class provides the main functionalities of an prioritized queue,
implemented using a heap.

Class synopsis

SplPriorityQueue

SplPriorityQueue implements Iterator, Countable {

/* Methods */

SplPriorityQueue::__construct (void)

void SplPriorityQueue::compare (mixed $priority1, mixed $priority1)

int SplPriorityQueue::count (void)

mixed SplPriorityQueue::current (void)

mixed SplPriorityQueue::extract (void)

void SplPriorityQueue::insert (mixed $value, mixed $priority)

bool SplPriorityQueue::isEmpty (void)

mixed SplPriorityQueue::key (void)

void SplPriorityQueue::next (void)

void SplPriorityQueue::recoverFromCorruption (void)

void SplPriorityQueue::rewind (void)

void SplPriorityQueue::setExtractFlags (int $flags)

mixed SplPriorityQueue::top (void)

bool SplPriorityQueue::valid (void)
}

SplPriorityQueue::compare

SplPriorityQueue::compare -- Compare priorities in order to place elements correctly in the
heap while sifting up.

Description

void SplPriorityQueue::compare (mixed $priority1, mixed $priority1)

Compare priority1 with priority2.

Parameters

priority1

The priority of the first node being compared.

priority2

The priority of the second node being compared.

Return Values

Result of the comparison, positive integer if priority1 is greater than priority2, 0 if they
are equal, negative integer otherwise.

Note

Multiple elements with the same priority will get dequeued in no particular order.

SplPriorityQueue::__construct

SplPriorityQueue::__construct -- Constructs a new empty queue

Description

SplPriorityQueue::__construct (void)

This constructs a new empty queue.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplPriorityQueue::count

SplPriorityQueue::count -- Counts the number of elements in the queue.

Description

int SplPriorityQueue::count (void)

Parameters

This function has no parameters.

Return Values

Returns the number of elements in the queue.

SplPriorityQueue::current

SplPriorityQueue::current -- Return current node pointed by the iterator

Description

mixed SplPriorityQueue::current (void)

Get the current datastructure node.

Parameters

This function has no parameters.

Return Values

The value or priority (or both) of the current node, depending on the extract flag.

SplPriorityQueue::extract

SplPriorityQueue::extract -- Extracts a node from top of the heap and sift up.

Description

mixed SplPriorityQueue::extract (void)

Parameters

This function has no parameters.

Return Values

The value or priority (or both) of the extracted node, depending on the extract flag.

SplPriorityQueue::insert

SplPriorityQueue::insert -- Inserts an element in the queue by sifting it up.

Description

void SplPriorityQueue::insert (mixed $value, mixed $priority)

Insert value with the priority priority in the queue.

Parameters

value

The value to insert.

priority

The associated priority.

Return Values

No value is returned.

SplPriorityQueue::isEmpty

SplPriorityQueue::isEmpty -- Checks whether the queue is empty.

Description

bool SplPriorityQueue::isEmpty (void)

Parameters

This function has no parameters.

Return Values

Returns whether the queue is empty.

SplPriorityQueue::key

SplPriorityQueue::key -- Return current node index

Description

mixed SplPriorityQueue::key (void)

This function returns the current node index

Parameters

This function has no parameters.

Return Values

The current node index.

SplPriorityQueue::next

SplPriorityQueue::next -- Move to the next node

Description

void SplPriorityQueue::next (void)

Extracts the top node from the queue.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplPriorityQueue::recoverFromCorruption

SplPriorityQueue::recoverFromCorruption -- Recover from the corrupted state and allow
further actions on the queue.

Description

void SplPriorityQueue::recoverFromCorruption (void)

Parameters

This function has no parameters.

Return Values

No value is returned.

SplPriorityQueue::rewind

SplPriorityQueue::rewind -- Rewind iterator back to the start (no-op)

Description

void SplPriorityQueue::rewind (void)

This rewinds the iterator to the beginning. This is a no-op for heaps as the iterator is virtual
and in fact never moves from the top of the heap.

Parameters

This function has no parameters.

Return Values

No value is returned.

SplPriorityQueue::setExtractFlags

SplPriorityQueue::setExtractFlags -- Sets the mode of extraction

Description

void SplPriorityQueue::setExtractFlags (int $flags)

Parameters

flags

Defines what is extracted by SplPriorityQueue::current, SplPriorityQueue::top and
SplPriorityQueue::extract.

• SplPriorityQueue::EXTR_DATA (0x00000001): Extract the data

• SplPriorityQueue::EXTR_PRIORITY (0x00000002): Extract the priority

• SplPriorityQueue::EXTR_BOTH (0x00000003): Extract an array containing both

The default mode is SplPriorityQueue::EXTR_DATA.

Return Values

No value is returned.

SplPriorityQueue::top

SplPriorityQueue::top -- Peaks at the node from the top of the queue

Description

mixed SplPriorityQueue::top (void)

Parameters

This function has no parameters.

Return Values

The value or priority (or both) of the top node, depending on the extract flag.

SplPriorityQueue::valid

SplPriorityQueue::valid -- Check whether the queue contains more nodes

Description

bool SplPriorityQueue::valid (void)

Checks if the queue contains any more nodes.

Parameters

This function has no parameters.

Return Values

Returns TRUE if the queue contains any more nodes, FALSE otherwise.

Streams

Introduction

Streams were introduced with PHP 4.3.0 as a way of generalizing file, network, data
compression, and other operations which share a common set of functions and uses. In its
simplest definition, a stream is a resource object which exhibits streamable behavior. That
is, it can be read from or written to in a linear fashion, and may be able to fseek() to an
arbitrary locations within the stream.

A wrapper is additional code which tells the stream how to handle specific
protocols/encodings. For example, the http wrapper knows how to translate a URL into an
HTTP/1.0 request for a file on a remote server. There are many wrappers built into PHP by
default (See List of Supported Protocols/Wrappers), and additional, custom wrappers may
be added either within a PHP script using stream_wrapper_register(), or directly from an
extension using the API Reference in Working with streams. Because any variety of
wrapper may be added to PHP, there is no set limit on what can be done with them. To
access the list of currently registered wrappers, use stream_get_wrappers().

A stream is referenced as: scheme:// target

• scheme (string) - The name of the wrapper to be used. Examples include: file, http,
https, ftp, ftps, compress.zlib, compress.bz2, and php. See List of Supported
Protocols/Wrappers for a list of PHP built-in wrappers. If no wrapper is specified, the
function default is used (typically file://).

• target - Depends on the wrapper used. For filesystem related streams this is typically
a path and filename of the desired file. For network related streams this is typically a
hostname, often with a path appended. Again, see List of Supported
Protocols/Wrappers for a description of targets for built-in streams.

Note

Information on using streams within the PHP source code can be found in the Streams
API for PHP Extension Authors reference.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Streams are an integral part of PHP as of version 4.3.0. No steps are required to enable
them.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Stream Classes

User designed wrappers can be registered via stream_wrapper_register(), using the class
definition shown on that manual page.

class php_user_filter is predefined and is an abstract baseclass for use with user defined
filters. See the manual page for stream_filter_register() for details on implementing user
defined filters.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Constant Description

STREAM_FILTER_READ * Used with stream_filter_append() and
stream_filter_prepend() to indicate that the
specified filter should only be applied when
reading

STREAM_FILTER_WRITE * Used with stream_filter_append() and
stream_filter_prepend() to indicate that the
specified filter should only be applied when
writing

STREAM_FILTER_ALL * This constant is equivalent to
STREAM_FILTER_READ |
STREAM_FILTER_WRITE

PSFS_PASS_ON * Return Code indicating that the userspace
filter returned buckets in $out.

PSFS_FEED_ME * Return Code indicating that the userspace
filter did not return buckets in $out (i.e. No
data available).

PSFS_ERR_FATAL * Return Code indicating that the userspace
filter encountered an unrecoverable error
(i.e. Invalid data received).

STREAM_USE_PATH Flag indicating if the stream used the
include path.

STREAM_REPORT_ERRORS Flag indicating if the wrapper is responsible
for raising errors using trigger_error() during
opening of the stream. If this flag is not set,
you should not raise any errors.

STREAM_CLIENT_ASYNC_CONNECT * Open client socket asynchronously. This
option must be used together with the
STREAM_CLIENT_CONNECT flag. Used
with stream_socket_client().

STREAM_CLIENT_CONNECT * Open client socket connection. Client
sockets should always include this flag.
Used with stream_socket_client().

STREAM_CLIENT_PERSISTENT * Client socket opened with
stream_socket_client() should remain
persistent between page loads.

STREAM_SERVER_BIND * Tells a stream created with
stream_socket_server() to bind to the
specified target. Server sockets should
always include this flag.

STREAM_SERVER_LISTEN * Tells a stream created with
stream_socket_server() and bound using
the STREAM_SERVER_BIND flag to start
listening on the socket.
Connection-orientated transports (such as
TCP) must use this flag, otherwise the
server socket will not be enabled. Using this
flag for connect-less transports (such as
UDP) is an error.

STREAM_NOTIFY_RESOLVE * A remote address required for this stream
has been resolved, or the resolution failed.
See severity for an indication of which
happened.

STREAM_NOTIFY_CONNECT A connection with an external resource has
been established.

STREAM_NOTIFY_AUTH_REQUIRED Additional authorization is required to
access the specified resource. Typical
issued with severity level of
STREAM_NOTIFY_SEVERITY_ERR.

STREAM_NOTIFY_MIME_TYPE_IS The mime-type of resource has been
identified, refer to message for a description
of the discovered type.

STREAM_NOTIFY_FILE_SIZE_IS The size of the resource has been
discovered.

STREAM_NOTIFY_REDIRECTED The external resource has redirected the
stream to an alternate location. Refer to
message.

STREAM_NOTIFY_PROGRESS Indicates current progress of the stream
transfer in bytes_transferred and possibly
bytes_max as well.

STREAM_NOTIFY_COMPLETED * There is no more data available on the
stream.

STREAM_NOTIFY_FAILURE A generic error occurred on the stream,
consult message and message_code for

details.

STREAM_NOTIFY_AUTH_RESULT Authorization has been completed (with or
without success).

STREAM_NOTIFY_SEVERITY_INFO Normal, non-error related, notification.

STREAM_NOTIFY_SEVERITY_WARN Non critical error condition. Processing may
continue.

STREAM_NOTIFY_SEVERITY_ERR A critical error occurred. Processing cannot
continue.

STREAM_IPPROTO_ICMP + Provides a ICMP socket.

STREAM_IPPROTO_IP + Provides a IP socket.

STREAM_IPPROTO_RAW + Provides a RAW socket.

STREAM_IPPROTO_TCP + Provides a TCP socket.

STREAM_IPPROTO_UDP + Provides a UDP socket.

STREAM_PF_INET + Internet Protocol Version 4 (IPv4).

STREAM_PF_INET6 + Internet Protocol Version 6 (IPv6).

STREAM_PF_UNIX + Unix system internal protocols.

STREAM_SOCK_DGRAM + Provides datagrams, which are
connectionless messages (UDP, for
example).

STREAM_SOCK_RAW + Provides a raw socket, which provides
access to internal network protocols and
interfaces. Usually this type of socket is just
available to the root user.

STREAM_SOCK_RDM + Provides a RDM (Reliably-delivered
messages) socket.

STREAM_SOCK_SEQPACKET + Provides a sequenced packet stream
socket.

STREAM_SOCK_STREAM + Provides sequenced, two-way byte streams
with a transmission mechanism for
out-of-band data (TCP, for example).

STREAM_SHUT_RD Used with stream_socket_shutdown() to
disable further receptions. Added in PHP
5.2.1.

STREAM_SHUT_WR Used with stream_socket_shutdown() to
disable further transmissions. Added in PHP
5.2.1.

STREAM_SHUT_RDWR Used with stream_socket_shutdown() to
disable further receptions and
transmissions. Added in PHP 5.2.1.

Note

The constants marked with * are just available since PHP 5.0.0.

Note

The constants marked with + are available since PHP 5.1.0 and are meant to be used
with stream_socket_pair(). Please note that some of these constants might not be
available in your system.

Stream Filters

A filter is a final piece of code which may perform operations on data as it is being read
from or written to a stream. Any number of filters may be stacked onto a stream. Custom
filters can be defined in a PHP script using stream_filter_register() or in an extension using
the API Reference in Working with streams. To access the list of currently registered
filters, use stream_get_filters().

Stream Contexts

A context is a set of parameters and wrapper specific options which modify or enhance the
behavior of a stream. Contexts are created using stream_context_create() and can be
passed to most filesystem related stream creation functions (i.e. fopen(), file(),
file_get_contents(), etc...).

Options can be specified when calling stream_context_create(), or later using
stream_context_set_option(). A list of wrapper specific options can be found in the Context
options and parameters chapter.

Parameters can be specified for contexts using the stream_context_set_params() function.

Stream Errors

As with any file or socket related function, an operation on a stream may fail for a variety of
normal reasons (i.e.: Unable to connect to remote host, file not found, etc...). A stream
related call may also fail because the desired stream is not registered on the running
system. See the array returned by stream_get_wrappers() for a list of streams supported
by your installation of PHP. As with most PHP internal functions if a failure occurs an
E_WARNING message will be generated describing the nature of the error.

Examples

Example #2069 - Using file_get_contents() to retrieve data from multiple sources

<?php

/* Read local file from /home/bar */

$localfile = file_get_contents("/home/bar/foo.txt");

/* Identical to above, explicitly naming FILE scheme */

$localfile = file_get_contents("file:///home/bar/foo.txt");

/* Read remote file from www.example.com using HTTP */

$httpfile = file_get_contents("http://www.example.com/foo.txt");

/* Read remote file from www.example.com using HTTPS */

$httpsfile = file_get_contents("https://www.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTP */

$ftpfile = file_get_contents("ftp://user:pass@ftp.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTPS */

$ftpsfile = file_get_contents("ftps://user:pass@ftp.example.com/foo.txt");

?>

Example #2070 - Making a POST request to an https server

<?php

/* Send POST request to https://secure.example.com/form_action.php

* Include form elements named "foo" and "bar" with dummy values

*/

$sock = fsockopen("ssl://secure.example.com", 443, $errno, $errstr, 30);

if (!$sock) die("$errstr ($errno)\n");

$data = "foo=" . urlencode("Value for Foo") . "&bar=" . urlencode("Value for
Bar");

fwrite($sock, "POST /form_action.php HTTP/1.0\r\n");

fwrite($sock, "Host: secure.example.com\r\n");

fwrite($sock, "Content-type: application/x-www-form-urlencoded\r\n");

fwrite($sock, "Content-length: " . strlen($data) . "\r\n");

fwrite($sock, "Accept: */*\r\n");

fwrite($sock, "\r\n");

fwrite($sock, "$data\r\n");

fwrite($sock, "\r\n");

$headers = "";

while ($str = trim(fgets($sock, 4096)))

$headers .= "$str\n";

echo "\n";

$body = "";

while (!feof($sock))

$body .= fgets($sock, 4096);

fclose($sock);

?>

Example #2071 - Writing data to a compressed file

<?php

/* Create a compressed file containing an arbitrarty string

* File can be read back using compress.zlib stream or just

* decompressed from the command line using 'gzip -d foo-bar.txt.gz'

*/

$fp = fopen("compress.zlib://foo-bar.txt.gz", "wb");

if (!$fp) die("Unable to create file.");

fwrite($fp, "This is a test.\n");

fclose($fp);

?>

Stream Functions

stream_bucket_append

stream_bucket_append -- Append bucket to brigade

Description

void stream_bucket_append (resource $brigade, resource $bucket)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_make_writeable

stream_bucket_make_writeable -- Return a bucket object from the brigade for operating
on

Description

object stream_bucket_make_writeable (resource $brigade)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_new

stream_bucket_new -- Create a new bucket for use on the current stream

Description

object stream_bucket_new (resource $stream, string $buffer)

Warning

This function is currently not documented; only its argument list is available.

stream_bucket_prepend

stream_bucket_prepend -- Prepend bucket to brigade

Description

void stream_bucket_prepend (resource $brigade, resource $bucket)

Warning

This function is currently not documented; only its argument list is available.

stream_context_create

stream_context_create -- Create a streams context

Description

resource stream_context_create ([array $options [, array $params]])

Creates and returns a stream context with any options supplied in options preset.

Parameters

options

Must be an associative array of associative arrays in the format $arr['wrapper']['option']
= $value. Default to an empty array.

params

Must be an associative array in the format $arr['parameter'] = $value. Refer to
stream_context_set_params() for a listing of standard stream parameters.

Return Values

A stream context resource.

ChangeLog

Version Description

5.3.0 Added the optional params argument.

Examples

Example #2072 - Using stream_context_create()

<?php

$opts = array(

 'http'=>array(

 'method'=>"GET",

 'header'=>"Accept-language: en\r\n" .

 "Cookie: foo=bar\r\n"

)

);

$context = stream_context_create($opts);

/* Sends an http request to www.example.com

 with additional headers shown above */

$fp = fopen('http://www.example.com', 'r', false, $context);

fpassthru($fp);

fclose($fp);

?>

See Also

• stream_context_set_option()
• Listing of supported wrappers (List of Supported Protocols/Wrappers)
• Context options (Context options and parameters)

stream_context_get_default

stream_context_get_default -- Retreive the default streams context

Description

resource stream_context_get_default ([array $options])

Returns the default stream context which is used whenever file operations (fopen(),
file_get_contents(), etc...) are called without a context parameter. Options for the default
context can optionally be specified with this function using the same syntax as
stream_context_create().

options must be an associative array of associative arrays in the format
$arr['wrapper']['option'] = $value.

Example #2073 - Using stream_context_get_default()

<?php

$default_opts = array(

 'http'=>array(

 'method'=>"GET",

 'header'=>"Accept-language: en\r\n" .

 "Cookie: foo=bar",

 'proxy'=>"tcp://10.54.1.39:8000"

)

);

$alternate_opts = array(

 'http'=>array(

 'method'=>"POST",

 'header'=>"Content-type: application/x-www-form-urlencoded\r\n" .

 "Content-length: " . strlen("baz=bomb"),

 'content'=>"baz=bomb"

)

);

$default = stream_context_get_default($default_opts);

$alternate = stream_context_create($alternate_opts);

/* Sends a regular GET request to proxy server at 10.54.1.39

* For www.example.com using context options specified in $default_opts

*/

readfile('http://www.example.com');

/* Sends a POST request directly to www.example.com

* Using context options specified in $alternate_opts

*/

readfile('http://www.example.com', false, $alternate);

?>

See also stream_context_create(), and Listing of supported wrappers with context options
(List of Supported Protocols/Wrappers).

stream_context_get_options

stream_context_get_options -- Retrieve options for a stream/wrapper/context

Description

array stream_context_get_options (resource $stream_or_context)

Returns an array of options on the specified stream or context.

stream_context_set_option

stream_context_set_option -- Sets an option for a stream/wrapper/context

Description

bool stream_context_set_option (resource $stream_or_context, string $wrapper, string
$option, mixed $value)

bool stream_context_set_option (resource $stream_or_context, array $options)

Sets an option on the specified context. value is set to option for wrapper

stream_context_set_params

stream_context_set_params -- Set parameters for a stream/wrapper/context

Description

bool stream_context_set_params (resource $stream_or_context, array $params)

params should be an associative array of the structure: $params['paramname'] =
"paramvalue";.

Parameters

Parameters Purpose

notification Name of user-defined callback function to
be called whenever a stream triggers a
notification.

options Array of options as in
stream_context_create().

stream_copy_to_stream

stream_copy_to_stream -- Copies data from one stream to another

Description

int stream_copy_to_stream (resource $source, resource $dest [, int $maxlength [, int $
offset]])

Makes a copy of up to maxlength bytes of data from the current position (or from the
offset position, if specified) in source to dest. If maxlength is not specified, all remaining
content in source will be copied.

Parameters

source

The source stream

dest

The destination stream

maxlength

Maximum bytes to copy

offset

The offset where to start to copy data

Return Values

Returns the total count of bytes copied.

ChangeLog

Version Description

5.1.0 Added the offset parameter

Examples

Example #2074 - A stream_copy_to_stream() example

<?php

$src = fopen('http://www.example.com', 'r');

$dest1 = fopen('first1k.txt', 'w');

$dest2 = fopen('remainder.txt', 'w');

echo stream_copy_to_stream($src, $dest1, 1024) . " bytes copied to
first1k.txt\n";

echo stream_copy_to_stream($src, $dest2) . " bytes copied to
remainder.txt\n";

?>

See Also

• copy()

stream_encoding

stream_encoding -- Set character set for stream encoding

Description

bool stream_encoding (resource $stream [, string $encoding])

Warning

This function is currently not documented; only its argument list is available.

stream_filter_append

stream_filter_append -- Attach a filter to a stream

Description

resource stream_filter_append (resource $stream, string $filtername [, int $
read_write [, mixed $params]])

Adds filtername to the list of filters attached to stream. This filter will be added with the
specified params to the end of the list and will therefore be called last during stream
operations. To add a filter to the beginning of the list, use stream_filter_prepend().

By default, stream_filter_append() will attach the filter to the read filter chain if the file was
opened for reading (i.e. File Mode: r, and/or +). The filter will also be attached to the write
filter chain if the file was opened for writing (i.e. File Mode: w, a, and/or +).
STREAM_FILTER_READ, STREAM_FILTER_WRITE, and/or STREAM_FILTER_ALL
can also be passed to the read_write parameter to override this behavior.

As of PHP 5.1.0, this function returns a resource which can be used to refer to this filter
instance during a call to stream_filter_remove(). Prior to PHP 5.1.0, this function returns
TRUE on success or FALSE on failure.

Example #2075 - Controlling where filters are applied

<?php

/* Open a test file for reading and writing */

$fp = fopen('test.txt', 'w+');

/* Apply the ROT13 filter to the

* write filter chain, but not the

* read filter chain */

stream_filter_append($fp, "string.rot13", STREAM_FILTER_WRITE);

/* Write a simple string to the file

* it will be ROT13 transformed on the

* way out */

fwrite($fp, "This is a test\n");

/* Back up to the beginning of the file */

rewind($fp);

/* Read the contents of the file back out.

* Had the filter been applied to the

* read filter chain as well, we would see

* the text ROT13ed back to its original state */

fpassthru($fp);

fclose($fp);

/* Expected Output

Guvf vf n grfg

*/

?>

Note

When using custom (user) filters

stream_filter_register() must be called first in order to register the desired user filter to
filtername.

Note

Stream data is read from resources (both local and remote) in chunks, with any
unconsumed data kept in internal buffers. When a new filter is appended to a stream,
data in the internal buffers is processed through the new filter at that time. This differs
from the behavior of stream_filter_prepend().

See also stream_filter_register(), stream_filter_prepend(), and stream_get_filters().

stream_filter_prepend

stream_filter_prepend -- Attach a filter to a stream

Description

resource stream_filter_prepend (resource $stream, string $filtername [, int $
read_write [, mixed $params]])

Adds filtername to the list of filters attached to stream. This filter will be added with the
specified params to the beginning of the list and will therefore be called first during stream
operations. To add a filter to the end of the list, use stream_filter_append().

By default, stream_filter_prepend() will attach the filter to the read filter chain if the file was
opened for reading (i.e. File Mode: r, and/or +). The filter will also be attached to the write
filter chain if the file was opened for writing (i.e. File Mode: w, a, and/or +).
STREAM_FILTER_READ, STREAM_FILTER_WRITE, and/or STREAM_FILTER_ALL
can also be passed to the read_write parameter to override this behavior. See
stream_filter_append() for an example of using this parameter.

As of PHP 5.1.0, this function returns a resource which can be used to refer to this filter
instance during a call to stream_filter_remove(). Prior to PHP 5.1.0, this function returns
TRUE on success or FALSE on failure.

Note

When using custom (user) filters

stream_filter_register() must be called first in order to register the desired user filter to
filtername.

Note

Stream data is read from resources (both local and remote) in chunks, with any
unconsumed data kept in internal buffers. When a new filter is prepended to a stream,
data in the internal buffers, which has already been processed through other filters will
not be reprocessed through the new filter at that time. This differs from the behavior of
stream_filter_append().

See also stream_filter_register(), and stream_filter_append().

stream_filter_register

stream_filter_register -- Register a stream filter implemented as a PHP class derived from
php_user_filter

Description

bool stream_filter_register (string $filtername, string $classname)

stream_filter_register() allows you to implement your own filter on any registered stream
used with all the other filesystem functions (such as fopen(), fread() etc.).

To implement a filter, you need to define a class as an extension of php_user_filter with a
number of member functions as defined below. When performing read/write operations on
the stream to which your filter is attached, PHP will pass the data through your filter (and
any other filters attached to that stream) so that the data may be modified as desired. You
must implement the methods exactly as described below - doing otherwise will lead to
undefined behaviour.

stream_filter_register() will return FALSE if the filtername is already defined.

int filter (resource $in, resource $out, int &$consumed, bool $closing)

This method is called whenever data is read from or written to the attached stream (such
as with fread() or fwrite()). in is a resource pointing to a bucket brigade which contains
one or more bucket objects containing data to be filtered. out is a resource pointing to a
second bucket brigade into which your modified buckets should be placed. consumed,
which must always be declared by reference, should be incremented by the length of the
data which your filter reads in and alters. In most cases this means you will increment
consumed by $bucket->datalen for each $bucket. If the stream is in the process of closing
(and therefore this is the last pass through the filterchain), the closing parameter will be
set to TRUE The filter method must return one of three values upon completion.

Return Value Meaning

PSFS_PASS_ON Filter processed successfully with data
available in the out bucket brigade.

PSFS_FEED_ME Filter processed successfully, however no
data was available to return. More data is
required from the stream or prior filter.

PSFS_ERR_FATAL (default) The filter experienced an unrecoverable
error and cannot continue.

bool onCreate (void)

This method is called during instantiation of the filter class object. If your filter allocates or
initializes any other resources (such as a buffer), this is the place to do it. Your
implementation of this method should return FALSE on failure, or TRUE on success.

When your filter is first instantiated, and yourfilter->onCreate() is called, a number of
properties will be available as shown in the table below.

Property Contents

FilterClass->filtername A string containing the name the filter was
instantiated with. Filters may be registered
under multiple names or under wildcards.
Use this property to determine which name
was used.

FilterClass->params The contents of the params parameter
passed to stream_filter_append() or
stream_filter_prepend().

void onClose (void)

This method is called upon filter shutdown (typically, this is also during stream shutdown),
and is executed after the flush method is called. If any resources were allocated or
initialzed during onCreate this would be the time to destroy or dispose of them.

The example below implements a filter named strtoupper on the foo-bar.txt stream which
will capitalize all letter characters written to/read from that stream.

Example #2076 - Filter for capitalizing characters on foo-bar.txt stream

<?php

/* Define our filter class */

class strtoupper_filter extends php_user_filter {

 function filter($in, $out, &$consumed, $closing)

 {

 while ($bucket = stream_bucket_make_writeable($in)) {

 $bucket->data = strtoupper($bucket->data);

 $consumed += $bucket->datalen;

 stream_bucket_append($out, $bucket);

 }

 return PSFS_PASS_ON;

 }

}

/* Register our filter with PHP */

stream_filter_register("strtoupper", "strtoupper_filter")

 or die("Failed to register filter");

$fp = fopen("foo-bar.txt", "w");

/* Attach the registered filter to the stream just opened */

stream_filter_append($fp, "strtoupper");

fwrite($fp, "Line1\n");

fwrite($fp, "Word - 2\n");

fwrite($fp, "Easy As 123\n");

fclose($fp);

/* Read the contents back out

*/

readfile("foo-bar.txt");

?>

The above example will output:

LINE1

WORD - 2

EASY AS 123

Example #2077 - Registering a generic filter class to match multiple filter names.

<?php

/* Define our filter class */

class string_filter extends php_user_filter {

 var $mode;

 function filter($in, $out, &$consumed, $closing)

 {

 while ($bucket = stream_bucket_make_writeable($in)) {

 if ($this->mode == 1) {

 $bucket->data = strtoupper($bucket->data);

 } elseif ($this->mode == 0) {

 $bucket->data = strtolower($bucket->data);

 }

 $consumed += $bucket->datalen;

 stream_bucket_append($out, $bucket);

 }

 return PSFS_PASS_ON;

 }

 function onCreate()

 {

 if ($this->filtername == 'str.toupper') {

 $this->mode = 1;

 } elseif ($this->filtername == 'str.tolower') {

 $this->mode = 0;

 } else {

 /* Some other str.* filter was asked for,

 report failure so that PHP will keep looking */

 return false;

 }

 return true;

 }

}

/* Register our filter with PHP */

stream_filter_register("str.*", "string_filter")

 or die("Failed to register filter");

$fp = fopen("foo-bar.txt", "w");

/* Attach the registered filter to the stream just opened

 We could alternately bind to str.tolower here */

stream_filter_append($fp, "str.toupper");

fwrite($fp, "Line1\n");

fwrite($fp, "Word - 2\n");

fwrite($fp, "Easy As 123\n");

fclose($fp);

/* Read the contents back out

*/

readfile("foo-bar.txt");

?>

The above example will output:

LINE1

WORD - 2

EASY AS 123

See also stream_wrapper_register(), stream_filter_prepend(), and stream_filter_append().

stream_filter_remove

stream_filter_remove -- Remove a filter from a stream

Description

bool stream_filter_remove (resource $stream_filter)

Removes a stream filter previously added to a stream with stream_filter_prepend() or
stream_filter_append(). Any data remaining in the filter's internal buffer will be flushed
through to the next filter before removing it.

Example #2078 - Dynamicly refiltering a stream

<?php

/* Open a test file for reading and writing */

$fp = fopen("test.txt", "rw");

$rot13_filter = stream_filter_append($fp, "string.rot13",
STREAM_FILTER_WRITE);

fwrite($fp, "This is ");

stream_filter_remove($rot13_filter);

fwrite($fp, "a test\n");

rewind($fp);

fpassthru($fp);

fclose($fp);

/* Expected Output

Guvf vf a test

*/

?>

See also stream_filter_register(), stream_filter_append(), and stream_filter_prepend().

stream_get_contents

stream_get_contents -- Reads remainder of a stream into a string

Description

string stream_get_contents (resource $handle [, int $maxlength [, int $offset]])

Identical to file_get_contents(), except that stream_get_contents() operates on an already
open stream resource and returns the remaining contents in a string, up to maxlength
bytes and starting at the specified offset.

Parameters

handle (resource)
A stream resource (e.g. returned from fopen())

maxlength (integer)
The maximum bytes to read. Defaults to -1 (read all the remaining buffer).

offset (integer)
Seek to the specified offset before reading. Added in PHP 5.1.0.

Return Values

Returns a string, or FALSE on failure.

Examples

Example #2079 - stream_get_contents() example

<?php

if ($stream = fopen('http://www.example.com', 'r')) {

 // print all the page starting at the offset 10

 echo stream_get_contents($stream, -1, 10);

 fclose($stream);

}

if ($stream = fopen('http://www.example.net', 'r')) {

 // print the first 5 bytes

 echo stream_get_contents($stream, 5);

 fclose($stream);

}

?>

See Also

• fgets()
• fread()
• fpassthru()

Note

This function is binary-safe.

stream_get_filters

stream_get_filters -- Retrieve list of registered filters

Description

array stream_get_filters (void)

Returns an indexed array containing the name of all stream filters available on the running
system.

Example #2080 - Using stream_get_filters()

<?php

$streamlist = stream_get_filters();

print_r($streamlist);

?>

Output will be similar to the following. Note: there may be more or fewer filters in your
version of PHP.

Array (

 [0] => string.rot13

 [1] => string.toupper

 [2] => string.tolower

 [3] => string.base64

 [4] => string.quoted-printable

)

See also stream_filter_register(), and stream_get_wrappers().

stream_get_line

stream_get_line -- Gets line from stream resource up to a given delimiter

Description

string stream_get_line (resource $handle, int $length [, string $ending])

Returns a string of up to length bytes read from the file pointed to by handle. Reading
ends when length bytes have been read, when the string specified by ending is found
(which is not included in the return value), or on EOF (whichever comes first).

If an error occurs, returns FALSE.

This function is nearly identical to fgets() except in that it allows end of line delimiters other
than the standard \n, \r, and \r\n, and does not return the delimiter itself.

See also fread(), fgets(), and fgetc().

stream_get_meta_data

stream_get_meta_data -- Retrieves header/meta data from streams/file pointers

Description

array stream_get_meta_data (resource $stream)

Returns information about an existing stream. The stream can be any stream created by
fopen(), fsockopen() and pfsockopen(). The result array contains the following items:

• timed_out (bool) - TRUE if the stream timed out while waiting for data on the last call
to fread() or fgets().

• blocked (bool) - TRUE if the stream is in blocking IO mode. See stream_set_blocking()
.

• eof (bool) - TRUE if the stream has reached end-of-file. Note that for socket streams
this member can be TRUE even when unread_bytes is non-zero. To determine if there
is more data to be read, use feof() instead of reading this item.

• unread_bytes (int) - the number of bytes currently contained in the PHP's own internal
buffer.

Note

You shouldn't use this value in a script.

The following items were added in PHP 4.3.0:

• stream_type (string) - a label describing the underlying implementation of the stream.

• wrapper_type (string) - a label describing the protocol wrapper implementation layered
over the stream. See List of Supported Protocols/Wrappers for more information about
wrappers.

• wrapper_data (mixed) - wrapper specific data attached to this stream. See List of
Supported Protocols/Wrappers for more information about wrappers and their wrapper
data.

• filters (array) - and array containing the names of any filters that have been stacked
onto this stream. Documentation on filters can be found in the Filters appendix.

Note

This function was introduced in PHP 4.3.0, but prior to this version,

socket_get_status() could be used to retrieve the first four items, for socket based
streams only.

In PHP 4.3.0 and later, socket_get_status() is an alias for this function.

Note

This function does NOT work on sockets created by the Socket extension.

The following items were added in PHP 5.0.0:

• mode (string) - the type of access required for this stream (see Table 1 of the fopen()
reference)

• seekable (bool) - whether the current stream can be seeked.

• uri (string) - the URI/filename associated with this stream.

stream_get_transports

stream_get_transports -- Retrieve list of registered socket transports

Description

array stream_get_transports (void)

Returns an indexed array containing the name of all socket transports available on the
running system.

Example #2081 - Using stream_get_transports()

<?php

$xportlist = stream_get_transports();

print_r($xportlist);

?>

Output will be similar to the following. Note: there may be more or fewer transports in
your version of PHP.

Array (

 [0] => tcp

 [1] => udp

 [2] => unix

 [3] => udg

)

See also stream_get_filters(), and stream_get_wrappers().

stream_get_wrappers

stream_get_wrappers -- Retrieve list of registered streams

Description

array stream_get_wrappers (void)

Returns an indexed array containing the name of all stream wrappers available on the
running system.

Example #2082 - stream_get_wrappers() example

<?php

print_r(stream_get_wrappers());

?>

The above example will output something similar to:

Array

(

 [0] => php

 [1] => file

 [2] => http

 [3] => ftp

 [4] => compress.bzip2

 [5] => compress.zlib

)

Example #2083 - Checking for the existence of a stream wrapper

<?php

// check for the existence of the bzip2 stream wrapper

if (in_array('compress.bzip2', stream_get_wrappers())) {

 echo 'compress.bzip2:// support enabled.';

} else {

 echo 'compress.bzip2:// support not enabled.';

}

?>

See also stream_wrapper_register().

stream_notification_callback

stream_notification_callback -- A callback function for the notification context paramater

Description

void stream_notification_callback (int $notification_code, int $severity, string $
message, int $message_code, int $bytes_transferred, int $bytes_max)

A callback function called during an event.

Note

This is not a real function, only a prototype of how the function should be.

Parameters

notification_code

One of the STREAM_NOTIFY_* notification constants.

severity

One of the STREAM_NOTIFY_SEVERITY_* notification constants.

message

Passed if a descriptive message is available for the event.

message_code

Passed if a descriptive message code is available for the event. The meaning of this
value is dependent on the specific wrapper in use.

bytes_transferred

If applicable, the bytes_transferred will be populated.

bytes_max

If applicable, the bytes_max will be populated.

Return Values

No value is returned.

Examples

Example #2084 - stream_notification_callback() example

<?php

function stream_notification_callback($notification_code, $severity,
$message, $message_code, $bytes_transferred, $bytes_max) {

 switch($notification_code) {

 case STREAM_NOTIFY_RESOLVE:

 case STREAM_NOTIFY_AUTH_REQUIRED:

 case STREAM_NOTIFY_COMPLETED:

 case STREAM_NOTIFY_FAILURE:

 case STREAM_NOTIFY_AUTH_RESULT:

 var_dump($notification_code, $severity, $message, $message_code,
$bytes_transferred, $bytes_max);

 /* Ignore */

 break;

 case STREAM_NOTIFY_REDIRECTED:

 echo "Being redirected to: ", $message;

 break;

 case STREAM_NOTIFY_CONNECT:

 echo "Conntected...";

 break;

 case STREAM_NOTIFY_FILE_SIZE_IS:

 echo "Got the filesize: ", $bytes_max;

 break;

 case STREAM_NOTIFY_MIME_TYPE_IS:

 echo "Found the mime-type: ", $message;

 break;

 case STREAM_NOTIFY_PROGRESS:

 echo "Made some progress, downloaded ", $bytes_transferred, " so
far";

 break;

 }

 echo "\n";

}

$ctx = stream_context_create(null, array("notification" =>
"stream_notification_callback"));

file_get_contents("http://php.net/contact", false, $ctx);

?>

The above example will output something similar to:

Conntected...

Found the mime-type: text/html; charset=utf-8

Being redirected to: http://no.php.net/contact

Conntected...

Got the filesize: 0

Found the mime-type: text/html; charset=utf-8

Being redirected to: http://no.php.net/contact.php

Conntected...

Got the filesize: 4589

Found the mime-type: text/html;charset=utf-8

Made some progress, downloaded 0 so far

Made some progress, downloaded 0 so far

Made some progress, downloaded 0 so far

Made some progress, downloaded 1440 so far

Made some progress, downloaded 2880 so far

Made some progress, downloaded 4320 so far

Made some progress, downloaded 5760 so far

Made some progress, downloaded 6381 so far

Made some progress, downloaded 7002 so far

Example #2085 - Simple progressbar for commandline download client

<?php

function usage($argv) {

 echo "Usage:\n";

 printf("\tphp %s <http://example.com/file> <localfile>\n", $argv[0]);

 exit(1);

}

function stream_notification_callback($notification_code, $severity,
$message, $message_code, $bytes_transferred, $bytes_max) {

 static $filesize = null;

 switch($notification_code) {

 case STREAM_NOTIFY_RESOLVE:

 case STREAM_NOTIFY_AUTH_REQUIRED:

 case STREAM_NOTIFY_COMPLETED:

 case STREAM_NOTIFY_FAILURE:

 case STREAM_NOTIFY_AUTH_RESULT:

 /* Ignore */

 break;

 case STREAM_NOTIFY_REDIRECTED:

 echo "Being redirected to: ", $message, "\n";

 break;

 case STREAM_NOTIFY_CONNECT:

 echo "Conntected...\n";

 break;

 case STREAM_NOTIFY_FILE_SIZE_IS:

 $filesize = $bytes_max;

 echo "Filesize: ", $filesize, "\n";

 break;

 case STREAM_NOTIFY_MIME_TYPE_IS:

 echo "Mime-type: ", $message, "\n";

 break;

 case STREAM_NOTIFY_PROGRESS:

 if ($bytes_transferred > 0) {

 if (!isset($filesize)) {

 printf("\rUnknown filesize.. %2d kb done..",
$bytes_transferred/1024);

 } else {

 $length = (int)(($bytes_transferred/$filesize)*100);

 printf("\r[%-100s] %d%% (%2d/%2d kb)", str_repeat("=",
$length). ">", $length, ($bytes_transferred/1024), $filesize/1024);

 }

 }

 break;

 }

}

isset($argv[1], $argv[2]) or usage($argv);

$ctx = stream_context_create(null, array("notification" =>
"stream_notification_callback"));

$fp = fopen($argv[1], "r", false, $ctx);

if (is_resource($fp) && file_put_contents($argv[2], $fp)) {

 echo "\nDone!\n";

 exit(0);

}

$err = error_get_last();

echo "\nErrrrrorr..\n", $err["message"], "\n";

exit(1);

?>

Executing the example above with: php -n fetch.php
http://no2.php.net/get/php-5-LATEST.tar.bz2/from/this/mirror php-latest.tar.bz2 will
output something similar too:

Conntected...

Mime-type: text/html; charset=utf-8

Being redirected to: http://no2.php.net/distributions/php-5.2.5.tar.bz2

Conntected...

Filesize: 7773024

Mime-type: application/octet-stream

[==>
] 40% (3076/7590 kb)

See Also

• Context parameters

stream_register_wrapper

stream_register_wrapper -- Alias of stream_wrapper_register()

Description

This function is an alias of: stream_wrapper_register().

stream_resolve_include_path

stream_resolve_include_path -- Determine what file will be opened by calls to fopen() with
a relative path

Description

string stream_resolve_include_path (string $filename [, resource $context])

Warning

This function is currently not documented; only its argument list is available.

stream_select

stream_select -- Runs the equivalent of the select() system call on the given arrays of
streams with a timeout specified by tv_sec and tv_usec

Description

int stream_select (array &$read, array &$write, array &$except, int $tv_sec [, int $
tv_usec])

The stream_select() function accepts arrays of streams and waits for them to change
status. Its operation is equivalent to that of the socket_select() function except in that it
acts on streams.

The streams listed in the read array will be watched to see if characters become available
for reading (more precisely, to see if a read will not block - in particular, a stream resource
is also ready on end-of-file, in which case an fread() will return a zero length string).

The streams listed in the write array will be watched to see if a write will not block.

The streams listed in the except array will be watched for high priority exceptional
("out-of-band") data arriving.

Note

When stream_select() returns, the arrays read, write and except are modified to
indicate which stream resource(s) actually changed status.

The tv_sec and tv_usec together form the timeout parameter, tv_sec specifies the
number of seconds while tv_usec the number of microseconds. The timeout is an upper
bound on the amount of time that stream_select() will wait before it returns. If tv_sec and
tv_usec are both set to 0, stream_select() will not wait for data - instead it will return
immediately, indicating the current status of the streams. If tv_sec is NULL
stream_select() can block indefinitely, returning only when an event on one of the watched
streams occurs (or if a signal interrupts the system call).

On success stream_select() returns the number of stream resources contained in the
modified arrays, which may be zero if the timeout expires before anything interesting
happens. On error FALSE is returned and a warning raised (this can happen if the system
call is interrupted by an incoming signal).

Warning

Using a timeout value of 0 allows you to instantaneously poll the status of the streams,
however, it is NOT a good idea to use a 0 timeout value in a loop as it will cause your
script to consume too much CPU time.

It is much better to specify a timeout value of a few seconds, although if you need to
be checking and running other code concurrently, using a timeout value of at least
200000 microseconds will help reduce the CPU usage of your script.

Remember that the timeout value is the maximum time that will elapse;
stream_select() will return as soon as the requested streams are ready for use.

You do not need to pass every array to stream_select(). You can leave it out and use an
empty array or NULL instead. Also do not forget that those arrays are passed by reference
and will be modified after stream_select() returns.

This example checks to see if data has arrived for reading on either $stream1 or $stream2
. Since the timeout value is 0 it will return immediately:
<?php

/* Prepare the read array */

$read = array($stream1, $stream2);

$write = NULL;

$except = NULL;

if (false === ($num_changed_streams = stream_select($read, $write, $except, 0)))
{

 /* Error handling */

} elseif ($num_changed_streams > 0) {

 /* At least on one of the streams something interesting happened */

}

?>

Note

Due to a limitation in the current Zend Engine it is not possible to pass a constant
modifier like NULL directly as a parameter to a function which expects this parameter
to be passed by reference. Instead use a temporary variable or an expression with the
leftmost member being a temporary variable:
<?php

$e = NULL;

stream_select($r, $w, $e, 0);

?>

Note

Be sure to use the === operator when checking for an error. Since the stream_select()
may return 0 the comparison with == would evaluate to TRUE:
<?php

$e = NULL;

if (false === stream_select($r, $w, $e, 0)) {

 echo "stream_select() failed\n";

}

?>

Note

If you read/write to a stream returned in the arrays be aware that they do not
necessarily read/write the full amount of data you have requested. Be prepared to
even only be able to read/write a single byte.

Note

Windows compatibility: stream_select() used on a pipe returned from proc_open() may
cause data loss under Windows 98.

Use of stream_select() on file descriptors returned by proc_open() will fail and return
FALSE under Windows.

See also stream_set_blocking().

stream_set_blocking

stream_set_blocking -- Set blocking/non-blocking mode on a stream

Description

bool stream_set_blocking (resource $stream, int $mode)

If mode is 0, the given stream will be switched to non-blocking mode, and if 1, it will be
switched to blocking mode. This affects calls like fgets() and fread() that read from the
stream. In non-blocking mode an fgets() call will always return right away while in blocking
mode it will wait for data to become available on the stream.

Returns TRUE on success or FALSE on failure.

This function was previously called as set_socket_blocking() and later
socket_set_blocking() but this usage is deprecated.

Note

Prior to PHP 4.3, this function only worked on socket based streams. Since PHP 4.3,
this function works for any stream that supports non-blocking mode (currently, regular
files and socket streams).

See also stream_select().

stream_set_timeout

stream_set_timeout -- Set timeout period on a stream

Description

bool stream_set_timeout (resource $stream, int $seconds [, int $microseconds])

Sets the timeout value on stream, expressed in the sum of seconds and microseconds.
Returns TRUE on success or FALSE on failure.

When the stream times out, the 'timed_out' key of the array returned by
stream_get_meta_data() is set to TRUE, although no error/warning is generated.

Example #2086 - stream_set_timeout() example

<?php

$fp = fsockopen("www.example.com", 80);

if (!$fp) {

 echo "Unable to open\n";

} else {

 fwrite($fp, "GET / HTTP/1.0\r\n\r\n");

 stream_set_timeout($fp, 2);

 $res = fread($fp, 2000);

 $info = stream_get_meta_data($fp);

 fclose($fp);

 if ($info['timed_out']) {

 echo 'Connection timed out!';

 } else {

 echo $res;

 }

}

?>

Note

As of PHP 4.3, this function can (potentially) work on any kind of stream. In PHP 4.3,
socket based streams are still the only kind supported in the PHP core, although
streams from other extensions may support this function.

Note

This function doesn't work with advanced operations like stream_socket_recvfrom(),
use stream_select() with timeout parameter instead.

This function was previously called as set_socket_timeout() and later
socket_set_timeout() but this usage is deprecated.

See also fsockopen() and fopen().

stream_set_write_buffer

stream_set_write_buffer -- Sets file buffering on the given stream

Description

int stream_set_write_buffer (resource $stream, int $buffer)

Output using fwrite() is normally buffered at 8K. This means that if there are two processes
wanting to write to the same output stream (a file), each is paused after 8K of data to allow
the other to write. stream_set_write_buffer() sets the buffering for write operations on the
given filepointer stream to buffer bytes. If buffer is 0 then write operations are
unbuffered. This ensures that all writes with fwrite() are completed before other processes
are allowed to write to that output stream.

The function returns 0 on success, or EOF if the request cannot be honored.

The following example demonstrates how to use stream_set_write_buffer() to create an
unbuffered stream.

Example #2087 - stream_set_write_buffer() example

<?php

$fp = fopen($file, "w");

if ($fp) {

 stream_set_write_buffer($fp, 0);

 fwrite($fp, $output);

 fclose($fp);

}

?>

See also fopen() and fwrite().

stream_socket_accept

stream_socket_accept -- Accept a connection on a socket created by
stream_socket_server()

Description

resource stream_socket_accept (resource $server_socket [, float $timeout [, string &$
peername]])

Accept a connection on a socket previously created by stream_socket_server(). If timeout
is specified, the default socket accept timeout will be overridden with the time specified in
seconds. The name (address) of the client which connected will be passed back in
peername if included and available from the selected transport.

peername can also be determined later using stream_socket_get_name().

If the call fails, it will return FALSE.

Warning

This function should not be used with UDP server sockets. Instead, use
stream_socket_recvfrom() and stream_socket_sendto().

See also stream_socket_server(), stream_socket_get_name(), stream_set_blocking(),
stream_set_timeout(), fgets(), fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_client

stream_socket_client -- Open Internet or Unix domain socket connection

Description

resource stream_socket_client (string $remote_socket [, int &$errno [, string &$errstr
[, float $timeout [, int $flags [, resource $context]]]]])

Initiates a stream or datagram connection to the destination specified by remote_socket.
The type of socket created is determined by the transport specified using standard URL
formatting: transport://target. For Internet Domain sockets (AF_INET) such as TCP and
UDP, the target portion of the remote_socket parameter should consist of a hostname or
IP address followed by a colon and a port number. For Unix domain sockets, the target
portion should point to the socket file on the filesystem. The optional timeout can be used
to set a timeout in seconds for the connect system call. flags is a bitmask field which may
be set to any combination of connection flags. Currently the selection of connection flags is
limited to STREAM_CLIENT_CONNECT (default),
STREAM_CLIENT_ASYNC_CONNECT and STREAM_CLIENT_PERSISTENT.

Note

If you need to set a timeout for reading/writing data over the socket, use
stream_set_timeout(), as the timeout parameter to stream_socket_client() only
applies while connecting the socket.

Note

The timeout parameter only applies if you are not making an asynchronous connection
attempt.

stream_socket_client() returns a stream resource which may be used together with the
other file functions (such as fgets(), fgetss(), fwrite(), fclose(), and feof()).

If the call fails, it will return FALSE and if the optional errno and errstr arguments are
present they will be set to indicate the actual system level error that occurred in the
system-level connect() call. If the value returned in errno is 0 and the function returned
FALSE, it is an indication that the error occurred before the connect() call. This is most
likely due to a problem initializing the socket. Note that the errno and errstr arguments
will always be passed by reference.

Depending on the environment, the Unix domain or the optional connect timeout may not
be available. A list of available transports can be retrieved using stream_get_transports().
See List of Supported Socket Transports for a list of built in transports.

The stream will by default be opened in blocking mode. You can switch it to non-blocking
mode by using stream_set_blocking().

Example #2088 - stream_socket_client() Example

<?php

$fp = stream_socket_client("tcp://www.example.com:80", $errno, $errstr, 30);

if (!$fp) {

 echo "$errstr ($errno)
\n";

} else {

 fwrite($fp, "GET / HTTP/1.0\r\nHost: www.example.com\r\nAccept:
/\r\n\r\n");

 while (!feof($fp)) {

 echo fgets($fp, 1024);

 }

 fclose($fp);

}

?>

The example below shows how to retrieve the day and time from the UDP service
"daytime" (port 13) in your own machine.

Example #2089 - Using UDP connection

<?php

$fp = stream_socket_client("udp://127.0.0.1:13", $errno, $errstr);

if (!$fp) {

 echo "ERROR: $errno - $errstr
\n";

} else {

 fwrite($fp, "\n");

 echo fread($fp, 26);

 fclose($fp);

}

?>

Warning

UDP sockets will sometimes appear to have opened without an error, even if the
remote host is unreachable. The error will only become apparent when you read or
write data to/from the socket. The reason for this is because UDP is a "connectionless"
protocol, which means that the operating system does not try to establish a link for the
socket until it actually needs to send or receive data.

Note

When specifying a numerical IPv6 address (e.g. fe80::1), you must enclose the IP in
square brackets?for example, tcp://[fe80::1]:80.

See also stream_socket_server(), stream_set_blocking(), stream_set_timeout(),

stream_select(), fgets(), fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_enable_crypto

stream_socket_enable_crypto -- Turns encryption on/off on an already connected socket

Description

mixed stream_socket_enable_crypto (resource $stream, bool $enable [, int $
crypto_type [, resource $session_stream]])

When called with the crypto_type parameter, stream_socket_enable_crypto() will setup
encryption on the stream using the specified method.

Valid values for crypto_type

• STREAM_CRYPTO_METHOD_SSLv2_CLIENT

• STREAM_CRYPTO_METHOD_SSLv3_CLIENT

• STREAM_CRYPTO_METHOD_SSLv23_CLIENT

• STREAM_CRYPTO_METHOD_TLS_CLIENT

• STREAM_CRYPTO_METHOD_SSLv2_SERVER

• STREAM_CRYPTO_METHOD_SSLv3_SERVER

• STREAM_CRYPTO_METHOD_SSLv23_SERVER

• STREAM_CRYPTO_METHOD_TLS_SERVER

Once the crypto settings are established, cryptography can be turned on and off
dynamically by passing TRUE or FALSE in the enable parameter.

If this stream should be seeded with settings from an already established crypto enabled
stream, pass that stream's resource variable in the fourth parameter.

Returns TRUE on success, FALSE if negotiation has failed or 0 if there isn't enough data
and you should try again (only for non-blocking sockets).

Example #2090 - stream_socket_enable_crypto() Example

<?php

$fp = stream_socket_client("tcp://myproto.example.com:31337", $errno,
$errstr, 30);

if (!$fp) {

 die("Unable to connect: $errstr ($errno)");

}

/* Turn on encryption for login phase */

stream_socket_enable_crypto($fp, true, STREAM_CRYPTO_METHOD_SSLv23_CLIENT);

fwrite($fp, "USER god\r\n");

fwrite($fp, "PASS secret\r\n");

/* Turn off encryption for the rest */

stream_socket_enable_crypto($fp, false);

while ($motd = fgets($fp)) {

 echo $motd;

}

fclose($fp);

?>

OpenSSL Functions, and List of Supported Socket Transports

stream_socket_get_name

stream_socket_get_name -- Retrieve the name of the local or remote sockets

Description

string stream_socket_get_name (resource $handle, bool $want_peer)

Returns the local or remote name of a given socket connection. If want_peer is set to
TRUE the remote socket name will be returned, if it is set to FALSE the local socket name
will be returned.

See also stream_socket_accept().

stream_socket_pair

stream_socket_pair -- Creates a pair of connected, indistinguishable socket streams

Description

array stream_socket_pair (int $domain, int $type, int $protocol)

stream_socket_pair() creates a pair of connected, indistinguishable socket streams. This
function is commonly used in IPC (Inter-Process Communication).

Parameters

domain

The protocol family to be used: STREAM_PF_INET, STREAM_PF_INET6 or
STREAM_PF_UNIX

type

The type of communication to be used: STREAM_SOCK_DGRAM,
STREAM_SOCK_RAW, STREAM_SOCK_RDM, STREAM_SOCK_SEQPACKET or
STREAM_SOCK_STREAM

protocol

The protocol to be used: STREAM_IPPROTO_ICMP, STREAM_IPPROTO_IP,
STREAM_IPPROTO_RAW, STREAM_IPPROTO_TCP or STREAM_IPPROTO_UDP

Note

Please consult the Streams constant list for further details on each constant.

Return Values

Returns an array with the two socket resources on success, or FALSE on failure.

Examples

Example #2091 - A stream_socket_pair() example

This example shows the basic usage of stream_socket_pair() in Inter-Process
Comunication.

<?php

$sockets = stream_socket_pair(STREAM_PF_UNIX, STREAM_SOCK_STREAM,
STREAM_IPPROTO_IP);

$pid = pcntl_fork();

if ($pid == -1) {

 die('could not fork');

} else if ($pid) {

 /* parent */

 fclose($sockets[0]);

 fwrite($sockets[1], "child PID: $pid\n");

 echo fgets($sockets[1]);

 fclose($sockets[1]);

} else {

 /* child */

 fclose($sockets[1]);

 fwrite($sockets[0], "message from child\n");

 echo fgets($sockets[0]);

 fclose($sockets[0]);

}

?>

The above example will output something similar to:

child PID: 1378

message from child

Notes

Note

This function is not implemented on Windows platforms.

stream_socket_recvfrom

stream_socket_recvfrom -- Receives data from a socket, connected or not

Description

string stream_socket_recvfrom (resource $socket, int $length [, int $flags [, string &$
address]])

The function stream_socket_recvfrom() accepts data from a remote socket up to length
bytes. If address is provided it will be populated with the address of the remote socket.

The value of flags can be any combination of the following:

possible values for flags

STREAM_OOB Process OOB (out-of-band) data.

STREAM_PEEK Retrieve data from the socket, but do not
consume the buffer. Subsequent calls to
fread() or stream_socket_recvfrom() will see
the same data.

Example #2092 - stream_socket_recvfrom() Example

<?php

/* Open a server socket to port 1234 on localhost */

$server = stream_socket_server('tcp://127.0.0.1:1234');

/* Accept a connection */

$socket = stream_socket_accept($server);

/* Grab a packet (1500 is a typical MTU size) of OOB data */

echo "Received Out-Of-Band: '" . stream_socket_recvfrom($socket, 1500,
STREAM_OOB) . "'\n";

/* Take a peek at the normal in-band data, but don't comsume it. */

echo "Data: '" . stream_socket_recvfrom($socket, 1500, STREAM_PEEK) . "'\n";

/* Get the exact same packet again, but remove it from the buffer this time.
*/

echo "Data: '" . stream_socket_recvfrom($socket, 1500) . "'\n";

/* Close it up */

fclose($socket);

fclose($server);

?>

Note

If a message received is longer than the length parameter, excess bytes may be
discarded depending on the type of socket the message is received from (such as
UDP).

Note

Calls to stream_socket_recvfrom() on socket-based streams, after calls to
buffer-based stream functions (like fread() or stream_get_line()) read data directly
from the socket and bypass the stream buffer.

See also stream_socket_sendto(), stream_socket_client(), and stream_socket_server().

stream_socket_sendto

stream_socket_sendto -- Sends a message to a socket, whether it is connected or not

Description

int stream_socket_sendto (resource $socket, string $data [, int $flags [, string $
address]])

The function stream_socket_sendto() sends the data specified by data through the socket
specified by socket. The address specified when the socket stream was created will be
used unless an alternate address is specified in address.

The value of flags can be any combination of the following:

possible values for flags

STREAM_OOB Process OOB (out-of-band) data.

Example #2093 - stream_socket_sendto() Example

<?php

/* Open a socket to port 1234 on localhost */

$socket = stream_socket_client('tcp://127.0.0.1:1234');

/* Send ordinary data via ordinary channels. */

fwrite($socket, "Normal data transmit.");

/* Send more data out of band. */

stream_socket_sendto($socket, "Out of Band data.", STREAM_OOB);

/* Close it up */

fclose($socket);

?>

See also stream_socket_recvfrom(), stream_socket_client(), and stream_socket_server().

stream_socket_server

stream_socket_server -- Create an Internet or Unix domain server socket

Description

resource stream_socket_server (string $local_socket [, int &$errno [, string &$errstr [,
int $flags [, resource $context]]]])

Creates a stream or datagram socket on the specified local_socket. The type of socket
created is determined by the transport specified using standard URL formatting:
transport://target. For Internet Domain sockets (AF_INET) such as TCP and UDP, the
target portion of the remote_socket parameter should consist of a hostname or IP address
followed by a colon and a port number. For Unix domain sockets, the target portion
should point to the socket file on the filesystem. flags is a bitmask field which may be set
to any combination of socket creation flags. The default value of flags is
STREAM_SERVER_BIND | STREAM_SERVER_LISTEN.

Note

For UDP sockets, you must use STREAM_SERVER_BIND as the flags parameter.

This function only creates a socket, to begin accepting connections use
stream_socket_accept().

If the call fails, it will return FALSE and if the optional errno and errstr arguments are
present they will be set to indicate the actual system level error that occurred in the
system-level socket(), bind(), and listen() calls. If the value returned in errno is 0 and the
function returned FALSE, it is an indication that the error occurred before the bind() call.
This is most likely due to a problem initializing the socket. Note that the errno and errstr
arguments will always be passed by reference.

Depending on the environment, Unix domain sockets may not be available. A list of
available transports can be retrieved using stream_get_transports(). See List of Supported
Socket Transports for a list of bulitin transports.

Example #2094 - Using TCP server sockets

<?php

$socket = stream_socket_server("tcp://0.0.0.0:8000", $errno, $errstr);

if (!$socket) {

 echo "$errstr ($errno)
\n";

} else {

 while ($conn = stream_socket_accept($socket)) {

 fwrite($conn, 'The local time is ' . date('n/j/Y g:i a') . "\n");

 fclose($conn);

 }

 fclose($socket);

}

?>

The example below shows how to act as a time server which can respond to time queries
as shown in an example on stream_socket_client().

Note

Most systems require root access to create a server socket on a port below 1024.

Example #2095 - Using UDP server sockets

<?php

$socket = stream_socket_server("udp://127.0.0.1:1113", $errno, $errstr,
STREAM_SERVER_BIND);

if (!$socket) {

 die("$errstr ($errno)");

}

do {

 $pkt = stream_socket_recvfrom($socket, 1, 0, $peer);

 echo "$peer\n";

 stream_socket_sendto($socket, date("D M j H:i:s Y\r\n"), 0, $peer);

} while ($pkt !== false);

?>

Note

When specifying a numerical IPv6 address (e.g. fe80::1), you must enclose the IP in
square brackets?for example, tcp://[fe80::1]:80.

See also stream_socket_client(), stream_set_blocking(), stream_set_timeout(), fgets(),
fgetss(), fwrite(), fclose(), feof(), and the Curl extension.

stream_socket_shutdown

stream_socket_shutdown -- Shutdown a full-duplex connection

Description

bool stream_socket_shutdown (resource $stream, int $how)

Shutdowns (partially or not) a full-duplex connection.

Parameters

stream

An open stream (opened with stream_socket_client(), for example)

how

One of the following constants: STREAM_SHUT_RD (disable further receptions),
STREAM_SHUT_WR (disable further transmissions) or STREAM_SHUT_RDWR
(disable further receptions and transmissions).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2096 - A stream_socket_shutdown() example

<?php

$server = stream_socket_server('tcp://127.0.0.1:1337');

$client = stream_socket_client('tcp://127.0.0.1:1337');

var_dump(fputs($client, "hello"));

stream_socket_shutdown($client, STREAM_SHUT_WR);

var_dump(fputs($client, "hello")); // doesn't work now

?>

The above example will output something similar to:

int(5)

Notice: fputs(): send of 5 bytes failed with errno=32 Broken pipe in
test.php on line 9

int(0)

See Also

• fclose()

stream_wrapper_register

stream_wrapper_register -- Register a URL wrapper implemented as a PHP class

Description

bool stream_wrapper_register (string $protocol, string $classname)

stream_wrapper_register() allows you to implement your own protocol handlers and
streams for use with all the other filesystem functions (such as fopen(), fread() etc.).

To implement a wrapper, you need to define a class with a number of member functions,
as defined below. When someone fopens your stream, PHP will create an instance of
classname and then call methods on that instance. You must implement the methods
exactly as described below - doing otherwise will lead to undefined behaviour.

Note

As of PHP 5.0.0 the instance of classname will be populated with a context property
referencing a Context Resource which may be accessed with
stream_context_get_options(). If no context was passed to the stream creation
function, context will be set to NULL.

stream_wrapper_register() will return FALSE if the protocol already has a handler.

bool stream_open (string $path, string $mode, int $options, string $opened_path)

This method is called immediately after your stream object is created. path specifies the
URL that was passed to fopen() and that this object is expected to retrieve. You can use
parse_url() to break it apart.

mode is the mode used to open the file, as detailed for fopen(). You are responsible for
checking that mode is valid for the path requested.

options holds additional flags set by the streams API. It can hold one or more of the
following values OR'd together.

Flag Description

STREAM_USE_PATH If path is relative, search for the resource
using the include_path.

STREAM_REPORT_ERRORS If this flag is set, you are responsible for
raising errors using trigger_error() during
opening of the stream. If this flag is not set,
you should not raise any errors.

If the path is opened successfully, and STREAM_USE_PATH is set in options, you
should set opened_path to the full path of the file/resource that was actually opened.

If the requested resource was opened successfully, you should return TRUE, otherwise
you should return FALSE

void stream_close (void)

This method is called when the stream is closed, using fclose(). You must release any
resources that were locked or allocated by the stream.

string stream_read (int $count)

This method is called in response to fread() and fgets() calls on the stream. You must
return up-to count bytes of data from the current read/write position as a string. If there
are less than count bytes available, return as many as are available. If no more data is
available, return either FALSE or an empty string. You must also update the read/write
position of the stream by the number of bytes that were successfully read.

int stream_write (string $data)

This method is called in response to fwrite() calls on the stream. You should store data
into the underlying storage used by your stream. If there is not enough room, try to store
as many bytes as possible. You should return the number of bytes that were successfully
stored in the stream, or 0 if none could be stored. You must also update the read/write
position of the stream by the number of bytes that were successfully written.

bool stream_eof (void)

This method is called in response to feof() calls on the stream. You should return TRUE if
the read/write position is at the end of the stream and if no more data is available to be
read, or FALSE otherwise.

int stream_tell (void)

This method is called in response to ftell() calls on the stream. You should return the
current read/write position of the stream.

bool stream_seek (int $offset, int $whence)

This method is called in response to fseek() calls on the stream. You should update the
read/write position of the stream according to offset and whence. See fseek() for more
information about these parameters. Return TRUE if the position was updated, FALSE
otherwise.

bool stream_flush (void)

This method is called in response to fflush() calls on the stream. If you have cached data
in your stream but not yet stored it into the underlying storage, you should do so now.
Return TRUE if the cached data was successfully stored (or if there was no data to store),
or FALSE if the data could not be stored.

array stream_stat (void)

This method is called in response to fstat() calls on the stream and should return an array
containing the same values as appropriate for the stream.

bool unlink (string $path)

This method is called in response to unlink() calls on URL paths associated with the
wrapper and should attempt to delete the item specified by path. It should return TRUE on
success or FALSE on failure. In order for the appropriate error message to be returned, do
not define this method if your wrapper does not support unlinking.

Note

Userspace wrapper unlink method is not supported prior to PHP 5.0.0.

bool rename (string $path_from, string $path_to)

This method is called in response to rename() calls on URL paths associated with the
wrapper and should attempt to rename the item specified by path_from to the specification
given by path_to. It should return TRUE on success or FALSE on failure. In order for the
appropriate error message to be returned, do not define this method if your wrapper does
not support renaming.

Note

Userspace wrapper rename method is not supported prior to PHP 5.0.0.

bool mkdir (string $path, int $mode, int $options)

This method is called in response to mkdir() calls on URL paths associated with the
wrapper and should attempt to create the directory specified by path. It should return
TRUE on success or FALSE on failure. In order for the appropriate error message to be
returned, do not define this method if your wrapper does not support creating directories.
Posible values for options include STREAM_REPORT_ERRORS and
STREAM_MKDIR_RECURSIVE.

Note

Userspace wrapper mkdir method is not supported prior to PHP 5.0.0.

bool rmdir (string $path, int $options)

This method is called in response to rmdir() calls on URL paths associated with the
wrapper and should attempt to remove the directory specified by path. It should return
TRUE on success or FALSE on failure. In order for the appropriate error message to be

returned, do not define this method if your wrapper does not support removing directories.
Possible values for options include STREAM_REPORT_ERRORS.

Note

Userspace wrapper rmdir method is not supported prior to PHP 5.0.0.

bool dir_opendir (string $path, int $options)

This method is called immediately when your stream object is created for examining
directory contents with opendir(). path specifies the URL that was passed to opendir() and
that this object is expected to explore. You can use parse_url() to break it apart.

array url_stat (string $path, int $flags)

This method is called in response to stat() calls on the URL paths associated with the
wrapper and should return as many elements in common with the system function as
possible. Unknown or unavailable values should be set to a rational value (usually 0).

flags holds additional flags set by the streams API. It can hold one or more of the
following values OR'd together.

Flag Description

STREAM_URL_STAT_LINK For resources with the ability to link to other
resource (such as an HTTP Location:
forward, or a filesystem symlink). This flag
specified that only information about the link
itself should be returned, not the resource
pointed to by the link. This flag is set in
response to calls to lstat(), is_link(), or
filetype().

STREAM_URL_STAT_QUIET If this flag is set, your wrapper should not
raise any errors. If this flag is not set, you
are responsible for reporting errors using the
trigger_error() function during stating of the
path.

string dir_readdir (void)

This method is called in response to readdir() and should return a string representing the
next filename in the location opened by dir_opendir().

bool dir_rewinddir (void)

This method is called in response to rewinddir() and should reset the output generated by
dir_readdir(). i.e.: The next call to dir_readdir() should return the first entry in the location

returned by dir_opendir().

bool dir_closedir (void)

This method is called in response to closedir(). You should release any resources which
were locked or allocated during the opening and use of the directory stream.

The example below implements a var:// protocol handler that allows read/write access to a
named global variable using standard filesystem stream functions such as fread(). The
var:// protocol implemented below, given the URL "var://foo" will read/write data to/from
$GLOBALS["foo"].

Example #2097 - A Stream for reading/writing global variables

<?php

class VariableStream {

 var $position;

 var $varname;

 function stream_open($path, $mode, $options, &$opened_path)

 {

 $url = parse_url($path);

 $this->varname = $url["host"];

 $this->position = 0;

 return true;

 }

 function stream_read($count)

 {

 $ret = substr($GLOBALS[$this->varname], $this->position, $count);

 $this->position += strlen($ret);

 return $ret;

 }

 function stream_write($data)

 {

 $left = substr($GLOBALS[$this->varname], 0, $this->position);

 $right = substr($GLOBALS[$this->varname], $this->position +
strlen($data));

 $GLOBALS[$this->varname] = $left . $data . $right;

 $this->position += strlen($data);

 return strlen($data);

 }

 function stream_tell()

 {

 return $this->position;

 }

 function stream_eof()

 {

 return $this->position >= strlen($GLOBALS[$this->varname]);

 }

 function stream_seek($offset, $whence)

 {

 switch ($whence) {

 case SEEK_SET:

 if ($offset < strlen($GLOBALS[$this->varname]) && $offset >=
0) {

 $this->position = $offset;

 return true;

 } else {

 return false;

 }

 break;

 case SEEK_CUR:

 if ($offset >= 0) {

 $this->position += $offset;

 return true;

 } else {

 return false;

 }

 break;

 case SEEK_END:

 if (strlen($GLOBALS[$this->varname]) + $offset >= 0) {

 $this->position = strlen($GLOBALS[$this->varname]) +
$offset;

 return true;

 } else {

 return false;

 }

 break;

 default:

 return false;

 }

 }

}

stream_wrapper_register("var", "VariableStream")

 or die("Failed to register protocol");

$myvar = "";

$fp = fopen("var://myvar", "r+");

fwrite($fp, "line1\n");

fwrite($fp, "line2\n");

fwrite($fp, "line3\n");

rewind($fp);

while (!feof($fp)) {

 echo fgets($fp);

}

fclose($fp);

var_dump($myvar);

?>

stream_wrapper_restore

stream_wrapper_restore -- Restores a previously unregistered built-in wrapper

Description

bool stream_wrapper_restore (string $protocol)

Restores a built-in wrapper previously unregistered with stream_wrapper_unregister().

Parameters

protocol

Return Values

Returns TRUE on success or FALSE on failure.

stream_wrapper_unregister

stream_wrapper_unregister -- Unregister a URL wrapper

Description

bool stream_wrapper_unregister (string $protocol)

Allows you to disable an already defined stream wrapper. Once the wrapper has been
disabled you may override it with a user-defined wrapper using stream_wrapper_register()
or reenable it later on with stream_wrapper_restore().

Parameters

protocol

Return Values

Returns TRUE on success or FALSE on failure.

Tidy

Introduction

Tidy is a binding for the Tidy HTML clean and repair utility which allows you to not only
clean and otherwise manipulate HTML documents, but also traverse the document tree.

Installing/Configuring

Requirements

To use Tidy, you will need libtidy installed, available on the tidy homepage
» http://tidy.sourceforge.net/.

Installation

Tidy is currently available for PHP 4.3.x and PHP 5 as a PECL extension from
» http://pecl.php.net/package/tidy.

Note

Tidy 1.0 is just for PHP 4.3.x, while Tidy 2.0 is just for PHP 5.

If » PEAR is available on your *nix-like system you can use the pear installer to install the
tidy extension, by the following command: pecl install tidy.

You can always download the tar.gz package and install tidy by hand:

Example #2098 - tidy install by hand in PHP 4.3.x

gunzip tidy-xxx.tgz

tar -xvf tidy-xxx.tar

cd tidy-xxx

phpize

./configure && make && make install

Windows users can download the extension dll from
» http://pecl4win.php.net/ext.php/php_tidy.dll.

In PHP 5 you need only to compile using the --with-tidy option.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Tidy Configuration Options

Name Default Changeable Changelog

http://tidy.sourceforge.net/
http://tidy.sourceforge.net/
http://pecl.php.net/package/tidy
http://pecl.php.net/package/tidy
http://pear.php.net/
http://pecl4win.php.net/ext.php/php_tidy.dll
http://pecl4win.php.net/ext.php/php_tidy.dll

tidy.default_config "" PHP_INI_SYSTEM Available since PHP
5.0.0.

tidy.clean_output "0" PHP_INI_USER PHP_INI_PERDIR in
PHP 5. Available
since PHP 5.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

tidy.default_config string
Default path for tidy config file.

tidy.clean_output boolean
Turns on/off the output repairing by Tidy.

Warning

Do not turn on tidy.clean_output if you are generating non-html content such as
dynamic images.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Each TIDY_TAG_XXX represents a HTML tag. For example, TIDY_TAG_A represents a
link tag. Each TIDY_ATTR_XXX represents a HTML atribute. For
example TIDY_ATTR_HREF would represent the href atribute in the previous example.

The following constants are defined:

tidy tag constants

constant

TIDY_TAG_UNKNOWN

TIDY_TAG_A

TIDY_TAG_ABBR

TIDY_TAG_ACRONYM

TIDY_TAG_ALIGN

TIDY_TAG_APPLET

TIDY_TAG_AREA

TIDY_TAG_B

TIDY_TAG_BASE

TIDY_TAG_BASEFONT

TIDY_TAG_BDO

TIDY_TAG_BGSOUND

TIDY_TAG_BIG

TIDY_TAG_BLINK

TIDY_TAG_BLOCKQUOTE

TIDY_TAG_BODY

TIDY_TAG_BR

TIDY_TAG_BUTTON

TIDY_TAG_CAPTION

TIDY_TAG_CENTER

TIDY_TAG_CITE

TIDY_TAG_CODE

TIDY_TAG_COL

TIDY_TAG_COLGROUP

TIDY_TAG_COMMENT

TIDY_TAG_DD

TIDY_TAG_DEL

TIDY_TAG_DFN

TIDY_TAG_DIR

TIDY_TAG_DIV

TIDY_TAG_DL

TIDY_TAG_DT

TIDY_TAG_EM

TIDY_TAG_EMBED

TIDY_TAG_FIELDSET

TIDY_TAG_FONT

TIDY_TAG_FORM

TIDY_TAG_FRAME

TIDY_TAG_FRAMESET

TIDY_TAG_H1

TIDY_TAG_H2

TIDY_TAG_H3

TIDY_TAG_H4

TIDY_TAG_H5

TIDY_TAG_H6

TIDY_TAG_HEAD

TIDY_TAG_HR

TIDY_TAG_HTML

TIDY_TAG_I

TIDY_TAG_IFRAME

TIDY_TAG_ILAYER

TIDY_TAG_IMG

TIDY_TAG_INPUT

TIDY_TAG_INS

TIDY_TAG_ISINDEX

TIDY_TAG_KBD

TIDY_TAG_KEYGEN

TIDY_TAG_LABEL

TIDY_TAG_LAYER

TIDY_TAG_LEGEND

TIDY_TAG_LI

TIDY_TAG_LINK

TIDY_TAG_LISTING

TIDY_TAG_MAP

TIDY_TAG_MARQUEE

TIDY_TAG_MENU

TIDY_TAG_META

TIDY_TAG_MULTICOL

TIDY_TAG_NOBR

TIDY_TAG_NOEMBED

TIDY_TAG_NOFRAMES

TIDY_TAG_NOLAYER

TIDY_TAG_NOSAVE

TIDY_TAG_NOSCRIPT

TIDY_TAG_OBJECT

TIDY_TAG_OL

TIDY_TAG_OPTGROUP

TIDY_TAG_OPTION

TIDY_TAG_P

TIDY_TAG_PARAM

TIDY_TAG_PLAINTEXT

TIDY_TAG_PRE

TIDY_TAG_Q

TIDY_TAG_RP

TIDY_TAG_RT

TIDY_TAG_RTC

TIDY_TAG_RUBY

TIDY_TAG_S

TIDY_TAG_SAMP

TIDY_TAG_SCRIPT

TIDY_TAG_SELECT

TIDY_TAG_SERVER

TIDY_TAG_SERVLET

TIDY_TAG_SMALL

TIDY_TAG_SPACER

TIDY_TAG_SPAN

TIDY_TAG_STRIKE

TIDY_TAG_STRONG

TIDY_TAG_STYLE

TIDY_TAG_SUB

TIDY_TAG_TABLE

TIDY_TAG_TBODY

TIDY_TAG_TD

TIDY_TAG_TEXTAREA

TIDY_TAG_TFOOT

TIDY_TAG_TH

TIDY_TAG_THEAD

TIDY_TAG_TITLE

TIDY_TAG_TR

TIDY_TAG_TR

TIDY_TAG_TT

TIDY_TAG_U

TIDY_TAG_UL

TIDY_TAG_VAR

TIDY_TAG_WBR

TIDY_TAG_XMP

tidy attribute constants

constant

TIDY_ATTR_UNKNOWN

TIDY_ATTR_ABBR

TIDY_ATTR_ACCEPT

TIDY_ATTR_ACCEPT_CHARSET

TIDY_ATTR_ACCESSKEY

TIDY_ATTR_ACTION

TIDY_ATTR_ADD_DATE

TIDY_ATTR_ALIGN

TIDY_ATTR_ALINK

TIDY_ATTR_ALT

TIDY_ATTR_ARCHIVE

TIDY_ATTR_AXIS

TIDY_ATTR_BACKGROUND

TIDY_ATTR_BGCOLOR

TIDY_ATTR_BGPROPERTIES

TIDY_ATTR_BORDER

TIDY_ATTR_BORDERCOLOR

TIDY_ATTR_BOTTOMMARGIN

TIDY_ATTR_CELLPADDING

TIDY_ATTR_CELLSPACING

TIDY_ATTR_CHAR

TIDY_ATTR_CHAROFF

TIDY_ATTR_CHARSET

TIDY_ATTR_CHECKED

TIDY_ATTR_CITE

TIDY_ATTR_CLASS

TIDY_ATTR_CLASSID

TIDY_ATTR_CLEAR

TIDY_ATTR_CODE

TIDY_ATTR_CODEBASE

TIDY_ATTR_CODETYPE

TIDY_ATTR_COLOR

TIDY_ATTR_COLS

TIDY_ATTR_COLSPAN

TIDY_ATTR_COMPACT

TIDY_ATTR_CONTENT

TIDY_ATTR_COORDS

TIDY_ATTR_DATA

TIDY_ATTR_DATAFLD

TIDY_ATTR_DATAPAGESIZE

TIDY_ATTR_DATASRC

TIDY_ATTR_DATETIME

TIDY_ATTR_DECLARE

TIDY_ATTR_DEFER

TIDY_ATTR_DIR

TIDY_ATTR_DISABLED

TIDY_ATTR_ENCODING

TIDY_ATTR_ENCTYPE

TIDY_ATTR_FACE

TIDY_ATTR_FOR

TIDY_ATTR_FRAME

TIDY_ATTR_FRAMEBORDER

TIDY_ATTR_FRAMESPACING

TIDY_ATTR_GRIDX

TIDY_ATTR_GRIDY

TIDY_ATTR_HEADERS

TIDY_ATTR_HEIGHT

TIDY_ATTR_HREF

TIDY_ATTR_HREFLANG

TIDY_ATTR_HSPACE

TIDY_ATTR_HTTP_EQUIV

TIDY_ATTR_ID

TIDY_ATTR_ISMAP

TIDY_ATTR_LABEL

TIDY_ATTR_LANG

TIDY_ATTR_LANGUAGE

TIDY_ATTR_LAST_MODIFIED

TIDY_ATTR_LAST_VISIT

TIDY_ATTR_LEFTMARGIN

TIDY_ATTR_LINK

TIDY_ATTR_LONGDESC

TIDY_ATTR_LOWSRC

TIDY_ATTR_MARGINHEIGHT

TIDY_ATTR_MARGINWIDTH

TIDY_ATTR_MAXLENGTH

TIDY_ATTR_MEDIA

TIDY_ATTR_METHOD

TIDY_ATTR_MULTIPLE

TIDY_ATTR_NAME

TIDY_ATTR_NOHREF

TIDY_ATTR_NORESIZE

TIDY_ATTR_NOSHADE

TIDY_ATTR_NOWRAP

TIDY_ATTR_OBJECT

TIDY_ATTR_OnAFTERUPDATE

TIDY_ATTR_OnBEFOREUNLOAD

TIDY_ATTR_OnBEFOREUPDATE

TIDY_ATTR_OnBLUR

TIDY_ATTR_OnCHANGE

TIDY_ATTR_OnCLICK

TIDY_ATTR_OnDATAAVAILABLE

TIDY_ATTR_OnDATASETCHANGED

TIDY_ATTR_OnDATASETCOMPLETE

TIDY_ATTR_OnDBLCLICK

TIDY_ATTR_OnERRORUPDATE

TIDY_ATTR_OnFOCUS

TIDY_ATTR_OnKEYDOWN

TIDY_ATTR_OnKEYPRESS

TIDY_ATTR_OnKEYUP

TIDY_ATTR_OnLOAD

TIDY_ATTR_OnMOUSEDOWN

TIDY_ATTR_OnMOUSEMOVE

TIDY_ATTR_OnMOUSEOUT

TIDY_ATTR_OnMOUSEOVER

TIDY_ATTR_OnMOUSEUP

TIDY_ATTR_OnRESET

TIDY_ATTR_OnROWENTER

TIDY_ATTR_OnROWEXIT

TIDY_ATTR_OnSELECT

TIDY_ATTR_OnSUBMIT

TIDY_ATTR_OnUNLOAD

TIDY_ATTR_PROFILE

TIDY_ATTR_PROMPT

TIDY_ATTR_RBSPAN

TIDY_ATTR_READONLY

TIDY_ATTR_REL

TIDY_ATTR_REV

TIDY_ATTR_RIGHTMARGIN

TIDY_ATTR_ROWS

TIDY_ATTR_ROWSPAN

TIDY_ATTR_RULES

TIDY_ATTR_SCHEME

TIDY_ATTR_SCOPE

TIDY_ATTR_SCROLLING

TIDY_ATTR_SELECTED

TIDY_ATTR_SHAPE

TIDY_ATTR_SHOWGRID

TIDY_ATTR_SHOWGRIDX

TIDY_ATTR_SHOWGRIDY

TIDY_ATTR_SIZE

TIDY_ATTR_SPAN

TIDY_ATTR_SRC

TIDY_ATTR_STANDBY

TIDY_ATTR_START

TIDY_ATTR_STYLE

TIDY_ATTR_SUMMARY

TIDY_ATTR_TABINDEX

TIDY_ATTR_TARGET

TIDY_ATTR_TEXT

TIDY_ATTR_TITLE

TIDY_ATTR_TOPMARGIN

TIDY_ATTR_TYPE

TIDY_ATTR_USEMAP

TIDY_ATTR_VALIGN

TIDY_ATTR_VALUE

TIDY_ATTR_VALUETYPE

TIDY_ATTR_VERSION

TIDY_ATTR_VLINK

TIDY_ATTR_VSPACE

TIDY_ATTR_WIDTH

TIDY_ATTR_WRAP

TIDY_ATTR_XML_LANG

TIDY_ATTR_XML_SPACE

TIDY_ATTR_XMLNS

tidy nodetype constants

constant description

TIDY_NODETYPE_ROOT root node

TIDY_NODETYPE_DOCTYPE doctype

TIDY_NODETYPE_COMMENT HTML comment

TIDY_NODETYPE_PROCINS Processing Instruction

TIDY_NODETYPE_TEXT Text

TIDY_NODETYPE_START start tag

TIDY_NODETYPE_END end tag

TIDY_NODETYPE_STARTEND empty tag

TIDY_NODETYPE_CDATA CDATA

TIDY_NODETYPE_SECTION XML section

TIDY_NODETYPE_ASP ASP code

TIDY_NODETYPE_JSTE JSTE code

TIDY_NODETYPE_PHP PHP code

TIDY_NODETYPE_XMLDECL XML declaration

Examples

Examples

This simple example shows basic Tidy usage.

Example #2099 - Basic Tidy usage

<?php

ob_start();

?>

<html>a html document</html>

<?php

$html = ob_get_clean();

// Specify configuration

$config = array(

 'indent' => true,

 'output-xhtml' => true,

 'wrap' => 200);

// Tidy

$tidy = new tidy;

$tidy->parseString($html, $config, 'utf8');

$tidy->cleanRepair();

// Output

echo $tidy;

?>

Tidy Functions

Predefined Classes

tidyNode

Methods

• tidyNode::getParent - Returns the parent of the current node

• tidyNode->hasChildren - Returns TRUE if the current node has children

• tidyNode->hasSiblings - Returns TRUE if the current node has siblings

• tidyNode->isAsp - Returns TRUE if the current node is ASP code

• tidyNode->isComment - Returns TRUE if the current node is a comment

• tidyNode->isHtml - Returns TRUE if the current node is HTML

• tidyNode->isJste - Returns TRUE if the current node is JSTE

• tidyNode->isPhp - Returns TRUE if the current node is PHP

• tidyNode->isText - Returns TRUE if the current node is Text (no markup)

Properties

• value - the value of the node (e.g. the html text)

• name - the name of the tag (e.g. html, a, etc..)

• type - the type of the node (one of the constants above, e.g. TIDY_NODETYPE_PHP)

• line* - the line where the node starts

• column* - the column where the node starts

• proprietary* - TRUE if the node refers to a proprietary tag

• id - the ID of the tag (one of the constants above, e.g. TIDY_TAG_FRAME)

• attribute - an array with the attributes of the current node, or NULL if there aren't any

• child - an array with the child tidyNode s, or NULL if there aren't any

Note

The properties marked with * are just available since PHP 5.1.0.

ob_tidyhandler

ob_tidyhandler -- ob_start callback function to repair the buffer

Description

string ob_tidyhandler (string $input [, int $mode])

ob_tidyhandler() is intended to be used as a callback function for ob_start() to repair the
buffer.

Parameters

input

The buffer.

mode

The buffer mode.

Return Values

Returns the modified buffer.

Examples

Example #2100 - ob_tidyhandler() example

<?php

ob_start('ob_tidyhandler');

echo '<p>test</i>';

?>

The above example will output:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title></title>

</head>

<body>

<p>test</p>

</body>

</html>

See Also

• ob_start()

tidy_access_count

tidy_access_count -- Returns the Number of Tidy accessibility warnings encountered for
specified document

Description

int tidy_access_count (tidy $object)

tidy_access_count() returns the number of accessibility warnings found for the specified
document.

Parameters

object

The Tidy object.

Return Values

Returns the number of warnings.

Examples

Example #2101 - tidy_access_count() example

<?php

$html ='<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html><head><title>Title</title></head>

<body>

<p></p>

</body></html>';

// select the accessibility check level: 1, 2 or 3

$config = array('accessibility-check' => 3);

$tidy = new tidy();

$tidy->parseString($html, $config);

$tidy->CleanRepair();

/* Never forget to call this! */

$tidy->diagnose();

echo tidy_access_count($tidy); //5

?>

Notes

Note

Due to the design of the TidyLib, you must call tidy_diagnose() before
tidy_access_count() or it will return always 0. You must also need to enable the
accessibility-check option.

See Also

• tidy_error_count()
• tidy_warning_count()

tidy_clean_repair

tidy_clean_repair -- Execute configured cleanup and repair operations on parsed markup

Description

Procedural style:

bool tidy_clean_repair (tidy $object)

Object oriented style:

bool tidy->cleanRepair (void)

This function cleans and repairs the given tidy object.

Example #2102 - tidy_clean_repair() example

<?php

$html = '<p>test</I>';

$tidy = tidy_parse_string($html);

tidy_clean_repair($tidy);

echo $tidy;

?>

The above example will output:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title></title>

</head>

<body>

<p>test</p>

</body>

</html>

See also tidy_repair_file() and tidy_repair_string().

tidy_config_count

tidy_config_count -- Returns the Number of Tidy configuration errors encountered for
specified document

Description

int tidy_config_count (tidy $object)

tidy_config_count() returns the number of errors encountered in the configuration of the
specified tidy object.

Example #2103 - tidy_config_count() example

<?php

$html = '<p>test</I>';

$config = array('doctype' => 'bogus');

$tidy = tidy_parse_string($html, $config);

/* This outputs 1, because 'bogus' isn't a valid doctype */

echo tidy_config_count($tidy);

?>

tidy::__construct

tidy::__construct -- Constructs a new tidy object

Description

tidy tidy::__construct ([string $filename [, mixed $config [, string $encoding [, bool $
use_include_path]]]])

tidy::__construct() constructs a new tidy object.

If the filename parameter is given, this function will also read that file and initialize the
object with the file, acting like tidy_parse_file().

The config parameter can be passed either as an array or as a string. If a string is
passed, it is interpreted as the name of the configuration file, otherwise, it is interpreted as
the options themselves. Check » http://tidy.sourceforge.net/docs/quickref.html for an
explanation about each option.

The encoding parameter sets the encoding for input/output documents. The possible
values for encoding are: ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252, ibm858,
utf16, utf16le, utf16be, big5 and shiftjis.

Example #2104 - tidy::__construct() example

<?php

$html = <<< HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head><title>title</title></head>

<body>

<p>paragraph <bt />

text</p>

</body></html>

HTML;

$tidy = new tidy;

$tidy->parseString($html);

$tidy->CleanRepair();

if ($tidy->errorBuffer) {

 echo "The following errors were detected:\n";

 echo $tidy->errorBuffer;

}

http://tidy.sourceforge.net/docs/quickref.html

?>

The above example will output:

The following errors were detected:

line 8 column 14 - Error: <bt> is not recognized!

line 8 column 14 - Warning: discarding unexpected <bt>

See also tidy_parse_file() and tidy_parse_string().

tidy_diagnose

tidy_diagnose -- Run configured diagnostics on parsed and repaired markup

Description

Procedural style:

bool tidy_diagnose (tidy $object)

Object oriented style:

bool tidy->diagnose (void)

tidy_diagnose() runs diagnostic tests on the given tidy object, adding some more
information about the document in the error buffer.

Returns TRUE on success or FALSE on failure.

Example #2105 - tidy_diagnose() example

<?php

$html = <<< HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<p>paragraph</p>

HTML;

$tidy = tidy_parse_string($html);

$tidy->CleanRepair();

// note the difference between the two outputs

echo tidy_get_error_buffer($tidy) . "\n";

$tidy->diagnose();

echo tidy_get_error_buffer($tidy);

?>

The above example will output:

line 5 column 1 - Warning: <p> isn't allowed in <head> elements

line 5 column 1 - Warning: inserting missing 'title' element

line 5 column 1 - Warning: <p> isn't allowed in <head> elements

line 5 column 1 - Warning: inserting missing 'title' element

Info: Doctype given is "-//W3C//DTD XHTML 1.0 Strict//EN"

Info: Document content looks like XHTML 1.0 Strict

2 warnings, 0 errors were found!

See also tidy_get_error_buffer().

tidy_error_count

tidy_error_count -- Returns the Number of Tidy errors encountered for specified document

Description

int tidy_error_count (tidy $object)

tidy_error_count() returns the number of Tidy errors encountered for the specified
document.

Example #2106 - tidy_error_count() example

<?php

$html = '<p>test</i>

<bogustag>bogus</bogustag>';

$tidy = tidy_parse_string($html);

echo tidy_error_count($tidy) . "\n"; //1

echo $tidy->errorBuffer;

?>

The above example will output:

1

line 1 column 1 - Warning: missing <!DOCTYPE> declaration

line 1 column 8 - Warning: discarding unexpected </i>

line 2 column 1 - Error: <bogustag> is not recognized!

line 2 column 1 - Warning: discarding unexpected <bogustag>

line 2 column 16 - Warning: discarding unexpected </bogustag>

line 1 column 1 - Warning: inserting missing 'title' element

See also tidy_access_count() and tidy_warning_count().

tidy_get_body

tidy_get_body -- Returns a tidyNode Object starting from the <body> tag of the tidy parse
tree

Description

Procedural style:

tidyNode tidy_get_body (tidy $object)

Object oriented style:

tidyNode tidy->body (void)

This function returns a tidyNode object starting from the <body> tag of the tidy parse tree.

Example #2107 - tidy_get_body() example

<?php

$html = '

<html>

 <head>

 <title>test</title>

 </head>

 <body>

 <p>paragraph</p>

 </body>

</html>';

$tidy = tidy_parse_string($html);

$body = tidy_get_body($tidy);

echo $body->value;

?>

The above example will output:

<body>

<p>paragraph</p>

</body>

Note

This function is only available with Zend Engine 2 (PHP >= 5.0.0).

See also tidy_get_head() and tidy_get_html().

tidy_get_config

tidy_get_config -- Get current Tidy configuration

Description

Procedural style:

array tidy_get_config (tidy $object)

Object oriented style:

array tidy->getConfig (void)

tidy_get_config() returns an array with the configuration options in use by the given tidy
object.

For an explanation about each option, visit » http://tidy.sourceforge.net/docs/quickref.html.

Example #2108 - tidy_get_config() example

<?php

$html = '<p>test</p>';

$config = array('indent' => TRUE,

 'output-xhtml' => TRUE,

 'wrap' => 200);

$tidy = tidy_parse_string($html, $config);

print_r(tidy_get_config($tidy));

?>

The above example will output:

Array

(

 [indent-spaces] => 2

 [wrap] => 200

 [tab-size] => 8

 [char-encoding] => 1

 [input-encoding] => 3

 [output-encoding] => 1

 [newline] => 1

 [doctype-mode] => 1

 [doctype] =>

 [repeated-attributes] => 1

 [alt-text] =>

 [slide-style] =>

 [error-file] =>

 [output-file] =>

 [write-back] =>

 [markup] => 1

http://tidy.sourceforge.net/docs/quickref.html

 [show-warnings] => 1

 [quiet] =>

 [indent] => 1

 [hide-endtags] =>

 [input-xml] =>

 [output-xml] => 1

 [output-xhtml] => 1

 [output-html] =>

 [add-xml-decl] =>

 [uppercase-tags] =>

 [uppercase-attributes] =>

 [bare] =>

 [clean] =>

 [logical-emphasis] =>

 [drop-proprietary-attributes] =>

 [drop-font-tags] =>

 [drop-empty-paras] => 1

 [fix-bad-comments] => 1

 [break-before-br] =>

 [split] =>

 [numeric-entities] =>

 [quote-marks] =>

 [quote-nbsp] => 1

 [quote-ampersand] => 1

 [wrap-attributes] =>

 [wrap-script-literals] =>

 [wrap-sections] => 1

 [wrap-asp] => 1

 [wrap-jste] => 1

 [wrap-php] => 1

 [fix-backslash] => 1

 [indent-attributes] =>

 [assume-xml-procins] =>

 [add-xml-space] =>

 [enclose-text] =>

 [enclose-block-text] =>

 [keep-time] =>

 [word-2000] =>

 [tidy-mark] =>

 [gnu-emacs] =>

 [gnu-emacs-file] =>

 [literal-attributes] =>

 [show-body-only] =>

 [fix-uri] => 1

 [lower-literals] => 1

 [hide-comments] =>

 [indent-cdata] =>

 [force-output] => 1

 [show-errors] => 6

 [ascii-chars] => 1

 [join-classes] =>

 [join-styles] => 1

 [escape-cdata] =>

 [language] =>

 [ncr] => 1

 [output-bom] => 2

 [replace-color] =>

 [css-prefix] =>

 [new-inline-tags] =>

 [new-blocklevel-tags] =>

 [new-empty-tags] =>

 [new-pre-tags] =>

 [accessibility-check] => 0

 [vertical-space] =>

 [punctuation-wrap] =>

 [merge-divs] => 1

)

See also tidy_reset_config() and tidy_save_config().

tidy_get_error_buffer

tidy_get_error_buffer -- Return warnings and errors which occurred parsing the specified
document

Description

Procedural style:

string tidy_get_error_buffer (tidy $object)

Object oriented style (property):

tidy

string errorBuffer;

tidy_get_error_buffer() returns warnings and errors which occurred parsing the specified
document.

Example #2109 - tidy_get_error_buffer() example

<?php

$html = '<p>paragraph</p>';

$tidy = tidy_parse_string($html);

echo tidy_get_error_buffer($tidy);

/* or in OO: */

echo $tidy->errorBuffer;

?>

The above example will output:

line 1 column 1 - Warning: missing <!DOCTYPE> declaration

line 1 column 1 - Warning: inserting missing 'title' element

See also tidy_access_count(), tidy_error_count() and tidy_warning_count().

tidy_get_head

tidy_get_head -- Returns a tidyNode Object starting from the <head> tag of the tidy parse
tree

Description

Procedural style:

tidyNode tidy_get_head (tidy $object)

Object oriented style:

tidyNode tidy->head (void)

This function returns a tidyNode object starting from the <head> tag of the tidy parse tree.

Example #2110 - tidy_get_head() example

<?php

$html = '

<html>

 <head>

 <title>test</title>

 </head>

 <body>

 <p>paragraph</p>

 </body>

</html>';

$tidy = tidy_parse_string($html);

$head = tidy_get_head($tidy);

echo $head->value;

?>

The above example will output:

<head>

<title>test</title>

</head>

Note

This function is only available with Zend Engine 2 (PHP >= 5.0.0).

See also tidy_get_body() and tidy_get_html().

tidy_get_html_ver

tidy_get_html_ver -- Get the Detected HTML version for the specified document

Description

Procedural style:

int tidy_get_html_ver (tidy $object)

Object oriented style:

int tidy->getHtmlVer (void)

tidy_get_html_ver() returns the detected HTML version for the specified tidy object.

Warning

This function is not yet implemented in the Tidylib itself, so it always return 0.

tidy_get_html

tidy_get_html -- Returns a tidyNode Object starting from the <html> tag of the tidy parse
tree

Description

Procedural style:

tidyNode tidy_get_html (tidy $object)

Object oriented style:

tidyNode tidy->html (void)

This function returns a tidyNode object starting from the <html> tag of the tidy parse tree.

Example #2111 - tidy_get_html() example

<?php

$html = '

<html>

 <head>

 <title>test</title>

 </head>

 <body>

 <p>paragraph</p>

 </body>

</html>';

$tidy = tidy_parse_string($html);

$html = tidy_get_html($tidy);

echo $html->value;

?>

The above example will output:

<html>

<head>

<title>test</title>

</head>

<body>

<p>paragraph</p>

</body>

</html>

Note

This function is only available with Zend Engine 2 (PHP >= 5.0.0).

See also tidy_get_body() and tidy_get_head().

tidy_get_opt_doc

tidy_get_opt_doc -- Returns the documentation for the given option name

Description

Procedural style:

string tidy_get_opt_doc (tidy $object, string $optname)

Object oriented style:

string tidy->getOptDoc (string $optname)

tidy_get_opt_doc() returns the documentation for the given option name.

Note

You need at least libtidy from 25 April, 2005 for this function be available.

Parameters

object

A tidy object

optname

The option name

Return Values

Returns a string if the option exists and has documentation available, or FALSE otherwise.

Examples

Example #2112 - Print all options along with their documentation and default
value

<?php

$tidy = new tidy;

$config = $tidy->getConfig();

ksort($config);

foreach ($config as $opt => $val) {

 if (!$doc = $tidy->getOptDoc($opt))

 $doc = 'no documentation available!';

 $val = ($tidy->getOpt($opt) === true) ? 'true' : $val;

 $val = ($tidy->getOpt($opt) === false) ? 'false' : $val;

 echo "<p>$opt (default: '$val')
".

 "$doc</p><hr />\n";

}

?>

See Also

• tidy_get_config()
• tidy_getopt()

tidy_get_output

tidy_get_output -- Return a string representing the parsed tidy markup

Description

string tidy_get_output (tidy $object)

Gets a string with the repaired html.

Parameters

object

The tidy object.

Return Values

Returns the parsed tidy markup.

Examples

Example #2113 - tidy_get_output() example

<?php

$html = '<p>paragraph</i>';

$tidy = tidy_parse_string($html);

$tidy->CleanRepair();

echo tidy_get_output($tidy);

?>

The above example will output:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title></title>

</head>

<body>

<p>paragraph</p>

</body>

</html>

tidy_get_release

tidy_get_release -- Get release date (version) for Tidy library

Description

Procedural style:

string tidy_get_release (void)

Object oriented style:

string tidy->getRelease (void)

Gets the release date of the Tidy library.

Return Values

Returns a string with the release date of the Tidy library.

tidy_get_root

tidy_get_root -- Returns a tidyNode object representing the root of the tidy parse tree

Description

Procedural style:

tidyNode tidy_get_root (tidy $object)

Object oriented style:

tidyNode tidy->root (void)

Returns a tidyNode object representing the root of the tidy parse tree.

Example #2114 - dump nodes

<?php

$html = <<< HTML

<html><body>

<p>paragraph</p>

</body></html>

HTML;

$tidy = tidy_parse_string($html);

dump_nodes($tidy->root(), 1);

function dump_nodes($node, $indent) {

 if($node->hasChildren()) {

 foreach($node->child as $child) {

 echo str_repeat('.', $indent*2) . ($child->name ? $child->name :
'"'.$child->value.'"'). "\n";

 dump_nodes($child, $indent+1);

 }

 }

}

?>

The above example will output:

..html

....head

......title

....body

......p

........"paragraph"

......br

Note

This function is only available with Zend Engine 2 (PHP >= 5.0.0).

tidy_get_status

tidy_get_status -- Get status of specified document

Description

Procedural style:

int tidy_get_status (tidy $object)

Object oriented style:

int tidy->getStatus (void)

tidy_get_status() returns the status for the specified tidy object. It returns 0 if no
error/warning was raised, 1 for warnings or accessibility errors, or 2 for errors.

Example #2115 - tidy_get_status() example

<?php

$html = '<p>paragraph</i>';

$tidy = tidy_parse_string($html);

$html2 = '<bogus>test</bogus>';

$tidy2 = tidy_parse_string($html2);

echo tidy_get_status($tidy); //1

echo tidy_get_status($tidy2); //2

?>

tidy_getopt

tidy_getopt -- Returns the value of the specified configuration option for the tidy document

Description

Procedural style:

mixed tidy_getopt (tidy $object, string $option)

Object oriented style:

mixed tidy->getOpt (string $option)

tidy_getopt() returns the value of the specified option for the specified tidy object. The
return type depends on the type of the specified option. You will find a list with each
configuration option and their types at: » http://tidy.sourceforge.net/docs/quickref.html.

Example #2116 - tidy_getopt() example

<?php

$html ='<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html><head><title>Title</title></head>

<body>

<p></p>

</body></html>';

$config = array('accessibility-check' => 3,

 'alt-text' => 'some text');

$tidy = new tidy();

$tidy->parseString($html, $config);

var_dump($tidy->getOpt('accessibility-check')); //integer

var_dump($tidy->getOpt('lower-literals')); //boolean

var_dump($tidy->getOpt('alt-text')); //string

?>

The above example will output:

int(3)

bool(true)

string(9) "some text"

http://tidy.sourceforge.net/docs/quickref.html

tidy_is_xhtml

tidy_is_xhtml -- Indicates if the document is a XHTML document

Description

Procedural style:

bool tidy_is_xhtml (tidy $object)

Object oriented style:

bool tidy->isXhtml (void)

This function returns TRUE if the specified tidy object is a XHTML document, or FALSE
otherwise.

Warning

This function is not yet implemented in the Tidylib itself, so it always return FALSE.

tidy_is_xml

tidy_is_xml -- Indicates if the document is a generic (non HTML/XHTML) XML document

Description

Procedural style:

bool tidy_is_xml (tidy $object)

Object oriented style:

bool tidy->isXml (void)

This function returns TRUE if the specified tidy object is a generic XML document (non
HTML/XHTML), or FALSE otherwise.

Warning

This function is not yet implemented in the Tidylib itself, so it always return FALSE.

tidy_load_config

tidy_load_config -- Load an ASCII Tidy configuration file with the specified encoding

Description

void tidy_load_config (string $filename, string $encoding)

This function loads a Tidy configuration file, with the specified encoding.

Parameters

filename

encoding

Return Values

No value is returned.

Notes

Note

This function is only available in Tidy 1.0. It became obsolete in Tidy 2.0, and thus has
been removed.

tidy_node->get_attr

tidy_node->get_attr -- Return the attribute with the provided attribute id

Description

tidy_attr tidy_node->get_attr (int $attrib_id)

Warning

This function is currently not documented; only its argument list is available.

tidy_node->get_nodes

tidy_node->get_nodes -- Return an array of nodes under this node with the specified id

Description

array tidy_node->get_nodes (int $node_id)

Warning

This function is currently not documented; only its argument list is available.

tidy_node->next

tidy_node->next -- Returns the next sibling to this node

Description

tidy_node tidy_node->next (void)

Warning

This function is currently not documented; only its argument list is available.

tidy_node->prev

tidy_node->prev -- Returns the previous sibling to this node

Description

tidy_node tidy_node->prev (void)

Warning

This function is currently not documented; only its argument list is available.

tidy_parse_file

tidy_parse_file -- Parse markup in file or URI

Description

Procedural style:

tidy tidy_parse_file (string $filename [, mixed $config [, string $encoding [, bool $
use_include_path]]])

Object oriented style:

bool tidy->parseFile (string $filename [, mixed $config [, string $encoding [, bool $
use_include_path]]])

This function parses the given file.

The config parameter can be passed either as an array or as a string. If a string is
passed, it is interpreted as the name of the configuration file, otherwise, it is interpreted as
the options themselves. Check » http://tidy.sourceforge.net/docs/quickref.html for an
explanation about each option.

The encoding parameter sets the encoding for input/output documents. The possible
values for encoding are: ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252, ibm858,
utf16, utf16le, utf16be, big5 and shiftjis.

Example #2117 - tidy_parse_file() example

<?php

$tidy = tidy_parse_file('file.html');

$tidy->cleanRepair();

if(!empty($tidy->errorBuffer)) {

 echo "The following errors or warnings occured:\n";

 echo $tidy->errorBuffer;

}

?>

Note

The optional parameters config and encoding were added in Tidy 2.0.

See also tidy_parse_string(), tidy_repair_file() and tidy_repair_string().

http://tidy.sourceforge.net/docs/quickref.html

tidy_parse_string

tidy_parse_string -- Parse a document stored in a string

Description

Procedural style:

tidy tidy_parse_string (string $input [, mixed $config [, string $encoding]])

Object oriented style:

bool tidy->parseString (string $input [, mixed $config [, string $encoding]])

tidy_parse_string() parses a document stored in a string.

The config parameter can be passed either as an array or as a string. If a string is
passed, it is interpreted as the name of the configuration file, otherwise, it is interpreted as
the options themselves. Check » http://tidy.sourceforge.net/docs/quickref.html for an
explanation about each option.

The encoding parameter sets the encoding for input/output documents. The possible
values for encoding are: ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252, ibm858,
utf16, utf16le, utf16be, big5 and shiftjis.

Example #2118 - tidy_parse_string() example

<?php

ob_start();

?>

<html>

 <head>

 <title>test</title>

 </head>

 <body>

 <p>error
another line</i>

 </body>

</html>

<?php

$buffer = ob_get_clean();

$config = array('indent' => TRUE,

 'output-xhtml' => TRUE,

 'wrap' => 200);

$tidy = tidy_parse_string($buffer, $config, 'UTF8');

$tidy->cleanRepair();

echo $tidy;

http://tidy.sourceforge.net/docs/quickref.html

?>

The above example will output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>

 test

 </title>

 </head>

 <body>

 <p>

 error

 another line

 </p>

 </body>

</html>

Note

The optional parameters config and encoding were added in Tidy 2.0.

See also tidy_parse_file(), tidy_repair_file() and tidy_repair_string().

tidy_repair_file

tidy_repair_file -- Repair a file and return it as a string

Description

string tidy_repair_file (string $filename [, mixed $config [, string $encoding [, bool $
use_include_path]]])

This function repairs the given file and returns it as a string.

The config parameter can be passed either as an array or as a string. If a string is
passed, it is interpreted as the name of the configuration file, otherwise, it is interpreted as
the options themselves. Check » http://tidy.sourceforge.net/docs/quickref.html for an
explanation about each option.

The encoding parameter sets the encoding for input/output documents. The possible
values for encoding are: ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252, ibm858,
utf16, utf16le, utf16be, big5 and shiftjis.

Example #2119 - tidy_repair_file() example

<?php

$file = 'file.html';

$repaired = tidy_repair_file($file);

rename($file, $file . '.bak');

file_put_contents($file, $repaired);

?>

Note

The optional parameters config and encoding were added in Tidy 2.0.

See also tidy_parse_file(), tidy_parse_string() and tidy_repair_string().

http://tidy.sourceforge.net/docs/quickref.html

tidy_repair_string

tidy_repair_string -- Repair a string using an optionally provided configuration file

Description

string tidy_repair_string (string $data [, mixed $config [, string $encoding]])

This function repairs the given string.

The config parameter can be passed either as an array or as a string. If a string is
passed, it is interpreted as the name of the configuration file, otherwise, it is interpreted as
the options themselves. Check » http://tidy.sourceforge.net/docs/quickref.html for an
explanation about each option.

The encoding parameter sets the encoding for input/output documents. The possible
values for encoding are: ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252, ibm858,
utf16, utf16le, utf16be, big5 and shiftjis.

Example #2120 - tidy_repair_string() example

<?php

ob_start();

?>

<html>

 <head>

 <title>test</title>

 </head>

 <body>

 <p>error</i>

 </body>

</html>

<?php

$buffer = ob_get_clean();

$tidy = tidy_repair_string($buffer);

echo $tidy;

?>

The above example will output:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title>test</title>

</head>

<body>

<p>error</p>

http://tidy.sourceforge.net/docs/quickref.html

</body>

</html>

Note

The optional parameters config and encoding were added in Tidy 2.0.

See also tidy_parse_file(), tidy_parse_string() and tidy_repair_file().

tidy_reset_config

tidy_reset_config -- Restore Tidy configuration to default values

Description

bool tidy_reset_config (void)

This function restores the Tidy configuration to the default values.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available in Tidy 1.0. It became obsolete in Tidy 2.0, and thus has
been removed.

tidy_save_config

tidy_save_config -- Save current settings to named file

Description

bool tidy_save_config (string $filename)

Saves current settings to the specified file. Only non-default values are written.

Parameters

filename

Path to the config file.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available in Tidy 1.0. It became obsolete in Tidy 2.0, and thus has
been removed.

See Also

• tidy_get_config()
• tidy_getopt()
• tidy_reset_config()
• tidy_setopt()

tidy_set_encoding

tidy_set_encoding -- Set the input/output character encoding for parsing markup

Description

bool tidy_set_encoding (string $encoding)

Sets the encoding for input/output documents.

Parameters

encoding

Possible values for encoding are ascii, latin0, latin1, raw, utf8, iso2022, mac, win1252,
ibm858, utf16, utf16le, utf16be, big5 and shiftjis.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is only available in Tidy 1.0. It became obsolete in Tidy 2.0, and thus has
been removed.

tidy_setopt

tidy_setopt -- Updates the configuration settings for the specified tidy document

Description

bool tidy_setopt (string $option, mixed $value)

tidy_setopt() updates the specified option with a new value. You will find a list with each
configuration option at: » http://tidy.sourceforge.net/docs/quickref.html.

Example #2121 - tidy_setopt() example

<?php

$html = '<p>test</i>';

$tidy = tidy_parse_string($html);

tidy_setopt('indent', FALSE);

?>

See also tidy_getopt(), tidy_get_config(), tidy_reset_config() and tidy_save_config().

Note

This function is only available in Tidy 1.0. It became obsolete in Tidy 2.0, and thus has
been removed.

http://tidy.sourceforge.net/docs/quickref.html

tidy_warning_count

tidy_warning_count -- Returns the Number of Tidy warnings encountered for specified
document

Description

int tidy_warning_count (tidy $object)

tidy_warning_count() returns the number of Tidy warnings encountered for the specified
document.

Parameters

object

The Tidy object.

Return Values

Returns the number of warnings.

Examples

Example #2122 - tidy_warning_count() example

<?php

$html = '<p>test</i>

<bogustag>bogus</bogustag>';

$tidy = tidy_parse_string($html);

echo tidy_error_count($tidy) . "\n"; //1

echo tidy_warning_count($tidy) . "\n"; //5

?>

See Also

• tidy_error_count()
• tidy_access_count()

tidyNode->hasChildren

tidyNode->hasChildren -- Returns true if this node has children

Description

bool tidyNode->hasChildren (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->has_children() in PHP 4/Tidy 1.

tidyNode->hasSiblings

tidyNode->hasSiblings -- Returns true if this node has siblings

Description

bool tidyNode->hasSiblings (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->has_siblings() in PHP 4/Tidy 1.

tidyNode->isAsp

tidyNode->isAsp -- Returns true if this node is ASP

Description

bool tidyNode->isAsp (void)

This functions returns TRUE if the current node is ASP, or FALSE otherwise.

Note

This function was named tidy_node->is_asp() in PHP 4/Tidy 1.

tidyNode->isComment

tidyNode->isComment -- Returns true if this node represents a comment

Description

bool tidyNode->isComment (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->is_comment() in PHP 4/Tidy 1.

tidyNode->isHtml

tidyNode->isHtml -- Returns true if this node is part of a HTML document

Description

bool tidyNode->isHtml (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->is_html() in PHP 4/Tidy 1.

tidyNode->isJste

tidyNode->isJste -- Returns true if this node is JSTE

Description

bool tidyNode->isJste (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->is_jste() in PHP 4/Tidy 1.

tidyNode->isPhp

tidyNode->isPhp -- Returns true if this node is PHP

Description

bool tidyNode->isPhp (void)

Returns TRUE if the current node is PHP code, FALSE otherwise.

Example #2123 - get the PHP code from a mixed HTML/PHP document

<?php

$html = <<< HTML

<html><head>

<?php echo '<title>title</title>'; ?>

</head>

<body>

<?php

echo 'hello world!';

?>

</body></html>

HTML;

$tidy = tidy_parse_string($html);

$num = 0;

get_php($tidy->html());

function get_php($node) {

 // check if the current node is PHP code

 if($node->isPhp()) {

 echo "\n\n# PHP node #" . ++$GLOBALS['num'] . "\n";

 echo $node->value;

 }

 // check if the current node has childrens

 if($node->hasChildren()) {

 foreach($node->child as $child) {

 get_php($child);

 }

 }

}

?>

The above example will output:

PHP node #1

<?php echo '<title>title</title>'; ?>

PHP node #2

<?php

echo 'hello world!';

?>

Note

This function was named tidy_node->is_php() in PHP 4/Tidy 1.

tidyNode->isText

tidyNode->isText -- Returns true if this node represents text (no markup)

Description

bool tidyNode->isText (void)

Warning

This function is currently not documented; only its argument list is available.

Note

This function was named tidy_node->is_text() in PHP 4/Tidy 1.

tidyNode::getParent

tidyNode::getParent -- returns the parent node of the current node

Description

tidyNode tidyNode::getParent (void)

Returns the parent node of the current node.

Return Values

Returns a tidyNode if the node has a parent, or NULL otherwise.

Tokenizer

Introduction

The tokenizer functions provide an interface to the PHP tokenizer embedded in the Zend
Engine. Using these functions you may write your own PHP source analyzing or
modification tools without having to deal with the language specification at the lexical level.

See also the appendix about tokens.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Beginning with PHP 4.3.0 these functions are enabled by default. For older versions you
have to configure and compile PHP with --enable-tokenizer. You can disable tokenizer
support with --disable-tokenizer.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

Built-in support for tokenizer is available as of PHP 4.3.0.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

When the extension has either been compiled into PHP or dynamically loaded at runtime,
the tokens listed in List of Parser Tokens are defined as constants.

Examples

Here is a simple example PHP scripts using the tokenizer that will read in a PHP file, strip
all comments from the source and print the pure code only.

Example #2124 - Strip comments with the tokenizer

<?php

/*

* T_ML_COMMENT does not exist in PHP 5.

* The following three lines define it in order to

* preserve backwards compatibility.

*

* The next two lines define the PHP 5 only T_DOC_COMMENT,

* which we will mask as T_ML_COMMENT for PHP 4.

*/

if (!defined('T_ML_COMMENT')) {

 define('T_ML_COMMENT', T_COMMENT);

} else {

 define('T_DOC_COMMENT', T_ML_COMMENT);

}

$source = file_get_contents('example.php');

$tokens = token_get_all($source);

foreach ($tokens as $token) {

 if (is_string($token)) {

 // simple 1-character token

 echo $token;

 } else {

 // token array

 list($id, $text) = $token;

 switch ($id) {

 case T_COMMENT:

 case T_ML_COMMENT: // we've defined this

 case T_DOC_COMMENT: // and this

 // no action on comments

 break;

 default:

 // anything else -> output "as is"

 echo $text;

 break;

 }

 }

}

?>

Tokenizer Functions

token_get_all

token_get_all -- Split given source into PHP tokens

Description

array token_get_all (string $source)

token_get_all() parses the given source string into PHP language tokens using the Zend
engine's lexical scanner.

For a list of parser tokens, see List of Parser Tokens, or use token_name() to translate a
token value into its string representation.

Parameters

source

The PHP source to parse.

Return Values

An array of token identifiers. Each individual token identifier is either a single character
(i.e.:;,., >, !, etc...), or a three element array containing the token index in element 0, the
string content of the original token in element 1 and the line number in element 2.

Examples

Example #2125 - token_get_all() examples

<?php

$tokens = token_get_all('<?php echo; ?>'); /* => array(

 array(T_OPEN_TAG, '<?php'),

 array(T_ECHO, 'echo'),

 ';',

 array(T_CLOSE_TAG, '?>'));
*/

/* Note in the following example that the string is parsed as T_INLINE_HTML

 rather than the otherwise expected T_COMMENT (T_ML_COMMENT in PHP <5).

 This is because no open/close tags were used in the "code" provided.

 This would be equivalent to putting a comment outside of <?php ?> tags in
a normal file. */

$tokens = token_get_all('/* comment */'); // => array(array(T_INLINE_HTML,
'/* comment */'));

?>

ChangeLog

Version Description

5.2.2 Line numbers are returned in element 2

token_name

token_name -- Get the symbolic name of a given PHP token

Description

string token_name (int $token)

token_name() gets the symbolic name for a PHP token value.

Parameters

token

The token value.

Return Values

The symbolic name of the given token. The returned name returned matches the name of
the matching token constant.

Examples

Example #2126 - token_name() example

<?php

// 260 is the token value for the T_REQUIRE token

echo token_name(260); // -> "T_REQUIRE"

// a token constant maps to its own name

echo token_name(T_FUNCTION); // -> "T_FUNCTION"

?>

See Also

• List of Parser Tokens

URLs

Introduction

Dealing with URL strings: encoding, decoding and parsing.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

The following constants are meant to be used with parse_url() and are available since
PHP 5.1.2.

PHP_URL_SCHEME (integer)

PHP_URL_HOST (integer)

PHP_URL_PORT (integer)

PHP_URL_USER (integer)

PHP_URL_PASS (integer)

PHP_URL_PATH (integer)

PHP_URL_QUERY (integer)

PHP_URL_FRAGMENT (integer)

URL Functions

base64_decode

base64_decode -- Decodes data encoded with MIME base64

Description

string base64_decode (string $data [, bool $strict])

Decodes a base64 encoded data.

Parameters

data

The decoded data.

strict

Returns FALSE if input contains space or some other separator.

Return Values

Returns the original data or FALSE on failure. The returned data may be binary.

ChangeLog

Version Description

5.2.0 strict added

Examples

Example #2127 - base64_decode() example

<?php

$str = 'VGhpcyBpcyBhbiBlbmNvZGVkIHN0cmluZw==';

echo base64_decode($str);

?>

The above example will output:

This is an encoded string

See Also

• base64_encode()
• » RFC 2045 section 6.8

http://www.faqs.org/rfcs/rfc2045

base64_encode

base64_encode -- Encodes data with MIME base64

Description

string base64_encode (string $data)

Encodes the given data with base64.

This encoding is designed to make binary data survive transport through transport layers
that are not 8-bit clean, such as mail bodies.

Base64-encoded data takes about 33% more space than the original data.

Parameters

data

The data to encode.

Return Values

The encoded data, as a string.

Examples

Example #2128 - base64_encode() example

<?php

$str = 'This is an encoded string';

echo base64_encode($str);

?>

The above example will output:

VGhpcyBpcyBhbiBlbmNvZGVkIHN0cmluZw==

See Also

• base64_decode()
• chunk_split()

• convert_uuencode()
• » RFC 2045 section 6.8

http://www.faqs.org/rfcs/rfc2045

get_headers

get_headers -- Fetches all the headers sent by the server in response to a HTTP request

Description

array get_headers (string $url [, int $format])

get_headers() returns an array with the headers sent by the server in response to a HTTP
request.

Parameters

url

The target URL.

format

If the optional format parameter is set to 1, get_headers() parses the response and
sets the array's keys.

Return Values

Returns an indexed or associative array with the headers, or FALSE on failure.

ChangeLog

Version Description

5.1.3 This function now uses the default stream
context, which can be set/changed with the
stream_context_get_default() function.

Examples

Example #2129 - get_headers() example

<?php

$url = 'http://www.example.com';

print_r(get_headers($url));

print_r(get_headers($url, 1));

?>

The above example will output something similar to:

Array

(

 [0] => HTTP/1.1 200 OK

 [1] => Date: Sat, 29 May 2004 12:28:13 GMT

 [2] => Server: Apache/1.3.27 (Unix) (Red-Hat/Linux)

 [3] => Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

 [4] => ETag: "3f80f-1b6-3e1cb03b"

 [5] => Accept-Ranges: bytes

 [6] => Content-Length: 438

 [7] => Connection: close

 [8] => Content-Type: text/html

)

Array

(

 [0] => HTTP/1.1 200 OK

 [Date] => Sat, 29 May 2004 12:28:14 GMT

 [Server] => Apache/1.3.27 (Unix) (Red-Hat/Linux)

 [Last-Modified] => Wed, 08 Jan 2003 23:11:55 GMT

 [ETag] => "3f80f-1b6-3e1cb03b"

 [Accept-Ranges] => bytes

 [Content-Length] => 438

 [Connection] => close

 [Content-Type] => text/html

)

get_meta_tags

get_meta_tags -- Extracts all meta tag content attributes from a file and returns an array

Description

array get_meta_tags (string $filename [, bool $use_include_path])

Opens filename and parses it line by line for <meta> tags in the file. The parsing stops at
</head>.

Parameters

filename

The path to the HTML file, as a string. This can be a local file or an URL.

Example #2130 - What get_meta_tags() parses

<meta name="author" content="name">

<meta name="keywords" content="php documentation">

<meta name="DESCRIPTION" content="a php manual">

<meta name="geo.position" content="49.33;-86.59">

</head> <!-- parsing stops here -->

(pay attention to line endings - PHP uses a native function to parse the input, so a Mac
file won't work on Unix).

use_include_path

Setting use_include_path to TRUE will result in PHP trying to open the file along the
standard include path as per the include_path directive. This is used for local files, not
URLs.

Return Values

Returns an array with all the parsed meta tags.

The value of the name property becomes the key, the value of the content property
becomes the value of the returned array, so you can easily use standard array functions to
traverse it or access single values. Special characters in the value of the name property
are substituted with '_', the rest is converted to lower case. If two meta tags have the same
name, only the last one is returned.

ChangeLog

Version Description

4.0.5 Support for unquoted HTML attributes was
added.

Examples

Example #2131 - What get_meta_tags() returns

<?php

// Assuming the above tags are at www.example.com

$tags = get_meta_tags('http://www.example.com/');

// Notice how the keys are all lowercase now, and

// how . was replaced by _ in the key.

echo $tags['author']; // name

echo $tags['keywords']; // php documentation

echo $tags['description']; // a php manual

echo $tags['geo_position']; // 49.33;-86.59

?>

See Also

• htmlentities()
• urlencode()

http_build_query

http_build_query -- Generate URL-encoded query string

Description

string http_build_query (array $formdata [, string $numeric_prefix [, string $
arg_separator]])

Generates a URL-encoded query string from the associative (or indexed) array provided.

Parameters

formdata

May be an array or object containing properties. The array form may be a simple
one-dimensional structure, or an array of arrays (who in turn may contain other arrays).

numeric_prefix

If numeric indices are used in the base array and this parameter is provided, it will be
prepended to the numeric index for elements in the base array only. This is meant to
allow for legal variable names when the data is decoded by PHP or another CGI
application later on.

arg_separator

arg_separator.output is used to separate arguments, unless this parameter is
specified, and is then used.

Return Values

Returns a URL-encoded string.

ChangeLog

Version Description

5.1.2 The arg_separator parameter was added.

5.1.3 Square brackets are escaped.

Examples

Example #2132 - Simple usage of http_build_query()

<?php

$data = array('foo'=>'bar',

 'baz'=>'boom',

 'cow'=>'milk',

 'php'=>'hypertext processor');

echo http_build_query($data); //
foo=bar&baz=boom&cow=milk&php=hypertext+processor

echo http_build_query($data, '', '&'); //
foo=bar&baz=boom&cow=milk&php=hypertext+processor

?>

Example #2133 - http_build_query() with numerically index elements.

<?php

$data = array('foo', 'bar', 'baz', 'boom', 'cow' => 'milk', 'php'
=>'hypertext processor');

echo http_build_query($data) . "\n";

echo http_build_query($data, 'myvar_');

?>

The above example will output:

0=foo&1=bar&2=baz&3=boom&cow=milk&php=hypertext+processor

myvar_0=foo&myvar_1=bar&myvar_2=baz&myvar_3=boom&cow=milk&php=hypertext+proc
essor

Example #2134 - http_build_query() with complex arrays

<?php

$data = array('user'=>array('name'=>'Bob Smith',

 'age'=>47,

 'sex'=>'M',

 'dob'=>'5/12/1956'),

 'pastimes'=>array('golf', 'opera', 'poker', 'rap'),

 'children'=>array('bobby'=>array('age'=>12,

 'sex'=>'M'),

 'sally'=>array('age'=>8,

 'sex'=>'F')),

 'CEO');

echo http_build_query($data, 'flags_');

?>

this will output : (word wrapped for readability)

user%5Bname%5D=Bob+Smith&user%5Bage%5D=47&user%5Bsex%5D=M&

user%5Bdob%5D=5%2F12%2F1956&pastimes%5B0%5D=golf&pastimes%5B1%5D=opera&

pastimes%5B2%5D=poker&pastimes%5B3%5D=rap&children%5Bbobby%5D%5Bage%5D=12&

children%5Bbobby%5D%5Bsex%5D=M&children%5Bsally%5D%5Bage%5D=8&

children%5Bsally%5D%5Bsex%5D=F&flags_0=CEO

Note

Only the numerically indexed element in the base array "CEO" received a prefix.
The other numeric indices, found under pastimes, do not require a string prefix to
be legal variable names.

Example #2135 - Using http_build_query() with an object

<?php

class myClass {

 var $foo;

 var $baz;

 function myClass() {

 $this->foo = 'bar';

 $this->baz = 'boom';

 }

}

$data = new myClass();

echo http_build_query($data); // foo=bar&baz=boom

?>

See Also

• parse_str()
• parse_url()
• urlencode()
• array_walk()

parse_url

parse_url -- Parse a URL and return its components

Description

mixed parse_url (string $url [, int $component])

This function parses a URL and returns an associative array containing any of the various
components of the URL that are present.

This function is not meant to validate the given URL, it only breaks it up into the above
listed parts. Partial URLs are also accepted, parse_url() tries its best to parse them
correctly.

Parameters

url

The URL to parse

component

Specify one of PHP_URL_SCHEME, PHP_URL_HOST, PHP_URL_PORT,
PHP_URL_USER, PHP_URL_PASS, PHP_URL_PATH, PHP_URL_QUERY or
PHP_URL_FRAGMENT to retrieve just a specific URL component as a string.

Return Values

On seriously malformed URLs, parse_url() may return FALSE and emit a E_WARNING.
Otherwise an associative array is returned, whose components may be (at least one):

• scheme - e.g. http

• host

• port

• user

• pass

• path

• query - after the question mark ?

• fragment - after the hashmark #

If the component parameter is specified a string is returned instead of an array.

ChangeLog

Version Description

5.1.2 Added the component parameter

Examples

Example #2136 - A parse_url() example

<?php

$url = 'http://username:password@hostname/path?arg=value#anchor';

print_r(parse_url($url));

echo parse_url($url, PHP_URL_PATH);

?>

The above example will output:

Array

(

 [scheme] => http

 [host] => hostname

 [user] => username

 [pass] => password

 [path] => /path

 [query] => arg=value

 [fragment] => anchor

)

/path

Notes

Note

This function doesn't work with relative URLs.

Note

This function is intended specifically for the purpose of parsing URLs and not URIs.
However, to comply with PHP's backwards compatibility requirements it makes an
exception for the file:// scheme where tripple slashes (file:///...) are allowed. For any
other scheme this is invalid.

See Also

• pathinfo()
• parse_str()
• http_build_query()
• dirname()
• basename()

rawurldecode

rawurldecode -- Decode URL-encoded strings

Description

string rawurldecode (string $str)

Returns a string in which the sequences with percent (%) signs followed by two hex digits
have been replaced with literal characters.

Parameters

str

The URL to be decoded.

Return Values

Returns the decoded URL, as a string.

Examples

Example #2137 - rawurldecode() example

<?php

echo rawurldecode('foo%20bar%40baz'); // foo bar@baz

?>

Notes

Note

rawurldecode() does not decode plus symbols ('+') into spaces. urldecode() does.

See Also

• rawurlencode()

• urldecode()
• urlencode()

rawurlencode

rawurlencode -- URL-encode according to RFC 1738

Description

string rawurlencode (string $str)

Encodes the given string according to » RFC 1738.

Parameters

str

The URL to be encoded.

Return Values

Returns a string in which all non-alphanumeric characters except -_. have been replaced
with a percent (%) sign followed by two hex digits. This is the encoding described in
» RFC 1738 for protecting literal characters from being interpreted as special URL
delimiters, and for protecting URLs from being mangled by transmission media with
character conversions (like some email systems).

Examples

Example #2138 - including a password in an FTP URL

<?php

echo '<a href="ftp://user:', rawurlencode('foo @+%/'),

 '@ftp.example.com/x.txt">';

?>

The above example will output:

Or, if you pass information in a PATH_INFO component of the URL:

Example #2139 - rawurlencode() example 2

<?php

echo '<a href="http://example.com/department_list_script/',

http://www.faqs.org/rfcs/rfc1738
http://www.faqs.org/rfcs/rfc1738
http://www.faqs.org/rfcs/rfc1738

 rawurlencode('sales and marketing/Miami'), '">';

?>

The above example will output:

<a
href="http://example.com/department_list_script/sales%20and%20marketing%2FMi
ami">

See Also

• rawurldecode()
• urldecode()
• urlencode()
• » RFC 1738

http://www.faqs.org/rfcs/rfc1738

urldecode

urldecode -- Decodes URL-encoded string

Description

string urldecode (string $str)

Decodes any % ## encoding in the given string.

Parameters

str

The string to be decoded.

Return Values

Returns the decoded string.

Examples

Example #2140 - urldecode() example

<?php

$a = explode('&', $QUERY_STRING);

$i = 0;

while ($i < count($a)) {

 $b = split('=', $a[$i]);

 echo 'Value for parameter ', htmlspecialchars(urldecode($b[0])),

 ' is ', htmlspecialchars(urldecode($b[1])), "
\n";

 $i++;

}

?>

See Also

• urlencode()
• rawurlencode()
• rawurldecode()

urlencode

urlencode -- URL-encodes string

Description

string urlencode (string $str)

This function is convenient when encoding a string to be used in a query part of a URL, as
a convenient way to pass variables to the next page.

Parameters

str

The string to be encoded.

Return Values

Returns a string in which all non-alphanumeric characters except -_. have been replaced
with a percent (%) sign followed by two hex digits and spaces encoded as plus (+)
signs. It is encoded the same way that the posted data from a WWW form is encoded, that
is the same way as in application/x-www-form-urlencoded media type. This differs from the
» RFC 1738 encoding (see rawurlencode()) in that for historical reasons, spaces are
encoded as plus (+) signs.

Examples

Example #2141 - urlencode() example

<?php

echo '';

?>

Example #2142 - urlencode() and htmlentities() example

<?php

$query_string = 'foo=' . urlencode($foo) . '&bar=' . urlencode($bar);

echo '';

?>

http://www.faqs.org/rfcs/rfc1738
http://www.faqs.org/rfcs/rfc1738

Notes

Note

Be careful about variables that may match HTML entities. Things like &, ©
and £ are parsed by the browser and the actual entity is used instead of the
desired variable name. This is an obvious hassle that the W3C has been telling people
about for years. The reference is here:
» http://www.w3.org/TR/html4/appendix/notes.html#h-B.2.2.

PHP supports changing the argument separator to the W3C-suggested semi-colon
through the arg_separator .ini directive. Unfortunately most user agents do not send
form data in this semi-colon separated format. A more portable way around this is to
use & instead of & as the separator. You don't need to change PHP's
arg_separator for this. Leave it as &, but simply encode your URLs using htmlentities()
or htmlspecialchars().

See Also

• urldecode()
• htmlentities()
• rawurlencode()
• rawurldecode()

http://www.w3.org/TR/html4/appendix/notes.html#h-B.2.2
http://www.w3.org/TR/html4/appendix/notes.html#h-B.2.2

Other Services

Client URL Library

Introduction

PHP supports libcurl, a library created by Daniel Stenberg, that allows you to connect and
communicate to many different types of servers with many different types of protocols.
libcurl currently supports the http, https, ftp, gopher, telnet, dict, file, and ldap protocols.
libcurl also supports HTTPS certificates, HTTP POST, HTTP PUT, FTP uploading (this
can also be done with PHP's ftp extension), HTTP form based upload, proxies, cookies,
and user+password authentication.

These functions have been added in PHP 4.0.2.

Installing/Configuring

Requirements

In order to use PHP's cURL functions you need to install the » libcurl package. PHP
requires that you use libcurl 7.0.2-beta or higher. In PHP 4.2.3, you will need libcurl
version 7.9.0 or higher. From PHP 4.3.0, you will need a libcurl version that's 7.9.8 or
higher. PHP 5.0.0 requires a libcurl version 7.10.5 or greater.

Installation

To use PHP's cURL support you must also compile PHP --with-curl[=DIR] where DIR is
the location of the directory containing the lib and include directories. In the "include"
directory there should be a folder named "curl" which should contain the easy.h and curl.h
files. There should be a file named libcurl.a located in the "lib" directory. Beginning with
PHP 4.3.0 you can configure PHP to use cURL for URL streams --with-curlwrappers.

Note

Note to Win32 Users

In order to enable this module on a Windows environment, libeay32.dll and
ssleay32.dll must be present in your PATH.

You don't need libcurl.dll from the cURL site.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines two resource types: a cURL handle and a cURL multi handle.

http://curl.haxx.se/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Descriptions and uses for these constants are described within the curl_setopt() and
curl_getinfo() documentation.

CURLOPT_AUTOREFERER (integer)
Available since PHP 5.1.0

CURLOPT_COOKIESESSION (integer)
Available since PHP 5.1.0

CURLOPT_DNS_USE_GLOBAL_CACHE (integer)

CURLOPT_DNS_CACHE_TIMEOUT (integer)

CURLOPT_FTP_SSL (integer)
Available since PHP 5.2.0

CURLFTPSSL_TRY (integer)
Available since PHP 5.2.0

CURLFTPSSL_ALL (integer)
Available since PHP 5.2.0

CURLFTPSSL_CONTROL (integer)
Available since PHP 5.2.0

CURLFTPSSL_NONE (integer)
Available since PHP 5.2.0

CURLOPT_PRIVATE (integer)
Available since PHP 5.2.4

CURLOPT_FTPSSLAUTH (integer)
Available since PHP 5.1.0

CURLOPT_PORT (integer)

CURLOPT_FILE (integer)

CURLOPT_INFILE (integer)

CURLOPT_INFILESIZE (integer)

CURLOPT_URL (integer)

CURLOPT_PROXY (integer)

CURLOPT_VERBOSE (integer)

CURLOPT_HEADER (integer)

CURLOPT_HTTPHEADER (integer)

CURLOPT_NOPROGRESS (integer)

CURLOPT_NOBODY (integer)

CURLOPT_FAILONERROR (integer)

CURLOPT_UPLOAD (integer)

CURLOPT_POST (integer)

CURLOPT_FTPLISTONLY (integer)

CURLOPT_FTPAPPEND (integer)

CURLOPT_FTP_CREATE_MISSING_DIRS (integer)

CURLOPT_NETRC (integer)

CURLOPT_FOLLOWLOCATION (integer)
This constant is not available when open_basedir or safe_mode are enabled.

CURLOPT_FTPASCII (integer)

CURLOPT_PUT (integer)

CURLOPT_MUTE (integer)

CURLOPT_USERPWD (integer)

CURLOPT_PROXYUSERPWD (integer)

CURLOPT_RANGE (integer)

CURLOPT_TIMEOUT (integer)

CURLOPT_TIMEOUT_MS (integer)

CURLOPT_TCP_NODELAY (integer)
Available since PHP 5.2.1

CURLOPT_POSTFIELDS (integer)

CURLOPT_REFERER (integer)

CURLOPT_USERAGENT (integer)

CURLOPT_FTPPORT (integer)

CURLOPT_FTP_USE_EPSV (integer)

CURLOPT_LOW_SPEED_LIMIT (integer)

CURLOPT_LOW_SPEED_TIME (integer)

CURLOPT_RESUME_FROM (integer)

CURLOPT_COOKIE (integer)

CURLOPT_SSLCERT (integer)

CURLOPT_SSLCERTPASSWD (integer)

CURLOPT_WRITEHEADER (integer)

CURLOPT_SSL_VERIFYHOST (integer)

CURLOPT_COOKIEFILE (integer)

CURLOPT_SSLVERSION (integer)

CURLOPT_TIMECONDITION (integer)

CURLOPT_TIMEVALUE (integer)

CURLOPT_CUSTOMREQUEST (integer)

CURLOPT_STDERR (integer)

CURLOPT_TRANSFERTEXT (integer)

CURLOPT_RETURNTRANSFER (integer)

CURLOPT_QUOTE (integer)

CURLOPT_POSTQUOTE (integer)

CURLOPT_INTERFACE (integer)

CURLOPT_KRB4LEVEL (integer)

CURLOPT_HTTPPROXYTUNNEL (integer)

CURLOPT_FILETIME (integer)

CURLOPT_WRITEFUNCTION (integer)

CURLOPT_READFUNCTION (integer)

CURLOPT_PASSWDFUNCTION (integer)

CURLOPT_HEADERFUNCTION (integer)

CURLOPT_MAXREDIRS (integer)

CURLOPT_MAXCONNECTS (integer)

CURLOPT_CLOSEPOLICY (integer)

CURLOPT_FRESH_CONNECT (integer)

CURLOPT_FORBID_REUSE (integer)

CURLOPT_RANDOM_FILE (integer)

CURLOPT_EGDSOCKET (integer)

CURLOPT_CONNECTTIMEOUT (integer)

CURLOPT_CONNECTTIMEOUT_MS (integer)

CURLOPT_SSL_VERIFYPEER (integer)

CURLOPT_CAINFO (integer)

CURLOPT_CAPATH (integer)

CURLOPT_COOKIEJAR (integer)

CURLOPT_SSL_CIPHER_LIST (integer)

CURLOPT_BINARYTRANSFER (integer)

CURLOPT_NOSIGNAL (integer)

CURLOPT_PROXYTYPE (integer)

CURLOPT_BUFFERSIZE (integer)

CURLOPT_HTTPGET (integer)

CURLOPT_HTTP_VERSION (integer)

CURLOPT_SSLKEY (integer)

CURLOPT_SSLKEYTYPE (integer)

CURLOPT_SSLKEYPASSWD (integer)

CURLOPT_SSLENGINE (integer)

CURLOPT_SSLENGINE_DEFAULT (integer)

CURLOPT_SSLCERTTYPE (integer)

CURLOPT_CRLF (integer)

CURLOPT_ENCODING (integer)

CURLOPT_PROXYPORT (integer)

CURLOPT_UNRESTRICTED_AUTH (integer)

CURLOPT_FTP_USE_EPRT (integer)

CURLOPT_HTTP200ALIASES (integer)

CURLOPT_HTTPAUTH (integer)

CURLAUTH_BASIC (integer)

CURLAUTH_DIGEST (integer)

CURLAUTH_GSSNEGOTIATE (integer)

CURLAUTH_NTLM (integer)

CURLAUTH_ANY (integer)

CURLAUTH_ANYSAFE (integer)

CURLOPT_PROXYAUTH (integer)

CURLCLOSEPOLICY_LEAST_RECENTLY_USED (integer)

CURLCLOSEPOLICY_LEAST_TRAFFIC (integer)

CURLCLOSEPOLICY_SLOWEST (integer)

CURLCLOSEPOLICY_CALLBACK (integer)

CURLCLOSEPOLICY_OLDEST (integer)

CURLINFO_PRIVATE (integer)
Available since PHP 5.2.4

CURLINFO_EFFECTIVE_URL (integer)

CURLINFO_HTTP_CODE (integer)

CURLINFO_HEADER_OUT (integer)
Available since PHP 5.1.3

CURLINFO_HEADER_SIZE (integer)

CURLINFO_REQUEST_SIZE (integer)

CURLINFO_TOTAL_TIME (integer)

CURLINFO_NAMELOOKUP_TIME (integer)

CURLINFO_CONNECT_TIME (integer)

CURLINFO_PRETRANSFER_TIME (integer)

CURLINFO_SIZE_UPLOAD (integer)

CURLINFO_SIZE_DOWNLOAD (integer)

CURLINFO_SPEED_DOWNLOAD (integer)

CURLINFO_SPEED_UPLOAD (integer)

CURLINFO_FILETIME (integer)

CURLINFO_SSL_VERIFYRESULT (integer)

CURLINFO_CONTENT_LENGTH_DOWNLOAD (integer)

CURLINFO_CONTENT_LENGTH_UPLOAD (integer)

CURLINFO_STARTTRANSFER_TIME (integer)

CURLINFO_CONTENT_TYPE (integer)

CURLINFO_REDIRECT_TIME (integer)

CURLINFO_REDIRECT_COUNT (integer)

CURL_TIMECOND_IFMODSINCE (integer)

CURL_TIMECOND_IFUNMODSINCE (integer)

CURL_TIMECOND_LASTMOD (integer)

CURL_VERSION_IPV6 (integer)

CURL_VERSION_KERBEROS4 (integer)

CURL_VERSION_SSL (integer)

CURL_VERSION_LIBZ (integer)

CURLVERSION_NOW (integer)

CURLE_OK (integer)

CURLE_UNSUPPORTED_PROTOCOL (integer)

CURLE_FAILED_INIT (integer)

CURLE_URL_MALFORMAT (integer)

CURLE_URL_MALFORMAT_USER (integer)

CURLE_COULDNT_RESOLVE_PROXY (integer)

CURLE_COULDNT_RESOLVE_HOST (integer)

CURLE_COULDNT_CONNECT (integer)

CURLE_FTP_WEIRD_SERVER_REPLY (integer)

CURLE_FTP_ACCESS_DENIED (integer)

CURLE_FTP_USER_PASSWORD_INCORRECT (integer)

CURLE_FTP_WEIRD_PASS_REPLY (integer)

CURLE_FTP_WEIRD_USER_REPLY (integer)

CURLE_FTP_WEIRD_PASV_REPLY (integer)

CURLE_FTP_WEIRD_227_FORMAT (integer)

CURLE_FTP_CANT_GET_HOST (integer)

CURLE_FTP_CANT_RECONNECT (integer)

CURLE_FTP_COULDNT_SET_BINARY (integer)

CURLE_PARTIAL_FILE (integer)

CURLE_FTP_COULDNT_RETR_FILE (integer)

CURLE_FTP_WRITE_ERROR (integer)

CURLE_FTP_QUOTE_ERROR (integer)

CURLE_HTTP_NOT_FOUND (integer)

CURLE_WRITE_ERROR (integer)

CURLE_MALFORMAT_USER (integer)

CURLE_FTP_COULDNT_STOR_FILE (integer)

CURLE_READ_ERROR (integer)

CURLE_OUT_OF_MEMORY (integer)

CURLE_OPERATION_TIMEOUTED (integer)

CURLE_FTP_COULDNT_SET_ASCII (integer)

CURLE_FTP_PORT_FAILED (integer)

CURLE_FTP_COULDNT_USE_REST (integer)

CURLE_FTP_COULDNT_GET_SIZE (integer)

CURLE_HTTP_RANGE_ERROR (integer)

CURLE_HTTP_POST_ERROR (integer)

CURLE_SSL_CONNECT_ERROR (integer)

CURLE_FTP_BAD_DOWNLOAD_RESUME (integer)

CURLE_FILE_COULDNT_READ_FILE (integer)

CURLE_LDAP_CANNOT_BIND (integer)

CURLE_LDAP_SEARCH_FAILED (integer)

CURLE_LIBRARY_NOT_FOUND (integer)

CURLE_FUNCTION_NOT_FOUND (integer)

CURLE_ABORTED_BY_CALLBACK (integer)

CURLE_BAD_FUNCTION_ARGUMENT (integer)

CURLE_BAD_CALLING_ORDER (integer)

CURLE_HTTP_PORT_FAILED (integer)

CURLE_BAD_PASSWORD_ENTERED (integer)

CURLE_TOO_MANY_REDIRECTS (integer)

CURLE_UNKNOWN_TELNET_OPTION (integer)

CURLE_TELNET_OPTION_SYNTAX (integer)

CURLE_OBSOLETE (integer)

CURLE_SSL_PEER_CERTIFICATE (integer)

CURLE_GOT_NOTHING (integer)

CURLE_SSL_ENGINE_NOTFOUND (integer)

CURLE_SSL_ENGINE_SETFAILED (integer)

CURLE_SEND_ERROR (integer)

CURLE_RECV_ERROR (integer)

CURLE_SHARE_IN_USE (integer)

CURLE_SSL_CERTPROBLEM (integer)

CURLE_SSL_CIPHER (integer)

CURLE_SSL_CACERT (integer)

CURLE_BAD_CONTENT_ENCODING (integer)

CURLE_LDAP_INVALID_URL (integer)

CURLE_FILESIZE_EXCEEDED (integer)

CURLE_FTP_SSL_FAILED (integer)

CURLFTPAUTH_DEFAULT (integer)
Available since PHP 5.1.0

CURLFTPAUTH_SSL (integer)

Available since PHP 5.1.0

CURLFTPAUTH_TLS (integer)
Available since PHP 5.1.0

CURLPROXY_HTTP (integer)

CURLPROXY_SOCKS5 (integer)

CURL_NETRC_OPTIONAL (integer)

CURL_NETRC_IGNORED (integer)

CURL_NETRC_REQUIRED (integer)

CURL_HTTP_VERSION_NONE (integer)

CURL_HTTP_VERSION_1_0 (integer)

CURL_HTTP_VERSION_1_1 (integer)

CURLM_CALL_MULTI_PERFORM (integer)

CURLM_OK (integer)

CURLM_BAD_HANDLE (integer)

CURLM_BAD_EASY_HANDLE (integer)

CURLM_OUT_OF_MEMORY (integer)

CURLM_INTERNAL_ERROR (integer)

CURLMSG_DONE (integer)

Examples

Once you've compiled PHP with cURL support, you can begin using the cURL functions.
The basic idea behind the cURL functions is that you initialize a cURL session using the
curl_init(), then you can set all your options for the transfer via the curl_setopt(), then you
can execute the session with the curl_exec() and then you finish off your session using the
curl_close(). Here is an example that uses the cURL functions to fetch the example.com
homepage into a file:

Example #2143 - Using PHP's cURL module to fetch the example.com homepage

<?php

$ch = curl_init("http://www.example.com/");

$fp = fopen("example_homepage.txt", "w");

curl_setopt($ch, CURLOPT_FILE, $fp);

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_exec($ch);

curl_close($ch);

fclose($fp);

?>

cURL Functions

curl_close

curl_close -- Close a cURL session

Description

void curl_close (resource $ch)

Closes a cURL session and frees all resources. The cURL handle, ch, is also deleted.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

No value is returned.

Examples

Example #2144 - Initializing a new cURL session and fetching a web page

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch, CURLOPT_HEADER, 0);

// grab URL and pass it to the browser

curl_exec($ch);

// close cURL resource, and free up system resources

curl_close($ch);

?>

See Also

• curl_init()
• curl_multi_close()

curl_copy_handle

curl_copy_handle -- Copy a cURL handle along with all of its preferences

Description

resource curl_copy_handle (resource $ch)

Copies a cURL handle keeping the same preferences.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

Returns a new cURL handle.

Examples

Example #2145 - Copying a cURL handle

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, 'http://www.example.com/');

curl_setopt($ch, CURLOPT_HEADER, 0);

// copy the handle

$ch2 = curl_copy_handle($ch);

// grab URL (http://www.example.com/) and pass it to the browser

curl_exec($ch2);

// close cURL resources, and free up system resources

curl_close($ch2);

curl_close($ch);

?>

curl_errno

curl_errno -- Return the last error number

Description

int curl_errno (resource $ch)

Returns the error number for the last cURL operation.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

Returns the error number or 0 (zero) if no error occurred.

See Also

• curl_error()
• » Curl error codes

http://curl.haxx.se/libcurl/c/libcurl-errors.html

curl_error

curl_error -- Return a string containing the last error for the current session

Description

string curl_error (resource $ch)

Returns a clear text error message for the last cURL operation.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

Returns the error number or '' (the empty string) if no error occurred.

See Also

• curl_errno()
• » Curl error codes

http://curl.haxx.se/libcurl/c/libcurl-errors.html

curl_exec

curl_exec -- Perform a cURL session

Description

mixed curl_exec (resource $ch)

Execute the given cURL session.

This function should be called after initializing a cURL session and all the options for the
session are set.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

Returns TRUE on success or FALSE on failure. However, if the
CURLOPT_RETURNTRANSFER option is set, it will return the result on success, FALSE
on failure.

Examples

Example #2146 - Fetching a web page

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch, CURLOPT_HEADER, 0);

// grab URL and pass it to the browser

curl_exec($ch);

// close cURL resource, and free up system resources

curl_close($ch);

?>

See Also

• curl_multi_exec()

curl_getinfo

curl_getinfo -- Get information regarding a specific transfer

Description

mixed curl_getinfo (resource $ch [, int $opt])

Gets information about the last transfer,

Parameters

ch

A cURL handle returned by curl_init().

opt

This may be one of the following constants:

• CURLINFO_EFFECTIVE_URL - Last effective URL

• CURLINFO_HTTP_CODE - Last received HTTP code

• CURLINFO_FILETIME - Remote time of the retrieved document, if -1 is returned
the time of the document is unknown

• CURLINFO_TOTAL_TIME - Total transaction time in seconds for last transfer

• CURLINFO_NAMELOOKUP_TIME - Time in seconds until name resolving was
complete

• CURLINFO_CONNECT_TIME - Time in seconds it took to establish the
connection

• CURLINFO_PRETRANSFER_TIME - Time in seconds from start until just before
file transfer begins

• CURLINFO_STARTTRANSFER_TIME - Time in seconds until the first byte is
about to be transferred

• CURLINFO_REDIRECT_TIME - Time in seconds of all redirection steps before
final transaction was started

• CURLINFO_SIZE_UPLOAD - Total number of bytes uploaded

• CURLINFO_SIZE_DOWNLOAD - Total number of bytes downloaded

• CURLINFO_SPEED_DOWNLOAD - Average download speed

• CURLINFO_SPEED_UPLOAD - Average upload speed

• CURLINFO_HEADER_SIZE - Total size of all headers received

• CURLINFO_HEADER_OUT - The request string sent. Available since PHP 5.1.3

• CURLINFO_REQUEST_SIZE - Total size of issued requests, currently only for

HTTP requests

• CURLINFO_SSL_VERIFYRESULT - Result of SSL certification verification
requested by setting CURLOPT_SSL_VERIFYPEER

• CURLINFO_CONTENT_LENGTH_DOWNLOAD - content-length of download,
read from Content-Length: field

• CURLINFO_CONTENT_LENGTH_UPLOAD - Specified size of upload

• CURLINFO_CONTENT_TYPE - Content-type of downloaded object, NULL
indicates server did not send valid Content-Type: header

Return Values

If opt is given, returns its value as a string. Otherwise, returns an associative array with
the following elements (which correspond to opt):

• "url"

• "content_type"

• "http_code"

• "header_size"

• "request_size"

• "filetime"

• "ssl_verify_result"

• "redirect_count"

• "total_time"

• "namelookup_time"

• "connect_time"

• "pretransfer_time"

• "size_upload"

• "size_download"

• "speed_download"

• "speed_upload"

• "download_content_length"

• "upload_content_length"

• "starttransfer_time"

• "redirect_time"

curl_init

curl_init -- Initialize a cURL session

Description

resource curl_init ([string $url])

Initializes a new session and return a cURL handle for use with the curl_setopt(),
curl_exec(), and curl_close() functions.

Parameters

url

If provided, the CURLOPT_URL option will be set to its value. You can manually set
this using the curl_setopt() function.

Return Values

Returns a cURL handle on success, FALSE on errors.

Examples

Example #2147 - Initializing a new cURL session and fetching a web page

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch, CURLOPT_HEADER, 0);

// grab URL and pass it to the browser

curl_exec($ch);

// close cURL resource, and free up system resources

curl_close($ch);

?>

See Also

• curl_close()
• curl_multi_init()

curl_multi_add_handle

curl_multi_add_handle -- Add a normal cURL handle to a cURL multi handle

Description

int curl_multi_add_handle (resource $mh, resource $ch)

Adds the ch handle to the multi handle mh

Parameters

mh

A cURL multi handle returned by curl_multi_init().

ch

A cURL handle returned by curl_init().

Return Values

Returns 0 on success, or one of the CURLM_XXX errors code.

Examples

Example #2148 - curl_multi_add_handle() example

This example will create two cURL handles, add them to a multi handle, and then run
them in parallel.

<?php

// create both cURL resources

$ch1 = curl_init();

$ch2 = curl_init();

// set URL and other appropriate options

curl_setopt($ch1, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch1, CURLOPT_HEADER, 0);

curl_setopt($ch2, CURLOPT_URL, "http://www.php.net/");

curl_setopt($ch2, CURLOPT_HEADER, 0);

//create the multiple cURL handle

$mh = curl_multi_init();

//add the two handles

curl_multi_add_handle($mh,$ch1);

curl_multi_add_handle($mh,$ch2);

$running=null;

//execute the handles

do {

 curl_multi_exec($mh,$running);

} while($running > 0);

//close all the handles

curl_multi_remove_handle($ch1);

curl_multi_remove_handle($ch2);

curl_multi_close($mh);

?>

See Also

• curl_multi_remove_handle()
• curl_multi_init()
• curl_init()

curl_multi_close

curl_multi_close -- Close a set of cURL handles

Description

void curl_multi_close (resource $mh)

Closes a set of cURL handles.

Parameters

mh

A cURL multi handle returned by curl_multi_init().

Return Values

No value is returned.

Examples

Example #2149 - curl_multi_close() example

This example will create two cURL handles, add them to a multi handle, and then run
them in parallel.

<?php

// create both cURL resources

$ch1 = curl_init();

$ch2 = curl_init();

// set URL and other appropriate options

curl_setopt($ch1, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch1, CURLOPT_HEADER, 0);

curl_setopt($ch2, CURLOPT_URL, "http://www.php.net/");

curl_setopt($ch2, CURLOPT_HEADER, 0);

//create the multiple cURL handle

$mh = curl_multi_init();

//add the two handles

curl_multi_add_handle($mh,$ch1);

curl_multi_add_handle($mh,$ch2);

$running=null;

//execute the handles

do {

 curl_multi_exec($mh,$running);

} while ($running > 0)

//close the handles

curl_multi_remove_handle($ch1);

curl_multi_remove_handle($ch2);

curl_multi_close($mh);

?>

See Also

• curl_multi_init()
• curl_close()

curl_multi_exec

curl_multi_exec -- Run the sub-connections of the current cURL handle

Description

int curl_multi_exec (resource $mh, int &$still_running)

Processes each of the handles in the stack. This method can be called whether or not a
handle needs to read or write data.

Parameters

mh

A cURL multi handle returned by curl_multi_init().

still_running

A reference to a flag to tell whether the operations are still running.

Return Values

A cURL code defined in the cURL Predefined Constants.

Note

This only returns errors regarding the whole multi stack. There might still have
occurred problems on individual transfers even when this function returns CURLM_OK
.

Examples

Example #2150 - curl_multi_exec() example

This example will create two cURL handles, add them to a multi handle, and then run
them in parallel.

<?php

// create both cURL resources

$ch1 = curl_init();

$ch2 = curl_init();

// set URL and other appropriate options

curl_setopt($ch1, CURLOPT_URL, "http://lxr.php.net/");

curl_setopt($ch1, CURLOPT_HEADER, 0);

curl_setopt($ch2, CURLOPT_URL, "http://www.php.net/");

curl_setopt($ch2, CURLOPT_HEADER, 0);

//create the multiple cURL handle

$mh = curl_multi_init();

//add the two handles

curl_multi_add_handle($mh,$ch1);

curl_multi_add_handle($mh,$ch2);

$active = null;

//execute the handles

do {

 $mrc = curl_multi_exec($mh, $active);

} while ($mrc == CURLM_CALL_MULTI_PERFORM);

while ($active && $mrc == CURLM_OK) {

 if (curl_multi_select($mh) != -1) {

 do {

 $mrc = curl_multi_exec($mh, $active);

 } while ($mrc == CURLM_CALL_MULTI_PERFORM);

 }

}

//close the handles

curl_multi_remove_handle($mh, $ch1);

curl_multi_remove_handle($mh, $ch2);

curl_multi_close($mh);

?>

See Also

• curl_multi_init()
• curl_exec()

curl_multi_getcontent

curl_multi_getcontent -- Return the content of a cURL handle if
CURLOPT_RETURNTRANSFER is set

Description

string curl_multi_getcontent (resource $ch)

If CURLOPT_RETURNTRANSFER is an option that is set for a specific handle, then this
function will return the content of that cURL handle in the form of a string.

Parameters

ch

A cURL handle returned by curl_init().

Return Values

Return the content of a cURL handle if CURLOPT_RETURNTRANSFER is set.

See Also

• curl_multi_init()

curl_multi_info_read

curl_multi_info_read -- Get information about the current transfers

Description

array curl_multi_info_read (resource $mh [, int $msgs_in_queue])

Ask the multi handle if there are any messages/informationals from the individual transfers.
Messages may include informationals such as an error code from the transfer or just the
fact that a transfer is completed.

Repeated calls to this function will return a new result each time, until a FALSE is returned
as a signal that there is no more to get at this point. The integer pointed to with
msgs_in_queue will contain the number of remaining messages after this function was
called.

Warning

The data the returned resource points to will not survive calling
curl_multi_remove_handle().

Parameters

mh

A cURL multi handle returned by curl_multi_init().

msgs_in_queue

Number of messages that are still in the queue

Return Values

On success, returns an associative array for the message, FALSE on failure.

ChangeLog

Version Description

5.2.0 msgs_in_queue was added.

See Also

• curl_multi_init()

curl_multi_init

curl_multi_init -- Returns a new cURL multi handle

Description

resource curl_multi_init (void)

Allows the processing of multiple cURL handles in parallel.

Parameters

mh

A cURL multi handle returned by curl_multi_init().

Return Values

Returns a cURL on handle on success, FALSE on failure.

Examples

Example #2151 - curl_multi_init() example

This example will create two cURL handles, add them to a multi handle, and then run
them in parallel.

<?php

// create both cURL resources

$ch1 = curl_init();

$ch2 = curl_init();

// set URL and other appropriate options

curl_setopt($ch1, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch1, CURLOPT_HEADER, 0);

curl_setopt($ch2, CURLOPT_URL, "http://www.php.net/");

curl_setopt($ch2, CURLOPT_HEADER, 0);

//create the multiple cURL handle

$mh = curl_multi_init();

//add the two handles

curl_multi_add_handle($mh,$ch1);

curl_multi_add_handle($mh,$ch2);

$running=null;

//execute the handles

do {

 curl_multi_exec($mh,$running);

} while ($running > 0);

//close the handles

curl_multi_remove_handle($ch1);

curl_multi_remove_handle($ch2);

curl_multi_close($mh);

?>

See Also

• curl_init()
• curl_multi_close()

curl_multi_remove_handle

curl_multi_remove_handle -- Remove a multi handle from a set of cURL handles

Description

int curl_multi_remove_handle (resource $mh, resource $ch)

Removes a given ch handle from the given mh handle. When the ch handle has been
removed, it is again perfectly legal to run curl_exec() on this handle. Removing a handle
while being used, will effectively halt all transfers in progress.

Parameters

mh

A cURL multi handle returned by curl_multi_init().

ch

A cURL handle returned by curl_init().

Return Values

On success, returns a cURL handle, FALSE on failure.

See Also

• curl_init()
• curl_multi_init()
• curl_multi_add_handle()

curl_multi_select

curl_multi_select -- Get all the sockets associated with the cURL extension, which can
then be "selected"

Description

int curl_multi_select (resource $mh [, float $timeout])

Get all the sockets associated with the cURL extension, which can then be "selected".

Parameters

mh

A cURL multi handle returned by curl_multi_init().

timeout

Time, in seconds, to wait for a response.

Return Values

On success, returns the number of descriptors contained in, the descriptor sets. On failure,
this function will return FALSE.

See Also

• curl_multi_init()

curl_setopt_array

curl_setopt_array -- Set multiple options for a cURL transfer

Description

bool curl_setopt_array (resource $ch, array $options)

Sets multiple options for a cURL session. This function is useful for setting a large amount
of cURL options without repetitively calling curl_setopt().

Parameters

ch

A cURL handle returned by curl_init().

options

An array specifying which options to set and their values. The keys should be valid
curl_setopt() constants or their integer equivalents.

Return Values

Returns TRUE if all options were successfully set. If an option could not be successfully
set, FALSE is immediately returned, ignoring any future options in the options array.

Examples

Example #2152 - Initializing a new cURL session and fetching a web page

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

$options = array(CURLOPT_URL => 'http://www.example.com/',

 CURLOPT_HEADER => false

);

curl_setopt_array($ch, $options);

// grab URL and pass it to the browser

curl_exec($ch);

// close cURL resource, and free up system resources

curl_close($ch);

?>

Prior to PHP 5.1.4 this function can be simulated with:

Example #2153 - Our own implementation of curl_setopt_array()

<?php

if (!function_exists('curl_setopt_array')) {

 function curl_setopt_array(&$ch, $curl_options)

 {

 foreach ($curl_options as $option => $value) {

 if (!curl_setopt($ch, $option, $value)) {

 return false;

 }

 }

 return true;

 }

}

?>

See Also

• curl_setopt()

curl_setopt

curl_setopt -- Set an option for a cURL transfer

Description

bool curl_setopt (resource $ch, int $option, mixed $value)

Sets an option on the given cURL session handle.

Parameters

ch

A cURL handle returned by curl_init().

option

The CURLOPT_XXX option to set.

value

The value to be set on option. value should be a bool for the following values of the
option parameter:

Option Set value to Notes

CURLOPT_AUTOREFERER TRUE to automatically set
the Referer: field in requests
where it follows a Location:
redirect.

Available since PHP 5.1.0.

CURLOPT_BINARYTRANS
FER

TRUE to return the raw
output when
CURLOPT_RETURNTRANS
FER is used.

CURLOPT_COOKIESESSI
ON

TRUE to mark this as a new
cookie "session". It will force
libcurl to ignore all cookies it
is about to load that are
"session cookies" from the
previous session. By default,
libcurl always stores and
loads all cookies,
independent if they are
session cookies are not.
Session cookies are cookies
without expiry date and they
are meant to be alive and
existing for this "session"

Available since PHP 5.1.0.

only.

CURLOPT_CRLF TRUE to convert Unix
newlines to CRLF newlines
on transfers.

CURLOPT_DNS_USE_GLO
BAL_CACHE

TRUE to use a global DNS
cache. This option is not
thread-safe and is enabled
by default.

CURLOPT_FAILONERROR TRUE to fail silently if the
HTTP code returned is
greater than or equal to 400.
The default behavior is to
return the page normally,
ignoring the code.

CURLOPT_FILETIME TRUE to attempt to retrieve
the modification date of the
remote document. This value
can be retrieved using the
CURLINFO_FILETIME option
with curl_getinfo().

CURLOPT_FOLLOWLOCA
TION

TRUE to follow any
"Location: " header that the
server sends as part of the
HTTP header (note this is
recursive, PHP will follow as
many "Location: " headers
that it is sent, unless
CURLOPT_MAXREDIRS is
set).

CURLOPT_FORBID_REUS
E

TRUE to force the
connection to explicitly close
when it has finished
processing, and not be
pooled for reuse.

CURLOPT_FRESH_CONNE
CT

TRUE to force the use of a
new connection instead of a
cached one.

CURLOPT_FTP_USE_EPR
T

TRUE to use EPRT (and
LPRT) when doing active
FTP downloads. Use FALSE
to disable EPRT and LPRT
and use PORT only.

Added in PHP 5.0.0.

CURLOPT_FTP_USE_EPS TRUE to first try an EPSV

V command for FTP transfers
before reverting back to
PASV. Set to FALSE to
disable EPSV.

CURLOPT_FTPAPPEND TRUE to append to the
remote file instead of
overwriting it.

CURLOPT_FTPASCII An alias of
CURLOPT_TRANSFERTEX
T. Use that instead.

CURLOPT_FTPLISTONLY TRUE to only list the names
of an FTP directory.

CURLOPT_HEADER TRUE to include the header
in the output.

CURLOPT_HTTPGET TRUE to reset the HTTP
request method to GET.
Since GET is the default, this
is only necessary if the
request method has been
changed.

CURLOPT_HTTPPROXYTU
NNEL

TRUE to tunnel through a
given HTTP proxy.

CURLOPT_MUTE TRUE to be completely silent
with regards to the cURL
functions.

CURLOPT_NETRC TRUE to scan the ~/.netrc
file to find a username and
password for the remote site
that a connection is being
established with.

CURLOPT_NOBODY TRUE to exclude the body
from the output.

CURLOPT_NOPROGRESS
TRUE to disable the
progress meter for cURL
transfers.

Note

PHP automatically sets
this option to TRUE, this
should only be changed

for debugging purposes.

CURLOPT_NOSIGNAL TRUE to ignore any cURL
function that causes a signal
to be sent to the PHP
process. This is turned on by
default in multi-threaded
SAPIs so timeout options
can still be used.

Added in cURL 7.10 and
PHP 5.0.0.

CURLOPT_POST TRUE to do a regular HTTP
POST. This POST is the
normal
application/x-www-form-urlen
coded kind, most commonly
used by HTML forms.

CURLOPT_PUT TRUE to HTTP PUT a file.
The file to PUT must be set
with CURLOPT_INFILE and
CURLOPT_INFILESIZE.

CURLOPT_RETURNTRANS
FER

TRUE to return the transfer
as a string of the return value
of curl_exec() instead of
outputting it out directly.

CURLOPT_SSL_VERIFYPE
ER

FALSE to stop cURL from
verifying the peer's
certificate. Alternate
certificates to verify against
can be specified with the
CURLOPT_CAINFO option
or a certificate directory can
be specified with the
CURLOPT_CAPATH option.
CURLOPT_SSL_VERIFYHO
ST may also need to be
TRUE or FALSE if
CURLOPT_SSL_VERIFYPE
ER is disabled (it defaults to
2).

TRUE by default as of cURL
7.10. Default bundle installed
as of cURL 7.10.

CURLOPT_TRANSFERTEX
T

TRUE to use ASCII mode for
FTP transfers. For LDAP, it
retrieves data in plain text
instead of HTML. On
Windows systems, it will not
set STDOUT to binary mode.

CURLOPT_UNRESTRICTE
D_AUTH

TRUE to keep sending the
username and password
when following locations
(using
CURLOPT_FOLLOWLOCA
TION), even when the
hostname has changed.

Added in PHP 5.0.0.

CURLOPT_UPLOAD TRUE to prepare for an
upload.

CURLOPT_VERBOSE TRUE to output verbose

information. Writes output to
STDERR, or the file specified
using CURLOPT_STDERR.

value should be an integer for the following values of the option parameter:

Option Set value to Notes

CURLOPT_BUFFERSIZE The size of the buffer to use
for each read. There is no
guarantee this request will be
fulfilled, however.

Added in cURL 7.10 and
PHP 5.0.0.

CURLOPT_CLOSEPOLICY Either
CURLCLOSEPOLICY_LEAST_RECE
NTLY_USED or
CURLCLOSEPOLICY_OLDEST.
There are three other
CURLCLOSEPOLICY_
constants, but cURL does
not support them yet.

CURLOPT_CONNECTTIME
OUT

The number of seconds to
wait whilst trying to connect.
Use 0 to wait indefinitely.

CURLOPT_DNS_CACHE_T
IMEOUT

The number of seconds to
keep DNS entries in
memory. This option is set to
120 (2 minutes) by default.

CURLOPT_FTPSSLAUTH The FTP authentication
method (when is activated):
CURLFTPAUTH_SSL (try
SSL first),
CURLFTPAUTH_TLS (try
TLS first), or
CURLFTPAUTH_DEFAULT
(let cURL decide).

Added in cURL 7.12.2 and
PHP 5.1.0.

CURLOPT_HTTP_VERSIO
N

CURL_HTTP_VERSION_NONE
(default, lets CURL decide
which version to use),
CURL_HTTP_VERSION_1_0
(forces HTTP/1.0), or
CURL_HTTP_VERSION_1_1
(forces HTTP/1.1).

CURLOPT_HTTPAUTH
The HTTP authentication
method(s) to use. The
options are: CURLAUTH_BASIC,
CURLAUTH_DIGEST,

Added in PHP 5.0.0.

CURLAUTH_GSSNEGOTIATE,
CURLAUTH_NTLM,
CURLAUTH_ANY, and
CURLAUTH_ANYSAFE.

The bitwise | (or) operator
can be used to combine
more than one method. If this
is done, cURL will poll the
server to see what methods
it supports and pick the best
one.

CURLAUTH_ANY is an alias for
CURLAUTH_BASIC |
CURLAUTH_DIGEST |
CURLAUTH_GSSNEGOTIA
TE | CURLAUTH_NTLM.

CURLAUTH_ANYSAFE is an alias
for CURLAUTH_DIGEST |
CURLAUTH_GSSNEGOTIA
TE | CURLAUTH_NTLM.

CURLOPT_INFILESIZE The expected size, in bytes,
of the file when uploading a
file to a remote site.

CURLOPT_LOW_SPEED_L
IMIT

The transfer speed, in bytes
per second, that the transfer
should be below during
CURLOPT_LOW_SPEED_T
IME seconds for PHP to
consider the transfer too
slow and abort.

CURLOPT_LOW_SPEED_T
IME

The number of seconds the
transfer should be below
CURLOPT_LOW_SPEED_L
IMIT for PHP to consider the
transfer too slow and abort.

CURLOPT_MAXCONNECT
S

The maximum amount of
persistent connections that
are allowed. When the limit is
reached,
CURLOPT_CLOSEPOLICY
is used to determine which
connection to close.

CURLOPT_MAXREDIRS The maximum amount of

HTTP redirections to follow.
Use this option alongside
CURLOPT_FOLLOWLOCA
TION.

CURLOPT_PORT An alternative port number to
connect to.

CURLOPT_PROXYAUTH The HTTP authentication
method(s) to use for the
proxy connection. Use the
same bitmasks as described
in CURLOPT_HTTPAUTH.
For proxy authentication,
only CURLAUTH_BASIC and
CURLAUTH_NTLM are currently
supported.

Added in cURL 7.10.7 and
PHP 5.1.0.

CURLOPT_PROXYPORT The port number of the proxy
to connect to. This port
number can also be set in
CURLOPT_PROXY.

Added in PHP 5.0.0.

CURLOPT_PROXYTYPE Either CURLPROXY_HTTP
(default) or
CURLPROXY_SOCKS5.

Added in cURL 7.10 and
PHP 5.0.0.

CURLOPT_RESUME_FRO
M

The offset, in bytes, to
resume a transfer from.

CURLOPT_SSL_VERIFYHO
ST

1 to check the existence of a
common name in the SSL
peer certificate. 2 to check
the existence of a common
name and also verify that it
matches the hostname
provided.

CURLOPT_SSLVERSION The SSL version (2 or 3) to
use. By default PHP will try
to determine this itself,
although in some cases this
must be set manually.

CURLOPT_TIMECONDITIO
N

How
CURLOPT_TIMEVALUE is
treated. Use
CURL_TIMECOND_IFMODSINCE
to return the page only if it
has been modified since the
time specified in
CURLOPT_TIMEVALUE. If

Added in PHP 5.1.0.

it hasn't been modified, a
"304 Not Modified" header
will be returned assuming
CURLOPT_HEADER is
TRUE. Use
CURL_TIMECOND_ISUNMODSINCE
for the reverse effect.
CURL_TIMECOND_IFMODSINCE is
the default.

CURLOPT_TIMEOUT The maximum number of
seconds to allow cURL
functions to execute.

CURLOPT_TIMEVALUE The time in seconds since
January 1st, 1970. The time
will be used by
CURLOPT_TIMECONDITIO
N. By default,
CURL_TIMECOND_IFMODSINCE is
used.

value should be a string for the following values of the option parameter:

Option Set value to Notes

CURLOPT_CAINFO The name of a file holding
one or more certificates to
verify the peer with. This only
makes sense when used in
combination with
CURLOPT_SSL_VERIFYPE
ER.

CURLOPT_CAPATH A directory that holds
multiple CA certificates. Use
this option alongside
CURLOPT_SSL_VERIFYPE
ER.

CURLOPT_COOKIE The contents of the
"Set-Cookie: " header to be
used in the HTTP request.

CURLOPT_COOKIEFILE The name of the file
containing the cookie data.
The cookie file can be in
Netscape format, or just plain
HTTP-style headers dumped
into a file.

CURLOPT_COOKIEJAR The name of a file to save all

internal cookies to when the
connection closes.

CURLOPT_CUSTOMREQU
EST A custom request method to

use instead of "GET" or
"HEAD" when doing a HTTP
request. This is useful for
doing "DELETE" or other,
more obscure HTTP
requests. Valid values are
things like "GET", "POST",
"CONNECT" and so on; i.e.
Do not enter a whole HTTP
request line here. For
instance, entering "GET
/index.html HTTP/1.0\r\n\r\n"
would be incorrect.

Note

Don't do this without
making sure the server
supports the custom
request method first.

CURLOPT_EGDSOCKET Like
CURLOPT_RANDOM_FILE,
except a filename to an
Entropy Gathering Daemon
socket.

CURLOPT_ENCODING The contents of the
"Accept-Encoding: " header.
This enables decoding of the
response. Supported
encodings are "identity",
"deflate", and "gzip". If an
empty string, "", is set, a
header containing all
supported encoding types is
sent.

Added in cURL 7.10.

CURLOPT_FTPPORT The value which will be used
to get the IP address to use
for the FTP "POST"
instruction. The "POST"
instruction tells the remote
server to connect to our

specified IP address. The
string may be a plain IP
address, a hostname, a
network interface name
(under Unix), or just a plain '-'
to use the systems default IP
address.

CURLOPT_INTERFACE The name of the outgoing
network interface to use.
This can be an interface
name, an IP address or a
host name.

CURLOPT_KRB4LEVEL The KRB4 (Kerberos 4)
security level. Any of the
following values (in order
from least to most powerful)
are valid: "clear", "safe",
"confidential", "private".. If
the string does not match
one of these, "private" is
used. Setting this option to
NULL will disable KRB4
security. Currently KRB4
security only works with FTP
transactions.

CURLOPT_POSTFIELDS The full data to post in a
HTTP "POST" operation. To
post a file, prepend a
filename with @ and use the
full path.

CURLOPT_PROXY The HTTP proxy to tunnel
requests through.

CURLOPT_PROXYUSERP
WD

A username and password
formatted as
"[username]:[password]" to
use for the connection to the
proxy.

CURLOPT_RANDOM_FILE A filename to be used to
seed the random number
generator for SSL.

CURLOPT_RANGE Range(s) of data to retrieve
in the format "X-Y" where X
or Y are optional. HTTP
transfers also support
several intervals, separated

with commas in the format
"X-Y,N-M".

CURLOPT_REFERER The contents of the "Referer:
" header to be used in a
HTTP request.

CURLOPT_SSL_CIPHER_L
IST

A list of ciphers to use for
SSL. For example, RC4-SHA
and TLSv1 are valid cipher
lists.

CURLOPT_SSLCERT The name of a file containing
a PEM formatted certificate.

CURLOPT_SSLCERTPASS
WD

The password required to
use the
CURLOPT_SSLCERT
certificate.

CURLOPT_SSLCERTTYPE The format of the certificate.
Supported formats are
"PEM" (default), "DER", and
"ENG".

Added in cURL 7.9.3 and
PHP 5.0.0.

CURLOPT_SSLENGINE The identifier for the crypto
engine of the private SSL
key specified in
CURLOPT_SSLKEY.

CURLOPT_SSLENGINE_D
EFAULT

The identifier for the crypto
engine used for asymmetric
crypto operations.

CURLOPT_SSLKEY The name of a file containing
a private SSL key.

CURLOPT_SSLKEYPASS
WD The secret password needed

to use the private SSL key
specified in
CURLOPT_SSLKEY.

Note

Since this option contains
a sensitive password,
remember to keep the
PHP script it is contained
within safe.

CURLOPT_SSLKEYTYPE The key type of the private
SSL key specified in
CURLOPT_SSLKEY.
Supported key types are
"PEM" (default), "DER", and
"ENG".

CURLOPT_URL The URL to fetch. This can
also be set when initializing a
session with curl_init().

CURLOPT_USERAGENT The contents of the
"User-Agent: " header to be
used in a HTTP request.

CURLOPT_USERPWD A username and password
formatted as
"[username]:[password]" to
use for the connection.

value should be an array for the following values of the option parameter:

Option Set value to Notes

CURLOPT_HTTP200ALIAS
ES

An array of HTTP 200
responses that will be treated
as valid responses and not
as errors.

Added in cURL 7.10.3 and
PHP 5.0.0.

CURLOPT_HTTPHEADER An array of HTTP header
fields to set.

CURLOPT_POSTQUOTE An array of FTP commands
to execute on the server after
the FTP request has been
performed.

CURLOPT_QUOTE An array of FTP commands
to execute on the server prior
to the FTP request.

value should be a stream resource (using fopen(), for example) for the following values of
the option parameter:

Option Set value to Notes

CURLOPT_FILE The file that the transfer
should be written to. The
default is STDOUT (the
browser window).

CURLOPT_INFILE The file that the transfer

should be read from when
uploading.

CURLOPT_STDERR An alternative location to
output errors to instead of
STDERR.

CURLOPT_WRITEHEADER The file that the header part
of the transfer is written to.

value should be a string that is the name of a valid callback function for the following
values of the option parameter:

Option Set value to Notes

CURLOPT_HEADERFUNCT
ION

The name of a callback
function where the callback
function takes two
parameters. The first is the
cURL resource, the second
is a string with the header
data to be written. The
header data must be written
when using this callback
function. Return the number
of bytes written.

CURLOPT_PASSWDFUNC
TION

The name of a callback
function where the callback
function takes three
parameters. The first is the
cURL resource, the second
is a string containing a
password prompt, and the
third is the maximum
password length. Return the
string containing the
password.

CURLOPT_READFUNCTIO
N

The name of a callback
function where the callback
function takes two
parameters. The first is the
cURL resource, and the
second is a string with the
data to be read. The data
must be read by using this
callback function. Return the
number of bytes read. Return
0 to signal EOF.

CURLOPT_WRITEFUNCTI The name of a callback

ON function where the callback
function takes two
parameters. The first is the
cURL resource, and the
second is a string with the
data to be written. The data
must be written by using this
callback function. Must return
the exact number of bytes
written or this will fail.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2154 - Initializing a new cURL session and fetching a web page

<?php

// create a new cURL resource

$ch = curl_init();

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, "http://www.example.com/");

curl_setopt($ch, CURLOPT_HEADER, false);

// grab URL and pass it to the browser

curl_exec($ch);

// close cURL resource, and free up system resources

curl_close($ch);

?>

Example #2155 - Uploading file

<?php

/* http://localhost/upload.php:

print_r($_POST);

print_r($_FILES);

*/

$ch = curl_init();

$data = array('name' => 'Foo', 'file' => '@/home/user/test.png');

curl_setopt($ch, CURLOPT_URL, 'http://localhost/upload.php');

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

curl_exec($ch);

?>

The above example will output:

Array

(

 [name] => Foo

)

Array

(

 [file] => Array

 (

 [name] => test.png

 [type] => image/png

 [tmp_name] => /tmp/phpcpjNeQ

 [error] => 0

 [size] => 279

)

)

See Also

• curl_setopt_array()

curl_version

curl_version -- Gets cURL version information

Description

array curl_version ([int $age])

Returns information about the cURL version.

Parameters

age

Return Values

Returns an associative array with the following elements:

version_number cURL 24 bit version number

version cURL version number, as a string

ssl_version_number OpenSSL 24 bit version number

ssl_version OpenSSL version number, as a string

libz_version zlib version number, as a string

host Information about the host where cURL was
built

age

features A bitmask of the CURL_VERSION_XXX
constants

protocols An array of protocols names supported by
cURL

File Alteration Monitor

Introduction

FAM monitors files and directories, notifying interested applications of changes. More
information about FAM is available at » http://oss.sgi.com/projects/fam/.

A PHP script may specify a list of files for FAM to monitor using the functions provided by
this extension.

The FAM process is started when the first connection from any application to it is opened.
It exits after all connections to it have been closed.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

Note

This extension is not available on Windows platforms.

http://oss.sgi.com/projects/fam/
http://pecl.php.net/

Installing/Configuring

Requirements

This extension uses the functions of the » FAM library, developed by SGI. Therefore you
have to download and install the FAM library.

Installation

To use PHP's FAM support you must compile PHP --with-fam[=DIR] where DIR is the
location of the directory containing the lib and include directories.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There are two resource types used in the FAM module. The first one is the connection to
the FAM service returned by fam_open(), the second a monitoring resource returned by
the fam_monitor_XXX functions.

http://oss.sgi.com/projects/fam/download.html

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FAM event constants

Constant Description

FAMChanged (integer) Some value which can be obtained with
fstat(1) changed for a file or directory.

FAMDeleted (integer) A file or directory was deleted or renamed.

FAMStartExecuting (integer) An executable file started executing.

FAMStopExecuting (integer) An executable file that was running finished.

FAMCreated (integer) A file was created in a directory.

FAMMoved (integer) This event never occurs.

FAMAcknowledge (integer) An event in response to
fam_cancel_monitor().

FAMExists (integer) An event upon request to monitor a file or
directory. When a directory is monitored, an
event for that directory and every file
contained in that directory is issued.

FAMEndExist (integer) Event after the last FAMEExists event.

FAM Functions

fam_cancel_monitor

fam_cancel_monitor -- Terminate monitoring

Description

bool fam_cancel_monitor (resource $fam, resource $fam_monitor)

Terminates monitoring on a resource.

In addition an FAMAcknowledge event occurs.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

fam_monitor

A resource returned by one of the fam_monitor_XXX functions

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fam_monitor_file()
• fam_monitor_directory()
• fam_monitor_collection()
• fam_suspend_monitor()

fam_close

fam_close -- Close FAM connection

Description

void fam_close (resource $fam)

Closes a connection to the FAM service.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

Return Values

No value is returned.

See Also

• fam_monitor_open()

fam_monitor_collection

fam_monitor_collection -- Monitor a collection of files in a directory for changes

Description

resource fam_monitor_collection (resource $fam, string $dirname, int $depth, string $
mask)

Requests monitoring for a collection of files within a directory.

A FAM event will be generated whenever the status of the files change. The possible
event codes are described in detail in the constants part of this section.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

dirname

Directory path to the monitored files

depth

The maximum search depth starting from this directory

mask

A shell pattern mask restricting the file names to look for

Return Values

Returns a monitoring resource or FALSE on errors.

See Also

• fam_monitor_file()
• fam_monitor_directory()
• fam_cancel_monitor()
• fam_suspend_monitor()
• fam_resume_monitor()

fam_monitor_directory

fam_monitor_directory -- Monitor a directory for changes

Description

resource fam_monitor_directory (resource $fam, string $dirname)

Requests monitoring for a directory and all contained files.

A FAM event will be generated whenever the status of the directory (i.e. the result of
function stat() on that directory) or its content (i.e. the results of readdir()) changes.

The possible event codes are described in detail in the constants part of this section.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

dirname

Path to the monitored directory

Return Values

Returns a monitoring resource or FALSE on errors.

See Also

• fam_monitor_file()
• fam_monitor_collection()
• fam_cancel_monitor()
• fam_suspend_monitor()
• fam_resume_monitor()

fam_monitor_file

fam_monitor_file -- Monitor a regular file for changes

Description

resource fam_monitor_file (resource $fam, string $filename)

Requests monitoring for a single file. A FAM event will be generated whenever the file
status changes (i.e. the result of function stat() on that file).

The possible event codes are described in detail in the constants part of this section.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

filename

Path to the monitored file

Return Values

Returns a monitoring resource or FALSE on errors.

See Also

• fam_monitor_directory()
• fam_monitor_collection()
• fam_cancel_monitor()
• fam_suspend_monitor()
• fam_resume_monitor()

fam_next_event

fam_next_event -- Get next pending FAM event

Description

array fam_next_event (resource $fam)

Returns the next pending FAM event.

The function will block until an event is available which can be checked for using
fam_pending().

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

Return Values

Returns an array that contains a FAM event code in the ' code ' element, the path of the
file this event applies to in the ' filename ' element and optionally a hostname in the '
hostname ' element.

The possible event codes are described in detail in the constants part of this section.

See Also

• fam_pending()

fam_open

fam_open -- Open connection to FAM daemon

Description

resource fam_open ([string $appname])

Opens a connection to the FAM service daemon.

Parameters

appname

A string identifying the application for logging reasons

Return Values

Returns a resource representing a connection to the FAM service on success or FALSE
on errors.

See Also

• fam_close()

fam_pending

fam_pending -- Check for pending FAM events

Description

int fam_pending (resource $fam)

Checks for pending FAM events.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

Return Values

Returns non-zero if events are available to be fetched using fam_next_event(), zero
otherwise.

See Also

• fam_next_event()

fam_resume_monitor

fam_resume_monitor -- Resume suspended monitoring

Description

bool fam_resume_monitor (resource $fam, resource $fam_monitor)

Resumes monitoring of a resource previously suspended using fam_suspend_monitor().

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

fam_monitor

A resource returned by one of the fam_monitor_XXX functions

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fam_suspend_monitor()

fam_suspend_monitor

fam_suspend_monitor -- Temporarily suspend monitoring

Description

bool fam_suspend_monitor (resource $fam, resource $fam_monitor)

fam_suspend_monitor() temporarily suspend monitoring of a resource.

Monitoring can later be continued using fam_resume_monitor() without the need of
requesting a complete new monitor.

Parameters

fam

A resource representing a connection to the FAM service returned by fam_open()

fam_monitor

A resource returned by one of the fam_monitor_XXX functions

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• fam_cancel_monitor()
• fam_resume_monitor()

FTP

Introduction

The functions in this extension implement client access to file servers speaking the File
Transfer Protocol (FTP) as defined in » http://www.faqs.org/rfcs/rfc959. This extension is
meant for detailed access to an FTP server providing a wide range of control to the
executing script. If you only wish to read from or write to a file on an FTP server, consider
using the ftp:// wrapper with the filesystem functions which provide a simpler and more
intuitive interface.

http://www.faqs.org/rfcs/rfc959

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

In order to use FTP functions with your PHP configuration, you should add the --enable-ftp
option when installing PHP.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension uses one resource type, which is the link identifier of the FTP connection,
returned by ftp_connect() or ftp_ssl_connect().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

FTP_ASCII (integer)

FTP_TEXT (integer)

FTP_BINARY (integer)

FTP_IMAGE (integer)

FTP_TIMEOUT_SEC (integer)
See ftp_set_option() for information.

The following constants were introduced in PHP 4.3.0.

FTP_AUTOSEEK (integer)
See ftp_set_option() for information.

FTP_AUTORESUME (integer)
Automatically determine resume position and start position for GET and PUT requests
(only works if FTP_AUTOSEEK is enabled)

FTP_FAILED (integer)
Asynchronous transfer has failed

FTP_FINISHED (integer)
Asynchronous transfer has finished

FTP_MOREDATA (integer)
Asynchronous transfer is still active

Examples

Example #2156 - FTP example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// check connection

if ((!$conn_id) || (!$login_result)) {

 echo "FTP connection has failed!";

 echo "Attempted to connect to $ftp_server for user $ftp_user_name";

 exit;

 } else {

 echo "Connected to $ftp_server, for user $ftp_user_name";

 }

// upload the file

$upload = ftp_put($conn_id, $destination_file, $source_file, FTP_BINARY);

// check upload status

if (!$upload) {

 echo "FTP upload has failed!";

 } else {

 echo "Uploaded $source_file to $ftp_server as $destination_file";

 }

// close the FTP stream

ftp_close($conn_id);

?>

FTP Functions

ftp_alloc

ftp_alloc -- Allocates space for a file to be uploaded

Description

bool ftp_alloc (resource $ftp_stream, int $filesize [, string &$result])

Sends an ALLO command to the remote FTP server to allocate space for a file to be
uploaded.

Note

Many FTP servers do not support this command. These servers may return a failure
code (FALSE) indicating the command is not supported or a success code (TRUE)
to indicate that pre-allocation is not necessary and the client should continue as though
the operation were successful. Because of this, it may be best to reserve this function
for servers which explicitly require preallocation.

Parameters

ftp_stream

The link identifier of the FTP connection.

filezise

The number of bytes to allocate.

return

A textual representation of the servers response will be returned by reference in
result if a variable is provided.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2157 - ftp_alloc() example

<?php

$file = "/home/user/myfile";

/* connect to the server */

$conn_id = ftp_connect('ftp.example.com');

$login_result = ftp_login($conn_id, 'anonymous', 'user@example.com');

if (ftp_alloc($conn_id, filesize($file), $result)) {

 echo "Space successfully allocated on server. Sending $file.\n";

 ftp_put($conn_id, '/incomming/myfile', $file, FTP_BINARY);

} else {

 echo "Unable to allocate space on server. Server said: $result\n";

}

ftp_close($conn_id);

?>

See Also

• ftp_put()
• ftp_fput()

ftp_cdup

ftp_cdup -- Changes to the parent directory

Description

bool ftp_cdup (resource $ftp_stream)

Changes to the parent directory.

Parameters

ftp_stream

The link identifier of the FTP connection.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2158 - ftp_cdup() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// change the current directory to html

ftp_chdir($conn_id, 'html');

echo ftp_pwd($conn_id); // /html

// return to the parent directory

if (ftp_cdup($conn_id)) {

 echo "cdup successful\n";

} else {

 echo "cdup not successful\n";

}

echo ftp_pwd($conn_id); // /

ftp_close($conn_id);

?>

See Also

• ftp_chdir()
• ftp_pwd()

ftp_chdir

ftp_chdir -- Changes the current directory on a FTP server

Description

bool ftp_chdir (resource $ftp_stream, string $directory)

Changes the current directory to the specified one.

Parameters

ftp_stream

The link identifier of the FTP connection.

directory

The target directory.

Return Values

Returns TRUE on success or FALSE on failure. If changing directory fails, PHP will also
throw a warning.

Examples

Example #2159 - ftp_chdir() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// check connection

if ((!$conn_id) || (!$login_result)) {

 die("FTP connection has failed !");

}

echo "Current directory: " . ftp_pwd($conn_id) . "\n";

// try to change the directory to somedir

if (ftp_chdir($conn_id, "somedir")) {

 echo "Current directory is now: " . ftp_pwd($conn_id) . "\n";

} else {

 echo "Couldn't change directory\n";

}

// close the connection

ftp_close($conn_id);

?>

See Also

• ftp_cdup()
• ftp_pwd()

ftp_chmod

ftp_chmod -- Set permissions on a file via FTP

Description

int ftp_chmod (resource $ftp_stream, int $mode, string $filename)

Sets the permissions on the specified remote file to mode.

Parameters

ftp_stream

The link identifier of the FTP connection.

mode

The new permissions, given as an octal value.

filename

The remote file.

Return Values

Returns the new file permissions on success or FALSE on error.

Examples

Example #2160 - ftp_chmod() example

<?php

$file = 'public_html/index.php';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to chmod $file to 644

if (ftp_chmod($conn_id, 0644, $file) !== false) {

echo "$file chmoded successfully to 644\n";

} else {

echo "could not chmod $file\n";

}

// close the connection

ftp_close($conn_id);

?>

See Also

• chmod()

ftp_close

ftp_close -- Closes an FTP connection

Description

bool ftp_close (resource $ftp_stream)

ftp_close() closes the given link identifier and releases the resource.

Note

After calling this function, you can no longer use the FTP connection and must create a
new one with ftp_connect().

Parameters

ftp_stream

The link identifier of the FTP connection.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2161 - ftp_close() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// print the current directory

echo ftp_pwd($conn_id); // /

// close this connection

ftp_close($conn_id);

?>

See Also

• ftp_connect()

ftp_connect

ftp_connect -- Opens an FTP connection

Description

resource ftp_connect (string $host [, int $port [, int $timeout]])

ftp_connect() opens an FTP connection to the specified host.

Parameters

host

The FTP server address. This parameter shouldn't have any trailing slashes and
shouldn't be prefixed with ftp://.

port

This parameter specifies an alternate port to connect to. If it is omitted or set to zero,
then the default FTP port, 21, will be used.

timeout

This parameter specifies the timeout for all subsequent network operations. If omitted,
the default value is 90 seconds. The timeout can be changed and queried at any time
with ftp_set_option() and ftp_get_option().

Return Values

Returns a FTP stream on success or FALSE on error.

Examples

Example #2162 - ftp_connect() example

<?php

$ftp_server = "ftp.example.com";

// set up a connection or die

$conn_id = ftp_connect($ftp_server) or die("Couldn't connect to
$ftp_server");

?>

ChangeLog

Version Description

4.2.0 timeout was added.

See Also

• ftp_close()
• ftp_ssl_connect()

ftp_delete

ftp_delete -- Deletes a file on the FTP server

Description

bool ftp_delete (resource $ftp_stream, string $path)

ftp_delete() deletes the file specified by path from the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

path

The file to delete.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2163 - ftp_delete() example

<?php

$file = 'public_html/old.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to delete $file

if (ftp_delete($conn_id, $file)) {

echo "$file deleted successful\n";

} else {

echo "could not delete $file\n";

}

// close the connection

ftp_close($conn_id);

?>

ftp_exec

ftp_exec -- Requests execution of a command on the FTP server

Description

bool ftp_exec (resource $ftp_stream, string $command)

Sends a SITE EXEC command request to the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

command

The command to execute.

Return Values

Returns TRUE if the command was successful (server sent response code: 200);
otherwise returns FALSE.

Examples

Example #2164 - ftp_exec() example

<?php

// variable initialization

$command = 'ls -al >files.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// execute command

if (ftp_exec($conn_id, $command)) {

 echo "$command executed successfully\n";

} else {

 echo "could not execute $command\n";

}

// close the connection

ftp_close($conn_id);

?>

See Also

• ftp_raw()

ftp_fget

ftp_fget -- Downloads a file from the FTP server and saves to an open file

Description

bool ftp_fget (resource $ftp_stream, resource $handle, string $remote_file, int $mode [,
int $resumepos])

ftp_fget() retrieves remote_file from the FTP server, and writes it to the given file pointer.

Parameters

ftp_stream

The link identifier of the FTP connection.

handle

An open file pointer in which we store the data.

remote_file

The remote file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

resumepos

The position in the remote file to start downloading from.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2165 - ftp_fget() example

<?php

// path to remote file

$remote_file = 'somefile.txt';

$local_file = 'localfile.txt';

// open some file to write to

$handle = fopen($local_file, 'w');

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to download $remote_file and save it to $handle

if (ftp_fget($conn_id, $handle, $remote_file, FTP_ASCII, 0)) {

echo "successfully written to $local_file\n";

} else {

echo "There was a problem while downloading $remote_file to $local_file\n";

}

// close the connection and the file handler

ftp_close($conn_id);

fclose($handle);

?>

ChangeLog

Version Description

4.3.0 resumepos was added.

See Also

• ftp_get()
• ftp_nb_get()
• ftp_nb_fget()

ftp_fput

ftp_fput -- Uploads from an open file to the FTP server

Description

bool ftp_fput (resource $ftp_stream, string $remote_file, resource $handle, int $mode [,
int $startpos])

ftp_fput() uploads the data from a file pointer to a remote file on the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The remote file path.

handle

An open file pointer on the local file. Reading stops at end of file.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

startpos

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2166 - ftp_fput() example

<?php

// open some file for reading

$file = 'somefile.txt';

$fp = fopen($file, 'r');

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to upload $file

if (ftp_fput($conn_id, $file, $fp, FTP_ASCII)) {

 echo "Successfully uploaded $file\n";

} else {

 echo "There was a problem while uploading $file\n";

}

// close the connection and the file handler

ftp_close($conn_id);

fclose($fp);

?>

ChangeLog

Version Description

4.3.0 startpos was added.

See Also

• ftp_put()
• ftp_nb_fput()
• ftp_nb_put()

ftp_get_option

ftp_get_option -- Retrieves various runtime behaviours of the current FTP stream

Description

mixed ftp_get_option (resource $ftp_stream, int $option)

This function returns the value for the requested option from the specified FTP
connection.

Parameters

ftp_stream

The link identifier of the FTP connection.

option

Currently, the following options are supported:

Supported runtime FTP options

FTP_TIMEOUT_SEC Returns the current timeout used for
network related operations.

FTP_AUTOSEEK Returns TRUE if this option is on, FALSE
otherwise.

Return Values

Returns the value on success or FALSE if the given option is not supported. In the latter
case, a warning message is also thrown.

Examples

Example #2167 - ftp_get_option() example

<?php

// Get the timeout of the given FTP stream

$timeout = ftp_get_option($conn_id, FTP_TIMEOUT_SEC);

?>

See Also

• ftp_set_option()

ftp_get

ftp_get -- Downloads a file from the FTP server

Description

bool ftp_get (resource $ftp_stream, string $local_file, string $remote_file, int $mode [, int
$resumepos])

ftp_get() retrieves a remote file from the FTP server, and saves it into a local file.

Parameters

ftp_stream

The link identifier of the FTP connection.

local_file

The local file path (will be overwritten if the file already exists).

remote_file

The remote file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

resumepos

The position in the remote file to start downloading from.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2168 - ftp_get() example

<?php

// define some variables

$local_file = 'local.zip';

$server_file = 'server.zip';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to download $server_file and save to $local_file

if (ftp_get($conn_id, $local_file, $server_file, FTP_BINARY)) {

 echo "Successfully written to $local_file\n";

} else {

 echo "There was a problem\n";

}

// close the connection

ftp_close($conn_id);

?>

ChangeLog

Version Description

4.3.0 resumepos was added.

See Also

• ftp_pasv()
• ftp_fget()
• ftp_nb_get()
• ftp_nb_fget()

ftp_login

ftp_login -- Logs in to an FTP connection

Description

bool ftp_login (resource $ftp_stream, string $username, string $password)

Logs in to the given FTP stream.

Parameters

ftp_stream

The link identifier of the FTP connection.

username

The username (USER).

password

The password (PASS).

Return Values

Returns TRUE on success or FALSE on failure. If login fails, PHP will also throw a
warning.

Examples

Example #2169 - ftp_login() example

<?php

$ftp_server = "ftp.example.com";

$ftp_user = "foo";

$ftp_pass = "bar";

// set up a connection or die

$conn_id = ftp_connect($ftp_server) or die("Couldn't connect to
$ftp_server");

// try to login

if (@ftp_login($conn_id, $ftp_user, $ftp_pass)) {

 echo "Connected as $ftp_user@$ftp_server\n";

} else {

 echo "Couldn't connect as $ftp_user\n";

}

// close the connection

ftp_close($conn_id);

?>

ftp_mdtm

ftp_mdtm -- Returns the last modified time of the given file

Description

int ftp_mdtm (resource $ftp_stream, string $remote_file)

ftp_mdtm() gets the last modified time for a remote file.

Note

Not all servers support this feature!

Note

ftp_mdtm() does not work with directories.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The file from which to extract the last modification time.

Return Values

Returns the last modified time as a Unix timestamp on success, or -1 on error.

Examples

Example #2170 - ftp_mdtm() example

<?php

$file = 'somefile.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// get the last modified time

$buff = ftp_mdtm($conn_id, $file);

if ($buff != -1) {

 // somefile.txt was last modified on: March 26 2003 14:16:41.

 echo "$file was last modified on : " . date("F d Y H:i:s.", $buff);

} else {

 echo "Couldn't get mdtime";

}

// close the connection

ftp_close($conn_id);

?>

ftp_mkdir

ftp_mkdir -- Creates a directory

Description

string ftp_mkdir (resource $ftp_stream, string $directory)

Creates the specified directory on the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

directory

The name of the directory that will be created.

Return Values

Returns the newly created directory name on success or FALSE on error.

Examples

Example #2171 - ftp_mkdir() example

<?php

$dir = 'www';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to create the directory $dir

if (ftp_mkdir($conn_id, $dir)) {

echo "successfully created $dir\n";

} else {

echo "There was a problem while creating $dir\n";

}

// close the connection

ftp_close($conn_id);

?>

See Also

• ftp_rmdir()

ftp_nb_continue

ftp_nb_continue -- Continues retrieving/sending a file (non-blocking)

Description

int ftp_nb_continue (resource $ftp_stream)

Continues retrieving/sending a file non-blocking.

Parameters

ftp_stream

The link identifier of the FTP connection.

Return Values

Returns FTP_FAILED or FTP_FINISHED or FTP_MOREDATA.

Examples

Example #2172 - ftp_nb_continue() example

<?php

// Initate the download

$ret = ftp_nb_get($my_connection, "test", "README", FTP_BINARY);

while ($ret == FTP_MOREDATA) {

 // Continue downloading...

 $ret = ftp_nb_continue($my_connection);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error downloading the file...";

 exit(1);

}

?>

ftp_nb_fget

ftp_nb_fget -- Retrieves a file from the FTP server and writes it to an open file
(non-blocking)

Description

int ftp_nb_fget (resource $ftp_stream, resource $handle, string $remote_file, int $mode
[, int $resumepos])

ftp_nb_fget() retrieves a remote file from the FTP server.

The difference between this function and ftp_fget() is that this function retrieves the file
asynchronously, so your program can perform other operations while the file is being
downloaded.

Parameters

ftp_stream

The link identifier of the FTP connection.

handle

An open file pointer in which we store the data.

remote_file

The remote file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

resumepos

Return Values

Returns FTP_FAILED or FTP_FINISHED or FTP_MOREDATA.

Examples

Example #2173 - ftp_nb_fget() example

<?php

// open some file for reading

$file = 'index.php';

$fp = fopen($file, 'w');

$conn_id = ftp_connect($ftp_server);

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// Initate the download

$ret = ftp_nb_fget($conn_id, $fp, $file, FTP_BINARY);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue downloading...

 $ret = ftp_nb_continue($conn_id);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error downloading the file...";

 exit(1);

}

// close filepointer

fclose($fp);

?>

See Also

• ftp_nb_get()
• ftp_nb_continue()
• ftp_fget()
• ftp_get()

ftp_nb_fput

ftp_nb_fput -- Stores a file from an open file to the FTP server (non-blocking)

Description

int ftp_nb_fput (resource $ftp_stream, string $remote_file, resource $handle, int $
mode [, int $startpos])

ftp_nb_fput() uploads the data from a file pointer to a remote file on the FTP server.

The difference between this function and the ftp_fput() is that this function uploads the file
asynchronously, so your program can perform other operations while the file is being
uploaded.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The remote file path.

handle

An open file pointer on the local file. Reading stops at end of file.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

startpos

Return Values

Returns FTP_FAILED or FTP_FINISHED or FTP_MOREDATA.

Examples

Example #2174 - ftp_nb_fput() example

<?php

$file = 'index.php';

$fp = fopen($file, 'r');

$conn_id = ftp_connect($ftp_server);

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// Initate the upload

$ret = ftp_nb_fput($conn_id, $file, $fp, FTP_BINARY);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue upload...

 $ret = ftp_nb_continue($conn_id);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error uploading the file...";

 exit(1);

}

fclose($fp);

?>

See Also

• ftp_nb_put()
• ftp_nb_continue()
• ftp_put()
• ftp_fput()

ftp_nb_get

ftp_nb_get -- Retrieves a file from the FTP server and writes it to a local file (non-blocking)

Description

int ftp_nb_get (resource $ftp_stream, string $local_file, string $remote_file, int $
mode [, int $resumepos])

ftp_nb_get() retrieves a remote file from the FTP server, and saves it into a local file.

The difference between this function and ftp_get() is that this function retrieves the file
asynchronously, so your program can perform other operations while the file is being
downloaded.

Parameters

ftp_stream

The link identifier of the FTP connection.

local_file

The local file path (will be overwritten if the file already exists).

remote_file

The remote file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

resumepos

Return Values

Returns FTP_FAILED or FTP_FINISHED or FTP_MOREDATA.

Examples

Example #2175 - ftp_nb_get() example

<?php

// Initate the download

$ret = ftp_nb_get($my_connection, "test", "README", FTP_BINARY);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue downloading...

 $ret = ftp_nb_continue($my_connection);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error downloading the file...";

 exit(1);

}

?>

Example #2176 - Resuming a download with ftp_nb_get()

<?php

// Initate

$ret = ftp_nb_get($my_connection, "test", "README", FTP_BINARY,

 filesize("test"));

// OR: $ret = ftp_nb_get($my_connection, "test", "README",

// FTP_BINARY, FTP_AUTORESUME);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue downloading...

 $ret = ftp_nb_continue($my_connection);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error downloading the file...";

 exit(1);

}

?>

Example #2177 - Resuming a download at position 100 to a new file with
ftp_nb_get()

<?php

// Disable Autoseek

ftp_set_option($my_connection, FTP_AUTOSEEK, false);

// Initiate

$ret = ftp_nb_get($my_connection, "newfile", "README", FTP_BINARY, 100);

while ($ret == FTP_MOREDATA) {

 /* ... */

 // Continue downloading...

 $ret = ftp_nb_continue($my_connection);

}

?>

In the example above, newfile is 100 bytes smaller than README on the FTP server
because we started reading at offset 100. If we didn't disable FTP_AUTOSEEK, the first
100 bytes of newfile would be '\0'.

See Also

• ftp_nb_fget()
• ftp_nb_continue()
• ftp_fget()
• ftp_get()

ftp_nb_put

ftp_nb_put -- Stores a file on the FTP server (non-blocking)

Description

int ftp_nb_put (resource $ftp_stream, string $remote_file, string $local_file, int $
mode [, int $startpos])

ftp_nb_put() stores a local file on the FTP server.

The difference between this function and the ftp_put() is that this function uploads the file
asynchronously, so your program can perform other operations while the file is being
uploaded.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The remote file path.

local_file

The local file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

startpos

Return Values

Returns FTP_FAILED or FTP_FINISHED or FTP_MOREDATA.

Examples

Example #2178 - ftp_nb_put() example

<?php

// Initiate the Upload

$ret = ftp_nb_put($my_connection, "test.remote", "test.local", FTP_BINARY);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue uploading...

 $ret = ftp_nb_continue($my_connection);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error uploading the file...";

 exit(1);

}

?>

Example #2179 - Resuming an upload with ftp_nb_put()

<?php

// Initiate

$ret = ftp_nb_put($my_connection, "test.remote", "test.local",

 FTP_BINARY, ftp_size("test.remote"));

// OR: $ret = ftp_nb_put($my_connection, "test.remote", "test.local",

// FTP_BINARY, FTP_AUTORESUME);

while ($ret == FTP_MOREDATA) {

 // Do whatever you want

 echo ".";

 // Continue uploading...

 $ret = ftp_nb_continue($my_connection);

}

if ($ret != FTP_FINISHED) {

 echo "There was an error uploading the file...";

 exit(1);

}

?>

See Also

• ftp_nb_fput()
• ftp_nb_continue()
• ftp_put()
• ftp_fput()

ftp_nlist

ftp_nlist -- Returns a list of files in the given directory

Description

array ftp_nlist (resource $ftp_stream, string $directory)

Parameters

ftp_stream

The link identifier of the FTP connection.

directory

The directory to be listed. This parameter can also include arguments, eg.
ftp_nlist($conn_id, "-la /your/dir"); Note that this parameter isn't escaped so there may
be some issues with filenames containing spaces and other characters.

Return Values

Returns an array of filenames from the specified directory on success or FALSE on error.

Examples

Example #2180 - ftp_nlist() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// get contents of the current directory

$contents = ftp_nlist($conn_id, ".");

// output $contents

var_dump($contents);

?>

The above example will output something similar to:

array(3) {

 [0]=>

 string(11) "public_html"

 [1]=>

 string(10) "public_ftp"

 [2]=>

 string(3) "www"

See Also

• ftp_rawlist()

ftp_pasv

ftp_pasv -- Turns passive mode on or off

Description

bool ftp_pasv (resource $ftp_stream, bool $pasv)

ftp_pasv() turns on or off passive mode. In passive mode, data connections are initiated by
the client, rather than by the server. It may be needed if the client is behind firewall.

Please note that ftp_pasv() can only be called after a successfull login or otherwise it will
fail.

Parameters

ftp_stream

The link identifier of the FTP connection.

pasv

If TRUE, the passive mode is turned on, else it's turned off.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2181 - ftp_pasv() example

<?php

$file = 'somefile.txt';

$remote_file = 'readme.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// turn passive mode on

ftp_pasv($conn_id, true);

// upload a file

if (ftp_put($conn_id, $remote_file, $file, FTP_ASCII)) {

echo "successfully uploaded $file\n";

} else {

echo "There was a problem while uploading $file\n";

}

// close the connection

ftp_close($conn_id);

?>

ftp_put

ftp_put -- Uploads a file to the FTP server

Description

bool ftp_put (resource $ftp_stream, string $remote_file, string $local_file, int $mode
[, int $startpos])

ftp_put() stores a local file on the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The remote file path.

local_file

The local file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

startpos

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2182 - ftp_put() example

<?php

$file = 'somefile.txt';

$remote_file = 'readme.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// upload a file

if (ftp_put($conn_id, $remote_file, $file, FTP_ASCII)) {

echo "successfully uploaded $file\n";

} else {

echo "There was a problem while uploading $file\n";

}

// close the connection

ftp_close($conn_id);

?>

ChangeLog

Version Description

4.3.0 startpos was added.

See Also

• ftp_pasv()
• ftp_fput()
• ftp_nb_fput()
• ftp_nb_put()

ftp_pwd

ftp_pwd -- Returns the current directory name

Description

string ftp_pwd (resource $ftp_stream)

Parameters

ftp_stream

The link identifier of the FTP connection.

Return Values

Returns the current directory name or FALSE on error.

Examples

Example #2183 - ftp_pwd() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// change directory to public_html

ftp_chdir($conn_id, 'public_html');

// print current directory

echo ftp_pwd($conn_id); // /public_html

// close the connection

ftp_close($conn_id);

?>

See Also

• ftp_chdir()
• ftp_cdup()

ftp_quit

ftp_quit -- Alias of ftp_close()

Description

This function is an alias of: ftp_close().

ftp_raw

ftp_raw -- Sends an arbitrary command to an FTP server

Description

array ftp_raw (resource $ftp_stream, string $command)

Sends an arbitrary command to the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

command

The command to execute.

Return Values

Returns the server's response as an array of strings. No parsing is performed on the
response string, nor does ftp_raw() determine if the command succeeded.

Examples

Example #2184 - Using ftp_raw() to login to an FTP server manually.

<?php

$fp = ftp_connect("ftp.example.com");

/* This is the same as:

 ftp_login($fp, "joeblow", "secret"); */

ftp_raw($fp, "USER joeblow");

ftp_raw($fp, "PASS secret");

?>

See Also

• ftp_exec()

ftp_rawlist

ftp_rawlist -- Returns a detailed list of files in the given directory

Description

array ftp_rawlist (resource $ftp_stream, string $directory [, bool $recursive])

ftp_rawlist() executes the FTP LIST command, and returns the result as an array.

Parameters

ftp_stream

The link identifier of the FTP connection.

directory

The directory path.

recursive

If set to TRUE, the issued command will be LIST -R.

Return Values

Returns an array where each element corresponds to one line of text.

The output is not parsed in any way. The system type identifier returned by ftp_systype()
can be used to determine how the results should be interpreted.

Examples

Example #2185 - ftp_rawlist() example

<?php

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// get the file list for /

$buff = ftp_rawlist($conn_id, '/');

// close the connection

ftp_close($conn_id);

// output the buffer

var_dump($buff);

?>

The above example will output something similar to:

array(3) {

 [0]=>

 string(65) "drwxr-x--- 3 vincent vincent 4096 Jul 12 12:16
public_ftp"

 [1]=>

 string(66) "drwxr-x--- 15 vincent vincent 4096 Nov 3 21:31
public_html"

 [2]=>

 string(73) "lrwxrwxrwx 1 vincent vincent 11 Jul 12 12:16 www ->
public_html"

}

ChangeLog

Version Description

4.3.0 recursive was added.

See Also

• ftp_nlist()

ftp_rename

ftp_rename -- Renames a file or a directory on the FTP server

Description

bool ftp_rename (resource $ftp_stream, string $oldname, string $newname)

ftp_rename() renames a file or a directory on the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

oldname

The old file/directory name.

newname

The new name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2186 - ftp_rename() example

<?php

$old_file = 'somefile.txt.bak';

$new_file = 'somefile.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to rename $old_file to $new_file

if (ftp_rename($conn_id, $old_file, $new_file)) {

echo "successfully renamed $old_file to $new_file\n";

} else {

echo "There was a problem while renaming $old_file to $new_file\n";

}

// close the connection

ftp_close($conn_id);

?>

ftp_rmdir

ftp_rmdir -- Removes a directory

Description

bool ftp_rmdir (resource $ftp_stream, string $directory)

Removes the specified directory on the FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

directory

The directory to delete. This must be either an absolute or relative path to an empty
directory.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2187 - ftp_rmdir() example

<?php

$dir = 'www/';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// try to delete the directory $dir

if (ftp_rmdir($conn_id, $dir)) {

 echo "Successfully deleted $dir\n";

} else {

 echo "There was a problem while deleting $dir\n";

}

ftp_close($conn_id);

?>

See Also

• ftp_mkdir()

ftp_set_option

ftp_set_option -- Set miscellaneous runtime FTP options

Description

bool ftp_set_option (resource $ftp_stream, int $option, mixed $value)

This function controls various runtime options for the specified FTP stream.

Parameters

ftp_stream

The link identifier of the FTP connection.

option

Currently, the following options are supported:

Supported runtime FTP options

FTP_TIMEOUT_SEC Changes the timeout in seconds used for all
network related functions. value must be an
integer that is greater than 0. The default
timeout is 90 seconds.

FTP_AUTOSEEK When enabled, GET or PUT requests with a
resumepos or startpos parameter will first
seek to the requested position within the file.
This is enabled by default.

value

This parameter depends on which option is chosen to be altered.

Return Values

Returns TRUE if the option could be set; FALSE if not. A warning message will be thrown if
the option is not supported or the passed value doesn't match the expected value for the
given option.

Examples

Example #2188 - ftp_set_option() example

<?php

// Set the network timeout to 10 seconds

ftp_set_option($conn_id, FTP_TIMEOUT_SEC, 10);

?>

See Also

• ftp_get_option()

ftp_site

ftp_site -- Sends a SITE command to the server

Description

bool ftp_site (resource $ftp_stream, string $command)

ftp_site() sends the given SITE command to the FTP server.

SITE commands are not standardized, and vary from server to server. They are useful for
handling such things as file permissions and group membership.

Parameters

ftp_stream

The link identifier of the FTP connection.

command

The SITE command. Note that this parameter isn't escaped so there may be some issues
with filenames containing spaces and other characters.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2189 - Sending a SITE command to an ftp server

<?php

/* Connect to FTP server */

$conn = ftp_connect('ftp.example.com');

if (!$conn) die('Unable to connect to ftp.example.com');

/* Login as "user" with password "pass" */

if (!ftp_login($conn, 'user', 'pass')) die('Error logging into
ftp.example.com');

/* Issue: "SITE CHMOD 0600 /home/user/privatefile" command to ftp server */

if (ftp_site($conn, 'CHMOD 0600 /home/user/privatefile')) {

 echo "Command executed successfully.\n";

} else {

 die('Command failed.');

}

?>

See Also

• ftp_raw()

ftp_size

ftp_size -- Returns the size of the given file

Description

int ftp_size (resource $ftp_stream, string $remote_file)

ftp_size() returns the size of the given file in bytes.

Note

Not all servers support this feature.

Parameters

ftp_stream

The link identifier of the FTP connection.

remote_file

The remote file.

Return Values

Returns the file size on success, or -1 on error.

Examples

Example #2190 - ftp_size() example

<?php

$file = 'somefile.txt';

// set up basic connection

$conn_id = ftp_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// get the size of $file

$res = ftp_size($conn_id, $file);

if ($res != -1) {

 echo "size of $file is $res bytes";

} else {

 echo "couldn't get the size";

}

// close the connection

ftp_close($conn_id);

?>

See Also

• ftp_rawlist()

ftp_ssl_connect

ftp_ssl_connect -- Opens an Secure SSL-FTP connection

Description

resource ftp_ssl_connect (string $host [, int $port [, int $timeout]])

ftp_ssl_connect() opens a SSL-FTP connection to the specified host.

Note

Why this function may not exist

ftp_ssl_connect() is only available if OpenSSL support is enabled into your version of PHP.
If it's undefined and you've compiled FTP support then this is why. For Windows you must
compile your own PHP binaries to support this function.

Parameters

host

The FTP server address. This parameter shouldn't have any trailing slashes and shouldn't
be prefixed with ftp://.

port

This parameter specifies an alternate port to connect to. If it is omitted or set to zero, then
the default FTP port, 21, will be used.

timeout

This parameter specifies the timeout for all subsequent network operations. If omitted, the
default value is 90 seconds. The timeout can be changed and queried at any time with
ftp_set_option() and ftp_get_option().

Return Values

Returns a SSL-FTP stream on success or FALSE on error.

ChangeLog

Version Description

5.2.2 The function was changed to return FALSE

when it can't use an SSL connection,
instead of fallbacking to a non-SSL one as
previously.

Examples

Example #2191 - ftp_ssl_connect() example

<?php

// set up basic ssl connection

$conn_id = ftp_ssl_connect($ftp_server);

// login with username and password

$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

echo ftp_pwd($conn_id); // /

// close the ssl connection

ftp_close($conn_id);

?>

See Also

• ftp_connect()

ftp_systype

ftp_systype -- Returns the system type identifier of the remote FTP server

Description

string ftp_systype (resource $ftp_stream)

Returns the system type identifier of the remote FTP server.

Parameters

ftp_stream

The link identifier of the FTP connection.

Return Values

Returns the remote system type, or FALSE on error.

Examples

Example #2192 - ftp_systype() example

<?php

// ftp connection

$ftp = ftp_connect('ftp.example.com');

ftp_login($ftp, 'user', 'password');

// get the system type

if ($type = ftp_systype($ftp)) {

 echo "Example.com is powered by $type\n";

} else {

 echo "Couldn't get the systype";

}

?>

The above example will output something similar to:

Example.com is powered by UNIX

Hyperwave

Introduction

Hyperwave has been developed at » IICM in Graz. It started with the name Hyper-G and
changed to Hyperwave when it was commercialised (in 1996).

Hyperwave is not free software. The current version, 5.5 is available at
» http://www.hyperwave.com/. A time limited version can be ordered for free (30 days).

See also the Hyperwave API module.

Hyperwave is an information system similar to a database (HIS, Hyperwave Information
Server). Its focus is the storage and management of documents. A document can be any
possible piece of data that may as well be stored in file. Each document is accompanied
by its object record. The object record contains meta data for the document. The meta
data is a list of attributes which can be extended by the user. Certain attributes are always
set by the Hyperwave server, other may be modified by the user. An attribute is a
name/value pair of the form name=value. The complete object record contains as many of
those pairs as the user likes. The name of an attribute does not have to be unique, e.g. a
title may appear several times within an object record. This makes sense if you want to
specify a title in several languages. In such a case there is a convention, that each title
value is preceded by the two letter language abbreviation followed by a colon, e.g. 'en:Title
in English' or 'ge:Titel in deutsch'. Other attributes like a description or keywords are
potential candidates. You may also replace the language abbreviation by any other string
as long as it separated by colon from the rest of the attribute value.

Each object record has native a string representation with each name/value pair separated
by a newline. The Hyperwave extension also knows a second representation which is an
associated array with the attribute name being the key. Multilingual attribute values itself
form another associated array with the key being the language abbreviation. Actually any
multiple attribute forms an associated array with the string left to the colon in the attribute
value being the key. (This is not fully implemented. Only the attributes Title, Description
and Keyword are treated properly yet.)

Besides the documents, all hyper links contained in a document are stored as object
records as well. Hyper links which are in a document will be removed from it and stored as
individual objects, when the document is inserted into the database. The object record of
the link contains information about where it starts and where it ends. In order to gain the
original document you will have to retrieve the plain document without the links and the list
of links and reinsert them. The functions hw_pipedocument() and hw_gettext() do this for
you. The advantage of separating links from the document is obvious. Once a document to
which a link is pointing to changes its name, the link can easily be modified accordingly.
The document containing the link is not affected at all. You may even add a link to a
document without modifying the document itself.

Saying that hw_pipedocument() and hw_gettext() do the link insertion automatically is not
as simple as it sounds. Inserting links implies a certain hierarchy of the documents. On a
web server this is given by the file system, but Hyperwave has its own hierarchy and
names do not reflect the position of an object in that hierarchy. Therefore creation of links
first of all requires a mapping from the Hyperwave hierarchy and namespace into a web
hierarchy respective web namespace. The fundamental difference between Hyperwave

http://www.iicm.edu/
http://www.hyperwave.com/
http://www.hyperwave.com/

and the web is the clear distinction between names and hierarchy in Hyperwave. The
name does not contain any information about the objects position in the hierarchy. In the
web the name also contains the information on where the object is located in the
hierarchy. This leads to two possibles ways of mapping. Either the Hyperwave hierarchy
and name of the Hyperwave object is reflected in the URL or the name only. To make
things simple the second approach is used. Hyperwave object with name my_object is
mapped to http://host/my_object disregarding where it resides in the Hyperwave hierarchy.
An object with name parent/my_object could be the child of my_object in the Hyperwave
hierarchy, though in a web namespace it appears to be just the opposite and the user
might get confused. This can only be prevented by selecting reasonable object names.

Having made this decision a second problem arises. How do you involve PHP? The URL
http://host/my_object will not call any PHP script unless you tell your web server to rewrite
it to e.g. http://host/php_script/my_object and the script php_script evaluates the
$PATH_INFO variable and retrieves the object with name my_object from the Hyperwave
server. Their is just one little drawback which can be fixed easily. Rewriting any URL would
not allow any access to other document on the web server. A PHP script for searching in
the Hyperwave server would be impossible. Therefore you will need at least a second
rewriting rule to exclude certain URLs like all e.g. starting with http://host/Hyperwave This
is basically sharing of a namespace by the web and Hyperwave server.

Based on the above mechanism links are insert into documents.

It gets more complicated if PHP is not run as a server module or CGI script but as a
standalone application e.g. to dump the content of the Hyperwave server on a CD-ROM. In
such a case it makes sense to retain the Hyperwave hierarchy and map in onto the file
system. This conflicts with the object names if they reflect its own hierarchy (e.g. by
choosing names including '/'). Therefore '/' has to be replaced by another character, e.g.
'_'.

The network protocol to communicate with the Hyperwave server is called » HG-CSP
(Hyper-G Client/Server Protocol). It is based on messages to initiate certain actions, e.g.
get object record. In early versions of the Hyperwave Server two native clients (Harmony,
Amadeus) were provided for communication with the server. Those two disappeared when
Hyperwave was commercialised. As a replacement a so called wavemaster was provided.
The wavemaster is like a protocol converter from HTTP to HG-CSP. The idea is to do all
the administration of the database and visualisation of documents by a web interface. The
wavemaster implements a set of placeholders for certain actions to customise the
interface. This set of placeholders is called the PLACE Language. PLACE lacks a lot of
features of a real programming language and any extension to it only enlarges the list of
placeholders. This has led to the use of JavaScript which IMO does not make life easier.

Adding Hyperwave support to PHP should fill in the gap of a missing programming
language for interface customisation. It implements all the messages as defined by the
HG-CSP but also provides more powerful commands to e.g. retrieve complete documents.

Hyperwave has its own terminology to name certain pieces of information. This has widely
been taken over and extended. Almost all functions operate on one of the following data
types.

• object ID: A unique integer value for each object in the Hyperwave server. It is also
one of the attributes of the object record (ObjectID). Object ids are often used as an

http://citeseer.ist.psu.edu/andrews95serving.html

input parameter to specify an object.

• object record: A string with attribute-value pairs of the form attribute=value. The pairs
are separated by a carriage return from each other. An object record can easily be
converted into an object array with hw_object2array(). Several functions return object
records. The names of those functions end with obj.

• object array: An associative array with all attributes of an object. The keys are the
attribute names. If an attribute occurs more than once in an object record it will result in
another indexed or associative array. Attributes which are language depended (like the
title, keyword, description) will form an associative array with the keys set to the
language abbreviations. All other multiple attributes will form an indexed array. PHP
functions never return object arrays.

• hw_document: This is a complete new data type which holds the actual document, e.g.
HTML, PDF etc. It is somewhat optimized for HTML documents but may be used for
any format.

Several functions which return an array of object records do also return an associative
array with statistical information about them. The array is the last element of the object
record array. The statistical array contains the following entries:
Hidden

Number of object records with attribute PresentationHints set to Hidden.

CollectionHead
Number of object records with attribute PresentationHints set to CollectionHead.

FullCollectionHead
Number of object records with attribute PresentationHints set to FullCollectionHead.

CollectionHeadNr
Index in array of object records with attribute PresentationHints set to CollectionHead.

FullCollectionHeadNr
Index in array of object records with attribute PresentationHints set to
FullCollectionHead.

Total
Total: Number of object records.

Installing/Configuring

Requirements

This extension needs a Hyperwave server downloadable from
» http://www.hyperwave.com/.

Installation

This » PECL extension is not bundled with PHP.

In order to use these functions you must compile PHP with Hyperwave support by using
the --with-hyperwave[=DIR] configure option.

Windows users will enable php_hyperwave.dll inside of php.ini in order to use these
functions. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Hyperwave configuration options

Name Default Changeable Changelog

hyperwave.allow_per
sistent

"0" PHP_INI_SYSTEM Available since PHP
4.3.2. Removed in
PHP 5.0.0.

hyperwave.default_p
ort

"418" PHP_INI_ALL Removed in PHP
5.0.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

http://www.hyperwave.com/
http://www.hyperwave.com/
http://pecl.php.net/
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

HW_ATTR_LANG (integer)

HW_ATTR_NR (integer)

HW_ATTR_NONE (integer)

Integration with Apache

The Hyperwave extension is best used when PHP is compiled as an Apache module. In
such a case the underlying Hyperwave server can be hidden from users almost completely
if Apache uses its rewriting engine. The following instructions will explain this.

Since PHP with Hyperwave support built into Apache is intended to replace the native
Hyperwave solution based on Wavemaster, we will assume that the Apache server will
only serve as a Hyperwave web interface for these examples. This is not necessary but it
simplifies the configuration. The concept is quite simple. First of all you need a PHP script
which evaluates the $_ENV['PATH_INFO'] variable and treats its value as the name of a
Hyperwave object. Let's call this script 'Hyperwave'. The URL
http://your.hostname/Hyperwave/name_of_object would than return the Hyperwave object
with the name 'name_of_object'. Depending on the type of the object the script has to
react accordingly. If it is a collection, it will probably return a list of children. If it is a
document it will return the mime type and the content. A slight improvement can be
achieved if the Apache rewriting engine is used. From the users point of view it would be
more straight forward if the URL http://your.hostname/name_of_object would return the
object. The rewriting rule is quite easy:

RewriteRule ^/(.*) /usr/local/apache/htdocs/HyperWave/$1 [L]

Now every URL relates to an object in the Hyperwave server. This causes a simple to
solve problem. There is no way to execute a different script, e.g. for searching, than the
'Hyperwave' script. This can be fixed with another rewriting rule like the following:

RewriteRule ^/hw/(.*) /usr/local/apache/htdocs/hw/$1 [L]

This will reserve the directory /usr/local/apache/htdocs/hw for additional scripts and other
files. Just make sure this rule is evaluated before the one above. There is just a little
drawback: all Hyperwave objects whose name starts with 'hw/' will be shadowed. So,
make sure you don't use such names. If you need more directories, e.g. for images just
add more rules or place them all in one directory. Before you put those instructions, don't
forget to turn on the rewriting engine with

RewriteEngine on

You will need scripts:

• to return the object itself

• to allow searching

• to identify yourself

• to set your profile

• one for each additional function like to show the object attributes, to show information
about users, to show the status of the server, etc.

As an alternative to the Rewrite Engine, you can also consider using the Apache

ErrorDocument directive, but be aware, that ErrorDocument redirected pages cannot
receive POST data.

Hyperwave Functions

Todo

There are still some things to do:

• The hw_InsertDocument has to be split into hw_insertobject() and hw_putdocument()
.

• The names of several functions are not fixed, yet.

• Most functions require the current connection as its first parameter. This leads to a lot
of typing, which is quite often not necessary if there is just one open connection. A
default connection will improve this.

• Conversion form object record into object array needs to handle any multiple attribute.

hw_Array2Objrec

hw_Array2Objrec -- Convert attributes from object array to object record

Description

string hw_array2objrec (array $object_array)

Converts an object_array into an object record. Multiple attributes like 'Title' in different
languages are treated properly.

Parameters

object_array

The array.

Return Values

Returns an object record.

See Also

• hw_objrec2array()

hw_changeobject

hw_changeobject -- Changes attributes of an object (obsolete)

Description

bool hw_changeobject (int $link, int $objid, array $attributes)

Warning

This function is currently not documented; only its argument list is available.

hw_Children

hw_Children -- Object ids of children

Description

array hw_children (int $connection, int $objectID)

Returns the identifiers of the collection children.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object ids. Each id belongs to a child of the collection with ID objectID

. The array contains all children both documents and collections.

hw_ChildrenObj

hw_ChildrenObj -- Object records of children

Description

array hw_childrenobj (int $connection, int $objectID)

Returns the object records of the collection children.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object records. Each object record belongs to a child of the collection
with ID objectID. The array contains all children both documents and collections.

hw_Close

hw_Close -- Closes the Hyperwave connection

Description

bool hw_close (int $connection)

Closes down the connection to a Hyperwave server.

Parameters

connection

The connection identifier.

Return Values

Returns TRUE on success or FALSE on failure.

hw_Connect

hw_Connect -- Opens a connection

Description

int hw_connect (string $host, int $port [, string $username], string $password)

Opens a connection to a Hyperwave server. You can have multiple connections open at
once.

Parameters

host

The server host name.

port

The server port number.

username

The Hyperwave user name. If ommited, no identification with the server will be done. It
is similar to identify as user anonymous.

password

The password for username. Keep in mind, that the password is not encrypted.

Return Values

Returns a connection index on success, or FALSE if the connection could not be made.

See Also

• hw_pconnect()

hw_connection_info

hw_connection_info -- Prints information about the connection to Hyperwave server

Description

void hw_connection_info (int $link)

Warning

This function is currently not documented; only its argument list is available.

hw_cp

hw_cp -- Copies objects

Description

int hw_cp (int $connection, array $object_id_array, int $destination_id)

Copies the objects with object ids as specified in the second parameter to the collection
with the id destination id.

Parameters

connection

The connection identifier.

object_id_array

An array of object ids.

destination_id

The target collection id.

Return Values

Returns the number of copied objects.

See Also

• hw_mv()

hw_Deleteobject

hw_Deleteobject -- Deletes object

Description

bool hw_deleteobject (int $connection, int $object_to_delete)

Deletes the object with the given object id in the second parameter. It will delete all
instances of the object.

Parameters

connection

The connection identifier.

object_to_delete

The object identifier.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_mv()

hw_DocByAnchor

hw_DocByAnchor -- Object id object belonging to anchor

Description

int hw_docbyanchor (int $connection, int $anchorID)

Returns an th object id of the document to which anchorID belongs.

Parameters

connection

The connection identifier.

anchorID

The anchor identifier.

Return Values

Returns the document object id.

hw_DocByAnchorObj

hw_DocByAnchorObj -- Object record object belonging to anchor

Description

string hw_docbyanchorobj (int $connection, int $anchorID)

Returns an th object record of the document to which anchorID belongs.

Parameters

connection

The connection identifier.

anchorID

The anchor identifier.

Return Values

Returns an object record.

hw_Document_Attributes

hw_Document_Attributes -- Object record of hw_document

Description

string hw_document_attributes (int $hw_document)

Returns the object record of the document.

For backward compatibility, hw_documentattributes() is also accepted. This is
deprecated, however.

Parameters

hw_document

The document identifier.

Return Values

Returns the object record of the document.

See Also

• hw_document_bodytag()
• hw_document_size()

hw_Document_BodyTag

hw_Document_BodyTag -- Body tag of hw_document

Description

string hw_document_bodytag (int $hw_document [, string $prefix])

Returns the BODY tag of the document. If the document is an HTML document the BODY
tag should be printed before the document.

For backward compatibility, hw_documentbodytag() is also accepted. This is deprecated,
however.

Parameters

hw_document

The document identifier.

prefix

Return Values

Returns the BODY tag as a string.

See Also

• hw_document_attributes()
• hw_document_size()

hw_Document_Content

hw_Document_Content -- Returns content of hw_document

Description

string hw_document_content (int $hw_document)

Gets the content of the document.

Parameters

hw_document

The document identifier.

Return Values

Returns the content of the document. If the document is an HTML document the content is
everything after the BODY tag. Information from the HEAD and BODY tag is in the stored
in the object record.

See Also

• hw_document_attributes()
• hw_document_size()
• hw_document_setcontent()

hw_Document_SetContent

hw_Document_SetContent -- Sets/replaces content of hw_document

Description

bool hw_document_setcontent (int $hw_document, string $content)

Sets or replaces the content of the document. If the document is an HTML document the
content is everything after the BODY tag. Information from the HEAD and BODY tag is in
the stored in the object record. If you provide this information in the content of the
document too, the Hyperwave server will change the object record accordingly when the
document is inserted. Probably not a very good idea. If this functions fails the document
will retain its old content.

Parameters

hw_document

The document identifier.

content

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_document_attributes()
• hw_document_size()
• hw_document_content()

hw_Document_Size

hw_Document_Size -- Size of hw_document

Description

int hw_document_size (int $hw_document)

Gets the size of the document.

For backward compatibility, hw_documentsize() is also accepted. This is deprecated,
however.

Parameters

hw_document

The document identifier.

Return Values

Returns the size in bytes of the document.

See Also

• hw_document_attributes()
• hw_document_bodytag()

hw_dummy

hw_dummy -- Hyperwave dummy function

Description

string hw_dummy (int $link, int $id, int $msgid)

Warning

This function is currently not documented; only its argument list is available.

hw_EditText

hw_EditText -- Retrieve text document

Description

bool hw_edittext (int $connection, int $hw_document)

Uploads the text document to the server. The object record of the document may not be
modified while the document is edited.

This function will only works for pure text documents. It will not open a special data
connection and therefore blocks the control connection during the transfer.

Parameters

connection

The connection identifier.

hw_document

The document identifier.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_pipedocument()
• hw_free_document()
• hw_document_bodytag()
• hw_document_size()
• hw_output_document()
• hw_gettext()

hw_Error

hw_Error -- Error number

Description

int hw_error (int $connection)

Returns the last error number, for the last command.

Parameters

connection

The connection identifier.

Return Values

Returns the last error number or 0 if no error occured.

See Also

• hw_errormsg()

hw_ErrorMsg

hw_ErrorMsg -- Returns error message

Description

string hw_errormsg (int $connection)

Returns a string containing the last error message related to the last command.

Parameters

connection

The connection identifier.

Return Values

Returns a string containing the last error message or 'No Error'. If FALSE is returned, this
function failed.

See Also

• hw_error()

hw_Free_Document

hw_Free_Document -- Frees hw_document

Description

bool hw_free_document (int $hw_document)

Frees the memory occupied by the Hyperwave document.

Parameters

hw_document

The document identifier.

Return Values

Returns TRUE on success or FALSE on failure.

hw_GetAnchors

hw_GetAnchors -- Object ids of anchors of document

Description

array hw_getanchors (int $connection, int $objectID)

Returns an array of object ids with anchors of the specified document.

Parameters

connection

The connection identifier.

objectID

The document object id.

Return Values

Returns an array of object ids.

hw_GetAnchorsObj

hw_GetAnchorsObj -- Object records of anchors of document

Description

array hw_getanchorsobj (int $connection, int $objectID)

Returns records with anchors of the document with object ID objectID.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object records.

hw_GetAndLock

hw_GetAndLock -- Return object record and lock object

Description

string hw_getandlock (int $connection, int $objectID)

Returns the object record for the object with ID objectID. It will also lock the object, so
other users cannot access it until it is unlocked.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns the object record for the object with ID objectID.

See Also

• hw_unlock()
• hw_getobject()

hw_GetChildColl

hw_GetChildColl -- Object ids of child collections

Description

array hw_getchildcoll (int $connection, int $objectID)

Returns object ids. Each object ID belongs to a child collection of the collection with ID
objectID. The function will not return child documents.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object ids.

See Also

• hw_children()
• hw_getchilddoccoll()

hw_GetChildCollObj

hw_GetChildCollObj -- Object records of child collections

Description

array hw_getchildcollobj (int $connection, int $objectID)

Returns object records. Each object records belongs to a child collection of the collection
with ID objectID. The function will not return child documents.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object records.

See Also

• hw_childrenobj()
• hw_getchilddoccollobj()

hw_GetChildDocColl

hw_GetChildDocColl -- Object ids of child documents of collection

Description

array hw_getchilddoccoll (int $connection, int $objectID)

Returns array of object ids for child documents of a collection.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object ids.

See Also

• hw_children()
• hw_getchildcoll()

hw_GetChildDocCollObj

hw_GetChildDocCollObj -- Object records of child documents of collection

Description

array hw_getchilddoccollobj (int $connection, int $objectID)

Returns an array of object records for child documents of a collection.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an array of object records.

See Also

• hw_childrenobj()
• hw_getchildcollobj()

hw_GetObject

hw_GetObject -- Object record

Description

mixed hw_getobject (int $connection, mixed $objectID [, string $query])

Gets an object record. If the second parameter is an array of integer the function will

Parameters

connection

The connection identifier.

objectID

The object identifier, or an array of identifiers.

query

The query string has the following syntax:
<expr> ::= "(" <expr> ")" |

 "!" <expr> | /* NOT */

 <expr> "||" <expr> | /* OR */

 <expr> "&&" <expr> | /* AND */

 <attribute> <operator> <value>

<attribute> ::= /* any attribute name (Title, Author, DocumentType ...) */

<operator> ::= "=" | /* equal */

 "<" | /* less than (string compare) */

 ">" | /* greater than (string compare) */

 "~" /* regular expression matching */
The query allows to further select certain objects from the list of given objects. Unlike
the other query functions, this query may use not indexed attributes. How many object
records are returned depends on the query and if access to the object is allowed.

Return Values

Returns the object record for the given object ID if the second parameter is an integer.

If the second parameter is an array of integer the function will return an array of object
records. In such a case the last parameter is also evaluated which is a query string.

See Also

• hw_getandlock()

• hw_getobjectbyquery()

hw_GetObjectByQuery

hw_GetObjectByQuery -- Search object

Description

array hw_getobjectbyquery (int $connection, string $query, int $max_hits)

Searches for objects on the whole server and returns an array of object ids.

Parameters

connection

The connection identifier.

query

The query will only work with indexed attributes.

max_hits

The maximum number of matches is limited to max_hits. If max_hits is set to -1 the
maximum number of matches is unlimited.

Return Values

Returns an array of object ids.

See Also

• hw_getobjectbyqueryobj()

hw_GetObjectByQueryColl

hw_GetObjectByQueryColl -- Search object in collection

Description

array hw_getobjectbyquerycoll (int $connection, int $objectID, string $query, int $
max_hits)

Searches for objects in collection with ID objectID and returns an array of object ids.

Parameters

connection

The connection identifier.

objectID

The collection id.

query

The query will only work with indexed attributes.

max_hits

The maximum number of matches is limited to max_hits. If max_hits is set to -1 the
maximum number of matches is unlimited.

Return Values

Returns an array of object ids.

See Also

• hw_getobjectbyquerycollobj()

hw_GetObjectByQueryCollObj

hw_GetObjectByQueryCollObj -- Search object in collection

Description

array hw_getobjectbyquerycollobj (int $connection, int $objectID, string $query, int $
max_hits)

Searches for objects in collection with ID objectID and returns an array of object records.

Parameters

connection

The connection identifier.

objectID

The collection id.

query

The query will only work with indexed attributes.

max_hits

The maximum number of matches is limited to max_hits. If max_hits is set to -1 the
maximum number of matches is unlimited.

Return Values

Returns an array of object records.

See Also

• hw_getobjectbyquerycoll()

hw_GetObjectByQueryObj

hw_GetObjectByQueryObj -- Search object

Description

array hw_getobjectbyqueryobj (int $connection, string $query, int $max_hits)

Searches for objects on the whole server and returns an array of object records.

Parameters

connection

The connection identifier.

query

The query will only work with indexed attributes.

max_hits

The maximum number of matches is limited to max_hits. If max_hits is set to -1 the
maximum number of matches is unlimited.

Return Values

Returns an array of object records.

See Also

• hw_getobjectbyquery()

hw_GetParents

hw_GetParents -- Object ids of parents

Description

array hw_getparents (int $connection, int $objectID)

Returns the object identifiers of the parents of an object.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an indexed array of object ids. Each object id belongs to a parent of the object
with ID objectID.

hw_GetParentsObj

hw_GetParentsObj -- Object records of parents

Description

array hw_getparentsobj (int $connection, int $objectID)

Returns object records and statistical information about the object records. Each object
record belongs to a parent of the object with ID objectID.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns an indexed array of object records plus an associated array with statistical
information about the object records. The associated array is the last entry of the returned
array.

hw_getrellink

hw_getrellink -- Get link from source to dest relative to rootid

Description

string hw_getrellink (int $link, int $rootid, int $sourceid, int $destid)

Warning

This function is currently not documented; only its argument list is available.

hw_GetRemote

hw_GetRemote -- Gets a remote document

Description

int hw_getremote (int $connection, int $objectID)

Gets a remote document.

Remote documents in Hyperwave notation are documents retrieved from an external
source. Common remote documents are for example external web pages or queries in a
database.

In order to be able to access external sources through remote documents Hyperwave
introduces the HGI (Hyperwave Gateway Interface) which is similar to the CGI. Currently,
only ftp, http-servers and some databases can be accessed by the HGI.

Calling hw_getremote() returns the document from the external source. If you want to use
this function you should be very familiar with HGIs. You should also consider to use PHP
instead of Hyperwave to access external sources. Adding database support by a
Hyperwave gateway should be more difficult than doing it in PHP.

Parameters

connection

The connection identifier.

objectID

The object identifier.

Return Values

Returns a remote document.

See Also

• hw_getremotechildren()

hw_getremotechildren

hw_getremotechildren -- Gets children of remote document

Description

mixed hw_getremotechildren (int $connection, string $object_record)

Returns the children of a remote document. Children of a remote document are remote
documents itself. This makes sense if a database query has to be narrowed and is
explained in Hyperwave Programmers' Guide.

If you want to use this function you should be very familiar with HGIs. You should also
consider to use PHP instead of Hyperwave to access external sources. Adding database
support by a Hyperwave gateway should be more difficult than doing it in PHP.

Parameters

connection

The connection identifier.

object_record

The object record.

Return Values

If the number of children is 1 the function will return the document itself formatted by the
Hyperwave Gateway Interface (HGI). If the number of children is greater than 1 it will
return an array of object record with each maybe the input value for another call to
hw_getremotechildren(). Those object records are virtual and do not exist in the
Hyperwave server, therefore they do not have a valid object ID. How exactly such an
object record looks like is up to the HGI.

See Also

• hw_getremote()

hw_GetSrcByDestObj

hw_GetSrcByDestObj -- Returns anchors pointing at object

Description

array hw_getsrcbydestobj (int $connection, int $objectID)

Gets the object records of all anchors pointing to the object with ID objectID.

Parameters

connection

The connection identifier.

objectID

The object identifier. The object can either be a document or an anchor of type
destination.

Return Values

Returns an array of object records.

See Also

• hw_getanchors()

hw_GetText

hw_GetText -- Retrieve text document

Description

int hw_gettext (int $connection, int $objectID [, mixed $rootID/prefix])

Returns the document with object ID objectID. If the document has anchors which can be
inserted, they will be inserted already.

This function will only work for pure text documents. It will not open a special data
connection and therefore blocks the control connection during the transfer.

Parameters

connection

The connection identifier.

objectID

The object identifier.

rootID/prefix

The optional parameter rootID/prefix can be a string or an integer. If it is an integer it
determines how links are inserted into the document. The default is 0 and will result in
links that are constructed from the name of the link's destination object. This is useful
for web applications. If a link points to an object with name 'internet_movie' the HTML
link will be . The actual location of the source and
destination object in the document hierarchy is disregarded. You will have to set up
your web browser, to rewrite that URL to for example '/my_script.php/internet_movie'.
'my_script.php' will have to evaluate $PATH_INFO and retrieve the document. All links
will have the prefix '/my_script.php/'. If you do not want this you can set the optional
parameter rootID/prefix to any prefix which is used instead. Is this case it has to be
a string. If rootID/prefix is an integer and unequal to 0 the link is constructed from all
the names starting at the object with the id rootID/prefix separated by a slash
relative to the current object. If for example the above document 'internet_movie' is
located at 'a-b-c-internet_movie' with '-' being the separator between hierarchy levels
on the Hyperwave server and the source document is located at 'a-b-d-source' the
resulting HTML link would be: . This is useful if you
want to download the whole server content onto disk and map the document hierarchy
onto the file system.

Return Values

Returns the text document.

See Also

• hw_pipedocument()
• hw_free_document()
• hw_document_bodytag()
• hw_document_size()
• hw_output_document()

hw_getusername

hw_getusername -- Name of currently logged in user

Description

string hw_getusername (int $connection)

Returns the username of the connection.

Parameters

connection

The connection identifier.

Return Values

Returns the username as a string.

hw_Identify

hw_Identify -- Identifies as user

Description

string hw_identify (int $link, string $username, string $password)

Identifies as user with username and password. Identification is only valid for the current
session. I do not think this function will be needed very often. In most cases it will be
easier to identify with the opening of the connection.

Parameters

link

The connection identifier.

username

The username.

password

The password.

See Also

• hw_connect()

hw_InCollections

hw_InCollections -- Check if object ids in collections

Description

array hw_incollections (int $connection, array $object_id_array, array $
collection_id_array, int $return_collections)

Checks whether a set of objects (documents or collections) specified by the
object_id_array is part of the collections listed in collection_id_array.

Parameters

connection

The connection identifier.

object_id_array

An array of object ids.

collection_id_array

An array of collection ids.

return_collections

When set to 0, the subset of object ids that is part of the collections (i.e., the
documents or collections that are children of one or more collections of collection ids or
their subcollections, recursively) is returned as an array. When set to 1, the set of
collections that have one or more objects of this subset as children are returned as an
array. This option allows a client to, e.g., highlight the part of the collection hierarchy
that contains the matches of a previous query, in a graphical overview.

Return Values

Returns an array of object ids.

hw_Info

hw_Info -- Info about connection

Description

string hw_info (int $connection)

Returns information about the current connection.

Parameters

connection

The connection identifier.

Return Values

The returned string has the following format: <Serverstring>, <Host>, <Port>,
<Username>, <Port of Client>, <Byte swapping>

hw_InsColl

hw_InsColl -- Insert collection

Description

int hw_inscoll (int $connection, int $objectID, array $object_array)

Inserts a new collection with attributes as in object_array into collection with object ID
objectID.

Parameters

connection

The connection identifier.

objectID

object_array

Return Values

hw_InsDoc

hw_InsDoc -- Insert document

Description

int hw_insdoc (resource $connection, int $parentID, string $object_record [, string $
text])

Inserts a new document with attributes as in object_record into acollection.

If you want to insert a general document of any kind use hw_insertdocument() instead.

Parameters

connection

The connection identifier.

parentID

The collection id.

object_record

Object attributes.

text

If provided, this ascii text will be inserted too.

Return Values

See Also

• hw_insertdocument()
• hw_inscoll()

hw_insertanchors

hw_insertanchors -- Inserts only anchors into text

Description

bool hw_insertanchors (int $hwdoc, array $anchorecs, array $dest [, array $
urlprefixes])

Warning

This function is currently not documented; only its argument list is available.

hw_InsertDocument

hw_InsertDocument -- Upload any document

Description

int hw_insertdocument (int $connection, int $parent_id, int $hw_document)

Uploads a document into the given collection.

The document has to be created before with hw_new_document(). Make sure that the
object record of the new document contains at least the attributes: Type, DocumentType,
Title and Name. Possibly you also want to set the MimeType.

Parameters

connection

The connection identifier.

parent_id

The collection identifier.

hw_document

The document identifier.

Return Values

The functions returns the object id of the new document or FALSE.

See Also

• hw_pipedocument()

hw_InsertObject

hw_InsertObject -- Inserts an object record

Description

int hw_insertobject (int $connection, string $object_rec, string $parameter)

Inserts an object into the server.

Note: If you want to insert an Anchor, the attribute Position has always been set either to a
start/end value or to 'invisible'. Invisible positions are needed if the annotation has no
corresponding link in the annotation text.

Parameters

connection

The connection identifier.

object_rec

The object can be any valid hyperwave object.

parameter

See the HG-CSP documentation for a detailed information on how the parameters
have to be.

See Also

• hw_pipedocument()
• hw_insertdocument()
• hw_insdoc()
• hw_inscoll()

hw_mapid

hw_mapid -- Maps global id on virtual local id

Description

int hw_mapid (int $connection, int $server_id, int $object_id)

Maps a global object id on any hyperwave server, even those you did not connect to with
hw_connect(), onto a virtual object id.

This virtual object id can then be used as any other object id, e.g. to obtain the object
record with hw_getobject().

Note: In order to use this function you will have to set the F_DISTRIBUTED flag, which can
currently only be set at compile time in hg_comm.c. It is not set by default. Read the
comment at the beginning of hg_comm.c

Parameters

connection

The connection identifier.

server_id

The server id is the first part of the global object id (GOid) of the object which is
actually the IP number as an integer.

object_id

The object identifier.

Return Values

Returns the virtual object id.

hw_Modifyobject

hw_Modifyobject -- Modifies object record

Description

bool hw_modifyobject (int $connection, int $object_to_change, array $remove, array $
add [, int $mode])

This command allows to remove, add, or modify individual attributes of an object record.
The object is specified by the Object ID object_to_change. In order to modify an attribute
one will have to remove the old one and add a new one. hw_modifyobject() will always
remove the attributes before it adds attributes unless the value of the attribute to remove is
not a string or array.

The keys of both arrays are the attributes name. The value of each array element can
either be an array, a string or anything else. If it is an array each attribute value is
constructed by the key of each element plus a colon and the value of each element. If it is
a string it is taken as the attribute value. An empty string will result in a complete removal
of that attribute. If the value is neither a string nor an array but something else, e.g. an
integer, no operation at all will be performed on the attribute. This is necessary if you want
to add a completely new attribute not just a new value for an existing attribute. If the
remove array contained an empty string for that attribute, the attribute would be tried to be
removed which would fail since it doesn't exist. The following addition of a new value for
that attribute would also fail. Setting the value for that attribute to e.g. 0 would not even try
to remove it and the addition will work.

If you would like to change the attribute 'Name' with the current value 'books' into 'articles'
you will have to create two arrays and call hw_modifyobject().

Example #2193 - modifying an attribute

<?php

 // $connect is an existing connection to the Hyperwave server

 // $objid is the ID of the object to modify

 $remarr = array("Name" => "books");

 $addarr = array("Name" => "articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

?>

In order to delete/add a name=value pair from/to the object record just pass the
remove/add array and set the last/third parameter to an empty array. If the attribute is the
first one with that name to add, set attribute value in the remove array to an integer.

Example #2194 - adding a completely new attribute

<?php

 // $connect is an existing connection to the Hyperwave server

 // $objid is the ID of the object to modify

 $remarr = array("Name" => 0);

 $addarr = array("Name" => "articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

?>

Note

Multilingual attributes, e.g. 'Title', can be modified in two ways. Either by providing the
attributes value in its native form 'language':'title' or by providing an array with
elements for each language as described above. The above example would than be:

Example #2195 - modifying Title attribute

<?php

 $remarr = array("Title" => "en:Books");

 $addarr = array("Title" => "en:Articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

?>

or

Example #2196 - modifying Title attribute

<?php

 $remarr = array("Title" => array("en" => "Books"));

 $addarr = array("Title" => array("en" => "Articles",
"ge"=>"Artikel"));

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

?>

This removes the English title 'Books' and adds the English title 'Articles' and the German
title 'Artikel'.

Example #2197 - removing attribute

<?php

 $remarr = array("Title" => "");

 $addarr = array("Title" => "en:Articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

?>

Note

This will remove all attributes with the name 'Title' and adds a new 'Title' attribute. This
comes in handy if you want to remove attributes recursively.

Note

If you need to delete all attributes with a certain name you will have to pass an empty
string as the attribute value.

Note

Only the attributes 'Title', 'Description' and 'Keyword' will properly handle the language
prefix. If those attributes don't carry a language prefix, the prefix 'xx' will be assigned.

Note

The 'Name' attribute is somewhat special. In some cases it cannot be complete
removed. You will get an error message 'Change of base attribute' (not clear when this
happens). Therefore you will always have to add a new Name first and than remove
the old one.

Note

You may not surround this function by calls to hw_getandlock() and hw_unlock().
hw_modifyobject() does this internally.

Parameters

connection

The connection identifier.

object_to_change

The object to be changed.

remove

An array of attributes to remove.

add

An array of attributes to add.

mode

The last parameter determines if the modification is performed recursively. 1 means
recursive modification. If some of the objects cannot be modified they will be skipped
without notice. hw_error() may not indicate an error though some of the objects could
not be modified.

Return Values

Returns TRUE on success or FALSE on failure.

hw_mv

hw_mv -- Moves objects

Description

int hw_mv (int $connection, array $object_id_array, int $source_id, int $
destination_id)

Moves the specified objects from a collection to another.

Parameters

connection

The connection identifier.

object_id_array

An array of object ids.

source_id

The source collection id.

destination_id

The target collection id. If set to 0 the objects will be unlinked from the source
collection. If this is the last instance of that object it will be deleted. If you want to
delete all instances at once, use hw_deleteobject().

Return Values

Returns the number of moved objects.

See Also

• hw_cp()
• hw_deleteobject()

hw_New_Document

hw_New_Document -- Create new document

Description

int hw_new_document (string $object_record, string $document_data, int $
document_size)

Returns a new Hyperwave document with the given document data and object record.

This function does not insert the document into the Hyperwave server.

Parameters

object_record

The object record.

document_data

The document data.

document_size

The document size. Must be the length of document_data.

Return Values

Returns the new Hyperwave document.

See Also

• hw_free_document()
• hw_document_size()
• hw_document_bodytag()
• hw_output_document()
• hw_insertdocument()

hw_objrec2array

hw_objrec2array -- Convert attributes from object record to object array

Description

array hw_objrec2array (string $object_record [, array $format])

Converts an object_record into an object array.

Parameters

object_record

The object record.

format

An associative array with the attribute name as its key and the value being one of
HW_ATTR_LANG or HW_ATTR_NONE.

Return Values

Returns an array. The keys of the resulting array are the attributes names. Multi-value
attributes like 'Title' in different languages form its own array. The keys of this array are the
left part to the colon of the attribute value. This left part must be two characters long.

Other multi-value attributes without a prefix form an indexed array. If the optional
parameter is missing the attributes 'Title', 'Description' and 'Keyword' are treated as
language attributes and the attributes 'Group', 'Parent' and 'HtmlAttr' as non-prefixed
multi-value attributes. By passing an array holding the type for each attribute you can alter
this behaviour.

See Also

• hw_array2objrec()

hw_Output_Document

hw_Output_Document -- Prints hw_document

Description

bool hw_output_document (int $hw_document)

Prints the document without the BODY tag.

For backward compatibility, hw_outputdocument() is also accepted. This is deprecated,
however.

Parameters

hw_document

The document identifier.

Return Values

Returns TRUE on success or FALSE on failure.

hw_pConnect

hw_pConnect -- Make a persistent database connection

Description

int hw_pconnect (string $host, int $port [, string $username], string $password)

Opens a persistent connection to a Hyperwave server. You can have multiple persistent
connections open at once.

Parameters

host

The server host name.

port

The server port number.

username

The Hyperwave user name. If ommited, no identification with the server will be done. It
is similar to identify as user anonymous.

password

The password for username. Keep in mind, that the password is not encrypted.

Return Values

Returns a connection index on success, or FALSE if the connection could not be made.

See Also

• hw_connect()

hw_PipeDocument

hw_PipeDocument -- Retrieve any document

Description

int hw_pipedocument (int $connection, int $objectID [, array $url_prefixes])

Gets the Hyperwave document with the given object ID. If the document has anchors
which can be inserted, they will have been inserted already.

The document will be transferred via a special data connection which does not block the
control connection.

Parameters

connection

The connection identifier.

objectID

The object identifier.

url_prefixes

Return Values

Returns the Hyperwave document.

See Also

• hw_gettext()
• hw_free_document()
• hw_document_size()
• hw_document_bodytag()
• hw_output_document()

hw_Root

hw_Root -- Root object id

Description

int hw_root (void)

Returns the object ID of the hyperroot collection. Currently this is always 0. The child
collection of the hyperroot is the root collection of the connected server.

Return Values

Returns 0.

hw_setlinkroot

hw_setlinkroot -- Set the id to which links are calculated

Description

int hw_setlinkroot (int $link, int $rootid)

Warning

This function is currently not documented; only its argument list is available.

hw_stat

hw_stat -- Returns status string

Description

string hw_stat (int $link)

Warning

This function is currently not documented; only its argument list is available.

hw_Unlock

hw_Unlock -- Unlock object

Description

bool hw_unlock (int $connection, int $objectID)

Unlocks a document, so other users regain access.

Parameters

connection

The connection identifier.

objectID

The document object identifier.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_getandlock()

hw_Who

hw_Who -- List of currently logged in users

Description

array hw_who (int $connection)

Gets the list of currently logged in users.

Parameters

connection

The connection identifier.

Return Values

Returns an array of users currently logged into the Hyperwave server. Each entry in this
array is an array itself containing the elements id, name, system, onSinceDate,
onSinceTime, TotalTime and self. 'self' is 1 if this entry belongs to the user who initiated
the request.

Hyperwave API

Introduction

Hyperwave has been developed at » IICM in Graz. It started with the name Hyper-G and
changed to Hyperwave when it was commercialised (in 1996).

Hyperwave is not free software. The current version, 5.5, is available at
» http://www.hyperwave.com/. A time limited version can be ordered for free (30 days).

See also the Hyperwave module.

Hyperwave is an information system similar to a database (HIS, Hyperwave Information
Server). Its focus is the storage and management of documents. A document can be any
possible piece of data that may as well be stored in file. Each document is accompanied
by its object record. The object record contains meta data for the document. The meta
data is a list of attributes which can be extended by the user. Certain attributes are always
set by the Hyperwave server, other may be modified by the user.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.2.0.

http://www.iicm.edu/
http://www.hyperwave.com/
http://www.hyperwave.com/
http://pecl.php.net/

Installing/Configuring

Requirements

Since 2001 there is a Hyperwave SDK available. It supports Java, JavaScript and C++.
This PHP Extension is based on the C++ interface. In order to activate the hwapi support
in PHP you will have to install the Hyperwave SDK first.

Installation

After installing the Hyperwave SDK, configure PHP with --with-hwapi[=DIR].

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Hyperwave API configuration options

Name Default Changeable Changelog

hwapi.allow_persiste
nt

"0" PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Hyperwave API Functions

Integration with Apache

The integration with Apache and possible other servers is already described in the
Hyperwave module which has been the first extension to connect a Hyperwave Server.

Classes

The API provided by the HW_API extension is fully object oriented. It is very similar to the
C++ interface of the Hyperwave SDK. It consist of the following classes.

• HW_API

• HW_API_Object

• HW_API_Attribute

• HW_API_Error

• HW_API_Content

• HW_API_Reason

Some basic classes like HW_API_String, HW_API_String_Array, etc., which exist in the
Hyperwave SDK have not been implemented since PHP has powerful replacements for
them.

Each class has certain method, whose names are identical to its counterparts in the
Hyperwave SDK. Passing arguments to this function differs from all the other PHP
extensions but is close to the C++ API of the HW SDK. Instead of passing several
parameters they are all put into an associated array and passed as one parameter. The
names of the keys are identical to those documented in the HW SDK. The common
parameters are listed below. If other parameters are required they will be documented if
needed.

• objectIdentifier The name or id of an object, e.g. "rootcollection", "0x873A8768
0x00000002".

• parentIdentifier The name or id of an object which is considered to be a parent.

• object An instance of class HW_API_Object.

• parameters An instance of class HW_API_Object.

• version The version of an object.

• mode An integer value determine the way an operation is executed.

• attributeSelector Any array of strings, each containing a name of an attribute. This is
used if you retrieve the object record and want to include certain attributes.

• objectQuery A query to select certain object out of a list of objects. This is used to
reduce the number of objects which was delivered by a function like hw_api->children()
or hw_api->find().

Note

Methods returning boolean can return TRUE, FALSE or HW_API_Error object.

hw_api_attribute->key

hw_api_attribute->key -- Returns key of the attribute

Description

hw_api_attribute

string key (void)

Returns the name of the attribute.

Return Values

Returns the name of the attribute as a string.

See Also

• hw_api_attribute->value

hw_api_attribute->langdepvalue

hw_api_attribute->langdepvalue -- Returns value for a given language

Description

hw_api_attribute

string langdepvalue (string $language)

Returns the value in the given language of the attribute.

Parameters

language

Return Values

Returns the value of the attribute as a string.

See Also

• hw_api_attribute->value

hw_api_attribute->value

hw_api_attribute->value -- Returns value of the attribute

Description

hw_api_attribute

string value (void)

Gets the value of the attribute.

Return Values

Returns the value, as a string.

See Also

• hw_api_attribute->key
• hw_api_attribute->values

hw_api_attribute->values

hw_api_attribute->values -- Returns all values of the attribute

Description

hw_api_attribute

array values (void)

Gets all values of the attribute.

Return Values

Returns an array of attribute values.

See Also

• hw_api_attribute->value

hw_api_attribute

hw_api_attribute -- Creates instance of class hw_api_attribute

Description

HW_API_Attribute hw_api_attribute ([string $name [, string $value]])

Creates a new instance of hw_api_attribute with the given name and value.

Parameters

name

The attribute name.

value

The attribute value.

Return Values

Returns an instance of hw_api_attribute.

hw_api->checkin

hw_api->checkin -- Checks in an object

Description

hw_api

bool checkin (array $parameter)

This function checks in an object or a whole hierarchy of objects. The parameters array
contains the required element 'objectIdentifier' and the optional element 'version',
'comment', 'mode' and 'objectQuery'. 'version' sets the version of the object. It consists of
the major and minor version separated by a period. If the version is not set, the minor
version is incremented. 'mode' can be one of the following values:
HW_API_CHECKIN_NORMAL

Checks in and commits the object. The object must be a document.

HW_API_CHECKIN_RECURSIVE
If the object to check in is a collection, all children will be checked in recursively if they
are documents. Trying to check in a collection would result in an error.

HW_API_CHECKIN_FORCE_VERSION_CONTROL
Checks in an object even if it is not under version control.

HW_API_CHECKIN_REVERT_IF_NOT_CHANGED
Check if the new version is different from the last version. Unless this is the case the
object will be checked in.

HW_API_CHECKIN_KEEP_TIME_MODIFIED
Keeps the time modified from the most recent object.

HW_API_CHECKIN_NO_AUTO_COMMIT
The object is not automatically committed on check-in.

Parameters

parameter

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api->checkout

hw_api->checkout

hw_api->checkout -- Checks out an object

Description

hw_api

bool checkout (array $parameter)

This function checks out an object or a whole hierarchy of objects.

Parameters

parameter

The parameters array contains the required element 'objectIdentifier' and the optional
element 'version', 'mode' and 'objectQuery'. 'mode' can be one of the following values:
HW_API_CHECKIN_NORMAL

Checks out an object. The object must be a document.

HW_API_CHECKIN_RECURSIVE
If the object to check out is a collection, all children will be checked out recursively
if they are documents. Trying to check out a collection would result in an error.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api->checkin

hw_api->children

hw_api->children -- Returns children of an object

Description

hw_api

array children (array $parameter)

Retrieves the children of a collection or the attributes of a document. The children can be
further filtered by specifying an object query.

Parameters

parameter

The parameter array contains the required elements 'objectIdentifier' and the optional
elements 'attributeSelector' and 'objectQuery'.

Return Values

The return value is an array of objects of type HW_API_Object or HW_API_Error.

See Also

• hw_api->parents

hw_api_content->mimetype

hw_api_content->mimetype -- Returns mimetype

Description

hw_api_content

string mimetype (void)

Returns the mimetype of the content.

Return Values

Returns the mimetype as a string.

hw_api_content->read

hw_api_content->read -- Read content

Description

hw_api_content

string read (string $buffer, int $len)

Reads len bytes from the content into the given buffer.

Parameters

buffer

len

Number of bytes to read.

Return Values

hw_api->content

hw_api->content -- Returns content of an object

Description

hw_api

HW_API_Content content (array $parameter)

This function returns the content of a document as an object of type hw_api_content.

Parameters

parameter

The parameter array contains the required elements 'objectidentifier' and the optional
element 'mode'. The mode can be one of the constants
HW_API_CONTENT_ALLLINKS, HW_API_CONTENT_REACHABLELINKS or
HW_API_CONTENT_PLAIN. HW_API_CONTENT_ALLLINKS means to insert all
anchors even if the destination is not reachable.
HW_API_CONTENT_REACHABLELINKS tells this method to insert only reachable
links and HW_API_CONTENT_PLAIN will lead to document without any links.

Return Values

Returns an instance of hw_api_content.

hw_api->copy

hw_api->copy -- Copies physically

Description

hw_api

hw_api_content copy (array $parameter)

This function will make a physical copy including the content if it exists and returns the new
object or an error object.

Parameters

parameter

The parameter array contains the required elements 'objectIdentifier' and
'destinationParentIdentifier'. The optional parameter is 'attributeSelector'`

Return Values

Returns the copied object.

See Also

• hw_api->move
• hw_api->link

hw_api->dbstat

hw_api->dbstat -- Returns statistics about database server

Description

hw_api

hw_api_object dbstat (array $parameter)

Returns statistics about database server.

Parameters

parameter

Return Values

See Also

• hw_api->dcstat
• hw_api->hwstat
• hw_api->ftstat

hw_api->dcstat

hw_api->dcstat -- Returns statistics about document cache server

Description

hw_api

hw_api_object dcstat (array $parameter)

Returns statistics about document cache server.

Parameters

parameter

Return Values

See Also

• hw_api->dbstat
• hw_api->hwstat
• hw_api->ftstat

hw_api->dstanchors

hw_api->dstanchors -- Returns a list of all destination anchors

Description

hw_api

array dstanchors (array $parameter)

Retrieves all destination anchors of an object.

Parameters

parameter

The parameter array contains the required element 'objectIdentifier' and the optional
elements 'attributeSelector' and 'objectQuery'.

Return Values

See Also

• hw_api->srcanchors

hw_api->dstofsrcanchor

hw_api->dstofsrcanchor -- Returns destination of a source anchor

Description

hw_api

hw_api_object dstofsrcanchor (array $parameter)

Retrieves the destination object pointed by the specified source anchors. The destination
object can either be a destination anchor or a whole document.

Parameters

parameter

The parameters array contains the required element 'objectIdentifier' and the optional
element 'attributeSelector'.

Return Values

See Also

• hw_api->srcanchors
• hw_api->dstanchors
• hw_api->objectbyanchor

hw_api_error->count

hw_api_error->count -- Returns number of reasons

Description

hw_api_error

int count (void)

Returns the number of error reasons.

Return Values

Returns the number of errors, as an integer.

See Also

• hw_api_error->reason

hw_api_error->reason

hw_api_error->reason -- Returns reason of error

Description

hw_api_error

HW_API_Reason reason (void)

Returns the first error reason.

Return Values

See Also

• hw_api_error->count

hw_api->find

hw_api->find -- Search for objects

Description

hw_api

array find (array $parameter)

This functions searches for objects either by executing a key or/and full text query. The
found objects can further be filtered by an optional object query. They are sorted by their
importance. The second search operation is relatively slow and its result can be limited to
a certain number of hits. This allows to perform an incremental search, each returning just
a subset of all found documents, starting at a given index.

Parameters

parameter

The parameter array contains the 'keyquery' or/and 'fulltextquery' depending on who
you would like to search. Optional parameters are 'objectquery', 'scope', 'languages'
and 'attributeselector'. In case of an incremental search the optional parameters
'startIndex', 'numberOfObjectsToGet' and 'exactMatchUnit' can be passed.

Return Values

hw_api->ftstat

hw_api->ftstat -- Returns statistics about fulltext server

Description

hw_api

hw_api_object ftstat (array $parameter)

Returns statistics about fulltext server.

Parameters

parameter

Return Values

See Also

• hw_api->dcstat
• hw_api->dbstat
• hw_api->hwstat

hwapi_hgcsp

hwapi_hgcsp -- Returns object of class hw_api

Description

HW_API hwapi_hgcsp (string $hostname [, int $port])

Opens a connection to the Hyperwave server on host hostname. The protocol used is
HGCSP.

Parameters

hostname

The host name.

port

If you do not pass a port number, 418 is used.

Return Values

Returns an instance of HW_API.

hw_api->hwstat

hw_api->hwstat -- Returns statistics about Hyperwave server

Description

hw_api

hw_api_object hwstat (array $parameter)

Returns statistics about Hyperwave server.

Parameters

parameter

Return Values

See Also

• hw_api->dcstat
• hw_api->dbstat
• hw_api->ftstat

hw_api->identify

hw_api->identify -- Log into Hyperwave Server

Description

hw_api

bool identify (array $parameter)

Logs into the Hyperwave Server.

Parameters

parameter

The parameter array must contain the elements 'username' and 'password'.

Return Values

Returns an object of type HW_API_Error if identification failed or TRUE if it was
successful.

hw_api->info

hw_api->info -- Returns information about server configuration

Description

hw_api

array info (array $parameter)

Returns information about server configuration.

Parameters

parameter

Return Values

See Also

• hw_api->dcstat
• hw_api->dbstat
• hw_api->ftstat
• hw_api->hwstat

hw_api->insert

hw_api->insert -- Inserts a new object

Description

hw_api

hw_api_object insert (array $parameter)

Insert a new object. The object type can be user, group, document or anchor. Depending
on the type other object attributes has to be set.

Parameters

parameter

The parameter array contains the required elements 'object' and 'content' (if the object
is a document) and the optional parameters 'parameters', 'mode' and
'attributeSelector'. The 'object' must contain all attributes of the object. 'parameters' is
an object as well holding further attributes like the destination (attribute key is 'Parent').
'content' is the content of the document. 'mode' can be a combination of the following
flags:
HW_API_INSERT_NORMAL

The object in inserted into the server.

HW_API_INSERT_FORCE_VERSION_CONTROL

HW_API_INSERT_AUTOMATIC_CHECKOUT

HW_API_INSERT_PLAIN

HW_API_INSERT_KEEP_TIME_MODIFIED

HW_API_INSERT_DELAY_INDEXING

Return Values

See Also

• hw_api->replace

hw_api->insertanchor

hw_api->insertanchor -- Inserts a new object of type anchor

Description

hw_api

hw_api_object insertanchor (array $parameter)

This function is a shortcut for hwapi_insert(). It inserts an object of type anchor and sets
some of the attributes required for an anchor.

Parameters

parameter

The parameter array contains the required elements 'object' and 'documentIdentifier'
and the optional elements 'destinationIdentifier', 'parameter', 'hint' and
'attributeSelector'. The 'documentIdentifier' specifies the document where the anchor
shall be inserted. The target of the anchor is set in 'destinationIdentifier' if it already
exists. If the target does not exists the element 'hint' has to be set to the name of
object which is supposed to be inserted later. Once it is inserted the anchor target is
resolved automatically.

Return Values

See Also

• hw_api->insert
• hw_api->insertdocument
• hw_api->insertcollection

hw_api->insertcollection

hw_api->insertcollection -- Inserts a new object of type collection

Description

hw_api

hw_api_object insertcollection (array $parameter)

This function is a shortcut for hwapi_insert(). It inserts an object of type collection and
sets some of the attributes required for a collection.

Parameters

parameter

The parameter array contains the required elements 'object' and 'parentIdentifier' and
the optional elements 'parameter' and 'attributeSelector'. See hwapi_insert() for the
meaning of each element.

Return Values

See Also

• hw_api->insert
• hw_api->insertdocument
• hw_api->insertanchor

hw_api->insertdocument

hw_api->insertdocument -- Inserts a new object of type document

Description

hw_api

hw_api_object insertdocument (array $parameter)

This function is a shortcut for hwapi_insert(). It inserts an object with content and sets
some of the attributes required for a document.

Parameters

parameter

The parameter array contains the required elements 'object', 'parentIdentifier' and
'content' and the optional elements 'mode', 'parameter' and 'attributeSelector'. See
hwapi_insert() for the meaning of each element.

Return Values

See Also

• hw_api->insert
• hw_api->insertcollection
• hw_api->insertanchor

hw_api->link

hw_api->link -- Creates a link to an object

Description

hw_api

bool link (array $parameter)

Creates a link to an object. Accessing this link is like accessing the object to links points to.

Parameters

parameter

The parameter array contains the required elements 'objectIdentifier' and
'destinationParentIdentifier'. 'destinationParentIdentifier' is the target collection.

Return Values

The function returns TRUE on success or an error object.

See Also

• hw_api->copy

hw_api->lock

hw_api->lock -- Locks an object

Description

hw_api

bool lock (array $parameter)

Locks an object for exclusive editing by the user calling this function. The object can be
only unlocked by this user or the system user.

Parameters

parameter

The parameter array contains the required element 'objectIdentifier' and the optional
parameters 'mode' and 'objectquery'. 'mode' determines how an object is locked.
HW_API_LOCK_NORMAL means, an object is locked until it is unlocked.
HW_API_LOCK_RECURSIVE is only valid for collection and locks all objects within
the collection and possible subcollections. HW_API_LOCK_SESSION means, an
object is locked only as long as the session is valid.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api->unlock

hw_api->move

hw_api->move -- Moves object between collections

Description

hw_api

bool move (array $parameter)

Moves object between collections.

Parameters

parameter

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_objrec2array()

hw_api_content

hw_api_content -- Create new instance of class hw_api_content

Description

HW_API_Content hw_api_content (string $content, string $mimetype)

Creates a new content object from the string content.

Parameters

content

mimetype

The mimetype for the contents.

Return Values

hw_api_object->assign

hw_api_object->assign -- Clones object

Description

hw_api_object

bool assign (array $parameter)

Clones the attributes of an object.

Parameters

parameter

Return Values

Returns TRUE on success or FALSE on failure.

hw_api_object->attreditable

hw_api_object->attreditable -- Checks whether an attribute is editable

Description

hw_api_object

bool attreditable (array $parameter)

Checks whether an attribute is editable.

Parameters

parameter

Return Values

Returns TRUE if the attribute is editable, FALSE otherwise.

hw_api_object->count

hw_api_object->count -- Returns number of attributes

Description

hw_api_object

int count (array $parameter)

Returns the number of attributes.

Parameters

parameter

Return Values

Returns the number as an integer.

hw_api_object->insert

hw_api_object->insert -- Inserts new attribute

Description

hw_api_object

bool insert (HW_API_Attribute $attribute)

Adds an attribute to the object.

Parameters

attribute

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api_object->remove

hw_api_object

hw_api_object -- Creates a new instance of class hw_api_object

Description

hw_api_object hw_api_object (array $parameter)

Creates a new instance of the class hw_api_object.

Parameters

parameter

Return Values

See Also

• hw_api->lock

hw_api_object->remove

hw_api_object->remove -- Removes attribute

Description

hw_api_object

bool remove (string $name)

Removes the attribute with the given name.

Parameters

name

The attribute name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api_object->insert

hw_api_object->title

hw_api_object->title -- Returns the title attribute

Description

hw_api_object

string title (array $parameter)

Returns the title attribute.

Parameters

parameter

Return Values

Returns the title as a string.

hw_api_object->value

hw_api_object->value -- Returns value of attribute

Description

hw_api_object

string value (string $name)

Returns value of an attribute.

Parameters

name

The attribute name.

Return Values

Returns the value of the attribute with the given name or FALSE if an error occurred.

hw_api->object

hw_api->object -- Retrieve attribute information

Description

hw_api

hw_api_object object (array $parameter)

This function retrieves the attribute information of an object of any version. It will not return
the document content.

Parameters

parameter

The parameter array contains the required elements 'objectIdentifier' and the optional
elements 'attributeSelector' and 'version'.

Return Values

The returned object is an instance of class HW_API_Object on success or HW_API_Error
if an error occurred.

Examples

This simple example retrieves an object and checks for errors.

Example #2198 - Retrieve an object

<?php

function handle_error($error)

{

 $reason = $error->reason(0);

 echo "Type: ";

 switch ($reason->type()) {

 case 0:

 echo "Error";

 break;

 case 1:

 echo "Warning";

 break;

 case 2:

 echo "Message";

 break;

 }

 echo "
\n";

 echo "Description: " . $reason->description("en") . "
\n";

}

function list_attr($obj)

{

 echo "<table>\n";

 $count = $obj->count();

 for ($i=0; $i<$count; $i++) {

 $attr = $obj->attribute($i);

 printf("<tr><td align=\"right\" bgcolor=\"#c0c0c0\">%s</td><td
bgcolor=\"#F0F0F0\">%s</td></tr>\n",

 $attr->key(), $attr->value());

 }

 echo "</table>\n";

}

$hwapi = hwapi_hgcsp($g_config[HOSTNAME]);

$parms = array("objectIdentifier"=>"rootcollection",
"attributeSelector"=>array("Title", "Name", "DocumentType"));

$root = $hwapi->object($parms);

if (get_class($root) == "HW_API_Error") {

 handle_error($root);

 exit;

}

list_attr($root);

?>

See Also

• hw_api->content

hw_api->objectbyanchor

hw_api->objectbyanchor -- Returns the object an anchor belongs to

Description

hw_api

hw_api_object objectbyanchor (array $parameter)

This function retrieves an object the specified anchor belongs to.

Parameters

parameter

The parameter array contains the required element 'objectIdentifier' and the optional
element 'attributeSelector'.

Return Values

See Also

• hw_api->dstofsrcanchor
• hw_api->srcanchors
• hw_api->dstanchors

hw_api->parents

hw_api->parents -- Returns parents of an object

Description

hw_api

array parents (array $parameter)

Retrieves the parents of an object. The parents can be further filtered by specifying an
object query.

Parameters

parameter

The parameter array contains the required elements 'objectidentifier' and the optional
elements 'attributeselector' and 'objectquery'.

Return Values

The return value is an array of objects of type HW_API_Object or HW_API_Error.

See Also

• hw_api->children

hw_api_reason->description

hw_api_reason->description -- Returns description of reason

Description

hw_api_reason

string description (void)

Returns the description of a reason

Return Values

Returns the description, as a string.

hw_api_reason->type

hw_api_reason->type -- Returns type of reason

Description

hw_api_reason

HW_API_Reason type (void)

Returns the type of a reason.

Return Values

Returns an instance of HW_API_Reason.

hw_api->remove

hw_api->remove -- Delete an object

Description

hw_api

bool remove (array $parameter)

Removes an object from the specified parent. Collections will be removed recursively.

Parameters

parameter

You can pass an optional object query to remove only those objects which match the
query. An object will be deleted physically if it is the last instance. The parameter array
contains the required elements 'objectidentifier' and 'parentidentifier'. If you want to
remove a user or group 'parentidentifier' can be skipped. The optional parameter
'mode' determines how the deletion is performed. In normal mode the object will not be
removed physically until all instances are removed. In physical mode all instances of
the object will be deleted immediately. In removelinks mode all references to and from
the objects will be deleted as well. In nonrecursive the deletion is not performed
recursive. Removing a collection which is not empty will cause an error.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• hw_api->move

hw_api->replace

hw_api->replace -- Replaces an object

Description

hw_api

hw_api_object replace (array $parameter)

Replaces the attributes and the content of an object.

Parameters

parameter

The parameter array contains the required elements 'objectIdentifier' and 'object' and
the optional parameters 'content', 'parameters', 'mode' and 'attributeSelector'.
'objectIdentifier' contains the object to be replaced. 'object' contains the new object.
'content' contains the new content. 'parameters' contain extra information for HTML
documents. HTML_Language is the letter abbreviation of the language of the title.
HTML_Base sets the base attribute of the HTML document. 'mode' can be a
combination of the following flags:
HW_API_REPLACE_NORMAL

The object on the server is replace with the object passed.

HW_API_REPLACE_FORCE_VERSION_CONTROL

HW_API_REPLACE_AUTOMATIC_CHECKOUT

HW_API_REPLACE_AUTOMATIC_CHECKIN

HW_API_REPLACE_PLAIN

HW_API_REPLACE_REVERT_IF_NOT_CHANGED

HW_API_REPLACE_KEEP_TIME_MODIFIED

Return Values

See Also

• hw_api->insert

hw_api->setcommittedversion

hw_api->setcommittedversion -- Commits version other than last version

Description

hw_api

hw_api_object setcommittedversion (array $parameter)

Commits a version of a document. The committed version is the one which is visible to
users with read access. By default the last version is the committed version.

Parameters

parameter

Return Values

See Also

• hw_api->checkin
• hw_api->checkout

hw_api->srcanchors

hw_api->srcanchors -- Returns a list of all source anchors

Description

hw_api

array srcanchors (array $parameter)

Retrieves all source anchors of an object.

Parameters

parameter

The parameter array contains the required element 'objectIdentifier' and the optional
elements 'attributeSelector' and 'objectQuery'.

Return Values

See Also

• hw_api->dstanchors

hw_api->srcsofdst

hw_api->srcsofdst -- Returns source of a destination object

Description

hw_api

array srcsofdst (array $parameter)

Retrieves all the source anchors pointing to the specified destination. The destination
object can either be a destination anchor or a whole document.

Parameters

parameter

The parameters array contains the required element 'objectIdentifier' and the optional
element 'attributeSelector' and 'objectQuery'. The function returns an array of objects
or an error.

Return Values

See Also

• hw_api->dstofsrcanchor

hw_api->unlock

hw_api->unlock -- Unlocks a locked object

Description

hw_api

bool unlock (array $parameter)

Unlocks a locked object. Only the user who has locked the object and the system user
may unlock an object.

Parameters

parameter

The parameter array contains the required element 'objectIdentifier' and the optional
parameters 'mode' and 'objectquery'. The meaning of 'mode' is the same as in function
hwapi_lock().

Return Values

Returns TRUE on success or an object of class HW_API_Error.

See Also

• hw_api->lock

hw_api->user

hw_api->user -- Returns the own user object

Description

hw_api

hw_api_object user (array $parameter)

Returns the own user object.

Parameters

parameter

Return Values

See Also

• hw_api->userlist

hw_api->userlist

hw_api->userlist -- Returns a list of all logged in users

Description

hw_api

array userlist (array $parameter)

Returns a list of all logged in users.

Parameters

parameter

Return Values

See Also

• hw_api->user

HTTP

Introduction

This HTTP extension aims to provide a convenient and powerful set of functionality for one
of PHPs major applications.

It eases handling of HTTP URLs, dates, redirects, headers and messages, provides
means for negotiation of clients preferred language and charset, as well as a convenient
way to send any arbitrary data with caching and resuming capabilities.

It provides powerful request functionality, if built with CURL support. Parallel requests are
available for PHP 5 and greater.

Additionally to the API reference in this manual you can find information about how to
install and configure as well as which global constants are predefined in the following
sections:

Installing/Configuring

Requirements

The HttpResponse class requires at least PHP v5.1. Any other class is available as of
PHP v5.0.

Note

Be aware though, that some methods are not available with PHP v5.0.

Installation requirements on Windows

In order to be able to load this extension on Windows, you additionally need to load the
following PHP extensions: hash, iconv and SPL.

Installation requirements on other platforms

The extension must be built with » libcurl support to enable request functionality (
--with-http-curl-requests). A library version equal or greater to v7.12.3 is required.

To enable support for sending and receiving compressed responses, the extension must
be built with » zlib support (--with-http-zlib-compression). A library version equal or
greater than v1.2.2 is required.

Content type quessing can be enabled by building this extension with » libmagic support (
--with-http-magic-mime).

Installation/Configuration

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/pecl_http.

http://curl.haxx.se/libcurl/
http://www.zlib.net/
http://sf.net/projects/libmagic
http://pecl.php.net/
http://pecl.php.net/package/pecl_http
http://pecl.php.net/package/pecl_http

Note

The official name of this extension is pecl_http.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

HTTP Configuration Options

Name Default Changeable Description

http.etag.mode "MD5" PHP_INI_ALL The hashing
algorithm used to
generate the ETag.
MD5, SHA1, and
CRC32 are always
available. If the hash
xtension is enabled,
any hashing
algorithms this
extension provides
are available, too.

http.log.cache "" PHP_INI_ALL The path (or stream
wrapper url) to a log
file in which to write
successful cache
hits.

http.log.redirect "" PHP_INI_ALL The path (or stream
wrapper url) to a log
file in which to write
redirects.

http.log.not_found "" PHP_INI_ALL The path (or stream
wrapper url) to a log
file in which to write
"file not found" errors.

http.log.allowed_met
hods

"" PHP_INI_ALL The path (or stream
wrapper url) to a log
file in which to write

http://www.php.net/downloads.php
http://pecl4win.php.net/

"allowed methods"
violations.

http.log.composite "" PHP_INI_ALL The path (or stream
wrapper url) to a log
file in which to write
all events.

http.request.methods.
allowed

"" PHP_INI_ALL Allowed request
methods. If a client
issues a request with
a request method
other than listed here,
PHP exits with a
status of "405 Method
not allowed". See the
INI setting
http.force_exit for
what "exits" means.

http.request.methods.
custom

"" PHP_INI_PERDIR|P
HP_INI_SYSTEM

Custom request
methods. If you want
to use any
non-standard request
methods, you can
register them with
this INI setting or http
_request_method_re
gister().

http.request.datashar
e.cookie

"0" PHP_INI_SYSTEM Whether the global
HttpRequestDataSha
re should by default
share cookie
information.

http.request.datashar
e.dns

"1" PHP_INI_SYSTEM Whether the global
HttpRequestDataSha
re should by default
share name lookup
information.

http.request.datashar
e.ssl

"0" PHP_INI_SYSTEM Whether the global
HttpRequestDataSha
re should by default
share SSL session
information. This is
not yet implemented
in libcurl.

http.request.datashar
e.connect

"0" PHP_INI_SYSTEM Whether the global
HttpRequestDataSha

re should by default
share connect
information. This is
not yet implemented
in libcurl.

http.persistent.handle
s.limit

"-1" PHP_INI_SYSTEM The maximum
amount of persistent
handles to keep alive.

http.persistent.handle
s.ident

"GLOBAL" PHP_INI_ALL The ident of
persistent handles.

http.send.inflate.start
_auto

"0" PHP_INI_PERDIR|P
HP_INI_SYSTEM

Whether to
automatically start
the inflate output
handler.

http.send.inflate.start
_flags

"0" PHP_INI_ALL Initialization settings
for the inflate output
handler.

http.send.deflate.start
_auto

"0" PHP_INI_PERDIR|P
HP_INI_SYSTEM

Whether to
automatically start
the deflate output
handler.

http.send.deflate.start
_flags

"0" PHP_INI_ALL Initialization settings
for the deflate output
handler. See deflate
constants.

http.send.not_found_
404

"1" PHP_INI_ALL Whether to
automatically exit
with a status of "404
Not found", if
http_send_file() was
not able to find the
specified file. See the
INI setting
http.force_exit for
what "exits" means.

http.only_exceptions "0" PHP_INI_ALL Whether all
notices/warnings/erro
rs should be thrown
as exceptions.

http.force_exit "1" PHP_INI_ALL Each occasion where
"exits with a status
of..." is mentioned,
usually causes the

halt of the scripting
engine. Disable this
option if you
alternatively want to
start a discarding
(dev/null) output
handler and continue
script execution.

Resource Types

This extension defines a stream resource returned by http_get_request_body_stream()
and (thereafter) HttpResponse::getStream().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.
Constants usable with http_support()
HTTP_SUPPORT (integer)

querying for this constant will always return TRUE

HTTP_SUPPORT_REQUESTS (integer)
whether support to issue HTTP requests is given, ie. libcurl support was compiled in

HTTP_SUPPORT_MAGICMIME (integer)
whether support to guess the Content-Type of HTTP messages is given, ie. libmagic
support was compiled in

HTTP_SUPPORT_ENCODINGS (integer)
whether support for zlib encodings is given, ie. libz support was compiled in

HTTP_SUPPORT_SSLREQUESTS (integer)
whether support to issue HTTP requests over SSL is givem, ie. linked libcurl was built
with SSL support

Constants usable with http_parse_params()
HTTP_PARAMS_ALLOW_COMMA (integer)

allow commans additionally to semicolons as separator

HTTP_PARAMS_ALLOW_FAILURE (integer)
continue parsing after an error occurred

HTTP_PARAMS_RAISE_ERROR (integer)
raise PHP warnings on parse errors

HTTP_PARAMS_DEFAULT (integer)
all three values above, bitwise or'ed

Constants usable with http_parse_cookie() and its return value
HTTP_COOKIE_PARSE_RAW (integer)

don't urldecode values

HTTP_COOKIE_SECURE (integer)
whether "secure" was found in the cookie's parameters list

HTTP_COOKIE_HTTPONLY (integer)
whether "httpOnly" was found in the cookie's parameter list

Constants usable with http_deflate() and HttpDeflateStream
HTTP_DEFLATE_LEVEL_DEF (integer)

HTTP_DEFLATE_LEVEL_MIN (integer)

HTTP_DEFLATE_LEVEL_MAX (integer)

HTTP_DEFLATE_TYPE_ZLIB (integer)

HTTP_DEFLATE_TYPE_GZIP (integer)

HTTP_DEFLATE_TYPE_RAW (integer)

HTTP_DEFLATE_STRATEGY_DEF (integer)

HTTP_DEFLATE_STRATEGY_FILT (integer)

HTTP_DEFLATE_STRATEGY_HUFF (integer)

HTTP_DEFLATE_STRATEGY_RLE (integer)

HTTP_DEFLATE_STRATEGY_FIXED (integer)

Constants usable with HttpDeflateStream and HttpInflateStream
HTTP_ENCODING_STREAM_FLUSH_NONE (integer)

don't flush

HTTP_ENCODING_STREAM_FLUSH_SYNC (integer)
synchronized flush only

HTTP_ENCODING_STREAM_FLUSH_FULL (integer)
full data flush

Constants used for error reporting and Exceptions
HTTP_E_RUNTIME (integer)

runtime error

HTTP_E_INVALID_PARAM (integer)
an invalid parameter was passed

HTTP_E_HEADER (integer)
header() or similar operation failed

HTTP_E_MALFORMED_HEADERS (integer)
HTTP header parse error

HTTP_E_REQUEST_METHOD (integer)
unknown/invalid request method

HTTP_E_MESSAGE_TYPE (integer)
with operation incompatible message type

HTTP_E_ENCODING (integer)

encoding/decoding error

HTTP_E_REQUEST (integer)
request failure

HTTP_E_REQUEST_POOL (integer)
request pool failure

HTTP_E_SOCKET (integer)
socket exception

HTTP_E_RESPONSE (integer)
response failure

HTTP_E_URL (integer)
invalid URL

HTTP_E_QUERYSTRING (integer)
querystring operation failure

Constants usable with HttpMessage
HTTP_MSG_NONE (integer)

the message is of no specific type

HTTP_MSG_REQUEST (integer)
request style message

HTTP_MSG_RESPONSE (integer)
response style message

Constants usable with HttpQueryString
HTTP_QUERYSTRING_TYPE_BOOL (integer)

HTTP_QUERYSTRING_TYPE_INT (integer)

HTTP_QUERYSTRING_TYPE_FLOAT (integer)

HTTP_QUERYSTRING_TYPE_STRING (integer)

HTTP_QUERYSTRING_TYPE_ARRAY (integer)

HTTP_QUERYSTRING_TYPE_OBJECT (integer)

Constants used for the httpauthtype request option
HTTP_AUTH_BASIC (integer)

use "basic" authentication

HTTP_AUTH_DIGEST (integer)
use "digest" authentication

HTTP_AUTH_NTLM (integer)
use "NTLM" authentication

HTTP_AUTH_GSSNEG (integer)
use "GSS-NEGOTIATE" authentication

HTTP_AUTH_ANY (integer)
try any authentication scheme

Constants used for the HTTP protocol version request option
HTTP_VERSION_ANY (integer)

no specific HTTP protocol version

HTTP_VERSION_1_0 (integer)
HTTP version 1.0

HTTP_VERSION_1_1 (integer)
HTTP version 1.1

Constants used for the SSL protocol type and version request option
HTTP_SSL_VERSION_ANY (integer)

no specific SSL protocol version

HTTP_SSL_VERSION_TLSv1 (integer)
use TLSv1 only

HTTP_SSL_VERSION_SSLv3 (integer)
use SSLv3 only

HTTP_SSL_VERSION_SSLv2 (integer)
use SSLv2 only

Constants used for the proxytype request option
HTTP_PROXY_SOCKS4 (integer)

the proxy is a SOCKS4 type proxy

HTTP_PROXY_SOCKS5 (integer)
the proxy is a SOCKS5 type proxy

HTTP_PROXY_HTTP (integer)
standard HTTP proxy

Constants used for the ipresolve request option
HTTP_IPRESOLVE_V4 (integer)

use IPv4 only for name lookups

HTTP_IPRESOLVE_V6 (integer)
use IPv6 only for name lookups

HTTP_IPRESOLVE_ANY (integer)
use any IP mechanism only for name lookups

Predefined HTTP request method constants
HTTP_METH_GET (integer)

HTTP_METH_HEAD (integer)

HTTP_METH_POST (integer)

HTTP_METH_PUT (integer)

HTTP_METH_DELETE (integer)

HTTP_METH_OPTIONS (integer)

HTTP_METH_TRACE (integer)

HTTP_METH_CONNECT (integer)

HTTP_METH_PROPFIND (integer)

HTTP_METH_PROPPATCH (integer)

HTTP_METH_MKCOL (integer)

HTTP_METH_COPY (integer)

HTTP_METH_MOVE (integer)

HTTP_METH_LOCK (integer)

HTTP_METH_UNLOCK (integer)

HTTP_METH_VERSION_CONTROL (integer)

HTTP_METH_REPORT (integer)

HTTP_METH_CHECKOUT (integer)

HTTP_METH_CHECKIN (integer)

HTTP_METH_UNCHECKOUT (integer)

HTTP_METH_MKWORKSPACE (integer)

HTTP_METH_UPDATE (integer)

HTTP_METH_LABEL (integer)

HTTP_METH_MERGE (integer)

HTTP_METH_BASELINE_CONTROL (integer)

HTTP_METH_MKACTIVITY (integer)

HTTP_METH_ACL (integer)

Constants usable with http_redirect()
HTTP_REDIRECT (integer)

guess applicable redirect method

HTTP_REDIRECT_PERM (integer)
permanent redirect (301 Moved permanently)

HTTP_REDIRECT_FOUND (integer)
standard redirect (302 Found)

Note

RFC 1945 and RFC 2068 specify that the client is not allowed to change the
method on the redirected request. However, most existing user agent
implementations treat 302 as if it were a 303 response, performing a GET on the
Location field-value regardless of the original request method. The status codes
303 and 307 have been added for servers that wish to make unambiguously clear
which kind of reaction is expected of the client.

HTTP_REDIRECT_POST (integer)
redirect applicable to POST requests (303 See other)

HTTP_REDIRECT_PROXY (integer)
proxy redirect (305 Use proxy)

HTTP_REDIRECT_TEMP (integer)
temporary redirect (307 Temporary Redirect)

Constants usable with http_build_url()
HTTP_URL_REPLACE (integer)

replace every part of the first URL when there's one of the second URL

HTTP_URL_JOIN_PATH (integer)
join relative paths

HTTP_URL_JOIN_QUERY (integer)
join query strings

HTTP_URL_STRIP_USER (integer)
strip any user authentication information

HTTP_URL_STRIP_PASS (integer)
strip any password authentication information

HTTP_URL_STRIP_AUTH (integer)
strip any authentication information

HTTP_URL_STRIP_PORT (integer)
strip explicit port numbers

HTTP_URL_STRIP_PATH (integer)
strip complete path

HTTP_URL_STRIP_QUERY (integer)
strip query string

HTTP_URL_STRIP_FRAGMENT (integer)
strip any fragments (#identifier)

HTTP_URL_STRIP_ALL (integer)
strip anything but scheme and host

Options usable with the HttpRequest class and
request functions
Options related to time outs
timeout (integer)

seconds the whole request may take to complete

connecttimeout (integer)
seconds the connect, including name resolving, may take

dns_cache_timeout (integer)
seconds after an dns cache entry times out

Options related to urls
url (string)

the request url

port (integer)
use another port as specified in the url

redirect (integer)
whether and how many redirects to follow; defaults to 0

unrestrictedauth (bool)
whether to continue sending credentials on redirects to a different host

referer (string)
the refererring url to send

Options related to cookies
encodecookies (bool)

whether custom cookies should be urlencode() d prior sending

cookies (array)
list of cookies as associative array like array("cookie" => "value")

cookiestore (string)
path to a file where cookies are/will be stored

cookiesession (bool)
don't load session cookies from cookiestore if TRUE

Options related to headers
useragent (string)

the user agent to send; defaults to PECL::HTTP/x.y.z (PHP/x.y.z); omitted if explicitly
set to an empty string

lastmodified (int)
timestamp for If-(Un)Modified-Since header

etag (string)
quoted etag for If-(None-)Match header

headers (array)
list of custom headers as associative array like array("header" => "value")

Options related to authentication
httpauth (string)

http credentials in "user:pass" format

httpauthtype (int)
HTTP authentication type constant

(array)

Options related to proxies
proxyhost (string)

proxy host in "host[:port]" format

proxyport (int)
use another proxy port as specified in proxyhost

proxytype (int)
HTTP proxy type constant

proxyauth (string)
proxy credentials in "user:pass" format

proxyauthtype (int)
HTTP authentication type constant

Options related to the transfer
compress (bool)

whether to request and accept a gzip/deflate content encoded response

resume (int)
start the download at the specified byte offset if server support is given (indicated by a
206 response code)

range (array)
array of arrays, each containing two integer s, specifying the ranges to download if
server support is given (indicated by a 206 response code); only recognized if the
resume option is empty

Options imposing limits
maxfilesize (integer)

maximum file size that should be downloaded; has no effect, if the size of the
requested entity is unknown (eg. dynamic pages with chunked transfer encoding etc.)

low_speed_limit (int)
the lowest transfer speed a successful request may have

low_speed_time (int)
the time in which low_speed_limit must be transferred for a successful request

max_send_speed (int)
maximum send speed in bytes per second

max_recv_speed (int)
maximum receive speed in bytes per second

Callback options
onprogress (callback)

progress callback
Network options
interface (string)

outgoing network interface (ifname, ip or hostname)

portrange (array)
2 integers specifying outgoing portrange to try

SSL options
ssl (array)

Note

SSL options are set through an array with the single "ssl" request option name.

cert (string)
path to certificate

certtype (string)
type of certificate

certpasswd (string)
password for certificate

key (string)
path to key

keytype (string)
type of key

keypasswd (string)
pasword for key

engine (string)
ssl engine to use

version (int)
ssl version to use

verifypeer (bool)
whether to verify the peer

verifyhost (bool)
whether to verify the host

cipher_list (string)
list of allowed ciphers

cainfo (string)

capath (string)

random_file (string)

egdsocket (string)

The HttpDeflateStream class

Class synopsis

HttpDeflateStream

HttpDeflateStream {

public void HttpDeflateStream::__construct ([int $flags = 0])

public HttpDeflateStream HttpDeflateStream::factory ([int $flags = 0 [, string $
class_name = 'HttpDeflateStream']])

public string HttpDeflateStream::finish ([string $data])

public string HttpDeflateStream::flush ([string $data])

public string HttpDeflateStream::update (string $data)
}

Class Members

Predefined Constants

Type Name Description

int TYPE_GZIP gzip encoding

int TYPE_ZLIB zlib AKA deflate encoding

int TYPE_RAW raw deflate encoding

int LEVEL_DEF default compression level

int LEVEL_MIN minimum compression level

int LEVEL_MAX maximum compression level

int STRATEGY_DEF default strategy

int STRATEGY_FILT filtered strategy

int STRATEGY_HUFF Huffman strategy

int STRATEGY_RLE RLE strategy

int STRATEGY_FIXED fixed strategy

int FLUSH_NONE no forced flush

int FLUSH_SYNC synching flush

int FLUSH_FULL full flush

Examples

Example #2199 - A HttpDeflateStream example

<?php

$stream = new HttpDeflateStream(

 HttpDeflateStream::TYPE_GZIP |

 HttpDeflateStream::LEVEL_MAX |

 HttpDeflateStream::FLUSH_SYNC);

echo $stream->update($data);

echo $stream->finish();

?>

HttpDeflateStream::__construct

HttpDeflateStream::__construct -- HttpDeflateStream class constructor

Description

public void HttpDeflateStream::__construct ([int $flags = 0])

Creates a new HttpDeflateStream object instance.

See the deflate stream constants table for possible flags.

Parameters

flags

initialization flags

See Also

• HttpDeflateStream::factory

HttpDeflateStream::factory

HttpDeflateStream::factory -- HttpDeflateStream class factory

Description

public HttpDeflateStream HttpDeflateStream::factory ([int $flags = 0 [, string $
class_name = 'HttpDeflateStream']])

Creates a new HttpDeflateStream object instance.

See the deflate stream constants table for possible flags.

Parameters

flags

initialization flags

class_name

name of a subclass of HttpDeflateStream

See Also

• HttpDeflateStream::__construct

HttpDeflateStream::finish

HttpDeflateStream::finish -- Finalize deflate stream

Description

public string HttpDeflateStream::finish ([string $data])

Finalizes the deflate stream. The deflate stream can be reused after finalizing.

Parameters

data

data to deflate

Return Values

Returns the final part of deflated data.

HttpDeflateStream::flush

HttpDeflateStream::flush -- Flush deflate stream

Description

public string HttpDeflateStream::flush ([string $data])

Flushes the deflate stream.

Parameters

data

more data to deflate

Return Values

Returns some deflated data as string on success or FALSE on failure.

HttpDeflateStream::update

HttpDeflateStream::update -- Update deflate stream

Description

public string HttpDeflateStream::update (string $data)

Passes more data through the deflate stream.

Parameters

data

data to deflate

Return Values

Returns deflated data on success or FALSE on failure.

The HttpInflateStream class

Class synopsis

HttpInflateStream

HttpInflateStream {

public void HttpInflateStream::__construct ([int $flags = 0])

public HttpInflateStream HttpInflateStream::factory ([int $flags = 0 [, string $
class_name = 'HttpInflateStream']])

public string HttpInflateStream::finish ([string $data])

public string HttpInflateStream::flush ([string $data])

public string HttpInflateStream::update (string $data)
}

Class Members

Constants

Type Name Description

int FLUSH_NONE no forced flush

int FLUSH_SYNC synching flush

int FLUSH_FULL full flush

Note

Flushing usually has no effect on inflate streams.

Examples

Example #2200 - A HttpInflateStream example

<?php

$stream = new HttpInflateStream;

echo $stream->update($data);

echo $stream->finish();

?>

HttpInflateStream::__construct

HttpInflateStream::__construct -- HttpInflateStream class constructor

Description

public void HttpInflateStream::__construct ([int $flags = 0])

Creates a new HttpInflateStream object instance.

See the inflate constants table for possible flags.

Parameters

flags

initialization flags

See Also

• HttpInflateStream::factory

HttpInflateStream::factory

HttpInflateStream::factory -- HttpInflateStream class factory

Description

public HttpInflateStream HttpInflateStream::factory ([int $flags = 0 [, string $
class_name = 'HttpInflateStream']])

Creates a new HttpInflateStream object instance.

See the inflate constants table for possible flags.

Parameters

flags

initialization flags

class_name

name of a subclass of HttpInflateStream

See Also

• HttpInflateStream::__construct

HttpInflateStream::finish

HttpInflateStream::finish -- Finalize inflate stream

Description

public string HttpInflateStream::finish ([string $data])

Finalizes the inflate stream. The inflate stream can be reused after finalizing.

Parameters

data

data to inflate

Return Values

Returns the final part of inflated data.

HttpInflateStream::flush

HttpInflateStream::flush -- Flush inflate stream

Description

public string HttpInflateStream::flush ([string $data])

Flushes the inflate stream.

Note

Flushing usually has no effect on inflate streams.

Parameters

data

more data to inflate

Return Values

Returns some inflated data as string on success or FALSE on failure.

HttpInflateStream::update

HttpInflateStream::update -- Update inflate stream

Description

public string HttpInflateStream::update (string $data)

Passes more data through the inflate stream.

Parameters

data

data to inflate

Return Values

Returns inflated data on success or FALSE on failure.

The HttpMessage class

Class synopsis

HttpMessage

HttpMessage implements Iterator, Countable, Serializable {

public void HttpMessage::addHeaders (array $headers [, bool $append = FALSE])

public void HttpMessage::__construct ([string $message])

public HttpMessage HttpMessage::detach (void)

static public HttpMessage HttpMessage::factory ([string $raw_message [, string $
class_name = 'HttpMessage']])

static public HttpMessage HttpMessage::fromEnv (int $message_type [, string $
class_name = 'HttpMessage'])

static public HttpMessage HttpMessage::fromString ([string $raw_message [, string
$class_name = 'HttpMessage']])

public string HttpMessage::getBody (void)

public string HttpMessage::getHeader (string $header)

public array HttpMessage::getHeaders (void)

public string HttpMessage::getHttpVersion (void)

public HttpMessage HttpMessage::getParentMessage (void)

public string HttpMessage::getRequestMethod (void)

public string HttpMessage::getRequestUrl (void)

public int HttpMessage::getResponseCode (void)

public string HttpMessage::getResponseStatus (void)

public int HttpMessage::getType (void)

public string HttpMessage::guessContentType (string $magic_file [, int $
magic_mode = MAGIC_MIME])

public void HttpMessage::prepend (HttpMessage $message [, bool $top = TRUE])

public HttpMessage HttpMessage::reverse (void)

public bool HttpMessage::send (void)

public void HttpMessage::setBody (string $body)

public void HttpMessage::setHeaders (array $headers)

public bool HttpMessage::setHttpVersion (string $version)

public bool HttpMessage::setRequestMethod (string $method)

public bool HttpMessage::setRequestUrl (string $url)

public bool HttpMessage::setResponseCode (int $code)

public bool HttpMessage::setResponseStatus (string $status)

public void HttpMessage::setType (int $type)

public HttpRequest|HttpResponse HttpMessage::toMessageTypeObject (void)

public string HttpMessage::toString ([bool $include_parent = FALSE])
}

Class Members

Properties

Instance Properties

Modifiers Type Name Description

protected int type message type

protected string body message body

protected float httpVersion HTTP protocol
version

protected array headers message headers

protected string requestMethod request method
name

protected requestUrl string request URL

protected int responseCode response code

protected string responseStatus response status
message

protected HttpMessage parentMessage reference to parent
message

Note

None of these default properties can be accessed by reference, array key/index
notation nor be used in increment or decrement operations.

Predefined Constants

Type Name Description

int TYPE_NONE message has is of no
specific type

int TYPE_REQUEST message is a request style
HTTP message

int TYPE_RESPONSE message is a response style
HTTP message

HttpMessage::addHeaders

HttpMessage::addHeaders -- Add headers

Description

public void HttpMessage::addHeaders (array $headers [, bool $append = FALSE])

Add headers. If append is true, headers with the same name will be separated, else
overwritten.

Parameters

headers

associative array containing the additional HTTP headers to add to the messages
existing headers

append

if true, and a header with the same name of one to add exists already, this respective
header will be converted to an array containing both header values, otherwise it will be
overwritten with the new header value

Return Values

Returns TRUE on success or FALSE on failure.

HttpMessage::__construct

HttpMessage::__construct -- HttpMessage constructor

Description

public void HttpMessage::__construct ([string $message])

Instantiate a new HttpMessage object.

The constructed object will actually represent the last message of the passed string. If
there were prior messages, those can be accessed by HttpMessage::
getParentMessage().

Parameters

message

a single or several consecutive HTTP messages

Errors/Exceptions

Throws HttpMalformedHeaderException.

HttpMessage::detach

HttpMessage::detach -- Detach HttpMessage

Description

public HttpMessage HttpMessage::detach (void)

Returns a clone of an HttpMessage object detached from any parent messages.

Parameters

Return Values

Returns detached HttpMessage object copy.

HttpMessage::factory

HttpMessage::factory -- Create HttpMessage from string

Description

static public HttpMessage HttpMessage::factory ([string $raw_message [, string $
class_name = 'HttpMessage']])

Create an HttpMessage object from a string.

Parameters

raw_message

a single or several consecutive HTTP messages

class_name

a class extending HttpMessage

Return Values

Returns an HttpMessage object on success or NULL on failure.

Errors/Exceptions

Throws HttpMalformedHeadersException.

See Also

• HttpMessage::fromEnv().

HttpMessage::fromEnv

HttpMessage::fromEnv -- Create HttpMessage from environment

Description

static public HttpMessage HttpMessage::fromEnv (int $message_type [, string $
class_name = 'HttpMessage'])

Create an HttpMessage object from script environment.

Parameters

message_type

The message type. See HttpMessage type constants.

class_name

a class extending HttpMessage

Return Values

Returns an HttpMessage object on success or NULL on failure.

See Also

• HttpMessage::factory().

HttpMessage::fromString

HttpMessage::fromString -- Create HttpMessage from string

Description

static public HttpMessage HttpMessage::fromString ([string $raw_message [, string $
class_name = 'HttpMessage']])

Create an HttpMessage object from a string.

This function alias is deprecated and only exists for backwards compatibility reasons. The
use of this function is not recommended, as it may be removed from PHP in the future.

Parameters

raw_message

a single or several consecutive HTTP messages

class_name

a class extending HttpMessage

Return Values

Returns an HttpMessage object on success or NULL on failure.

Errors/Exceptions

Throws HttpMalformedHeadersException.

See Also

• HttpMessage::factory().

HttpMessage::getBody

HttpMessage::getBody -- Get message body

Description

public string HttpMessage::getBody (void)

Get the body of the parsed HttpMessage.

Return Values

Returns the message body as string.

HttpMessage::getHeader

HttpMessage::getHeader -- Get header

Description

public string HttpMessage::getHeader (string $header)

Get message header.

Parameters

header

header name

Return Values

Returns the header value on success or NULL if the header does not exist.

HttpMessage::getHeaders

HttpMessage::getHeaders -- Get message headers

Description

public array HttpMessage::getHeaders (void)

Get message headers.

Return Values

Returns an associative array containing the messages HTTP headers.

HttpMessage::getHttpVersion

HttpMessage::getHttpVersion -- Get HTTP version

Description

public string HttpMessage::getHttpVersion (void)

Get the HTTP Protocol Version of the Message.

Return Values

Returns the HTTP protocol version as string.

HttpMessage::getParentMessage

HttpMessage::getParentMessage -- Get parent message

Description

public HttpMessage HttpMessage::getParentMessage (void)

Get parent Message.

Return Values

Returns the parent HttpMessage object.

Errors/Exceptions

Throws HttpRuntimeException.

HttpMessage::getRequestMethod

HttpMessage::getRequestMethod -- Get request method

Description

public string HttpMessage::getRequestMethod (void)

Get the Request Method of the Message.

Return Values

Returns the request method name on success, or FALSE if the message is not of type
HttpMessage:: TYPE_REQUEST.

HttpMessage::getRequestUrl

HttpMessage::getRequestUrl -- Get request URL

Description

public string HttpMessage::getRequestUrl (void)

Get the Request URL of the Message.

Parameters

Return Values

Returns the request URL as string on success, or FALSE if the message is not of type
HttpMessage:: TYPE_REQUEST.

HttpMessage::getResponseCode

HttpMessage::getResponseCode -- Get response code

Description

public int HttpMessage::getResponseCode (void)

Get the Response Code of the Message.

Return Values

Returns the HTTP response code if the message is of type HttpMessage::
TYPE_RESPONSE, else FALSE.

HttpMessage::getResponseStatus

HttpMessage::getResponseStatus -- Get response status

Description

public string HttpMessage::getResponseStatus (void)

Get the Response Status of the message (i.e. the string following the response code).

Return Values

Returns the HTTP response status string if the message is of type HttpMessage::
TYPE_RESPONSE, else FALSE.

HttpMessage::getType

HttpMessage::getType -- Get message type

Description

public int HttpMessage::getType (void)

Get Message Type. Either HTTP_MSG_NONE, HTTP_MSG_REQUEST or
HTTP_MSG_RESPONSE.

Return Values

Returns the HttpMessage:: TYPE.

HttpMessage::guessContentType

HttpMessage::guessContentType -- Guess content type

Description

public string HttpMessage::guessContentType (string $magic_file [, int $magic_mode =
MAGIC_MIME])

Attempts to guess the content type of the message body through libmagic.

Parameters

magic_file

the magic.mime database to use

magic_mode

flags for libmagic

Return Values

Returns the guessed content type on success, or FALSE on failure.

Errors/Exceptions

Throws HttpRuntimeException, HttpInvalidParamException.

HttpMessage::prepend

HttpMessage::prepend -- Prepend message(s)

Description

public void HttpMessage::prepend (HttpMessage $message [, bool $top = TRUE])

Prepends message(s) to the HTTP message.

Parameters

message

HttpMessage object to prepend

top

whether to prepend to the top most or right this message

Errors/Exceptions

Throws HttpInvalidParamException if the message is located within the same message
chain.

HttpMessage::reverse

HttpMessage::reverse -- Reverse message chain

Description

public HttpMessage HttpMessage::reverse (void)

Reorders the message chain in reverse order.

Return Values

Returns the most parent HttpMessage object.

HttpMessage::send

HttpMessage::send -- Send message

Description

public bool HttpMessage::send (void)

Send the Message according to its type as Response or Request.

This provides limited functionality compared to HttpRequest and HttpResponse.

Return Values

Returns TRUE on success or FALSE on failure.

HttpMessage::setBody

HttpMessage::setBody -- Set message body

Description

public void HttpMessage::setBody (string $body)

Set the body of the HttpMessage.

Note

Don't forget to update any headers accordingly.

Parameters

body

the new body of the message

HttpMessage::setHeaders

HttpMessage::setHeaders -- Set headers

Description

public void HttpMessage::setHeaders (array $headers)

Sets new headers.

Parameters

headers

associative array containing the new HTTP headers, which will replace all previous
HTTP headers of the message

HttpMessage::setHttpVersion

HttpMessage::setHttpVersion -- Set HTTP version

Description

public bool HttpMessage::setHttpVersion (string $version)

Set the HTTP Protocol version of the Message.

Parameters

version

the HTTP protocol version

Return Values

Returns TRUE on success, or FALSE if supplied version is out of range (1.0/1.1).

HttpMessage::setRequestMethod

HttpMessage::setRequestMethod -- Set request method

Description

public bool HttpMessage::setRequestMethod (string $method)

Set the Request Method of the HTTP Message.

Parameters

method

the request method name

Return Values

Returns TRUE on success, or FALSE if the message is not of type HttpMessage::
TYPE_REQUEST or an invalid request method was supplied.

HttpMessage::setRequestUrl

HttpMessage::setRequestUrl -- Set request URL

Description

public bool HttpMessage::setRequestUrl (string $url)

Set the Request URL of the HTTP Message.

Parameters

url

the request URL

Return Values

Returns TRUE on success, or FALSE if the message is not of type HttpMessage::
TYPE_REQUEST or supplied URL was empty.

HttpMessage::setResponseCode

HttpMessage::setResponseCode -- Set response code

Description

public bool HttpMessage::setResponseCode (int $code)

Set the response code of an HTTP Response Message.

Parameters

code

HTTP response code

Return Values

Returns TRUE on success, or FALSE if the message is not of type HttpMessage::
TYPE_RESPONSE or the response code is out of range (100-510).

HttpMessage::setResponseStatus

HttpMessage::setResponseStatus -- Set response status

Description

public bool HttpMessage::setResponseStatus (string $status)

Set the Response Status of the HTTP message (i.e. the string following the response
code).

Parameters

status

the response status text

Return Values

Returns TRUE on success or FALSE if the message is not of type HttpMessage::
TYPE_RESPONSE.

HttpMessage::setType

HttpMessage::setType -- Set message type

Description

public void HttpMessage::setType (int $type)

Set Message Type. Either HTTP_MSG_NONE, HTTP_MSG_REQUEST or
HTTP_MSG_RESPONSE.

Parameters

type

the HttpMessage::TYPE

HttpMessage::toMessageTypeObject

HttpMessage::toMessageTypeObject -- Create HTTP object regarding message type

Description

public HttpRequest|HttpResponse HttpMessage::toMessageTypeObject (void)

Creates an object regarding to the type of the message.

Parameters

Return Values

Returns either an HttpRequest or HttpResponse object on success, or NULL on failure.

Errors/Exceptions

Throws HttpRuntimeException, HttpMessageTypeException, HttpHeaderException.

HttpMessage::toString

HttpMessage::toString -- Get string representation

Description

public string HttpMessage::toString ([bool $include_parent = FALSE])

Get the string representation of the Message.

Parameters

include_parent

specifies whether the returned string should also contain any parent messages

Return Values

Returns the message as string.

The HttpQueryString class

Class synopsis

HttpQueryString

HttpQueryString implements ArrayAccess, Serializable {

final public void HttpQueryString::__construct ([bool $global = TRUE [, mixed $add
]])

public mixed HttpQueryString::get ([string $key [, mixed $type = 0 [, mixed $
defval = NULL [, bool $delete = FALSE]]]])

public HttpQueryString HttpQueryString::mod (mixed $params)

public string HttpQueryString::set (mixed $params)

static public HttpQueryString HttpQueryString::singleton ([bool $global = TRUE])

public array HttpQueryString::toArray (void)

public string HttpQueryString::toString (void)

public bool HttpQueryString::xlate (string $ie, string $oe)
}

Class Members

Properties

Instance Properties

Modifiers Type Name Description

private array queryArray query parameters

private string queryString serialized query
parameters

Static Properties

Modifiers Type Name Description

private array instance holds singletons

Predefined Constants

Type Name Description

int TYPE_BOOL retrieve query param as bool

int TYPE_INT retrieve query param as int

int TYPE_FLOAT retrieve query param as float

int TYPE_STRING retrieve query param as
string

int TYPE_ARRAY retrieve query param as
array

int TYPE_OBJECT retrieve query param as
object

HttpQueryString::__construct

HttpQueryString::__construct -- HttpQueryString constructor

Description

final public void HttpQueryString::__construct ([bool $global = TRUE [, mixed $add]])

Creates a new HttpQueryString object instance.

Operates on and modifies $_GET and $_SERVER['QUERY_STRING'] if global is TRUE.

Parameters

global

whether to operate on $_GET and $_SERVER['QUERY_STRING']

add

additional/initial query string parameters

Errors/Exceptions

Throws HttpRuntimeException.

HttpQueryString::get

HttpQueryString::get -- Get (part of) query string

Description

public mixed HttpQueryString::get ([string $key [, mixed $type = 0 [, mixed $defval =
NULL [, bool $delete = FALSE]]]])

Get (part of) the query string.

The type parameter is either one of the HttpQueryString::TYPE_* constants or a type
abbreviation like "b" for bool, "i" for int, "f" for float, "s" for string, "a" for array and "o" for a
stdClass object.

Parameters

key

key of the query string param to retrieve

type

which variable type to enforce

defval

default value if key does not exist

delete

whether to remove the key/value pair from the query string

Return Values

Returns the value of the query string param or the whole query string if no key was
specified on success or defval if key does not exist.

HttpQueryString::mod

HttpQueryString::mod -- Modifiy query string copy

Description

public HttpQueryString HttpQueryString::mod (mixed $params)

Copies the query string object and sets provided params at the clone.

Parameters

params

query string params to add

Return Values

Returns a new HttpQueryString object

HttpQueryString::set

HttpQueryString::set -- Set query string params

Description

public string HttpQueryString::set (mixed $params)

Set query string entry/entries. NULL values will unset the variable.

Parameters

params

query string params to add

Return Values

Returns the current query string.

HttpQueryString::singleton

HttpQueryString::singleton -- HttpQueryString singleton

Description

static public HttpQueryString HttpQueryString::singleton ([bool $global = TRUE])

Get a single instance (differentiates between the global setting).

Parameters

global

whether to operate on $_GET and $_SERVER['QUERY_STRING']

Return Values

Returns always the same HttpQueryString instance regarding the global setting.

Errors/Exceptions

Throws HttpRuntimeException.

HttpQueryString::toArray

HttpQueryString::toArray -- Get query string as array

Description

public array HttpQueryString::toArray (void)

Get the query string represented as associative array.

Return Values

Returns the array representation of the query string.

HttpQueryString::toString

HttpQueryString::toString -- Get query string

Description

public string HttpQueryString::toString (void)

Get the query string.

Parameters

Return Values

Returns the string representation of the query string.

HttpQueryString::xlate

HttpQueryString::xlate -- Change query strings charset

Description

public bool HttpQueryString::xlate (string $ie, string $oe)

Converts the query string from the source encoding ie to the target encoding oe.

Warning

Don't use any character set that can contain NUL bytes like UTF-16.

Note

This method requires ext/iconv to be enabled and loaded.

Parameters

ie

input encoding

oe

output encoding

Return Values

Returns TRUE on success or FALSE on failure.

The HttpRequest

Class synopsis

HttpRequest

HttpRequest {

public bool HttpRequest::addCookies (array $cookies)

public bool HttpRequest::addHeaders (array $headers)

public bool HttpRequest::addPostFields (array $post_data)

public bool HttpRequest::addPostFile (string $name, string $file [, string $
content_type = 'application/x-octetstream'])

public bool HttpRequest::addPutData (string $put_data)

public bool HttpRequest::addQueryData (array $query_params)

public bool HttpRequest::addRawPostData (string $raw_post_data)

public bool HttpRequest::addSslOptions (array $options)

public void HttpRequest::clearHistory (void)

public void HttpRequest::__construct ([string $url [, int $request_method =
HTTP_METH_GET [, array $options]]])

public bool HttpRequest::enableCookies (void)

public string HttpRequest::getContentType (void)

public array HttpRequest::getCookies (void)

public array HttpRequest::getHeaders (void)

public HttpMessage HttpRequest::getHistory (void)

public int HttpRequest::getMethod (void)

public array HttpRequest::getOptions (void)

public array HttpRequest::getPostFields (void)

public array HttpRequest::getPostFiles (void)

public string HttpRequest::getPutData (void)

public string HttpRequest::getPutFile (void)

public string HttpRequest::getQueryData (void)

public string HttpRequest::getRawPostData (void)

public string HttpRequest::getRawRequestMessage (void)

public string HttpRequest::getRawResponseMessage (void)

public HttpMessage HttpRequest::getRequestMessage (void)

public string HttpRequest::getResponseBody (void)

public int HttpRequest::getResponseCode (void)

public array HttpRequest::getResponseCookies ([int $flags [, array $
allowed_extras]])

public array HttpRequest::getResponseData (void)

public mixed HttpRequest::getResponseHeader ([string $name])

public mixed HttpRequest::getResponseInfo ([string $name])

public HttpMessage HttpRequest::getResponseMessage (void)

public string HttpRequest::getResponseStatus (void)

public array HttpRequest::getSslOptions (void)

public string HttpRequest::getUrl (void)

public bool HttpRequest::resetCookies ([bool $session_only = FALSE])

public HttpMessage HttpRequest::send (void)

public bool HttpRequest::setContentType (string $content_type)

public bool HttpRequest::setCookies ([array $cookies])

public bool HttpRequest::setHeaders ([array $headers])

public bool HttpRequest::setMethod (int $request_method)

public bool HttpRequest::setOptions ([array $options])

public bool HttpRequest::setPostFields (array $post_data)

public bool HttpRequest::setPostFiles (array $post_files)

public bool HttpRequest::setPutData ([string $put_data])

public bool HttpRequest::setPutFile ([string $file])

public bool HttpRequest::setQueryData (mixed $query_data)

public bool HttpRequest::setRawPostData ([string $raw_post_data])

public bool HttpRequest::setSslOptions ([array $options])

public bool HttpRequest::setUrl (string $url)
}

Class Members

Properties

Instance Properties

Modifiers Type Name Description

protected array options request options to
configure the request;
see request options

protected array postFields form data:
array("fieldname" =>
"fieldvalue")

protected array postFiles files to upload:
array(array("name"
=> "image", "file" =>
"/home/u/images/u.pn
g", "type" =>
"image/png"))

protected array responseInfo information
(statistical) about the
request/response;
see
Request/response
information

protected HttpMessage responseMessage the response
message

protected integer responseCode the numerical
response code

protected string responseStatus the literal response
status text

protected integer method the request method
to use

protected string url the request url

protected string contentType the content type to
use for raw post
requests

protected string rawPostData raw post data

protected string queryData query parameters

protected string putFile the file to upload with
a PUT request

protected string putData raw data to upload
with a PUT request

protected HttpMessage history the whole
request/response
history if history
logging is enabled

public boolean recordHistory whether to enable
history logging

Predefined Constants

Type Name Description

integer METH_GET GET request method

integer METH_HEAD HEAD request method

integer METH_POST POST request method

integer METH_PUT PUT request method

integer METH_DELETE DELETE request method

integer METH_OPTIONS OPTIONS request method

integer METH_TRACE TRACE request method

integer METH_CONNECT CONNECT request method

integer METH_PROPFIND PROPFIND request method

integer METH_PROPPATCH PROPPATCH request
method

integer METH_MKCOL MKCOL request method

integer METH_COPY COPY request method

integer METH_MOVE MOVE request method

integer METH_LOCK LOCK request method

integer METH_UNLOCK UNLOCK request method

integer METH_VERSION_CONTRO
L

VERSION-CONTROL
request method

integer METH_REPORT REPORT request method

integer METH_CHECKOUT CHECKOUT request method

integer METH_CHECKIN CHECKIN request method

integer METH_UNCHECKOUT UNCHECKOUT request
method

integer METH_MKWORKSPACE MKWORKSPACE request
method

integer METH_UPDATE UPDATE request method

integer METH_LABEL LABEL request method

integer METH_MERGE MERGE request method

integer METH_BASELINE_CONTR
OL

BASELINE-CONTROL
request method

integer METH_MKACTIVITY MKACTIVITY request
method

integer METH_ACL ACL request method

integer VERSION_1_0 HTTP protocol version 1.0

integer VERSION_1_1 HTTP protocol version 1.1

integer VERSION_ANY any HTTP protocol version

integer AUTH_BASIC basic authentication

integer AUTH_DIGEST digest authentication

integer AUTH_NTLM NTLM authentication

integer AUTH_GSSNEG GSS negotiate authentication

integer AUTH_ANY any authentication

integer PROXY_SOCKS4 SOCKS v4 proxy

integer PROXY_SOCKS5 SOCKS v5 proxy

integer PROXY_HTTP HTTP proxy

integer SSL_VERSION_TLSv1 use TLS v1

integer SSL_VERSION_SSLv2 use SSL v2

integer SSL_VERSION_SSLv3 use SSL v3

integer SSL_VERSION_ANY use any SSL/TLS method

integer IPRESOLVE_V4 resolve via IPv4 only

integer IPRESOLVE_V6 resolve via IPv6 only

integer IPRESOLVE_ANY use any resolving methods

HttpRequest::addCookies

HttpRequest::addCookies -- Add cookies

Description

public bool HttpRequest::addCookies (array $cookies)

Add custom cookies.

Note

The request option encodecookies controls whether the cookie values should be
urlencode() d.

Note

Affects any request method.

Parameters

cookies

an associative array containing any cookie name/value pairs to add

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2201 - A HttpRequest::addCookies() example

<?php

$r = new HttpRequest;

$r->addCookies(

 array(

 "cookie_name" => "cookie value",

)

);

?>

See Also

• HttpRequest::setCookies()

HttpRequest::addHeaders

HttpRequest::addHeaders -- Add headers

Description

public bool HttpRequest::addHeaders (array $headers)

Add request header name/value pairs.

Parameters

headers

an associative array as parameter containing additional header name/value pairs

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::addPostFields

HttpRequest::addPostFields -- Add post fields

Description

public bool HttpRequest::addPostFields (array $post_data)

Adds POST data entries, leaving previously set unchanged, unless a post entry with the
same name already exists.

Affects only POST and custom requests.

Parameters

post_data

an associative array as parameter containing the post fields

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::addPostFile

HttpRequest::addPostFile -- Add post file

Description

public bool HttpRequest::addPostFile (string $name, string $file [, string $
content_type = 'application/x-octetstream'])

Add a file to the POST request, leaving previously set files unchanged.

Affects only POST and custom requests. Cannot be used with raw post data.

Parameters

name

the form element name

file

the path to the file

content_type

the content type of the file

Return Values

Returns TRUE on success, or FALSE if the content type seems not to contain a primary
and a secondary content type part.

HttpRequest::addPutData

HttpRequest::addPutData -- Add put data

Description

public bool HttpRequest::addPutData (string $put_data)

Add PUT data, leaving previously set PUT data unchanged.

Affects only PUT requests.

Parameters

put_data

the data to concatenate

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::addQueryData

HttpRequest::addQueryData -- Add query data

Description

public bool HttpRequest::addQueryData (array $query_params)

Add parameters to the query parameter list, leaving previously set unchanged.

Affects any request type.

Parameters

query_params

an associative array as parameter containing the query fields to add

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::addRawPostData

HttpRequest::addRawPostData -- Add raw post data

Description

public bool HttpRequest::addRawPostData (string $raw_post_data)

Add raw post data, leaving previously set raw post data unchanged.

Affects only POST and custom requests.

Parameters

raw_post_data

the raw post data to concatenate

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::addSslOptions

HttpRequest::addSslOptions -- Add ssl options

Description

public bool HttpRequest::addSslOptions (array $options)

Set additional SSL options.

Parameters

options

an associative array as parameter containing additional SSL specific options

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::clearHistory

HttpRequest::clearHistory -- Clear history

Description

public void HttpRequest::clearHistory (void)

Clears all history messages.

Note

History is only logged if recordHistory was enabled.

HttpRequest::__construct

HttpRequest::__construct -- HttpRequest constructor

Description

public void HttpRequest::__construct ([string $url [, int $request_method =
HTTP_METH_GET [, array $options]]])

Instantiate a new HttpRequest object.

Parameters

url

the target request url

request_method

the request method to use

options

an associative array with request options

Errors/Exceptions

Throws HttpException.

HttpRequest::enableCookies

HttpRequest::enableCookies -- Enable cookies

Description

public bool HttpRequest::enableCookies (void)

Enable automatic sending of received cookies.

Note

Note that cuutomly set cookies will be sent anyway.

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::getContentType

HttpRequest::getContentType -- Get content type

Description

public string HttpRequest::getContentType (void)

Get the previously set content type.

Return Values

Returns the previously set content type as string.

HttpRequest::getCookies

HttpRequest::getCookies -- Get cookies

Description

public array HttpRequest::getCookies (void)

Get previously set cookies.

Return Values

Returns an associative array containing any previously set cookies.

HttpRequest::getHeaders

HttpRequest::getHeaders -- Get headers

Description

public array HttpRequest::getHeaders (void)

Get previously set request headers.

Return Values

Returns an associative array containing all currently set headers.

HttpRequest::getHistory

HttpRequest::getHistory -- Get history

Description

public HttpMessage HttpRequest::getHistory (void)

Get all sent requests and received responses as an HttpMessage object.

If you want to record history, set the instance variable HttpRequest:: recordHistory to
TRUE.

The returned object references the last received response, use
HttpMessage::getParentMessage()() to access the data of previously sent requests and
received responses.

Return Values

Returns an HttpMessage object representing the complete request/response history.

Errors/Exceptions

Throws HttpRuntimeException.

HttpRequest::getMethod

HttpRequest::getMethod -- Get method

Description

public int HttpRequest::getMethod (void)

Get the previously set request method.

Return Values

Returns the currently set request method.

HttpRequest::getOptions

HttpRequest::getOptions -- Get options

Description

public array HttpRequest::getOptions (void)

Get currently set options.

Return Values

Returns an associative array containing currently set options.

HttpRequest::getPostFields

HttpRequest::getPostFields -- Get post fields

Description

public array HttpRequest::getPostFields (void)

Get previously set POST data.

Parameters

Return Values

Returns the currently set post fields as associative array.

HttpRequest::getPostFiles

HttpRequest::getPostFiles -- Get post files

Description

public array HttpRequest::getPostFiles (void)

Get all previously added POST files.

Return Values

Returns an array containing currently set post files.

HttpRequest::getPutData

HttpRequest::getPutData -- Get put data

Description

public string HttpRequest::getPutData (void)

Get previously set PUT data.

Return Values

Returns a string containing the currently set PUT data.

HttpRequest::getPutFile

HttpRequest::getPutFile -- Get put file

Description

public string HttpRequest::getPutFile (void)

Get previously set put file.

Return Values

Returns a string containing the path to the currently set put file.

HttpRequest::getQueryData

HttpRequest::getQueryData -- Get query data

Description

public string HttpRequest::getQueryData (void)

Get the current query data in form of an urlencoded query string.

Return Values

Returns a string containing the urlencoded query.

HttpRequest::getRawPostData

HttpRequest::getRawPostData -- Get raw post data

Description

public string HttpRequest::getRawPostData (void)

Get previously set raw post data.

Parameters

Return Values

Returns a string containing the currently set raw post data.

HttpRequest::getRawRequestMessage

HttpRequest::getRawRequestMessage -- Get raw request message

Description

public string HttpRequest::getRawRequestMessage (void)

Get sent HTTP message.

Parameters

Return Values

Returns an HttpMessage in a form of a string.

HttpRequest::getRawResponseMessage

HttpRequest::getRawResponseMessage -- Get raw response message

Description

public string HttpRequest::getRawResponseMessage (void)

Get the entire HTTP response.

Parameters

Return Values

Returns the complete web server response, including the headers in a form of a string.

HttpRequest::getRequestMessage

HttpRequest::getRequestMessage -- Get request message

Description

public HttpMessage HttpRequest::getRequestMessage (void)

Get sent HTTP message.

If redirects were allowed and several responses were received, the data references the
last received response. Use HttpMessage::getParentMessage() to access the data of
previously sent requests within this request cycle.

Note

Note that the internal request message is immutable, that means that the request
message received through HttpRequest::getRequestMessage() will always look the
same for the same request, regardless of any changes you may have made to the
returned object.

Return Values

Returns an HttpMessage object representing the sent request.

Errors/Exceptions

Throws HttpMalformedHeadersException, HttpEncodingException.

HttpRequest::getResponseBody

HttpRequest::getResponseBody -- Get response body

Description

public string HttpRequest::getResponseBody (void)

Get the response body after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response.

Parameters

Return Values

Returns a string containing the response body.

HttpRequest::getResponseCode

HttpRequest::getResponseCode -- Get response code

Description

public int HttpRequest::getResponseCode (void)

Get the response code after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response.

Return Values

Returns an int representing the response code.

HttpRequest::getResponseCookies

HttpRequest::getResponseCookies -- Get response cookie(s)

Description

public array HttpRequest::getResponseCookies ([int $flags [, array $allowed_extras
]])

Get response cookie(s) after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response.

Parameters

flags

http_parse_cookie() flags

allowed_extras

allowed keys treated as extra information instead of cookie names

Return Values

Returns an array of stdClass objects like http_parse_cookie() would return.

HttpRequest::getResponseData

HttpRequest::getResponseData -- Get response data

Description

public array HttpRequest::getResponseData (void)

* Get all response data after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response.

Return Values

Returns an associative array with the key "headers" containing an associative array
holding all response headers, as well as the key "body" containing a string with the
response body.

HttpRequest::getResponseHeader

HttpRequest::getResponseHeader -- Get response header(s)

Description

public mixed HttpRequest::getResponseHeader ([string $name])

Get response header(s) after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response.

Parameters

name

header to read; if empty, all response headers will be returned

Return Values

Returns either a string with the value of the header matching name if requested, FALSE on
failure, or an associative array containing all response headers.

HttpRequest::getResponseInfo

HttpRequest::getResponseInfo -- Get response info

Description

public mixed HttpRequest::getResponseInfo ([string $name])

Get response info after the request has been sent.

See http_get() for a full list of returned info.

If redirects were allowed and several responses were received, the data references the
last received response.

Parameters

name

the info to read; if empty or omitted, an associative array containing all available info
will be returned

Return Values

Returns either a scalar containing the value of the info matching name if requested,
FALSE on failure, or an associative array containing all available info.

HttpRequest::getResponseMessage

HttpRequest::getResponseMessage -- Get response message

Description

public HttpMessage HttpRequest::getResponseMessage (void)

Get the full response as HttpMessage object after the request has been sent.

If redirects were allowed and several responses were received, the data references the
last received response. Use HttpMessage::getParentMessage() to access the data of
previously received responses within this request cycle.

Return Values

Returns an HttpMessage object of the response.

Errors/Exceptions

Throws HttpException, HttpRuntimeException.

HttpRequest::getResponseStatus

HttpRequest::getResponseStatus -- Get response status

Description

public string HttpRequest::getResponseStatus (void)

Get the response status (i.e. the string after the response code) after the message has
been sent.

Return Values

Returns a string containing the response status text.

HttpRequest::getSslOptions

HttpRequest::getSslOptions -- Get ssl options

Description

public array HttpRequest::getSslOptions (void)

Get previously set SSL options.

Return Values

Returns an associative array containing any previously set SSL options.

HttpRequest::getUrl

HttpRequest::getUrl -- Get url

Description

public string HttpRequest::getUrl (void)

Get the previously set request URL.

Return Values

Returns the currently set request url as string.

HttpRequest::resetCookies

HttpRequest::resetCookies -- Reset cookies

Description

public bool HttpRequest::resetCookies ([bool $session_only = FALSE])

Reset all automatically received/sent cookies.

Note

Note that customly set cookies are not affected.

Parameters

session_only

whether only session cookies should be reset (needs libcurl >= v7.15.4, else libcurl >=
v7.14.1)

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::send

HttpRequest::send -- Send request

Description

public HttpMessage HttpRequest::send (void)

Send the HTTP request.

Note

While an exception may be thrown, the transfer could have succeeded at least
partially, so you might want to check the return values of various
HttpRequest::getResponse*() methods.

Return Values

Returns the received response as HttpMessage object.

Errors/Exceptions

Throws HttpRuntimeException, HttpRequestException, HttpMalformedHeaderException,
HttpEncodingException.

Examples

Example #2202 - GET example

<?php

$r = new HttpRequest('http://example.com/feed.rss', HttpRequest::METH_GET);

$r->setOptions(array('lastmodified' => filemtime('local.rss')));

$r->addQueryData(array('category' => 3));

try {

 $r->send();

 if ($r->getResponseCode() == 200) {

 file_put_contents('local.rss', $r->getResponseBody());

 }

} catch (HttpException $ex) {

 echo $ex;

}

?>

Example #2203 - POST example

<?php

$r = new HttpRequest('http://example.com/form.php', HttpRequest::METH_POST);

$r->setOptions(array('cookies' => array('lang' => 'de')));

$r->addPostFields(array('user' => 'mike', 'pass' => 's3c|r3t'));

$r->addPostFile('image', 'profile.jpg', 'image/jpeg');

try {

 echo $r->send()->getBody();

} catch (HttpException $ex) {

 echo $ex;

}

?>

HttpRequest::setContentType

HttpRequest::setContentType -- Set content type

Description

public bool HttpRequest::setContentType (string $content_type)

Set the content type the post request should have.

Parameters

content_type

the content type of the request (primary/secondary)

Return Values

Returns TRUE on success, or FALSE if the content type does not seem to contain a
primary and a secondary part.

HttpRequest::setCookies

HttpRequest::setCookies -- Set cookies

Description

public bool HttpRequest::setCookies ([array $cookies])

Set custom cookies.

Parameters

cookies

an associative array as parameter containing cookie name/value pairs; if empty or
omitted, all previously set cookies will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setHeaders

HttpRequest::setHeaders -- Set headers

Description

public bool HttpRequest::setHeaders ([array $headers])

Set request header name/value pairs.

Parameters

headers

an associative array as parameter containing header name/value pairs; if empty or
omitted, all previously set headers will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setMethod

HttpRequest::setMethod -- Set method

Description

public bool HttpRequest::setMethod (int $request_method)

Set the request method.

Parameters

request_method

the request method to use

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setOptions

HttpRequest::setOptions -- Set options

Description

public bool HttpRequest::setOptions ([array $options])

Set the request options to use.

See the full list of request options.

Parameters

options

an associative array, which values will overwrite the currently set request options; if
empty or omitted, the options of the HttpRequest object will be reset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setPostFields

HttpRequest::setPostFields -- Set post fields

Description

public bool HttpRequest::setPostFields (array $post_data)

Set the POST data entries, overwriting previously set POST data.

Affects only POST and custom requests.

Parameters

post_data

an associative array containing the post fields; if empty, the post data will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setPostFiles

HttpRequest::setPostFiles -- Set post files

Description

public bool HttpRequest::setPostFiles (array $post_files)

Set files to post, overwriting previously set post files.

Affects only POST and requests. Cannot be used with raw post data.

Parameters

post_files

an array containing the files to post; if empty, the post files will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setPutData

HttpRequest::setPutData -- Set put data

Description

public bool HttpRequest::setPutData ([string $put_data])

Set PUT data to send, overwriting previously set PUT data.

Affects only PUT requests.

Only either PUT data or PUT file can be used for each request. PUT data has higher
precedence and will be used even if a PUT file is set.

Parameters

put_data

the data to upload

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setPutFile

HttpRequest::setPutFile -- Set put file

Description

public bool HttpRequest::setPutFile ([string $file])

Set file to put. Affects only PUT requests.

Parameters

file

the path to the file to send; if empty or omitted the put file will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setQueryData

HttpRequest::setQueryData -- Set query data

Description

public bool HttpRequest::setQueryData (mixed $query_data)

Set the URL query parameters to use, overwriting previously set query parameters.

Affects any request types.

Parameters

query_data

a string or associative array parameter containing the pre-encoded query string or to
be encoded query fields; if empty, the query data will be unset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setRawPostData

HttpRequest::setRawPostData -- Set raw post data

Description

public bool HttpRequest::setRawPostData ([string $raw_post_data])

Set raw post data to send, overwriting previously set raw post data. Don't forget to specify
a content type. Affects only POST and custom requests.

Only either post fields or raw post data can be used for each request. Raw post data has
higher precedence and will be used even if post fields are set.

Parameters

raw_post_data

raw post data

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setSslOptions

HttpRequest::setSslOptions -- Set ssl options

Description

public bool HttpRequest::setSslOptions ([array $options])

Set SSL options.

Parameters

options

an associative array containing any SSL specific options; if empty or omitted, the SSL
options will be reset

Return Values

Returns TRUE on success or FALSE on failure.

HttpRequest::setUrl

HttpRequest::setUrl -- Set URL

Description

public bool HttpRequest::setUrl (string $url)

Set the request URL.

Parameters

url

the request url

Return Values

Returns TRUE on success or FALSE on failure.

The HttpRequestPool class

Class synopsis

HttpRequestPool

HttpRequestPool implements Iterator, Countable {

public bool HttpRequestPool::attach (HttpRequest $request)

void HttpRequestPool::__construct ([HttpRequest $request])

void HttpRequestPool::__destruct (void)

bool HttpRequestPool::detach (HttpRequest $request)

array HttpRequestPool::getAttachedRequests (void)

array HttpRequestPool::getFinishedRequests (void)

void HttpRequestPool::reset (void)

bool HttpRequestPool::send (void)

protected bool HttpRequestPool::socketPerform (void)

protected bool HttpRequestPool::socketSelect (void)
}

Class Members

Properties

The HttpRequestPool class does not have any properties.

Predefined Constants

The HttpRequestPool class does not have any constants.

HttpRequestPool::attach

HttpRequestPool::attach -- Attach HttpRequest

Description

public bool HttpRequestPool::attach (HttpRequest $request)

Attach an HttpRequest object to this HttpRequestPool.

Warning

Set all options prior attaching!

Parameters

request

an HttpRequest object not already attached to any HttpRequestPool object

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Throws HttpInvalidParamException, HttpRequestException, HttpRequestPoolException,
HttpEncodingException.

HttpRequestPool::__construct

HttpRequestPool::__construct -- HttpRequestPool constructor

Description

void HttpRequestPool::__construct ([HttpRequest $request])

Instantiate a new HttpRequestPool object. An HttpRequestPool is able to send several
HttpRequests in parallel.

Accepts virtually infinite optional parameters each referencing an HttpRequest object.

Parameters

request

HttpRequest object to attach

Errors/Exceptions

Throws HttpRequestPoolException (HttpRequestException, HttpInvalidParamException).

Examples

Example #2204 - A HttpRequestPool example

<?php

try {

 $pool = new HttpRequestPool(

 new HttpRequest('http://www.google.com/', HttpRequest::METH_HEAD),

 new HttpRequest('http://www.php.net/', HttpRequest::METH_HEAD)

);

 $pool->send();

 foreach($pool as $request) {

 printf("%s is %s (%d)\n",

 $request->getUrl(),

 $request->getResponseCode() ? 'alive' : 'not alive',

 $request->getResponseCode()

);

 }

} catch (HttpException $e) {

 echo $e;

}

?>

HttpRequestPool::__destruct

HttpRequestPool::__destruct -- HttpRequestPool destructor

Description

void HttpRequestPool::__destruct (void)

Clean up HttpRequestPool object.

HttpRequestPool::detach

HttpRequestPool::detach -- Detach HttpRequest

Description

bool HttpRequestPool::detach (HttpRequest $request)

Detach an HttpRequest object from this HttpRequestPool.

Parameters

request

an HttpRequest object attached to this HttpRequestPool object

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Throws HttpInvalidParamException, HttpRequestPoolException.

HttpRequestPool::getAttachedRequests

HttpRequestPool::getAttachedRequests -- Get attached requests

Description

array HttpRequestPool::getAttachedRequests (void)

Get attached HttpRequest objects.

Parameters

Return Values

Returns an array containing all currently attached HttpRequest objects.

HttpRequestPool::getFinishedRequests

HttpRequestPool::getFinishedRequests -- Get finished requests

Description

array HttpRequestPool::getFinishedRequests (void)

Get attached HttpRequest objects that already have finished their work.

Parameters

Return Values

Returns an array containing all attached HttpRequest objects that already have finished
their work.

HttpRequestPool::reset

HttpRequestPool::reset -- Reset request pool

Description

void HttpRequestPool::reset (void)

Detach all attached HttpRequest objects.

HttpRequestPool::send

HttpRequestPool::send -- Send all requests

Description

bool HttpRequestPool::send (void)

Send all attached HttpRequest objects in parallel.

Parameters

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Throws HttpRequestPoolException (HttpSocketException, HttpRequestException,
HttpMalformedHeaderException).

HttpRequestPool::socketPerform

HttpRequestPool::socketPerform -- Perform socket actions

Description

protected bool HttpRequestPool::socketPerform (void)

Returns TRUE until each request has finished its transaction.

Return Values

Returns TRUE until each request has finished its transaction.

Examples

Example #2205 - A HttpRequestPool::socketPerform() example

<?php

class MyPool extends HttpRequestPool

{

 public function send()

 {

 while ($this->socketPerform()) {

 if (!$this->socketSelect()) {

 throw new HttpSocketExcpetion;

 }

 }

 }

 protected final function socketPerform()

 {

 $result = parent::socketPerform();

 foreach ($this->getFinishedRequests() as $r) {

 $this->detach($r);

 // handle response of finished request

 }

 return $result;

 }

}

?>

HttpRequestPool::socketSelect

HttpRequestPool::socketSelect -- Perform socket select

Description

protected bool HttpRequestPool::socketSelect (void)

Return Values

Returns TRUE on success or FALSE on failure.

The HttpResponse

Class synopsis

HttpResponse

HttpResponse {

static void HttpResponse::capture (void)

static int HttpResponse::getBufferSize (void)

static bool HttpResponse::getCache (void)

static string HttpResponse::getCacheControl (void)

static string HttpResponse::getContentDisposition (void)

static string HttpResponse::getContentType (void)

static string HttpResponse::getData (void)

static string HttpResponse::getETag (void)

static string HttpResponse::getFile (void)

static bool HttpResponse::getGzip (void)

static mixed HttpResponse::getHeader ([string $name])

static int HttpResponse::getLastModified (void)

static string HttpResponse::getRequestBody (void)

static resource HttpResponse::getRequestBodyStream (void)

static array HttpResponse::getRequestHeaders (void)

static resource HttpResponse::getStream (void)

static double HttpResponse::getThrottleDelay (void)

static string HttpResponse::guessContentType (string $magic_file [, int $
magic_mode=MAGIC_MIME])

static void HttpResponse::redirect ([string $url [, array $params [, bool $session =
FALSE [, int $status]]]])

static bool HttpResponse::send ([bool $clean_ob = TRUE])

static bool HttpResponse::setBufferSize (int $bytes)

static bool HttpResponse::setCache (bool $cache)

static bool HttpResponse::setCacheControl (string $control [, int $max_age = 0 [,
bool $must_revalidate = TRUE]])

static bool HttpResponse::setContentDisposition (string $filename [, bool $inline
= FALSE])

static bool HttpResponse::setContentType (string $content_type)

static bool HttpResponse::setData (mixed $data)

static bool HttpResponse::setETag (string $etag)

static bool HttpResponse::setFile (string $file)

static bool HttpResponse::setGzip (bool $gzip)

static bool HttpResponse::setHeader (string $name [, mixed $value [, bool $replace
= TRUE]])

static bool HttpResponse::setLastModified (int $timestamp)

static bool HttpResponse::setStream (resource $stream)

static bool HttpResponse::setThrottleDelay (float $seconds)

static bool HttpResponse::status (int $status)
}

Class Members

Properties

Static Properties

Modifiers Type Name Description

protected boolean cache whether caching the
response should be
attempted

protected boolean gzip whether the sent
entity should be
gzip'ed on the fly

protected string eTag the generated or
custom ETag

protected integer lastModified the generated or
custom timestamp of
last modification

protected string cacheControl Cache-Control setting

protected string contentType the Content-Type of
the sent entity

protected string contentDisposition the
Content-Disposition
of the sent entity

protected integer bufferSize the chunk buffer size
used for throttling

protected double throttleDelay the seconds to delay
when throttling

Predefined Constants

Type Name Description

integer REDIRECT guess applicable redirect
method

integer REDIRECT_PERM permanent redirect (301
Moved permanently)

integer REDIRECT_FOUND standard redirect (302
Found)

integer REDIRECT_POST redirect applicable to POST
requests (303 See other)

integer REDIRECT_PROXY proxy redirect (305 Use
proxy)

integer REDIRECT_TEMP temporary redirect (307
Temporary Redirect)

HttpResponse::capture

HttpResponse::capture -- Capture script output

Description

static void HttpResponse::capture (void)

Capture script output.

Examples

Example #2206 - A HttpResponse::capture() example

<?php

HttpResponse::setCache(true);

HttpResponse::capture();

// script follows

?>

See Also

• HttpResponse::send

HttpResponse::getBufferSize

HttpResponse::getBufferSize -- Get buffer size

Description

static int HttpResponse::getBufferSize (void)

Get current buffer size.

Return Values

Returns an int representing the current buffer size in bytes.

See Also

• HttpResponse::setBufferSize
• HttpResponse::getThrottleDelay
• HttpResponse::setThrottleDelay

HttpResponse::getCache

HttpResponse::getCache -- Get cache

Description

static bool HttpResponse::getCache (void)

Get current caching setting.

Return Values

Returns TRUE if caching should be attempted, else FALSE.

See Also

• HttpResponse::setCacheControl
• HttpResponse::getCacheControl
• HttpResponse::setCache

HttpResponse::getCacheControl

HttpResponse::getCacheControl -- Get cache control

Description

static string HttpResponse::getCacheControl (void)

Get current Cache-Control header setting.

Return Values

Returns the current cache control setting as a string like sent in a header.

See Also

• HttpResponse::setCacheControl
• HttpResponse::setCache
• HttpResponse::getCachel

HttpResponse::getContentDisposition

HttpResponse::getContentDisposition -- Get content disposition

Description

static string HttpResponse::getContentDisposition (void)

Get current Content-Disposition setting.

Return Values

Returns the current content disposition as string like sent in a header.

See Also

• HttpResponse::setContentDisposition
• HttpResponse::getContentType
• HttpResponse::setContentType

HttpResponse::getContentType

HttpResponse::getContentType -- Get content type

Description

static string HttpResponse::getContentType (void)

Get current Content-Type header setting.

Return Values

Returns the currently set content type as string.

See Also

• HttpResponse::getContentDisposition
• HttpResponse::setContentDisposition
• HttpResponse::setContentType
• HttpResponse::guessContentType

HttpResponse::getData

HttpResponse::getData -- Get data

Description

static string HttpResponse::getData (void)

Get the previously set data to be sent.

Return Values

Returns a string containing the previously set data to send.

See Also

• HttpResponse::setData
• HttpResponse::getFile
• HttpResponse::setFile
• HttpResponse::getStream
• HttpResponse::setStream

HttpResponse::getETag

HttpResponse::getETag -- Get ETag

Description

static string HttpResponse::getETag (void)

Get calculated or previously set custom ETag.

Return Values

Returns the calculated or previously set ETag as unquoted string.

See Also

• HttpResponse::getLastModified
• HttpResponse::setLastModified
• HttpResponse::setETag

HttpResponse::getFile

HttpResponse::getFile -- Get file

Description

static string HttpResponse::getFile (void)

Get the previously set file to be sent.

Return Values

Returns the previously set path to the file to send as string.

See Also

• HttpResponse::getData
• HttpResponse::setData
• HttpResponse::setFile
• HttpResponse::getStream
• HttpResponse::setStream

HttpResponse::getGzip

HttpResponse::getGzip -- Get gzip

Description

static bool HttpResponse::getGzip (void)

Get current gzip'ing setting.

Return Values

Returns TRUE if GZip compression is enabled, else FALSE.

See Also

• HttpResponse::setGzip

HttpResponse::getHeader

HttpResponse::getHeader -- Get header

Description

static mixed HttpResponse::getHeader ([string $name])

Get header(s) about to be sent.

Note

This may not work as expected with the following SAPI(s): Apache2 w/PHP < 5.1.3.

Parameters

name

specifies the name of the header to read; if empty or omitted, an associative array with
all headers will be returned

Return Values

Returns either a string containing the value of the header matching name, FALSE on
failure, or an associative array with all headers.

See Also

• HttpResponse::setHeader

HttpResponse::getLastModified

HttpResponse::getLastModified -- Get last modified

Description

static int HttpResponse::getLastModified (void)

Get calculated or previously set custom Last-Modified date.

Return Values

Returns the calculated or previously set Unix timestamp.

See Also

• HttpResponse::setLastModified
• HttpResponse::getETag
• HttpResponse::setETag

HttpResponse::getRequestBody

HttpResponse::getRequestBody -- Get request body

Description

static string HttpResponse::getRequestBody (void)

This function is an alias of: http_get_request_body().

HttpResponse::getRequestBodyStream

HttpResponse::getRequestBodyStream -- Get request body stream

Description

static resource HttpResponse::getRequestBodyStream (void)

This function is an alias of: http_get_request_body_stream().

HttpResponse::getRequestHeaders

HttpResponse::getRequestHeaders -- Get request headers

Description

static array HttpResponse::getRequestHeaders (void)

This function is an alias of: http_get_request_headers().

HttpResponse::getStream

HttpResponse::getStream -- Get Stream

Description

static resource HttpResponse::getStream (void)

Get the previously set resource to be sent.

Parameters

Return Values

Returns the previously set resource.

See Also

• HttpResponse::getData
• HttpResponse::setData
• HttpResponse::getFile
• HttpResponse::setFile
• HttpResponse::setStream

HttpResponse::getThrottleDelay

HttpResponse::getThrottleDelay -- Get throttle delay

Description

static double HttpResponse::getThrottleDelay (void)

Get the current throttle delay.

Return Values

Returns a double representing the throttle delay in seconds.

See Also

• HttpResponse::getBufferSize
• HttpResponse::setBufferSize
• HttpResponse::setThrottleDelay

HttpResponse::guessContentType

HttpResponse::guessContentType -- Guess content type

Description

static string HttpResponse::guessContentType (string $magic_file [, int $
magic_mode=MAGIC_MIME])

Attempts to guess the content type of supplied payload through libmagic.

If the attempt is successful, the guessed Content-Type will automatically be set as
response Content-Type.

Parameters

magic_file

specifies the magic.mime database to use

magic_mode

flags for libmagic

Return Values

Returns the guessed content type on success, or FALSE on failure.

Errors/Exceptions

Throws HttpRuntimeException, HttpInvalidParamException.

See Also

• HttpResponse::getContentType
• HttpResponse::setContentType

HttpResponse::redirect

HttpResponse::redirect -- Redirect

Description

static void HttpResponse::redirect ([string $url [, array $params [, bool $session =
FALSE [, int $status]]]])

This function is an alias of: http_redirect().

HttpResponse::send

HttpResponse::send -- Send response

Description

static bool HttpResponse::send ([bool $clean_ob = TRUE])

Finally send the entity.

A successful caching attempt will exit PHP, and write a log entry if the INI setting
http.log.cache is set. See the INI setting http.force_exit for what "exits" means.

Parameters

clean_ob

whether to destroy all previously started output handlers and their buffers

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2207 - A HttpResponse::send() example

<?php

HttpResponse::setCache(true);

HttpResponse::setContentType('application/pdf');

HttpResponse::setContentDisposition("$user.pdf", false);

HttpResponse::setFile('sheet.pdf');

HttpResponse::send();

?>

See Also

• HttpResponse::capture

HttpResponse::setBufferSize

HttpResponse::setBufferSize -- Set buffer size

Description

static bool HttpResponse::setBufferSize (int $bytes)

Sets the send buffer size of the throttling mechanism.

Note

Provides a basic throttling mechanism, which will yield the current process or thread
until the entity has been completely sent.

Note

This may not work as expected with the following SAPI(s): FastCGI.

Parameters

bytes

the chunk size in bytes

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getBufferSize
• HttpResponse::getThrottleDelay
• HttpResponse::setThrottleDelay

HttpResponse::setCache

HttpResponse::setCache -- Set cache

Description

static bool HttpResponse::setCache (bool $cache)

Whether it should be attempted to cache the entity.

This will result in necessary caching headers and checks of clients If-Modified-Since and
If-None-Match headers. If one of those headers matches a 304 Not Modified status code
will be issued.

Note

If you're using sessions, be sure that you set session.cache_limiter to something more
appropriate than "no-cache"!

Parameters

cache

whether caching should be attempted

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::setCacheControl
• HttpResponse::getCacheControl
• HttpResponse::getCachel

HttpResponse::setCacheControl

HttpResponse::setCacheControl -- Set cache control

Description

static bool HttpResponse::setCacheControl (string $control [, int $max_age = 0 [, bool
$must_revalidate = TRUE]])

Define a custom Cache-Control header, usually being private or public;

Parameters

control

the primary cache control setting

max_age

the max-age in seconds, suggesting how long the cache entry is valid on the client
side

must_revalidate

whether the cached entity should be revalidated by the client for every request

Return Values

Returns TRUE on success, or FALSE if control does not match one of public, private or
no-cache.

See Also

• HttpResponse::getCacheControl()
• HttpResponse::setCache()
• HttpResponse::getCache()

HttpResponse::setContentDisposition

HttpResponse::setContentDisposition -- Set content disposition

Description

static bool HttpResponse::setContentDisposition (string $filename [, bool $inline =
FALSE])

Set the Content-Disposition. The Content-Disposition header is very useful if the data
actually being sent came from a file or something similar, that should be "saved" by the
client/user (i.e. by the browser's "Save as..." popup window).

Parameters

filename

the file name the "Save as..." dialog should display

inline

if set to true and the user agent knows how to handle the content type, it will probably
not cause the popup window to be shown

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getContentDisposition
• HttpResponse::getContentType
• HttpResponse::setContentType

HttpResponse::setContentType

HttpResponse::setContentType -- Set content type

Description

static bool HttpResponse::setContentType (string $content_type)

Set the Content-Type of the sent entity.

Parameters

content_type

the content type of the sent entity (primary/secondary)

Return Values

Returns TRUE on success, or FALSE if the content type does not seem to contain a
primary and secondary content type part.

See Also

• HttpResponse::getContentDisposition
• HttpResponse::setContentDisposition
• HttpResponse::getContentType
• HttpResponse::guessContentType

HttpResponse::setData

HttpResponse::setData -- Set data

Description

static bool HttpResponse::setData (mixed $data)

Set the data to be sent.

Note

Previously calculated or defined ETag and Last-Modified will be recalculated and
redefined.

Parameters

data

data to send

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getData
• HttpResponse::getFile
• HttpResponse::setFile
• HttpResponse::getStream
• HttpResponse::setStream

HttpResponse::setETag

HttpResponse::setETag -- Set ETag

Description

static bool HttpResponse::setETag (string $etag)

Set a custom ETag. Use this only if you know what you're doing.

Parameters

etag

unquoted string as parameter containing the ETag

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getLastModified
• HttpResponse::setLastModified
• HttpResponse::getETag

HttpResponse::setFile

HttpResponse::setFile -- Set file

Description

static bool HttpResponse::setFile (string $file)

Set the file to be sent.

Note

Previously calculated or defined ETag and Last-Modified will be recalculated and
redefined.

Parameters

file

the path to the file to send

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getData
• HttpResponse::setData
• HttpResponse::getFile
• HttpResponse::getStream
• HttpResponse::setStream

HttpResponse::setGzip

HttpResponse::setGzip -- Set gzip

Description

static bool HttpResponse::setGzip (bool $gzip)

Enable on-thy-fly gzip'ing of the sent entity.

Parameters

gzip

whether GZip compression should be enabled

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getGzip

HttpResponse::setHeader

HttpResponse::setHeader -- Set header

Description

static bool HttpResponse::setHeader (string $name [, mixed $value [, bool $replace =
TRUE]])

Send an HTTP header.

Parameters

name

the name of the header

value

the value of the header; if not set, no header with this name will be sent

replace

whether an existing header should be replaced

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getHeader

HttpResponse::setLastModified

HttpResponse::setLastModified -- Set last modified

Description

static bool HttpResponse::setLastModified (int $timestamp)

Set a custom Last-Modified date.

Parameters

timestamp

Unix timestamp representing the last modification time of the sent entity

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getLastModified
• HttpResponse::getETag
• HttpResponse::setETag

HttpResponse::setStream

HttpResponse::setStream -- Set stream

Description

static bool HttpResponse::setStream (resource $stream)

Set the resource to be sent.

Note

Previously calculated or defined ETag and Last-Modified will be recalculated and
redefined.

Parameters

stream

already opened stream from which the data to send will be read

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getData
• HttpResponse::setData
• HttpResponse::getFile
• HttpResponse::setFile
• HttpResponse::getStream

HttpResponse::setThrottleDelay

HttpResponse::setThrottleDelay -- Set throttle delay

Description

static bool HttpResponse::setThrottleDelay (float $seconds)

Sets the throttle delay.

Note

Provides a basic throttling mechanism, which will yield the current process or thread
until the entity has been completely sent.

Note

This may not work as expected with the following SAPI(s): FastCGI.

Parameters

seconds

seconds to sleep after each chunk sent

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• HttpResponse::getBufferSize
• HttpResponse::setBufferSize
• HttpResponse::getThrottleDelay

HttpResponse::status

HttpResponse::status -- Send HTTP response status

Description

static bool HttpResponse::status (int $status)

This function is an alias of: http_send_status().

HTTP Functions

Built-in HTTP related functions previously listed on this page can be found in the
networking category.

The following functions do not need the HTTP module to be present: header(),
headers_list(), headers_sent(), setcookie() and setrawcookie().

Function groups

Caching

• http_cache_etag()
• http_cache_last_modified()

Encodings

• http_chunked_decode()
• http_deflate()
• http_inflate()

Miscellaneous

• http_build_cookie()
• http_date()
• http_get_request_body_stream()
• http_get_request_body()
• http_get_request_headers()
• http_match_etag()
• http_match_modified()
• http_match_request_header()
• http_support()

Negotiation

• http_negotiate_charset()
• http_negotiate_content_type()
• http_negotiate_language()

Outputhandlers

• ob_deflatehandler()
• ob_etaghandler()
• ob_inflatehandler()

Parsers

• http_parse_cookie()
• http_parse_headers()
• http_parse_message()
• http_parse_params()

Requests

• http_get()
• http_head()
• http_post_data()
• http_post_fields()
• http_put_data()
• http_put_file()
• http_put_stream()
• http_request_body_encode()
• http_request_method_exists()
• http_request_method_name()
• http_request_method_register()
• http_request_method_unregister()
• http_request()

Responses

• http_redirect()
• http_send_content_disposition()
• http_send_content_type()
• http_send_data()
• http_send_file()
• http_send_last_modified()
• http_send_status()
• http_send_stream()
• http_throttle()

URLs

• http_build_str()
• http_build_url()

Persistent Handles

• http_persistent_handles_count()
• http_persistent_handles_ident()
• http_persistent_handles_clean()

http_cache_etag

http_cache_etag -- Caching by ETag

Description

bool http_cache_etag ([string $etag])

Attempts to cache the sent entity by its ETag, either supplied or generated by the hash
algorithm specified by the INI setting http.etag.mode.

If the clients If-None-Match header matches the supplied/calculated ETag, the body is
considered cached on the clients side and a 304 Not Modified status code is issued.

A log entry is written to the cache log if the INI setting http.log.cache is set and the cache
attempt was successful.

Note

This function may be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

If this function is used outside the http_send_*() API, it facilitates the ob_etaghandler().

Parameters

etag

custom ETag

Return Values

Returns FALSE or exits on success with 304 Not Modified if the entity is cached. See the
INI setting http.force_exit for what "exits" means.

Examples

Example #2208 - A http_cache_etag() example

<?php

http_cache_etag();

http_send_data("data");

?>

See Also

• http_cache_last_modified()
• ob_etaghandler()
• http_match_etag()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_cache_last_modified

http_cache_last_modified -- Caching by last modification

Description

bool http_cache_last_modified ([int $timestamp_or_expires])

Attempts to cache the sent entity by its last modification date.

If the supplied argument is greater than 0, it is handled as timestamp and will be sent as
date of last modification. If it is 0 or omitted, the current time will be sent as Last-Modified
date. If it's negative, it is handled as expiration time in seconds, which means that if the
requested last modification date is not between the calculated timespan, the Last-Modified
header is updated and the actual body will be sent.

A log entry will be written to the cache log if the INI setting http.log.cache is set and the
cache attempt was successful.

Note

This function may be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

Parameters

timestamp_or_expires

Unix timestamp

Return Values

Returns FALSE or exits on success with 304 Not Modified if the entity is cached. See the
INI setting http.force_exit for what "exits" means.

Examples

Example #2209 - A http_cache_last_modified() example

Caching for 5 seconds.

<?php

http_cache_last_modified(-5);

printf("%s\n", http_date());

?>

See Also

• http_cache_etag()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_chunked_decode

http_chunked_decode -- Decode chunked-encoded data

Description

string http_chunked_decode (string $encoded)

Decodes a string which is HTTP-chunked encoded.

Parameters

encoded

chunked encoded string

Return Values

Returns the decoded string on success or FALSE on failure.

Examples

Example #2210 - A http_chunked_decode() example

<?php

$string = "".

 "05\r\n".

 "this \r\n".

 "07\r\n".

 "string \r\n".

 "12\r\n".

 "is chunked encoded\r\n".

 "01\n\r\n".

 "00";

echo http_chunked_decode($string);

?>

The above example will output:

this string is chunked encoded

http_deflate

http_deflate -- Deflate data

Description

string http_deflate (string $data [, int $flags = 0])

Compress data with gzip, zlib AKA deflate or raw deflate encoding.

See the deflate constants table for possible values for the flags parameter.

Parameters

data

String containing the data that should be encoded

flags

deflate options

Return Values

Returns the encoded string on success, or NULL on failure.

See Also

• http_inflate()
• HttpDeflateStream

http_inflate

http_inflate -- Inflate data

Description

string http_inflate (string $data)

Decompress data compressed with either gzip, deflate AKA zlib or raw deflate encoding.

Parameters

data

string containing the compressed data

Return Values

Returns the decoded string on success, or NULL on failure.

See Also

• http_deflate()
• HttpInflateStream
•

http_build_cookie

http_build_cookie -- Build cookie string

Description

string http_build_cookie (array $cookie)

Build a cookie string from an array/object like returned by http_parse_cookie().

Parameters

cookie

a cookie list like returned from http_parse_cookie()

Return Values

Returns the cookie(s) as string.

See Also

• http_parse_cookie()

http_date

http_date -- Compose HTTP RFC compliant date

Description

string http_date ([int $timestamp])

Compose a valid HTTP date regarding RFC 1123 looking like: Wed, 22 Dec 2004 11:34:47
GMT.

Parameters

timestamp

Unix timestamp; current time if omitted

Return Values

Returns the HTTP date as string.

See Also

• date()

http_get_request_body_stream

http_get_request_body_stream -- Get request body as stream

Description

resource http_get_request_body_stream (void)

Create a stream to read the raw request body (e.g. POST or PUT data).

This function can only be used once if the request method was another than POST.

Parameters

Return Values

Returns the raw request body as stream on success or NULL on failure.

See Also

• http_get_request_body()
• http_get_request_headers()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_get_request_body

http_get_request_body -- Get request body as string

Description

string http_get_request_body (void)

Get the raw request body (e.g. POST or PUT data).

This function can not be used after http_get_request_body_stream() if the request method
was another than POST.

Parameters

Return Values

Returns the raw request body as string on success or NULL on failure.

See Also

• http_get_request_body_stream()
• http_get_request_headers()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_get_request_headers

http_get_request_headers -- Get request headers as array

Description

array http_get_request_headers (void)

Get a list of incoming HTTP headers.

Parameters

Return Values

Returns an associative array of incoming request headers.

See Also

• http_get_request_body()
• http_get_request_body_stream()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_match_etag

http_match_etag -- Match ETag

Description

bool http_match_etag (string $etag [, bool $for_range = FALSE])

Matches the given ETag against the clients If-Match resp. If-None-Match HTTP headers.

Parameters

etag

the ETag to match

for_range

if set to TRUE, the header usually used to validate HTTP ranges will be checked

Return Values

Returns TRUE if ETag matches or the header contained the asterisk ("*"), else FALSE.

See Also

• http_match_last_modified()
• http_match_request_header()
• http_cache_etag()
• http_cache_last_modified()
• ob_etaghandler()

http_match_modified

http_match_modified -- Match last modification

Description

bool http_match_modified ([int $timestamp [, bool $for_range = FALSE]])

Matches the given Unix timestamp against the clients If-Modified-Since resp.
If-Unmodified-Since HTTP headers.

Parameters

timestamp

Unix timestamp; current time, if omitted

for_range

if set to TRUE, the header usually used to validate HTTP ranges will be checked

Return Values

Returns TRUE if timestamp represents an earlier date than the header, else FALSE.

See Also

• http_match_etag()
• http_match_request_header()
• http_cache_etag()
• http_cache_last_modified()

http_match_request_header

http_match_request_header -- Match any header

Description

bool http_match_request_header (string $header, string $value [, bool $match_case =
FALSE])

Match an incoming HTTP header.

Parameters

header

the header name (case-insensitive)

value

the header value that should be compared

match_case

whether the value should be compared case sensitively

Return Values

Returns TRUE if header value matches, else FALSE.

See Also

• http_match_etag()
• http_match_last_modified()

http_support

http_support -- Check built-in HTTP support

Description

int http_support ([int $feature = 0])

Check for features that require external libraries.

See the feature support constants table for possible values for the feature argument.

Parameters

feature

feature to probe for

Return Values

Returns integer, whether requested feature is supported, or a bitmask with all supported
features if feature was omitted.

Examples

Example #2211 - A http_support() example

<?php

if (!http_support(HTTP_SUPPORT_REQUESTS)) {

 die("Need HTTP request support!\n");

}

?>

http_negotiate_charset

http_negotiate_charset -- Negotiate clients preferred character set

Description

string http_negotiate_charset (array $supported [, array &$result])

This function negotiates the clients preferred charset based on its Accept-Charset HTTP
header. The qualifier is recognized and charsets without qualifier are rated highest.

Parameters

supported

array containing the supported charsets as values

result

will be filled with an array containing the negotiation results

Return Values

Returns the negotiated charset or the default charset (i.e. first array entry) if none match.

Examples

Example #2212 - Using http_negotiate_charset()

<?php

$charsets = array(

 'iso-8859-1', // default

 'iso-8859-2',

 'iso-8859-15',

 'utf-8'

);

$pref = http_negotiate_charset($charsets, $result);

if (strcmp($pref, 'iso-8859-1')) {

 iconv_set_encoding('internal_encoding', 'iso-8859-1');

 iconv_set_encoding('output_encoding', $pref);

 ob_start('ob_iconv_handler');

}

print_r($result);

?>

http_negotiate_content_type

http_negotiate_content_type -- Negotiate clients preferred content type

Description

string http_negotiate_content_type (array $supported [, array &$result])

This function negotiates the clients preferred content type based on its Accept HTTP
header. The qualifier is recognized and content types without qualifier are rated highest.

Parameters

supported

array containing the supported content types as values

result

will be filled with an array containing the negotiation results

Return Values

Returns the negotiated content type or the default content type (i.e. first array entry) if
none match.

Examples

Example #2213 - Using http_negotiate_content_type()

<?php

$content_types = array('application/xhtml+xml', 'text/html');

http_send_content_type(http_negotiate_content_type($content_types));

?>

http_negotiate_language

http_negotiate_language -- Negotiate clients preferred language

Description

string http_negotiate_language (array $supported [, array &$result])

This function negotiates the clients preferred language based on its Accept-Language
HTTP header. The qualifier is recognized and languages without qualifier are rated
highest. The qualifier will be decreased by 10% for partial matches (i.e. matching primary
language).

Parameters

supported

array containing the supported languages as values

result

will be filled with an array containing the negotiation results

Return Values

Returns the negotiated language or the default language (i.e. first array entry) if none
match.

Examples

Example #2214 - Using http_negotiate_language()

<?php

$langs = array(

 'en-US',// default

 'fr',

 'fr-FR',

 'de',

 'de-DE',

 'de-AT',

 'de-CH',

);

include './langs/'. http_negotiate_language($langs, $result) .'.php';

print_r($result);

?>

ob_deflatehandler

ob_deflatehandler -- Deflate output handler

Description

string ob_deflatehandler (string $data, int $mode)

For use with ob_start().

Note

This output handler can only be used once.

The deflate output buffer handler can only be used once.

It conflicts with ob_gzhandler() and zlib.output_compression as well and should not be
used after mbstring extension's mb_output_handler() and session extension's
URL-Rewriter (AKA session.use_trans_sid).

See Also

• ob_inflatehandler()
• ob_start()

ob_etaghandler

ob_etaghandler -- ETag output handler

Description

string ob_etaghandler (string $data, int $mode)

For use with ob_start().

Output buffer handler generating an ETag with the hash algorithm specified with the INI
setting http.etag.mode.

This output handler is used by http_cache_etag().

See Also

• http_cache_etag()
• http_match_etag()

ob_inflatehandler

ob_inflatehandler -- Inflate output handler

Description

string ob_inflatehandler (string $data, int $mode)

For use with ob_start().

Same restrictions as with ob_deflatehandler() apply.

See Also

• ob_deflatehandler()
• ob_start()

http_parse_cookie

http_parse_cookie -- Parse HTTP cookie

Description

object http_parse_cookie (string $cookie [, int $flags [, array $allowed_extras]])

Parses HTTP cookies like sent in a response into a struct.

Parameters

cookie

string containing the value of a Set-Cookie response header

flags

parse flags (HTTP_COOKIE_PARSE_RAW)

allowed_extras

array containing recognized extra keys; by default all unknown keys will be treated as
cookie names

Return Values

Returns a stdClass object on success or FALSE on failure.

Examples

Example #2215 - Using http_parse_cookie()

<?php

print_r(http_parse_cookie("foo=bar; bar=baz; path=/; domain=example.com;
comment=; secure", 0, array("comment")));

?>

The above example will output:

stdClass Object

(

 [cookies] => Array

 (

 [foo] => bar

 [bar] => baz

)

 [extras] => Array

 (

 [comment] =>

)

 [flags] => 16

 [expires] => 0

 [path] => /

 [domain] => example.com

)

See Also

• http_parse_headers()
• http_parse_message()
• http_build_cookie()

http_parse_headers

http_parse_headers -- Parse HTTP headers

Description

array http_parse_headers (string $header)

Parses HTTP headers into an associative array.

Parameters

header

string containing HTTP headers

Return Values

Returns an array on success, or FALSE on failure.

Examples

Example #2216 - Using http_parse_headers()

<?php

$headers = "content-type: text/html; charset=UTF-8\r\n".

 "Server: Funky/1.0\r\n".

 "Set-Cookie: foo=bar\r\n".

 "Set-Cookie: baz=quux\r\n".

 "Folded: works\r\n\ttoo\r\n";

print_r(http_parse_headers($headers));

?>

The above example will output:

Array

(

 [Content-Type] => text/html; chatset=UTF-8

 [Server] => Funky/1.0

 [Set-Cookie] => Array

 (

 [0] => foo=bar

 [1] => baz=quux

)

 [Folded] => works

 too

)

See Also

• http_parse_message()
• http_parse_cookie()

http_parse_message

http_parse_message -- Parse HTTP messages

Description

object http_parse_message (string $message)

Parses the HTTP message into a simple recursive object.

Parameters

message

string containing a single HTTP message or several consecutive HTTP messages

Return Values

Returns a hierarchical object structure of the parsed messages.

Examples

Example #2217 - Using http_parse_message()

<?php

define ('URL', 'http://www.example.com/');

print_r(http_parse_message(http_get(URL, array('redirect' => 3))));

?>

The above example will output something similar to:

stdClass object

(

 [type] => 2

 [httpVersion] => 1.1

 [responseCode] => 200

 [headers] => Array

 (

 [Content-Length] => 3

 [Server] => Apache

)

 [body] => Hi!

 [parentMessage] => stdClass object

 (

 [type] => 2

 [httpVersion] => 1.1

 [responseCode] => 302

 [headers] => Array

 (

 [Content-Length] => 0

 [Location] => ...

)

 [body] =>

 [parentMessage] => ...

)

)

See Also

• http_parse_headers()
• the HttpMessage class

http_parse_params

http_parse_params -- Parse parameter list

Description

object http_parse_params (string $param [, int $flags = HTTP_PARAMS_DEFAULT])

Parse parameter list.

See the params parsing constants table for possible values of the flags argument.

Parameters

param

Parameters

flags

Parse flags

Return Values

Returns parameter list as stdClass object.

Examples

Example #2218 - A http_parse_params() example

<?php

var_dump(http_parse_params("text/html; charset=\"utf8\""));

?>

The above example will output:

object(stdClass)#1 (1) {

 ["params"]=>

 array(2) {

 [0]=>

 string(9) "text/html"

 [1]=>

 array(1) {

 ["charset"]=>

 string(4) "utf8"

 }

 }

}

See Also

• http_parse_headers()
• http_parse_cookie()
• http_parse_message()

http_persistent_handles_clean

http_persistent_handles_clean -- Clean up persistent handles

Description

string http_persistent_handles_clean ([string $ident])

Clean up (close) persistent handles, optionally identified with ident.

Parameters

clean

the identification string

Return Values

No value is returned.

See Also

• http_persistent_handles_ident()
• http_persistent_handles_count()

http_persistent_handles_count

http_persistent_handles_count -- Stat persistent handles

Description

object http_persistent_handles_count (void)

List statistics about persistent handles usage.

Parameters

Return Values

Returns persistent handles statistics as stdClass object on success or FALSE on failure.

Examples

Example #2219 - A http_persistent_handles_count() example

<?php

print_r(http_persistent_handles_count());

?>

The above example will output:

stdClass Object

(

 [http_request] => Array

 (

 [GLOBAL] => Array

 (

 [used] => 0

 [free] => 1

)

)

 [http_request_datashare] => Array

 (

 [GLOBAL] => Array

 (

 [used] => 1

 [free] => 0

)

)

 [http_request_pool] => Array

 (

)

)

See Also

• http_persistent_handles_ident()
• http_persistent_handles_clean()

http_persistent_handles_ident

http_persistent_handles_ident -- Get/set ident of persistent handles

Description

string http_persistent_handles_ident (string $ident)

Query or define the ident of persistent handles.

Parameters

ident

the identification string

Return Values

Returns the prior ident as string on success or FALSE on failure.

Examples

Example #2220 - A http_persistent_handles_ident() example

<?php

echo http_persistent_handles_ident("CUSTOM"), "\n";

echo http_persistent_handles_ident("MyApp1"), "\n";

http_get("http://www.example.com/");

print_r(http_persistent_handles_count());

?>

The above example will output:

GLOBAL

CUSTOM

stdClass Object

(

 [http_request] => Array

 (

 [MyApp1] => Array

 (

 [used] => 0

 [free] => 1

)

)

 [http_request_datashare] => Array

 (

 [GLOBAL] => Array

 (

 [used] => 1

 [free] => 0

)

)

 [http_request_pool] => Array

 (

)

)

See Also

• http_persistent_handles_count()
• http_persistent_handles_clean()

http_get

http_get -- Perform GET request

Description

string http_get (string $url [, array $options [, array &$info]])

Performs an HTTP GET request on the supplied url.

See the full list of request options.

Parameters

url

URL

options

request options

info

Will be filled with request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

Examples

Example #2221 - A http_get() example

<?php

$response = http_get("http://www.example.com/", array("timeout"=>1), $info);

print_r($info);

?>

The above example will output:

array (

 'effective_url' => 'http://www.example.com/',

 'response_code' => 302,

 'connect_code' => 0,

 'filetime' => -1,

 'total_time' => 0.212348,

 'namelookup_time' => 0.038296,

 'connect_time' => 0.104144,

 'pretransfer_time' => 0.104307,

 'starttransfer_time' => 0.212077,

 'redirect_time' => 0,

 'redirect_count' => 0,

 'size_upload' => 0,

 'size_download' => 218,

 'speed_download' => 1026,

 'speed_upload' => 0,

 'header_size' => 307,

 'request_size' => 103,

 'ssl_verifyresult' => 0,

 'ssl_engines' =>

 array (

 0 => 'dynamic',

 1 => 'cswift',

 2 => 'chil',

 3 => 'atalla',

 4 => 'nuron',

 5 => 'ubsec',

 6 => 'aep',

 7 => 'sureware',

 8 => '4758cca',

),

 'content_length_download' => 218,

 'content_length_upload' => 0,

 'content_type' => 'text/html',

 'httpauth_avail' => 0,

 'proxyauth_avail' => 0,

 'num_connects' => 1,

 'os_errno' => 0,

 'error' => '',

)

http_head

http_head -- Perform HEAD request

Description

string http_head ([string $url [, array $options [, array &$info]]])

Performs an HTTP HEAD request on the supplied url.

See the full list of request options.

Parameters

url

URL

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_post_data

http_post_data -- Perform POST request with pre-encoded data

Description

string http_post_data (string $url [, string $data [, array $options [, array &$info]]])

Performs an HTTP POST request on the supplied url.

See the full list of request options.

Parameters

url

URL

data

String containing the pre-encoded post data

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_post_fields

http_post_fields -- Perform POST request with data to be encoded

Description

string http_post_fields (string $url [, array $data [, array $files [, array $options [,
array &$info]]]])

Performs an HTTP POST request on the supplied url.

See the full list of request options.

Parameters

url

URL

data

Associative array of POST values

files

Array of files to post

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

Examples

Example #2222 - A http_post_fields() example

<?php

$fields = array(

 'name' => 'mike',

 'pass' => 'se_ret'

);

$files = array(

 array(

 'name' => 'uimg',

 'type' => 'image/jpeg',

 'file' => './profile.jpg',

)

);

$response = http_post_fields("http://www.example.com/", $fields, $files);

?>

http_put_data

http_put_data -- Perform PUT request with data

Description

string http_put_data (string $url [, string $data [, array $options [, array &$info]]])

Performs an HTTP PUT request on the supplied url.

See the full list of request options.

Parameters

url

URL

data

PUT request body

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_put_file

http_put_file -- Perform PUT request with file

Description

string http_put_file (string $url [, string $file [, array $options [, array &$info]]])

Performs an HTTP PUT request on the supplied url.

See the full list of request options.

Parameters

url

URL

file

The file to put

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_put_stream

http_put_stream -- Perform PUT request with stream

Description

string http_put_stream (string $url [, resource $stream [, array $options [, array &$
info]]])

Performs an HTTP PUT request on the supplied url.

See the full list of request options.

Parameters

url

URL

stream

The stream to read the PUT request body from

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_request_body_encode

http_request_body_encode -- Encode request body

Description

string http_request_body_encode (array $fields, array $files)

Generate x-www-form-urlencoded resp. form-data encoded request body.

Parameters

fields

POST fields

files

POST files

Return Values

Returns encoded string on success, or FALSE on failure

http_request_method_exists

http_request_method_exists -- Check whether request method exists

Description

int http_request_method_exists (mixed $method)

Check if a request method is registered (or available by default).

Parameters

method

request method name or ID

Return Values

Returns TRUE if the request method is known, else FALSE.

http_request_method_name

http_request_method_name -- Get request method name

Description

string http_request_method_name (int $method)

Get the literal string representation of a standard or registered request method.

Parameters

method

request method ID

Return Values

Returns the request method name as string on success, or FALSE on failure.

http_request_method_register

http_request_method_register -- Register request method

Description

int http_request_method_register (string $method)

Register a custom request method.

Parameters

method

the request method name to register

Return Values

Returns the ID of the request method on success, or FALSE on failure.

http_request_method_unregister

http_request_method_unregister -- Unregister request method

Description

bool http_request_method_unregister (mixed $method)

Unregister a previously registered custom request method.

Parameters

method

The request method name or ID

Return Values

Returns TRUE on success or FALSE on failure.

http_request

http_request -- Perform custom request

Description

string http_request (int $method [, string $url [, string $body [, array $options [, array &$
info]]]])

Performs a custom HTTP request on the supplied url.

See the full list of request options.

Parameters

method

Request method

url

URL

body

Request body

options

request options

info

Request/response information

Return Values

Returns the HTTP response(s) as string on success, or FALSE on failure.

http_redirect

http_redirect -- Issue HTTP redirect

Description

void http_redirect ([string $url [, array $params [, bool $session = FALSE [, int $status
]]]])

Redirect to the given url.

The supplied url will be expanded with http_build_url(), the params array will be treated
with http_build_str() and the session identification will be appended if session is true. The
HTTP response code will be set according to status. You can use one of the redirect
constants for convenience. Please see » RFC 2616 for which redirect response code to
use in which situation. By default PHP will decide which response status fits best.

To be RFC compliant, "Redirecting to <a>URL." will be displayed, if the client doesn't
redirect immediately, and the request method was another one than HEAD.

A log entry will be written to the redirect log, if the INI setting http.log.redirect is set and the
redirect attempt was successful.

Parameters

url

the URL to redirect to

params

associative array of query parameters

session

whether to append session information

status

custom response status code

Return Values

Returns FALSE or exits on success with the specified redirection status code. See the INI
setting http.force_exit for what "exits" means.

Examples

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3

Example #2223 - A http_redirect() example

<?php

http_redirect("relpath", array("name" => "value"), true,
HTTP_REDIRECT_PERM);

?>

The above example will output:

HTTP/1.1 301 Moved Permanently

X-Powered-By: PHP/5.2.2

Content-Type: text/html

Location: http://www.example.com/curdir/relpath?name=value&PHPSESSID=abc

Redirecting to http:/
/www.example.com/curdir/relpath?name=value&PHPSESSID=abc.

See Also

• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_content_disposition

http_send_content_disposition -- Send Content-Disposition

Description

bool http_send_content_disposition (string $filename [, bool $inline = FALSE])

Send the Content-Disposition. The Content-Disposition header is very useful if the data
actually being sent came from a file or something similar, that should be "saved" by the
client/user (i.e. by the browser's "Save as..." popup window).

Note

This function should be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

Parameters

filename

the file name the "Save as..." dialog should display

inline

if set to TRUE and the user agent knows how to handle the content type, it will
probably not cause the popup window to be shown

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• http_send_data()
• http_send_file()
• http_send_stream()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_content_type

http_send_content_type -- Send Content-Type

Description

bool http_send_content_type ([string $content_type = 'application/x-octetstream'
])

Send the Content-Type of the sent entity.

Note

This function should be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

Parameters

content_type

the desired content type (primary/secondary)

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Raises an E_WARNING when the content_type doesn't seem to contain a primary and a
secondary part.

See Also

• http_send_data()
• http_send_file()
• http_send_stream()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_data

http_send_data -- Send arbitrary data

Description

bool http_send_data (string $data)

Sends raw data with support for (multiple) range requests.

Parameters

data

data to send

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• http_send_file()
• http_send_stream()
• http_throttle()
• http_send_content_type()
• http_send_content_disposition()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_file

http_send_file -- Send file

Description

bool http_send_file (string $file)

Sends a file with support for (multiple) range requests.

This functions behaviour and further action is dependent on the following INI setting s:
http.send.not_found_404 and http.log.not_found.

If the INI setting http.send.not_found_404 is enabled and the INI setting http.log.not_found
points to a writable file, a log message is written when the file was not found.

Parameters

file

the file to send

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2224 - A http_send_file() example

<?php

http_send_content_disposition("document.pdf", true);

http_send_content_type("application/pdf");

http_throttle(0.1, 2048);

http_send_file("../report.pdf");

?>

The above example will output:

HTTP/1.1 206 Partial Content

X-Powered-By: PHP/5.2.2

Accept-Ranges: bytes

Content-Length: 12345

Content-Range: bytes 0-12344

Content-Type: application/pdf

Content-Disposition: inline; filename="document.pdf"

%PDF...

See Also

• http_send_data()
• http_send_stream()
• http_throttle()
• http_send_content_type()
• http_send_content_disposition()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_last_modified

http_send_last_modified -- Send Last-Modified

Description

bool http_send_last_modified ([int $timestamp])

Send a Last-Modified header with a valid HTTP date.

Note

This function should be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

Parameters

timestamp

a Unix timestamp, converted to a valid HTTP date; if omitted, the current time will be
sent

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_status

http_send_status -- Send HTTP response status

Description

bool http_send_status (int $status)

Send HTTP status code.

Parameters

status

HTTP status code (100-599)

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• the HttpResponse class if you are using PHP 5.1.0 and above

http_send_stream

http_send_stream -- Send stream

Description

bool http_send_stream (resource $stream)

Sends an already opened stream with support for (multiple) range requests.

Parameters

stream

stream to read from (must be seekable)

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• http_send_data()
• http_send_file()
• http_throttle()
• http_send_content_type()
• http_send_content_disposition()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_throttle

http_throttle -- HTTP throttling

Description

void http_throttle ([float $sec [, int $bytes = 40960]])

Sets the throttle delay and send buffer size.

Note

This function should be used in conjunction with http_send_data(), http_send_file() and
http_send_stream().

Note

Provides a basic throttling mechanism, which will yield the current process or thread
until the entity has been completely sent.

Note

This may not work as expected with the following SAPI(s): FastCGI.

Parameters

sec

seconds to sleep after each chunk sent

bytes

the chunk size in bytes

Examples

Example #2225 - A http_throttle() example

Send file with approximately 20 kbyte/s.

<?php

// ~ 20 kbyte/s

http_throttle(1, 20000);

http_throttle(0.5, 10000);

http_throttle(0.1, 2000);

http_send_file('document.pdf');

?>

?>

See Also

• http_send_data()
• http_send_file()
• http_send_stream()
• the HttpResponse class if you are using PHP 5.1.0 and above

http_build_str

http_build_str -- Build query string

Description

string http_build_str (array $query [, string $prefix [, string $arg_separator]])

Opponent to parse_str().

Parameters

query

associative array of query string parameters

prefix

top level prefix

arg_separator

argument separator to use (by default the INI setting arg_separator.output will be used,
or "&" if neither is set

Return Values

Returns the built query as string on success or FALSE on failure.

See Also

• standard http_build_query()
• http_build_url()

http_build_url

http_build_url -- Build an URL

Description

string http_build_url ([mixed $url [, mixed $parts [, int $flags = HTTP_URL_REPLACE [,
array &$new_url]]]])

Build an URL.

The parts of the second URL will be merged into the first according to the flags argument.

Parameters

url

(part(s) of) an URL in form of a string or associative array like parse_url() returns

parts

same as the first argument

flags

a bitmask of binary or'ed HTTP_URL constants; HTTP_URL_REPLACE is the default

new_url

if set, it will be filled with the parts of the composed url like parse_url() would return

Return Values

Returns the new URL as string on success or FALSE on failure.

Examples

Example #2226 - A http_build_url() example

<?php

echo http_build_url("http://user@www.example.com/pub/index.php?a=b#files",

 array(

 "scheme" => "ftp",

 "host" => "ftp.example.com",

 "path" => "files/current/",

 "query" => "a=c"

),

 HTTP_URL_STRIP_AUTH | HTTP_URL_JOIN_PATH | HTTP_URL_JOIN_QUERY |
HTTP_URL_STRIP_FRAGMENT

);

?>

The above example will output:

ftp://ftp.example.com/pub/files/current/?a=b&a=c

See Also

• parse_url()
• http_build_str()

PHP / Java Integration

Introduction

There are two possible ways to bridge PHP and Java: you can either integrate PHP into a
Java Servlet environment, which is the more stable and efficient solution, or integrate Java
support into PHP. The former is provided by a SAPI module that interfaces with the Servlet
server, the latter by this Java extension.

The Java extension provides a simple and effective means for creating and invoking
methods on Java objects from PHP. The JVM is created using JNI, and everything runs
in-process.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Installing/Configuring

Requirements

You need a Java VM installed on your machine to use this extension.

Installation

This » PECL extension is not bundled with PHP.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. In order to use these functions you must compile PHP
with Java support by using the --with-java[=DIR] where DIR points to the base install
directory of your JDK. This extension can only be built as a shared extension. Additional
build instructions can be found in php-src/ext/java/README.

Windows users will enable php_java.dll inside of php.ini in order to use these functions. In
PHP 4 this DLL resides in the extensions/ directory within the PHP Windows binaries
download. The DLL for this PECL extension may be downloaded from either the » PHP
Downloads page or from » http://pecl4win.php.net/

Note

In order to enable this module on a Windows environment with PHP <= 4.0.6, you
must make jvm.dll available to your systems PATH. No additional DLL is needed for
PHP versions > 4.0.6.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Java configuration options

Name Default Changeable Changelog

java.class.path NULL PHP_INI_ALL

java.home NULL PHP_INI_ALL

java.library.path NULL PHP_INI_ALL

java.library JAVALIB PHP_INI_ALL

http://pecl.php.net/
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Java Servlet SAPI

The Java Servlet SAPI builds upon the mechanism defined by the Java extension to
enable the entire PHP processor to be run as a servlet. The primary advantage of this from
a PHP perspective is that web servers which support servlets typically take great care in
pooling and reusing JVMs. Build instructions for the Servlet SAPI module can be found in
php4/sapi/README. Notes:

• While this code is intended to be able to run on any servlet engine, it has only been
tested on Apache's Jakarta/tomcat to date. Bug reports, success stories and/or
patches required to get this code to run on other engines would be appreciated.

• PHP has a habit of changing the working directory. sapi/servlet will eventually change
it back, but while PHP is running the servlet engine may not be able to load any
classes from the CLASSPATH which are specified using a relative directory syntax, or
find the work directory used for administration and JSP compilation tasks.

Examples

Example #2227 - Java Example

<?php

// get instance of Java class java.lang.System in PHP

$system = new Java('java.lang.System');

// demonstrate property access

echo 'Java version=' . $system->getProperty('java.version') . '
';

echo 'Java vendor=' . $system->getProperty('java.vendor') . '
';

echo 'OS=' . $system->getProperty('os.name') . ' ' .

 $system->getProperty('os.version') . ' on ' .

 $system->getProperty('os.arch') . '
';

// java.util.Date example

$formatter = new Java('java.text.SimpleDateFormat',

 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");

echo $formatter->format(new Java('java.util.Date'));

?>

Example #2228 - AWT Example

<?php

// This example is only intended to be run using the CLI.

$frame = new Java('java.awt.Frame', 'PHP');

$button = new Java('java.awt.Button', 'Hello Java World!');

$frame->add('North', $button);

$frame->validate();

$frame->pack();

$frame->visible = True;

$thread = new Java('java.lang.Thread');

$thread->sleep(10000);

$frame->dispose();

?>

Notes:

• new Java() will create an instance of a class if a suitable constructor is available. If no
parameters are passed and the default constructor is useful as it provides access to
classes like java.lang.System which expose most of their functionallity through static
methods.

• Accessing a member of an instance will first look for bean properties then public fields.
In other words, print $date.time will first attempt to be resolved as $date.getTime(),

then as $date.time.

• Both static and instance members can be accessed on an object with the same syntax.
Furthermore, if the java object is of type java.lang.Class, then static members of the
class (fields and methods) can be accessed.

• Exceptions raised result in PHP warnings, and NULL results. The warnings may be
eliminated by prefixing the method call with an "@" sign. The following APIs may be
used to retrieve and reset the last error:

• java_last_exception_get()

• java_last_exception_clear()

• Overload resolution is in general a hard problem given the differences in types
between the two languages. The PHP Java extension employs a simple, but fairly
effective, metric for determining which overload is the best match. Additionally, method
names in PHP are not case sensitive, potentially increasing the number of overloads to
select from. Once a method is selected, the parameters are coerced if necessary,
possibly with a loss of data (example: double precision floating point numbers will be
converted to boolean).

• In the tradition of PHP, arrays and hashtables may pretty much be used
interchangably. Note that hashtables in PHP may only be indexed by integers or
strings; and that arrays of primitive types in Java can not be sparse. Also note that
these constructs are passed by value, so may be expensive in terms of memory and
time.

Java Functions

java_last_exception_clear

java_last_exception_clear -- Clear last Java exception

Description

void java_last_exception_clear (void)

Clears last Java exception.

Return Values

No value is returned.

Examples

See java_last_exception_get() for an example.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

java_last_exception_get

java_last_exception_get -- Get last Java exception

Description

object java_last_exception_get (void)

Gets last Java exception.

Return Values

Returns an exception object.

Examples

The following example demonstrates the usage of Java's exception handler from within
PHP:

Example #2229 - Java exception handler

<?php

$stack = new Java('java.util.Stack');

$stack->push(1);

// This should succeed

$result = $stack->pop();

$ex = java_last_exception_get();

if (!$ex) {

 echo "$result\n";

}

// This should fail (error suppressed by @)

$result = @$stack->pop();

$ex = java_last_exception_get();

if ($ex) {

 echo $ex->toString();

}

// Clear last exception

java_last_exception_clear();

?>

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This

function should be used at your own risk.

Lightweight Directory Access Protocol

Introduction

LDAP is the Lightweight Directory Access Protocol, and is a protocol used to access
"Directory Servers". The Directory is a special kind of database that holds information in a
tree structure.

The concept is similar to your hard disk directory structure, except that in this context, the
root directory is "The world" and the first level subdirectories are "countries". Lower levels
of the directory structure contain entries for companies, organisations or places, while yet
lower still we find directory entries for people, and perhaps equipment or documents.

To refer to a file in a subdirectory on your hard disk, you might use something like:
/usr/local/myapp/docs

The forwards slash marks each division in the reference, and the sequence is read from
left to right.

The equivalent to the fully qualified file reference in LDAP is the "distinguished name",
referred to simply as "dn". An example dn might be:
cn=John Smith,ou=Accounts,o=My Company,c=US

The comma marks each division in the reference, and the sequence is read from right to
left. You would read this dn as:
country = US organization = My Company organizationalUnit = Accounts commonName
= John Smith

In the same way as there are no hard rules about how you organise the directory structure
of a hard disk, a directory server manager can set up any structure that is meaningful for
the purpose. However, there are some conventions that are used. The message is that
you can not write code to access a directory server unless you know something about its
structure, any more than you can use a database without some knowledge of what is
available.

Lots of information about LDAP can be found at

• » Mozilla

• » OpenLDAP Project

The Netscape SDK contains a helpful » Programmer's Guide in HTML format.

http://www.mozilla.org/directory/
http://www.openldap.org/
http://www.mozilla.org/directory/csdk-docs/

Installing/Configuring

Requirements

You will need to get and compile LDAP client libraries from either » OpenLDAP or
» Bind9.net in order to compile PHP with LDAP support.

Installation

LDAP support in PHP is not enabled by default. You will need to use the --with-ldap[=DIR]
configuration option when compiling PHP to enable LDAP support. DIR is the LDAP base
install directory. To enable SASL support, be sure --with-ldap-sasl[=DIR] is used, and that
sasl.h exists on the system.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: libeay32.dll and ssleay32.dll

Versions before PHP 4.3.0 additionally require libsasl.dll.

In order to use Oracle LDAP libraries, proper Oracle environment has to be set.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

LDAP configuration options

Name Default Changeable Changelog

ldap.max_links "-1" PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

ftp://ftp.openldap.org/pub/OpenLDAP/openldap-stable/
http://www.bind9.net/download-openldap/
http://www.bind9.net/download-openldap/

Resource Types

Most LDAP functions operate on or return resources (e.g. ldap_connect() returns a
positive LDAP link identifier required by most LDAP functions).

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

LDAP_DEREF_NEVER (integer)

LDAP_DEREF_SEARCHING (integer)

LDAP_DEREF_FINDING (integer)

LDAP_DEREF_ALWAYS (integer)

LDAP_OPT_DEREF (integer)

LDAP_OPT_SIZELIMIT (integer)

LDAP_OPT_TIMELIMIT (integer)

LDAP_OPT_NETWORK_TIMEOUT (integer)
Option for ldap_set_option() to allow setting network timeout. (Available as of PHP
5.3.0)

LDAP_OPT_PROTOCOL_VERSION (integer)

LDAP_OPT_ERROR_NUMBER (integer)

LDAP_OPT_REFERRALS (integer)

LDAP_OPT_RESTART (integer)

LDAP_OPT_HOST_NAME (integer)

LDAP_OPT_ERROR_STRING (integer)

LDAP_OPT_MATCHED_DN (integer)

LDAP_OPT_SERVER_CONTROLS (integer)

LDAP_OPT_CLIENT_CONTROLS (integer)

LDAP_OPT_DEBUG_LEVEL (integer)

GSLC_SSL_NO_AUTH (integer)

GSLC_SSL_ONEWAY_AUTH (integer)

GSLC_SSL_TWOWAY_AUTH (integer)

Using the PHP LDAP calls

Before you can use the LDAP calls you will need to know ..

• The name or address of the directory server you will use

• The "base dn" of the server (the part of the world directory that is held on this server,
which could be "o=My Company,c=US")

• Whether you need a password to access the server (many servers will provide read
access for an "anonymous bind" but require a password for anything else)

The typical sequence of LDAP calls you will make in an application will follow this pattern:
ldap_connect() // establish connection to server | ldap_bind() // anonymous or
authenticated "login" | do something like search or update the directory and
display the results | ldap_close() // "logout"

Examples

Retrieve information for all entries where the surname starts with "S" from a directory
server, displaying an extract with name and email address.

Example #2230 - LDAP search example

<?php

// basic sequence with LDAP is connect, bind, search, interpret search

// result, close connection

echo "<h3>LDAP query test</h3>";

echo "Connecting ...";

$ds=ldap_connect("localhost"); // must be a valid LDAP server!

echo "connect result is " . $ds . "
";

if ($ds) {

 echo "Binding ...";

 $r=ldap_bind($ds); // this is an "anonymous" bind, typically

 // read-only access

 echo "Bind result is " . $r . "
";

 echo "Searching for (sn=S*) ...";

 // Search surname entry

 $sr=ldap_search($ds, "o=My Company, c=US", "sn=S*");

 echo "Search result is " . $sr . "
";

 echo "Number of entires returned is " . ldap_count_entries($ds, $sr) .
"
";

 echo "Getting entries ...<p>";

 $info = ldap_get_entries($ds, $sr);

 echo "Data for " . $info["count"] . " items returned:<p>";

 for ($i=0; $i<$info["count"]; $i++) {

 echo "dn is: " . $info[$i]["dn"] . "
";

 echo "first cn entry is: " . $info[$i]["cn"][0] . "
";

 echo "first email entry is: " . $info[$i]["mail"][0] . "
<hr
/>";

 }

 echo "Closing connection";

 ldap_close($ds);

} else {

 echo "<h4>Unable to connect to LDAP server</h4>";

}

?>

LDAP Functions

ldap_8859_to_t61

ldap_8859_to_t61 -- Translate 8859 characters to t61 characters

Description

string ldap_8859_to_t61 (string $value)

Translate ISO-8859 characters to t61 characters.

This function is useful if you have to talk to a legacy LDAPv2 server.

Parameters

value

The text to be translated.

Return Values

Return the t61 translation of value.

See Also

• ldap_t61_to_8859()

ldap_add

ldap_add -- Add entries to LDAP directory

Description

bool ldap_add (resource $link_identifier, string $dn, array $entry)

Add entries in the LDAP directory.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

entry

An array that specifies the information about the entry. The values in the entries are
indexed by individual attributes. In case of multiple values for an attribute, they are
indexed using integers starting with 0.

<?php

$entree["attribut1"] = "value";

$entree["attribut2"][0] = "value1";

$entree["attribut2"][1] = "value2";

?>

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2231 - Complete example with authenticated bind

<?php

$ds = ldap_connect("localhost"); // assuming the LDAP server is on this
host

if ($ds) {

 // bind with appropriate dn to give update access

 $r = ldap_bind($ds, "cn=root, o=My Company, c=US", "secret");

 // prepare data

 $info["cn"] = "John Jones";

 $info["sn"] = "Jones";

 $info["mail"] = "jonj@example.com";

 $info["objectclass"] = "person";

 // add data to directory

 $r = ldap_add($ds, "cn=John Jones, o=My Company, c=US", $info);

 ldap_close($ds);

} else {

 echo "Unable to connect to LDAP server";

}

?>

Notes

Note

This function is binary-safe.

See Also

• ldap_delete()

ldap_bind

ldap_bind -- Bind to LDAP directory

Description

bool ldap_bind (resource $link_identifier [, string $bind_rdn [, string $bind_password
]])

Binds to the LDAP directory with specified RDN and password.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

bind_rdn

bind_password

If bind_rdn and bind_password are not specified, an anonymous bind is attempted.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2232 - Using LDAP Bind

<?php

// using ldap bind

$ldaprdn = 'uname'; // ldap rdn or dn

$ldappass = 'password'; // associated password

// connect to ldap server

$ldapconn = ldap_connect("ldap.example.com")

 or die("Could not connect to LDAP server.");

if ($ldapconn) {

 // binding to ldap server

 $ldapbind = ldap_bind($ldapconn, $ldaprdn, $ldappass);

 // verify binding

 if ($ldapbind) {

 echo "LDAP bind successful...";

 } else {

 echo "LDAP bind failed...";

 }

}

?>

Example #2233 - Using LDAP Bind Anonymously

<?php

//using ldap bind anonymously

// connect to ldap server

$ldapconn = ldap_connect("ldap.example.com")

 or die("Could not connect to LDAP server.");

if ($ldapconn) {

 // binding anonymously

 $ldapbind = ldap_bind($ldapconn);

 if ($ldapbind) {

 echo "LDAP bind anonymous successful...";

 } else {

 echo "LDAP bind anonymous failed...";

 }

}

?>

See Also

• ldap_unbind()

ldap_close

ldap_close -- Alias of ldap_unbind()

Description

This function is an alias of: ldap_unbind().

ldap_compare

ldap_compare -- Compare value of attribute found in entry specified with DN

Description

mixed ldap_compare (resource $link_identifier, string $dn, string $attribute, string
$value)

Compare value of attribute with value of same attribute in an LDAP directory entry.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

attribute

The attribute name.

value

The compared value.

Return Values

Returns TRUE if value matches otherwise returns FALSE. Returns -1 on error.

Examples

The following example demonstrates how to check whether or not given password
matches the one defined in DN specified entry.

Example #2234 - Complete example of password check

<?php

$ds=ldap_connect("localhost"); // assuming the LDAP server is on this host

if ($ds) {

 // bind

 if (ldap_bind($ds)) {

 // prepare data

 $dn = "cn=Matti Meikku, ou=My Unit, o=My Company, c=FI";

 $value = "secretpassword";

 $attr = "password";

 // compare value

 $r=ldap_compare($ds, $dn, $attr, $value);

 if ($r === -1) {

 echo "Error: " . ldap_error($ds);

 } elseif ($r === true) {

 echo "Password correct.";

 } elseif ($r === false) {

 echo "Wrong guess! Password incorrect.";

 }

 } else {

 echo "Unable to bind to LDAP server.";

 }

 ldap_close($ds);

} else {

 echo "Unable to connect to LDAP server.";

}

?>

Notes

Warning

ldap_compare() can NOT be used to compare BINARY values!

ldap_connect

ldap_connect -- Connect to an LDAP server

Description

resource ldap_connect ([string $hostname [, int $port]])

Establishes a connection to a LDAP server on a specified hostname and port.

Parameters

hostname

If you are using OpenLDAP 2.x.x you can specify a URL instead of the hostname. To
use LDAP with SSL, compile OpenLDAP 2.x.x with SSL support, configure PHP with
SSL, and set this parameter as ldaps://hostname/.

port

The port to connect to. Not used when using URLs. Defaults to 389.

Return Values

Returns a positive LDAP link identifier on success, or FALSE on error. When OpenLDAP
2.x.x is used, ldap_connect() will always return a resource as it does not actually connect
but just initializes the connecting parameters. The actual connect happens with the next
calls to ldap_* funcs, usually with ldap_bind().

If no arguments are specified then the link identifier of the already opened link will be
returned.

ChangeLog

Version Description

4.0.4 URL and SSL support was added.

Examples

Example #2235 - Example of connecting to LDAP server.

<?php

// LDAP variables

$ldaphost = "ldap.example.com"; // your ldap servers

$ldapport = 389; // your ldap server's port number

// Connecting to LDAP

$ldapconn = ldap_connect($ldaphost, $ldapport)

 or die("Could not connect to $ldaphost");

?>

Example #2236 - Example of connecting securely to LDAP server.

<?php

// make sure your host is the correct one

// that you issued your secure certificate to

$ldaphost = "ldaps://ldap.example.com/";

// Connecting to LDAP

$ldapconn = ldap_connect($ldaphost)

 or die("Could not connect to {$ldaphost}");

?>

See Also

• ldap_bind()

ldap_count_entries

ldap_count_entries -- Count the number of entries in a search

Description

int ldap_count_entries (resource $link_identifier, resource $result_identifier)

Returns the number of entries stored in the result of previous search operations.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_identifier

The internal LDAP result.

Return Values

Returns number of entries in the result or FALSE on error.

ldap_delete

ldap_delete -- Delete an entry from a directory

Description

bool ldap_delete (resource $link_identifier, string $dn)

Deletes a particular entry in LDAP directory.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ldap_add()

ldap_dn2ufn

ldap_dn2ufn -- Convert DN to User Friendly Naming format

Description

string ldap_dn2ufn (string $dn)

Turns the specified dn, into a more user-friendly form, stripping off type names.

Parameters

dn

The distinguished name of an LDAP entity.

Return Values

Returns the user friendly name.

ldap_err2str

ldap_err2str -- Convert LDAP error number into string error message

Description

string ldap_err2str (int $errno)

Returns the string error message explaining the error number errno. While LDAP errno
numbers are standardized, different libraries return different or even localized textual error
messages. Never check for a specific error message text, but always use an error number
to check.

Parameters

errno

The error number.

Return Values

Returns the error message, as a string.

Examples

Example #2237 - Enumerating all LDAP error messages

<?php

 for ($i=0; $i<100; $i++) {

 printf("Error $i: %s
\n", ldap_err2str($i));

 }

?>

See Also

• ldap_errno()
• ldap_error()

ldap_errno

ldap_errno -- Return the LDAP error number of the last LDAP command

Description

int ldap_errno (resource $link_identifier)

Returns the standardized error number returned by the last LDAP command. This number
can be converted into a textual error message using ldap_err2str().

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

Return Values

Return the LDAP error number of the last LDAP command for this link.

Examples

Unless you lower your warning level in your php.ini sufficiently or prefix your LDAP
commands with @ (at) characters to suppress warning output, the errors generated will
also show up in your HTML output.

Example #2238 - Generating and catching an error

<?php

// This example contains an error, which we will catch.

$ld = ldap_connect("localhost");

$bind = ldap_bind($ld);

// syntax error in filter expression (errno 87),

// must be "objectclass=*" to work.

$res = @ldap_search($ld, "o=Myorg, c=DE", "objectclass");

if (!$res) {

 echo "LDAP-Errno: " . ldap_errno($ld) . "
\n";

 echo "LDAP-Error: " . ldap_error($ld) . "
\n";

 die("Argh!
\n");

}

$info = ldap_get_entries($ld, $res);

echo $info["count"] . " matching entries.
\n";

?>

See Also

• ldap_err2str()
• ldap_error()

ldap_error

ldap_error -- Return the LDAP error message of the last LDAP command

Description

string ldap_error (resource $link_identifier)

Returns the string error message explaining the error generated by the last LDAP
command for the given link_identifier. While LDAP errno numbers are standardized,
different libraries return different or even localized textual error messages. Never check for
a specific error message text, but always use an error number to check.

Unless you lower your warning level in your php.ini sufficiently or prefix your LDAP
commands with @ (at) characters to suppress warning output, the errors generated will
also show up in your HTML output.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

Return Values

Returns string error message.

See Also

• ldap_err2str()
• ldap_errno()

ldap_explode_dn

ldap_explode_dn -- Splits DN into its component parts

Description

array ldap_explode_dn (string $dn, int $with_attrib)

Splits the DN returned by ldap_get_dn() and breaks it up into its component parts. Each
part is known as Relative Distinguished Name, or RDN.

Parameters

dn

The distinguished name of an LDAP entity.

with_attrib

Used to request if the RDNs are returned with only values or their attributes as well. To
get RDNs with the attributes (i.e. in attribute=value format) set with_attrib to 0 and to
get only values set it to 1.

Return Values

Returns an array of all DN components.

ldap_first_attribute

ldap_first_attribute -- Return first attribute

Description

string ldap_first_attribute (resource $link_identifier, resource $
result_entry_identifier)

Gets the first attribute in the given entry. Remaining attributes are retrieved by calling
ldap_next_attribute() successively.

Similar to reading entries, attributes are also read one by one from a particular entry.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

ber_identifier

ber_identifier is the identifier to internal memory location pointer. It is passed by
reference. The same ber_identifier is passed to ldap_next_attribute(), which
modifies that pointer.

Note

This parameter is no longer used as this is now handled automatically by PHP. For
backwards compatibility PHP will not throw an error if this parameter is passed.

Return Values

Returns the first attribute in the entry on success and FALSE on error.

ChangeLog

Version Description

5.2.4 The ber_identifier was removed. This is
now handled automatically by PHP.

See Also

• ldap_next_attribute()
• ldap_get_attributes()

ldap_first_entry

ldap_first_entry -- Return first result id

Description

resource ldap_first_entry (resource $link_identifier, resource $result_identifier)

Returns the entry identifier for first entry in the result. This entry identifier is then supplied
to ldap_next_entry() routine to get successive entries from the result.

Entries in the LDAP result are read sequentially using the ldap_first_entry() and
ldap_next_entry() functions.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_identifier

Return Values

Returns the result entry identifier for the first entry on success and FALSE on error.

See Also

• ldap_get_entries()

ldap_first_reference

ldap_first_reference -- Return first reference

Description

resource ldap_first_reference (resource $link, resource $result)

Warning

This function is currently not documented; only its argument list is available.

ldap_free_result

ldap_free_result -- Free result memory

Description

bool ldap_free_result (resource $result_identifier)

Frees up the memory allocated internally to store the result. All result memory will be
automatically freed when the script terminates.

Typically all the memory allocated for the LDAP result gets freed at the end of the script. In
case the script is making successive searches which return large result sets,
ldap_free_result() could be called to keep the runtime memory usage by the script low.

Parameters

result_identifier

Return Values

Returns TRUE on success or FALSE on failure.

ldap_get_attributes

ldap_get_attributes -- Get attributes from a search result entry

Description

array ldap_get_attributes (resource $link_identifier, resource $
result_entry_identifier)

Reads attributes and values from an entry in the search result.

Having located a specific entry in the directory, you can find out what information is held
for that entry by using this call. You would use this call for an application which "browses"
directory entries and/or where you do not know the structure of the directory entries. In
many applications you will be searching for a specific attribute such as an email address or
a surname, and won't care what other data is held.

return_value["count"] = number of attributes in the entry

return_value[0] = first attribute

return_value[n] = nth attribute

return_value["attribute"]["count"] = number of values for attribute

return_value["attribute"][0] = first value of the attribute

return_value["attribute"][i] = (i+1)th value of the attribute

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

Return Values

Returns a complete entry information in a multi-dimensional array on success and FALSE
on error.

Examples

Example #2239 - Show the list of attributes held for a particular directory entry

<?php

// $ds is the link identifier for the directory

// $sr is a valid search result from a prior call to

// one of the ldap directory search calls

$entry = ldap_first_entry($ds, $sr);

$attrs = ldap_get_attributes($ds, $entry);

echo $attrs["count"] . " attributes held for this entry:<p>";

for ($i=0; $i < $attrs["count"]; $i++) {

 echo $attrs[$i] . "
";

}

?>

See Also

• ldap_first_attribute()
• ldap_next_attribute()

ldap_get_dn

ldap_get_dn -- Get the DN of a result entry

Description

string ldap_get_dn (resource $link_identifier, resource $result_entry_identifier)

Finds out the DN of an entry in the result.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

Return Values

Returns the DN of the result entry and FALSE on error.

ldap_get_entries

ldap_get_entries -- Get all result entries

Description

array ldap_get_entries (resource $link_identifier, resource $result_identifier)

Reads multiple entries from the given result, and then reading the attributes and multiple
values.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_identifier

Return Values

Returns a complete result information in a multi-dimensional array on success and FALSE
on error.

The structure of the array is as follows. The attribute index is converted to lowercase.
(Attributes are case-insensitive for directory servers, but not when used as array indices.)

return_value["count"] = number of entries in the result

return_value[0] : refers to the details of first entry

return_value[i]["dn"] = DN of the ith entry in the result

return_value[i]["count"] = number of attributes in ith entry

return_value[i][j] = jth attribute in the ith entry in the result

return_value[i]["attribute"]["count"] = number of values for

 attribute in ith entry

return_value[i]["attribute"][j] = jth value of attribute in ith entry

See Also

• ldap_first_entry()
• ldap_next_entry()

ldap_get_option

ldap_get_option -- Get the current value for given option

Description

bool ldap_get_option (resource $link_identifier, int $option, mixed &$retval)

Sets retval to the value of the specified option.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

option

The parameter option can be one of:

Option Type

LDAP_OPT_DEREF integer

LDAP_OPT_SIZELIMIT integer

LDAP_OPT_TIMELIMIT integer

LDAP_OPT_NETWORK_TIMEOUT integer

LDAP_OPT_PROTOCOL_VERSION integer

LDAP_OPT_ERROR_NUMBER integer

LDAP_OPT_REFERRALS bool

LDAP_OPT_RESTART bool

LDAP_OPT_HOST_NAME string

LDAP_OPT_ERROR_STRING string

LDAP_OPT_MATCHED_DN string

LDAP_OPT_SERVER_CONTROLS array

LDAP_OPT_CLIENT_CONTROLS array

retval

This will be set to the option value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2240 - Check protocol version

<?php

// $ds is a valid link identifier for a directory server

if (ldap_get_option($ds, LDAP_OPT_PROTOCOL_VERSION, $version)) {

 echo "Using protocol version $version\n";

} else {

 echo "Unable to determine protocol version\n";

}

?>

Notes

Note

This function is only available when using OpenLDAP 2.x.x OR Netscape Directory SDK
x.x.

See Also

• ldap_set_option()

ldap_get_values_len

ldap_get_values_len -- Get all binary values from a result entry

Description

array ldap_get_values_len (resource $link_identifier, resource $
result_entry_identifier, string $attribute)

Reads all the values of the attribute in the entry in the result.

This function is used exactly like ldap_get_values() except that it handles binary data and not
string data.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

attribute

Return Values

Returns an array of values for the attribute on success and FALSE on error. Individual values
are accessed by integer index in the array. The first index is 0. The number of values can be
found by indexing "count" in the resultant array.

See Also

• ldap_get_values()

ldap_get_values

ldap_get_values -- Get all values from a result entry

Description

array ldap_get_values (resource $link_identifier, resource $result_entry_identifier,
string $attribute)

Reads all the values of the attribute in the entry in the result.

This call needs a result_entry_identifier, so needs to be preceded by one of the ldap
search calls and one of the calls to get an individual entry.

You application will either be hard coded to look for certain attributes (such as "surname" or
"mail") or you will have to use the ldap_get_attributes() call to work out what attributes exist for
a given entry.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

attribute

Return Values

Returns an array of values for the attribute on success and FALSE on error. The number of
values can be found by indexing "count" in the resultant array. Individual values are accessed
by integer index in the array. The first index is 0.

LDAP allows more than one entry for an attribute, so it can, for example, store a number of
email addresses for one person's directory entry all labeled with the attribute "mail"
return_value["count"] = number of values for attribute return_value[0] = first
value of attribute return_value[i] = ith value of attribute

Examples

Example #2241 - List all values of the "mail" attribute for a directory entry

<?php

// $ds is a valid link identifier for a directory server

// $sr is a valid search result from a prior call to

// one of the ldap directory search calls

// $entry is a valid entry identifier from a prior call to

// one of the calls that returns a directory entry

$values = ldap_get_values($ds, $entry, "mail");

echo $values["count"] . " email addresses for this entry.
";

for ($i=0; $i < $values["count"]; $i++) {

 echo $values[$i] . "
";

}

?>

See Also

• ldap_get_values_len()

ldap_list

ldap_list -- Single-level search

Description

resource ldap_list (resource $link_identifier, string $base_dn, string $filter [, array $
attributes [, int $attrsonly [, int $sizelimit [, int $timelimit [, int $deref]]]]])

Performs the search for a specified filter on the directory with the scope
LDAP_SCOPE_ONELEVEL.

LDAP_SCOPE_ONELEVEL means that the search should only return information that is at
the level immediately below the base_dn given in the call. (Equivalent to typing "ls" and getting
a list of files and folders in the current working directory.)

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

base_dn

The base DN for the directory.

filter

attributes

An array of the required attributes, e.g. array("mail", "sn", "cn"). Note that the "dn" is
always returned irrespective of which attributes types are requested. Using this parameter
is much more efficient than the default action (which is to return all attributes and their
associated values). The use of this parameter should therefore be considered good
practice.

attrsonly

Should be set to 1 if only attribute types are wanted. If set to 0 both attributes types and
attribute values are fetched which is the default behaviour.

sizelimit

Enables you to limit the count of entries fetched. Setting this to 0 means no limit.

Note

This parameter can NOT override server-side preset sizelimit. You can set it lower
though.

Some directory server hosts will be configured to return no more than a preset number
of entries. If this occurs, the server will indicate that it has only returned a partial results

set. This also occurs if you use this parameter to limit the count of fetched entries.

timelimit

Sets the number of seconds how long is spend on the search. Setting this to 0 means no
limit.

Note

This parameter can NOT override server-side preset timelimit. You can set it lower
though.

deref

Specifies how aliases should be handled during the search. It can be one of the following:

• LDAP_DEREF_NEVER - (default) aliases are never dereferenced.

• LDAP_DEREF_SEARCHING - aliases should be dereferenced during the search but
not when locating the base object of the search.

• LDAP_DEREF_FINDING - aliases should be dereferenced when locating the base
object but not during the search.

• LDAP_DEREF_ALWAYS - aliases should be dereferenced always.

Return Values

Returns a search result identifier or FALSE on error.

ChangeLog

Version Description

4.0.5 Parallel searches support was added. See
ldap_search() for details.

4.0.2 The attrsonly, sizelimit, timelimit and
deref were added.

Examples

Example #2242 - Produce a list of all organizational units of an organization

// $ds is a valid link identifier for a directory server

$basedn = "o=My Company, c=US";

$justthese = array("ou");

$sr=ldap_list($ds, $basedn, "ou=*", $justthese);

$info = ldap_get_entries($ds, $sr);

for ($i=0; $i<$info["count"]; $i++) {

 echo $info[$i]["ou"][0] ;

}

See Also

• ldap_search()

ldap_mod_add

ldap_mod_add -- Add attribute values to current attributes

Description

bool ldap_mod_add (resource $link_identifier, string $dn, array $entry)

Adds one or more attributes to the specified dn. It performs the modification at the attribute
level as opposed to the object level. Object-level additions are done by the ldap_add()
function.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

entry

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is binary-safe.

See Also

• ldap_mod_del()
• ldap_mod_replace()

ldap_mod_del

ldap_mod_del -- Delete attribute values from current attributes

Description

bool ldap_mod_del (resource $link_identifier, string $dn, array $entry)

Removes one or more attributes from the specified dn. It performs the modification at the
attribute level as opposed to the object level. Object-level deletions are done by the
ldap_delete() function.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

entry

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ldap_mod_add()
• ldap_mod_replace()

ldap_mod_replace

ldap_mod_replace -- Replace attribute values with new ones

Description

bool ldap_mod_replace (resource $link_identifier, string $dn, array $entry)

Replaces one or more attributes from the specified dn. It performs the modification at the
attribute level as opposed to the object level. Object-level modifications are done by the
ldap_modify() function.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

entry

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is binary-safe.

See Also

• ldap_mod_del()
• ldap_mod_add()

ldap_modify

ldap_modify -- Modify an LDAP entry

Description

bool ldap_modify (resource $link_identifier, string $dn, array $entry)

Modify the existing entries in the LDAP directory. The structure of the entry is same as in
ldap_add().

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

entry

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is binary-safe.

See Also

• ldap_rename()

ldap_next_attribute

ldap_next_attribute -- Get the next attribute in result

Description

string ldap_next_attribute (resource $link_identifier, resource $
result_entry_identifier)

Retrieves the attributes in an entry. The first call to ldap_next_attribute() is made with the
result_entry_identifier returned from ldap_first_attribute().

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

ber_identifier

The internal state of the pointer is maintained by this parameter.

Note

This parameter is no longer used as this is now handled automatically by PHP. For
backwards compatibility PHP will not throw an error if this parameter is passed.

Return Values

Returns the next attribute in an entry on success and FALSE on error.

ChangeLog

Version Description

5.2.4 The ber_identifier was removed. This is
now handled automatically by PHP.

See Also

• ldap_get_attributes()

ldap_next_entry

ldap_next_entry -- Get next result entry

Description

resource ldap_next_entry (resource $link_identifier, resource $
result_entry_identifier)

Retrieve the entries stored in the result. Successive calls to the ldap_next_entry() return
entries one by one till there are no more entries. The first call to ldap_next_entry() is made
after the call to ldap_first_entry() with the result_entry_identifier as returned from the
ldap_first_entry().

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

result_entry_identifier

Return Values

Returns entry identifier for the next entry in the result whose entries are being read starting
with ldap_first_entry(). If there are no more entries in the result then it returns FALSE.

See Also

• ldap_get_entries()

ldap_next_reference

ldap_next_reference -- Get next reference

Description

resource ldap_next_reference (resource $link, resource $entry)

Warning

This function is currently not documented; only its argument list is available.

ldap_parse_reference

ldap_parse_reference -- Extract information from reference entry

Description

bool ldap_parse_reference (resource $link, resource $entry, array &$referrals)

Warning

This function is currently not documented; only its argument list is available.

ldap_parse_result

ldap_parse_result -- Extract information from result

Description

bool ldap_parse_result (resource $link, resource $result, int &$errcode [, string &$
matcheddn [, string &$errmsg [, array &$referrals]]])

Warning

This function is currently not documented; only its argument list is available.

ldap_read

ldap_read -- Read an entry

Description

resource ldap_read (resource $link_identifier, string $base_dn, string $filter [, array
$attributes [, int $attrsonly [, int $sizelimit [, int $timelimit [, int $deref]]]]])

Performs the search for a specified filter on the directory with the scope
LDAP_SCOPE_BASE. So it is equivalent to reading an entry from the directory.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

base_dn

The base DN for the directory.

filter

An empty filter is not allowed. If you want to retrieve absolutely all information for this
entry, use a filter of objectClass=*. If you know which entry types are used on the
directory server, you might use an appropriate filter such as
objectClass=inetOrgPerson.

attributes

An array of the required attributes, e.g. array("mail", "sn", "cn"). Note that the "dn" is
always returned irrespective of which attributes types are requested. Using this
parameter is much more efficient than the default action (which is to return all
attributes and their associated values). The use of this parameter should therefore be
considered good practice.

attrsonly

Should be set to 1 if only attribute types are wanted. If set to 0 both attributes types
and attribute values are fetched which is the default behaviour.

sizelimit

Enables you to limit the count of entries fetched. Setting this to 0 means no limit.

Note

This parameter can NOT override server-side preset sizelimit. You can set it lower
though.

Some directory server hosts will be configured to return no more than a preset
number of entries. If this occurs, the server will indicate that it has only returned a
partial results set. This also occurs if you use this parameter to limit the count of

fetched entries.

timelimit

Sets the number of seconds how long is spend on the search. Setting this to 0 means
no limit.

Note

This parameter can NOT override server-side preset timelimit. You can set it lower
though.

deref

Specifies how aliases should be handled during the search. It can be one of the
following:

• LDAP_DEREF_NEVER - (default) aliases are never dereferenced.

• LDAP_DEREF_SEARCHING - aliases should be dereferenced during the search
but not when locating the base object of the search.

• LDAP_DEREF_FINDING - aliases should be dereferenced when locating the base
object but not during the search.

• LDAP_DEREF_ALWAYS - aliases should be dereferenced always.

Return Values

Returns a search result identifier or FALSE on error.

ChangeLog

Version Description

4.0.5 Parallel searches support was added. See
ldap_search() for details.

4.0.2 The attrsonly, sizelimit, timelimit and
deref were added.

ldap_rename

ldap_rename -- Modify the name of an entry

Description

bool ldap_rename (resource $link_identifier, string $dn, string $newrdn, string $
newparent, bool $deleteoldrdn)

The entry specified by dn is renamed/moved.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

dn

The distinguished name of an LDAP entity.

newrdn

The new RDN.

newparent

The new parent/superior entry.

deleteoldrdn

If TRUE the old RDN value(s) is removed, else the old RDN value(s) is retained as
non-distinguished values of the entry.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function currently only works with LDAPv3. You may have to use
ldap_set_option() prior to binding to use LDAPv3. This function is only available when
using OpenLDAP 2.x.x OR Netscape Directory SDK x.x.

See Also

• ldap_modify()

ldap_sasl_bind

ldap_sasl_bind -- Bind to LDAP directory using SASL

Description

bool ldap_sasl_bind (resource $link [, string $binddn [, string $password [, string $
sasl_mech [, string $sasl_realm [, string $sasl_authz_id [, string $props]]]]]])

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Requirement

ldap_sasl_bind() requires SASL support (sasl.h). Be sure --with-ldap-sasl is used
when configuring PHP otherwise this function will be undefined.

ldap_search

ldap_search -- Search LDAP tree

Description

resource ldap_search (resource $link_identifier, string $base_dn, string $filter [,
array $attributes [, int $attrsonly [, int $sizelimit [, int $timelimit [, int $deref]]]]]
)

Performs the search for a specified filter on the directory with the scope of
LDAP_SCOPE_SUBTREE. This is equivalent to searching the entire directory.

From 4.0.5 on it's also possible to do parallel searches. To do this you use an array of link
identifiers, rather than a single identifier, as the first argument. If you don't want the same
base DN and the same filter for all the searches, you can also use an array of base DNs
and/or an array of filters. Those arrays must be of the same size as the link identifier array
since the first entries of the arrays are used for one search, the second entries are used
for another, and so on. When doing parallel searches an array of search result identifiers is
returned, except in case of error, then the entry corresponding to the search will be FALSE
. This is very much like the value normally returned, except that a result identifier is always
returned when a search was made. There are some rare cases where the normal search
returns FALSE while the parallel search returns an identifier.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

base_dn

The base DN for the directory.

filter

The search filter can be simple or advanced, using boolean operators in the format
described in the LDAP documentation (see the » Netscape Directory SDK for full
information on filters).

attributes

An array of the required attributes, e.g. array("mail", "sn", "cn"). Note that the "dn" is
always returned irrespective of which attributes types are requested. Using this
parameter is much more efficient than the default action (which is to return all
attributes and their associated values). The use of this parameter should therefore be
considered good practice.

attrsonly

Should be set to 1 if only attribute types are wanted. If set to 0 both attributes types
and attribute values are fetched which is the default behaviour.

http://www.mozilla.org/directory/csdk-docs/filter.htm

sizelimit

Enables you to limit the count of entries fetched. Setting this to 0 means no limit.

Note

This parameter can NOT override server-side preset sizelimit. You can set it lower
though.

Some directory server hosts will be configured to return no more than a preset
number of entries. If this occurs, the server will indicate that it has only returned a
partial results set. This also occurs if you use this parameter to limit the count of
fetched entries.

timelimit

Sets the number of seconds how long is spend on the search. Setting this to 0 means
no limit.

Note

This parameter can NOT override server-side preset timelimit. You can set it lower
though.

deref

Specifies how aliases should be handled during the search. It can be one of the
following:

• LDAP_DEREF_NEVER - (default) aliases are never dereferenced.

• LDAP_DEREF_SEARCHING - aliases should be dereferenced during the search
but not when locating the base object of the search.

• LDAP_DEREF_FINDING - aliases should be dereferenced when locating the base
object but not during the search.

• LDAP_DEREF_ALWAYS - aliases should be dereferenced always.

Return Values

Returns a search result identifier or FALSE on error.

ChangeLog

Version Description

4.0.5 Parallel searches support was added.

4.0.2 The attrsonly, sizelimit, timelimit and
deref were added.

Examples

The example below retrieves the organizational unit, surname, given name and email
address for all people in "My Company" where the surname or given name contains the
substring $person. This example uses a boolean filter to tell the server to look for
information in more than one attribute.

Example #2243 - LDAP search

<?php

// $ds is a valid link identifier for a directory server

// $person is all or part of a person's name, eg "Jo"

$dn = "o=My Company, c=US";

$filter="(|(sn=$person*)(givenname=$person*))";

$justthese = array("ou", "sn", "givenname", "mail");

$sr=ldap_search($ds, $dn, $filter, $justthese);

$info = ldap_get_entries($ds, $sr);

echo $info["count"]." entries returned\n";

?>

ldap_set_option

ldap_set_option -- Set the value of the given option

Description

bool ldap_set_option (resource $link_identifier, int $option, mixed $newval)

Sets the value of the specified option to be newval.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

option

The parameter option can be one of:

Option Type

LDAP_OPT_DEREF integer

LDAP_OPT_SIZELIMIT integer

LDAP_OPT_TIMELIMIT integer

LDAP_OPT_NETWORK_TIMEOUT integer

LDAP_OPT_PROTOCOL_VERSION integer

LDAP_OPT_ERROR_NUMBER integer

LDAP_OPT_REFERRALS bool

LDAP_OPT_RESTART bool

LDAP_OPT_HOST_NAME string

LDAP_OPT_ERROR_STRING string

LDAP_OPT_MATCHED_DN string

LDAP_OPT_SERVER_CONTROLS array

LDAP_OPT_CLIENT_CONTROLS array

LDAP_OPT_SERVER_CONTROLS and LDAP_OPT_CLIENT_CONTROLS require a list
of controls, this means that the value must be an array of controls. A control consists of an

oid identifying the control, an optional value, and an optional flag for criticality. In PHP a
control is given by an array containing an element with the key oid and string value, and
two optional elements. The optional elements are key value with string value and key
iscritical with boolean value. iscritical defaults to FALSE if not supplied. See
» draft-ietf-ldapext-ldap-c-api-xx.txt for details. See also the second example below.

newval

The new value for the specified option.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2244 - Set protocol version

<?php

// $ds is a valid link identifier for a directory server

if (ldap_set_option($ds, LDAP_OPT_PROTOCOL_VERSION, 3)) {

 echo "Using LDAPv3";

} else {

 echo "Failed to set protocol version to 3";

}

?>

Example #2245 - Set server controls

<?php

// $ds is a valid link identifier for a directory server

// control with no value

$ctrl1 = array("oid" => "1.2.752.58.10.1", "iscritical" => true);

// iscritical defaults to FALSE

$ctrl2 = array("oid" => "1.2.752.58.1.10", "value" => "magic");

// try to set both controls

if (!ldap_set_option($ds, LDAP_OPT_SERVER_CONTROLS, array($ctrl1, $ctrl2))) {

 echo "Failed to set server controls";

}

?>

Notes

Note

This function is only available when using OpenLDAP 2.x.x OR Netscape Directory SDK
x.x.

http://www.openldap.org/devel/cvsweb.cgi/~checkout~/doc/drafts/draft-ietf-ldapext-ldap-c-api-xx.txt
http://www.openldap.org/devel/cvsweb.cgi/~checkout~/doc/drafts/draft-ietf-ldapext-ldap-c-api-xx.txt

See Also

• ldap_get_option()

ldap_set_rebind_proc

ldap_set_rebind_proc -- Set a callback function to do re-binds on referral chasing

Description

bool ldap_set_rebind_proc (resource $link, callback $callback)

Warning

This function is currently not documented; only its argument list is available.

ldap_sort

ldap_sort -- Sort LDAP result entries

Description

bool ldap_sort (resource $link, resource $result, string $sortfilter)

Warning

This function is currently not documented; only its argument list is available.

ldap_start_tls

ldap_start_tls -- Start TLS

Description

bool ldap_start_tls (resource $link)

Warning

This function is currently not documented; only its argument list is available.

ldap_t61_to_8859

ldap_t61_to_8859 -- Translate t61 characters to 8859 characters

Description

string ldap_t61_to_8859 (string $value)

Warning

This function is currently not documented; only its argument list is available.

ldap_unbind

ldap_unbind -- Unbind from LDAP directory

Description

bool ldap_unbind (resource $link_identifier)

Unbinds from the LDAP directory.

Parameters

link_identifier

An LDAP link identifier, returned by ldap_connect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• ldap_bind()

Lotus Notes

Introduction

Note

This extension has been moved to the » PECL repository and is no longer bundled with
PHP as of PHP 5.0.0. Information for installing this PECL extension may be found in the
manual chapter titled Installation of PECL extensions. Additional information such as new
releases, downloads, source files, maintainer information, and a CHANGELOG, can be
located here: » http://pecl.php.net/package/notes.

Warning

This extension is currently not supported, thus looking for a maintainer.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the names
of its functions and any other documentation surrounding this extension?may change
without notice in a future release of PHP. This extension should be used at your own risk.

http://pecl.php.net/
http://pecl.php.net/package/notes

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Lotus Notes Functions

notes_body

notes_body -- Open the message msg_number in the specified mailbox on the specified
server (leave serv

Description

array notes_body (string $server, string $mailbox, int $msg_number)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_copy_db

notes_copy_db -- Copy a Lotus Notes database

Description

bool notes_copy_db (string $from_database_name, string $to_database_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_create_db

notes_create_db -- Create a Lotus Notes database

Description

bool notes_create_db (string $database_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_create_note

notes_create_note -- Create a note using form form_name

Description

bool notes_create_note (string $database_name, string $form_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_drop_db

notes_drop_db -- Drop a Lotus Notes database

Description

bool notes_drop_db (string $database_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_find_note

notes_find_note -- Returns a note id found in database_name

Description

int notes_find_note (string $database_name, string $name [, string $type])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_header_info

notes_header_info -- Open the message msg_number in the specified mailbox on the
specified server (leave serv

Description

object notes_header_info (string $server, string $mailbox, int $msg_number)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_list_msgs

notes_list_msgs -- Returns the notes from a selected database_name

Description

bool notes_list_msgs (string $db)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_mark_read

notes_mark_read -- Mark a note_id as read for the User user_name

Description

bool notes_mark_read (string $database_name, string $user_name, string $note_id)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_mark_unread

notes_mark_unread -- Mark a note_id as unread for the User user_name

Description

bool notes_mark_unread (string $database_name, string $user_name, string $note_id)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_nav_create

notes_nav_create -- Create a navigator name, in database_name

Description

bool notes_nav_create (string $database_name, string $name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_search

notes_search -- Find notes that match keywords in database_name

Description

array notes_search (string $database_name, string $keywords)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_unread

notes_unread -- Returns the unread note id's for the current User user_name

Description

array notes_unread (string $database_name, string $user_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

notes_version

notes_version -- Get the version Lotus Notes

Description

float notes_version (string $database_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

Memcache

Introduction

Memcache module provides handy procedural and object oriented interface to memcached,
highly effective caching daemon, which was especially designed to decrease database load in
dynamic web applications.

The Memcache module also provides a session handler (memcache).

More information about memcached can be found at » http://www.danga.com/memcached/.

http://www.danga.com/memcached/

Installing/Configuring

Requirements

This module uses functions of » zlib to support on-the-fly data compression. Zlib is required to
install this module.

PHP 4.3.3 or newer is required to use the memcache extension.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL extension
may be found in the manual chapter titled Installation of PECL extensions. Additional
information such as new releases, downloads, source files, maintainer information, and a
CHANGELOG, can be located here: » http://pecl.php.net/package/memcache.

In order to use these functions you must compile PHP with Memcache support by using the
--enable-memcache[=DIR] option. You may optionally disable memcache session handler
support by specifying --disable-memcache-session.

Windows users will enable php_memcache.dll inside of php.ini in order to use these functions.
The DLL for this PECL extension may be downloaded from either the » PHP Downloads page
or from » http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Memcache Configuration Options

Name Default Changeable Changelog

memcache.allow_fail
over

"1" PHP_INI_ALL Available since
memcache 2.0.2.

memcache.max_failo
ver_attempts

"20" PHP_INI_ALL Available since
memcache 2.1.0.

memcache.chunk_siz
e

"8192" PHP_INI_ALL Available since
memcache 2.0.2.

memcache.default_p
ort

"11211" PHP_INI_ALL Available since
memcache 2.0.2.

http://www.zlib.net/
http://pecl.php.net/
http://pecl.php.net/package/memcache
http://www.php.net/downloads.php
http://pecl4win.php.net/

memcache.hash_stra
tegy

"standard" PHP_INI_ALL Available since
memcache 2.2.0.

memcache.hash_fun
ction

"crc32" PHP_INI_ALL Available since
memcache 2.2.0.

session.save_handler "files" PHP_INI_ALL Supported since
memcache 2.1.2

session.save_path "" PHP_INI_ALL Supported since
memcache 2.1.2

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

memcache.allow_failover boolean
Whether to transparently failover to other servers on errors.

memcache.max_failover_attempts integer
Defines how many servers to try when setting and getting data. Used only in
conjunction with memcache.allow_failover.

memcache.chunk_size integer
Data will be transferred in chunks of this size, setting the value lower requires more
network writes. Try increasing this value to 32768 if noticing otherwise inexplicable
slowdowns.

memcache.default_port string
The default TCP port number to use when connecting to the memcached server if no
other port is specified.

memcache.hash_strategy string
Controls which strategy to use when mapping keys to servers. Set this value to
consistent to enable consistent hashing which allows servers to be added or removed
from the pool without causing keys to be remapped. Setting this value to standard
results in the old strategy being used.

memcache.hash_function string
Controls which hash function to apply when mapping keys to servers, crc32 uses the
standard CRC32 hash while fnv uses FNV-1a.

session.save_handler string
Use memcache as a session handler by setting this value to memcache.

session.save_path string
Defines a comma separated of server urls to use for session storage, for example
"tcp://host1:11211, tcp://host2:11211". Each url may contain parameters which are
applied to that server, they are the same as for the Memcache::addServer() method.
For example "tcp://host1:11211?persistent=1&weight=1&timeout=1&retry_interval=15"

Resource Types

There is only one resource type used in memcache module - it's the link identifier for a
cache server connection.

Predefined Constants

Memcache Constants

Name Description

MEMCACHE_COMPRESSED (integer) Used to turn on-the-fly data compression on
with Memcache::set(), Memcache::add()
and Memcache::replace().

MEMCACHE_HAVE_SESSION (integer) 1 if this Memcache session handler is
available, 0 otherwise.

Examples

Example #2246 - memcache extension overview example

In this example, an object is being saved in the cache and then retrieved back. Object
and other non-scalar types are serialized before saving, so it's impossible to store
resources (i.e. connection identifiers and others) in the cache.

<?php

$memcache = new Memcache;

$memcache->connect('localhost', 11211) or die ("Could not connect");

$version = $memcache->getVersion();

echo "Server's version: ".$version."
\n";

$tmp_object = new stdClass;

$tmp_object->str_attr = 'test';

$tmp_object->int_attr = 123;

$memcache->set('key', $tmp_object, false, 10) or die ("Failed to save data
at the server");

echo "Store data in the cache (data will expire in 10 seconds)
\n";

$get_result = $memcache->get('key');

echo "Data from the cache:
\n";

var_dump($get_result);

?>

Example #2247 - Using memcache session handler

<?php

$session_save_path =
"tcp://$host:$port?persistent=1&weight=2&timeout=2&retry_interval=10,
,tcp://$host:$port ";

ini_set('session.save_handler', 'memcache');

ini_set('session.save_path', $session_save_path);

?>

Memcache Functions

Memcache::add

Memcache::add -- Add an item to the server

Description

bool Memcache::add (string $key, mixed $var [, int $flag [, int $expire]])

Memcache::add() stores variable var with key only if such key doesn't exist at the server
yet. Also you can use memcache_add() function.

Parameters

key

The key that will be associated with the item.

var

The variable to store. Strings and integers are stored as is, other types are stored
serialized.

flag

Use MEMCACHE_COMPRESSED to store the item compressed (uses zlib).

expire

Expiration time of the item. If it's equal to zero, the item will never expire. You can also
use Unix timestamp or a number of seconds starting from current time, but in the latter
case the number of seconds may not exceed 2592000 (30 days).

Return Values

Returns TRUE on success or FALSE on failure. Returns FALSE if such key already exist.
For the rest Memcache::add() behaves similarly to Memcache::set().

Examples

Example #2248 - Memcache::add() example

<?php

$memcache_obj = memcache_connect("localhost", 11211);

/* procedural API */

memcache_add($memcache_obj, 'var_key', 'test variable', false, 30);

/* OO API */

$memcache_obj->add('var_key', 'test variable', false, 30);

?>

See Also

• Memcache::set()
• Memcache::replace()

Memcache::addServer

Memcache::addServer -- Add a memcached server to connection pool

Description

bool Memcache::addServer (string $host [, int $port [, bool $persistent [, int $weight
[, int $timeout [, int $retry_interval [, bool $status [, callback $failure_callback]]]]]
]])

Memcache::addServer() adds a server to the connection pool. The connection, which was
opened using Memcache::addServer() will be automatically closed at the end of script
execution, you can also close it manually with Memcache::close(). You can also use the
memcache_add_server() function.

When using this method (as opposed to Memcache::connect()() and
Memcache::pconnect()()) the network connection is not established until actually
needed. Thus there is no overhead in adding a large number of servers to the pool, even
though they might not all be used.

Failover may occur at any stage in any of the methods, as long as other servers are
available the request the user won't notice. Any kind of socket or Memcached server level
errors (except out-of-memory) may trigger the failover. Normal client errors such as adding
an existing key will not trigger a failover.

Note

This function has been added to Memcache version 2.0.0.

Parameters

host

Point to the host where memcached is listening for connections. This parameter may
also specify other transports like unix:///path/to/memcached.sock to use UNIX domain
sockets, in this case port must also be set to 0.

port

Point to the port where memcached is listening for connections. This parameter is
optional and its default value is 11211. Set this parameter to 0 when using UNIX
domain sockets.

persistent

Controls the use of a persistent connection. Default to TRUE.

weight

Number of buckets to create for this server which in turn control its probability of it

being selected. The probability is relative to the total weight of all servers.

timeout

Value in seconds which will be used for connecting to the daemon. Think twice before
changing the default value of 1 second - you can lose all the advantages of caching if
your connection is too slow.

retry_interval

Controls how often a failed server will be retried, the default value is 15 seconds.
Setting this parameter to -1 disables automatic retry. Neither this nor the persistent
parameter has any effect when the extension is loaded dynamically via dl(). Each
failed connection struct has its own timeout and before it has expired the struct will be
skipped when selecting backends to serve a request. Once expired the connection will
be successfully reconnected or marked as failed for another retry_interval seconds.
The typical effect is that each web server child will retry the connection about every
retry_interval seconds when serving a page.

status

Controls if the server should be flagged as online. Setting this parameter to FALSE
and retry_interval to -1 allows a failed server to be kept in the pool so as not to
affect the key distribution algoritm. Requests for this server will then failover or fail
immediatly depending on the memcache.allow_failover setting. Default to TRUE,
meaning the server should be considered online.

failure_callback

Allows the user to specify a callback function to run upon encountering an error. The
callback is run before failover is attemped. The function takes two parameters, the
hostname and port of the failed server.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2249 - Memcache::addServer() example

<?php

/* OO API */

$memcache = new Memcache;

$memcache->addServer('memcache_host', 11211);

$memcache->addServer('memcache_host2', 11211);

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

memcache_add_server($memcache_obj, 'memcache_host2', 11211);

?>

See Also

• Memcache::connect()
• Memcache::pconnect()
• Memcache::close()
• Memcache::setServerParams()
• Memcache::getServerStatus()

Memcache::close

Memcache::close -- Close memcached server connection

Description

bool Memcache::close (void)

Memcache::close() closes connection to memcached server. This function doesn't close
persistent connections, which are closed only during web-server shutdown/restart. Also
you can use memcache_close() function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2250 - Memcache::close() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

/*

do something here ..

*/

memcache_close($memcache_obj);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

/*

do something here ..

*/

$memcache_obj->close();

?>

See Also

• Memcache::connect()
• Memcache::pconnect()

Memcache::connect

Memcache::connect -- Open memcached server connection

Description

bool Memcache::connect (string $host [, int $port [, int $timeout]])

Memcache::connect() establishes a connection to the memcached server. The connection,
which was opened using Memcache::connect() will be automatically closed at the end of
script execution. Also you can close it with Memcache::close(). Also you can use
memcache_connect() function.

Parameters

host

Point to the host where memcached is listening for connections. This parameter may
also specify other transports like unix:///path/to/memcached.sock to use UNIX domain
sockets, in this case port must also be set to 0.

port

Point to the port where memcached is listening for connections. Set this parameter to 0
when using UNIX domain sockets.

timeout

Value in seconds which will be used for connecting to the daemon. Think twice before
changing the default value of 1 second - you can lose all the advantages of caching if
your connection is too slow.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2251 - Memcache::connect() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

/* OO API */

$memcache = new Memcache;

$memcache->connect('memcache_host', 11211);

?>

See Also

• Memcache::pconnect()
• Memcache::close()

memcache_debug

memcache_debug -- Turn debug output on/off

Description

bool memcache_debug (bool $on_off)

memcache_debug() turns on debug output if parameter on_off is equal to TRUE and
turns off if it's FALSE.

Note

memcache_debug() is accessible only if PHP was built with --enable-debug option and
always returns TRUE in this case. Otherwise, this function has no effect and always
returns FALSE.

Parameters

on_off

Turns debug output on if equals to TRUE. Turns debug output off if equals to FALSE.

Return Values

Returns TRUE if PHP was built with --enable-debug option, otherwise returns FALSE.

Memcache::decrement

Memcache::decrement -- Decrement item's value

Description

int Memcache::decrement (string $key [, int $value])

Memcache::decrement() decrements value of the item by value. Similarly to
Memcache::increment(), current value of the item is being converted to numerical and after
that value is substracted.

Note

New item's value will not be less than zero.

Note

Do not use Memcache::decrement() with item, which was stored compressed, because
consequent call to Memcache::get() will fail.

Memcache::decrement() does not create an item if it didn't exist. Also you can use
memcache_decrement() function.

Parameters

key

Key of the item do decrement.

value

Decrement the item by value. Optional and defaults to 1.

Return Values

Returns item's new value on success or FALSE on failure.

Examples

Example #2252 - Memcache::decrement() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

/* decrement item by 2 */

$new_value = memcache_decrement($memcache_obj, 'test_item', 2);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

/* decrement item by 3 */

$new_value = $memcache_obj->decrement('test_item', 3);

?>

See Also

• Memcache::increment()
• Memcache::replace()

Memcache::delete

Memcache::delete -- Delete item from the server

Description

bool Memcache::delete (string $key [, int $timeout])

Memcache::delete() deletes item with the key. If parameter timeout is specified, the item
will expire after timeout seconds. Also you can use memcache_delete() function.

Parameters

key

The key associated with the item to delete.

timeout

Execution time of the item. If it's equal to zero, the item will be deleted right away
whereas if you set it to 30, the item will be deleted in 30 seconds.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2253 - Memcache::delete() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

/* after 10 seconds item will be deleted by the server */

memcache_delete($memcache_obj, 'key_to_delete', 10);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

$memcache_obj->delete('key_to_delete', 10);

?>

See Also

• Memcache::set()
• Memcache::replace()

Memcache::flush

Memcache::flush -- Flush all existing items at the server

Description

bool Memcache::flush (void)

Memcache::flush() immediately invalidates all existing items. Memcache::flush() doesn't
actually free any resources, it only marks all the items as expired, so occupied memory will
be overwritten by new items. Also you can use memcache_flush() function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2254 - Memcache::flush() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

memcache_flush($memcache_obj);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

$memcache_obj->flush();

?>

Memcache::get

Memcache::get -- Retrieve item from the server

Description

string Memcache::get (string $key [, int &$flags])

array Memcache::get (array $keys [, array &$flags])

Memcache::get() returns previously stored data if an item with such key exists on the
server at this moment.

You can pass array of keys to Memcache::get() to get array of values. The result array will
contain only found key-value pairs.

Parameters

key

The key or array of keys to fetch.

flags

If present, flags fetched along with the values will be written to this parameter. These
flags are the same as the ones given to for example Memcache::set(). The lowest byte
of the int is reserved for pecl/memcache internal usage (e.g. to indicate compression
and serialization status).

Return Values

Returns the string associated with the key or FALSE on failure or if such key was not
found.

Examples

Example #2255 - Memcache::get() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

$var = memcache_get($memcache_obj, 'some_key');

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

$var = $memcache_obj->get('some_key');

/*

You also can use array of keys as a parameter.

If such item wasn't found at the server, the result

array simply will not include such key.

*/

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

$var = memcache_get($memcache_obj, Array('some_key', 'another_key'));

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

$var = $memcache_obj->get(Array('some_key', 'second_key'));

?>

Memcache::getExtendedStats

Memcache::getExtendedStats -- Get statistics from all servers in pool

Description

array Memcache::getExtendedStats ([string $type [, int $slabid [, int $limit]]])

Memcache::getExtendedStats() returns a two-dimensional associative array with server
statistics. Array keys correspond to host:port of server and values contain the individual
server statistics. A failed server will have its corresponding entry set to FALSE. You can
also use the memcache_get_extended_stats() function.

Note

This function has been added to Memcache version 2.0.0.

Parameters

type

The type of statistics to fetch. Valid values are {reset, malloc, maps, cachedump,
slabs, items, sizes}. According to the memcached protocol spec these additional
arguments "are subject to change for the convenience of memcache developers".

slabid

Used in conjunction with type set to cachedump to identify the slab to dump from. The
cachedump command ties up the server and is strictly to be used for debugging
purposes.

limit

Used in conjunction with type set to cachedump to limit the number of entries to
dump. Default value is 100.

Return Values

Returns a two-dimensional associative array of server statistics or FALSE on failure.

Examples

Example #2256 - Memcache::getExtendedStats() example

<?php

 $memcache_obj = new Memcache;

 $memcache_obj->addServer('memcache_host', 11211);

 $memcache_obj->addServer('failed_host', 11211);

 $stats = $memcache_obj->getExtendedStats();

 print_r($stats);

?>

The above example will output:

Array

(

 [memcache_host:11211] => Array

 (

 [pid] => 3756

 [uptime] => 603011

 [time] => 1133810435

 [version] => 1.1.12

 [rusage_user] => 0.451931

 [rusage_system] => 0.634903

 [curr_items] => 2483

 [total_items] => 3079

 [bytes] => 2718136

 [curr_connections] => 2

 [total_connections] => 807

 [connection_structures] => 13

 [cmd_get] => 9748

 [cmd_set] => 3096

 [get_hits] => 5976

 [get_misses] => 3772

 [bytes_read] => 3448968

 [bytes_written] => 2318883

 [limit_maxbytes] => 33554432

)

 [failed_host:11211] => false

)

See Also

• Memcache::getVersion()
• Memcache::getStats()

Memcache::getServerStatus

Memcache::getServerStatus -- Returns server status

Description

int Memcache::getServerStatus (string $host [, int $port])

Memcache::getServerStatus() returns a the servers online/offline status. You can also use
memcache_get_server_status() function.

Note

This function has been added to Memcache version 2.1.0.

Parameters

host

Point to the host where memcached is listening for connections.

port

Point to the port where memcached is listening for connections. This parameter is
optional and its default value is 11211.

Return Values

Returns a the servers status. 0 if server is failed, non-zero otherwise

Examples

Example #2257 - Memcache::getServerStatus() example

<?php

/* OO API */

$memcache = new Memcache;

$memcache->addServer('memcache_host', 11211);

echo $memcache->getServerStatus('memcache_host', 11211);

/* procedural API */

$memcache = memcache_connect('memcache_host', 11211);

echo memcache_get_server_status($memcache, 'memcache_host', 11211);

?>

See Also

• Memcache::addServer()
• Memcache::setServerParams()

Memcache::getStats

Memcache::getStats -- Get statistics of the server

Description

array Memcache::getStats ([string $type [, int $slabid [, int $limit]]])

Memcache::getStats() returns an associative array with server's statistics. Array keys
correspond to stats parameters and values to parameter's values. Also you can use
memcache_get_stats() function.

Parameters

type

The type of statistics to fetch. Valid values are {reset, malloc, maps, cachedump,
slabs, items, sizes}. According to the memcached protocol spec these additional
arguments "are subject to change for the convenience of memcache developers".

slabid

Used in conjunction with type set to cachedump to identify the slab to dump from. The
cachedump command ties up the server and is strictly to be used for debugging
purposes.

limit

Used in conjunction with type set to cachedump to limit the number of entries to
dump. Default value is 100.

Return Values

Returns an associative array of server statistics or FALSE on failure.

See Also

• Memcache::getVersion()
• Memcache::getExtendedStats()

Memcache::getVersion

Memcache::getVersion -- Return version of the server

Description

string Memcache::getVersion (void)

Memcache::getVersion() returns a string with server's version number. Also you can use
memcache_get_version() function.

Return Values

Returns a string of server version number or FALSE on failure.

Examples

Example #2258 - Memcache::getVersion() example

<?php

/* OO API */

$memcache = new Memcache;

$memcache->connect('memcache_host', 11211);

echo $memcache->getVersion();

/* procedural API */

$memcache = memcache_connect('memcache_host', 11211);

echo memcache_get_version($memcache);

?>

See Also

• Memcache::getExtendedStats()
• Memcache::getStats()

Memcache::increment

Memcache::increment -- Increment item's value

Description

int Memcache::increment (string $key [, int $value])

Memcache::increment() increments value of the item on the specified value. If item with
key key was not numeric and cannot be converted to number, it will change it's value to
value. Memcache::increment() does not create an item if it didn't exist.

Note

Do not use Memcache::increment() with item, which was stored compressed, because
consequent call to Memcache::get() will fail.

Also you can use memcache_increment() function.

Parameters

key

Key of the item to increment.

value

Increment the item by value. Optional and defaults to 1.

Return Values

Returns new item's value on success or FALSE on failure.

Examples

Example #2259 - Memcache::increment() example

<?php

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

/* increment counter by 2 */

$current_value = memcache_increment($memcache_obj, 'counter', 2);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->connect('memcache_host', 11211);

/* increment counter by 3 */

$current_value = $memcache_obj->increment('counter', 3);

?>

See Also

• Memcache::decrement()
• Memcache::replace()

Memcache::pconnect

Memcache::pconnect -- Open memcached server persistent connection

Description

bool Memcache::pconnect (string $host [, int $port [, int $timeout]])

Memcache::pconnect() is similar to Memcache::connect() with the difference, that the
connection it establishes is persistent. This connection is not closed after the end of script
execution and by Memcache::close() function. Also you can use memcache_pconnect()
function.

Parameters

host

Point to the host where memcached is listening for connections. This parameter may
also specify other transports like unix:///path/to/memcached.sock to use UNIX domain
sockets, in this case port must also be set to 0.

port

Point to the port where memcached is listening for connections. Set this parameter to 0
when using UNIX domain sockets.

timeout

Value in seconds which will be used for connecting to the daemon. Think twice before
changing the default value of 1 second - you can lose all the advantages of caching if
your connection is too slow.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2260 - Memcache::pconnect() example

<?php

/* procedural API */

$memcache_obj = memcache_pconnect('memcache_host', 11211);

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->pconnect('memcache_host', 11211);

?>

See Also

• Memcache::connect()

Memcache::replace

Memcache::replace -- Replace value of the existing item

Description

bool Memcache::replace (string $key, mixed $var [, int $flag [, int $expire]])

Memcache::replace() should be used to replace value of existing item with key. In case if
item with such key doesn't exists, Memcache::replace() returns FALSE. For the rest
Memcache::replace() behaves similarly to Memcache::set(). Also you can use
memcache_replace() function.

Parameters

key

The key that will be associated with the item.

var

The variable to store. Strings and integers are stored as is, other types are stored
serialized.

flag

Use MEMCACHE_COMPRESSED to store the item compressed (uses zlib).

expire

Expiration time of the item. If it's equal to zero, the item will never expire. You can also
use Unix timestamp or a number of seconds starting from current time, but in the latter
case the number of seconds may not exceed 2592000 (30 days).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2261 - Memcache::replace() example

<?php

$memcache_obj = memcache_connect('memcache_host', 11211);

/* procedural API */

memcache_replace($memcache_obj, "test_key", "some variable", false, 30);

/* OO API */

$memcache_obj->replace("test_key", "some variable", false, 30);

?>

See Also

• Memcache::set()
• Memcache::add()

Memcache::set

Memcache::set -- Store data at the server

Description

bool Memcache::set (string $key, mixed $var [, int $flag [, int $expire]])

Memcache::set() stores an item var with key on the memcached server. Parameter
expire is expiration time in seconds. If it's 0, the item never expires (but memcached
server doesn't guarantee this item to be stored all the time, it could be deleted from the
cache to make place for other items). You can use MEMCACHE_COMPRESSED
constant as flag value if you want to use on-the-fly compression (uses zlib).

Note

Remember that resource variables (i.e. file and connection descriptors) cannot be
stored in the cache, because they cannot be adequately represented in serialized
state.

Also you can use memcache_set() function.

Parameters

key

The key that will be associated with the item.

var

The variable to store. Strings and integers are stored as is, other types are stored
serialized.

flag

Use MEMCACHE_COMPRESSED to store the item compressed (uses zlib).

expire

Expiration time of the item. If it's equal to zero, the item will never expire. You can also
use Unix timestamp or a number of seconds starting from current time, but in the latter
case the number of seconds may not exceed 2592000 (30 days).

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2262 - Memcache::set() example

<?php

/* procedural API */

/* connect to memcached server */

$memcache_obj = memcache_connect('memcache_host', 11211);

/*

set value of item with key 'var_key'

using 0 as flag value, compression is not used

expire time is 30 seconds

*/

memcache_set($memcache_obj, 'var_key', 'some variable', 0, 30);

echo memcache_get($memcache_obj, 'var_key');

?>

Example #2263 - Memcache::set() example

<?php

/* OO API */

$memcache_obj = new Memcache;

/* connect to memcached server */

$memcache_obj->connect('memcache_host', 11211);

/*

set value of item with key 'var_key', using on-the-fly compression

expire time is 50 seconds

*/

$memcache_obj->set('var_key', 'some really big variable',
MEMCACHE_COMPRESSED, 50);

echo $memcache_obj->get('var_key');

?>

See Also

• Memcache::add()
• Memcache::replace()

Memcache::setCompressThreshold

Memcache::setCompressThreshold -- Enable automatic compression of large values

Description

bool Memcache::setCompressThreshold (int $threshold [, float $min_savings])

Memcache::setCompressThreshold() enables automatic compression of large values. You
can also use the memcache_set_compress_threshold() function.

Note

This function has been added to Memcache version 2.0.0.

Parameters

threshold

Controls the minimum value length before attempting to compress automatically.

min_saving

Specifies the minimum amount of savings to actually store the value compressed. The
supplied value must be between 0 and 1. Default value is 0.2 giving a minimum 20%
compression savings.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2264 - Memcache::setCompressThreshold() example

<?php

/* OO API */

$memcache_obj = new Memcache;

$memcache_obj->addServer('memcache_host', 11211);

$memcache_obj->setCompressThreshold(20000, 0.2);

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

memcache_set_compress_threshold($memcache_obj, 20000, 0.2);

?>

Memcache::setServerParams

Memcache::setServerParams -- Changes server parameters and status at runtime

Description

bool Memcache::setServerParams (string $host [, int $port [, int $timeout [, int $
retry_interval [, bool $status [, callback $failure_callback]]]]])

Memcache::setServerParams() changes server parameters at runtime. You can also use
the memcache_set_server_params() function.

Note

This function has been added to Memcache version 2.1.0.

Parameters

host

Point to the host where memcached is listening for connections.

port

Point to the port where memcached is listening for connections. This parameter is
optional and its default value is 11211.

timeout

Value in seconds which will be used for connecting to the daemon. Think twice before
changing the default value of 1 second - you can lose all the advantages of caching if
your connection is too slow.

retry_interval

Controls how often a failed server will be retried, the default value is 15 seconds.
Setting this parameter to -1 disables automatic retry. Neither this nor the persistent
parameter has any effect when the extension is loaded dynamically via dl().

status

Controls if the server should be flagged as online. Setting this parameter to FALSE
and retry_interval to -1 allows a failed server to be kept in the pool so as not to
affect the key distribution algoritm. Requests for this server will then failover or fail
immediatly depending on the memcache.allow_failover setting. Default to TRUE,
meaning the server should be considered online.

failure_callback

Allows the user to specify a callback function to run upon encountering an error. The
callback is run before failover is attemped. The function takes two parameters, the
hostname and port of the failed server.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2265 - Memcache::setServerParams() example

<?php

function _callback_memcache_failure($host, $port) {

 print "memcache '$host:$port' failed";

}

/* OO API */

$memcache = new Memcache;

// Add the server in offline mode

$memcache->addServer('memcache_host', 11211, false, 1, 1, -1, false);

// Bring the server back online

$memcache->setServerParams('memcache_host', 11211, 1, 15, true,
'_callback_memcache_failure');

/* procedural API */

$memcache_obj = memcache_connect('memcache_host', 11211);

memcache_set_server_params($memcache_obj, 'memcache_host', 11211, 1, 15,
true, '_callback_memcache_failure');

?>

See Also

• Memcache::addServer()
• Memcache::getServerStatus()

mnoGoSearch

Introduction

These functions allow you to access the mnoGoSearch (former UdmSearch) free search
engine. mnoGoSearch is a full-featured search engine software for intranet and internet
servers, distributed under the GNU license. mnoGoSearch has a number of unique
features, which makes it appropriate for a wide range of applications from search within
your site to a specialized search system such as cooking recipes or newspaper search,
FTP archive search, news articles search, etc. It offers full-text indexing and searching for
HTML, PDF, and text documents. mnoGoSearch consists of two parts. The first is an
indexing mechanism (indexer). The purpose of the indexer is to walk through HTTP, FTP,
NEWS servers or local files, recursively grabbing all the documents and storing meta-data
about that documents in a SQL database in a smart and effective manner. After every
document is referenced by its corresponding URL, meta-data is collected by the indexer
for later use in a search process. The search is performed via Web interface. C, CGI, PHP
and Perl search front ends are included.

More information about mnoGoSearch can be found at » http://www.mnogosearch.org/.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

Note

This extension is not available on Windows platforms.

http://www.mnogosearch.org/
http://pecl.php.net/

Installing/Configuring

Requirements

Download mnoGosearch from » http://www.mnogosearch.org/ and install it on your
system. You need at least version 3.1.10 of mnoGoSearch installed to use these functions.

Installation

In order to have these functions available, you must compile PHP with mnoGosearch
support by using the --with-mnogosearch option. If you use this option without specifying
the path to mnoGosearch, PHP will look for mnoGosearch under /usr/local/mnogosearch
path by default. If you installed mnoGosearch at a different location you should specify it:
--with-mnogosearch=DIR.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/mnogosearch.

Note

PHP contains built-in MySQL access library, which can be used to access MySQL. It is
known that mnoGoSearch is not compatible with this built-in library and can work only
with generic MySQL libraries. Thus, if you use mnoGoSearch with MySQL, during PHP
configuration you have to indicate the directory of your MySQL installation, that was
used during mnoGoSearch configuration, i.e. for example: --with-mnogosearch
--with-mysql=/usr.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.mnogosearch.org/
http://pecl.php.net/package/mnogosearch
http://pecl.php.net/package/mnogosearch

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

UDM_FIELD_URLID (integer)

UDM_FIELD_URL (integer)

UDM_FIELD_CONTENT (integer)

UDM_FIELD_TITLE (integer)

UDM_FIELD_KEYWORDS (integer)

UDM_FIELD_DESC (integer)

UDM_FIELD_DESCRIPTION (integer)

UDM_FIELD_TEXT (integer)

UDM_FIELD_SIZE (integer)

UDM_FIELD_RATING (integer)

UDM_FIELD_SCORE (integer)

UDM_FIELD_MODIFIED (integer)

UDM_FIELD_ORDER (integer)

UDM_FIELD_CRC (integer)

UDM_FIELD_CATEGORY (integer)

UDM_FIELD_LANG (integer)

UDM_FIELD_CHARSET (integer)

UDM_PARAM_PAGE_SIZE (integer)

UDM_PARAM_PAGE_NUM (integer)

UDM_PARAM_SEARCH_MODE (integer)

UDM_PARAM_CACHE_MODE (integer)

UDM_PARAM_TRACK_MODE (integer)

UDM_PARAM_PHRASE_MODE (integer)

UDM_PARAM_CHARSET (integer)

UDM_PARAM_LOCAL_CHARSET (integer)

UDM_PARAM_BROWSER_CHARSET (integer)

UDM_PARAM_STOPTABLE (integer)

UDM_PARAM_STOP_TABLE (integer)

UDM_PARAM_STOPFILE (integer)

UDM_PARAM_STOP_FILE (integer)

UDM_PARAM_WEIGHT_FACTOR (integer)

UDM_PARAM_WORD_MATCH (integer)

UDM_PARAM_MAX_WORD_LEN (integer)

UDM_PARAM_MAX_WORDLEN (integer)

UDM_PARAM_MIN_WORD_LEN (integer)

UDM_PARAM_MIN_WORDLEN (integer)

UDM_PARAM_ISPELL_PREFIXES (integer)

UDM_PARAM_ISPELL_PREFIX (integer)

UDM_PARAM_PREFIXES (integer)

UDM_PARAM_PREFIX (integer)

UDM_PARAM_CROSS_WORDS (integer)

UDM_PARAM_CROSSWORDS (integer)

UDM_PARAM_VARDIR (integer)

UDM_PARAM_DATADIR (integer)

UDM_PARAM_HLBEG (integer)

UDM_PARAM_HLEND (integer)

UDM_PARAM_SYNONYM (integer)

UDM_PARAM_SEARCHD (integer)

UDM_PARAM_QSTRING (integer)

UDM_PARAM_REMOTE_ADDR (integer)

UDM_LIMIT_CAT (integer)

UDM_LIMIT_URL (integer)

UDM_LIMIT_TAG (integer)

UDM_LIMIT_LANG (integer)

UDM_LIMIT_DATE (integer)

UDM_PARAM_FOUND (integer)

UDM_PARAM_NUM_ROWS (integer)

UDM_PARAM_WORDINFO (integer)

UDM_PARAM_WORD_INFO (integer)

UDM_PARAM_SEARCHTIME (integer)

UDM_PARAM_SEARCH_TIME (integer)

UDM_PARAM_FIRST_DOC (integer)

UDM_PARAM_LAST_DOC (integer)

UDM_MODE_ALL (integer)

UDM_MODE_ANY (integer)

UDM_MODE_BOOL (integer)

UDM_MODE_PHRASE (integer)

UDM_CACHE_ENABLED (integer)

UDM_CACHE_DISABLED (integer)

UDM_TRACK_ENABLED (integer)

UDM_TRACK_DISABLED (integer)

UDM_PHRASE_ENABLED (integer)

UDM_PHRASE_DISABLED (integer)

UDM_CROSS_WORDS_ENABLED (integer)

UDM_CROSSWORDS_ENABLED (integer)

UDM_CROSS_WORDS_DISABLED (integer)

UDM_CROSSWORDS_DISABLED (integer)

UDM_PREFIXES_ENABLED (integer)

UDM_PREFIX_ENABLED (integer)

UDM_ISPELL_PREFIXES_ENABLED (integer)

UDM_ISPELL_PREFIX_ENABLED (integer)

UDM_PREFIXES_DISABLED (integer)

UDM_PREFIX_DISABLED (integer)

UDM_ISPELL_PREFIXES_DISABLED (integer)

UDM_ISPELL_PREFIX_DISABLED (integer)

UDM_ISPELL_TYPE_AFFIX (integer)

UDM_ISPELL_TYPE_SPELL (integer)

UDM_ISPELL_TYPE_DB (integer)

UDM_ISPELL_TYPE_SERVER (integer)

UDM_MATCH_WORD (integer)

UDM_MATCH_BEGIN (integer)

UDM_MATCH_SUBSTR (integer)

UDM_MATCH_END (integer)

mnoGoSearch Functions

udm_add_search_limit

udm_add_search_limit -- Add various search limits

Description

bool udm_add_search_limit (resource $agent, int $var, string $val)

udm_add_search_limit() adds search restrictions.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

var

Defines the parameter, indicating limits. Possible var values:

• UDM_LIMIT_URL - defines document URL limitations to limit the search through
subsection of the database. It supports SQL % and _ LIKE wildcards, where %
matches any number of characters, even zero characters, and _ matches exactly
one character. E.g. http://www.example.___/catalog may stand for
http://www.example.com/catalog and http://www.example.net/catalog.

• UDM_LIMIT_TAG - defines site TAG limitations. In indexer-conf you can assign
specific TAGs to various sites and parts of a site. Tags in mnoGoSearch 3.1.x are
lines, that may contain metasymbols % and _. Metasymbols allow searching
among groups of tags. E.g. there are links with tags ABCD and ABCE, and search
restriction is by ABC_ - the search will be made among both of the tags.

• UDM_LIMIT_LANG - defines document language limitations.

• UDM_LIMIT_CAT - defines document category limitations. Categories are similar
to tag feature, but nested. So you can have one category inside another and so on.
You have to use two characters for each level. Use a hex number going from 0-F
or a 36 base number going from 0-Z. Therefore a top-level category like 'Auto'
would be 01. If it has a subcategory like 'Ford', then it would be 01 (the parent
category) and then 'Ford' which we will give 01. Put those together and you get
0101. If 'Auto' had another subcategory named 'VW', then it's id would be 01
because it belongs to the 'Ford' category and then 02 because it's the next
category. So it's id would be 0102. If VW had a sub category called 'Engine' then
it's id would start at 01 again and it would get the 'VW' id 02 and 'Auto' id of 01,
making it 010201. If you want to search for sites under that category then you pass
it cat=010201 in the URL.

• UDM_LIMIT_DATE - defines limitation by date the document was modified. Format
of parameter value: a string with first character < or >, then with no space - date in
unixtime format, for example:

Example #2266

<?php

udm_add_search_limit($udm, UDM_LIMIT_DATE, "<908012006");

?>

If > character is used, then the search will be restricted to those documents having
a modification date greater than entered, if <, then smaller.

val

Defines the value of the current parameter.

Return Values

Returns TRUE on success or FALSE on failure.

udm_alloc_agent_array

udm_alloc_agent_array -- Allocate mnoGoSearch session

Description

resource udm_alloc_agent_array (array $databases)

udm_alloc_agent_array() will create an agent with multiple database connections.

Parameters

databases

The array databases must contain one database URL per element, analog to the first
parameter of udm_alloc_agent().

Return Values

Returns a resource link identifier on success, or FALSE on failure.

See Also

• udm_alloc_agent()

udm_alloc_agent

udm_alloc_agent -- Allocate mnoGoSearch session

Description

resource udm_alloc_agent (string $dbaddr [, string $dbmode])

Allocate a mnoGoSearch session.

Parameters

dbaddr

dbaddr - URL-style database description, with options (type, host, database name,
port, user and password) to connect to SQL database. Do not matter for built-in text
files support. Format for dbaddr:
DBType:[//[DBUser[:DBPass]@]DBHost[:DBPort]]/DBName/. Currently supported
DBType values are: mysql, pgsql, msql, solid, mssql, oracle, and ibase. Actually, it
does not matter for native libraries support, but ODBC users should specify one of the
supported values. If your database type is not supported, you may use unknown
instead.

dbmode

dbmode - You may select the SQL database mode of words storage. Possible values of
dbmode are: single, multi, crc, or crc-multi. When single is specified, all words are
stored in the same table. If multi is selected, words will be located in different tables
depending of their lengths. "multi" mode is usually faster, but requires more tables in
the database. If "crc" mode is selected, mnoGoSearch will store 32 bit integer word IDs
calculated by CRC32 algorithm instead of words. This mode requires less disk space
and it is faster comparing with "single" and "multi" modes. crc-multi uses the same
storage structure with the "crc" mode, but also stores words in different tables
depending on words lengths like in "multi" mode.

Note

dbaddr and dbmode must match those used during indexing.

Return Values

Returns a mnogosearch agent identifier on success, FALSE on failure. This function
creates a session with database parameters.

Notes

Note

In fact this function does not open a connection to the database and thus does not
check the entered login and password. Establishing a connection to the database and
login/password verification is done by udm_find().

udm_api_version

udm_api_version -- Get mnoGoSearch API version

Description

int udm_api_version (void)

Gets the mnoGoSearch API version.

This function allows the user to identify which API functions are available, e.g.
udm_get_doc_count() function is only available in mnoGoSearch 3.1.11 or later.

Return Values

udm_api_version() returns the mnoGoSearch API version number. E.g. if mnoGoSearch
3.1.10 API is used, this function will return 30110.

Examples

Example #2267 - udm_api_version() example

<?php

if (udm_api_version() >= 30111) {

 echo "Total number of URLs in database: " . udm_get_doc_count($udm) .
"
\n";

}

?>

udm_cat_list

udm_cat_list -- Get all the categories on the same level with the current one

Description

array udm_cat_list (resource $agent, string $category)

Gets all the categories on the same level with the current one.

The function can be useful for developing categories tree browser.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

category

Return Values

Returns an array listing all categories of the same level as the current category in the
categories tree.

The returned array consists of pairs. Elements with even index numbers contain the
category paths, odd elements contain the corresponding category names.

$array[0] will contain '020300'

 $array[1] will contain 'Audi'

 $array[2] will contain '020301'

 $array[3] will contain 'BMW'

 $array[4] will contain '020302'

 $array[5] will contain 'Opel'

 ...

etc.

Examples

Following is an example of displaying links of the current level in format:
Audi

 BMW

 Opel

 ...

Example #2268 - udm_cat_list() example

<?php

$cat_list_arr = udm_cat_list($udm_agent, $cat);

$cat_list = '';

for ($i=0; $i<count($cat_list_arr); $i+=2) {

 $path = $cat_list_arr[$i];

 $name = $cat_list_arr[$i+1];

 $cat_list .= "$name
";

}

?>

See Also

• udm_cat_path()

udm_cat_path

udm_cat_path -- Get the path to the current category

Description

array udm_cat_path (resource $agent, string $category)

Returns an array describing the path in the categories tree from the tree root to the current
one, specified by category.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

category

Return Values

The returned array consists of pairs. Elements with even index numbers contain the
category paths, odd elements contain the corresponding category names.

For example, the call $array=udm_cat_path($agent, '02031D'); may return the following
array:
$array[0] will contain ''

$array[1] will contain 'Root'

$array[2] will contain '02'

$array[3] will contain 'Sport'

$array[4] will contain '0203'

$array[5] will contain 'Auto'

$array[4] will contain '02031D'

$array[5] will contain 'Ferrari'

Examples

Example #2269 - Specifying path to the current category in the following format:
'> Root > Sport > Auto > Ferrari'

<?php

 $cat_path_arr = udm_cat_path($udm_agent, $cat);

 $cat_path = '';

 for ($i=0; $i<count($cat_path_arr); $i+=2) {

 $path = $cat_path_arr[$i];

 $name = $cat_path_arr[$i+1];

 $cat_path .= " > $name ";

 }

?>

See Also

• udm_cat_list()

udm_check_charset

udm_check_charset -- Check if the given charset is known to mnogosearch

Description

bool udm_check_charset (resource $agent, string $charset)

Warning

This function is currently not documented; only its argument list is available.

udm_check_stored

udm_check_stored -- Check connection to stored

Description

int udm_check_stored (resource $agent, int $link, string $doc_id)

Warning

This function is currently not documented; only its argument list is available.

udm_clear_search_limits

udm_clear_search_limits -- Clear all mnoGoSearch search restrictions

Description

bool udm_clear_search_limits (resource $agent)

udm_clear_search_limits() resets defined search limitations.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

Returns TRUE.

See Also

• udm_add_search_limit()

udm_close_stored

udm_close_stored -- Close connection to stored

Description

int udm_close_stored (resource $agent, int $link)

Warning

This function is currently not documented; only its argument list is available.

udm_crc32

udm_crc32 -- Return CRC32 checksum of given string

Description

int udm_crc32 (resource $agent, string $str)

Warning

This function is currently not documented; only its argument list is available.

udm_errno

udm_errno -- Get mnoGoSearch error number

Description

int udm_errno (resource $agent)

Receiving numeric agent error code.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

Returns the mnoGoSearch error number, zero if no error.

udm_error

udm_error -- Get mnoGoSearch error message

Description

string udm_error (resource $agent)

Gets the agent error message.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

udm_error() returns mnoGoSearch error message, empty string if no error.

udm_find

udm_find -- Perform search

Description

resource udm_find (resource $agent, string $query)

Performs a search.

The search itself. The first argument - session, the next one - query itself. To find
something just type words you want to find and press SUBMIT button. For example,
"mysql odbc". You should not use quotes " in query, they are written here only to divide a
query from other text. mnoGoSearch will find all documents that contain word "mysql"
and/or word "odbc". Best documents having bigger weights will be displayed first. If you
use search mode ALL, search will return documents that contain both (or more) words you
entered. In case you use mode ANY, the search will return list of documents that contain
any of the words you entered. If you want more advanced results you may use query
language. You should select "bool" match mode in the search from.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

query

mnoGoSearch understands the following boolean operators: & - logical AND. For
example, "mysql & odbc". mnoGoSearch will find any URLs that contain both "mysql"
and "odbc". | - logical OR. For example "mysql|odbc". mnoGoSearch will find any
URLs, that contain word "mysql" or word "odbc". ~ - logical NOT. For example "mysql
& ~odbc". mnoGoSearch will find URLs that contain word "mysql" and do not contain
word "odbc" at the same time. Note that ~ just excludes given word from results. Query
"~odbc" will find nothing! () - group command to compose more complex queries. For
example "(mysql | msql) & ~postgres". Query language is simple and powerful at the
same time. Just consider query as usual boolean expression.

Return Values

Returns a result link identifier on success, or FALSE on failure.

udm_free_agent

udm_free_agent -- Free mnoGoSearch session

Description

int udm_free_agent (resource $agent)

Freeing up memory allocated for agent session.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

Returns TRUE on success or FALSE on failure.

udm_free_ispell_data

udm_free_ispell_data -- Free memory allocated for ispell data

Description

bool udm_free_ispell_data (int $agent)

Frees the memory allocated for ispell data.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

udm_free_ispell_data() always returns TRUE.

Notes

Note

This function is supported beginning from version 3.1.12 of mnoGoSearch and it does
not do anything in previous versions.

udm_free_res

udm_free_res -- Free mnoGoSearch result

Description

bool udm_free_res (resource $res)

Freeing up memory allocated for results.

Parameters

res

A link to a result identifier, received after call to udm_find().

Return Values

Returns TRUE on success or FALSE on failure.

udm_get_doc_count

udm_get_doc_count -- Get total number of documents in database

Description

int udm_get_doc_count (resource $agent)

udm_get_doc_count() returns the number of documents in the database.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

Return Values

Returns the number of document.

Notes

Note

This function is supported only in mnoGoSearch 3.1.11 or later.

udm_get_res_field

udm_get_res_field -- Fetch a result field

Description

string udm_get_res_field (resource $res, int $row, int $field)

Fetch a mnoGoSearch result field.

Parameters

res

res - a link to result identifier, received after call to udm_find().

row

row - the number of the link on the current page. May have values from 0 to
UDM_PARAM_NUM_ROWS-1.

field

field - field identifier, may have the following values:

• UDM_FIELD_URL - document URL field

• UDM_FIELD_CONTENT - document Content-type field (for example, text/html).

• UDM_FIELD_CATEGORY - document category field. Use udm_cat_path() to get
full path to current category from the categories tree root. (This parameter is
available only in PHP 4.0.6 or later).

• UDM_FIELD_TITLE - document title field.

• UDM_FIELD_KEYWORDS - document keywords field (from META KEYWORDS
tag).

• UDM_FIELD_DESC - document description field (from META DESCRIPTION tag).

• UDM_FIELD_TEXT - document body text (the first couple of lines to give an idea
of what the document is about).

• UDM_FIELD_SIZE - document size.

• UDM_FIELD_URLID - unique URL ID of the link.

• UDM_FIELD_RATING - page rating (as calculated by mnoGoSearch).

• UDM_FIELD_MODIFIED - last-modified field in unixtime format.

• UDM_FIELD_ORDER - the number of the current document in set of found
documents.

• UDM_FIELD_CRC - document CRC.

Return Values

udm_get_res_field() returns result field value on success, FALSE on error.

udm_get_res_param

udm_get_res_param -- Get mnoGoSearch result parameters

Description

string udm_get_res_param (resource $res, int $param)

Gets the mnoGoSearch result parameters.

Parameters

res

res - a link to result identifier, received after call to udm_find().

param

param - parameter identifier, may have the following values:

• UDM_PARAM_NUM_ROWS - number of received found links on the current page.
It is equal to UDM_PARAM_PAGE_SIZE for all search pages, on the last page -
the rest of links.

• UDM_PARAM_FOUND - total number of results matching the query.

• UDM_PARAM_WORDINFO - information on the words found. E.g. search for "a
good book" will return "a: stopword, good:5637, book: 120"

• UDM_PARAM_SEARCHTIME - search time in seconds.

• UDM_PARAM_FIRST_DOC - the number of the first document displayed on
current page.

• UDM_PARAM_LAST_DOC - the number of the last document displayed on current
page.

Return Values

udm_get_res_param() returns result parameter value on success, FALSE on error.

udm_hash32

udm_hash32 -- Return Hash32 checksum of gived string

Description

int udm_hash32 (resource $agent, string $str)

udm_hash32() will take a string str and return a quite unique 32-bit hash number from it.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

str

The input string.

Return Values

Returns a 32-bit hash number.

See Also

• udm_alloc_agent()

udm_load_ispell_data

udm_load_ispell_data -- Load ispell data

Description

bool udm_load_ispell_data (resource $agent, int $var, string $val1, string $val2, int $
flag)

udm_load_ispell_data() loads ispell data.

After using this function to free memory allocated for ispell data, please use
udm_free_ispell_data(), even if you use UDM_ISPELL_TYPE_SERVER mode.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

var

Indicates the source for ispell data. May have the following values:

• UDM_ISPELL_TYPE_DB - indicates that ispell data should be loaded from SQL. In
this case, parameters val1 and val2 are ignored and should be left blank. flag
should be equal to 1.

Note

flag indicates that after loading ispell data from defined source it should be
sorted (it is necessary for correct functioning of ispell). In case of loading ispell
data from files there may be several calls to udm_load_ispell_data(), and there
is no sense to sort data after every call, but only after the last one. Since in db
mode all the data is loaded by one call, this parameter should have the value 1.
In this mode in case of error, e.g. if ispell tables are absent, the function will
return FALSE and code and error message will be accessible through
udm_error() and udm_errno().

• UDM_ISPELL_TYPE_AFFIX - indicates that ispell data should be loaded from file
and initiates loading affixes file. In this case val1 defines double letter language
code for which affixes are loaded, and val2 - file path. Please note, that if a
relative path entered, the module looks for the file not in UDM_CONF_DIR, but in
relation to current path, i.e. to the path where the script is executed. In case of
error in this mode, e.g. if file is absent, the function will return FALSE, and an error
message will be displayed. Error message text cannot be accessed through
udm_error() and udm_errno(), since those functions can only return messages
associated with SQL. Please, see flag parameter description in
UDM_ISPELL_TYPE_DB.

Example #2270 - udm_load_ispell_data() example

<?php

if ((! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_AFFIX, 'en',
'/opt/ispell/en.aff', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_AFFIX, 'ru',
'/opt/ispell/ru.aff', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_SPELL, 'en',
'/opt/ispell/en.dict', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_SPELL, 'ru',
'/opt/ispell/ru.dict', 1))) {

 exit;

}

?>

Note

flag is equal to 1 only in the last call.

• UDM_ISPELL_TYPE_SPELL - indicates that ispell data should be loaded from file
and initiates loading of ispell dictionary file. In this case val1 defines double letter
language code for which affixes are loaded, and val2 - file path. Please note, that
if a relative path entered, the module looks for the file not in UDM_CONF_DIR, but
in relation to current path, i.e. to the path where the script is executed. In case of
error in this mode, e.g. if file is absent, the function will return FALSE, and an error
message will be displayed. Error message text cannot be accessed through
udm_error() and udm_errno(), since those functions can only return messages
associated with SQL. Please, see flag parameter description in
UDM_ISPELL_TYPE_DB.

<?php

if ((! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_AFFIX, 'en',
'/opt/ispell/en.aff', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_AFFIX, 'ru',
'/opt/ispell/ru.aff', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_SPELL, 'en',
'/opt/ispell/en.dict', 0)) ||

 (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_SPELL, 'ru',
'/opt/ispell/ru.dict', 1))) {

exit;

}

?>

Note

flag is equal to 1 only in the last call.

• UDM_ISPELL_TYPE_SERVER - enables spell server support. val1 parameter
indicates address of the host running spell server. val2 ` is not used yet, but in
future releases it is going to indicate number of port used by spell server. flag
parameter in this case is not needed since ispell data is stored on spellserver
already sorted. Spelld server reads spell-data from a separate configuration file
(/usr/local/mnogosearch/etc/spelld.conf by default), sorts it and stores in memory.
With clients server communicates in two ways: to indexer all the data is transferred
(so that indexer starts faster), from search.cgi server receives word to normalize
and then passes over to client (search.cgi) list of normalized word forms. This
allows fastest, compared to db and text modes processing of search queries (by
omitting loading and sorting all the spell data). udm_load_ispell_data() function in
UDM_ISPELL_TYPE_SERVER mode does not actually load ispell data, but only
defines server address. In fact, server is automatically used by udm_find() function
when performing search. In case of errors, e.g. if spellserver is not running or
invalid host indicated, there are no messages returned and ispell conversion does
not work.

Note

This function is available in mnoGoSearch 3.1.12 or later.

Example:

<?php

if (!udm_load_ispell_data($udm, UDM_ISPELL_TYPE_SERVER, '', '', 1)) {

 echo "Error loading ispell data from server
\n";

 exit;

}

?>

The fastest mode is UDM_ISPELL_TYPE_SERVER. UDM_ISPELL_TYPE_TEXT is
slower and UDM_ISPELL_TYPE_DB is the slowest. The above pattern is TRUE for
mnoGoSearch 3.1.10 - 3.1.11. It is planned to speed up DB mode in future versions
and it is going to be faster than TEXT mode.

val1

val2

flag

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2271 - udm_load_ispell_data() example

<?php

if (! udm_load_ispell_data($udm, UDM_ISPELL_TYPE_DB, '', '', 1)) {

 printf("Error #%d: '%s'\n", udm_errno($udm), udm_error($udm));

 exit;

}

?>

udm_open_stored

udm_open_stored -- Open connection to stored

Description

int udm_open_stored (resource $agent, string $storedaddr)

Warning

This function is currently not documented; only its argument list is available.

udm_set_agent_param

udm_set_agent_param -- Set mnoGoSearch agent session parameters

Description

bool udm_set_agent_param (resource $agent, int $var, string $val)

Defines mnoGoSearch session parameters.

Parameters

agent

A link to Agent, received after call to udm_alloc_agent().

var

The following parameters and their values are available:

• UDM_PARAM_PAGE_NUM - used to choose search results page number (results
are returned by pages beginning from 0, with UDM_PARAM_PAGE_SIZE results
per page).

• UDM_PARAM_PAGE_SIZE - number of search results displayed on one page.

• UDM_PARAM_SEARCH_MODE - search mode. The following values available:
UDM_MODE_ALL - search for all words; UDM_MODE_ANY - search for any word;
UDM_MODE_PHRASE - phrase search; UDM_MODE_BOOL - boolean search.
See udm_find() for details on boolean search.

• UDM_PARAM_CACHE_MODE - turns on or off search result cache mode. When
enabled, the search engine will store search results to disk. In case a similar
search is performed later, the engine will take results from the cache for faster
performance. Available values: UDM_CACHE_ENABLED,
UDM_CACHE_DISABLED.

• UDM_PARAM_TRACK_MODE - turns on or off trackquery mode. Since version
3.1.2 mnoGoSearch has a query tracking support. Note that tracking is
implemented in SQL version only and not available in built-in database. To use
tracking, you have to create tables for tracking support. For MySQL, use
create/mysql/track.txt. When doing a search, front-end uses those tables to store
query words, a number of found documents and current Unix timestamp in
seconds. Available values: UDM_TRACK_ENABLED, UDM_TRACK_DISABLED.

• UDM_PARAM_PHRASE_MODE - defines whether index database using phrases
("phrase" parameter in indexer.conf). Possible values: UDM_PHRASE_ENABLED
and UDM_PHRASE_DISABLED. Please note, that if phrase search is enabled
(UDM_PHRASE_ENABLED), it is still possible to do search in any mode (ANY,
ALL, BOOL or PHRASE). In 3.1.10 version of mnoGoSearch phrase search is
supported only in sql and built-in database modes, while beginning with 3.1.11
phrases are supported in cachemode as well. Examples of phrase search: "Arizona

desert" - This query returns all indexed documents that contain "Arizona desert" as
a phrase. Notice that you need to put double quotes around the phrase

• UDM_PARAM_CHARSET - defines local charset. Available values: set of charsets
supported by mnoGoSearch, e.g. koi8-r, cp1251, ...

• UDM_PARAM_STOPFILE - Defines name and path to stopwords file. (There is a
small difference with mnoGoSearch - while in mnoGoSearch if relative path or no
path entered, it looks for this file in relation to UDM_CONF_DIR, the module looks
for the file in relation to current path, i.e. to the path where the PHP script is
executed.)

• UDM_PARAM_STOPTABLE - Load stop words from the given SQL table. You
may use several StopwordTable commands. This command has no effect when
compiled without SQL database support.

• UDM_PARAM_WEIGHT_FACTOR - represents weight factors for specific
document parts. Currently body, title, keywords, description, url are supported. To
activate this feature please use degrees of 2 in *Weight commands of the
indexer.conf. Let's imagine that we have these weights: URLWeight 1 BodyWeight
2 TitleWeight 4 KeywordWeight 8 DescWeight 16 As far as indexer uses bit OR
operation for word weights when some word presents several time in the same
document, it is possible at search time to detect word appearance in different
document parts. Word which appears only in the body will have 00000010
aggregate weight (in binary notation). Word used in all document parts will have
00011111 aggregate weight. This parameter's value is a string of hex digits
ABCDE. Each digit is a factor for corresponding bit in word weight. For the given
above weights configuration: E is a factor for weight 1 (URL Weight bit) D
is a factor for weight 2 (BodyWeight bit) C is a factor for weight 4
(TitleWeight bit) B is a factor for weight 8 (KeywordWeight bit) A is a
factor for weight 16 (DescWeight bit) Examples:
UDM_PARAM_WEIGHT_FACTOR=00001 will search through URLs only.
UDM_PARAM_WEIGHT_FACTOR=00100 will search through Titles only.
UDM_PARAM_WEIGHT_FACTOR=11100 will search through
Title,Keywords,Description but not through URL and Body.
UDM_PARAM_WEIGHT_FACTOR=F9421 will search through: Description with
factor 15 (F hex) Keywords with factor 9 Title with factor 4 Body with
factor 2 URL with factor 1 If UDM_PARAM_WEIGHT_FACTOR variable is
omitted, original weight value is taken to sort results. For a given above weight
configuration it means that document description has a most big weight 16.

• UDM_PARAM_WORD_MATCH - word match. You may use this parameter to
choose word match type. This feature works only in "single" and "multi" modes
using SQL based and built-in database. It does not work in cachemode and other
modes since they use word CRC and do not support substring search. Available
values: UDM_MATCH_BEGIN - word beginning match; UDM_MATCH_END -
word ending match; UDM_MATCH_WORD - whole word match;
UDM_MATCH_SUBSTR - word substring match.

• UDM_PARAM_MIN_WORD_LEN - defines minimal word length. Any word shorter
this limit is considered to be a stopword. Please note that this parameter value is
inclusive, i.e. if UDM_PARAM_MIN_WORD_LEN=3, a word 3 characters long will
not be considered a stopword, while a word 2 characters long will be. Default value
is 1.

• UDM_PARAM_ISPELL_PREFIXES - Possible values:

UDM_PREFIXES_ENABLED and UDM_PREFIXES_DISABLED, that respectively
enable or disable using prefixes. E.g. if a word "tested" is in search query, also
words like "test", "testing", etc. Only suffixes are supported by default. Prefixes
usually change word meanings, for example if somebody is searching for the word
"tested" one hardly wants "untested" to be found. Prefixes support may also be
found useful for site's spelling checking purposes. In order to enable ispell, you
have to load ispell data with udm_load_ispell_data().

• UDM_PARAM_CROSS_WORDS - enables or disables crosswords support.
Possible values: UDM_CROSS_WORDS_ENABLED and
UDM_CROSS_WORDS_DISABLED. The crosswords feature allows to assign
words between and also to a document this link leads to. It
works in SQL database mode and is not supported in built-in database and
Cachemode.

• UDM_PARAM_VARDIR - specifies a custom path to directory where indexer
stores data when using built-in database and in cache mode. By default /var
directory of mnoGoSearch installation is used. Can have only string values.

val

ChangeLog

Version Description

4.1.0 UDM_PARAM_VARDIR was added.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Crosswords are supported only in mnoGoSearch 3.1.11 or later.

mqseries

Introduction

This extension aims to provide an interface for communicating with IBMs WebSphere MQ
series Queue managers.

The interface mimics the C-API client interface of WebSphere MQ Series as close as
posible. Using the same naming conventions and posibilities of the C-API. In order to
understand the workings of this extention some level of understanding the C-API is
required.

For MQ-options, MQ-structures, MQ-results etc. please read the WebSphere MQ
Application Programming Guide and WebSphere MQ Application Programming Reference.

Installing/Configuring

Requirements

A working IBM WebSphere MQ installation. If building the extention the SDK for IBM
WebSphere MQ is also required.

Note

Be aware that when running against a IBM WebSphere MQ Client installation some
methods are not available. This is not a problem of the extention but just the way the
WebSphere MQ Client Interface works.

Installation requirements on non windows platforms

Build the extention and put it in the PHP extention directory.

Installation requirements on Windows

No additional requirements.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/mqseries.

Note

The official name of this extension is mqseries.

There are two ways to connecto to a queue manager. These depend on the way the
extention is compiled and linked.

• First one and also the default one is using the mqic libraries. Compiling and linking the
extention against these IBM WebSphere MQSeries libraries allows the extention to
connect to the Queue manager using the client interface. Remote conections are

http://pecl.php.net/
http://pecl.php.net/package/mqseries
http://pecl.php.net/package/mqseries

posible this way.

• The other way is to compile and link against the mqm libraries. Using these libraries it
is possible to make use of the transaction management of a queue manager.

Currently selecting the libraries to use is done by changing the config.m4 file.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

No extra configuration parameters exsists.

Resource Types

This extension defines a connection and object_handle resources.

The mqseries_conn() and mqseries_connx() define the connectionn handles.

The mqseries_open() defines the object handle.

Predefined Constants

For each WebSphere MQ Constant there is a mqseries conterpart.

For definitions and usage see the WebSphere MQ Application Programming Guide and
WebSphere MQ Application Programming Reference red books.

The name of the mqseries counterpart is made by appending the WebSphere MQ
constant with MQSERIES_, for example the CompletionCode constants are:

mqseries constants

PHP Constant MQ Constant

MQSERIES_MQCC_OK MQCC_OK

MQSERIES_MQCC_WARNING MQCC_WARNING

MQSERIES_MQCC_FAILED MQCC_FAILED

MQSERIES_MQCC_UNKNOWN MQCC_UNKNOWN

mqseries Functions

mqseries_back

mqseries_back -- MQSeries MQBACK

Description

mqseries_back (resource $hconn, resource $compCode, resource $reason)

The mqseries_back() (MQBACK) call indicates to the queue manager that all the message
gets and puts that have occurred since the last syncpoint are to be backed out. Messages
put as part of a unit of work are deleted; messages retrieved as part of a unit of work are
reinstated on the queue.

Using mqseries_back() only works in conjunction with mqseries_begin() and only function
when connecting directly to a Queueu manager. Not via the mqclient interface.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2272 - mqseries_back() example

<?php					

 mqseries_back($conn, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("CompCode:%d Reason:%d Text:%s
\n", $comp_code, $reason,
mqseries_strerror($reason));

 }

?>

Notes

Note

mqseries_back() will not function when using MQSeries Client to connect to a Queueu
Manager.

See Also

• mqseries_conn()
• mqseries_connx()
• mqseries_begin()

mqseries_begin

mqseries_begin -- MQseries MQBEGIN

Description

mqseries_begin (resource $hconn, array $beginOptions, resource $compCode, resource
$reason)

The mqseries_begin() (MQBEGIN) call begins a unit of work that is coordinated by the
queue manager, and that may involve external resource managers.

Using mqseries_begin() starts the unit of work. Either mqseries_back() or mqseries_cmit()
ends the unit of work.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2273 - mqseries_begin() example

<?php

 $mqbo = array();

 mqseries_begin($conn,

 $mqbo,

 $comp_code,

 $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 /* reason code 2121 is a warning for more information see MQSeries
reference manual.*/

 if ($reason !== 2121) {

 printf("CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 }

 }

?>

Notes

Note

mqseries_begin() will not function when using MQSeries Client to connect to a Queueu
Manager.

See Also

• mqseries_conn()
• mqseries_connx()
• mqseries_back()
• mqseries_cmit()

mqseries_close

mqseries_close -- MQSeries MQCLOSE

Description

mqseries_close (resource $hconn, resource $hobj, resource $compCode, resource $
reason)

The mqseries_close() (MQCLOSE) call relinquishes access to an object, and is the
inverse of the mqseries_open() (MQOPEN) call.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

hObj

Object handle. This handle represents the object to be used.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2274 - mqseries_close() example

<?php

 mqseries_close($conn, $obj, MQSERIES_MQCO_NONE, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("close CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 }

?>

See Also

• mqseries_open()
• mqseries_conn()
• mqseries_connx()

mqseries_cmit

mqseries_cmit -- MQSeries MQCMIT

Description

mqseries_cmit (resource $hconn, resource $compCode, resource $reason)

The mqseries_cmit() (MQCMIT) call indicates to the queue manager that the application
has reached a syncpoint, and that all of the message gets and puts that have occurred
since the last syncpoint are to be made permanent. Messages put as part of a unit of work
are made available to other applications; messages retrieved as part of a unit of work are
deleted.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2275 - mqseries_cmit() example

<?php

 mqseries_cmit($conn, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("cmit CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 }

?>

Notes

Note

mqseries_back() will not function when using MQSeries Client to connect to a Queueu
Manager.

See Also

• mqseries_begin()
• mqseries_back()
• mqseries_conn()
• mqseries_connx()

mqseries_conn

mqseries_conn -- MQSeries MQCONN

Description

mqseries_conn (string $qManagerName, resource $hconn, resource $compCode, resource
$reason)

The mqseries_conn() (MQCONN) call connects an application program to a queue
manager. It provides a queue manager connection handle, which is used by the
application on subsequent message queuing calls.

Parameters

qManagerName

Name of queue manager. Name of the queueu manager the application wishes to
connect.

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2276 - mqseries_conn() example

<?php

 mqseries_conn('WMQ1', $conn, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {		

 printf("conn CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 exit;

 }

?>

See Also

• mqseries_disc()

mqseries_connx

mqseries_connx -- MQSeries MQCONNX

Description

mqseries_connx (string $qManagerName, array $connOptions, resource $hconn, resource
$compCode, resource $reason)

The mqseries_connx() (MQCONNX) call connects an application program to a queue
manager. It provides a queue manager connection handle, which is used by the
application on subsequent MQ calls.

Parameters

qManagerName

Name of queue manager. Name of the queueu manager the application wishes to
connect.

connOps

Options that control the action of function See also the MQCNO structure.

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2277 - mqseries_connx() example

<?php

 $mqcno = array(

 'Version' => MQSERIES_MQCNO_VERSION_2,

 'Options' => MQSERIES_MQCNO_STANDARD_BINDING,

 'MQCD' => array('ChannelName' => 'MQNX9420.CLIENT',

 'ConnectionName' => 'localhost',

 'TransportType' => MQSERIES_MQXPT_TCP)

);

 mqseries_connx('MQNX9420', $mqcno, $conn, $comp_code,$reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {		

 printf("Connx CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 exit;

 }

?>

See Also

• mqseries_disc()

mqseries_disc

mqseries_disc -- MQSeries MQDISC

Description

mqseries_disc (resource $hconn, resource $compCode, resource $reason)

The mqseries_disc() (MQDISC) call breaks the connection between the queue manager
and the application program, and is the inverse of the mqseries_conn() (MQCONN) or
mqseries_connx() (MQCONNX) call.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2278 - mqseries_disc() example

<?php

 mqseries_disc($conn, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("disc CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 }

?>

See Also

• mqseries_conn()
• mqseries_connx()

mqseries_get

mqseries_get -- MQSeries MQGET

Description

mqseries_get (resource $hConn, resource $hObj, array $md, array $gmo, int $
bufferLength, string &$msg, int &$data_length, resource &$compCode, resource $reason)

The mqseries_get() (MQGET) call retrieves a message from a local queue that has been
opened using the mqseries_open() (MQOPEN) call

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

hObj

Object handle. This handle represents the object to be used.

md

Message descriptor (MQMD).

gmo

Get message options (MQGMO).

bufferLength

Expected length of the result buffer

msg

Buffer holding the message that was retreived from the object.

data_length

Actual buffer length

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2279 - mqseries_get() example

<?php

// open connection to the queue manager

 mqseries_conn('WMQ1', $conn, $comp_code, $reason);

// $conn now hold the reference to the connection to the queue manager.

// open the connectio to the testq queueu

 mqseries_open(

 $conn,

 array('ObjectName' => 'TESTQ'),

 MQSERIES_MQOO_INPUT_AS_Q_DEF |
MQSERIES_MQOO_FAIL_IF_QUIESCING | MQSERIES_MQOO_OUTPUT,

 $obj,

 $comp_code,

 $reason);

// $obj now holds the reference to the object (TESTQ)

// setup empty message descriptor.

 mdg = array();

// setup get message options

 $gmo = array('Options' => MQSERIES_MQGMO_FAIL_IF_QUIESCING |
MQSERIES_MQGMO_WAIT, 'WaitInterval' => 3000);

// get the message from the queueu

 mqseries_get($conn, $obj, $mdg, $gmo, 255, $msg, $data_length,
$comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("GET CompCode:%d Reason:%d Text:%s
", $comp_code, $reason,
mqseries_strerror($reason));

 }

// open connection to the queue manager

 mqseries_conn('WMQ1', $conn, $comp_code, $reason);

// $conn now hold the reference to the connection to the queue manager.

// open the connectio to the testq queueu

 mqseries_open(

 $conn,

 array('ObjectName' => 'TESTQ'),

 MQSERIES_MQOO_INPUT_AS_Q_DEF |
MQSERIES_MQOO_FAIL_IF_QUIESCING | MQSERIES_MQOO_OUTPUT,

 $obj,

 $comp_code,

 $reason);

// $obj now holds the reference to the object (TESTQ)

?>

See Also

• mqseries_conn()
• mqseries_connx()

• mqseries_open()
• mqseries_put()

mqseries_inq

mqseries_inq -- MQSeries MQINQ

Description

mqseries_inq (resource $hconn, resource $hobj, int $selectorCount, array $selectors,
int $intAttrCount, resource $intAttr, int $charAttrLength, resource $charAttr,
resource $compCode, resource $reason)

The mqseries_inq() (MQINQ) call returns an array of integers and a set of character
strings containing the attributes of an object.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

hObj

Object handle. This handle represents the object to be used.

selectorCount

Count of selectors.

selectors

Array of attribute selectors.

intAttrLength

Count of integer attributes.

intAttr

Array of integer attributes.

charAttrLength

Length of character attributes buffer.

charAttr

Character attributes.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2280 - mqseries_inq() example

<?php

 $int_attr = array();

 $char_attr = "";

 mqseries_inq($conn, $obj, 1, array(MQSERIES_MQCA_Q_MGR_NAME), 0,
$int_attr, 48, $char_attr, $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("INQ CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 } else {

 echo "INQ QManager name result ".$char_attr."
\n";

 }

?>

See Also

• mqseries_conn()
• mqseries_connx()
• mqseries_open()

mqseries_open

mqseries_open -- MQSeries MQOPEN

Description

mqseries_open (resource $hconn, array $objDesc, int $option, resource $hobj,
resource $compCode, resource $reason)

The mqseries_open() (MQOPEN) call establishes access to an object.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

objDesc

Object descriptor. (MQOD)

options

Options that control the action of the function.

hObj

Object handle. This handle represents the object to be used.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2281 - mqseries_open() example

<?php

 mqods = array('ObjectName' => 'TESTQ');

 mqseries_open(

 $conn,

 $mqods,

 MQSERIES_MQOO_INPUT_AS_Q_DEF |

MQSERIES_MQOO_FAIL_IF_QUIESCING | MQSERIES_MQOO_OUTPUT,

 $obj,

 $comp_code,

 $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("open CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 exit;

 }

?>

See Also

• mqseries_close()

mqseries_put1

mqseries_put1 -- MQSeries MQPUT1

Description

mqseries_put1 (resource $hconn, resource $objDesc, resource $msgDesc, resource $
pmo, string $buffer, resource $compCode, resource $reason)

The mqseries_put1() (MQPUT1) call puts one message on a queue. The queue need not
be open.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

objDesc

Object descriptor. (MQOD) This is a structure which identifies the queue to which the
message is added.

msgDesc

Message descriptor (MQMD).

pmo

Put message options (MQPMO).

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2282 - mqseries_put1() example

<?php

TODO:

?>

See Also

• mqseries_conn()
• mqseries_connx()
• mqseries_open()
• mqseries_get()

mqseries_put

mqseries_put -- MQSeries MQPUT

Description

mqseries_put (resource $hConn, resource $hObj, array $md, array $pmo, string $message
, resource $compCode, resource $reason)

The mqseries_put() (MQPUT) call puts a message on a queue or distribution list. The
queue or distribution list must already be open.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

hObj

Object handle. This handle represents the object to be used.

md

Message descriptor (MQMD).

pmo

Put message options (MQPMO).

message

The actual message to put onto the queue.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2283 - mqseries_put() example

<?php

// open connection to the queue manager

 mqseries_conn('WMQ1', $conn, $comp_code, $reason);

// $conn now hold the reference to the connection to the queue manager.

// open the connectio to the testq queueu

 mqseries_open(

 $conn,

 array('ObjectName' => 'TESTQ'),

 MQSERIES_MQOO_INPUT_AS_Q_DEF |
MQSERIES_MQOO_FAIL_IF_QUIESCING | MQSERIES_MQOO_OUTPUT,

 $obj,

 $comp_code,

 $reason);

// $obj now holds the reference to the object (TESTQ)

// setup the message descriptor array. Check MQSeries reference manuals.

 $md = 	array(

 'Version' => MQSERIES_MQMD_VERSION_1,

 'Expiry' => MQSERIES_MQEI_UNLIMITED,

 'Report' => MQSERIES_MQRO_NONE,

 'MsgType' => MQSERIES_MQMT_DATAGRAM,

 'Format' => MQSERIES_MQFMT_STRING,

 'Priority' => 1,

 'Persistence' => MQSERIES_MQPER_PERSISTENT);

// setup the put message options.

 $pmo = array('Options' =>
MQSERIES_MQPMO_NEW_MSG_ID|MQSERIES_MQPMO_SYNCPOINT);

// put the message 'Ping' on the queueu.

 mqseries_put($conn, $obj, $md, $pmo, 'Ping', $comp_code, $reason);

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("put CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 }

// close the object reference $obj

 mqseries_close($conn, $obj, MQSERIES_MQCO_NONE, $comp_code, $reason);

// disconnect from the queue manager.

 mqseries_disc($conn, $comp_code, $reason);

?>

See Also

• mqseries_conn()
• mqseries_connx()
• mqseries_open()
• mqseries_get()

mqseries_set

mqseries_set -- MQSeries MQSET

Description

mqseries_set (resource $hconn, resource $compCode, resource $reason)

The mqseries_set() (MQSET) call is used to change the attributes of an object represented
by a handle. The object must be a queue.

Parameters

hConn

Connection handle. This handle represents the connection to the queue manager.

compCode

Completion code.

reason

Reason code qualifying the compCode.

Return Values

No value is returned.

Examples

Example #2284 - mqseries_set() example

<?php

TODO:

?>

See Also

• mqseries_inq()

mqseries_strerror

mqseries_strerror -- Returns the error message corresponding to a result code (MQRC).

Description

string mqseries_strerror (int $reason)

mqseries_strerror() returns the message that correspond to the reason result code.

Parameters

reason

Reason code qualifying the compCode.

Return Values

string representation of the reason code message.

Examples

Example #2285 - mqseries_strerror() example

<?php

 if ($comp_code !== MQSERIES_MQCC_OK) {

 printf("open CompCode:%d Reason:%d Text:%s
\n", $comp_code,
$reason, mqseries_strerror($reason));

 exit;

 }

?>

The above example will output:

Connx CompCode:2 Reason:2059 Text:Queue manager not available for
connection.

Net Gopher

Introduction

The gopher protocol, as defined by » RFC 1436, is generally considered the ancestor of
the modern HTTP protocol. However, gopher was also intended to provide references to
non-gopher resources including telnet, wais, nntp, and even http. This extension adds
gopher support to PHP's URL Wrappers, and provides a helper function gopher_parsedir()
to make sense of gopher formatted directory listings.

http://www.faqs.org/rfcs/rfc1436

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Prerequisite: PHP 4.3.0 or higher.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/net_gopher

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/net_gopher
http://pecl.php.net/package/net_gopher

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

Net_Gopher constants

Constant Value Description

GOPHER_DOCUMENT 0 Standard text/plain
document.

GOPHER_DIRECTORY 1 A resource containing a
gopher formatted directory
listing.

GOPHER_BINHEX 4 A BinHex encoded binary
file.

GOPHER_DOSBINARY 5 A DOS formatted binary
archive.

GOPHER_UUENCODED 6 A UUEncoded file.

GOPHER_BINARY 9 A generic binary file.

GOPHER_INFO 255 An Informational entry

GOPHER_HTTP 254 A reference to an HTTP
resource.

GOPHER_UNKNOWN -1 An unrecognized entry.

Examples

<?php

readfile("gopher://gopher.example.com/somedocument");

?>

Gopher Functions

gopher_parsedir

gopher_parsedir -- Translate a gopher formatted directory entry into an associative array.

Description

array gopher_parsedir (string $dirent)

gopher_parsedir() parses a gopher formatted directory entry into an associative array.

While gopher returns text/plain documents for actual document requests. A request to a
directory (such as /) will return specially encoded series of lines with each line being one
directory entry or information line.

Parameters

dirent

The directory entry.

Return Values

Returns an associative array whose components are:

• type - One of the GOPHER_XXX constants.

• title - The name of the resource.

• path - The path of the resource.

• host - The domain name of the host that has this document (or directory).

• port - The port at which to connect on host.

Upon failure, the additional data entry of the returned array will hold the parsed line.

Examples

Example #2286 - Hypothetical output from gopher://gopher.example.com/

0All about my gopher site. /allabout.txt
gopher.example.com 70

9A picture of my cat. /pics/cat.png
gopher.example.com 70

1A collection of my writings. /stories
gopher.example.com 70

hThe HTTP version of this site. URL:http://www.example.com

gopher.example.com 70

1Mirror of this site in Spain. /
gopher.ejemplo.co.es 70

iWelcome to my gopher site.
error.host 1

iPlease select one of the options above
error.host 1

iSend complaints to /dev/null
error.host 1

iLong live gopher!
error.host 1

In the example above, the root directory at gopher.example.com knows about one
DOCUMENT identified by 0 located at gopher://gopher.example.com:70/allabout.txt. It also
knows about two other directory (which have their own listing files) at
gopher://gopher.exmaple.com:70/stories and at gopher://gopher.ejemplo.co.es:70/. In
addition there is a binary file, a link to an HTTP url, and several informative lines.

By passing each line of the directory listing into gopher_parsedir(), an associative array is
formed containing a parsed out version of the data.

Example #2287 - Using gopher_parsedir()

<?php

$directory = file("gopher://gopher.example.com");

foreach($directory as $dirent) {

 print_r(gopher_parsedir($dirent));

}

?>

The above example will output:

Array (

 [type] => 0

 [title] => All about my gopher site.

 [path] => /allabout.txt

 [host] => gopher.example.com

 [port] => 70

)

Array (

 [type] => 9

 [title] => A picture of my cat.

 [path] => /pics/cat.png

 [host] => gopher.example.com

 [port] => 70

)

Array (

 [type] => 1

 [title] => A collection of my writings.

 [path] => /stories

 [host] => gopher.example.com

 [port] => 70

)

Array (

 [type] => 254

 [title] => The HTTP version of this site.

 [path] => URL:http://www.example.com

 [host] => gopher.example.com

 [port] => 70

)

Array (

 [type] => 1

 [title] => Mirror of this site in Spain.

 [path] => /

 [host] => gopher.ejemplo.co.es

 [port] => 70

)

Array (

 [type] => 255

 [title] => Welcome to my gopher site.

 [path] =>

 [host] => error.host

 [port] => 1

)

Array (

 [type] => 255

 [title] => Please select one of the options above.

 [path] =>

 [host] => error.host

 [port] => 1

)

Array (

 [type] => 255

 [title] => Send complaints to /dev/null

 [path] =>

 [host] => error.host

 [port] => 1

)

Array (

 [type] => 255

 [title] => Long live gopher!

 [path] =>

 [host] => error.host

 [port] => 1

)

Network

Introduction

Provides various networking functions.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Network Configuration Options

Name Default Changeable Changelog

define_syslog_variabl
es

"0" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

define_syslog_variables boolean
Whether or not to define the various syslog variables (e.g. $LOG_PID, $LOG_CRON,
etc.). Turning it off is a good idea performance-wise. At runtime, you can define these
variables by calling define_syslog_variables().

Resource Types

This extension defines a file pointer resource returned by fsockopen() and pfsockopen().

Predefined Constants

The constants below are always available as part of the PHP core.

openlog() Options

Constant Description

LOG_CONS if there is an error while sending data to the
system logger, write directly to the system
console

LOG_NDELAY open the connection to the logger
immediately

LOG_ODELAY (default) delay opening the connection until
the first message is logged

LOG_NOWAIT

LOG_PERROR print log message also to standard error

LOG_PID include PID with each message

openlog() Facilities

Constant Description

LOG_AUTH security/authorization messages (use
LOG_AUTHPRIV instead in systems where
that constant is defined)

LOG_AUTHPRIV security/authorization messages (private)

LOG_CRON clock daemon (cron and at)

LOG_DAEMON other system daemons

LOG_KERN kernel messages

LOG_LOCAL0 ... LOG_LOCAL7 reserved for local use, these are not
available in Windows

LOG_LPR line printer subsystem

LOG_MAIL mail subsystem

LOG_NEWS USENET news subsystem

LOG_SYSLOG messages generated internally by syslogd

LOG_USER generic user-level messages

LOG_UUCP UUCP subsystem

syslog() Priorities (in descending order)

Constant Description

LOG_EMERG system is unusable

LOG_ALERT action must be taken immediately

LOG_CRIT critical conditions

LOG_ERR error conditions

LOG_WARNING warning conditions

LOG_NOTICE normal, but significant, condition

LOG_INFO informational message

LOG_DEBUG debug-level message

dns_get_record() Options

Constant Description

DNS_A IPv4 Address Resource

DNS_MX Mail Exchanger Resource

DNS_CNAME Alias (Canonical Name) Resource

DNS_NS Authoritative Name Server Resource

DNS_PTR Pointer Resource

DNS_HINFO Host Info Resource (See IANA's
» Operating System Names for the meaning
of these values)

DNS_SOA Start of Authority Resource

http://www.iana.org/assignments/operating-system-names
http://www.iana.org/assignments/operating-system-names

DNS_TXT Text Resource

DNS_ANY Any Resource Record. On most systems
this returns all resource records, however it
should not be counted upon for critical uses.
Try DNS_ALL instead.

DNS_AAAA IPv6 Address Resource

DNS_ALL Iteratively query the name server for each
available record type.

Network Functions

checkdnsrr

checkdnsrr -- Check DNS records corresponding to a given Internet host name or IP
address

Description

bool checkdnsrr (string $host [, string $type])

Searches DNS for records of type type corresponding to host.

Parameters

host

host may either be the IP address in dotted-quad notation or the host name.

type

type may be any one of: A, MX, NS, SOA, PTR, CNAME, AAAA, A6, SRV, NAPTR,
TXT or ANY. The default is MX.

Return Values

Returns TRUE if any records are found; returns FALSE if no records were found or if an
error occurred.

ChangeLog

Version Description

5.2.4 TXT type was added.

5.0.0 AAAA type was added.

Notes

Note

This function is not implemented on Windows platforms. Try the » PEAR class
» Net_DNS.

http://pear.php.net/
http://pear.php.net/package/Net_DNS
http://pear.php.net/package/Net_DNS

See Also

• dns_get_record()
• getmxrr()
• gethostbyaddr()
• gethostbyname()
• gethostbynamel()
• the named(8) manual page

closelog

closelog -- Close connection to system logger

Description

bool closelog (void)

closelog() closes the descriptor being used to write to the system logger. The use of
closelog() is optional.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• define_syslog_variables()
• syslog()
• openlog()

define_syslog_variables

define_syslog_variables -- Initializes all syslog related constants

Description

void define_syslog_variables (void)

Initializes all constants used in the syslog functions.

Return Values

No value is returned.

See Also

• openlog()
• syslog()
• closelog()

dns_check_record

dns_check_record -- Alias of checkdnsrr()

Description

This function is an alias of: checkdnsrr().

dns_get_mx

dns_get_mx -- Alias of getmxrr()

Description

This function is an alias of: getmxrr().

dns_get_record

dns_get_record -- Fetch DNS Resource Records associated with a hostname

Description

array dns_get_record (string $hostname [, int $type])

array dns_get_record (string $hostname, int $type, array &$authns, array &$addtl)

Fetch DNS Resource Records associated with the given hostname.

Parameters

hostname

hostname should be a valid DNS hostname such as "www.example.com". Reverse
lookups can be generated using in-addr.arpa notation, but gethostbyaddr() is more
suitable for the majority of reverse lookups.

Note

Per DNS standards, email addresses are given in user.host format (for example:
hostmaster.example.com as opposed to hostmaster@example.com), be sure to
check this value and modify if necessary before using it with a functions such as
mail().

type

By default, dns_get_record() will search for any resource records associated with
hostname. To limit the query, specify the optional type parameter. May be any one of
the following: DNS_A, DNS_CNAME, DNS_HINFO, DNS_MX, DNS_NS, DNS_PTR,
DNS_SOA, DNS_TXT, DNS_AAAA, DNS_SRV, DNS_NAPTR, DNS_A6, DNS_ALL
or DNS_ANY. The default is DNS_ANY.

Note

Because of eccentricities in the performance of libresolv between platforms,
DNS_ANY will not always return every record, the slower DNS_ALL will collect all
records more reliably.

authns

Passed by reference and, if given, will be populated with Resource Records for the
Authoritative Name Servers.

addtl

Passed by reference and, if given, will be populated with any Additional Records.

Return Values

This function returns an array of associative arrays. Each associative array contains at
minimum the following keys:

Basic DNS attributes

Attribute Meaning

host The record in the DNS namespace to which
the rest of the associated data refers.

class dns_get_record() only returns Internet class
records and as such this parameter will
always return IN.

type String containing the record type. Additional
attributes will also be contained in the
resulting array dependant on the value of
type. See table below.

ttl Time To Live remaining for this record. This
will not equal the record's original ttl, but will
rather equal the original ttl minus whatever
length of time has passed since the
authoritative name server was queried.

Other keys in associative arrays dependant on 'type'

Type Extra Columns

A ip: An IPv4 addresses in dotted decimal
notation.

MX pri: Priority of mail exchanger. Lower
numbers indicate greater priority. target:
FQDN of the mail exchanger. See also
dns_get_mx().

CNAME target: FQDN of location in DNS namespace
to which the record is aliased.

NS target: FQDN of the name server which is
authoritative for this hostname.

PTR target: Location within the DNS namespace
to which this record points.

TXT txt: Arbitrary string data associated with this
record.

HINFO cpu: IANA number designating the CPU of
the machine referenced by this record. os:
IANA number designating the Operating
System on the machine referenced by this
record. See IANA's » Operating System
Names for the meaning of these values.

SOA mname: FQDN of the machine from which
the resource records originated. rname:
Email address of the administrative contain
for this domain. serial: Serial # of this
revision of the requested domain. refresh:
Refresh interval (seconds) secondary name
servers should use when updating remote
copies of this domain. retry: Length of time
(seconds) to wait after a failed refresh
before making a second attempt. expire:
Maximum length of time (seconds) a
secondary DNS server should retain remote
copies of the zone data without a successful
refresh before discarding. minimum-ttl:
Minimum length of time (seconds) a client
can continue to use a DNS resolution before
it should request a new resolution from the
server. Can be overridden by individual
resource records.

AAAA ipv6: IPv6 address

A6 (PHP >= 5.1.0) masklen: Length (in bits) to inherit from the
target specified by chain. ipv6: Address for
this specific record to merge with chain.
chain: Parent record to merge with ipv6
data.

SRV pri: (Priority) lowest priorities should be used
first. weight: Ranking to weight which of
commonly prioritized targets should be
chosen at random. target and port:
hostname and port where the requested
service can be found. For additional
information see: » RFC 2782

NAPTR order and pref: Equivalent to pri and
weight above. flags, services, regex, and
replacement: Parameters as defined by

http://www.iana.org/assignments/operating-system-names
http://www.iana.org/assignments/operating-system-names
http://www.faqs.org/rfcs/rfc2782
http://www.faqs.org/rfcs/rfc2915

» RFC 2915.

Examples

Example #2288 - Using dns_get_record()

<?php

$result = dns_get_record("php.net");

print_r($result);

?>

The above example will output something similar to:

Array

(

 [0] => Array

 (

 [host] => php.net

 [type] => MX

 [pri] => 5

 [target] => pair2.php.net

 [class] => IN

 [ttl] => 6765

)

 [1] => Array

 (

 [host] => php.net

 [type] => A

 [ip] => 64.246.30.37

 [class] => IN

 [ttl] => 8125

)

)

Example #2289 - Using dns_get_record() and DNS_ANY

Since it's very common to want the IP address of a mail server once the MX record has
been resolved, dns_get_record() also returns an array in addtl which contains
associate records. authns is returned as well containing a list of authoritative name
servers.

<?php

/* Request "ANY" record for php.net,

 and create $authns and $addtl arrays

 containing list of name servers and

 any additional records which go with

 them */

$result = dns_get_record("php.net", DNS_ANY, $authns, $addtl);

echo "Result = ";

http://www.faqs.org/rfcs/rfc2915

print_r($result);

echo "Auth NS = ";

print_r($authns);

echo "Additional = ";

print_r($addtl);

?>

The above example will output something similar to:

Result = Array

(

 [0] => Array

 (

 [host] => php.net

 [type] => MX

 [pri] => 5

 [target] => pair2.php.net

 [class] => IN

 [ttl] => 6765

)

 [1] => Array

 (

 [host] => php.net

 [type] => A

 [ip] => 64.246.30.37

 [class] => IN

 [ttl] => 8125

)

)

Auth NS = Array

(

 [0] => Array

 (

 [host] => php.net

 [type] => NS

 [target] => remote1.easydns.com

 [class] => IN

 [ttl] => 10722

)

 [1] => Array

 (

 [host] => php.net

 [type] => NS

 [target] => remote2.easydns.com

 [class] => IN

 [ttl] => 10722

)

 [2] => Array

 (

 [host] => php.net

 [type] => NS

 [target] => ns1.easydns.com

 [class] => IN

 [ttl] => 10722

)

 [3] => Array

 (

 [host] => php.net

 [type] => NS

 [target] => ns2.easydns.com

 [class] => IN

 [ttl] => 10722

)

)

Additional = Array

(

 [0] => Array

 (

 [host] => pair2.php.net

 [type] => A

 [ip] => 216.92.131.5

 [class] => IN

 [ttl] => 6766

)

 [1] => Array

 (

 [host] => remote1.easydns.com

 [type] => A

 [ip] => 64.39.29.212

 [class] => IN

 [ttl] => 100384

)

 [2] => Array

 (

 [host] => remote2.easydns.com

 [type] => A

 [ip] => 212.100.224.80

 [class] => IN

 [ttl] => 81241

)

 [3] => Array

 (

 [host] => ns1.easydns.com

 [type] => A

 [ip] => 216.220.40.243

 [class] => IN

 [ttl] => 81241

)

 [4] => Array

 (

 [host] => ns2.easydns.com

 [type] => A

 [ip] => 216.220.40.244

 [class] => IN

 [ttl] => 81241

)

)

Notes

Note

This function is not implemented on Windows platforms, nor does it (currently) work on
*BSD systems (including Mac). Try the » PEAR class » Net_DNS.

See Also

• dns_get_mx()
• dns_check_record()

http://pear.php.net/
http://pear.php.net/package/Net_DNS

fsockopen

fsockopen -- Open Internet or Unix domain socket connection

Description

resource fsockopen (string $hostname [, int $port [, int &$errno [, string &$errstr [, float
$timeout]]]])

Initiates a socket connection to the resource specified by hostname.

PHP supports targets in the Internet and Unix domains as described in List of Supported
Socket Transports. A list of supported transports can also be retrieved using
stream_get_transports().

The socket will by default be opened in blocking mode. You can switch it to non-blocking
mode by using stream_set_blocking().

Parameters

hostname

If you have compiled in OpenSSL support, you may prefix the hostname with either
ssl:// or tls:// to use an SSL or TLS client connection over TCP/IP to connect to the
remote host.

port

The port number.

errno

If provided, holds the system level error number that occurred in the system-level
connect() call. If the value returned in errno is 0 and the function returned FALSE, it is
an indication that the error occurred before the connect() call. This is most likely due to
a problem initializing the socket.

errstr

The error message as a string.

timeout

The connection timeout, in seconds.

Note

If you need to set a timeout for reading/writing data over the socket, use
stream_set_timeout(), as the timeout parameter to fsockopen() only applies while
connecting the socket.

Return Values

fsockopen() returns a file pointer which may be used together with the other file functions
(such as fgets(), fgetss(), fwrite(), fclose(), and feof()). If the call fails, it will return FALSE

ChangeLog

Version Description

4.3.0 Added support for the timeout parameter
on win32.

4.3.0 SSL and TLS over TCP/IP support was
added.

4.0.0 UDP support was added.

3.0.9 The timeout parameter was added.

Examples

Example #2290 - fsockopen() Example

<?php

$fp = fsockopen("www.example.com", 80, $errno, $errstr, 30);

if (!$fp) {

 echo "$errstr ($errno)
\n";

} else {

 $out = "GET / HTTP/1.1\r\n";

 $out .= "Host: www.example.com\r\n";

 $out .= "Connection: Close\r\n\r\n";

 fwrite($fp, $out);

 while (!feof($fp)) {

 echo fgets($fp, 128);

 }

 fclose($fp);

}

?>

Example #2291 - Using UDP connection

The example below shows how to retrieve the day and time from the UDP service

"daytime" (port 13) in your own machine.

<?php

$fp = fsockopen("udp://127.0.0.1", 13, $errno, $errstr);

if (!$fp) {

 echo "ERROR: $errno - $errstr
\n";

} else {

 fwrite($fp, "\n");

 echo fread($fp, 26);

 fclose($fp);

}

?>

Notes

Note

Depending on the environment, the Unix domain or the optional connect timeout may
not be available.

Warning

UDP sockets will sometimes appear to have opened without an error, even if the
remote host is unreachable. The error will only become apparent when you read or
write data to/from the socket. The reason for this is because UDP is a "connectionless"
protocol, which means that the operating system does not try to establish a link for the
socket until it actually needs to send or receive data.

Note

When specifying a numerical IPv6 address (e.g. fe80::1), you must enclose the IP in
square brackets?for example, tcp://[fe80::1]:80.

See Also

• pfsockopen()
• stream_set_blocking()
• stream_set_timeout()
• fgets()
• fgetss()
• fwrite()
• fclose()
• feof()

• The Curl extension

gethostbyaddr

gethostbyaddr -- Get the Internet host name corresponding to a given IP address

Description

string gethostbyaddr (string $ip_address)

Returns the host name of the Internet host specified by ip_address.

Parameters

ip_address

The host IP address.

Return Values

Returns the host name or the unmodified ip_address on failure.

Examples

Example #2292 - A simple gethostbyaddr() example

<?php

$hostname = gethostbyaddr($_SERVER['REMOTE_ADDR']);

echo $hostname;

?>

See Also

• gethostbyname()
• gethostbynamel()

gethostbyname

gethostbyname -- Get the IP address corresponding to a given Internet host name

Description

string gethostbyname (string $hostname)

Returns the IP address of the Internet host specified by hostname.

Parameters

hostname

The host name.

Return Values

Returns the IP address or a string containing the unmodified hostname on failure.

Examples

Example #2293 - A simple gethostbyname() example

<?php

$ip = gethostbyname('www.example.com');

echo $ip;

?>

See Also

• gethostbyaddr()
• gethostbynamel()

gethostbynamel

gethostbynamel -- Get a list of IP addresses corresponding to a given Internet host name

Description

array gethostbynamel (string $hostname)

Returns a list of IP addresses to which the Internet host specified by hostname resolves.

Parameters

hostname

The host name.

Return Values

Returns an array of IP addresses or FALSE if hostname could not be resolved.

Examples

Example #2294 - gethostbynamel() example

<?php

$hosts = gethostbynamel('www.example.com');

print_r($hosts);

?>

The above example will output:

Array

(

 [0] => 192.0.34.166

)

See Also

• gethostbyname()
• gethostbyaddr()
• checkdnsrr()
• getmxrr()
• the named(8) manual page

getmxrr

getmxrr -- Get MX records corresponding to a given Internet host name

Description

bool getmxrr (string $hostname, array &$mxhosts [, array &$weight])

Searches DNS for MX records corresponding to hostname.

Parameters

hostname

The Internet host name.

mxhosts

A list of the MX records found is placed into the array mxhosts.

weight

If the weight array is given, it will be filled with the weight information gathered.

Return Values

Returns TRUE if any records are found; returns FALSE if no records were found or if an
error occurred.

Notes

Note

This function should not be used for the purposes of address verification. Only the
mailexchangers found in DNS are returned, however, according to » RFC 2821 when
no mail exchangers are listed, hostname itself should be used as the only mail
exchanger with a priority of 0.

Note

This function is not implemented on Windows platforms. Try the » PEAR class
» Net_DNS.

See Also

http://www.faqs.org/rfcs/rfc2821
http://pear.php.net/
http://pear.php.net/package/Net_DNS
http://pear.php.net/package/Net_DNS

• checkdnsrr()
• dns_get_record()
• gethostbyname()
• gethostbynamel()
• gethostbyaddr()
• the named(8) manual page

getprotobyname

getprotobyname -- Get protocol number associated with protocol name

Description

int getprotobyname (string $name)

getprotobyname() returns the protocol number associated with the protocol name as per
/etc/protocols.

Parameters

name

The protocol name.

Return Values

Returns the protocol number or -1 if the protocol is not found.

Examples

Example #2295 - getprotobyname() example

<?php

$protocol = 'tcp';

$get_prot = getprotobyname($protocol);

if ($get_prot == -1) {

 echo 'Invalid Protocol';

} else {

 echo 'Protocol #' . $get_prot;

}

?>

See Also

• getprotobynumber()

getprotobynumber

getprotobynumber -- Get protocol name associated with protocol number

Description

string getprotobynumber (int $number)

getprotobynumber() returns the protocol name associated with protocol number as per
/etc/protocols.

Parameters

number

The protocol number.

Return Values

Returns the protocol name as a string.

See Also

• getprotobyname()

getservbyname

getservbyname -- Get port number associated with an Internet service and protocol

Description

int getservbyname (string $service, string $protocol)

getservbyname() returns the Internet port which corresponds to service for the specified
protocol as per /etc/services.

Parameters

service

The Internet service name, as a string.

protocol

protocol is either "tcp" or "udp" (in lowercase).

Return Values

Returns the port number, or FALSE if service or protocol is not found.

Examples

Example #2296 - getservbyname() example

<?php

$services = array('http', 'ftp', 'ssh', 'telnet', 'imap',

'smtp', 'nicname', 'gopher', 'finger', 'pop3', 'www');

foreach ($services as $service) {

 $port = getservbyname($service, 'tcp');

 echo $service . ": " . $port . "
\n";

}

?>

See Also

• getservbyport()
• » http://www.iana.org/assignments/port-numbers for a complete list of port numbers.

http://www.iana.org/assignments/port-numbers

getservbyport

getservbyport -- Get Internet service which corresponds to port and protocol

Description

string getservbyport (int $port, string $protocol)

getservbyport() returns the Internet service associated with port for the specified
protocol as per /etc/services.

Parameters

port

The port number.

protocol

protocol is either "tcp" or "udp" (in lowercase).

Return Values

Returns the Internet service name as a string.

See Also

• getservbyname()

header

header -- Send a raw HTTP header

Description

void header (string $string [, bool $replace [, int $http_response_code]])

header() is used to send a raw HTTP header. See the » HTTP/1.1 specification for more
information on HTTP headers.

Remember that header() must be called before any actual output is sent, either by normal
HTML tags, blank lines in a file, or from PHP. It is a very common error to read code with
include(), or require(), functions, or another file access function, and have spaces or
empty lines that are output before header() is called. The same problem exists when using
a single PHP/HTML file.

<html>

<?php

/* This will give an error. Note the output

* above, which is before the header() call */

header('Location: http://www.example.com/');

?>

Parameters

string

The header string. There are two special-case header calls. The first is a header that
starts with the string " HTTP/ " (case is not significant), which will be used to figure out
the HTTP status code to send. For example, if you have configured Apache to use a
PHP script to handle requests for missing files (using the ErrorDocument directive),
you may want to make sure that your script generates the proper status code.

<?php

header("HTTP/1.0 404 Not Found");

?>

The second special case is the "Location:" header. Not only does it send this header
back to the browser, but it also returns a REDIRECT (302) status code to the browser
unless some 3xx status code has already been set.

<?php

header("Location: http://www.example.com/"); /* Redirect browser */

/* Make sure that code below does not get executed when we redirect. */

exit;

?>

http://www.faqs.org/rfcs/rfc2616

replace

The optional replace parameter indicates whether the header should replace a
previous similar header, or add a second header of the same type. By default it will
replace, but if you pass in FALSE as the second argument you can force multiple
headers of the same type. For example:

<?php

header('WWW-Authenticate: Negotiate');

header('WWW-Authenticate: NTLM', false);

?>

http_response_code

Forces the HTTP response code to the specified value.

Return Values

No value is returned.

ChangeLog

Version Description

4.4.2 and 5.1.2 This function now prevents more than one
header to be sent at once as a protection
against header injection attacks.

4.3.0 The http_response_code parameter was
added.

4.0.4 The replace parameter was added.

Examples

Example #2297 - Download dialog

If you want the user to be prompted to save the data you are sending, such as a
generated PDF file, you can use the » Content-Disposition header to supply a
recommended filename and force the browser to display the save dialog.

<?php

// We'll be outputting a PDF

header('Content-type: application/pdf');

http://www.faqs.org/rfcs/rfc2183

// It will be called downloaded.pdf

header('Content-Disposition: attachment; filename="downloaded.pdf"');

// The PDF source is in original.pdf

readfile('original.pdf');

?>

Example #2298 - Caching directives

PHP scripts often generate dynamic content that must not be cached by the client
browser or any proxy caches between the server and the client browser. Many proxies
and clients can be forced to disable caching with:

<?php

header("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past

?>

Note

You may find that your pages aren't cached even if you don't output all of the
headers above. There are a number of options that users may be able to set for
their browser that change its default caching behavior. By sending the headers
above, you should override any settings that may otherwise cause the output of
your script to be cached.

Additionally, session_cache_limiter() and the session.cache_limiter configuration
setting can be used to automatically generate the correct caching-related headers
when sessions are being used.

Notes

Note

As of PHP 4, you can use output buffering to get around this problem, with the
overhead of all of your output to the browser being buffered in the server until you send
it. You can do this by calling ob_start() and ob_end_flush() in your script, or setting the
output_buffering configuration directive on in your php.ini or server configuration files.

Note

The HTTP status header line will always be the first sent to the client, regardless of the
actual header() call being the first or not. The status may be overridden by calling
header() with a new status line at any time unless the HTTP headers have already
been sent.

Note

There is a bug in Microsoft Internet Explorer 4.01 that prevents this from working.
There is no workaround. There is also a bug in Microsoft Internet Explorer 5.5 that
interferes with this, which can be resolved by upgrading to Service Pack 2 or later.

Note

If safe mode is enabled the uid of the script is added to the realm part of the
WWW-Authenticate header if you set this header (used for HTTP Authentication).

Note

HTTP/1.1 requires an absolute URI as argument to » Location: including the scheme,
hostname and absolute path, but some clients accept relative URIs. You can usually
use $_SERVER['HTTP_HOST'], $_SERVER['PHP_SELF'] and dirname() to make an
absolute URI from a relative one yourself:

<?php

/* Redirect to a different page in the current directory that was requested
*/

$host = $_SERVER['HTTP_HOST'];

$uri = rtrim(dirname($_SERVER['PHP_SELF']), '/\\');

$extra = 'mypage.php';

header("Location: http://$host$uri/$extra");

exit;

?>

Note

Session ID is not passed with Location header even if session.use_trans_sid is
enabled. It must by passed manually using SID constant.

See Also

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30

• headers_sent()
• setcookie()
• The section on HTTP authentication

headers_list

headers_list -- Returns a list of response headers sent (or ready to send)

Description

array headers_list (void)

headers_list() will return a list of headers to be sent to the browser / client. To determine
whether or not these headers have been sent yet, use headers_sent().

Return Values

Returns a numerically indexed array of headers.

Examples

Example #2299 - Examples using headers_list()

<?php

/* setcookie() will add a response header on its own */

setcookie('foo', 'bar');

/* Define a custom response header

 This will be ignored by most clients */

header("X-Sample-Test: foo");

/* Specify plain text content in our response */

header('Content-type: text/plain');

/* What headers are going to be sent? */

var_dump(headers_list());

?>

The above example will output:

array(4) {

 [0]=>

 string(23) "X-Powered-By: PHP/5.1.3"

 [1]=>

 string(19) "Set-Cookie: foo=bar"

 [2]=>

 string(18) "X-Sample-Test: foo"

 [3]=>

 string(24) "Content-type: text/plain"

}

See Also

• headers_sent()
• header()
• setcookie()
• apache_response_headers()

headers_sent

headers_sent -- Checks if or where headers have been sent

Description

bool headers_sent ([string &$file [, int &$line]])

Checks if or where headers have been sent.

You can't add any more header lines using the header() function once the header block
has already been sent. Using this function you can at least prevent getting HTTP header
related error messages. Another option is to use Output Buffering.

Parameters

file

If the optional file and line parameters are set, headers_sent() will put the PHP
source file name and line number where output started in the file and line variables.

line

The line number where the output started.

Return Values

headers_sent() will return FALSE if no HTTP headers have already been sent or TRUE
otherwise.

ChangeLog

Version Description

4.3.0 The optional file and line parameters
were added.

Examples

Example #2300 - Examples using headers_sent()

<?php

// If no headers are sent, send one

if (!headers_sent()) {

 header('Location: http://www.example.com/');

 exit;

}

// An example using the optional file and line parameters, as of PHP 4.3.0

// Note that $filename and $linenum are passed in for later use.

// Do not assign them values beforehand.

if (!headers_sent($filename, $linenum)) {

 header('Location: http://www.example.com/');

 exit;

// You would most likely trigger an error here.

} else {

 echo "Headers already sent in $filename on line $linenum\n" .

 "Cannot redirect, for now please click this <a " .

 "href=\"http://www.example.com\">link instead\n";

 exit;

}

?>

See Also

• ob_start()
• trigger_error()
• headers_list()
• header() for a more detailed discussion of the matters involved.

inet_ntop

inet_ntop -- Converts a packed internet address to a human readable representation

Description

string inet_ntop (string $in_addr)

This function converts a 32bit IPv4, or 128bit IPv6 address (if PHP was built with IPv6
support enabled) into an address family appropriate string representation.

Parameters

in_addr

A 32bit IPv4, or 128bit IPv6 address.

Return Values

Returns a string representation of the address or FALSE on failure.

Examples

Example #2301 - inet_ntop() Example

<?php

$packed = chr(127) . chr(0) . chr(0) . chr(1);

$expanded = inet_ntop($packed);

/* Outputs: 127.0.0.1 */

echo $expanded;

$packed = str_repeat(chr(0), 15) . chr(1);

$expanded = inet_ntop($packed);

/* Outputs: ::1 */

echo $expanded;

?>

Notes

ChangeLog

Version Description

5.3.0 This function is now available on Windows
platforms

See Also

• long2ip()
• ip2long()
• inet_pton()

inet_pton

inet_pton -- Converts a human readable IP address to its packed in_addr representation

Description

string inet_pton (string $address)

This function converts a human readable IPv4 or IPv6 address (if PHP was built with IPv6
support enabled) into an address family appropriate 32bit or 128bit binary structure.

Parameters

address

A human readable IPv4 or IPv6 address.

Return Values

Returns the in_addr representation of the given address

Examples

Example #2302 - inet_pton() Example

<?php

$in_addr = inet_pton('127.0.0.1');

$in6_addr = inet_pton('::1');

?>

Notes

ChangeLog

Version Description

5.3.0 This function is now available on Windows
platforms

See Also

• ip2long()
• long2ip()
• inet_ntop()

ip2long

ip2long -- Converts a string containing an (IPv4) Internet Protocol dotted address into a
proper address

Description

int ip2long (string $ip_address)

The function ip2long() generates an IPv4 Internet network address from its Internet
standard format (dotted string) representation.

ip2long() will also work with non-complete IP addresses. Read
» http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/inet_addr.htm for
more info.

Parameters

ip_address

A standard format address.

Return Values

Returns the IPv4 address or FALSE if ip_address is invalid.

ChangeLog

Version Description

5.0.0 Prior to this version, ip2long() returned -1 on
failure.

Examples

Example #2303 - ip2long() Example

<?php

$ip = gethostbyname('www.example.com');

$out = "The following URLs are equivalent:
\n";

$out .= 'http://www.example.com/, http://' . $ip . '/, and http://' .
sprintf("%u", ip2long($ip)) . "/
\n";

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/inet_addr.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/inet_addr.htm

echo $out;

?>

Example #2304 - Displaying an IP address

This second example shows how to print a converted address with the printf() function
in both PHP 4 and PHP 5:

<?php

$ip = gethostbyname('www.example.com');

$long = ip2long($ip);

if ($long == -1 || $long === FALSE) {

 echo 'Invalid IP, please try again';

} else {

 echo $ip . "\n"; // 192.0.34.166

 echo $long . "\n"; // -1073732954

 printf("%u\n", ip2long($ip)); // 3221234342

}

?>

Example #2305 - IP validation

ip2long() should not be used as the sole form of IP validation. Combine it with long2ip()
:

<?php

// make sure IPs are valid. also converts a non-complete IP into

// a proper dotted quad as explained below.

$ip = long2ip(ip2long("127.0.0.1")); // "127.0.0.1"

$ip = long2ip(ip2long("10.0.0")); // "10.0.0.0"

$ip = long2ip(ip2long("10.0.256")); // "10.0.1.0"

?>

Notes

Note

Because PHP's integer type is signed, and many IP addresses will result in negative
integers, you need to use the "%u" formatter of sprintf() or printf() to get the string
representation of the unsigned IP address.

Note

ip2long() will return FALSE for the IP 255.255.255.255 in PHP 5 <= 5.0.2. It was fixed
in PHP 5.0.3 where it returns -1 (same as PHP 4).

See Also

• long2ip()
• sprintf()

long2ip

long2ip -- Converts an (IPv4) Internet network address into a string in Internet standard
dotted format

Description

string long2ip (int $proper_address)

The function long2ip() generates an Internet address in dotted format (i.e.:
aaa.bbb.ccc.ddd) from the proper address representation.

Parameters

proper_address

A proper address representation.

Return Values

Returns the Internet IP address as a string.

See Also

• ip2long()

openlog

openlog -- Open connection to system logger

Description

bool openlog (string $ident, int $option, int $facility)

openlog() opens a connection to the system logger for a program.

The use of openlog() is optional. It will automatically be called by syslog() if necessary, in
which case ident will default to FALSE.

Parameters

ident

The string ident is added to each message.

option

The option argument is used to indicate what logging options will be used when
generating a log message.

openlog() Options

Constant Description

LOG_CONS if there is an error while sending data to the
system logger, write directly to the system
console

LOG_NDELAY open the connection to the logger
immediately

LOG_ODELAY (default) delay opening the connection until
the first message is logged

LOG_PERROR print log message also to standard error

LOG_PID include PID with each message

You can use one or more of this options. When using multiple options you need to OR
them, i.e. to open the connection immediately, write to the console and include the PID in
each message, you will use: LOG_CONS | LOG_NDELAY | LOG_PID

facility

The facility argument is used to specify what type of program is logging the message.
This allows you to specify (in your machine's syslog configuration) how messages coming
from different facilities will be handled.

openlog() Facilities

Constant Description

LOG_AUTH security/authorization messages (use
LOG_AUTHPRIV instead in systems where
that constant is defined)

LOG_AUTHPRIV security/authorization messages (private)

LOG_CRON clock daemon (cron and at)

LOG_DAEMON other system daemons

LOG_KERN kernel messages

LOG_LOCAL0... LOG_LOCAL7 reserved for local use, these are not
available in Windows

LOG_LPR line printer subsystem

LOG_MAIL mail subsystem

LOG_NEWS USENET news subsystem

LOG_SYSLOG messages generated internally by syslogd

LOG_USER generic user-level messages

LOG_UUCP UUCP subsystem

Note

LOG_USER is the only valid log type under Windows operating systems

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• define_syslog_variables()
• syslog()
• closelog()

pfsockopen

pfsockopen -- Open persistent Internet or Unix domain socket connection

Description

resource pfsockopen (string $hostname [, int $port [, int &$errno [, string &$errstr [, float $
timeout]]]])

This function behaves exactly as fsockopen() with the difference that the connection is not
closed after the script finishes. It is the persistent version of fsockopen().

Parameters

For parameter information, see the fsockopen() documentation.

See Also

• fsockopen()

setcookie

setcookie -- Send a cookie

Description

bool setcookie (string $name [, string $value [, int $expire [, string $path [, string $domain [,
bool $secure [, bool $httponly]]]]]])

setcookie() defines a cookie to be sent along with the rest of the HTTP headers. Like other
headers, cookies must be sent before any output from your script (this is a protocol
restriction). This requires that you place calls to this function prior to any output, including
<html> and <head> tags as well as any whitespace.

Once the cookies have been set, they can be accessed on the next page load with the
$_COOKIE or $HTTP_COOKIE_VARS arrays. Note, superglobals such as $_COOKIE
became available in PHP 4.1.0. Cookie values also exist in $_REQUEST.

Parameters

All the arguments except the name argument are optional. You may also replace an argument
with an empty string ("") in order to skip that argument. Because the expire argument is
integer, it cannot be skipped with an empty string, use a zero (0) instead.

See » Netscape cookie specification for specifics on how each setcookie() parameter works
name

The name of the cookie.

value

The value of the cookie. This value is stored on the clients computer; do not store sensitive
information. Assuming the name is 'cookiename', this value is retrieved through
$_COOKIE['cookiename']

expire

The time the cookie expires. This is a Unix timestamp so is in number of seconds since the
epoch. In other words, you'll most likely set this with the time() function plus the number of
seconds before you want it to expire. Or you might use mktime(). time()+60*60*24*30 will
set the cookie to expire in 30 days. If set to 0, or omitted, the cookie will expire at the end
of the session (when the browser closes).

Note

You may notice the expire parameter takes on a Unix timestamp, as opposed to the
date format Wdy, DD-Mon-YYYY HH:MM:SS GMT, this is because PHP does this
conversion internally.

expire is compared to the client's time which can differ from server's time.

http://wp.netscape.com/newsref/std/cookie_spec.html

path

The path on the server in which the cookie will be available on. If set to '/', the cookie will
be available within the entire domain. If set to '/foo/', the cookie will only be available within
the /foo/ directory and all sub-directories such as /foo/bar/ of domain. The default value is
the current directory that the cookie is being set in.

domain

The domain that the cookie is available. To make the cookie available on all subdomains
of example.com then you'd set it to '.example.com'. The. is not required but makes it
compatible with more browsers. Setting it to www.example.com will make the cookie only
available in the www subdomain. Refer to tail matching in the » spec for details.

secure

Indicates that the cookie should only be transmitted over a secure HTTPS connection from
the client. When set to TRUE, the cookie will only be set if a secure connection exists. The
default is FALSE. On the server-side, it's on the programmer to send this kind of cookie
only on secure connection (e.g. with respect to $_SERVER["HTTPS"]).

httponly

When TRUE the cookie will be made accessible only through the HTTP protocol. This
means that the cookie won't be accessible by scripting languages, such as JavaScript.
This setting can effectly help to reduce identity theft through XSS attacks (although it is not
supported by all browsers). Added in PHP 5.2.0. TRUE or FALSE

Return Values

If output exists prior to calling this function, setcookie() will fail and return FALSE. If
setcookie() successfully runs, it will return TRUE. This does not indicate whether the user
accepted the cookie.

Examples

Some examples follow how to send cookies:

Example #2306 - setcookie() send example

<?php

$value = 'something from somewhere';

setcookie("TestCookie", $value);

setcookie("TestCookie", $value, time()+3600); /* expire in 1 hour */

setcookie("TestCookie", $value, time()+3600, "/~rasmus/", ".example.com", 1);

?>

Note that the value portion of the cookie will automatically be urlencoded when you send the
cookie, and when it is received, it is automatically decoded and assigned to a variable by the
same name as the cookie name. If you don't want this, you can use setrawcookie() instead if
you are using PHP 5. To see the contents of our test cookie in a script, simply use one of the
following examples:

http://wp.netscape.com/newsref/std/cookie_spec.html

<?php

// Print an individual cookie

echo $_COOKIE["TestCookie"];

echo $HTTP_COOKIE_VARS["TestCookie"];

// Another way to debug/test is to view all cookies

print_r($_COOKIE);

?>

Example #2307 - setcookie() delete example

When deleting a cookie you should assure that the expiration date is in the past, to trigger
the removal mechanism in your browser. Examples follow how to delete cookies sent in
previous example:

<?php

// set the expiration date to one hour ago

setcookie ("TestCookie", "", time() - 3600);

setcookie ("TestCookie", "", time() - 3600, "/~rasmus/", ".example.com", 1);

?>

Example #2308 - setcookie() and arrays

You may also set array cookies by using array notation in the cookie name. This has the
effect of setting as many cookies as you have array elements, but when the cookie is
received by your script, the values are all placed in an array with the cookie's name:

<?php

// set the cookies

setcookie("cookie[three]", "cookiethree");

setcookie("cookie[two]", "cookietwo");

setcookie("cookie[one]", "cookieone");

// after the page reloads, print them out

if (isset($_COOKIE['cookie'])) {

 foreach ($_COOKIE['cookie'] as $name => $value) {

 echo "$name : $value
\n";

 }

}

?>

The above example will output:

three : cookiethree

two : cookietwo

one : cookieone

Notes

Note

As of PHP 4, you can use output buffering to send output prior to the call of this function,
with the overhead of all of your output to the browser being buffered in the server until you
send it. You can do this by calling ob_start() and ob_end_flush() in your script, or setting
the output_buffering configuration directive on in your php.ini or server configuration files.

Note

If the PHP directive register_globals is set to on then cookie values will also be made into
variables. In our examples below, $TestCookie will exist. It's recommended to use
$_COOKIE.

Common Pitfalls:

• Cookies will not become visible until the next loading of a page that the cookie should be
visible for. To test if a cookie was successfully set, check for the cookie on a next loading
page before the cookie expires. Expire time is set via the expire parameter. A nice way to
debug the existence of cookies is by simply calling print_r($_COOKIE);.

• Cookies must be deleted with the same parameters as they were set with. If the value
argument is an empty string, or FALSE, and all other arguments match a previous call to
setcookie, then the cookie with the specified name will be deleted from the remote client.

• Because setting a cookie with a value of FALSE will try to delete the cookie, you should
not use boolean values. Instead, use 0 for FALSE and 1 for TRUE.

• Cookies names can be set as array names and will be available to your PHP scripts as
arrays but separate cookies are stored on the users system. Consider explode() to set one
cookie with multiple names and values. It is not recommended to use serialize() for this
purpose, because it can result in security holes.

Multiple calls to setcookie() are performed in the order called.

See Also

• header()
• setrawcookie()
• cookies section
• » RFC 2109
• » RFC 2965

http://www.faqs.org/rfcs/rfc2109
http://www.faqs.org/rfcs/rfc2965

setrawcookie

setrawcookie -- Send a cookie without urlencoding the cookie value

Description

bool setrawcookie (string $name [, string $value [, int $expire [, string $path [, string $
domain [, bool $secure [, bool $httponly]]]]]])

setrawcookie() is exactly the same as setcookie() except that the cookie value will not be
automatically urlencoded when sent to the browser.

Parameters

For parameter information, see the setcookie() documentation.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.0 The httponly parameter was added.

See Also

• setcookie()

socket_get_status

socket_get_status -- Alias of stream_get_meta_data()

Description

This function is an alias of: stream_get_meta_data().

socket_set_blocking

socket_set_blocking -- Alias of stream_set_blocking()

Description

This function is an alias of: stream_set_blocking().

socket_set_timeout

socket_set_timeout -- Alias of stream_set_timeout()

Description

This function is an alias of: stream_set_timeout().

syslog

syslog -- Generate a system log message

Description

bool syslog (int $priority, string $message)

syslog() generates a log message that will be distributed by the system logger.

For information on setting up a user defined log handler, see the syslog.conf) 5) Unix
manual page. More information on the syslog facilities and option can be found in the man
pages for syslog) 3) on Unix machines.

Parameters

priority

priority is a combination of the facility and the level. Possible values are:

syslog() Priorities (in descending order)

Constant Description

LOG_EMERG system is unusable

LOG_ALERT action must be taken immediately

LOG_CRIT critical conditions

LOG_ERR error conditions

LOG_WARNING warning conditions

LOG_NOTICE normal, but significant, condition

LOG_INFO informational message

LOG_DEBUG debug-level message

message

The message to send, except that the two characters %m will be replaced by the error
message string (strerror) corresponding to the present value of errno.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2309 - Using syslog()

<?php

define_syslog_variables();

// open syslog, include the process ID and also send

// the log to standard error, and use a user defined

// logging mechanism

openlog("myScriptLog", LOG_PID | LOG_PERROR, LOG_LOCAL0);

// some code

if (authorized_client()) {

 // do something

} else {

 // unauthorized client!

 // log the attempt

 $access = date("Y/m/d H:i:s");

 syslog(LOG_WARNING, "Unauthorized client: $access {$_SERVER['REMOTE_ADDR']}
({$_SERVER['HTTP_USER_AGENT']})");

}

closelog();

?>

Notes

On Windows NT, the syslog service is emulated using the Event Log.

Note

Use of LOG_LOCAL0 through LOG_LOCAL7 for the facility parameter of openlog() is
not available in Windows.

See Also

• define_syslog_variables()
• openlog()
• closelog()

Simple Asynchronous Messaging

Introduction

This extension provides access to the functionality of messaging and queueing systems, such
as the IBM WebSphere MQSeries family of products, from PHP scripts. The interface is
designed to make it extremely simple to do the more commonly required tasks such as deliver
simple text messages to queues while still allowing skilled users to do more complex
messaging operations. For many users the complexities of setting up numerous options can
be simply ignored.

The SAM extension is a framework that provides a very simple API that can be used to access
a number of messaging middleware systems. Currently the package includes built-in support
for the MQTT (MQ Telemetry Transport) messaging protocol and support for the IBM
Messaging and Queuing middleware products. SAM is designed to be readily extended to
support other messaging systems and extension modules may be written in C or PHP.

Installing/Configuring

Requirements

The SAM extension interfaces to the IBM Messaging and Queuing middleware products using
a set of libraries and some client side code referred to as XMS. This package is available as a
free download in the guise of IBM support pack IA94. There is a description of this package
and download links in the article » Introducing XMS - The IBM Message Service API.

If you intend to use SAM to access the Messaging and Queuing infrastructure within
WebSphere MQ then you will also need to have installed a local MQ queue manager or
installed the WebSphere MQ clients package. The clients package is freely available as a
support pack (» MQC6).

If you are only aiming to experiment with sending messages to and from WebSphere
Application Server queues using the WebSphere Platform Messaging protocol (WPM) then
you do not need to install the MQC6 package.

After installing these packages you will need to ensure the XMS binary and, if you are using it,
the MQ client bin directory are included in the PATH environment variable so that Apache and
PHP can find the dependent .DLLs/libraries.

Installation

The SAM framework and MQTT support can be built and used without any other prerequisites.
Support for protocols other than MQTT is provided via a set of libraries and some client side
code referred to as XMS.

If you only intend to use the built-in MQTT support then you can build and configure SAM as
an extension or simply refer to "php_sam.php" with a "requires" or "requires_once" clause in
your PHP script. In this case you need only install the code without building the extension
using the pear installer:
pecl install -B SAM

Linux installation steps

The sam extension is supplied as a PECL module, which you should be able to download and
install in one step as follows:
pecl install sam
(Depending on your php environment, you will probably need to be root to do this.)

Make sure that the module is loaded by PHP, by adding following line to php.ini:
extension=sam.so
If you intend to use the XMS support to access the IBM Messaging and Queuing family you
must also enable the SAM XMS extension.
extension=sam_xms.so

http://www-1.ibm.com/support/docview.wss?uid=swg24007092
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24009961&loc=en_US&cs=utf-8&lang=en

If you cannot use the PEAR installer, you can download the extension and build it manually:
pear download sam #downloads sam-<version>.tgz

tar -xzf sam-<version>.tgz

cd sam-<version>

phpize

./configure

make

make install #you may need to be root for this step

To work with the very latest source, you'll need to extract it from cvs and build manually as
above.

Windows installation steps

You will probably need to build the sam extension for Windows as there are only a limited
range of pre-built binaries available from the SAM website. The extension can be built using
the standard Windows extension build procedures.

You will need the PHP source tree for the version of PHP you wish to build the SAM extension
against which you can obtain from php.net. This should be unpacked into a working directory
of your choice.

You will also need the libraries and headers used by PHP extensions available from
http://www.php.net/extra/win32build.zip and this should be unzipped so that is in your working
directory.

You should have something like:
c:\php-build\-

 |

 |---php-5.0.5--|---build

 | |---ext

 | |--- ...

 |

 |---win32build--|---bin

 |---include

 |---lib

You will need a compiler such as the free version of Visual Studio C++ Express from the
Microsoft web site. Also you need the Microsoft Windows Platform SDK which again can be
downloaded from the Microsoft web site.

Obtain the SAM extension source using pear (pecl download sam) or by using CVS and copy
the files to a new "sam" directory under the "ext" directory in your PHP source tree.

To build the extension open a build environment window by going to the start menu->all
programs->microsoft platform SDK for windows-> open build environment window->windows
200 build environment-> set windows 2000 build environment (retail)

This should open a command prompt with all the environment variables set up to access the
platform SDK etc. You then need to set the environment variables for Visual Studio by issuing
the command "vcvars32.bat" in the window.

Change directory to your working directory e.g. cd c:\php-build. Then make sure the
win32build tools are accessible by adding them to the PATH environment variable:
set PATH=..\win32build\bin;%PATH%

Run the buildconf.bat command. This should rebuild the configure.js file.

Run the cscript command with the appropriate options. To build just the SAM extension
framework and MQTT support use:
cscript /nologo configure.js --with-sam
To build the SAM framework and the XMS support use:
cscript /nologo configure.js --with-sam --with-sam_xms="c:\program files\ibm\xms"

The additional parameter passed for sam_xms is the installation path to the XMS libraries and
runtime that were installed as described under prerequisites at the top of this page.

You can specify whatever other cscript parameters you require to include or exclude items
from the php build or select options.

Assuming all has gone well so far you can now finally run a make for the SAM framework!
nmake php_sam.dll
Also if you are using the XMS support you must make the sam_xms extensions:
nmake php_sam_xms.dll

If you have used Visual Studio 2005 to build the DLLs please see below for additional steps
that must be carried out before proceeding further.

The DLLs created (php_sam.dll and optionally php_sam_xms.dll) can now be copied to the
subdirectory appropriate for your PHP set-up. Make sure that the module(s) are loaded by
PHP, by adding following line to php.ini:
extension=php_sam.dll
If you intend to use the XMS support to access the IBM Messgaing and Queuing family you
must also enable the SAM XMS extension.
extension=php_sam_xms.dll

Additional steps for Visual Studio 2005

If you build the SAM extension with the Microsoft Visual Studio 2005 compiler and tools you
need to perform an additional step in the build process to ensure the php_sam.dll is able to
link with the C runtime libraries at runtime. This step includes the dependancy manifest into
the DLL. Switch to the directory where the php_sam.dll has been generated (usually
Release_TS or Debug_TS below the php source directory) and issue the following magic
incantation:
mt.exe -manifest php_sam.dll.manifest -outputresource:php_sam.dll;2
If you are using the XMS capabilities you will need to do the same with the SAM XMS DLL:
mt.exe -manifest php_sam_xms.dll.manifest -outputresource:php_sam_xms.dll;2

If you build the SAM extension using the compiler and libaries from Microsoft Visual Studio
2005 you will also need to ensure that the runtime components are installed on the system on

which you intend to use SAM. This can be accomplished by installing Visual Studio 2005 or by
using the freely distributable » runtime package.

Runtime Configuration

Protocol support and mapping

The SAM framework can be extended to support other messaging protocols and connection
mechanisms. To add support for a new protocol or connection library a support class has to be
defined, either as a C extension or as a PHP script, and a "factory" script must be created.
The support class must implement all the methods of the SAMConnection class though it
should not inherit from SAMConnection. The factory script will be called by the SAM
framework to create an instance of the implemented class. The way SAM chooses which
factory to call is based on the protocol specified as the first parameter of the "connect" call.

By default the built-in MQTT support will be used if a connect call specifies a protocol of
SAM_MQTT ("mqtt"), for any other protocol SAM will attempt to use the XMS support
extension. To add support for additional protocols or to modify the default behavior entries
may be added to php.ini in the [sam] section. The default mapping is equivalent to the
following entries:
[sam]

sam.factory.mqtt=mqtt

sam.factory.wmq=xms

sam.factory.wmq:client=xms

sam.factory.wmq:bindings=xms

sam.factory.wpm=xms

sam.factory.rtt=xms
As can be seen from these examples the entries take the form of "sam.factory.pppp=xxx"
where pppp is the protocol string specified on the connect call and xxx is a factory suffix. Note:
SAM defines constants for these protocol strings such that SAM_WMQ=wmq,
SAM_WPM=wpm, SAM_RTT=rtt, SAM_MQTT=mqtt, etc.

When identifying the support code to use on a connect call SAM looks up the protocol name in
the php.ini entries and then invokes a factory script named sam_factory_xxx.php. If no entry is
found the support will default to XMS.

Resource Types

This extension has no resource types defined.

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SAM_AUTO (string)
Automatic behaviour

SAM_BOOLEAN (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_BUS (string)
Connect attribute used to set the name of the enterprise service bus to connect to.

SAM_BYTE (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_BYTES (string)
Message body type descriptor.

SAM_CORRELID (string)
Attribute used on receive, send and remove requests to identify specific messages.

SAM_DELIVERYMODE (string)
Message header property.

SAM_DOUBLE (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_ENDPOINTS (string)
Connect attribute used to define the possible endpoints to connect to.

SAM_FLOAT (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_HOST (string)
Connect attribute used to set the hostname of the required messaging server.

SAM_INT (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_LONG (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_MANUAL (string)
Manual (script controlled) behaviour

SAM_MESSAGEID (string)
Attribute used on receive and remove requests to identify specific messages.

SAM_MQTT (string)
Connect protocol definition for selecting the MQTT (MQ Telemetry Transport) protocol.

SAM_MQTT_CLEANSTART (bool)
Optional connect option to indicate to an MQTT server that all previous connection data for
this client should be removed and that subscriptions should be deleted when the client
disconnects explicitly or unexpectedly.

SAM_NON_PERSISTENT (string)
Connect attribute value used to request messages are not made persistent on the
messaging server.

SAM_PASSWORD (string)
Connect attribute used to define the password to be used for the user account being used
to connect to a messaging server that requires authorisation for connections.

SAM_PERSISTENT (string)
Connect attribute value used to request messages are made persistent on the messaging
server to protect against loss of messages in the event of failure.

SAM_PORT (string)
Connect attribute used to set the port number on which to communicate with the
messaging server.

SAM_PRIORITY (string)
Option name used on send requests to specify a delivery priority value.

SAM_REPLY_TO (string)
Message propery used to specify the queue identity on to which the script expects
response or reply messages to be posted.

SAM_RTT (string)
Connect protocol definition for selecting the IBM Realtime Transport protocol for
communication with a business integration messaging server.

SAM_STRING (string)
Type specifier used when setting properties on SAM_Message objects.

SAM_TARGETCHAIN (string)
Connection attribute used to set the required target chain identifier.

SAM_TEXT (string)
Message body type descriptor.

SAM_TIMETOLIVE (string)
Message send option name used to specify the length of time a message should be
retained in milliseconds.

SAM_TRANSACTIONS (string)
Connection attribute used to set required transactional behaviour. May be set to
SAM_AUTO (default) or SAM_MANUAL.

SAM_USERID (string)
Connect attribute used to define the account to being used to connect to a messaging
server that requires authorisation for connections.

SAM_WAIT (string)
Receive property used to specify the wait timeout to be used when receiving a message
from a queue or subscription.

SAM_WMQ (string)
Connect protocol definition for selecting the IBM WebSphere MQSeries protocol for
communication with the desired messaging server.

SAM_WMQ_BINDINGS (string)
Connect protocol definition for selecting the IBM WebSphere MQSeries protocol for
communication with a local messaging server.

SAM_WMQ_CLIENT (string)
Connect protocol definition for selecting the IBM WebSphere MQSeries protocol for
communication with a remote messaging server.

SAM_WMQ_TARGET_CLIENT (string)
Option name used on send requests to specify the target client mode. This can either be
default to 'jms' or 'mq'. The default is 'jms' which means an RFH2 header is sent with the
message whereas the 'mq' setting means no RFH2 is included.

SAM_WPM (string)
Connect protocol definition for selecting the IBM WebSphere Platform Messaging protocol
for communication with a WebSphere Application Server messaging server.

Examples

Connections

In order to perform any messaging and queueing functions a connection must be established
with a messaging server by creating a SAMConnection object and calling its "connect"
method, with a set of connection properties, to connect the PHP script to the messaging
server. Until such time as the SAMConnection object is destroyed the connection will be
maintained and available for use. All SAMConnection objects are destroyed when the PHP
script exits.

A set of default properties may be used in connecting to a messaging server but as a
minimum the PHP script must specify a protocol to be used.

Example #2310 - Creating a connection and connecting to a remote WebSphere
MQSeries Messaging Server

<?php

$conn = new SAMConnection();

$conn->connect(SAM_WMQ, array(SAM_HOST => 'myhost.mycompany.com',

 SAM_PORT => 1506,

 SAM_BROKER => 'mybroker'));

?>

Example #2311 - Creating a connection and connecting to a remote WebSphere
Application Server

<?php

$conn = new SAMConnection();

$conn->connect(SAM_WPM, array(SAM_ENDPOINTS =>
'localhost:7278:BootstrapBasicMessaging',

 SAM_BUS => 'Bus1',

 SAM_TARGETCHAIN => 'InboundBasicMessaging'));

?>

Example #2312 - Creating a connection and connecting to an MQTT server

<?php

$conn = new SAMConnection();

$conn->connect(SAM_MQTT, array(SAM_HOST => 'myhost.mycompany.com',

 SAM_PORT => 1883));

?>

Messages

Messages sent to and received from queues are represented by the SAMMessage object. The
SAMMessage object encapsulates the body of the message (if one exists) and the header
properties associated with the message. A SAMMessage object is either supplied as a
parameter to a messaging operation or returned as a result.

Example #2313 - Creating a message with a simple text body

<?php

$msg = new SAMMessage('This is a simple text message');

?>

Messages may have header properties associated with them that provide control over the
transport of the message or further information to the receiving application. By default
message properties are delivered to the underlying messaging system as strings and in this
case they may be set with the following simple syntax:

Example #2314 - Setting a text format property using the default syntax

<?php

$msg->header->myPropertyName = 'textData';

?>

If it is desired to pass type information an alternative syntax may be used where the value and
the type hint are passed in an associative array:

Example #2315 - Setting a property using a type hint

<?php

$msg->header->myPropertyName = array(3.14159, SAM_FLOAT);

?>

Properties may also be extracted from the header of a message.

Example #2316 - Retrieving a property from a message header

<?php

$myProperty = $msg->header->myPropertyName;

?>

Messaging operations

All messaging operations are performed through calls to methods on the connection object. To
add a message to a queue the "send" method is used, to obtain a message from a queue the
"receive" method is used. Other methods provide publish and subscribe functionality and
control of transaction boundaries.

Example #2317 - Adding a message to a queue and receiving a response

<?php

$msg = new SAMMessage('This is a simple text message');

$msg->header->SAM_REPLY_TO = 'queue://receive/test';

$correlid = $conn->send('queue://send/test', $msg);

if (!$correlid) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

} else {

 $resp = $conn->receive('queue://receive/test', array(SAM_CORRELID =>
$correlid));

}

?>

Publish/Subscribe and suscriptions to topics

SAM allows messages to be sent either to queues or, for WebSphere MQ and WPM, to
publish/subscribe topics. A topic desintation is specified to SAM in the usual way, i.e. in the
form 'topic://fred', rather than the form 'queue://AQUEUE' used for point to point operation. To
use publish/subscribe it is simply necessary to specify the correct broker name on the
SAMConnect "connect" call and the desired topic in the destination argument to the
SAMConnect "send" and "receive" calls. The PHP interface is otherwise identical to the point
to point model.

By default, SAM creates non-durable subscriptions when using publish/subscribe. This means
that if a client application is inactive when messages are published to a topic, then it will not
receive them when it subsequently restarted. SAM does also allow durable subscriptions to be
made to topics when using WPM or WebSphere MQ publish/subscribe. The purpose of these
subscriptions is to allow data to be received by a client application even if that client was not
active at the time the data was published.

Durable subscriptions are specified by using the SAMConnect "subscribe" call. This method
takes the destination topic as an input parameter and returns a subscription identifier that may
be used on subsequent "receive" calls. When the subscription is no longer required the
SAMConnection "unsubscribe" method should be used to delete the subscription.

Example #2318 - Creating a durable subscription to a topic

<?php

$subName = $conn->subscribe('topic://A');

if (!$subName) {

 echo "Subscribe failed";

} else {

 # Subscribe was OK

 // ...

}

?>

Example #2319 - Subscribing to a topic using a WebSphere Platform Messaging
(WPM) server

<?php

$conn = new SAMConnection();

// Note: For pub/sub on WPM, when connecting the name of a messaging engine

// to hold the durable subscription (SAM_WPM_DUR_SUB_HOME) must be specified.

$conn->connect(SAM_WMQ, array(SAM_ENDPOINTS =>
'localhost:7278:BootstrapBasicMessaging',

 SAM_BUS => 'Bus1',

 SAM_TARGETCHAIN => 'InboundBasicMessaging'

 SAM_WPM_DUR_SUB_HOME =>
'MyMachineNode01.server1-Bus1'));

$subName = $conn->subscribe('topic://A');

if (!$subName) {

 echo "Subscribe failed";

} else {

 # Subscribe was OK

 // ...

}

?>

Example #2320 - Receiving published data using a durable subscription

<?php

$msg = $conn->receive($subName);

if ($msg) {

 echo "Received a message OK";

} else {

 echo "The receive failed";

}

?>

Example #2321 - Deleting a durable subscription to a topic

<?php

if (!$conn->unsubscribe($subName)) {

 echo "Unsubscribe failed";

}

?>

Error handling

All SAMConnection methods that provide access to messaging operations return FALSE if an
error occurred in processing the request. In addition the SAMConnection object has two
properties, "errno" and "error", that provide respectively the error number and text description
of the last error to occur on the connection.

Example #2322 - Handling an error from a method that returns no result

<?php

if (!$conn->commit()) {

 // The commit failed!

 echo "Commit failed ($conn->errno) $conn->error";

}

?>

Example #2323 - Handling an error from a method that returns a result

<?php

$correlid = $conn->send('queue://send/test', $msg);

if (!$correlid) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

} else {

 ...

}

?>

SAM Functions

Predefined Classes

SAMConnection

Object representing a connection to a Messaging Server

Constructor

• new SAMConnection - construct a new connection object to allow connection to a
messaging infrastructure.

Methods

• commit - a method that commits (successfully completes) an in-flight unit of work.

• connect - a method that connects a PHP script to a messaging server.

• disconnect - a method that disconnects a PHP script from a messaging server.

• isConnected - a method that checks whether a PHP script is connected to a messaging
server.

• peek - a method that receives a message from a queue without removing it from the
queue.

• peekAll - a method that receives one or messages from a queue without removing them
from the queue.

• receive - a method that receives a message from a queue or subscription.

• remove - a method that removes a message from a queue.

• rollback - a method that cancels (rolls back) an in-flight unit of work.

• send - a method that sends a message to a queue or posts to a topic

• setDebug - a method that switches additional debugging output on or off

• subscribe - a method that creates a subscription to one or more topics

• unsubscribe - a method that destroys a subscription to one or more topics

Properties

• errno - the numeric error code for the last encountered error on this connection. This
property is set to 0 if the last operation was successful.

• error - the text description for the last encountered error on this connection

SAMMessage

Object representing a message to be sent or received

Constructor

• new SAMMessage - construct a new message.

Properties

• body - the body of the message.

• header - the header properties of the message.

SAMConnection->commit()

SAMConnection->commit() -- Commits (completes) the current unit of work.

Description

SAMConnection

bool commit (void)

Calling the "commit" method on a Connection object commits (completes) all in-flight
transactions that are part of the current unit of work.

Return Values

This method returns FALSE if an error occurs.

Examples

Example #2324 - Committing the current unit of work

<?php

 if (!$conn->commit()) {

 // The commit failed!

 echo "Commit failed ($conn->errno) $conn->error";

 }

?>

See Also

• SAMConnection->rollback()

SAMConnection->connect()

SAMConnection->connect() -- Establishes a connection to a Messaging Server

Description

SAMConnection

bool connect (string $protocol [, array $properties])

Calling the "connect" method on a SAMConnection object connects the PHP script to a
messaging server. No messages can be sent or received until a connection is made.

Parameters

Return Values

This method returns FALSE if an error occurs.

Examples

Example #2325 - Creating a connection to a Messaging Server using the IBM
MQSeries protocol (WMQ)

<?php

$conn->connect(SAM_WMQ, array(SAM_HOST => 'Myhost.myco.com', SAM_PORT => 1506,
SAM_BROKER => 'MyBroker'));

?>

Example #2326 - Creating a connection with application transaction control and
default host and port values

<?php

$conn->connect(SAM_WMQ, array(SAM_BROKER => 'MyBroker', SAM_TRANSACTIONS =>
SAM_MANUAL));

?>

Example #2327 - Creating a connection to a Messaging Server using the IBM
WebSphere Platform Messaging protocol (WPM)

<?php

$conn->connect(SAM_WPM, array(SAM_ENDPOINTS =>
'localhost:7278:BootstrapBasicMessaging',

 SAM_BUS => 'Bus1', SAM_TARGETCHAIN =>
'InboundBasicMessaging'));

?>

See Also

• SAMConnection->isConnected()
• SAMConnection->disconnect()

SAMConnection->__construct()

SAMConnection->__construct() -- Creates a new connection to a Messaging Server

Description

SAMConnection

__construct ()

Creates a new SAMConnection object.

Examples

Example #2328 - Creating a connection object and connecting to a Messaging
Server

<?php

$conn = new SAMConnection();

$conn->connect(SAM_WMQ, array(SAM_HOST => localhost, SAM_PORT => 1414,
SAM_BROKER => 'bull'));

?>

SAMConnection->disconnect()

SAMConnection->disconnect() -- Disconnects from a Messaging Server

Description

SAMConnection

bool disconnect (void)

Calling the "disconnect" method on a SAMConnection object disconnects the PHP script from
a messaging server. No messages can be sent or received after a connection has been
disconnected.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2329 - Disconnecting from a Messaging Server

<?php

$conn->disconnect();

?>

See Also

• SAMConnection->isConnected()
• SAMConnection->connect()

SAMConnection->errno

SAMConnection->errno -- Contains the unique numeric error code of the last executed SAM
operation.

Description

SAMConnection

int errno;

Contains the numeric error code of the last executed SAM operation on this connection. If the
last operation completed successfully this property contains 0.

Return Values

An integer greater than zero indicates the last error type encountered on the connection. Zero
indicates that the last operation on this connection completed successfully.

Examples

Example #2330 - Using the error number and description properties

<?php

$conn = new SAMConnection();

$conn->connect(SAM_WMQ, array(SAM_HOST => 'localhost', SAM_PORT => 1506));

$msg = new SAMMessage('This is a simple text item');

if (!$conn->send('topic://test', $msg)) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

}

?>

See Also

• SAMConnection->error

SAMConnection->error

SAMConnection->error -- Contains the text description of the last failed SAM operation.

Description

SAMConnection

string error;

Contains the text description of the last failed SAM operation on this connection. If the last
operation completed successfully this property contains an empty string.

Return Values

A string containing the text description of the last error type encountered on the connection.
An empty string indicates that the last operation on this connection completed successfully.

Examples

Example #2331 - Using the error number and description properties

<?php

$conn = new SAMConnection();

$conn->connect(SAM_WMQ, array(SAM_HOST => 'localhost', SAM_PORT => 1506));

$msg = new SAMMessage('This is a simple text item');

if (!$conn->send('topic://test', $msg)) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

}

?>

See Also

• SAMConnection->errno

SAMConnection->isConnected()

SAMConnection->isConnected() -- Queries whether a connection is established to a
Messaging Server

Description

SAMConnection

bool isConnected (void)

Calling the "isConnected" method on a Connection object will check whether the PHP script is
connected to a messaging server. No messages can be sent or received unless a connection
has been established with a Messaging server.

Return Values

This method returns TRUE if the SAMConnection object is successfully connected to a
Messaging server or FALSE otherwise.

Examples

Example #2332 - Checking whether there us a connection to a Messaging Server

<?php

if ($conn->isConnected()) {

 echo 'Connection is active.'

} else {

 echo 'No active connection!'

}

?>

See Also

• SAMConnection->disconnect()
• SAMConnection->connect()

SAMConnection->peek()

SAMConnection->peek() -- Read a message from a queue without removing it from the
queue.

Description

SAMConnection

SAMMessage peek (string $target [, array $properties])

Parameters

target

The identity of the queue from which to peek the message.

properties

An optional associative array of properties describing other parameters to control the peek
operation.

Property name Possible values

SAM_CORRELID This is the target correlation id string of the
message. This would typically have been
returned by a "send" request.

SAM_MESSAGEID This is the message id string of the
message which is to be peeked.

Return Values

This method returns a SAMMessage object or FALSE if an error occurs.

Examples

Example #2333 - Retrieve the next message from a queue without removing it

<?php

$msg = $conn->peek('queue://receive/test');

if (!$msg) {

 // The peek failed!

 echo "Peek failed ($conn->errno) $conn->error";

}

?>

Example #2334 - Retrieve a specific message from a queue without removing it from
the queue

<?php

$msg = $conn->peek('queue://receive/test', array(SAM_MESSAGEID => $messageId));

?>

See Also

• SAMConnection->peekAll()

SAMConnection->peekAll()

SAMConnection->peekAll() -- Read one or more messages from a queue without removing it
from the queue.

Description

SAMConnection

array peekAll (string $target [, array $properties])

Parameters

target

The identity of the queue from which messages should be peeked.

properties

An optional associative array of properties describing other parameters to control the peek
operation.

Property name Possible values

SAM_CORRELID This is the target correlation id string of
messages to be peeked. This would
typically have been returned by a "send"
request.

SAM_MESSAGEID This is the message id string of a message
which is to be peeked.

Return Values

This method returns an array of SAMMessage objects or FALSE if an error occurs.

Examples

Example #2335 - Retrieve all messages in a queue without removing them

<?php

$msgArray = $conn->peekAll('queue://receive/test');

if ($msgArray) {

 foreach ($msgArray as $key => $msg) {

 echo "Message $key: body = $msg->body\n";

 }

} else {

 echo "PeekAll failed ($conn->errno) $conn->error";

}

?>

Example #2336 - Retrieve all messages from a queue with a matching correlation id

<?php

 $msgArray = $conn->peekAll('queue://receive/test', array(SAM_CORRELID =>
$correlId));

 if ($msgArray) {

 foreach ($msgArray as $key => $msg) {

 echo "Message $key: body = $msg->body\n";

 }

 }

 else

 echo "PeekAll failed ($conn->errno) $conn->error";

 }

?>

See Also

• SAMConnection->peek()

SAMConnection->receive()

SAMConnection->receive() -- Receive a message from a queue or subscription.

Description

SAMConnection

SAMMessage receive (string $target [, array $properties])

Parameters

target

The identity of the queue, topic or subscription from which to receive the message.

properties

An optional associative array of properties describing other parameters to control the
receive operation.

Property name Possible values

SAM_CORRELID Used to request selection of the message to
receive based upon the correlation id string
of the message.

SAM_MESSAGEID Used to request selection of the message to
receive based upon the message id string of
the message.

SAM_WAIT Timeout value in milliseconds to control how
long the request should block waiting to
receive a message before returning with a
failure if no message is available on the
queue or topic. The default value is 0
meaning wait indefinitely and should be
used with caution as the request may wait
until the overall PHP script processing time
limit has expired if no message becomes
available.

Return Values

This method returns a SAMMessage object or FALSE if an error occurs.

Examples

Example #2337 - Receiving a message from a queue

<?php

$msg = $conn->receive('queue://receive/test');

if (!$msg) {

 // The receive failed!

 echo "Receive failed ($conn->errno) $conn->error";

}

?>

Example #2338 - Receiving a message from a queue with options

In this example the SAM_CORRELID option is used to specify a correlation id string to be
used to identify the message to receive. A wait timeout of 10 seconds is also specified.

<?php

$msg = $conn->receive('queue://receive/test', array(SAM_CORRELID => $token,
SAM_WAIT => 10000));

?>

Example #2339 - Receiving a message from a subscription

In this example we show how to receive a message from a subscription id.

<?php

$msg = $conn->receive($subscriptionName);

if (!$msg) {

 // The receive failed!

 echo "Receive failed ($conn->errno) $conn->error";

}

?>

Please note that $subscriptionName is a subscription id returned from an earlier subscribe
call.

See Also

• SAMConnection->send()

SAMConnection->remove()

SAMConnection->remove() -- Remove a message from a queue.

Description

SAMConnection

SAMMessage remove (string $target [, array $properties])

Removes a message from a queue.

Parameters

target

The identity of the queue from which to remove the message.

properties

An optional associative array of properties describing other parameters to control the
remove operation.

Property name Possible values

SAM_CORRELID This is the target correlation id string of the
message. This would typically have been
returned by a "send" request.

SAM_MESSAGEID This is the message id string of the
message which is to be removed.

Return Values

This method returns FALSE if an error occurs.

Examples

Example #2340 - Removing a message from a queue by message id

<?php

if (!$conn->remove('queue://receive/test', array(SAM_MESSAGEID => $messageId)))
{

 // The remove failed!

 echo "Remove failed ($conn->errno) $conn->error";

}

?>

SAMConnection->rollback()

SAMConnection->rollback() -- Cancels (rolls back) an in-flight unit of work.

Description

SAMConnection

bool rollback (void)

Rolls back an in-flight unit of work.

Return Values

This method returns FALSE if an error occurs.

Examples

Example #2341 - Cancelling an in-flight unit of work

<?php

if (!$conn->rollback()) {

 // The rollback failed!

 echo "Rollback failed ($conn->errno) $conn->error";

}

?>

See Also

• SAMConnection->commit()

SAMConnection->send()

SAMConnection->send() -- Send a message to a queue or publish an item to a topic.

Description

SAMConnection

string send (string $target, SAMMessage $msg [, array $properties])

The "send" method is used to send a message to a specific queue or to publish to a specific
topic. The method returns a correlation id that can be used as a selector to identify reply or
response messages when these are requested.

Parameters

target

If sending a message, the identity of the queue (queue://queuename) or if publishing to a
topic the identity of the topic (topic://topicname) to which the message is to be delivered.

msg

The message to be sent or published.

properties

An optional associative array of properties describing other parameters to control the
receive operation.

Property name Possible values

SAM_DELIVERYMODE Indicates whether the messaging server
should enusre delivery or whether it is
acceptable for messages to be lost in the
case of system failures. The value of this
property may be set to either
SAM_PERSISTENT, to indicate that
message loss is not acceptable, or
SAM_NON_PERSISTENT, if message loss
is acceptable. The resulting behaviour of the
send will vary depending on the capabilities
of the messaging server the PHP script is
currently connected to. If the server does
not support persistent messages and
SAM_PERSISTENT is specified the send
request will fail with an error indication

showing the capability is not available.

SAM_PRIORITY A numeric value between 0 and 9 indicating
the desired message delivery priority. A
priority value of 0 indicates the lowest
priority while 9 indicates highest priority. If
no priority is specified a default will be
assigned which is dependent on the
messaging server being used.

SAM_CORRELID A string to be assigned as a correlation id
for this message. If no value is given the
messaging server may assign a value
automatically.

SAM_TIMETOLIVE A time in milliseconds indicating how long
the messaging server should retain the
message on a queue before discarding it.
The default value is 0 indicating the
message should be retained indefinitely.

SAM_WMQ_TARGET_CLIENT This property is only valid when using
WebSphere MQ and indicates whether or
not an RFH2 header should be included with
the message. This option may be set to
either 'jms' or 'mq'. The default is 'jms' which
means that an RFH2 header is included. If
the value 'mq' is specified then no RFH2 is
included with the message.

Return Values

A correlation id string that can be used in a subsequent receive call as a selector to obtain any
reply or response that has been requested or FALSE if an error occurred.

Note

A correlation id will only be returned for a successful send to a queue destination
(queue://xxxx) in which case it will reflect the message identitiy of the message on the
queue. In the case of a send being used to publish data to a topic the return value will be
TRUE as no correlation id is availabe for return.

Examples

Example #2342 - Send a message to a queue

<?php

$msg = new SAMMessage('This is a simple text message');

$correlId = $conn->send('queue://send/test', $msg);

if (!$correlId) {

 // The send failed!

 echo "Send failed ($conn->errno) $conn->error";

}

?>

Example #2343 - Publish a message to a topic

<?php

$msg = new SAMMessage('This is a simple text item');

if (!$conn->send('topic://test', $msg)) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

}

?>

Example #2344 - Send a request and receive a response

<?php

$msg = new SAMMessage('This is a simple text message');

$msg->header->SAM_REPLY_TO = 'queue://receive/test';

$correlid = $conn->send('queue://send/test', $msg);

if (!$correlid) {

 // The Send failed!

 echo "Send failed ($conn->errno) $conn->error";

} else {

 $resp = $conn->receive('queue://receive/test', array(SAM_CORRELID =>
$correlid));

}

?>

See Also

• SAMConnection->receive()

SAMConnection::setDebug()

SAMConnection::setDebug() -- Turn on or off additional debugging output.

Description

The "setdebug" method is used to turn on or off additional debugging output. The SAM
framework will provide method/function entry and exit trace data plus additional information.
Protocol specific implementations also provide extra output.

SAMConnection

void send (bool $switch)

Parameters

switch

If this parameter is set to TRUE additional debugging output will be provided. If the value is
set to FALSE output of additional information will be stopped.

Examples

Example #2345 - Turn on debugging output

<?php

$conn->setdebug(TRUE);

?>

Example #2346 - Turn off debugging output

<?php

$conn->setdebug(FALSE);

?>

SAMConnection->subscribe()

SAMConnection->subscribe() -- Create a subscription to a specified topic.

Description

SAMConnection

string subscribe (string $targetTopic)

The "subscribe" method is used to create a new subscription to a specified topic.

Parameters

targetTopic

The identity of the topic (topic://topicname) to subscribe to.

Return Values

A subscription identifier that can be used in a subsequent receive call as a selector to obtain
any topic data or FALSE if an error occurred. The subscription identifier should be used in the
receive call in place of the simple topic name.

Examples

Example #2347 - Subscribe to a topic

<?php

$subid = $conn->subscribe('topic://A');

if (!$subid) {

 // The subscribe failed!

 echo "Subscribe failed ($conn->errno) $conn->error";

}

?>

See Also

• SAMConnection->unsubscribe()

SAMConnection->unsubscribe()

SAMConnection->unsubscribe() -- Cancel a subscription to a specified topic.

Description

SAMConnection

bool unsubscribe (string $subscriptionId [, string $targetTopic])

The "unsubscribe" method is used to delete an existing subscription to a specified topic.

Parameters

subscriptionId

The identifier of an existing subscription as returned by a call to the subscribe method.

Return Values

This method returns FALSE if an error occurs.

Examples

Example #2348 - Delete a subscription

<?php

if (!$conn->unsubscribe($subid)) {

 // The unsubscribe failed!

 echo "Unsubscribe failed ($conn->errno) $conn->error";

}

?>

See Also

• SAMConnection->subscribe()

SAMMessage->body

SAMMessage->body -- The body of the message.

Description

SAMMessage

string nody;

The "body" property contains the actual body of the message. It may not always be set.

Examples

Example #2349 - Setting a text string into the body of a message

<?php

$msg = new SAMMessage();

$msg->body = 'This is a simple message';

?>

See Also

• SAMMessage->header

SAMMessage->__construct()

SAMMessage->__construct() -- Creates a new Message object

Description

SAMMessage

__construct ([mixed $body])

Creates a new SAMMessage object optionally specifying a message body.

Parameters

body

The optional body for the message.

Examples

Example #2350 - Creating a message

<?php

$msg = new SAMMessage();

?>

Example #2351 - Creating a message with a simple text payload

<?php

$msg = new SAMMessage('This is a simple text message');

?>

SAMMessage->header

SAMMessage->header -- The header properties of the message.

Description

SAMMessage

object header;

The header property is a container for any system or user properties that area associated with
the message.

Properties may be assigned by the sender of a message to control the way the messaging
systems handles it or may be assigned by the messaging system itself to tell the recipient
extra information about the message or the way in which it has been handled.

Some properties are understood by SAM in which case constants have been defined for them.
The majority of properties however are ignored by the SAM implementation and simply passed
through to the underlying messaging systems allowing the application to use messaging
specific property names or to define its own "user" properties.

The SAM defined properties are as follows:

Property name Possible values

SAM_MESSAGEID When a message is received this field
contains the unique identifier of the
message as allocated by the underlying
messaging system. When sending a
message this field is ignored.

SAM_REPLY_TO A string providing the identity of the queue
on to which responses to this message
should be posted.

SAM_TYPE
An indication of the type of message to be
sent. The value may be SAM_TEXT
indicating the contents of the message body
is a text string, or SAM_BYTES indicating
the contents of the message body are some
application defined format.

The way in which this property is used may

depend on the underlying messaging server.
For instance a messaging server that
supports the JMS (Java Message Service)
specification may interpret this value and
send messages of type "jms_text" and
"jms_bytes". In addition, if the SAM_TYPE
property is set to SAM_TEXT the data
provided for the message body is expected
to be a UTF8 encoded string.

When setting the values of properties it is often useful to give a hint as to the format in
which the property should be delivered to the messaging system. By default property
values are delivered as text and the following simple syntax may be used to set a value:

Example #2352 - Setting a text format property using the default syntax

<?php

$msg = new SAMMessage();

$msg->header->myPropertyName = 'textData';

?>

If it is desired to pass type information an alternative syntax may be used where the value
and the type hint are passed in an associative array:

Example #2353 - Setting a text format property using a type hint

<?php

$msg = new SAMMessage();

$msg->header->myPropertyName = array('textData', SAM_STRING);

?>

When passing a type hint the type entry should be one of the SAM defined constant values
as defined by the following table:

Constant Type description

SAM_BOOLEAN Any value passed will be interpreted as
logical true or false. If the value cannot be
interpreted as a PHP boolean value the
value passed to the messaging system is

undefined.

SAM_BYTE An 8-bit signed integer value. SAM will
attempt to convert the property value
specified into a single byte value to pass to
the messaging system. If a string value is
passed an attempt will be made to interpret
the string as a numeric value. If the numeric
value cannot be expressed as an 8-bit
signed binary value data may be lost in the
conversion.

SAM_DOUBLE A long floating point value. SAM will attempt
to convert the property value specified into a
floating point value with 15 digits of
precision. If a string value is passed an
attempt will be made to interpret the string
as a numeric value. If the passed value
cannot be expressed as a 15 digit floating
point value data may be lost in the
conversion.

SAM_FLOAT A short floating point value. SAM will
attempt to convert the property value
specified into a floating point value with 7
digits of precision. If a string value is passed
an attempt will be made to interpret the
string as a numeric value. If the passed
value cannot be expressed as a 7 digit
floating point value data may be lost in the
conversion.

SAM_INT An 32-bit signed integer value. SAM will
attempt to convert the property value
specified into a 32-bit value to pass to the
messaging system. If a string value is
passed an attempt will be made to interpret
the string as a numeric value. If the numeric
value cannot be expressed as an 32-bit
signed binary value data may be lost in the
conversion.

SAM_LONG An 64-bit signed integer value. SAM will
attempt to convert the property value
specified into a 64-bit value to pass to the
messaging system. If a string value is
passed an attempt will be made to interpret
the string as a numeric value. If the numeric
value cannot be expressed as an 64-bit
signed binary value data may be lost in the
conversion.

SAM_STRING SAM will interpret the property value
specified as a string and pass it to the
messaging system accordingly.

Examples

Example #2354 - Setting properties as the sender of a message

<?php

$msg = new SAMMessage('This is a test message');

// defining SAM specific properties...

$msg->header->SAM_REPLY_TO = 'queue://test/replyQueue';

// defining arbitrary properties...

//

// a default string property

$msg->header->myStringProp1 = 'a string property';

// a string property with a type hint

$msg->header->myStringProp2 = array('another string property', SAM_STRING);

// a boolean property

$msg->header->myBoolProp = array(FALSE, SAM_BOOL);

// numeric format properties

$msg->header->myIntProp = array(32768, SAM_INT);

$msg->header->myLongProp = array(9876543, SAM_LONG);

$msg->header->myByteProp1 = array(123, SAM_BYTE);

$msg->header->myByteProp2 = array('12', SAM_BYTE);

$msg->header->myFloatProp = array(3.141592, SAM_FLOAT);

$msg->header->myDoubleProp = array(3.14159265358979, SAM_DOUBLE);

?>

Example #2355 - Retreiving property values from a message

<?php

// accessing an application specific property

$intProp = $msg->header->'MyIntProp';

// accessing a messaging system specific property

$encoding = $msg->header->'JMS_IBM_Msgtype';

?>

See Also

• SAMMessage->body

SNMP

Introduction

SNMP Functions.

Installing/Configuring

Requirements

In order to use the SNMP functions on Unix you need to install the » NET-SNMP package.
On Windows these functions are only available on NT and not on Win95/98.

Installation

Important: In order to use the UCD SNMP package, you need to define
NO_ZEROLENGTH_COMMUNITY to 1 before compiling it. After configuring UCD SNMP,
edit config.h or acconfig.h and search for NO_ZEROLENGTH_COMMUNITY. Uncomment
the #define line. It should look like this afterwards:
#define NO_ZEROLENGTH_COMMUNITY 1
Now compile PHP --with-snmp[=DIR].

If you see strange segmentation faults in combination with SNMP commands, you did not
follow the above instructions. If you do not want to recompile UCD SNMP, you can compile
PHP with the --enable-ucd-snmp-hack switch which will work around the misfeature.

The Windows distribution contains support files for SNMP in the mibs directory. This
directory should be moved to DRIVE:\usr\mibs, where DRIVE must be replaced with the
driveletter where PHP is installed on, e.g. c:\usr\mibs.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.net-snmp.org/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SNMP_OID_OUTPUT_FULL (integer)
As of 5.2.0

SNMP_OID_OUTPUT_NUMERIC (integer)
As of 5.2.0

SNMP_VALUE_LIBRARY (integer)

SNMP_VALUE_PLAIN (integer)

SNMP_VALUE_OBJECT (integer)

SNMP_BIT_STR (integer)

SNMP_OCTET_STR (integer)

SNMP_OPAQUE (integer)

SNMP_NULL (integer)

SNMP_OBJECT_ID (integer)

SNMP_IPADDRESS (integer)

SNMP_COUNTER (integer)

SNMP_UNSIGNED (integer)

SNMP_TIMETICKS (integer)

SNMP_UINTEGER (integer)

SNMP_INTEGER (integer)

SNMP_COUNTER64 (integer)

SNMP Functions

snmp_get_quick_print

snmp_get_quick_print -- Fetches the current value of the UCD library's quick_print setting

Description

bool snmp_get_quick_print (void)

Returns the current value stored in the UCD Library for quick_print. quick_print is off by
default.

Return Values

Returns TRUE if quick_print is on, FALSE otherwise.

Examples

Example #2356 - snmp_get_quick_print() example

<?php

$quickprint = snmp_get_quick_print();

?>

See Also

• snmp_set_quick_print() for a full description of what quick_print does.

snmp_get_valueretrieval

snmp_get_valueretrieval -- Return the method how the SNMP values will be returned

Description

int snmp_get_valueretrieval (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• snmp_set_valueretrieval()

snmp_read_mib

snmp_read_mib -- Reads and parses a MIB file into the active MIB tree

Description

bool snmp_read_mib (string $filename)

Warning

This function is currently not documented; only its argument list is available.

snmp_set_enum_print

snmp_set_enum_print -- Return all values that are enums with their enum value instead of
the raw integer

Description

void snmp_set_enum_print (int $enum_print)

Warning

This function is currently not documented; only its argument list is available.

Notes

Note

snmp_set_enum_print() is only available when using the UCD SNMP library. This
function is not available when using the Windows SNMP library.

snmp_set_oid_numeric_print

snmp_set_oid_numeric_print -- Return all objects including their respective object id within
the specified one

Description

void snmp_set_oid_numeric_print (int $oid_numeric_print)

Warning

This function is currently not documented; only its argument list is available.

ChangeLog

Version Description

5.2.0 Since PHP 5.2.0, This function is an alias of:
snmp_set_oid_output_format().

See Also

• snmp_set_oid_output_format()

snmp_set_oid_output_format

snmp_set_oid_output_format -- Set the OID output format

Description

void snmp_set_oid_output_format (int $oid_format)

snmp_set_oid_output_format() sets the output format to be full or numeric.

Parameters

oid_format

Set it to SNMP_OID_OUTPUT_FULL if you want a full output,
SNMP_OID_OUTPUT_NUMERIC otherwise.

Return Values

No value is returned.

Notes

Note

snmp_set_oid_output_format() is only available when using the UCD SNMP library.
This function is not available when using the Windows SNMP library.

snmp_set_quick_print

snmp_set_quick_print -- Set the value of quick_print within the UCD SNMP library

Description

void snmp_set_quick_print (bool $quick_print)

Sets the value of quick_print within the UCD SNMP library. When this is set (1), the SNMP
library will return 'quick printed' values. This means that just the value will be printed.
When quick_print is not enabled (default) the UCD SNMP library prints extra information
including the type of the value (i.e. IpAddress or OID). Additionally, if quick_print is not
enabled, the library prints additional hex values for all strings of three characters or less.

By default the UCD SNMP library returns verbose values, quick_print is used to return only
the value.

Currently strings are still returned with extra quotes, this will be corrected in a later release.

Parameters

quick_print

Return Values

No value is returned.

Examples

Setting quick_print is often used when using the information returned rather then
displaying it.

Example #2357 - Using snmp_set_quick_print()

<?php

snmp_set_quick_print(0);

$a = snmpget("127.0.0.1", "public", ".1.3.6.1.2.1.2.2.1.9.1");

echo "$a\n";

snmp_set_quick_print(1);

$a = snmpget("127.0.0.1", "public", ".1.3.6.1.2.1.2.2.1.9.1");

echo "$a\n";

?>

The above example will output something similar to:

'Timeticks: (0) 0:00:00.00'

'0:00:00.00'

See Also

• snmp_get_quick_print()

snmp_set_valueretrieval

snmp_set_valueretrieval -- Specify the method how the SNMP values will be returned

Description

void snmp_set_valueretrieval (int $method)

Warning

This function is currently not documented; only its argument list is available.

See Also

• snmp_get_valueretrieval()

snmpget

snmpget -- Fetch an SNMP object

Description

string snmpget (string $hostname, string $community, string $object_id [, int $timeout [,
int $retries]])

The snmpget() function is used to read the value of an SNMP object specified by the
object_id.

Parameters

hostname

The SNMP agent.

community

The read community.

object_id

The SNMP object.

timeout

retries

Return Values

Returns SNMP object value on success or FALSE on error.

Examples

Example #2358 - Using snmpget()

<?php

$syscontact = snmpget("127.0.0.1", "public", "system.SysContact.0");

?>

See Also

• snmpset()

snmpgetnext

snmpgetnext -- Fetch a SNMP object

Description

string snmpgetnext (string $host, string $community, string $object_id [, int $timeout [,
int $retries]])

Warning

This function is currently not documented; only its argument list is available.

snmprealwalk

snmprealwalk -- Return all objects including their respective object ID within the specified
one

Description

array snmprealwalk (string $host, string $community, string $object_id [, int $timeout [,
int $retries]])

Warning

This function is currently not documented; only its argument list is available.

snmpset

snmpset -- Set an SNMP object

Description

bool snmpset (string $hostname, string $community, string $object_id, string $type,
mixed $value [, int $timeout [, int $retries]])

snmpset() is used to set the value of an SNMP object specified by the object_id.

Parameters

hostname

The SNMP agent.

community

The read community.

object_id

The SNMP object.

type

value

timeout

retries

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• snmpget()

snmpwalk

snmpwalk -- Fetch all the SNMP objects from an agent

Description

array snmpwalk (string $hostname, string $community, string $object_id [, int $timeout
[, int $retries]])

snmpwalk() function is used to read all the values from an SNMP agent specified by the
hostname.

Parameters

hostname

The SNMP agent.

community

The read community.

object_id

If NULL, object_id is taken as the root of the SNMP objects tree and all objects under
that tree are returned as an array. If object_id is specified, all the SNMP objects
below that object_id are returned.

timeout

retries

Return Values

Returns an array of SNMP object values starting from the object_id as root or FALSE on
error.

Examples

Example #2359 - snmpwalk() Example

<?php

$a = snmpwalk("127.0.0.1", "public", "");

foreach ($a as $val) {

 echo "$val\n";

}

?>

Above function call would return all the SNMP objects from the SNMP agent running on
localhost. One can step through the values with a loop

See Also

• snmpwalkoid()

snmpwalkoid

snmpwalkoid -- Query for a tree of information about a network entity

Description

array snmpwalkoid (string $hostname, string $community, string $object_id [, int $
timeout [, int $retries]])

snmpwalkoid() function is used to read all object ids and their respective values from an
SNMP agent specified by hostname.

The existence of snmpwalkoid() and snmpwalk() has historical reasons. Both functions are
provided for backward compatibility. Use snmprealwalk() instead.

Parameters

hostname

The SNMP agent.

community

The read community.

object_id

If NULL, object_id is taken as the root of the SNMP objects tree and all objects under
that tree are returned as an array. If object_id is specified, all the SNMP objects
below that object_id are returned.

timeout

retries

Return Values

Returns an associative array with object ids and their respective object value starting from
the object_id as root or FALSE on error.

Examples

Example #2360 - snmpwalkoid() Example

<?php

$a = snmpwalkoid("127.0.0.1", "public", "");

for (reset($a); $i = key($a); next($a)) {

 echo "$i: $a[$i]
\n";

}

?>

Above function call would return all the SNMP objects from the SNMP agent running on
localhost. One can step through the values with a loop

See Also

• snmpwalk()

Sockets

Introduction

The socket extension implements a low-level interface to the socket communication
functions based on the popular BSD sockets, providing the possibility to act as a socket
server as well as a client.

For a more generic client-side socket interface, see stream_socket_client(),
stream_socket_server(), fsockopen(), and pfsockopen().

When using these functions, it is important to remember that while many of them have
identical names to their C counterparts, they often have different declarations. Please be
sure to read the descriptions to avoid confusion.

Those unfamiliar with socket programming can find a lot of useful material in the
appropriate Unix man pages, and there is a great deal of tutorial information on socket
programming in C on the web, much of which can be applied, with slight modifications, to
socket programming in PHP. The » Unix Socket FAQ might be a good start.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.3.0.

http://www.unixguide.net/network/socketfaq/
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

The socket functions described here are part of an extension to PHP which must be
enabled at compile time by giving the --enable-sockets option to configure.

Note

IPv6 Support was added in PHP 5.0.0.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

socket_accept(), socket_create_listen() and socket_create() return socket resources.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

AF_UNIX (integer)

AF_INET (integer)

AF_INET6 (integer)

SOCK_STREAM (integer)

SOCK_DGRAM (integer)

SOCK_RAW (integer)

SOCK_SEQPACKET (integer)

SOCK_RDM (integer)

MSG_OOB (integer)

MSG_WAITALL (integer)

MSG_PEEK (integer)

MSG_DONTROUTE (integer)

MSG_EOR (integer)

MSG_EOF (integer)

SO_DEBUG (integer)

SO_REUSEADDR (integer)

SO_KEEPALIVE (integer)

SO_DONTROUTE (integer)

SO_LINGER (integer)

SO_BROADCAST (integer)

SO_OOBINLINE (integer)

SO_SNDBUF (integer)

SO_RCVBUF (integer)

SO_SNDLOWAT (integer)

SO_RCVLOWAT (integer)

SO_SNDTIMEO (integer)

SO_RCVTIMEO (integer)

SO_TYPE (integer)

SO_ERROR (integer)

SOL_SOCKET (integer)

PHP_NORMAL_READ (integer)

PHP_BINARY_READ (integer)

SOL_TCP (integer)

SOL_UDP (integer)

Examples

Example #2361 - Socket example: Simple TCP/IP server

This example shows a simple talkback server. Change the address and port variables
to suit your setup and execute. You may then connect to the server with a command
similar to: telnet 192.168.1.53 10000 (where the address and port match your setup).
Anything you type will then be output on the server side, and echoed back to you. To
disconnect, enter 'quit'.

#!/usr/local/bin/php -q

<?php

error_reporting(E_ALL);

/* Allow the script to hang around waiting for connections. */

set_time_limit(0);

/* Turn on implicit output flushing so we see what we're getting

* as it comes in. */

ob_implicit_flush();

$address = '192.168.1.53';

$port = 10000;

if (($sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP)) === false) {

 echo "socket_create() failed: reason: " .
socket_strerror(socket_last_error()) . "\n";

}

if (socket_bind($sock, $address, $port) === false) {

 echo "socket_bind() failed: reason: " .
socket_strerror(socket_last_error($sock)) . "\n";

}

if (socket_listen($sock, 5) === false) {

 echo "socket_listen() failed: reason: " .
socket_strerror(socket_last_error($sock)) . "\n";

}

do {

 if (($msgsock = socket_accept($sock)) === false) {

 echo "socket_accept() failed: reason: " .
socket_strerror(socket_last_error($sock)) . "\n";

 break;

 }

 /* Send instructions. */

 $msg = "\nWelcome to the PHP Test Server. \n" .

 "To quit, type 'quit'. To shut down the server type 'shutdown'.\n";

 socket_write($msgsock, $msg, strlen($msg));

 do {

 if (false === ($buf = socket_read($msgsock, 2048, PHP_NORMAL_READ)))
{

 echo "socket_read() failed: reason: " .

socket_strerror(socket_last_error($msgsock)) . "\n";

 break 2;

 }

 if (!$buf = trim($buf)) {

 continue;

 }

 if ($buf == 'quit') {

 break;

 }

 if ($buf == 'shutdown') {

 socket_close($msgsock);

 break 2;

 }

 $talkback = "PHP: You said '$buf'.\n";

 socket_write($msgsock, $talkback, strlen($talkback));

 echo "$buf\n";

 } while (true);

 socket_close($msgsock);

} while (true);

socket_close($sock);

?>

Example #2362 - Socket example: Simple TCP/IP client

This example shows a simple, one-shot HTTP client. It simply connects to a page,
submits a HEAD request, echoes the reply, and exits.

<?php

error_reporting(E_ALL);

echo "<h2>TCP/IP Connection</h2>\n";

/* Get the port for the WWW service. */

$service_port = getservbyname('www', 'tcp');

/* Get the IP address for the target host. */

$address = gethostbyname('www.example.com');

/* Create a TCP/IP socket. */

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

if ($socket === false) {

 echo "socket_create() failed: reason: " .
socket_strerror(socket_last_error()) . "\n";

} else {

 echo "OK.\n";

}

echo "Attempting to connect to '$address' on port '$service_port'...";

$result = socket_connect($socket, $address, $service_port);

if ($result === false) {

 echo "socket_connect() failed.\nReason: ($result) " .
socket_strerror(socket_last_error($socket)) . "\n";

} else {

 echo "OK.\n";

}

$in = "HEAD / HTTP/1.1\r\n";

$in .= "Host: www.example.com\r\n";

$in .= "Connection: Close\r\n\r\n";

$out = '';

echo "Sending HTTP HEAD request...";

socket_write($socket, $in, strlen($in));

echo "OK.\n";

echo "Reading response:\n\n";

while ($out = socket_read($socket, 2048)) {

 echo $out;

}

echo "Closing socket...";

socket_close($socket);

echo "OK.\n\n";

?>

Socket Errors

The socket extension was written to provide a usable interface to the powerful BSD
sockets. Care has been taken that the functions work equally well on Win32 and Unix
implementations. Almost all of the sockets functions may fail under certain conditions and
therefore emit an E_WARNING message describing the error. Sometimes this doesn't
happen to the desire of the developer. For example the function socket_read() may
suddenly emit an E_WARNING message because the connection broke unexpectedly. It's
common to suppress the warning with the @ -operator and catch the error code within the
application with the socket_last_error() function. You may call the socket_strerror()
function with this error code to retrieve a string describing the error. See their description
for more information.

Note

The E_WARNING messages generated by the socket extension are in English though
the retrieved error message will appear depending on the current locale (
LC_MESSAGES):
Warning - socket_bind() unable to bind address [98]: Die Adresse wird
bereits verwendet

Socket Functions

socket_accept

socket_accept -- Accepts a connection on a socket

Description

resource socket_accept (resource $socket)

After the socket socket has been created using socket_create(), bound to a name with
socket_bind(), and told to listen for connections with socket_listen(), this function will
accept incoming connections on that socket. Once a successful connection is made, a
new socket resource is returned, which may be used for communication. If there are
multiple connections queued on the socket, the first will be used. If there are no pending
connections, socket_accept() will block until a connection becomes present. If socket has
been made non-blocking using socket_set_blocking() or socket_set_nonblock(), FALSE
will be returned.

The socket resource returned by socket_accept() may not be used to accept new
connections. The original listening socket socket, however, remains open and may be
reused.

Parameters

socket

A valid socket resource created with socket_create().

Return Values

Returns a new socket resource on success, or FALSE on error. The actual error code can
be retrieved by calling socket_last_error(). This error code may be passed to
socket_strerror() to get a textual explanation of the error.

See Also

• socket_connect()
• socket_listen()
• socket_create()
• socket_bind()
• socket_strerror()

socket_bind

socket_bind -- Binds a name to a socket

Description

bool socket_bind (resource $socket, string $address [, int $port])

Binds the name given in address to the socket described by socket. This has to be done
before a connection is be established using socket_connect() or socket_listen().

Parameters

socket

A valid socket resource created with socket_create().

address

If the socket is of the AF_INET family, the address is an IP in dotted-quad notation
(e.g. 127.0.0.1). If the socket is of the AF_UNIX family, the address is the path of a
Unix-domain socket (e.g. /tmp/my.sock).

port (Optional)
The port parameter is only used when connecting to an AF_INET socket, and
designates the port on the remote host to which a connection should be made.

Return Values

Returns TRUE on success or FALSE on failure.

The error code can be retrieved with socket_last_error(). This code may be passed to
socket_strerror() to get a textual explanation of the error.

Examples

Example #2363 - Using socket_bind() to set the source address

<?php

// Create a new socket

$sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

// An example list of IP addresses owned by the computer

$sourceips['kevin'] = '127.0.0.1';

$sourceips['madcoder'] = '127.0.0.2';

// Bind the source address

socket_bind($sock, $sourceips['madcoder']);

// Connect to destination address

socket_connect($sock, '127.0.0.1', 80);

// Write

$request = 'GET / HTTP/1.1' . "\r\n" .

 'Host: example.com' . "\r\n\r\n";

socket_write($sock, $request);

// Close

socket_close($sock);

?>

Notes

Note

This function must be used on the socket before socket_connect().

Note

Windows 9x/ME compatibility note: socket_last_error() may return an invalid error code
if trying to bind the socket to a wrong address that does not belong to your machine.

See Also

• socket_connect()
• socket_listen()
• socket_create()
• socket_last_error()
• socket_strerror()

socket_clear_error

socket_clear_error -- Clears the error on the socket or the last error code

Description

void socket_clear_error ([resource $socket])

This function clears the error code on the given socket or the global last socket error if no
socket is specified.

This function allows explicitly resetting the error code value either of a socket or of the
extension global last error code. This may be useful to detect within a part of the
application if an error occurred or not.

Parameters

socket

A valid socket resource created with socket_create().

Return Values

No value is returned.

See Also

• socket_last_error()
• socket_strerror()

socket_close

socket_close -- Closes a socket resource

Description

void socket_close (resource $socket)

socket_close() closes the socket resource given by socket. This function is specific to
sockets and cannot be used on any other type of resources.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

Return Values

No value is returned.

See Also

• socket_bind()
• socket_listen()
• socket_create()
• socket_strerror()

socket_connect

socket_connect -- Initiates a connection on a socket

Description

bool socket_connect (resource $socket, string $address [, int $port])

Initiate a connection to address using the socket resource socket, which must be a valid
socket resource created with socket_create().

Parameters

socket

address

The address parameter is either an IPv4 address in dotted-quad notation (e.g.
127.0.0.1) if socket is AF_INET, a valid IPv6 address (e.g.::1) if IPv6 support is
enabled and socket is AF_INET6 or the pathname of a Unix domain socket, if the
socket family is AF_UNIX.

port

The port parameter is only used and is mandatory when connecting to an AF_INET or
an AF_INET6 socket, and designates the port on the remote host to which a
connection should be made.

Return Values

Returns TRUE on success or FALSE on failure. The error code can be retrieved with
socket_last_error(). This code may be passed to socket_strerror() to get a textual
explanation of the error.

Note

If the socket is non-blocking then this function returns FALSE with an error Operation
now in progress.

See Also

• socket_bind()
• socket_listen()

• socket_create()
• socket_last_error()
• socket_strerror()

socket_create_listen

socket_create_listen -- Opens a socket on port to accept connections

Description

resource socket_create_listen (int $port [, int $backlog])

socket_create_listen() creates a new socket resource of type AF_INET listening on all
local interfaces on the given port waiting for new connections.

This function is meant to ease the task of creating a new socket which only listens to
accept new connections.

Parameters

port

The port on which to listen on all interfaces.

backlog

The backlog parameter defines the maximum length the queue of pending
connections may grow to. SOMAXCONN may be passed as backlog parameter, see
socket_listen() for more information.

Return Values

socket_create_listen() returns a new socket resource on success or FALSE on error. The
error code can be retrieved with socket_last_error(). This code may be passed to
socket_strerror() to get a textual explanation of the error.

Notes

Note

If you want to create a socket which only listens on a certain interface you need to use
socket_create(), socket_bind() and socket_listen().

See Also

• socket_create()
• socket_create_pair()
• socket_bind()

• socket_listen()
• socket_last_error()
• socket_strerror()

socket_create_pair

socket_create_pair -- Creates a pair of indistinguishable sockets and stores them in an
array

Description

bool socket_create_pair (int $domain, int $type, int $protocol, array &$fd)

socket_create_pair() creates two connected and indistinguishable sockets, and stores
them in fd. This function is commonly used in IPC (InterProcess Communication).

Parameters

domain

The domain parameter specifies the protocol family to be used by the socket. See
socket_create() for the full list.

type

The type parameter selects the type of communication to be used by the socket. See
socket_create() for the full list.

protocol

The protocol parameter sets the specific protocol within the specified domain to be
used when communicating on the returned socket. The proper value can be retrieved
by name by using getprotobyname(). If the desired protocol is TCP, or UDP the
corresponding constants SOL_TCP, and SOL_UDP can also be used. See
socket_create() for the full list of supported protocols.

fd

Reference to an array in which the two socket resources will be inserted.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2364 - socket_create_pair() example

<?php

$sockets = array();

/* Setup socket pair */

if (socket_create_pair(AF_UNIX, SOCK_STREAM, 0, $sockets) === false) {

 echo "socket_create_pair failed. Reason:

".socket_strerror(socket_last_error());

}

/* Send and Recieve Data */

if (socket_write($sockets[0], "ABCdef123\n", strlen("ABCdef123\n")) ===
false) {

 echo "socket_write() failed. Reason:
".socket_strerror(socket_last_error($sockets[0]));

}

if (($data = socket_read($sockets[1], strlen("ABCdef123\n"),
PHP_BINARY_READ) === false) {

 echo "socket_read() failed. Reason:
".socket_strerror(socket_last_error($sockets[1]));

}

var_dump($data);

/* Close sockets */

socket_close($sockets[0]);

socket_close($sockets[1]);

?>

Example #2365 - socket_create_pair() IPC example

<?php

$ary = array();

$strone = 'Message From Parent.';

$strtwo = 'Message From Child.';

if (socket_create_pair(AF_UNIX, SOCK_STREAM, 0, $ary) === false) {

 echo "socket_create_pair() failed. Reason:
".socket_strerror(socket_last_error());

}

$pid = pcntl_fork();

if ($pid == -1) {

 echo 'Could not fork Process.';

} elseif ($pid) {

 /*parent*/

 socket_close($ary[0]);

 if (socket_write($ary[1], $strone, strlen($strone)) === false) {

 echo "socket_write() failed. Reason:
".socket_strerror(socket_last_error($ary[1]));

 }

 if (socket_read($ary[1], strlen($strtwo), PHP_BINARY_READ) == $strtwo) {

 echo "Recieved $strtwo\n";

 }

 socket_close($ary[1]);

} else {

 /*child*/

 socket_close($ary[1]);

 if (socket_write($ary[0], $strtwo, strlen($strtwo)) === false) {

 echo "socket_write() failed. Reason:
".socket_strerror(socket_last_error($ary[0]));

 }

 if (socket_read($ary[0], strlen($strone), PHP_BINARY_READ) == $strone) {

 echo "Recieved $strone\n";

 }

 socket_close($ary[0]);

}

?>

See Also

• socket_create()
• socket_create_listen()
• socket_bind()
• socket_listen()
• socket_last_error()
• socket_strerror()

socket_create

socket_create -- Create a socket (endpoint for communication)

Description

resource socket_create (int $domain, int $type, int $protocol)

Creates and returns a socket resource, also referred to as an endpoint of communication.
A typical network connection is made up of 2 sockets, one performing the role of the client,
and another performing the role of the server.

Parameters

domain

The domain parameter specifies the protocol family to be used by the socket.

Available address/protocol families

Domain Description

AF_INET IPv4 Internet based protocols. TCP and
UDP are common protocols of this protocol
family.

AF_INET6 IPv6 Internet based protocols. TCP and
UDP are common protocols of this protocol
family. Support added in PHP 5.0.0.

AF_UNIX Local communication protocol family. High
efficiency and low overhead make it a great
form of IPC (Interprocess Communication).

type

The type parameter selects the type of communication to be used by the socket.

Available socket types

Type Description

SOCK_STREAM Provides sequenced, reliable, full-duplex,
connection-based byte streams. An
out-of-band data transmission mechanism
may be supported. The TCP protocol is
based on this socket type.

SOCK_DGRAM Supports datagrams (connectionless,
unreliable messages of a fixed maximum
length). The UDP protocol is based on this
socket type.

SOCK_SEQPACKET Provides a sequenced, reliable, two-way
connection-based data transmission path for
datagrams of fixed maximum length; a
consumer is required to read an entire
packet with each read call.

SOCK_RAW Provides raw network protocol access. This
special type of socket can be used to
manually construct any type of protocol. A
common use for this socket type is to
perform ICMP requests (like ping,
traceroute, etc).

SOCK_RDM Provides a reliable datagram layer that does
not guarantee ordering. This is most likely
not implemented on your operating system.

protocol

The protocol parameter sets the specific protocol within the specified domain to be used
when communicating on the returned socket. The proper value can be retrieved by name
by using getprotobyname(). If the desired protocol is TCP, or UDP the corresponding
constants SOL_TCP, and SOL_UDP can also be used.

Common protocols

Name Description

icmp The Internet Control Message Protocol is
used primarily by gateways and hosts to
report errors in datagram communication.
The "ping" command (present in most
modern operating systems) is an example
application of ICMP.

udp The User Datagram Protocol is a
connectionless, unreliable, protocol with
fixed record lengths. Due to these aspects,
UDP requires a minimum amount of protocol
overhead.

tcp The Transmission Control Protocol is a
reliable, connection based, stream oriented,
full duplex protocol. TCP guarantees that all
data packets will be received in the order in
which they were sent. If any packet is

somehow lost during communication, TCP
will automatically retransmit the packet until
the destination host acknowledges that
packet. For reliability and performance
reasons, the TCP implementation itself
decides the appropriate octet boundaries of
the underlying datagram communication
layer. Therefore, TCP applications must
allow for the possibility of partial record
transmission.

Return Values

socket_create() returns a socket resource on success, or FALSE on error. The actual error
code can be retrieved by calling socket_last_error(). This error code may be passed to
socket_strerror() to get a textual explanation of the error.

Errors/Exceptions

If an invalid domain or type is given, socket_create() defaults to AF_INET and
SOCK_STREAM respectively and additionally emits an E_WARNING message.

See Also

• socket_accept()
• socket_bind()
• socket_connect()
• socket_listen()
• socket_last_error()
• socket_strerror()

socket_get_option

socket_get_option -- Gets socket options for the socket

Description

mixed socket_get_option (resource $socket, int $level, int $optname)

The socket_get_option() function retrieves the value for the option specified by the optname
parameter for the specified socket.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

level

The level parameter specifies the protocol level at which the option resides. For example,
to retrieve options at the socket level, a level parameter of SOL_SOCKET would be
used. Other levels, such as TCP, can be used by specifying the protocol number of that
level. Protocol numbers can be found by using the getprotobyname() function.

optname

Available Socket Options

Option Description Type

SO_DEBUG Reports whether debugging
information is being
recorded.

int

SO_BROADCAST Reports whether
transmission of broadcast
messages is supported.

int

SO_REUSEADDR Reports whether local
addresses can be reused.

int

SO_KEEPALIVE Reports whether connections
are kept active with periodic
transmission of messages. If
the connected socket fails to
respond to these messages,
the connection is broken and
processes writing to that
socket are notified with a

int

SIGPIPE signal.

SO_LINGER
Reports whether the socket
lingers on socket_close() if
data is present. By default,
when the socket is closed, it
attempts to send all unsent
data. In the case of a
connection-oriented socket,
socket_close() will wait for its
peer to acknowledge the
data.

If l_onoff is non-zero and
l_linger is zero, all the unsent
data will be discarded and
RST (reset) is sent to the
peer in the case of a
connection-oriented socket.

On the other hand, if l_onoff
is non-zero and l_linger is
non-zero, socket_close() will
block until all the data is sent
or the time specified in
l_linger elapses. If the socket
is non-blocking,
socket_close() will fail and
return an error.

array. The array will contain
two keys: l_onoff and l_linger
.

SO_OOBINLINE Reports whether the socket
leaves out-of-band data
inline.

int

SO_SNDBUF Reports the size of the send
buffer.

int

SO_RCVBUF Reports the size of the
receive buffer.

int

SO_ERROR Reports information about
error status and clears it.

int (cannot be set by
socket_set_option())

SO_TYPE Reports the socket type
(e.g. SOCK_STREAM).

int (cannot be set by
socket_set_option())

SO_DONTROUTE Reports whether outgoing
messages bypass the
standard routing facilities.

int

SO_RCVLOWAT Reports the minimum
number of bytes to process
for socket input operations.

int

SO_RCVTIMEO Reports the timeout value for
input operations.

array. The array will contain
two keys: sec which is the
seconds part on the timeout
value and usec which is the
microsecond part of the
timeout value.

SO_SNDTIMEO Reports the timeout value
specifying the amount of time
that an output function blocks
because flow control
prevents data from being
sent.

array. The array will contain
two keys: sec which is the
seconds part on the timeout
value and usec which is the
microsecond part of the
timeout value.

SO_SNDLOWAT Reports the minimum
number of bytes to process
for socket output operations.

int

Return Values

Returns the value of the given option, or FALSE on errors.

Examples

Example #2366 - socket_set_option() example

<?php

$socket = socket_create_listen(1223);

$linger = array('l_linger' => 1, 'l_onoff' => 1);

socket_set_option($socket, SOL_SOCKET, SO_LINGER, $linger);

var_dump(socket_get_option($socket, SOL_SOCKET, SO_REUSEADDR));

?>

ChangeLog

Version Description

4.3.0 The name of this function was changed. It
used to be called socket_getopt().

socket_getpeername

socket_getpeername -- Queries the remote side of the given socket which may either
result in host/port or in a Unix filesystem path, dependent on its type

Description

bool socket_getpeername (resource $socket, string &$address [, int &$port])

Queries the remote side of the given socket which may either result in host/port or in a
Unix filesystem path, dependent on its type.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

address

If the given socket is of type AF_INET or AF_INET6, socket_getpeername() will return
the peers (remote) IP address in appropriate notation (e.g. 127.0.0.1 or fe80::1) in the
address parameter and, if the optional port parameter is present, also the associated
port. If the given socket is of type AF_UNIX, socket_getpeername() will return the Unix
filesystem path (e.g. /var/run/daemon.sock) in the address parameter.

port

If given, this will hold the port associated to address.

Return Values

Returns TRUE on success or FALSE on failure. socket_getpeername() may also return
FALSE if the socket type is not any of AF_INET, AF_INET6, or AF_UNIX, in which case
the last socket error code is not updated.

Notes

Note

socket_getpeername() should not be used with AF_UNIX sockets created with
socket_accept(). Only sockets created with socket_connect() or a primary server
socket following a call to socket_bind() will return meaningful values.

See Also

• socket_getsockname()
• socket_last_error()
• socket_strerror()

socket_getsockname

socket_getsockname -- Queries the local side of the given socket which may either result
in host/port or in a Unix filesystem path, dependent on its type

Description

bool socket_getsockname (resource $socket, string &$addr [, int &$port])

Note

socket_getsockname() should not be used with AF_UNIX sockets created with
socket_connect(). Only sockets created with socket_accept() or a primary server
socket following a call to socket_bind() will return meaningful values.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

addr

If the given socket is of type AF_INET or AF_INET6, socket_getsockname() will return
the local IP address in appropriate notation (e.g. 127.0.0.1 or fe80::1) in the address
parameter and, if the optional port parameter is present, also the associated port. If
the given socket is of type AF_UNIX, socket_getsockname() will return the Unix
filesystem path (e.g. /var/run/daemon.sock) in the address parameter.

port

If provided, this will hold the associated port.

Return Values

Returns TRUE on success or FALSE on failure. socket_getsockname() may also return
FALSE if the socket type is not any of AF_INET, AF_INET6, or AF_UNIX, in which case
the last socket error code is not updated.

See Also

• socket_getpeername()
• socket_last_error()
• socket_strerror()

socket_last_error

socket_last_error -- Returns the last error on the socket

Description

int socket_last_error ([resource $socket])

If a socket resource is passed to this function, the last error which occurred on this
particular socket is returned. If the socket resource is omitted, the error code of the last
failed socket function is returned. The latter is particularly helpful for functions like
socket_create() which don't return a socket on failure and socket_select() which can fail for
reasons not directly tied to a particular socket. The error code is suitable to be fed to
socket_strerror() which returns a string describing the given error code.

Parameters

socket

A valid socket resource created with socket_create().

Return Values

This function returns a socket error code.

Examples

Example #2367 - socket_last_error() example

<?php

$socket = @socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

if ($socket === false) {

 $errorcode = socket_last_error();

 $errormsg = socket_strerror($errorcode);

 die("Couldn't create socket: [$errorcode] $errormsg");

}

?>

Notes

Note

socket_last_error() does not clear the error code, use socket_clear_error() for this
purpose.

socket_listen

socket_listen -- Listens for a connection on a socket

Description

bool socket_listen (resource $socket [, int $backlog])

After the socket socket has been created using socket_create() and bound to a name with
socket_bind(), it may be told to listen for incoming connections on socket.

socket_listen() is applicable only to sockets of type SOCK_STREAM or
SOCK_SEQPACKET.

Parameters

socket

A valid socket resource created with socket_create().

backlog

A maximum of backlog incoming connections will be queued for processing. If a
connection request arrives with the queue full the client may receive an error with an
indication of ECONNREFUSED, or, if the underlying protocol supports retransmission,
the request may be ignored so that retries may succeed.

Note

The maximum number passed to the backlog parameter highly depends on the
underlying platform. On Linux, it is silently truncated to SOMAXCONN. On win32, if
passed SOMAXCONN, the underlying service provider responsible for the socket
will set the backlog to a maximum reasonable value. There is no standard
provision to find out the actual backlog value on this platform.

Return Values

Returns TRUE on success or FALSE on failure. The error code can be retrieved with
socket_last_error(). This code may be passed to socket_strerror() to get a textual
explanation of the error.

See Also

• socket_accept()

• socket_bind()
• socket_connect()
• socket_create()
• socket_strerror()

socket_read

socket_read -- Reads a maximum of length bytes from a socket

Description

string socket_read (resource $socket, int $length [, int $type])

The function socket_read() reads from the socket resource socket created by the
socket_create() or socket_accept() functions.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

length

The maximum number of bytes read is specified by the length parameter. Otherwise
you can use \r, \n, or \0 to end reading (depending on the type parameter, see below).

type

Optional type parameter is a named constant:

• PHP_BINARY_READ (Default) - use the system recv() function. Safe for reading
binary data.

• PHP_NORMAL_READ - reading stops at \n or \r.

Return Values

socket_read() returns the data as a string on success, or FALSE on error (including if the
remote host has closed the connection). The error code can be retrieved with
socket_last_error(). This code may be passed to socket_strerror() to get a textual
representation of the error.

Note

socket_read() returns a zero length string ("") when there is no more data to read.

ChangeLog

Version Description

4.1.0 The default value for type was changed
from PHP_NORMAL_READ to
PHP_BINARY_READ

See Also

• socket_accept()
• socket_bind()
• socket_connect()
• socket_listen()
• socket_last_error()
• socket_strerror()
• socket_write()

socket_recv

socket_recv -- Receives data from a connected socket

Description

int socket_recv (resource $socket, string &$buf, int $len, int $flags)

Warning

This function is currently not documented; only its argument list is available.

socket_recvfrom

socket_recvfrom -- Receives data from a socket whether or not it is connection-oriented

Description

int socket_recvfrom (resource $socket, string &$buf, int $len, int $flags, string &$name
[, int &$port])

The socket_recvfrom() function receives len bytes of data in buf from name on port port
(if the socket is not of type AF_UNIX) using socket. socket_recvfrom() can be used to
gather data from both connected and unconnected sockets. Additionally, one or more flags
can be specified to modify the behaviour of the function.

The name and port must be passed by reference. If the socket is not connection-oriented,
name will be set to the internet protocol address of the remote host or the path to the UNIX
socket. If the socket is connection-oriented, name is NULL. Additionally, the port will
contain the port of the remote host in the case of an unconnected AF_INET or AF_INET6
socket.

Parameters

socket

The socket must be a socket resource previously created by socket_create().

buf

The data received will be fetched to the variable specified with buf.

len

Up to len bytes will be fetched from remote host.

flags

The value of flags can be any combination of the following flags, joined with the
binary OR (|) operator.

Possible values for flags

Flag Description

MSG_OOB Process out-of-band data.

MSG_PEEK Receive data from the beginning of the
receive queue without removing it from the
queue.

MSG_WAITALL Block until at least len are received.
However, if a signal is caught or the remote
host disconnects, the function may return

less data.

MSG_DONTWAIT With this flag set, the function returns even if
it would normally have blocked.

name

If the socket is of the type AF_UNIX type, name is the path to the file. Else, for
unconnected sockets, name is the IP address of, the remote host, or NULL if the socket is
connection-oriented.

port

This argument only applies to AF_INET and AF_INET6 sockets, and specifies the remote
port from which the data is received. If the socket is connection-oriented, port will be
NULL.

Return Values

socket_recvfrom() returns the number of bytes received, or -1 if there was an error. The actual
error code can be retrieved by calling socket_last_error(). This error code may be passed to
socket_strerror() to get a textual explanation of the error.

Examples

Example #2368 - socket_recvfrom() example

<?php

error_reporting(E_ALL | E_STRICT);

$socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP);

socket_bind($socket, '127.0.0.1', 1223);

$from = "";

$port = 0;

socket_recvfrom($socket, $buf, 12, 0, $from, $port);

echo "Received $buf from remote address $from and remote port $port" . PHP_EOL;

?>

This example will initiate an UDP socket on port 1223 of 127.0.0.1 and print at most 12
characters received from a remote host.

ChangeLog

Version Description

4.3.0 socket_recvfrom() is now binary safe.

See Also

• socket_recv()
• socket_send()
• socket_sendto()
• socket_create()

socket_select

socket_select -- Runs the select() system call on the given arrays of sockets with a
specified timeout

Description

int socket_select (array &$read, array &$write, array &$except, int $tv_sec [, int $
tv_usec])

socket_select() accepts arrays of sockets and waits for them to change status. Those
coming with BSD sockets background will recognize that those socket resource arrays are
in fact the so-called file descriptor sets. Three independent arrays of socket resources are
watched.

Parameters

read

The sockets listed in the read array will be watched to see if characters become
available for reading (more precisely, to see if a read will not block - in particular, a
socket resource is also ready on end-of-file, in which case a socket_read() will return a
zero length string).

write

The sockets listed in the write array will be watched to see if a write will not block.

except

The sockets listed in the except array will be watched for exceptions.

tv_sec

The tv_sec and tv_usec together form the timeout parameter. The timeout is an
upper bound on the amount of time elapsed before socket_select() return. tv_sec may
be zero , causing socket_select() to return immediately. This is useful for polling. If
tv_sec is NULL (no timeout), socket_select() can block indefinitely.

tv_usec

Warning

On exit, the arrays are modified to indicate which socket resource actually changed
status.

You do not need to pass every array to socket_select(). You can leave it out and use an
empty array or NULL instead. Also do not forget that those arrays are passed by reference

and will be modified after socket_select() returns.

Note

Due a limitation in the current Zend Engine it is not possible to pass a constant
modifier like NULL directly as a parameter to a function which expects this parameter
to be passed by reference. Instead use a temporary variable or an expression with the
leftmost member being a temporary variable:

Example #2369 - Using NULL with socket_select()

<?php

$e = NULL;

socket_select($r, $w, $e, 0);

?>

Return Values

On success socket_select() returns the number of socket resources contained in the
modified arrays, which may be zero if the timeout expires before anything interesting
happens. On error FALSE is returned. The error code can be retrieved with
socket_last_error().

Note

Be sure to use the === operator when checking for an error. Since the socket_select()
may return 0 the comparison with == would evaluate to TRUE:

Example #2370 - Understanding socket_select() 's result

<?php

$e = NULL;

if (false === socket_select($r, $w, $e, 0)) {

 echo "socket_select() failed, reason: " .

 socket_strerror(socket_last_error()) . "\n";

}

?>

Examples

Example #2371 - socket_select() example

<?php

/* Prepare the read array */

$read = array($socket1, $socket2);

$write = NULL;

$except = NULL;

$num_changed_sockets = socket_select($read, $write, $except, 0);

if ($num_changed_sockets === false) {

 /* Error handling */

} else if ($num_changed_sockets > 0) {

 /* At least at one of the sockets something interesting happened */

}

?>

Notes

Note

Be aware that some socket implementations need to be handled very carefully. A few
basic rules:

• You should always try to use socket_select() without timeout. Your program should
have nothing to do if there is no data available. Code that depends on timeouts is
not usually portable and difficult to debug.

• No socket resource must be added to any set if you do not intend to check its
result after the socket_select() call, and respond appropriately. After
socket_select() returns, all socket resources in all arrays must be checked. Any
socket resource that is available for writing must be written to, and any socket
resource available for reading must be read from.

• If you read/write to a socket returns in the arrays be aware that they do not
necessarily read/write the full amount of data you have requested. Be prepared to
even only be able to read/write a single byte.

• It's common to most socket implementations that the only exception caught with
the except array is out-of-bound data received on a socket.

See Also

• socket_read()
• socket_write()
• socket_last_error()
• socket_strerror()

socket_send

socket_send -- Sends data to a connected socket

Description

int socket_send (resource $socket, string $buf, int $len, int $flags)

The function socket_send() sends len bytes to the socket socket from buf.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

buf

A buffer containing the data that will be sent to the remote host.

len

The number of bytes that will be sent to the remote host from buf.

flags

The value of flags can be any combination of the following flags, joined with the
binary OR (|) operator.

Possible values for flags

MSG_OOB Send OOB (out-of-band) data.

MSG_EOR Indicate a record mark. The sent data
completes the record.

MSG_EOF Close the sender side of the socket and
include an appropriate notification of this at
the end of the sent data. The sent data
completes the transaction.

MSG_DONTROUTE Bypass routing, use direct interface.

Return Values

See Also

• socket_sendto()

socket_sendto

socket_sendto -- Sends a message to a socket, whether it is connected or not

Description

int socket_sendto (resource $socket, string $buf, int $len, int $flags, string $addr [, int $
port])

The function socket_sendto() sends len bytes from buf through the socket socket to the
port at the address addr.

Parameters

socket

A valid socket ressource created using socket_create().

buf

The sent data will be taken from buffer buf.

len

len bytes from buf will be sent.

flags

The value of flags can be any combination of the following flags, joined with the binary
OR (|) operator.

Possible values for flags

MSG_OOB Send OOB (out-of-band) data.

MSG_EOR Indicate a record mark. The sent data
completes the record.

MSG_EOF Close the sender side of the socket and
include an appropriate notification of this at
the end of the sent data. The sent data
completes the transaction.

MSG_DONTROUTE Bypass routing, use direct interface.

addr

IP address of the remote host.

port

port is the remote port number at which the data will be sent.

Return Values

socket_sendto() returns the number of bytes sent to the remote host or -1 if an error occured.

Examples

Example #2372 - socket_sendto() Example

<?php

 $sock = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP);

 $msg = "Ping !";

 $len = strlen($msg);

 socket_sendto($sock, $msg, $len, 0, '127.0.0.1', 1223);

 socket_close($sock);

?>

See Also

• socket_send()

socket_set_block

socket_set_block -- Sets blocking mode on a socket resource

Description

bool socket_set_block (resource $socket)

The socket_set_block() function removes the O_NONBLOCK flag on the socket specified by
the socket parameter.

When an operation (e.g. receive, send, connect, accept, ...) is performed on a blocking socket,
the script will pause its execution until it receives a signal or it can perform the operation.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2373 - socket_set_block() example

<?php

$socket = socket_create_listen(1223);

socket_set_block($socket);

socket_accept($socket);

?>

This example creates a listening socket on all interfaces on port 1223 and sets the socket
to O_BLOCK mode. socket_accept() will hang until there is a connection to accept.

See Also

• socket_set_nonblock()
• socket_set_option()

socket_set_nonblock

socket_set_nonblock -- Sets nonblocking mode for file descriptor fd

Description

bool socket_set_nonblock (resource $socket)

The socket_set_nonblock() function sets the O_NONBLOCK flag on the socket specified by
the socket parameter.

When an operation (e.g. receive, send, connect, accept, ...) is performed on a non-blocking
socket, the script not pause its execution until it receives a signal or it can perform the
operation. Rather, if the operation would result in a block, the called function will fail.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2374 - socket_set_nonblock() example

<?php

$socket = socket_create_listen(1223);

socket_set_nonblock($socket);

socket_accept($socket);

?>

This example creates a listening socket on all interfaces on port 1223 and sets the socket
to O_NONBLOCK mode. socket_accept() will immediately fail unless there is a pending
connection exactly at this moment.

See Also

• socket_set_block()
• socket_set_option()

socket_set_option

socket_set_option -- Sets socket options for the socket

Description

bool socket_set_option (resource $socket, int $level, int $optname, mixed $optval)

The socket_set_option() function sets the option specified by the optname parameter, at the
specified protocol level, to the value pointed to by the optval parameter for the socket.

Parameters

socket

A valid socket resource created with socket_create() or socket_accept().

level

The level parameter specifies the protocol level at which the option resides. For example,
to retrieve options at the socket level, a level parameter of SOL_SOCKET would be
used. Other levels, such as TCP, can be used by specifying the protocol number of that
level. Protocol numbers can be found by using the getprotobyname() function.

optname

The available socket options are the same as those for the socket_get_option() function.

optval

The option value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2375 - socket_set_option() example

<?php

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

if (!is_resource($socket)) {

 echo 'Unable to create socket: '. socket_strerror(socket_last_error()) .
PHP_EOL;

}

if (!socket_set_option($socket, SOL_SOCKET, SO_REUSEADDR, 1)) {

 echo 'Unable to set option on socket: '. socket_strerror(socket_last_error())

. PHP_EOL;

}

if (!socket_bind($socket, '127.0.0.1', 1223)) {

 echo 'Unable to bind socket: '. socket_strerror(socket_last_error()) .
PHP_EOL;

}

$rval = socket_get_option($socket, SOL_SOCKET, SO_REUSEADDR);

if ($rval === false) {

 echo 'Unable to get socket option: '. socket_strerror(socket_last_error()) .
PHP_EOL;

} else if ($rval !== 0) {

 echo 'SO_REUSEADDR is set on socket !' . PHP_EOL;

}

?>

ChangeLog

Version Description

4.3.0 This function was renamed. It used to be
called socket_setopt().

socket_shutdown

socket_shutdown -- Shuts down a socket for receiving, sending, or both

Description

bool socket_shutdown (resource $socket [, int $how])

The socket_shutdown() function allows you to stop incoming, outgoing or all data (the
default) from being sent through the socket

Parameters

socket

A valid socket resource created with socket_create().

how

The value of how can be one of the following:

possible values for how

0 Shutdown socket reading

1 Shutdown socket writing

2 Shutdown socket reading and writing

Return Values

Returns TRUE on success or FALSE on failure.

socket_strerror

socket_strerror -- Return a string describing a socket error

Description

string socket_strerror (int $errno)

socket_strerror() takes as its errno parameter a socket error code as returned by
socket_last_error() and returns the corresponding explanatory text.

Note

Although the error messages generated by the socket extension are in English, the system
messages retrieved with this function will appear depending on the current locale (
LC_MESSAGES).

Parameters

errno

A valid socket error number, likely produced by socket_last_error().

Return Values

Returns the error message associated with the errno parameter.

Examples

Example #2376 - socket_strerror() example

<?php

if (false == ($socket = @socket_create(AF_INET, SOCK_STREAM, SOL_TCP))) {

 echo "socket_create() failed: reason: " . socket_strerror(socket_last_error())
. "\n";

}

if (false == (@socket_bind($socket, '127.0.0.1', 80))) {

 echo "socket_bind() failed: reason: " .
socket_strerror(socket_last_error($socket)) . "\n";

}

?>

The expected output from the above example (assuming the script is not run with root
privileges):

socket_bind() failed: reason: Permission denied

See Also

• socket_accept()
• socket_bind()
• socket_connect()
• socket_listen()
• socket_create()

socket_write

socket_write -- Write to a socket

Description

int socket_write (resource $socket, string $buffer [, int $length])

The function socket_write() writes to the socket from the given buffer.

Parameters

socket

buffer

The buffer to be written.

length

The optional parameter length can specify an alternate length of bytes written to the
socket. If this length is greater then the buffer length, it is silently truncated to the length of
the buffer.

Return Values

Returns the number of bytes successfully written to the socket or FALSE one error. The error
code can be retrieved with socket_last_error(). This code may be passed to socket_strerror()
to get a textual explanation of the error.

Note

It is perfectly valid for socket_write() to return zero which means no bytes have been
written. Be sure to use the === operator to check for FALSE in case of an error.

Notes

Note

socket_write() does not necessarily write all bytes from the given buffer. It's valid that,
depending on the network buffers etc., only a certain amount of data, even one byte, is
written though your buffer is greater. You have to watch out so you don't unintentionally
forget to transmit the rest of your data.

See Also

• socket_accept()
• socket_bind()
• socket_connect()
• socket_listen()
• socket_read()
• socket_strerror()

Secure Shell2

Introduction

Bindings to the » libssh2 library which provide access to resources (shell, remote exec,
tunneling, file transfer) on a remote machine using a secure cryptographic transport.

http://sourceforge.net/projects/libssh2/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Windows binaries may be found at » http://snaps.php.net/. To install, download php_ssh2.dll
to the folder specified by your php.ini file's extension_dir directive. Enable it by adding
extension=php_ssh2.dll to your php.ini and restarting your web server.

extension_dir=c:/php5/exts/

extension=php_ssh2.dll

Linux, BSD, and other *nix variants can be compiled using the following steps:

• Download and install » OpenSSL. If you install OpenSSL via your distribution's packaging
system be sure to install the development libraries as well. This will typically be a package
named openssl-dev, openssl_devel, or some variation thereof.

• Download and install » libssh2. Typically this means executing the following command
from the libssh2 source tree../configure && make all install.

• Run the pear installer for PECL/ssh2: pear install ssh2

• Copy ssh2.so from the directory indicated by the build process to the location specified in
your php.ini file under extension_dir.

• Add extension=ssh2.so to your php.ini

• Restart your web server to reload your php.ini settings.

Note

Development Versions

There are currently no stable versions of PECL/ssh2, to force installation of the beta
version of PECL/ssh2 execute: pear install ssh2- beta

Tip

Compiling PECL/ssh2 without using the PEAR
command

http://snaps.php.net/
http://www.openssl.org/
http://sourceforge.net/projects/libssh2/

Rather than using pear install ssh2 to automatically download and install PECL/ssh2, you
may download the tarball from » PECL. From the root of the unpacked tarball, run: phpize
&& ./configure --with-ssh2 && make to generate ssh2.so. Once built, continue the
installation from step 4 above.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/ssh2.

Note

You will need version 0.4 or greater of the libssh2 library (possibly higher, see release
notes).

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SSH2_FINGERPRINT_MD5 (integer)
Flag to ssh2_fingerprint() requesting hostkey fingerprint as an MD5 hash.

SSH2_FINGERPRINT_SHA1 (integer)
Flag to ssh2_fingerprint() requesting hostkey fingerprint as an SHA1 hash.

SSH2_FINGERPRINT_HEX (integer)
Flag to ssh2_fingerprint() requesting hostkey fingerprint as a string of hexits.

SSH2_FINGERPRINT_RAW (integer)
Flag to ssh2_fingerprint() requesting hostkey fingerprint as a raw string of 8-bit characters.

SSH2_TERM_UNIT_CHARS (integer)
Flag to ssh2_shell() specifying that width and height are provided as character sizes.

SSH2_TERM_UNIT_PIXELS (integer)
Flag to ssh2_shell() specifying that width and height are provided in pixel units.

SSH2_DEFAULT_TERM_WIDTH (integer)
Default terminal width requested by ssh2_shell().

SSH2_DEFAULT_TERM_HEIGHT (integer)
Default terminal height requested by ssh2_shell().

SSH2_DEFAULT_TERM_UNIT (integer)
Default terminal units requested by ssh2_shell().

SSH2_STREAM_STDIO (integer)
Flag to ssh2_fetch_stream() requesting STDIO subchannel.

SSH2_STREAM_STDERR (integer)
Flag to ssh2_fetch_stream() requesting STDERR subchannel.

SSH2_DEFAULT_TERMINAL (string)
Default terminal type (e.g. vt102, ansi, xterm, vanilla) requested by ssh2_shell().

SSH2 Functions

ssh2_auth_hostbased_file

ssh2_auth_hostbased_file -- Authenticate using a public hostkey

Description

bool ssh2_auth_hostbased_file (resource $session, string $username, string $hostname,
string $pubkeyfile, string $privkeyfile [, string $passphrase [, string $local_username]])

Authenticate using a public hostkey read from a file.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

username

hostname

pubkeyfile

privkeyfile

passphrase

If privkeyfile is encrypted (which it should be), the passphrase must be provided.

local_username

If local_username is omitted, then the value for username will be used for it.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2377 - Authentication using a public hostkey

<?php

$connection = ssh2_connect('shell.example.com', 22,
array('hostkey'=>'ssh-rsa'));

if (ssh2_auth_hostbased_file($connection, 'remoteusername',
'myhost.example.com',

 '/usr/local/etc/hostkey_rsa.pub',

 '/usr/local/etc/hostkey_rsa', 'secret',

 'localusername')) {

 echo "Public Key Hostbased Authentication Successful\n";

} else {

 die('Public Key Hostbased Authentication Failed');

}

?>

Notes

Note

ssh2_auth_hostbased_file() requires libssh2 >= 0.7 and PHP/SSH2 >= 0.7

ssh2_auth_none

ssh2_auth_none -- Authenticate as "none"

Description

mixed ssh2_auth_none (resource $session, string $username)

Attempt "none" authentication which usually will (and should) fail. As part of the failure, this
function will return an array of accepted authentication methods.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

username

Remote user name.

Return Values

Returns TRUE if the server doesc accept "none" as an authentication method, or an array of
accepted authentication methods on failure.

Examples

Example #2378 - Retreiving a list of authentication methods

<?php

$connection = ssh2_connect('shell.example.com', 22);

$auth_methods = ssh2_auth_none($connection, 'user');

if (in_array('password', $auth_methods)) {

 echo "Server supports password based authentication\n";

}

?>

ssh2_auth_password

ssh2_auth_password -- Authenticate over SSH using a plain password

Description

bool ssh2_auth_password (resource $session, string $username, string $password)

Authenticate over SSH using a plain password

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

username

Remote user name.

password

Password for username

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2379 - Authenticating with a password

<?php

$connection = ssh2_connect('shell.example.com', 22);

if (ssh2_auth_password($connection, 'username', 'secret')) {

 echo "Authentication Successful!\n";

} else {

 die('Authentication Failed...');

}

?>

ssh2_auth_pubkey_file

ssh2_auth_pubkey_file -- Authenticate using a public key

Description

bool ssh2_auth_pubkey_file (resource $session, string $username, string $pubkeyfile,
string $privkeyfile [, string $passphrase])

Authenticate using a public key read from a file.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

username

pubkeyfile

privkeyfile

passphrase

If privkeyfile is encrypted (which it should be), the passphrase must be provided.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2380 - Authentication using a public key

<?php

$connection = ssh2_connect('shell.example.com', 22,
array('hostkey'=>'ssh-rsa'));

if (ssh2_auth_pubkey_file($connection, 'username',

 '/home/username/.ssh/id_rsa.pub',

 '/home/username/.ssh/id_rsa', 'secret')) {

 echo "Public Key Authentication Successful\n";

} else {

 die('Public Key Authentication Failed');

}

?>

ssh2_connect

ssh2_connect -- Connect to an SSH server

Description

resource ssh2_connect (string $host [, int $port [, array $methods [, array $callbacks]]])

Establish a connection to a remote SSH server.

Once connected, the client should verify the server's hostkey using ssh2_fingerprint(), then
authenticate using either password or public key.

Parameters

host

port

methods

methods may be an associative array with up to four parameters as described below.

methods may be an associative array with any or all of the following parameters.

Index Meaning Supported Values*

kex List of key exchange
methods to advertise,
comma separated in order of
preference.

diffie-hellman-group1-sha1,
diffie-hellman-group14-sha1,
and
diffie-hellman-group-exchang
e-sha1

hostkey List of hostkey methods to
advertise, come separated in
order of preference.

ssh-rsa and ssh-dss

client_to_server Associative array containing
crypt, compression, and
message authentication code
(MAC) method preferences
for messages sent from
client to server.

server_to_client Associative array containing
crypt, compression, and
message authentication code

(MAC) method preferences
for messages sent from
client to server.

* - Supported Values are dependent on methods supported by underlying library. See
» libssh2 documentation for additional information.

client_to_server and server_to_client may be an associative array with any or all
of the following parameters.

Index Meaning Supported Values*

crypt List of crypto methods to
advertise, comma separated
in order of preference.

rijndael-cbc@lysator.liu.se,
aes256-cbc, aes192-cbc,
aes128-cbc, 3des-cbc,
blowfish-cbc, cast128-cbc,
arcfour, and none**

comp List of compression methods
to advertise, comma
separated in order of
preference.

zlib and none

mac List of MAC methods to
advertise, come separated in
order of preference.

hmac-sha1, hmac-sha1-96,
hmac-ripemd160,
hmac-ripemd160@openssh.
com, and none**

Note

Crypt and MAC method " none "

For security reasons, none is disabled by the underlying » libssh2 library unless
explicitly enabled during build time by using the appropriate ./configure options. See
documentation for the underlying library for more information.

callbacks

callbacks may be an associative array with any or all of the following parameters.

Callbacks parameters

Index Meaning Prototype

ignore Name of function to call
when an
SSH2_MSG_IGNORE
packet is received

void ignore_cb($message)

http://sourceforge.net/projects/libssh2/
http://sourceforge.net/projects/libssh2/
http://sourceforge.net/projects/libssh2/

debug Name of function to call
when an
SSH2_MSG_DEBUG packet
is received

void debug_cb($message,
$language, $always_display)

macerror Name of function to call
when a packet is received
but the message
authentication code failed. If
the callback returns TRUE,
the mismatch will be ignored,
otherwise the connection will
be terminated.

bool macerror_cb($packet)

disconnect Name of function to call
when an
SSH2_MSG_DISCONNECT
packet is received

void disconnect_cb($reason,
$message, $language)

Return Values

Returns a resource on success, or FALSE on error.

Examples

Example #2381 - ssh2_connect() example

Open a connection forcing 3des-cbc when sending packets, any strength aes cipher when
receiving packets, no compression in either direction, and Group1 key exchange.

<?php

/* Notify the user if the server terminates the connection */

function my_ssh_disconnect($reason, $message, $language) {

 printf("Server disconnected with reason code [%d] and message: %s\n",

 $reason, $message);

}

$methods = array(

 'kex' => 'diffie-hellman-group1-sha1',

 'client_to_server' => array(

 'crypt' => '3des-cbc',

 'comp' => 'none'),

 'server_to_client' => array(

 'crypt' => 'aes256-cbc,aes192-cbc,aes128-cbc',

 'comp' => 'none'));

$callbacks = array('disconnect' => 'my_ssh_disconnect');

$connection = ssh2_connect('shell.example.com', 22, $methods, $callbacks);

if (!$connection) die('Connection failed');

?>

See Also

• ssh2_fingerprint()
• ssh2_auth_none()
• ssh2_auth_password()
• ssh2_auth_pubkey_file()

ssh2_exec

ssh2_exec -- Execute a command on a remote server

Description

resource ssh2_exec (resource $session, string $command [, string $pty [, array $env [, int $
width [, int $height [, int $width_height_type]]]]])

Execute a command at the remote end and allocate a channel for it.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

command

pty

env

env may be passed as an associative array of name/value pairs to set in the target
environment.

width

Width of the virtual terminal.

height

Height of the virtual terminal.

width_height_type

width_height_type should be one of SSH2_TERM_UNIT_CHARS or
SSH2_TERM_UNIT_PIXELS.

Return Values

Returns a stream on success or FALSE on failure.

Examples

Example #2382 - Executing a command

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$stream = ssh2_exec($connection, '/usr/local/bin/php -i');

?>

See Also

• ssh2_connect()
• ssh2_shell()
• ssh2_tunnel()

ssh2_fetch_stream

ssh2_fetch_stream -- Fetch an extended data stream

Description

resource ssh2_fetch_stream (resource $channel, int $streamid)

Fetches an alternate substream associated with an SSH2 channel stream. The SSH2 protocol
currently defines only one substream, STDERR, which has a substream ID of
SSH2_STREAM_STDERR (defined as 1).

Parameters

channel

streamid

An SSH2 channel stream.

Return Values

Returns the requested stream resource.

Examples

Example #2383 - Opening a shell and retrieving the stderr stream associated with it

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$stdio_stream = ssh2_shell($connection);

$stderr_stream = ssh2_fetch_stream($stdio_stream, SSH2_STREAM_STDERR);

?>

See Also

• ssh2_shell()
• ssh2_exec()
• ssh2_connect()

ssh2_fingerprint

ssh2_fingerprint -- Retrieve fingerprint of remote server

Description

string ssh2_fingerprint (resource $session [, int $flags])

Returns a server hostkey hash from an active session.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

flags

flags may be either of SSH2_FINGERPRINT_MD5 or SSH2_FINGERPRINT_SHA1
logically ORed with SSH2_FINGERPRINT_HEX or SSH2_FINGERPRINT_RAW. Defaults
to SSH2_FINGERPRINT_MD5 | SSH2_FINGERPRINT_HEX.

Return Values

Returns the hostkey hash as a string.

Examples

Example #2384 - Checking the fingerprint against a known value

<?php

$known_host = '6F89C2F0A719B30CC38ABDF90755F2E4';

$connection = ssh2_connect('shell.example.com', 22);

$fingerprint = ssh2_fingerprint($connection,

 SSH2_FINGERPRINT_MD5 | SSH2_FINGERPRINT_HEX);

if ($fingerprint != $known_host) {

 die("HOSTKEY MISMATCH!\n" .

 "Possible Man-In-The-Middle Attack?");

}

?>

ssh2_methods_negotiated

ssh2_methods_negotiated -- Return list of negotiated methods

Description

array ssh2_methods_negotiated (resource $session)

Returns list of negotiated methods.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

Return Values

Examples

Example #2385 - Determining what methods were negotiated

<?php

$connection = ssh2_connect('shell.example.com', 22);

$methods = ssh2_methods_negotiated($connection);

echo "Encryption keys were negotiated using: {$methods['kex']}\n";

echo "Server identified using an {$methods['hostkey']} with ";

echo "fingerprint: " . ssh2_fingerprint($connection) . "\n";

echo "Client to Server packets will use methods:\n";

echo "\tCrypt: {$methods['client_to_server']['crypt']}\n";

echo "\tComp: {$methods['client_to_server']['comp']}\n";

echo "\tMAC: {$methods['client_to_server']['mac']}\n";

echo "Server to Client packets will use methods:\n";

echo "\tCrypt: {$methods['server_to_client']['crypt']}\n";

echo "\tComp: {$methods['server_to_client']['comp']}\n";

echo "\tMAC: {$methods['server_to_client']['mac']}\n";

?>

See Also

• ssh2_connect()

ssh2_publickey_add

ssh2_publickey_add -- Add an authorized publickey

Description

bool ssh2_publickey_add (resource $pkey, string $algoname, string $blob [, bool $
overwrite [, array $attributes]])

Note

The public key subsystem is used for managing public keys on a server to which the client
is already authenticated. To authenticate to a remote system using public key
authentication, use the ssh2_auth_pubkey_file() function instead.

Parameters

pkey

Publickey Subsystem resource created by ssh2_publickey_init().

algoname

Publickey algorithm (e.g.): ssh-dss, ssh-rsa

blob

Publickey blob as raw binary data

overwrite

If the specified key already exists, should it be overwritten?

attributes

Associative array of attributes to assign to this public key. Refer to
ietf-secsh-publickey-subsystem for a list of supported attributes. To mark an attribute as
mandatory, precede its name with an asterisk. If the server is unable to support an
attribute marked mandatory, it will abort the add process.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2386 - Adding a publickey with ssh2_publickey_add()

<?php

$ssh2 = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($ssh2, 'jdoe', 'password');

$pkey = ssh2_publickey_init($ssh2);

$keyblob = base64_decode('

AAAAB3NzaC1yc2EAAAABIwAAAIEA5HVt6VqSGd5PTrLRdjNONxXH1tVFGn0

Bd26BF0aCP9qyJRlvdJ3j4WBeX4ZmrveGrjMgkseSYc4xZ26sDHwfL351xj

zaLpipu\BGRrw17mWVBhuCExo476ri5tQFzbTc54VEHYckxQ16CjSTibI5X

69GmnYC9PNqEYq/1TP+HF10=');

ssh2_publickey_add($ssh2, 'ssh-rsa', $keyblob, false, array('comment'=>"John's
Key"));

?>

See Also

• ssh2_publickey_init()
• ssh2_publickey_remove()
• ssh2_publickey_list()

ssh2_publickey_init

ssh2_publickey_init -- Initialize Publickey subsystem

Description

resource ssh2_publickey_init (resource $session)

Request the Publickey subsystem from an already connected SSH2 server.

The publickey subsystem allows an already connected and authenticated client to manage the
list of authorized public keys stored on the target server in an implementation agnostic
manner. If the remote server does not support the publickey subsystem, the
ssh2_publickey_init() function will return FALSE.

Parameters

session

Return Values

Returns an SSH2 Publickey Subsystem resource for use with all other ssh2_publickey_*()
methods, or FALSE on failure.

Notes

Note

The public key subsystem is used for managing public keys on a server to which the client
is already authenticated. To authenticate to a remote system using public key
authentication, use the ssh2_auth_pubkey_file() function instead.

See Also

• ssh2_publickey_add()
• ssh2_publickey_remove()
• ssh2_publickey_list()

ssh2_publickey_list

ssh2_publickey_list -- List currently authorized publickeys

Description

array ssh2_publickey_list (resource $pkey)

List currently authorized publickeys.

Parameters

pkey

Publickey Subsystem resource

Return Values

Returns a numerically indexed array of keys, each of which is an associative array containing:
name, blob, and attrs elements.

Publickey elements

Array Key Meaning

name Name of algorithm used by this publickey,
for example: ssh-dss or ssh-rsa.

blob Publickey blob as raw binary data.

attrs Attributes assigned to this publickey. The
most common attribute, and the only one
supported by publickey version 1 servers, is
comment, which may be any freeform string.

Examples

Example #2387 - Listing authorized keys with ssh2_publickey_list()

<?php

$ssh2 = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($ssh2, 'jdoe', 'secret');

$pkey = ssh2_publickey_init($ssh2);

$list = ssh2_publickey_list($pkey);

foreach($list as $key) {

 echo "Key: {$key['name']}\n";

 echo "Blob: " . chunk_split(base64_encode($key['blob']), 40, "\n") . "\n";

 echo "Comment: {$key['attrs']['comment']}\n\n";

}

?>

The above example will output:

Key: ssh-rsa

Blob: AAAAB3NzaC1yc2EAAAABIwAAAIEA5HVt6VqSGd5P

TrLRdjNONxXH1tVFGn0Bd26BF0aCP9qyJRlvdJ3j

4WBeX4ZmrveGrjMgkseSYc4xZ26sDHwfL351xjza

Lpipu\BGRrw17mWVBhuCExo476ri5tQFzbTc54VE

HYckxQ16CjSTibI5X69GmnYC9PNqEYq/1TP+HF10

Comment: John's Key

Key: ssh-rsa

Blob: AAAAB3NzaHVt6VqSGd5C1yc2EAAAABIwA232dnJA

AIEA5HVt6VqSGd5PTrLRdjNONxX/1TP+HF1HVt6V

qSGd50H1tVFGn0BB3NzaC1yc2EAd26BF0aCP9qyJ

RlvdJ3j4WBeX4ZmrveGrjMgkseSYc4xZ26HVt6Vq

SGd5sDHwfL351xjzaLpipu\BGB3NzaC1yc2EA/1T

Comment: Alice's Key

Notes

Note

The public key subsystem is used for managing public keys on a server to which the
client is already authenticated. To authenticate to a remote system using public key
authentication, use the ssh2_auth_pubkey_file() function instead.

See Also

• ssh2_publickey_init()
• ssh2_publickey_add()
• ssh2_publickey_remove()

ssh2_publickey_remove

ssh2_publickey_remove -- Remove an authorized publickey

Description

bool ssh2_publickey_remove (resource $pkey, string $algoname, string $blob)

Removes an authorized publickey.

Parameters

pkey

Publickey Subsystem Resource

algoname

Publickey algorithm (e.g.): ssh-dss, ssh-rsa

blob

Publickey blob as raw binary data

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

The public key subsystem is used for managing public keys on a server to which the
client is already authenticated. To authenticate to a remote system using public key
authentication, use the ssh2_auth_pubkey_file() function instead.

See Also

• ssh2_publickey_init()
• ssh2_publickey_add()
• ssh2_publickey_list()

ssh2_scp_recv

ssh2_scp_recv -- Request a file via SCP

Description

bool ssh2_scp_recv (resource $session, string $remote_file, string $local_file)

Copy a file from the remote server to the local filesystem using the SCP protocol.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

remote_file

Path to the remote file.

local_file

Path to the local file.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2388 - Downloading a file via SCP

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

ssh2_scp_recv($connection, '/remote/filename', '/local/filename');

?>

See Also

• ssh2_scp_send()
• copy()

ssh2_scp_send

ssh2_scp_send -- Send a file via SCP

Description

bool ssh2_scp_send (resource $session, string $local_file, string $remote_file [, int
$create_mode])

Copy a file from the local filesystem to the remote server using the SCP protocol.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

local_file

Path to the local file.

remote_file

Path to the remote file.

create_mode

The file will be created with the mode specified by create_mode.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2389 - Uploading a file via SCP

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

ssh2_scp_send($connection, '/local/filename', '/remote/filename', 0644);

?>

See Also

• ssh2_scp_recv()
• copy()

ssh2_sftp_lstat

ssh2_sftp_lstat -- Stat a symbolic link

Description

array ssh2_sftp_lstat (resource $sftp, string $path)

Stats a symbolic link on the remote filesystem without following the link.

This function is similar to using the lstat() function with the ssh2.sftp:// wrapper in PHP5
and returns the same values.

Parameters

sftp

path

Path to the remote symbolic link.

Return Values

See the documentation for stat() for details on the values which may be returned.

Examples

Example #2390 - Stating a symbolic link via SFTP

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

$statinfo = ssh2_sftp_lstat($sftp, '/path/to/symlink');

$filesize = $statinfo['size'];

$group = $statinfo['gid'];

$owner = $statinfo['uid'];

$atime = $statinfo['atime'];

$mtime = $statinfo['mtime'];

$mode = $statinfo['mode'];

?>

See Also

• ssh2_sftp_stat()
• lstat()
• stat()

ssh2_sftp_mkdir

ssh2_sftp_mkdir -- Create a directory

Description

bool ssh2_sftp_mkdir (resource $sftp, string $dirname [, int $mode [, bool $recursive]
])

Creates a directory on the remote file server with permissions set to mode.

This function is similar to using mkdir() with the ssh2.sftp:// wrapper.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

dirname

Path of the new directory.

mode

Permissions on the new directory.

recursive

If recursive is TRUE any parent directories required for dirname will be automatically
created as well.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2391 - Creating a directory on a remote server

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

ssh2_sftp_mkdir($sftp, '/home/username/newdir');

/* Or: mkdir("ssh2.sftp://$sftp/home/username/newdir"); */

?>

See Also

• mkdir()
• ssh2_sftp_rmdir()

ssh2_sftp_readlink

ssh2_sftp_readlink -- Return the target of a symbolic link

Description

string ssh2_sftp_readlink (resource $sftp, string $link)

Returns the target of a symbolic link.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

link

Path of the symbolic link.

Return Values

Returns the target of the symbolic link.

Examples

Example #2392 - Reading a symbolic link

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

$target = ssh2_sftp_readlink($sftp, '/tmp/mysql.sock');

/* $target is now (e.g.): '/var/run/mysql.sock' */

?>

See Also

• readlink()
• ssh2_sftp_symlink()

ssh2_sftp_realpath

ssh2_sftp_realpath -- Resolve the realpath of a provided path string

Description

string ssh2_sftp_realpath (resource $sftp, string $filename)

Translates filename into the effective real path on the remote filesystem.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

filename

Return Values

Returns the real path as a string.

Examples

Example #2393 - Resolving a pathname

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

$realpath = ssh2_sftp_realpath($sftp,
'/home/username/../../../..//./usr/../etc/passwd');

/* $realpath is now: '/etc/passwd' */

?>

See Also

• realpath()
• ssh2_sftp_symlink()
• ssh2_sftp_readlink()

ssh2_sftp_rename

ssh2_sftp_rename -- Rename a remote file

Description

bool ssh2_sftp_rename (resource $sftp, string $from, string $to)

Renames a file on the remote filesystem.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

from

The current file that is being renamed.

to

The new file name that replaces from.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2394 - Renaming a file via sftp

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

ssh2_sftp_rename($sftp, '/home/username/oldname', '/home/username/newname');

?>

See Also

• rename()

ssh2_sftp_rmdir

ssh2_sftp_rmdir -- Remove a directory

Description

bool ssh2_sftp_rmdir (resource $sftp, string $dirname)

Removes a directory from the remote file server.

This function is similar to using rmdir() with the ssh2.sftp:// wrapper.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

dirname

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2395 - Removing a directory on a remote server

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

ssh2_sftp_rmdir($sftp, '/home/username/deltodel');

/* Or: rmdir("ssh2.sftp://$sftp/home/username/dirtodel"); */

?>

See Also

• rmdir()
• ssh2_sftp_mkdir()

ssh2_sftp_stat

ssh2_sftp_stat -- Stat a file on a remote filesystem

Description

array ssh2_sftp_stat (resource $sftp, string $path)

Stats a file on the remote filesystem following any symbolic links.

This function is similar to using the stat() function with the ssh2.sftp:// wrapper in PHP5
and returns the same values.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

path

Return Values

See the documentation for stat() for details on the values which may be returned.

Examples

Example #2396 - Stating a file via SFTP

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

$statinfo = ssh2_sftp_stat($sftp, '/path/to/file');

$filesize = $statinfo['size'];

$group = $statinfo['gid'];

$owner = $statinfo['uid'];

$atime = $statinfo['atime'];

$mtime = $statinfo['mtime'];

$mode = $statinfo['mode'];

?>

See Also

• ssh2_sftp_lstat()
• lstat()
• stat()

ssh2_sftp_symlink

ssh2_sftp_symlink -- Create a symlink

Description

bool ssh2_sftp_symlink (resource $sftp, string $target, string $link)

Creates a symbolic link named link on the remote filesystem pointing to target.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

target

Target of the symbolic link.

link

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2397 - Creating a symbolic link

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

ssh2_sftp_symlink($sftp, '/var/run/mysql.sock', '/tmp/mysql.sock');

?>

See Also

• ssh2_sftp_readlink()
• symlink()

ssh2_sftp_unlink

ssh2_sftp_unlink -- Delete a file

Description

bool ssh2_sftp_unlink (resource $sftp, string $filename)

Deletes a file on the remote filesystem.

Parameters

sftp

An SSH2 SFTP resource opened by ssh2_sftp().

filename

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2398 - Deleting a file

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

ssh2_sftp_unlink($sftp, '/home/username/stale_file');

?>

See Also

• unlink()

ssh2_sftp

ssh2_sftp -- Initialize SFTP subsystem

Description

resource ssh2_sftp (resource $session)

Request the SFTP subsystem from an already connected SSH2 server.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

Return Values

This method returns an SSH2 SFTP resource for use with all other ssh2_sftp_*() methods
and the ssh2.sftp:// fopen wrapper.

Examples

Example #2399 - Opening a file via SFTP

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$sftp = ssh2_sftp($connection);

$stream = fopen("ssh2.sftp://$sftp/path/to/file", 'r');

?>

See Also

• ssh2_scp_recv()
• ssh2_scp_send()

ssh2_shell

ssh2_shell -- Request an interactive shell

Description

resource ssh2_shell (resource $session [, string $term_type [, array $env [, int $width [,
int $height [, int $width_height_type]]]]])

Open a shell at the remote end and allocate a stream for it.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

term_type

term_type should correspond to one of the entries in the target system's /etc/termcap
file and defaults to vanilla.

env

env may be passed as an associative array of name/value pairs to set in the target
environment.

width

Width of the virtual terminal.

height

Height of the virtual terminal.

width_height_type

width_height_type should be one of SSH2_TERM_UNIT_CHARS or
SSH2_TERM_UNIT_PIXELS.

Return Values

Examples

Example #2400 - Executing a command

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_password($connection, 'username', 'password');

$stream = ssh2_shell($connection, 'vt102', null, 80, 24,
SSH2_TERM_UNIT_CHARS);

?>

See Also

• ssh2_exec()
• ssh2_tunnel()
• ssh2_fetch_stream()

ssh2_tunnel

ssh2_tunnel -- Open a tunnel through a remote server

Description

resource ssh2_tunnel (resource $session, string $host, int $port)

Open a socket stream to an arbitrary host/port by way of the currently connected SSH
server.

Parameters

session

An SSH connection link identifier, obtained from a call to ssh2_connect().

host

port

Return Values

Examples

Example #2401 - Opening a tunnel to an arbitrary host

<?php

$connection = ssh2_connect('shell.example.com', 22);

ssh2_auth_pubkey_file($connection, 'username', 'id_dsa.pub', 'id_dsa');

$tunnel = ssh2_tunnel($connection, '10.0.0.101', 12345);

?>

See Also

• ssh2_connect()
• fsockopen()

Subversion

Introduction

This extension implements PHP bindings for » Subversion (SVN), a version control
system, allowing PHP scripts to communicate with SVN repositories and working copies
without direct command line calls to the svn executable.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://subversion.tigris.org/

Installing/Configuring

Requirements

The Subversion binaries are not necessary to use this extension. However, when
compiling the extension, libsvn (the Subversion headers) must be available.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/svn

If./configure is having trouble finding the SVN files (for example, Subversion was installed
with a different prefix directory), use./configure --with-svn=$USR_PATH to specify the
directory where the include/subversion-1/ folder is located.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Warning

If the extension is compiled against libsvn 1.3, functions that work with working copies
will fail when used on working copies created by Subversion 1.4.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/svn
http://pecl.php.net/package/svn
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SVN_REVISON_HEAD (integer)
Magic number (-1) specifying the HEAD revision

Constants usable with svn_auth_set_parameter()
SVN_AUTH_PARAM_DEFAULT_USERNAME (string)

Property for default username to use when performing basic authentication

SVN_AUTH_PARAM_DEFAULT_PASSWORD (string)
Property for default password to use when performing basic authentication

SVN_AUTH_PARAM_NON_INTERACTIVE (string)

SVN_AUTH_PARAM_DONT_STORE_PASSWORDS (string)

SVN_AUTH_PARAM_NO_AUTH_CACHE (string)

SVN_AUTH_PARAM_SSL_SERVER_FAILURES (string)

SVN_AUTH_PARAM_SSL_SERVER_CERT_INFO (string)

SVN_AUTH_PARAM_CONFIG (string)

SVN_AUTH_PARAM_SERVER_GROUP (string)

SVN_AUTH_PARAM_CONFIG_DIR (string)

PHP_SVN_AUTH_PARAM_IGNORE_SSL_VERIFY_ERRORS (string)
Custom property for ignoring SSL cert verification errors

Filesystem constants
SVN_FS_CONFIG_FS_TYPE (string)

Configuration key that determines filesystem type

SVN_FS_TYPE_BDB (string)
Filesystem is Berkeley-DB implementation

SVN_FS_TYPE_FSFS (string)
Filesystem is native-filesystem implementation

Reserved property constants

SVN_PROP_REVISION_DATE (string)
svn:date

SVN_PROP_REVISION_ORIG_DATE (string)
svn:original-date

SVN_PROP_REVISION_AUTHOR (string)
svn:author

SVN_PROP_REVISION_LOG (string)
svn:log

Working copy status constants
svn_wc_status_none (int)

Status does not exist

svn_wc_status_unversioned (int)
Item is not versioned in working copy

svn_wc_status_normal (int)
Item exists, nothing else is happening

svn_wc_status_added (int)
Item is scheduled for addition

svn_wc_status_missing (int)
Item is versioned but missing from the working copy

svn_wc_status_deleted (int)
Item is scheduled for deletion

svn_wc_status_replaced (int)
Item was deleted and then re-added

svn_wc_status_modified (int)
Item (text or properties) was modified

svn_wc_status_merged (int)
Item's local modifications were merged with repository modifications

svn_wc_status_conflicted (int)
Item's local modifications conflicted with repository modifications

svn_wc_status_ignored (int)
Item is unversioned but configured to be ignored

svn_wc_status_obstructed (int)
Unversioned item is in the way of a versioned resource

svn_wc_status_external (int)
Unversioned path that is populated using svn:externals

svn_wc_status_incomplete (int)

Directory does not contain complete entries list
Node type constants
svn_node_none (int)

Absent

svn_node_file (int)
File

svn_node_dir (int)
Directory

svn_node_unknown (int)
Something Subversion cannot identify

SVN Functions

svn_add

svn_add -- Schedules the addition of an item in a working directory

Description

bool svn_add (string $path [, bool $recursive [, bool $force]])

Adds the file, directory or symbolic link at path to the working directory. The item will be
added to the repository the next time you call svn_commit() on the working copy.

Parameters

path

Path of item to add.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

recursive

If item is directory, whether or not to recursively add all of its contents. Default is TRUE

force

If true, Subversion will recurse into already versioned directories in order to add
unversioned files that may be hiding in those directories. Default is FALSE

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2402 - svn_add() example

In a working directory where svn status returns:

$ svn status

? foobar.txt

...this code:

<?php

svn_add('foobar.txt');

?>

...will schedule foobar.txt for addition into the repository.

See Also

• » SVN documentation on svn add

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.add.html

svn_auth_get_parameter

svn_auth_get_parameter -- Retrieves authentication parameter

Description

string svn_auth_get_parameter (string $key)

Retrieves authentication parameter at key. For a list of valid keys and their meanings,
consult the authentication constants list.

Parameters

key

String key name. Use the authentication constants defined by this extension to specify
a key.

Return Values

Returns the string value of the parameter at key; returns NULL if parameter does not
exist.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

See Also

• svn_auth_set_parameter()
• Authentication constants

svn_auth_set_parameter

svn_auth_set_parameter -- Sets an authentication parameter

Description

void svn_auth_set_parameter (string $key, string $value)

Sets authentication parameter at key to value. For a list of valid keys and their meanings,
consult the authentication constants list.

Parameters

key

String key name. Use the authentication constants defined by this extension to specify
a key.

value

String value to set to parameter at key. Format of value varies with the parameter.

Return Values

No value is returned.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2403 - Default authentication example

This example configures SVN so that the default username to use is 'Bob' and the
default password is 'abc123':

<?php

svn_auth_set_parameter(SVN_AUTH_PARAM_DEFAULT_USERNAME, 'Bob');

svn_auth_set_parameter(SVN_AUTH_PARAM_DEFAULT_PASSWORD, 'abc123');

?>

See Also

• svn_auth_get_parameter()
• Authentication constants

svn_cat

svn_cat -- Returns the contents of a file in a repository

Description

string svn_cat (string $repos_url [, int $revision_no])

Returns the contents of the URL repos_url to a file in the repository, optionally at revision
number revision_no.

Parameters

repos_url

String URL path to item in a repository.

revision_no

Integer revision number of item to retrieve, default is the HEAD revision.

Return Values

Returns the string contents of the item from the repository on success, and FALSE on
failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2404 - Basic example

This example retrieves the contents of a file at revision 28:

<?php

$contents = svn_cat('http://www.example.com/svnroot/calc/gui.c', 28)

?>

See Also

• svn_list()
• » SVN documentation on svn cat

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.cat.html

svn_checkout

svn_checkout -- Checks out a working copy from the repository

Description

bool svn_checkout (string $repos, string $targetpath [, int $revision])

Checks out a working copy from the repository at repos to targetpath at revision
revision.

Parameters

repos

String URL path to directory in repository to check out.

targetpath

String local path to directory to check out in to

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

revision

Integer revision number of repository to check out. Default is HEAD, the most recent
revision.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2405 - Basic example

This example demonstrates how to check out a directory from a repository to a
directory named calc:

<?php

svn_checkout('http://www.example.com/svnroot/calc/trunk', dirname(__FILE__)
. '/calc');

?>

The dirname(__FILE__) call is necessary in order to convert the calc relative path into
an absolute one. If calc exists, you can also use realpath() to retrieve an absolute path.

See Also

• svn_add()
• svn_commit()
• svn_status()
• svn_update()
• » SVN documentation on svn checkout

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.checkout.html

svn_cleanup

svn_cleanup -- Recursively cleanup a working copy directory, finishing incomplete
operations and removing locks

Description

bool svn_cleanup (string $workingdir)

Recursively cleanup working copy directory workingdir, finishing any incomplete
operations and removing working copy locks. Use when a working copy is in limbo and
needs to be usable again.

Parameters

workingdir

String path to local working directory to cleanup

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2406 - Basic example

This example demonstrates clean up of a working copy in a directory named help-me:

<?php

svn_cleanup(realpath('help-me'));

?>

The realpath() call is necessary due to SVN's quirky handling of relative paths.

See Also

• update()
• » SVN documentation on svn cleanup

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.cleanup.html

svn_client_version

svn_client_version -- Returns the version of the SVN client libraries

Description

string svn_client_version (void)

Returns the version of the SVN client libraries

Return Values

String version number, usually in form of x.y.z.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2407 - Basic example

<?php

echo svn_client_version();

?>

The above example will output something similar to:

1.3.1

svn_commit

svn_commit -- Sends changes from the local working copy to the repository

Description

array svn_commit (string $log, array $targets [, bool $dontrecurse])

Commits changes made in the local working copy files enumerated in the targets array to
the repository, with the log message log. Directories in the targets array will be
recursively committed unless dontrecurse is set to true.

Note

This function does not have any parameters for specifying authentication, so a
username and password must be set using svn_auth_set_parameter()

Parameters

log

String log text to commit

targets

Array of local paths of files to be committed

Warning

This parameter must be an array, a string for a single target is not acceptable.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

dontrecurse

Boolean flag to disable recursive committing of directories in the targets array.
Default is FALSE.

Return Values

Returns array in form of:

array(

 0 => integer revision number of commit

 1 => string ISO 8601 date and time of commit

 2 => name of committer

)

Returns FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2408 - Basic example

This example commits the calculator directory to a repository, using the username Bob
and the password abc123 (hopefully, his password is stronger):

<?php

svn_auth_set_parameter(SVN_AUTH_PARAM_DEFAULT_USERNAME, 'Bob');

svn_auth_set_parameter(SVN_AUTH_PARAM_DEFAULT_PASSWORD, 'abc123');

var_dump(svn_commit('Log message of Bob\'s commit',
array(realpath('calculator'))));

?>

The above example will output:

array(

 0 => 1415,

 1 => '2007-05-26T01:44:28.453125Z',

 2 => 'Bob'

)

See Also

• svn_auth_set_parameter()
• » SVN documentation on svn commit

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.commit.html

svn_diff

svn_diff -- Recursively diffs two paths

Description

array svn_diff (string $path1, int $rev1, string $path2, int $rev2)

Recursively diffs two paths, path1 and path2.

Note

This is not a general-purpose diff utility. Only local files that are versioned may be
diffed: other files will fail.

Parameters

path1

First path to diff. This can be a URL to a file/directory in an SVN repository or a local
file/directory path.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

Warning

If a local file path has only backslashes and no forward slashes, this extension will
fail to find the path. Always replace all backslashes with forward slashes when
using this function.

rev1

First path's revision number. Use SVN_REVISON_HEAD to specify the most recent
revision.

path2

Second path to diff. See path1 for description.

rev2

Second path's revision number. See rev2 for description.

Return Values

Returns an array-list consisting of two streams: the first is the diff output and the second
contains error stream output. The streams can be read using fread(). Returns FALSE or
NULL on error.

The diff output will, by default, be in the form of Subversion's custom unified diff format, but
an » external diff engine may be used depending on Subversion's configuration.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2409 - Basic example

This example demonstrates the basic usage of this function, and the retrieval of
contents from the stream:

<?php

list($diff, $errors) = svn_diff(

 'http://www.example.com/svnroot/trunk/foo', SVN_REVISION_HEAD,

 'http://www.example.com/svnroot/branches/dev/foo', SVN_REVISION_HEAD

);

if (!$diff) exit;

$contents = '';

while (!feof($diff)) {

 $contents .= fread($diff, 8192);

}

fclose($diff);

fclose($errors);

var_dump($contents);

?>

The above example will output:

Index: http://www.example.com/svnroot/trunk/foo

===

--- http://www.example.com/svnroot/trunk/foo (.../foo) (revision 23)

+++ http://www.example.com/svnroot/branches/dev/foo (.../foo) (revision 27)

// further diff output

http://svnbook.red-bean.com/en/1.2/svn.advanced.externaldifftools.html

Example #2410 - Diffing two revisions of a repository path

This example implements a wrapper function that allows a user to easily diff two
revisions of the same item using an external repository path (the default syntax is
somewhat verbose):

<?php

function svn_diff_same_item($path, $rev1, $rev2) {

 return svn_diff($path, $rev1, $path, $rev2);

}

?>

Example #2411 - Portably diffing two local files

This example implements a wrapper function that portably diffs two local files,
compensating for the realpath() fix and the backslashes bug:

<?php

function svn_diff_local($path1, $rev1, $path2, $rev2) {

 $path1 = str_replace('\\', '/', realpath($path1));

 $path2 = str_replace('\\', '/', realpath($path2));

 return svn_diff($path1, $rev1, $path2, $rev2);

}

?>

See Also

• » SVN documentation on svn diff

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.diff.html

svn_fs_abort_txn

svn_fs_abort_txn -- Abort a transaction, returns true if everything is ok, false othewise

Description

bool svn_fs_abort_txn (resource $txn)

Warning

This function is currently not documented; only its argument list is available.

Abort a transaction, returns true if everything is ok, false othewise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_apply_text

svn_fs_apply_text -- Creates and returns a stream that will be used to replace

Description

resource svn_fs_apply_text (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Creates and returns a stream that will be used to replace

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_begin_txn2

svn_fs_begin_txn2 -- Create a new transaction

Description

resource svn_fs_begin_txn2 (resource $repos, int $rev)

Warning

This function is currently not documented; only its argument list is available.

Create a new transaction

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_change_node_prop

svn_fs_change_node_prop -- Return true if everything is ok, false otherwise

Description

bool svn_fs_change_node_prop (resource $root, string $path, string $name, string $
value)

Warning

This function is currently not documented; only its argument list is available.

Return true if everything is ok, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_check_path

svn_fs_check_path -- Determines what kind of item lives at path in a given repository
fsroot

Description

int svn_fs_check_path (resource $fsroot, string $path)

Warning

This function is currently not documented; only its argument list is available.

Determines what kind of item lives at path in a given repository fsroot

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_contents_changed

svn_fs_contents_changed -- Return true if content is different, false otherwise

Description

bool svn_fs_contents_changed (resource $root1, string $path1, resource $root2,
string $path2)

Warning

This function is currently not documented; only its argument list is available.

Return true if content is different, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_copy

svn_fs_copy -- Copies a file or a directory, returns true if all is ok, false otherwise

Description

bool svn_fs_copy (resource $from_root, string $from_path, resource $to_root, string $
to_path)

Warning

This function is currently not documented; only its argument list is available.

Copies a file or a directory, returns true if all is ok, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_delete

svn_fs_delete -- Deletes a file or a directory, return true if all is ok, false otherwise

Description

bool svn_fs_delete (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Deletes a file or a directory, return true if all is ok, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_dir_entries

svn_fs_dir_entries -- Enumerates the directory entries under path; returns a hash of dir
names to file type

Description

array svn_fs_dir_entries (resource $fsroot, string $path)

Warning

This function is currently not documented; only its argument list is available.

Enumerates the directory entries under path; returns a hash of dir names to file type

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_file_contents

svn_fs_file_contents -- Returns a stream to access the contents of a file from a given
version of the fs

Description

resource svn_fs_file_contents (resource $fsroot, string $path)

Warning

This function is currently not documented; only its argument list is available.

Returns a stream to access the contents of a file from a given version of the fs

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_file_length

svn_fs_file_length -- Returns the length of a file from a given version of the fs

Description

int svn_fs_file_length (resource $fsroot, string $path)

Warning

This function is currently not documented; only its argument list is available.

Returns the length of a file from a given version of the fs

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_is_dir

svn_fs_is_dir -- Return true if the path points to a directory, false otherwise

Description

bool svn_fs_is_dir (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Return true if the path points to a directory, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_is_file

svn_fs_is_file -- Return true if the path points to a file, false otherwise

Description

bool svn_fs_is_file (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Return true if the path points to a file, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_make_dir

svn_fs_make_dir -- Creates a new empty directory, returns true if all is ok, false otherwise

Description

bool svn_fs_make_dir (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Creates a new empty directory, returns true if all is ok, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_make_file

svn_fs_make_file -- Creates a new empty file, returns true if all is ok, false otherwise

Description

bool svn_fs_make_file (resource $root, string $path)

Warning

This function is currently not documented; only its argument list is available.

Creates a new empty file, returns true if all is ok, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_node_created_rev

svn_fs_node_created_rev -- Returns the revision in which path under fsroot was created

Description

int svn_fs_node_created_rev (resource $fsroot, string $path)

Warning

This function is currently not documented; only its argument list is available.

Returns the revision in which path under fsroot was created

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_node_prop

svn_fs_node_prop -- Returns the value of a property for a node

Description

string svn_fs_node_prop (resource $fsroot, string $path, string $propname)

Warning

This function is currently not documented; only its argument list is available.

Returns the value of a property for a node

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_props_changed

svn_fs_props_changed -- Return true if props are different, false otherwise

Description

bool svn_fs_props_changed (resource $root1, string $path1, resource $root2, string $
path2)

Warning

This function is currently not documented; only its argument list is available.

Return true if props are different, false otherwise

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_revision_prop

svn_fs_revision_prop -- Fetches the value of a named property

Description

string svn_fs_revision_prop (resource $fs, int $revnum, string $propname)

Warning

This function is currently not documented; only its argument list is available.

Fetches the value of a named property

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_revision_root

svn_fs_revision_root -- Get a handle on a specific version of the repository root

Description

resource svn_fs_revision_root (resource $fs, int $revnum)

Warning

This function is currently not documented; only its argument list is available.

Get a handle on a specific version of the repository root

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_txn_root

svn_fs_txn_root -- Creates and returns a transaction root

Description

resource svn_fs_txn_root (resource $txn)

Warning

This function is currently not documented; only its argument list is available.

Creates and returns a transaction root

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_fs_youngest_rev

svn_fs_youngest_rev -- Returns the number of the youngest revision in the filesystem

Description

int svn_fs_youngest_rev (resource $fs)

Warning

This function is currently not documented; only its argument list is available.

Returns the number of the youngest revision in the filesystem

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_import

svn_import -- Imports an unversioned path into a repository

Description

bool svn_import (string $path, string $url, bool $nonrecursive)

Commits unversioned path into repository at url. If path is a directory and nonrecursive
is FALSE, the directory will be imported recursively.

Parameters

path

Path of file or directory to import.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

url

Repository URL to import into.

nonrecursive

Whether or not to refrain from recursively processing directories.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2412 - Basic example

This example demonstrates a basic use-case of this function. To import a directory
named new-files into the repository at http://www.example.com/svnroot/incoming/abc,
use:

<?php

svn_import(realpath('new-files'),
'http://www.example.com/svnroot/incoming/abc', false);

?>

See Also

• svn_add()
• » SVN documentation for svn import

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.import.html

svn_log

svn_log -- Returns the commit log messages of a repository URL

Description

array svn_log (string $repos_url [, int $revision_no])

svn_log() returns the complete history of the item at the repository URL repos_url, or the
history of a specific revision if revision_no is set. This function is equivalent to svn log
--verbose -r $revision_no $repos_url.

Warning

For repositories with large histories, the output may be quite large (one array item for
every revision of the item). This function does not support the --limit NUM flag, nor
does it support revision ranges (revision_no must be an integer).

Parameters

repos_url

Repository URL of the item to retrieve log history from.

revision_no

Revision number of the log to retrieve. Use SVN_REVISON_HEAD to retrieve the log
for the most recent revision.

Return Values

On success, this function returns an array file listing in the format of:
[0] => Array, ordered most recent (highest) revision first

(

 [rev] => integer revision number

 [author] => string author name

 [msg] => string log message

 [date] => string date formatted per ISO 8601, i.e. date('c')

 [paths] => Array, describing changed files

 (

 [0] => Array

 (

 [action] => string letter signifying change

 [path] => absolute repository path of changed file

)

 [1] => ...

)

)

[1] => ...

Note

The output will always be a numerically indexed array of arrays, even when there are
none or only one log message(s).

The value of action is a subset of the » status output in the first column, where possible
values are:

Actions

Letter Description

M Item/props was modified

A Item was added

D Item was deleted

R Item was replaced

If no changes were made to the item, an empty array is returned.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2413 - svn_log() example

<?php

print_r(svn_log('http://www.example.com/', 23));

?>

The above example will output something similar to:

Array

(

 [0] => Array

 (

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.status.html

 [rev] => 23

 [author] => 'joe'

 [msg] => 'Add cheese and salami to our sandwich.'

 [date] => '2007-04-06T16:00:27-04:00'

 [paths] => Array

 (

 [0] => Array

 (

 [action] => 'M'

 [path] => '/sandwich.txt'

)

)

)

)

Example #2414 - Simulating --limit with svn and svn_log()

This sample function simulates the --limit switch by using the SVN executable to
return a list of revisions, which are then losslessly accessed using svn_log().

Note

This function will perform a total of limit + 1 requests: the first request to pull the
required revisions, and each one after to retrieve the log item for that request.

<?php

/**

* Retrieves the last $limit log entries.

* @param $repos_url Repository URL of item to get logs for

* @param $limit Integer limit of items

*/

function svn_log_limit($repos_url, $limit) {

 $limit = (int) $limit;

 if ($limit <= 0) return array();

 // -q flag used to prevent server from sending log messages

 $output = shell_exec("svn log -q --limit $limit $repos_url");

 preg_match_all('/^r(\d+) /m', $output, $matches);

 $ret = array();

 foreach ($matches[1] as $rev) {

 $log = svn_log($repos_url, (int) $rev);

 $ret[] = $log[0]; // log is only one item long

 }

 return $ret;

}

?>

See Also

• » SVN documentation on svn log

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.log.html

svn_ls

svn_ls -- Returns list of directory contents in repository URL, optionally at revision number

Description

array svn_ls (string $repos_url [, int $revision_no])

This function queries the repository URL and returns a list of files and directories,
optionally from a specific revision. This is equivalent to svn list
$repos_url[@$revision_no]

Note

This function does not work with working copies. repos_url must be a repository URL.

Parameters

url

URL of the repository, eg. http://www.example.com/svnroot. To access a local
Subversion repository via filesystem, use the file URI scheme, eg.
file:///home/user/svn-repos

revision

Integer revision number to retrieve listing of. When omitted, the HEAD revision is used.

Return Values

On success, this function returns an array file listing in the format of:
[0] => Array

 (

 [created_rev] => integer revision number of last edit

 [last_author] => string author name of last edit

 [size] => integer byte file size of file

 [time] => string date of last edit in form 'M d H:i'

 or 'M d Y', depending on how old the file is

 [time_t] => integer unix timestamp of last edit

 [name] => name of file/directory

 [type] => type, can be 'file' or 'dir'

)

[1] => ...

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2415 - svn_ls() example

<?php

print_r(svn_ls('http://www.example.com/svnroot/'));

?>

The above example will output something similar to:

Array

(

 [0] => Array

 (

 [created_rev] => 20

 [last_author] => Joe

 [size] => 0

 [time] => Apr 02 09:28

 [time_t] => 1175520529

 [name] => tags

 [type] => dir

)

 [1] => Array

 (

 [created_rev] => 23

 [last_author] => Bob

 [size] => 0

 [time] => Apr 02 15:15

 [time_t] => 1175541322

 [name] => trunk

 [type] => dir

)

)

See Also

• » SVN documentation on svn list

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.list.html

svn_repos_create

svn_repos_create -- Create a new subversion repository at path

Description

resource svn_repos_create (string $path [, array $config [, array $fsconfig]])

Warning

This function is currently not documented; only its argument list is available.

Create a new subversion repository at path

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_fs_begin_txn_for_commit

svn_repos_fs_begin_txn_for_commit -- Create a new transaction

Description

resource svn_repos_fs_begin_txn_for_commit (resource $repos, int $rev, string $
author, string $log_msg)

Warning

This function is currently not documented; only its argument list is available.

Create a new transaction

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_fs_commit_txn

svn_repos_fs_commit_txn -- Commits a transaction and returns the new revision

Description

int svn_repos_fs_commit_txn (resource $txn)

Warning

This function is currently not documented; only its argument list is available.

Commits a transaction and returns the new revision

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_fs

svn_repos_fs -- Gets a handle on the filesystem for a repository

Description

resource svn_repos_fs (resource $repos)

Warning

This function is currently not documented; only its argument list is available.

Gets a handle on the filesystem for a repository

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_hotcopy

svn_repos_hotcopy -- Make a hot-copy of the repos at repospath; copy it to destpath

Description

bool svn_repos_hotcopy (string $repospath, string $destpath, bool $cleanlogs)

Warning

This function is currently not documented; only its argument list is available.

Make a hot-copy of the repos at repospath; copy it to destpath

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_open

svn_repos_open -- Open a shared lock on a repository.

Description

resource svn_repos_open (string $path)

Warning

This function is currently not documented; only its argument list is available.

Open a shared lock on a repository.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_repos_recover

svn_repos_recover -- Run recovery procedures on the repository located at path.

Description

bool svn_repos_recover (string $path)

Warning

This function is currently not documented; only its argument list is available.

Run recovery procedures on the repository located at path.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

svn_status

svn_status -- Returns the status of working copy files and directories

Description

array svn_status (string $path [, bool $recursive [, bool $get_all [, bool $update [, bool
$no_ignore]]]])

Returns the status of working copy files and directories, giving modifications, additions,
deletions and other changes to items in the working copy.

Parameters

path

Local path to file or directory to retrieve status of.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

recursive

Whether or not to recursively descend into directories to retrieve status. Default is
TRUE.

get_all

Whether or not to return all items, regardless of modification status. Default is FALSE.

update

Whether or not to return information from the server on whether or not the working
copy is up-to-date (specifically, entries will be added for items that are out-of-date
along with the regular modification checks). Default is FALSE.

no_ignore

Whether or not to disregard svn:ignore properties when scanning for new files. Default
is FALSE.

Return Values

Returns a numerically indexed array of associative arrays detailing the status of items in
the repository:

Array (

 [0] => Array (

 // information on item

)

 [1] => ...

)

The information on the item is an associative array that can contain the following keys:

path
String path to file/directory of this entry on local filesystem.

text_status
Status of item's text. Refer to status constants for possible values.

repos_text_status
Status of item's text in repository. Only accurate if update was set to TRUE. Refer to
status constants for possible values.

prop_status
Status of item's properties. Refer to status constants for possible values.

repos_prop_status
Status of item's property in repository. Only accurate if update was set to TRUE. Refer
to status constants for possible values.

locked
Whether or not the item is locked. (Only set if TRUE.)

copied
Whether or not the item was copied (scheduled for addition with history). (Only set if
TRUE.)

switched
Whether or not the item was switched using the switch command. (Only set if TRUE)

These keys are only set if the item is versioned:

name
Base name of item in repository.

url
URL of item in repository.

repos
Base URL of repository.

revision
Integer revision of item in working copy.

kind
Type of item, i.e. file or directory. Refer to type constants for possible values.

schedule

Scheduled action for item, i.e. addition or deletion. Constants for these magic numbers
are not available, they can be emulated by using:
<?php

if (!defined('svn_wc_schedule_normal')) {

 define('svn_wc_schedule_normal', 0); // nothing special

 define('svn_wc_schedule_add', 1); // item will be added

 define('svn_wc_schedule_delete', 2); // item will be deleted

 define('svn_wc_schedule_replace', 3); // item will be added and deleted

}

?>

deleted
Whether or not the item was deleted, but parent revision lags behind. (Only set if
TRUE.)

absent
Whether or not the item is absent, that is, Subversion knows that there should be
something there but there isn't. (Only set if TRUE.)

incomplete
Whether or not the entries file for a directory is incomplete. (Only set if TRUE.)

cmt_date
Integer Unix timestamp of last commit date. (Unaffected by update.)

cmt_rev
Integer revision of last commit. (Unaffected by update.)

cmt_author
String author of last commit. (Unaffected by update.)

prop_time
Integer Unix timestamp of last up-to-date time for properties

text_time
Integer Unix timestamp of last up-to-date time for text

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2416 - Basic example

This example demonstrates a basic, theoretical usage of this function.

<?php

print_r(svn_status(realpath('wc')));

?>

The above example will output something similar to:

Array (

 [0] => Array (

 [path] => /home/bob/wc/sandwich.txt

 [text_status] => 8 // item was modified

 [repos_text_status] => 1 // no information available, use update

 [prop_status] => 3 // no changes

 [repos_prop_status] => 1 // no information available, use update

 [name] => sandwich.txt

 [url] => http://www.example.com/svnroot/deli/trunk/sandwich.txt

 [repos] => http://www.example.com/svnroot/

 [revision] => 123

 [kind] => 1 // file

 [schedule] => 0 // no special actions scheduled

 [cmt_date] => 1165543135

 [cmt_rev] => 120

 [cmt_author] => Alice

 [prop_time] => 1180201728

 [text_time] => 1180201729

)

)

See Also

• svn_update()
• svn_log()
• » SVN documentation for svn status

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.status.html

svn_update

svn_update -- Update working copy

Description

int svn_update (string $path [, int $revno [, bool $recurse]])

Update working copy at path to revision revno. If recurse is true, directories will be
recursively updated.

Parameters

path

Path to local working copy.

Note

Relative paths will be resolved as if the current working directory was the one that
contains the PHP binary. To use the calling script's working directory, use
realpath() or dirname(__FILE__).

revno

Revision number to update to, default is SVN_REVISION_HEAD.

recurse

Whether or not to recursively update directories, default is TRUE.

Return Values

Returns new revision number on success, returns FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examples

Example #2417 - Basic example

This example demonstrates basic usage of this function:

<?php

echo svn_update(realpath('working-copy'));

?>

The above example will output something similar to:

234

See Also

• svn_checkout()
• svn_commit()
• » SVN documentation for svn update

http://svnbook.red-bean.com/en/1.2/svn.ref.svn.c.update.html

TCP Wrappers

Introduction

The TCP wrappers provides a classical Unix mechanism which has been designed to
check if the remote client is able to connect from the given IP address.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Tcpwrap is currently available through PECL » http://pecl.php.net/package/tcpwrap.

If » PEAR is available on your *nix-like system you can use the pear installer to install the
tcpwrap extension, by the following command: pear -v install tcpwrap.

You can always download the tar.gz package and install tcpwrap by hand:

Example #2418 - tcpwrap install by hand

gunzip tcpwrap-xxx.tgz

tar -xvf tcpwrap-xxx.tar

cd tcpwrap-xxx

phpize

./configure && make && make install

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/package/tcpwrap
http://pear.php.net/

Predefined Constants

This extension has no constants defined.

TCP Functions

tcpwrap_check

tcpwrap_check -- Performs a tcpwrap check

Description

bool tcpwrap_check (string $daemon, string $address [, string $user [, bool $nodns]])

This function consults the /etc/hosts.allow and /etc/hosts.deny files to check if access to
service daemon should be granted or denied for a client.

Parameters

daemon

The service name.

address

The client remote address. Can be either an IP address or a domain name.

user

An optional user name.

nodns

If address looks like domain name then DNS is used to resolve it to IP address; set
nodns to TRUE to avoid this.

Return Values

This function returns TRUE if access should be granted, FALSE otherwise.

Examples

Example #2419 - Deny all connections from localhost

If your /etc/hosts.deny file contains:

php: 127.0.0.1

And your code looks like:

<?php

if (!tcpwrap_check('php', $_SERVER['REMOTE_ADDR'])) {

 die('You are not welcome here');

}

?>

See Also

For more details please consult hosts_access(3) man page.

YAZ

Introduction

This extension offers a PHP interface to the YAZ toolkit that implements the » Z39.50
Protocol for Information Retrieval. With this extension you can easily implement a Z39.50
origin (client) that searches or scans Z39.50 targets (servers) in parallel.

The module hides most of the complexity of Z39.50 so it should be fairly easy to use. It
supports persistent stateless connections very similar to those offered by the various RDB
APIs that are available for PHP. This means that sessions are stateless but shared among
users, thus saving the connect and initialize phase steps in most cases.

YAZ is available at » http://www.indexdata.dk/yaz/. You can find news information,
example scripts, etc. for this extension at » http://www.indexdata.dk/phpyaz/.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

http://www.loc.gov/z3950/agency/
http://www.loc.gov/z3950/agency/
http://www.indexdata.dk/yaz/
http://www.indexdata.dk/phpyaz/
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Obtain YAZ (ANSI/NISO Z39.50 support) and install it. YAZ can be fetched in source or in
various prebuilt packages from the » YAZ archive. Systems such as Debian GNU/Linux,
Suse Linux, FreeBSD also has YAZ as part of their distribution.

For the PHP 4 series, the YAZ extension is bundled (but not YAZ itself) Build PHP with
your favorite modules and add option --with-yaz[=DIR].

Example #2420 - YAZ compilation for PHP 4 on Unix

gunzip -c php-4.4.X.tar.gz|tar xf -

gunzip -c yaz-2.1.8.tar.gz|tar xf -

cd yaz-2.1.8

./configure --prefix=/usr

make

sudo make install

cd ../php-4.4.X.

./configure --with-yaz=/usr/bin

make

sudo make install

For PHP 5, the YAZ extension is in » PECL and is installed as a shared object/dll. If you
have pear installed the easiest way to download, configure and install the YAZ extension is
by using the pecl command.

Installation of YAZ on Linux

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/yaz

Installation on Windows systems

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/ php_yaz.dll depends on yaz.dll. The yaz.dll is part
of the Win32 ZIP from the PHP site. It is also part of the Windows YAZ install available
from the » YAZ WIN32 area.

http://ftp.indexdata.dk/pub/yaz/
http://pecl.php.net/
http://pecl.php.net/package/yaz
http://pecl.php.net/package/yaz
http://www.php.net/downloads.php
http://pecl4win.php.net/
http://ftp.indexdata.dk/pub/yaz/win32/

Warning

The PHP 5.0.5 Win32 zip includes a too old version of yaz.dll (version 1.9.1 < required
version 2.0.13). If that's the case use the yaz.dll from a newer » YAZ WIN32 install.

On windows, don't forget to add the PHP directory to the PATH, so that the yaz.dll file can
be found by the system.

If you are using YAZ as a shared extension, add (or uncomment) the following line in
php.ini on Unix:

 extension=yaz.so

And for Windows:

 extension=php_yaz.dll

Warning

The IMAP, recode, YAZ and Cyrus extensions cannot be used in conjuction, because
they share the same internal symbols.

Note

The above problem is solved in version 2.0 of YAZ.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

YAZ configuration options

Name Default Changeable Changelog

yaz.max_links "100" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 5.0.0.

yaz.log_file NULL PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 5.0.0.

http://ftp.indexdata.dk/pub/yaz/win32/

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

PHP/YAZ keeps track of connections with targets (Z-Associations). A resource represents
a connection to a target.

The script below demonstrates the parallel searching feature of the API. When invoked
with no arguments it prints a query form; else (arguments are supplied) it searches the
targets as given in array host.

Example #2421 - Parallel searching using Yaz

<?php

$host=$_REQUEST[host];

$query=$_REQUEST[query];

$num_hosts = count($host);

if (empty($query) || count($host) == 0) {

 echo '<form method="get">

 <input type="checkbox"

 name="host[]" value="bagel.indexdata.dk/gils" />

 GILS test

 <input type="checkbox"

 name="host[]" value="localhost:9999/Default" />

 local test

 <input type="checkbox" checked="checked"

 name="host[]" value="z3950.loc.gov:7090/voyager" />

 Library of Congress

 RPN Query:

 <input type="text" size="30" name="query" />

 <input type="submit" name="action" value="Search" />

 </form>

 ';

} else {

 echo 'You searched for ' . htmlspecialchars($query) . '
';

 for ($i = 0; $i < $num_hosts; $i++) {

 $id[] = yaz_connect($host[$i]);

 yaz_syntax($id[$i], "usmarc");

 yaz_range($id[$i], 1, 10);

 yaz_search($id[$i], "rpn", $query);

 }

 yaz_wait();

 for ($i = 0; $i < $num_hosts; $i++) {

 echo '<hr />' . $host[$i] . ':';

 $error = yaz_error($id[$i]);

 if (!empty($error)) {

 echo "Error: $error";

 } else {

 $hits = yaz_hits($id[$i]);

 echo "Result Count $hits";

 }

 echo '<dl>';

 for ($p = 1; $p <= 10; $p++) {

 $rec = yaz_record($id[$i], $p, "string");

 if (empty($rec)) continue;

 echo "<dt>$p</dt><dd>";

 echo nl2br($rec);

 echo "</dd>";

 }

 echo '</dl>';

 }

}

?>

YAZ Functions

yaz_addinfo

yaz_addinfo -- Returns additional error information

Description

string yaz_addinfo (resource $id)

Returns additional error information for the last request on the server.

With some servers, this function may return the same string as yaz_error().

Parameters

id

The connection resource returned by yaz_connect().

Return Values

A string containing additional error information or an empty string if the last operation was
successful or if no additional information was provided by the server.

See Also

• yaz_error()
• yaz_errno()

yaz_ccl_conf

yaz_ccl_conf -- Configure CCL parser

Description

void yaz_ccl_conf (resource $id, array $config)

This function configures the CCL query parser for a server with definitions of access points
(CCL qualifiers) and their mapping to RPN.

To map a specific CCL query to RPN afterwards call the yaz_ccl_parse() function.

Parameters

id

The connection resource returned by yaz_connect().

config

An array of configuration. Each key of the array is the name of a CCL field and the
corresponding value holds a string that specifies a mapping to RPN. The mapping is a
sequence of attribute-type, attribute-value pairs. Attribute-type and attribute-value is
separated by an equal sign (=). Each pair is separated by white space. Additional
information can be found on the » CCL page.

Return Values

No value is returned.

Examples

In the example below, the CCL parser is configured to support three CCL fields: ti, au and
isbn. Each field is mapped to their BIB-1 equivalent. It is assumed that variable $id is the
connection ID.

Example #2422 - CCL configuration

<?php

$fields = array(

 "ti" => "1=4",

 "au" => "1=1",

 "isbn" => "1=7"

);

yaz_ccl_conf($id, $fields);

?>

http://www.indexdata.dk/yaz/doc/tools.tkl#CCL

See Also

• yaz_ccl_parse()

yaz_ccl_parse

yaz_ccl_parse -- Invoke CCL Parser

Description

bool yaz_ccl_parse (resource $id, string $query, array &$result)

This function invokes a CCL parser. It converts a given CCL FIND query to an RPN query
which may be passed to the yaz_search() function to perform a search.

To define a set of valid CCL fields call yaz_ccl_conf() prior to this function.

Parameters

id

The connection resource returned by yaz_connect().

query

The CCL FIND query.

result

If the function was executed successfully, this will be an array containing the valid RPN
query under the key rpn. Upon failure, three indexes are set in this array to indicate the
cause of failure:

• errorcode - the CCL error code (integer)

• errorstring - the CCL error string

• errorpos - approximate position in query of failure (integer is character position)

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2423 - CCL Parsing

We will try to search using CCL. In the example below, $ccl is a CCL query.

<?php

yaz_ccl_conf($id, $fields); // see example for yaz_ccl_conf

if (!yaz_ccl_parse($id, $ccl, &$cclresult)) {

 echo 'Error: ' . $cclresult["errorstring"];

} else {

 $rpn = $cclresult["rpn"];

 yaz_search($id, "rpn", $rpn);

}

?>

yaz_close

yaz_close -- Close YAZ connection

Description

bool yaz_close (resource $id)

Closes the connection given by parameter id.

Note

This function will only close a non-persistent connection opened by setting the
persistent option to FALSE with yaz_connect().

Parameters

id

The connection resource returned by yaz_connect().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• yaz_connect()

yaz_connect

yaz_connect -- Prepares for a connection to a Z39.50 server

Description

mixed yaz_connect (string $zurl [, mixed $options])

This function returns a connection resource on success, zero on failure.

yaz_connect() prepares for a connection to a Z39.50 server. This function is non-blocking
and does not attempt to establish a connection - it merely prepares a connect to be
performed later when yaz_wait() is called.

Note

The » YAZ proxy is a freely available Z39.50 proxy.

Parameters

zurl

A string that takes the form host[:port][/database]. If port is omitted, port 210 is used. If
database is omitted Default is used.

options

If given as a string, it is treated as the Z39.50 V2 authentication string (OpenAuth). If
given as an array, the contents of the array serves as options.
user

Username for authentication.

group
Group for authentication.

password
Password for authentication.

cookie
Cookie for session (YAZ proxy).

proxy
Proxy for connection (YAZ proxy).

persistent
A boolean. If TRUE the connection is persistent; If FALSE the connection is not
persistent. By default connections are persistent.

http://www.indexdata.dk/yazproxy/

Note

If you open a persistent connection, you won't be able to close it later with
yaz_close().

piggyback
A boolean. If TRUE piggyback is enabled for searches; If FALSE piggyback is
disabled. By default piggyback is enabled. Enabling piggyback is more efficient and
usually saves a network-round-trip for first time fetches of records. However, a few
Z39.50 servers do not support piggyback or they ignore element set names. For
those, piggyback should be disabled.

charset
A string that specifies character set to be used in Z39.50 language and character
set negotiation. Use strings such as: ISO-8859-1, UTF-8, UTF-16. Most Z39.50
servers do not support this feature (and thus, this is ignored). Many servers use the
ISO-8859-1 encoding for queries and messages. MARC21/USMARC records are
not affected by this setting.

preferredMessageSize
An integer that specifies the maximum byte size of all records to be returned by a
target during retrieval. See the » Z39.50 standard for more information.

Note

This option is supported in PECL YAZ 1.0.5 or later.

maximumRecordSize
An integer that specifies the maximum byte size of a single record to be returned
by a target during retrieval. This entity is referred to as Exceptional-record-size in
the » Z39.50 standard.

Note

This option is supported in PECL YAZ 1.0.5 or later.

Return Values

A connection resource on success, FALSE on error.

ChangeLog

http://www.loc.gov/z3950/agency/markup/04.html#3.2.1.1.4
http://www.loc.gov/z3950/agency/markup/04.html#3.2.1.1.4

Version Description

4.1.0 The parameter options was added.

See Also

• yaz_close()

yaz_database

yaz_database -- Specifies the databases within a session

Description

bool yaz_database (resource $id, string $databases)

This function allows you to change databases within a session by specifying one or more
databases to be used in search, retrieval, etc. - overriding databases specified in call to
yaz_connect().

Parameters

id

The connection resource returned by yaz_connect().

databases

A string containing one or more databases. Multiple databases are separated by a plus
sign +.

Return Values

Returns TRUE on success or FALSE on failure.

yaz_element

yaz_element -- Specifies Element-Set Name for retrieval

Description

bool yaz_element (resource $id, string $elementset)

This function sets the element set name for retrieval.

Call this function before yaz_search() or yaz_present() to specify the element set name for
records to be retrieved.

Note

If this function seems effectless, see the description of the piggybacking option in
yaz_connect().

Parameters

id

The connection resource returned by yaz_connect().

elementset

Most servers support F (for full records) and B (for brief records).

Return Values

Returns TRUE on success or FALSE on failure.

yaz_errno

yaz_errno -- Returns error number

Description

int yaz_errno (resource $id)

Returns an error number for the server (last request) identified by id.

yaz_errno() should be called after network activity for each server - (after yaz_wait()
returns) to determine the success or failure of the last operation (e.g. search).

Parameters

id

The connection resource returned by yaz_connect().

Return Values

Returns an error code. The error code is either a Z39.50 diagnostic code (usually a Bib-1
diagnostic) or a client side error code which is generated by PHP/YAZ itself, such as
"Connect failed", "Init Rejected", etc.

See Also

• yaz_error()
• yaz_addinfo()

yaz_error

yaz_error -- Returns error description

Description

string yaz_error (resource $id)

yaz_error() returns an English text message corresponding to the last error number as
returned by yaz_errno().

Parameters

id

The connection resource returned by yaz_connect().

Return Values

Returns an error text message for server (last request), identified by parameter id. An
empty string is returned if the last operation was successful.

See Also

• yaz_errno()
• yaz_addinfo()

yaz_es_result

yaz_es_result -- Inspects Extended Services Result

Description

array yaz_es_result (resource $id)

This function inspects the last returned Extended Service result from a server. An
Extended Service is initiated by either yaz_item_order() or yaz_es().

Parameters

id

The connection resource returned by yaz_connect().

Return Values

Returns array with element targetReference for the reference for the extended service
operation (generated and returned from the server).

See Also

• yaz_es()

yaz_es

yaz_es -- Prepares for an Extended Service Request

Description

void yaz_es (resource $id, string $type, array $args)

This function prepares for an Extended Service Request. Extended Services is family of
various Z39.50 facilities, such as Record Update, Item Order, Database administration etc.

Note

Many Z39.50 Servers do not support Extended Services.

The yaz_es() creates an Extended Service Request packages and puts it into a queue of
operations. Use yaz_wait() to send the request(s) to the server. After completion of
yaz_wait() the result of the Extended Service operation should be expected with a call to
yaz_es_result().

Parameters

id

The connection resource returned by yaz_connect().

type

A string which represents the type of the Extended Service: itemorder (Item Order),
create (Create Database), drop (Drop Database), commit (Commit Operation), update
(Update Record), xmlupdate (XML Update). Each type is specified in the following
section.

args

An array with extended service options plus package specific options. The options are
identical to those offered in the C API of ZOOM C. Refer to the ZOOM » Extended
Services.

Return Values

No value is returned.

Examples

http://www.indexdata.dk/yaz/doc/zoom.tkl
http://www.indexdata.dk/yaz/doc/zoom.tkl

Example #2424 - Record Update

<?php

$con = yaz_connect("myhost/database");

$args = array (

 "record" => "<gils><title>some title</title></gils>",

 "syntax" => "xml",

 "action" => "specialUpdate"

);

yaz_es($con, "update", $args);

yaz_wait();

$result = yaz_es_result($id);

?>

See Also

• yaz_es_result()

yaz_get_option

yaz_get_option -- Returns value of option for connection

Description

string yaz_get_option (resource $id, string $name)

Returns the value of the option specified with name.

Parameters

id

The connection resource returned by yaz_connect().

name

The option name.

Return Values

Returns the value of the specified option or an empty string if the option wasn't set.

See Also

• The description of yaz_set_option() for available options

yaz_hits

yaz_hits -- Returns number of hits for last search

Description

int yaz_hits (resource $id [, array &$searchresult])

yaz_hits() returns the number of hits for the last search.

Parameters

id

The connection resource returned by yaz_connect().

searchresult

Result array for detailed search result information.

Return Values

Returns the number of hits for the last search or 0 if no search was performed.

The search result array (if supplied) holds information that is returned by a Z39.50 server
in the SearchResult-1 format part of a search response. The SearchResult-1 format can
be used to obtain information about hit counts for various parts of the query (subquery). In
particular, it is possible to obtain hit counts for the individual search terms in a query.
Information for first subquery is in $array[0], second subquery in $array[1], and so forth.

searchresult members

Element Description

id Sub query ID2 (string)

count Result count / hits (integer)

subquery.term Sub query term (string)

interpretation.term Interpretated sub query term (string)

recommendation.term Recommended sub query term (string)

Note

The SearchResult facility requires PECL YAZ 1.0.5 or later and YAZ 2.1.9 or later.

Note

Very few Z39.50 implementations support the SearchResult facility.

yaz_itemorder

yaz_itemorder -- Prepares for Z39.50 Item Order with an ILL-Request package

Description

void yaz_itemorder (resource $id, array $args)

This function prepares for an Extended Services request using the Profile for the Use of
Z39.50 Item Order Extended Service to Transport ILL (Profile/1). See » this and the
» specification.

Parameters

id

The connection resource returned by yaz_connect().

args

Must be an associative array with information about the Item Order request to be sent.
The key of the hash is the name of the corresponding ASN.1 tag path. For example,
the ISBN below the Item-ID has the key item-id,ISBN. The ILL-Request parameters
are: protocol-version-num
transaction-id,initial-requester-id,person-or-institution-symbol,person
transaction-id,initial-requester-id,person-or-institution-symbol,institution
transaction-id,initial-requester-id,name-of-person-or-institution,name-of-pe
rson
transaction-id,initial-requester-id,name-of-person-or-institution,name-of-in
stitution transaction-id,transaction-group-qualifier
transaction-id,transaction-qualifier
transaction-id,sub-transaction-qualifier service-date-time,this,date
service-date-time,this,time service-date-time,original,date
service-date-time,original,time
requester-id,person-or-institution-symbol,person
requester-id,person-or-institution-symbol,institution
requester-id,name-of-person-or-institution,name-of-person
requester-id,name-of-person-or-institution,name-of-institution
responder-id,person-or-institution-symbol,person
responder-id,person-or-institution-symbol,institution
responder-id,name-of-person-or-institution,name-of-person
responder-id,name-of-person-or-institution,name-of-institution
transaction-type
delivery-address,postal-address,name-of-person-or-institution,name-of-person
delivery-address,postal-address,name-of-person-or-institution,name-of-instit
ution delivery-address,postal-address,extended-postal-delivery-address
delivery-address,postal-address,street-and-number
delivery-address,postal-address,post-office-box
delivery-address,postal-address,city delivery-address,postal-address,region
delivery-address,postal-address,country
delivery-address,postal-address,postal-code
delivery-address,electronic-address,telecom-service-identifier
delivery-address,electronic-address,telecom-service-addreess
billing-address,postal-address,name-of-person-or-institution,name-of-person

http://www.collectionscanada.ca/iso/ill/stanprf.htm
http://www.collectionscanada.ca/iso/ill/document/standard/z-ill-1a.pdf
http://www.collectionscanada.ca/iso/ill/document/standard/z-ill-1a.pdf

billing-address,postal-address,name-of-person-or-institution,name-of-institu
tion billing-address,postal-address,extended-postal-delivery-address
billing-address,postal-address,street-and-number
billing-address,postal-address,post-office-box
billing-address,postal-address,city billing-address,postal-address,region
billing-address,postal-address,country
billing-address,postal-address,postal-code
billing-address,electronic-address,telecom-service-identifier
billing-address,electronic-address,telecom-service-addreess ill-service-type
requester-optional-messages,can-send-RECEIVED
requester-optional-messages,can-send-RETURNED
requester-optional-messages,requester-SHIPPED
requester-optional-messages,requester-CHECKED-IN
search-type,level-of-service search-type,need-before-date
search-type,expiry-date search-type,expiry-flag place-on-hold
client-id,client-name client-id,client-status client-id,client-identifier
item-id,item-type item-id,call-number item-id,author item-id,title
item-id,sub-title item-id,sponsoring-body item-id,place-of-publication
item-id,publisher item-id,series-title-number item-id,volume-issue
item-id,edition item-id,publication-date
item-id,publication-date-of-component item-id,author-of-article
item-id,title-of-article item-id,pagination item-id,ISBN item-id,ISSN
item-id,additional-no-letters item-id,verification-reference-source
copyright-complicance retry-flag forward-flag requester-note forward-note
There are also a few parameters that are part of the Extended Services Request
package and the ItemOrder package: package-name user-id contact-name
contact-phone contact-email itemorder-item

Return Values

No value is returned.

yaz_present

yaz_present -- Prepares for retrieval (Z39.50 present)

Description

bool yaz_present (resource $id)

This function prepares for retrieval of records after a successful search.

The yaz_range() function should be called prior to this function to specify the range of
records to be retrieved.

Parameters

id

The connection resource returned by yaz_connect().

Return Values

Returns TRUE on success or FALSE on failure.

yaz_range

yaz_range -- Specifies a range of records to retrieve

Description

void yaz_range (resource $id, int $start, int $number)

Specifies a range of records to retrieve.

This function should be called before yaz_search() or yaz_present().

Parameters

id

The connection resource returned by yaz_connect().

start

Specifies the position of the first record to be retrieved. The records numbers goes
from 1 to yaz_hits().

number

Specifies the number of records to be retrieved.

Return Values

No value is returned.

yaz_record

yaz_record -- Returns a record

Description

string yaz_record (resource $id, int $pos, string $type)

The yaz_record() function inspects a record in the current result set at the position
specified by parameter pos.

Parameters

id

The connection resource returned by yaz_connect().

pos

The record position. Records positions in a result set are numbered 1, 2, ... $hits
where $hits is the count returned by yaz_hits().

type

The type specifies the form of the returned record.

Note

It is the application which is responsible for actually ensuring that the records are
returned from the Z39.50/SRW server in the proper format. The type given only
specifies a conversion to take place on the client side (in PHP/YAZ).

Besides conversion of the transfer record to a string/array, PHP/YAZ it is also possible
to perform a character set conversion of the record. Especially for USMARC/MARC21
that is recommended since these are typically returned in the character set MARC-8
that is not supported by browsers, etc. To specify a conversion, add; charset= from, to
where from is the original character set of the record and to is the resulting character
set (as seen by PHP).
string

The record is returned as a string for simple display. In this mode, all MARC
records are converted to a line-by-line format since ISO2709 is hardly readable.
XML records and SUTRS are returned in their original format. GRS-1 are returned
in a (ugly) line-by-line format. This format is suitable if records are to be displayed
in a quick way - for debugging - or because it is not feasible to perform proper
display.

xml
The record is returned as an XML string if possible. In this mode, all MARC records
are converted to » MARCXML. XML records and SUTRS are returned in their
original format. GRS-1 is not supported. This format is similar to string except
that MARC records are converted to MARCXML This format is suitable if records

http://www.loc.gov/standards/marcxml/

are processed by an XML parser or XSLT processor afterwards.

raw
The record is returned as a string in its original form. This type is suitable for
MARC, XML and SUTRS. It does not work for GRS-1. MARC records are returned
as a ISO2709 string. XML and SUTRS are returned as strings.

syntax
The syntax of the record is returned as a string, i.e. USmarc, GRS-1, XML, etc.

database
The name of database associated with record at the position is returned as a
string.

array
The record is returned as an array that reflects the GRS-1 structure. This type is
suitable for MARC and GRS-1. XML, SUTRS are not supported and if the actual
record is XML or SUTRS an empty string will be returned. The array returned
consists of a list corresponding to each leaf/internal node of GRS-1. Each list item
consists a sub list with first element path and data (if data is available). The path
which is a string holds a list of each tree component (of the structured GRS-1
record) from root to leaf. Each component is a tag type, tag value pair of the form (
type, value String tags normally has a corresponding tag type 3. MARC can also
be returned as an array (they are converted to GRS-1 internally).

Return Values

Returns the record at position pos or an empty string if no record exists at the given
position.

If no database record exists at the given position an empty string is returned.

Examples

Example #2425 - Array for GRS-1 record

Consider this GRS-1 record:
(4,52)Robert M. Pirsig

(4,70)

 (4,90)

 (2,7)Transworld Publishers, ltd.
This record has two nodes at root level. First element at root level is (4,52) [tag type 4,
tag value 52], and has data Robert M. Pirsig. Second element at root level (4,70) has a
subtree with a single element (4,90). (4,90) has yet another sub tree (2,7) with data
Transworld Publishers, ltd..

If this record is present at position $p, then
<?php

$ar = yaz_record($id, $p, "array");

print_r($ar);

?>
will output:
Array

(

 [0] => Array

 (

 [0] => (4,52)

 [1] => Robert M. Pirsig

)

 [1] => Array

 (

 [0] => (4,70)

)

 [2] => Array

 (

 [0] => (4,70)(4,90)

)

 [3] => Array

 (

 [0] => (4,70)(4,90)(2,7)

 [1] => Transworld Publishers, ltd.

)

)

Example #2426 - Working with MARCXML

The following PHP snippet returns a MARC21/USMARC record as MARCXML. The
original record is returned in marc-8 (unknown to most XML parsers), so we convert it
to UTF-8 (which all XML parsers must support).
<?php

$rec = yaz_record($id, $p, "xml; charset=marc-8,utf-8");

?>

The record $rec can be processed with the Sablotron XSLT processor as follows:

<?php

$xslfile = 'display.xsl';

$processor = xslt_create();

$parms = array('/_xml' => $rec);

$res = xslt_process($processor, 'arg:/_xml', $xslfile, NULL, $parms);

xslt_free($processor);

$res = preg_replace("'</?html[^>]*>'", '', $res);

echo $res;

?>

For PHP 5 the XSL extension must be used instead of Sablotron XSLT.

yaz_scan_result

yaz_scan_result -- Returns Scan Response result

Description

array yaz_scan_result (resource $id [, array &$result])

yaz_scan_result() returns terms and associated information as received from the server in
the last performed yaz_scan().

Parameters

id

The connection resource returned by yaz_connect().

result

If given, this array will be modified to hold additional information taken from the Scan
Response:

• number - Number of entries returned

• stepsize - Step size

• position - Position of term

• status - Scan status

Return Values

Returns an array (0..n-1) where n is the number of terms returned. Each value is a pair
where the first item is the term, and the second item is the result-count.

yaz_scan

yaz_scan -- Prepares for a scan

Description

void yaz_scan (resource $id, string $type, string $startterm [, array $flags])

This function prepares for a Z39.50 Scan Request on the specified connection.

To actually transfer the Scan Request to the server and receive the Scan Response,
yaz_wait() must be called. Upon completion of yaz_wait() call yaz_error() and
yaz_scan_result() to handle the response.

Parameters

id

The connection resource returned by yaz_connect().

type

Currently only type rpn is supported.

startterm

Starting term point for the scan. The form in which the starting term is specified is
given by parameter type. The syntax this parameter is similar to the RPN query as
described in yaz_search(). It consists of zero or more @attr -operator specifications,
then followed by exactly one token.

flags

This optional parameter specifies additional information to control the behaviour of the
scan request. Three indexes are currently read from the flags array: number (number
of terms requested), position (preferred position of term) and stepSize (preferred step
size).

Return Values

No value is returned.

Examples

Example #2427 - PHP function that scans titles

<?php

function scan_titles($id, $startterm)

{

 yaz_scan($id, "rpn", "@attr 1=4 " . $startterm);

 yaz_wait();

 $errno = yaz_errno($id);

 if ($errno == 0) {

 $ar = yaz_scan_result($id, &$options);

 echo 'Scan ok; ';

 foreach ($options as $key => $val) {

 echo "$key = $val ";

 }

 echo '
<table>';

 while (list($key, list($k, $term, $tcount)) = each($ar)) {

 if (empty($k)) continue;

 echo "<tr><td>$term</td><td>$tcount</td></tr>";

 }

 echo '</table>';

 } else {

 echo "Scan failed. Error: " . yaz_error($id) . "
";

 }

}

?>

yaz_schema

yaz_schema -- Specifies schema for retrieval

Description

void yaz_schema (resource $id, string $schema)

yaz_schema() specifies the schema for retrieval.

This function should be called before yaz_search() or yaz_present().

Parameters

id

The connection resource returned by yaz_connect().

schema

Must be specified as an OID (Object Identifier) in a raw dot-notation (like
1.2.840.10003.13.4) or as one of the known registered schemas: GILS-schema,
Holdings, Zthes, ...

Return Values

No value is returned.

yaz_search

yaz_search -- Prepares for a search

Description

bool yaz_search (resource $id, string $type, string $query)

yaz_search() prepares for a search on the given connection.

Like yaz_connect() this function is non-blocking and only prepares for a search to be
executed later when yaz_wait() is called.

Parameters

id

The connection resource returned by yaz_connect().

type

This parameter represents the query type - only "rpn" is supported now in which case
the third argument specifies a Type-1 query in prefix query notation.

query

The RPN query is a textual representation of the Type-1 query as defined by the
Z39.50 standard. However, in the text representation as used by YAZ a prefix notation
is used, that is the operator precedes the operands. The query string is a sequence of
tokens where white space is ignored unless surrounded by double quotes. Tokens
beginning with an at-character (@) are considered operators, otherwise they are
treated as search terms.

RPN Operators

Construct Description

@and query1 query2 intersection of query1 and query2

@or query1 query2 union of query1 and query2

@not query1 query2 query1 and not query2

@set name result set reference

@attrset set query specifies attribute-set for query. This
construction is only allowed once - in the
beginning of the whole query

@attr [set] type=value query applies attribute to query. The type and
value are integers specifying the

attribute-type and attribute-value
respectively. The set, if given, specifies the
attribute-set.

You can find information about attributes at the » Z39.50 Maintenance Agency site.

Note

If you would like to use a more friendly notation, use the CCL parser - functions
yaz_ccl_conf() and yaz_ccl_parse().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2428 - Query Examples

You can search for simple terms, like this:
computer
which matches documents where "computer" occur. No attributes are specified.

The query
"knuth donald"
matches documents where "knuth donald" occur (provided that the server supports phrase
search).

This query applies two attributes for the same phrase.
@attr 1=1003 @attr 4=1 "knuth donald"
First attribute is type 1 (Bib-1 use), attribute value is 1003 (Author). Second attribute has is
type 4 (structure), value 1 (phrase), so this should match documents where Donald Knuth
is author.

The query
@and @or a b @not @or c d e
would in infix notation look like (a or b) and ((c or d) not e).

Another, more complex, one:
@attrset gils @and @attr 1=4 art @attr 1=2000 company
The query as a whole uses the GILS attributeset. The query matches documents where art
occur in the title (GILS,BIB-1) and in which company occur as Distributor (GILS).

http://www.loc.gov/z3950/agency/defns/bib1.html

yaz_set_option

yaz_set_option -- Sets one or more options for connection

Description

void yaz_set_option (resource $id, string $name, string $value)

void yaz_set_option (resource $id, array $options)

Sets one or more options on the given connection.

Parameters

id

The connection resource returned by yaz_connect().

name or options
May be either a string or an array. If given as a string, this will be the name of the option to
set. You'll need to give it's value. If given as an array, this will be an associative array
(option name => option value).

PHP/YAZ Connection Options

Name Description

implementationName implementation name of server

implementationVersion implementation version of server

implementationId implementation ID of server

schema schema for retrieval. By default, no schema
is used. Setting this option is equivalent to
using function yaz_schema()

preferredRecordSyntax record syntax for retrieval. By default, no
syntax is used. Setting this option is
equivalent to using function yaz_syntax()

start offset for first record to be retrieved via
yaz_search() or yaz_present(). First record
is numbered has a start value of 0. Second
record has start value 1. Setting this option
in combination with option count has the
same effect as calling yaz_range() except
that records are numbered from 1 in
yaz_range()

count maximum number of records to be retrieved
via yaz_search() or yaz_present().

elementSetName element-set-name for retrieval. Setting this
option is equivalent to calling yaz_element().

value

The new value of the option. Use this only if the previous argument is a string.

Return Values

No value is returned.

yaz_sort

yaz_sort -- Sets sorting criteria

Description

void yaz_sort (resource $id, string $criteria)

This function sets sorting criteria and enables Z39.50 Sort.

Call this function before yaz_search(). Using this function alone does not have any effect.
When used in conjunction with yaz_search(), a Z39.50 Sort will be sent after a search
response has been received and before any records are retrieved with Z39.50 Present (
yaz_present().

Parameters

id

The connection resource returned by yaz_connect().

criteria

A string that takes the form field1 flags1 field2 flags2 where field1 specifies the primary
attributes for sort, field2 seconds, etc.. The field specifies either a numerical attribute
combinations consisting of type=value pairs separated by comma (e.g. 1=4,2=1) ; or the
field may specify a plain string criteria (e.g. title. The flags is a sequence of the following
characters which may not be separated by any white space. Sort Flags
a

Sort ascending

d
Sort descending

i
Case insensitive sorting

s
Case sensitive sorting

Return Values

No value is returned.

Examples

Example #2429 - Sort Criterias

To sort on Bib1 attribute title, case insensitive, and ascending you would use the following
sort criteria:
1=4 ia

If the secondary sorting criteria should be author, case sensitive and ascending you would
use:
1=4 ia 1=1003 sa

yaz_syntax

yaz_syntax -- Specifies the preferred record syntax for retrieval

Description

void yaz_syntax (resource $id, string $syntax)

yaz_syntax() specifies the preferred record syntax for retrieval

This function should be called before yaz_search() or yaz_present().

Parameters

id

The connection resource returned by yaz_connect().

syntax

The syntax must be specified as an OID (Object Identifier) in a raw dot-notation (like
1.2.840.10003.5.10) or as one of the known registered record syntaxes (sutrs, usmarc,
grs1, xml, etc.).

Return Values

No value is returned.

yaz_wait

yaz_wait -- Wait for Z39.50 requests to complete

Description

mixed yaz_wait ([array &$options])

This function carries out networked (blocked) activity for outstanding requests which have
been prepared by the functions yaz_connect(), yaz_search(), yaz_present(), yaz_scan() and
yaz_itemorder().

yaz_wait() returns when all servers have either completed all requests or aborted (in case of
errors).

Parameters

options

An associative array of options:
timeout

Sets timeout in seconds. If a server has not responded within the timeout it is
considered dead and yaz_wait() returns. The default value for timeout is 15 seconds.

event
A boolean.

Return Values

Returns TRUE on success or FALSE on failure. In event mode, returns resource or FALSE in
case of an error.

YP/NIS

Introduction

NIS (formerly called Yellow Pages) allows network management of important administrative
files (e.g. the password file). For more information refer to the NIS manpage and » The Linux
NIS(YP)/NYS/NIS+ HOWTO. There is also a book called » Managing NFS and NIS by Hal
Stern.

Note

This extension has been moved to the » PECL repository and is no longer bundled with
PHP as of PHP 5.1.0.

Note

This extension is not available on Windows platforms.

http://www.tldp.org/HOWTO/NIS-HOWTO/index.html
http://www.tldp.org/HOWTO/NIS-HOWTO/index.html
http://www.oreilly.com/catalog/nfs/noframes.html
http://pecl.php.net/

Installing/Configuring

Requirements

None besides functions from standard Unix libraries which are always available (either libc or
libnsl, configure will detect which one to use).

Installation

To get these functions to work, you have to configure PHP with --enable-yp.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

YPERR_ACCESS (integer)
access violation (this has only been added recently and is only available from PECL CVS
for now)

YPERR_BADARGS (integer)
The function arguments are bad

YPERR_BADDB (integer)
YP database is bad

YPERR_BUSY (integer)
Database busy

YPERR_DOMAIN (integer)
cannot bind to server in this domain

YPERR_KEY (integer)
no such key in map

YPERR_MAP (integer)
no such map in server's domain

YPERR_NODOM (integer)
Local domain name not set

YPERR_NOMORE (integer)
No more records in map database

YPERR_PMAP (integer)
Can't communicate with portmapper

YPERR_RESRC (integer)
resource allocation failure

YPERR_RPC (integer)
RPC failure - domain has been unbound

YPERR_YPBIND (integer)
Can't communicate with ypbind

YPERR_YPERR (integer)
internal yp server or client error

YPERR_YPSERV (integer)
Can't communicate with ypserv

YPERR_VERS (integer)
YP version mismatch

YP/NIS Functions

yp_all

yp_all -- Traverse the map and call a function on each entry

Description

void yp_all (string $domain, string $map, string $callback)

Warning

This function is currently not documented; only its argument list is available.

Parameters

domain

The NIS domain name.

map

The NIS map.

callback

Return Values

No value is returned.

yp_cat

yp_cat -- Return an array containing the entire map

Description

array yp_cat (string $domain, string $map)

Returns all map entries.

Parameters

domain

The NIS domain name.

map

The NIS map.

Return Values

Returns an array of all map entries, the maps key values as array indices and the maps
entries as array data.

yp_err_string

yp_err_string -- Returns the error string associated with the given error code

Description

string yp_err_string (int $errorcode)

Returns the error message associated with the given error code. Useful to indicate what
exactly went wrong.

Parameters

errorcode

The error code.

Return Values

Returns the error message, as a string.

Examples

Example #2430 - Example for NIS errors

<?php

echo "Error: " . yp_err_string(yp_errno());

?>

See Also

• yp_errno()

yp_errno

yp_errno -- Returns the error code of the previous operation

Description

int yp_errno (void)

Returns the error code of the previous operation.

Return Values

Returns one of the YPERR_XXX error constants.

See Also

• yp_err_string()

yp_first

yp_first -- Returns the first key-value pair from the named map

Description

array yp_first (string $domain, string $map)

Gets the first key-value pair from the named map in the named domain.

Parameters

domain

The NIS domain name.

map

The NIS map.

Return Values

Returns the first key-value pair as an array on success, or FALSE on errors.

Examples

Example #2431 - Example for the NIS first

<?php

$entry = yp_first($domain, "passwd.byname");

$key = key($entry);

$value = $entry[$key];

echo "First entry in this map has key " . $key . " and value " . $value;

?>

See Also

• yp_next()
• yp_get_default_domain()

yp_get_default_domain

yp_get_default_domain -- Fetches the machine's default NIS domain

Description

string yp_get_default_domain (void)

Returns the default domain of the node. Can be used as the domain parameter for successive
NIS calls.

A NIS domain can be described a group of NIS maps. Every host that needs to look up
information binds itself to a certain domain. Refer to the documents mentioned at the
beginning for more detailed information.

Return Values

Returns the default domain of the node or FALSE. Can be used as the domain parameter for
successive NIS calls.

Examples

Example #2432 - Example for the default domain

<?php

$domain = yp_get_default_domain();

echo "Default NIS domain is: " . $domain;

?>

yp_master

yp_master -- Returns the machine name of the master NIS server for a map

Description

string yp_master (string $domain, string $map)

Returns the machine name of the master NIS server for a map.

Parameters

domain

The NIS domain name.

map

The NIS map.

Return Values

Examples

Example #2433 - Example for the NIS master

<?php

$number = yp_master($domain, $mapname);

echo "Master for this map is: " . $master;

?>

See Also

• yp_get_default_domain()

yp_match

yp_match -- Returns the matched line

Description

string yp_match (string $domain, string $map, string $key)

Returns the value associated with the passed key out of the specified map.

Parameters

domain

The NIS domain name.

map

The NIS map.

key

This key must be exact.

Return Values

Returns the value, or FALSE on errors.

Examples

Example #2434 - Example for NIS match

<?php

$entry = yp_match($domain, "passwd.byname", "joe");

echo "Matched entry is: " . $entry;

?>

The above example will output something similar to:

joe:##joe:11111:100:Joe User:/home/j/joe:/usr/local/bin/bash

See Also

• yp_get_default_domain()

yp_next

yp_next -- Returns the next key-value pair in the named map

Description

array yp_next (string $domain, string $map, string $key)

Returns the next key-value pair in the named map after the specified key.

Parameters

domain

map

key

Return Values

Returns the next key-value pair as an array, or FALSE on errors.

Examples

Example #2435 - Example for NIS next

<?php

$entry = yp_next($domain, "passwd.byname", "joe");

if (!$entry) {

 echo "No more entries found\n";

 echo "<!--" . yp_errno() . ": " . yp_err_string() . "-->";

}

$key = key($entry);

echo "The next entry after joe has key " . $key

 . " and value " . $entry[$key];

?>

See Also

• yp_first()
• yp_get_default_domain()

yp_order

yp_order -- Returns the order number for a map

Description

int yp_order (string $domain, string $map)

Gets the order number for a map.

Parameters

domain

map

Return Values

Returns the order number for a map or FALSE on error.

Examples

Example #2436 - Example for the NIS order

<?php

 $number = yp_order($domain, $mapname);

 echo "Order number for this map is: " . $number;

?>

See Also

• yp_get_default_domain()

Server Specific Extensions

Apache

Introduction

These functions are only available when running PHP as an Apache module.

Note

As of PHP 4.3.2, PATH_TRANSLATED is no longer set implicitly under the Apache 2
SAPI in contrast to the situation in Apache 1, where it's set to the same value as the
SCRIPT_FILENAME server variable when it's not populated by Apache. This change was
made to comply with the CGI specification that PATH_TRANSLATED should only exist if
PATH_INFO is defined.

Apache 2 users may use AcceptPathInfo = On inside httpd.conf to define PATH_INFO.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

For PHP installation on Apache see the installation chapter.

Runtime Configuration

The behaviour of the Apache PHP module is affected by settings in php.ini. Configuration
settings from php.ini may be overridden by php_flag settings in the server configuration file or
local.htaccess files.

Example #2437 - Turning off PHP parsing for a directory using.htaccess

php_flag engine off

Apache configuration options

Name Default Changeable Changelog

engine "1" PHP_INI_ALL Available since PHP
4.0.5.

child_terminate "0" PHP_INI_ALL Available since PHP
4.0.5.

last_modified "0" PHP_INI_ALL Available since PHP
4.0.5.

xbithack "0" PHP_INI_ALL Available since PHP
4.0.5.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

engine boolean

Turns PHP parsing on or off. This directive is really only useful in the Apache module
version of PHP. It is used by sites that would like to turn PHP parsing on and off on a
per-directory or per-virtual server basis. By putting engine off in the appropriate places
in the httpd.conf file, PHP can be enabled or disabled.

child_terminate boolean
Specify whether PHP scripts may request child process termination on end of request,
see also apache_child_terminate().

last_modified boolean
Send PHP scripts modification date as Last-Modified: header for this request.

xbithack boolean
Parse files with executable bit set as PHP regardless of their file ending.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Apache Functions

apache_child_terminate

apache_child_terminate -- Terminate apache process after this request

Description

bool apache_child_terminate (void)

apache_child_terminate() will register the Apache process executing the current PHP
request for termination once execution of PHP code is completed. It may be used to
terminate a process after a script with high memory consumption has been run as memory
will usually only be freed internally but not given back to the operating system.

Return Values

Returns TRUE if PHP is running as an Apache 1 module, the Apache version is
non-multithreaded, and the child_terminate PHP directive is enabled (disabled by default).
If these conditions are not met, FALSE is returned and an error of level E_WARNING is
generated.

Notes

Note

This function is not implemented on Windows platforms.

See Also

• exit()

apache_get_modules

apache_get_modules -- Get a list of loaded Apache modules

Description

array apache_get_modules (void)

Get a list of loaded Apache modules.

Return Values

An array of loaded Apache modules.

ChangeLog

Version Description

5.0.0 Became available when using Apache 1, or
the PHP Apache 2 filter API. Before this
time, it was only available when using the
Apache 2 handler API.

Examples

Example #2438 - apache_get_modules() example

<?php

print_r(apache_get_modules());

?>

The above example will output something similar to:

Array

(

 [0] => core

 [1] => http_core

 [2] => mod_so

 [3] => sapi_apache2

 [4] => mod_mime

 [5] => mod_rewrite

)

apache_get_version

apache_get_version -- Fetch Apache version

Description

string apache_get_version (void)

Fetch the Apache version.

Return Values

Returns the Apache version on success, or FALSE on failure.

ChangeLog

Version Description

4.3.4 Became available with Apache 1.

5.0.0 Became available with the Apache 2 filter
API.

Examples

Example #2439 - apache_get_version() example

<?php

$version = apache_get_version();

echo "$version\n";

?>

The above example will output something similar to:

Apache/1.3.29 (Unix) PHP/4.3.4

See Also

• phpinfo()

apache_getenv

apache_getenv -- Get an Apache subprocess_env variable

Description

string apache_getenv (string $variable [, bool $walk_to_top])

Get an Apache environment variable as specified by variable.

This function requires Apache 2 otherwise it's undefined.

Parameters

variable

The Apache environment variable

walk_to_top

Whether to get the top-level variable available to all Apache layers.

Return Values

The value of the Apache environment variable on success, or FALSE on failure

Examples

Example #2440 - apache_getenv() example

The example above shows how to retrieve the value of the Apache environment
variable SERVER_ADDR.

<?php

$ret = apache_getenv("SERVER_ADDR");

echo $ret;

?>

The above example will output something similar to:

42.24.42.240

See Also

• apache_setenv()
• getenv()
• Superglobals

apache_lookup_uri

apache_lookup_uri -- Perform a partial request for the specified URI and return all info
about it

Description

object apache_lookup_uri (string $filename)

This performs a partial request for a URI. It goes just far enough to obtain all the important
information about the given resource.

This function is only supported when PHP is installed as an Apache module.

Parameters

filename

The filename (URI) that's being requested.

Return Values

An object of related URI information. The properties of this object are:

• status
• the_request
• status_line
• method
• content_type
• handler
• uri
• filename
• path_info
• args
• boundary
• no_cache
• no_local_copy
• allowed
• send_bodyct
• bytes_sent
• byterange
• clength
• unparsed_uri
• mtime
• request_time

Examples

Example #2441 - apache_lookup_uri() example

<?php

$info = apache_lookup_uri('index.php?var=value');

print_r($info);

if (file_exists($info->filename)) {

 echo 'file exists!';

}

?>

The above example will output something similar to:

stdClass Object

(

 [status] => 200

 [the_request] => GET /dir/file.php HTTP/1.1

 [method] => GET

 [mtime] => 0

 [clength] => 0

 [chunked] => 0

 [content_type] => application/x-httpd-php

 [no_cache] => 0

 [no_local_copy] => 1

 [unparsed_uri] => /dir/index.php?var=value

 [uri] => /dir/index.php

 [filename] => /home/htdocs/dir/index.php

 [args] => var=value

 [allowed] => 0

 [sent_bodyct] => 0

 [bytes_sent] => 0

 [request_time] => 1074282764

)

file exists!

apache_note

apache_note -- Get and set apache request notes

Description

string apache_note (string $note_name [, string $note_value])

This function is a wrapper for Apache's table_get and table_set. It edits the table of notes
that exists during a request. The table's purpose is to allow Apache modules to
communicate.

The main use for apache_note() is to pass information from one module to another within
the same request.

Parameters

note_name

The name of the note.

note_value

The value of the note.

Return Values

If called with one argument, it returns the current value of note note_name. If called with
two arguments, it sets the value of note note_name to note_value and returns the previous
value of note note_name. If the note cannot be retrieved, FALSE is returned.

Examples

Example #2442 - Passing information between PHP and Perl

<?php

apache_note('name', 'Fredrik Ekengren');

// Call perl script

virtual("/perl/some_script.pl");

$result = apache_note("resultdata");

?>

Get Apache request object

my $r = Apache->request()->main();

Get passed data

my $name = $r->notes('name');

some processing

Pass result back to PHP

$r->notes('resultdata', $result);

Example #2443 - Logging values in access.log

<?php

apache_note('sessionID', session_id());

?>

"%{sessionID}n" can be used in the LogFormat directive

See Also

• virtual()

apache_request_headers

apache_request_headers -- Fetch all HTTP request headers

Description

array apache_request_headers (void)

Fetches all HTTP requests from the current request.

This function is only supported when PHP is installed as an Apache module.

Return Values

An associative array of all the HTTP headers in the current request, or FALSE on failure.

Examples

Example #2444 - apache_request_headers() example

<?php

$headers = apache_request_headers();

foreach ($headers as $header => $value) {

 echo "$header: $value
\n";

}

?>

The above example will output something similar to:

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

Host: www.example.com

Connection: Keep-Alive

Notes

Note

Prior to PHP 4.3.0, apache_request_headers() was called getallheaders(). After PHP
4.3.0, getallheaders() is an alias for apache_request_headers().

Note

You can also get at the value of the common CGI variables by reading them from the
environment, which works whether or not you are using PHP as an Apache module.
Use phpinfo() to see a list of all of the available environment variables.

Note

As of PHP 4.3.3 you can use this function with the NSAPI server module in
Netscape/iPlanet/SunONE webservers, too.

See Also

• apache_response_headers()

apache_reset_timeout

apache_reset_timeout -- Reset the Apache write timer

Description

bool apache_reset_timeout (void)

apache_reset_timeout() resets the Apache write timer, which defaults to 300 seconds.
With set_time_limit(0); ignore_user_abort(true) and periodic apache_reset_timeout() calls,
Apache can theoretically run forever.

This function requires Apache 1.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function is disabled when PHP is running in safe mode.

See Also

• set_time_limit()
• ignore_user_abort()

apache_response_headers

apache_response_headers -- Fetch all HTTP response headers

Description

array apache_response_headers (void)

Fetch all HTTP response headers.

Return Values

An array of all Apache response headers on success, or FALSE on failure.

Examples

Example #2445 - apache_response_headers() example

<?php

print_r(apache_response_headers());

?>

The above example will output something similar to:

Array

(

 [Accept-Ranges] => bytes

 [X-Powered-By] => PHP/4.3.8

)

Notes

Note

As of PHP 4.3.3 you can use this function with the NSAPI server module in
Netscape/iPlanet/SunONE webservers, too.

See Also

• apache_request_headers()
• headers_sent()
• headers_list()

apache_setenv

apache_setenv -- Set an Apache subprocess_env variable

Description

bool apache_setenv (string $variable, string $value [, bool $walk_to_top])

apache_setenv() sets the value of the Apache environment variable specified by variable
.

Note

When setting an Apache environment variable, the corresponding $_SERVER variable
is not changed.

Parameters

variable

The environment variable that's being set.

value

The new variable value.

walk_to_top

Whether to set the top-level variable available to all Apache layers.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2446 - Setting an Apache environment variable using apache_setenv()

<?php

apache_setenv("EXAMPLE_VAR", "Example Value");

?>

Notes

Note

apache_setenv() can be paired up with apache_getenv() across separate pages or for
setting variables to pass to Server Side Includes (.shtml) that have been included in
PHP scripts.

See Also

• apache_getenv()

ascii2ebcdic

ascii2ebcdic -- Translate string from ASCII to EBCDIC

Description

int ascii2ebcdic (string $ascii_str)

ascii2ebcdic() is an Apache-specific function which is available only on EBCDIC based
operating systems (OS/390, BS2000). It translates the ASCII encoded string ascii_str to
its equivalent EBCDIC representation (binary safe), and returns the result.

Parameters

ascii_str

The ASCII string that will be translated.

Return Values

The EBCDIC representation of an ASCII string.

See Also

• ebcdic2ascii()

ebcdic2ascii

ebcdic2ascii -- Translate string from EBCDIC to ASCII

Description

int ebcdic2ascii (string $ebcdic_str)

ebcdic2ascii() is an Apache-specific function which is available only on EBCDIC based
operating systems (OS/390, BS2000). It translates the EBCDIC encoded string
ebcdic_str to its equivalent ASCII representation (binary safe), and returns the result.

Parameters

ebcdic_str

The EBCDIC string that will be translated.

Return Values

The ASCII representation of an EBCDIC string.

See Also

• ascii2ebcdic()

getallheaders

getallheaders -- Fetch all HTTP request headers

Description

array getallheaders (void)

Fetches all HTTP headers from the current request.

This function is an alias for apache_request_headers(). Please read the
apache_request_headers() documentation for more information on how this function
works.

This function is only supported when PHP is installed as an Apache module.

Return Values

An associative array of all the HTTP headers in the current request, or FALSE on failure.

ChangeLog

Version Description

4.3.0 Became an alias for
apache_request_headers(). Essentially, it
was renamed. This is because this function
only works with Apache.

Examples

Example #2447 - getallheadres() example

<?php

foreach (getallheaders() as $name => $value) {

 echo "$name: $value\n";

}

?>

Notes

Note

As of PHP 4.3.3 you can use this function with the NSAPI server module in
Netscape/iPlanet/SunONE webservers, too.

See Also

• apache_response_headers()

virtual

virtual -- Perform an Apache sub-request

Description

bool virtual (string $filename)

virtual() is an Apache-specific function which is similar to <!--#include virtual...--> in
mod_include. It performs an Apache sub-request. It is useful for including CGI scripts or
.shtml files, or anything else that you would parse through Apache. Note that for a CGI
script, the script must generate valid CGI headers. At the minimum that means it must
generate a Content-type header.

To run the sub-request, all buffers are terminated and flushed to the browser, pending
headers are sent too.

This function is only supported when PHP is installed as an Apache module.

Parameters

filename

The file that the virtual command will be performed on.

Return Values

Performs the virtual command on success, or returns FALSE on failure.

ChangeLog

Version Description

4.0.6 This function may be used on PHP files.
However, it is typically better to use
include() or require() for PHP files.

Examples

See apache_note() for an example.

Notes

Warning

The query string can be passed to the included file but $_GET is copied from the
parent script and only $_SERVER['QUERY_STRING'] is filled with the passed query
string. The query string may only be passed when using Apache 2. The requested file
will not be listed in the Apache access log.

Note

Environment variables set in the requested file are not visible to the calling script.

Note

As of PHP 4.3.3 you can use this function with the NSAPI server module in
Netscape/iPlanet/SunONE webservers, too.

See Also

• apache_note()

IIS Administration

Introduction

This » PECL extension is not bundled with PHP. This extension is available for Win32
only. It provides functions to administrate Microsoft Internet Information Server (IIS). The
extension includes function to create web sites and virtual directories as well as
configuring security and script mapping. These functions have been added in PHP 4.

In order to use these functions you must enable the php_iisfunc.dll DLL inside of php.ini.
The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

http://pecl.php.net/
http://www.php.net/downloads.php
http://pecl4win.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

IIS_READ (integer)

IIS_WRITE (integer)

IIS_EXECUTE (integer)

IIS_SCRIPT (integer)

IIS_ANONYMOUS (integer)

IIS_BASIC (integer)

IIS_NTLM (integer)

IIS_STARTING (integer)

IIS_STOPPED (integer)

IIS_PAUSED (integer)

IIS_RUNNING (integer)

IIS Functions

iis_add_server

iis_add_server -- Creates a new virtual web server

Description

int iis_add_server (string $path, string $comment, string $server_ip, int $port, string $
host_name, int $rights, int $start_server)

Warning

This function is currently not documented; only its argument list is available.

iis_get_dir_security

iis_get_dir_security -- Gets Directory Security

Description

int iis_get_dir_security (int $server_instance, string $virtual_path)

Warning

This function is currently not documented; only its argument list is available.

iis_get_script_map

iis_get_script_map -- Gets script mapping on a virtual directory for a specific extension

Description

string iis_get_script_map (int $server_instance, string $virtual_path, string $
script_extension)

Warning

This function is currently not documented; only its argument list is available.

iis_get_server_by_comment

iis_get_server_by_comment -- Return the instance number associated with the Comment

Description

int iis_get_server_by_comment (string $comment)

Warning

This function is currently not documented; only its argument list is available.

iis_get_server_by_path

iis_get_server_by_path -- Return the instance number associated with the Path

Description

int iis_get_server_by_path (string $path)

Each virtual server in IIS is associated with an instance number. iis_get_server_by_path()
finds the instance number from the actual path to the root directory.

Parameters

path

The path to the root directory

Return Values

Returns the server instance number.

iis_get_server_rights

iis_get_server_rights -- Gets server rights

Description

int iis_get_server_rights (int $server_instance, string $virtual_path)

Warning

This function is currently not documented; only its argument list is available.

iis_get_service_state

iis_get_service_state -- Returns the state for the service defined by ServiceId

Description

int iis_get_service_state (string $service_id)

Warning

This function is currently not documented; only its argument list is available.

iis_remove_server

iis_remove_server -- Removes the virtual web server indicated by ServerInstance

Description

int iis_remove_server (int $server_instance)

Warning

This function is currently not documented; only its argument list is available.

iis_set_app_settings

iis_set_app_settings -- Creates application scope for a virtual directory

Description

int iis_set_app_settings (int $server_instance, string $virtual_path, string $
application_scope)

Warning

This function is currently not documented; only its argument list is available.

iis_set_dir_security

iis_set_dir_security -- Sets Directory Security

Description

int iis_set_dir_security (int $server_instance, string $virtual_path, int $
directory_flags)

Warning

This function is currently not documented; only its argument list is available.

iis_set_script_map

iis_set_script_map -- Sets script mapping on a virtual directory

Description

int iis_set_script_map (int $server_instance, string $virtual_path, string $
script_extension, string $engine_path, int $allow_scripting)

Warning

This function is currently not documented; only its argument list is available.

iis_set_server_rights

iis_set_server_rights -- Sets server rights

Description

int iis_set_server_rights (int $server_instance, string $virtual_path, int $
directory_flags)

Warning

This function is currently not documented; only its argument list is available.

iis_start_server

iis_start_server -- Starts the virtual web server

Description

int iis_start_server (int $server_instance)

Warning

This function is currently not documented; only its argument list is available.

iis_start_service

iis_start_service -- Starts the service defined by ServiceId

Description

int iis_start_service (string $service_id)

Warning

This function is currently not documented; only its argument list is available.

iis_stop_server

iis_stop_server -- Stops the virtual web server

Description

int iis_stop_server (int $server_instance)

Warning

This function is currently not documented; only its argument list is available.

iis_stop_service

iis_stop_service -- Stops the service defined by ServiceId

Description

int iis_stop_service (string $service_id)

Warning

This function is currently not documented; only its argument list is available.

NSAPI

Introduction

These functions are only available when running PHP as a NSAPI module in
Netscape/iPlanet/Sun webservers.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

For PHP installation on Netscape/iPlanet/Sun webservers see the NSAPI section (UNIX,
Windows) in the installation chapter.

Runtime Configuration

The behaviour of the NSAPI PHP module is affected by settings in php.ini. Configuration
settings from php.ini may be overridden by additional parameters to the php4_execute call
in obj.conf

NSAPI configuration options

Name Default Changeable Changelog

nsapi.read_timeout "60" PHP_INI_ALL Available since PHP
4.3.3.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

nsapi.read_timeout integer
Sets the time in seconds the plugin is waiting for POST data from the client.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

NSAPI Functions

See Also

NSAPI implements a subset of the functions from the Apache module for maximum
compatibility.

Apache functions implemented by NSAPI

Apache function (only as
alias)

NSAPI function Description

apache_request_headers() nsapi_request_headers() Fetch all HTTP request
headers

apache_response_headers() nsapi_response_headers() Fetch all HTTP response
headers

getallheaders() nsapi_request_headers() Fetch all HTTP request
headers

virtual() nsapi_virtual() Make NSAPI sub-request

nsapi_request_headers

nsapi_request_headers -- Fetch all HTTP request headers

Description

array nsapi_request_headers (void)

nsapi_request_headers() gets all the HTTP headers in the current request. This is only
supported when PHP runs as a NSAPI module.

Note

Prior to PHP 4.3.3, getallheaders() was only available for the Apache servers. After
PHP 4.3.3, getallheaders() is an alias for nsapi_request_headers() if you use the
NSAPI module.

Note

You can also get at the value of the common CGI variables by reading them from the
$_SERVER superglobal, which works whether or not you are using PHP as a NSAPI
module.

Return Values

Returns an associative array with all the HTTP headers.

Examples

Example #2448 - nsapi_request_headers() example

<?php

$headers = nsapi_request_headers();

foreach ($headers as $header => $value) {

 echo "$header: $value
\n";

}

?>

nsapi_response_headers

nsapi_response_headers -- Fetch all HTTP response headers

Description

array nsapi_response_headers (void)

Gets all the NSAPI response headers.

Return Values

Returns an associative array with all the NSAPI response headers.

See Also

• nsapi_request_headers()
• headers_sent()

nsapi_virtual

nsapi_virtual -- Perform an NSAPI sub-request

Description

bool nsapi_virtual (string $uri)

nsapi_virtual() is an NSAPI-specific function which is equivalent to <!--#include virtual...-->
in SSI (.shtml files). It does an NSAPI sub-request. It is useful for including CGI scripts or
.shtml files, or anything else that you'd parse through webserver.

To run the sub-request, all buffers are terminated and flushed to the browser, pending
headers are sent too.

You cannot make recursive requests with this function to other PHP scripts. If you want to
include PHP scripts, use include() or require().

Note

This function depends on a undocumented feature of the Netscape/iPlanet/Sun
webservers. Use phpinfo() to determine if it is available. In the Unix environment it
should always work, in Windows it depends on the name of a ns-httpdXX.dll file.

Read the note about subrequests in the NSAPI section (UNIX, Windows) if you
experience this problem.

Parameters

uri

The URI of the script.

Return Values

Returns TRUE on success or FALSE on failure.

Session Extensions

Mohawk Software Session Handler Functions

Introduction

msession is an interface to a high speed session daemon which can run either locally or
remotely. It is designed to provide consistent session management for a PHP web farm.
More Information about msession and the session server software itself can be found at
» http://www.mohawksoft.org/?q=node/8.

Note

This extension is not available on Windows platforms.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.3.

http://www.mohawksoft.org/?q=node/8
http://www.mohawksoft.org/?q=node/8
http://pecl.php.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

To enable Msession support configure PHP --with-msession[=DIR], where DIR is the
Msession install directory.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Msession Functions

msession_connect

msession_connect -- Connect to msession server

Description

bool msession_connect (string $host, string $port)

Warning

This function is currently not documented; only its argument list is available.

msession_count

msession_count -- Get session count

Description

int msession_count (void)

Warning

This function is currently not documented; only its argument list is available.

msession_create

msession_create -- Create a session

Description

bool msession_create (string $session, string $classname, string $data)

Warning

This function is currently not documented; only its argument list is available.

msession_destroy

msession_destroy -- Destroy a session

Description

bool msession_destroy (string $name)

Warning

This function is currently not documented; only its argument list is available.

msession_disconnect

msession_disconnect -- Close connection to msession server

Description

void msession_disconnect (void)

Warning

This function is currently not documented; only its argument list is available.

msession_find

msession_find -- Find all sessions with name and value

Description

array msession_find (string $name, string $value)

Warning

This function is currently not documented; only its argument list is available.

msession_get_array

msession_get_array -- Get array of msession variables

Description

array msession_get_array (string $session)

Warning

This function is currently not documented; only its argument list is available.

msession_get_data

msession_get_data -- Get data session unstructured data

Description

string msession_get_data (string $session)

Warning

This function is currently not documented; only its argument list is available.

msession_get

msession_get -- Get value from session

Description

string msession_get (string $session, string $name, string $value)

Warning

This function is currently not documented; only its argument list is available.

msession_inc

msession_inc -- Increment value in session

Description

string msession_inc (string $session, string $name)

Warning

This function is currently not documented; only its argument list is available.

msession_list

msession_list -- List all sessions

Description

array msession_list (void)

Warning

This function is currently not documented; only its argument list is available.

msession_listvar

msession_listvar -- List sessions with variable

Description

array msession_listvar (string $name)

Used for searching sessions with common attributes.

Parameters

name

The name being searched.

Return Values

Returns an associative array of value/session for all sessions with a variable named name.

msession_lock

msession_lock -- Lock a session

Description

int msession_lock (string $name)

Warning

This function is currently not documented; only its argument list is available.

msession_plugin

msession_plugin -- Call an escape function within the msession personality plugin

Description

string msession_plugin (string $session, string $val [, string $param])

Warning

This function is currently not documented; only its argument list is available.

msession_randstr

msession_randstr -- Get random string

Description

string msession_randstr (int $param)

Warning

This function is currently not documented; only its argument list is available.

msession_set_array

msession_set_array -- Set msession variables from an array

Description

void msession_set_array (string $session, array $tuples)

Warning

This function is currently not documented; only its argument list is available.

msession_set_data

msession_set_data -- Set data session unstructured data

Description

bool msession_set_data (string $session, string $value)

Warning

This function is currently not documented; only its argument list is available.

msession_set

msession_set -- Set value in session

Description

bool msession_set (string $session, string $name, string $value)

Warning

This function is currently not documented; only its argument list is available.

msession_timeout

msession_timeout -- Set/get session timeout

Description

int msession_timeout (string $session [, int $param])

Warning

This function is currently not documented; only its argument list is available.

msession_uniq

msession_uniq -- Get unique id

Description

string msession_uniq (int $param, string $classname, string $data)

Warning

This function is currently not documented; only its argument list is available.

msession_unlock

msession_unlock -- Unlock a session

Description

int msession_unlock (string $session, int $key)

Warning

This function is currently not documented; only its argument list is available.

Session Handling

Introduction

Session support in PHP consists of a way to preserve certain data across subsequent
accesses. This enables you to build more customized applications and increase the
appeal of your web site.

A visitor accessing your web site is assigned a unique id, the so-called session id. This is
either stored in a cookie on the user side or is propagated in the URL.

The session support allows you to register arbitrary numbers of variables to be preserved
across requests. When a visitor accesses your site, PHP will check automatically (if
session.auto_start is set to 1) or on your request (explicitly through session_start() or
implicitly through session_register()) whether a specific session id has been sent with the
request. If this is the case, the prior saved environment is recreated.

Caution

If you do turn on session.auto_start then you cannot put objects into your sessions
since the class definition has to be loaded before starting the session in order to
recreate the objects in your session.

All registered variables are serialized after the request finishes. Registered variables which
are undefined are marked as being not defined. On subsequent accesses, these are not
defined by the session module unless the user defines them later.

Warning

Some types of data can not be serialized thus stored in sessions. It includes resource
variables or objects with circular references (i.e. objects which passes a reference to
itself to another object).

Note

Session handling was added in PHP 4.0.0.

Note

Please note when working with sessions that a record of a session is not created until
a variable has been registered using the session_register() function or by adding a
new key to the $_SESSION superglobal array. This holds true regardless of if a
session has been started using the session_start() function.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Note

Optionally you can use shared memory allocation (mm), developed by Ralf S.
Engelschall, for session storage. You have to download » mm and install it. This option
is not available for Windows platforms. Note that the session storage module for mm
does not guarantee that concurrent accesses to the same session are properly locked.
It might be more appropriate to use a shared memory based filesystem (such as tmpfs
on Solaris/Linux, or /dev/md on BSD) to store sessions in files, because they are
properly locked. Session data is stored in memory thus web server restart deletes it.

Installation

Session support is enabled in PHP by default. If you would not like to build your PHP with
session support, you should specify the --disable-session option to configure. To use
shared memory allocation (mm) for session storage configure PHP --with-mm[=DIR].

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

By default, all data related to a particular session will be stored in a file in the directory
specified by the session.save_path INI option. A file for each session (regardless of if
any data is associated with that session) will be created. This is due to the fact that a
session is opened (a file is created) but no data is even written to that file. Note that
this behavior is a side-effect of the limitations of working with the file system and it is
possible that a custom session handler (such as one which uses a database) does not
keep track of sessions which store no data.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Session configuration options

http://www.ossp.org/pkg/lib/mm/

Name Default Changeable Changelog

session.save_path "" PHP_INI_ALL

session.name "PHPSESSID" PHP_INI_ALL

session.save_handler "files" PHP_INI_ALL

session.auto_start "0" PHP_INI_ALL

session.gc_probabilit
y

"1" PHP_INI_ALL

session.gc_divisor "100" PHP_INI_ALL Available since PHP
4.3.2.

session.gc_maxlifeti
me

"1440" PHP_INI_ALL

session.serialize_han
dler

"php" PHP_INI_ALL

session.cookie_lifeti
me

"0" PHP_INI_ALL

session.cookie_path "/" PHP_INI_ALL

session.cookie_doma
in

"" PHP_INI_ALL

session.cookie_secur
e

"" PHP_INI_ALL Available since PHP
4.0.4.

session.cookie_httpo
nly

"" PHP_INI_ALL Available since PHP
5.2.0.

session.use_cookies "1" PHP_INI_ALL

session.use_only_co
okies

"1" PHP_INI_ALL Available since PHP
4.3.0.

session.referer_chec
k

"" PHP_INI_ALL

session.entropy_file "" PHP_INI_ALL

session.entropy_leng
th

"0" PHP_INI_ALL

session.cache_limiter "nocache" PHP_INI_ALL

session.cache_expire "180" PHP_INI_ALL

session.use_trans_si
d

"0" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.2.3.
PHP_INI_PERDIR in
PHP < 5. Available
since PHP 4.0.3.

session.bug_compat
_42

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.bug_compat
_warn

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.hash_functio
n

"0" PHP_INI_ALL Available since PHP
5.0.0.

session.hash_bits_pe
r_character

"4" PHP_INI_ALL Available since PHP
5.0.0.

url_rewriter.tags "a=href,area=href,fra
me=src,form=,fieldset
="

PHP_INI_ALL Available since PHP
4.0.4.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

The session management system supports a number of configuration options which you
can place in your php.ini file. We will give a short overview.
session.save_handler string

session.save_handler defines the name of the handler which is used for storing and
retrieving data associated with a session. Defaults to files. Note that individual
extensions may register their own save_handler s; registered handlers can be obtained
on a per-installation basis by referring to phpinfo(). See also
session_set_save_handler().

session.save_path string
session.save_path defines the argument which is passed to the save handler. If you
choose the default files handler, this is the path where the files are created. See also
session_save_path(). There is an optional N argument to this directive that determines
the number of directory levels your session files will be spread around in. For example,
setting to '5;/tmp' may end up creating a session file and location like
/tmp/4/b/1/e/3/sess_4b1e384ad74619bd212e236e52a5a174If. In order to use N you
must create all of these directories before use. A small shell script exists in ext/session
to do this, it's called mod_files.sh. Also note that if N is used and greater than 0 then
automatic garbage collection will not be performed, see a copy of php.ini for further
information. Also, if you use N, be sure to surround session.save_path in "quotes"
because the separator (;) is also used for comments in php.ini.

Warning

If you leave this set to a world-readable directory, such as /tmp (the default), other
users on the server may be able to hijack sessions by getting the list of files in that

directory.

Note

Prior to PHP 4.3.6, Windows users had to change this variable in order to use
PHP's session functions. A valid path must be specified, e.g.: c:/temp.

session.name string
session.name specifies the name of the session which is used as cookie name. It
should only contain alphanumeric characters. Defaults to PHPSESSID. See also
session_name().

session.auto_start boolean
session.auto_start specifies whether the session module starts a session automatically
on request startup. Defaults to 0 (disabled).

session.serialize_handler string
session.serialize_handler defines the name of the handler which is used to
serialize/deserialize data. Currently, a PHP internal format (name php or php_binary)
and WDDX are supported (name wddx). WDDX is only available, if PHP is compiled
with WDDX support. Defaults to php.

session.gc_probability integer
session.gc_probability in conjunction with session.gc_divisor is used to manage
probability that the gc (garbage collection) routine is started. Defaults to 1. See
session.gc_divisor for details.

session.gc_divisor integer
session.gc_divisor coupled with session.gc_probability defines the probability that the
gc (garbage collection) process is started on every session initialization. The
probability is calculated by using gc_probability/gc_divisor, e.g. 1/100 means there is a
1% chance that the GC process starts on each request. session.gc_divisor defaults to
100.

session.gc_maxlifetime integer
session.gc_maxlifetime specifies the number of seconds after which data will be seen
as 'garbage' and cleaned up. Garbage collection occurs during session start.

Note

If different scripts have different values of session.gc_maxlifetime but share the
same place for storing the session data then the script with the minimum value will
be cleaning the data. In this case, use this directive together with
session.save_path.

Note

If you are using the default file-based session handler, your filesystem must keep
track of access times (atime). Windows FAT does not so you will have to come up
with another way to handle garbage collecting your session if you are stuck with a
FAT filesystem or any other filesystem where atime tracking is not available. Since
PHP 4.2.3 it has used mtime (modified date) instead of atime. So, you won't have
problems with filesystems where atime tracking is not available.

session.referer_check string
session.referer_check contains the substring you want to check each HTTP Referer
for. If the Referer was sent by the client and the substring was not found, the
embedded session id will be marked as invalid. Defaults to the empty string.

session.entropy_file string
session.entropy_file gives a path to an external resource (file) which will be used as an
additional entropy source in the session id creation process. Examples are
/dev/random or /dev/urandom which are available on many Unix systems.

session.entropy_length integer
session.entropy_length specifies the number of bytes which will be read from the file
specified above. Defaults to 0 (disabled).

session.use_cookies boolean
session.use_cookies specifies whether the module will use cookies to store the
session id on the client side. Defaults to 1 (enabled).

session.use_only_cookies boolean
session.use_only_cookies specifies whether the module will only use cookies to store
the session id on the client side. Enabling this setting prevents attacks involved
passing session ids in URLs. This setting was added in PHP 4.3.0. Defaults to 1
(enabled) since PHP 6.0.

session.cookie_lifetime integer
session.cookie_lifetime specifies the lifetime of the cookie in seconds which is sent to
the browser. The value 0 means "until the browser is closed." Defaults to 0. See also
session_get_cookie_params() and session_set_cookie_params().

Note

The expiration timestamp is set relative to the server time, which is not necessarily
the same as the time in the client's browser.

session.cookie_path string
session.cookie_path specifies path to set in session_cookie. Defaults to /. See also
session_get_cookie_params() and session_set_cookie_params().

session.cookie_domain string
session.cookie_domain specifies the domain to set in session_cookie. Default is none
at all meaning the host name of the server which generated the cookie according to
cookies specification. See also session_get_cookie_params() and
session_set_cookie_params().

session.cookie_secure boolean
session.cookie_secure specifies whether cookies should only be sent over secure
connections. Defaults to off. This setting was added in PHP 4.0.4. See also
session_get_cookie_params() and session_set_cookie_params().

session.cookie_httponly boolean
Marks the cookie as accessible only through the HTTP protocol. This means that the
cookie won't be accessible by scripting languages, such as JavaScript. This setting
can effectively help to reduce identity theft through XSS attacks (although it is not
supported by all browsers).

session.cache_limiter string
session.cache_limiter specifies cache control method to use for session pages
(none/nocache/private/private_no_expire/public). Defaults to nocache. See also
session_cache_limiter().

session.cache_expire integer
session.cache_expire specifies time-to-live for cached session pages in minutes, this
has no effect for nocache limiter. Defaults to 180. See also session_cache_expire().

session.use_trans_sid boolean
session.use_trans_sid whether transparent sid support is enabled or not. Defaults to 0
(disabled).

Note

For PHP 4.1.2 or less, it is enabled by compiling with --enable-trans-sid. From PHP
4.2.0, trans-sid feature is always compiled.

URL based session management has additional security risks compared to cookie
based session management. Users may send a URL that contains an active
session ID to their friends by email or users may save a URL that contains a
session ID to their bookmarks and access your site with the same session ID
always, for example.

session.bug_compat_42 boolean
PHP versions 4.2.3 and lower have an undocumented feature/bug that allows you to
initialize a session variable in the global scope, albeit register_globals is disabled. PHP
4.3.0 and later will warn you, if this feature is used, and if session.bug_compat_warn is
also enabled. This feature/bug can be disabled by disabling this directive.

session.bug_compat_warn boolean
PHP versions 4.2.3 and lower have an undocumented feature/bug that allows you to
initialize a session variable in the global scope, albeit register_globals is disabled. PHP

4.3.0 and later will warn you, if this feature is used by enabling both
session.bug_compat_42 and session.bug_compat_warn.

session.hash_function mixed
session.hash_function allows you to specify the hash algorithm used to generate the
session IDs. '0' means MD5 (128 bits) and '1' means SHA-1 (160 bits). Since PHP
6.0.0 it is also possible to specify any of the algorithms provided by the hash extension
(if it is available), like sha512 or whirlpool. A complete list of supported algorithms can
be obtained with the hash_algos() function.

Note

This was introduced in PHP 5.

session.hash_bits_per_character integer
session.hash_bits_per_character allows you to define how many bits are stored in
each character when converting the binary hash data to something readable. The
possible values are '4' (0-9, a-f), '5' (0-9, a-v), and '6' (0-9, a-z, A-Z, "-", ",").

Note

This was introduced in PHP 5.

url_rewriter.tags string
url_rewriter.tags specifies which HTML tags are rewritten to include session id if
transparent sid support is enabled. Defaults to
a=href,area=href,frame=src,input=src,form=fakeentry,fieldset=

Note

If you want HTML/XHTML strict conformity, remove the form entry and use the
<fieldset> tags around your form fields.

The track_vars and register_globals configuration settings influence how the session
variables get stored and restored.

Note

As of PHP 4.0.3, track_vars is always turned on.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SID (string)
Constant containing either the session name and session ID in the form of "name=ID"
or empty string if session ID was set in an appropriate session cookie.

Examples

Note

As of PHP 4.1.0, $_SESSION is available as a global variable just like $_POST,
$_GET, $_REQUEST and so on. Unlike $HTTP_SESSION_VARS, $_SESSION is
always global. Therefore, you do not need to use the global keyword for $_SESSION.
Please note that this documentation has been changed to use $_SESSION
everywhere. You can substitute $HTTP_SESSION_VARS for $_SESSION, if you
prefer the former. Also note that you must start your session using session_start()
before use of $_SESSION becomes available.

The keys in the $_SESSION associative array are subject to the same limitations as
regular variable names in PHP, i.e. they cannot start with a number and must start with
a letter or underscore. For more details see the section on variables in this manual.

If register_globals is disabled, only members of the global associative array $_SESSION
can be registered as session variables. The restored session variables will only be
available in the array $_SESSION.

Use of $_SESSION (or $HTTP_SESSION_VARS with PHP 4.0.6 or less) is recommended
for improved security and code readability. With $_SESSION, there is no need to use the
session_register(), session_unregister(), session_is_registered() functions. Session
variables are accessible like any other variables.

Example #2449 - Registering a variable with $_SESSION.

<?php

session_start();

// Use $HTTP_SESSION_VARS with PHP 4.0.6 or less

if (!isset($_SESSION['count'])) {

 $_SESSION['count'] = 0;

} else {

 $_SESSION['count']++;

}

?>

Example #2450 - Unregistering a variable with $_SESSION and register_globals
disabled.

<?php

session_start();

// Use $HTTP_SESSION_VARS with PHP 4.0.6 or less

unset($_SESSION['count']);

?>

Caution

Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable the
registering of session variables through the $_SESSION superglobal.

Warning

You can't use references in session variables as there is no feasible way to restore a
reference to another variable.

If register_globals is enabled, then each global variable can be registered as session
variable. Upon a restart of a session, these variables will be restored to corresponding
global variables. Since PHP must know which global variables are registered as session
variables, users need to register variables with session_register() function. You can avoid
this by simply setting entries in $_SESSION.

Caution

Before PHP 4.3.0, if you are using $_SESSION and you have disabled
register_globals, don't use session_register(), session_is_registered() or
session_unregister(). Disabling register_globals is recommended for both security and
performance reasons.

If register_globals is enabled, then the global variables and the $_SESSION entries will
automatically reference the same values which were registered in the prior session
instance. However, if the variable is registered by $_SESSION then the global variable is
available since the next request.

There is a defect in PHP 4.2.3 and earlier. If you register a new session variable by using
session_register(), the entry in the global scope and the $_SESSION entry will not
reference the same value until the next session_start(). I.e. a modification to the newly
registered global variable will not be reflected by the $_SESSION entry. This has been
corrected in PHP 4.3.0.

Passing the Session ID

There are two methods to propagate a session id:

• Cookies

• URL parameter

The session module supports both methods. Cookies are optimal, but because they are
not always available, we also provide an alternative way. The second method embeds the
session id directly into URLs.

PHP is capable of transforming links transparently. Unless you are using PHP 4.2.0 or
later, you need to enable it manually when building PHP. Under Unix, pass
--enable-trans-sid to configure. If this build option and the run-time option
session.use_trans_sid are enabled, relative URIs will be changed to contain the session id
automatically.

Note

The arg_separator.output php.ini directive allows to customize the argument seperator.
For full XHTML conformance, specify & there.

Alternatively, you can use the constant SID which is defined if the session started. If the
client did not send an appropriate session cookie, it has the form
session_name=session_id. Otherwise, it expands to an empty string. Thus, you can
embed it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly to
another page using SID.

Example #2451 - Counting the number of hits of a single user

<?php

session_start();

if (empty($_SESSION['count'])) {

$_SESSION['count'] = 1;

} else {

$_SESSION['count']++;

}

?>

<p>

Hello visitor, you have seen this page <?php echo $_SESSION['count']; ?>
times.

</p>

<p>

To continue, <a href="nextpage.php?<?php echo htmlspecialchars(SID);
?>">click

here.

</p>

The htmlspecialchars() may be used when printing the SID in order to prevent XSS related
attacks.

Printing the SID, like shown above, is not necessary if --enable-trans-sid was used to

compile PHP.

Note

Non-relative URLs are assumed to point to external sites and hence don't append the
SID, as it would be a security risk to leak the SID to a different server.

Custom Session Handlers

To implement database storage, or any other storage method, you will need to use
session_set_save_handler() to create a set of user-level storage functions.

Sessions and security

External links: » Session fixation

The session module cannot guarantee that the information you store in a session is only
viewed by the user who created the session. You need to take additional measures to
actively protect the integrity of the session, depending on the value associated with it.

Assess the importance of the data carried by your sessions and deploy additional
protections -- this usually comes at a price, reduced convenience for the user. For
example, if you want to protect users from simple social engineering tactics, you need to
enable session.use_only_cookies. In that case, cookies must be enabled unconditionally
on the user side, or sessions will not work.

There are several ways to leak an existing session id to third parties. A leaked session id
enables the third party to access all resources which are associated with a specific id.
First, URLs carrying session ids. If you link to an external site, the URL including the
session id might be stored in the external site's referrer logs. Second, a more active
attacker might listen to your network traffic. If it is not encrypted, session ids will flow in
plain text over the network. The solution here is to implement SSL on your server and
make it mandatory for users.

http://www.acros.si/papers/session_fixation.pdf

Session Functions

session_cache_expire

session_cache_expire -- Return current cache expire

Description

int session_cache_expire ([int $new_cache_expire])

session_cache_expire() returns the current setting of session.cache_expire.

The cache expire is reset to the default value of 180 stored in session.cache_limiter at
request startup time. Thus, you need to call session_cache_expire() for every request (and
before session_start() is called).

Parameters

new_cache_expire

If new_cache_expire is given, the current cache expire is replaced with
new_cache_expire.

Note

Setting new_cache_expire is of value only, if session.cache_limiter is set to a value
different from nocache.

Return Values

Returns the current setting of session.cache_expire. The value returned should be read in
minutes, defaults to 180.

Examples

Example #2452 - session_cache_expire() example

<?php

/* set the cache limiter to 'private' */

session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

/* set the cache expire to 30 minutes */

session_cache_expire(30);

$cache_expire = session_cache_expire();

/* start the session */

session_start();

echo "The cache limiter is now set to $cache_limiter
";

echo "The cached session pages expire after $cache_expire minutes";

?>

See Also

• session.cache_expire
• session.cache_limiter
• session_cache_limiter()

session_cache_limiter

session_cache_limiter -- Get and/or set the current cache limiter

Description

string session_cache_limiter ([string $cache_limiter])

session_cache_limiter() returns the name of the current cache limiter.

The cache limiter defines which cache control HTTP headers are sent to the client. These
headers determine the rules by which the page content may be cached by the client and
intermediate proxies. Setting the cache limiter to nocache disallows any client/proxy
caching. A value of public permits caching by proxies and the client, whereas private
disallows caching by proxies and permits the client to cache the contents.

In private mode, the Expire header sent to the client may cause confusion for some
browsers, including Mozilla. You can avoid this problem by using private_no_expire mode.
The expire header is never sent to the client in this mode.

The cache limiter is reset to the default value stored in session.cache_limiter at request
startup time. Thus, you need to call session_cache_limiter() for every request (and before
session_start() is called).

Parameters

cache_limiter

If cache_limiter is specified, the name of the current cache limiter is changed to the
new value.

Return Values

Returns the name of the current cache limiter.

ChangeLog

Version Description

4.2.0 The private_no_expire cache limiter was
added.

Examples

Example #2453 - session_cache_limiter() example

<?php

/* set the cache limiter to 'private' */

session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

echo "The cache limiter is now set to $cache_limiter
";

?>

See Also

• session.cache_limiter

session_commit

session_commit -- Alias of session_write_close()

Description

This function is an alias of: session_write_close().

session_decode

session_decode -- Decodes session data from a string

Description

bool session_decode (string $data)

session_decode() decodes the session data in data, setting variables stored in the
session.

Parameters

data

The encoded data to be stored.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• session_encode()

session_destroy

session_destroy -- Destroys all data registered to a session

Description

bool session_destroy (void)

session_destroy() destroys all of the data associated with the current session. It does not
unset any of the global variables associated with the session, or unset the session cookie.

In order to kill the session altogether, like to log the user out, the session id must also be
unset. If a cookie is used to propagate the session id (default behavior), then the session
cookie must be deleted. setcookie() may be used for that.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2454 - Destroying a session with $_SESSION

<?php

// Initialize the session.

// If you are using session_name("something"), don't forget it now!

session_start();

// Unset all of the session variables.

$_SESSION = array();

// If it's desired to kill the session, also delete the session cookie.

// Note: This will destroy the session, and not just the session data!

if (isset($_COOKIE[session_name()])) {

 setcookie(session_name(), '', time()-42000, '/');

}

// Finally, destroy the session.

session_destroy();

?>

Notes

Note

Only use session_unset() for older deprecated code that does not use $_SESSION.

See Also

• unset()
• setcookie()

session_encode

session_encode -- Encodes the current session data as a string

Description

string session_encode (void)

session_encode() returns a string with the contents of the current session encoded within.

Return Values

Returns the contents of the current session encoded.

See Also

• session_decode()

session_get_cookie_params

session_get_cookie_params -- Get the session cookie parameters

Description

array session_get_cookie_params (void)

Gets the session cookie parameters.

Return Values

Returns an array with the current session cookie information, the array contains the
following items:

• "lifetime" - The lifetime of the cookie in seconds.

• "path" - The path where information is stored.

• "domain" - The domain of the cookie.

• "secure" - The cookie should only be sent over secure connections.

• "httponly" - The cookie can only be accessed through the HTTP protocol.

ChangeLog

Version Description

5.2.0 The "httponly" entry was added in the
returned array.

4.0.4 The "secure" entry was added in the
returned array.

See Also

• session.cookie_lifetime
• session.cookie_path
• session.cookie_domain
• session.cookie_secure
• session.cookie_httponly
• session.cookie_lifetime

• session_set_cookie_params()

session_id

session_id -- Get and/or set the current session id

Description

string session_id ([string $id])

session_id() is used to get or set the session id for the current session.

The constant SID can also be used to retrieve the current name and session id as a string
suitable for adding to URLs. See also Session handling.

Parameters

id

If id is specified, it will replace the current session id. session_id() needs to be called
before session_start() for that purpose. Depending on the session handler, not all
characters are allowed within the session id. For example, the file session handler only
allows characters in the range a-z, A-Z and 0-9 !

Note

When using session cookies, specifying an id for session_id() will always send a
new cookie when session_start() is called, regardless if the current session id is
identical to the one being set.

Return Values

session_id() returns the session id for the current session or the empty string ("") if there
is no current session (no current session id exists).

See Also

• session_regenerate_id()
• session_start()
• session_set_save_handler()
• session.save_handler

session_is_registered

session_is_registered -- Find out whether a global variable is registered in a session

Description

bool session_is_registered (string $name)

Finds out whether a global variable is registered in a session.

Parameters

name

The variable name.

Return Values

session_is_registered() returns TRUE if there is a global variable with the name name
registered in the current session, FALSE otherwise.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use isset()
to check a variable is registered in $_SESSION.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered() and session_unregister().

session_module_name

session_module_name -- Get and/or set the current session module

Description

string session_module_name ([string $module])

session_module_name() gets the name of the current session module.

Parameters

module

If module is specified, that module will be used instead.

Return Values

Returns the name of the current session module.

session_name

session_name -- Get and/or set the current session name

Description

string session_name ([string $name])

session_name() returns the name of the current session.

The session name is reset to the default value stored in session.name at request startup
time. Thus, you need to call session_name() for every request (and before session_start()
or session_register() are called).

Parameters

name

The session name references the session id in cookies and URLs. It should contain
only alphanumeric characters; it should be short and descriptive (i.e. for users with
enabled cookie warnings). If name is specified, the name of the current session is
changed to its value.

Warning

The session name can't consist of digits only, at least one letter must be present.
Otherwise a new session id is generated every time.

Return Values

Returns the name of the current session.

Examples

Example #2455 - session_name() example

<?php

/* set the session name to WebsiteID */

$previous_name = session_name("WebsiteID");

echo "The previous session name was $previous_name
";

?>

See Also

• The session.name configuration directive

session_regenerate_id

session_regenerate_id -- Update the current session id with a newly generated one

Description

bool session_regenerate_id ([bool $delete_old_session])

session_regenerate_id() will replace the current session id with a new one, and keep the
current session information.

Parameters

delete_old_session

Whether to delete the old associated session file or not. Defaults to FALSE.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.3.3 Since then, if session cookies are enabled,
use of session_regenerate_id() will also
submit a new session cookie with the new
session id.

5.1.0 Added the delete_old_session parameter.

Examples

Example #2456 - A session_regenerate_id() example

<?php

session_start();

$old_sessionid = session_id();

session_regenerate_id();

$new_sessionid = session_id();

echo "Old Session: $old_sessionid
";

echo "New Session: $new_sessionid
";

print_r($_SESSION);

?>

See Also

• session_id()
• session_start()
• session_name()

session_register

session_register -- Register one or more global variables with the current session

Description

bool session_register (mixed $name [, mixed $...])

session_register() accepts a variable number of arguments, any of which can be either a
string holding the name of a variable or an array consisting of variable names or other
arrays. For each name, session_register() registers the global variable with that name in
the current session.

You can also create a session variable by simply setting the appropriate member of the
$_SESSION or $HTTP_SESSION_VARS (PHP < 4.1.0) array.

<?php

// Use of session_register() is deprecated

$barney = "A big purple dinosaur.";

session_register("barney");

// Use of $_SESSION is preferred, as of PHP 4.1.0

$_SESSION["zim"] = "An invader from another planet.";

// The old way was to use $HTTP_SESSION_VARS

$HTTP_SESSION_VARS["spongebob"] = "He's got square pants.";

?>

If session_start() was not called before this function is called, an implicit call to
session_start() with no parameters will be made. $_SESSION does not mimic this
behavior and requires session_start() before use.

Parameters

name

A string holding the name of a variable or an array consisting of variable names or
other arrays.

...

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Caution

If you want your script to work regardless of register_globals, you need to instead use
the $_SESSION array as $_SESSION entries are automatically registered. If your
script uses session_register(), it will not work in environments where the PHP directive
register_globals is disabled.

Note

register_globals: important note

As of PHP 4.2.0, the default value for the PHP directive register_globals is off, and it
was completely removed as of PHP 6.0.0. The PHP community discourages
developers from relying on this directive, and encourages the use of other means,
such as the superglobals.

Caution

This registers a global variable. If you want to register a session variable from within a
function, you need to make sure to make it global using the global keyword or the
$GLOBALS[] array, or use the special session arrays as noted below.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered(), and session_unregister().

Note

It is currently impossible to register resource variables in a session. For example, you
cannot create a connection to a database and store the connection id as a session
variable and expect the connection to still be valid the next time the session is
restored. PHP functions that return a resource are identified by having a return type of
resource in their function definition. A list of functions that return resources are
available in the resource types appendix.

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, assign
values to $_SESSION. For example: $_SESSION['var'] = 'ABC';

See Also

• session_is_registered()
• session_unregister()
• $_SESSION

session_save_path

session_save_path -- Get and/or set the current session save path

Description

string session_save_path ([string $path])

session_save_path() returns the path of the current directory used to save session data.

Parameters

path

Session data path. If specified, the path to which data is saved will be changed.
session_save_path() needs to be called before session_start() for that purpose.

Note

On some operating systems, you may want to specify a path on a filesystem that
handles lots of small files efficiently. For example, on Linux, reiserfs may provide
better performance than ext2fs.

Return Values

Returns the path of the current directory used for data storage.

See Also

• The session.save_path configuration directive

session_set_cookie_params

session_set_cookie_params -- Set the session cookie parameters

Description

void session_set_cookie_params (int $lifetime [, string $path [, string $domain [, bool
$secure [, bool $httponly]]]])

Set cookie parameters defined in the php.ini file. The effect of this function only lasts for
the duration of the script. Thus, you need to call session_set_cookie_params() for every
request and before session_start() is called.

Parameters

lifetime

path

domain

secure

httponly

Return Values

No value is returned.

ChangeLog

Version Description

5.2.0 The httponly parameter was added.

4.0.4 The secure parameter was added.

See Also

• session.cookie_lifetime
• session.cookie_domain
• session.cookie_secure
• session.cookie_httponly
• session_get_cookie_params()

session_set_save_handler

session_set_save_handler -- Sets user-level session storage functions

Description

bool session_set_save_handler (callback $open, callback $close, callback $read,
callback $write, callback $destroy, callback $gc)

session_set_save_handler() sets the user-level session storage functions which are used
for storing and retrieving data associated with a session. This is most useful when a
storage method other than those supplied by PHP sessions is preferred. i.e. Storing the
session data in a local database.

Parameters

open

close

read

Read function must return string value always to make save handler work as expected.
Return empty string if there is no data to read. Return values from other handlers are
converted to boolean expression. TRUE for success, FALSE for failure.

write

Note

The "write" handler is not executed until after the output stream is closed. Thus,
output from debugging statements in the "write" handler will never be seen in the
browser. If debugging output is necessary, it is suggested that the debug output be
written to a file instead.

destroy

gc

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2457 - session_set_save_handler() example

The following example provides file based session storage similar to the PHP sessions
default save handler files. This example could easily be extended to cover database
storage using your favorite PHP supported database engine.

<?php

function open($save_path, $session_name)

{

 global $sess_save_path;

 $sess_save_path = $save_path;

 return(true);

}

function close()

{

 return(true);

}

function read($id)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 return (string) @file_get_contents($sess_file);

}

function write($id, $sess_data)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 if ($fp = @fopen($sess_file, "w")) {

 $return = fwrite($fp, $sess_data);

 fclose($fp);

 return $return;

 } else {

 return(false);

 }

}

function destroy($id)

{

 global $sess_save_path;

 $sess_file = "$sess_save_path/sess_$id";

 return(@unlink($sess_file));

}

function gc($maxlifetime)

{

 global $sess_save_path;

 foreach (glob("$sess_save_path/sess_*") as $filename) {

 if (filemtime($filename) + $maxlifetime < time()) {

 @unlink($filename);

 }

 }

 return true;

}

session_set_save_handler("open", "close", "read", "write", "destroy", "gc");

session_start();

// proceed to use sessions normally

?>

Notes

Warning

As of PHP 5.0.5 the write and close handlers are called after object destruction and
therefore cannot use objects or throw exceptions. The object destructors can however
use sessions.

It is possible to call session_write_close() from the destructor to solve this chicken and
egg problem.

Warning

Current working directory is changed with some SAPIs if session is closed in the script
termination. It is possible to close the session earlier with session_write_close().

See Also

• The session.save_handler configuration directive

session_start

session_start -- Initialize session data

Description

bool session_start (void)

session_start() creates a session or resumes the current one based on the current session
id that's being passed via a request, such as GET, POST, or a cookie.

If you want to use a named session, you must call session_name() before calling
session_start().

session_start() will register internal output handler for URL rewriting when trans-sid is
enabled. If a user uses ob_gzhandler or like with ob_start(), the order of output handler is
important for proper output. For example, user must register ob_gzhandler before session
start.

Return Values

This function always returns TRUE.

ChangeLog

Version Description

4.3.3 As of now, calling session_start() while the
session has already been started will result
in an error of level E_NOTICE. Also, the
second session start will simply be ignored.

Examples

Example #2458 - A session example: page1.php

<?php

// page1.php

session_start();

echo 'Welcome to page #1';

$_SESSION['favcolor'] = 'green';

$_SESSION['animal'] = 'cat';

$_SESSION['time'] = time();

// Works if session cookie was accepted

echo '
page 2';

// Or maybe pass along the session id, if needed

echo '
page 2';

?>

After viewing page1.php, the second page page2.php will magically contain the session
data. Read the session reference for information on propagating session ids as it, for
example, explains what the constant SID is all about.

Example #2459 - A session example: page2.php

<?php

// page2.php

session_start();

echo 'Welcome to page #2
';

echo $_SESSION['favcolor']; // green

echo $_SESSION['animal']; // cat

echo date('Y m d H:i:s', $_SESSION['time']);

// You may want to use SID here, like we did in page1.php

echo '
page 1';

?>

Notes

Note

If you are using cookie-based sessions, you must call session_start() before anything
is outputted to the browser.

Note

Use of zlib.output_compression is recommended rather than ob_gzhandler()

See Also

• $_SESSION
• The session.auto_start configuration directive
• session_id()

session_unregister

session_unregister -- Unregister a global variable from the current session

Description

bool session_unregister (string $name)

session_unregister() unregisters the global variable named name from the current session.

Parameters

name

The variable name.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use unset()
to unregister a session variable. Do not unset() $_SESSION itself as this will disable
the special function of the $_SESSION superglobal.

Caution

This function does not unset the corresponding global variable for name, it only
prevents the variable from being saved as part of the session. You must call unset() to
remove the corresponding global variable.

Caution

If you are using $_SESSION (or $HTTP_SESSION_VARS), do not use
session_register(), session_is_registered() and session_unregister().

session_unset

session_unset -- Free all session variables

Description

void session_unset (void)

The session_unset() function frees all session variables currently registered.

Return Values

No value is returned.

Notes

Note

If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use unset()
to unregister a session variable, i.e. unset ($_SESSION['varname']);.

Caution

Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable the
registering of session variables through the $_SESSION superglobal.

session_write_close

session_write_close -- Write session data and end session

Description

void session_write_close (void)

End the current session and store session data.

Session data is usually stored after your script terminated without the need to call
session_write_close(), but as session data is locked to prevent concurrent writes only one
script may operate on a session at any time. When using framesets together with sessions
you will experience the frames loading one by one due to this locking. You can reduce the
time needed to load all the frames by ending the session as soon as all changes to
session variables are done.

Return Values

No value is returned.

PostgreSQL Session Save Handler

Introduction

Note

This extension is not available on Windows platforms.

This module provides an additional session save handler for the session module using
» PostgreSQL as a storage system. A user-level session storage function may also be
used - session_set_save_handler(), but this module is written in C and therefore could be
twice as fast, compared to a session save handler written in PHP.

Session PgSQL is designed to scale any size of web sites and offers some advanced
features:

• session tables are created automatically
• automatic session table vacuum
• better garbage collection
• multiple PostgreSQL servers support
• automatic database server failover (switching)
• automatic database server load balancing if there are multiple PostgreSQL servers.
• short circuit UPDATE

http://www.postgresql.org/
http://www.postgresql.org/

Installing/Configuring

Requirements

You need at least PHP >= 4.3.0, and PostgreSQL >=7.2.0 as database server. libpq that
comes with PostgreSQL 7.2.0 or later (and header files to build) and » libmm (and header
files).

Installation

Short installation note:

• Untar the tar.gz archive into php4/ext (Latest official releases can be found at
SourceForge » PHP Form Extension Project)

• If the new directory is now called something like session_pgsql. You should name it to
session_pgsql (except you only want to build it as self-contained php-module).

• Run./buildconf in php4

• Run configure --with-session-pgsql (and your other options)

• make; make install

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PostgreSQL session save handler is still under development. Refer to the README file in
the source distribution for configuration details.

Resource Types

This extension has no resource types defined.

http://www.ossp.org/pkg/lib/mm/
http://sourceforge.net/projects/phpform-ext/

Table definitions

Session table definition
CREATE TABLE php_session (

sess_id text,

sess_name text,

sess_data text,

sess_created integer,

sess_modified integer,

sess_expire integer,

sess_addr_created text,

sess_addr_modified text,

sess_counter integer,

sess_error integer,

sess_warning integer,

sess_notice integer,

sess_err_message text,

sess_custom text

);

CREATE INDEX php_session_idx ON php_session USING BTREE (sess_id);

Warning

If you use HASH for INDEX, you'll have a deadlock problem when the server load is
very high. Even if it's unlikely to have a deadlock under normal operation, it can occur.
Do not use HASH for INDEX.

You may change the session table as long as all fields are defined.

Application variables table definition
CREATE TABLE php_app_vars (

app_modified integer,

app_name text,

app_vars text

);

Predefined Constants

This extension has no constants defined.

Session PgSQL Functions

Contact Information

I have at the moment not very much time to further develop this extension. I will implement
more and more features in the near future.

If you have comments, bug fixes, enhancements or want to help developing this, you can
drop me a mail at » yohgaki@php.net. Any help is very welcome.

mailto:yohgaki@php.net

session_pgsql_add_error

session_pgsql_add_error -- Increments error counts and sets last error message

Description

bool session_pgsql_add_error (int $error_level [, string $error_message])

Warning

This function is currently not documented; only its argument list is available.

Parameters

error_level

error_message

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• session_pgsql_get_error()

session_pgsql_get_error

session_pgsql_get_error -- Returns number of errors and last error message

Description

array session_pgsql_get_error ([bool $with_error_message])

Get the number of errors and optional the error messages.

Parameters

with_error_message

Set to TRUE the literal error message for each error is also returned.

Return Values

The number of errors are returned as array.

See Also

• session_pgsql_add_error()

session_pgsql_get_field

session_pgsql_get_field -- Get custom field value

Description

string session_pgsql_get_field (void)

Warning

This function is currently not documented; only its argument list is available.

See Also

• session_pgsql_set_field()

session_pgsql_reset

session_pgsql_reset -- Reset connection to session database servers

Description

bool session_pgsql_reset (void)

Reset the connection to the session database servers.

Return Values

Returns TRUE on success or FALSE on failure.

session_pgsql_set_field

session_pgsql_set_field -- Set custom field value

Description

bool session_pgsql_set_field (string $value)

Warning

This function is currently not documented; only its argument list is available.

Parameters

value

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• session_pgsql_get_field()

session_pgsql_status

session_pgsql_status -- Get current save handler status

Description

array session_pgsql_status (void)

Warning

This function is currently not documented; only its argument list is available.

Text Processing

Bulletin Board Code

Introduction

This extension aims to help parse BBCode text in order to convert it to HTML or another
markup language. It uses one pass parsing and provides great speed improvement over
the common approach based on regular expressions. Further more, it helps provide valid
HTML by reordering open / close tags and by automatically closing unclosed tags.

Since 0.10.1 It supports argument quoting with single quotes, double quotes and HTML
escaped double quotes.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/bbcode

An alternative solution, written in PHP, is the PEAR package » HTML_BBCodeParser.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

One resource is used in the BBCode extension: a BBCode_Container returned by
bbcode_create().

http://pecl.php.net/package/bbcode
http://pecl.php.net/package/bbcode
http://pear.php.net/package/HTML_BBCodeParser

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

BBCODE_TYPE_NOARG (integer)
This BBCode tag does not accept any arguments.

BBCODE_TYPE_SINGLE (integer)
This BBCode tag does not have a corresponding close tag.

BBCODE_TYPE_ARG (integer)
This BBCode tag need an argument.

BBCODE_TYPE_OPTARG (integer)
This BBCode tag accept an optional argument.

BBCODE_TYPE_ROOT (integer)
This BBCode tag is the special tag root (nesting level 0).

BBCODE_FLAGS_ARG_PARSING (integer)
This BBCode tag require argument sub-parsing (the argument is also parsed by the
BBCode extension). As Of 0.10.2 another parser can be used as argument parser.

BBCODE_FLAGS_CDATA_NOT_ALLOWED (integer)
This BBCode Tag does not accept content (it voids it automatically).

BBCODE_FLAGS_SMILEYS_ON (integer) - since 0.10.2
This BBCode Tag accepts smileys.

BBCODE_FLAGS_SMILEYS_OFF (integer) - since 0.10.2
This BBCode Tag does not accept smileys.

BBCODE_FLAGS_ONE_OPEN_PER_LEVEL (integer) - since 0.10.2
This BBCode Tag automatically closes if another tag of the same type is found at the
same nesting level.

BBCODE_FLAGS_REMOVE_IF_EMPTY (integer) - since 0.10.2
This BBCode Tag is automatically removed if content is empty it allows to produce
ligther HTML.

BBCODE_FLAGS_DENY_REOPEN_CHILD (integer) - since 0.10.3
This BBCode Tag does not allow unclosed childs to reopen when automatically closed.

BBCODE_ARG_DOUBLE_QUOTE (integer) - since 0.10.2
This is a parser option allowing argument quoting with double quotes (")

BBCODE_ARG_SINGLE_QUOTE (integer) - since 0.10.2
This is a parser option allowing argument quoting with single quotes (')

BBCODE_ARG_HTML_QUOTE (integer) - since 0.10.2
This is a parser option allowing argument quoting with HTML version of double quotes
(")

BBCODE_AUTO_CORRECT (integer) - since 0.10.2
This is a parser option changing the way errors are treated. It automatically closes tag
in the order they are opened. And treat tags with only an open tag as if there were a
close tag present.

BBCODE_CORRECT_REOPEN_TAGS (integer) - since 0.10.2
This is a parser option changing the way errors are treated. It automatically reopens
tag if close tags are not in the good order.

BBCODE_DISABLE_TREE_BUILD (integer) - since 0.10.2
This is a parser option disabling the BBCode parsing it can be useful if only the
"smiley" replacement must be used.

BBCODE_DEFAULT_SMILEYS_ON (integer) - since 0.10.2
This is a parser option setting smileys to ON if no flag is given at tag level.

BBCODE_DEFAULT_SMILEYS_OFF (integer) - since 0.10.2
This is a parser option setting smileys to OFF if no flag is given at tag level.

BBCODE_FORCE_SMILEYS_OFF (integer) - since 0.10.2
This is a parser option disabling completely the smileys parsing.

BBCODE_SMILEYS_CASE_INSENSITIVE (integer) - since 0.10.3
Use a case insensitive Detection for smileys instead of a simple binary search.

BBCODE_SET_FLAGS_SET (integer) - since 0.10.2
This permits to SET the complete flag set on a parser.

BBCODE_SET_FLAGS_ADD (integer) - since 0.10.2
This permits to switch a flag set ON on a parser.

BBCODE_SET_FLAGS_REMOVE (integer) - since 0.10.2
This permits to switch a flag set OFF on a parser.

BBCode Functions

bbcode_add_element

bbcode_add_element -- Adds a bbcode element

Description

bool bbcode_add_element (resource $bbcode_container, string $tag_name, array $
tag_rules)

Adds a tag to an existing BBCode_Container tag_set using tag_rules.

Parameters

bbcode_container

BBCode_Container resource, returned by bbcode_create().

tag_name

The new tag to add to the BBCode_Container tag_set.

tag_rules

An associative array containing the parsing rules; see bbcode_create() for the
available keys.

Return Values

Returns TRUE on success or FALSE on failure.

bbcode_add_smiley

bbcode_add_smiley -- Adds a smiley to the parser

Description

bool bbcode_add_smiley (resource $bbcode_container, string $smiley, string $
replace_by)

Adds a smiley to the parser

Parameters

bbcode_container

BBCode_Container resource, returned by bbcode_create().

smiley

The string that will be replaced when found.

replace_by

The string that replace smiley when found.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2460 - bbcode_add_smiley() usage example

<?php

/*

* Prepare the rule set

*/

$arrayBBCode=array(

 ''=> array('type'=>BBCODE_TYPE_ROOT,

 'childs'=>'!i'),

 'b'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'',

 'close_tag'=>''),

 'u'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<u>',

 'close_tag'=>'</u>',

 'flags'=>BBCODE_FLAGS_SMILEYS_OFF),

 'i'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<i>',

 'close_tag'=>'</i>',

 'childs'=>'b'),

);

/*

* Parsed Text

*/

$text=<<<EOF

[i] No parse Test [/i] :)

[b] Parsed, with smiley :([/b]

[u] Parsed, with no smiley :D [/u]

EOF;

/*

* Init the parser

*/

$BBHandler=bbcode_create($arrayBBCode);

/*

* Add Smiley rules to parser

*/

bbcode_add_smiley($BBHandler, ":)", "<img src=\"smiley.gif\" alt=\":)\"
/>");

bbcode_add_smiley($BBHandler, ":(", "");

bbcode_add_smiley($BBHandler, ":D", "");

bbcode_add_smiley($BBHandler, ":p", "");

bbcode_add_smiley($BBHandler, ":|", "<img src=\"special.gif\" alt=\":|\"
/>");

bbcode_add_smiley($BBHandler, ":6:", "");

/*

* Parse the text

*/

echo bbcode_parse($BBHandler,$text);

?>

The above example will output:

[i] No parse Test [/i]

 Parsed, with smiley

<u> Parsed, with no smiley :D </u>

bbcode_create

bbcode_create -- Create a BBCode Resource

Description

resource bbcode_create ([array $bbcode_initial_tags])

This function returns a new BBCode Resource used to parse BBCode strings.

Parameters

bbcode_initial_tags

An associative array containing the tag names as keys and parameters required to
correctly parse BBCode as their value. The following key/value pairs are supported:

• flags optional - a flag set based on the BBCODE_FLAGS_* constants.

• type required - an int indicating the type of tag. Use the BBCODE_TYPE_*
constants.

• open_tag required - the HTML replacement string for the open tag.

• close_tag required - the HTML replacement string for the close tag.

• default_arg optional - use this value as the default argument if none is provided
and tag_type is of type OPTARG.

• content_handling optional - Gives the callback used for modification of the content.
Object Oriented Notation supported only since 0.10.1 callback prototype is string
name(string $content, string $argument)

• param_handling optional - Gives the callback used for modification of the
argument. Object Oriented Notation supported only since 0.10.1 callback prototype
is string name(string $content, string $argument)

• childs optional - List of accepted child for the tag. The format of the list is a comma
separated string. If the list starts with ! it will be the list of rejected child for the tag.

• parent optional - List of accepted child for the tag. The format of the list is a comma
separated string.

Return Values

Returns a BBCode_Container

Examples

Example #2461 - bbcode_create() example

<?php

$arrayBBCode=array(

 ''=> array('type'=>BBCODE_TYPE_ROOT, 'childs'=>'!i'),

 'i'=> array('type'=>BBCODE_TYPE_NOARG, 'open_tag'=>'<i>',

 'close_tag'=>'</i>', 'childs'=>'b'),

 'url'=> array('type'=>BBCODE_TYPE_OPTARG,

 'open_tag'=>'', 'close_tag'=>'',

 'default_arg'=>'{CONTENT}',

 'childs'=>'b,i'),

 'img'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>''" />',

 'childs'=>''),

 'b'=> array('type'=>BBCODE_TYPE_NOARG, 'open_tag'=>'',

 'close_tag'=>''),

);

$text=<<<EOF

[b]Bold Text[/b]

[i]Italic Text[/i]

[url]http://www.php.net/[/url]

[url=http://pecl.php.net/][b]Content Text[/b][/url]

[img]http://static.php.net/www.php.net/images/php.gif[/img]

[url=http://www.php.net/]

[img]http://static.php.net/www.php.net/images/php.gif[/img]

[/url]

EOF;

$BBHandler=bbcode_create($arrayBBCode);

echo bbcode_parse($BBHandler,$text);

?>

The above example will output:

Bold Text

<i>Italic Text</i>

http://www.php.net/

Content Text

[img]http://static.php.net/www.php.net/images/php.gif[/img]

bbcode_destroy

bbcode_destroy -- Close BBCode_container resource

Description

bool bbcode_destroy (resource $bbcode_container)

This function closes the resource opened by bbcode_create().

Parameters

bbcode

BBCode_Container resource returned by bbcode_create().

Return Values

Returns TRUE on success or FALSE on failure.

bbcode_parse

bbcode_parse -- Parse a string following a given rule set

Description

string bbcode_parse (resource $bbcode_container, string $to_parse)

This function parse the string to_parse following the rules in the bbcode_container created
by bbcode_create()

Parameters

bbcode_container

BBCode_Container resource returned by bbcode_create().

to_parse

The string we need to parse.

Return Values

Returns TRUE on success or FALSE on failure.

bbcode_set_arg_parser

bbcode_set_arg_parser -- Attach another parser in order to use another rule set for
argument parsing

Description

bool bbcode_set_arg_parser (resource $bbcode_container, resource $
bbcode_arg_parser)

Attaches another parser to the bbcode_container. This parser is used only when
arguments must be parsed. If this function is not used, the default argument parser is the
parser itself.

Parameters

bbcode_container

BBCode_Container resource, returned by bbcode_create().

bbcode_arg_parser

BBCode_Container resource, returned by bbcode_create(). It will be used only for
parsed arguments

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2462 - bbcode_set_arg_parser() usage example

<?php

/*

* Generating bbcode ruleset for main parser

*/

$arrayBBCode=array(

 'quote'=> array('type'=>BBCODE_TYPE_ARG,

 'open_tag'=>'<quote><h4>Source: {PARAM}</h4>',

 'close_tag'=>'</quote>',

'flags'=>BBCODE_FLAGS_REMOVE_IF_EMPTY|BBCODE_FLAGS_ARG_PARSING),

 'b'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'', 'close_tag'=>'',

 'flags'=>BBCODE_FLAGS_REMOVE_IF_EMPTY),

 'u'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<u>', 'close_tag'=>'</u>',

 'flags'=>BBCODE_FLAGS_SMILEYS_OFF |

BBCODE_FLAGS_REMOVE_IF_EMPTY | BBCODE_FLAGS_SMILEYS_OFF),

 'i'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<i>', 'close_tag'=>'</i>',

 'flags'=>BBCODE_FLAGS_REMOVE_IF_EMPTY),

);

/*

* Generating bbcode ruleset for argument parser

*/

$arrayBBCode_arg=array(

 'b'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<b class="sub">', 'close_tag'=>'',

 'flags'=>BBCODE_FLAGS_REMOVE_IF_EMPTY),

 'u'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<u>', 'close_tag'=>'</u>',

 'flags'=>BBCODE_FLAGS_SMILEYS_OFF |
BBCODE_FLAGS_REMOVE_IF_EMPTY | BBCODE_FLAGS_SMILEYS_OFF),

 'i'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<i>', 'close_tag'=>'</i>',

 'flags'=>BBCODE_FLAGS_REMOVE_IF_EMPTY),

);

/*

* Text we are going to parse

*/

$text=<<<EOF

[quote="[b]Test[/b]"]

Foo :)

[/quote]

[b]Bar example :)[/b] :)

EOF;

/*

* Init the two parsers

*/

$BBHandler=bbcode_create($arrayBBCode);

$BBArgHandler=bbcode_create($arrayBBCode_arg);

/*

* Setting Flags on the parsers

*/

bbcode_set_flags($BBHandler,

BBCODE_CORRECT_REOPEN_TAGS|BBCODE_DEFAULT_SMILEYS_ON|BBCODE_ARG_DOUBLE_QUOTE
|

BBCODE_ARG_SINGLE_QUOTE|BBCODE_ARG_HTML_QUOTE,BBCODE_SET_FLAGS_SET);

bbcode_set_flags($BBArgHandler,

BBCODE_CORRECT_REOPEN_TAGS|BBCODE_DEFAULT_SMILEYS_ON|BBCODE_ARG_DOUBLE_QUOTE
|

BBCODE_ARG_SINGLE_QUOTE|BBCODE_ARG_HTML_QUOTE,BBCODE_SET_FLAGS_SET);

/*

* Setting $BBArgHandler as the BBHandler argument parser

*/

bbcode_set_arg_parser($BBHandler,$BBArgHandler);

/*

* Adding Smileys handling rules to Main parser

*/

bbcode_add_smiley($BBHandler, ":)", "<img src=\"smiley.gif\" alt=\":)\"
/>");

/*

* Use the main parser to parse text

*/

echo bbcode_parse($BBHandler,$text);

?>

The above example will output:

<quote><h4>Source: <b class="sub">Test</h4>

Foo

</quote>

Bar example :)

bbcode_set_flags

bbcode_set_flags -- Set or alter parser options

Description

bool bbcode_set_flags (resource $bbcode_container, int $flags [, int $mode])

Set or alter parser options

Parameters

bbcode_container

BBCode_Container resource, returned by bbcode_create().

flags

The flag set that must be applied to the bbcode_container options

mode

One of the BBCODE_SET_FLAGS_* constant to set, unset a specific flag set or to
replace the flag set by flags.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2463 - bbcode_set_flags() usage example

<?php

/*

* Preparing RuleSet

*/

$arrayBBCode=array(

 'b'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'', 'close_tag'=>''),

 'u'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<u>', 'close_tag'=>'</u>'),

 'i'=> array('type'=>BBCODE_TYPE_NOARG,

 'open_tag'=>'<i>', 'close_tag'=>'</i>'),

);

/*

* Paired incorrectly nested BBCode

*/

$text="[i] Parser [b] Auto Correction [/i] at work [/b]\n";

$BBHandler=bbcode_create($arrayBBCode);

echo bbcode_parse($BBHandler,$text);

// Enabling reopening of automaticaly closed elements

bbcode_set_flags($BBHandler,BBCODE_CORRECT_REOPEN_TAGS,

 BBCODE_SET_FLAGS_SET);

echo bbcode_parse($BBHandler,$text);

/*

* Unpaired incorrectly nested BBCode

*/

$text="[i] Parser [b] Auto Correction [/i] at work\n";

echo bbcode_parse($BBHandler,$text);

// Enabling automatic close of pending tags

bbcode_set_flags($BBHandler,

 BBCODE_CORRECT_REOPEN_TAGS|BBCODE_AUTO_CORRECT,

 BBCODE_SET_FLAGS_SET);

echo bbcode_parse($BBHandler,$text);

?>

The above example will output:

<i> Parser Auto Correction </i> at work

<i> Parser Auto Correction </i> at work

<i> Parser [b] Auto Correction </i> at work

<i> Parser Auto Correction </i> at work

Regular Expressions (Perl-Compatible)

Introduction

The syntax for patterns used in these functions closely resembles Perl. The expression
must be enclosed in the delimiters, a forward slash (/), for example. Any character can be
used for delimiter as long as it's not alphanumeric or backslash (\). If the delimiter
character has to be used in the expression itself, it needs to be escaped by backslash.
Since PHP 4.0.4, you can also use Perl-style (), {}, [], and <> matching delimiters. See
Pattern Syntax for detailed explanation.

The ending delimiter may be followed by various modifiers that affect the matching. See
Pattern Modifiers.

PHP also supports regular expressions using a POSIX-extended syntax using the
POSIX-extended regex functions.

Note

This extension maintains a global per-thread cache of compiled regular expressions
(up to 4096).

Warning

You should be aware of some limitations of PCRE. Read » http://www.pcre.org/pcre.txt
for more info.

http://www.pcre.org/pcre.txt

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Beginning with PHP 4.2.0 these functions are enabled by default. You can disable the pcre
functions with --without-pcre-regex. Use --with-pcre-regex=DIR to specify DIR where
PCRE's include and library files are located, if not using bundled library. For older versions
you have to configure and compile PHP with --with-pcre-regex[=DIR] in order to use these
functions.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

As of PHP 5.3.0 this extension cannot be disabled and is therefore always present.

It is still possible to build against an external PCRE library by using
--with-pcre-regex=DIR

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

PCRE Configuration Options

Name Default Changeable Changelog

pcre.backtrack_limit "100000" PHP_INI_ALL Available since PHP
5.2.0.

pcre.recursion_limit "100000" PHP_INI_ALL Available since PHP
5.2.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

pcre.backtrack_limit integer
PCRE's backtracking limit.

pcre.recursion_limit integer
PCRE's recursion limit. Please note that if you set this value to a high number you may
consume all the available process stack and eventually crash PHP (due to reaching
the stack size limit imposed by the Operating System).

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PREG constants

constant description

PREG_PATTERN_ORDER Orders results so that $matches[0] is an
array of full pattern matches, $matches[1] is
an array of strings matched by the first
parenthesized subpattern, and so on. This
flag is only used with preg_match_all().

PREG_SET_ORDER Orders results so that $matches[0] is an
array of first set of matches, $matches[1] is
an array of second set of matches, and so
on. This flag is only used with
preg_match_all().

PREG_OFFSET_CAPTURE See the description of
PREG_SPLIT_OFFSET_CAPTURE. This
flag is available since PHP 4.3.0.

PREG_SPLIT_NO_EMPTY This flag tells preg_split() to return only
non-empty pieces.

PREG_SPLIT_DELIM_CAPTURE This flag tells preg_split() to capture
parenthesized expression in the delimiter
pattern as well. This flag is available since
PHP 4.0.5.

PREG_SPLIT_OFFSET_CAPTURE If this flag is set, for every occurring match
the appendant string offset will also be
returned. Note that this changes the return
values in an array where every element is
an array consisting of the matched string at
offset 0 and its string offset within subject at
offset 1. This flag is available since PHP
4.3.0 and is only used for preg_split().

PREG_NO_ERROR Returned by preg_last_error() if there were
no errors. Available since PHP 5.2.0.

PREG_INTERNAL_ERROR Returned by preg_last_error() if there was
an internal PCRE error. Available since PHP
5.2.0.

PREG_BACKTRACK_LIMIT_ERROR Returned by preg_last_error() if backtrack
limit was exhausted. Available since PHP
5.2.0.

PREG_RECURSION_LIMIT_ERROR Returned by preg_last_error() if recursion
limit was exhausted. Available since PHP
5.2.0.

PREG_BAD_UTF8_ERROR Returned by preg_last_error() if the last
error was caused by malformed UTF-8 data
(only when running a regex in UTF-8 mode
). Available since PHP 5.2.0.

PREG_BAD_UTF8_OFFSET_ERROR Returned by preg_last_error() if the offset
didn't correspond to the begin of a valid
UTF-8 code point (only when running a
regex in UTF-8 mode). Available since PHP
5.3.0.

PCRE_VERSION PCRE version and release date (e.g. "7.0
18-Dec-2006"). Available since PHP 5.2.4.

Examples

Example #2464 - Examples of valid patterns

• /<\/\w+>/

• |(\d{3})-\d+|Sm

• /^(?i)php[34]/

• {^\s+(\s+)?$}

Example #2465 - Examples of invalid patterns

• /href='(.*)' - missing ending delimiter

• /\w+\s*\w+/J - unknown modifier 'J'

• 1-\d3-\d3-\d4| - missing starting delimiter

PCRE Patterns

Pattern Modifiers

The current possible PCRE modifiers are listed below. The names in parentheses refer to
internal PCRE names for these modifiers. Spaces and newlines are ignored in modifiers,
other characters cause error.

i (PCRE_CASELESS)
If this modifier is set, letters in the pattern match both upper and lower case letters.

m (PCRE_MULTILINE)
By default, PCRE treats the subject string as consisting of a single "line" of characters
(even if it actually contains several newlines). The "start of line" metacharacter (^)
matches only at the start of the string, while the "end of line" metacharacter ($)
matches only at the end of the string, or before a terminating newline (unless D
modifier is set). This is the same as Perl. When this modifier is set, the "start of line"
and "end of line" constructs match immediately following or immediately before any
newline in the subject string, respectively, as well as at the very start and end. This is
equivalent to Perl's /m modifier. If there are no "\n" characters in a subject string, or no
occurrences of ^ or $ in a pattern, setting this modifier has no effect.

s (PCRE_DOTALL)
If this modifier is set, a dot metacharacter in the pattern matches all characters,
including newlines. Without it, newlines are excluded. This modifier is equivalent to
Perl's /s modifier. A negative class such as [^a] always matches a newline character,
independent of the setting of this modifier.

x (PCRE_EXTENDED)
If this modifier is set, whitespace data characters in the pattern are totally ignored
except when escaped or inside a character class, and characters between an
unescaped # outside a character class and the next newline character, inclusive, are
also ignored. This is equivalent to Perl's /x modifier, and makes it possible to include
comments inside complicated patterns. Note, however, that this applies only to data
characters. Whitespace characters may never appear within special character
sequences in a pattern, for example within the sequence (?(which introduces a
conditional subpattern.

e (PREG_REPLACE_EVAL)
If this modifier is set, preg_replace() does normal substitution of backreferences in the
replacement string, evaluates it as PHP code, and uses the result for replacing the
search string. Single quotes, double quotes, backslashes and NULL chars will be
escaped by backslashes in substituted backreferences. Only preg_replace() uses this
modifier; it is ignored by other PCRE functions.

A (PCRE_ANCHORED)
If this modifier is set, the pattern is forced to be "anchored", that is, it is constrained to
match only at the start of the string which is being searched (the "subject string"). This
effect can also be achieved by appropriate constructs in the pattern itself, which is the
only way to do it in Perl.

D (PCRE_DOLLAR_ENDONLY)
If this modifier is set, a dollar metacharacter in the pattern matches only at the end of
the subject string. Without this modifier, a dollar also matches immediately before the
final character if it is a newline (but not before any other newlines). This modifier is
ignored if m modifier is set. There is no equivalent to this modifier in Perl.

S
When a pattern is going to be used several times, it is worth spending more time
analyzing it in order to speed up the time taken for matching. If this modifier is set, then
this extra analysis is performed. At present, studying a pattern is useful only for
non-anchored patterns that do not have a single fixed starting character.

U (PCRE_UNGREEDY)
This modifier inverts the "greediness" of the quantifiers so that they are not greedy by
default, but become greedy if followed by "?". It is not compatible with Perl. It can also
be set by a (?U) modifier setting within the pattern or by a question mark behind a
quantifier (e.g..*?).

X (PCRE_EXTRA)
This modifier turns on additional functionality of PCRE that is incompatible with Perl.
Any backslash in a pattern that is followed by a letter that has no special meaning
causes an error, thus reserving these combinations for future expansion. By default, as
in Perl, a backslash followed by a letter with no special meaning is treated as a literal.
There are at present no other features controlled by this modifier.

J (PCRE_INFO_JCHANGED)
The (?J) internal option setting changes the local PCRE_DUPNAMES option. Allow
duplicate names for subpatterns.

u (PCRE_UTF8)
This modifier turns on additional functionality of PCRE that is incompatible with Perl.
Pattern strings are treated as UTF-8. This modifier is available from PHP 4.1.0 or
greater on Unix and from PHP 4.2.3 on win32. UTF-8 validity of the pattern is checked
since PHP 4.3.5.

Pattern Syntax

Description

The PCRE library is a set of functions that implement regular expression pattern matching
using the same syntax and semantics as Perl 5, with just a few differences (see below).
The current implementation corresponds to Perl 5.005.

Differences From Perl

The differences described here are with respect to Perl 5.005.

• By default, a whitespace character is any character that the C library function isspace()
recognizes, though it is possible to compile PCRE with alternative character type
tables. Normally isspace() matches space, formfeed, newline, carriage return,
horizontal tab, and vertical tab. Perl 5 no longer includes vertical tab in its set of
whitespace characters. The \v escape that was in the Perl documentation for a long
time was never in fact recognized. However, the character itself was treated as
whitespace at least up to 5.002. In 5.004 and 5.005 it does not match \s.

• PCRE does not allow repeat quantifiers on lookahead assertions. Perl permits them,
but they do not mean what you might think. For example, (?!a){3} does not assert that
the next three characters are not "a". It just asserts that the next character is not "a"
three times.

• Capturing subpatterns that occur inside negative lookahead assertions are counted,
but their entries in the offsets vector are never set. Perl sets its numerical variables
from any such patterns that are matched before the assertion fails to match something
(thereby succeeding), but only if the negative lookahead assertion contains just one
branch.

• Though binary zero characters are supported in the subject string, they are not allowed
in a pattern string because it is passed as a normal C string, terminated by zero. The
escape sequence "\x00" can be used in the pattern to represent a binary zero.

• The following Perl escape sequences are not supported: \l, \u, \L, \U. In fact these are
implemented by Perl's general string-handling and are not part of its pattern matching
engine.

• The Perl \G assertion is not supported as it is not relevant to single pattern matches.

• Fairly obviously, PCRE does not support the (?{code}) and (??{code}) construction.
However, there is support for recursive patterns.

• There are at the time of writing some oddities in Perl 5.005_02 concerned with the
settings of captured strings when part of a pattern is repeated. For example, matching
"aba" against the pattern /^(a(b)?)+$/ sets $2 to the value "b", but matching "aabbaa"
against /^(aa(bb)?)+$/ leaves $2 unset. However, if the pattern is changed to
/^(aa(b(b))?)+$/ then $2 (and $3) get set. In Perl 5.004 $2 is set in both cases, and that
is also TRUE of PCRE. If in the future Perl changes to a consistent state that is

different, PCRE may change to follow.

• Another as yet unresolved discrepancy is that in Perl 5.005_02 the pattern
/^(a)?(?(1)a|b)+$/ matches the string "a", whereas in PCRE it does not. However, in
both Perl and PCRE /^(a)?a/ matched against "a" leaves $1 unset.

• PCRE provides some extensions to the Perl regular expression facilities:

• Although lookbehind assertions must match fixed length strings, each alternative
branch of a lookbehind assertion can match a different length of string. Perl 5.005
requires them all to have the same length.

• If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
meta-character matches only at the very end of the string.

• If PCRE_EXTRA is set, a backslash followed by a letter with no special meaning is
faulted.

• If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is inverted,
that is, by default they are not greedy, but if followed by a question mark they are.

Regular Expression Details

Introduction

The syntax and semantics of the regular expressions supported by PCRE are described
below. Regular expressions are also described in the Perl documentation and in a number
of other books, some of which have copious examples. Jeffrey Friedl's "Mastering Regular
Expressions", published by O'Reilly (ISBN 1-56592-257-3), covers them in great detail.
The description here is intended as reference documentation.

A regular expression is a pattern that is matched against a subject string from left to right.
Most characters stand for themselves in a pattern, and match the corresponding
characters in the subject. As a trivial example, the pattern The quick brown fox matches a
portion of a subject string that is identical to itself.

Meta-characters

The power of regular expressions comes from the ability to include alternatives and
repetitions in the pattern. These are encoded in the pattern by the use of meta-characters,
which do not stand for themselves but instead are interpreted in some special way.

There are two different sets of meta-characters: those that are recognized anywhere in the
pattern except within square brackets, and those that are recognized in square brackets.
Outside square brackets, the meta-characters are as follows:
\

general escape character with several uses

^
assert start of subject (or line, in multiline mode)

$
assert end of subject (or line, in multiline mode)

.
match any character except newline (by default)

[
start character class definition

]
end character class definition

|
start of alternative branch

(
start subpattern

)
end subpattern

?
extends the meaning of (, also 0 or 1 quantifier, also quantifier minimizer

*
0 or more quantifier

+
1 or more quantifier

{
start min/max quantifier

}
end min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character
class the only meta-characters are:
\

general escape character

^
negate the class, but only if the first character

-
indicates character range

]
terminates the character class

The following sections describe the use of each of the meta-characters.

Backslash

The backslash character has several uses. Firstly, if it is followed by a non-alphanumeric
character, it takes away any special meaning that character may have. This use of
backslash as an escape character applies both inside and outside character classes.

For example, if you want to match a "*" character, you write "*" in the pattern. This applies
whether or not the following character would otherwise be interpreted as a meta-character,
so it is always safe to precede a non-alphanumeric with "\" to specify that it stands for
itself. In particular, if you want to match a backslash, you write "\\".

Note

Single and double quoted PHP strings have special meaning of backslash. Thus if \
has to be matched with a regular expression \\, then "\\\\" or '\\\\' must be used in PHP
code.

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern
(other than in a character class) and characters between a "#" outside a character class
and the next newline character are ignored. An escaping backslash can be used to include
a whitespace or "#" character as part of the pattern.

A second use of backslash provides a way of encoding non-printing characters in patterns
in a visible manner. There is no restriction on the appearance of non-printing characters,
apart from the binary zero that terminates a pattern, but when a pattern is being prepared
by text editing, it is usually easier to use one of the following escape sequences than the
binary character it represents:

\a
alarm, that is, the BEL character (hex 07)

\cx
"control-x", where x is any character

\e
escape (hex 1B)

\f
formfeed (hex 0C)

\n
newline (hex 0A)

\r
carriage return (hex 0D)

\t
tab (hex 09)

\xhh
character with hex code hh

\ddd
character with octal code ddd, or backreference

The precise effect of " \cx " is as follows: if " x " is a lower case letter, it is converted to
upper case. Then bit 6 of the character (hex 40) is inverted. Thus " \cz " becomes hex 1A,
but " \c{ " becomes hex 3B, while " \c; " becomes hex 7B.

After " \x ", up to two hexadecimal digits are read (letters can be in upper or lower case). In
UTF-8 mode, " \x{...} " is allowed, where the contents of the braces is a string of
hexadecimal digits. It is interpreted as a UTF-8 character whose code number is the given
hexadecimal number. The original hexadecimal escape sequence, \xhh, matches a
two-byte UTF-8 character if the value is greater than 127.

After " \0 " up to two further octal digits are read. In both cases, if there are fewer than two
digits, just those that are present are used. Thus the sequence " \0\x\07 " specifies two
binary zeros followed by a BEL character. Make sure you supply two digits after the initial
zero if the character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a
character class, PCRE reads it and any following digits as a decimal number. If the
number is less than 10, or if there have been at least that many previous capturing left
parentheses in the expression, the entire sequence is taken as a back reference. A
description of how this works is given later, following the discussion of parenthesized
subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not
been that many capturing subpatterns, PCRE re-reads up to three octal digits following the
backslash, and generates a single byte from the least significant 8 bits of the value. Any
subsequent digits stand for themselves. For example:

\040
is another way of writing a space

\40
is the same, provided there are fewer than 40 previous capturing subpatterns

\7
is always a back reference

\11
might be a back reference, or another way of writing a tab

\011
is always a tab

\0113
is a tab followed by the character "3"

\113
is the character with octal code 113 (since there can be no more than 99 back
references)

\377
is a byte consisting entirely of 1 bits

\81
is either a back reference, or a binary zero followed by the two characters "8" and "1"

Note that octal values of 100 or greater must not be introduced by a leading zero, because
no more than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and outside
character classes. In addition, inside a character class, the sequence " \b " is interpreted
as the backspace character (hex 08). Outside a character class it has a different meaning
(see below).

The third use of backslash is for specifying generic character types:

\d
any decimal digit

\D
any character that is not a decimal digit

\h
any horizontal whitespace character (since PHP 5.2.4)

\H
any character that is not a horizontal whitespace character (since PHP 5.2.4)

\s
any whitespace character

\S
any character that is not a whitespace character

\v
any vertical whitespace character (since PHP 5.2.4)

\V
any character that is not a vertical whitespace character (since PHP 5.2.4)

\w
any "word" character

\W
any "non-word" character

Each pair of escape sequences partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair.

A "word" character is any letter or digit or the underscore character, that is, any character
which can be part of a Perl " word ". The definition of letters and digits is controlled by
PCRE's character tables, and may vary if locale-specific matching is taking place. For
example, in the "fr" (French) locale, some character codes greater than 128 are used for
accented letters, and these are matched by \w.

These character type sequences can appear both inside and outside character classes.
They each match one character of the appropriate type. If the current matching point is at
the end of the subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a
condition that has to be met at a particular point in a match, without consuming any
characters from the subject string. The use of subpatterns for more complicated assertions
is described below. The backslashed assertions are

\b
word boundary

\B
not a word boundary

\A
start of subject (independent of multiline mode)

\Z
end of subject or newline at end (independent of multiline mode)

\z
end of subject (independent of multiline mode)

\G
first matching position in subject

These assertions may not appear in character classes (but note that " \b " has a different
meaning, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the
previous character do not both match \w or \W (i.e. one matches \w and the other matches
\W), or the start or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described
below) in that they only ever match at the very start and end of the subject string, whatever
options are set. They are not affected by the PCRE_MULTILINE or
PCRE_DOLLAR_ENDONLY options. The difference between \Z and \z is that \Z matches
before a newline that is the last character of the string as well as at the end of the string,
whereas \z matches only at the end.

The \G assertion is true only when the current matching position is at the start point of the
match, as specified by the offset argument of preg_match(). It differs from \A when the
value of offset is non-zero. It is available since PHP 4.3.3.

\Q and \E can be used to ignore regexp metacharacters in the pattern since PHP 4.3.3.
For example: \w+\Q.$.\E$will match one or more word characters, followed by literals.$.
and anchored at the end of the string.

\K can be used to reset the match start since PHP 5.2.4. For example, the pattern foo\Kbar
matches "foobar", but reports that it has matched "bar". The use of \K does not interfere
with the setting of captured substrings. For example, when the pattern (foo)\Kbar matches
"foobar", the first substring is still set to "foo".

Unicode character properties

Since PHP 4.4.0 and 5.1.0, three additional escape sequences to match generic character
types are available when UTF-8 mode is selected. They are:

\p{xx}
a character with the xx property

\P{xx}
a character without the xx property

\X
an extended Unicode sequence

The property names represented by xx above are limited to the Unicode general category
properties. Each character has exactly one such property, specified by a two-letter
abbreviation. For compatibility with Perl, negation can be specified by including a
circumflex between the opening brace and the property name. For example, \p{^Lu} is the
same as \P{Lu}.

If only one letter is specified with \p or \P, it includes all the properties that start with that
letter. In this case, in the absence of negation, the curly brackets in the escape sequence
are optional; these two examples have the same effect:
\p{L} \pL

Supported property codes

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lower case letter

Lm Modifier letter

Lo Other letter

Lt Title case letter

Lu Upper case letter

M Mark

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator

Extended properties such as "Greek" or "InMusicalSymbols" are not supported by PCRE.

Specifying caseless matching does not affect these escape sequences. For example,
\p{Lu} always matches only upper case letters.

The \X escape matches any number of Unicode characters that form an extended Unicode
sequence. \X is equivalent to (?>\PM\pM*).

That is, it matches a character without the "mark" property, followed by zero or more
characters with the "mark" property, and treats the sequence as an atomic group (see
below). Characters with the "mark" property are typically accents that affect the preceding
character.

Matching characters by Unicode property is not fast, because PCRE has to search a
structure that contains data for over fifteen thousand characters. That is why the traditional
escape sequences such as \d and \w do not use Unicode properties in PCRE.

Circumflex and dollar

Outside a character class, in the default matching mode, the circumflex character is an
assertion which is true only if the current matching point is at the start of the subject string.
Inside a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are
involved, but it should be the first thing in each alternative in which it appears if the pattern
is ever to match that branch. If all possible alternatives start with a circumflex, that is, if the
pattern is constrained to match only at the start of the subject, it is said to be an
"anchored" pattern. (There are also other constructs that can cause a pattern to be
anchored.)

A dollar character is an assertion which is TRUE only if the current matching point is at the
end of the subject string, or immediately before a newline character that is the last
character in the string (by default). Dollar need not be the last character of the pattern if a
number of alternatives are involved, but it should be the last item in any branch in which it
appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the string,

by setting the PCRE_DOLLAR_ENDONLY option at compile or matching time. This does
not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
PCRE_MULTILINE option is set. When this is the case, they match immediately after and
immediately before an internal "\n" character, respectively, in addition to matching at the
start and end of the subject string. For example, the pattern /^abc$/ matches the subject
string "def\nabc" in multiline mode, but not otherwise. Consequently, patterns that are
anchored in single line mode because all branches start with "^" are not anchored in
multiline mode. The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is
set.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the
subject in both modes, and if all branches of a pattern start with \A is it always anchored,
whether PCRE_MULTILINE is set or not.

Full stop

Outside a character class, a dot in the pattern matches any one character in the subject,
including a non-printing character, but not (by default) newline. If the PCRE_DOTALL
option is set, then dots match newlines as well. The handling of dot is entirely independent
of the handling of circumflex and dollar, the only relationship being that they both involve
newline characters. Dot has no special meaning in a character class.

\C can be used to match single byte. It makes sense in UTF-8 mode where full stop
matches the whole character which can consist of multiple bytes.

Square brackets

An opening square bracket introduces a character class, terminated by a closing square
bracket. A closing square bracket on its own is not special. If a closing square bracket is
required as a member of the class, it should be the first data character in the class (after
an initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the
set of characters defined by the class, unless the first character in the class is a circumflex,
in which case the subject character must not be in the set defined by the class. If a
circumflex is actually required as a member of the class, ensure it is not the first character,
or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou]
matches any character that is not a lower case vowel. Note that a circumflex is just a
convenient notation for specifying the characters which are in the class by enumerating
those that are not. It is not an assertion: it still consumes a character from the subject
string, and fails if the current pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and
lower case versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a
caseless [^aeiou] does not match "A", whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever
the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class such as [^a]
will always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character
class. For example, [d-m] matches any letter between d and m, inclusive. If a minus
character is required in a class, it must be escaped with a backslash or appear in a
position where it cannot be interpreted as indicating a range, typically as the first or last
character in the class.

It is not possible to have the literal character "]" as the end character of a range. A pattern
such as [W-]46] is interpreted as a class of two characters ("W" and "-") followed by a
literal string "46]", so it would match "W46]" or "-46]". However, if the "]" is escaped with a
backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a single class
containing a range followed by two separate characters. The octal or hexadecimal
representation of "]" can also be used to end a range.

Ranges operate in ASCII collating sequence. They can also be used for characters
specified numerically, for example [\000-\037]. If a range that includes letters is used when
caseless matching is set, it matches the letters in either case. For example, [W-c] is
equivalent to [][\^_`wxyzabc], matched caselessly, and if character tables for the "fr" locale
are in use, [\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and
add the characters that they match to the class. For example, [\dABCDEF] matches any
hexadecimal digit. A circumflex can conveniently be used with the upper case character
types to specify a more restricted set of characters than the matching lower case type. For
example, the class [^\W_] matches any letter or digit, but not underscore.

All non-alphanumeric characters other than \, -, ^ (at the start) and the terminating] are
non-special in character classes, but it does no harm if they are escaped.

Vertical bar

Vertical bar characters are used to separate alternative patterns. For example, the pattern
gilbert|sullivan matches either "gilbert" or "sullivan". Any number of alternatives may
appear, and an empty alternative is permitted (matching the empty string). The matching
process tries each alternative in turn, from left to right, and the first one that succeeds is
used. If the alternatives are within a subpattern (defined below), "succeeds" means
matching the rest of the main pattern as well as the alternative in the subpattern.

Internal option setting

The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL,
PCRE_UNGREEDY, PCRE_EXTRA, PCRE_EXTENDED and PCRE_DUPNAMES can be
changed from within the pattern by a sequence of Perl option letters enclosed between
"(?" and ")". The option letters are:

Internal option letters

i for PCRE_CASELESS

m for PCRE_MULTILINE

s for PCRE_DOTALL

x for PCRE_EXTENDED

U for PCRE_UNGREEDY

X for PCRE_EXTRA

J for PCRE_INFO_JCHANGED

For example, (?im) sets caseless, multiline matching. It is also possible to unset these
options by preceding the letter with a hyphen, and a combined setting and unsetting such
as (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting
PCRE_DOTALL and PCRE_EXTENDED, is also permitted. If a letter appears both before
and after the hyphen, the option is unset.

When an option change occurs at top level (that is, not inside subpattern parentheses), the
change applies to the remainder of the pattern that follows. So /ab(?i)c/ matches only
"abc" and "abC". This behaviour has been changed in PCRE 4.0, which is bundled since
PHP 4.3.3. Before those versions, /ab(?i)c/ would perform as /abc/i (e.g. matching "ABC"
and "aBc").

If an option change occurs inside a subpattern, the effect is different. This is a change of
behaviour in Perl 5.005. An option change inside a subpattern affects only that part of the
subpattern that follows it, so (a(?i)b)c matches abc and aBc and no other strings
(assuming PCRE_CASELESS is not used). By this means, options can be made to have
different settings in different parts of the pattern. Any changes made in one alternative do
carry on into subsequent branches within the same subpattern. For example, (a(?i)b|c)
matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is
abandoned before the option setting. This is because the effects of option settings happen
at compile time. There would be some very weird behaviour otherwise.

The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in
the same way as the Perl-compatible options by using the characters U and X
respectively. The (?X) flag setting is special in that it must always occur earlier in the
pattern than any of the additional features it turns on, even when it is at top level. It is best
put at the start.

Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking
part of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern cat(aract|erpillar|) matches

one of the words "cat", "cataract", or "caterpillar". Without the parentheses, it would match
"cataract", "erpillar" or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole
pattern matches, that portion of the subject string that matched the subpattern is passed
back to the caller via the ovector argument of pcre_exec(). Opening parentheses are
counted from left to right (starting from 1) to obtain the numbers of the capturing
subpatterns.

For example, if the string "the red king" is matched against the pattern the ((red|white)
(king|queen)) the captured substrings are "red king", "red", and "king", and are numbered
1, 2, and 3.

The fact that plain parentheses fulfil two functions is not always helpful. There are often
times when a grouping subpattern is required without a capturing requirement. If an
opening parenthesis is followed by "?:", the subpattern does not do any capturing, and is
not counted when computing the number of any subsequent capturing subpatterns. For
example, if the string "the white queen" is matched against the pattern the ((?:red|white)
(king|queen)) the captured substrings are "white queen" and "queen", and are numbered 1
and 2. The maximum number of captured substrings is 99, and the maximum number of all
subpatterns, both capturing and non-capturing, is 200.

As a convenient shorthand, if any option settings are required at the start of a
non-capturing subpattern, the option letters may appear between the "?" and the ":". Thus
the two patterns
(?i:saturday|sunday) (?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to
right, and options are not reset until the end of the subpattern is reached, an option setting
in one branch does affect subsequent branches, so the above patterns match "SUNDAY"
as well as "Saturday".

It is possible to name the subpattern with (?P<name>pattern) since PHP 4.3.3. Array with
matches will contain the match indexed by the string alongside the match indexed by a
number, then.

Repetition

Repetition is specified by quantifiers, which can follow any of the following items:

• a single character, possibly escaped

• the . metacharacter

• a character class

• a back reference (see next section)

• a parenthesized subpattern (unless it is an assertion - see below)

The general repetition quantifier specifies a minimum and maximum number of permitted
matches, by giving the two numbers in curly brackets (braces), separated by a comma.

The numbers must be less than 65536, and the first must be less than or equal to the
second. For example: z{2,4} matches "zz", "zzz", or "zzzz". A closing brace on its own is
not a special character. If the second number is omitted, but the comma is present, there
is no upper limit; if the second number and the comma are both omitted, the quantifier
specifies an exact number of required matches. Thus [aeiou]{3,} matches at least 3
successive vowels, but may match many more, while \d{8} matches exactly 8 digits. An
opening curly bracket that appears in a position where a quantifier is not allowed, or one
that does not match the syntax of a quantifier, is taken as a literal character. For example,
{,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item
and the quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have
single-character abbreviations:

Single-character quantifiers

* equivalent to {0,}

+ equivalent to {1,}

? equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no
characters with a quantifier that has no upper limit, for example: (a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now
accepted, but if any repetition of the subpattern does in fact match no characters, the loop
is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the
maximum number of permitted times), without causing the rest of the pattern to fail. The
classic example of where this gives problems is in trying to match comments in C
programs. These appear between the sequences /* and */ and within the sequence,
individual * and / characters may appear. An attempt to match C comments by applying
the pattern /*.**/ to the string /* first comment */ not comment /* second comment */ fails,
because it matches the entire string due to the greediness of the .* item.

However, if a quantifier is followed by a question mark, then it ceases to be greedy, and
instead matches the minimum number of times possible, so the pattern /*.*?*/ does the
right thing with the C comments. The meaning of the various quantifiers is not otherwise
changed, just the preferred number of matches. Do not confuse this use of question mark
with its use as a quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in \d??\d which matches one digit by preference, but can match two if
that is the only way the rest of the pattern matches.

If the PCRE_UNGREEDY option is set (an option which is not available in Perl) then the
quantifiers are not greedy by default, but individual ones can be made greedy by following

them with a question mark. In other words, it inverts the default behaviour.

Quantifiers followed by + are "possessive". They eat as many characters as possible and
don't return to match the rest of the pattern. Thus.*abc matches "aabc" but.*+abc doesn't
because.*+ eats the whole string. Possessive quantifiers can be used to speed up
processing since PHP 4.3.3.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater
than 1 or with a limited maximum, more store is required for the compiled pattern, in
proportion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl's /s) is
set, thus allowing the . to match newlines, then the pattern is implicitly anchored, because
whatever follows will be tried against every character position in the subject string, so there
is no point in retrying the overall match at any position after the first. PCRE treats such a
pattern as though it were preceded by \A. In cases where it is known that the subject string
contains no newlines, it is worth setting PCRE_DOTALL when the pattern begins with .* in
order to obtain this optimization, or alternatively using ^ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that matched
the final iteration. For example, after (tweedle[dume]{3}\s*)+ has matched "tweedledum
tweedledee" the value of the captured substring is "tweedledee". However, if there are
nested capturing subpatterns, the corresponding captured values may have been set in
previous iterations. For example, after /(a|(b))+/ matches "aba" the value of the second
captured substring is "b".

Back references

Outside a character class, a backslash followed by a digit greater than 0 (and possibly
further digits) is a back reference to a capturing subpattern earlier (i.e. to its left) in the
pattern, provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken
as a back reference, and causes an error only if there are not that many capturing left
parentheses in the entire pattern. In other words, the parentheses that are referenced
need not be to the left of the reference for numbers less than 10. See the section entitled
"Backslash" above for further details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the
current subject string, rather than anything matching the subpattern itself. So the pattern
(sens|respons)e and \1ibility matches "sense and sensibility" and "response and
responsibility", but not "sense and responsibility". If caseful matching is in force at the time
of the back reference, then the case of letters is relevant. For example, ((?i)rah)\s+\1
matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing
subpattern is matched caselessly.

There may be more than one back reference to the same subpattern. If a subpattern has
not actually been used in a particular match, then any back references to it always fail. For
example, the pattern (a|(bc))\2 always fails if it starts to match "a" rather than "bc".
Because there may be up to 99 back references, all digits following the backslash are

taken as part of a potential back reference number. If the pattern continues with a digit
character, then some delimiter must be used to terminate the back reference. If the
PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty comment
can be used.

A back reference that occurs inside the parentheses to which it refers fails when the
subpattern is first used, so, for example, (a\1) never matches. However, such references
can be useful inside repeated subpatterns. For example, the pattern (a|b\1)+ matches any
number of "a"s and also "aba", "ababaa" etc. At each iteration of the subpattern, the back
reference matches the character string corresponding to the previous iteration. In order for
this to work, the pattern must be such that the first iteration does not need to match the
back reference. This can be done using alternation, as in the example above, or by a
quantifier with a minimum of zero.

Back references to the named subpatterns can be achieved by (?P=name) or, since PHP
5.2.4, also by \k<name>, \k'name', \k{name} or \g{name}.

Assertions

An assertion is a test on the characters following or preceding the current matching point
that does not actually consume any characters. The simple assertions coded as \b, \B, \A,
\Z, \z, ^ and $ are described above. More complicated assertions are coded as
subpatterns. There are two kinds: those that look ahead of the current position in the
subject string, and those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the
current matching position to be changed. Lookahead assertions start with (?= for positive
assertions and (?! for negative assertions. For example, \w+(?=;) matches a word followed
by a semicolon, but does not include the semicolon in the match, and foo(?!bar) matches
any occurrence of "foo" that is not followed by "bar". Note that the apparently similar
pattern (?!foo)bar does not find an occurrence of "bar" that is preceded by something other
than "foo"; it finds any occurrence of "bar" whatsoever, because the assertion (?!foo) is
always TRUE when the next three characters are "bar". A lookbehind assertion is needed
to achieve this effect.

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative
assertions. For example, (?<!foo)bar does find an occurrence of "bar" that is not preceded
by "foo". The contents of a lookbehind assertion are restricted such that all the strings it
matches must have a fixed length. However, if there are several alternatives, they do not
all have to have the same fixed length. Thus (?<=bullock|donkey) is permitted, but
(?<!dogs?|cats?) causes an error at compile time. Branches that match different length
strings are permitted only at the top level of a lookbehind assertion. This is an extension
compared with Perl 5.005, which requires all branches to match the same length of string.
An assertion such as (?<=ab(c|de)) is not permitted, because its single top-level branch
can match two different lengths, but it is acceptable if rewritten to use two top-level
branches: (?<=abc|abde) The implementation of lookbehind assertions is, for each
alternative, to temporarily move the current position back by the fixed width and then try to
match. If there are insufficient characters before the current position, the match is deemed
to fail. Lookbehinds in conjunction with once-only subpatterns can be particularly useful for
matching at the ends of strings; an example is given at the end of the section on once-only

subpatterns.

Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3})(?<!999)foo matches "foo" preceded by three digits that are not "999". Notice
that each of the assertions is applied independently at the same point in the subject string.
First there is a check that the previous three characters are all digits, then there is a check
that the same three characters are not "999". This pattern does not match "foo" preceded
by six characters, the first of which are digits and the last three of which are not "999". For
example, it doesn't match "123abcfoo". A pattern to do that is (?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters
are not "999".

Assertions can be nested in any combination. For example, (?<=(?<!foo)bar)baz matches
an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo",
while (?<=\d{3}...(?<!999))foo is another pattern which matches "foo" preceded by three
digits and any three characters that are not "999".

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the
capturing subpatterns in the whole pattern. However, substring capturing is carried out
only for positive assertions, because it does not make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

Once-only subpatterns

With both maximizing and minimizing repetition, failure of what follows normally causes the
repeated item to be re-evaluated to see if a different number of repeats allows the rest of
the pattern to match. Sometimes it is useful to prevent this, either to change the nature of
the match, or to cause it fail earlier than it otherwise might, when the author of the pattern
knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line 123456bar

After matching all 6 digits and then failing to match "foo", the normal action of the matcher
is to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before
ultimately failing. Once-only subpatterns provide the means for specifying that once a
portion of the pattern has matched, it is not to be re-evaluated in this way, so the matcher
would give up immediately on failing to match "foo" the first time. The notation is another
kind of special parenthesis, starting with (?> as in this example: (?>\d+)bar

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters
that an identical standalone pattern would match, if anchored at the current point in the

subject string.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above
example can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be
nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to specify
efficient matching at the end of the subject string. Consider a simple pattern such as abcd$
when applied to a long string which does not match. Because matching proceeds from left
to right, PCRE will look for each "a" in the subject and then see if what follows matches the
rest of the pattern. If the pattern is specified as ^.*abcd$then the initial .* matches the
entire string at first, but when this fails (because there is no following "a"), it backtracks to
match all but the last character, then all but the last two characters, and so on. Once again
the search for "a" covers the entire string, from right to left, so we are no better off.
However, if the pattern is written as ^(?>.*)(?<=abcd) then there can be no backtracking
for the .* item; it can match only the entire string. The subsequent lookbehind assertion
does a single test on the last four characters. If it fails, the match fails immediately. For
long strings, this approach makes a significant difference to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated
an unlimited number of times, the use of a once-only subpattern is the only way to avoid
some failing matches taking a very long time indeed. The pattern (\D+|<\d+>)*[!?] matches
an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>,
followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to
aa it takes a long time
before reporting failure. This is because the string can be divided between the two repeats
in a large number of ways, and all have to be tried. (The example used [!?] rather than a
single character at the end, because both PCRE and Perl have an optimization that allows
for fast failure when a single character is used. They remember the last single character
that is required for a match, and fail early if it is not present in the string.) If the pattern is
changed to ((?>\D+)|<\d+>)*[!?] sequences of non-digits cannot be broken, and failure
happens quickly.

Conditional subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to
choose between two alternative subpatterns, depending on the result of an assertion, or
whether a previous capturing subpattern matched or not. The two possible forms of
conditional subpattern are
(?(condition)yes-pattern) (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is
used. If there are more than two alternatives in the subpattern, a compile-time error
occurs.

There are two kinds of condition. If the text between the parentheses consists of a
sequence of digits, then the condition is satisfied if the capturing subpattern of that number

has previously matched. Consider the following pattern, which contains non-significant
white space to make it more readable (assume the PCRE_EXTENDED option) and to
divide it into three parts for ease of discussion: (\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present,
sets it as the first captured substring. The second part matches one or more characters
that are not parentheses. The third part is a conditional subpattern that tests whether the
first set of parentheses matched or not. If they did, that is, if subject started with an
opening parenthesis, the condition is TRUE, and so the yes-pattern is executed and a
closing parenthesis is required. Otherwise, since no-pattern is not present, the subpattern
matches nothing. In other words, this pattern matches a sequence of non-parentheses,
optionally enclosed in parentheses.

If the condition is the string (R), it is satisfied if a recursive call to the pattern or subpattern
has been made. At "top level", the condition is false.

If the condition is not a sequence of digits or (R), it must be an assertion. This may be a
positive or negative lookahead or lookbehind assertion. Consider this pattern, again
containing non-significant white space, and with the two alternatives on the second line:
(?(?=[^a-z]*[a-z]) \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of
non-letters followed by a letter. In other words, it tests for the presence of at least one
letter in the subject. If a letter is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches strings in one of the two
forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

Comments

The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a
comment play no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character
class introduces a comment that continues up to the next newline character in the pattern.

Recursive patterns

Consider the problem of matching a string in parentheses, allowing for unlimited nested
parentheses. Without the use of recursion, the best that can be done is to use a pattern
that matches up to some fixed depth of nesting. It is not possible to handle an arbitrary
nesting depth. Perl 5.6 has provided an experimental facility that allows regular
expressions to recurse (among other things). The special item (?R) is provided for the
specific case of recursion. This PCRE pattern solves the parentheses problem (assume
the PCRE_EXTENDED option is set so that white space is ignored): \(((?>[^()]+) | (?R))*
\)

First it matches an opening parenthesis. Then it matches any number of substrings which
can either be a sequence of non-parentheses, or a recursive match of the pattern itself
(i.e. a correctly parenthesized substring). Finally there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so the use of a
once-only subpattern for matching strings of non-parentheses is important when applying
the pattern to strings that do not match. For example, when it is applied to
(aaa() it yields "no match"
quickly. However, if a once-only subpattern is not used, the match runs for a very long time
indeed because there are so many different ways the + and * repeats can carve up the
subject, and all have to be tested before failure can be reported.

The values set for any capturing subpatterns are those from the outermost level of the
recursion at which the subpattern value is set. If the pattern above is matched against
(ab(cd)ef) the value for the capturing parentheses is "ef", which is the last value taken on
at the top level. If additional parentheses are added, giving \((((?>[^()]+) | (?R))*) \) then
the string they capture is "ab(cd)ef", the contents of the top level parentheses. If there are
more than 15 capturing parentheses in a pattern, PCRE has to obtain extra memory to
store data during a recursion, which it does by using pcre_malloc, freeing it via pcre_free
afterwards. If no memory can be obtained, it saves data for the first 15 capturing
parentheses only, as there is no way to give an out-of-memory error from within a
recursion.

Since PHP 4.3.3, (?1), (?2) and so on can be used for recursive subpatterns too. It is also
possible to use named subpatterns: (?P>name) or (?P&name).

If the syntax for a recursive subpattern reference (either by number or by name) is used
outside the parentheses to which it refers, it operates like a subroutine in a programming
language. An earlier example pointed out that the pattern (sens|respons)e and \1ibility
matches "sense and sensibility" and "response and responsibility", but not "sense and
responsibility". If instead the pattern (sens|respons)e and (?1)ibility is used, it does match
"sense and responsibility" as well as the other two strings. Such references must,
however, follow the subpattern to which they refer.

The maximum length of a subject string is the largest positive number that an integer
variable can hold. However, PCRE uses recursion to handle subpatterns and indefinite
repetition. This means that the available stack space may limit the size of a subject string
that can be processed by certain patterns.

Performances

Certain items that may appear in patterns are more efficient than others. It is more efficient
to use a character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In
general, the simplest construction that provides the required behaviour is usually the most
efficient. Jeffrey Friedl's book contains a lot of discussion about optimizing regular
expressions for efficient performance.

When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern is
implicitly anchored by PCRE, since it can match only at the start of a subject string.
However, if PCRE_DOTALL is not set, PCRE cannot make this optimization, because the .
metacharacter does not then match a newline, and if the subject string contains newlines,
the pattern may match from the character immediately following one of them instead of
from the very start. For example, the pattern (.*) second matches the subject "first\nand
second" (where \n stands for a newline character) with the first captured substring being

"and". In order to do this, PCRE has to retry the match starting after every newline in the
subject.

If you are using such a pattern with subject strings that do not contain newlines, the best
performance is obtained by setting PCRE_DOTALL, or starting the pattern with ^.* to
indicate explicit anchoring. That saves PCRE from having to scan along the subject
looking for a newline to restart at.

Beware of patterns that contain nested indefinite repeats. These can take a long time to
run when applied to a string that does not match. Consider the pattern fragment (a+)*

This can match "aaaa" in 33 different ways, and this number increases very rapidly as the
string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those
cases other than 0, the + repeats can match different numbers of times.) When the
remainder of the pattern is such that the entire match is going to fail, PCRE has in principle
to try every possible variation, and this can take an extremely long time.

An optimization catches some of the more simple cases such as (a+)*b where a literal
character follows. Before embarking on the standard matching procedure, PCRE checks
that there is a "b" later in the subject string, and if there is not, it fails the match
immediately. However, when there is no following literal this optimization cannot be used.
You can see the difference by comparing the behaviour of (a+)*\d with the pattern above.
The former gives a failure almost instantly when applied to a whole line of "a" characters,
whereas the latter takes an appreciable time with strings longer than about 20 characters.

PCRE Functions

preg_grep

preg_grep -- Return array entries that match the pattern

Description

array preg_grep (string $pattern, array $input [, int $flags])

Returns the array consisting of the elements of the input array that match the given
pattern.

Parameters

pattern

The pattern to search for, as a string.

input

The input array.

flags

If set to PREG_GREP_INVERT, this function returns the elements of the input array
that do not match the given pattern.

Return Values

Returns an array indexed using the keys from the input array.

ChangeLog

Version Description

4.2.0 The flags parameter was added.

4.0.4
Prior to this version, the returned array was
indexed regardless of the keys of the input
array.

If you want to reproduce this old behavior,
use array_values() on the returned array to
reindex the values.

Examples

Example #2466 - preg_grep() example

<?php

// return all array elements

// containing floating point numbers

$fl_array = preg_grep("/^(\d+)?\.\d+$/", $array);

?>

preg_last_error

preg_last_error -- Returns the error code of the last PCRE regex execution

Description

int preg_last_error (void)

Returns the error code of the last PCRE regex execution.

Example #2467 - preg_last_error() example

<?php

preg_match('/(?:\D+|<\d+>)*[!?]/', 'foobar foobar foobar');

if (preg_last_error() == PREG_BACKTRACK_LIMIT_ERROR) {

 print 'Backtrack limit was exhausted!';

}

?>

The above example will output:

Backtrack limit was exhausted!

Return Values

Returns one of the following constants (explained on their own page):

• PREG_NO_ERROR
• PREG_INTERNAL_ERROR
• PREG_BACKTRACK_LIMIT_ERROR (see also pcre.backtrack_limit)
• PREG_RECURSION_LIMIT_ERROR (see also pcre.recursion_limit)
• PREG_BAD_UTF8_ERROR
• PREG_BAD_UTF8_OFFSET_ERROR (since PHP 5.3.0)

preg_match_all

preg_match_all -- Perform a global regular expression match

Description

int preg_match_all (string $pattern, string $subject, array &$matches [, int $flags [, int
$offset]])

Searches subject for all matches to the regular expression given in pattern and puts
them in matches in the order specified by flags.

After the first match is found, the subsequent searches are continued on from end of the
last match.

Parameters

pattern

The pattern to search for, as a string.

subject

The input string.

matches

Array of all matches in multi-dimensional array ordered according to flags.

flags

Can be a combination of the following flags (note that it doesn't make sense to use
PREG_PATTERN_ORDER together with PREG_SET_ORDER):
PREG_PATTERN_ORDER

Orders results so that $matches[0] is an array of full pattern matches, $matches[1]
is an array of strings matched by the first parenthesized subpattern, and so on.

<?php

preg_match_all("|<[^>]+>(.*)</[^>]+>|U",

 "example: <div align=left>this is a test</div>",

 $out, PREG_PATTERN_ORDER);

echo $out[0][0] . ", " . $out[0][1] . "\n";

echo $out[1][0] . ", " . $out[1][1] . "\n";

?>

The above example will output:

example: , <div align=left>this is a test</div>

example: , this is a test

So, $out[0] contains array of strings that matched full pattern, and $out[1] contains
array of strings enclosed by tags.

PREG_SET_ORDER
Orders results so that $matches[0] is an array of first set of matches, $matches[1]
is an array of second set of matches, and so on.

<?php

preg_match_all("|<[^>]+>(.*)</[^>]+>|U",

 "example: <div align=\"left\">this is a test</div>",

 $out, PREG_SET_ORDER);

echo $out[0][0] . ", " . $out[0][1] . "\n";

echo $out[1][0] . ", " . $out[1][1] . "\n";

?>

The above example will output:

example: , example:

<div align="left">this is a test</div>, this is a test

PREG_OFFSET_CAPTURE
If this flag is passed, for every occurring match the appendant string offset will also
be returned. Note that this changes the value of matches in an array where every
element is an array consisting of the matched string at offset 0 and its string offset
into subject at offset 1.

If no order flag is given, PREG_PATTERN_ORDER is assumed.

offset

Normally, the search starts from the beginning of the subject string. The optional
parameter offset can be used to specify the alternate place from which to start the
search (in bytes).

Note

Using offset is not equivalent to passing substr($subject, $offset) to
preg_match_all() in place of the subject string, because pattern can contain
assertions such as ^, $or (?<=x). See preg_match() for examples.

Return Values

Returns the number of full pattern matches (which might be zero), or FALSE if an error
occurred.

ChangeLog

Version Description

4.3.3 The offset parameter was added

4.3.0 The PREG_OFFSET_CAPTURE flag was
added

Examples

Example #2468 - Getting all phone numbers out of some text.

<?php

preg_match_all("/\(? (\d{3})? \)? (?(1) [\-\s]) \d{3}-\d{4}/x",

 "Call 555-1212 or 1-800-555-1212", $phones);

?>

Example #2469 - Find matching HTML tags (greedy)

<?php

// The \\2 is an example of backreferencing. This tells pcre that

// it must match the second set of parentheses in the regular expression

// itself, which would be the ([\w]+) in this case. The extra backslash is

// required because the string is in double quotes.

$html = "bold textclick me";

preg_match_all("/(<([\w]+)[^>]*>)(.*)(<\/\\2>)/", $html, $matches,
PREG_SET_ORDER);

foreach ($matches as $val) {

 echo "matched: " . $val[0] . "\n";

 echo "part 1: " . $val[1] . "\n";

 echo "part 2: " . $val[3] . "\n";

 echo "part 3: " . $val[4] . "\n\n";

}

?>

The above example will output:

matched: bold text

part 1:

part 2: bold text

part 3:

matched: click me

part 1:

part 2: click me

part 3:

Example #2470 - Using named subpattern

<?php

$str = <<<FOO

a: 1

b: 2

c: 3

FOO;

preg_match_all('/(?<name>\w+): (?<digit>\d+)/', $str, $matches);

print_r($matches);

?>

The above example will output:

Array

(

 [0] => Array

 (

 [0] => a: 1

 [1] => b: 2

 [2] => c: 3

)

 [name] => Array

 (

 [0] => a

 [1] => b

 [2] => c

)

 [1] => Array

 (

 [0] => a

 [1] => b

 [2] => c

)

 [digit] => Array

 (

 [0] => 1

 [1] => 2

 [2] => 3

)

 [2] => Array

 (

 [0] => 1

 [1] => 2

 [2] => 3

)

)

See Also

• preg_match()
• preg_replace()
• preg_split()

preg_match

preg_match -- Perform a regular expression match

Description

int preg_match (string $pattern, string $subject [, array &$matches [, int $flags [, int $
offset]]])

Searches subject for a match to the regular expression given in pattern.

Parameters

pattern

The pattern to search for, as a string.

subject

The input string.

matches

If matches is provided, then it is filled with the results of search. $matches[0] will
contain the text that matched the full pattern, $matches[1] will have the text that
matched the first captured parenthesized subpattern, and so on.

flags

flags can be the following flag:
PREG_OFFSET_CAPTURE

If this flag is passed, for every occurring match the appendant string offset will also
be returned. Note that this changes the return value in an array where every
element is an array consisting of the matched string at index 0 and its string offset
into subject at index 1.

offset

Normally, the search starts from the beginning of the subject string. The optional
parameter offset can be used to specify the alternate place from which to start the
search (in bytes).

Note

Using offset is not equivalent to passing substr($subject, $offset) to preg_match()
in place of the subject string, because pattern can contain assertions such as ^, $
or (?<=x). Compare:

<?php

$subject = "abcdef";

$pattern = '/^def/';

preg_match($pattern, $subject, $matches, PREG_OFFSET_CAPTURE, 3);

print_r($matches);

?>

The above example will output:

Array

(

)

while this example

<?php

$subject = "abcdef";

$pattern = '/^def/';

preg_match($pattern, substr($subject,3), $matches, PREG_OFFSET_CAPTURE);

print_r($matches);

?>

will produce

Array

(

 [0] => Array

 (

 [0] => def

 [1] => 0

)

)

Return Values

preg_match() returns the number of times pattern matches. That will be either 0 times (no
match) or 1 time because preg_match() will stop searching after the first match.
preg_match_all() on the contrary will continue until it reaches the end of subject.
preg_match() returns FALSE if an error occurred.

ChangeLog

Version Description

4.3.3 The offset parameter was added

4.3.0 The PREG_OFFSET_CAPTURE flag was
added

4.3.0 The flags parameter was added

Examples

Example #2471 - Find the string of text "php"

<?php

// The "i" after the pattern delimiter indicates a case-insensitive search

if (preg_match("/php/i", "PHP is the web scripting language of choice.")) {

 echo "A match was found.";

} else {

 echo "A match was not found.";

}

?>

Example #2472 - Find the word "web"

<?php

/* The \b in the pattern indicates a word boundary, so only the distinct

* word "web" is matched, and not a word partial like "webbing" or "cobweb"
*/

if (preg_match("/\bweb\b/i", "PHP is the web scripting language of
choice.")) {

 echo "A match was found.";

} else {

 echo "A match was not found.";

}

if (preg_match("/\bweb\b/i", "PHP is the website scripting language of
choice.")) {

 echo "A match was found.";

} else {

 echo "A match was not found.";

}

?>

Example #2473 - Getting the domain name out of a URL

<?php

// get host name from URL

preg_match('@^(?:http://)?([^/]+)@i',

 "http://www.php.net/index.html", $matches);

$host = $matches[1];

// get last two segments of host name

preg_match('/[^.]+\.[^.]+$/', $host, $matches);

echo "domain name is: {$matches[0]}\n";

?>

The above example will output:

domain name is: php.net

Example #2474 - Using named subpattern

<?php

$str = 'foobar: 2008';

preg_match('/(?<name>\w+): (?<digit>\d+)/', $str, $matches);

print_r($matches);

?>

The above example will output:

Array

(

 [0] => foobar: 2008

 [name] => foobar

 [1] => foobar

 [digit] => 2008

 [2] => 2008

)

Notes

Tip

Do not use preg_match() if you only want to check if one string is contained in another
string. Use strpos() or strstr() instead as they will be faster.

See Also

• preg_match_all()
• preg_replace()
• preg_split()

preg_quote

preg_quote -- Quote regular expression characters

Description

string preg_quote (string $str [, string $delimiter])

preg_quote() takes str and puts a backslash in front of every character that is part of the
regular expression syntax. This is useful if you have a run-time string that you need to
match in some text and the string may contain special regex characters.

The special regular expression characters are:. \ + * ? [^] $ () { } = ! < > | :

Parameters

str

The input string.

delimiter

If the optional delimiter is specified, it will also be escaped. This is useful for
escaping the delimiter that is required by the PCRE functions. The / is the most
commonly used delimiter.

Return Values

Returns the quoted string.

Examples

Example #2475 - preg_quote() example

<?php

$keywords = '$40 for a g3/400';

$keywords = preg_quote($keywords, '/');

echo $keywords; // returns \$40 for a g3\/400

?>

Example #2476 - Italicizing a word within some text

<?php

// In this example, preg_quote($word) is used to keep the

// asterisks from having special meaning to the regular

// expression.

$textbody = "This book is *very* difficult to find.";

$word = "*very*";

$textbody = preg_replace ("/" . preg_quote($word) . "/",

 "<i>" . $word . "</i>",

 $textbody);

?>

Notes

Note

This function is binary-safe.

preg_replace_callback

preg_replace_callback -- Perform a regular expression search and replace using a
callback

Description

mixed preg_replace_callback (mixed $pattern, callback $callback, mixed $subject [,
int $limit [, int &$count]])

The behavior of this function is almost identical to preg_replace(), except for the fact that
instead of replacement parameter, one should specify a callback.

Parameters

pattern

The pattern to search for. It can be either a string or an array with strings.

callback

A callback that will be called and passed an array of matched elements in the subject
string. The callback should return the replacement string. You'll often need the
callback function for a preg_replace_callback() in just one place. In this case you can
use create_function() to declare an anonymous function as callback within the call to
preg_replace_callback(). By doing it this way you have all information for the call in
one place and do not clutter the function namespace with a callback function's name
not used anywhere else.

Example #2477 - preg_replace_callback() and create_function()

<?php

/* a unix-style command line filter to convert uppercase

* letters at the beginning of paragraphs to lowercase */

$fp = fopen("php://stdin", "r") or die("can't read stdin");

while (!feof($fp)) {

 $line = fgets($fp);

 $line = preg_replace_callback(

 '|<p>\s*\w|',

 create_function(

 // single quotes are essential here,

 // or alternative escape all $ as \$

 '$matches',

 'return strtolower($matches[0]);'

),

 $line

);

 echo $line;

}

fclose($fp);

?>

subject

The string or an array with strings to search and replace.

limit

The maximum possible replacements for each pattern in each subject string. Defaults
to -1 (no limit).

count

If specified, this variable will be filled with the number of replacements done.

Return Values

preg_replace_callback() returns an array if the subject parameter is an array, or a string
otherwise.

If matches are found, the new subject will be returned, otherwise subject will be returned
unchanged.

ChangeLog

Version Description

5.1.0 The count parameter was added

Examples

Example #2478 - preg_replace_callback() example

<?php

// this text was used in 2002

// we want to get this up to date for 2003

$text = "April fools day is 04/01/2002\n";

$text.= "Last christmas was 12/24/2001\n";

// the callback function

function next_year($matches)

{

 // as usual: $matches[0] is the complete match

 // $matches[1] the match for the first subpattern

 // enclosed in '(...)' and so on

 return $matches[1].($matches[2]+1);

}

echo preg_replace_callback(

 "|(\d{2}/\d{2}/)(\d{4})|",

 "next_year",

 $text);

?>

The above example will output:

April fools day is 04/01/2003

Last christmas was 12/24/2002

Example #2479 - preg_replace_callback() using recursive structure to handle
encapsulated BB code

<?php

$input = "plain [indent] deep [indent] deeper [/indent] deep [/indent]
plain";

function parseTagsRecursive($input)

{

 $regex = '#\[indent]((?:[^[]|\[(?!/?indent])|(?R))+)\[/indent]#';

 if (is_array($input)) {

 $input = '<div style="margin-left: 10px">'.$input[1].'</div>';

 }

 return preg_replace_callback($regex, 'parseTagsRecursive', $input);

}

$output = parseTagsRecursive($input);

echo $output;

?>

See Also

• preg_replace()
• create_function()
• information about the callback type

preg_replace

preg_replace -- Perform a regular expression search and replace

Description

mixed preg_replace (mixed $pattern, mixed $replacement, mixed $subject [, int $
limit [, int &$count]])

Searches subject for matches to pattern and replaces them with replacement.

Parameters

pattern

The pattern to search for. It can be either a string or an array with strings. The e
modifier makes preg_replace() treat the replacement parameter as PHP code after the
appropriate references substitution is done. Tip: make sure that replacement
constitutes a valid PHP code string, otherwise PHP will complain about a parse error at
the line containing preg_replace().

replacement

The string or an array with strings to replace. If this parameter is a string and the
pattern parameter is an array, all patterns will be replaced by that string. If both
pattern and replacement parameters are arrays, each pattern will be replaced by the
replacement counterpart. If there are fewer elements in the replacement array than in
the pattern array, any extra pattern s will be replaced by an empty string.
replacement may contain references of the form \\ n or (since PHP 4.0.4) $n, with the
latter form being the preferred one. Every such reference will be replaced by the text
captured by the n 'th parenthesized pattern. n can be from 0 to 99, and \\0 or $0 refers
to the text matched by the whole pattern. Opening parentheses are counted from left to
right (starting from 1) to obtain the number of the capturing subpattern. When working
with a replacement pattern where a backreference is immediately followed by another
number (i.e.: placing a literal number immediately after a matched pattern), you cannot
use the familiar \\1 notation for your backreference. \\11, for example, would confuse
preg_replace() since it does not know whether you want the \\1 backreference followed
by a literal 1, or the \\11 backreference followed by nothing. In this case the solution is
to use \${1}1. This creates an isolated $1 backreference, leaving the 1 as a literal.
When using the e modifier, this function escapes some characters (namely ', ", \ and
NULL) in the strings that replace the backreferences. This is done to ensure that no
syntax errors arise from backreference usage with either single or double quotes (e.g.
'strlen(\'$1\')+strlen("$2")'). Make sure you are aware of PHP's string syntax to know
exactly how the interpreted string will look like.

subject

The string or an array with strings to search and replace. If subject is an array, then
the search and replace is performed on every entry of subject, and the return value is
an array as well.

limit

The maximum possible replacements for each pattern in each subject string. Defaults
to -1 (no limit).

count

If specified, this variable will be filled with the number of replacements done.

Return Values

preg_replace() returns an array if the subject parameter is an array, or a string otherwise.

If matches are found, the new subject will be returned, otherwise subject will be returned
unchanged or NULL if an error occurred.

ChangeLog

Version Description

5.1.0 Added the count parameter

4.0.4 Added the '$n' form for the replacement
parameter

4.0.2 Added the limit parameter

Examples

Example #2480 - Using backreferences followed by numeric literals

<?php

$string = 'April 15, 2003';

$pattern = '/(\w+) (\d+), (\d+)/i';

$replacement = '${1}1,$3';

echo preg_replace($pattern, $replacement, $string);

?>

The above example will output:

April1,2003

Example #2481 - Using indexed arrays with preg_replace()

<?php

$string = 'The quick brown fox jumped over the lazy dog.';

$patterns[0] = '/quick/';

$patterns[1] = '/brown/';

$patterns[2] = '/fox/';

$replacements[2] = 'bear';

$replacements[1] = 'black';

$replacements[0] = 'slow';

echo preg_replace($patterns, $replacements, $string);

?>

The above example will output:

The bear black slow jumped over the lazy dog.

By ksorting patterns and replacements, we should get what we wanted.

<?php

ksort($patterns);

ksort($replacements);

echo preg_replace($patterns, $replacements, $string);

?>

The above example will output:

The slow black bear jumped over the lazy dog.

Example #2482 - Replacing several values

<?php

$patterns = array ('/(19|20)(\d{2})-(\d{1,2})-(\d{1,2})/',

 '/^\s*{(\w+)}\s*=/');

$replace = array ('\3/\4/\1\2', '$\1 =');

echo preg_replace($patterns, $replace, '{startDate} = 1999-5-27');

?>

The above example will output:

$startDate = 5/27/1999

Example #2483 - Using the 'e' modifier

<?php

preg_replace("/(<\/?)(\w+)([^>]*>)/e",

 "'\\1'.strtoupper('\\2').'\\3'",

 $html_body);

?>

This would capitalize all HTML tags in the input text.

Example #2484 - Strip whitespace

This example strips excess whitespace from a string.

<?php

$str = 'foo o';

$str = preg_replace('/\s\s+/', ' ', $str);

// This will be 'foo o' now

echo $str;

?>

Example #2485 - Using the count parameter

<?php

$count = 0;

echo preg_replace(array('/\d/', '/\s/'), '*', 'xp 4 to', -1 , $count);

echo $count; //3

?>

The above example will output:

xp***to

3

Notes

Note

When using arrays with pattern and replacement, the keys are processed in the
order they appear in the array. This is not necessarily the same as the numerical index
order. If you use indexes to identify which pattern should be replaced by which
replacement, you should perform a ksort() on each array prior to calling preg_replace()
.

See Also

• preg_match()
• preg_replace_callback()
• preg_split()

preg_split

preg_split -- Split string by a regular expression

Description

array preg_split (string $pattern, string $subject [, int $limit [, int $flags]])

Split the given string by a regular expression.

Parameters

pattern

The pattern to search for, as a string.

subject

The input string.

limit

If specified, then only substrings up to limit are returned, and if limit is -1, it actually
means "no limit", which is useful for specifying the flags.

flags

flags can be any combination of the following flags (combined with bitwise | operator):
PREG_SPLIT_NO_EMPTY

If this flag is set, only non-empty pieces will be returned by preg_split().

PREG_SPLIT_DELIM_CAPTURE
If this flag is set, parenthesized expression in the delimiter pattern will be captured
and returned as well.

PREG_SPLIT_OFFSET_CAPTURE
If this flag is set, for every occurring match the appendant string offset will also be
returned. Note that this changes the return value in an array where every element
is an array consisting of the matched string at offset 0 and its string offset into
subject at offset 1.

Return Values

Returns an array containing substrings of subject split along boundaries matched by
pattern.

ChangeLog

Version Description

4.3.0 The PREG_SPLIT_OFFSET_CAPTURE
was added

4.0.5 The PREG_SPLIT_DELIM_CAPTURE was
added

4.0.0 The flags parameter was added

Examples

Example #2486 - preg_split() example : Get the parts of a search string

<?php

// split the phrase by any number of commas or space characters,

// which include " ", \r, \t, \n and \f

$keywords = preg_split("/[\s,]+/", "hypertext language, programming");

?>

Example #2487 - Splitting a string into component characters

<?php

$str = 'string';

$chars = preg_split('//', $str, -1, PREG_SPLIT_NO_EMPTY);

print_r($chars);

?>

Example #2488 - Splitting a string into matches and their offsets

<?php

$str = 'hypertext language programming';

$chars = preg_split('/ /', $str, -1, PREG_SPLIT_OFFSET_CAPTURE);

print_r($chars);

?>

The above example will output:

Array

(

 [0] => Array

 (

 [0] => hypertext

 [1] => 0

)

 [1] => Array

 (

 [0] => language

 [1] => 10

)

 [2] => Array

 (

 [0] => programming

 [1] => 19

)

)

Notes

Tip

If you don't need the power of regular expressions, you can choose faster (albeit
simpler) alternatives like explode() or str_split().

See Also

• spliti()
• split()
• implode()
• preg_match()
• preg_match_all()
• preg_replace()

Regular Expression (POSIX Extended)

Introduction

Tip

PHP also supports regular expressions using a Perl-compatible syntax using the
PCRE functions. Those functions support non-greedy matching, assertions, conditional
subpatterns, and a number of other features not supported by the POSIX-extended
regular expression syntax.

Warning

These regular expression functions are not binary-safe. The PCRE functions are.

Regular expressions are used for complex string manipulation. PHP uses the POSIX
extended regular expressions as defined by POSIX 1003.2. For a full description of POSIX
regular expressions see the » regex man pages included in the regex directory in the PHP
distribution. It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

http://www.tin.org/bin/man.cgi?section=7&topic=regex

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

Warning

Do not change the TYPE unless you know what you are doing.

To enable regexp support configure PHP --with-regex[=TYPE]. TYPE can be one of
system, apache, php. The default is to use php.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Example #2489 - Regular Expression Examples

<?php

// Returns true if "abc" is found anywhere in $string.

ereg("abc", $string);

// Returns true if "abc" is found at the beginning of $string.

ereg("^abc", $string);

// Returns true if "abc" is found at the end of $string.

ereg("abc$", $string);

// Returns true if client browser is Netscape 2, 3 or MSIE 3.

eregi("(ozilla.[23]|MSIE.3)", $_SERVER["HTTP_USER_AGENT"]);

// Places three space separated words into $regs[1], $regs[2] and $regs[3].

ereg("([[:alnum:]]+) ([[:alnum:]]+) ([[:alnum:]]+)", $string, $regs);

// Put a
 tag at the beginning of $string.

$string = ereg_replace("^", "
", $string);

// Put a
 tag at the end of $string.

$string = ereg_replace("$", "
", $string);

// Get rid of any newline characters in $string.

$string = ereg_replace("\n", "", $string);

?>

POSIX Regex Functions

See Also

For regular expressions in Perl-compatible syntax have a look at the PCRE functions. The
simpler shell style wildcard pattern matching is provided by fnmatch().

ereg_replace

ereg_replace -- Replace regular expression

Description

string ereg_replace (string $pattern, string $replacement, string $string)

This function scans string for matches to pattern, then replaces the matched text with
replacement.

Parameters

pattern

A POSIX extended regular expression.

replacement

If pattern contains parenthesized substrings, replacement may contain substrings of
the form \\ digit, which will be replaced by the text matching the digit'th parenthesized
substring; \\0 will produce the entire contents of string. Up to nine substrings may be
used. Parentheses may be nested, in which case they are counted by the opening
parenthesis.

string

The input string.

Return Values

The modified string is returned. If no matches are found in string, then it will be returned
unchanged.

Examples

For example, the following code snippet prints "This was a test" three times:

Example #2490 - ereg_replace() example

<?php

$string = "This is a test";

echo str_replace(" is", " was", $string);

echo ereg_replace("()is", "\\1was", $string);

echo ereg_replace("(()is)", "\\2was", $string);

?>

One thing to take note of is that if you use an integer value as the replacement parameter,
you may not get the results you expect. This is because ereg_replace() will interpret the
number as the ordinal value of a character, and apply that. For instance:

Example #2491 - ereg_replace() example

<?php

/* This will not work as expected. */

$num = 4;

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has words.' */

/* This will work. */

$num = '4';

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has 4 words.' */

?>

Example #2492 - Replace URLs with links

<?php

$text = ereg_replace("[[:alpha:]]+://[^<>[:space:]]+[[:alnum:]/]",

 "\\0", $text);

?>

Notes

Tip

preg_replace(), which uses a Perl-compatible regular expression syntax, is often a
faster alternative to ereg_replace().

See Also

• ereg()
• eregi()
• eregi_replace()
• str_replace()
• preg_match()

ereg

ereg -- Regular expression match

Description

int ereg (string $pattern, string $string [, array &$regs])

Searches a string for matches to the regular expression given in pattern in a
case-sensitive way.

Parameters

pattern

Case sensitive regular expression.

string

The input string.

regs

If matches are found for parenthesized substrings of pattern and the function is called
with the third argument regs, the matches will be stored in the elements of the array
regs. $regs[1] will contain the substring which starts at the first left parenthesis;
$regs[2] will contain the substring starting at the second, and so on. $regs[0] will
contain a copy of the complete string matched.

Return Values

Returns the length of the matched string if a match for pattern was found in string, or
FALSE if no matches were found or an error occurred.

If the optional parameter regs was not passed or the length of the matched string is 0, this
function returns 1.

Examples

Example #2493 - ereg() example

The following code snippet takes a date in ISO format (YYYY-MM-DD) and prints it in
DD.MM.YYYY format:

<?php

if (ereg ("([0-9]{4})-([0-9]{1,2})-([0-9]{1,2})", $date, $regs)) {

 echo "$regs[3].$regs[2].$regs[1]";

} else {

 echo "Invalid date format: $date";

}

?>

Notes

Note

preg_match(), which uses a Perl-compatible regular expression syntax, is often a
faster alternative to ereg().

Note

Up to (and including) PHP 4.1.0 $regs will be filled with exactly ten elements, even
though more or fewer than ten parenthesized substrings may actually have matched.
This has no effect on ereg() 's ability to match more substrings. If no matches are
found, $regs will not be altered by ereg().

See Also

• eregi()
• ereg_replace()
• eregi_replace()
• preg_match()
• strpos()
• strstr()
• quotemeta()

eregi_replace

eregi_replace -- Replace regular expression case insensitive

Description

string eregi_replace (string $pattern, string $replacement, string $string)

This function is identical to ereg_replace() except that this ignores case distinction when
matching alphabetic characters.

Parameters

pattern

A POSIX extended regular expression.

replacement

If pattern contains parenthesized substrings, replacement may contain substrings of
the form \\ digit, which will be replaced by the text matching the digit'th parenthesized
substring; \\0 will produce the entire contents of string. Up to nine substrings may be
used. Parentheses may be nested, in which case they are counted by the opening
parenthesis.

string

The input string.

Return Values

The modified string is returned. If no matches are found in string, then it will be returned
unchanged.

Examples

Example #2494 - Highlight search results

<?php

$pattern = '(>[^<]*)('. quotemeta($_GET['search']) .')';

$replacement = '\\1\\2';

$body = eregi_replace($pattern, $replacement, $body);

?>

See Also

• ereg()
• eregi()
• ereg_replace()

eregi

eregi -- Case insensitive regular expression match

Description

int eregi (string $pattern, string $string [, array &$regs])

This function is identical to ereg() except that it ignores case distinction when matching
alphabetic characters.

Parameters

pattern

Case insensitive regular expression.

string

The input string.

regs

If matches are found for parenthesized substrings of pattern and the function is called
with the third argument regs, the matches will be stored in the elements of the array
regs. $regs[1] will contain the substring which starts at the first left parenthesis;
$regs[2] will contain the substring starting at the second, and so on. $regs[0] will
contain a copy of the complete string matched.

Return Values

Returns the length of the matched string if a match for pattern was found in string, or
FALSE if no matches were found or an error occurred.

If the optional parameter regs was not passed or the length of the matched string is 0, this
function returns 1.

Examples

Example #2495 - eregi() example

<?php

$string = 'XYZ';

if (eregi('z', $string)) {

 echo "'$string' contains a 'z' or 'Z'!";

}

?>

See Also

• ereg()
• ereg_replace()
• eregi_replace()
• stripos()
• stristr()

split

split -- Split string into array by regular expression

Description

array split (string $pattern, string $string [, int $limit])

Splits a string into array by regular expression.

Parameters

pattern

Case sensitive regular expression. If you want to split on any of the characters which
are considered special by regular expressions, you'll need to escape them first. If you
think split() (or any other regex function, for that matter) is doing something weird,
please read the file regex.7, included in the regex/ subdirectory of the PHP distribution.
It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

string

The input string.

limit

If limit is set, the returned array will contain a maximum of limit elements with the
last element containing the whole rest of string.

Return Values

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the case-sensitive regular expression pattern.

If there are n occurrences of pattern, the returned array will contain n +1 items. For
example, if there is no occurrence of pattern, an array with only one element will be
returned. Of course, this is also true if string is empty. If an error occurs, split() returns
FALSE.

Examples

Example #2496 - split() example

To split off the first four fields from a line from /etc/passwd:

<?php

list($user, $pass, $uid, $gid, $extra) =

 split(":", $passwd_line, 5);

?>

Example #2497 - split() example

To parse a date which may be delimited with slashes, dots, or hyphens:

<?php

// Delimiters may be slash, dot, or hyphen

$date = "04/30/1973";

list($month, $day, $year) = split('[/.-]', $date);

echo "Month: $month; Day: $day; Year: $year
\n";

?>

Notes

Tip

preg_split(), which uses a Perl-compatible regular expression syntax, is often a faster
alternative to split(). If you don't require the power of regular expressions, it is faster to
use explode(), which doesn't incur the overhead of the regular expression engine.

Tip

For users looking for a way to emulate Perl's @chars = split('', $str) behaviour, please
see the examples for preg_split() or str_split().

See Also

• preg_split()
• spliti()
• str_split()
• explode()
• implode()
• chunk_split()
• wordwrap()

spliti

spliti -- Split string into array by regular expression case insensitive

Description

array spliti (string $pattern, string $string [, int $limit])

Splits a string into array by regular expression.

This function is identical to split() except that this ignores case distinction when matching
alphabetic characters.

Parameters

pattern

Case insensitive regular expression. If you want to split on any of the characters which
are considered special by regular expressions, you'll need to escape them first. If you
think spliti() (or any other regex function, for that matter) is doing something weird,
please read the file regex.7, included in the regex/ subdirectory of the PHP distribution.
It's in manpage format, so you'll want to do something along the lines of man
/usr/local/src/regex/regex.7 in order to read it.

string

The input string.

limit

If limit is set, the returned array will contain a maximum of limit elements with the
last element containing the whole rest of string.

Return Values

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the case insensitive regular expression pattern.

If there are n occurrences of pattern, the returned array will contain n +1 items. For
example, if there is no occurrence of pattern, an array with only one element will be
returned. Of course, this is also true if string is empty. If an error occurs, spliti() returns
FALSE.

Examples

This example splits a string using 'a' as the separator :

Example #2498 - spliti() example

<?php

$string = "aBBBaCCCADDDaEEEaGGGA";

$chunks = spliti ("a", $string, 5);

print_r($chunks);

?>

The above example will output:

Array

(

 [0] =>

 [1] => BBB

 [2] => CCC

 [3] => DDD

 [4] => EEEaGGGA

)

See Also

• preg_split()
• split()
• explode()
• implode()

sql_regcase

sql_regcase -- Make regular expression for case insensitive match

Description

string sql_regcase (string $string)

Creates a regular expression for a case insensitive match.

Parameters

string

The input string.

Return Values

Returns a valid regular expression which will match string, ignoring case. This
expression is string with each alphabetic character converted to a bracket expression;
this bracket expression contains that character's uppercase and lowercase form. Other
characters remain unchanged.

Examples

Example #2499 - sql_regcase() example

<?php

echo sql_regcase("Foo - bar.");

?>

The above example will output:

[Ff][Oo][Oo] - [Bb][Aa][Rr].

This can be used to achieve case insensitive pattern matching in products which support
only case sensitive regular expressions.

Strings

Introduction

These functions all manipulate strings in various ways. Some more specialized sections
can be found in the regular expression and URL handling sections.

For information on how strings behave, especially with regard to usage of single quotes,
double quotes, and escape sequences, see the Strings entry in the Types section of the
manual.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CRYPT_SALT_LENGTH integer

CRYPT_STD_DES integer

CRYPT_EXT_DES integer

CRYPT_MD5 integer

CRYPT_BLOWFISH integer

HTML_SPECIALCHARS (integer)

HTML_ENTITIES (integer)

ENT_COMPAT (integer)

ENT_QUOTES (integer)

ENT_NOQUOTES (integer)

CHAR_MAX (integer)

LC_CTYPE (integer)

LC_NUMERIC (integer)

LC_TIME (integer)

LC_COLLATE (integer)

LC_MONETARY (integer)

LC_ALL (integer)

LC_MESSAGES (integer)

STR_PAD_LEFT (integer)

STR_PAD_RIGHT (integer)

STR_PAD_BOTH (integer)

String Functions

See Also

For even more powerful string handling and manipulating functions take a look at the
POSIX regular expression functions and the Perl compatible regular expression functions.

addcslashes

addcslashes -- Quote string with slashes in a C style

Description

string addcslashes (string $str, string $charlist)

Returns a string with backslashes before characters that are listed in charlist parameter.

Parameters

str

The string to be escaped.

charlist

A list of characters to be escaped. If charlist contains characters \n, \r etc., they are
converted in C-like style, while other non-alphanumeric characters with ASCII codes
lower than 32 and higher than 126 converted to octal representation. When you define
a sequence of characters in the charlist argument make sure that you know what
characters come between the characters that you set as the start and end of the
range.

<?php

echo addcslashes('foo[]', 'A..z');

// output: \f\o\o\[\]

// All upper and lower-case letters will be escaped

// ... but so will the [\]^_` and any tabs, line

// feeds, carriage returns, etc.

?>

Also, if the first character in a range has a higher ASCII value than the second
character in the range, no range will be constructed. Only the start, end and period
characters will be escaped. Use the ord() function to find the ASCII value for a
character.

<?php

echo addcslashes("zoo['.']", 'z..A');

// output: \zoo['\.']

?>

Be careful if you choose to escape characters 0, a, b, f, n, r, t and v. They will be
converted to \0, \a, \b, \f, \n, \r, \t and \v. In PHP \0 (NULL), \r (carriage return), \n
(newline), \f (form feed), \v (vertical tab) and \t (tab) are predefined escape sequences,
while in C all of these are predefined escape sequences.

Return Values

Returns the escaped string.

ChangeLog

Version Description

5.2.5 The escape sequences \v and \f were
added.

Examples

charlist like "\0..\37", which would escape all characters with ASCII code between 0 and
31.

Example #2500 - addcslashes() example

<?php

$escaped = addcslashes($not_escaped, "\0..\37!@\177..\377");

?>

See Also

• stripcslashes()
• stripslashes()
• addslashes()
• htmlspecialchars()
• quotemeta()

addslashes

addslashes -- Quote string with slashes

Description

string addslashes (string $str)

Returns a string with backslashes before characters that need to be quoted in database
queries etc. These characters are single quote ('), double quote ("), backslash (\) and
NUL (the NULL byte).

An example use of addslashes() is when you're entering data into a database. For
example, to insert the name O'reilly into a database, you will need to escape it. Most
databases do this with a \ which would mean O\'reilly. This would only be to get the data
into the database, the extra \ will not be inserted. Having the PHP directive
magic_quotes_sybase set to on will mean ' is instead escaped with another '.

The PHP directive magic_quotes_gpc is on by default, and it essentially runs addslashes()
on all GET, POST, and COOKIE data. Do not use addslashes() on strings that have
already been escaped with magic_quotes_gpc as you'll then do double escaping. The
function get_magic_quotes_gpc() may come in handy for checking this.

Parameters

str

The string to be escaped.

Return Values

Returns the escaped string.

Examples

Example #2501 - An addslashes() example

<?php

$str = "Is your name O'reilly?";

// Outputs: Is your name O\'reilly?

echo addslashes($str);

?>

See Also

• stripcslashes()
• stripslashes()
• addcslashes()
• htmlspecialchars()
• quotemeta()
• get_magic_quotes_gpc()

bin2hex

bin2hex -- Convert binary data into hexadecimal representation

Description

string bin2hex (string $str)

Returns an ASCII string containing the hexadecimal representation of str. The conversion
is done byte-wise with the high-nibble first.

Parameters

str

A character.

Return Values

Returns the hexadecimal representation of the given string.

See Also

• pack()
• unpack()

chop

chop -- Alias of rtrim()

Description

This function is an alias of: rtrim().

Notes

Note

chop() is different than the Perl chop() function, which removes the last character in the
string.

chr

chr -- Return a specific character

Description

string chr (int $ascii)

Returns a one-character string containing the character specified by ascii.

This function complements ord().

Parameters

ascii

The ascii code.

Return Values

Returns the specified character.

Examples

Example #2502 - chr() example

<?php

$str = "The string ends in escape: ";

$str .= chr(27); /* add an escape character at the end of $str */

/* Often this is more useful */

$str = sprintf("The string ends in escape: %c", 27);

?>

See Also

• sprintf() with a format string of %c
• ord()
• An » ASCII-table

http://www.asciitable.com

chunk_split

chunk_split -- Split a string into smaller chunks

Description

string chunk_split (string $body [, int $chunklen [, string $end]])

Can be used to split a string into smaller chunks which is useful for e.g. converting
base64_encode() output to match RFC 2045 semantics. It inserts end every chunklen
characters.

Parameters

body

The string to be chunked.

chunklen

The chunk length. Defaults to 76.

end

The line ending sequence. Defaults to "\r\n".

Return Values

Returns the chunked string.

Examples

Example #2503 - chunk_split() example

<?php

// format $data using RFC 2045 semantics

$new_string = chunk_split(base64_encode($data));

?>

See Also

• str_split()
• explode()
• split()

• wordwrap()
• » RFC 2045

http://www.faqs.org/rfcs/rfc2045

convert_cyr_string

convert_cyr_string -- Convert from one Cyrillic character set to another

Description

string convert_cyr_string (string $str, string $from, string $to)

Converts from one Cyrillic character set to another.

Parameters

str

The string to be converted.

from

The source Cyrillic character set, as a single character.

to

The target Cyrillic character set, as a single character.

Supported characters are:

• k - koi8-r

• w - windows-1251

• i - iso8859-5

• a - x-cp866

• d - x-cp866

• m - x-mac-cyrillic

Return Values

Returns the converted string.

Notes

Note

This function is binary-safe.

convert_uudecode

convert_uudecode -- Decode a uuencoded string

Description

string convert_uudecode (string $data)

convert_uudecode() decodes a uuencoded string.

Parameters

data

The uuencoded data.

Return Values

Returns the decoded data as a string.

Examples

Example #2504 - convert_uudecode() example

<?php

/* Can you imagine what this will print? :) */

echo convert_uudecode("+22!L;W9E(%!(4\"$`\n`");

?>

See Also

• convert_uuencode()

convert_uuencode

convert_uuencode -- Uuencode a string

Description

string convert_uuencode (string $data)

convert_uuencode() encodes a string using the uuencode algorithm.

Uuencode translates all strings (including binary's ones) into printable characters, making
them safe for network transmissions. Uuencoded data is about 35% larger than the
original.

Parameters

data

The data to be encoded.

Return Values

Returns the uuencoded data.

Examples

Example #2505 - convert_uuencode() example

<?php

$some_string = "test\ntext text\r\n";

echo convert_uuencode($some_string);

?>

See Also

• convert_uudecode()
• base64_encode()

count_chars

count_chars -- Return information about characters used in a string

Description

mixed count_chars (string $string [, int $mode])

Counts the number of occurrences of every byte-value (0..255) in string and returns it in
various ways.

Parameters

string

The examined string.

mode

The optional parameter mode defaults to 0.

Return Values

Depending on mode count_chars() returns one of the following:

• 0 - an array with the byte-value as key and the frequency of every byte as value.

• 1 - same as 0 but only byte-values with a frequency greater than zero are listed.

• 2 - same as 0 but only byte-values with a frequency equal to zero are listed.

• 3 - a string containing all unique characters is returned.

• 4 - a string containing all not used characters is returned.

Examples

Example #2506 - count_chars() example

<?php

$data = "Two Ts and one F.";

foreach (count_chars($data, 1) as $i => $val) {

 echo "There were $val instance(s) of \"" , chr($i) , "\" in the
string.\n";

}

?>

The above example will output:

There were 4 instance(s) of " " in the string.

There were 1 instance(s) of "." in the string.

There were 1 instance(s) of "F" in the string.

There were 2 instance(s) of "T" in the string.

There were 1 instance(s) of "a" in the string.

There were 1 instance(s) of "d" in the string.

There were 1 instance(s) of "e" in the string.

There were 2 instance(s) of "n" in the string.

There were 2 instance(s) of "o" in the string.

There were 1 instance(s) of "s" in the string.

There were 1 instance(s) of "w" in the string.

See Also

• strpos()
• substr_count()

crc32

crc32 -- Calculates the crc32 polynomial of a string

Description

int crc32 (string $str)

Generates the cyclic redundancy checksum polynomial of 32-bit lengths of the str. This is
usually used to validate the integrity of data being transmitted.

Because PHP's integer type is signed, and many crc32 checksums will result in negative
integers, you need to use the "%u" formatter of sprintf() or printf() to get the string
representation of the unsigned crc32 checksum.

Parameters

str

The data.

Return Values

Returns the crc32 checksum of str as an integer.

Examples

Example #2507 - Displaying a crc32 checksum

This example shows how to print a converted checksum with the printf() function:

<?php

$checksum = crc32("The quick brown fox jumped over the lazy dog.");

printf("%u\n", $checksum);

?>

See Also

• md5()
• sha1()

crypt

crypt -- One-way string encryption (hashing)

Description

string crypt (string $str [, string $salt])

crypt() will return an encrypted string using the standard Unix DES -based encryption
algorithm or alternative algorithms that may be available on the system.

Some operating systems support more than one type of encryption. In fact, sometimes the
standard DES-based encryption is replaced by an MD5-based encryption algorithm. The
encryption type is triggered by the salt argument. At install time, PHP determines the
capabilities of the crypt function and will accept salts for other encryption types. If no salt is
provided, PHP will auto-generate a standard two character salt by default, unless the
default encryption type on the system is MD5, in which case a random MD5-compatible
salt is generated. PHP sets a constant named CRYPT_SALT_LENGTH which tells you
whether a regular two character salt applies to your system or the longer twelve character
salt is applicable.

The standard DES-based encryption crypt() returns the salt as the first two characters of
the output. It also only uses the first eight characters of str, so longer strings that start
with the same eight characters will generate the same result (when the same salt is used).

On systems where the crypt() function supports multiple encryption types, the following
constants are set to 0 or 1 depending on whether the given type is available:

• CRYPT_STD_DES - Standard DES-based encryption with a two character salt

• CRYPT_EXT_DES - Extended DES-based encryption with a nine character salt

• CRYPT_MD5 - MD5 encryption with a twelve character salt starting with 1

• CRYPT_BLOWFISH - Blowfish encryption with a sixteen character salt starting with
2 or $2a$

Parameters

str

The string to be encrypted.

salt

An optional salt string to base the encryption on. If not provided, one will be randomly
generated by PHP each time you call this function. If you are using the supplied salt,
you should be aware that the salt is generated once. If you are calling this function
repeatedly, this may impact both appearance and security.

Return Values

Returns the encrypted string.

Examples

Example #2508 - crypt() examples

<?php

$password = crypt('mypassword'); // let the salt be automatically generated

/* You should pass the entire results of crypt() as the salt for comparing a

 password, to avoid problems when different hashing algorithms are used.
(As

 it says above, standard DES-based password hashing uses a 2-character
salt,

 but MD5-based hashing uses 12.) */

if (crypt($user_input, $password) == $password) {

 echo "Password verified!";

}

?>

Example #2509 - Using crypt() with htpasswd

<?php

// Set the password

$password = 'mypassword';

// Get the hash, letting the salt be automatically generated

$hash = crypt($password);

?>

Example #2510 - Using crypt() with different encryption types

<?php

if (CRYPT_STD_DES == 1) {

 echo 'Standard DES: ' . crypt('rasmuslerdorf', 'rl') . "\n";

}

if (CRYPT_EXT_DES == 1) {

 echo 'Extended DES: ' . crypt('rasmuslerdorf', '_J9..rasm') . "\n";

}

if (CRYPT_MD5 == 1) {

 echo 'MD5: ' . crypt('rasmuslerdorf', '1rasmusle$') . "\n";

}

if (CRYPT_BLOWFISH == 1) {

 echo 'Blowfish: ' . crypt('rasmuslerdorf',
'$2a$07$rasmuslerd...........$') . "\n";

}

?>

The above example will output something similar to:

Standard DES: rl.3StKT.4T8M

Extended DES: _J9..rasmBYk8r9AiWNc

MD5: 1rasmusle$rISCgZzpwk3UhDidwXvin0

Blowfish: $2a$07$rasmuslerd............nIdrcHdxcUxWomQX9j6kvERCFjTg7Ra

Notes

Note

There is no decrypt function, since crypt() uses a one-way algorithm.

See Also

• md5()
• The Mcrypt extension
• The Unix man page for your crypt function for more information

echo

echo -- Output one or more strings

Description

void echo (string $arg1 [, string $...])

Outputs all parameters.

echo() is not actually a function (it is a language construct), so you are not required to use
parentheses with it. echo() (unlike some other language constructs) does not behave like a
function, so it cannot always be used in the context of a function. Additionally, if you want
to pass more than one parameter to echo(), the parameters must not be enclosed within
parentheses.

echo() also has a shortcut syntax, where you can immediately follow the opening tag with
an equals sign. This short syntax only works with the short_open_tag configuration setting
enabled.

I have <?=$foo?> foo.

Parameters

arg1

The parameter to output.

...

Return Values

No value is returned.

Examples

Example #2511 - echo() examples

<?php

echo "Hello World";

echo "This spans

multiple lines. The newlines will be

output as well";

echo "This spans\nmultiple lines. The newlines will be\noutput as well.";

echo "Escaping characters is done \"Like this\".";

// You can use variables inside of an echo statement

$foo = "foobar";

$bar = "barbaz";

echo "foo is $foo"; // foo is foobar

// You can also use arrays

$baz = array("value" => "foo");

echo "this is {$baz['value']} !"; // this is foo !

// Using single quotes will print the variable name, not the value

echo 'foo is $foo'; // foo is $foo

// If you are not using any other characters, you can just echo variables

echo $foo; // foobar

echo $foo,$bar; // foobarbarbaz

// Some people prefer passing multiple parameters to echo over
concatenation.

echo 'This ', 'string ', 'was ', 'made ', 'with multiple parameters.',
chr(10);

echo 'This ' . 'string ' . 'was ' . 'made ' . 'with concatenation.' . "\n";

echo <<<END

This uses the "here document" syntax to output

multiple lines with $variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon. no extra whitespace!

END;

// Because echo does not behave like a function, the following code is
invalid.

($some_var) ? echo 'true' : echo 'false';

// However, the following examples will work:

($some_var) ? print 'true' : print 'false'; // print is also a construct,
but

 // it behaves like a function, so

 // it may be used in this
context.

echo $some_var ? 'true': 'false'; // changing the statement around

?>

Notes

For a short discussion about the differences between print() and echo(), see this FAQTs
Knowledge Base Article: » http://www.faqts.com/knowledge_base/view.phtml/aid/1/fid/40

http://www.faqts.com/knowledge_base/view.phtml/aid/1/fid/40

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See Also

• print()
• printf()
• flush()

explode

explode -- Split a string by string

Description

array explode (string $delimiter, string $string [, int $limit])

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the string delimiter.

Parameters

delimiter

The boundary string.

string

The input string.

limit

If limit is set, the returned array will contain a maximum of limit elements with the
last element containing the rest of string. If the limit parameter is negative, all
components except the last - limit are returned.

Although implode() can, for historical reasons, accept its parameters in either order,
explode() cannot. You must ensure that the delimiter argument comes before the
string argument.

Return Values

If delimiter is an empty string (""), explode() will return FALSE. If delimiter contains a
value that is not contained in string, then explode() will return an array containing string
.

ChangeLog

Version Description

5.1.0 Support for negative limit s was added

4.0.1 The limit parameter was added

Examples

Example #2512 - explode() examples

<?php

// Example 1

$pizza = "piece1 piece2 piece3 piece4 piece5 piece6";

$pieces = explode(" ", $pizza);

echo $pieces[0]; // piece1

echo $pieces[1]; // piece2

// Example 2

$data = "foo:*:1023:1000::/home/foo:/bin/sh";

list($user, $pass, $uid, $gid, $gecos, $home, $shell) = explode(":", $data);

echo $user; // foo

echo $pass; // *

?>

Example #2513 - limit parameter examples

<?php

$str = 'one|two|three|four';

// positive limit

print_r(explode('|', $str, 2));

// negative limit (since PHP 5.1)

print_r(explode('|', $str, -1));

?>

The above example will output:

Array

(

 [0] => one

 [1] => two|three|four

)

Array

(

 [0] => one

 [1] => two

 [2] => three

)

Notes

Note

This function is binary-safe.

See Also

• preg_split()
• str_split()
• str_word_count()
• strtok()
• implode()

fprintf

fprintf -- Write a formatted string to a stream

Description

int fprintf (resource $handle, string $format [, mixed $args [, mixed $...]])

Write a string produced according to format to the stream resource specified by handle.

Parameters

handle

A file system pointer resource that is typically created using fopen().

format

See sprintf() for a description of format.

args

...

Return Values

Returns the length of the string written.

Examples

Example #2514 - fprintf(): zero-padded integers

<?php

if (!($fp = fopen('date.txt', 'w'))) {

 return;

}

fprintf($fp, "%04d-%02d-%02d", $year, $month, $day);

// will write the formatted ISO date to date.txt

?>

Example #2515 - fprintf(): formatting currency

<?php

if (!($fp = fopen('currency.txt', 'w'))) {

 return;

}

$money1 = 68.75;

$money2 = 54.35;

$money = $money1 + $money2;

// echo $money will output "123.1";

$len = fprintf($fp, '%01.2f', $money);

// will write "123.10" to currency.txt

echo "wrote $len bytes to currency.txt";

// use the return value of fprintf to determine how many bytes we wrote

?>

See Also

• printf()
• sprintf()
• sscanf()
• fscanf()
• vsprintf()
• number_format()

get_html_translation_table

get_html_translation_table -- Returns the translation table used by htmlspecialchars() and
htmlentities()

Description

array get_html_translation_table ([int $table [, int $quote_style]])

get_html_translation_table() will return the translation table that is used internally for
htmlspecialchars() and htmlentities().

Note

Special characters can be encoded in several ways. E.g. " can be encoded as ",
" or ". get_html_translation_table() returns only the most common form for
them.

Parameters

table

There are two new constants (HTML_ENTITIES, HTML_SPECIALCHARS) that allow
you to specify the table you want. Default value for table is HTML_SPECIALCHARS.

quote_style

Like the htmlspecialchars() and htmlentities() functions you can optionally specify the
quote_style you are working with. The default is ENT_COMPAT mode. See the
description of these modes in htmlspecialchars().

Return Values

Returns the translation table as an array.

Examples

Example #2516 - Translation Table Example

<?php

$trans = get_html_translation_table(HTML_ENTITIES);

$str = "Hallo & <Frau> & Krämer";

$encoded = strtr($str, $trans);

?>

The $encoded variable will now contain: "Hallo & <Frau> & Krämer".

See Also

• htmlspecialchars()
• htmlentities()
• html_entity_decode()

hebrev

hebrev -- Convert logical Hebrew text to visual text

Description

string hebrev (string $hebrew_text [, int $max_chars_per_line])

Converts logical Hebrew text to visual text.

The function tries to avoid breaking words.

Parameters

hebrew_text

A Hebrew input string.

max_chars_per_line

This optional parameter indicates maximum number of characters per line that will be
returned.

Return Values

Returns the visual string.

See Also

• hebrevc()

hebrevc

hebrevc -- Convert logical Hebrew text to visual text with newline conversion

Description

string hebrevc (string $hebrew_text [, int $max_chars_per_line])

This function is similar to hebrev() with the difference that it converts newlines (\n) to
"
\n".

The function tries to avoid breaking words.

Parameters

hebrew_text

A Hebrew input string.

max_chars_per_line

This optional parameter indicates maximum number of characters per line that will be
returned.

Return Values

Returns the visual string.

See Also

• hebrev()

html_entity_decode

html_entity_decode -- Convert all HTML entities to their applicable characters

Description

string html_entity_decode (string $string [, int $quote_style [, string $charset]])

html_entity_decode() is the opposite of htmlentities() in that it converts all HTML entities to
their applicable characters from string.

Parameters

string

The input string.

quote_style

The optional second quote_style parameter lets you define what will be done with
'single' and "double" quotes. It takes on one of three constants with the default being
ENT_COMPAT:

Available quote_style constants

Constant Name Description

ENT_COMPAT Will convert double-quotes and leave
single-quotes alone.

ENT_QUOTES Will convert both double and single quotes.

ENT_NOQUOTES Will leave both double and single quotes
unconverted.

charset

The ISO-8859-1 character set is used as default for the optional third charset. This
defines the character set used in conversion. Following character sets are supported in
PHP 4.3.0 and later.

Supported charsets

Charset Aliases Description

ISO-8859-1 ISO8859-1 Western European, Latin-1

ISO-8859-15 ISO8859-15 Western European, Latin-9.
Adds the Euro sign, French

and Finnish letters missing in
Latin-1(ISO-8859-1).

UTF-8 ASCII compatible multi-byte
8-bit Unicode.

cp866 ibm866, 866 DOS-specific Cyrillic charset.
This charset is supported in
4.3.2.

cp1251 Windows-1251, win-1251,
1251

Windows-specific Cyrillic
charset. This charset is
supported in 4.3.2.

cp1252 Windows-1252, 1252 Windows specific charset for
Western European.

KOI8-R koi8-ru, koi8r Russian. This charset is
supported in 4.3.2.

BIG5 950 Traditional Chinese, mainly
used in Taiwan.

GB2312 936 Simplified Chinese, national
standard character set.

BIG5-HKSCS Big5 with Hong Kong
extensions, Traditional
Chinese.

Shift_JIS SJIS, 932 Japanese

EUC-JP EUCJP Japanese

Note

Any other character sets are not recognized and ISO-8859-1 will be used instead.

Return Values

Returns the decoded string.

ChangeLog

Version Description

5.0.0 Support for multi-byte character sets was
added.

Examples

Example #2517 - Decoding HTML entities

<?php

$orig = "I'll \"walk\" the dog now";

$a = htmlentities($orig);

$b = html_entity_decode($a);

echo $a; // I'll "walk" the dog now

echo $b; // I'll "walk" the dog now

// For users prior to PHP 4.3.0 you may do this:

function unhtmlentities($string)

{

 // replace numeric entities

 $string = preg_replace('~&#x([0-9a-f]+);~ei', 'chr(hexdec("\\1"))',
$string);

 $string = preg_replace('~&#([0-9]+);~e', 'chr("\\1")', $string);

 // replace literal entities

 $trans_tbl = get_html_translation_table(HTML_ENTITIES);

 $trans_tbl = array_flip($trans_tbl);

 return strtr($string, $trans_tbl);

}

$c = unhtmlentities($a);

echo $c; // I'll "walk" the dog now

?>

Notes

Note

You might wonder why trim(html_entity_decode(' ')); doesn't reduce the string to
an empty string, that's because the ' ' entity is not ASCII code 32 (which is
stripped by trim()) but ASCII code 160 (0xa0) in the default ISO 8859-1 characterset.

See Also

• htmlentities()
• htmlspecialchars()
• get_html_translation_table()
• urldecode()

htmlentities

htmlentities -- Convert all applicable characters to HTML entities

Description

string htmlentities (string $string [, int $quote_style [, string $charset [, bool $
double_encode]]])

This function is identical to htmlspecialchars() in all ways, except with htmlentities(), all
characters which have HTML character entity equivalents are translated into these entities.

If you're wanting to decode instead (the reverse) you can use html_entity_decode().

Parameters

string

The input string.

quote_style

Like htmlspecialchars(), the optional second quote_style parameter lets you define
what will be done with 'single' and "double" quotes. It takes on one of three constants
with the default being ENT_COMPAT:

Available quote_style constants

Constant Name Description

ENT_COMPAT Will convert double-quotes and leave
single-quotes alone.

ENT_QUOTES Will convert both double and single quotes.

ENT_NOQUOTES Will leave both double and single quotes
unconverted.

charset

Like htmlspecialchars(), it takes an optional third argument charset which defines
character set used in conversion. Presently, the ISO-8859-1 character set is used as the
default. Following character sets are supported in PHP 4.3.0 and later.

Supported charsets

Charset Aliases Description

ISO-8859-1 ISO8859-1 Western European, Latin-1

ISO-8859-15 ISO8859-15 Western European, Latin-9.
Adds the Euro sign, French
and Finnish letters missing in
Latin-1(ISO-8859-1).

UTF-8 ASCII compatible multi-byte
8-bit Unicode.

cp866 ibm866, 866 DOS-specific Cyrillic charset.
This charset is supported in
4.3.2.

cp1251 Windows-1251, win-1251,
1251

Windows-specific Cyrillic
charset. This charset is
supported in 4.3.2.

cp1252 Windows-1252, 1252 Windows specific charset for
Western European.

KOI8-R koi8-ru, koi8r Russian. This charset is
supported in 4.3.2.

BIG5 950 Traditional Chinese, mainly
used in Taiwan.

GB2312 936 Simplified Chinese, national
standard character set.

BIG5-HKSCS Big5 with Hong Kong
extensions, Traditional
Chinese.

Shift_JIS SJIS, 932 Japanese

EUC-JP EUCJP Japanese

Note

Any other character sets are not recognized and ISO-8859-1 will be used instead.

double_encode

When double_encode is turned off PHP will not encode existing html entities. The default
is to convert everything.

Return Values

Returns the encoded string.

ChangeLog

Version Description

5.2.3 The double_encode parameter was added.

4.1.0 The charset parameter was added.

4.0.3 The quote_style parameter was added.

Examples

Example #2518 - A htmlentities() example

<?php

$str = "A 'quote' is bold";

// Outputs: A 'quote' is bold

echo htmlentities($str);

// Outputs: A 'quote' is bold

echo htmlentities($str, ENT_QUOTES);

?>

See Also

• html_entity_decode()
• get_html_translation_table()
• htmlspecialchars()
• nl2br()
• urlencode()

htmlspecialchars_decode

htmlspecialchars_decode -- Convert special HTML entities back to characters

Description

string htmlspecialchars_decode (string $string [, int $quote_style])

This function is the opposite of htmlspecialchars(). It converts special HTML entities back
to characters.

The converted entities are: &, " (when ENT_NOQUOTES is not set), '
(when ENT_QUOTES is set), < and >.

Parameters

string

The string to decode

quote_style

The quote style. One of the following constants:

quote_style constants

Constant Name Description

ENT_COMPAT Will convert double-quotes and leave
single-quotes alone (default)

ENT_QUOTES Will convert both double and single quotes

ENT_NOQUOTES Will leave both double and single quotes
unconverted

Return Values

Returns the decoded string.

Examples

Example #2519 - A htmlspecialchars_decode() example

<?php

$str = '<p>this -> "</p>';

echo htmlspecialchars_decode($str);

// note that here the quotes aren't converted

echo htmlspecialchars_decode($str, ENT_NOQUOTES);

?>

The above example will output:

<p>this -> "</p>

<p>this -> "</p>

See Also

• htmlspecialchars()
• html_entity_decode()
• get_html_translation_table()

htmlspecialchars

htmlspecialchars -- Convert special characters to HTML entities

Description

string htmlspecialchars (string $string [, int $quote_style [, string $charset [, bool $
double_encode]]])

Certain characters have special significance in HTML, and should be represented by HTML
entities if they are to preserve their meanings. This function returns a string with some of these
conversions made; the translations made are those most useful for everyday web
programming. If you require all HTML character entities to be translated, use htmlentities()
instead.

This function is useful in preventing user-supplied text from containing HTML markup, such as
in a message board or guest book application.

The translations performed are:

• '&' (ampersand) becomes '&'

• '"' (double quote) becomes '"' when ENT_NOQUOTES is not set.

• ''' (single quote) becomes ''' only when ENT_QUOTES is set.

• '<' (less than) becomes '<'

• '>' (greater than) becomes '>'

Parameters

string

The string being converted.

quote_style

The optional second argument, quote_style, tells the function what to do with single and
double quote characters. The default mode, ENT_COMPAT, is the backwards compatible
mode which only translates the double-quote character and leaves the single-quote
untranslated. If ENT_QUOTES is set, both single and double quotes are translated and if
ENT_NOQUOTES is set neither single nor double quotes are translated.

charset

Defines character set used in conversion. The default character set is ISO-8859-1.
Following character sets are supported in PHP 4.3.0 and later.

Supported charsets

Charset Aliases Description

ISO-8859-1 ISO8859-1 Western European, Latin-1

ISO-8859-15 ISO8859-15 Western European, Latin-9.
Adds the Euro sign, French
and Finnish letters missing in
Latin-1(ISO-8859-1).

UTF-8 ASCII compatible multi-byte
8-bit Unicode.

cp866 ibm866, 866 DOS-specific Cyrillic charset.
This charset is supported in
4.3.2.

cp1251 Windows-1251, win-1251,
1251

Windows-specific Cyrillic
charset. This charset is
supported in 4.3.2.

cp1252 Windows-1252, 1252 Windows specific charset for
Western European.

KOI8-R koi8-ru, koi8r Russian. This charset is
supported in 4.3.2.

BIG5 950 Traditional Chinese, mainly
used in Taiwan.

GB2312 936 Simplified Chinese, national
standard character set.

BIG5-HKSCS Big5 with Hong Kong
extensions, Traditional
Chinese.

Shift_JIS SJIS, 932 Japanese

EUC-JP EUCJP Japanese

Note

Any other character sets are not recognized and ISO-8859-1 will be used instead.

double_encode

When double_encode is turned off PHP will not encode existing html entities, the default is
to convert everything.

Return Values

The converted string.

ChangeLog

Version Description

5.2.3 The double_encode parameter was added.

4.1.0 The charset parameter was added.

Examples

Example #2520 - htmlspecialchars() example

<?php

$new = htmlspecialchars("Test", ENT_QUOTES);

echo $new; // Test

?>

Notes

Note

Note that this function does not translate anything beyond what is listed above. For full
entity translation, see htmlentities().

See Also

• get_html_translation_table()
• htmlspecialchars_decode()
• strip_tags()
• htmlentities()
• nl2br()

implode

implode -- Join array elements with a string

Description

string implode (string $glue, array $pieces)

Join array elements with a glue string.

Note

implode() can, for historical reasons, accept its parameters in either order. For
consistency with explode(), however, it may be less confusing to use the documented
order of arguments.

Parameters

glue

Defaults to an empty string. This is not the preferred usage of implode() as glue would
be the second parameter and thus, the bad prototype would be used.

pieces

The array of strings to implode.

Return Values

Returns a string containing a string representation of all the array elements in the same
order, with the glue string between each element.

ChangeLog

Version Description

4.3.0 The glue parameter became optional.

Examples

Example #2521 - implode() example

<?php

$array = array('lastname', 'email', 'phone');

$comma_separated = implode(",", $array);

echo $comma_separated; // lastname,email,phone

?>

Notes

Note

This function is binary-safe.

See Also

• explode()
• split()

join

join -- Alias of implode()

Description

This function is an alias of: implode().

lcfirst

lcfirst -- Make a string's first character lowercase

Description

string lcfirst (string $str)

Returns a string with the first character of str, lowercased if that character is alphabetic.

Note that 'alphabetic' is determined by the current locale. For instance, in the default "C"
locale characters such as umlaut-a (ä) will not be converted.

Parameters

str

The input string.

Return Values

Returns the resulting string.

Examples

Example #2522 - lcfirst() example

<?php

$foo = 'HelloWorld';

$foo = lcfirst($foo); // helloWorld

$bar = 'HELLO WORLD!';

$bar = lcfirst($bar); // hELLO WORLD!

$bar = lcfirst(strtoupper($bar)); // hELLO WORLD!

?>

See Also

• ucfirst()
• strtolower()
• strtoupper()
• ucwords()

levenshtein

levenshtein -- Calculate Levenshtein distance between two strings

Description

int levenshtein (string $str1, string $str2)

int levenshtein (string $str1, string $str2, int $cost_ins, int $cost_rep, int $cost_del)

The Levenshtein distance is defined as the minimal number of characters you have to
replace, insert or delete to transform str1 into str2. The complexity of the algorithm is
O(m*n), where n and m are the length of str1 and str2 (rather good when compared to
similar_text(), which is O(max(n,m)**3), but still expensive).

In its simplest form the function will take only the two strings as parameter and will
calculate just the number of insert, replace and delete operations needed to transform
str1 into str2.

A second variant will take three additional parameters that define the cost of insert, replace
and delete operations. This is more general and adaptive than variant one, but not as
efficient.

Parameters

str1

One of the strings being evaluated for Levenshtein distance.

str2

One of the strings being evaluated for Levenshtein distance.

cost_ins

Defines the cost of insertion.

cost_rep

Defines the cost of replacement.

cost_del

Defines the cost of deletion.

Return Values

This function returns the Levenshtein-Distance between the two argument strings or -1, if
one of the argument strings is longer than the limit of 255 characters.

Examples

Example #2523 - levenshtein() example

<?php

// input misspelled word

$input = 'carrrot';

// array of words to check against

$words = array('apple','pineapple','banana','orange',

 'radish','carrot','pea','bean','potato');

// no shortest distance found, yet

$shortest = -1;

// loop through words to find the closest

foreach ($words as $word) {

 // calculate the distance between the input word,

 // and the current word

 $lev = levenshtein($input, $word);

 // check for an exact match

 if ($lev == 0) {

 // closest word is this one (exact match)

 $closest = $word;

 $shortest = 0;

 // break out of the loop; we've found an exact match

 break;

 }

 // if this distance is less than the next found shortest

 // distance, OR if a next shortest word has not yet been found

 if ($lev <= $shortest || $shortest < 0) {

 // set the closest match, and shortest distance

 $closest = $word;

 $shortest = $lev;

 }

}

echo "Input word: $input\n";

if ($shortest == 0) {

 echo "Exact match found: $closest\n";

} else {

 echo "Did you mean: $closest?\n";

}

?>

The above example will output:

Input word: carrrot

Did you mean: carrot?

See Also

• soundex()
• similar_text()
• metaphone()

localeconv

localeconv -- Get numeric formatting information

Description

array localeconv (void)

Returns an associative array containing localized numeric and monetary formatting
information.

Return Values

localeconv() returns data based upon the current locale as set by setlocale(). The
associative array that is returned contains the following fields:

Array element Description

decimal_point Decimal point character

thousands_sep Thousands separator

grouping Array containing numeric groupings

int_curr_symbol International currency symbol (i.e. USD)

currency_symbol Local currency symbol (i.e. $)

mon_decimal_point Monetary decimal point character

mon_thousands_sep Monetary thousands separator

mon_grouping Array containing monetary groupings

positive_sign Sign for positive values

negative_sign Sign for negative values

int_frac_digits International fractional digits

frac_digits Local fractional digits

p_cs_precedes TRUE if currency_symbol precedes a
positive value, FALSE if it succeeds one

p_sep_by_space TRUE if a space separates
currency_symbol from a positive value,
FALSE otherwise

n_cs_precedes TRUE if currency_symbol precedes a
negative value, FALSE if it succeeds one

n_sep_by_space TRUE if a space separates
currency_symbol from a negative value,
FALSE otherwise

p_sign_posn

• 0 - Parentheses surround the quantity
and currency_symbol

• 1 - The sign string precedes the quantity
and currency_symbol

• 2 - The sign string succeeds the quantity
and currency_symbol

• 3 - The sign string immediately precedes
the currency_symbol

• 4 - The sign string immediately
succeeds the currency_symbol

n_sign_posn

• 0 - Parentheses surround the quantity
and currency_symbol

• 1 - The sign string precedes the quantity
and currency_symbol

• 2 - The sign string succeeds the quantity
and currency_symbol

• 3 - The sign string immediately precedes
the currency_symbol

• 4 - The sign string immediately
succeeds the currency_symbol

The p_sign_posn, and n_sign_posn contain a string of formatting options. Each number
representing one of the above listed conditions.

The grouping fields contain arrays that define the way numbers should be grouped. For
example, the monetary grouping field for the nl_NL locale (in UTF-8 mode with the euro
sign), would contain a 2 item array with the values 3 and 3. The higher the index in the
array, the farther left the grouping is. If an array element is equal to CHAR_MAX, no
further grouping is done. If an array element is equal to 0, the previous element should be
used.

Examples

Example #2524 - localeconv() example

<?php

if (false !== setlocale(LC_ALL, 'nl_NL.UTF-8@euro')) {

 $locale_info = localeconv();

 print_r($locale_info);

}

?>

The above example will output:

Array

(

 [decimal_point] => .

 [thousands_sep] =>

 [int_curr_symbol] => EUR

 [currency_symbol] => ?

 [mon_decimal_point] => ,

 [mon_thousands_sep] =>

 [positive_sign] =>

 [negative_sign] => -

 [int_frac_digits] => 2

 [frac_digits] => 2

 [p_cs_precedes] => 1

 [p_sep_by_space] => 1

 [n_cs_precedes] => 1

 [n_sep_by_space] => 1

 [p_sign_posn] => 1

 [n_sign_posn] => 2

 [grouping] => Array

 (

)

 [mon_grouping] => Array

 (

 [0] => 3

 [1] => 3

)

)

See Also

• setlocale()

ltrim

ltrim -- Strip whitespace (or other characters) from the beginning of a string

Description

string ltrim (string $str [, string $charlist])

Strip whitespace (or other characters) from the beginning of a string.

Parameters

str

The input string.

charlist

You can also specify the characters you want to strip, by means of the charlist
parameter. Simply list all characters that you want to be stripped. With.. you can
specify a range of characters.

Return Values

This function returns a string with whitespace stripped from the beginning of str. Without
the second parameter, ltrim() will strip these characters:

• " " (ASCII 32 (0x20)), an ordinary space.

• "\t" (ASCII 9 (0x09)), a tab.

• "\n" (ASCII 10 (0x0A)), a new line (line feed).

• "\r" (ASCII 13 (0x0D)), a carriage return.

• "\0" (ASCII 0 (0x00)), the NUL -byte.

• "\x0B" (ASCII 11 (0x0B)), a vertical tab.

ChangeLog

Version Description

4.1.0 The charlist parameter was added.

Examples

Example #2525 - Usage example of ltrim()

<?php

$text = "\t\tThese are a few words :) ... ";

$binary = "\x09Example string\x0A";

$hello = "Hello World";

var_dump($text, $binary, $hello);

print "\n";

$trimmed = ltrim($text);

var_dump($trimmed);

$trimmed = ltrim($text, " \t.");

var_dump($trimmed);

$trimmed = ltrim($hello, "Hdle");

var_dump($trimmed);

// trim the ASCII control characters at the beginning of $binary

// (from 0 to 31 inclusive)

$clean = ltrim($binary, "\x00..\x1F");

var_dump($clean);

?>

The above example will output:

string(32) " These are a few words :) ... "

string(16) " Example string

"

string(11) "Hello World"

string(30) "These are a few words :) ... "

string(30) "These are a few words :) ... "

string(7) "o World"

string(15) "Example string

"

See Also

• trim()
• rtrim()

md5_file

md5_file -- Calculates the md5 hash of a given file

Description

string md5_file (string $filename [, bool $raw_output])

Calculates the MD5 hash of the file specified by the filename parameter using the » RSA
Data Security, Inc. MD5 Message-Digest Algorithm, and returns that hash. The hash is a
32-character hexadecimal number.

Parameters

filename

The filename

raw_output

When TRUE, returns the digest in raw binary format with a length of 16. Defaults to
FALSE.

Return Values

Returns a string on success, FALSE otherwise.

ChangeLog

Version Description

5.0.0 Added the raw_output parameter

5.1.0 Changed the function to use the streams
API. It means that you can use it with
wrappers, like
md5_file('http://example.com/..')

See Also

• md5()
• sha1_file()

http://www.faqs.org/rfcs/rfc1321
http://www.faqs.org/rfcs/rfc1321

• crc32()

md5

md5 -- Calculate the md5 hash of a string

Description

string md5 (string $str [, bool $raw_output])

Calculates the MD5 hash of str using the » RSA Data Security, Inc. MD5 Message-Digest
Algorithm, and returns that hash.

Parameters

str

The string.

raw_output

If the optional raw_output is set to TRUE, then the md5 digest is instead returned in
raw binary format with a length of 16. Defaults to FALSE.

Return Values

Returns the hash as a 32-character hexadecimal number.

ChangeLog

Version Description

5.0.0 The raw_output parameter was added.

Examples

Example #2526 - A md5() example

<?php

$str = 'apple';

if (md5($str) === '1f3870be274f6c49b3e31a0c6728957f') {

 echo "Would you like a green or red apple?";

 exit;

}

http://www.faqs.org/rfcs/rfc1321
http://www.faqs.org/rfcs/rfc1321

?>

See Also

• sha1_file()
• crc32()
• sha1()

metaphone

metaphone -- Calculate the metaphone key of a string

Description

string metaphone (string $str [, int $phones])

Calculates the metaphone key of str.

Similar to soundex() metaphone creates the same key for similar sounding words. It's
more accurate than soundex() as it knows the basic rules of English pronunciation. The
metaphone generated keys are of variable length.

Metaphone was developed by Lawrence Philips <lphilips at verity dot com>. It is described
in ["Practical Algorithms for Programmers", Binstock & Rex, Addison Wesley, 1995].

Parameters

str

The input string.

phones

Return Values

Returns the metaphone key as a string.

money_format

money_format -- Formats a number as a currency string

Description

string money_format (string $format, float $number)

money_format() returns a formatted version of number. This function wraps the C library
function strfmon(), with the difference that this implementation converts only one number
at a time.

Parameters

format

The format specification consists of the following sequence:

• a % character

• optional flags

• optional field width

• optional left precision

• optional right precision

• a required conversion character

Flags

One or more of the optional flags below can be used:
= f

The character = followed by a (single byte) character f to be used as the numeric
fill character. The default fill character is space.

^
Disable the use of grouping characters (as defined by the current locale).

+ or (
Specify the formatting style for positive and negative numbers. If + is used, the
locale's equivalent for + and - will be used. If (is used, negative amounts are
enclosed in parenthesis. If no specification is given, the default is +.

!
Suppress the currency symbol from the output string.

-
If present, it will make all fields left-justified (padded to the right), as opposed to the

default which is for the fields to be right-justified (padded to the left).

Field width

w
A decimal digit string specifying a minimum field width. Field will be right-justified
unless the flag - is used. Default value is 0 (zero).

Left precision

n
The maximum number of digits (n) expected to the left of the decimal character
(e.g. the decimal point). It is used usually to keep formatted output aligned in the
same columns, using the fill character if the number of digits is less than n. If the
number of actual digits is bigger than n, then this specification is ignored. If
grouping has not been suppressed using the ^ flag, grouping separators will be
inserted before the fill characters (if any) are added. Grouping separators will not
be applied to fill characters, even if the fill character is a digit. To ensure alignment,
any characters appearing before or after the number in the formatted output such
as currency or sign symbols are padded as necessary with space characters to
make their positive and negative formats an equal length.

Right precision

. p
A period followed by the number of digits (p) after the decimal character. If the
value of p is 0 (zero), the decimal character and the digits to its right will be
omitted. If no right precision is included, the default will dictated by the current local
in use. The amount being formatted is rounded to the specified number of digits
prior to formatting.

Conversion characters

i
The number is formatted according to the locale's international currency format
(e.g. for the USA locale: USD 1,234.56).

n
The number is formatted according to the locale's national currency format (e.g. for
the de_DE locale: DM1.234,56).

%
Returns the % character.

number

The number to be formatted.

Return Values

Returns the formatted string. Characters before and after the formatting string will be
returned unchanged.

Notes

Note

The function money_format() is only defined if the system has strfmon capabilities. For
example, Windows does not, so money_format() is undefined in Windows.

Note

The LC_MONETARY category of the locale settings, affects the behavior of this
function. Use setlocale() to set to the appropriate default locale before using this
function.

Examples

Example #2527 - money_format() Example

We will use different locales and format specifications to illustrate the use of this
function.

<?php

$number = 1234.56;

// let's print the international format for the en_US locale

setlocale(LC_MONETARY, 'en_US');

echo money_format('%i', $number) . "\n";

// USD 1,234.56

// Italian national format with 2 decimals`

setlocale(LC_MONETARY, 'it_IT');

echo money_format('%.2n', $number) . "\n";

// L. 1.234,56

// Using a negative number

$number = -1234.5672;

// US national format, using () for negative numbers

// and 10 digits for left precision

setlocale(LC_MONETARY, 'en_US');

echo money_format('%(#10n', $number) . "\n";

// ($ 1,234.57)

// Similar format as above, adding the use of 2 digits of right

// precision and '*' as a fill character

echo money_format('%=*(#10.2n', $number) . "\n";

// ($********1,234.57)

// Let's justify to the left, with 14 positions of width, 8 digits of

// left precision, 2 of right precision, withouth grouping character

// and using the international format for the de_DE locale.

setlocale(LC_MONETARY, 'de_DE');

echo money_format('%=*^-14#8.2i', 1234.56) . "\n";

// DEM 1234,56****

// Let's add some blurb before and after the conversion specification

setlocale(LC_MONETARY, 'en_GB');

$fmt = 'The final value is %i (after a 10%% discount)';

echo money_format($fmt, 1234.56) . "\n";

// The final value is GBP 1,234.56 (after a 10% discount)

?>

See Also

• setlocale()
• sscanf()
• sprintf()
• printf()
• number_format()

nl_langinfo

nl_langinfo -- Query language and locale information

Description

string nl_langinfo (int $item)

nl_langinfo() is used to access individual elements of the locale categories. Unlike
localeconv(), which returns all of the elements, nl_langinfo() allows you to select any
specific element.

Parameters

item

item may be an integer value of the element or the constant name of the element. The
following is a list of constant names for item that may be used and their description.
Some of these constants may not be defined or hold no value for certain locales.

nl_langinfo Constants

Constant Description

LC_TIME Category Constants

ABDAY_(1-7) Abbreviated name of n-th day of the week.

DAY_(1-7) Name of the n-th day of the week (DAY_1 =
Sunday).

ABMON_(1-12) Abbreviated name of the n-th month of the
year.

MON_(1-12) Name of the n-th month of the year.

AM_STR String for Ante meridian.

PM_STR String for Post meridian.

D_T_FMT String that can be used as the format string
for strftime() to represent time and date.

D_FMT String that can be used as the format string
for strftime() to represent date.

T_FMT String that can be used as the format string
for strftime() to represent time.

T_FMT_AMPM String that can be used as the format string
for strftime() to represent time in 12-hour
format with ante/post meridian.

ERA Alternate era.

ERA_YEAR Year in alternate era format.

ERA_D_T_FMT Date and time in alternate era format (string
can be used in strftime()).

ERA_D_FMT Date in alternate era format (string can be
used in strftime()).

ERA_T_FMT Time in alternate era format (string can be
used in strftime()).

LC_MONETARY Category Constants

INT_CURR_SYMBOL International currency symbol.

CURRENCY_SYMBOL Local currency symbol.

CRNCYSTR Same value as CURRENCY_SYMBOL.

MON_DECIMAL_POINT Decimal point character.

MON_THOUSANDS_SEP Thousands separator (groups of three
digits).

MON_GROUPING Like 'grouping' element.

POSITIVE_SIGN Sign for positive values.

NEGATIVE_SIGN Sign for negative values.

INT_FRAC_DIGITS International fractional digits.

FRAC_DIGITS Local fractional digits.

P_CS_PRECEDES Returns 1 if CURRENCY_SYMBOL
precedes a positive value.

P_SEP_BY_SPACE Returns 1 if a space separates
CURRENCY_SYMBOL from a positive
value.

N_CS_PRECEDES Returns 1 if CURRENCY_SYMBOL
precedes a negative value.

N_SEP_BY_SPACE Returns 1 if a space separates
CURRENCY_SYMBOL from a negative

value.

P_SIGN_POSN

• Returns 0 if parentheses surround the
quantity and currency_symbol.

• Returns 1 if the sign string precedes the
quantity and currency_symbol.

• Returns 2 if the sign string follows the
quantity and currency_symbol.

• Returns 3 if the sign string immediately
precedes the currency_symbol.

• Returns 4 if the sign string immediately
follows the currency_symbol.

N_SIGN_POSN

LC_NUMERIC Category Constants

DECIMAL_POINT Decimal point character.

RADIXCHAR Same value as DECIMAL_POINT.

THOUSANDS_SEP Separator character for thousands (groups
of three digits).

THOUSEP Same value as THOUSANDS_SEP.

GROUPING

LC_MESSAGES Category Constants

YESEXPR Regex string for matching 'yes' input.

NOEXPR Regex string for matching 'no' input.

YESSTR Output string for 'yes'.

NOSTR Output string for 'no'.

LC_CTYPE Category Constants

CODESET Return a string with the name of the
character encoding.

Return Values

Returns the element as a string, or FALSE if item is not valid.

Notes

Note

This function is not implemented on Windows platforms.

See Also

• setlocale()
• localeconv()

nl2br

nl2br -- Inserts HTML line breaks before all newlines in a string

Description

string nl2br (string $string)

Returns string with '
' inserted before all newlines.

Parameters

string

The input string.

Return Values

Returns the altered string.

ChangeLog

Version Description

4.0.5 nl2br() is now XHTML compliant. All older
versions will return string with '
'
inserted before newlines instead of '
'.

Examples

Example #2528 - using nl2br()

<?php

echo nl2br("foo isn't\n bar");

?>

The above example will output:

foo isn't

bar

See Also

• htmlspecialchars()
• htmlentities()
• wordwrap()
• str_replace()

number_format

number_format -- Format a number with grouped thousands

Description

string number_format (float $number [, int $decimals])

string number_format (float $number, int $decimals, string $dec_point, string $
thousands_sep)

This function accepts either one, two, or four parameters (not three):

If only one parameter is given, number will be formatted without decimals, but with a
comma (",") between every group of thousands.

If two parameters are given, number will be formatted with decimals decimals with a dot
(".") in front, and a comma (",") between every group of thousands.

If all four parameters are given, number will be formatted with decimals decimals,
dec_point instead of a dot (".") before the decimals and thousands_sep instead of a
comma (",") between every group of thousands.

Return Values

A formatted version of number.

Parameters

number

The number being formatted.

decimals

Sets the number of decimal points.

dec_point

Sets the separator for the decimal point.

thousands_sep

Sets the thousands separator. Only the first character of thousands_sep is used. For
example, if you use bar as thousands_sep on the number 1000, number_format() will
return 1b000.

Examples

Example #2529 - number_format() Example

For instance, French notation usually use two decimals, comma (',') as decimal
separator, and space (' ') as thousand separator. This is achieved with this line :

<?php

$number = 1234.56;

// english notation (default)

$english_format_number = number_format($number);

// 1,235

// French notation

$nombre_format_francais = number_format($number, 2, ',', ' ');

// 1 234,56

$number = 1234.5678;

// english notation without thousands seperator

$english_format_number = number_format($number, 2, '.', '');

// 1234.57

?>

See Also

• money_format()
• sprintf()
• printf()
• sscanf()

ord

ord -- Return ASCII value of character

Description

int ord (string $string)

Returns the ASCII value of the first character of string.

This function complements chr().

Parameters

string

A character.

Return Values

Returns the ASCII value as an integer.

Examples

Example #2530 - ord() example

<?php

$str = "\n";

if (ord($str) == 10) {

 echo "The first character of \$str is a line feed.\n";

}

?>

See Also

• chr()
• An » ASCII-table

http://www.asciitable.com

parse_str

parse_str -- Parses the string into variables

Description

void parse_str (string $str [, array &$arr])

Parses str as if it were the query string passed via a URL and sets variables in the
current scope.

Note

To get the current QUERY_STRING, you may use the variable
$_SERVER['QUERY_STRING']. Also, you may want to read the section on variables
from external sources.

Note

The magic_quotes_gpc setting affects the output of this function, as parse_str() uses
the same mechanism that PHP uses to populate the $_GET, $_POST, etc. variables.

Parameters

str

The input string.

arr

If the second parameter arr is present, variables are stored in this variable as array
elements instead.

Return Values

No value is returned.

ChangeLog

Version Description

4.0.3 The arr parameter was added

Examples

Example #2531 - Using parse_str()

<?php

$str = "first=value&arr[]=foo+bar&arr[]=baz";

parse_str($str);

echo $first; // value

echo $arr[0]; // foo bar

echo $arr[1]; // baz

parse_str($str, $output);

echo $output['first']; // value

echo $output['arr'][0]; // foo bar

echo $output['arr'][1]; // baz

?>

See Also

• parse_url()
• pathinfo()
• http_build_query()
• get_magic_quotes_gpc()
• urldecode()

print

print -- Output a string

Description

int print (string $arg)

Outputs arg.

print() is not actually a real function (it is a language construct) so you are not required to
use parentheses with its argument list.

For a short discussion about the differences between print() and echo(), see this FAQTs
Knowledge Base Article: » http://www.faqts.com/knowledge_base/view.phtml/aid/1/fid/40

Parameters

arg

The input data.

Return Values

Returns 1, always.

Examples

Example #2532 - print() examples

<?php

print("Hello World");

print "print() also works without parentheses.";

print "This spans

multiple lines. The newlines will be

output as well";

print "This spans\nmultiple lines. The newlines will be\noutput as well.";

print "escaping characters is done \"Like this\".";

// You can use variables inside of a print statement

$foo = "foobar";

$bar = "barbaz";

print "foo is $foo"; // foo is foobar

http://www.faqts.com/knowledge_base/view.phtml/aid/1/fid/40

// You can also use arrays

$bar = array("value" => "foo");

print "this is {$bar['value']} !"; // this is foo !

// Using single quotes will print the variable name, not the value

print 'foo is $foo'; // foo is $foo

// If you are not using any other characters, you can just print variables

print $foo; // foobar

print <<<END

This uses the "here document" syntax to output

multiple lines with $variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon no extra whitespace!

END;

?>

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See Also

• echo()
• printf()
• flush()

printf

printf -- Output a formatted string

Description

int printf (string $format [, mixed $args [, mixed $...]])

Produces output according to format.

Parameters

format

See sprintf() for a description of format.

args

...

Return Values

Returns the length of the outputted string.

See Also

• print()
• sprintf()
• vprintf()
• sscanf()
• fscanf()
• flush()

quoted_printable_decode

quoted_printable_decode -- Convert a quoted-printable string to an 8 bit string

Description

string quoted_printable_decode (string $str)

This function returns an 8-bit binary string corresponding to the decoded quoted printable
string (according to » RFC2045, section 6.7, not » RFC2821, section 4.5.2, so additional
periods are not stripped from the beginning of line).

This function is similar to imap_qprint(), except this one does not require the IMAP module
to work.

Parameters

str

The input string.

Return Values

Returns the 8-bit binary string.

http://www.faqs.org/rfcs/rfc2045
http://www.faqs.org/rfcs/rfc2821

quotemeta

quotemeta -- Quote meta characters

Description

string quotemeta (string $str)

Returns a version of str with a backslash character (\) before every character that is
among these:
. \ + * ? [^] ($)

Parameters

str

The input string.

Return Values

Returns the string with meta characters quoted.

Notes

Note

This function is binary-safe.

See Also

• addslashes()
• addcslashes()
• htmlentities()
• htmlspecialchars()
• nl2br()
• stripslashes()
• stripcslashes()
• ereg()

rtrim

rtrim -- Strip whitespace (or other characters) from the end of a string

Description

string rtrim (string $str [, string $charlist])

This function returns a string with whitespace stripped from the end of str.

Without the second parameter, rtrim() will strip these characters:

• " " (ASCII 32 (0x20)), an ordinary space.

• "\t" (ASCII 9 (0x09)), a tab.

• "\n" (ASCII 10 (0x0A)), a new line (line feed).

• "\r" (ASCII 13 (0x0D)), a carriage return.

• "\0" (ASCII 0 (0x00)), the NUL -byte.

• "\x0B" (ASCII 11 (0x0B)), a vertical tab.

Parameters

str

The input string.

charlist

You can also specify the characters you want to strip, by means of the charlist
parameter. Simply list all characters that you want to be stripped. With.. you can
specify a range of characters.

Return Values

Returns the modified string.

ChangeLog

Version Description

4.1.0 The charlist parameter was added.

Examples

Example #2533 - Usage example of rtrim()

<?php

$text = "\t\tThese are a few words :) ... ";

$binary = "\x09Example string\x0A";

$hello = "Hello World";

var_dump($text, $binary, $hello);

print "\n";

$trimmed = rtrim($text);

var_dump($trimmed);

$trimmed = rtrim($text, " \t.");

var_dump($trimmed);

$trimmed = rtrim($hello, "Hdle");

var_dump($trimmed);

// trim the ASCII control characters at the end of $binary

// (from 0 to 31 inclusive)

$clean = rtrim($binary, "\x00..\x1F");

var_dump($clean);

?>

The above example will output:

string(32) " These are a few words :) ... "

string(16) " Example string

"

string(11) "Hello World"

string(30) " These are a few words :) ..."

string(26) " These are a few words :)"

string(9) "Hello Wor"

string(15) " Example string"

See Also

• trim()
• ltrim()

setlocale

setlocale -- Set locale information

Description

string setlocale (int $category, string $locale [, string $...])

string setlocale (int $category, array $locale)

Sets locale information.

Parameters

category

category is a named constant specifying the category of the functions affected by the
locale setting:

• LC_ALL for all of the below

• LC_COLLATE for string comparison, see strcoll()

• LC_CTYPE for character classification and conversion, for example strtoupper()

• LC_MONETARY for localeconv()

• LC_NUMERIC for decimal separator (See also localeconv())

• LC_TIME for date and time formatting with strftime()

• LC_MESSAGES for system responses (available if PHP was compiled with libintl)

locale

If locale is NULL or the empty string "", the locale names will be set from the values
of environment variables with the same names as the above categories, or from
"LANG". If locale is "0", the locale setting is not affected, only the current setting is
returned. If locale is an array or followed by additional parameters then each array
element or parameter is tried to be set as new locale until success. This is useful if a
locale is known under different names on different systems or for providing a fallback
for a possibly not available locale.

...

Return Values

Returns the new current locale, or FALSE if the locale functionality is not implemented on
your platform, the specified locale does not exist or the category name is invalid.

An invalid category name also causes a warning message. Category/locale names can be
found in » RFC 1766 and » ISO 639. Different systems have different naming schemes for
locales.

Note

The return value of setlocale() depends on the system that PHP is running. It returns
exactly what the system setlocale function returns.

ChangeLog

Version Description

4.3.0 Passing multiple locales became possible.

4.2.0 Passing category as a string is now
deprecated, use the above constants
instead. Passing them as a string (within
quotes) will result in a warning message.

Examples

Example #2534 - setlocale() Examples

<?php

/* Set locale to Dutch */

setlocale(LC_ALL, 'nl_NL');

/* Output: vrijdag 22 december 1978 */

echo strftime("%A %e %B %Y", mktime(0, 0, 0, 12, 22, 1978));

/* try different possible locale names for german as of PHP 4.3.0 */

$loc_de = setlocale(LC_ALL, 'de_DE@euro', 'de_DE', 'de', 'ge');

echo "Preferred locale for german on this system is '$loc_de'";

?>

Example #2535 - setlocale() Examples for Windows

<?php

/* Set locale to Dutch */

setlocale(LC_ALL, 'nld_nld');

http://www.faqs.org/rfcs/rfc1766
http://www.w3.org/WAI/ER/IG/ert/iso639.htm

/* Output: vrijdag 22 december 1978 */

echo strftime("%A %d %B %Y", mktime(0, 0, 0, 12, 22, 1978));

/* try different possible locale names for german as of PHP 4.3.0 */

$loc_de = setlocale(LC_ALL, 'de_DE@euro', 'de_DE', 'deu_deu');

echo "Preferred locale for german on this system is '$loc_de'";

?>

Notes

Warning

The locale information is maintained per process, not per thread. If you are running
PHP on a multithreaded server api like IIS or Apache on Windows you may experience
sudden changes of locale settings while a script is running although the script itself
never called setlocale() itself. This happens due to other scripts running in different
threads of the same process at the same time changing the processwide locale using
setlocale().

Tip

Windows users will find useful information about locale strings at Microsoft's MSDN
website. Supported language strings can be found at » http://msdn.microsoft.com/librar
y/default.asp?url=/library/en-us/vclib/html/_crt_language_strings.asp and supported
country/region strings at » http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vclib/html/_crt_country_strings.asp. Windows systems support the three letter
codes for country/region specified by ISO 3166-Alpha-3, which can be found at this
» Unicode website.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_language_strings.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_language_strings.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_country_strings.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_country_strings.asp
http://www.unicode.org/onlinedat/countries.html
http://www.unicode.org/onlinedat/countries.html

sha1_file

sha1_file -- Calculate the sha1 hash of a file

Description

string sha1_file (string $filename [, bool $raw_output])

Calculates the sha1 hash of filename using the » US Secure Hash Algorithm 1, and
returns that hash. The hash is a 40-character hexadecimal number.

Parameters

filename

The filename

raw_output

When TRUE, returns the digest in raw binary format with a length of 20. Defaults to
FALSE.

Return Values

Returns a string on success, FALSE otherwise.

ChangeLog

Version Description

5.0.0 Added the raw_output parameter

5.1.0 Changed the function to use the streams
API. It means that you can use it with
wrappers, like
sha1_file('http://example.com/..')

See Also

• sha1()
• md5_file()
• crc32()

http://www.faqs.org/rfcs/rfc3174

sha1

sha1 -- Calculate the sha1 hash of a string

Description

string sha1 (string $str [, bool $raw_output])

Calculates the sha1 hash of str using the » US Secure Hash Algorithm 1.

Parameters

str

The input string.

raw_output

If the optional raw_output is set to TRUE, then the sha1 digest is instead returned in
raw binary format with a length of 20, otherwise the returned value is a 40-character
hexadecimal number. Defaults to FALSE.

Return Values

Returns the sha1 hash as a string.

ChangeLog

Version Description

5.0.0 The raw_output parameter was added.

Examples

Example #2536 - A sha1() example

<?php

$str = 'apple';

if (sha1($str) === 'd0be2dc421be4fcd0172e5afceea3970e2f3d940') {

 echo "Would you like a green or red apple?";

 exit;

}

http://www.faqs.org/rfcs/rfc3174

?>

See Also

• sha1_file()
• crc32()
• md5()

similar_text

similar_text -- Calculate the similarity between two strings

Description

int similar_text (string $first, string $second [, float &$percent])

This calculates the similarity between two strings as described in Oliver [1993]. Note that
this implementation does not use a stack as in Oliver's pseudo code, but recursive calls
which may or may not speed up the whole process. Note also that the complexity of this
algorithm is O(N**3) where N is the length of the longest string.

Parameters

first

The first string.

second

The second string.

percent

By passing a reference as third argument, similar_text() will calculate the similarity in
percent for you.

Return Values

Returns the number of matching chars in both strings.

See Also

• levenshtein()
• soundex()

soundex

soundex -- Calculate the soundex key of a string

Description

string soundex (string $str)

Calculates the soundex key of str.

Soundex keys have the property that words pronounced similarly produce the same
soundex key, and can thus be used to simplify searches in databases where you know the
pronunciation but not the spelling. This soundex function returns a string 4 characters long,
starting with a letter.

This particular soundex function is one described by Donald Knuth in "The Art Of
Computer Programming, vol. 3: Sorting And Searching", Addison-Wesley (1973), pp.
391-392.

Parameters

str

The input string.

Return Values

Returns the soundex key as a string.

Examples

Example #2537 - Soundex Examples

<?php

soundex("Euler") == soundex("Ellery"); // E460

soundex("Gauss") == soundex("Ghosh"); // G200

soundex("Hilbert") == soundex("Heilbronn"); // H416

soundex("Knuth") == soundex("Kant"); // K530

soundex("Lloyd") == soundex("Ladd"); // L300

soundex("Lukasiewicz") == soundex("Lissajous"); // L222

?>

See Also

• levenshtein()
• metaphone()
• similar_text()

sprintf

sprintf -- Return a formatted string

Description

string sprintf (string $format [, mixed $args [, mixed $...]])

Returns a string produced according to the formatting string format.

Parameters

format

The format string is composed of zero or more directives: ordinary characters
(excluding %) that are copied directly to the result, and conversion specifications,
each of which results in fetching its own parameter. This applies to both sprintf() and
printf(). Each conversion specification consists of a percent sign (%), followed by one
or more of these elements, in order:

• An optional sign specifier that forces a sign (- or +) to be used on a number. By
default, only the - sign is used on a number if it's negative. This specifier forces
positive numbers to have the + sign attached as well, and was added in PHP 4.3.0.

• An optional padding specifier that says what character will be used for padding the
results to the right string size. This may be a space character or a 0 (zero
character). The default is to pad with spaces. An alternate padding character can
be specified by prefixing it with a single quote ('). See the examples below.

• An optional alignment specifier that says if the result should be left-justified or
right-justified. The default is right-justified; a - character here will make it
left-justified.

• An optional number, a width specifier that says how many characters (minimum)
this conversion should result in.

• An optional precision specifier that says how many decimal digits should be
displayed for floating-point numbers. When using this specifier on a string, it acts
as a cutoff point, setting a maximum character limit to the string.

• A type specifier that says what type the argument data should be treated as.
Possible types:

• % - a literal percent character. No argument is required.
• b - the argument is treated as an integer, and presented as a binary number.
• c - the argument is treated as an integer, and presented as the character with

that ASCII value.
• d - the argument is treated as an integer, and presented as a (signed) decimal

number.
• e - the argument is treated as scientific notation (e.g. 1.2e+2). The precision

specifier stands for the number of digits after the decimal point since PHP

5.2.1. In earlier versions, it was taken as number of significant digits (one less).
• u - the argument is treated as an integer, and presented as an unsigned

decimal number.
• f - the argument is treated as a float, and presented as a floating-point number

(locale aware).
• F - the argument is treated as a float, and presented as a floating-point number

(non-locale aware). Available since PHP 4.3.10 and PHP 5.0.3.
• o - the argument is treated as an integer, and presented as an octal number.
• s - the argument is treated as and presented as a string.
• x - the argument is treated as an integer and presented as a hexadecimal

number (with lowercase letters).
• X - the argument is treated as an integer and presented as a hexadecimal

number (with uppercase letters).

The format string supports argument numbering/swapping. Here is an example:

Example #2538 - Argument swapping

<?php

$format = 'There are %d monkeys in the %s';

printf($format, $num, $location);

?>

This might output, "There are 5 monkeys in the tree". But imagine we are creating a
format string in a separate file, commonly because we would like to internationalize it
and we rewrite it as:

Example #2539 - Argument swapping

<?php

$format = 'The %s contains %d monkeys';

printf($format, $num, $location);

?>

We now have a problem. The order of the placeholders in the format string does not
match the order of the arguments in the code. We would like to leave the code as is
and simply indicate in the format string which arguments the placeholders refer to. We
would write the format string like this instead:

Example #2540 - Argument swapping

<?php

$format = 'The %2$s contains %1$d monkeys';

printf($format, $num, $location);

?>

An added benefit here is that you can repeat the placeholders without adding more
arguments in the code. For example:

Example #2541 - Argument swapping

<?php

$format = 'The %2$s contains %1$d monkeys.

 That\'s a nice %2$s full of %1$d monkeys.';

printf($format, $num, $location);

?>

args

...

Return Values

Returns a string produced according to the formatting string format.

ChangeLog

Version Description

4.0.6 Support for argument numbering/swapping
was added

Examples

Example #2542 - printf(): various examples

<?php

$n = 43951789;

$u = -43951789;

$c = 65; // ASCII 65 is 'A'

// notice the double %%, this prints a literal '%' character

printf("%%b = '%b'\n", $n); // binary representation

printf("%%c = '%c'\n", $c); // print the ascii character, same as chr()
function

printf("%%d = '%d'\n", $n); // standard integer representation

printf("%%e = '%e'\n", $n); // scientific notation

printf("%%u = '%u'\n", $n); // unsigned integer representation of a positive
integer

printf("%%u = '%u'\n", $u); // unsigned integer representation of a negative
integer

printf("%%f = '%f'\n", $n); // floating point representation

printf("%%o = '%o'\n", $n); // octal representation

printf("%%s = '%s'\n", $n); // string representation

printf("%%x = '%x'\n", $n); // hexadecimal representation (lower-case)

printf("%%X = '%X'\n", $n); // hexadecimal representation (upper-case)

printf("%%+d = '%+d'\n", $n); // sign specifier on a positive integer

printf("%%+d = '%+d'\n", $u); // sign specifier on a negative integer

?>

The above example will output:

%b = '10100111101010011010101101'

%c = 'A'

%d = '43951789'

%e = '4.39518e+7'

%u = '43951789'

%u = '4251015507'

%f = '43951789.000000'

%o = '247523255'

%s = '43951789'

%x = '29ea6ad'

%X = '29EA6AD'

%+d = '+43951789'

%+d = '-43951789'

Example #2543 - printf(): string specifiers

<?php

$s = 'monkey';

$t = 'many monkeys';

printf("[%s]\n", $s); // standard string output

printf("[%10s]\n", $s); // right-justification with spaces

printf("[%-10s]\n", $s); // left-justification with spaces

printf("[%010s]\n", $s); // zero-padding works on strings too

printf("[%'#10s]\n", $s); // use the custom padding character '#'

printf("[%10.10s]\n", $t); // left-justification but with a cutoff of 10
characters

?>

The above example will output:

[monkey]

[monkey]

[monkey]

[0000monkey]

[####monkey]

[many monke]

Example #2544 - sprintf(): zero-padded integers

<?php

$isodate = sprintf("%04d-%02d-%02d", $year, $month, $day);

?>

Example #2545 - sprintf(): formatting currency

<?php

$money1 = 68.75;

$money2 = 54.35;

$money = $money1 + $money2;

// echo $money will output "123.1";

$formatted = sprintf("%01.2f", $money);

// echo $formatted will output "123.10"

?>

Example #2546 - sprintf(): scientific notation

<?php

$number = 362525200;

echo sprintf("%.3e", $number); // outputs 3.625e+8

?>

See Also

• printf()
• sscanf()
• fscanf()
• vsprintf()
• number_format()

sscanf

sscanf -- Parses input from a string according to a format

Description

mixed sscanf (string $str, string $format [, mixed &$...])

The function sscanf() is the input analog of printf(). sscanf() reads from the string str and
interprets it according to the specified format, which is described in the documentation for
sprintf().

Any whitespace in the format string matches any whitespace in the input string. This
means that even a tab \t in the format string can match a single space character in the
input string.

Parameters

str

The input string being parsed.

format

The interpreted format for str, which is described in the documentation for sprintf().

...

Optionally pass in variables by reference that will contain the parsed values.

Return Values

If only two parameters were passed to this function, the values parsed will be returned as
an array. Otherwise, if optional parameters are passed, the function will return the number
of assigned values. The optional parameters must be passed by reference.

Examples

Example #2547 - sscanf() Example

<?php

// getting the serial number

list($serial) = sscanf("SN/2350001", "SN/%d");

// and the date of manufacturing

$mandate = "January 01 2000";

list($month, $day, $year) = sscanf($mandate, "%s %d %d");

echo "Item $serial was manufactured on: $year-" . substr($month, 0, 3) .
"-$day\n";

?>

If optional parameters are passed, the function will return the number of assigned values.

Example #2548 - sscanf() - using optional parameters

<?php

// get author info and generate DocBook entry

$auth = "24\tLewis Carroll";

$n = sscanf($auth, "%d\t%s %s", $id, $first, $last);

echo "<author id='$id'>

 <firstname>$first</firstname>

 <surname>$last</surname>

</author>\n";

?>

See Also

• fscanf()
• printf()
• sprintf()

str_getcsv

str_getcsv -- Parse a CSV string into an array

Description

array str_getcsv (string $input [, string $delimiter [, string $enclosure [, string $escape
]]])

Warning

This function is currently not documented; only its argument list is available.

See Also

• fgetcsv()

str_ireplace

str_ireplace -- Case-insensitive version of str_replace().

Description

mixed str_ireplace (mixed $search, mixed $replace, mixed $subject [, int &$count])

This function returns a string or an array with all occurrences of search in subject
(ignoring case) replaced with the given replace value. If you don't need fancy replacing
rules, you should generally use this function instead of eregi_replace() or preg_replace()
with the i modifier.

Parameters

search

Note

Every replacement with search array is performed on the result of previous
replacement.

replace

subject

If subject is an array, then the search and replace is performed with every entry of
subject, and the return value is an array as well.

count

The number of matched and replaced needles will be returned in count which is
passed by reference.

If search and replace are arrays, then str_ireplace() takes a value from each array and
uses them to do search and replace on subject. If replace has fewer values than search
, then an empty string is used for the rest of replacement values. If search is an array and
replace is a string; then this replacement string is used for every value of search.

Return Values

Returns a string or an array of replacements.

ChangeLog

Version Description

5.0.0 The count parameter was added.

Examples

Example #2549 - str_ireplace() example

<?php

$bodytag = str_ireplace("%body%", "black", "<body text=%BODY%>");

?>

Notes

Note

This function is binary safe.

See Also

• str_replace()
• preg_replace()
• strtr()

str_pad

str_pad -- Pad a string to a certain length with another string

Description

string str_pad (string $input, int $pad_length [, string $pad_string [, int $pad_type]])

This functions returns the input string padded on the left, the right, or both sides to the
specified padding length. If the optional argument pad_string is not supplied, the input is
padded with spaces, otherwise it is padded with characters from pad_string up to the
limit.

Parameters

input

The input string.

pad_length

If the value of pad_length is negative or less than the length of the input string, no
padding takes place.

pad_string

Note

The pad_string may be truncated if the required number of padding characters
can't be evenly divided by the pad_string 's length.

pad_type

Optional argument pad_type can be STR_PAD_RIGHT, STR_PAD_LEFT, or
STR_PAD_BOTH. If pad_type is not specified it is assumed to be STR_PAD_RIGHT.

Return Values

Returns the padded string.

Examples

Example #2550 - str_pad() example

<?php

$input = "Alien";

echo str_pad($input, 10); // produces "Alien "

echo str_pad($input, 10, "-=", STR_PAD_LEFT); // produces "-=-=-Alien"

echo str_pad($input, 10, "_", STR_PAD_BOTH); // produces "__Alien___"

echo str_pad($input, 6 , "___"); // produces "Alien_"

?>

str_repeat

str_repeat -- Repeat a string

Description

string str_repeat (string $input, int $multiplier)

Returns input repeated multiplier times.

Parameters

input

The string to be repeated.

multiplier

Number of time the input string should be repeated. multiplier has to be greater
than or equal to 0. If the multiplier is set to 0, the function will return an empty string.

Return Values

Returns the repeated string.

Examples

Example #2551 - str_repeat() example

<?php

echo str_repeat("-=", 10);

?>

The above example will output:

-=-=-=-=-=-=-=-=-=-=

See Also

• for
• str_pad()
• substr_count()

str_replace

str_replace -- Replace all occurrences of the search string with the replacement string

Description

mixed str_replace (mixed $search, mixed $replace, mixed $subject [, int &$count])

This function returns a string or an array with all occurrences of search in subject
replaced with the given replace value.

If you don't need fancy replacing rules (like regular expressions), you should always use
this function instead of ereg_replace() or preg_replace().

Parameters

If search and replace are arrays, then str_replace() takes a value from each array and
uses them to do search and replace on subject. If replace has fewer values than search
, then an empty string is used for the rest of replacement values. If search is an array and
replace is a string, then this replacement string is used for every value of search. The
converse would not make sense, though.

If search or replace are arrays, their elements are processed first to last.

search

replace

subject

If subject is an array, then the search and replace is performed with every entry of
subject, and the return value is an array as well.

count

Note

If passed, this will hold the number of matched and replaced needles.

Return Values

This function returns a string or an array with the replaced values.

ChangeLog

Version Description

5.0.0 The count parameter was added.

4.3.3 The behaviour of this function changed. In
older versions a bug existed when using
arrays as both search and replace
parameters which caused empty search
indexes to be skipped without advancing the
internal pointer on the replace array. This
has been corrected in PHP 4.3.3, any
scripts which relied on this bug should
remove empty search values prior to calling
this function in order to mimic the original
behavior.

4.0.5 Most parameters can now be an array.

Examples

Example #2552 - str_replace() examples

<?php

// Provides: <body text='black'>

$bodytag = str_replace("%body%", "black", "<body text='%body%'>");

// Provides: Hll Wrld f PHP

$vowels = array("a", "e", "i", "o", "u", "A", "E", "I", "O", "U");

$onlyconsonants = str_replace($vowels, "", "Hello World of PHP");

// Provides: You should eat pizza, beer, and ice cream every day

$phrase = "You should eat fruits, vegetables, and fiber every day.";

$healthy = array("fruits", "vegetables", "fiber");

$yummy = array("pizza", "beer", "ice cream");

$newphrase = str_replace($healthy, $yummy, $phrase);

// Use of the count parameter is available as of PHP 5.0.0

$str = str_replace("ll", "", "good golly miss molly!", $count);

echo $count; // 2

// Order of replacement

$str = "Line 1\nLine 2\rLine 3\r\nLine 4\n";

$order = array("\r\n", "\n", "\r");

$replace = '
';

// Processes \r\n's first so they aren't converted twice.

$newstr = str_replace($order, $replace, $str);

// Outputs: apearpearle pear

$letters = array('a', 'p');

$fruit = array('apple', 'pear');

$text = 'a p';

$output = str_replace($letters, $fruit, $text);

echo $output;

?>

Notes

Note

This function is binary-safe.

Note

This function is case-sensitive. Use str_ireplace() for case-insensitive replace.

See Also

• str_ireplace()
• substr_replace()
• preg_replace()
• strtr()

str_rot13

str_rot13 -- Perform the rot13 transform on a string

Description

string str_rot13 (string $str)

Performs the ROT13 encoding on the str argument and returns the resulting string.

The ROT13 encoding simply shifts every letter by 13 places in the alphabet while leaving
non-alpha characters untouched. Encoding and decoding are done by the same function,
passing an encoded string as argument will return the original version.

Parameters

str

The input string.

Return Values

Returns the ROT13 version of the given string.

Examples

Example #2553 - str_rot13() example

<?php

echo str_rot13('PHP 4.3.0'); // CUC 4.3.0

?>

ChangeLog

Version Description

4.3.0 The behaviour of this function was fixed.
Before this fix, the str was also modified,
as if it was passed by reference.

str_shuffle

str_shuffle -- Randomly shuffles a string

Description

string str_shuffle (string $str)

str_shuffle() shuffles a string. One permutation of all possible is created.

Parameters

str

The input string.

Return Values

Returns the shuffled string.

Examples

Example #2554 - str_shuffle() example

<?php

$str = 'abcdef';

$shuffled = str_shuffle($str);

// This will echo something like: bfdaec

echo $shuffled;

?>

See Also

• shuffle()
• rand()

str_split

str_split -- Convert a string to an array

Description

array str_split (string $string [, int $split_length])

Converts a string to an array.

Parameters

string

The input string.

split_length

Maximum length of the chunk.

Return Values

If the optional split_length parameter is specified, the returned array will be broken down
into chunks with each being split_length in length, otherwise each chunk will be one
character in length.

FALSE is returned if split_length is less than 1. If the split_length length exceeds the
length of string, the entire string is returned as the first (and only) array element.

Examples

Example #2555 - Example uses of str_split()

<?php

$str = "Hello Friend";

$arr1 = str_split($str);

$arr2 = str_split($str, 3);

print_r($arr1);

print_r($arr2);

?>

The above example will output:

Array

(

 [0] => H

 [1] => e

 [2] => l

 [3] => l

 [4] => o

 [5] =>

 [6] => F

 [7] => r

 [8] => i

 [9] => e

 [10] => n

 [11] => d

)

Array

(

 [0] => Hel

 [1] => lo

 [2] => Fri

 [3] => end

)

See Also

• chunk_split()
• preg_split()
• explode()
• count_chars()
• str_word_count()
• for

str_word_count

str_word_count -- Return information about words used in a string

Description

mixed str_word_count (string $string [, int $format [, string $charlist]])

Counts the number of words inside string. If the optional format is not specified, then the
return value will be an integer representing the number of words found. In the event the
format is specified, the return value will be an array, content of which is dependent on the
format. The possible value for the format and the resultant outputs are listed below.

For the purpose of this function, 'word' is defined as a locale dependent string containing
alphabetic characters, which also may contain, but not start with "'" and "-" characters.

Parameters

string

The string

format

Specify the return value of this function. The current supported values are:

• 0 - returns the number of words found

• 1 - returns an array containing all the words found inside the string

• 2 - returns an associative array, where the key is the numeric position of the word
inside the string and the value is the actual word itself

charlist

A list of additional characters which will be considered as 'word'

Return Values

Returns an array or an integer, depending on the format chosen.

ChangeLog

Version Description

5.1.0 Added the charlist parameter

Examples

Example #2556 - A str_word_count() example

<?php

$str = "Hello fri3nd, you're

 looking good today!";

print_r(str_word_count($str, 1));

print_r(str_word_count($str, 2));

print_r(str_word_count($str, 1, 'àáãç3'));

echo str_word_count($str);

?>

The above example will output:

Array

(

 [0] => Hello

 [1] => fri

 [2] => nd

 [3] => you're

 [4] => looking

 [5] => good

 [6] => today

)

Array

(

 [0] => Hello

 [6] => fri

 [10] => nd

 [14] => you're

 [29] => looking

 [46] => good

 [51] => today

)

Array

(

 [0] => Hello

 [1] => fri3nd

 [2] => you're

 [3] => looking

 [4] => good

 [5] => today

)

7

See Also

• explode()
• preg_split()
• split()
• count_chars()
• substr_count()

strcasecmp

strcasecmp -- Binary safe case-insensitive string comparison

Description

int strcasecmp (string $str1, string $str2)

Binary safe case-insensitive string comparison.

Parameters

str1

The first string

str2

The second string

Return Values

Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are
equal.

Examples

Example #2557 - strcasecmp() example

<?php

$var1 = "Hello";

$var2 = "hello";

if (strcasecmp($var1, $var2) == 0) {

 echo '$var1 is equal to $var2 in a case-insensitive string comparison';

}

?>

See Also

• preg_match()
• strcmp()
• substr()
• stristr()

• strncasecmp()
• strstr()

strchr

strchr -- Alias of strstr()

Description

This function is an alias of: strstr().

strcmp

strcmp -- Binary safe string comparison

Description

int strcmp (string $str1, string $str2)

Note that this comparison is case sensitive.

Parameters

str1

The first string.

str2

The second string.

Return Values

Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are
equal.

See Also

• preg_match()
• strcasecmp()
• substr()
• stristr()
• strncasecmp()
• strncmp()
• strstr()

strcoll

strcoll -- Locale based string comparison

Description

int strcoll (string $str1, string $str2)

Note that this comparison is case sensitive, and unlike strcmp() this function is not binary
safe.

strcoll() uses the current locale for doing the comparisons. If the current locale is C or
POSIX, this function is equivalent to strcmp().

Parameters

str1

The first string.

str2

The second string.

Return Values

Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are
equal.

ChangeLog

Version Description

4.2.3 This function now works on win32.

See Also

• preg_match()
• strcmp()
• strcasecmp()
• substr()
• stristr()

• strncasecmp()
• strncmp()
• strstr()
• setlocale()

strcspn

strcspn -- Find length of initial segment not matching mask

Description

int strcspn (string $str1, string $str2 [, int $start [, int $length]])

Returns the length of the initial segment of str1 which does not contain any of the
characters in str2.

Parameters

str1

The first string.

str2

The second string.

start

The start position of the string to examine.

length

The length of the string to examine.

Return Values

Returns the length of the segment as an integer.

ChangeLog

Version Description

4.3.0 The start and length were added

Notes

Note

This function is binary-safe.

See Also

• strspn()

strip_tags

strip_tags -- Strip HTML and PHP tags from a string

Description

string strip_tags (string $str [, string $allowable_tags])

This function tries to return a string with all HTML and PHP tags stripped from a given str.
It uses the same tag stripping state machine as the fgetss() function.

Parameters

str

The input string.

allowable_tags

You can use the optional second parameter to specify tags which should not be
stripped.

Note

HTML comments and PHP tags are also stripped. This is hardcoded and can not
be changed with allowable_tags.

Return Values

Returns the stripped string.

ChangeLog

Version Description

5.0.0 strip_tags() is now binary safe

4.3.0 HTML comments are now always stripped

4.0.0 The allowable_tags parameter was added

Examples

Example #2558 - strip_tags() example

<?php

$text = '<p>Test paragraph.</p><!-- Comment --> Other
text';

echo strip_tags($text);

echo "\n";

// Allow <p> and <a>

echo strip_tags($text, '<p><a>');

?>

The above example will output:

Test paragraph. Other text

<p>Test paragraph.</p> Other text

Notes

Warning

Because strip_tags() does not actually validate the HTML, partial, or broken tags can
result in the removal of more text/data than expected.

Warning

This function does not modify any attributes on the tags that you allow using
allowable_tags, including the style and onmouseover attributes that a mischievous
user may abuse when posting text that will be shown to other users.

See Also

• htmlspecialchars()

stripcslashes

stripcslashes -- Un-quote string quoted with addcslashes()

Description

string stripcslashes (string $str)

Returns a string with backslashes stripped off. Recognizes C-like \n, \r..., octal and
hexadecimal representation.

Parameters

str

The string to be unescaped.

Return Values

Returns the unescaped string.

See Also

• addcslashes()

stripos

stripos -- Find position of first occurrence of a case-insensitive string

Description

int stripos (string $haystack, string $needle [, int $offset])

Returns the numeric position of the first occurrence of needle in the haystack string.

Unlike strpos(), stripos() is case-insensitive.

Parameters

haystack

The string to search in

needle

Note that the needle may be a string of one or more characters. If needle is not a
string, it is converted to an integer and applied as the ordinal value of a character.

offset

The optional offset parameter allows you to specify which character in haystack to
start searching. The position returned is still relative to the beginning of haystack.

Return Values

If needle is not found, stripos() will return boolean FALSE.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #2559 - stripos() examples

<?php

$findme = 'a';

$mystring1 = 'xyz';

$mystring2 = 'ABC';

$pos1 = stripos($mystring1, $findme);

$pos2 = stripos($mystring2, $findme);

// Nope, 'a' is certainly not in 'xyz'

if ($pos1 === false) {

 echo "The string '$findme' was not found in the string '$mystring1'";

}

// Note our use of ===. Simply == would not work as expected

// because the position of 'a' is the 0th (first) character.

if ($pos2 !== false) {

 echo "We found '$findme' in '$mystring2' at position $pos2";

}

?>

Notes

Note

This function is binary-safe.

See Also

• strpos()
• strrpos()
• strrchr()
• substr()
• stristr()
• strstr()
• strripos()
• str_ireplace()

stripslashes

stripslashes -- Un-quote string quoted with addslashes()

Description

string stripslashes (string $str)

Un-quotes a quoted string.

Note

If magic_quotes_sybase is on, no backslashes are stripped off but two apostrophes
are replaced by one instead.

An example use of stripslashes() is when the PHP directive magic_quotes_gpc is on (it's
on by default), and you aren't inserting this data into a place (such as a database) that
requires escaping. For example, if you're simply outputting data straight from an HTML
form.

Parameters

str

The input string.

Return Values

Returns a string with backslashes stripped off. (\' becomes ' and so on.) Double
backslashes (\\) are made into a single backslash (\).

Examples

Example #2560 - A stripslashes() example

<?php

$str = "Is your name O\'reilly?";

// Outputs: Is your name O'reilly?

echo stripslashes($str);

?>

Note

stripslashes() is not recursive. If you want to apply this function to a multi-dimensional
array, you need to use a recursive function.

Example #2561 - Using stripslashes() on an array

<?php

function stripslashes_deep($value)

{

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

}

// Example

$array = array("f\\'oo", "b\\'ar", array("fo\\'o", "b\\'ar"));

$array = stripslashes_deep($array);

// Output

print_r($array);

?>

The above example will output:

Array

(

 [0] => f'oo

 [1] => b'ar

 [2] => Array

 (

 [0] => fo'o

 [1] => b'ar

)

)

See Also

• addslashes()
• get_magic_quotes_gpc()

stristr

stristr -- Case-insensitive strstr()

Description

string stristr (string $haystack, mixed $needle [, bool $before_needle])

Returns all of haystack from the first occurrence of needle to the end.

Parameters

haystack

The string to search in

needle

If needle is not a string, it is converted to an integer and applied as the ordinal value of
a character.

before_needle

If TRUE (the default is FALSE), stristr() returns the part of the haystack before the
first occurence of the needle.

needle and haystack are examined in a case-insensitive manner.

Return Values

Returns the matched substring. If needle is not found, returns FALSE.

ChangeLog

Version Description

5.3.0 Added the optional parameter
before_needle.

4.3.0 stristr() was made binary safe.

Examples

Example #2562 - stristr() example

<?php

 $email = 'USER@EXAMPLE.com';

 echo stristr($email, 'e'); // outputs ER@EXAMPLE.com

 echo stristr($email, 'e', true); // As of PHP 5.3.0, outputs US

?>

Example #2563 - Testing if a string is found or not

<?php

 $string = 'Hello World!';

 if(stristr($string, 'earth') === FALSE) {

 echo '"earth" not found in string';

 }

// outputs: "earth" not found in string

?>

Example #2564 - Using a non "string" needle

<?php

 $string = 'APPLE';

 echo stristr($string, 97); // 97 = lowercase a

// outputs: APPLE

?>

Notes

Note

This function is binary-safe.

See Also

• strstr()
• strrchr()
• substr()
• preg_match()

strlen

strlen -- Get string length

Description

int strlen (string $string)

Returns the length of the given string.

Parameters

string

The string being measured for length.

Return Values

The length of the string on success, and 0 if the string is empty.

Examples

Example #2565 - A strlen() example

<?php

$str = 'abcdef';

echo strlen($str); // 6

$str = ' ab cd ';

echo strlen($str); // 7

?>

See Also

• count()
• mb_strlen()

strnatcasecmp

strnatcasecmp -- Case insensitive string comparisons using a "natural order" algorithm

Description

int strnatcasecmp (string $str1, string $str2)

This function implements a comparison algorithm that orders alphanumeric strings in the
way a human being would. The behaviour of this function is similar to strnatcmp(), except
that the comparison is not case sensitive. For more information see: Martin Pool's
» Natural Order String Comparison page.

Parameters

str1

The first string.

str2

The second string.

Return Values

Similar to other string comparison functions, this one returns < 0 if str1 is less than str2
> 0 if str1 is greater than str2, and 0 if they are equal.

See Also

• preg_match()
• strcmp()
• strcasecmp()
• substr()
• stristr()
• strncasecmp()
• strncmp()
• strstr()
• setlocale()

http://sourcefrog.net/projects/natsort/
http://sourcefrog.net/projects/natsort/

strnatcmp

strnatcmp -- String comparisons using a "natural order" algorithm

Description

int strnatcmp (string $str1, string $str2)

This function implements a comparison algorithm that orders alphanumeric strings in the
way a human being would, this is described as a "natural ordering". Note that this
comparison is case sensitive.

Parameters

str1

The first string.

str2

The second string.

Return Values

Similar to other string comparison functions, this one returns < 0 if str1 is less than str2;
> 0 if str1 is greater than str2, and 0 if they are equal.

Examples

An example of the difference between this algorithm and the regular computer string
sorting algorithms (used in strcmp()) can be seen below:

<?php

$arr1 = $arr2 = array("img12.png", "img10.png", "img2.png", "img1.png");

echo "Standard string comparison\n";

usort($arr1, "strcmp");

print_r($arr1);

echo "\nNatural order string comparison\n";

usort($arr2, "strnatcmp");

print_r($arr2);

?>

The above example will output:

Standard string comparison

Array

(

 [0] => img1.png

 [1] => img10.png

 [2] => img12.png

 [3] => img2.png

)

Natural order string comparison

Array

(

 [0] => img1.png

 [1] => img2.png

 [2] => img10.png

 [3] => img12.png

)

For more information see: Martin Pool's » Natural Order String Comparison page.

See Also

• preg_match()
• strcasecmp()
• substr()
• stristr()
• strcmp()
• strncmp()
• strncasecmp()
• strnatcasecmp()
• strstr()
• natsort()
• natcasesort()

http://sourcefrog.net/projects/natsort/

strncasecmp

strncasecmp -- Binary safe case-insensitive string comparison of the first n characters

Description

int strncasecmp (string $str1, string $str2, int $len)

This function is similar to strcasecmp(), with the difference that you can specify the (upper
limit of the) number of characters from each string to be used in the comparison.

Parameters

str1

The first string.

str2

The second string.

len

The length of strings to be used in the comparison.

Return Values

Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are
equal.

See Also

• preg_match()
• strcmp()
• strcasecmp()
• substr()
• stristr()
• strstr()

strncmp

strncmp -- Binary safe string comparison of the first n characters

Description

int strncmp (string $str1, string $str2, int $len)

This function is similar to strcmp(), with the difference that you can specify the (upper limit
of the) number of characters from each string to be used in the comparison.

Note that this comparison is case sensitive.

Parameters

str1

The first string.

str2

The second string.

len

Number of characters to use in the comparison.

Return Values

Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are
equal.

See Also

• preg_match()
• strcmp()
• strcasecmp()
• substr()
• stristr()
• strncasecmp()
• strstr()

strpbrk

strpbrk -- Search a string for any of a set of characters

Description

string strpbrk (string $haystack, string $char_list)

strpbrk() searches the haystack string for a char_list.

Parameters

haystack

The string where char_list is looked for.

char_list

This parameter is case sensitive.

Return Values

Returns a string starting from the character found, or FALSE if it is not found.

Examples

Example #2566 - strpbrk() example

<?php

$text = 'This is a Simple text.';

// this echoes "is is a Simple text." because 'i' is matched first

echo strpbrk($text, 'mi');

// this echoes "Simple text." because chars are case sensitive

echo strpbrk($text, 'S');

?>

strpos

strpos -- Find position of first occurrence of a string

Description

int strpos (string $haystack, mixed $needle [, int $offset])

Returns the numeric position of the first occurrence of needle in the haystack string.
Unlike the strrpos() before PHP 5, this function can take a full string as the needle
parameter and the entire string will be used.

Parameters

haystack

The string to search in

needle

If needle is not a string, it is converted to an integer and applied as the ordinal value of
a character.

offset

The optional offset parameter allows you to specify which character in haystack to
start searching. The position returned is still relative to the beginning of haystack.

Return Values

Returns the position as an integer. If needle is not found, strpos() will return boolean
FALSE.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #2567 - strpos() examples

<?php

$mystring = 'abc';

$findme = 'a';

$pos = strpos($mystring, $findme);

// Note our use of ===. Simply == would not work as expected

// because the position of 'a' was the 0th (first) character.

if ($pos === false) {

 echo "The string '$findme' was not found in the string '$mystring'";

} else {

 echo "The string '$findme' was found in the string '$mystring'";

 echo " and exists at position $pos";

}

// We can search for the character, ignoring anything before the offset

$newstring = 'abcdef abcdef';

$pos = strpos($newstring, 'a', 1); // $pos = 7, not 0

?>

Notes

Note

This function is binary-safe.

See Also

• strrpos()
• stripos()
• strripos()
• strrchr()
• substr()
• stristr()
• strstr()

strrchr

strrchr -- Find the last occurrence of a character in a string

Description

string strrchr (string $haystack, mixed $needle)

This function returns the portion of haystack which starts at the last occurrence of needle
and goes until the end of haystack.

Parameters

haystack

The string to search in

needle

If needle contains more than one character, only the first is used. This behavior is
different from that of strstr(). If needle is not a string, it is converted to an integer and
applied as the ordinal value of a character.

Return Values

This function returns the portion of string, or FALSE if needle is not found.

ChangeLog

Version Description

4.3.0 This function is now binary safe.

Examples

Example #2568 - strrchr() example

<?php

// get last directory in $PATH

$dir = substr(strrchr($PATH, ":"), 1);

// get everything after last newline

$text = "Line 1\nLine 2\nLine 3";

$last = substr(strrchr($text, 10), 1);

?>

Notes

Note

This function is binary-safe.

See Also

• strstr()
• substr()
• stristr()

strrev

strrev -- Reverse a string

Description

string strrev (string $string)

Returns string, reversed.

Parameters

string

The string to be reversed.

Return Values

Returns the reversed string.

Examples

Example #2569 - Reversing a string with strrev()

<?php

echo strrev("Hello world!"); // outputs "!dlrow olleH"

?>

strripos

strripos -- Find position of last occurrence of a case-insensitive string in a string

Description

int strripos (string $haystack, string $needle [, int $offset])

Find position of last occurrence of a case-insensitive string in a string. Unlike strrpos(),
strripos() is case-insensitive.

Parameters

haystack

The string to search in

needle

Note that the needle may be a string of one or more characters.

offset

The offset parameter may be specified to begin searching an arbitrary number of
characters into the string. Negative offset values will start the search at offset
characters from the start of the string.

Return Values

Returns the numerical position of the last occurence of needle. Also note that string
positions start at 0, and not 1.

If needle is not found, FALSE is returned.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #2570 - A simple strripos() example

<?php

$haystack = 'ababcd';

$needle = 'aB';

$pos = strripos($haystack, $needle);

if ($pos === false) {

 echo "Sorry, we did not find ($needle) in ($haystack)";

} else {

 echo "Congratulations!\n";

 echo "We found the last ($needle) in ($haystack) at position ($pos)";

}

?>

The above example will output:

Congratulations!

 We found the last (aB) in (ababcd) at position (2)

See Also

• strpos()
• stripos()
• strrchr()
• substr()
• stristr()
• strstr()

strrpos

strrpos -- Find position of last occurrence of a char in a string

Description

int strrpos (string $haystack, string $needle [, int $offset])

Returns the numeric position of the last occurrence of needle in the haystack string. Note
that the needle in this case can only be a single character in PHP 4. If a string is passed
as the needle, then only the first character of that string will be used.

If needle is not found, returns FALSE.

It is easy to mistake the return values for "character found at position 0" and "character not
found". Here's how to detect the difference:

<?php

// in PHP 4.0.0 and newer:

$pos = strrpos($mystring, "b");

if ($pos === false) { // note: three equal signs

 // not found...

}

// in versions older than 4.0.0:

$pos = strrpos($mystring, "b");

if (is_bool($pos) && !$pos) {

 // not found...

}

?>

If needle is not a string, it is converted to an integer and applied as the ordinal value of a
character.

Note

As of PHP 5.0.0 offset may be specified to begin searching an arbitrary number of
characters into the string. Negative values will stop searching at an arbitrary point prior
to the end of the string.

Note

The needle may be a string of more than one character as of PHP 5.0.0.

Parameters

haystack

needle

offset

Return Values

See Also

• strpos()
• strripos()
• strrchr()
• substr()
• stristr()
• strstr()

strspn

strspn -- Find length of initial segment matching mask

Description

int strspn (string $str1, string $str2 [, int $start [, int $length]])

Finds the length of the initial segment matching mask.

The line of code:

<?php

$var = strspn("42 is the answer, what is the question ...", "1234567890");

?>

will assign 2 to $var, because the string "42" will be the longest segment containing
characters from "1234567890".

Parameters

str1

The first string.

str2

The second string.

start

The start position of the string to examine. Negative value counts position from the end
of a string.

length

The length of the string to examine. Negative value sets length from the end of a
string.

Return Values

Returns the length of the initial segment of str1 which consists entirely of characters in
str2.

ChangeLog

Version Description

4.3.0 The start and length parameters were

added

Examples

Example #2571 - strspn() example

<?php

echo strspn("foo", "o", 1, 2); // 2

?>

Notes

Note

This function is binary-safe.

See Also

• strcspn()

strstr

strstr -- Find first occurrence of a string

Description

string strstr (string $haystack, mixed $needle [, bool $before_needle])

Returns part of haystack string from the first occurrence of needle to the end of haystack.

Note

This function is case-sensitive. For case-insensitive searches, use stristr().

Note

If you only want to determine if a particular needle occurs within haystack, use the
faster and less memory intensive function strpos() instead.

Parameters

haystack

The input string.

needle

If needle is not a string, it is converted to an integer and applied as the ordinal value of
a character.

before_needle

If TRUE (the default is FALSE), strstr() returns the part of the haystack before the first
occurence of the needle.

Return Values

Returns the portion of string, or FALSE if needle is not found.

ChangeLog

Version Description

5.3.0 Added the optional parameter
before_needle.

4.3.0 strstr() was made binary safe.

Examples

Example #2572 - strstr() example

<?php

$email = 'name@example.com';

$domain = strstr($email, '@');

echo $domain; // prints @example.com

$user = strstr($email, '@', true); // As of PHP 5.3.0

echo $user; // prints name

?>

See Also

• preg_match()
• stristr()
• strpos()
• strrchr()
• substr()

strtok

strtok -- Tokenize string

Description

string strtok (string $str, string $token)

strtok() splits a string (str) into smaller strings (tokens), with each token being delimited
by any character from token. That is, if you have a string like "This is an example string"
you could tokenize this string into its individual words by using the space character as the
token.

Note that only the first call to strtok uses the string argument. Every subsequent call to
strtok only needs the token to use, as it keeps track of where it is in the current string. To
start over, or to tokenize a new string you simply call strtok with the string argument again
to initialize it. Note that you may put multiple tokens in the token parameter. The string will
be tokenized when any one of the characters in the argument are found.

Parameters

str

The string being split up into smaller strings (tokens).

token

The delimiter used when splitting up str.

Return Values

A string token.

Examples

Example #2573 - strtok() example

<?php

$string = "This is\tan example\nstring";

/* Use tab and newline as tokenizing characters as well */

$tok = strtok($string, " \n\t");

while ($tok !== false) {

 echo "Word=$tok
";

 $tok = strtok(" \n\t");

}

?>

The behavior when an empty part was found changed with PHP 4.1.0. The old behavior
returned an empty string, while the new, correct, behavior simply skips the part of the
string:

Example #2574 - Old strtok() behavior

<?php

$first_token = strtok('/something', '/');

$second_token = strtok('/');

var_dump($first_token, $second_token);

?>

The above example will output:

string(0) ""

 string(9) "something"

Example #2575 - New strtok() behavior

<?php

$first_token = strtok('/something', '/');

$second_token = strtok('/');

var_dump($first_token, $second_token);

?>

The above example will output:

string(9) "something"

 bool(false)

Notes

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

See Also

• split()
• explode()

strtolower

strtolower -- Make a string lowercase

Description

string strtolower (string $str)

Returns string with all alphabetic characters converted to lowercase.

Note that 'alphabetic' is determined by the current locale. This means that in i.e. the default
"C" locale, characters such as umlaut-A (Ä) will not be converted.

Parameters

str

The input string.

Return Values

Returns the lowercased string.

Examples

Example #2576 - strtolower() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = strtolower($str);

echo $str; // Prints mary had a little lamb and she loved it so

?>

Notes

Note

This function is binary-safe.

See Also

• strtoupper()
• ucfirst()
• ucwords()
• mb_strtolower()

strtoupper

strtoupper -- Make a string uppercase

Description

string strtoupper (string $string)

Returns string with all alphabetic characters converted to uppercase.

Note that 'alphabetic' is determined by the current locale. For instance, in the default "C"
locale characters such as umlaut-a (ä) will not be converted.

Parameters

string

The input string.

Return Values

Returns the uppercased string.

Examples

Example #2577 - strtoupper() example

<?php

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = strtoupper($str);

echo $str; // Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

?>

Notes

Note

This function is binary-safe.

See Also

• strtolower()
• ucfirst()
• ucwords()
• mb_strtoupper()

strtr

strtr -- Translate certain characters

Description

string strtr (string $str, string $from, string $to)

string strtr (string $str, array $replace_pairs)

This function returns a copy of str, translating all occurrences of each character in from
to the corresponding character in to.

If from and to are different lengths, the extra characters in the longer of the two are
ignored.

Parameters

str

The string being translated.

from

The string being translated to to.

to

The string replacing from.

replace_pairs

The replace_pairs parameter may be used as a substitute for to and from in which
case it's an array in the form array('from' => 'to', ...).

Return Values

This function returns a copy of str, translating all occurrences of each character in from
to the corresponding character in to.

ChangeLog

Version Description

4.0.0 The optional to and from parameters were
added.

Examples

Example #2578 - strtr() example

<?php

$addr = strtr($addr, "äåö", "aao");

?>

strtr() may be called with only two arguments. If called with two arguments it behaves in a
new way: from then has to be an array that contains string -> string pairs that will be
replaced in the source string. strtr() will always look for the longest possible match first and
will *NOT* try to replace stuff that it has already worked on.

Example #2579 - strtr() example with two arguments

<?php

$trans = array("hello" => "hi", "hi" => "hello");

echo strtr("hi all, I said hello", $trans);

?>

The above example will output:

hello all, I said hi

See Also

• ereg_replace()

substr_compare

substr_compare -- Binary safe comparison of 2 strings from an offset, up to length
characters

Description

int substr_compare (string $main_str, string $str, int $offset [, int $length [, bool $
case_insensitivity]])

substr_compare() compares main_str from position offset with str up to length
characters.

Parameters

main_str

str

offset

The start position for the comparison. If negative, it starts counting from the end of the
string.

length

The length of the comparison.

case_insensitivity

If case_insensitivity is TRUE, comparison is case insensitive.

Return Values

Returns < 0 if main_str from position offset is less than str, > 0 if it is greater than str,
and 0 if they are equal. If length is equal or greater than length of main_str and length is
set, substr_compare() prints warning and returns FALSE.

ChangeLog

Version Description

5.1.0 Added the possibility to use a negative
offset.

Examples

Example #2580 - A substr_compare() example

<?php

echo substr_compare("abcde", "bc", 1, 2); // 0

echo substr_compare("abcde", "de", -2, 2); // 0

echo substr_compare("abcde", "bcg", 1, 2); // 0

echo substr_compare("abcde", "BC", 1, 2, true); // 0

echo substr_compare("abcde", "bc", 1, 3); // 1

echo substr_compare("abcde", "cd", 1, 2); // -1

echo substr_compare("abcde", "abc", 5, 1); // warning

?>

substr_count

substr_count -- Count the number of substring occurrences

Description

int substr_count (string $haystack, string $needle [, int $offset [, int $length]])

substr_count() returns the number of times the needle substring occurs in the haystack
string. Please note that needle is case sensitive.

Note

This function doesn't count overlapped substrings. See the example below!

Parameters

haystack

The string to search in

needle

The substring to search for

offset

The offset where to start counting

length

The maximum length after the specified offset to search for the substring. It outputs a
warning if the offset plus the length is greater than the haystack length.

Return Values

This functions returns an integer.

ChangeLog

Version Description

5.1.0 Added the offset and the length
parameters

Examples

Example #2581 - A substr_count() example

<?php

$text = 'This is a test';

echo strlen($text); // 14

echo substr_count($text, 'is'); // 2

// the string is reduced to 's is a test', so it prints 1

echo substr_count($text, 'is', 3);

// the text is reduced to 's i', so it prints 0

echo substr_count($text, 'is', 3, 3);

// generates a warning because 5+10 > 14

echo substr_count($text, 'is', 5, 10);

// prints only 1, because it doesn't count overlapped subtrings

$text2 = 'gcdgcdgcd';

echo substr_count($text2, 'gcdgcd');

?>

See Also

• count_chars()
• strpos()
• substr()
• strstr()

substr_replace

substr_replace -- Replace text within a portion of a string

Description

mixed substr_replace (mixed $string, string $replacement, int $start [, int $length])

substr_replace() replaces a copy of string delimited by the start and (optionally) length
parameters with the string given in replacement.

Parameters

string

The input string.

replacement

The replacement string.

start

If start is positive, the replacing will begin at the start 'th offset into string. If start
is negative, the replacing will begin at the start 'th character from the end of string.

length

If given and is positive, it represents the length of the portion of string which is to be
replaced. If it is negative, it represents the number of characters from the end of
string at which to stop replacing. If it is not given, then it will default to strlen(string
); i.e. end the replacing at the end of string. Of course, if length is zero then this
function will have the effect of inserting replacement into string at the given start
offset.

Return Values

The result string is returned. If string is an array then array is returned.

Examples

Example #2582 - substr_replace() example

<?php

$var = 'ABCDEFGH:/MNRPQR/';

echo "Original: $var<hr />\n";

/* These two examples replace all of $var with 'bob'. */

echo substr_replace($var, 'bob', 0) . "
\n";

echo substr_replace($var, 'bob', 0, strlen($var)) . "
\n";

/* Insert 'bob' right at the beginning of $var. */

echo substr_replace($var, 'bob', 0, 0) . "
\n";

/* These next two replace 'MNRPQR' in $var with 'bob'. */

echo substr_replace($var, 'bob', 10, -1) . "
\n";

echo substr_replace($var, 'bob', -7, -1) . "
\n";

/* Delete 'MNRPQR' from $var. */

echo substr_replace($var, '', 10, -1) . "
\n";

?>

Notes

Note

This function is binary-safe.

See Also

• str_replace()
• substr()

substr

substr -- Return part of a string

Description

string substr (string $string, int $start [, int $length])

Returns the portion of string specified by the start and length parameters.

Parameters

string

The input string.

start

If start is non-negative, the returned string will start at the start 'th position in
string, counting from zero. For instance, in the string ' abcdef ', the character at
position 0 is ' a ', the character at position 2 is ' c ', and so forth. If start is negative,
the returned string will start at the start 'th character from the end of string.

Example #2583 - Using a negative start

<?php

$rest = substr("abcdef", -1); // returns "f"

$rest = substr("abcdef", -2); // returns "ef"

$rest = substr("abcdef", -3, 1); // returns "d"

?>

length

If length is given and is positive, the string returned will contain at most length
characters beginning from start (depending on the length of string). If string is
less than or equal to start characters long, FALSE will be returned. If length is given
and is negative, then that many characters will be omitted from the end of string
(after the start position has been calculated when a start is negative). If start
denotes a position beyond this truncation, an empty string will be returned.

Example #2584 - Using a negative length

<?php

$rest = substr("abcdef", 0, -1); // returns "abcde"

$rest = substr("abcdef", 2, -1); // returns "cde"

$rest = substr("abcdef", 4, -4); // returns ""

$rest = substr("abcdef", -3, -1); // returns "de"

?>

Return Values

Returns the extracted part of string.

Examples

Example #2585 - Basic substr() usage

<?php

echo substr('abcdef', 1); // bcdef

echo substr('abcdef', 1, 3); // bcd

echo substr('abcdef', 0, 4); // abcd

echo substr('abcdef', 0, 8); // abcdef

echo substr('abcdef', -1, 1); // f

// Accessing single characters in a string

// can also be achieved using "square brackets"

$string = 'abcdef';

echo $string[0]; // a

echo $string[3]; // d

echo $string[strlen($string)-1]; // f

?>

See Also

• strrchr()
• substr_replace()
• preg_match()
• trim()
• mb_substr()
• wordwrap()

trim

trim -- Strip whitespace (or other characters) from the beginning and end of a string

Description

string trim (string $str [, string $charlist])

This function returns a string with whitespace stripped from the beginning and end of str.
Without the second parameter, trim() will strip these characters:

• " " (ASCII 32 (0x20)), an ordinary space.

• "\t" (ASCII 9 (0x09)), a tab.

• "\n" (ASCII 10 (0x0A)), a new line (line feed).

• "\r" (ASCII 13 (0x0D)), a carriage return.

• "\0" (ASCII 0 (0x00)), the NUL -byte.

• "\x0B" (ASCII 11 (0x0B)), a vertical tab.

Parameters

str

The string that will be trimmed.

charlist

Optionally, the stripped characters can also be specified using the charlist
parameter. Simply list all characters that you want to be stripped. With.. you can
specify a range of characters.

Return Values

The trimmed string.

ChangeLog

Version Description

4.1.0 The optional charlist parameter was
added.

Examples

Example #2586 - Usage example of trim()

<?php

$text = "\t\tThese are a few words :) ... ";

$binary = "\x09Example string\x0A";

$hello = "Hello World";

var_dump($text, $binary, $hello);

print "\n";

$trimmed = trim($text);

var_dump($trimmed);

$trimmed = trim($text, " \t.");

var_dump($trimmed);

$trimmed = trim($hello, "Hdle");

var_dump($trimmed);

// trim the ASCII control characters at the beginning and end of $binary

// (from 0 to 31 inclusive)

$clean = trim($binary, "\x00..\x1F");

var_dump($clean);

?>

The above example will output:

string(32) " These are a few words :) ... "

string(16) " Example string

"

string(11) "Hello World"

string(28) "These are a few words :) ..."

string(24) "These are a few words :)"

string(5) "o Wor"

string(14) "Example string"

Example #2587 - Trimming array values with trim()

<?php

function trim_value(&$value)

{

 $value = trim($value);

}

$fruit = array('apple','banana ', ' cranberry ');

var_dump($fruit);

array_walk($fruit, 'trim_value');

var_dump($fruit);

?>

The above example will output:

array(3) {

 [0]=>

 string(5) "apple"

 [1]=>

 string(7) "banana "

 [2]=>

 string(11) " cranberry "

}

array(3) {

 [0]=>

 string(5) "apple"

 [1]=>

 string(6) "banana"

 [2]=>

 string(9) "cranberry"

}

See Also

• ltrim()
• rtrim()

ucfirst

ucfirst -- Make a string's first character uppercase

Description

string ucfirst (string $str)

Returns a string with the first character of str capitalized, if that character is alphabetic.

Note that 'alphabetic' is determined by the current locale. For instance, in the default "C"
locale characters such as umlaut-a (ä) will not be converted.

Parameters

str

The input string.

Return Values

Returns the resulting string.

Examples

Example #2588 - ucfirst() example

<?php

$foo = 'hello world!';

$foo = ucfirst($foo); // Hello world!

$bar = 'HELLO WORLD!';

$bar = ucfirst($bar); // HELLO WORLD!

$bar = ucfirst(strtolower($bar)); // Hello world!

?>

See Also

• lcfirst()
• strtolower()
• strtoupper()
• ucwords()

ucwords

ucwords -- Uppercase the first character of each word in a string

Description

string ucwords (string $str)

Returns a string with the first character of each word in str capitalized, if that character is
alphabetic.

The definition of a word is any string of characters that is immediately after a whitespace
(These are: space, form-feed, newline, carriage return, horizontal tab, and vertical tab).

Parameters

str

The input string.

Return Values

Returns the modified string.

Examples

Example #2589 - ucwords() example

<?php

$foo = 'hello world!';

$foo = ucwords($foo); // Hello World!

$bar = 'HELLO WORLD!';

$bar = ucwords($bar); // HELLO WORLD!

$bar = ucwords(strtolower($bar)); // Hello World!

?>

Notes

Note

This function is binary-safe.

See Also

• strtoupper()
• strtolower()
• ucfirst()
• mb_convert_case()

vfprintf

vfprintf -- Write a formatted string to a stream

Description

int vfprintf (resource $handle, string $format, array $args)

Write a string produced according to format to the stream resource specified by handle.

Operates as fprintf() but accepts an array of arguments, rather than a variable number of
arguments.

Parameters

handle

format

See sprintf() for a description of format.

args

Return Values

Returns the length of the outputted string.

Examples

Example #2590 - vfprintf(): zero-padded integers

<?php

if (!($fp = fopen('date.txt', 'w')))

 return;

vfprintf($fp, "%04d-%02d-%02d", array($year, $month, $day));

// will write the formatted ISO date to date.txt

?>

See Also

• printf()
• sprintf()
• sscanf()
• fscanf()
• vsprintf()
• number_format()

vprintf

vprintf -- Output a formatted string

Description

int vprintf (string $format, array $args)

Display array values as a formatted string according to format (which is described in the
documentation for sprintf()).

Operates as printf() but accepts an array of arguments, rather than a variable number of
arguments.

Parameters

format

See sprintf() for a description of format.

args

Return Values

Returns the length of the outputted string.

See Also

• printf()
• sprintf()
• vsprintf()

vsprintf

vsprintf -- Return a formatted string

Description

string vsprintf (string $format, array $args)

Operates as sprintf() but accepts an array of arguments, rather than a variable number of
arguments.

Parameters

format

See sprintf() for a description of format.

args

Return Values

Return array values as a formatted string according to format (which is described in the
documentation for sprintf()).

See Also

• sprintf()
• vprintf()

wordwrap

wordwrap -- Wraps a string to a given number of characters

Description

string wordwrap (string $str [, int $width [, string $break [, bool $cut]]])

Wraps a string to a given number of characters using a string break character.

Parameters

str

The input string.

width

The column width. Defaults to 75.

break

The line is broken using the optional break parameter. Defaults to ' \n '.

cut

If the cut is set to TRUE, the string is always wrapped at the specified width. So if you
have a word that is larger than the given width, it is broken apart. (See second
example).

Return Values

Returns the given string wrapped at the specified column.

ChangeLog

Version Description

4.0.3 The optional cut parameter was added.

Examples

Example #2591 - wordwrap() example

<?php

$text = "The quick brown fox jumped over the lazy dog.";

$newtext = wordwrap($text, 20, "
\n");

echo $newtext;

?>

The above example will output:

The quick brown fox

jumped over the lazy

dog.

Example #2592 - wordwrap() example

<?php

$text = "A very long woooooooooooord.";

$newtext = wordwrap($text, 8, "\n", true);

echo "$newtext\n";

?>

The above example will output:

A very

long

wooooooo

ooooord.

See Also

• nl2br()
• chunk_split()

Variable and Type Related Extensions

Arrays

Introduction

These functions allow you to interact with and manipulate arrays in various ways. Arrays
are essential for storing, managing, and operating on sets of variables.

Simple and multi-dimensional arrays are supported, and may be either user created or
created by another function. There are specific database handling functions for populating
arrays from database queries, and several functions return arrays.

Please see the Arrays section of the manual for a detailed explanation of how arrays are
implemented and used in PHP. See also Array operators for other ways how to manipulate
the arrays.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are always available as part of the PHP core.

CASE_LOWER (integer)
CASE_LOWER is used with array_change_key_case() and is used to convert array
keys to lower case. This is also the default case for array_change_key_case().

CASE_UPPER (integer)
CASE_UPPER is used with array_change_key_case() and is used to convert array
keys to upper case.

Sorting order flags:
SORT_ASC (integer)

SORT_ASC is used with array_multisort() to sort in ascending order.

SORT_DESC (integer)
SORT_DESC is used with array_multisort() to sort in descending order.

Sorting type flags: used by various sort functions
SORT_REGULAR (integer)

SORT_REGULAR is used to compare items normally.

SORT_NUMERIC (integer)
SORT_NUMERIC is used to compare items numerically.

SORT_STRING (integer)
SORT_STRING is used to compare items as strings.

SORT_LOCALE_STRING (integer)
SORT_LOCALE_STRING is used to compare items as strings, based on the current
locale. Added in PHP 4.4.0 and 5.0.2.

COUNT_NORMAL (integer)

COUNT_RECURSIVE (integer)

EXTR_OVERWRITE (integer)

EXTR_SKIP (integer)

EXTR_PREFIX_SAME (integer)

EXTR_PREFIX_ALL (integer)

EXTR_PREFIX_INVALID (integer)

EXTR_PREFIX_IF_EXISTS (integer)

EXTR_IF_EXISTS (integer)

EXTR_REFS (integer)

Array Functions

See Also

See also is_array(), explode(), implode(), split(), preg_split(), and unset().

array_change_key_case

array_change_key_case -- Changes all keys in an array

Description

array array_change_key_case (array $input [, int $case])

Returns an array with all keys from input lowercased or uppercased. Numbered indices
are left as is.

Parameters

input

The array to work on

case

Either CASE_UPPER or CASE_LOWER (default)

Return Values

Returns an array with its keys lower or uppercased, or false if input is not an array.

Errors/Exceptions

Throws E_WARNING if input is not an array.

Examples

Example #2593 - array_change_key_case() example

<?php

$input_array = array("FirSt" => 1, "SecOnd" => 4);

print_r(array_change_key_case($input_array, CASE_UPPER));

?>

The above example will output:

Array

(

 [FIRST] => 1

 [SECOND] => 4

)

Notes

Note

If an array has indices that will be the same once run through this function (e.g. "keY"
and "kEY"), the value that is later in the array will override other indices.

array_chunk

array_chunk -- Split an array into chunks

Description

array array_chunk (array $input, int $size [, bool $preserve_keys])

Chunks an array into size large chunks. The last chunk may contain less than size
elements.

Parameters

input

The array to work on

size

The size of each chunk

preserve_keys

When set to TRUE keys will be preserved. Default is FALSE which will reindex the
chunk numerically

Return Values

Returns a multidimensional numerically indexed array, starting with zero, with each
dimension containing size elements.

Errors/Exceptions

If size is less than 1 E_WARNING will be thrown and NULL returned.

Examples

Example #2594 - array_chunk() example

<?php

$input_array = array('a', 'b', 'c', 'd', 'e');

print_r(array_chunk($input_array, 2));

print_r(array_chunk($input_array, 2, true));

?>

The above example will output:

Array

(

 [0] => Array

 (

 [0] => a

 [1] => b

)

 [1] => Array

 (

 [0] => c

 [1] => d

)

 [2] => Array

 (

 [0] => e

)

)

Array

(

 [0] => Array

 (

 [0] => a

 [1] => b

)

 [1] => Array

 (

 [2] => c

 [3] => d

)

 [2] => Array

 (

 [4] => e

)

)

array_combine

array_combine -- Creates an array by using one array for keys and another for its values

Description

array array_combine (array $keys, array $values)

Creates an array by using the values from the keys array as keys and the values from the
values array as the corresponding values.

Parameters

keys

Array of keys to be used. Illegal values for key will be converted to string.

values

Array of values to be used

Return Values

Returns the combined array, FALSE if the number of elements for each array isn't equal or
if the arrays are empty.

Errors/Exceptions

Throws E_WARNING if keys and values are either empty or the number of elements
does not match.

Examples

Example #2595 - A simple array_combine() example

<?php

$a = array('green', 'red', 'yellow');

$b = array('avocado', 'apple', 'banana');

$c = array_combine($a, $b);

print_r($c);

?>

The above example will output:

Array

(

 [green] => avocado

 [red] => apple

 [yellow] => banana

)

See Also

• array_merge()
• array_walk()
• array_values()

array_count_values

array_count_values -- Counts all the values of an array

Description

array array_count_values (array $input)

array_count_values() returns an array using the values of the input array as keys and
their frequency in input as values.

Parameters

input

The array of values to count

Return Values

Returns an associative array of values from input as keys and their count as value.

Errors/Exceptions

Throws E_WARNING for every element which is not string or integer.

Examples

Example #2596 - array_count_values() example

<?php

$array = array(1, "hello", 1, "world", "hello");

print_r(array_count_values($array));

?>

The above example will output:

Array

(

 [1] => 2

 [hello] => 2

 [world] => 1

)

See Also

• count()
• array_unique()
• array_values()
• count_chars()

array_diff_assoc

array_diff_assoc -- Computes the difference of arrays with additional index check

Description

array array_diff_assoc (array $array1, array $array2 [, array $...])

Compares array1 against array2 and returns the difference. Unlike array_diff() the array
keys are used in the comparision.

Parameters

array1

The array to compare from

array2

An array to compare against

...

More arrays to compare against

Return Values

Returns an array containing all the values from array1 that are not present in any of the
other arrays.

Examples

Example #2597 - array_diff_assoc() example

In this example you see the "a" => "green" pair is present in both arrays and thus it is
not in the ouput from the function. Unlike this, the pair 0 => "red" is in the ouput
because in the second argument "red" has key which is 1.

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "green", "yellow", "red");

$result = array_diff_assoc($array1, $array2);

print_r($result);

?>

The above example will output:

Array

(

 [b] => brown

 [c] => blue

 [0] => red

)

Example #2598 - array_diff_assoc() example

Two values from key => value pairs are considered equal only if (string) $elem1 ===
(string) $elem2. In other words a strict check takes place so the string representations
must be the same.

<?php

$array1 = array(0, 1, 2);

$array2 = array("00", "01", "2");

$result = array_diff_assoc($array1, $array2);

print_r($result);

?>

The above example will output:

Array

(

 [0] => 0

 [1] => 1

)

Notes

Note

This function only checks one dimension of a n-dimensional array. Of course you can
check deeper dimensions by using, for example, array_diff_assoc($array1[0],
$array2[0]);.

See Also

• array_diff()
• array_intersect()
• array_intersect_assoc()

array_diff_key

array_diff_key -- Computes the difference of arrays using keys for comparison

Description

array array_diff_key (array $array1, array $array2 [, array $...])

Compares the keys from array1 against the keys from array2 and returns the difference.
This function is like array_diff() except the comparison is done on the keys instead of the
values.

Parameters

array1

The array to compare from

array2

An array to compare against

...

More arrays to compare against

Return Values

Returns an array containing all the entries from array1 that are not present in any of the
other arrays.

Examples

Example #2599 - array_diff_key() example

The two keys from the key => value pairs are considered equal only if (string) $key1
=== (string) $key2. In other words a strict type check is executed so the string
representation must be the same.

<?php

$array1 = array('blue' => 1, 'red' => 2, 'green' => 3, 'purple' => 4);

$array2 = array('green' => 5, 'blue' => 6, 'yellow' => 7, 'cyan' => 8);

var_dump(array_diff_key($array1, $array2));

?>

The above example will output:

array(2) {

 ["red"]=>

 int(2)

 ["purple"]=>

 int(4)

}

Notes

Note

This function only checks one dimension of a n-dimensional array. Of course you can
check deeper dimensions by using array_diff_key($array1[0], $array2[0]);.

See Also

• array_diff()
• array_udiff()
• array_diff_assoc()
• array_diff_uassoc()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_diff_ukey()
• array_intersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_intersect_key()
• array_intersect_ukey()

array_diff_uassoc

array_diff_uassoc -- Computes the difference of arrays with additional index check which
is performed by a user supplied callback function

Description

array array_diff_uassoc (array $array1, array $array2 [, array $...], callback $
key_compare_func)

Compares array1 against array2 and returns the difference. Unlike array_diff() the array
keys are used in the comparision.

Unlike array_diff_assoc() an user supplied callback function is used for the indices
comparision, not internal function.

Parameters

array1

The array to compare from

array2

An array to compare against

...

More arrays to compare against

key_compare_func

callback function to use. The callback function must return an integer less than, equal
to, or greater than zero if the first argument is considered to be respectively less than,
equal to, or greater than the second.

Return Values

Returns an array containing all the entries from array1 that are not present in any of the
other arrays.

Examples

Example #2600 - array_diff_uassoc() example

The "a" => "green" pair is present in both arrays and thus it is not in the ouput from the
function. Unlike this, the pair 0 => "red" is in the ouput because in the second
argument "red" has key which is 1.

<?php

function key_compare_func($a, $b)

{

 if ($a === $b) {

 return 0;

 }

 return ($a > $b)? 1:-1;

}

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "green", "yellow", "red");

$result = array_diff_uassoc($array1, $array2, "key_compare_func");

print_r($result);

?>

The above example will output:

Array

(

 [b] => brown

 [c] => blue

 [0] => red

)

The equality of 2 indices is checked by the user supplied callback function.

Notes

Note

This function only checks one dimension of a n-dimensional array. Of course you can
check deeper dimensions by using, for example, array_diff_uassoc($array1[0],
$array2[0], "key_compare_func");.

See Also

• array_diff()
• array_diff_assoc()
• array_udiff()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_intersect()
• array_intersect_assoc()
• array_uintersect()
• array_uintersect_assoc()
• array_uintersect_uassoc()

array_diff_ukey

array_diff_ukey -- Computes the difference of arrays using a callback function on the keys
for comparison

Description

array array_diff_ukey (array $array1, array $array2 [, array $...], callback $
key_compare_func)

Compares the keys from array1 against the keys from array2 and returns the difference.
This function is like array_diff() except the comparison is done on the keys instead of the
values.

Unlike array_diff_key() an user supplied callback function is used for the indices
comparision, not internal function.

Parameters

array1

The array to compare from

array2

An array to compare against

...

More arrays to compare against

key_compare_func

callback function to use. The callback function must return an integer less than, equal
to, or greater than zero if the first argument is considered to be respectively less than,
equal to, or greater than the second.

Return Values

Returns an array containing all the entries from array1 that are not present in any of the
other arrays.

Examples

Example #2601 - array_diff_ukey() example

<?php

function key_compare_func($key1, $key2)

{

 if ($key1 == $key2)

 return 0;

 else if ($key1 > $key2)

 return 1;

 else

 return -1;

}

$array1 = array('blue' => 1, 'red' => 2, 'green' => 3, 'purple' => 4);

$array2 = array('green' => 5, 'blue' => 6, 'yellow' => 7, 'cyan' => 8);

var_dump(array_diff_ukey($array1, $array2, 'key_compare_func'));

?>

The above example will output:

array(2) {

 ["red"]=>

 int(2)

 ["purple"]=>

 int(4)

}

Notes

Note

This function only checks one dimension of a n-dimensional array. Of course you can
check deeper dimensions by using array_diff_ukey($array1[0], $array2[0],
'callback_func');.

See Also

• array_diff()
• array_udiff()
• array_diff_assoc()
• array_diff_uassoc()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_diff_key()
• array_intersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_intersect_key()
• array_intersect_ukey()

array_diff

array_diff -- Computes the difference of arrays

Description

array array_diff (array $array1, array $array2 [, array $...])

Compares array1 against array2 and returns the difference.

Parameters

array1

The array to compare from

array2

An array to compare against

...

More arrays to compare against

Return Values

Returns an array containing all the entries from array1 that are not present in any of the
other arrays.

Examples

Example #2602 - array_diff() example

<?php

$array1 = array("a" => "green", "red", "blue", "red");

$array2 = array("b" => "green", "yellow", "red");

$result = array_diff($array1, $array2);

print_r($result);

?>

Multiple occurrences in $array1 are all treated the same way. This will output :

Array

(

 [1] => blue

)

Notes

Note

Two elements are considered equal if and only if (string) $elem1 === (string) $elem2.
In words: when the string representation is the same.

Note

This function only checks one dimension of a n-dimensional array. Of course you can
check deeper dimensions by using array_diff($array1[0], $array2[0]);.

Warning

This was broken in PHP 4.0.4!

See Also

• array_diff_assoc()
• array_intersect()
• array_intersect_assoc()

array_fill_keys

array_fill_keys -- Fill an array with values, specifying keys

Description

array array_fill_keys (array $keys, mixed $value)

Fills an array with the value of the value parameter, using the values of the keys array as
keys.

Parameters

keys

Array of values that will be used as keys. Illegal values for key will be converted to
string.

value

Value to use for filling

Return Values

Returns the filled array

Examples

Example #2603 - array_fill_keys() example

<?php

$keys = array('foo', 5, 10, 'bar');

$a = array_fill_keys($keys, 'banana');

print_r($a);

?>

The above example will output:

Array

(

 [foo] => banana

 [5] => banana

 [10] => banana

 [bar] => banana

)

See Also

• array_fill()
• array_combine()

array_fill

array_fill -- Fill an array with values

Description

array array_fill (int $start_index, int $num, mixed $value)

Fills an array with num entries of the value of the value parameter, keys starting at the
start_index parameter.

Parameters

start_index

The first index of the returned array

num

Number of elements to insert

value

Value to use for filling

Return Values

Returns the filled array

Errors/Exceptions

Throws a E_WARNING if num is less than one.

Examples

Example #2604 - array_fill() example

<?php

$a = array_fill(5, 6, 'banana');

$b = array_fill(-2, 2, 'pear');

print_r($a);

print_r($b);

?>

The above example will output:

Array

(

 [5] => banana

 [6] => banana

 [7] => banana

 [8] => banana

 [9] => banana

 [10] => banana

)

Array

(

 [-2] => pear

 [0] => pear

)

Notes

See also the Arrays section of manual for a detailed explanation of negative keys.

See Also

• str_repeat()
• range()

array_filter

array_filter -- Filters elements of an array using a callback function

Description

array array_filter (array $input [, callback $callback])

Iterates over each value in the input array passing them to the callback function. If the
callback function returns true, the current value from input is returned into the result
array. Array keys are preserved.

Parameters

input

The array to iterate over

callback

The callback function to use If no callback is supplied, all entries of input equal to
FALSE (see converting to boolean) will be removed.

Return Values

Returns the filtered array.

Examples

Example #2605 - array_filter() example

<?php

function odd($var)

{

 return($var & 1);

}

function even($var)

{

 return(!($var & 1));

}

$array1 = array("a"=>1, "b"=>2, "c"=>3, "d"=>4, "e"=>5);

$array2 = array(6, 7, 8, 9, 10, 11, 12);

echo "Odd :\n";

print_r(array_filter($array1, "odd"));

echo "Even:\n";

print_r(array_filter($array2, "even"));

?>

The above example will output:

Odd :

Array

(

 [a] => 1

 [c] => 3

 [e] => 5

)

Even:

Array

(

 [0] => 6

 [2] => 8

 [4] => 10

 [6] => 12

)

Example #2606 - array_filter() without callback

<?php

$entry = array(

 0 => 'foo',

 1 => false,

 2 => -1,

 3 => null,

 4 => ''

);

print_r(array_filter($entry));

?>

The above example will output:

Array

(

 [0] => foo

 [2] => -1

)

Notes

Caution

If the array is changed from the callback function (e.g. element added, deleted or
unset) the behavior of this function is undefined.

See Also

• array_map()
• array_reduce()
• array_walk()

array_flip

array_flip -- Exchanges all keys with their associated values in an array

Description

array array_flip (array $trans)

array_flip() returns an array in flip order, i.e. keys from trans become values and values
from trans become keys.

Note that the values of trans need to be valid keys, i.e. they need to be either integer or
string. A warning will be emitted if a value has the wrong type, and the key/value pair in
question will not be flipped.

If a value has several occurrences, the latest key will be used as its values, and all others
will be lost.

Parameters

trans

An array of key/value pairs to be flipped.

Return Values

Returns the flipped array on success and FALSE on failure.

Examples

Example #2607 - array_flip() example

<?php

$trans = array_flip($trans);

$original = strtr($str, $trans);

?>

Example #2608 - array_flip() example : collision

<?php

$trans = array("a" => 1, "b" => 1, "c" => 2);

$trans = array_flip($trans);

print_r($trans);

?>

now $trans is:

Array

(

 [1] => b

 [2] => c

)

See Also

• array_values()
• array_keys()
• array_reverse()

array_intersect_assoc

array_intersect_assoc -- Computes the intersection of arrays with additional index check

Description

array array_intersect_assoc (array $array1, array $array2 [, array $...])

array_intersect_assoc() returns an array containing all the values of array1 that are
present in all the arguments. Note that the keys are used in the comparison unlike in
array_intersect().

Parameters

array1

The array with master values to check.

array2

An array to compare values against.

array

A variable list of arrays to compare.

Return Values

Returns an associative array containing all the values in array1 that are present in all of
the arguments.

Examples

Example #2609 - array_intersect_assoc() example

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "green", "yellow", "red");

$result_array = array_intersect_assoc($array1, $array2);

print_r($result_array);

?>

The above example will output:

Array

(

 [a] => green

)

In our example you see that only the pair "a" => "green" is present in both arrays and thus
is returned. The value "red" is not returned because in $array1 its key is 0 while the key of
"red" in $array2 is 1.

The two values from the key => value pairs are considered equal only if (string) $elem1
=== (string) $elem2. In other words a strict type check is executed so the string
representation must be the same.

See Also

• array_intersect()
• array_uintersect_assoc()
• array_intersect_uassoc()
• array_uintersect_uassoc()
• array_diff()
• array_diff_assoc()

array_intersect_key

array_intersect_key -- Computes the intersection of arrays using keys for comparison

Description

array array_intersect_key (array $array1, array $array2 [, array $...])

array_intersect_key() returns an array containing all the values of array1 which have
matching keys that are present in all the arguments.

Parameters

array1

The array with master keys to check.

array2

An array to compare keys against.

array

A variable list of arrays to compare.

Return Values

Returns an associative array containing all the values of array1 which have matching
keys that are present in all arguments.

Examples

Example #2610 - array_intersect_key() example

<?php

$array1 = array('blue' => 1, 'red' => 2, 'green' => 3, 'purple' => 4);

$array2 = array('green' => 5, 'blue' => 6, 'yellow' => 7, 'cyan' => 8);

var_dump(array_intersect_key($array1, $array2));

?>

The above example will output:

array(2) {

 ["blue"]=>

 int(1)

 ["green"]=>

 int(3)

}

In our example you see that only the keys 'blue' and 'green' are present in both arrays and
thus returned. Also notice that the values for the keys 'blue' and 'green' differ between the
two arrays. A match still occurs because only the keys are checked. The values returned
are those of array1.

The two keys from the key => value pairs are considered equal only if (string) $key1 ===
(string) $key2. In other words a strict type check is executed so the string representation
must be the same.

See Also

• array_diff()
• array_udiff()
• array_diff_assoc()
• array_diff_uassoc()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_diff_key()
• array_diff_ukey()
• array_intersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_intersect_ukey()

array_intersect_uassoc

array_intersect_uassoc -- Computes the intersection of arrays with additional index check,
compares indexes by a callback function

Description

array array_intersect_uassoc (array $array1, array $array2 [, array $...], callback $
key_compare_func)

array_intersect_uassoc() returns an array containing all the values of array1 that are
present in all the arguments. Note that the keys are used in the comparison unlike in
array_intersect().

The index comparison is done by a user supplied callback function. It must return an
integer less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second.

Parameters

array1

Initial array for comparision of the arrays.

array2

First array to compare keys against.

array

Variable list of array arguments to compare values against.

key_compare_func

User supplied callback function to do the comparision.

Return Values

Returns the values of array1 whose values exist in all of the arguments.

Examples

Example #2611 - array_intersect_uassoc() example

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "GREEN", "B" => "brown", "yellow", "red");

print_r(array_intersect_uassoc($array1, $array2, "strcasecmp"));

?>

The above example will output:

Array

(

 [b] => brown

)

See Also

• array_intersect()
• array_intersect_assoc()
• array_uintersect_assoc()
• array_uintersect_uassoc()
• array_intersect_key()
• array_intersect_ukey()

array_intersect_ukey

array_intersect_ukey -- Computes the intersection of arrays using a callback function on
the keys for comparison

Description

array array_intersect_ukey (array $array1, array $array2 [, array $...], callback $
key_compare_func)

array_intersect_ukey() returns an array containing all the values of array1 which have
matching keys that are present in all the arguments.

This comparison is done by a user supplied callback function. It must return an integer less
than, equal to, or greater than zero if the first key is considered to be respectively less
than, equal to, or greater than the second.

Parameters

array1

Initial array for comparision of the arrays.

array2

First array to compare keys against.

array

Variable list of array arguments to compare keys against.

key_compare_func

User supplied callback function to do the comparision.

Return Values

Returns the values of array1 whose keys exist in all the arguments.

Examples

Example #2612 - array_intersect_ukey() example

<?php

function key_compare_func($key1, $key2)

{

 if ($key1 == $key2)

 return 0;

 else if ($key1 > $key2)

 return 1;

 else

 return -1;

}

$array1 = array('blue' => 1, 'red' => 2, 'green' => 3, 'purple' => 4);

$array2 = array('green' => 5, 'blue' => 6, 'yellow' => 7, 'cyan' => 8);

var_dump(array_intersect_ukey($array1, $array2, 'key_compare_func'));

?>

The above example will output:

array(2) {

 ["blue"]=>

 int(1)

 ["green"]=>

 int(3)

}

In our example you see that only the keys 'blue' and 'green' are present in both arrays and
thus returned. Also notice that the values for the keys 'blue' and 'green' differ between the
two arrays. A match still occurs because only the keys are checked. The values returned
are those of array1.

See Also

• array_diff()
• array_udiff()
• array_diff_assoc()
• array_diff_uassoc()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_diff_key()
• array_diff_ukey()
• array_intersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_intersect_key()

array_intersect

array_intersect -- Computes the intersection of arrays

Description

array array_intersect (array $array1, array $array2 [, array $...])

array_intersect() returns an array containing all the values of array1 that are present in all
the arguments. Note that keys are preserved.

Parameters

array1

The array with master values to check.

array2

An array to compare values against.

array

A variable list of arrays to compare.

Return Values

Returns an array containing all of the values in array1 whose values exist in all of the
parameters.

Examples

Example #2613 - array_intersect() example

<?php

$array1 = array("a" => "green", "red", "blue");

$array2 = array("b" => "green", "yellow", "red");

$result = array_intersect($array1, $array2);

print_r($result);

?>

The above example will output:

Array

(

 [a] => green

 [0] => red

)

Notes

Note

Two elements are considered equal if and only if (string) $elem1 === (string) $elem2.
In words: when the string representation is the same.

See Also

• array_intersect_assoc()
• array_diff()
• array_diff_assoc()

array_key_exists

array_key_exists -- Checks if the given key or index exists in the array

Description

bool array_key_exists (mixed $key, array $search)

array_key_exists() returns TRUE if the given key is set in the array. key can be any value
possible for an array index. array_key_exists() also works on objects.

Parameters

key

Value to check.

search

An array with keys to check.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2614 - array_key_exists() example

<?php

$search_array = array('first' => 1, 'second' => 4);

if (array_key_exists('first', $search_array)) {

 echo "The 'first' element is in the array";

}

?>

Note

The name of this function is key_exists() in PHP 4.0.6.

Example #2615 - array_key_exists() vs isset()

isset() does not return TRUE for array keys that correspond to a NULL value, while
array_key_exists() does.

<?php

$search_array = array('first' => null, 'second' => 4);

// returns false

isset($search_array['first']);

// returns true

array_key_exists('first', $search_array);

?>

See Also

• isset()
• array_keys()
• in_array()

array_keys

array_keys -- Return all the keys of an array

Description

array array_keys (array $input [, mixed $search_value [, bool $strict]])

array_keys() returns the keys, numeric and string, from the input array.

If the optional search_value is specified, then only the keys for that value are returned.
Otherwise, all the keys from the input are returned. As of PHP 5, you can use strict
parameter for comparison including type (===).

Parameters

input

An array containing keys to return.

search_value

If specified, then only keys containing these values are returned.

strict

As of PHP 5, this parameter determines if strict comparision (===) should be used
during the search.

Return Values

Returns an array of all the keys in input.

Examples

Example #2616 - array_keys() example

<?php

$array = array(0 => 100, "color" => "red");

print_r(array_keys($array));

$array = array("blue", "red", "green", "blue", "blue");

print_r(array_keys($array, "blue"));

$array = array("color" => array("blue", "red", "green"),

 "size" => array("small", "medium", "large"));

print_r(array_keys($array));

?>

The above example will output:

Array

(

 [0] => 0

 [1] => color

)

Array

(

 [0] => 0

 [1] => 3

 [2] => 4

)

Array

(

 [0] => color

 [1] => size

)

See Also

• array_values()
• array_key_exists()

array_map

array_map -- Applies the callback to the elements of the given arrays

Description

array array_map (callback $callback, array $arr1 [, array $...])

array_map() returns an array containing all the elements of arr1 after applying the
callback function to each one. The number of parameters that the callback function
accepts should match the number of arrays passed to the array_map()

Parameters

callback

Callback function to run for each element in each array.

arr1

An array to run through the callback function.

array

Variable list of array arguments to run through the callback function.

Return Values

Returns an array containing all the elements of arr1 after applying the callback function
to each one.

Examples

Example #2617 - array_map() example

<?php

function cube($n)

{

 return($n * $n * $n);

}

$a = array(1, 2, 3, 4, 5);

$b = array_map("cube", $a);

print_r($b);

?>

This makes $b have:

Array

(

 [0] => 1

 [1] => 8

 [2] => 27

 [3] => 64

 [4] => 125

)

Examples

Example #2618 - array_map() - using more arrays

<?php

function show_Spanish($n, $m)

{

 return("The number $n is called $m in Spanish");

}

function map_Spanish($n, $m)

{

 return(array($n => $m));

}

$a = array(1, 2, 3, 4, 5);

$b = array("uno", "dos", "tres", "cuatro", "cinco");

$c = array_map("show_Spanish", $a, $b);

print_r($c);

$d = array_map("map_Spanish", $a , $b);

print_r($d);

?>

The above example will output:

// printout of $c

Array

(

 [0] => The number 1 is called uno in Spanish

 [1] => The number 2 is called dos in Spanish

 [2] => The number 3 is called tres in Spanish

 [3] => The number 4 is called cuatro in Spanish

 [4] => The number 5 is called cinco in Spanish

)

// printout of $d

Array

(

 [0] => Array

 (

 [1] => uno

)

 [1] => Array

 (

 [2] => dos

)

 [2] => Array

 (

 [3] => tres

)

 [3] => Array

 (

 [4] => cuatro

)

 [4] => Array

 (

 [5] => cinco

)

)

Usually when using two or more arrays, they should be of equal length because the
callback function is applied in parallel to the corresponding elements. If the arrays are of
unequal length, the shortest one will be extended with empty elements.

An interesting use of this function is to construct an array of arrays, which can be easily
performed by using NULL as the name of the callback function

Example #2619 - Creating an array of arrays

<?php

$a = array(1, 2, 3, 4, 5);

$b = array("one", "two", "three", "four", "five");

$c = array("uno", "dos", "tres", "cuatro", "cinco");

$d = array_map(null, $a, $b, $c);

print_r($d);

?>

The above example will output:

Array

(

 [0] => Array

 (

 [0] => 1

 [1] => one

 [2] => uno

)

 [1] => Array

 (

 [0] => 2

 [1] => two

 [2] => dos

)

 [2] => Array

 (

 [0] => 3

 [1] => three

 [2] => tres

)

 [3] => Array

 (

 [0] => 4

 [1] => four

 [2] => cuatro

)

 [4] => Array

 (

 [0] => 5

 [1] => five

 [2] => cinco

)

)

If the array argument contains string keys then the returned array will contain string keys if
and only if exactly one array is passed. If more than one argument is passed then the
returned array always has integer keys.

Example #2620 - array_map() - with string keys

<?php

$arr = array("stringkey" => "value");

function cb1($a) {

 return array ($a);

}

function cb2($a, $b) {

 return array ($a, $b);

}

var_dump(array_map("cb1", $arr));

var_dump(array_map("cb2", $arr, $arr));

var_dump(array_map(null, $arr));

var_dump(array_map(null, $arr, $arr));

?>

The above example will output:

array(1) {

 ["stringkey"]=>

 array(1) {

 [0]=>

 string(5) "value"

 }

}

array(1) {

 [0]=>

 array(2) {

 [0]=>

 string(5) "value"

 [1]=>

 string(5) "value"

 }

}

array(1) {

 ["stringkey"]=>

 string(5) "value"

}

array(1) {

 [0]=>

 array(2) {

 [0]=>

 string(5) "value"

 [1]=>

 string(5) "value"

 }

}

See Also

• array_filter()
• array_reduce()
• array_walk()
• create_function()

information about the callback type

array_merge_recursive

array_merge_recursive -- Merge two or more arrays recursively

Description

array array_merge_recursive (array $array1 [, array $...])

array_merge_recursive() merges the elements of one or more arrays together so that the
values of one are appended to the end of the previous one. It returns the resulting array.

If the input arrays have the same string keys, then the values for these keys are merged
together into an array, and this is done recursively, so that if one of the values is an array
itself, the function will merge it with a corresponding entry in another array too. If, however,
the arrays have the same numeric key, the later value will not overwrite the original value,
but will be appended.

Parameters

array1

Initial array to merge.

array

Variable list of arrays to recursively merge.

Return Values

An array of values resulted from merging the arguments together.

Examples

Example #2621 - array_merge_recursive() example

<?php

$ar1 = array("color" => array("favorite" => "red"), 5);

$ar2 = array(10, "color" => array("favorite" => "green", "blue"));

$result = array_merge_recursive($ar1, $ar2);

print_r($result);

?>

The above example will output:

Array

(

 [color] => Array

 (

 [favorite] => Array

 (

 [0] => red

 [1] => green

)

 [0] => blue

)

 [0] => 5

 [1] => 10

)

See Also

• array_merge()

array_merge

array_merge -- Merge one or more arrays

Description

array array_merge (array $array1 [, array $array2 [, array $...]])

Merges the elements of one or more arrays together so that the values of one are
appended to the end of the previous one. It returns the resulting array.

If the input arrays have the same string keys, then the later value for that key will overwrite
the previous one. If, however, the arrays contain numeric keys, the later value will not
overwrite the original value, but will be appended.

If only one array is given and the array is numerically indexed, the keys get reindexed in a
continuous way.

Parameters

array1

Initial array to merge.

array

Variable list of arrays to recursively merge.

Return Values

Returns the resulting array.

Examples

Example #2622 - array_merge() example

<?php

$array1 = array("color" => "red", 2, 4);

$array2 = array("a", "b", "color" => "green", "shape" => "trapezoid", 4);

$result = array_merge($array1, $array2);

print_r($result);

?>

The above example will output:

Array

(

 [color] => green

 [0] => 2

 [1] => 4

 [2] => a

 [3] => b

 [shape] => trapezoid

 [4] => 4

)

Example #2623 - Simple array_merge() example

<?php

$array1 = array();

$array2 = array(1 => "data");

$result = array_merge($array1, $array2);

?>

Don't forget that numeric keys will be renumbered!

Array

(

 [0] => data

)

If you want to completely preserve the arrays and just want to append them to each
other (not overwriting the previous keys), use the + operator:

<?php

$array1 = array();

$array2 = array(1 => "data");

$result = $array1 + $array2;

?>

The numeric key will be preserved and thus the association remains.

Array

(

 [1] => data

)

Warning

The behavior of array_merge() was modified in PHP 5. Unlike PHP 4, array_merge()
now only accepts parameters of type array. However, you can use typecasting to
merge other types. See the example below for details.

Example #2624 - array_merge() PHP 5 example

<?php

$beginning = 'foo';

$end = array(1 => 'bar');

$result = array_merge((array)$beginning, (array)$end);

print_r($result);

?>

The above example will output:

Array

(

 [0] => foo

 [1] => bar

)

See Also

• array_merge_recursive()
• array_combine()
• array operators

array_multisort

array_multisort -- Sort multiple or multi-dimensional arrays

Description

bool array_multisort (array $arr [, mixed $arg [, mixed $...]])

array_multisort() can be used to sort several arrays at once, or a multi-dimensional array
by one or more dimensions.

Associative (string) keys will be maintained, but numeric keys will be re-indexed.

Parameters

arr

An array being sorted.

arg

Optionally another array, or sort options for the previous array argument: SORT_ASC,
SORT_DESC, SORT_REGULAR, SORT_NUMERIC, SORT_STRING.

...

Additional arg 's.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2625 - Sorting multiple arrays

<?php

$ar1 = array(10, 100, 100, 0);

$ar2 = array(1, 3, 2, 4);

array_multisort($ar1, $ar2);

var_dump($ar1);

var_dump($ar2);

?>

In this example, after sorting, the first array will contain 0, 10, 100, 100. The second
array will contain 4, 1, 2, 3. The entries in the second array corresponding to the
identical entries in the first array (100 and 100) were sorted as well.

array(4) {

 [0]=> int(0)

 [1]=> int(10)

 [2]=> int(100)

 [3]=> int(100)

}

array(4) {

 [0]=> int(4)

 [1]=> int(1)

 [2]=> int(2)

 [3]=> int(3)

}

Example #2626 - Sorting multi-dimensional array

<?php

$ar = array(

 array("10", 11, 100, 100, "a"),

 array(1, 2, "2", 3, 1)

);

array_multisort($ar[0], SORT_ASC, SORT_STRING,

 $ar[1], SORT_NUMERIC, SORT_DESC);

var_dump($ar);

?>

In this example, after sorting, the first array will transform to "10", 100, 100, 11, "a" (it
was sorted as strings in ascending order). The second will contain 1, 3, "2", 2, 1
(sorted as numbers, in descending order).

array(2) {

 [0]=> array(5) {

 [0]=> string(2) "10"

 [1]=> int(100)

 [2]=> int(100)

 [3]=> int(11)

 [4]=> string(1) "a"

 }

 [1]=> array(5) {

 [0]=> int(1)

 [1]=> int(3)

 [2]=> string(1) "2"

 [3]=> int(2)

 [4]=> int(1)

 }

}

Example #2627 - Sorting database results

For this example, each element in the data array represents one row in a table. This

type of dataset is typical of database records.

Example data:

volume | edition

-------+--------

 67 | 2

 86 | 1

 85 | 6

 98 | 2

 86 | 6

 67 | 7

The data as an array, called data. This would usually, for example, be obtained by
looping with mysql_fetch_assoc().

<?php

$data[] = array('volume' => 67, 'edition' => 2);

$data[] = array('volume' => 86, 'edition' => 1);

$data[] = array('volume' => 85, 'edition' => 6);

$data[] = array('volume' => 98, 'edition' => 2);

$data[] = array('volume' => 86, 'edition' => 6);

$data[] = array('volume' => 67, 'edition' => 7);

?>

In this example, we will order by volume descending, edition ascending.

We have an array of rows, but array_multisort() requires an array of columns, so we
use the below code to obtain the columns, then perform the sorting.

<?php

// Obtain a list of columns

foreach ($data as $key => $row) {

 $volume[$key] = $row['volume'];

 $edition[$key] = $row['edition'];

}

// Sort the data with volume descending, edition ascending

// Add $data as the last parameter, to sort by the common key

array_multisort($volume, SORT_DESC, $edition, SORT_ASC, $data);

?>

The dataset is now sorted, and will look like this:

volume | edition

-------+--------

 98 | 2

 86 | 1

 86 | 6

 85 | 6

 67 | 2

 67 | 7

Example #2628 - Case insensitive sorting

Both SORT_STRING and SORT_REGULAR are case sensitive, strings starting with a
capital letter will come before strings starting with a lowercase letter.

To perform a case insensitive search, force the sorting order to be determined by a
lowercase copy of the original array.

<?php

$array = array('Alpha', 'atomic', 'Beta', 'bank');

$array_lowercase = array_map('strtolower', $array);

array_multisort($array_lowercase, SORT_ASC, SORT_STRING, $array);

print_r($array);

?>

The above example will output:

Array

(

 [0] => Alpha

 [1] => atomic

 [2] => bank

 [3] => Beta

)

array_pad

array_pad -- Pad array to the specified length with a value

Description

array array_pad (array $input, int $pad_size, mixed $pad_value)

array_pad() returns a copy of the input padded to size specified by pad_size with value
pad_value. If pad_size is positive then the array is padded on the right, if it's negative then
on the left. If the absolute value of pad_size is less than or equal to the length of the
input then no padding takes place. It is possible to add most 1048576 elements at a time.

Parameters

input

Initial array of values to pad.

pad_size

New size of the array.

pad_value

Value to pad if input is less than pad_size.

Return Values

Returns a copy of the input padded to size specified by pad_size with value pad_value.
If pad_size is positive then the array is padded on the right, if it's negative then on the left.
If the absolute value of pad_size is less than or equal to the length of the input then no
padding takes place.

Examples

Example #2629 - array_pad() example

<?php

$input = array(12, 10, 9);

$result = array_pad($input, 5, 0);

// result is array(12, 10, 9, 0, 0)

$result = array_pad($input, -7, -1);

// result is array(-1, -1, -1, -1, 12, 10, 9)

$result = array_pad($input, 2, "noop");

// not padded

?>

See Also

• array_fill()
• range()

array_pop

array_pop -- Pop the element off the end of array

Description

mixed array_pop (array &$array)

array_pop() pops and returns the last value of the array, shortening the array by one
element. If array is empty (or is not an array), NULL will be returned. Will additionally
produce a Warning when called on a non-array.

Note

This function will reset() the array pointer after use.

Parameters

array

The array to get the value from.

Return Values

Returns the last value of array. If array is empty (or is not an array), NULL will be
returned.

Examples

Example #2630 - array_pop() example

<?php

$stack = array("orange", "banana", "apple", "raspberry");

$fruit = array_pop($stack);

print_r($stack);

?>

After this, $stack will have only 3 elements:

Array

(

 [0] => orange

 [1] => banana

 [2] => apple

)

and raspberry will be assigned to $fruit.

See Also

See also array_push(), array_shift(), and array_unshift().

array_product

array_product -- Calculate the product of values in an array

Description

number array_product (array $array)

array_product() returns the product of values in an array.

Parameters

array

The array.

Return Values

Returns the product as an integer or float.

Examples

Example #2631 - array_product() examples

<?php

$a = array(2, 4, 6, 8);

echo "product(a) = " . array_product($a) . "\n";

?>

The above example will output:

product(a) = 384

array_push

array_push -- Push one or more elements onto the end of array

Description

int array_push (array &$array, mixed $var [, mixed $...])

array_push() treats array as a stack, and pushes the passed variables onto the end of
array. The length of array increases by the number of variables pushed. Has the same
effect as:
<?php

$array[] = $var;

?>
repeated for each var.

Note

If you use array_push() to add one element to the array it's better to use $array[] =
because in that way there is no overhead of calling a function.

Note

array_push() will raise a warning if the first argument is not an array. This differs from
the $var[] behaviour where a new array is created.

Parameters

array

The input array.

var

The pushed value.

Return Values

Returns the new number of elements in the array.

Examples

Example #2632 - array_push() example

<?php

$stack = array("orange", "banana");

array_push($stack, "apple", "raspberry");

print_r($stack);

?>

The above example will output:

Array

(

 [0] => orange

 [1] => banana

 [2] => apple

 [3] => raspberry

)

See Also

• array_pop()
• array_shift()
• array_unshift()

array_rand

array_rand -- Pick one or more random entries out of an array

Description

mixed array_rand (array $input [, int $num_req])

array_rand() is rather useful when you want to pick one or more random entries out of an
array.

Parameters

input

The input array.

num_req

Specifies how many entries you want to pick - if not specified, defaults to 1.

Return Values

If you are picking only one entry, array_rand() returns the key for a random entry.
Otherwise, it returns an array of keys for the random entries. This is done so that you can
pick random keys as well as values out of the array.

Examples

Example #2633 - array_rand() example

<?php

srand((float) microtime() * 10000000);

$input = array("Neo", "Morpheus", "Trinity", "Cypher", "Tank");

$rand_keys = array_rand($input, 2);

echo $input[$rand_keys[0]] . "\n";

echo $input[$rand_keys[1]] . "\n";

?>

Notes

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()

or mt_srand() as this is now done automatically.

See Also

• shuffle()

array_reduce

array_reduce -- Iteratively reduce the array to a single value using a callback function

Description

mixed array_reduce (array $input, callback $function [, int $initial])

array_reduce() applies iteratively the function function to the elements of the array input
, so as to reduce the array to a single value.

Parameters

input

The input array.

function

The callback function.

initial

If the optional initial is available, it will be used at the beginning of the process, or
as a final result in case the array is empty.

Return Values

Returns the resulting value.

If the array is empty and initial is not passed, array_reduce() returns NULL.

Examples

Example #2634 - array_reduce() example

<?php

function rsum($v, $w)

{

 $v += $w;

 return $v;

}

function rmul($v, $w)

{

 $v *= $w;

 return $v;

}

$a = array(1, 2, 3, 4, 5);

$x = array();

$b = array_reduce($a, "rsum");

$c = array_reduce($a, "rmul", 10);

$d = array_reduce($x, "rsum", 1);

?>

This will result in $b containing 15, $c containing 1200 (= 10*1*2*3*4*5), and $d
containing 1.

See Also

• array_filter()
• array_map()
• array_unique()
• array_count_values()

array_reverse

array_reverse -- Return an array with elements in reverse order

Description

array array_reverse (array $array [, bool $preserve_keys])

Takes an input array and returns a new array with the order of the elements reversed.

Parameters

array

The input array.

preserve_keys

If set to TRUE keys are preserved.

Return Values

Returns the reversed array.

ChangeLog

Version Description

4.0.3 The preserve_keys parameter was added.

Examples

Example #2635 - array_reverse() example

<?php

$input = array("php", 4.0, array("green", "red"));

$result = array_reverse($input);

$result_keyed = array_reverse($input, true);

?>

This makes both $result and $result_keyed have the same elements, but note the
difference between the keys. The printout of $result and $result_keyed will be:

Array

(

 [0] => Array

 (

 [0] => green

 [1] => red

)

 [1] => 4

 [2] => php

)

Array

(

 [2] => Array

 (

 [0] => green

 [1] => red

)

 [1] => 4

 [0] => php

)

See Also

• array_flip()

array_search

array_search -- Searches the array for a given value and returns the corresponding key if
successful

Description

mixed array_search (mixed $needle, array $haystack [, bool $strict])

Searches haystack for needle.

Parameters

needle

The searched value.

Note

If needle is a string, the comparison is done in a case-sensitive manner.

haystack

The array.

strict

If the third parameter strict is set to TRUE then the array_search() function will also
check the types of the needle in the haystack.

Return Values

Returns the key for needle if it is found in the array, FALSE otherwise.

If needle is found in haystack more than once, the first matching key is returned. To
return the keys for all matching values, use array_keys() with the optional search_value
parameter instead.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

ChangeLog

Version Description

4.2.0 Prior to PHP 4.2.0, array_search() returns
NULL on failure instead of FALSE.

Examples

Example #2636 - array_search() example

<?php

$array = array(0 => 'blue', 1 => 'red', 2 => 'green', 3 => 'red');

$key = array_search('green', $array); // $key = 2;

$key = array_search('red', $array); // $key = 1;

?>

See Also

• array_keys()
• array_values()
• array_key_exists()
• in_array()

array_shift

array_shift -- Shift an element off the beginning of array

Description

mixed array_shift (array &$array)

array_shift() shifts the first value of the array off and returns it, shortening the array by
one element and moving everything down. All numerical array keys will be modified to start
counting from zero while literal keys won't be touched.

Note

This function will reset() the array pointer after use.

Parameters

array

The input array.

Return Values

Returns the shifted value, or NULL if array is empty or is not an array.

Examples

Example #2637 - array_shift() example

<?php

$stack = array("orange", "banana", "apple", "raspberry");

$fruit = array_shift($stack);

print_r($stack);

?>

The above example will output:

Array

(

 [0] => banana

 [1] => apple

 [2] => raspberry

)

and orange will be assigned to $fruit.

See Also

• array_unshift()
• array_push()
• array_pop()

array_slice

array_slice -- Extract a slice of the array

Description

array array_slice (array $array, int $offset [, int $length [, bool $preserve_keys]])

array_slice() returns the sequence of elements from the array array as specified by the
offset and length parameters.

Parameters

array

The input array.

offset

If offset is non-negative, the sequence will start at that offset in the array. If offset
is negative, the sequence will start that far from the end of the array.

length

If length is given and is positive, then the sequence will have that many elements in it.
If length is given and is negative then the sequence will stop that many elements from
the end of the array. If it is omitted, then the sequence will have everything from
offset up until the end of the array.

preserve_keys

Note that array_slice() will reorder and reset the array indices by default. You can
change this behaviour by setting preserve_keys to TRUE.

Return Values

Returns the slice.

ChangeLog

Version Description

5.0.2 The optional preserve_keys parameter was
added.

Examples

Example #2638 - array_slice() examples

<?php

$input = array("a", "b", "c", "d", "e");

$output = array_slice($input, 2); // returns "c", "d", and "e"

$output = array_slice($input, -2, 1); // returns "d"

$output = array_slice($input, 0, 3); // returns "a", "b", and "c"

// note the differences in the array keys

print_r(array_slice($input, 2, -1));

print_r(array_slice($input, 2, -1, true));

?>

The above example will output:

Array

(

 [0] => c

 [1] => d

)

Array

(

 [2] => c

 [3] => d

)

See Also

• array_splice()
• unset()

array_splice

array_splice -- Remove a portion of the array and replace it with something else

Description

array array_splice (array &$input, int $offset [, int $length [, mixed $replacement]])

Removes the elements designated by offset and length from the input array, and
replaces them with the elements of the replacement array, if supplied.

Note that numeric keys in input are not preserved.

Note

If replacement is not an array, it will be typecast to one (i.e. (array) $parameter).
This may result in unexpected behavior when using an object replacement.

Parameters

input

The input array.

offset

If offset is positive then the start of removed portion is at that offset from the
beginning of the input array. If offset is negative then it starts that far from the end of
the input array.

length

If length is omitted, removes everything from offset to the end of the array. If length
is specified and is positive, then that many elements will be removed. If length is
specified and is negative then the end of the removed portion will be that many
elements from the end of the array. Tip: to remove everything from offset to the end
of the array when replacement is also specified, use count($input) for length.

replacement

If replacement array is specified, then the removed elements are replaced with
elements from this array. If offset and length are such that nothing is removed, then
the elements from the replacement array are inserted in the place specified by the
offset. Note that keys in replacement array are not preserved. If replacement is just
one element it is not necessary to put array() around it, unless the element is an array
itself.

Return Values

Returns the array consisting of the extracted elements.

Examples

Example #2639 - array_splice() examples

<?php

$input = array("red", "green", "blue", "yellow");

array_splice($input, 2);

// $input is now array("red", "green")

$input = array("red", "green", "blue", "yellow");

array_splice($input, 1, -1);

// $input is now array("red", "yellow")

$input = array("red", "green", "blue", "yellow");

array_splice($input, 1, count($input), "orange");

// $input is now array("red", "orange")

$input = array("red", "green", "blue", "yellow");

array_splice($input, -1, 1, array("black", "maroon"));

// $input is now array("red", "green",

// "blue", "black", "maroon")

$input = array("red", "green", "blue", "yellow");

array_splice($input, 3, 0, "purple");

// $input is now array("red", "green",

// "blue", "purple", "yellow");

?>

Example #2640 - array_splice() examples

The following statements change the values of $input the same way:

<?php

array_push($input, $x, $y);

array_splice($input, count($input), 0, array($x, $y));

array_pop($input);

array_splice($input, -1);

array_shift($input);

array_splice($input, 0, 1);

array_unshift($input, $x, $y);

array_splice($input, 0, 0, array($x, $y));

$input[$x] = $y; // for arrays where key equals offset

array_splice($input, $x, 1, $y);

?>

See Also

• array_slice()
• unset()
• array_merge()

array_sum

array_sum -- Calculate the sum of values in an array

Description

number array_sum (array $array)

array_sum() returns the sum of values in an array.

Parameters

array

The input array.

Return Values

Returns the sum of values as an integer or float.

ChangeLog

Version Description

4.2.1 PHP versions prior to 4.2.1 modified the
passed array itself and converted strings to
numbers (which most of the time converted
them to zero, depending on their value).

Examples

Example #2641 - array_sum() examples

<?php

$a = array(2, 4, 6, 8);

echo "sum(a) = " . array_sum($a) . "\n";

$b = array("a" => 1.2, "b" => 2.3, "c" => 3.4);

echo "sum(b) = " . array_sum($b) . "\n";

?>

The above example will output:

sum(a) = 20

sum(b) = 6.9

array_udiff_assoc

array_udiff_assoc -- Computes the difference of arrays with additional index check,
compares data by a callback function

Description

array array_udiff_assoc (array $array1, array $array2 [, array $...], callback $
data_compare_func)

Computes the difference of arrays with additional index check, compares data by a
callback function.

Note

Please note that this function only checks one dimension of a n-dimensional array. Of
course you can check deeper dimensions by using, for example,
array_udiff_assoc($array1[0], $array2[0], "some_comparison_func");.

Parameters

array1

The first array.

array2

The second array.

data_compare_func

The callback comparison function. The user supplied callback function is used for
comparison. It must return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the
second.

Return Values

array_udiff_assoc() returns an array containing all the values from array1 that are not
present in any of the other arguments. Note that the keys are used in the comparison
unlike array_diff() and array_udiff(). The comparison of arrays' data is performed by using
an user-supplied callback. In this aspect the behaviour is opposite to the behaviour of
array_diff_assoc() which uses internal function for comparison.

Examples

Example #2642 - array_udiff_assoc() example

<?php

class cr {

 private $priv_member;

 function cr($val)

 {

 $this->priv_member = $val;

 }

 static function comp_func_cr($a, $b)

 {

 if ($a->priv_member === $b->priv_member) return 0;

 return ($a->priv_member > $b->priv_member)? 1:-1;

 }

}

$a = array("0.1" => new cr(9), "0.5" => new cr(12), 0 => new cr(23), 1=> new
cr(4), 2 => new cr(-15),);

$b = array("0.2" => new cr(9), "0.5" => new cr(22), 0 => new cr(3), 1=> new
cr(4), 2 => new cr(-15),);

$result = array_udiff_assoc($a, $b, array("cr", "comp_func_cr"));

print_r($result);

?>

The above example will output:

Array

(

 [0.1] => cr Object

 (

 [priv_member:private] => 9

)

 [0.5] => cr Object

 (

 [priv_member:private] => 12

)

 [0] => cr Object

 (

 [priv_member:private] => 23

)

)

In our example above you see the "1" => new cr(4) pair is present in both arrays and thus
it is not in the ouput from the function.

See Also

• array_diff()

• array_diff_assoc()
• array_diff_uassoc()
• array_udiff()
• array_udiff_uassoc()
• array_intersect()
• array_intersect_assoc()
• array_uintersect()
• array_uintersect_assoc()
• array_uintersect_uassoc()

array_udiff_uassoc

array_udiff_uassoc -- Computes the difference of arrays with additional index check,
compares data and indexes by a callback function

Description

array array_udiff_uassoc (array $array1, array $array2 [, array $...], callback $
data_compare_func, callback $key_compare_func)

Computes the difference of arrays with additional index check, compares data and indexes
by a callback function.

Note that the keys are used in the comparison unlike array_diff() and array_udiff().

Parameters

array1

The first array.

array2

The second array.

data_compare_func

The callback comparison function. The user supplied callback function is used for
comparison. It must return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the
second. The comparison of arrays' data is performed by using an user-supplied
callback : data_compare_func. In this aspect the behaviour is opposite to the behaviour
of array_diff_assoc() which uses internal function for comparison.

key_compare_func

The comparison of keys (indices) is done also by the callback function
key_compare_func. This behaviour is unlike what array_udiff_assoc() does, since the
latter compares the indices by using an internal function.

Return Values

Returns an array containing all the values from array1 that are not present in any of the
other arguments.

Examples

Example #2643 - array_udiff_uassoc() example

<?php

class cr {

 private $priv_member;

 function cr($val)

 {

 $this->priv_member = $val;

 }

 static function comp_func_cr($a, $b)

 {

 if ($a->priv_member === $b->priv_member) return 0;

 return ($a->priv_member > $b->priv_member)? 1:-1;

 }

 static function comp_func_key($a, $b)

 {

 if ($a === $b) return 0;

 return ($a > $b)? 1:-1;

 }

}

$a = array("0.1" => new cr(9), "0.5" => new cr(12), 0 => new cr(23), 1=> new
cr(4), 2 => new cr(-15),);

$b = array("0.2" => new cr(9), "0.5" => new cr(22), 0 => new cr(3), 1=> new
cr(4), 2 => new cr(-15),);

$result = array_udiff_uassoc($a, $b, array("cr", "comp_func_cr"),
array("cr", "comp_func_key"));

print_r($result);

?>

The above example will output:

Array

(

 [0.1] => cr Object

 (

 [priv_member:private] => 9

)

 [0.5] => cr Object

 (

 [priv_member:private] => 12

)

 [0] => cr Object

 (

 [priv_member:private] => 23

)

)

In our example above you see the "1" => new cr(4) pair is present in both arrays and thus
it is not in the ouput from the function. Keep in mind that you have to supply 2 callback
functions.

Notes

Note

Please note that this function only checks one dimension of a n-dimensional array. Of
course you can check deeper dimensions by using, for example,
array_udiff_uassoc($array1[0], $array2[0], "data_compare_func",
"key_compare_func");.

See Also

• array_diff()
• array_diff_assoc()
• array_udiff()
• array_udiff_assoc()
• array_intersect()
• array_intersect_assoc()
• array_uintersect()
• array_uintersect_assoc()
• array_uintersect_uassoc()

array_udiff

array_udiff -- Computes the difference of arrays by using a callback function for data
comparison

Description

array array_udiff (array $array1, array $array2 [, array $...], callback $
data_compare_func)

Computes the difference of arrays by using a callback function for data comparison. This is
unlike array_diff() which uses an internal function for comparing the data.

Parameters

array1

The first array.

array2

The second array.

data_compare_func

The callback comparison function. The user supplied callback function is used for
comparison. It must return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the
second.

Return Values

Returns an array containing all the values of array1 that are not present in any of the
other arguments.

Examples

Example #2644 - array_udiff() example

<?php

class cr {

 private $priv_member;

 function cr($val)

 {

 $this->priv_member = $val;

 }

 static function comp_func_cr($a, $b)

 {

 if ($a->priv_member === $b->priv_member) return 0;

 return ($a->priv_member > $b->priv_member)? 1:-1;

 }

}

$a = array("0.1" => new cr(9), "0.5" => new cr(12), 0 => new cr(23), 1=> new
cr(4), 2 => new cr(-15),);

$b = array("0.2" => new cr(9), "0.5" => new cr(22), 0 => new cr(3), 1=> new
cr(4), 2 => new cr(-15),);

$result = array_udiff($a, $b, array("cr", "comp_func_cr"));

print_r($result);

?>

The above example will output:

Array

(

 [0.5] => cr Object

 (

 [priv_member:private] => 12

)

 [0] => cr Object

 (

 [priv_member:private] => 23

)

)

Notes

Note

Please note that this function only checks one dimension of a n-dimensional array. Of
course you can check deeper dimensions by using array_udiff($array1[0], $array2[0],
"data_compare_func");.

See Also

• array_diff()
• array_diff_assoc()
• array_diff_uassoc()
• array_udiff_assoc()
• array_udiff_uassoc()
• array_intersect()
• array_intersect_assoc()
• array_uintersect()
• array_uintersect_assoc()
• array_uintersect_uassoc()

array_uintersect_assoc

array_uintersect_assoc -- Computes the intersection of arrays with additional index check,
compares data by a callback function

Description

array array_uintersect_assoc (array $array1, array $array2 [, array $...], callback $
data_compare_func)

Computes the intersection of arrays with additional index check, compares data by a
callback function.

Note that the keys are used in the comparison unlike in array_uintersect(). The data is
compared by using a callback function.

Parameters

array1

The first array.

array2

The second array.

data_compare_func

For comparison is used the user supplied callback function. It must return an integer
less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second.

Return Values

Returns an array containing all the values of array1 that are present in all the arguments.

Examples

Example #2645 - array_uintersect_assoc() example

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "GREEN", "B" => "brown", "yellow", "red");

print_r(array_uintersect_assoc($array1, $array2, "strcasecmp"));

?>

The above example will output:

Array

(

 [a] => green

)

See Also

• array_uintersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_uintersect_uassoc()

array_uintersect_uassoc

array_uintersect_uassoc -- Computes the intersection of arrays with additional index
check, compares data and indexes by a callback functions

Description

array array_uintersect_uassoc (array $array1, array $array2 [, array $...], callback $
data_compare_func, callback $key_compare_func)

Computes the intersection of arrays with additional index check, compares data and
indexes by a callback functions Note that the keys are used in the comparison unlike in
array_uintersect(). Both the data and the indexes are compared by using separate
callback functions.

Parameters

array1

The first array.

array2

The second array.

data_compare_func

For comparison is used the user supplied callback function. It must return an integer
less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second.

key_compare_func

Key comparison callback function.

Return Values

Returns an array containing all the values of array1 that are present in all the arguments.

Examples

Example #2646 - array_uintersect_uassoc() example

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "GREEN", "B" => "brown", "yellow", "red");

print_r(array_uintersect_uassoc($array1, $array2, "strcasecmp",
"strcasecmp"));

?>

The above example will output:

Array

(

 [a] => green

 [b] => brown

)

See Also

• array_uintersect()
• array_intersect_assoc()
• array_intersect_uassoc()
• array_uintersect_assoc()

array_uintersect

array_uintersect -- Computes the intersection of arrays, compares data by a callback
function

Description

array array_uintersect (array $array1, array $array2 [, array $...], callback $
data_compare_func)

Computes the intersection of arrays, compares data by a callback function.

Parameters

array1

The first array.

array2

The second array.

data_compare_func

The callback comparison function. The user supplied callback function is used for
comparison. It must return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the
second.

Return Values

Returns an array containing all the values of array1 that are present in all the arguments.

Examples

Example #2647 - array_uintersect() example

<?php

$array1 = array("a" => "green", "b" => "brown", "c" => "blue", "red");

$array2 = array("a" => "GREEN", "B" => "brown", "yellow", "red");

print_r(array_uintersect($array1, $array2, "strcasecmp"));

?>

The above example will output:

Array

(

 [a] => green

 [b] => brown

 [0] => red

)

See Also

• array_intersect()
• array_intersect_assoc()
• array_uintersect_assoc()
• array_uintersect_uassoc()

array_unique

array_unique -- Removes duplicate values from an array

Description

array array_unique (array $array)

Takes an input array and returns a new array without duplicate values.

Note that keys are preserved. array_unique() sorts the values treated as string at first, then
will keep the first key encountered for every value, and ignore all following keys. It does
not mean that the key of the first related value from the unsorted array will be kept.

Note

Two elements are considered equal if and only if (string) $elem1 === (string) $elem2.
In words: when the string representation is the same.

The first element will be used.

Parameters

array

The input array.

Return Values

Returns the filtered array.

Examples

Example #2648 - array_unique() example

<?php

$input = array("a" => "green", "red", "b" => "green", "blue", "red");

$result = array_unique($input);

print_r($result);

?>

The above example will output:

Array

(

 [a] => green

 [0] => red

 [1] => blue

)

Example #2649 - array_unique() and types

<?php

$input = array(4, "4", "3", 4, 3, "3");

$result = array_unique($input);

var_dump($result);

?>

The above example will output:

array(2) {

 [0] => int(4)

 [2] => string(1) "3"

}

array_unshift

array_unshift -- Prepend one or more elements to the beginning of an array

Description

int array_unshift (array &$array, mixed $var [, mixed $...])

array_unshift() prepends passed elements to the front of the array. Note that the list of
elements is prepended as a whole, so that the prepended elements stay in the same
order. All numerical array keys will be modified to start counting from zero while literal keys
won't be touched.

Parameters

array

The input array.

var

The prepended variable.

Return Values

Returns the new number of elements in the array.

Examples

Example #2650 - array_unshift() example

<?php

$queue = array("orange", "banana");

array_unshift($queue, "apple", "raspberry");

print_r($queue);

?>

The above example will output:

Array

(

 [0] => apple

 [1] => raspberry

 [2] => orange

 [3] => banana

)

See Also

• array_shift()
• array_push()
• array_pop()

array_values

array_values -- Return all the values of an array

Description

array array_values (array $input)

array_values() returns all the values from the input array and indexes numerically the
array.

Parameters

input

The array.

Return Values

Returns an indexed array of values.

Examples

Example #2651 - array_values() example

<?php

$array = array("size" => "XL", "color" => "gold");

print_r(array_values($array));

?>

The above example will output:

Array

(

 [0] => XL

 [1] => gold

)

See Also

• array_keys()

array_walk_recursive

array_walk_recursive -- Apply a user function recursively to every member of an array

Description

bool array_walk_recursive (array &$input, callback $funcname [, mixed $userdata])

Applies the user-defined function funcname to each element of the input array. This
function will recur into deeper arrays.

Parameters

input

The input array.

funcname

Typically, funcname takes on two parameters. The input parameter's value being the
first, and the key/index second.

Note

If funcname needs to be working with the actual values of the array, specify the first
parameter of funcname as a reference. Then, any changes made to those
elements will be made in the original array itself.

userdata

If the optional userdata parameter is supplied, it will be passed as the third parameter
to the callback funcname.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2652 - array_walk_recursive() example

<?php

$sweet = array('a' => 'apple', 'b' => 'banana');

$fruits = array('sweet' => $sweet, 'sour' => 'lemon');

function test_print($item, $key)

{

 echo "$key holds $item\n";

}

array_walk_recursive($fruits, 'test_print');

?>

The above example will output:

a holds apple

b holds banana

sour holds lemon

You may notice that the key 'sweet' is never displayed. Any key that holds an array will
not be passed to the function.

See Also

• array_walk()
• information about the callback type

array_walk

array_walk -- Apply a user function to every member of an array

Description

bool array_walk (array &$array, callback $funcname [, mixed $userdata])

Applies the user-defined function funcname to each element of the array array.

array_walk() is not affected by the internal array pointer of array. array_walk() will walk
through the entire array regardless of pointer position.

Parameters

array

The input array.

funcname

Typically, funcname takes on two parameters. The array parameter's value being the
first, and the key/index second.

Note

If funcname needs to be working with the actual values of the array, specify the first
parameter of funcname as a reference. Then, any changes made to those
elements will be made in the original array itself.

Users may not change the array itself from the callback function. e.g. Add/delete
elements, unset elements, etc. If the array that array_walk() is applied to is changed,
the behavior of this function is undefined, and unpredictable.

userdata

If the optional userdata parameter is supplied, it will be passed as the third parameter
to the callback funcname.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

If function funcname requires more parameters than given to it, an error of level
E_WARNING will be generated each time array_walk() calls funcname. These warnings
may be suppressed by prepending the PHP error operator @ to the array_walk() call, or by
using error_reporting().

ChangeLog

Version Description

4.0.0 Passing the key and userdata to funcname
was added.

Examples

Example #2653 - array_walk() example

<?php

$fruits = array("d" => "lemon", "a" => "orange", "b" => "banana", "c" =>
"apple");

function test_alter(&$item1, $key, $prefix)

{

 $item1 = "$prefix: $item1";

}

function test_print($item2, $key)

{

 echo "$key. $item2
\n";

}

echo "Before ...:\n";

array_walk($fruits, 'test_print');

array_walk($fruits, 'test_alter', 'fruit');

echo "... and after:\n";

array_walk($fruits, 'test_print');

?>

The above example will output:

Before ...:

d. lemon

a. orange

b. banana

c. apple

... and after:

d. fruit: lemon

a. fruit: orange

b. fruit: banana

c. fruit: apple

See Also

• array_walk_recursive()
• create_function()
• list()
• each()
• call_user_func_array()
• array_map()
• information about the callback type
• foreach

array

array -- Create an array

Description

array array ([mixed $...])

Creates an array. Read the section on the array type for more information on what an
array is.

Parameters

...

Syntax "index => values", separated by commas, define index and values. index may
be of type string or integer. When index is omitted, an integer index is automatically
generated, starting at 0. If index is an integer, next generated index will be the biggest
integer index + 1. Note that when two identical index are defined, the last overwrite the
first. Having a trailing comma after the last defined array entry, while unusual, is a valid
syntax.

Return Values

Returns an array of the parameters. The parameters can be given an index with the =>
operator. Read the section on the array type for more information on what an array is.

Examples

The following example demonstrates how to create a two-dimensional array, how to
specify keys for associative arrays, and how to skip-and-continue numeric indices in
normal arrays.

Example #2654 - array() example

<?php

$fruits = array (

 "fruits" => array("a" => "orange", "b" => "banana", "c" => "apple"),

 "numbers" => array(1, 2, 3, 4, 5, 6),

 "holes" => array("first", 5 => "second", "third")

);

?>

Example #2655 - Automatic index with array()

<?php

$array = array(1, 1, 1, 1, 1, 8 => 1, 4 => 1, 19, 3 => 13);

print_r($array);

?>

The above example will output:

Array

(

 [0] => 1

 [1] => 1

 [2] => 1

 [3] => 13

 [4] => 1

 [8] => 1

 [9] => 19

)

Note that index '3' is defined twice, and keep its final value of 13. Index 4 is defined after
index 8, and next generated index (value 19) is 9, since biggest index was 8.

This example creates a 1-based array.

Example #2656 - 1-based index with array()

<?php

$firstquarter = array(1 => 'January', 'February', 'March');

print_r($firstquarter);

?>

The above example will output:

Array

(

 [1] => January

 [2] => February

 [3] => March

)

As in Perl, you can access a value from the array inside double quotes. However, with
PHP you'll need to enclose your array between curly braces.

Example #2657 - Accessing an array inside double quotes

<?php

$foo = array('bar' => 'baz');

echo "Hello {$foo['bar']}!"; // Hello baz!

?>

Notes

Note

array() is a language construct used to represent literal arrays, and not a regular
function.

See Also

• array_pad()
• list()
• count()
• range()
• foreach
• The array type

arsort

arsort -- Sort an array in reverse order and maintain index association

Description

bool arsort (array &$array [, int $sort_flags])

This function sorts an array such that array indices maintain their correlation with the array
elements they are associated with.

This is used mainly when sorting associative arrays where the actual element order is
significant.

Parameters

array

The input array.

sort_flags

You may modify the behavior of the sort using the optional parameter sort_flags, for
details see sort().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2658 - arsort() example

<?php

$fruits = array("d" => "lemon", "a" => "orange", "b" => "banana", "c" =>
"apple");

arsort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

?>

The above example will output:

a = orange

d = lemon

b = banana

c = apple

The fruits have been sorted in reverse alphabetical order, and the index associated
with each element has been maintained.

See Also

• asort()
• rsort()
• ksort()
• sort()

asort

asort -- Sort an array and maintain index association

Description

bool asort (array &$array [, int $sort_flags])

This function sorts an array such that array indices maintain their correlation with the array
elements they are associated with. This is used mainly when sorting associative arrays
where the actual element order is significant.

Parameters

array

The input array.

sort_flags

You may modify the behavior of the sort using the optional parameter sort_flags, for
details see sort().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2659 - asort() example

<?php

$fruits = array("d" => "lemon", "a" => "orange", "b" => "banana", "c" =>
"apple");

asort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

?>

The above example will output:

c = apple

b = banana

d = lemon

a = orange

The fruits have been sorted in alphabetical order, and the index associated with each

element has been maintained.

See Also

• arsort()
• sort()
• ksort()
• rsort()

compact

compact -- Create array containing variables and their values

Description

array compact (mixed $varname [, mixed $...])

Creates an array containing variables and their values.

For each of these, compact() looks for a variable with that name in the current symbol
table and adds it to the output array such that the variable name becomes the key and the
contents of the variable become the value for that key. In short, it does the opposite of
extract().

Any strings that are not set will simply be skipped.

Parameters

varname

compact() takes a variable number of parameters. Each parameter can be either a
string containing the name of the variable, or an array of variable names. The array
can contain other arrays of variable names inside it; compact() handles it recursively.

Return Values

Returns the output array with all the variables added to it.

Examples

Example #2660 - compact() example

<?php

$city = "San Francisco";

$state = "CA";

$event = "SIGGRAPH";

$location_vars = array("city", "state");

$result = compact("event", "nothing_here", $location_vars);

print_r($result);

?>

The above example will output:

Array

(

 [event] => SIGGRAPH

 [city] => San Francisco

 [state] => CA

)

Notes

Note

Gotcha

Because variable variables may not be used with PHP's Superglobal arrays within
functions, the Superglobal arrays may not be passed into compact().

See Also

• extract()

count

count -- Count elements in an array, or properties in an object

Description

int count (mixed $var [, int $mode])

Counts elements in an array, or properties in an object.

For objects, if you have SPL installed, you can hook into count() by implementing interface
Countable. The interface has exactly one method, count(), which returns the return value
for the count() function.

Please see the Array section of the manual for a detailed explanation of how arrays are
implemented and used in PHP.

Parameters

var

The array.

mode

If the optional mode parameter is set to COUNT_RECURSIVE (or 1), count() will
recursively count the array. This is particularly useful for counting all the elements of a
multidimensional array. The default value for mode is 0. count() does not detect infinite
recursion.

Return Values

Returns the number of elements in var, which is typically an array, since anything else will
have one element.

If var is not an array or an object with implemented Countable interface, 1 will be returned.
There is one exception, if var is NULL, 0 will be returned.

Caution

count() may return 0 for a variable that isn't set, but it may also return 0 for a variable
that has been initialized with an empty array. Use isset() to test if a variable is set.

ChangeLog

Version Description

4.2.0 The optional mode parameter was added.

Examples

Example #2661 - count() example

<?php

$a[0] = 1;

$a[1] = 3;

$a[2] = 5;

$result = count($a);

// $result == 3

$b[0] = 7;

$b[5] = 9;

$b[10] = 11;

$result = count($b);

// $result == 3

$result = count(null);

// $result == 0

$result = count(false);

// $result == 1

?>

Example #2662 - Recursive count() example

<?php

$food = array('fruits' => array('orange', 'banana', 'apple'),

 'veggie' => array('carrot', 'collard', 'pea'));

// recursive count

echo count($food, COUNT_RECURSIVE); // output 8

// normal count

echo count($food); // output 2

?>

See Also

• is_array()
• isset()
• strlen()

current

current -- Return the current element in an array

Description

mixed current (array &$array)

Every array has an internal pointer to its "current" element, which is initialized to the first
element inserted into the array.

Parameters

array

The array.

Return Values

The current() function simply returns the value of the array element that's currently being
pointed to by the internal pointer. It does not move the pointer in any way. If the internal
pointer points beyond the end of the elements list or the array is empty, current() returns
FALSE.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #2663 - Example use of current() and friends

<?php

$transport = array('foot', 'bike', 'car', 'plane');

$mode = current($transport); // $mode = 'foot';

$mode = next($transport); // $mode = 'bike';

$mode = current($transport); // $mode = 'bike';

$mode = prev($transport); // $mode = 'foot';

$mode = end($transport); // $mode = 'plane';

$mode = current($transport); // $mode = 'plane';

$arr = array();

var_dump(current($arr)); // bool(false)

$arr = array(array());

var_dump(current($arr)); // array(0) { }

?>

Notes

Note

You won't be able to distinguish the end of an array from a boolean FALSE element.
To properly traverse an array which may contain FALSE elements, see the each()
function.

See Also

• end()
• key()
• each()
• prev()
• reset()
• next()

each

each -- Return the current key and value pair from an array and advance the array cursor

Description

array each (array &$array)

Return the current key and value pair from an array and advance the array cursor.

After each() has executed, the array cursor will be left on the next element of the array, or
past the last element if it hits the end of the array. You have to use reset() if you want to
traverse the array again using each.

Parameters

array

The input array.

Return Values

Returns the current key and value pair from the array array. This pair is returned in a
four-element array, with the keys 0, 1, key, and value. Elements 0 and key contain the key
name of the array element, and 1 and value contain the data.

If the internal pointer for the array points past the end of the array contents, each() returns
FALSE.

Examples

Example #2664 - each() examples

<?php

$foo = array("bob", "fred", "jussi", "jouni", "egon", "marliese");

$bar = each($foo);

print_r($bar);

?>

$bar now contains the following key/value pairs:

Array

(

 [1] => bob

 [value] => bob

 [0] => 0

 [key] => 0

)

<?php

$foo = array("Robert" => "Bob", "Seppo" => "Sepi");

$bar = each($foo);

print_r($bar);

?>

$bar now contains the following key/value pairs:

Array

(

 [1] => Bob

 [value] => Bob

 [0] => Robert

 [key] => Robert

)

each() is typically used in conjunction with list() to traverse an array, here's an example:

Example #2665 - Traversing an array with each()

<?php

$fruit = array('a' => 'apple', 'b' => 'banana', 'c' => 'cranberry');

reset($fruit);

while (list($key, $val) = each($fruit)) {

 echo "$key => $val\n";

}

?>

The above example will output:

a => apple

b => banana

c => cranberry

Caution

Because assigning an array to another variable resets the original arrays pointer, our
example above would cause an endless loop had we assigned $fruit to another
variable inside the loop.

See Also

• key()
• list()
• current()
• reset()
• next()
• prev()
• foreach

end

end -- Set the internal pointer of an array to its last element

Description

mixed end (array &$array)

end() advances array 's internal pointer to the last element, and returns its value.

Parameters

array

The array.

Return Values

Returns the value of the last element.

Examples

Example #2666 - end() example

<?php

$fruits = array('apple', 'banana', 'cranberry');

echo end($fruits); // cranberry

?>

See Also

• current()
• each()
• prev()
• reset()
• next()

extract

extract -- Import variables into the current symbol table from an array

Description

int extract (array $var_array [, int $extract_type [, string $prefix]])

Import variables from an array into the current symbol table.

extract() checks each key to see whether it has a valid variable name. It also checks for
collisions with existing variables in the symbol table.

Parameters

var_array

An associative array. This function treats keys as variable names and values as
variable values. For each key/value pair it will create a variable in the current symbol
table, subject to extract_type and prefix parameters. You must use an associative
array, a numerically indexed array will not produce results unless you use
EXTR_PREFIX_ALL or EXTR_PREFIX_INVALID.

extract_type

The way invalid/numeric keys and collisions are treated is determined by the
extract_type. It can be one of the following values:
EXTR_OVERWRITE

If there is a collision, overwrite the existing variable.

EXTR_SKIP
If there is a collision, don't overwrite the existing variable.

EXTR_PREFIX_SAME
If there is a collision, prefix the variable name with prefix.

EXTR_PREFIX_ALL
Prefix all variable names with prefix.

EXTR_PREFIX_INVALID
Only prefix invalid/numeric variable names with prefix.

EXTR_IF_EXISTS
Only overwrite the variable if it already exists in the current symbol table, otherwise
do nothing. This is useful for defining a list of valid variables and then extracting
only those variables you have defined out of $_REQUEST, for example.

EXTR_PREFIX_IF_EXISTS
Only create prefixed variable names if the non-prefixed version of the same
variable exists in the current symbol table.

EXTR_REFS
Extracts variables as references. This effectively means that the values of the
imported variables are still referencing the values of the var_array parameter. You
can use this flag on its own or combine it with any other flag by OR'ing the
extract_type.

If extract_type is not specified, it is assumed to be EXTR_OVERWRITE.

prefix

Note that prefix is only required if extract_type is EXTR_PREFIX_SAME,
EXTR_PREFIX_ALL, EXTR_PREFIX_INVALID or EXTR_PREFIX_IF_EXISTS. If the
prefixed result is not a valid variable name, it is not imported into the symbol table.
Prefixes are automatically separated from the array key by an underscore character.

Return Values

Returns the number of variables successfully imported into the symbol table.

ChangeLog

Version Description

4.3.0 EXTR_REFS was added.

4.2.0 EXTR_IF_EXISTS and
EXTR_PREFIX_IF_EXISTS were added.

4.0.5 This function now returns the number of
variables extracted.
EXTR_PREFIX_INVALID was added.
EXTR_PREFIX_ALL includes numeric
variables as well.

Examples

Example #2667 - extract() example

A possible use for extract() is to import into the symbol table variables contained in an
associative array returned by wddx_deserialize().

<?php

/* Suppose that $var_array is an array returned from

 wddx_deserialize */

$size = "large";

$var_array = array("color" => "blue",

 "size" => "medium",

 "shape" => "sphere");

extract($var_array, EXTR_PREFIX_SAME, "wddx");

echo "$color, $size, $shape, $wddx_size\n";

?>

The above example will output:

blue, large, sphere, medium

The $size wasn't overwritten, because we specified EXTR_PREFIX_SAME, which
resulted in $wddx_size being created. If EXTR_SKIP was specified, then $wddx_size
wouldn't even have been created. EXTR_OVERWRITE would have caused $size to
have value "medium", and EXTR_PREFIX_ALL would result in new variables being
named $wddx_color, $wddx_size, and $wddx_shape.

Notes

Warning

Do not use extract() on untrusted data, like user-input ($_GET, ...). If you do, for
example, if you want to run old code that relies on register_globals temporarily, make
sure you use one of the non-overwriting extract_type values such as EXTR_SKIP
and be aware that you should extract in the same order that's defined in
variables_order within the php.ini.

See Also

• compact()

in_array

in_array -- Checks if a value exists in an array

Description

bool in_array (mixed $needle, array $haystack [, bool $strict])

Searches haystack for needle.

Parameters

needle

The searched value.

Note

If needle is a string, the comparison is done in a case-sensitive manner.

haystack

The array.

strict

If the third parameter strict is set to TRUE then the in_array() function will also check
the types of the needle in the haystack.

Return Values

Returns TRUE if needle is found in the array, FALSE otherwise.

ChangeLog

Version Description

4.2.0 needle may now be an array.

Examples

Example #2668 - in_array() example

<?php

$os = array("Mac", "NT", "Irix", "Linux");

if (in_array("Irix", $os)) {

 echo "Got Irix";

}

if (in_array("mac", $os)) {

 echo "Got mac";

}

?>

The second condition fails because in_array() is case-sensitive, so the program above
will display:

Got Irix

Example #2669 - in_array() with strict example

<?php

$a = array('1.10', 12.4, 1.13);

if (in_array('12.4', $a, true)) {

 echo "'12.4' found with strict check\n";

}

if (in_array(1.13, $a, true)) {

 echo "1.13 found with strict check\n";

}

?>

The above example will output:

1.13 found with strict check

Example #2670 - in_array() with an array as needle

<?php

$a = array(array('p', 'h'), array('p', 'r'), 'o');

if (in_array(array('p', 'h'), $a)) {

 echo "'ph' was found\n";

}

if (in_array(array('f', 'i'), $a)) {

 echo "'fi' was found\n";

}

if (in_array('o', $a)) {

 echo "'o' was found\n";

}

?>

The above example will output:

'ph' was found

 'o' was found

See Also

• array_search()
• isset()
• array_key_exists()

key

key -- Fetch a key from an array

Description

mixed key (array &$array)

key() returns the index element of the current array position.

Parameters

array

The array.

Return Values

Returns the index.

Examples

Example #2671 - key() example

<?php

$array = array(

 'fruit1' => 'apple',

 'fruit2' => 'orange',

 'fruit3' => 'grape',

 'fruit4' => 'apple',

 'fruit5' => 'apple');

// this cycle echoes all associative array

// key where value equals "apple"

while ($fruit_name = current($array)) {

 if ($fruit_name == 'apple') {

 echo key($array).'
';

 }

 next($array);

}

?>

The above example will output:

fruit1

fruit4

fruit5

See Also

• current()
• next()

krsort

krsort -- Sort an array by key in reverse order

Description

bool krsort (array &$array [, int $sort_flags])

Sorts an array by key in reverse order, maintaining key to data correlations. This is useful
mainly for associative arrays.

Parameters

array

The input array.

sort_flags

You may modify the behavior of the sort using the optional parameter sort_flags, for
details see sort().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2672 - krsort() example

<?php

$fruits = array("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

krsort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

?>

The above example will output:

d = lemon

c = apple

b = banana

a = orange

See Also

• asort()
• arsort()
• ksort()
• sort()
• natsort()
• rsort()

ksort

ksort -- Sort an array by key

Description

bool ksort (array &$array [, int $sort_flags])

Sorts an array by key, maintaining key to data correlations. This is useful mainly for
associative arrays.

Parameters

array

The input array.

sort_flags

You may modify the behavior of the sort using the optional parameter sort_flags, for
details see sort().

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.0.0 The optional sort_flags parameter was
added.

Examples

Example #2673 - ksort() example

<?php

$fruits = array("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

ksort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

?>

The above example will output:

a = orange

b = banana

c = apple

d = lemon

See Also

• asort()
• arsort()
• krsort()
• uksort()
• sort()
• natsort()
• rsort()

list

list -- Assign variables as if they were an array

Description

void list (mixed $varname [, mixed $...])

Like array(), this is not really a function, but a language construct. list() is used to assign a
list of variables in one operation.

Parameters

varname

A variable.

Return Values

No value is returned.

Examples

Example #2674 - list() examples

<?php

$info = array('coffee', 'brown', 'caffeine');

// Listing all the variables

list($drink, $color, $power) = $info;

echo "$drink is $color and $power makes it special.\n";

// Listing some of them

list($drink, , $power) = $info;

echo "$drink has $power.\n";

// Or let's skip to only the third one

list(, , $power) = $info;

echo "I need $power!\n";

// list() doesn't work with strings

list($bar) = "abcde";

var_dump($bar); // NULL

?>

Example #2675 - An example use of list()

<table>

<tr>

 <th>Employee name</th>

 <th>Salary</th>

</tr>

<?php

$result = mysql_query("SELECT id, name, salary FROM employees", $conn);

while (list($id, $name, $salary) = mysql_fetch_row($result)) {

 echo " <tr>\n" .

 " <td>$name</td>\n" .

 " <td>$salary</td>\n" .

 " </tr>\n";

}

?>

</table>

Example #2676 - Using nested list()

<?php

list($a, list($b, $c)) = array(1, array(2, 3));

var_dump($a, $b, $c);

?>

int(1)

int(2)

int(3)

Example #2677 - Using list() with array indices

<?php

$info = array('coffee', 'brown', 'caffeine');

list($a[0], $a[1], $a[2]) = $info;

var_dump($a);

?>

Gives the following output (note the order of the elements compared in which order

they were written in the list() syntax):

array(3) {

 [2]=>

 string(8) "caffeine"

 [1]=>

 string(5) "brown"

 [0]=>

 string(6) "coffee"

}

Notes

Warning

list() assigns the values starting with the right-most parameter. If you are using plain
variables, you don't have to worry about this. But if you are using arrays with indices
you usually expect the order of the indices in the array the same you wrote in the list()
from left to right; which it isn't. It's assigned in the reverse order.

Note

list() only works on numerical arrays and assumes the numerical indices start at 0.

See Also

• each()
• array()
• extract()

natcasesort

natcasesort -- Sort an array using a case insensitive "natural order" algorithm

Description

bool natcasesort (array &$array)

natcasesort() is a case insensitive version of natsort().

This function implements a sort algorithm that orders alphanumeric strings in the way a
human being would while maintaining key/value associations. This is described as a
"natural ordering".

Parameters

array

The input array.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2678 - natcasesort() example

<?php

$array1 = $array2 = array('IMG0.png', 'img12.png', 'img10.png', 'img2.png',
'img1.png', 'IMG3.png');

sort($array1);

echo "Standard sorting\n";

print_r($array1);

natcasesort($array2);

echo "\nNatural order sorting (case-insensitive)\n";

print_r($array2);

?>

The above example will output:

Standard sorting

Array

(

 [0] => IMG0.png

 [1] => IMG3.png

 [2] => img1.png

 [3] => img10.png

 [4] => img12.png

 [5] => img2.png

)

Natural order sorting (case-insensitive)

Array

(

 [0] => IMG0.png

 [4] => img1.png

 [3] => img2.png

 [5] => IMG3.png

 [2] => img10.png

 [1] => img12.png

)

For more information see: Martin Pool's » Natural Order String Comparison page.

See Also

• sort()
• natsort()
• strnatcmp()
• strnatcasecmp()

http://sourcefrog.net/projects/natsort/

natsort

natsort -- Sort an array using a "natural order" algorithm

Description

bool natsort (array &$array)

This function implements a sort algorithm that orders alphanumeric strings in the way a
human being would while maintaining key/value associations. This is described as a
"natural ordering". An example of the difference between this algorithm and the regular
computer string sorting algorithms (used in sort()) can be seen in the example below.

Parameters

array

The input array.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2679 - natsort() example

<?php

$array1 = $array2 = array("img12.png", "img10.png", "img2.png", "img1.png");

sort($array1);

echo "Standard sorting\n";

print_r($array1);

natsort($array2);

echo "\nNatural order sorting\n";

print_r($array2);

?>

The above example will output:

Standard sorting

Array

(

 [0] => img1.png

 [1] => img10.png

 [2] => img12.png

 [3] => img2.png

)

Natural order sorting

Array

(

 [3] => img1.png

 [2] => img2.png

 [1] => img10.png

 [0] => img12.png

)

For more information see: Martin Pool's » Natural Order String Comparison page.

See Also

• natcasesort()
• strnatcmp()
• strnatcasecmp()

http://sourcefrog.net/projects/natsort/

next

next -- Advance the internal array pointer of an array

Description

mixed next (array &$array)

next() behaves like current(), with one difference. It advances the internal array pointer one
place forward before returning the element value. That means it returns the next array
value and advances the internal array pointer by one.

Parameters

array

The array being affected.

Return Values

Returns the array value in the next place that's pointed to by the internal array pointer, or
FALSE if there are no more elements.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for
more information. Use the === operator for testing the return value of this function.

Examples

Example #2680 - Example use of next() and friends

<?php

$transport = array('foot', 'bike', 'car', 'plane');

$mode = current($transport); // $mode = 'foot';

$mode = next($transport); // $mode = 'bike';

$mode = next($transport); // $mode = 'car';

$mode = prev($transport); // $mode = 'bike';

$mode = end($transport); // $mode = 'plane';

?>

Notes

Note

You won't be able to distinguish the end of an array from a boolean FALSE element.
To properly traverse an array which may contain FALSE elements, see the each()
function.

See Also

• current()
• end()
• prev()
• reset()
• each()

pos

pos -- Alias of current()

Description

This function is an alias of: current()

prev

prev -- Rewind the internal array pointer

Description

mixed prev (array &$array)

Rewind the internal array pointer.

prev() behaves just like next(), except it rewinds the internal array pointer one place
instead of advancing it.

Parameters

array

The input array.

Return Values

Returns the array value in the previous place that's pointed to by the internal array pointer,
or FALSE if there are no more elements.

Examples

Example #2681 - Example use of prev() and friends

<?php

$transport = array('foot', 'bike', 'car', 'plane');

$mode = current($transport); // $mode = 'foot';

$mode = next($transport); // $mode = 'bike';

$mode = next($transport); // $mode = 'car';

$mode = prev($transport); // $mode = 'bike';

$mode = end($transport); // $mode = 'plane';

?>

Notes

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value
which evaluates to FALSE, such as 0 or "". Please read the section on Booleans for

more information. Use the === operator for testing the return value of this function.

Note

You won't be able to distinguish the beginning of an array from a boolean FALSE
element. To properly traverse an array which may contain FALSE elements, see the
each() function.

See Also

• current()
• end()
• next()
• reset()
• each()

range

range -- Create an array containing a range of elements

Description

array range (mixed $low, mixed $high [, number $step])

Create an array containing a range of elements.

Parameters

low

Low value.

high

High value.

step

If a step value is given, it will be used as the increment between elements in the
sequence. step should be given as a positive number. If not specified, step will
default to 1.

Return Values

Returns an array of elements from low to high, inclusive. If low > high, the sequence will
be from high to low.

ChangeLog

Version Description

5.0.0 The optional step parameter was added.

4.1.0 to 4.3.2 In PHP versions 4.1.0 through 4.3.2, range()
sees numeric strings as strings and not
integers. Instead, they will be used for
character sequences. For example, "4242"
is treated as "4".

4.1.0 Prior to PHP 4.1.0, range() only generated
incrementing integer arrays. Support for
character sequences and decrementing
arrays was added in 4.1.0. Character

sequence values are limited to a length of
one. If a length greater than one is entered,
only the first character is used.

Examples

Example #2682 - range() examples

<?php

// array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

foreach (range(0, 12) as $number) {

 echo $number;

}

// The step parameter was introduced in 5.0.0

// array(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

foreach (range(0, 100, 10) as $number) {

 echo $number;

}

// Use of character sequences introduced in 4.1.0

// array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');

foreach (range('a', 'i') as $letter) {

 echo $letter;

}

// array('c', 'b', 'a');

foreach (range('c', 'a') as $letter) {

 echo $letter;

}

?>

See Also

• shuffle()
• array_fill()
• foreach

reset

reset -- Set the internal pointer of an array to its first element

Description

mixed reset (array &$array)

reset() rewinds array 's internal pointer to the first element and returns the value of the
first array element.

Parameters

array

The input array.

Return Values

Returns the value of the first array element, or FALSE if the array is empty.

Examples

Example #2683 - reset() example

<?php

$array = array('step one', 'step two', 'step three', 'step four');

// by default, the pointer is on the first element

echo current($array) . "
\n"; // "step one"

// skip two steps

next($array);

next($array);

echo current($array) . "
\n"; // "step three"

// reset pointer, start again on step one

reset($array);

echo current($array) . "
\n"; // "step one"

?>

See Also

• current()
• each()
• end()
• next()
• prev()

rsort

rsort -- Sort an array in reverse order

Description

bool rsort (array &$array [, int $sort_flags])

This function sorts an array in reverse order (highest to lowest).

Parameters

array

The input array.

sort_flags

You may modify the behavior of the sort using the optional parameter sort_flags, for
details see sort().

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2684 - rsort() example

<?php

$fruits = array("lemon", "orange", "banana", "apple");

rsort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

?>

The above example will output:

0 = orange

1 = lemon

2 = banana

3 = apple

The fruits have been sorted in reverse alphabetical order.

Notes

Note

This function assigns new keys to the elements in array. It will remove any existing
keys that may have been assigned, rather than just reordering the keys.

See Also

• arsort()
• asort()
• ksort()
• krsort()
• sort()
• usort()

shuffle

shuffle -- Shuffle an array

Description

bool shuffle (array &$array)

This function shuffles (randomizes the order of the elements in) an array.

Parameters

array

The array.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2685 - shuffle() example

<?php

$numbers = range(1, 20);

srand((float)microtime() * 1000000);

shuffle($numbers);

foreach ($numbers as $number) {

 echo "$number ";

}

?>

Notes

Note

This function assigns new keys to the elements in array. It will remove any existing
keys that may have been assigned, rather than just reordering the keys.

Note

As of PHP 4.2.0, there is no need to seed the random number generator with srand()
or mt_srand() as this is now done automatically.

See Also

• arsort()
• asort()
• ksort()
• rsort()
• sort()
• usort()

sizeof

sizeof -- Alias of count()

Description

This function is an alias of: count().

sort

sort -- Sort an array

Description

bool sort (array &$array [, int $sort_flags])

This function sorts an array. Elements will be arranged from lowest to highest when this
function has completed.

Parameters

array

The input array.

sort_flags

The optional second parameter sort_flags may be used to modify the sorting
behavior using these values: Sorting type flags:

• SORT_REGULAR - compare items normally (don't change types)

• SORT_NUMERIC - compare items numerically

• SORT_STRING - compare items as strings

• SORT_LOCALE_STRING - compare items as strings, based on the current locale.
Added in PHP 4.4.0 and 5.0.2. Before PHP 6, it uses the system locale, which can
be changed using setlocale(). Since PHP 6, you must use the
i18n_loc_set_default() function.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.0.0 The sort_flags parameter was added.

Examples

Example #2686 - sort() example

<?php

$fruits = array("lemon", "orange", "banana", "apple");

sort($fruits);

foreach ($fruits as $key => $val) {

 echo "fruits[" . $key . "] = " . $val . "\n";

}

?>

The above example will output:

fruits[0] = apple

fruits[1] = banana

fruits[2] = lemon

fruits[3] = orange

The fruits have been sorted in alphabetical order.

Notes

Note

This function assigns new keys to the elements in array. It will remove any existing
keys that may have been assigned, rather than just reordering the keys.

Warning

Be careful when sorting arrays with mixed types values because sort() can produce
unpredictable results.

See Also

• arsort()
• asort()
• ksort()
• rsort()
• usort()
• uksort()
• array_multisort()
• krsort()
• natsort()

• natcasesort()

uasort

uasort -- Sort an array with a user-defined comparison function and maintain index
association

Description

bool uasort (array &$array, callback $cmp_function)

This function sorts an array such that array indices maintain their correlation with the array
elements they are associated with, using a user-defined comparison function.

This is used mainly when sorting associative arrays where the actual element order is
significant.

Parameters

array

The input array.

cmp_function

See usort() and uksort() for examples of user-defined comparison functions.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• usort()
• uksort()
• asort()
• arsort()
• ksort()
• rsort()
• sort()

uksort

uksort -- Sort an array by keys using a user-defined comparison function

Description

bool uksort (array &$array, callback $cmp_function)

uksort() will sort the keys of an array using a user-supplied comparison function. If the
array you wish to sort needs to be sorted by some non-trivial criteria, you should use this
function.

Parameters

array

The input array.

cmp_function

The callback comparison function. Function cmp_function should accept two
parameters which will be filled by pairs of array keys. The comparison function must
return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2687 - uksort() example

<?php

function cmp($a, $b)

{

 $a = ereg_replace('^(a|an|the) ', '', $a);

 $b = ereg_replace('^(a|an|the) ', '', $b);

 return strcasecmp($a, $b);

}

$a = array("John" => 1, "the Earth" => 2, "an apple" => 3, "a banana" => 4);

uksort($a, "cmp");

foreach ($a as $key => $value) {

 echo "$key: $value\n";

}

?>

The above example will output:

an apple: 3

a banana: 4

the Earth: 2

John: 1

See Also

• usort()
• uasort()
• sort()
• asort()
• arsort()
• ksort()
• natsort()
• rsort()

usort

usort -- Sort an array by values using a user-defined comparison function

Description

bool usort (array &$array, callback $cmp_function)

This function will sort an array by its values using a user-supplied comparison function. If
the array you wish to sort needs to be sorted by some non-trivial criteria, you should use
this function.

Note

If two members compare as equal, their order in the sorted array is undefined.

Note

This function assigns new keys to the elements in array. It will remove any existing
keys that may have been assigned, rather than just reordering the keys.

Parameters

array

The input array.

cmp_function

The comparison function must return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to, or greater
than the second.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

4.1.0 A new sort algorithm was introduced. The
cmp_function doesn't keep the original order

for elements comparing as equal.

Examples

Example #2688 - usort() example

<?php

function cmp($a, $b)

{

 if ($a == $b) {

 return 0;

 }

 return ($a < $b) ? -1 : 1;

}

$a = array(3, 2, 5, 6, 1);

usort($a, "cmp");

foreach ($a as $key => $value) {

 echo "$key: $value\n";

}

?>

The above example will output:

0: 1

1: 2

2: 3

3: 5

4: 6

Note

Obviously in this trivial case the sort() function would be more appropriate.

Example #2689 - usort() example using multi-dimensional array

<?php

function cmp($a, $b)

{

 return strcmp($a["fruit"], $b["fruit"]);

}

$fruits[0]["fruit"] = "lemons";

$fruits[1]["fruit"] = "apples";

$fruits[2]["fruit"] = "grapes";

usort($fruits, "cmp");

while (list($key, $value) = each($fruits)) {

 echo "\$fruits[$key]: " . $value["fruit"] . "\n";

}

?>

When sorting a multi-dimensional array, $a and $b contain references to the first index
of the array.

The above example will output:

$fruits[0]: apples

$fruits[1]: grapes

$fruits[2]: lemons

Example #2690 - usort() example using a member function of an object

<?php

class TestObj {

 var $name;

 function TestObj($name)

 {

 $this->name = $name;

 }

 /* This is the static comparing function: */

 static function cmp_obj($a, $b)

 {

 $al = strtolower($a->name);

 $bl = strtolower($b->name);

 if ($al == $bl) {

 return 0;

 }

 return ($al > $bl) ? +1 : -1;

 }

}

$a[] = new TestObj("c");

$a[] = new TestObj("b");

$a[] = new TestObj("d");

usort($a, array("TestObj", "cmp_obj"));

foreach ($a as $item) {

 echo $item->name . "\n";

}

?>

The above example will output:

b

c

d

See Also

• uasort()
• uksort()
• sort()
• asort()
• arsort()
• ksort()
• natsort()
• rsort()

Class/Object Information

Introduction

These functions allow you to obtain information about classes and instance objects. You
can obtain the name of the class to which an object belongs, as well as its member
properties and methods. Using these functions, you can find out not only the class
membership of an object, but also its parentage (i.e. what class is the object class
extending).

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

In this example, we first define a base class and an extension of the class. The base class
describes a general vegetable, whether it is edible or not and what is its color. The
subclass Spinach adds a method to cook it and another to find out if it is cooked.

Example #2691 - classes.inc

<?php

// base class with member properties and methods

class Vegetable {

 var $edible;

 var $color;

 function Vegetable($edible, $color="green")

 {

 $this->edible = $edible;

 $this->color = $color;

 }

 function is_edible()

 {

 return $this->edible;

 }

 function what_color()

 {

 return $this->color;

 }

} // end of class Vegetable

// extends the base class

class Spinach extends Vegetable {

 var $cooked = false;

 function Spinach()

 {

 $this->Vegetable(true, "green");

 }

 function cook_it()

 {

 $this->cooked = true;

 }

 function is_cooked()

 {

 return $this->cooked;

 }

} // end of class Spinach

?>

We then instantiate 2 objects from these classes and print out information about them,
including their class parentage. We also define some utility functions, mainly to have a
nice printout of the variables.

Example #2692 - test_script.php

<pre>

<?php

include "classes.inc";

// utility functions

function print_vars($obj)

{

foreach (get_object_vars($obj) as $prop => $val) {

 echo "\t$prop = $val\n";

}

}

function print_methods($obj)

{

$arr = get_class_methods(get_class($obj));

foreach ($arr as $method) {

 echo "\tfunction $method()\n";

}

}

function class_parentage($obj, $class)

{

if (is_subclass_of($GLOBALS[$obj], $class)) {

 echo "Object $obj belongs to class " . get_class($$obj);

 echo " a subclass of $class\n";

} else {

 echo "Object $obj does not belong to a subclass of $class\n";

}

}

// instantiate 2 objects

$veggie = new Vegetable(true, "blue");

$leafy = new Spinach();

// print out information about objects

echo "veggie: CLASS " . get_class($veggie) . "\n";

echo "leafy: CLASS " . get_class($leafy);

echo ", PARENT " . get_parent_class($leafy) . "\n";

// show veggie properties

echo "\nveggie: Properties\n";

print_vars($veggie);

// and leafy methods

echo "\nleafy: Methods\n";

print_methods($leafy);

echo "\nParentage:\n";

class_parentage("leafy", "Spinach");

class_parentage("leafy", "Vegetable");

?>

</pre>

One important thing to note in the example above is that the object $leafy is an
instance of the class Spinach which is a subclass of Vegetable, therefore the last part
of the script above will output:

[...]

Parentage:

Object leafy does not belong to a subclass of Spinach

Object leafy belongs to class spinach a subclass of Vegetable

Classes/Object Functions

call_user_method_array

call_user_method_array -- Call a user method given with an array of parameters
[deprecated]

Description

mixed call_user_method_array (string $method_name, object &$obj, array $params)

Warning

The call_user_method_array() function is deprecated as of PHP 4.1.0.

Examples

Example #2693 - call_user_method_array() alternative

<?php

call_user_func_array(array($obj, $method_name), $params);

call_user_func_array(array(&$obj, $method_name), $params); // PHP 4

?>

See Also

• call_user_func_array()
• call_user_func()

call_user_method

call_user_method -- Call a user method on an specific object [deprecated]

Description

mixed call_user_method (string $method_name, object &$obj [, mixed $parameter [,
mixed $...]])

Warning

The call_user_method() function is deprecated as of PHP 4.1.0.

Examples

Example #2694 - call_user_method() alternative

<?php

call_user_func(array($obj, $method_name), $parameter /* , ... */);

call_user_func(array(&$obj, $method_name), $parameter /* , ... */); // PHP 4

?>

See Also

• call_user_func_array()
• call_user_func()

class_exists

class_exists -- Checks if the class has been defined

Description

bool class_exists (string $class_name [, bool $autoload])

This function checks whether or not the given class has been defined.

Parameters

class_name

The class name. The name is matched in a case-insensitive manner.

autoload

Whether or not to call __autoload by default. Defaults to TRUE.

Return Values

Returns TRUE if class_name is a defined class, FALSE otherwise.

ChangeLog

Version Description

5.0.2 No longer returns TRUE for defined
interfaces. Use interface_exists().

5.0.0 The autoload parameter was added.

Examples

Example #2695 - class_exists() example

<?php

// Check that the class exists before trying to use it

if (class_exists('MyClass')) {

 $myclass = new MyClass();

}

?>

Example #2696 - autoload parameter example

<?php

function __autoload($class)

{

 include($class . '.php');

 // Check to see whether the include declared the class

 if (!class_exists($class, false)) {

 trigger_error("Unable to load class: $class", E_USER_WARNING);

 }

}

if (class_exists('MyClass')) {

 $myclass = new MyClass();

}

?>

See Also

• function_exists()
• interface_exists()
• get_declared_classes()

get_class_methods

get_class_methods -- Gets the class methods' names

Description

array get_class_methods (mixed $class_name)

Gets the class methods names.

Parameters

class_name

The class name or an object instance

Return Values

Returns an array of method names defined for the class specified by class_name. In case
of an error, it returns NULL.

ChangeLog

Version Description

5.0.0 As of PHP 5, this function returns the name
of the methods as they were declared
(case-sensitive). In PHP 4 they were
lowercased.

4.0.6 The ability of specifying the object itself has
been added.

Examples

Example #2697 - get_class_methods() example

<?php

class myclass {

 // constructor

 function myclass()

 {

 return(true);

 }

 // method 1

 function myfunc1()

 {

 return(true);

 }

 // method 2

 function myfunc2()

 {

 return(true);

 }

}

$class_methods = get_class_methods('myclass');

// or

$class_methods = get_class_methods(new myclass());

foreach ($class_methods as $method_name) {

 echo "$method_name\n";

}

?>

The above example will output:

myclass

myfunc1

myfunc2

See Also

• get_class()
• get_class_vars()
• get_object_vars()

get_class_vars

get_class_vars -- Get the default properties of the class

Description

array get_class_vars (string $class_name)

Get the default properties of the given class.

Parameters

class_name

The class name

Return Values

Returns an associative array of default public properties of the class. The resulting array
elements are in the form of varname => value.

ChangeLog

Version Description

Prior to 4.2.0 Uninitialized class variables will not be
reported by get_class_vars()

Examples

Example #2698 - get_class_vars() example

<?php

class myclass {

 var $var1; // this has no default value...

 var $var2 = "xyz";

 var $var3 = 100;

 private $var4; // PHP 5

 // constructor

 function myclass() {

 // change some properties

 $this->var1 = "foo";

 $this->var2 = "bar";

 return true;

 }

}

$my_class = new myclass();

$class_vars = get_class_vars(get_class($my_class));

foreach ($class_vars as $name => $value) {

 echo "$name : $value\n";

}

?>

The above example will output:

// Before PHP 4.2.0

var2 : xyz

var3 : 100

// As of PHP 4.2.0

var1 :

var2 : xyz

var3 : 100

See Also

• get_class_methods()
• get_object_vars()

get_class

get_class -- Returns the name of the class of an object

Description

string get_class ([object $object])

Gets the name of the class of the given object.

Parameters

object

The tested object

Return Values

Returns the name of the class of which object is an instance. Returns FALSE if object is
not an object.

ChangeLog

Version Description

Since 5.0.0 The class name is returned in it's original
notation.

Since 5.0.0 The object parameter is optional if called
from the object's method.

Examples

Example #2699 - Using get_class()

<?php

class foo {

 function name()

 {

 echo "My name is " , get_class($this) , "\n";

 }

}

// create an object

$bar = new foo();

// external call

echo "Its name is " , get_class($bar) , "\n";

// internal call

$bar->name();

?>

The above example will output:

Its name is foo

My name is foo

Example #2700 - Using get_class() in superclass

<?php

abstract class bar {

	public function __construct()

	{

		var_dump(get_class($this));

		var_dump(get_class());

	}

}

class foo extends bar {

}

new foo;

?>

The above example will output:

string(3) "foo"

string(3) "bar"

See Also

• get_parent_class()
• gettype()
• is_subclass_of()

get_declared_classes

get_declared_classes -- Returns an array with the name of the defined classes

Description

array get_declared_classes (void)

Gets the declared classes.

Return Values

Returns an array of the names of the declared classes in the current script.

Note

In PHP 4.0.1, three extra classes are returned at the beginning of the array: stdClass
(defined in Zend/zend.c), OverloadedTestClass (defined in
ext/standard/basic_functions.c) and Directory (defined in ext/standard/dir.c).

Also note that depending on what extensions you have compiled or loaded into PHP,
additional classes could be present. This means that you will not be able to define your
own classes using these names. There is a list of predefined classes in the Predefined
Classes section of the appendices.

Examples

Example #2701 - get_declared_classes() example

<?php

print_r(get_declared_classes());

?>

The above example will output something similar to:

Array

(

 [0] => stdClass

 [1] => __PHP_Incomplete_Class

 [2] => Directory

)

See Also

• class_exists()
• get_declared_interfaces()
• get_defined_functions()

get_declared_interfaces

get_declared_interfaces -- Returns an array of all declared interfaces

Description

array get_declared_interfaces (void)

Gets the declared interfaces.

Return Values

Returns an array of the names of the declared interfaces in the current script.

Examples

Example #2702 - get_declared_interfaces() example

<?php

print_r(get_declared_interfaces());

?>

The above example will output something similar to:

Array

(

 [0] => Traversable

 [1] => IteratorAggregate

 [2] => Iterator

 [3] => ArrayAccess

 [4] => reflector

 [5] => RecursiveIterator

 [6] => SeekableIterator

)

See Also

• get_declared_classes()
• class_implements()

get_object_vars

get_object_vars -- Gets the public properties of the given object

Description

array get_object_vars (object $object)

Gets the public properties of the given object.

Parameters

object

An object instance.

Return Values

Returns an associative array of defined object public properties for the specified object. If
a property have not been assigned a value, it will be returned with a NULL value.

ChangeLog

Version Description

prior to 4.2.0 If the variables declared in the class of
which the object is an instance, have not
been assigned a value, those will not be
returned in the array

Examples

Example #2703 - Use of get_object_vars()

<?php

class foo {

 private $a;

 public $b = 1;

 public $c;

 private $d;

 static $e;

}

$test = new foo;

var_dump(get_object_vars($test));

?>

The above example will output:

array(2) {

 ["b"]=>

 int(1)

 ["c"]=>

 NULL

}

See Also

• get_class_methods()
• get_class_vars()

get_parent_class

get_parent_class -- Retrieves the parent class name for object or class

Description

string get_parent_class ([mixed $object])

Retrieves the parent class name for object or class.

Parameters

object

The tested object or class name

Return Values

Returns the name of the parent class of the class of which object is an instance or the
name.

Note

If the object does not have a parent FALSE will be returned.

If called without parameter outside object, this function returns FALSE.

ChangeLog

Version Description

Before 5.1.0 If called without parameter outside object,
this function would have returned NULL with
a warning.

Since 5.0.0 The object parameter is optional if called
from the object's method.

Since 4.0.5 If object is a string, returns the name of the
parent class of the class with that name.

Examples

Example #2704 - Using get_parent_class()

<?php

class dad {

 function dad()

 {

 // implements some logic

 }

}

class child extends dad {

 function child()

 {

 echo "I'm " , get_parent_class($this) , "'s son\n";

 }

}

class child2 extends dad {

 function child2()

 {

 echo "I'm " , get_parent_class('child2') , "'s son too\n";

 }

}

$foo = new child();

$bar = new child2();

?>

The above example will output:

I'm dad's son

I'm dad's son too

See Also

• get_class()
• is_subclass_of()

interface_exists

interface_exists -- Checks if the interface has been defined

Description

bool interface_exists (string $interface_name [, bool $autoload])

Checks if the given interface has been defined.

Parameters

interface_name

The interface name

autoload

Whether to call __autoload or not by default

Return Values

Returns TRUE if the interface given by interface_name has been defined, FALSE
otherwise.

Examples

Example #2705 - interface_exists() example

<?php

// Check the interface exists before trying to use it

if (interface_exists('MyInterface')) {

 class MyClass implements MyInterface

 {

 // Methods

 }

}

?>

See Also

• class_exists()

is_a

is_a -- Checks if the object is of this class or has this class as one of its parents

Description

bool is_a (object $object, string $class_name)

Checks if the given object is of this class or has this class as one of its parents.

Note

The is_a() function is deprecated as of PHP 5 in favor of the instanceof type operator.

Parameters

object

The tested object

class_name

The class name

Return Values

Returns TRUE if the object is of this class or has this class as one of its parents, FALSE
otherwise.

Examples

Example #2706 - is_a() example

<?php

// define a class

class WidgetFactory

{

 var $oink = 'moo';

}

// create a new object

$WF = new WidgetFactory();

if (is_a($WF, 'WidgetFactory')) {

 echo "yes, \$WF is still a WidgetFactory\n";

}

?>

Example #2707 - Using the instanceof operator in PHP 5

<?php

if ($WF instanceof WidgetFactory) {

 echo 'Yes, $WF is a WidgetFactory';

}

?>

See Also

• get_class()
• get_parent_class()
• is_subclass_of()

is_subclass_of

is_subclass_of -- Checks if the object has this class as one of its parents

Description

bool is_subclass_of (mixed $object, string $class_name)

Checks if the given object has the class class_name as one of its parents.

Parameters

object

A class name or an object instance

class_name

The class name

Return Values

This function returns TRUE if the object object, belongs to a class which is a subclass of
class_name, FALSE otherwise.

ChangeLog

Version Description

5.0.3 You may also specify the object parameter
as a string (the name of the class)

Examples

Example #2708 - is_subclass_of() example

<?php

// define a class

class WidgetFactory

{

 var $oink = 'moo';

}

// define a child class

class WidgetFactory_Child extends WidgetFactory

{

 var $oink = 'oink';

}

// create a new object

$WF = new WidgetFactory();

$WFC = new WidgetFactory_Child();

if (is_subclass_of($WFC, 'WidgetFactory')) {

 echo "yes, \$WFC is a subclass of WidgetFactory\n";

} else {

 echo "no, \$WFC is not a subclass of WidgetFactory\n";

}

if (is_subclass_of($WF, 'WidgetFactory')) {

 echo "yes, \$WF is a subclass of WidgetFactory\n";

} else {

 echo "no, \$WF is not a subclass of WidgetFactory\n";

}

// usable only since PHP 5.0.3

if (is_subclass_of('WidgetFactory_Child', 'WidgetFactory')) {

 echo "yes, WidgetFactory_Child is a subclass of WidgetFactory\n";

} else {

 echo "no, WidgetFactory_Child is not a subclass of WidgetFactory\n";

}

?>

The above example will output:

yes, $WFC is a subclass of WidgetFactory

no, $WF is not a subclass of WidgetFactory

yes, WidgetFactory_Child is a subclass of WidgetFactory

See Also

• get_class()
• get_parent_class()
• is_a()

method_exists

method_exists -- Checks if the class method exists

Description

bool method_exists (object $object, string $method_name)

Checks if the class method exists in the given object.

Parameters

object

An object instance

method_name

The method name

Return Values

Returns TRUE if the method given by method_name has been defined for the given object,
FALSE otherwise.

Examples

Example #2709 - method_exists() example

<?php

$directory = new Directory('.');

var_dump(method_exists($directory,'read'));

?>

The above example will output:

bool(true)

Example #2710 - Static method_exists() example

<?php

$directory = new Directory('.');

var_dump(method_exists('Directory','read'));

?>

The above example will output:

bool(true)

See Also

• function_exists()
• is_callable()

property_exists

property_exists -- Checks if the object or class has a property

Description

bool property_exists (mixed $class, string $property)

This function checks if the given property exists in the specified class (and if it is
accessible from the current scope).

Note

As opposed with isset(), property_exists() returns TRUE even if the property has the
value NULL.

Parameters

class

The class name or an object of the class to test for

property

The name of the property

Return Values

Returns TRUE if the property exists, FALSE if it doesn't exist or NULL in case of an error.

Examples

Example #2711 - A property_exists() example

<?php

class myClass {

 public $mine;

 private $xpto;

 static function test() {

 var_dump(property_exists('myClass', 'xpto')); // true, it can be
accessed from here

 }

}

var_dump(property_exists('myClass', 'mine')); //true

var_dump(property_exists(new myClass, 'mine')); //true

var_dump(property_exists('myClass', 'xpto')); //false, isn't public

myClass::test();

?>

See Also

• method_exists()

Classkit

Introduction

These functions allow the dynamic manipulation of PHP classes, at runtime.

Note

This extension has been replaced by runkit, which is not limited to class manipulation
but has function manipulation, as well.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled
Installation of PECL extensions. Additional information such as new releases, downloads,
source files, maintainer information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/classkit.

The DLL for this PECL extension may be downloaded from either the » PHP Downloads
page or from » http://pecl4win.php.net/

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl.php.net/
http://pecl.php.net/package/classkit
http://pecl.php.net/package/classkit
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CLASSKIT_ACC_PRIVATE (int)
Marks the method private

CLASSKIT_ACC_PROTECTED (int)
Marks the method protected

CLASSKIT_ACC_PUBLIC (int)
Marks the method public

Classkit Functions

classkit_import

classkit_import -- Import new class method definitions from a file

Description

array classkit_import (string $filename)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

filename

The filename of the class method definitions to import

Return Values

Associative array of imported methods

Examples

Example #2712 - classkit_import() example

<?php

// file: newclass.php

class Example {

 function foo() {

 return "bar!\n";

 }

}

?>

<?php

// requires newclass.php (see above)

class Example {

 function foo() {

 return "foo!\n";

 }

}

$e = new Example();

// output original

echo $e->foo();

// import replacement method

classkit_import('newclass.php');

// output imported

echo $e->foo();

?>

The above example will output:

foo!

bar!

See Also

• classkit_method_add()
• classkit_method_copy()

classkit_method_add

classkit_method_add -- Dynamically adds a new method to a given class

Description

bool classkit_method_add (string $classname, string $methodname, string $args, string
$code [, int $flags])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class to which this method will be added

methodname

The name of the method to add

args

Comma-delimited list of arguments for the newly-created method

code

The code to be evaluated when methodname is called

flags

The type of method to create, can be CLASSKIT_ACC_PUBLIC,
CLASSKIT_ACC_PROTECTED or CLASSKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2713 - classkit_method_add() example

<?php

class Example {

 function foo() {

 echo "foo!\n";

 }

}

// create an Example object

$e = new Example();

// Add a new public method

classkit_method_add(

 'Example',

 'add',

 '$num1, $num2',

 'return $num1 + $num2;',

 CLASSKIT_ACC_PUBLIC

);

// add 12 + 4

echo $e->add(12, 4);

?>

The above example will output:

16

See Also

• classkit_method_copy()
• classkit_method_redefine()
• classkit_method_remove()
• classkit_method_rename()
• create_function()

classkit_method_copy

classkit_method_copy -- Copies a method from class to another

Description

bool classkit_method_copy (string $dClass, string $dMethod, string $sClass [, string $
sMethod])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

dClass

Destination class for copied method

dMethod

Destination method name

sClass

Source class of the method to copy

sMethod

Name of the method to copy from the source class. If this parameter is omitted, the
value of dMethod is assumed.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2714 - classkit_method_copy() example

<?php

class Foo {

 function example() {

 return "foo!\n";

 }

}

class Bar {

 // initially, no methods

}

// copy the example() method from the Foo class to the Bar class, as baz()

classkit_method_copy('Bar', 'baz', 'Foo', 'example');

// output copied function

echo Bar::baz();

?>

The above example will output:

foo!

See Also

• classkit_method_add()
• classkit_method_redefine()
• classkit_method_remove()
• classkit_method_rename()

classkit_method_redefine

classkit_method_redefine -- Dynamically changes the code of the given method

Description

bool classkit_method_redefine (string $classname, string $methodname, string $args,
string $code [, int $flags])

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to redefine the method

methodname

The name of the method to redefine

args

Comma-delimited list of arguments for the redefined method

code

The new code to be evaluated when methodname is called

flags

The redefined method can be CLASSKIT_ACC_PUBLIC,
CLASSKIT_ACC_PROTECTED or CLASSKIT_ACC_PRIVATE

Note

This parameter is only used as of PHP 5, because, prior to this, all methods were
public.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2715 - classkit_method_redefine() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

}

// create an Example object

$e = new Example();

// output Example::foo() (before redefine)

echo "Before: " . $e->foo();

// Redefine the 'foo' method

classkit_method_redefine(

 'Example',

 'foo',

 '',

 'return "bar!\n";',

 CLASSKIT_ACC_PUBLIC

);

// output Example::foo() (after redefine)

echo "After: " . $e->foo();

?>

The above example will output:

Before: foo!

After: bar!

See Also

• classkit_method_add()
• classkit_method_copy()
• classkit_method_remove()
• classkit_method_rename()

classkit_method_remove

classkit_method_remove -- Dynamically removes the given method

Description

bool classkit_method_remove (string $classname, string $methodname)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to remove the method

methodname

The name of the method to remove

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2716 - classkit_method_remove() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

 function bar() {

 return "bar!\n";

 }

}

// Remove the 'foo' method

classkit_method_remove(

 'Example',

 'foo'

);

echo implode(' ', get_class_methods('Example'));

?>

The above example will output:

bar

See Also

• classkit_method_add()
• classkit_method_copy()
• classkit_method_redefine()
• classkit_method_rename()

classkit_method_rename

classkit_method_rename -- Dynamically changes the name of the given method

Description

bool classkit_method_rename (string $classname, string $methodname, string $newname)

Note

This function cannot be used to manipulate the currently running (or chained) method.

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

classname

The class in which to rename the method

methodname

The name of the method to rename

newname

The new name to give to the renamed method

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2717 - classkit_method_rename() example

<?php

class Example {

 function foo() {

 return "foo!\n";

 }

}

// Rename the 'foo' method to 'bar'

classkit_method_rename(

 'Example',

 'foo',

 'bar'

);

// output renamed function

echo Example::bar();

?>

The above example will output:

foo!

See Also

• classkit_method_add()
• classkit_method_copy()
• classkit_method_redefine()
• classkit_method_remove()

Character type checking

Introduction

The functions provided by this extension check whether a character or string falls into a
certain character class according to the current locale (see also setlocale()).

When called with an integer argument these functions behave exactly like their C
counterparts from ctype.h. It means that if you pass an integer smaller than 256 it will use
the ASCII value of it to see if it fits in the specified range (digits are in 0x30-0x39). If the
number is between -128 and -1 inclusive then 256 will be added and the check will be
done on that.

When called with a string argument they will check every character in the string and will
only return TRUE if every character in the string matches the requested criteria. When
called with an empty string the result will always be TRUE in PHP < 5.1 and FALSE since
5.1.

Passing anything else but a string or integer will return FALSE immediately.

It should be noted that ctype functions are always preferred over regular expressions, and
even to some equivalent str_* and is_* functions. This is because of the fact that ctype
uses a native C library and thus processes significantly faster.

Installing/Configuring

Requirements

None besides functions from the standard C library which are always available.

Installation

Beginning with PHP 4.2.0 these functions are enabled by default. For older versions you
have to configure and compile PHP with --enable-ctype. You can disable ctype support
with --disable-ctype.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Note

Builtin support for ctype is available with PHP 4.3.0.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Ctype Functions

ctype_alnum

ctype_alnum -- Check for alphanumeric character(s)

Description

bool ctype_alnum (string $text)

Checks if all of the characters in the provided string, text, are alphanumeric. In the
standard C locale letters are just [A-Za-z].

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is either a letter or a digit, FALSE otherwise.

Examples

Example #2718 - A ctype_alnum() example (using the default locale)

<?php

$strings = array('AbCd1zyZ9', 'foo!#$bar');

foreach ($strings as $testcase) {

 if (ctype_alnum($testcase)) {

 echo "The string $testcase consists of all letters or digits.\n";

 } else {

 echo "The string $testcase does not consist of all letters or
digits.\n";

 }

}

?>

The above example will output:

The string AbCd1zyZ9 consists of all letters or digits.

The string foo!#$bar does not consist of all letters or digits.

See Also

• ctype_alpha()
• ctype_digit()
• setlocale()

ctype_alpha

ctype_alpha -- Check for alphabetic character(s)

Description

bool ctype_alpha (string $text)

Checks if all of the characters in the provided string, text, are alphabetic. In the standard
C locale letters are just [A-Za-z] and ctype_alpha() is equivalent to (ctype_upper($text) ||
ctype_lower($text)) if $text is just a single character, but other languages have letters that
are considered neither upper nor lower case.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is a letter from the current locale, FALSE
otherwise.

Examples

Example #2719 - A ctype_alpha() example (using the default locale)

<?php

$strings = array('KjgWZC', 'arf12');

foreach ($strings as $testcase) {

 if (ctype_alpha($testcase)) {

 echo "The string $testcase consists of all letters.\n";

 } else {

 echo "The string $testcase does not consist of all letters.\n";

 }

}

?>

The above example will output:

The string KjgWZC consists of all letters.

The string arf12 does not consist of all letters.

See Also

• ctype_upper()
• ctype_lower()
• setlocale()

ctype_cntrl

ctype_cntrl -- Check for control character(s)

Description

bool ctype_cntrl (string $text)

Checks if all of the characters in the provided string, text, are control characters. Control
characters are e.g. line feed, tab, escape.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is a control character from the current locale,
FALSE otherwise.

Examples

Example #2720 - A ctype_cntrl() example

<?php

$strings = array('string1' => "\n\r\t", 'string2' => 'arf12');

foreach ($strings as $name => $testcase) {

 if (ctype_cntrl($testcase)) {

 echo "The string '$name' consists of all control characters.\n";

 } else {

 echo "The string '$name' does not consist of all control
characters.\n";

 }

}

?>

The above example will output:

The string 'string1' consists of all control characters.

The string 'string2' does not consist of all control characters.

See Also

• ctype_print()

ctype_digit

ctype_digit -- Check for numeric character(s)

Description

bool ctype_digit (string $text)

Checks if all of the characters in the provided string, text, are numerical.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is a decimal digit, FALSE otherwise.

Examples

Example #2721 - A ctype_digit() example

<?php

$strings = array('1820.20', '10002', 'wsl!12');

foreach ($strings as $testcase) {

 if (ctype_digit($testcase)) {

 echo "The string $testcase consists of all digits.\n";

 } else {

 echo "The string $testcase does not consist of all digits.\n";

 }

}

?>

The above example will output:

The string 1820.20 does not consist of all digits.

The string 10002 consists of all digits.

The string wsl!12 does not consist of all digits.

See Also

• ctype_alnum()
• ctype_xdigit()

ctype_graph

ctype_graph -- Check for any printable character(s) except space

Description

bool ctype_graph (string $text)

Checks if all of the characters in the provided string, text, creates visible output.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is printable and actually creates visible output (no
white space), FALSE otherwise.

Examples

Example #2722 - A ctype_graph() example

<?php

$strings = array('string1' => "asdf\n\r\t", 'string2' => 'arf12', 'string3'
=> 'LKA#@%.54');

foreach ($strings as $name => $testcase) {

 if (ctype_graph($testcase)) {

 echo "The string '$name' consists of all (visibly) printable
characters.\n";

 } else {

 echo "The string '$name' does not consist of all (visibly) printable
characters.\n";

 }

}

?>

The above example will output:

The string 'string1' does not consist of all (visibly) printable characters.

The string 'string2' consists of all (visibly) printable characters.

The string 'string3' consists of all (visibly) printable characters.

See Also

• ctype_alnum()
• ctype_print()
• ctype_punct()

ctype_lower

ctype_lower -- Check for lowercase character(s)

Description

bool ctype_lower (string $text)

Checks if all of the characters in the provided string, text, are lowercase letters.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is a lowercase letter in the current locale.

Examples

Example #2723 - A ctype_lower() example (using the default locale)

<?php

$strings = array('aac123', 'qiutoas', 'QASsdks');

foreach ($strings as $testcase) {

 if (ctype_lower($testcase)) {

 echo "The string $testcase consists of all lowercase letters.\n";

 } else {

 echo "The string $testcase does not consist of all lowercase
letters.\n";

 }

}

?>

The above example will output:

The string aac123 does not consist of all lowercase letters.

The string qiutoas consists of all lowercase letters.

The string QASsdks does not consist of all lowercase letters.

See Also

• ctype_alpha()
• ctype_upper()
• setlocale()

ctype_print

ctype_print -- Check for printable character(s)

Description

bool ctype_print (string $text)

Checks if all of the characters in the provided string, text, are printable.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text will actually create output (including blanks).
Returns FALSE if text contains control characters or characters that do not have any
output or control function at all.

Examples

Example #2724 - A ctype_print() example

<?php

$strings = array('string1' => "asdf\n\r\t", 'string2' => 'arf12', 'string3'
=> 'LKA#@%.54');

foreach ($strings as $name => $testcase) {

 if (ctype_print($testcase)) {

 echo "The string '$name' consists of all printable characters.\n";

 } else {

 echo "The string '$name' does not consist of all printable
characters.\n";

 }

}

?>

The above example will output:

The string 'string1' does not consist of all printable characters.

The string 'string2' consists of all printable characters.

The string 'string3' consists of all printable characters.

See Also

• ctype_cntrl()
• ctype_graph()
• ctype_punct()

ctype_punct

ctype_punct -- Check for any printable character which is not whitespace or an
alphanumeric character

Description

bool ctype_punct (string $text)

Checks if all of the characters in the provided string, text, are punctuation character.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is printable, but neither letter, digit or blank,
FALSE otherwise.

Examples

Example #2725 - A ctype_punct() example

<?php

$strings = array('ABasdk!@!$#', '!@ # $', '*&$()');

foreach ($strings as $testcase) {

 if (ctype_punct($testcase)) {

 echo "The string $testcase consists of all punctuation.\n";

 } else {

 echo "The string $testcase does not consist of all punctuation.\n";

 }

}

?>

The above example will output:

The string ABasdk!@!$# does not consist of all punctuation.

The string !@ # $ does not consist of all punctuation.

The string *&$() consists of all punctuation.

See Also

• ctype_cntrl()
• ctype_graph()

ctype_space

ctype_space -- Check for whitespace character(s)

Description

bool ctype_space (string $text)

Checks if all of the characters in the provided string, text, creates whitespace.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text creates some sort of white space, FALSE
otherwise. Besides the blank character this also includes tab, vertical tab, line feed,
carriage return and form feed characters.

Examples

Example #2726 - A ctype_space() example

<?php

$strings = array('string1' => "\n\r\t", 'string2' => "\narf12", 'string3' =>
'\n\r\t');

foreach ($strings as $name => $testcase) {

 if (ctype_space($testcase)) {

 echo "The string '$name' consists of all whitespace characters.\n";

 } else {

 echo "The string '$name' does not consist of all whitespace
characters.\n";

 }

}

?>

The above example will output:

The string 'string1' consists of all whitespace characters.

The string 'string2' does not consist of all whitespace characters.

The string 'string3' does not consist of all whitespace characters.

See Also

• ctype_cntrl()
• ctype_graph()
• ctype_punct()

ctype_upper

ctype_upper -- Check for uppercase character(s)

Description

bool ctype_upper (string $text)

Checks if all of the characters in the provided string, text, are uppercase characters.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is an uppercase letter in the current locale.

Examples

Example #2727 - A ctype_upper() example (using the default locale)

<?php

$strings = array('AKLWC139', 'LMNSDO', 'akwSKWsm');

foreach ($strings as $testcase) {

 if (ctype_upper($testcase)) {

 echo "The string $testcase consists of all uppercase letters.\n";

 } else {

 echo "The string $testcase does not consist of all uppercase
letters.\n";

 }

}

?>

The above example will output:

The string AKLWC139 does not consist of all uppercase letters.

The string LMNSDO consists of all uppercase letters.

The string akwSKWsm does not consist of all uppercase letters.

See Also

• ctype_alpha()
• ctype_lower()
• setlocale()

ctype_xdigit

ctype_xdigit -- Check for character(s) representing a hexadecimal digit

Description

bool ctype_xdigit (string $text)

Checks if all of the characters in the provided string, text, are hexadecimal 'digits'.

Parameters

text

The tested string.

Return Values

Returns TRUE if every character in text is a hexadecimal 'digit', that is a decimal digit or a
character from [A-Fa-f], FALSE otherwise.

Examples

Example #2728 - A ctype_xdigit() example

<?php

$strings = array('AB10BC99', 'AR1012', 'ab12bc99');

foreach ($strings as $testcase) {

 if (ctype_xdigit($testcase)) {

 echo "The string $testcase consists of all hexadecimal digits.\n";

 } else {

 echo "The string $testcase does not consist of all hexadecimal
digits.\n";

 }

}

?>

The above example will output:

The string AB10BC99 consists of all hexadecimal digits.

The string AR1012 does not consist of all hexadecimal digits.

The string ab12bc99 consists of all hexadecimal digits.

See Also

• ctype_digit()

Data Filtering

Introduction

This extension serves to validate and filter data coming from some insecure source, such
as user input.

The following filters currently exist; be sure to read the Filter Constants section for
information that describes the behavior of each constant:

Existing filters

ID Name Options Flags Description

FILTER_VALID
ATE_INT

"int" min_range,
max_range

FILTER_FLAG_
ALLOW_OCTAL
,
FILTER_FLAG_
ALLOW_HEX

Validates value
as integer,
optionally from
the specified
range.

FILTER_VALID
ATE_BOOLEAN

"boolean" FILTER_NULL_
ON_FAILURE Returns TRUE

for "1", "true",
"on" and "yes".
Returns FALSE
otherwise.

If
FILTER_NULL_
ON_FAILURE is
set, FALSE is
returned only for
"0", "false", "off",
"no", and "", and
NULL is returned
for all
non-boolean
values.

FILTER_VALID
ATE_FLOAT

"float" decimal FILTER_FLAG_
ALLOW_THOU
SAND

Validates value
as float.

FILTER_VALID
ATE_REGEXP

"validate_regexp
"

regexp Validates value
against regexp,
a
Perl-compatible
regular
expression.

FILTER_VALID "validate_url" FILTER_FLAG_ Validates value

ATE_URL PATH_REQUIR
ED,
FILTER_FLAG_
QUERY_REQUI
RED

as URL,
optionally with
required
components.

FILTER_VALID
ATE_EMAIL

"validate_email" Validates value
as e-mail.

FILTER_VALID
ATE_IP

"validate_ip" FILTER_FLAG_I
PV4,
FILTER_FLAG_I
PV6,
FILTER_FLAG_
NO_PRIV_RAN
GE,
FILTER_FLAG_
NO_RES_RANG
E

Validates value
as IP address,
optionally only
IPv4 or IPv6 or
not from private
or reserved
ranges.

FILTER_SANITI
ZE_STRING

"string" FILTER_FLAG_
NO_ENCODE_Q
UOTES,
FILTER_FLAG_
STRIP_LOW,
FILTER_FLAG_
STRIP_HIGH,
FILTER_FLAG_
ENCODE_LOW,
FILTER_FLAG_
ENCODE_HIGH,
FILTER_FLAG_
ENCODE_AMP

Strip tags,
optionally strip or
encode special
characters.

FILTER_SANITI
ZE_STRIPPED

"stripped" Alias of "string"
filter.

FILTER_SANITI
ZE_ENCODED

"encoded" FILTER_FLAG_
STRIP_LOW,
FILTER_FLAG_
STRIP_HIGH,
FILTER_FLAG_
ENCODE_LOW,
FILTER_FLAG_
ENCODE_HIGH

URL-encode
string, optionally
strip or encode
special
characters.

FILTER_SANITI
ZE_SPECIAL_C
HARS

"special_chars" FILTER_FLAG_
STRIP_LOW,
FILTER_FLAG_
STRIP_HIGH,
FILTER_FLAG_
ENCODE_HIGH

HTML-escape
'"<>&and
characters with
ASCII value less
than 32,
optionally strip or

encode other
special
characters.

FILTER_UNSAF
E_RAW

"unsafe_raw" FILTER_FLAG_
STRIP_LOW,
FILTER_FLAG_
STRIP_HIGH,
FILTER_FLAG_
ENCODE_LOW,
FILTER_FLAG_
ENCODE_HIGH,
FILTER_FLAG_
ENCODE_AMP

Do nothing,
optionally strip or
encode special
characters.

FILTER_SANITI
ZE_EMAIL

"email" Remove all
characters
except letters,
digits and
!#$%&'*+-/=?^_`{
|}~@.[].

FILTER_SANITI
ZE_URL

"url" Remove all
characters
except letters,
digits and
$-_.+!*'(),{}|\\^~[]`
<>#%";/?:@&=.

FILTER_SANITI
ZE_NUMBER_I
NT

"number_int" Remove all
characters
except digits,
plus and minus
sign.

FILTER_SANITI
ZE_NUMBER_F
LOAT

"number_float" FILTER_FLAG_
ALLOW_FRACT
ION,
FILTER_FLAG_
ALLOW_THOU
SAND,
FILTER_FLAG_
ALLOW_SCIEN
TIFIC

Remove all
characters
except digits, +-
and optionally
.,eE.

FILTER_SANITI
ZE_MAGIC_QU
OTES

"magic_quotes" Apply
addslashes().

FILTER_CALLB
ACK

"callback" callback function
or method

Call user-defined
function to filter
data.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

A short installation note: just type

$ pecl install filter

in your console.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Filter Configuration Options

Name Default Changeable Changelog

filter.default "unsafe_raw" PHP_INI_PERDIR PHP_INI_ALL in filter
<= 0.9.4. Available
since PHP 5.2.0.

filter.default_flags NULL PHP_INI_PERDIR PHP_INI_ALL in filter
<= 0.9.4. Available
since PHP 5.2.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

filter.default string
Filter all $_GET, $_POST, $_COOKIE and $_REQUEST data by this filter. Original
data can be accessed through filter_input(). Accepts the name of the filter you like to
use by default. See the existing filter list for the list of the filter names.

filter.default_flags integer
Default flags

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

INPUT_POST (integer)
POST variables.

INPUT_GET (integer)
GET variables.

INPUT_COOKIE (integer)
COOKIE variables.

INPUT_ENV (integer)
ENV variables.

INPUT_SERVER (integer)
SERVER variables.

INPUT_SESSION (integer)
SESSION variables. (not implemented yet)

INPUT_REQUEST (integer)
REQUEST variables. (not implemented yet)

FILTER_FLAG_NONE (integer)
No flags.

FILTER_REQUIRE_SCALAR (integer)
Flag used to require scalar as input

FILTER_REQUIRE_ARRAY (integer)
Require an array as input.

FILTER_FORCE_ARRAY (integer)
Always returns an array.

FILTER_NULL_ON_FAILURE (integer)
Use NULL instead of FALSE on failure.

FILTER_VALIDATE_INT (integer)
ID of "int" filter.

FILTER_VALIDATE_BOOLEAN (integer)
ID of "boolean" filter.

FILTER_VALIDATE_FLOAT (integer)
ID of "float" filter.

FILTER_VALIDATE_REGEXP (integer)
ID of "validate_regexp" filter.

FILTER_VALIDATE_URL (integer)
ID of "validate_url" filter.

FILTER_VALIDATE_EMAIL (integer)
ID of "validate_email" filter.

FILTER_VALIDATE_IP (integer)
ID of "validate_ip" filter.

FILTER_DEFAULT (integer)
ID of default ("string") filter.

FILTER_UNSAFE_RAW (integer)
ID of "unsafe_raw" filter.

FILTER_SANITIZE_STRING (integer)
ID of "string" filter.

FILTER_SANITIZE_STRIPPED (integer)
ID of "stripped" filter.

FILTER_SANITIZE_ENCODED (integer)
ID of "encoded" filter.

FILTER_SANITIZE_SPECIAL_CHARS (integer)
ID of "special_chars" filter.

FILTER_SANITIZE_EMAIL (integer)
ID of "email" filter.

FILTER_SANITIZE_URL (integer)
ID of "url" filter.

FILTER_SANITIZE_NUMBER_INT (integer)
ID of "number_int" filter.

FILTER_SANITIZE_NUMBER_FLOAT (integer)
ID of "number_float" filter.

FILTER_SANITIZE_MAGIC_QUOTES (integer)
ID of "magic_quotes" filter.

FILTER_CALLBACK (integer)
ID of "callback" filter.

FILTER_FLAG_ALLOW_OCTAL (integer)
Allow octal notation (0[0-7]+) in "int" filter.

FILTER_FLAG_ALLOW_HEX (integer)

Allow hex notation (0x[0-9a-fA-F]+) in "int" filter.

FILTER_FLAG_STRIP_LOW (integer)
Strip characters with ASCII value less than 32.

FILTER_FLAG_STRIP_HIGH (integer)
Strip characters with ASCII value greater than 127.

FILTER_FLAG_ENCODE_LOW (integer)
Encode characters with ASCII value less than 32.

FILTER_FLAG_ENCODE_HIGH (integer)
Encode characters with ASCII value greater than 127.

FILTER_FLAG_ENCODE_AMP (integer)
Encode &.

FILTER_FLAG_NO_ENCODE_QUOTES (integer)
Don't encode ' and ".

FILTER_FLAG_EMPTY_STRING_NULL (integer)
(No use for now.)

FILTER_FLAG_ALLOW_FRACTION (integer)
Allow fractional part in "number_float" filter.

FILTER_FLAG_ALLOW_THOUSAND (integer)
Allow thousand separator (,) in "number_float" filter.

FILTER_FLAG_ALLOW_SCIENTIFIC (integer)
Allow scientific notation (e, E) in "number_float" filter.

FILTER_FLAG_SCHEME_REQUIRED (integer)
Require scheme in "validate_url" filter.

FILTER_FLAG_HOST_REQUIRED (integer)
Require host in "validate_url" filter.

FILTER_FLAG_PATH_REQUIRED (integer)
Require path in "validate_url" filter.

FILTER_FLAG_QUERY_REQUIRED (integer)
Require query in "validate_url" filter.

FILTER_FLAG_IPV4 (integer)
Allow only IPv4 address in "validate_ip" filter.

FILTER_FLAG_IPV6 (integer)
Allow only IPv6 address in "validate_ip" filter.

FILTER_FLAG_NO_RES_RANGE (integer)
Deny reserved addresses in "validate_ip" filter.

FILTER_FLAG_NO_PRIV_RANGE (integer)
Deny private addresses in "validate_ip" filter.

Filter Functions

filter_has_var

filter_has_var -- Checks if variable of specified type exists

Description

bool filter_has_var (int $type, string $variable_name)

Parameters

type

One of INPUT_GET, INPUT_POST, INPUT_COOKIE, INPUT_SERVER, INPUT_ENV.

variable_name

Name of a variable to check.

Return Values

Returns TRUE on success or FALSE on failure.

filter_id

filter_id -- Returns the filter ID belonging to a named filter

Description

int filter_id (string $filtername)

Parameters

filtername

Name of a filter to get.

Return Values

ID of a filter on success or NULL if filter doesn't exist.

See Also

• filter_list()

filter_input_array

filter_input_array -- Gets external variables and optionally filters them

Description

mixed filter_input_array (int $type [, mixed $definition])

This function is useful for retrieving many values without repetitively calling filter_input().

Parameters

type

One of INPUT_GET, INPUT_POST, INPUT_COOKIE, INPUT_SERVER, INPUT_ENV,
INPUT_SESSION, or INPUT_REQUEST.

definition

An array defining the arguments. A valid key is a string containing a variable name and
a valid value is either a filter type, or an array optionally specifying the filter, flags and
options. If the value is an array, valid keys are filter which specifies the filter type, flags
which specifies any flags that apply to the filter, and options which specifies any
options that apply to the filter. See the example below for a better understanding. This
parameter can be also an integer holding a filter constant. Then all values in the input
array are filtered by this filter.

Return Values

An array containing the values of the requested variables on success, or FALSE on
failure. An array value will be FALSE if the filter fails, or NULL if the variable is not set. Or
if the flag FILTER_NULL_ON_FAILURE is used, it returns FALSE if the variable is not set
and NULL if the filter fails.

Examples

Example #2729 - A filter_input_array() example

<?php

error_reporting(E_ALL | E_STRICT);

/* data actually came from POST

$_POST = array(

 'product_id' => 'libgd<script>',

 'component' => '10',

 'versions' => '2.0.33',

 'testscalar' => array('2', '23', '10', '12'),

 'testarray' => '2',

);

*/

$args = array(

 'product_id' => FILTER_SANITIZE_ENCODED,

 'component' => array('filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_REQUIRE_ARRAY,

 'options' => array('min_range' => 1,
'max_range' => 10)

),

 'versions' => FILTER_SANITIZE_ENCODED,

 'doesnotexist' => FILTER_VALIDATE_INT,

 'testscalar' => array(

 'filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_REQUIRE_SCALAR,

),

 'testarray' => array(

 'filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_REQUIRE_ARRAY,

)

);

$myinputs = filter_input_array(INPUT_POST, $args);

var_dump($myinputs);

echo "\n";

?>

The above example will output:

array(6) {

 ["product_id"]=>

 array(1) {

 [0]=>

 string(17) "libgd%3Cscript%3E"

 }

 ["component"]=>

 array(1) {

 [0]=>

 int(10)

 }

 ["versions"]=>

 array(1) {

 [0]=>

 string(6) "2.0.33"

 }

 ["doesnotexist"]=>

 NULL

 ["testscalar"]=>

 bool(false)

 ["testarray"]=>

 array(1) {

 [0]=>

 int(2)

 }

}

See Also

• filter_input()
• filter_var_array()

filter_input

filter_input -- Gets a specific external variable by name and optionally filters it

Description

mixed filter_input (int $type, string $variable_name [, int $filter [, mixed $options]])

Parameters

type

One of INPUT_GET, INPUT_POST, INPUT_COOKIE, INPUT_SERVER, INPUT_ENV,
INPUT_SESSION (not implemented yet) and INPUT_REQUEST (not implemented
yet).

variable_name

Name of a variable to get.

filter

Filter to apply. Defaults to FILTER_DEFAULT.

options

Associative array of options or bitwise disjunction of flags. If filter accepts options, flags
can be provided in "flags" field of array.

Return Values

Value of the requested variable on success, FALSE if the filter fails, or NULL if the
variable_name variable is not set. If the flag FILTER_NULL_ON_FAILURE is used, it
returns FALSE if the variable is not set and NULL if the filter fails.

Examples

Example #2730 - A filter_input() example

<?php

$search_html = filter_input(INPUT_GET, 'search',
FILTER_SANITIZE_SPECIAL_CHARS);

$search_url = filter_input(INPUT_GET, 'search', FILTER_SANITIZE_ENCODED);

echo "You have searched for $search_html.\n";

echo "Search again.";

?>

The above example will output something similar to:

You have searched for Me & son.

Search again.

See Also

• filter_var()
• filter_input_array()
• filter_var_array()

filter_list

filter_list -- Returns a list of all supported filters

Description

array filter_list (void)

Return Values

Returns an array of names of all supported filters, empty array if there are no such filters.
Indexes of this array are not filter IDs, they can be obtained with filter_id() from a name
instead.

Examples

Example #2731 - A filter_list() example

<?php

print_r(filter_list());

?>

The above example will output something similar to:

Array

(

 [0] => int

 [1] => boolean

 [2] => float

 [3] => validate_regexp

 [4] => validate_url

 [5] => validate_email

 [6] => validate_ip

 [7] => string

 [8] => stripped

 [9] => encoded

 [10] => special_chars

 [11] => unsafe_raw

 [12] => email

 [13] => url

 [14] => number_int

 [15] => number_float

 [16] => magic_quotes

 [17] => callback

)

filter_var_array

filter_var_array -- Gets multiple variables and optionally filters them

Description

mixed filter_var_array (array $data [, mixed $definition])

This function is useful for retrieving many values without repetitively calling filter_var().

Parameters

data

An array with string keys containing the data to filter.

definition

An array defining the arguments. A valid key is a string containing a variable name and
a valid value is either a filter type, or an array optionally specifying the filter, flags and
options. If the value is an array, valid keys are filter which specifies the filter type, flags
which specifies any flags that apply to the filter, and options which specifies any
options that apply to the filter. See the example below for a better understanding. This
parameter can be also an integer holding a filter constant. Then all values in the input
array are filtered by this filter.

Return Values

An array containing the values of the requested variables on success, or FALSE on
failure. An array value will be FALSE if the filter fails, or NULL if the variable is not set.

Examples

Example #2732 - A filter_var_array() example

<?php

error_reporting(E_ALL | E_STRICT);

$data = array(

 'product_id' => 'libgd<script>',

 'component' => '10',

 'versions' => '2.0.33',

 'testscalar' => array('2', '23', '10', '12'),

 'testarray' => '2',

);

$args = array(

 'product_id' => FILTER_SANITIZE_ENCODED,

 'component' => array('filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_FORCE_ARRAY,

 'options' => array('min_range' => 1,
'max_range' => 10)

),

 'versions' => FILTER_SANITIZE_ENCODED,

 'doesnotexist' => FILTER_VALIDATE_INT,

 'testscalar' => array(

 'filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_REQUIRE_SCALAR,

),

 'testarray' => array(

 'filter' => FILTER_VALIDATE_INT,

 'flags' => FILTER_FORCE_ARRAY,

)

);

$myinputs = filter_var_array($data, $args);

var_dump($myinputs);

echo "\n";

?>

The above example will output:

array(6) {

 ["product_id"]=>

 array(1) {

 [0]=>

 string(17) "libgd%3Cscript%3E"

 }

 ["component"]=>

 array(1) {

 [0]=>

 int(10)

 }

 ["versions"]=>

 array(1) {

 [0]=>

 string(6) "2.0.33"

 }

 ["doesnotexist"]=>

 NULL

 ["testscalar"]=>

 bool(false)

 ["testarray"]=>

 array(1) {

 [0]=>

 int(2)

 }

}

See Also

• filter_input_array()

• filter_var()
• filter_input()

filter_var

filter_var -- Filters a variable with a specified filter

Description

mixed filter_var (mixed $variable [, int $filter [, mixed $options]])

Parameters

variable

Value to filter.

filter

ID of a filter to use. Defaults to FILTER_SANITIZE_STRING.

options

Associative array of options or bitwise disjunction of flags. If filter accepts options, flags
can be provided in "flags" field of array. For the "callback" filter, callback type should
be passed.

Return Values

Returns the filtered data, or FALSE if the filter fails.

Examples

Example #2733 - A filter_var() example

<?php

var_dump(filter_var('bob@example.com', FILTER_VALIDATE_EMAIL));

var_dump(filter_var('example.com', FILTER_VALIDATE_URL,
FILTER_FLAG_SCHEME_REQUIRED));

?>

The above example will output:

string(15) "bob@example.com"

bool(false)

See Also

• filter_var_array()
• filter_input()
• filter_input_array()
• information about the callback type

Function Handling

Introduction

These functions all handle various operations involved in working with functions.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Function handling Functions

call_user_func_array

call_user_func_array -- Call a user function given with an array of parameters

Description

mixed call_user_func_array (callback $function, array $param_arr)

Call a user defined function with the parameters in param_arr.

Parameters

function

The function to be called.

param_arr

The parameters to be passed to the function, as an indexed array.

Return Values

Returns the function result, or FALSE on error.

Examples

Example #2734 - call_user_func_array() example

<?php

function debug($var, $val)

{

 echo "***DEBUGGING\nVARIABLE: $var\nVALUE:";

 if (is_array($val) || is_object($val) || is_resource($val)) {

 print_r($val);

 } else {

 echo "\n$val\n";

 }

 echo "***\n";

}

$c = mysql_connect();

$host = $_SERVER["SERVER_NAME"];

call_user_func_array('debug', array("host", $host));

call_user_func_array('debug', array("c", $c));

call_user_func_array('debug', array("_POST", $_POST));

?>

Example #2735 - call_user_func_array() using namespace name

<?php

namespace Foobar;

class Foo {

 static public function test($name) {

 print "Hello {$name}!\n";

 }

}

// As of PHP 5.3.0

call_user_func_array(__NAMESPACE__ .'::Foo::test', array('Hannes'));

// Hello Hannes!

// As of PHP 5.3.0

call_user_func_array(array(__NAMESPACE__ .'::Foo', 'test'),
array('Philip'));

// Hello Philip!

?>

Notes

Note

Referenced variables in param_arr are passed to the function by a reference, others
are passed by a value. In other words, it does not depend on the function signature
whether the parameter is passed by a value or by a reference.

See Also

• call_user_func()
• information about the callback type

call_user_func

call_user_func -- Call a user function given by the first parameter

Description

mixed call_user_func (callback $function [, mixed $parameter [, mixed $...]])

Call a user defined function given by the function parameter.

Parameters

function

The function to be called. Class methods may also be invoked statically using this
function by passing array($classname, $methodname) to this parameter.

parameter

Zero or more parameters to be passed to the function.

Note

Note that the parameters for call_user_func() are not passed by reference.

<?php

function increment(&$var)

{

 $var++;

}

$a = 0;

call_user_func('increment', $a);

echo $a; // 0

call_user_func_array('increment', array(&$a)); // You can use this
instead

echo $a; // 1

?>

Return Values

Returns the function result, or FALSE on error.

Examples

Example #2736 - call_user_func() example

<?php

function barber($type)

{

 echo "You wanted a $type haircut, no problem";

}

call_user_func('barber', "mushroom");

call_user_func('barber', "shave");

?>

Example #2737 - call_user_func() using namespace name

<?php

namespace Foobar;

class Foo {

 static public function test() {

 print "Hello world!\n";

 }

}

call_user_func(__NAMESPACE__ .'::Foo::test'); // As of PHP 5.3.0

// Hello world!

call_user_func(array(__NAMESPACE__ .'::Foo', 'test')); // As of PHP 5.3.0

// Hello world!

?>

Example #2738 - Using a class method

<?php

class myclass {

 static function say_hello()

 {

 echo "Hello!\n";

 }

}

$classname = "myclass";

call_user_func(array($classname, 'say_hello'));

call_user_func($classname .'::say_hello'); // As of 5.2.3

?>

See Also

• call_user_func_array()
• is_callable()
• information about the callback type

create_function

create_function -- Create an anonymous (lambda-style) function

Description

string create_function (string $args, string $code)

Creates an anonymous function from the parameters passed, and returns a unique name
for it.

Parameters

Usually these parameters will be passed as single quote delimited strings. The reason for
using single quoted strings, is to protect the variable names from parsing, otherwise, if you
use double quotes there will be a need to escape the variable names, e.g. \$avar.
args

The function arguments.

code

The function code.

Return Values

Returns a unique function name as a string, or FALSE on error.

Examples

Example #2739 - Creating an anonymous function with create_function()

You can use this function, to (for example) create a function from information gathered
at run time:

<?php

$newfunc = create_function('$a,$b', 'return "ln($a) + ln($b) = " . log($a *
$b);');

echo "New anonymous function: $newfunc\n";

echo $newfunc(2, M_E) . "\n";

// outputs

// New anonymous function: lambda_1

// ln(2) + ln(2.718281828459) = 1.6931471805599

?>

Or, perhaps to have general handler function that can apply a set of operations to a list of
parameters:

Example #2740 - Making a general processing function with create_function()

<?php

function process($var1, $var2, $farr)

{

 foreach ($farr as $f) {

 echo $f($var1, $var2) . "\n";

 }

}

// create a bunch of math functions

$f1 = 'if ($a >=0) {return "b*a^2 = ".$b*sqrt($a);} else {return false;}';

$f2 = "return \"min(b^2+a, a^2,b) = \".min(\$a*\$a+\$b,\$b*\$b+\$a);";

$f3 = 'if ($a > 0 && $b != 0) {return "ln(a)/b = ".log($a)/$b; } else {
return false; }';

$farr = array(

 create_function('$x,$y', 'return "some trig: ".(sin($x) + $x*cos($y));'),

 create_function('$x,$y', 'return "a hypotenuse: ".sqrt($x*$x + $y*$y);'),

 create_function('$a,$b', $f1),

 create_function('$a,$b', $f2),

 create_function('$a,$b', $f3)

);

echo "\nUsing the first array of anonymous functions\n";

echo "parameters: 2.3445, M_PI\n";

process(2.3445, M_PI, $farr);

// now make a bunch of string processing functions

$garr = array(

 create_function('$b,$a', 'if (strncmp($a, $b, 3) == 0) return "** \"$a\"
'.

 'and \"$b\"\n** Look the same to me! (looking at the first 3 chars)";'),

 create_function('$a,$b', '; return "CRCs: " . crc32($a) . " ,
".crc32(b);'),

 create_function('$a,$b', '; return "similar(a,b) = " . similar_text($a,
$b, &$p) . "($p%)";')

);

echo "\nUsing the second array of anonymous functions\n";

process("Twas brilling and the slithy toves", "Twas the night", $garr);

?>

The above example will output:

Using the first array of anonymous functions

parameters: 2.3445, M_PI

some trig: -1.6291725057799

a hypotenuse: 3.9199852871011

b*a^2 = 4.8103313314525

min(b^2+a, a^2,b) = 8.6382729035898

ln(a/b) = 0.27122299212594

Using the second array of anonymous functions

** "Twas the night" and "Twas brilling and the slithy toves"

** Look the same to me! (looking at the first 3 chars)

CRCs: -725381282 , 1908338681

similar(a,b) = 11(45.833333333333%)

But perhaps the most common use for of lambda-style (anonymous) functions is to create
callback functions, for example when using array_walk() or usort()

Example #2741 - Using anonymous functions as callback functions

<?php

$av = array("the ", "a ", "that ", "this ");

array_walk($av, create_function('&$v,$k', '$v = $v . "mango";'));

print_r($av);

?>

The above example will output:

Array

(

 [0] => the mango

 [1] => a mango

 [2] => that mango

 [3] => this mango

)

an array of strings ordered from shorter to longer

<?php

$sv = array("small", "larger", "a big string", "it is a string thing");

print_r($sv);

?>

The above example will output:

Array

(

 [0] => small

 [1] => larger

 [2] => a big string

 [3] => it is a string thing

)

sort it from longer to shorter

<?php

usort($sv, create_function('$a,$b','return strlen($b) - strlen($a);'));

print_r($sv);

?>

The above example will output:

Array

(

 [0] => it is a string thing

 [1] => a big string

 [2] => larger

 [3] => small

)

func_get_arg

func_get_arg -- Return an item from the argument list

Description

mixed func_get_arg (int $arg_num)

Gets the specified argument from a user-defined function's argument list.

This function may be used in conjunction with func_get_args() and func_num_args() to
allow user-defined functions to accept variable-length argument lists.

Parameters

arg_num

The argument offset. Function arguments are counted starting from zero.

Return Values

Returns the specified argument, or FALSE on error.

ChangeLog

Version Description

5.3.0 This function can now be used in parameter
lists.

Errors/Exceptions

Generates a warning if called from outside of a user-defined function, or if arg_num is
greater than the number of arguments actually passed.

Examples

Example #2742 - func_get_arg() example

<?php

function foo()

{

 $numargs = func_num_args();

 echo "Number of arguments: $numargs
\n";

 if ($numargs >= 2) {

 echo "Second argument is: " . func_get_arg(1) . "
\n";

 }

}

foo (1, 2, 3);

?>

Notes

Note

Because this function depends on the current scope to determine parameter details, it
cannot be used as a function parameter. If this value must be passed, the results
should be assigned to a variable, and that variable should be passed.

Note

This function returns a copy of the passed arguments only, and does not account for
default (non-passed) arguments.

See Also

• func_get_args()
• func_num_args()

func_get_args

func_get_args -- Returns an array comprising a function's argument list

Description

array func_get_args (void)

Gets an array of the function's argument list.

This function may be used in conjunction with func_get_arg() and func_num_args() to
allow user-defined functions to accept variable-length argument lists.

Return Values

Returns an array in which each element is a copy of the corresponding member of the
current user-defined function's argument list.

ChangeLog

Version Description

5.3.0 This function can now be used in parameter
lists.

Errors/Exceptions

Generates a warning if called from outside of a user-defined function.

Examples

Example #2743 - func_get_args() example

<?php

function foo()

{

 $numargs = func_num_args();

 echo "Number of arguments: $numargs
\n";

 if ($numargs >= 2) {

 echo "Second argument is: " . func_get_arg(1) . "
\n";

 }

 $arg_list = func_get_args();

 for ($i = 0; $i < $numargs; $i++) {

 echo "Argument $i is: " . $arg_list[$i] . "
\n";

 }

}

foo(1, 2, 3);

?>

Notes

Note

Because this function depends on the current scope to determine parameter details, it
cannot be used as a function parameter. If this value must be passed, the results
should be assigned to a variable, and that variable should be passed.

Note

This function returns a copy of the passed arguments only, and does not account for
default (non-passed) arguments.

See Also

• func_get_arg()
• func_num_args()

func_num_args

func_num_args -- Returns the number of arguments passed to the function

Description

int func_num_args (void)

Gets the number of arguments passed to the function.

This function may be used in conjunction with func_get_arg() and func_get_args() to allow
user-defined functions to accept variable-length argument lists.

Return Values

Returns the number of arguments passed into the current user-defined function.

ChangeLog

Version Description

5.3.0 This function can now be used in parameter
lists.

Errors/Exceptions

Generates a warning if called from outside of a user-defined function.

Examples

Example #2744 - func_num_args() example

<?php

function foo()

{

 $numargs = func_num_args();

 echo "Number of arguments: $numargs\n";

}

foo(1, 2, 3); // Prints 'Number of arguments: 3'

?>

Notes

Note

Because this function depends on the current scope to determine parameter details, it
cannot be used as a function parameter. If this value must be passed, the results
should be assigned to a variable, and that variable should be passed.

See Also

• func_get_arg()
• func_get_args()

function_exists

function_exists -- Return TRUE if the given function has been defined

Description

bool function_exists (string $function_name)

Checks the list of defined functions, both built-in (internal) and user-defined, for
function_name.

Parameters

function_name

The function name, as a string.

Return Values

Returns TRUE if function_name exists and is a function, FALSE otherwise.

Note

This function will return FALSE for constructs, such as include_once() and echo().

Examples

Example #2745 - function_exists() example

<?php

if (function_exists('imap_open')) {

 echo "IMAP functions are available.
\n";

} else {

 echo "IMAP functions are not available.
\n";

}

?>

Notes

Note

A function name may exist even if the function itself is unusable due to configuration or
compiling options (with the image functions being an example).

See Also

• method_exists()
• is_callable()
• get_defined_functions()

get_defined_functions

get_defined_functions -- Returns an array of all defined functions

Description

array get_defined_functions (void)

Gets an array of all defined functions.

Return Values

Returns an multidimensional array containing a list of all defined functions, both built-in
(internal) and user-defined. The internal functions will be accessible via $arr["internal"],
and the user defined ones using $arr["user"] (see example below).

Examples

Example #2746 - get_defined_functions() example

<?php

function myrow($id, $data)

{

 return "<tr><th>$id</th><td>$data</td></tr>\n";

}

$arr = get_defined_functions();

print_r($arr);

?>

The above example will output something similar to:

Array

(

 [internal] => Array

 (

 [0] => zend_version

 [1] => func_num_args

 [2] => func_get_arg

 [3] => func_get_args

 [4] => strlen

 [5] => strcmp

 [6] => strncmp

 ...

 [750] => bcscale

 [751] => bccomp

)

 [user] => Array

 (

 [0] => myrow

)

)

See Also

• function_exists()
• get_defined_vars()
• get_defined_constants()
• get_declared_classes()

register_shutdown_function

register_shutdown_function -- Register a function for execution on shutdown

Description

void register_shutdown_function (callback $function [, mixed $parameter [, mixed $
...]])

Registers the function named by function to be executed when script processing is
complete.

Multiple calls to register_shutdown_function() can be made, and each will be called in the
same order as they were registered. If you call exit() within one registered shutdown
function, processing will stop completely and no other registered shutdown functions will
be called.

In PHP 4.0.6 and earlier under Apache, the registered shutdown functions are called after
the request has been completed (including sending any output buffers), so it is not
possible to send output to the browser using echo() or print(), or retrieve the contents of
any output buffers using ob_get_contents(). Since PHP 4.1, the shutdown functions are
called as the part of the request so that it's possible to send the output from them. There is
currently no way to process the data with output buffering functions in the shutdown
function. Shutdown function is called after closing all opened output buffers thus, for
example, its output will not be compressed if zlib.output_compression is enabled.

As of PHP 4, it is possible to pass parameters to the shutdown function by passing
additional parameters to register_shutdown_function().

Parameters

function

parameter

...

Return Values

No value is returned.

Notes

Note

Typically undefined functions cause fatal errors in PHP, but when the function called
with register_shutdown_function() is undefined, an error of level E_WARNING is
generated instead. Also, for reasons internal to PHP, this error will refer to Unknown at
line #0.

Note

Working directory of the script can change inside the shutdown function under some
web servers, e.g. Apache.

Note

Shutdown function is called during the script shutdown so headers are always already
sent.

See Also

• auto_append_file
• exit()
• The section on connection handling

register_tick_function

register_tick_function -- Register a function for execution on each tick

Description

bool register_tick_function (callback $function [, mixed $arg [, mixed $...]])

Registers the given function to be executed when a tick is called.

Parameters

function

The function name as a string, or an array consisting of an object and a method.

arg

...

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2747 - register_tick_function() example

<?php

// using a function as the callback

register_tick_function('my_function', true);

// using an object->method

$object = new my_class();

register_tick_function(array(&$object, 'my_method'), true);

?>

Notes

Warning

register_tick_function() should not be used with threaded web server modules. Ticks
are not working in ZTS mode and may crash your web server.

See Also

• declare
• unregister_tick_function()

unregister_tick_function

unregister_tick_function -- De-register a function for execution on each tick

Description

void unregister_tick_function (string $function_name)

De-registers the function named by function_name so it is no longer executed when a tick
is called.

Parameters

function_name

The function name, as a string.

Return Values

No value is returned.

See Also

• register_tick_function()

Object Aggregation/Composition

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

In Object Oriented Programming, it is common to see the composition of simple classes
(and/or instances) into a more complex one. This is a flexible strategy for building
complicated objects and object hierarchies and can function as a dynamic alternative to
multiple inheritance. There are two ways to perform class (and/or object) composition
depending on the relationship between the composed elements: Association and
Aggregation.

Examples

Object Aggregation examples

An Association is a composition of independently constructed and externally visible parts.
When we associate classes or objects, each one keeps a reference to the ones it is
associated with. When we associate classes statically, one class will contain a reference
to an instance of the other class. For example:

Example #2748 - Class association

<?php

class MyDateTime {

 function MyDateTime()

 {

 // empty constructor

 }

 function now()

 {

 return date("Y-m-d H:i:s");

 }

}

class Report {

 var $_dt;

 // more properties ...

 function Report()

 {

 $this->_dt = new MyDateTime();

 // initialization code ...

 }

 function generateReport()

 {

 $dateTime = $this->_dt->now();

 // more code ...

 }

 // more methods ...

}

$rep = new Report();

?>

We can also associate instances at runtime by passing a reference in a constructor (or any
other method), which allow us to dynamically change the association relationship between
objects. We will modify the example above to illustrate this point:

Example #2749 - Object association

<?php

class MyDateTime {

 // same as previous example

}

class MyDateTimePlus {

 var $_format;

 function MyDateTimePlus($format="Y-m-d H:i:s")

 {

 $this->_format = $format;

 }

 function now()

 {

 return date($this->_format);

 }

}

class Report {

 var $_dt; // we'll keep the reference to MyDateTime here

 // more properties ...

 function Report()

 {

 // do some initialization

 }

 function setMyDateTime(&$dt)

 {

 $this->_dt =& $dt;

 }

 function generateReport()

 {

 $dateTime = $this->_dt->now();

 // more code ...

 }

 // more methods ...

}

$rep = new Report();

$dt = new MyDateTime();

$dtp = new MyDateTimePlus("l, F j, Y (h:i:s a, T)");

// generate report with simple date for web display

$rep->setMyDateTime(&$dt);

echo $rep->generateReport();

// later on in the code ...

// generate report with fancy date

$rep->setMyDateTime(&$dtp);

$output = $rep->generateReport();

// save $output in database

// ... etc ...

?>

Aggregation, on the other hand, implies encapsulation (hidding) of the parts of the
composition. We can aggregate classes by using a (static) inner class (PHP does not yet
support inner classes), in this case the aggregated class definition is not accessible,
except through the class that contains it. The aggregation of instances (object
aggregation) involves the dynamic creation of subobjects inside an object, in the process,
expanding the properties and methods of that object.

Object aggregation is a natural way of representing a whole-part relationship, (for
example, molecules are aggregates of atoms), or can be used to obtain an effect
equivalent to multiple inheritance, without having to permanently bind a subclass to two or
more parent classes and their interfaces. In fact object aggregation can be more flexible, in
which we can select what methods or properties to "inherit" in the aggregated object.

Examples

We define 3 classes, each implementing a different storage method:

Example #2750 - storage_classes.inc

<?php

class FileStorage {

 var $data;

 function FileStorage($data)

 {

 $this->data = $data;

 }

 function write($name)

 {

 $fp = fopen(name, "w");

 fwrite($fp, $this->data);

 fclose($data);

 }

}

class WDDXStorage {

 var $data;

 var $version = "1.0";

 var $_id; // "private" variable

 function WDDXStorage($data)

 {

 $this->data = $data;

 $this->_id = $this->_genID();

 }

 function store()

 {

 if ($this->_id) {

 $pid = wddx_packet_start($this->_id);

 wddx_add_vars($pid, "this->data");

 $packet = wddx_packet_end($pid);

 } else {

 $packet = wddx_serialize_value($this->data);

 }

 $dbh = dba_open("varstore", "w", "gdbm");

 dba_insert(md5(uniqid("", true)), $packet, $dbh);

 dba_close($dbh);

 }

 // a private method

 function _genID()

 {

 return md5(uniqid(rand(), true));

 }

}

class DBStorage {

 var $data;

 var $dbtype = "mysql";

 function DBStorage($data)

 {

 $this->data = $data;

 }

 function save()

 {

 $dbh = mysql_connect();

 mysql_select_db("storage", $dbh);

 $serdata = serialize($this->data);

 mysql_query("insert into vars ('$serdata',now())", $dbh);

 mysql_close($dbh);

 }

}

?>

We then instantiate a couple of objects from the defined classes, and perform some
aggregations and deaggregations, printing some object information along the way:

Example #2751 - test_aggregation.php

<?php

include "storageclasses.inc";

// some utilty functions

function p_arr($arr)

{

 foreach ($arr as $k => $v)

 $out[] = "\t$k => $v";

 return implode("\n", $out);

}

function object_info($obj)

{

 $out[] = "Class: " . get_class($obj);

 foreach (get_object_vars($obj) as $var=>$val) {

 if (is_array($val)) {

 $out[] = "property: $var (array)\n" . p_arr($val);

 } else {

 $out[] = "property: $var = $val";

 }

 }

 foreach (get_class_methods($obj) as $method) {

 $out[] = "method: $method";

 }

 return implode("\n", $out);

}

$data = array(M_PI, "kludge != cruft");

// we create some basic objects

$fs = new FileStorage($data);

$ws = new WDDXStorage($data);

// print information on the objects

echo "\$fs object\n";

echo object_info($fs) . "\n";

echo "\n\$ws object\n";

echo object_info($ws) . "\n";

// do some aggregation

echo "\nLet's aggregate \$fs to the WDDXStorage class\n";

aggregate($fs, "WDDXStorage");

echo "\$fs object\n";

echo object_info($fs) . "\n";

echo "\nNow let us aggregate it to the DBStorage class\n";

aggregate($fs, "DBStorage");

echo "\$fs object\n";

echo object_info($fs) . "\n";

echo "\nAnd finally deaggregate WDDXStorage\n";

deaggregate($fs, "WDDXStorage");

echo "\$fs object\n";

echo object_info($fs) . "\n";

?>

We will now consider the output to understand some of the side-effects and limitation of
object aggregation in PHP. First, the newly created $fs and $ws objects give the expected
output (according to their respective class declaration). Note that for the purposes of object
aggregation, private elements of a class/object begin with an underscore character ("_"),
even though there is not real distinction between public and private class/object elements
in PHP.

$fs object

Class: filestorage

property: data (array)

 0 => 3.1415926535898

 1 => kludge != cruft

method: filestorage

method: write

$ws object

Class: wddxstorage

property: data (array)

 0 => 3.1415926535898

 1 => kludge != cruft

property: version = 1.0

property: _id = ID::9bb2b640764d4370eb04808af8b076a5

method: wddxstorage

method: store

method: _genid

We then aggregate $fs with the WDDXStorage class, and print out the object information.
We can see now that even though nominally the $fs object is still of FileStorage, it now has
the property $version, and the method store(), both defined in WDDXStorage. One
important thing to note is that it has not aggregated the private elements defined in the
class, which are present in the $ws object. Also absent is the constructor from
WDDXStorage, which will not be logical to aggegate.

Let's aggregate $fs to the WDDXStorage class

$fs object

Class: filestorage

property: data (array)

 0 => 3.1415926535898

 1 => kludge != cruft

property: version = 1.0

method: filestorage

method: write

method: store

The process of aggregation is cumulative, so when we aggregate $fs with the class
DBStorage, generating an object that can use the storage methods of all the defined
classes.

Now let us aggregate it to the DBStorage class

$fs object

Class: filestorage

property: data (array)

 0 => 3.1415926535898

 1 => kludge != cruft

property: version = 1.0

property: dbtype = mysql

method: filestorage

method: write

method: store

method: save

Finally, the same way we aggregated properties and methods dynamically, we can also
deaggregate them from the object. So, if we deaggregate the class WDDXStorage from
$fs, we will obtain:

And deaggregate the WDDXStorage methods and properties

$fs object

Class: filestorage

property: data (array)

 0 => 3.1415926535898

 1 => kludge != cruft

property: dbtype = mysql

method: filestorage

method: write

method: save

One point that we have not mentioned above, is that the process of aggregation will not
override existing properties or methods in the objects. For example, the class FileStorage
defines a $data property, and the class WDDXStorage also defines a similar property
which will not override the one in the object acquired during instantiation from the class
FileStorage.

Object Aggregation Functions

aggregate_info

aggregate_info -- Gets aggregation information for a given object

Description

array aggregate_info (object $object)

Gets the aggregation information for the given object.

Parameters

object

Return Values

Returns the aggregation information as an associative array of arrays of methods and
properties. The key for the main array is the name of the aggregated class.

Examples

Example #2752 - Using aggregate_info()

<?php

class Slicer {

 var $vegetable;

 function Slicer($vegetable)

 {

 $this->vegetable = $vegetable;

 }

 function slice_it($num_cuts)

 {

 echo "Doing some simple slicing\n";

 for ($i=0; $i < $num_cuts; $i++) {

 // do some slicing

 }

 }

}

class Dicer {

 var $vegetable;

 var $rotation_angle = 90; // degrees

 function Dicer($vegetable)

 {

 $this->vegetable = $vegetable;

 }

 function dice_it($num_cuts)

 {

 echo "Cutting in one direction\n";

 for ($i=0; $i < $num_cuts; $i++) {

 // do some cutting

 }

 $this->rotate($this->rotation_angle);

 echo "Cutting in a second direction\n";

 for ($i=0; $i < $num_cuts; $i++) {

 // do some more cutting

 }

 }

 function rotate($deg)

 {

 echo "Now rotating {$this->vegetable} {$deg} degrees\n";

 }

 function _secret_super_dicing($num_cuts)

 {

 // so secret we cannot show you ;-)

 }

}

$obj = new Slicer('onion');

aggregate($obj, 'Dicer');

print_r(aggregate_info($obj));

?>

The above example will output:

Array

(

 [dicer] => Array

 (

 [methods] => Array

 (

 [0] => dice_it

 [1] => rotate

)

 [properties] => Array

 (

 [0] => rotation_angle

)

)

)

As you can see, all properties and methods of the Dicer class have been aggregated into
our new object, with the exception of the class constructor and the method
_secret_super_dicing

See Also

• aggregate()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

aggregate_methods_by_list

aggregate_methods_by_list -- Selective dynamic class methods aggregation to an object

Description

void aggregate_methods_by_list (object $object, string $class_name, array $
methods_list [, bool $exclude])

Aggregates methods from a class to an existing object using a list of method names.

The class constructor or methods whose names start with an underscore character (_),
which are considered private to the aggregated class, are always excluded.

Parameters

object

class_name

methods_list

exclude

The optional parameter exclude is used to decide whether the list contains the names
of methods to include in the aggregation (i.e. exclude is FALSE, which is the default
value), or to exclude from the aggregation (exclude is TRUE).

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_info()
• aggregate_methods()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

aggregate_methods_by_regexp

aggregate_methods_by_regexp -- Selective class methods aggregation to an object using
a regular expression

Description

void aggregate_methods_by_regexp (object $object, string $class_name, string $
regexp [, bool $exclude])

Aggregates methods from a class to an existing object using a regular expression to match
method names.

The class constructor or methods whose names start with an underscore character (_),
which are considered private to the aggregated class, are always excluded.

Parameters

object

class_name

regexp

exclude

The optional parameter exclude is used to decide whether the regular expression will
select the names of methods to include in the aggregation (i.e. exclude is FALSE,
which is the default value), or to exclude from the aggregation (exclude is TRUE).

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_info()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()

• deaggregate()

aggregate_methods

aggregate_methods -- Dynamic class and object aggregation of methods

Description

void aggregate_methods (object $object, string $class_name)

Aggregates all methods defined in a class to an existing object, except for the class
constructor, or methods whose names start with an underscore character (_) which are
considered private to the aggregated class.

Parameters

object

class_name

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_info()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

aggregate_properties_by_list

aggregate_properties_by_list -- Selective dynamic class properties aggregation to an
object

Description

void aggregate_properties_by_list (object $object, string $class_name, array $
properties_list [, bool $exclude])

Aggregates properties from a class to an existing object using a list of property names.

The properties whose names start with an underscore character (_), which are considered
private to the aggregated class, are always excluded.

Parameters

object

class_name

properties_list

exclude

The optional parameter exclude is used to decide whether the list contains the names
of class properties to include in the aggregation (i.e. exclude is FALSE, which is the
default value), or to exclude from the aggregation (exclude is TRUE).

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_regexp()
• aggregate_info()
• deaggregate()

aggregate_properties_by_regexp

aggregate_properties_by_regexp -- Selective class properties aggregation to an object
using a regular expression

Description

void aggregate_properties_by_regexp (object $object, string $class_name, string $
regexp [, bool $exclude])

Aggregates properties from a class to an existing object using a regular expression to
match their names.

The properties whose names start with an underscore character (_), which are considered
private to the aggregated class, are always excluded.

Parameters

object

class_name

regexp

exclude

The optional parameter exclude is used to decide whether the regular expression will
select the names of class properties to include in the aggregation (i.e. exclude is
FALSE, which is the default value), or to exclude from the aggregation (exclude is
TRUE).

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()

• aggregate_info()
• deaggregate()

aggregate_properties

aggregate_properties -- Dynamic aggregation of class properties to an object

Description

void aggregate_properties (object $object, string $class_name)

Aggregates all properties defined in a class to an existing object, except for properties
whose names start with an underscore character (_) which are considered private to the
aggregated class.

Parameters

object

class_name

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

aggregate

aggregate -- Dynamic class and object aggregation of methods and properties

Description

void aggregate (object $object, string $class_name)

Aggregates methods and properties defined in a class to an existing object. Methods and
properties with names starting with an underscore character (_) are considered private to
the aggregated class and are not used, constructors are also excluded from the
aggregation procedure.

Parameters

object

class_name

Return Values

No value is returned.

See Also

• aggregate_info()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

aggregation_info

aggregation_info -- Alias of aggregate_info()

Description

This function is an alias of: aggregate_info().

deaggregate

deaggregate -- Removes the aggregated methods and properties from an object

Description

void deaggregate (object $object [, string $class_name])

Removes the methods and properties from classes that were aggregated to an object.

Parameters

object

class_name

If the optional class_name parameters is passed, only those methods and properties
defined in that class are removed, otherwise all aggregated methods and properties
are eliminated.

Return Values

No value is returned.

See Also

• aggregate()
• aggregate_methods()
• aggregate_methods_by_list()
• aggregate_methods_by_regexp()
• aggregate_properties()
• aggregate_properties_by_list()
• aggregate_properties_by_regexp()
• deaggregate()

Variable handling

Introduction

For information on how variables behave, see the Variables entry in the Language
Reference section of the manual.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Variables Configuration Options

Name Default Changeable Changelog

unserialize_callback_
func

NULL PHP_INI_ALL Available since PHP
4.2.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

unserialize_callback_func string
The unserialize() callback function will called (with the undefined class' name as
parameter), if the unserializer finds an undefined class which should be instanciated. A
warning appears if the specified function is not defined, or if the function doesn't
include/implement the missing class. So only set this entry, if you really want to
implement such a callback-function. See also unserialize().

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Variable handling Functions

debug_zval_dump

debug_zval_dump -- Dumps a string representation of an internal zend value to output

Description

void debug_zval_dump (mixed $variable)

Dumps a string representation of an internal zend value to output.

Parameters

variable

The variable being evaluated.

Return Values

No value is returned.

Examples

Example #2753 - debug_zval_dump() example

<?php

$var1 = 'Hello World';

$var2 = '';

$var2 =& $var1;

debug_zval_dump(&$var1);

?>

The above example will output:

&string(11) "Hello World" refcount(3)

Note

Beware the refcount

The refcount value returned by this function is non-obvious in certain circumstances.
For example, a developer might expect the above example to indicate a refcount of 2.
The third reference is created when actually calling debug_zval_dump().

This behavior is further compounded when a variable is not passed to
debug_zval_dump() by reference. To illustrate, consider a slightly modified version of
the above example:

Example #2754

<?php

$var1 = 'Hello World';

$var2 = '';

$var2 =& $var1;

debug_zval_dump($var1); // not passed by reference, this time

?>

The above example will output:

string(11) "Hello World" refcount(1)

Why refcount(1) ? Because a copy of $var1 is being made, when the function is called.

This function becomes even more confusing when a variable with a refcount of 1 is
passed (by copy/value):

Example #2755

<?php

$var1 = 'Hello World';

debug_zval_dump($var1);

?>

The above example will output:

string(11) "Hello World" refcount(2)

A refcount of 2, here, is extremely non-obvious. Especially considering the above
examples. So what's happening?

When a variable has a single reference (as did $var1 before it was used as an
argument to debug_zval_dump()), PHP's engine optimizes the manner in which it is
passed to a function. Internally, PHP treats $var1 like a reference (in that the refcount
is increased for the scope of this function), with the caveat that if the passed reference
happens to be written to, a copy is made, but only at the moment of writing. This is
known as "copy on write."

So, if debug_zval_dump() happened to write to its sole parameter (and it doesn't), then
a copy would be made. Until then, the parameter remains a reference, causing the
refcount to be incremented to 2 for the scope of the function call.

See Also

• var_dump()
• debug_backtrace()
• References Explained
• » References Explained (by Derick Rethans)

http://derickrethans.nl/php_references_article.php

doubleval

doubleval -- Alias of floatval()

Description

This function is an alias of: floatval().

ChangeLog

Version Description

4.2.0 doubleval() became an alias of floatval().
Before this time, only doubleval() existed.

empty

empty -- Determine whether a variable is empty

Description

bool empty (mixed $var)

Determine whether a variable is considered to be empty.

Parameters

var

Variable to be checked

Note

empty() only checks variables as anything else will result in a parse error. In other
words, the following will not work: empty(trim($name)).

empty() is the opposite of (boolean) var, except that no warning is generated when the
variable is not set.

Return Values

Returns FALSE if var has a non-empty and non-zero value.

The following things are considered to be empty:

• "" (an empty string)
• 0 (0 as an integer)
• "0" (0 as a string)
• NULL
• FALSE
• array() (an empty array)
• var $var; (a variable declared, but without a value in a class)

ChangeLog

Version Description

PHP 5
As of PHP 5, objects with no properties are

no longer considered empty.

PHP 4
As of PHP 4, The string value "0" is
considered empty.

Examples

Example #2756 - A simple empty() / isset() comparison.

<?php

$var = 0;

// Evaluates to true because $var is empty

if (empty($var)) {

 echo '$var is either 0, empty, or not set at all';

}

// Evaluates as true because $var is set

if (isset($var)) {

 echo '$var is set even though it is empty';

}

?>

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See Also

• isset()
• unset()
• array_key_exists()
• count()
• strlen()
• The type comparison tables

floatval

floatval -- Get float value of a variable

Description

float floatval (mixed $var)

Gets the float value of var.

Parameters

var

May be any scalar type. You cannot use floatval() on arrays or objects.

Return Values

The float value of the given variable.

Examples

Example #2757 - floatval() Example

<?php

$var = '122.34343The';

$float_value_of_var = floatval($var);

echo $float_value_of_var; // 122.34343

?>

See Also

• intval()
• strval()
• settype()
• Type juggling

get_defined_vars

get_defined_vars -- Returns an array of all defined variables

Description

array get_defined_vars (void)

This function returns a multidimensional array containing a list of all defined variables, be
them environment, server or user-defined variables, within the scope that
get_defined_vars() is called.

Return Values

A multidimensional array with all the variables.

Examples

Example #2758 - get_defined_vars() Example

<?php

$b = array(1, 1, 2, 3, 5, 8);

$arr = get_defined_vars();

// print $b

print_r($arr["b"]);

/* print path to the PHP interpreter (if used as a CGI)

* e.g. /usr/local/bin/php */

echo $arr["_"];

// print the command-line parameters if any

print_r($arr["argv"]);

// print all the server vars

print_r($arr["_SERVER"]);

// print all the available keys for the arrays of variables

print_r(array_keys(get_defined_vars()));

?>

ChangeLog

Version Description

5.0.0 The $GLOBALS variable is included in the
results of the array returned.

See Also

• isset()
• get_defined_functions()
• get_defined_constants()

get_resource_type

get_resource_type -- Returns the resource type

Description

string get_resource_type (resource $handle)

This function gets the type of the given resource.

Parameters

handle

The evaluated resource handle.

Return Values

If the given handle is a resource, this function will return a string representing its type. If
the type is not identified by this function, the return value will be the string Unknown.

This function will return FALSE and generate an error if handle is not a resource.

Examples

Example #2759 - get_resource_type() example

<?php

// prints: mysql link

$c = mysql_connect();

echo get_resource_type($c) . "\n";

// prints: file

$fp = fopen("foo", "w");

echo get_resource_type($fp) . "\n";

// prints: domxml document

$doc = new_xmldoc("1.0");

echo get_resource_type($doc->doc) . "\n";

?>

gettype

gettype -- Get the type of a variable

Description

string gettype (mixed $var)

Returns the type of the PHP variable var.

Warning

Never use gettype() to test for a certain type, since the returned string may be subject
to change in a future version. In addition, it is slow too, as it involves string
comparison.

Instead, use the is_* functions.

Parameters

var

The variable being type checked.

Return Values

Possibles values for the returned string are:

• " boolean "

• " integer "

• " double " (for historical reasons "double" is returned in case of a float, and not simply
"float")

• " string "

• " array "

• " object "

• " resource "

• " NULL "

• "unknown type"

See Also

• settype()
• is_array()
• is_bool()
• is_float()
• is_int()
• is_null()
• is_numeric()
• is_object()
• is_resource()
• is_scalar()
• is_string()
• function_exists()
• method_exists()

import_request_variables

import_request_variables -- Import GET/POST/Cookie variables into the global scope

Description

bool import_request_variables (string $types [, string $prefix])

Imports GET/POST/Cookie variables into the global scope. It is useful if you disabled
register_globals, but would like to see some variables in the global scope.

If you're interested in importing other variables into the global scope, such as SERVER,
consider using extract().

Parameters

types

Using the types parameter, you can specify which request variables to import. You
can use 'G', 'P' and 'C' characters respectively for GET, POST and Cookie. These
characters are not case sensitive, so you can also use any combination of 'g', 'p' and
'c'. POST includes the POST uploaded file information.

Note

Note that the order of the letters matters, as when using "gp", the POST variables
will overwrite GET variables with the same name. Any other letters than GPC are
discarded.

prefix

Variable name prefix, prepended before all variable's name imported into the global
scope. So if you have a GET value named "userid", and provide a prefix "pref_", then
you'll get a global variable named $pref_userid.

Note

Although the prefix parameter is optional, you will get an E_NOTICE level error if
you specify no prefix, or specify an empty string as a prefix. This is a possible
security hazard. Notice level errors are not displayed using the default error
reporting level.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2760 - import_request_variables() example

<?php

// This will import GET and POST vars

// with an "rvar_" prefix

import_request_variables("gp", "rvar_");

echo $rvar_foo;

?>

See Also

• $_REQUEST
• register_globals
• Predefined Variables
• extract()

intval

intval -- Get the integer value of a variable

Description

int intval (mixed $var [, int $base])

Returns the integer value of var, using the specified base for the conversion (the default is
base 10).

Parameters

var

The scalar value being converted to an integer

base

The base for the conversion (default is base 10)

Return Values

The integer value of var on success, or 0 on failure. Empty arrays and objects return 0,
non-empty arrays and objects return 1.

The maximum value depends on the system. 32 bit systems have a maximum signed
integer range of -2147483648 to 2147483647. So for example on such a system,
intval('1000000000000') will return 2147483647. The maximum signed integer value for 64
bit systems is 9223372036854775807.

Strings will most likely return 0 although this depends on the leftmost characters of the
string. The common rules of integer casting apply.

Examples

Example #2761 - intval() examples

The following examples are based on a 32 bit system.

<?php

echo intval(42); // 42

echo intval(4.2); // 4

echo intval('42'); // 42

echo intval('+42'); // 42

echo intval('-42'); // -42

echo intval(042); // 34

echo intval('042'); // 42

echo intval(1e10); // 1410065408

echo intval('1e10'); // 1

echo intval(0x1A); // 26

echo intval(42000000); // 42000000

echo intval(420000000000000000000); // 0

echo intval('420000000000000000000'); // 2147483647

echo intval(42, 8); // 42

echo intval('42', 8); // 34

?>

Notes

Note

The base parameter has no effect unless the var parameter is a string.

See Also

• floatval()
• strval()
• settype()
• is_numeric()
• Type juggling
• BCMath Arbitrary Precision Mathematics Functions

is_array

is_array -- Finds whether a variable is an array

Description

bool is_array (mixed $var)

Finds whether the given variable is an array.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is an array, FALSE otherwise.

Examples

Example #2762 - Check that variable is an array

<?php

$yes = array('this', 'is', 'an array');

echo is_array($yes) ? 'Array' : 'not an Array';

echo "\n";

$no = 'this is a string';

echo is_array($no) ? 'Array' : 'not an Array';

?>

The above example will output:

Array

not an Array

See Also

• is_float()

• is_int()
• is_string()
• is_object()

is_binary

is_binary -- Finds whether a variable is a native binary string

Description

bool is_binary (mixed $var)

Finds whether the given variable is a native binary string.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a native binary string, FALSE otherwise.

See Also

• is_buffer()
• is_string()
• is_unicode()

is_bool

is_bool -- Finds out whether a variable is a boolean

Description

bool is_bool (mixed $var)

Finds whether the given variable is a boolean.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a boolean, FALSE otherwise.

Examples

Example #2763 - is_bool() examples

<?php

$a = false;

$b = 0;

// Since $a is a boolean, this is true

if (is_bool($a)) {

 echo "Yes, this is a boolean";

}

// Since $b is not a boolean, this is not true

if (is_bool($b)) {

 echo "Yes, this is a boolean";

}

?>

See Also

• is_float()
• is_int()

• is_string()
• is_object()
• is_array()

is_buffer

is_buffer -- Finds whether a variable is a native unicode or binary string

Description

bool is_buffer (mixed $var)

Finds whether the given variable is a native unicode or binary string.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a native unicode or binary string, FALSE otherwise.

See Also

• is_binary()
• is_string()
• is_unicode()

is_callable

is_callable -- Verify that the contents of a variable can be called as a function

Description

bool is_callable (mixed $var [, bool $syntax_only [, string &$callable_name]])

Verify that the contents of a variable can be called as a function. This can check that a
simple variable contains the name of a valid function, or that an array contains a properly
encoded object and function name.

Parameters

var

Can be either the name of a function stored in a string variable, or an object and the
name of a method within the object, like this:
array($SomeObject, 'MethodName')

syntax_only

If set to TRUE the function only verifies that var might be a function or method. It will
only reject simple variables that are not strings, or an array that does not have a valid
structure to be used as a callback. The valid ones are supposed to have only 2 entries,
the first of which is an object or a string, and the second a string.

callable_name

Receives the "callable name". In the example below it is "someClass::someMethod".
Note, however, that despite the implication that someClass::SomeMethod() is a
callable static method, this is not the case.

Return Values

Returns TRUE if var is callable, FALSE otherwise.

Examples

Example #2764 - is_callable() example

<?php

// How to check a variable to see if it can be called

// as a function.

//

// Simple variable containing a function

//

function someFunction()

{

}

$functionVariable = 'someFunction';

var_dump(is_callable($functionVariable, false, $callable_name)); //
bool(true)

echo $callable_name, "\n"; // someFunction

//

// Array containing a method

//

class someClass {

 function someMethod()

 {

 }

}

$anObject = new someClass();

$methodVariable = array($anObject, 'someMethod');

var_dump(is_callable($methodVariable, true, $callable_name)); //
bool(true)

echo $callable_name, "\n"; // someClass::someMethod

?>

See Also

• function_exists()
• method_exists()

is_double

is_double -- Alias of is_float()

Description

This function is an alias of: is_float().

is_float

is_float -- Finds whether the type of a variable is float

Description

bool is_float (mixed $var)

Finds whether the type of the given variable is float.

Note

To test if a variable is a number or a numeric string (such as form input, which is
always a string), you must use is_numeric().

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a float, FALSE otherwise.

Examples

Example #2765 - is_float() example

<?php

if(is_float(27.25)) {

echo "is float\n";

}else {

echo "is not float\n";

}

var_dump(is_float('abc'));

var_dump(is_float(23));

var_dump(is_float(23.5));

var_dump(is_float(1e7)); //Scientific Notation

var_dump(is_float(true));

?>

The above example will output:

is float

bool(false)

bool(false)

bool(true)

bool(true)

bool(false)

See Also

• is_bool()
• is_int()
• is_numeric()
• is_string()
• is_array()
• is_object()

is_int

is_int -- Find whether the type of a variable is integer

Description

bool is_int (mixed $var)

Finds whether the type of the given variable is integer.

Note

To test if a variable is a number or a numeric string (such as form input, which is
always a string), you must use is_numeric().

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is an integer, FALSE otherwise.

Examples

Example #2766 - is_int() example

<?php

if (is_int(23)) {

echo "is integer\n";

} else {

echo "is not an integer\n";

}

var_dump(is_int(23));

var_dump(is_int("23"));

var_dump(is_int(23.5));

var_dump(is_int(true));

?>

The above example will output:

is integer

bool(true)

bool(false)

bool(false)

bool(false)

See Also

• is_bool()
• is_float()
• is_numeric()
• is_string()
• is_array()
• is_object()

is_integer

is_integer -- Alias of is_int()

Description

This function is an alias of: is_int().

is_long

is_long -- Alias of is_int()

Description

This function is an alias of: is_int().

is_null

is_null -- Finds whether a variable is NULL

Description

bool is_null (mixed $var)

Finds whether the given variable is NULL.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is null, FALSE otherwise.

See Also

• The NULL type
• isset()
• is_bool()
• is_numeric()
• is_float()
• is_int()
• is_string()
• is_object()
• is_array()

is_numeric

is_numeric -- Finds whether a variable is a number or a numeric string

Description

bool is_numeric (mixed $var)

Finds whether the given variable is numeric. Numeric strings consist of optional sign, any
number of digits, optional decimal part and optional exponential part. Thus +0123.45e6 is
a valid numeric value. Hexadecimal notation (0xFF) is allowed too but only without sign,
decimal and exponential part.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a number or a numeric string, FALSE otherwise.

See Also

• ctype_digit()
• is_bool()
• is_null()
• is_float()
• is_int()
• is_string()
• is_object()
• is_array()

is_object

is_object -- Finds whether a variable is an object

Description

bool is_object (mixed $var)

Finds whether the given variable is an object.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is an object, FALSE otherwise.

Notes

Note

This function will return FALSE if used on an unserialized object where the class
definition is not present (even though gettype() returns object).

See Also

• is_bool()
• is_int()
• is_float()
• is_string()
• is_array()

is_real

is_real -- Alias of is_float()

Description

This function is an alias of: is_float().

is_resource

is_resource -- Finds whether a variable is a resource

Description

bool is_resource (mixed $var)

Finds whether the given variable is a resource.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a resource, FALSE otherwise.

Examples

Example #2767 - is_resource() example

<?php

$db_link = @mysql_connect('localhost', 'mysql_user', 'mysql_pass');

if (!is_resource($db_link)) {

 die('Can\'t connect : ' . mysql_error());

}

?>

See Also

• The resource-type documentation
• get_resource_type()

is_scalar

is_scalar -- Finds whether a variable is a scalar

Description

bool is_scalar (mixed $var)

Finds whether the given variable is a scalar.

Scalar variables are those containing an integer, float, string or boolean. Types array,
object and resource are not scalar.

Note

is_scalar() does not consider resource type values to be scalar as resources are
abstract datatypes which are currently based on integers. This implementation detail
should not be relied upon, as it may change.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a scalar FALSE otherwise.

Examples

Example #2768 - is_scalar() example

<?php

function show_var($var)

{

 if (is_scalar($var)) {

 echo $var;

 } else {

 var_dump($var);

 }

}

$pi = 3.1416;

$proteins = array("hemoglobin", "cytochrome c oxidase", "ferredoxin");

show_var($pi);

show_var($proteins)

?>

The above example will output:

3.1416

array(3) {

 [0]=>

 string(10) "hemoglobin"

 [1]=>

 string(20) "cytochrome c oxidase"

 [2]=>

 string(10) "ferredoxin"

}

See Also

• is_float()
• is_int()
• is_numeric()
• is_real()
• is_string()
• is_bool()
• is_object()
• is_array()

is_string

is_string -- Find whether the type of a variable is string

Description

bool is_string (mixed $var)

Finds whether the type given variable is string.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is of type string, FALSE otherwise.

Examples

Example #2769 - is_string() example

<?php

if (is_string("23")) {

echo "is string\n";

} else {

echo "is not an string\n";

}

var_dump(is_string('abc'));

var_dump(is_string("23"));

var_dump(is_string(23.5));

var_dump(is_string(true));

?>

The above example will output:

is string

bool(true)

bool(true)

bool(false)

bool(false)

See Also

• is_float()
• is_int()
• is_bool()
• is_object()
• is_array()

is_unicode

is_unicode -- Finds whether a variable is a unicode string

Description

bool is_unicode (mixed $var)

Finds whether the given variable is a unicode string.

Parameters

var

The variable being evaluated.

Return Values

Returns TRUE if var is a unicode string, FALSE otherwise.

See Also

• is_binary()
• is_buffer()
• is_string()
• unicode_encode()

isset

isset -- Determine whether a variable is set

Description

bool isset (mixed $var [, mixed $var [, $...]])

Determine whether a variable is set.

If a variable has been unset with unset(), it will no longer be set. isset() will return FALSE if
testing a variable that has been set to NULL. Also note that a NULL byte ("\0") is not
equivalent to the PHP NULL constant.

If multiple parameters are supplied then isset() will return TRUE only if all of the
parameters are set. Evaluation goes from left to right and stops as soon as an unset
variable is encountered.

Parameters

var

The variable to be checked.

var

Another variable ..

...

Return Values

Returns TRUE if var exists; FALSE otherwise.

Examples

Example #2770 - isset() Examples

<?php

$var = '';

// This will evaluate to TRUE so the text will be printed.

if (isset($var)) {

 echo "This var is set so I will print.";

}

// In the next examples we'll use var_dump to output

// the return value of isset().

$a = "test";

$b = "anothertest";

var_dump(isset($a)); // TRUE

var_dump(isset($a, $b)); // TRUE

unset ($a);

var_dump(isset($a)); // FALSE

var_dump(isset($a, $b)); // FALSE

$foo = NULL;

var_dump(isset($foo)); // FALSE

?>

This also work for elements in arrays:

<?php

$a = array ('test' => 1, 'hello' => NULL);

var_dump(isset($a['test'])); // TRUE

var_dump(isset($a['foo'])); // FALSE

var_dump(isset($a['hello'])); // FALSE

// The key 'hello' equals NULL so is considered unset

// If you want to check for NULL key values then try:

var_dump(array_key_exists('hello', $a)); // TRUE

?>

Notes

Warning

isset() only works with variables as passing anything else will result in a parse error.
For checking if constants are set use the defined() function.

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

See Also

• empty()
• unset()
• defined()
• the type comparison tables
• array_key_exists()
• is_null()
• the error control @ operator

print_r

print_r -- Prints human-readable information about a variable

Description

mixed print_r (mixed $expression [, bool $return])

print_r() displays information about a variable in a way that's readable by humans.

print_r(), var_dump() and var_export() will also show protected and private properties of
objects with PHP 5. Static class members will not be shown.

Remember that print_r() will move the array pointer to the end. Use reset() to bring it back
to beginning.

Parameters

expression

The expression to be printed.

return

If you would like to capture the output of print_r(), use the return parameter. If this
parameter is set to TRUE, print_r() will return its output, instead of printing it (which it
does by default).

Return Values

If given a string, integer or float, the value itself will be printed. If given an array, values will
be presented in a format that shows keys and elements. Similar notation is used for object
s.

Notes

Note

This function uses internal output buffering with this parameter so it can not be used
inside an ob_start() callback function.

ChangeLog

Version Description

4.3.0 The return parameter was added. If you
need to capture the output of print_r() with
an older version of PHP prior, use the
output-control functions.

4.0.4 Prior to PHP 4.0.4, print_r() will continue
forever if given an array or object that
contains a direct or indirect reference to
itself. An example is print_r($GLOBALS)
because $GLOBALS is itself a global
variable that contains a reference to itself.

Examples

Example #2771 - print_r() example

<pre>

<?php

$a = array ('a' => 'apple', 'b' => 'banana', 'c' => array ('x', 'y', 'z'));

print_r ($a);

?>

</pre>

The above example will output:

<pre>

Array

(

 [a] => apple

 [b] => banana

 [c] => Array

 (

 [0] => x

 [1] => y

 [2] => z

)

)

</pre>

Example #2772 - return parameter example

<?php

$b = array ('m' => 'monkey', 'foo' => 'bar', 'x' => array ('x', 'y', 'z'));

$results = print_r($b, true); // $results now contains output from print_r

?>

See Also

• ob_start()
• var_dump()
• var_export()

serialize

serialize -- Generates a storable representation of a value

Description

string serialize (mixed $value)

Generates a storable representation of a value

This is useful for storing or passing PHP values around without losing their type and
structure.

To make the serialized string into a PHP value again, use unserialize().

Parameters

value

The value to be serialized. serialize() handles all types, except the resource -type. You
can even serialize() arrays that contain references to itself. Circular references inside
the array/object you are serialize() ing will also be stored. Any other reference will be
lost. When serializing objects, PHP will attempt to call the member function __sleep
prior to serialization. This is to allow the object to do any last minute clean-up, etc. prior
to being serialized. Likewise, when the object is restored using unserialize() the
__wakeup member function is called.

Return Values

Returns a string containing a byte-stream representation of value that can be stored
anywhere.

Examples

Example #2773 - serialize() example

<?php

// $session_data contains a multi-dimensional array with session

// information for the current user. We use serialize() to store

// it in a database at the end of the request.

$conn = odbc_connect("webdb", "php", "chicken");

$stmt = odbc_prepare($conn,

 "UPDATE sessions SET data = ? WHERE id = ?");

$sqldata = array (serialize($session_data), $_SERVER['PHP_AUTH_USER']);

if (!odbc_execute($stmt, &$sqldata)) {

 $stmt = odbc_prepare($conn,

 "INSERT INTO sessions (id, data) VALUES(?, ?)");

 if (!odbc_execute($stmt, &$sqldata)) {

 /* Something went wrong.. */

 }

}

?>

ChangeLog

Version Description

4.0.7 The object serialization process was fixed.

4.0.0 When serializing an object, methods are not
lost anymore. Please see the Serializing
Objects for more information.

Notes

Note

It is not possible to serialize PHP built-in objects.

See Also

• unserialize()
• Serializing Objects

settype

settype -- Set the type of a variable

Description

bool settype (mixed &$var, string $type)

Set the type of variable var to type.

Parameters

var

The variable being converted.

type

Possibles values of type are:

• "boolean" (or, since PHP 4.2.0, "bool")

• "integer" (or, since PHP 4.2.0, "int")

• "float" (only possible since PHP 4.2.0, for older versions use the deprecated variant
"double")

• "string"

• "array"

• "object"

• "null" (since PHP 4.2.0)

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2774 - settype() example

<?php

$foo = "5bar"; // string

$bar = true; // boolean

settype($foo, "integer"); // $foo is now 5 (integer)

settype($bar, "string"); // $bar is now "1" (string)

?>

Notes

Note

Maximum value for "int" is PHP_INT_MAX.

See Also

• gettype()
• type-casting
• type-juggling

strval

strval -- Get string value of a variable

Description

string strval (mixed $var)

Get the string value of a variable. See the documentation on string for more information on
converting to string.

Parameters

var

The variable that is being converted to a string. var may be any scalar type. You
cannot use strval() on arrays or objects.

Return Values

The string value of var.

See Also

• floatval()
• intval()
• settype()
• Type juggling

unserialize

unserialize -- Creates a PHP value from a stored representation

Description

mixed unserialize (string $str)

unserialize() takes a single serialized variable and converts it back into a PHP value.

Parameters

str

The serialized string. If the variable being unserialized is an object, after successfully
reconstructing the object PHP will automatically attempt to call the __wakeup()
member function (if it exists).

Note

unserialize_callback_func directive

It's possible to set a callback-function which will be called, if an undefined class
should be instantiated during unserializing. (to prevent getting an incomplete object
"__PHP_Incomplete_Class".) Use your php.ini, ini_set() or.htaccess to define
'unserialize_callback_func'. Everytime an undefined class should be instantiated,
it'll be called. To disable this feature just empty this setting.

Return Values

The converted value is returned, and can be a boolean, integer, float, string, array or
object.

In case the passed string is not unserializeable, FALSE is returned and E_NOTICE is
issued.

ChangeLog

Version Description

4.2.0 The directive unserialize_callback_func
directive became available.

4.0.0 When serializing an object, methods are not
lost anymore. Please see the Serializing
Objects for more information.

Examples

Example #2775 - unserialize() example

<?php

// Here, we use unserialize() to load session data to the

// $session_data array from the string selected from a database.

// This example complements the one described with serialize().

$conn = odbc_connect("webdb", "php", "chicken");

$stmt = odbc_prepare($conn, "SELECT data FROM sessions WHERE id = ?");

$sqldata = array($_SERVER['PHP_AUTH_USER']);

if (!odbc_execute($stmt, &$sqldata) || !odbc_fetch_into($stmt, &$tmp)) {

 // if the execute or fetch fails, initialize to empty array

 $session_data = array();

} else {

 // we should now have the serialized data in $tmp[0].

 $session_data = unserialize($tmp[0]);

 if (!is_array($session_data)) {

 // something went wrong, initialize to empty array

 $session_data = array();

 }

}

?>

Example #2776 - unserialize_callback_func example

<?php

$serialized_object='O:1:"a":1:{s:5:"value";s:3:"100";}';

// unserialize_callback_func directive available as of PHP 4.2.0

ini_set('unserialize_callback_func', 'mycallback'); // set your
callback_function

function mycallback($classname)

{

 // just include a file containing your classdefinition

 // you get $classname to figure out which classdefinition is required

}

?>

Notes

Warning

FALSE is returned both in the case of an error and if unserializing the serialized
FALSE value. It is possible to catch this special case by comparing str with
serialize(false) or by catching the issued E_NOTICE.

See Also

• serialize()

unset

unset -- Unset a given variable

Description

void unset (mixed $var [, mixed $var [, mixed $...]])

unset() destroys the specified variables.

The behavior of unset() inside of a function can vary depending on what type of variable
you are attempting to destroy.

If a globalized variable is unset() inside of a function, only the local variable is destroyed.
The variable in the calling environment will retain the same value as before unset() was
called.

<?php

function destroy_foo()

{

 global $foo;

 unset($foo);

}

$foo = 'bar';

destroy_foo();

echo $foo;

?>

The above example will output:

bar

If you would like to unset() a global variable inside of a function, you can use the
$GLOBALS array to do so:

<?php

function foo()

{

 unset($GLOBALS['bar']);

}

$bar = "something";

foo();

?>

If a variable that is PASSED BY REFERENCE is unset() inside of a function, only the local
variable is destroyed. The variable in the calling environment will retain the same value as
before unset() was called.

<?php

function foo(&$bar)

{

 unset($bar);

 $bar = "blah";

}

$bar = 'something';

echo "$bar\n";

foo($bar);

echo "$bar\n";

?>

The above example will output:

something

something

If a static variable is unset() inside of a function, unset() destroys the variable only in the
context of the rest of a function. Following calls will restore the previous value of a
variable.

<?php

function foo()

{

 static $bar;

 $bar++;

 echo "Before unset: $bar, ";

 unset($bar);

 $bar = 23;

 echo "after unset: $bar\n";

}

foo();

foo();

foo();

?>

The above example will output:

Before unset: 1, after unset: 23

Before unset: 2, after unset: 23

Before unset: 3, after unset: 23

Parameters

var

The variable to be unset.

var

Another variable ..

...

Return Values

No value is returned.

ChangeLog

Version Description

4.0.0 unset() became an expression. (In PHP 3,
unset() would always return 1).

Examples

Example #2777 - unset() example

<?php

// destroy a single variable

unset($foo);

// destroy a single element of an array

unset($bar['quux']);

// destroy more than one variable

unset($foo1, $foo2, $foo3);

?>

Notes

Note

Because this is a language construct and not a function, it cannot be called using
variable functions

Note

It is possible to unset even object properties visible in current context.

Note

It is not possible to unset $this inside an object method since PHP 5.

See Also

• isset()
• empty()
• array_splice()

var_dump

var_dump -- Dumps information about a variable

Description

void var_dump (mixed $expression [, mixed $expression [, $...]])

This function displays structured information about one or more expressions that includes
its type and value. Arrays and objects are explored recursively with values indented to
show structure.

In PHP 5 all public, private and protected properties of objects will be returned in the
output.

Tip

As with anything that outputs its result directly to the browser, the output-control
functions can be used to capture the output of this function, and save it in a string (for
example).

Parameters

expression

The variable you want to export.

Return Values

No value is returned.

Examples

Example #2778 - var_dump() example

<?php

$a = array(1, 2, array("a", "b", "c"));

var_dump($a);

?>

The above example will output:

array(3) {

 [0]=>

 int(1)

 [1]=>

 int(2)

 [2]=>

 array(3) {

 [0]=>

 string(1) "a"

 [1]=>

 string(1) "b"

 [2]=>

 string(1) "c"

 }

}

<?php

$b = 3.1;

$c = true;

var_dump($b, $c);

?>

The above example will output:

float(3.1)

bool(true)

See Also

• var_export()
• print_r()

var_export

var_export -- Outputs or returns a parsable string representation of a variable

Description

mixed var_export (mixed $expression [, bool $return])

var_export() gets structured information about the given variable. It is similar to
var_dump() with one exception: the returned representation is valid PHP code.

Parameters

expression

The variable you want to export.

return

If used and set to TRUE, var_export() will return the variable representation instead of
outputing it.

Note

This function uses internal output buffering with this parameter so it can not be
used inside an ob_start() callback function.

Return Values

Returns the variable representation when the return parameter is used and evaluates to
TRUE. Otherwise, this function will return NULL.

ChangeLog

Version Description

5.1.0 Possibility to export classes and arrays
containing classes using the __set_state
magic method.

Examples

Example #2779 - var_export() Examples

<?php

$a = array (1, 2, array ("a", "b", "c"));

var_export($a);

?>

The above example will output:

array (

 0 => 1,

 1 => 2,

 2 =>

 array (

 0 => 'a',

 1 => 'b',

 2 => 'c',

),

)

<?php

$b = 3.1;

$v = var_export($b, true);

echo $v;

?>

The above example will output:

3.1

Example #2780 - Exporting classes since PHP 5.1.0

<?php

class A { public $var; }

$a = new A;

$a->var = 5;

var_export($a);

?>

The above example will output:

A::__set_state(array(

 'var' => 5,

))

Example #2781 - Using __set_state (since PHP 5.1.0)

<?php

class A

{

 public $var1;

 public $var2;

 public static function __set_state($an_array)

 {

 $obj = new A;

 $obj->var1 = $an_array['var1'];

 $obj->var2 = $an_array['var2'];

 return $obj;

 }

}

$a = new A;

$a->var1 = 5;

$a->var2 = 'foo';

eval('$b = ' . var_export($a, true) . ';'); // $b = A::__set_state(array(

 // 'var1' => 5,

 // 'var2' => 'foo',

 //));

var_dump($b);

?>

The above example will output:

object(A)#2 (2) {

 ["var1"]=>

 int(5)

 ["var2"]=>

 string(3) "foo"

}

Notes

Note

Variables of type resource couldn't be exported by this function.

Note

var_export() does not handle circular references as it would be close to impossible to
generate parsable PHP code for that. If you want to do something with the full
representation of an array or object, use serialize().

See Also

• print_r()
• serialize()
• var_dump()

Web Services

SOAP

Introduction

The SOAP extension can be used to write SOAP Servers and Clients. It supports subsets
of » SOAP 1.1, » SOAP 1.2 and » WSDL 1.1 specifications.

http://www.w3.org/TR/soap11/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/wsdl

Installing/Configuring

Requirements

This extension makes use of the » GNOME xml library. Download and install this library.
You will need at least libxml-2.5.4.

Installation

This extension is only available if PHP was configured with --enable-soap.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

SOAP Configuration Options

Name Default Changeable Changelog

soap.wsdl_cache_en
abled

"1" PHP_INI_ALL Available since PHP
5.0.0.

soap.wsdl_cache_dir "/tmp" PHP_INI_ALL Available since PHP
5.0.0.

soap.wsdl_cache_ttl "86400" PHP_INI_ALL Available since PHP
5.0.0.

soap.wsdl_cache_lim
it

"5" PHP_INI_ALL Available since PHP
5.1.5.

soap.wsdl_cache "1" PHP_INI_ALL Available since PHP
5.1.5.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

soap.wsdl_cache_enabled boolean
Enables or disables the WSDL caching feature.

soap.wsdl_cache_dir string
Sets the directory name where the SOAP extension will put cache files.

http://www.xmlsoft.org/

soap.wsdl_cache_ttl integer
Sets the number of seconds (time to live) that cached files will be used instead of the
originals.

soap.wsdl_cache_limit integer
Maximum number of in-memory cached WSDL files. Adding further files into a full
memory cache will delete the oldest files from it.

soap.wsdl_cache integer
If soap.wsdl_cache_enabled is on, this setting determines the type of caching. It can
be any of: WSDL_CACHE_NONE (0), WSDL_CACHE_DISK (1),
WSDL_CACHE_MEMORY (2) or WSDL_CACHE_BOTH (3). This can also be set
via the options array in the SoapClient or SoapServer constructor.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

SOAP_1_1 (integer)

SOAP_1_2 (integer)

SOAP_PERSISTENCE_SESSION (integer)

SOAP_PERSISTENCE_REQUEST (integer)

SOAP_FUNCTIONS_ALL (integer)

SOAP_ENCODED (integer)

SOAP_LITERAL (integer)

SOAP_RPC (integer)

SOAP_DOCUMENT (integer)

SOAP_ACTOR_NEXT (integer)

SOAP_ACTOR_NONE (integer)

SOAP_ACTOR_UNLIMATERECEIVER (integer)

SOAP_COMPRESSION_ACCEPT (integer)

SOAP_COMPRESSION_GZIP (integer)

SOAP_COMPRESSION_DEFLATE (integer)

SOAP_WAIT_ONE_WAY_CALLS (integer)
Added in PHP 5.1.0.

UNKNOWN_TYPE (integer)

XSD_STRING (integer)

XSD_BOOLEAN (integer)

XSD_DECIMAL (integer)

XSD_FLOAT (integer)

XSD_DOUBLE (integer)

XSD_DURATION (integer)

XSD_DATETIME (integer)

XSD_TIME (integer)

XSD_DATE (integer)

XSD_GYEARMONTH (integer)

XSD_GYEAR (integer)

XSD_GMONTHDAY (integer)

XSD_GDAY (integer)

XSD_GMONTH (integer)

XSD_HEXBINARY (integer)

XSD_BASE64BINARY (integer)

XSD_ANYURI (integer)

XSD_ANYXML (integer)
Added in PHP 5.1.0.

XSD_QNAME (integer)

XSD_NOTATION (integer)

XSD_NORMALIZEDSTRING (integer)

XSD_TOKEN (integer)

XSD_LANGUAGE (integer)

XSD_NMTOKEN (integer)

XSD_NAME (integer)

XSD_NCNAME (integer)

XSD_ID (integer)

XSD_IDREF (integer)

XSD_IDREFS (integer)

XSD_ENTITY (integer)

XSD_ENTITIES (integer)

XSD_INTEGER (integer)

XSD_NONPOSITIVEINTEGER (integer)

XSD_NEGATIVEINTEGER (integer)

XSD_LONG (integer)

XSD_INT (integer)

XSD_SHORT (integer)

XSD_BYTE (integer)

XSD_NONNEGATIVEINTEGER (integer)

XSD_UNSIGNEDLONG (integer)

XSD_UNSIGNEDINT (integer)

XSD_UNSIGNEDSHORT (integer)

XSD_UNSIGNEDBYTE (integer)

XSD_POSITIVEINTEGER (integer)

XSD_NMTOKENS (integer)

XSD_ANYTYPE (integer)

SOAP_ENC_OBJECT (integer)

SOAP_ENC_ARRAY (integer)

XSD_1999_TIMEINSTANT (integer)

XSD_NAMESPACE (string)

XSD_1999_NAMESPACE (string)

WSDL_CACHE_NONE (integer)

Switches off WSDL caching even if soap.wsdl_cache_enabled is on. Available since
PHP 5.1.5.

WSDL_CACHE_DISK (integer)
Available since PHP 5.1.5.

WSDL_CACHE_MEMORY (integer)
Caches WSDL data in process memory. Available since PHP 5.1.5.

WSDL_CACHE_BOTH (integer)
Available since PHP 5.1.5.

SOAP Functions

Predefined Classes

SoapClient

Constructor

• SoapClient->__construct() - constructs a new SoapClient object

Methods

• SoapClient->__call() - Calls a SOAP function (deprecated)

• SoapClient->__doRequest() - Performs a SOAP request

• SoapClient->__getFunctions() - Returns list of SOAP functions

• SoapClient->__getLastRequest() - Returns last SOAP request

• SoapClient->__getLastRequestHeaders() - Returns last SOAP request headers

• SoapClient->__getLastResponse() - Returns last SOAP response

• SoapClient->__getLastResponseHeaders() - Returns last SOAP response headers

• SoapClient->__getTypes() - Returns list of SOAP types

• SoapClient->__setCookie() - Sets the cookie that will be sent with the SOAP request

• SoapClient->__soapCall() - Calls a SOAP function

SoapFault

Constructor

• SoapFault->__construct() - construct a new SoapFault object

SoapHeader

SoapHeader is a special low-level class for passing or returning SOAP headers. It's just a
data holder and it does not have any special methods except its constructor. It can be
used in the SoapClient->__soapCall() method to pass a SOAP header or in a SOAP
header handler to return the header in a SOAP response.

Constructor

• SoapHeader->__construct() - construct a new SoapHeader object

SoapParam

SoapParam is a special low-level class for naming parameters and returning values in
non-WSDL mode. It's just a data holder and it does not have any special methods except
its constructor.

Constructor

• SoapParam->__construct() - construct a new SoapParam object

SoapServer

Constructor

• SoapServer->__construct() - construct a new SoapServer object

Methods

• SoapServer->addFunction() - Adds one or several functions those will handle SOAP
requests

• SoapServer->fault() -

• SoapServer->getFunctions() - Returns list of defined functions

• SoapServer->handle() - Handles a SOAP request

• SoapServer->setClass() - Sets class which will handle SOAP requests

• SoapServer->setPersistence() - Sets persistence mode of SoapServer

SoapVar

SoapVar is a special low-level class for encoding parameters and returning values in
non-WSDL mode. It's just a data holder and does not have any special methods except
the constructor. It's useful when you want to set the type property in SOAP request or
response.

Constructor

• SoapVar->__construct() - construct a new SoapVar object

is_soap_fault

is_soap_fault -- Checks if SOAP call was failed

Description

bool is_soap_fault (mixed $obj)

This function is useful when you like to check if the SOAP call failed, but don't like to use
exceptions. To use it you must create a SoapClient object with the exceptions option set to
zero or FALSE. In this case, the SOAP method will return a special SoapFault object
which encapsulates the fault details (faultcode, faultstring, faultactor and faultdetails).

If exceptions is not set then SOAP call will throw an exception on error. is_soap_fault()
checks if the given parameter is a SoapFault object.

Parameters

obj

The tested object.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2782 - is_soap_fault() example

<?php

$client = new SoapClient("some.wsdl", array('exceptions' => 0));

$result = $client->SomeFunction();

if (is_soap_fault($result)) {

 trigger_error("SOAP Fault: (faultcode: {$result->faultcode}, faultstring:
{$result->faultstring})", E_USER_ERROR);

}

?>

Example #2783 - SOAP's standard method for error reporting is exceptions

<?php

try {

 $client = new SoapClient("some.wsdl");

 $result = $client->SomeFunction(/* ... */);

} catch (SoapFault $fault) {

 trigger_error("SOAP Fault: (faultcode: {$fault->faultcode}, faultstring:
{$fault->faultstring})", E_USER_ERROR);

}

?>

See Also

• SoapClient->__construct()
• SoapFault->__construct()

SoapClient->__call()

SoapClient->__call() -- Calls a SOAP function (deprecated)

Description

SoapClient

mixed __call (string $function_name, array $arguments [, array $options [, array $
input_headers [, array $output_headers]]])

This method is deprecated. Use SoapClient->__soapCall() instead of it.

SoapClient->__construct()

SoapClient->__construct() -- SoapClient constructor

Description

SoapClient

__construct (mixed $wsdl [, array $options])

This constructor creates SoapClient objects in WSDL or non-WSDL mode.

Parameters

wsdl

URI of the WSDL file or NULL if working in non-WSDL mode.

Note

During development stage, you may want to disable WSDL caching by the mean of
the soap.wsdl_cache_ttl php.ini setting, otherwise changes made to the WSDL file
will have no effect until soap.wsdl_cache_ttl is expired.

options

An array of options. If working in WSDL mode, this parameter is optional. If working in
non-WSDL mode, you must set the location and uri options, where location is the URL
to request and uri is the target namespace of the SOAP service. The style and use
options only work in non-WSDL mode. In WSDL mode, they come from the WSDL file.
The soap_version option specifies whether to use SOAP 1.1, or SOAP 1.2 client. For
HTTP authentication, you may use the login and password options. For making an
HTTP connection through a proxy server, use the options proxy_host, proxy_port,
proxy_login and proxy_password. For HTTPS client certificate authentication use
local_cert and passphrase options. The compression option allows to use compression
of HTTP SOAP requests and responses. The encoding option defines internal
character encoding. This option does not change the encoding of SOAP requests (it is
always utf-8), but converts strings into it. The classmap option can be used to map
some WSDL types to PHP classes. This option must be an array with WSDL types as
keys and names of PHP classes as values. Setting the boolean trace option enables
use of the methods SoapClient->__getLastRequest,
SoapClient->__getLastRequestHeaders, SoapClient->__getLastResponse and
SoapClient->__getLastResponseHeaders. The exceptions option is a boolean value
defining whether soap errors throw exceptions of type SoapFault. The

connection_timeout option defines a timeout in seconds for the connection to the
SOAP service. This option does not define a timeout for services with slow responses.
To limit the time to wait for calls to finish the default_socket_timeout setting is
available. The typemap option is an array of type mappings. Type mapping is an array
with keys type_name, type_ns (namespace URI), from_xml (callback accepting one
string parameter) and to_xml (callback accepting one object parameter). Other options
are stream_context, features, cache_wsdl and user_agent.

Examples

Example #2784 - SoapClient examples

<?php

$client = new SoapClient("some.wsdl");

$client = new SoapClient("some.wsdl", array('soap_version' => SOAP_1_2));

$client = new SoapClient("some.wsdl", array('login' => "some_name",

 'password' =>
"some_password"));

$client = new SoapClient("some.wsdl", array('proxy_host' => "localhost",

 'proxy_port' => 8080));

$client = new SoapClient("some.wsdl", array('proxy_host' => "localhost",

 'proxy_port' => 8080,

 'proxy_login' => "some_name",

 'proxy_password' =>
"some_password"));

$client = new SoapClient("some.wsdl", array('local_cert' =>
"cert_key.pem"));

$client = new SoapClient(null, array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/"));

$client = new SoapClient(null, array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/",

 'style' => SOAP_DOCUMENT,

 'use' => SOAP_LITERAL));

$client = new SoapClient("some.wsdl",

 array('compression' => SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_GZIP));

$server = new SoapClient("some.wsdl", array('encoding'=>'ISO-8859-1'));

class MyBook {

 public $title;

 public $author;

}

$server = new SoapClient("books.wsdl", array('classmap' => array('book' =>

"MyBook")));

?>

SoapClient->__doRequest()

SoapClient->__doRequest() -- Performs a SOAP request

Description

SoapClient

string __doRequest (string $request, string $location, string $action, int $version [, int
$one_way])

Performs SOAP request over HTTP.

This method can be overridden in subclasses to implement different transport layers,
perform additional XML processing or other purpose.

Parameters

request

The XML SOAP request.

location

The URL to request.

action

The SOAP action.

version

The SOAP version.

one_way

Return Values

The XML SOAP response.

ChangeLog

Version Description

5.1.3 The one_way parameter was added.

Examples

Example #2785 - Some examples

<?php

function Add($x,$y) {

 return $x+$y;

}

class LocalSoapClient extends SoapClient {

 function __construct($wsdl, $options) {

 parent::__construct($wsdl, $options);

 $this->server = new SoapServer($wsdl, $options);

 $this->server->addFunction('Add');

 }

 function __doRequest($request, $location, $action, $version) {

 ob_start();

 $this->server->handle($request);

 $response = ob_get_contents();

 ob_end_clean();

 return $response;

 }

}

$x = new LocalSoapClient(NULL,array('location'=>'test://',

 'uri'=>'http://testuri.org'));

var_dump($x->Add(3,4));

?>

SoapClient->__getFunctions()

SoapClient->__getFunctions() -- Returns list of SOAP functions

Description

SoapClient

array __getFunctions (void)

Returns the list of SOAP functions.

Note

This function works only in WSDL mode.

Return Values

The list of SOAP functions.

Examples

Example #2786 - SoapClient->__getFunctions() example

<?php

$client = new SoapClient('some.wsdl');

var_dump($client->__getFunctions());

?>

See Also

• SoapClient->__construct()

SoapClient->__getLastRequest()

SoapClient->__getLastRequest() -- Returns last SOAP request

Description

SoapClient

string __getLastRequest (void)

Note

This method works only if the SoapClient object was created with the trace option.

Return Values

The last SOAP request.

Examples

Example #2787 - SoapClient->__getLastRequest() example

<?php

$client = SoapClient("some.wsdl", array('trace' => 1));

$result = $client->SomeFunction();

echo "REQUEST:\n" . $client->__getLastRequest() . "\n";

?>

See Also

• SoapClient->__construct()
• SoapClient->__getLastRequestHeaders()
• SoapClient->__getLastResponse()
• SoapClient->__getLastResponseHeaders()

SoapClient->__getLastRequestHeaders()

SoapClient->__getLastRequestHeaders() -- Returns last SOAP request headers

Description

SoapClient

string __getLastRequestHeaders (void)

Note

This method works only if the SoapClient object was created with the trace option.

Return Values

The last SOAP request headers.

See Also

• SoapClient->__construct()
• SoapClient->__getLastRequest()
• SoapClient->__getLastResponse()
• SoapClient->__getLastResponseHeaders()

SoapClient->__getLastResponse()

SoapClient->__getLastResponse() -- Returns last SOAP response.

Description

SoapClient

string __getLastResponse (void)

Note

This method works only if the SoapClient object was created with the trace option.

Return Values

The last SOAP response.

Examples

Example #2788 - SoapClient->__getLastResponse() example

<?php

$client = SoapClient("some.wsdl", array('trace' => 1));

$result = $client->SomeFunction();

echo "RESPONSE:\n" . $client->__getLastResponse() . "\n";

?>

See Also

• SoapClient->__construct()
• SoapClient->__getLastResponseHeaders()
• SoapClient->__getLastRequest()
• SoapClient->__getLastRequestHeaders()

SoapClient->__getLastResponseHeaders()

SoapClient->__getLastResponseHeaders() -- Returns last SOAP response headers.

Description

SoapClient

string __getLastResponseHeaders (void)

Note

This method works only if the SoapClient object was created with the trace option.

Return Values

The last SOAP response headers.

See Also

• SoapClient->__construct()
• SoapClient->__getLastResponse()
• SoapClient->__getLastRequest()
• SoapClient->__getLastRequestHeaders()

SoapClient->__getTypes()

SoapClient->__getTypes() -- Returns list of SOAP types

Description

SoapClient

array __getTypes (void)

This function works only in WSDL mode.

Return Values

The list of SOAP types.

Examples

Example #2789 - SoapClient->__getTypes() example

<?php

$client = new SoapClient("some.wsdl");

var_dump($client->__getTypes());

?>

See Also

• SoapClient->__construct()

SoapClient->__setCookie()

SoapClient->__setCookie() -- Sets the cookie that will be sent with the SOAP request

Description

SoapClient

void __setCookie (string $name [, string $value])

Defines a cookie to be sent along with the SOAP requests.

Note

Calling this method will affect all following calls to SoapClient methods.

Parameters

name

The name of the cookie.

value

The value of the cookie. If not specified, the cookie will be deleted.

Return Values

No value is returned.

SoapClient->__soapCall()

SoapClient->__soapCall() -- Calls a SOAP function

Description

SoapClient

mixed __soapCall (string $function_name, array $arguments [, array $options [, mixed $
input_headers [, array &$output_headers]]])

This is a low level API function that is used to make a SOAP call. Usually, in WSDL mode,
you can simply call SOAP functions as SoapClient methods. This method useful in
non-WSDL mode when soapaction is unknown, uri differs from the default or when
sending and/or receiving SOAP Headers.

On error, a call to a SOAP function can cause PHP to throw exceptions or return a
SoapFault object if exceptions are disabled. To check if the function call failed to catch the
SoapFault exceptions, check the result with is_soap_fault().

Return Values

SOAP functions may return one, or multiple values. If only one value is returned by the
SOAP function, the return value of __soapCall will be a simple value (e.g. an integer, a
string, etc). If multiple values are returned, __soapCall will return an associative array of
named output parameters.

Examples

Example #2790 - SoapClient->__soapCall() Examples

<?php

$client = new SoapClient("some.wsdl");

$client->SomeFunction($a, $b, $c);

$client->__soapCall("SomeFunction", array($a, $b, $c));

$client->__soapCall("SomeFunction", array($a, $b, $c), NULL,

 new SoapHeader(), $output_headers);

$client = new SoapClient(null, array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/"));

$client->SomeFunction($a, $b, $c);

$client->__soapCall("SomeFunction", array($a, $b, $c));

$client->__soapCall("SomeFunction", array($a, $b, $c),

 array('soapaction' => 'some_action',

 'uri' => 'some_uri'));

?>

See Also

• SoapClient->__construct()
• SoapParam->__construct()
• SoapVar->__construct()
• SoapHeader->__construct()
• SoapFault->__construct()
• is_soap_fault()

SoapFault->__construct()

SoapFault->__construct() -- SoapFault constructor

Description

SoapFault

__construct (string $faultcode, string $faultstring [, string $faultactor [, mixed $
detail [, string $faultname [, SoapHeader $headerfault]]]])

This class is useful when you would like to send SOAP fault responses from the PHP
handler. faultcode, faultstring, faultactor and details are standard elements of
SOAP Fault;

Parameters

faultcode

The error code of the SoapFault.

faultstring

The error message of the SoapFault.

faultactor

A string identifying the actor that caused the error.

detail

faultname

Can be used to select the proper fault encoding from WSDL.

headerfault

Can be used during SOAP header handling to report an error in the response header.

Examples

Example #2791 - Some examples

<?php

function test($x)

{

 return new SoapFault("Server", "Some error message");

}

$server = new SoapServer(null, array('uri' => "http://test-uri/"));

$server->addFunction("test");

$server->handle();

?>

It is possible to use PHP exception mechanism to throw SOAP Fault.

Example #2792 - Some examples

<?php

function test($x)

{

 throw new SoapFault("Server", "Some error message");

}

$server = new SoapServer(null, array('uri' => "http://test-uri/"));

$server->addFunction("test");

$server->handle();

?>

See Also

• SoapClient->__construct()
• SoapClient->__soapCall()
• SoapVar->__construct()
• SoapParam->__construct()
• SoapFault->__construct()
• is_soap_fault()

SoapHeader->__construct()

SoapHeader->__construct() -- SoapHeader constructor

Description

SoapHeader

__construct (string $namespace, string $name [, mixed $data [, bool $mustUnderstand [,
mixed $actor]]])

Constructs a new SoapHeader object.

Parameters

namespace

The namespace of the SOAP header element.

name

The name of the SOAP header element.

data

A SOAP header's content. It can be a PHP value or a SoapVar object.

mustUnderstand

Value of the mustUnderstand attribute of the SOAP header element.

actor

Value of the actor attribute of the SOAP header element.

Examples

Example #2793 - Some examples

<?php

$client = new SoapClient(null, array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/"));

$client->__soapCall("echoVoid", null, null,

 new SoapHeader('http://soapinterop.org/echoheader/',

 'echoMeStringRequest',

 'hello world'));

?>

See Also

• SoapClient->__soapCall()
• SoapVar->__construct()
• SoapParam->__construct()

SoapParam->__construct()

SoapParam->__construct() -- SoapParam constructor

Description

SoapParam

__construct (mixed $data, string $name)

Constructs a new SoapParam object.

Parameters

data

The data to pass or return. You can pass this parameter directly as PHP value, but in
this case it will be named as paramN and the SOAP Service may not understand it.

name

The parameter name.

Examples

Example #2794 - Some examples

<?php

$client = new SoapClient(null,array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/"));

$client->SomeFunction(new SoapParam($a, "a"),

 new SoapParam($b, "b"),

 new SoapParam($c, "c"));

?>

See Also

• SoapClient->__soapCall()
• SoapVar->__construct()

SoapServer->addFunction()

SoapServer->addFunction() -- Adds one or several functions those will handle SOAP
requests

Description

SoapServer

void addFunction (mixed $functions)

Exports one or more functions for remote clients.

Parameters

functions

To export one function, pass the function name into this parameter as a string. To
export several functions, pass an array of function names. To export all the functions,
pass a special constant SOAP_FUNCTIONS_ALL.

Note

functions must receive all input arguments in the same order as defined in the
WSDL file (They should not receive any output parameters as arguments) and
return one or more values. To return several values they must return an array with
named output parameters.

Return Values

No value is returned.

Examples

Example #2795 - Some examples

<?php

function echoString($inputString)

{

 return $inputString;

}

$server->addFunction("echoString");

function echoTwoStrings($inputString1, $inputString2)

{

 return array("outputString1" => $inputString1,

 "outputString2" => $inputString2);

}

$server->addFunction(array("echoString", "echoTwoStrings"));

$server->addFunction(SOAP_FUNCTIONS_ALL);

?>

See Also

• SoapServer->__construct()
• SoapServer->setClass()

SoapServer->__construct()

SoapServer->__construct() -- SoapServer constructor

Description

SoapServer

__construct (mixed $wsdl [, array $options])

This constructor allows the creation of SoapServer objects in WSDL or non-WSDL mode.

Parameters

wsdl

If you want the WSDL mode, you must set this to the URI of a WSDL file. In the other
case, you must set this to NULL and set the uri option.

options

Allow setting a default SOAP version (soap_version), internal character encoding (
encoding), and actor URI (actor). The classmap option can be used to map some
WSDL types to PHP classes. This option must be an array with WSDL types as keys
and names of PHP classes as values. The typemap option is an array of type
mappings. Type mapping is an array with keys type_name, type_ns (namespace URI),
from_xml (callback accepting one string parameter) and to_xml (callback accepting
one object parameter). Other options are features and cache_wsdl.

Examples

Example #2796 - Some examples

<?php

$server = new SoapServer("some.wsdl");

$server = new SoapServer("some.wsdl", array('soap_version' => SOAP_1_2));

$server = new SoapServer("some.wsdl", array('actor' =>
"http://example.org/ts-tests/C"));

$server = new SoapServer("some.wsdl", array('encoding'=>'ISO-8859-1'));

$server = new SoapServer(null, array('uri' => "http://test-uri/"));

class MyBook {

 public $title;

 public $author;

}

$server = new SoapServer("books.wsdl", array('classmap' => array('book' =>
"MyBook")));

?>

SoapServer->fault()

SoapServer->fault() -- Issue SoapServer fault indicating an error

Description

SoapServer

void fault (string $code, string $string [, string $actor [, mixed $details [, string $name]
]])

Warning

This function is currently not documented; only its argument list is available.

See Also

• SoapFault->__construct()

SoapServer->getFunctions()

SoapServer->getFunctions() -- Returns list of defined functions

Description

SoapServer

array getFunctions (void)

This method returns the list of all functions added by SoapServer->addFunction() or
SoapServer->setClass().

Return Values

The list of all functions.

Examples

Example #2797 - Some examples

<?php

$server = new SoapServer(NULL, array("uri" => "http://test-uri"));

$server->addFunction(SOAP_FUNCTIONS_ALL);

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $server->handle();

} else {

 echo "This SOAP server can handle following functions: ";

 $functions = $server->getFunctions();

 foreach($functions as $func) {

 echo $func . "\n";

 }

}

?>

See Also

• SoapServer->__construct()
• SoapServer->addFunction()
• SoapServer->setClass()

SoapServer->handle()

SoapServer->handle() -- Handles a SOAP request

Description

SoapServer

void handle ([string $soap_request])

Processes a SOAP request, calls necessary functions, and sends a response back.

Parameters

soap_request

The SOAP request. If this argument is omitted, the request is supposed to be in the
$HTTP_RAW_POST_DATA PHP variable.

Return Values

No value is returned.

Examples

Example #2798 - Some examples

<?php

function test($x)

{

 return $x;

}

$server = new SoapServer(null, array('uri' => "http://test-uri/"));

$server->addFunction("test");

$server->handle();

?>

See Also

• SoapServer->__construct()

SoapServer->setClass()

SoapServer->setClass() -- Sets class which will handle SOAP requests

Description

SoapServer

void setClass (string $class_name [, mixed $args [, mixed $...]])

Exports all methods from specified class.

The object can be made persistent across request for a given PHP session with the
SoapServer->setPersistence() method.

Parameters

class_name

The name of the exported class.

args

These optional parameters will be passed to the default class constructor during object
creation.

Return Values

No value is returned.

Examples

Example #2799 - Some examples

<?php

class foo {

 function foo()

 {

 }

}

$server->setClass("foo");

class bar {

 function bar($x, $y)

 {

 }

}

$server->setClass("bar", $arg1, $arg2);

?>

See Also

• SoapServer->__construct()
• SoapServer->addFunction()
• SoapServer->setPersistence()

SoapServer->setPersistence()

SoapServer->setPersistence() -- Sets persistence mode of SoapServer

Description

SoapServer

void setPersistence (int $mode)

This function allows saving data between requests in a PHP session. It works only with a
server that exports functions from a class with SoapServer->setClass().

Parameters

mode

One of the SOAP_PERSISTENCE_XXX constants.

Return Values

No value is returned.

Examples

Example #2800 - Some examples

<?php

$server->setPersistence(SOAP_PERSISTENCE_SESSION);

$server->setPersistence(SOAP_PERSISTENCE_REQUEST);

?>

Note

The persistence SOAP_PERSISTENCE_SESSION makes persistent only object of
given class, but not the class static data. You may use $this->bar instead of self::$bar.

See Also

• SoapServer->__construct()
• SoapServer->setClass()

SoapVar->__construct()

SoapVar->__construct() -- SoapVar constructor

Description

SoapVar

__construct (mixed $data, int $encoding [, string $type_name [, string $type_namespace
[, string $node_name [, string $node_namespace]]]])

Constructs a new SoapVar object.

Parameters

data

The data to pass or return.

encoding

The encoding ID, one of the XSD_... constants.

type_name

The type name.

type_namespace

The type namespace.

node_name

The XML node name.

node_namespace

The XML node namespace.

Examples

Example #2801 - Some examples

<?php

class SOAPStruct {

 function SOAPStruct($s, $i, $f)

 {

 $this->varString = $s;

 $this->varInt = $i;

 $this->varFloat = $f;

 }

}

$client = new SoapClient(null, array('location' =>
"http://localhost/soap.php",

 'uri' => "http://test-uri/"));

$struct = new SOAPStruct('arg', 34, 325.325);

$soapstruct = new SoapVar($struct, SOAP_ENC_OBJECT, "SOAPStruct",
"http://soapinterop.org/xsd");

$client->echoStruct(new SoapParam($soapstruct, "inputStruct"));

?>

See Also

• SoapClient->__soapCall()
• SoapParam->__construct()

use_soap_error_handler

use_soap_error_handler -- Set whether to use the SOAP error handler and return the
former value

Description

bool use_soap_error_handler ([bool $handler])

Warning

This function is currently not documented; only its argument list is available.

XML-RPC

Introduction

These functions can be used to write XML-RPC servers and clients. You can find more
information about XML-RPC at » http://www.xmlrpc.com/, and more documentation on this
extension and its functions at » http://xmlrpc-epi.sourceforge.net/.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://www.xmlrpc.com/
http://xmlrpc-epi.sourceforge.net/

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

XML-RPC support in PHP is not enabled by default. You will need to use the
--with-xmlrpc[=DIR] configuration option when compiling PHP to enable XML-RPC support.
This extension is bundled into PHP as of 4.1.0.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

XML-RPC configuration options

Name Default Changeable Changelog

xmlrpc_errors "0" PHP_INI_SYSTEM Available since PHP
4.1.0.

xmlrpc_error_number "0" PHP_INI_ALL Available since PHP
4.1.0.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension defines a XML-RPC server resource returned by xmlrpc_server_create().

Predefined Constants

This extension has no constants defined.

XML-RPC Functions

xmlrpc_decode_request

xmlrpc_decode_request -- Decodes XML into native PHP types

Description

mixed xmlrpc_decode_request (string $xml, string &$method [, string $encoding])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_decode

xmlrpc_decode -- Decodes XML into native PHP types

Description

mixed xmlrpc_decode (string $xml [, string $encoding])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

xml

XML response returned by XMLRPC method.

encoding

Input encoding supported by iconv (defaults to "iso-8859-1").

Return Values

Returns either an array, or an integer, or a string, or a boolean according to the response
returned by the XMLRPC method.

Examples

See example by xmlrpc_encode_request().

See Also

• xmlrpc_encode_request()
• xmlrpc_is_fault()

xmlrpc_encode_request

xmlrpc_encode_request -- Generates XML for a method request

Description

string xmlrpc_encode_request (string $method, mixed $params [, array $
output_options])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

method

Name of the method to call.

params

Method parameters compatible with method signature.

output_options

Array specifying output options may contain (default values are emphasised):

• output_type: php, xml

• verbosity: no_white_space, newlines_only, pretty

• escaping: cdata, non-ascii, non-print, markup (may be a string with one value or an
array with multiple values)

• version: simple, xmlrpc, soap 1.1, auto

• encoding: iso-8859-1, other character set supported by iconv

Return Values

Returns a string containing the XML representation of the request.

Examples

Example #2802 - XMLRPC client functions example

<?php

$request = xmlrpc_encode_request("method", array(1, 2, 3));

$context = stream_context_create(array('http' => array(

 'method' => "POST",

 'header' => "Content-Type: text/xml",

 'content' => $request

)));

$file = file_get_contents("http://www.example.com/xmlrpc", false, $context);

$response = xmlrpc_decode($file);

if (xmlrpc_is_fault($response)) {

 trigger_error("xmlrpc: $response[faultString] ($response[faultCode])");

} else {

 print_r($response);

}

?>

See Also

• stream_context_create()
• file_get_contents()
• xmlrpc_decode()

xmlrpc_encode

xmlrpc_encode -- Generates XML for a PHP value

Description

string xmlrpc_encode (mixed $value)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_get_type

xmlrpc_get_type -- Gets xmlrpc type for a PHP value

Description

string xmlrpc_get_type (mixed $value)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This function is especially useful for base64 and datetime strings.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_is_fault

xmlrpc_is_fault -- Determines if an array value represents an XMLRPC fault

Description

bool xmlrpc_is_fault (array $arg)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

arg

Array returned by xmlrpc_decode().

Return Values

Returns TRUE if the argument means fault, FALSE otherwise. Fault description is
available in $arg["faultString"], fault code is in $arg["faultCode"].

Examples

See example by xmlrpc_encode_request().

See Also

• xmlrpc_decode()

xmlrpc_parse_method_descriptions

xmlrpc_parse_method_descriptions -- Decodes XML into a list of method descriptions

Description

array xmlrpc_parse_method_descriptions (string $xml)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_add_introspection_data

xmlrpc_server_add_introspection_data -- Adds introspection documentation

Description

int xmlrpc_server_add_introspection_data (resource $server, array $desc)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_call_method

xmlrpc_server_call_method -- Parses XML requests and call methods

Description

string xmlrpc_server_call_method (resource $server, string $xml, mixed $user_data [,
array $output_options])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_create

xmlrpc_server_create -- Creates an xmlrpc server

Description

resource xmlrpc_server_create (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_destroy

xmlrpc_server_destroy -- Destroys server resources

Description

int xmlrpc_server_destroy (resource $server)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_register_introspection_callback

xmlrpc_server_register_introspection_callback -- Register a PHP function to generate
documentation

Description

bool xmlrpc_server_register_introspection_callback (resource $server, string $
function)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_server_register_method

xmlrpc_server_register_method -- Register a PHP function to resource method matching
method_name

Description

bool xmlrpc_server_register_method (resource $server, string $method_name, string $
function)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

xmlrpc_set_type

xmlrpc_set_type -- Sets xmlrpc type, base64 or datetime, for a PHP string value

Description

bool xmlrpc_set_type (string &$value, string $type)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Parameters

value

Value to set the type

type

'base64' or 'datetime'

Return Values

Returns TRUE on success or FALSE on failure. If successful, value is converted to an
object.

Errors/Exceptions

Issues E_WARNING with type unsupported by XMLRPC.

Windows Only Extensions

.NET

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

.NET Functions

dotnet_load

dotnet_load -- Loads a DOTNET module

Description

int dotnet_load (string $assembly_name [, string $datatype_name [, int $codepage]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

ChangeLog

Version Description

4.1.0 The codepage parameter was added

COM and .Net (Windows)

Introduction

COM is an acronym for Component Object Model; it is an object orientated layer (and
associated services) on top of DCE RPC (an open standard) and defines a common
calling convention that enables code written in any language to call and interoperate with
code written in any other language (provided those languages are COM aware). Not only
can the code be written in any language, but it need not even be part of the same
executable; the code can be loaded from a DLL, be found in another process running on
the same machine, or, with DCOM (Distributed COM), be found in another process on a
remote machine, all without your code even needing to know where a component resides.

There is a subset of COM known as OLE Automation which comprises a set of COM
interfaces that allow loose binding to COM objects, so that they can be introspected and
called at run-time without compile-time knowledge of how the object works. The PHP COM
extension utilizes the OLE Automation interfaces to allow you to create and call compatible
objects from your scripts. Technically speaking, this should really be called the "OLE
Automation Extension for PHP", since not all COM objects are OLE compatible.

Now, why would or should you use COM? COM is one of the main ways to glue
applications and components together on the Windows platform; using COM you can
launch Microsoft Word, fill in a document template and save the result as a Word
document and send it to a visitor of your web site. You can also use COM to perform
administrative tasks for your network and to configure your IIS; these are just the most
common uses; you can do much more with COM.

Starting with PHP 5, this extension (and this documentation) was rewritten from scratch
and much of the old confusing and bogus cruft has be removed. Additionally, we support
the instantiation and creation of .Net assemblies using the COM interoperability layer
provided by Microsoft.

Please read » this article for an overview of the changes in this extension in PHP 5.

http://devzone.zend.com/node/view/id/762

Installing/Configuring

COM functions are only available for the Windows version of PHP.

.Net support requires PHP 5 and the .Net runtime.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

You are responsible for installing support for the various COM objects that you intend to
use (such as MS Word); we don't and can't bundle all of those with PHP.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Com configuration options

Name Default Changeable Changelog

com.allow_dcom "0" PHP_INI_SYSTEM Available since PHP
4.0.5.

com.autoregister_typ
elib

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_ver
bose

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_cas
esensitive

"1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.code_page "" PHP_INI_ALL Available since PHP
5.0.0.

com.typelib_file "" PHP_INI_SYSTEM Available since PHP
4.0.5.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Here's a short explanation of the configuration directives.

com.allow_dcom

When this is turned on, PHP will be allowed to operate as a D-COM (Distributed COM)
client and will allow the PHP script to instantiate COM objects on a remote server.

com.autoregister_typelib

When this is turned on, PHP will attempt to register constants from the typelibrary of
objects that it instantiates, if those objects implement the interfaces required to obtain
that information. The case sensitivity of the constants it registers is controlled by the
configuration directive.

com.autoregister_verbose

When this is turned on, any problems with loading a typelibrary during object
instantiation will be reported using the PHP error mechanism. The default is off, which
does not emit any indication if there was an error finding or loading the type library.

com.autoregister_casesensitive

When this is turned on (the default), constants found in auto-loaded type libraries will
be registered case sensitively. See com_load_typelib() for more details.

com.code_page

It controls the default character set code-page to use when passing strings to and from
COM objects. If set to an empty string, PHP will assume that you want CP_ACP, which
is the default system ANSI code page. If the text in your scripts is encoded using a
different encoding/character set by default, setting this directive will save you from
having to pass the code page as a parameter to the COM class constructor. Please
note that by using this directive (as with any PHP configuration directive), your PHP
script becomes less portable; you should use the COM constructor parameter
whenever possible.

Note

This configuration directive was introduced with PHP 5.

com.typelib_file

When set, this should hold the path to a file that contains a list of typelibraries that
should be loaded on startup. Each line of the file will be treated as the type library
name and loaded as though you had called com_load_typelib(). The constants will be
registered persistently, so that the library only needs to be loaded once. If a type library
name ends with the string #cis or #case_insensitive, then the constants from that
library will be registered case insensitively.

Resource Types

This extension defines a reference to a COM component returned by deprecated
com_load() (this function does not exist in PHP 5; use the COM class instead).

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

CLSCTX_INPROC_SERVER (integer)

CLSCTX_INPROC_HANDLER (integer)

CLSCTX_LOCAL_SERVER (integer)

CLSCTX_REMOTE_SERVER (integer)

CLSCTX_SERVER (integer)

CLSCTX_ALL (integer)

VT_NULL (integer)

VT_EMPTY (integer)

VT_UI1 (integer)

VT_I2 (integer)

VT_I4 (integer)

VT_R4 (integer)

VT_R8 (integer)

VT_BOOL (integer)

VT_ERROR (integer)

VT_CY (integer)

VT_DATE (integer)

VT_BSTR (integer)

VT_DECIMAL (integer)

VT_UNKNOWN (integer)

VT_DISPATCH (integer)

VT_VARIANT (integer)

VT_I1 (integer)

VT_UI2 (integer)

VT_UI4 (integer)

VT_INT (integer)

VT_UINT (integer)

VT_ARRAY (integer)

VT_BYREF (integer)

CP_ACP (integer)

CP_MACCP (integer)

CP_OEMCP (integer)

CP_UTF7 (integer)

CP_UTF8 (integer)

CP_SYMBOL (integer)

CP_THREAD_ACP (integer)

VARCMP_LT (integer)

VARCMP_EQ (integer)

VARCMP_GT (integer)

VARCMP_NULL (integer)

NORM_IGNORECASE (integer)

NORM_IGNORENONSPACE (integer)

NORM_IGNORESYMBOLS (integer)

NORM_IGNOREWIDTH (integer)

NORM_IGNOREKANATYPE (integer)

NORM_IGNOREKASHIDA (integer)

DISP_E_DIVBYZERO (integer)

DISP_E_OVERFLOW (integer)

MK_E_UNAVAILABLE (integer)

Errors and error handling

Exceptions (PHP 5)

This extension will throw instances of the class com_exception whenever there is a
potentially fatal error reported by COM. All COM exceptions have a well-defined code
property that corresponds to the HRESULT return value from the various COM operations.
You may use this code to make programmatic decisions on how to handle the exception.

Examples

For Each

Starting with PHP 5, you may use PHP's own foreach statement to iterate over the
contents of a standard COM/OLE IEnumVariant. In laymans terms, this means that you
can use foreach in places where you would have used For Each in VB/ASP code.

Example #2803 - For Each in ASP

<%

Set domainObject = GetObject("WinNT://Domain")

For Each obj in domainObject

 Response.Write obj.Name & "
"

Next

%>

Example #2804 - while() ... Next() in PHP 4

<?php

$domainObject = new COM("WinNT://Domain");

while ($obj = $domainObject->Next()) {

 echo $obj->Name . "
";

}

?>

Example #2805 - foreach in PHP 5

<?php

$domainObject = new COM("WinNT://Domain");

foreach ($domainObject as $obj) {

 echo $obj->Name . "
";

}

?>

Arrays and Array-style COM properties

Many COM objects expose their properties as arrays, or using array-style access. In PHP

4, you may use PHP array syntax to read/write such a property, but only a single
dimension is allowed. If you want to read a multi-dimensional property, you could instead
make the property access into a function call, with each parameter representing each
dimension of the array access, but there is no way to write to such a property.

PHP 5 introduces the following new features to make your life easier:

• Access multi-dimensional arrays, or COM properties that require multiple parameters
using PHP array syntax. You can also write or set properties using this technique.

• Iterate SafeArrays ("true" arrays) using the foreach control structure. This works
because SafeArrays include information about their size. If an array-style property
implements IEnumVariant then you can also use foreach for that property too; take a
look at For Each for more information on this topic.

COM Functions

See Also

For further information on COM read the » COM specification or perhaps take a look at
Don Box's » Yet Another COM Library (YACL). You might find some additional useful
information in our FAQ for PHP and COM. If you're thinking of using MS Office
applications on the server side, you should read the information here: » Considerations for
Server-Side Automation of Office.

http://www.microsoft.com/Com/resources/comdocs.asp
http://www.sellsbrothers.com/links/dbox/yacl.zip
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757

COM

COM -- COM class

$obj = new COM("Application.ID")

Description

The COM class allows you to instantiate an OLE compatible COM object and call its
methods and access its properties.

Methods

com COM::COM (string $module_name [, mixed $server_name [, int $codepage [, string $
typelib]]])

COM class constructor. The parameters have the following meanings:
module_name

Can be a ProgID, Class ID or Moniker that names the component to load. A ProgID is
typically the application or DLL name, followed by a period, followed by the object
name. e.g: Word.Application. A Class ID is the UUID that uniquely identifies a given
class. A Moniker is a special form of naming, similar in concept to a URL scheme, that
identifies a resource and specifies how it should be loaded. As an example, you could
load up Word and get an object representing a word document by specifying the full
path to the word document as the module name, or you can use LDAP: as a moniker
to use the ADSI interface to LDAP.

server_name
The name of the DCOM server on which the component should be loaded and run. If
NULL, the object is run using the default for the application. The default is typically to
run it on the local machine, although the administrator might have configured the
application to launch on a different machine. If you specify a non- NULL value for
server, PHP will refuse to load the object unless the configuration option is set to
TRUE. If server_name is an array, it should contain the following elements (case
sensitive!). Note that they are all optional (although you need to specify both
Username and Password together); if you omit the Server setting, the default server
will be used (as mentioned above), and the instantiation of the object will not be
affected by the directive.

DCOM server name

server_name key type description

Server string The name of the server.

Username string The username to connect as.

Password string The password for Username.

Flags integer One or more of the following
constants, logically OR'd
together:
CLSCTX_INPROC_SERVE
R,
CLSCTX_INPROC_HANDL
ER,
CLSCTX_LOCAL_SERVER,
CLSCTX_REMOTE_SERVE
R, CLSCTX_SERVER and
CLSCTX_ALL. The default
value if not specified here is
CLSCTX_SERVER if you
also omit Server, or
CLSCTX_REMOTE_SERVE
R if you do specify a server.
You should consult the
Microsoft documentation for
CoCreateInstance for more
information on the meaning
of these constants; you will
typically never have to use
them.

codepage
Specifies the codepage that is used to convert strings to unicode-strings and vice versa.
The conversion is applied whenever a PHP string is passed as a parameter or returned
from a method of this COM object. The code page is sticky in PHP 5, which means that it
will propagate to objects and variants returned from the object. Possible values are
CP_ACP (use system default ANSI code page - the default if this parameter is omitted),
CP_MACCP, CP_OEMCP, CP_SYMBOL, CP_THREAD_ACP (use codepage/locale set
for the current executing thread), CP_UTF7 and CP_UTF8. You may also use the number
for a given codepage; consult the Microsoft documentation for more details on codepages
and their numeric values.

Overloaded Methods

The returned object is an overloaded object, which means that PHP does not see any fixed
methods as it does with regular classes; instead, any property or method accesses are passed
through to COM.

Starting with PHP 5, PHP will automatically detect methods that accept parameters by
reference, and will automatically convert regular PHP variables to a form that can be passed
by reference. This means that you can call the method very naturally; you needn't go to any
extra effort in your code.

In PHP 4, to pass parameters by reference you need to create an instance of the VARIANT
class to wrap the byref parameters.

Pseudo Methods

In PHP versions prior to 5, a number of not very pleasant hacks meant that the following
method names were not passed through to COM and were handled directly by PHP. PHP 5
eliminates these things; read the details below to determine how to fix your scripts. These
magic method names are case insensitive.

void COM::AddRef (void)

Artificially adds a reference count to the COM object.

Warning

You should never need to use this method. It exists as a logical complement to the
Release() method below.

void COM::Release (void)

Artificially removes a reference count from the COM object.

Warning

You should never need to use this method. Its existence in PHP is a bug designed to work
around a bug that keeps COM objects running longer than they should.

Pseudo Methods for Iterating

These pseudo methods are only available if com_isenum() returns TRUE, in which case, they
hide any methods with the same names that might otherwise be provided by the COM object.
These methods have all been eliminated in PHP 5, and you should use For Each instead.

variant COM::All (void)

Returns a variant representing a SafeArray that has 10 elements; each element will be an
empty/null variant. This function was supposed to return an array containing all the elements
from the iterator, but was never completed. Do not use.

variant COM::Next (void)

Returns a variant representing the next element available from the iterator, or FALSE when
there are no more elements.

variant COM::Prev (void)

Returns a variant representing the previous element available from the iterator, or FALSE
when there are no more elements.

void COM::Reset (void)

Rewinds the iterator back to the start.

COM examples

Example #2806 - COM example (1)

<?php

// starting word

$word = new COM("word.application") or die("Unable to instantiate Word");

echo "Loaded Word, version {$word->Version}\n";

//bring it to front

$word->Visible = 1;

//open an empty document

$word->Documents->Add();

//do some weird stuff

$word->Selection->TypeText("This is a test...");

$word->Documents[1]->SaveAs("Useless test.doc");

//closing word

$word->Quit();

//free the object

$word = null;

?>

Example #2807 - COM example (2)

<?php

$conn = new COM("ADODB.Connection") or die("Cannot start ADO");

$conn->Open("Provider=SQLOLEDB; Data Source=localhost;

Initial Catalog=database; User ID=user; Password=password");

$rs = $conn->Execute("SELECT * FROM sometable"); // Recordset

$num_columns = $rs->Fields->Count();

echo $num_columns . "\n";

for ($i=0; $i < $num_columns; $i++) {

 $fld[$i] = $rs->Fields($i);

}

$rowcount = 0;

while (!$rs->EOF) {

 for ($i=0; $i < $num_columns; $i++) {

 echo $fld[$i]->value . "\t";

 }

 echo "\n";

 $rowcount++; // increments rowcount

 $rs->MoveNext();

}

$rs->Close();

$conn->Close();

$rs = null;

$conn = null;

?>

DOTNET

DOTNET -- DOTNET class

$obj = new DOTNET("assembly", "classname")

Description

The DOTNET class allows you to instantiate a class from a .Net assembly and call its methods
and access its properties.

Methods

string DOTNET::DOTNET (string $assembly_name, string $class_name [, int $codepage])

DOTNET class constructor. assembly_name specifies which assembly should be loaded, and
class_name specifices which class in that assembly to instantiate. You may optionally specify a
codepage to use for unicode string transformations; see the COM class for more details on
code pages.

The returned object is an overloaded object, which means that PHP does not see any fixed
methods as it does with regular classes; instead, any property or method accesses are passed
through to COM and from there to DOTNET. In other words, the .Net object is mapped
through the COM interoperability layer provided by the .Net runtime.

Once you have created a DOTNET object, PHP treats it identically to any other COM object;
all the same rules apply.

Example #2808 - DOTNET example

<?php

$stack = new DOTNET("mscorlib", "System.Collections.Stack");

$stack->Push(".Net");

$stack->Push("Hello ");

echo $stack->Pop() . $stack->Pop();

?>

Note

You need to install the .Net runtime on your web server to take advantage of this feature.

VARIANT

VARIANT -- VARIANT class

$vVar = new VARIANT($var)

Description

The VARIANT is COM's equivalent of the PHP zval; it is a structure that can contain a value
with a range of different possible types. The VARIANT class provided by the COM extension
allows you to have more control over the way that PHP passes values to and from COM.

Methods

object VARIANT::VARIANT ([mixed $value [, int $type [, int $codepage]]])

VARIANT class constructor. Parameters:
value

initial value. if omitted, or set to NULL an VT_EMPTY object is created.

type
specifies the content type of the VARIANT object. Possible values are one of the VT_XXX
Predefined Constants. In PHP versions prior to PHP 5, you could force PHP to pass a
variant object by reference by OR'ing VT_BYREF with the type. In PHP 5, this hack is not
supported; instead, PHP 5 can detect parameters passed by reference automatically; they
do not even need to be passed as VARIANT objects. Consult the MSDN library for
additional information on the VARIANT type.

codepage
specifies the codepage that is used to convert strings to unicode. See the parameter of the
same name in the COM class for more information.

PHP versions prior to PHP 5 define a number of (undocumented) virtual properties for
instances of the VARIANT class; these properties have all been removed in PHP 5 in favour of
its more natural syntax; these differences are best highlighted by example:

Example #2809 - Variant example, PHP 4.x style

<?php

$v = new VARIANT(42);

print "The type is " . $v->type . "
";

print "The value is " . $v->value . "
";

?>

Example #2810 - Variant example, PHP 5 style

<?php

$v = new VARIANT(42);

print "The type is " . variant_get_type($v) . "
";

print "The value is " . $v . "
";

?>

The reason for the change is that, internally, the COM extension sees VARIANT, COM and
DOTNET classes as the same thing, and the design philosophy for these classes is that all
property and member accesses are passed through to COM with no interference. The new
syntax is more natural and less effort, and most of the removed virtual properties didn't make
any sense in a PHP context in any case.

Note

PHP 5 takes a much simpler approach to handling VARIANTs; when returning a value or
fetching a variant property, the variant is converted to a PHP value only when there is a
direct mapping between the types that would not result in a loss of information. In all other
cases, the result is returned as an instance of the VARIANT class. You can force PHP to
convert or evaluate the variant as a PHP native type by using a casting operator explicitly,
or implicitly casting to a string by print() ing it. You may use the wide range of variant
functions to perform arithmetic operations on variants without forcing a conversion or
risking a loss of data.

See also variant_get_type().

com_addref

com_addref -- Increases the components reference counter [deprecated]

Description

void com_addref (void)

Increases the components reference counter.

Return Values

No value is returned.

Notes

Warning

You should never need to use this function.

com_create_guid

com_create_guid -- Generate a globally unique identifier (GUID)

Description

string com_create_guid (void)

Generates a Globally Unique Identifier (GUID).

A GUID is generated in the same way as DCE UUID's, except that the Microsoft convention is
to enclose a GUID in curly braces.

Return Values

Returns the GUID as a string.

See Also

• uuid_create() in the PECL uuid extension

com_event_sink

com_event_sink -- Connect events from a COM object to a PHP object

Description

bool com_event_sink (variant $comobject, object $sinkobject [, mixed $sinkinterface])

Instructs COM to sink events generated by comobject into the PHP object sinkobject.

Be careful how you use this feature; if you are doing something similar to the example below,
then it doesn't really make sense to run it in a web server context.

Parameters

comobject

sinkobject

sinkobject should be an instance of a class with methods named after those of the
desired dispinterface; you may use com_print_typeinfo() to help generate a template class
for this purpose.

sinkinterface

PHP will attempt to use the default dispinterface type specified by the typelibrary
associated with comobject, but you may override this choice by setting sinkinterface to
the name of the dispinterface that you want to use.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2811 - COM event sink example

<?php

class IEEventSinker {

 var $terminated = false;

 function ProgressChange($progress, $progressmax) {

 echo "Download progress: $progress / $progressmax\n";

 }

 function DocumentComplete(&$dom, $url) {

 echo "Document $url complete\n";

 }

 function OnQuit() {

 echo "Quit!\n";

 $this->terminated = true;

 }

}

$ie = new COM("InternetExplorer.Application");

// note that you don't need the & for PHP 5!

$sink =& new IEEventSinker();

com_event_sink($ie, $sink, "DWebBrowserEvents2");

$ie->Visible = true;

$ie->Navigate("http://www.php.net");

while(!$sink->terminated) {

 com_message_pump(4000);

}

$ie = null;

?>

See Also

• com_print_typeinfo()
• com_message_pump()

com_get_active_object

com_get_active_object -- Returns a handle to an already running instance of a COM object

Description

variant com_get_active_object (string $progid [, int $code_page])

com_get_active_object() is similar to creating a new instance of a COM object, except that it
will only return an object to your script if the object is already running. OLE applications use
something known as the Running Object Table to allow well-known applications to be
launched only once; this function exposes the COM library function GetActiveObject() to get a
handle on a running instance.

Parameters

progid

progid must be either the ProgID or CLSID for the object that you want to access (for
example Word.Application).

code_page

Acts in precisely the same way that it does for the COM class.

Return Values

If the requested object is running, it will be returned to your script just like any other COM
object.

Errors/Exceptions

There are a variety of reasons why this function might fail, the most common being that the
object is not already running. In that situation, the exception error code will be
MK_E_UNAVAILABLE; you can use the getCode method of the exception object to check the
exception code.

Notes

Warning

Using com_get_active_object() in a web server context is not always a smart idea. Most
COM/OLE applications are not designed to handle more than one client concurrently, even
(or especially!) Microsoft Office. You should read » Considerations for Server-Side
Automation of Office for more information on the general issues involved.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257757

com_get

com_get -- Gets the value of a COM Component's property [deprecated]

Description

Deprecated, use the OO syntax instead.

Example #2812 - OO syntax

<?php

// do this

$var = $obj->property;

// instead of this:

$var = com_get($obj, 'property');

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_invoke

com_invoke -- Calls a COM component's method [deprecated]

Description

mixed com_invoke (resource $com_object, string $function_name [, mixed $
function_parameters])

com_invoke() invokes the method named function_name of the COM component referenced
by com_object. com_invoke() returns FALSE on error, returns the function_name 's return
value on success. All the extra parameters function_parameters are passed to the method
function_name.

Example #2813 - Don't use com_invoke(), use OO syntax instead

<?php

// do this

$val = $obj->method($one, $two);

// instead of this:

$val = com_invoke($obj, 'method', $one, $two);

?>

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_isenum

com_isenum -- Indicates if a COM object has an IEnumVariant interface for iteration
[deprecated]

Description

bool com_isenum (variant $com_module)

Checks to see if a COM object can be enumerated using the Next() method hack. See COM
class for more details on these methods.

Parameters

com_module

The COM object.

Return Values

Returns TRUE if the object can be enumatated, FALSE otherwise.

Notes

Note

This function does not exist in PHP 5; use the more natural foreach statement to iterate
over the contents of COM objects. See For Each for more details.

com_load_typelib

com_load_typelib -- Loads a Typelib

Description

bool com_load_typelib (string $typelib_name [, bool $case_insensitive])

Loads a type-library and registers its constants in the engine, as though they were defined
using define().

Note that it is much more efficient to use the configuration setting to pre-load and register the
constants, although not so flexible.

If you have turned on , then PHP will attempt to automatically register the constants
associated with a COM object when you instantiate it. This depends on the interfaces provided
by the COM object itself, and may not always be possible.

Parameters

typelib_name

typelib_name can be one of the following:

• The filename of a.tlb file or the executable module that contains the type library.

• The type library GUID, followed by its version number, for example
{00000200-0000-0010-8000-00AA006D2EA4},2,0.

• The type library name, e.g. Microsoft OLE DB ActiveX Data Objects 1.0 Library.

PHP will attempt to resolve the type library in this order, as the process gets more and
more expensive as you progress down the list; searching for the type library by name is
handled by physically enumerating the registry until we find a match.

case_insensitive

The case_insensitive behaves in the same way as the parameter with the same name in
the define() function.

Return Values

Returns TRUE on success or FALSE on failure.

com_load

com_load -- Creates a new reference to a COM component [deprecated]

Description

Deprecated, use the OO syntax instead.

Example #2814 - OO syntax

<?php

// do this

$obj = new COM($module);

// instead of this:

$obj = com_load($module);

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_message_pump

com_message_pump -- Process COM messages, sleeping for up to timeoutms milliseconds

Description

bool com_message_pump ([int $timeoutms])

This function will sleep for up to timeoutms milliseconds, or until a message arrives in the
queue.

The purpose of this function is to route COM calls between apartments and handle various
synchronization issues. This allows your script to wait efficiently for events to be triggered,
while still handling other events or running other code in the background. You should use it in
a loop, as demonstrated by the example in the com_event_sink() function, until you are
finished using event bound COM objects.

Parameters

timeoutms

The timeout, in milliseconds. If you do not specify a value for timeoutms, then 0 will be
assumed. A 0 value means that no waiting will be performed; if there are messages
pending they will be dispatched as before; if there are no messages pending, the function
will return FALSE immediately without sleeping.

Return Values

If a message or messages arrives before the timeout, they will be dispatched, and the function
will return TRUE. If the timeout occurs and no messages were processed, the return value will
be FALSE.

com_print_typeinfo

com_print_typeinfo -- Print out a PHP class definition for a dispatchable interface

Description

bool com_print_typeinfo (object $comobject [, string $dispinterface [, bool $wantsink]])

The purpose of this function is to help generate a skeleton class for use as an event sink. You
may also use it to generate a dump of any COM object, provided that it supports enough of the
introspection interfaces, and that you know the name of the interface you want to display.

Parameters

comobject

comobject should be either an instance of a COM object, or be the name of a typelibrary
(which will be resolved according to the rules set out in com_load_typelib()).

dispinterface

The name of an IDispatch descendant interface that you want to display.

wantsink

If set to TRUE, the corresponding sink interface will be displayed instead.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• com_event_sink()
• com_load_typelib()

com_propget

com_propget -- Alias of com_get()

Description

This function is an alias of: com_get().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_propput

com_propput -- Alias of com_set()

Description

This function is an alias of: com_set().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_propset

com_propset -- Alias of com_set()

Description

This function is an alias of: com_set().

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

com_release

com_release -- Decreases the components reference counter [deprecated]

Description

void com_release (void)

Decreases the components reference counter.

Return Values

No value is returned.

ChangeLog

Version Description

5.0.0 This function was removed.

Notes

Warning

You should never need to use this function.

com_set

com_set -- Assigns a value to a COM component's property

Description

Deprecated, use the OO syntax instead.

Example #2815 - OO syntax

<?php

// do this

$obj->property = $value;

// instead of this:

com_set($obj, 'property', $value);

?>

Notes

Note

This function does not exist in PHP 5; instead, you should use the regular and more
natural OO syntax to access properties or call methods.

variant_abs

variant_abs -- Returns the absolute value of a variant

Description

mixed variant_abs (mixed $val)

Returns the absolute value of a variant.

Parameters

val

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the absolute value of val.

See Also

• abs()

variant_add

variant_add -- "Adds" two variant values together and returns the result

Description

mixed variant_add (mixed $left, mixed $right)

Adds left to right using the following rules (taken from the MSDN library), which
correspond to those of Visual Basic:

Variant Addition Rules

If Then

Both expressions are of the string type Concatenation

One expression is a string type and the
other a character

Addition

One expression is numeric and the other is
a string

Addition

Both expressions are numeric Addition

Either expression is NULL NULL is returned

Both expressions are empty Integer subtype is returned

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result.

See Also

• variant_sub()

variant_and

variant_and -- Performs a bitwise AND operation between two variants

Description

mixed variant_and (mixed $left, mixed $right)

Performs a bitwise AND operation. Note that this is slightly different from a regular AND
operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant AND Rules

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE FALSE

FALSE FALSE FALSE

FALSE NULL FALSE

NULL TRUE NULL

NULL FALSE FALSE

NULL NULL NULL

See Also

• variant_or()

variant_cast

variant_cast -- Convert a variant into a new variant object of another type

Description

variant variant_cast (variant $variant, int $type)

This function makes a copy of variant and then performs a variant cast operation to force
the copy to have the type given by type.

This function wraps VariantChangeType() in the COM library; consult MSDN for more
information.

Parameters

variant

The variant.

type

type should be one of the VT_XXX constants.

Return Values

Returns a VT_DATE variant.

See Also

• variant_set_type()

variant_cat

variant_cat -- concatenates two variant values together and returns the result

Description

mixed variant_cat (mixed $left, mixed $right)

Concatenates left with right and returns the result.

This function is notionally equivalent to $left. $right.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of the concatenation.

See Also

• String Operators for the string concatenation operator

variant_cmp

variant_cmp -- Compares two variants

Description

int variant_cmp (mixed $left, mixed $right [, int $lcid [, int $flags]])

Compares left with right.

This function will only compare scalar values, not arrays or variant records.

Parameters

left

The left operand.

right

The right operand.

lcid

A valid Locale Identifier to use when comparing strings (this affects string collation).

flags

flags can be one or more of the following values OR'd together, and affects string
comparisons:

Variant Comparision Flags

value meaning

NORM_IGNORECASE Compare case insensitively

NORM_IGNORENONSPACE Ignore nonspacing characters

NORM_IGNORESYMBOLS Ignore symbols

NORM_IGNOREWIDTH Ignore string width

NORM_IGNOREKANATYPE Ignore Kana type

NORM_IGNOREKASHIDA Ignore Arabic kashida characters

Note

As with all the variant arithmetic functions, the parameters for this function can be either a
PHP native type (integer, string, floating point, boolean or NULL), or an instance of a
COM, VARIANT or DOTNET class. PHP native types will be converted to variants using
the same rules as found in the constructor for the VARIANT class. COM and DOTNET
objects will have the value of their default property taken and used as the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in the
COM library; for more information on these functions, consult the MSDN library. The PHP
functions are named slightly differently; for example variant_add() in PHP corresponds to
VarAdd() in the MSDN documentation.

Return Values

Returns one of the following:

Variant Comparision Results

value meaning

VARCMP_LT left is less than right

VARCMP_EQ left is equal to right

VARCMP_GT left is greater than right

VARCMP_NULL Either left, right or both are NULL

variant_date_from_timestamp

variant_date_from_timestamp -- Returns a variant date representation of a Unix timestamp

Description

variant variant_date_from_timestamp (int $timestamp)

Converts timestamp from a unix timestamp value into a variant of type VT_DATE. This
allows easier interopability between the unix-ish parts of PHP and COM.

Parameters

timestamp

A unix timestamp.

Return Values

Returns a VT_DATE variant.

See Also

• variant_date_to_timestamp()
• mktime()
• time()

variant_date_to_timestamp

variant_date_to_timestamp -- Converts a variant date/time value to Unix timestamp

Description

int variant_date_to_timestamp (variant $variant)

Converts variant from a VT_DATE (or similar) value into a Unix timestamp. This allows
easier interopability between the Unix-ish parts of PHP and COM.

Parameters

variant

The variant.

Return Values

Returns a unix timestamp.

See Also

• variant_date_from_timestamp()
• date()
• strftime()

variant_div

variant_div -- Returns the result from dividing two variants

Description

mixed variant_div (mixed $left, mixed $right)

Divides left by right and returns the result.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Division Rules

If Then

Both expressions are of the string, date,
character, boolean type

Double is returned

One expression is a string type and the
other a character

Division and a double is returned

One expression is numeric and the other is
a string

Division and a double is returned.

Both expressions are numeric Division and a double is returned

Either expression is NULL NULL is returned

right is empty and left is anything but
empty

A com_exception with code
DISP_E_DIVBYZERO is thrown

left is empty and right is anything but
empty.

0 as type double is returned

Both expressions are empty A com_exception with code
DISP_E_OVERFLOW is thrown

See Also

• variant_idiv()

variant_eqv

variant_eqv -- Performs a bitwise equivalence on two variants

Description

mixed variant_eqv (mixed $left, mixed $right)

Performs a bitwise equivalence on two variants.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If each bit in left is equal to the corresponding bit in right then TRUE is returned,
otherwise FALSE is returned.

variant_fix

variant_fix -- Returns the integer portion of a variant

Description

mixed variant_fix (mixed $variant)

Gets the integer portion of a variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If variant is negative, then the first negative integer greater than or equal to the variant is
returned, otherwise returns the integer portion of the value of variant.

Notes

Warning

This documentation is based on the MSDN documentation; it appears that this function
is either the same as variant_int(), or that there is an error in the MSDN
documentation.

See Also

• variant_int()
• variant_round()
• floor()
• ceil()
• round()

variant_get_type

variant_get_type -- Returns the type of a variant object

Description

int variant_get_type (variant $variant)

Returns the type of a variant object.

Parameters

variant

The variant object.

Return Values

This function returns an integer value that indicates the type of variant, which can be an
instance of COM, DOTNET or VARIANT classes. The return value can be compared to
one of the VT_XXX constants.

The return value for COM and DOTNET objects will usually be VT_DISPATCH; the only
reason this function works for those classes is because COM and DOTNET are
descendants of VARIANT.

In PHP versions prior to 5, you could obtain this information from instances of the
VARIANT class ONLY, by reading a fake type property. See the VARIANT class for more
information on this.

variant_idiv

variant_idiv -- Converts variants to integers and then returns the result from dividing them

Description

mixed variant_idiv (mixed $left, mixed $right)

Converts left and right to integer values, and then performs integer division.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Integer Division Rules

If Then

Both expressions are of the string, date,
character, boolean type

Division and integer is returned

One expression is a string type and the
other a character

Division

One expression is numeric and the other is
a string

Division

Both expressions are numeric Division

Either expression is NULL NULL is returned

Both expressions are empty A com_exception with code
DISP_E_DIVBYZERO is thrown

See Also

• variant_div()

variant_imp

variant_imp -- Performs a bitwise implication on two variants

Description

mixed variant_imp (mixed $left, mixed $right)

Performs a bitwise implication operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Implication Table

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE TRUE

FALSE NULL TRUE

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

variant_int

variant_int -- Returns the integer portion of a variant

Description

mixed variant_int (mixed $variant)

Gets the integer portion of a variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

If variant is negative, then the first negative integer greater than or equal to the variant is
returned, otherwise returns the integer portion of the value of variant.

See Also

• variant_fix()
• variant_round()
• floor()
• ceil()
• round()

variant_mod

variant_mod -- Divides two variants and returns only the remainder

Description

mixed variant_mod (mixed $left, mixed $right)

Divides left by right and returns the remainder.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the remainder of the division.

See Also

• variant_div()
• variant_idiv()

variant_mul

variant_mul -- Multiplies the values of the two variants

Description

mixed variant_mul (mixed $left, mixed $right)

Multiplies left by right.

Parameters

left

The left operand.

right

The right operand.
Boolean values are converted to -1 for FALSE and 0 for TRUE.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Multiplication Rules

If Then

Both expressions are of the string, date,
character, boolean type

Multiplication

One expression is a string type and the
other a character

Multiplication

One expression is numeric and the other is
a string

Multiplication

Both expressions are numeric Multiplication

Either expression is NULL NULL is returned

Both expressions are empty Empty string is returned

See Also

• variant_div()
• variant_idiv()

variant_neg

variant_neg -- Performs logical negation on a variant

Description

mixed variant_neg (mixed $variant)

Performs logical negation of variant.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of the logical negation.

variant_not

variant_not -- Performs bitwise not negation on a variant

Description

mixed variant_not (mixed $variant)

Performs bitwise not negation on variant and returns the result.

Parameters

variant

The variant.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the bitwise not negation. If variant is NULL, the result will also be NULL.

variant_or

variant_or -- Performs a logical disjunction on two variants

Description

mixed variant_or (mixed $left, mixed $right)

Performs a bitwise OR operation. Note that this is slightly different from a regular OR
operation.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant OR Rules

If left is If right is then the result is

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

See Also

• variant_and()
• variant_xor()

variant_pow

variant_pow -- Returns the result of performing the power function with two variants

Description

mixed variant_pow (mixed $left, mixed $right)

Returns the result of left to the power of right.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the result of left to the power of right.

See Also

• pow()

variant_round

variant_round -- Rounds a variant to the specified number of decimal places

Description

mixed variant_round (mixed $variant, int $decimals)

Returns the value of variant rounded to decimals decimal places.

Parameters

variant

The variant.

decimals

Number of decimal places.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Returns the rounded value.

See Also

• round()

variant_set_type

variant_set_type -- Convert a variant into another type "in-place"

Description

void variant_set_type (variant $variant, int $type)

This function is similar to variant_cast() except that the variant is modified "in-place"; no
new variant is created. The parameters for this function have identical meaning to those of
variant_cast().

Parameters

variant

The variant.

type

Return Values

No value is returned.

See Also

• variant_cast()

variant_set

variant_set -- Assigns a new value for a variant object

Description

void variant_set (variant $variant, mixed $value)

Converts value to a variant and assigns it to the variant object; no new variant object is
created, and the old value of variant is freed/released.

Parameters

variant

The variant.

value

Return Values

No value is returned.

variant_sub

variant_sub -- Subtracts the value of the right variant from the left variant value

Description

mixed variant_sub (mixed $left, mixed $right)

Subtracts right from left.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant Subtraction Rules

If Then

Both expressions are of the string type Subtraction

One expression is a string type and the
other a character

Subtraction

One expression is numeric and the other is
a string

Subtraction.

Both expressions are numeric Subtraction

Either expression is NULL NULL is returned

Both expressions are empty Empty string is returned

See Also

• variant_add()

variant_xor

variant_xor -- Performs a logical exclusion on two variants

Description

mixed variant_xor (mixed $left, mixed $right)

Performs a logical exclusion.

Parameters

left

The left operand.

right

The right operand.

Note

As with all the variant arithmetic functions, the parameters for this function can be
either a PHP native type (integer, string, floating point, boolean or NULL), or an
instance of a COM, VARIANT or DOTNET class. PHP native types will be converted to
variants using the same rules as found in the constructor for the VARIANT class. COM
and DOTNET objects will have the value of their default property taken and used as
the variant value.

The variant arithmetic functions are wrappers around the similarly named functions in
the COM library; for more information on these functions, consult the MSDN library.
The PHP functions are named slightly differently; for example variant_add() in PHP
corresponds to VarAdd() in the MSDN documentation.

Return Values

Variant XOR Rules

If left is If right is then the result is

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

NULL NULL NULL

See Also

• variant_or()
• variant_and()

Printer

Introduction

These functions are only available under Windows 9.x, ME, NT4 and 2000. They have
been added in PHP 4.0.4.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

This » PECL extension is not bundled with PHP.

Windows users must enable php_printer.dll inside of php.ini in order to use these
functions. Unbundled PECL extensions may be downloaded from:
» http://pecl4win.php.net/

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Printer configuration options

Name Default Changeable Changelog

printer.default_printer "" PHP_INI_ALL Available since PHP
4.0.6. Removed in
PHP 4.1.1.

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

Resource Types

This extension defines handles to a printer connection, to a brush, to a font and to a pen.

http://pecl.php.net/
http://pecl4win.php.net/
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

PRINTER_COPIES (integer)

PRINTER_MODE (integer)

PRINTER_TITLE (integer)

PRINTER_DEVICENAME (integer)

PRINTER_DRIVERVERSION (integer)

PRINTER_OUTPUT_FILE (integer)

PRINTER_RESOLUTION_Y (integer)

PRINTER_RESOLUTION_X (integer)

PRINTER_SCALE (integer)

PRINTER_BACKGROUND_COLOR (integer)

PRINTER_PAPER_LENGTH (integer)

PRINTER_PAPER_WIDTH (integer)

PRINTER_PAPER_FORMAT (integer)

PRINTER_FORMAT_CUSTOM (integer)

PRINTER_FORMAT_LETTER (integer)

PRINTER_FORMAT_LEGAL (integer)

PRINTER_FORMAT_A3 (integer)

PRINTER_FORMAT_A4 (integer)

PRINTER_FORMAT_A5 (integer)

PRINTER_FORMAT_B4 (integer)

PRINTER_FORMAT_B5 (integer)

PRINTER_FORMAT_FOLIO (integer)

PRINTER_ORIENTATION (integer)

PRINTER_ORIENTATION_PORTRAIT (integer)

PRINTER_ORIENTATION_LANDSCAPE (integer)

PRINTER_TEXT_COLOR (integer)

PRINTER_TEXT_ALIGN (integer)

PRINTER_TA_BASELINE (integer)

PRINTER_TA_BOTTOM (integer)

PRINTER_TA_TOP (integer)

PRINTER_TA_CENTER (integer)

PRINTER_TA_LEFT (integer)

PRINTER_TA_RIGHT (integer)

PRINTER_PEN_SOLID (integer)

PRINTER_PEN_DASH (integer)

PRINTER_PEN_DOT (integer)

PRINTER_PEN_DASHDOT (integer)

PRINTER_PEN_DASHDOTDOT (integer)

PRINTER_PEN_INVISIBLE (integer)

PRINTER_BRUSH_SOLID (integer)

PRINTER_BRUSH_CUSTOM (integer)

PRINTER_BRUSH_DIAGONAL (integer)

PRINTER_BRUSH_CROSS (integer)

PRINTER_BRUSH_DIAGCROSS (integer)

PRINTER_BRUSH_FDIAGONAL (integer)

PRINTER_BRUSH_HORIZONTAL (integer)

PRINTER_BRUSH_VERTICAL (integer)

PRINTER_FW_THIN (integer)

PRINTER_FW_ULTRALIGHT (integer)

PRINTER_FW_LIGHT (integer)

PRINTER_FW_NORMAL (integer)

PRINTER_FW_MEDIUM (integer)

PRINTER_FW_BOLD (integer)

PRINTER_FW_ULTRABOLD (integer)

PRINTER_FW_HEAVY (integer)

PRINTER_ENUM_LOCAL (integer)

PRINTER_ENUM_NAME (integer)

PRINTER_ENUM_SHARED (integer)

PRINTER_ENUM_DEFAULT (integer)

PRINTER_ENUM_CONNECTIONS (integer)

PRINTER_ENUM_NETWORK (integer)

PRINTER_ENUM_REMOTE (integer)

Printer Functions

printer_abort

printer_abort -- Deletes the printer's spool file

Description

void printer_abort (resource $printer_handle)

This function deletes the printers spool file.

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

Return Values

No value is returned.

Examples

Example #2816 - printer_abort() example

<?php

$handle = printer_open();

printer_abort($handle);

printer_close($handle);

?>

printer_close

printer_close -- Close an open printer connection

Description

void printer_close (resource $printer_handle)

This function closes the printer connection. printer_close() also closes the active device
context.

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

Return Values

No value is returned.

Examples

Example #2817 - printer_close() example

<?php

$handle = printer_open();

printer_close($handle);

?>

printer_create_brush

printer_create_brush -- Create a new brush

Description

resource printer_create_brush (int $style, string $color)

The function creates a new brush and returns a handle to it. A brush is used to fill shapes.
For an example see printer_select_brush().

Parameters

style

style must be one of the following constants:

• PRINTER_BRUSH_SOLID: creates a brush with a solid color.

• PRINTER_BRUSH_DIAGONAL: creates a brush with a 45-degree upward
left-to-right hatch (/).

• PRINTER_BRUSH_CROSS: creates a brush with a cross hatch (+).

• PRINTER_BRUSH_DIAGCROSS: creates a brush with a 45 cross hatch (x).

• PRINTER_BRUSH_FDIAGONAL: creates a brush with a 45-degree downward
left-to-right hatch (\).

• PRINTER_BRUSH_HORIZONTAL: creates a brush with a horizontal hatch (-).

• PRINTER_BRUSH_VERTICAL: creates a brush with a vertical hatch (|).

• PRINTER_BRUSH_CUSTOM: creates a custom brush from an BMP file. The
second parameter is used to specify the BMP instead of the RGB color code.

color

color must be a color in RGB hex format, i.e. " 000000 " for black.

Return Values

Returns a brush handle or FALSE on error.

printer_create_dc

printer_create_dc -- Create a new device context

Description

void printer_create_dc (resource $printer_handle)

The function creates a new device context. A device context is used to customize the
graphic objects of the document.

Parameters

printer_handle

printer_handle must be a valid printer handle.

Return Values

No value is returned.

Examples

Example #2818 - printer_create_dc() example

<?php

$handle = printer_open();

printer_start_doc($handle);

printer_start_page($handle);

printer_create_dc($handle);

/* do some stuff with the dc */

printer_set_option($handle, PRINTER_TEXT_COLOR, "333333");

printer_draw_text($handle, 1, 1, "text");

printer_delete_dc($handle);

/* create another dc */

printer_create_dc($handle);

printer_set_option($handle, PRINTER_TEXT_COLOR, "000000");

printer_draw_text($handle, 1, 1, "text");

/* do some stuff with the dc */

printer_delete_dc($handle);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_create_font

printer_create_font -- Create a new font

Description

resource printer_create_font (string $face, int $height, int $width, int $font_weight,
bool $italic, bool $underline, bool $strikeout, int $orientation)

The function creates a new font and returns a handle to it. A font is used to draw text. For
an example see printer_select_font().

Parameters

face

face must be a string specifying the font face.

height

height specifies the font height.

width

width specifies the font width.

font_weight

The font_weight specifies the font weight (400 is normal), and can be one of the
following predefined constants.

• PRINTER_FW_THIN: sets the font weight to thin (100).

• PRINTER_FW_ULTRALIGHT: sets the font weight to ultra light (200).

• PRINTER_FW_LIGHT: sets the font weight to light (300).

• PRINTER_FW_NORMAL: sets the font weight to normal (400).

• PRINTER_FW_MEDIUM: sets the font weight to medium (500).

• PRINTER_FW_BOLD: sets the font weight to bold (700).

• PRINTER_FW_ULTRABOLD: sets the font weight to ultra bold (800).

• PRINTER_FW_HEAVY: sets the font weight to heavy (900).

italic

italic can be TRUE or FALSE, and sets whether the font should be italic.

underline

underline can be TRUE or FALSE, and sets whether the font should be underlined.

strikeout

strikeout can be TRUE or FALSE, and sets whether the font should be stroked out.

orientaton

orientation specifies a rotation.

Return Values

Returns a font handle on success or FALSE on error.

printer_create_pen

printer_create_pen -- Create a new pen

Description

resource printer_create_pen (int $style, int $width, string $color)

The function creates a new pen and returns a handle to it. A pen is used to draw lines and
curves. For an example see printer_select_pen().

Parameters

style

style must be one of the following constants:

• PRINTER_PEN_SOLID: creates a solid pen.

• PRINTER_PEN_DASH: creates a dashed pen.

• PRINTER_PEN_DOT: creates a dotted pen.

• PRINTER_PEN_DASHDOT: creates a pen with dashes and dots.

• PRINTER_PEN_DASHDOTDOT: creates a pen with dashes and double dots.

• PRINTER_PEN_INVISIBLE: creates an invisible pen.

width

width specifies the width of the pen.

color

color must be a color in RGB hex format, i.e. " 000000 " for black.

Return Values

Returns a pen handle or FALSE on error.

printer_delete_brush

printer_delete_brush -- Delete a brush

Description

void printer_delete_brush (resource $brush_handle)

The function deletes the selected brush. For an example see printer_select_brush().

Parameters

brush_handle

brush_handle must be a valid handle to a brush.

Return Values

No value is returned.

printer_delete_dc

printer_delete_dc -- Delete a device context

Description

bool printer_delete_dc (resource $printer_handle)

The function deletes the device context. For an example see printer_create_dc().

Parameters

printer_handle

printer_handle must be a valid printer handle.

Return Values

Returns TRUE on success or FALSE on failure.

printer_delete_font

printer_delete_font -- Delete a font

Description

void printer_delete_font (resource $font_handle)

The function deletes the selected font. For an example see printer_select_font().

Parameters

font_handle

font_handle must be a valid handle to a font.

Return Values

No value is returned.

printer_delete_pen

printer_delete_pen -- Delete a pen

Description

void printer_delete_pen (resource $pen_handle)

The function deletes the selected pen. For an example see printer_select_pen().

Parameters

pen_handle

pen_handle must be a valid pen handle.

Return Values

No value is returned.

printer_draw_bmp

printer_draw_bmp -- Draw a bmp

Description

bool printer_draw_bmp (resource $printer_handle, string $filename, int $x, int $y [, int
$width], int $height)

The function draws an bmp.

Parameters

printer_handle

printer_handle must be a valid printer handle.

filename

Path to the bitmap.

x

x is the upper left x coordinate of the bitmap.

y

y is the upper left y coordinate of the bitmap.

width

The bitmap width.

height

The bitmap height.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2819 - printer_draw_bmp() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

printer_draw_bmp($handle, "c:\\image.bmp", 1, 1);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_chord

printer_draw_chord -- Draw a chord

Description

void printer_draw_chord (resource $printer_handle, int $rec_x, int $rec_y, int $rec_x1
, int $rec_y1, int $rad_x, int $rad_y, int $rad_x1, int $rad_y1)

The function simply draws an chord.

Parameters

printer_handle

printer_handle must be a valid printer handle.

rec_x

rec_x is the upper left x coordinate of the bounding rectangle.

rec_y

rec_y is the upper left y coordinate of the bounding rectangle.

rec_x1

rec_x1 is the lower right x coordinate of the bounding rectangle.

rec_y1

rec_y1 is the lower right y coordinate of the bounding rectangle.

rad_x

rad_x is x coordinate of the radial defining the beginning of the chord.

rad_y

rad_y is y coordinate of the radial defining the beginning of the chord.

rad_x1

rad_x1 is x coordinate of the radial defining the end of the chord.

rad_y1

rad_y1 is y coordinate of the radial defining the end of the chord.

Return Values

No value is returned.

Examples

Example #2820 - printer_draw_chord() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "2222FF");

printer_select_brush($handle, $brush);

printer_draw_chord($handle, 1, 1, 500, 500, 1, 1, 500, 1);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_elipse

printer_draw_elipse -- Draw an ellipse

Description

void printer_draw_elipse (resource $printer_handle, int $ul_x, int $ul_y, int $lr_x, int
$lr_y)

The function draws an ellipse.

Parameters

printer_handle

printer_handle must be a valid printer handle.

ul_x

ul_x is the upper left x coordinate of the ellipse.

ul_y

ul_y is the upper left y coordinate of the ellipse.

lr_x

lr_x is the lower right x coordinate of the ellipse.

lr_y

lr_y is the lower right y coordinate of the ellipse.

Return Values

No value is returned.

Examples

Example #2821 - printer_draw_elipse() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "2222FF");

printer_select_brush($handle, $brush);

printer_draw_elipse($handle, 1, 1, 500, 500);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_line

printer_draw_line -- Draw a line

Description

void printer_draw_line (resource $printer_handle, int $from_x, int $from_y, int $to_x,
int $to_y)

The function draws a line using the selected pen.

Parameters

printer_handle

printer_handle must be a valid printer handle.

from_x

from_x is the x coordinate of the origin point.

from_y

from_y is the y coordinate of the origin point.

to_x

to_x is the x coordinate of the destination point.

to_y

to_y is the y coordinate of the destination point.

Return Values

No value is returned.

Examples

Example #2822 - printer_draw_line() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 30, "000000");

printer_select_pen($handle, $pen);

printer_draw_line($handle, 1, 10, 1000, 10);

printer_draw_line($handle, 1, 60, 500, 60);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_pie

printer_draw_pie -- Draw a pie

Description

void printer_draw_pie (resource $printer_handle, int $rec_x, int $rec_y, int $rec_x1,
int $rec_y1, int $rad1_x, int $rad1_y, int $rad2_x, int $rad2_y)

The function draws an pie.

Parameters

printer_handle

printer_handle must be a valid printer handle.

rec_x

rec_x is the upper left x coordinate of the bounding rectangle.

rec_y

rec_y is the upper left y coordinate of the bounding rectangle.

rec_x1

rec_x1 is the lower right x coordinate of the bounding rectangle.

rec_y1

rec_y1 is the lower right y coordinate of the bounding rectangle.

rad1_x

rad1_x is x coordinate of the first radial's ending.

rad1_y

rad1_y is y coordinate of the first radial's ending.

rad2_x

rad2_x is x coordinate of the second radial's ending.

rad2_y

rad2_y is y coordinate of the second radial's ending.

Return Values

No value is returned.

Examples

Example #2823 - printer_draw_pie() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "2222FF");

printer_select_brush($handle, $brush);

printer_draw_pie($handle, 1, 1, 500, 500, 1, 1, 500, 1);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_rectangle

printer_draw_rectangle -- Draw a rectangle

Description

void printer_draw_rectangle (resource $printer_handle, int $ul_x, int $ul_y, int $lr_x,
int $lr_y)

The function draws a rectangle.

Parameters

printer_handle

printer_handle must be a valid printer handle.

ul_x

ul_x is the upper left x coordinate of the rectangle.

ul_y

ul_y is the upper left y coordinate of the rectangle.

lr_x

lr_x is the lower right x coordinate of the rectangle.

lr_y

lr_y is the lower right y coordinate of the rectangle.

Return Values

No value is returned.

Examples

Example #2824 - printer_draw_rectangle() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "2222FF");

printer_select_brush($handle, $brush);

printer_draw_rectangle($handle, 1, 1, 500, 500);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_roundrect

printer_draw_roundrect -- Draw a rectangle with rounded corners

Description

void printer_draw_roundrect (resource $printer_handle, int $ul_x, int $ul_y, int $lr_x
, int $lr_y, int $width, int $height)

The function draws a rectangle with rounded corners.

Parameters

printer_handle

printer_handle must be a valid printer handle.

ul_x

ul_x is the upper left x coordinate of the rectangle.

ul_y

ul_y is the upper left y coordinate of the rectangle.

lr_x

lr_x is the lower right x coordinate of the rectangle.

lr_y

lr_y is the lower right y coordinate of the rectangle.

width

width is the width of the ellipse.

height

height is the height of the ellipse.

Return Values

No value is returned.

Examples

Example #2825 - printer_draw_roundrect() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "2222FF");

printer_select_brush($handle, $brush);

printer_draw_roundrect($handle, 1, 1, 500, 500, 200, 200);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_draw_text

printer_draw_text -- Draw text

Description

void printer_draw_text (resource $printer_handle, string $text, int $x, int $y)

The function draws text at position x, y using the selected font.

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

text

The text to be written.

x

x is the x coordinate of the position.

y

y is the y coordinate of the position.

Return Values

No value is returned.

Examples

Example #2826 - printer_draw_text() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$font = printer_create_font("Arial", 72, 48, 400, false, false, false, 0);

printer_select_font($handle, $font);

printer_draw_text($handle, "test", 10, 10);

printer_delete_font($font);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_end_doc

printer_end_doc -- Close document

Description

bool printer_end_doc (resource $printer_handle)

Closes a new document in the printer spooler. The document is now ready for printing. For
an example see printer_start_doc().

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

Return Values

Returns TRUE on success or FALSE on failure.

printer_end_page

printer_end_page -- Close active page

Description

bool printer_end_page (resource $printer_handle)

The function closes the active page in the active document. For an example see
printer_start_doc().

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

Return Values

Returns TRUE on success or FALSE on failure.

printer_get_option

printer_get_option -- Retrieve printer configuration data

Description

mixed printer_get_option (resource $printer_handle, string $option)

The function retrieves the configuration setting of option.

Parameters

printer_handle

printer_handle must be a valid handle to a printer.

option

Take a look at printer_set_option() for the settings that can be retrieved, additionally
the following settings can be retrieved:

• PRINTER_DEVICENAME returns the devicename of the printer.

• PRINTER_DRIVERVERSION returns the printer driver version.

Return Values

Returns the value of option.

Examples

Example #2827 - printer_get_option() example

<?php

$handle = printer_open();

echo printer_get_option($handle, PRINTER_DRIVERVERSION);

printer_close($handle);

?>

printer_list

printer_list -- Return an array of printers attached to the server

Description

array printer_list (int $enumtype [, string $name [, int $level]])

The function enumerates available printers and their capabilities.

Parameters

enumtype

enumtype must be one of the following predefined constants:

• PRINTER_ENUM_LOCAL: enumerates the locally installed printers.

• PRINTER_ENUM_NAME: enumerates the printer of name, can be a server,
domain or print provider.

• PRINTER_ENUM_SHARED: this parameter can't be used alone, it has to be
OR'ed with other parameters, i.e. PRINTER_ENUM_LOCAL to detect the locally
shared printers.

• PRINTER_ENUM_DEFAULT: (Win9.x only) enumerates the default printer.

• PRINTER_ENUM_CONNECTIONS: (WinNT/2000 only) enumerates the printers to
which the user has made connections.

• PRINTER_ENUM_NETWORK: (WinNT/2000 only) enumerates network printers in
the computer's domain. Only valid if level is 1.

• PRINTER_ENUM_REMOTE: (WinNT/2000 only) enumerates network printers and
print servers in the computer's domain. Only valid if level is 1.

name

Used with PRINTER_ENUM_NAME.

level

level sets the level of information request. Can be 1,2,4 or 5.

Return Values

Return an array of printers.

Examples

Example #2828 - printer_list() example

<?php

/* detect locally shared printer */

var_dump(printer_list(PRINTER_ENUM_LOCAL | PRINTER_ENUM_SHARED));

?>

printer_logical_fontheight

printer_logical_fontheight -- Get logical font height

Description

int printer_logical_fontheight (resource $printer_handle, int $height)

The function calculates the logical font height of height.

Parameters

printer_handle

printer_handle must be a valid printer handle.

height

The font height.

Return Values

Returns the logical font height or FALSE on failure.

Examples

Example #2829 - printer_logical_fontheight() example

<?php

$handle = printer_open();

echo printer_logical_fontheight($handle, 72);

printer_close($handle);

?>

printer_open

printer_open -- Opens a connection to a printer

Description

resource printer_open ([string $printername])

This function tries to open a connection to the given printer.

printer_open() also starts a device context.

Parameters

printername

The printer name. If no parameter was given it tries to open a connection to the default
printer (if not specified in php.ini as printer.default_printer, PHP tries to detect it).

Return Values

Returns a printer handle on success or FALSE on failure.

Examples

Example #2830 - printer_open() example

<?php

$handle = printer_open("HP Deskjet 930c");

$handle = printer_open();

?>

printer_select_brush

printer_select_brush -- Select a brush

Description

void printer_select_brush (resource $printer_handle, resource $brush_handle)

The function selects a brush as the active drawing object of the actual device context. A
brush is used to fill shapes. If you draw an rectangle the brush is used to draw the shapes,
while the pen is used to draw the border.

If you haven't selected a brush before drawing shapes, the shape won't be filled.

Parameters

printer_handle

printer_handle must be a valid printer handle.

brush_handle

brush_handle must be a valid brush handle.

Return Values

No value is returned.

Examples

Example #2831 - printer_select_brush() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 2, "000000");

printer_select_pen($handle, $pen);

$brush = printer_create_brush(PRINTER_BRUSH_CUSTOM, "c:\\brush.bmp");

printer_select_brush($handle, $brush);

printer_draw_rectangle($handle, 1, 1, 500, 500);

printer_delete_brush($brush);

$brush = printer_create_brush(PRINTER_BRUSH_SOLID, "000000");

printer_select_brush($handle, $brush);

printer_draw_rectangle($handle, 1, 501, 500, 1001);

printer_delete_brush($brush);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_select_font

printer_select_font -- Select a font

Description

void printer_select_font (resource $printer_handle, resource $font_handle)

The function selects a font to draw text.

Parameters

printer_handle

printer_handle must be a valid printer handle.

font_handle

font_handle must be a valid font handle.

Return Values

No value is returned.

Examples

Example #2832 - printer_select_font() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$font = printer_create_font("Arial", 148, 76, PRINTER_FW_MEDIUM, false,
false, false, -50);

printer_select_font($handle, $font);

printer_draw_text($handle, "PHP is simply cool", 40, 40);

printer_delete_font($font);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_select_pen

printer_select_pen -- Select a pen

Description

void printer_select_pen (resource $printer_handle, resource $pen_handle)

The function selects a pen as the active drawing object of the actual device context. A pen
is used to draw lines and curves. I.e. if you draw a single line the pen is used. If you draw
an rectangle the pen is used to draw the borders, while the brush is used to fill the shape.
If you haven't selected a pen before drawing shapes, the shape won't be outlined.

Parameters

printer_handle

printer_handle must be a valid printer handle.

pen_handle

pen_handle must be a valid pen handle.

Return Values

No value is returned.

Examples

Example #2833 - printer_select_pen() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

$pen = printer_create_pen(PRINTER_PEN_SOLID, 30, "2222FF");

printer_select_pen($handle, $pen);

printer_draw_line($handle, 1, 60, 500, 60);

printer_delete_pen($pen);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_set_option

printer_set_option -- Configure the printer connection

Description

bool printer_set_option (resource $printer_handle, int $option, mixed $value)

The function sets options for the current connection.

Parameters

printer_handle

printer_handle must be a valid printer handle.

option

Option can be one of the following constants:

• PRINTER_COPIES: sets how many copies should be printed, value must be an
integer.

• PRINTER_MODE: specifies the type of data (text, raw or emf), value must be a
string.

• PRINTER_TITLE: specifies the name of the document, value must be a string.

• PRINTER_ORIENTATION: specifies the orientation of the paper, value can be
either PRINTER_ORIENTATION_PORTRAIT or
PRINTER_ORIENTATION_LANDSCAPE

• PRINTER_RESOLUTION_Y: specifies the y-resolution in DPI, value must be an
integer.

• PRINTER_RESOLUTION_X: specifies the x-resolution in DPI, value must be an
integer.

• PRINTER_PAPER_FORMAT: specifies a predefined paper format, set value to
PRINTER_FORMAT_CUSTOM if you want to specify a custom format with
PRINTER_PAPER_WIDTH and PRINTER_PAPER_LENGTH. value can be one
of the following constants.

• PRINTER_FORMAT_CUSTOM: let's you specify a custom paper format.

• PRINTER_FORMAT_LETTER: specifies standard letter format (8 1/2- by
11-inches).

• PRINTER_FORMAT_LEGAL: specifies standard legal format (8 1/2- by
14-inches).

• PRINTER_FORMAT_A3: specifies standard A3 format (297- by
420-millimeters).

• PRINTER_FORMAT_A4: specifies standard A4 format (210- by

297-millimeters).

• PRINTER_FORMAT_A5: specifies standard A5 format (148- by
210-millimeters).

• PRINTER_FORMAT_B4: specifies standard B4 format (250- by
354-millimeters).

• PRINTER_FORMAT_B5: specifies standard B5 format (182- by
257-millimeter).

• PRINTER_FORMAT_FOLIO: specifies standard FOLIO format (8 1/2- by
13-inch).

• PRINTER_PAPER_LENGTH: if PRINTER_PAPER_FORMAT is set to
PRINTER_FORMAT_CUSTOM, PRINTER_PAPER_LENGTH specifies a custom
paper length in mm, value must be an integer.

• PRINTER_PAPER_WIDTH: if PRINTER_PAPER_FORMAT is set to
PRINTER_FORMAT_CUSTOM, PRINTER_PAPER_WIDTH specifies a custom
paper width in mm, value must be an integer.

• PRINTER_SCALE: specifies the factor by which the printed output is to be scaled.
the page size is scaled from the physical page size by a factor of scale/100. for
example if you set the scale to 50, the output would be half of its original size.
value must be an integer.

• PRINTER_BACKGROUND_COLOR: specifies the background color for the actual
device context, value must be a string containing the rgb information in hex format
i.e. "005533".

• PRINTER_TEXT_COLOR: specifies the text color for the actual device context,
value must be a string containing the rgb information in hex format i.e. "005533".

• PRINTER_TEXT_ALIGN: specifies the text alignment for the actual device context,
value can be combined through OR'ing the following constants:

• PRINTER_TA_BASELINE: text will be aligned at the base line.

• PRINTER_TA_BOTTOM: text will be aligned at the bottom.

• PRINTER_TA_TOP: text will be aligned at the top.

• PRINTER_TA_CENTER: text will be aligned at the center.

• PRINTER_TA_LEFT: text will be aligned at the left.

• PRINTER_TA_RIGHT: text will be aligned at the right.

value

The option value.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2834 - printer_set_option() example

<?php

$handle = printer_open();

printer_set_option($handle, PRINTER_SCALE, 75);

printer_set_option($handle, PRINTER_TEXT_ALIGN, PRINTER_TA_LEFT);

printer_close($handle);

?>

printer_start_doc

printer_start_doc -- Start a new document

Description

bool printer_start_doc (resource $printer_handle [, string $document])

The function creates a new document in the printer spooler. A document can contain
multiple pages, it's used to schedule the print job in the spooler.

Parameters

printer_handle

printer_handle must be a valid printer handle.

document

The optional parameter document can be used to set an alternative document name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2835 - printer_start_doc() example

<?php

$handle = printer_open();

printer_start_doc($handle, "My Document");

printer_start_page($handle);

printer_end_page($handle);

printer_end_doc($handle);

printer_close($handle);

?>

printer_start_page

printer_start_page -- Start a new page

Description

bool printer_start_page (resource $printer_handle)

The function creates a new page in the active document. For an example see
printer_start_doc().

Parameters

printer_handle

printer_handle must be a valid printer handle.

Return Values

Returns TRUE on success or FALSE on failure.

printer_write

printer_write -- Write data to the printer

Description

bool printer_write (resource $printer_handle, string $content)

Writes content directly to the printer.

Parameters

printer_handle

printer_handle must be a valid printer handle.

content

The data to be written.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2836 - printer_write() example

<?php

$handle = printer_open();

printer_write($handle, "Text to print");

printer_close($handle);

?>

W32api

Introduction

This extension is a generic extension API to DLLs. This was originally written to allow
access to the Win32 API from PHP, although you can also access other functions
exported via other DLLs.

Currently supported types are generic PHP types (strings, booleans, floats, integers and
nulls) and types you define with w32api_deftype().

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.1.0.

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

http://pecl.php.net/

Installing/Configuring

Requirements

This extension will only work on Windows systems.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines one resource type, used for user defined types. The name of this
resource is "dynaparm".

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

DC_MICROSOFT (integer)

DC_BORLAND (integer)

DC_CALL_CDECL (integer)

DC_CALL_STD (integer)

DC_RETVAL_MATH4 (integer)

DC_RETVAL_MATH8 (integer)

DC_CALL_STD_BO (integer)

DC_CALL_STD_MS (integer)

DC_CALL_STD_M8 (integer)

DC_FLAG_ARGPTR (integer)

Examples

This example gets the amount of time the system has been running and displays it in a
message box.

Example #2837 - Get the uptime and display it in a message box

<?php

// Define constants needed, taken from

// Visual Studio/Tools/Winapi/WIN32API.txt

define("MB_OK", 0);

// Load the extension in

dl("php_w32api.dll");

// Register the GetTickCount function from kernel32.dll

w32api_register_function("kernel32.dll",

 "GetTickCount",

 "long");

// Register the MessageBoxA function from User32.dll

w32api_register_function("User32.dll",

 "MessageBoxA",

 "long");

// Get uptime information

$ticks = GetTickCount();

// Convert it to a nicely displayable text

$secs = floor($ticks / 1000);

$mins = floor($secs / 60);

$hours = floor($mins / 60);

$str = sprintf("You have been using your computer for:" .

 "\r\n %d Milliseconds, or \r\n %d Seconds" .

 "or \r\n %d mins or\r\n %d hours %d mins.",

 $ticks,

 $secs,

 $mins,

 $hours,

 $mins - ($hours*60));

// Display a message box with only an OK button and the uptime text

MessageBoxA(NULL,

 $str,

 "Uptime Information",

 MB_OK);

?>

W32api Functions

w32api_deftype

w32api_deftype -- Defines a type for use with other w32api_functions

Description

bool w32api_deftype (string $typename, string $member1_type, string $member1_name [,
string $... [, string $...]])

You need to call this function if you would like to define a type for a w32api call.

Parameters

typename

The name of the type.

member1_type

A member type can be a user defined type. All the type names are case sensitive. Built
in type names should be provided in lowercase.

member1_name

The member name of member1_type.

...

...

This function takes 2n+1 arguments, where n is the number of members the type has.
After that is the type of the member followed by the members name (in pairs).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

w32api_init_dtype

w32api_init_dtype -- Creates an instance of the data type typename and fills it with the
values passed

Description

resource w32api_init_dtype (string $typename, mixed $value [, mixed $...])

This function creates an instance of the data type named typename, filling in the values of
the data type.

Parameters

typename

The typename parameter is case sensitive.

value

You should give the values in the same order as you defined the data type with
w32api_deftype().

...

Return Values

Returns a dynaparm resource.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

w32api_invoke_function

w32api_invoke_function -- Invokes function funcname with the arguments passed after the
function name

Description

mixed w32api_invoke_function (string $funcname, mixed $argument [, mixed $...])

w32api_invoke_function() tries to find the previously registered function, passing the
parameters you provided.

Parameters

funcname

The function name.

argument

Any of the arguments can be of any PHP type or w32api_deftype() defined type, as
needed.

...

Return Values

The return type is the one you set when you registered the function, the value is the one
returned by the function itself.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

w32api_register_function

w32api_register_function -- Registers function function_name from library with PHP

Description

bool w32api_register_function (string $library, string $function_name, string $
return_type)

This function tries to find the function_name function in libary, and tries to import it into
PHP.

Parameters

library

The library name, as a string.

function_name

The function name, as a string.

return_type

The function will be registered with the given return_type. This type can be a generic
PHP type, or a type defined with w32api_deftype(). All type names are case sensitive.
Built in type names should be provided in lowercase.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

w32api_set_call_method

w32api_set_call_method -- Sets the calling method used

Description

void w32api_set_call_method (int $method)

This function sets the method call type.

Parameters

method

Can be one of DC_CALL_CDECL or DC_CALL_STD (the extension default).

Return Values

No value is returned.

Notes

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

win32ps

Introduction

The win32ps extension is a Windows specific extension that allows PHP retrieve statistics
about process and memory utilization.

Installing/Configuring

Requirements

Windows NT, Windows 2000, Windows XP or Windows Server 2003. Any version of
Windows derived from Windows NT should be compatible.

Installation

Installing from PECL
1. You can download php_win32ps.dll from » pecl4win.php.net.

2. Copy the php_win32ps.dll into your extension_dir.

3. Load the extension from your php.ini
extension=php_win32ps.dll

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://pecl4win.php.net/

Predefined Constants

This extension has no constants defined.

Examples

Example #2838 - Statistics about the current PHP process

<?php

print_r(win32_ps_stat_proc());

/*

 Array

 (

 [pid] => 936

 [exe] => D:\Daten\Source\php-5.1\Debug_TS\php.exe

 [mem] => Array

 (

 [page_fault_count] => 2062

 [peak_working_set_size] => 8396800

 [working_set_size] => 8396800

 [quota_peak_paged_pool_usage] => 32080

 [quota_paged_pool_usage] => 31876

 [quota_peak_non_paged_pool_usage] => 4240

 [quota_non_paged_pool_usage] => 3888

 [pagefile_usage] => 5865472

 [peak_pagefile_usage] => 5865472

)

 [tms] => Array

 (

 [created] => 0.093

 [kernel] => 0.015

 [user] => 0.062

)

)

*/

?>

Example #2839 - Statistics about global memory utilization

<?php

print_r(win32_ps_stat_mem());

/*

 Array

 (

 [load] => 37

 [unit] => 1024

 [total_phys] => 1048096

 [avail_phys] => 649960

 [total_pagefile] => 2521368

 [avail_pagefile] => 2237940

 [total_virtual] => 2097024

 [avail_virtual] => 2057848

)

*/

?>

win32ps Functions

win32_ps_list_procs

win32_ps_list_procs -- List running processes

Description

array win32_ps_list_procs (void)

Retrieves statistics about all running processes.

Return Values

Returns FALSE on failure, or an array consisting of process statistics like
win32_ps_stat_proc() returns for all running processes on success.

See Also

• win32_ps_stat_proc()

win32_ps_stat_mem

win32_ps_stat_mem -- Stat memory utilization

Description

array win32_ps_stat_mem (void)

Retrieves statistics about the global memory utilization.

Return Values

Returns FALSE on failure, or an array consisting of the following information on success:

load

The current memory load in percent of physical memory.

unit

This is always 1024, and indicates that the following values are the count of 1024
bytes.

total_phys

The amount of total physical memory.

avail_phys

The amount of still available physical memory.

total_pagefile

The amount of total pageable memory (physical memory + paging file).

avail_pagefile

The amount of still available pageable memory (physical memory + paging file).

total_virtual

The amount of total virtual memory for a process.

avail_virtual

The amount of still available virtual memory for a process.

win32_ps_stat_proc

win32_ps_stat_proc -- Stat process

Description

array win32_ps_stat_proc ([int $pid])

Retrieves statistics about the process with the process id pid.

Parameters

pid

The process id of the process to stat. If omitted, the id of the current process.

Return Values

Returns FALSE on failure, or an array consisting of the following information on success:

pid

The process id.

exe

The path to the executable image.

mem

An array containing information about the following memory utilization indicators:
page_fault_count, peak_working_set_size, working_set_size,
quota_peak_paged_pool_usage, quota_paged_pool_usage,
quota_peak_non_paged_pool_usage, quota_non_paged_pool_usage, pagefile_usage
and peak_pagefile_usage.

tms

An array containing information about the following CPU time utilization indicators:
created, kernel and user.

See Also

• win32_ps_list_procs()

win32service

Introduction

The win32service extension is a Windows specific extension that allows PHP to
communicate with the Service Control Manager to start, stop, register and unregister
services, and even allows your PHP scripts to run as a service.

Installing/Configuring

Requirements

Windows NT, Windows 2000, Windows XP or Windows Server 2003. Any version of
Windows derived from Windows NT should be compatible.

Installation

Installing from PECL
1. You can download php_win32service.dll from http://snaps.php.net/win32/. Choose the

PECL_X_X folder that matches you PHP version.

2. Copy the php_win32service.dll into your extension_dir.

3. Load the extension from your php.ini
extension=php_win32service.dll

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

WIN32_SERVICE_CONTROL_CONTINUE (integer)

WIN32_SERVICE_CONTROL_INTERROGATE (integer)

WIN32_SERVICE_CONTROL_PAUSE (integer)

WIN32_SERVICE_CONTROL_STOP (integer)

WIN32_SERVICE_CONTROL_HARDWAREPROFILECHANGE (integer)

WIN32_SERVICE_CONTROL_POWEREVENT (integer)

WIN32_SERVICE_CONTROL_SESSIONCHANGE (integer)

WIN32_ERROR_CALL_NOT_IMPLEMENTED (integer)

WIN32_NO_ERROR (integer)

WIN32_SERVICE_RUNNING (integer)

WIN32_SERVICE_STOPPED (integer)

WIN32_SERVICE_STOP_PENDING (integer)

WIN32_SERVICE_WIN32_OWN_PROCESS (integer)

WIN32_SERVICE_INTERACTIVE_PROCESS (integer)

WIN32_SERVICE_STOPPED (integer)

WIN32_SERVICE_START_PENDING (integer)

WIN32_SERVICE_STOP_PENDING (integer)

WIN32_SERVICE_RUNNING (integer)

WIN32_SERVICE_CONTINUE_PENDING (integer)

WIN32_SERVICE_PAUSE_PENDING (integer)

WIN32_SERVICE_PAUSED (integer)

WIN32_SERVICE_ACCEPT_NETBINDCHANGE (integer)

WIN32_SERVICE_ACCEPT_PARAMCHANGE (integer)

WIN32_SERVICE_ACCEPT_PAUSE_CONTINUE (integer)

WIN32_SERVICE_ACCEPT_SHUTDOWN (integer)

WIN32_SERVICE_ACCEPT_STOP (integer)

WIN32_SERVICE_ACCEPT_HARDWAREPROFILECHANGE (integer)

WIN32_SERVICE_ACCEPT_POWEREVENT (integer)

WIN32_SERVICE_ACCEPT_SESSIONCHANGE (integer)

WIN32_SERVICE_FILE_SYSTEM_DRIVER (integer)

WIN32_SERVICE_KERNEL_DRIVER (integer)

WIN32_SERVICE_WIN32_SHARE_PROCESS (integer)

WIN32_SERVICE_RUNS_IN_SYSTEM_PROCESS (integer)

Examples

Example #2840 - Registering a PHP script to run as a service

<?php

win32_create_service(array(

 'service' => 'dummyphp', # the name of your service

 'display' => 'sample dummy PHP service', # description

 'params' => 'c:\path\to\script.php run', # path to the script and
parameters

));

?>

Example #2841 - Unregistering a service

<?php

win32_delete_service('dummyphp');

?>

Example #2842 - Running as a service

<?php

if ($argv[1] == 'run') {

 win32_start_service_ctrl_dispatcher('dummyphp');

 while (WIN32_SERVICE_CONTROL_STOP != win32_get_last_control_message()) {

 # do your work here.

 # try not to take up more than 30 seconds before going around the loop

 # again

 }

}

?>

win32service Functions

win32_create_service

win32_create_service -- Creates a new service entry in the SCM database

Description

mixed win32_create_service (array $details [, string $machine])

Parameters

details

An array of service details:
service

The short name of the service. This is the name that you will use to control the
service using the net command. The service must be unique (no two services can
share the same name), and, ideally, should avoid having spaces in the name.

display

The display name of the service. This is the name that you will see in the Services
Applet.

user

The name of the user account under which you want the service to run. If omitted,
the service will run as the LocalSystem account. If the username is specified, you
must also provide a password.

password

The password that corresponds to the user.

path

The full path to the executable module that will be launched when the service is
started. If omitted, the path to the current PHP process will be used.

params

Command line parameters to pass to the service when it starts. If you want to run a
PHP script as the service, then the first parameter should be the full path to the
PHP script that you intend to run.

load_order

Controls the load_order. This is not yet fully supported.

svc_type

Sets the service type. If omitted, the default value is
WIN32_SERVICE_WIN32_OWN_PROCESS. Don't change this unless you know
what you're doing.

start_type

Specifies how the service should be started. The default is

WIN32_SERVICE_AUTO_START which means the the service will be launched
when the machine starts up.

error_control

Informs the SCM what it should do when it detects a problem with the service. The
default is WIN32_SERVER_ERROR_IGNORE. Changing this value is not yet fully
supported.

machine

The optional machine name on which you want to create a service. If omitted, it will
use the local machine.

Return Values

Returns TRUE on success, otherwise returns a win32 error code.

Examples

Example #2843 - A win32_create_service() example

Any text that describes the purpose of the example, or what goes on in the example
should go here (inside the
<?php

$x = win32_create_service(array(

 'service' => 'dummyphp',

 'display' => 'sample dummy PHP service',

 'params' => __FILE__ . ' run',

));

debug_zval_dump($x);

?>

See Also

• win32_delete_service()

win32_delete_service

win32_delete_service -- Deletes a service entry from the SCM database

Description

int win32_delete_service (string $servicename [, string $machine])

Attempts to delete a service from the SCM database. Administrative privileges are
required for this to succeed.

This function really just marks the service for deletion. If other processes (such as the
Services Applet) are open, then the deletion will be deferred until those applications are
closed. If a service is marked for deletion, further attempts to delete it will fail, and attempts
to create a new service with that name will also fail.

Parameters

servicename

The short name of the service.

machine

The optional machine name. If omitted, the local machine will be used.

Return Values

Returns TRUE on success, or a win32 error code on failure.

Examples

Example #2844 - A win32_delete_service() example

Deletes the dummyphp service.

<?php

win32_delete_service('dummyphp');

?>

win32_get_last_control_message

win32_get_last_control_message -- Returns the last control message that was sent to this
service

Description

int win32_get_last_control_message (void)

Returns the control code that was last sent to this service process. When running as a
service you should periodically check this to determine if your service needs to stop
running.

Return Values

Returns a control constant; one of WIN32_SERVICE_CONTROL_CONTINUE,
WIN32_SERVICE_CONTROL_INTERROGATE, WIN32_SERVICE_CONTROL_PAUSE,
WIN32_SERVICE_CONTROL_STOP,
WIN32_SERVICE_CONTROL_HARDWAREPROFILECHANGE,
WIN32_SERVICE_CONTROL_POWEREVENT,
WIN32_SERVICE_CONTROL_SESSIONCHANGE.

See Also

• win32_start_service_ctrl_dispatcher()

win32_query_service_status

win32_query_service_status -- Queries the status of a service

Description

mixed win32_query_service_status (string $servicename [, string $machine])

Queries the current status for a service, returning an array of information.

Parameters

servicename

The short name of the service.

machine

The optional machine name. If omitted, the local machine will be used.

Return Values

Returns FALSE on failure, otherwise returns an array consisting of the following
information:

ServiceType

The dwServiceType.

CurrentState

The dwCurrentState.

ControlsAccepted

Which service controls are accepted by the service.

Win32ExitCode

If the service exited, the return code from the process.

ServiceSpecificExitCode

If the service exited with an error condition, the service specific code that is logged in
the event log is visible here.

CheckPoint

If the service is shutting down, holds the current check point number. This is used by
the SCM as a kind of heart-beat to detect a wedged service process. The value of the
check point is best interpreted in conjunction with the WaitHint value.

WaitHint

If the service is shutting down it will set WaitHint to a checkpoint value that will indicate

100% completion. This can be used to implement a progress indicator.

ProcessId

The Windows process identifier. If 0, the process is not running.

ServiceFlags

The dwServiceFlags.

win32_set_service_status

win32_set_service_status -- Update the service status

Description

bool win32_set_service_status (int $status)

Informs the SCM of the current status of a running service. This call is only valid for a
running service process.

Parameters

status

The service status code, one of WIN32_SERVICE_RUNNING,
WIN32_SERVICE_STOPPED, WIN32_SERVICE_STOP_PENDING,
WIN32_SERVICE_START_PENDING, WIN32_SERVICE_CONTINUE_PENDING,
WIN32_SERVICE_PAUSE_PENDING, WIN32_SERVICE_PAUSED.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• win32_start_service_ctrl_dispatcher()

win32_start_service_ctrl_dispatcher

win32_start_service_ctrl_dispatcher -- Registers the script with the SCM, so that it can act
as the service with the given name

Description

mixed win32_start_service_ctrl_dispatcher (string $name)

When launched via the Service Control Manager, a service process is required to
"check-in" with it to establish service monitoring and communication facilities. This function
performs the check-in by spawning a thread to handle the lower-level communication with
the service control manager.

Once started, the service process should continue to check-in with the service control
manager so that it can determine if it should terminate. This is achieved by periodically
calling win32_get_last_control_message() and handling the return code appropriately.

Parameters

name

The short-name of the service, as registered by win32_create_service().

Return Values

Returns TRUE on success, otherwise FALSE or a win32 error code.

Examples

Example #2845 - A win32_start_service_ctrl_dispatcher() example

Any text that describes the purpose of the example, or what goes on in the example
should go here (inside the

<?php

if (!win32_start_service_ctrl_dispatcher('dummyphp')) {

 die("I'm probably not running under the service control manager");

}

while (WIN32_SERVICE_CONTROL_STOP != win32_get_last_control_message()) {

 # do some work here, trying not to take more than around 30 seconds

 # before coming back into the loop again

}

?>

See Also

• win32_get_last_control_message()

win32_start_service

win32_start_service -- Starts a service

Description

int win32_start_service (string $servicename [, string $machine])

Attempts to start the named service. Usually requires administrative privileges.

Parameters

servicename

The short name of the service.

machine

Optional machine name. If omitted, the local machine is used.

Return Values

Returns WIN32_NO_ERROR on success, or some other win32 error code on failure.

See Also

• win32_stop_service()

win32_stop_service

win32_stop_service -- Stops a service

Description

int win32_stop_service (string $servicename [, string $machine])

Stops a named service. Requires administrative privileges.

Parameters

servicename

The short name of the service.

machine

Optional machine name. If omitted, the local machine is used.

Return Values

Returns WIN32_NO_ERROR on success, or a win32 error code on failure.

See Also

• win32_start_service()

XML Manipulation

Document Object Model

Introduction

The DOM extension allows you to operate on XML documents through the DOM API with
PHP 5.

For PHP 4, use DOM XML.

Note

DOM extension uses UTF-8 encoding. Use utf8_encode() and utf8_decode() to work
with texts in ISO-8859-1 encoding or Iconv for other encodings.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XML constants

Constant Value Description

XML_ELEMENT_NODE (
integer)

1 Node is a DOMElement

XML_ATTRIBUTE_NODE (
integer)

2 Node is a DOMAttr

XML_TEXT_NODE (integer
)

3 Node is a DOMText

XML_CDATA_SECTION_N
ODE (integer)

4 Node is a
DOMCharacterData

XML_ENTITY_REF_NODE (
integer)

5 Node is a
DOMEntityReference

XML_ENTITY_NODE (
integer)

6 Node is a DOMEntity

XML_PI_NODE (integer) 7 Node is a
DOMProcessingInstruction

XML_COMMENT_NODE (
integer)

8 Node is a DOMComment

XML_DOCUMENT_NODE (
integer)

9 Node is a DOMDocument

XML_DOCUMENT_TYPE_N
ODE (integer)

10 Node is a
DOMDocumentType

XML_DOCUMENT_FRAG_
NODE (integer)

11 Node is a
DOMDocumentFragment

XML_NOTATION_NODE (
integer)

12 Node is a DOMNotation

XML_HTML_DOCUMENT_
NODE (integer)

13

XML_DTD_NODE (integer) 14

XML_ELEMENT_DECL_NO
DE (integer)

15

XML_ATTRIBUTE_DECL_N
ODE (integer)

16

XML_ENTITY_DECL_NODE
(integer)

17

XML_NAMESPACE_DECL_
NODE (integer)

18

XML_ATTRIBUTE_CDATA (
integer)

1

XML_ATTRIBUTE_ID (
integer)

2

XML_ATTRIBUTE_IDREF (
integer)

3

XML_ATTRIBUTE_IDREFS
(integer)

4

XML_ATTRIBUTE_ENTITY
(integer)

5

XML_ATTRIBUTE_NMTOK
EN (integer)

7

XML_ATTRIBUTE_NMTOK
ENS (integer)

8

XML_ATTRIBUTE_ENUME
RATION (integer)

9

XML_ATTRIBUTE_NOTATI
ON (integer)

10

DOMException constants

Constant Value Description

DOM_INDEX_SIZE_ERR (
integer)

1 If index or size is negative, or
greater than the allowed
value.

DOMSTRING_SIZE_ERR (
integer)

2 If the specified range of text
does not fit into a DOMString
.

DOM_HIERARCHY_REQUE
ST_ERR (integer)

3 If any node is inserted
somewhere it doesn't belong

DOM_WRONG_DOCUMEN
T_ERR (integer)

4 If a node is used in a
different document than the
one that created it.

DOM_INVALID_CHARACT
ER_ERR (integer)

5 If an invalid or illegal
character is specified, such
as in a name.

DOM_NO_DATA_ALLOWE
D_ERR (integer)

6 If data is specified for a node
which does not support data.

DOM_NO_MODIFICATION_
ALLOWED_ERR (integer)

7 If an attempt is made to
modify an object where
modifications are not
allowed.

DOM_NOT_FOUND_ERR (
integer)

8 If an attempt is made to
reference a node in a context
where it does not exist.

DOM_NOT_SUPPORTED_E
RR (integer)

9 If the implementation does
not support the requested
type of object or operation.

DOM_INUSE_ATTRIBUTE_
ERR (integer)

10 If an attempt is made to add
an attribute that is already in
use elsewhere.

DOM_INVALID_STATE_ER
R (integer)

11 If an attempt is made to use
an object that is not, or is no
longer, usable.

DOM_SYNTAX_ERR (
integer)

12 If an invalid or illegal string is
specified.

DOM_INVALID_MODIFICAT
ION_ERR (integer)

13 If an attempt is made to
modify the type of the
underlying object.

DOM_NAMESPACE_ERR (
integer)

14 If an attempt is made to
create or change an object in
a way which is incorrect with
regard to namespaces.

DOM_INVALID_ACCESS_E
RR (integer)

15 If a parameter or an
operation is not supported by
the underlying object.

DOM_VALIDATION_ERR (16 If a call to a method such as

integer) insertBefore or removeChild
would make the Node invalid
with respect to "partial
validity", this exception would
be raised and the operation
would not be done.

The DOMAttr class

Introduction

DOMAttr represents an attribute in the DOMElement object.

Class synopsis

DOMAttr

DOMAttr extends DOMNode {

/* Properties */

public readonly string name;

public readonly DOMElement ownerElement;

public readonly bool schemaTypeInfo;

public readonly bool specified;

public string value;

/* Methods */

DOMAttr::__construct (string $name [, string $value])

bool DOMAttr::isId (void)

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

name
The name of the attribute

ownerElement
The element which contains the attribute

schemaTypeInfo
Not implemented yet, always is NULL

specified
Not implemented yet, always is NULL

value
The value of the attribute

See Also

• » W3C specification of Attr

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-ID-637646024

DOMAttr::__construct

DOMAttr::__construct -- Creates a new DOMAttr object

Description

DOMAttr::__construct (string $name [, string $value])

Creates a new DOMAttr object. This object is read only. It may be appended to a
document, but additional nodes may not be appended to this node until the node is
associated with a document. To create a writeable node, use
DOMDocument::createAttribute.

Parameters

name

The tag name of the attribute.

value

The value of the attribute.

Examples

Example #2846 - Creating a new DOMAttr

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->appendChild(new DOMElement('root'));

$attr = $element->setAttributeNode(new DOMAttr('attr', 'attrvalue'));

echo $dom->saveXML(); /* <?xml version="1.0" encoding="iso-8859-1"?><root
attr="attrvalue" /> */

?>

See Also

• DOMDocument::createAttribute

DOMAttr::isId

DOMAttr::isId -- Checks if attribute is a defined ID

Description

bool DOMAttr::isId (void)

This function checks if the attribute is a defined ID.

According to the DOM standard this requires a DTD which defines the attribute ID to be of
type ID. You need to validate your document with DOMDocument::validate or
DOMDocument::validateOnParse before using this function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2847 - DOMAttr->isId() Example

<?php

$doc = new DomDocument;

// We need to validate our document before refering to the id

$doc->validateOnParse = true;

$doc->Load('book.xml');

// We retrieve the attribute named id of the chapter element

$attr =
$doc->getElementsByTagName('chapter')->item(0)->getAttributeNode('id');

var_dump($attr->isId()); // bool(true)

?>

The DOMCharacterData class

Introduction

Represents nodes with character data. No nodes directly correspond to this class, but
other nodes do inherit from it.

Class synopsis

DOMCharacterData

DOMCharacterData extends DOMNode {

/* Properties */

public string data;

readonly public int length;

/* Methods */

void DOMCharacterData::appendData (string $data)

void DOMCharacterData::deleteData (int $offset, int $count)

void DOMCharacterData::insertData (int $offset, string $data)

void DOMCharacterData::replaceData (int $offset, int $count, string $data)

string DOMCharacterData::substringData (int $offset, int $count)

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

data
The contents of the node.

length
The length of the contents.

See Also

• » W3C specification of CharacterData

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-ID-FF21A306

DOMCharacterData::appendData

DOMCharacterData::appendData -- Append the string to the end of the character data of
the node

Description

void DOMCharacterData::appendData (string $data)

Append the string data to the end of the character data of the node.

Parameters

data

The string to append.

Return Values

No value is returned.

See Also

• DOMCharacterData::deleteData
• DOMCharacterData::insertData
• DOMCharacterData::replaceData
• DOMCharacterData::substringData

DOMCharacterData::deleteData

DOMCharacterData::deleteData -- Remove a range of characters from the node

Description

void DOMCharacterData::deleteData (int $offset, int $count)

Deletes count characters starting from position offset.

Parameters

offset

The offset from which to start removing.

count

The number of characters to delete. If the sum of offset and count exceeds the
length, then all characters to the end of the data are deleted.

Return Values

No value is returned.

Errors/Exceptions

DOM_INDEX_SIZE_ERR
Raised if offset is negative or greater than the number of 16-bit units in data, or if
count is negative.

See Also

• DOMCharacterData::appendData
• DOMCharacterData::insertData
• DOMCharacterData::replaceData
• DOMCharacterData::substringData

DOMCharacterData::insertData

DOMCharacterData::insertData -- Insert a string at the specified 16-bit unit offset

Description

void DOMCharacterData::insertData (int $offset, string $data)

Inserts string data at position offset.

Parameters

offset

The character offset at which to insert.

data

The string to insert.

Return Values

No value is returned.

Errors/Exceptions

DOM_INDEX_SIZE_ERR
Raised if offset is negative or greater than the number of 16-bit units in data.

See Also

• DOMCharacterData::appendData
• DOMCharacterData::deleteData
• DOMCharacterData::replaceData
• DOMCharacterData::substringData

DOMCharacterData::replaceData

DOMCharacterData::replaceData -- Replace a substring within the DOMCharacterData
node

Description

void DOMCharacterData::replaceData (int $offset, int $count, string $data)

Replace count characters starting from position offset with data.

Parameters

offset

The offset from which to start replacing.

count

The number of characters to replace. If the sum of offset and count exceeds the
length, then all characters to the end of the data are replaced.

data

The string with which the range must be replaced.

Return Values

No value is returned.

Errors/Exceptions

DOM_INDEX_SIZE_ERR
Raised if offset is negative or greater than the number of 16-bit units in data, or if
count is negative.

See Also

• DOMCharacterData::appendData
• DOMCharacterData::deleteData
• DOMCharacterData::insertData
• DOMCharacterData::substringData

DOMCharacterData::substringData

DOMCharacterData::substringData -- Extracts a range of data from the node

Description

string DOMCharacterData::substringData (int $offset, int $count)

Returns the specified substring.

Parameters

offset

Start offset of substring to extract.

count

The number of characters to extract.

Return Values

The specified substring. If the sum of offset and count exceeds the length, then all 16-bit
units to the end of the data are returned.

Errors/Exceptions

DOM_INDEX_SIZE_ERR
Raised if offset is negative or greater than the number of 16-bit units in data, or if
count is negative.

See Also

• DOMCharacterData::appendData
• DOMCharacterData::deleteData
• DOMCharacterData::insertData
• DOMCharacterData::replaceData

The DOMComment class

Introduction

Represents comment nodes, characters delimited by <!-- and -->.

Class synopsis

DOMComment

DOMComment extends DOMCharacterData {

/* Methods */

__construct ([string $value])

/* Inherited methods */

void DOMCharacterData::appendData (string $data)

void DOMCharacterData::deleteData (int $offset, int $count)

void DOMCharacterData::insertData (int $offset, string $data)

void DOMCharacterData::replaceData (int $offset, int $count, string $data)

string DOMCharacterData::substringData (int $offset, int $count)
}

See Also

• » W3C specification of Comment

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-ID-1728279322

DOMComment::__construct

DOMComment::__construct -- Creates a new DOMComment object

Description

DOMComment

__construct ([string $value])

Creates a new DOMComment object. This object is read only. It may be appended to a
document, but additional nodes may not be appended to this node until the node is
associated with a document. To create a writeable node, use
DOMDocument::createComment.

Parameters

value

The value of the comment.

Examples

Example #2848 - Creating a new DOMComment

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->appendChild(new DOMElement('root'));

$comment = $element->appendChild(new DOMComment('root comment'));

echo $dom->saveXML(); /* <?xml version="1.0"
encoding="iso-8859-1"?><root><!--root comment--></root> */

?>

See Also

• DOMDocument::createComment

The DOMDocument class

Introduction

Represents an entire HTML or XML document; serves as the root of the document tree.

Class synopsis

DOMDocument

DOMDocument extends DOMNode {

/* Properties */

readonly public string actualEncoding;

readonly public DOMConfiguration config;

readonly public DOMDocumentType doctype;

readonly public DOMElement documentElement;

public string documentURI;

public string encoding;

public bool formatOutput;

readonly public DOMImplementation implementation;

public bool preserveWhiteSpace = true;

public bool recover;

public bool resolveExternals;

public bool standalone;

public bool strictErrorChecking = true;

public bool substituteEntities;

public bool validateOnParse = false;

public string version;

readonly public string xmlEncoding;

public bool xmlStandalone;

public string xmlVersion;

/* Methods */

DOMDocument::__construct ([string $version [, string $encoding]])

DOMAttr DOMDocument::createAttribute (string $name)

DOMAttr DOMDocument::createAttributeNS (string $namespaceURI, string $
qualifiedName)

DOMCDATASection DOMDocument::createCDATASection (string $data)

DOMComment DOMDocument::createComment (string $data)

DOMDocumentFragment DOMDocument::createDocumentFragment (void)

DOMElement DOMDocument::createElement (string $name [, string $value])

DOMElement DOMDocument::createElementNS (string $namespaceURI, string $
qualifiedName [, string $value])

DOMEntityReference DOMDocument::createEntityReference (string $name)

DOMProcessingInstruction DOMDocument::createProcessingInstruction (string $
target [, string $data])

DOMText DOMDocument::createTextNode (string $content)

DOMElement DOMDocument::getElementById (string $elementId)

DOMNodeList DOMDocument::getElementsByTagName (string $name)

DOMNodeList DOMDocument::getElementsByTagNameNS (string $namespaceURI,
string $localName)

DOMNode DOMDocument::importNode (DOMNode $importedNode [, bool $deep])

mixed DOMDocument::load (string $filename [, int $options])

bool DOMDocument::loadHTML (string $source)

bool DOMDocument::loadHTMLFile (string $filename)

mixed DOMDocument::loadXML (string $source [, int $options])

void DOMDocument::normalizeDocument (void)

bool DOMDocument::registerNodeClass (string $baseclass, string $extendedclass
)

bool DOMDocument::relaxNGValidate (string $filename)

bool DOMDocument::relaxNGValidateSource (string $source)

int DOMDocument::save (string $filename [, int $options])

string DOMDocument::saveHTML (void)

int DOMDocument::saveHTMLFile (string $filename)

string DOMDocument::saveXML ([DOMNode $node [, int $options]])

bool DOMDocument::schemaValidate (string $filename)

bool DOMDocument::schemaValidateSource (string $source)

bool DOMDocument::validate (void)

int DOMDocument::xinclude ([int $options])

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)

}

Properties

actualEncoding
Deprecated. Actual encoding of the document, is a readonly equivalent to encoding.

config
Deprecated. Configuration used when DOMDocument::normalizeDocument() is
invoked.

doctype
The Document Type Declaration associated with this document.

documentElement
This is a convenience attribute that allows direct access to the child node that is the
document element of the document.

documentURI
The location of the document or NULL if undefined.

encoding
Encoding of the document, as specified by the XML declaration. This attribute is not
present in the final DOM Level 3 specification, but is the only way of manipulating XML
document encoding in this implementation.

formatOutput
Nicely formats output with indentation and extra space.

implementation
The DOMImplementation object that handles this document.

preserveWhiteSpace
Do not remove redundant white space. Default to TRUE.

recover
Proprietary. Enables recovery mode, i.e. trying to parse non-well formed documents.
This attribute is not part of the DOM specification and is specific to libxml.

resolveExternals
Set it to TRUE to load external entities from a doctype declaration. This is useful for
including character entities in your XML document.

standalone
Deprecated. Whether or not the document is standalone, as specified by the XML
declaration, corresponds to xmlStandalone.

strictErrorChecking
Throws DOMException on errors. Default to TRUE.

substituteEntities
Proprietary. Whether or not to substitute entities. This attribute is not part of the DOM
specification and is specific to libxml.

validateOnParse
Loads and validates against the DTD. Default to FALSE.

version
Deprecated. Version of XML, corresponds to xmlVersion

xmlEncoding
An attribute specifying, as part of the XML declaration, the encoding of this document.
This is NULL when unspecified or when it is not known, such as when the Document
was created in memory.

xmlStandalone
An attribute specifying, as part of the XML declaration, whether this document is
standalone. This is FALSE when unspecified.

xmlVersion
An attribute specifying, as part of the XML declaration, the version number of this
document. If there is no declaration and if this document supports the "XML" feature,
the value is "1.0".

See Also

• » W3C specification for Document

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-i-Document

DOMDocument::__construct

DOMDocument::__construct -- Creates a new DOMDocument object

Description

DOMDocument::__construct ([string $version [, string $encoding]])

Creates a new DOMDocument object.

Parameters

version

The version number of the document as part of the XML declaration.

encoding

The encoding of the document as part of the XML declaration.

Examples

Example #2849 - Creating a new DOMDocument

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

echo $dom->saveXML(); /* <?xml version="1.0" encoding="iso-8859-1"?> */

?>

See Also

• DOMImplementation::createDocument

DOMDocument::createAttribute

DOMDocument::createAttribute -- Create new attribute

Description

DOMAttr DOMDocument::createAttribute (string $name)

This function creates a new instance of class DOMAttr. This node will not show up in the
document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

name

The name of the attribute.

Return Values

The new DOMAttr or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if name contains an invalid character.

See Also

• DOMNode::appendChild
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createAttributeNS

DOMDocument::createAttributeNS -- Create new attribute node with an associated
namespace

Description

DOMAttr DOMDocument::createAttributeNS (string $namespaceURI, string $
qualifiedName)

This function creates a new instance of class DOMAttr. This node will not show up in the
document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

namespaceURI

The URI of the namespace.

qualifiedName

The tag name and prefix of the attribute, as prefix:tagname.

Return Values

The new DOMAttr or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if qualifiedName contains an invalid character.

DOM_NAMESPACE_ERR
Raised if qualifiedName is a malformed qualified name, or if qualifiedName has a
prefix and namespaceURI is NULL.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement

• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createCDATASection

DOMDocument::createCDATASection -- Create new cdata node

Description

DOMCDATASection DOMDocument::createCDATASection (string $data)

This function creates a new instance of class DOMCDATASection. This node will not show
up in the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

data

The content of the cdata.

Return Values

The new DOMCDATASection or FALSE if an error occured.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createComment

DOMDocument::createComment -- Create new comment node

Description

DOMComment DOMDocument::createComment (string $data)

This function creates a new instance of class DOMComment. This node will not show up in
the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

data

The content of the comment.

Return Values

The new DOMComment or FALSE if an error occured.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createDocumentFragment

DOMDocument::createDocumentFragment -- Create new document fragment

Description

DOMDocumentFragment DOMDocument::createDocumentFragment (void)

This function creates a new instance of class DOMDocumentFragment. This node will not
show up in the document unless it is inserted with (e.g.) DOMNode->appendChild().

Return Values

The new DOMDocumentFragment or FALSE if an error occured.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createElement

DOMDocument::createElement -- Create new element node

Description

DOMElement DOMDocument::createElement (string $name [, string $value])

This function creates a new instance of class DOMElement. This node will not show up in
the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

name

The tag name of the element.

value

The value of the element. By default, an empty element will be created. You can also
set the value later with DOMElement->nodeValue.

Return Values

Returns a new instance of class DOMElement or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if name contains an invalid character.

Examples

Example #2850 - Creating a new element and inserting it as root

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->createElement('test', 'This is the root element!');

// We insert the new element as root (child of the document)

$dom->appendChild($element);

echo $dom->saveXML();

?>

The above example will output:

<?xml version="1.0" encoding="iso-8859-1"?>

<test>This is the root element!</test>

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createElementNS

DOMDocument::createElementNS -- Create new element node with an associated
namespace

Description

DOMElement DOMDocument::createElementNS (string $namespaceURI, string $
qualifiedName [, string $value])

This function creates a new element node with an associated namespace. This node will
not show up in the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

namespaceURI

The URI of the namespace.

qualifiedName

The qualified name of the element, as prefix:tagname.

value

The value of the element. By default, an empty element will be created. You can also
set the value later with DOMElement->nodeValue.

Return Values

The new DOMElement or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if qualifiedName contains an invalid character.

DOM_NAMESPACE_ERR
Raised if qualifiedName is a maformed qualified name.

Examples

Example #2851 - Creating a new element and inserting it as root

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->createElementNS('http://www.example.com/XFoo', 'xfoo:test',
'This is the root element!');

// We insert the new element as root (child of the document)

$dom->appendChild($element);

echo $dom->saveXML();

?>

The above example will output:

<?xml version="1.0" encoding="iso-8859-1"?>

<xfoo:test xmlns:xfoo="http://www.example.com/XFoo">This is the root
element!</xfoo:test>

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createEntityReference

DOMDocument::createEntityReference -- Create new entity reference node

Description

DOMEntityReference DOMDocument::createEntityReference (string $name)

This function creates a new instance of class DOMEntityReference. This node will not
show up in the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

name

The content of the entity reference, e.g. the entity reference minus the leading &and
the trailing; characters.

Return Values

The new DOMEntityReference or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if name contains an invalid character.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createProcessingInstruction
• DOMDocument::createTextNode

DOMDocument::createProcessingInstruction

DOMDocument::createProcessingInstruction -- Creates new PI node

Description

DOMProcessingInstruction DOMDocument::createProcessingInstruction (string $
target [, string $data])

This function creates a new instance of class DOMProcessingInstruction. This node will
not show up in the document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

target

The target of the processing instruction.

data

The content of the processing instruction.

Return Values

The new DOMProcessingInstruction or FALSE if an error occured.

Errors/Exceptions

DOM_INVALID_CHARACTER_ERR
Raised if target contains an invalid character.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createTextNode

DOMDocument::createTextNode

DOMDocument::createTextNode -- Create new text node

Description

DOMText DOMDocument::createTextNode (string $content)

This function creates a new instance of class DOMText. This node will not show up in the
document unless it is inserted with (e.g.) DOMNode->appendChild().

Parameters

content

The content of the text.

Return Values

The new DOMText or FALSE if an error occured.

See Also

• DOMNode::appendChild
• DOMDocument::createAttribute
• DOMDocument::createAttributeNS
• DOMDocument::createCDATASection
• DOMDocument::createComment
• DOMDocument::createDocumentFragment
• DOMDocument::createElement
• DOMDocument::createElementNS
• DOMDocument::createEntityReference
• DOMDocument::createProcessingInstruction

DOMDocument::getElementById

DOMDocument::getElementById -- Searches for an element with a certain id

Description

DOMElement DOMDocument::getElementById (string $elementId)

This function is similar to DOMDocument::getElementsByTagName but searches for an
element with a given id.

For this function to work, you will need either to set some ID attributes with
DOMElement::setIdAttribute or a DTD which defines an attribute to be of type ID. In the
later case, you will need to validate your document with DOMDocument::validate or
DOMDocument->validateOnParse before using this function.

Parameters

elementId

The unique id value for an element.

Return Values

Returns the DOMElement or NULL if the element is not found.

Examples

Example #2852 - DOMDocument->getElementById() Example

<?php

$doc = new DomDocument;

// We need to validate our document before refering to the id

$doc->validateOnParse = true;

$doc->Load('book.xml');

echo "The element whose id is books is: " .
$doc->getElementById('books')->tagName . "\n";

?>

The above example will output:

The element whose id is books is: chapter

See Also

• DOMDocument::getElementsByTagName

DOMDocument::getElementsByTagName

DOMDocument::getElementsByTagName -- Searches for all elements with given tag
name

Description

DOMNodeList DOMDocument::getElementsByTagName (string $name)

This function returns a new instance of class DOMNodeList containing the elements with a
given tag name.

Parameters

name

The name of the tag to match on. The special value * matches all tags.

Return Values

A new DOMNodeList object containing all the matched elements.

See Also

• DOMDocument::getElementsByTagNameNS

DOMDocument::getElementsByTagNameNS

DOMDocument::getElementsByTagNameNS -- Searches for all elements with given tag
name in specified namespace

Description

DOMNodeList DOMDocument::getElementsByTagNameNS (string $namespaceURI,
string $localName)

Returns a DOMNodeList of all elements with a given local name and a namespace URI.

Parameters

namespaceURI

The namespace URI of the elements to match on. The special value * matches all
namespaces.

localName

The local name of the elements to match on. The special value * matches all local
names.

Return Values

A new DOMNodeList object containing all the matched elements.

Examples

Example #2853 - Get all the XInclude elements

<?php

$xml = <<<EOD

<?xml version="1.0" ?>

<chapter xmlns:xi="http://www.w3.org/2001/XInclude">

<title>Books of the other guy..</title>

<para>

<xi:include href="book.xml">

 <xi:fallback>

 <error>xinclude: book.xml not found</error>

 </xi:fallback>

</xi:include>

<include>

 This is another namespace

</include>

</para>

</chapter>

EOD;

$dom = new DOMDocument;

// load the XML string defined above

$dom->loadXML($xml);

foreach ($dom->getElementsByTagNameNS('http://www.w3.org/2001/XInclude',
'*') as $element) {

 echo 'local name: ', $element->localName, ', prefix: ', $element->prefix,
"\n";

}

?>

The above example will output:

local name: include, prefix: xi

local name: fallback, prefix: xi

See Also

• DOMDocument::getElementsByTagName

DOMDocument::importNode

DOMDocument::importNode -- Import node into current document

Description

DOMNode DOMDocument::importNode (DOMNode $importedNode [, bool $deep])

This function returns a copy of the node to import and associates it with the current
document.

Parameters

importedNode

The node to import.

deep

If set to TRUE, this method will recursively import the subtree under the importedNode.

Return Values

The copied node or FALSE, if it cannot be copied.

Errors/Exceptions

DOMException is thrown if node cannot be imported.

DOMDocument::load

DOMDocument::load -- Load XML from a file

Description

mixed DOMDocument::load (string $filename [, int $options])

Loads an XML document from a file.

Warning

Unix style paths with forward slashes can cause significant performance degradation
on Windows systems; be sure to call realpath() in such a case.

Parameters

filename

The path to the XML document.

options

Bitwise OR of the libxml option constants.

Return Values

Returns TRUE on success or FALSE on failure. If called statically, returns a
DOMDocument but also causes an E_STRICT warning.

Errors/Exceptions

If an empty string is passed as the filename or an empty file is named, a warning will be
generated. This warning is not generated by libxml and cannot be handled using libxml's
error handling functions.

Examples

Example #2854 - Creating a Document

<?php

$doc = new DOMDocument();

$doc->load('book.xml');

echo $doc->saveXML();

?>

See Also

• DOMDocument::loadXML
• DOMDocument::save
• DOMDocument::saveXML

DOMDocument::loadHTML

DOMDocument::loadHTML -- Load HTML from a string

Description

bool DOMDocument::loadHTML (string $source)

The function parses the HTML contained in the string source. Unlike loading XML, HTML
does not have to be well-formed to load. This function may also be called statically to load
and create a DOMDocument object. The static invocation may be used when no
DOMDocument properties need to be set prior to loading.

Parameters

source

The HTML string.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

If an empty string is passed as the source, a warning will be generated. This warning is
not generated by libxml and cannot be handled using libxml's error handling functions.

Examples

Example #2855 - Creating a Document

<?php

$doc = new DOMDocument();

$doc->loadHTML("<html><body>Test
</body></html>");

echo $doc->saveHTML();

?>

See Also

• DOMDocument::loadHTMLFile
• DOMDocument::saveHTML

• DOMDocument::saveHTMLFile

DOMDocument::loadHTMLFile

DOMDocument::loadHTMLFile -- Load HTML from a file

Description

bool DOMDocument::loadHTMLFile (string $filename)

The function parses the HTML document in the file named filename. Unlike loading XML,
HTML does not have to be well-formed to load.

This function may also be called statically to load and create a DOMDocument object. The
static invocation may be used when no DOMDocument properties need to be set prior to
loading.

Parameters

filename

The path to the HTML file.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

If an empty string is passed as the filename or an empty file is named, a warning will be
generated. This warning is not generated by libxml and cannot be handled using libxml's
error handling functions.

Examples

Example #2856 - Creating a Document

<?php

$doc = new DOMDocument();

$doc->loadHTMLFile("filename.html");

echo $doc->saveHTML();

?>

See Also

• DOMDocument::loadHTML
• DOMDocument::saveHTML
• DOMDocument::saveHTMLFile

DOMDocument::loadXML

DOMDocument::loadXML -- Load XML from a string

Description

mixed DOMDocument::loadXML (string $source [, int $options])

Loads an XML document from a string.

This method may also be called statically to load and create a DOMDocument object. The
static invocation may be used when no DOMDocument properties need to be set prior to
loading.

Parameters

source

The string containing the XML.

options

Bitwise OR of the libxml option constants.

Return Values

Returns TRUE on success or FALSE on failure. If called statically, returns a
DOMDocument.

Errors/Exceptions

If an empty string is passed as the source, a warning will be generated. This warning is
not generated by libxml and cannot be handled using libxml's error handling functions.

Examples

Example #2857 - Creating a Document

<?php

$doc = new DOMDocument();

$doc->loadXML('<root><node/></root>');

echo $doc->saveXML();

?>

Example #2858 - Static invocation of loadXML

<?php

$doc = DOMDocument::loadXML('<root><node/></root>');

echo $doc->saveXML();

?>

See Also

• DOMDocument::load
• DOMDocument::save
• DOMDocument::saveXML

DOMDocument::normalizeDocument

DOMDocument::normalizeDocument -- Normalizes the document

Description

void DOMDocument::normalizeDocument (void)

This method acts as if you saved and then loaded the document, putting the document in a
"normal" form.

Return Values

No value is returned.

See Also

• » The DOM Specification
• DOMNode::normalize

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-Document3-normalizeDocument

DOMDocument::registerNodeClass

DOMDocument::registerNodeClass -- Register extended class used to create base node
type

Description

bool DOMDocument::registerNodeClass (string $baseclass, string $extendedclass)

This method allows you to register your own extended DOM class to be used afterward by
the PHP DOM extension.

This method is not part of the DOM standard.

Parameters

baseclass

The DOM class that you want to extend. You can find a list of these classes in the
chapter introduction. Of course, you won't be able to register a class extending
DOMDocument but you can always start your document by instanciating your own
extending class.

extendedclass

Your extended class name. If NULL is provided, any previously registered class
extending baseclass will be removed.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

PHP 5.2.2 Prior to 5.2.2, a previously registered
extendedclass had to be unregistered
before being able to register a new class
extending the same baseclass.

Examples

Example #2859 - Adding a new method to DOMElement to ease our code

<?php

class myElement extends DOMElement {

 function appendElement($name) {

 return $this->appendChild(new myElement($name));

 }

}

class myDocument extends DOMDocument {

 function setRoot($name) {

 return $this->appendChild(new myElement($name));

 }

}

$doc = new myDocument();

$doc->registerNodeClass('DOMElement', 'myElement');

// From now on, adding an element to another costs only one method call !

$root = $doc->setRoot('root');

$child = $root->appendElement('child');

$child->setAttribute('foo', 'bar');

echo $doc->saveXML();

?>

The above example will output:

<?xml version="1.0"?>

<root><child foo="bar"/></root>

DOMDocument::relaxNGValidate

DOMDocument::relaxNGValidate -- Performs relaxNG validation on the document

Description

bool DOMDocument::relaxNGValidate (string $filename)

Performs » relaxNG validation on the document based on the given RNG schema.

Parameters

filename

The RNG file.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMDocument::relaxNGValidateSource
• DOMDocument::schemaValidate
• DOMDocument::schemaValidateSource
• DOMDocument::validate

http://www.relaxng.org/

DOMDocument::relaxNGValidateSource

DOMDocument::relaxNGValidateSource -- Performs relaxNG validation on the document

Description

bool DOMDocument::relaxNGValidateSource (string $source)

Performs » relaxNG validation on the document based on the given RNG source.

Parameters

source

A string containing the RNG schema.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMDocument::relaxNGValidate
• DOMDocument::schemaValidate
• DOMDocument::schemaValidateSource
• DOMDocument::validate

http://www.relaxng.org/

DOMDocument::save

DOMDocument::save -- Dumps the internal XML tree back into a file

Description

int DOMDocument::save (string $filename [, int $options])

Creates an XML document from the DOM representation. This function is usually called
after building a new dom document from scratch as in the example below.

Parameters

filename

The path to the saved XML document.

options

Additional Options. Currently only LIBXML_NOEMPTYTAG is supported.

Return Values

Returns the number of bytes written or FALSE if an error occurred.

ChangeLog

Version Description

5.1.0 Added the options parameter

Examples

Example #2860 - Saving a DOM tree into a file

<?php

$doc = new DOMDocument('1.0');

// we want a nice output

$doc->formatOutput = true;

$root = $doc->createElement('book');

$root = $doc->appendChild($root);

$title = $doc->createElement('title');

$title = $root->appendChild($title);

$text = $doc->createTextNode('This is the title');

$text = $title->appendChild($text);

echo 'Wrote: ' . $doc->save("/tmp/test.xml") . ' bytes'; // Wrote: 72 bytes

?>

See Also

• DOMDocument::saveXML
• DOMDocument::load
• DOMDocument::loadXML

DOMDocument::saveHTML

DOMDocument::saveHTML -- Dumps the internal document into a string using HTML
formatting

Description

string DOMDocument::saveHTML (void)

Creates an HTML document from the DOM representation. This function is usually called
after building a new dom document from scratch as in the example below.

Return Values

Returns the HTML, or FALSE if an error occurred.

Examples

Example #2861 - Saving a HTML tree into a string

<?php

$doc = new DOMDocument('1.0');

$root = $doc->createElement('html');

$root = $doc->appendChild($root);

$head = $doc->createElement('head');

$head = $root->appendChild($head);

$title = $doc->createElement('title');

$title = $head->appendChild($title);

$text = $doc->createTextNode('This is the title');

$text = $title->appendChild($text);

echo $doc->saveHTML();

?>

See Also

• DOMDocument::saveHTMLFile
• DOMDocument::loadHTML
• DOMDocument::loadHTMLFile

DOMDocument::saveHTMLFile

DOMDocument::saveHTMLFile -- Dumps the internal document into a file using HTML
formatting

Description

int DOMDocument::saveHTMLFile (string $filename)

Creates an HTML document from the DOM representation. This function is usually called
after building a new dom document from scratch as in the example below.

Parameters

filename

The path to the saved HTML document.

Return Values

Returns the number of bytes written or FALSE if an error occurred.

Examples

Example #2862 - Saving a HTML tree into a file

<?php

$doc = new DOMDocument('1.0');

// we want a nice output

$doc->formatOutput = true;

$root = $doc->createElement('html');

$root = $doc->appendChild($root);

$head = $doc->createElement('head');

$head = $root->appendChild($head);

$title = $doc->createElement('title');

$title = $head->appendChild($title);

$text = $doc->createTextNode('This is the title');

$text = $title->appendChild($text);

echo 'Wrote: ' . $doc->saveHTMLFile("/tmp/test.html") . ' bytes'; // Wrote:
129 bytes

?>

See Also

• DOMDocument::saveHTML
• DOMDocument::loadHTML
• DOMDocument::loadHTMLFile

DOMDocument::saveXML

DOMDocument::saveXML -- Dumps the internal XML tree back into a string

Description

string DOMDocument::saveXML ([DOMNode $node [, int $options]])

Creates an XML document from the DOM representation. This function is usually called
after building a new dom document from scratch as in the example below.

Parameters

node

Use this parameter to output only a specific node without XML declaration rather than
the entire document.

options

Additional Options. Currently only LIBXML_NOEMPTYTAG is supported.

Return Values

Returns the XML, or FALSE if an error occurred.

Errors/Exceptions

DOM_WRONG_DOCUMENT_ERR
Raised if node is from another document.

ChangeLog

Version Description

5.1.0 Added the options parameter

Examples

Example #2863 - Saving a DOM tree into a string

<?php

$doc = new DOMDocument('1.0');

// we want a nice output

$doc->formatOutput = true;

$root = $doc->createElement('book');

$root = $doc->appendChild($root);

$title = $doc->createElement('title');

$title = $root->appendChild($title);

$text = $doc->createTextNode('This is the title');

$text = $title->appendChild($text);

echo "Saving all the document:\n";

echo $doc->saveXML() . "\n";

echo "Saving only the title part:\n";

echo $doc->saveXML($title);

?>

The above example will output:

Saving all the document:

<?xml version="1.0"?>

<book>

 <title>This is the title</title>

</book>

Saving only the title part:

<title>This is the title</title>

See Also

• DOMDocument::save
• DOMDocument::load
• DOMDocument::loadXML

DOMDocument::schemaValidate

DOMDocument::schemaValidate -- Validates a document based on a schema

Description

bool DOMDocument::schemaValidate (string $filename)

Validates a document based on the given schema file.

Parameters

filename

The path to the schema.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMDocument::schemaValidateSource
• DOMDocument::relaxNGValidate
• DOMDocument::relaxNGValidateSource
• DOMDocument::validate

DOMDocument::schemaValidateSource

DOMDocument::schemaValidateSource -- Validates a document based on a schema

Description

bool DOMDocument::schemaValidateSource (string $source)

Validates a document based on a schema defined in the given string.

Parameters

source

A string containing the schema.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMDocument::schemaValidate
• DOMDocument::relaxNGValidate
• DOMDocument::relaxNGValidateSource
• DOMDocument::validate

DOMDocument::validate

DOMDocument::validate -- Validates the document based on its DTD

Description

bool DOMDocument::validate (void)

Validates the document based on its DTD.

You can also use the validateOnParse property of DOMDocument to make a DTD
validation.

Return Values

Returns TRUE on success or FALSE on failure. If the document have no DTD attached,
this method will return FALSE.

Examples

Example #2864 - Example of DTD validation

<?php

$dom = new DOMDocument;

$dom->Load('book.xml');

if ($dom->validate()) {

 echo "This document is valid!\n";

}

?>

You can also validate your XML file while loading it:

<?php

$dom = new DOMDocument;

$dom->validateOnParse = true;

$dom->Load('book.xml');

?>

See Also

• DOMDocument::schemaValidate
• DOMDocument::schemaValidateSource
• DOMDocument::relaxNGValidate
• DOMDocument::relaxNGValidateSource

DOMDocument::xinclude

DOMDocument::xinclude -- Substitutes XIncludes in a DOMDocument Object

Description

int DOMDocument::xinclude ([int $options])

This method substitutes » XIncludes in a DOMDocument object.

Note

Due to libxml2 automatically resolving entities, this method will produce unexpected
results if the included XML file have an attached DTD.

Parameters

options

libxml parameters. Available since PHP 5.1.0 and Libxml 2.6.7.

Return Values

Returns the number of XIncludes in the document.

Examples

Example #2865 - DOMDocument->xinclude() example

<?php

$xml = <<<EOD

<?xml version="1.0" ?>

<chapter xmlns:xi="http://www.w3.org/2001/XInclude">

<title>Books of the other guy..</title>

<para>

 <xi:include href="book.xml">

 <xi:fallback>

 <error>xinclude: book.xml not found</error>

 </xi:fallback>

 </xi:include>

</para>

</chapter>

EOD;

$dom = new DOMDocument;

http://www.w3.org/TR/xinclude/

// let's have a nice output

$dom->preserveWhiteSpace = false;

$dom->formatOutput = true;

// load the XML string defined above

$dom->loadXML($xml);

// substitute xincludes

$dom->xinclude();

echo $dom->saveXML();

?>

The above example will output something similar to:

<?xml version="1.0"?>

<chapter xmlns:xi="http://www.w3.org/2001/XInclude">

 <title>Books of the other guy..</title>

 <para>

 <row xml:base="/home/didou/book.xml">

 <entry>The Grapes of Wrath</entry>

 <entry>John Steinbeck</entry>

 <entry>en</entry>

 <entry>0140186409</entry>

 </row>

 <row xml:base="/home/didou/book.xml">

 <entry>The Pearl</entry>

 <entry>John Steinbeck</entry>

 <entry>en</entry>

 <entry>014017737X</entry>

 </row>

 <row xml:base="/home/didou/book.xml">

 <entry>Samarcande</entry>

 <entry>Amine Maalouf</entry>

 <entry>fr</entry>

 <entry>2253051209</entry>

 </row>

 </para>

</chapter>

The DOMDocumentFragment class

Class synopsis

DOMDocumentFragment

DOMDocumentFragment extends DOMNode {

/* Properties */

/* Methods */

bool DOMDocumentFragment::appendXML (string $data)

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

DOMDocumentFragment::appendXML

DOMDocumentFragment::appendXML -- Append raw XML data

Description

bool DOMDocumentFragment::appendXML (string $data)

Appends raw XML data to a DOMDocumentFragment.

This method is not part of the DOM standard. It was created as a simplier approach for
appending an XML DocumentFragment in a DOMDocument.

If you want to stick to the standards, you will have to create a temporary DOMDocument
with a dummy root and then loop through the child nodes of the root of your XML data to
append them.

Parameters

data

XML to append.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2866 - Appending XML data to your document

<?php

$doc = new DOMDocument();

$doc->loadXML("<root/>");

$f = $doc->createDocumentFragment();

$f->appendXML("<foo>text</foo><bar>text2</bar>");

$doc->documentElement->appendChild($f);

echo $doc->saveXML();

?>

The above example will output:

<?xml version="1.0"?>

<root><foo>text</foo><bar>text2</bar></root>

The DOMDocumentType class

Introduction

Each DOMDocument has a doctype attribute whose value is either NULL or a
DOMDocumentType object.

Class synopsis

DOMDocumentType

DOMDocumentType extends DOMNode {

/* Properties */

readonly public string publicId;

readonly public string systemId;

readonly public string name;

readonly public DOMNamedNodeMap entities;

readonly public DOMNamedNodeMap notations;

readonly public string internalSubset;

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

publicId
The public identifier of the external subset.

systemId
The system identifier of the external subset. This may be an absolute URI or not.

name
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

entities
A DOMNamedNodeMap containing the general entities, both external and internal,
declared in the DTD.

notations
A DOMNamedNodeMap containing the notations declared in the DTD.

internalSubset
The internal subset as a string, or null if there is none. This is does not contain the
delimiting square brackets.

The DOMElement class

Class synopsis

DOMElement

DOMElement extends DOMNode {

/* Properties */

readonly public bool schemaTypeInfo;

readonly public string tagName;

/* Methods */

__construct (string $name [, string $value [, string $namespaceURI]])

string DOMElement::getAttribute (string $name)

DOMAttr DOMElement::getAttributeNode (string $name)

DOMAttr DOMElement::getAttributeNodeNS (string $namespaceURI, string $
localName)

string DOMElement::getAttributeNS (string $namespaceURI, string $localName)

DOMNodeList DOMElement::getElementsByTagName (string $name)

DOMNodeList DOMElement::getElementsByTagNameNS (string $namespaceURI,
string $localName)

bool DOMElement::hasAttribute (string $name)

bool DOMElement::hasAttributeNS (string $namespaceURI, string $localName)

bool DOMElement::removeAttribute (string $name)

bool DOMElement::removeAttributeNode (DOMAttr $oldnode)

bool DOMElement::removeAttributeNS (string $namespaceURI, string $localName)

DOMAttr DOMElement::setAttribute (string $name, string $value)

DOMAttr DOMElement::setAttributeNode (DOMAttr $attr)

DOMAttr DOMElement::setAttributeNodeNS (DOMAttr $attr)

void DOMElement::setAttributeNS (string $namespaceURI, string $qualifiedName,
string $value)

void DOMElement::setIdAttribute (string $name, bool $isId)

void DOMElement::setIdAttributeNode (DOMAttr $attr, bool $isId)

void DOMElement::setIdAttributeNS (string $namespaceURI, string $localName, bool
$isId)

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

schemaTypeInfo
Not implemented yet, always return NULL

tagName
The element name

DOMElement::__construct

DOMElement::__construct -- Creates a new DOMElement object

Description

DOMElement

__construct (string $name [, string $value [, string $namespaceURI]])

Creates a new DOMElement object. This object is read only. It may be appended to a
document, but additional nodes may not be appended to this node until the node is
associated with a document. To create a writeable node, use
DOMDocument::createElement or DOMDocument::createElementNS.

Parameters

name

The tag name of the element. When also passing in namespaceURI, the element
name may take a prefix to be associated with the URI.

value

The value of the element.

namespaceURI

A namespace URI to create the element within a specific namespace.

Examples

Example #2867 - Creating a new DOMElement

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->appendChild(new DOMElement('root'));

$element_ns = new DOMElement('pr:node1', 'thisvalue', 'http://xyz');

$element->appendChild($element_ns);

echo $dom->saveXML(); /* <?xml version="1.0" encoding="iso-8859-1"?>

<root><pr:node1 xmlns:pr="http://xyz">thisvalue</pr:node1></root> */

?>

See Also

• DOMDocument::createElement
• DOMDocument::createElementNS

DOMElement::getAttribute

DOMElement::getAttribute -- Returns value of attribute

Description

string DOMElement::getAttribute (string $name)

Gets the value of the attribute with name name for the current node.

Parameters

name

The name of the attribute.

Return Values

The value of the attribute, or an empty string if no attribute with the given name is found.

See Also

• DOMElement::hasAttribute
• DOMElement::setAttribute
• DOMElement::removeAttribute

DOMElement::getAttributeNode

DOMElement::getAttributeNode -- Returns attribute node

Description

DOMAttr DOMElement::getAttributeNode (string $name)

Returns the attribute node with name name for the current element.

Parameters

name

The name of the attribute.

Return Values

The attribute node.

See Also

• DOMElement::hasAttribute
• DOMElement::setAttributeNode
• DOMElement::removeAttributeNode

DOMElement::getAttributeNodeNS

DOMElement::getAttributeNodeNS -- Returns attribute node

Description

DOMAttr DOMElement::getAttributeNodeNS (string $namespaceURI, string $localName)

Returns the attribute node in namespace namespaceURI with local name localName for the
current node.

Parameters

namespaceURI

The namespace URI.

localName

The local name.

Return Values

The attribute node.

See Also

• DOMElement::hasAttributeNS
• DOMElement::setAttributeNodeNS
• DOMElement::removeAttributeNode

DOMElement::getAttributeNS

DOMElement::getAttributeNS -- Returns value of attribute

Description

string DOMElement::getAttributeNS (string $namespaceURI, string $localName)

Gets the value of the attribute in namespace namespaceURI with local name localName for
the current node.

Parameters

namespaceURI

The namespace URI.

localName

The local name.

Return Values

The value of the attribute, or an empty string if no attribute with the given localName and
namespaceURI is found.

See Also

• DOMElement::hasAttributeNS
• DOMElement::setAttributeNS
• DOMElement::removeAttributeNS

DOMElement::getElementsByTagName

DOMElement::getElementsByTagName -- Gets elements by tagname

Description

DOMNodeList DOMElement::getElementsByTagName (string $name)

This function returns a new instance of the class DOMNodeList of all descendant elements
with a given tag name, in the order in which they are encountered in a preorder traversal of
this element tree.

Parameters

name

The tag name. Use * to return all elements within the element tree.

Return Values

This function returns a new instance of the class DOMNodeList of all matched elements.

See Also

• DOMElement::getElementsByTagNameNS

DOMElement::getElementsByTagNameNS

DOMElement::getElementsByTagNameNS -- Get elements by namespaceURI and
localName

Description

DOMNodeList DOMElement::getElementsByTagNameNS (string $namespaceURI, string
$localName)

This function fetch all the descendant elements with a given localName and namespaceURI.

Parameters

namespaceURI

The namespace URI.

localName

The local name. Use * to return all elements within the element tree.

Return Values

This function returns a new instance of the class DOMNodeList of all matched elements in
the order in which they are encountered in a preorder traversal of this element tree.

See Also

• DOMElement::getElementsByTagName

DOMElement::hasAttribute

DOMElement::hasAttribute -- Checks to see if attribute exists

Description

bool DOMElement::hasAttribute (string $name)

Indicates whether attribute named name exists as a member of the element.

Parameters

name

The attribute name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMElement::hasAttributeNS
• DOMElement::getAttribute
• DOMElement::setAttribute
• DOMElement::removeAttribute

DOMElement::hasAttributeNS

DOMElement::hasAttributeNS -- Checks to see if attribute exists

Description

bool DOMElement::hasAttributeNS (string $namespaceURI, string $localName)

Indicates whether attribute in namespace namespaceURI named localName exists as a
member of the element.

Parameters

namespaceURI

The namespace URI.

localName

The local name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMElement::hasAttribute
• DOMElement::getAttributeNS
• DOMElement::setAttributeNS
• DOMElement::removeAttributeNS

DOMElement::removeAttribute

DOMElement::removeAttribute -- Removes attribute

Description

bool DOMElement::removeAttribute (string $name)

Removes attribute named name from the element.

Parameters

name

The name of the attribute.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

See Also

• DOMElement::hasAttribute
• DOMElement::getAttribute
• DOMElement::setAttribute

DOMElement::removeAttributeNode

DOMElement::removeAttributeNode -- Removes attribute

Description

bool DOMElement::removeAttributeNode (DOMAttr $oldnode)

Removes attribute oldnode from the element.

Parameters

oldnode

The attribute node.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

DOM_NOT_FOUND_ERROR
Raised if oldnode is not an attribute of the element.

See Also

• DOMElement::hasAttribute
• DOMElement::getAttributeNode
• DOMElement::setAttributeNode

DOMElement::removeAttributeNS

DOMElement::removeAttributeNS -- Removes attribute

Description

bool DOMElement::removeAttributeNS (string $namespaceURI, string $localName)

Removes attribute is namespace namespaceURI named localName from the element.

Parameters

namespaceURI

The namespace URI.

localName

The local name.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

See Also

• DOMElement::hasAttributeNS
• DOMElement::getAttributeNS
• DOMElement::setAttributeNS

DOMElement::setAttribute

DOMElement::setAttribute -- Adds new attribute

Description

DOMAttr DOMElement::setAttribute (string $name, string $value)

Sets an attribute with name name to the given value. If the attribute does not exist, it will be
created.

Parameters

name

The name of the attribute.

value

The value of the attribute.

Return Values

The new DOMAttr or FALSE if an error occured.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

Examples

Example #2868 - Setting an attribute

<?php

$doc = new DOMDocument("1.0");

$node = $doc->createElement("para");

$newnode = $doc->appendChild($node);

$newnode->setAttribute("align", "left");

?>

See Also

• DOMElement::hasAttribute
• DOMElement::getAttribute
• DOMElement::removeAttribute

DOMElement::setAttributeNode

DOMElement::setAttributeNode -- Adds new attribute node to element

Description

DOMAttr DOMElement::setAttributeNode (DOMAttr $attr)

Adds new attribute node attr to element.

Parameters

attr

The attribute node.

Return Values

Returns old node if the attribute has been replaced or NULL.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

See Also

• DOMElement::hasAttribute
• DOMElement::getAttributeNode
• DOMElement::removeAttributeNode

DOMElement::setAttributeNodeNS

DOMElement::setAttributeNodeNS -- Adds new attribute node to element

Description

DOMAttr DOMElement::setAttributeNodeNS (DOMAttr $attr)

Adds new attribute node attr to element.

Parameters

name

The attribute node.

Return Values

Returns the old node if the attribute has been replaced.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

See Also

• DOMElement::hasAttributeNS
• DOMElement::getAttributeNodeNS
• DOMElement::removeAttributeNode

DOMElement::setAttributeNS

DOMElement::setAttributeNS -- Adds new attribute

Description

void DOMElement::setAttributeNS (string $namespaceURI, string $qualifiedName, string
$value)

Sets an attribute with namespace namespaceURI and name name to the given value. If the
attribute does not exist, it will be created.

Parameters

namespaceURI

The namespace URI.

qualifiedName

The qualified name of the attribute, as prefix:tagname.

value

The value of the attribute.

Return Values

No value is returned.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

DOM_NAMESPACE_ERR
Raised if qualifiedName is a malformed qualified name, or if qualifiedName has a
prefix and namespaceURI is NULL.

See Also

• DOMElement::hasAttributeNS
• DOMElement::getAttributeNS
• DOMElement::removeAttributeNS

DOMElement::setIdAttribute

DOMElement::setIdAttribute -- Declares the attribute specified by name to be of type ID

Description

void DOMElement::setIdAttribute (string $name, bool $isId)

Declares the attribute name to be of type ID.

Parameters

name

The name of the attribute.

isId

Set it to TRUE if you want name to be of type ID, FALSE otherwise.

Return Values

No value is returned.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

DOM_NOT_FOUND
Raised if name is not an attribute of this element.

See Also

• DOMDocument::getElementById
• DOMElement::setIdAttributeNode
• DOMElement::setIdAttributeNS

DOMElement::setIdAttributeNode

DOMElement::setIdAttributeNode -- Declares the attribute specified by node to be of type
ID

Description

void DOMElement::setIdAttributeNode (DOMAttr $attr, bool $isId)

Declares the attribute specified by attr to be of type ID.

Parameters

attr

The attribute node.

isId

Set it to TRUE if you want name to be of type ID, FALSE otherwise.

Return Values

No value is returned.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

DOM_NOT_FOUND
Raised if name is not an attribute of this element.

See Also

• DOMDocument::getElementById
• DOMElement::setIdAttribute
• DOMElement::setIdAttributeNS

DOMElement::setIdAttributeNS

DOMElement::setIdAttributeNS -- Declares the attribute specified by local name and
namespace URI to be of type ID

Description

void DOMElement::setIdAttributeNS (string $namespaceURI, string $localName, bool $
isId)

Declares the attribute specified by localName and namespaceURI to be of type ID.

Parameters

namespaceURI

The namespace URI of the attribute.

localName

The local name of the attribute, as prefix:tagname.

isId

Set it to TRUE if you want name to be of type ID, FALSE otherwise.

Return Values

No value is returned.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if the node is readonly.

DOM_NOT_FOUND
Raised if name is not an attribute of this element.

See Also

• DOMDocument::getElementById
• DOMElement::setIdAttribute
• DOMElement::setIdAttributeNode

The DOMEntity class

Introduction

This interface represents a known entity, either parsed or unparsed, in an XML document.

Class synopsis

DOMEntity

DOMEntity extends DOMNode {

/* Properties */

readonly public string publicId;

readonly public string systemId;

readonly public string notationName;

public string actualEncoding;

readonly public string encoding;

readonly public string version;

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

publicId
The public identifier associated with the entity if specified, and NULL otherwise.

systemId
The system identifier associated with the entity if specified, and NULL otherwise. This
may be an absolute URI or not.

notationName
For unparsed entities, the name of the notation for the entity. For parsed entities, this is
NULL.

actualEncoding
An attribute specifying the encoding used for this entity at the time of parsing, when it
is an external parsed entity. This is NULL if it an entity from the internal subset or if it is
not known.

encoding
An attribute specifying, as part of the text declaration, the encoding of this entity, when
it is an external parsed entity. This is NULL otherwise.

version
An attribute specifying, as part of the text declaration, the version number of this entity,
when it is an external parsed entity. This is NULL otherwise.

The DOMEntityReference class

Class synopsis

DOMEntityReference

DOMEntityReference extends DOMNode {

/* Properties */

/* Methods */

__construct (string $name)

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

DOMEntityReference::__construct

DOMEntityReference::__construct -- Creates a new DOMEntityReference object

Description

DOMEntityReference

__construct (string $name)

Creates a new DOMEntityReference object.

Parameters

name

The name of the entity reference.

Examples

Example #2869 - Creating a new DOMEntityReference

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->appendChild(new DOMElement('root'));

$entity = $element->appendChild(new DOMEntityReference('nbsp'));

echo $dom->saveXML(); /* <?xml version="1.0"
encoding="iso-8859-1"?><root> </root> */

?>

See Also

• DOMDocument::createEntityReference

The DOMException class

Introduction

DOM operations raise exceptions under particular circumstances, i.e., when an operation
is impossible to perform for logical reasons.

See also Exceptions.

Class synopsis

DOMException

DOMException extends Exception {

/* Properties */

readonly public int code;
}

Properties

code
An integer indicating the type of error generated

The DOMImplementation class

Introduction

The DOMImplementation interface provides a number of methods for performing
operations that are independent of any particular instance of the document object model.

Class synopsis

DOMImplementation

DOMImplementation {

/* Properties */

/* Methods */

__construct (void)

DOMDocument DOMImplementation::createDocument ([string $namespaceURI [,
string $qualifiedName [, DOMDocumentType $doctype]]])

DOMDocumentType DOMImplementation::createDocumentType ([string $
qualifiedName [, string $publicId [, string $systemId]]])

bool DOMImplementation::hasFeature (string $feature, string $version)
}

DOMImplementation::__construct

DOMImplementation::__construct -- Creates a new DOMImplementation object

Description

DOMImplementation

__construct (void)

Creates a new DOMImplementation object.

DOMImplementation::createDocument

DOMImplementation::createDocument -- Creates a DOMDocument object of the specified
type with its document element

Description

DOMDocument DOMImplementation::createDocument ([string $namespaceURI [, string
$qualifiedName [, DOMDocumentType $doctype]]])

Creates a DOMDocument object of the specified type with its document element.

Parameters

namespaceURI

The namespace URI of the document element to create.

qualifiedName

The qualified name of the document element to create.

doctype

The type of document to create or NULL.

Return Values

A new DOMDocument object. If namespaceURI, qualifiedName, and doctype are null, the
returned DOMDocument is empty with no document element

Errors/Exceptions

DOM_WRONG_DOCUMENT_ERR
Raised if doctype has already been used with a different document or was created
from a different implementation.

DOM_NAMESPACE_ERR
Raised if there is an error with the namespace, as determined by namespaceURI and
qualifiedName.

See Also

• DOMDocument::__construct
• DOMImplementation::createDocumentType

DOMImplementation::createDocumentType

DOMImplementation::createDocumentType -- Creates an empty DOMDocumentType
object

Description

DOMDocumentType DOMImplementation::createDocumentType ([string $
qualifiedName [, string $publicId [, string $systemId]]])

Creates an empty DOMDocumentType object. Entity declarations and notations are not
made available. Entity reference expansions and default attribute additions do not occur.

Parameters

qualifiedName

The qualified name of the document type to create.

publicId

The external subset public identifier.

systemId

The external subset system identifier.

Return Values

A new DOMDocumentType node with its ownerDocument set to NULL.

Examples

Example #2870 - Creating a document with an attached DTD

<?php

// Creates an instance of the DOMImplementation class

$imp = new DOMImplementation;

// Creates a DOMDocumentType instance

$dtd = $imp->createDocumentType('graph', '', 'graph.dtd');

// Creates a DOMDocument instance

$dom = $imp->createDocument("", "", $dtd);

// Set other properties

$dom->encoding = 'UTF-8';

$dom->standalone = false;

// Create an empty element

$element = $dom->createElement('graph');

// Append the element

$dom->appendChild($element);

// Retrieve and print the document

echo $dom->saveXML();

?>

The above example will output:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE graph SYSTEM "graph.dtd">

<graph/>

Errors/Exceptions

DOM_NAMESPACE_ERR
Raised if there is an error with the namespace, as determined by qualifiedName.

See Also

• DOMImplementation::createDocument

DOMImplementation::hasFeature

DOMImplementation::hasFeature -- Test if the DOM implementation implements a specific
feature

Description

bool DOMImplementation::hasFeature (string $feature, string $version)

Test if the DOM implementation implements a specific feature.

You can find a list of all features in the » Conformance section of the DOM specification.

Parameters

feature

The feature to test.

version

The version number of the feature to test. In level 2, this can be either 2.0 or 1.0.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2871 - Testing your DOM Implementation

<?php

$features = array(

 'Core' => 'Core module',

 'XML' => 'XML module',

 'HTML' => 'HTML module',

 'Views' => 'Views module',

 'Stylesheets' => 'Style Sheets module',

 'CSS' => 'CSS module',

 'CSS2' => 'CSS2 module',

 'Events' => 'Events module',

 'UIEvents' => 'User interface Events module',

 'MouseEvents' => 'Mouse Events module',

 'MutationEvents' => 'Mutation Events module',

 'HTMLEvents' => 'HTML Events module',

 'Range' => 'Range module',

 'Traversal' => 'Traversal module'

);

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/introduction.html#ID-Conformance

foreach ($features as $key => $name) {

 if (DOMImplementation::hasFeature($key, '2.0')) {

 echo "Has feature $name\n";

 } else {

 echo "Missing feature $name\n";

 }

}

?>

See Also

• DOMNode::isSupported

The DOMNamedNodeMap class

Class synopsis

DOMNamedNodeMap

DOMNamedNodeMap {

/* Properties */

/* Methods */

DOMNode DOMNamedNodeMap::getNamedItem (string $name)

DOMNode DOMNamedNodeMap::getNamedItemNS (string $namespaceURI, string $
localName)

DOMNode DOMNamedNodeMap::item (int $index)
}

DOMNamedNodeMap::getNamedItem

DOMNamedNodeMap::getNamedItem -- Retrieves a node specified by name

Description

DOMNode DOMNamedNodeMap::getNamedItem (string $name)

Retrieves a node specified by its nodeName.

Parameters

name

The nodeName of the node to retrieve.

Return Values

A node (of any type) with the specified nodeName, or NULL if no node is found.

See Also

• DOMNamedNodeMap::getNamedItemNS

DOMNamedNodeMap::getNamedItemNS

DOMNamedNodeMap::getNamedItemNS -- Retrieves a node specified by local name and
namespace URI

Description

DOMNode DOMNamedNodeMap::getNamedItemNS (string $namespaceURI, string $
localName)

Retrieves a node specified by localName and namespaceURI.

Parameters

namespaceURI

The namespace URI of the node to retrieve.

localName

The local name of the node to retrieve.

Return Values

A node (of any type) with the specified local name and namespace URI, or NULL if no
node is found.

See Also

• DOMNamedNodeMap::getNamedItem

DOMNamedNodeMap::item

DOMNamedNodeMap::item -- Retrieves a node specified by index

Description

DOMNode DOMNamedNodeMap::item (int $index)

Retrieves a node specified by index within the DOMNamedNodeMap object.

Parameters

index

Index into this map.

Return Values

The node at the index th position in the map, or NULL if that is not a valid index (greater
than or equal to the number of nodes in this map).

The DOMNode class

Class synopsis

DOMNode

DOMNode {

/* Properties */

public readonly string nodeName;

public string nodeValue;

public readonly int nodeType;

public readonly DOMNode parentNode;

public readonly DOMNodeList childNodes;

public readonly DOMNode firstChild;

public readonly DOMNode lastChild;

public readonly DOMNode previousSibling;

public readonly DOMNode nextSibling;

public readonly DOMNamedNodeMap attributes;

public readonly DOMDocument ownerDocument;

public readonly string namespaceURI;

public string prefix;

public readonly string localName;

public readonly string baseURI;

public string textContent;

/* Methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

nodeName
Returns the most accurate name for the current node type

nodeValue
The value of this node, depending on its type

nodeType
Gets the type of the node. One of the predefined XML_xxx_NODE constants

parentNode
The parent of this node

childNodes
A DOMNodeList that contains all children of this node. If there are no children, this is
an empty DOMNodeList.

firstChild
The first child of this node. If there is no such node, this returns NULL.

lastChild
The last child of this node. If there is no such node, this returns NULL.

previousSibling
The node immediately preceding this node. If there is no such node, this returns NULL
.

nextSibling
The node immediately following this node. If there is no such node, this returns NULL.

attributes
A DOMNamedNodeMap containing the attributes of this node (if it is a DOMElement)
or NULL otherwise.

ownerDocument
The DOMDocument object associated with this node.

namespaceURI
The namespace URI of this node, or NULL if it is unspecified.

prefix
The namespace prefix of this node, or NULL if it is unspecified.

localName
Returns the local part of the qualified name of this node.

baseURI
The absolute base URI of this node or NULL if the implementation wasn't able to
obtain an absolute URI.

textContent
This attribute returns the text content of this node and its descendants.

See Also

• » W3C specification of Node

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-ID-1950641247

DOMNode::appendChild

DOMNode::appendChild -- Adds new child at the end of the children

Description

DOMNode DOMNode::appendChild (DOMNode $newnode)

This functions appends a child to an existing list of children or creates a new list of
children. The child can be created with e.g. DOMDocument::createElement,
DOMDocument::createTextNode etc. or simply by using any other node.

Parameters

newnode

The appended child.

Return Values

The node added.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly or if the previous parent of the node being inserted is
readonly.

DOM_HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newnode
node, or if the node to append is one of this node's ancestors or this node itself.

DOM_WRONG_DOCUMENT_ERR
Raised if newnode was created from a different document than the one that created this
node.

Examples

The following example will add a new element node to a fresh document.

Example #2872 - Adding a child

<?php

$doc = new DOMDocument;

$node = $doc->createElement("para");

$newnode = $doc->appendChild($node);

echo $doc->saveXML();

?>

See Also

• DOMNode::removeChild
• DOMNode::replaceChild

DOMNode::cloneNode

DOMNode::cloneNode -- Clones a node

Description

DOMNode DOMNode::cloneNode ([bool $deep])

Creates a copy of the node.

Parameters

deep

Indicates whether to copy all descendant nodes. This parameter is defaulted to FALSE
.

Return Values

The cloned node.

DOMNode::hasAttributes

DOMNode::hasAttributes -- Checks if node has attributes

Description

bool DOMNode::hasAttributes (void)

This method checks if the node has attributes. The tested node have to be an
XML_ELEMENT_NODE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMNode::hasChildNodes

DOMNode::hasChildNodes

DOMNode::hasChildNodes -- Checks if node has children

Description

bool DOMNode::hasChildNodes (void)

This function checks if the node has children.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMNode::hasAttributes

DOMNode::insertBefore

DOMNode::insertBefore -- Adds a new child before a reference node

Description

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

This function inserts a new node right before the reference node. If you plan to do further
modifications on the appended child you must use the returned node.

Parameters

newnode

The new node.

refnode

The reference node. If not supplied, newnode is appended to the children.

Return Values

The inserted node.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly or if the previous parent of the node being inserted is
readonly.

DOM_HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newnode
node, or if the node to append is one of this node's ancestors or this node itself.

DOM_WRONG_DOCUMENT_ERR
Raised if newnode was created from a different document than the one that created this
node.

DOM_NOT_FOUND
Raised if refnode is not a child of this node.

DOMNode::isDefaultNamespace

DOMNode::isDefaultNamespace -- Checks if the specified namespaceURI is the default
namespace or not

Description

bool DOMNode::isDefaultNamespace (string $namespaceURI)

Tells whether namespaceURI is the default namespace.

Parameters

namespaceURI

The namespace URI to look for.

Return Values

Return TRUE if namespaceURI is the default namespace, FALSE otherwise.

DOMNode::isSameNode

DOMNode::isSameNode -- Indicates if two nodes are the same node

Description

bool DOMNode::isSameNode (DOMNode $node)

This function indicates if two nodes are the same node. The comparison is not based on
content

Parameters

node

The compared node.

Return Values

Returns TRUE on success or FALSE on failure.

DOMNode::isSupported

DOMNode::isSupported -- Checks if feature is supported for specified version

Description

bool DOMNode::isSupported (string $feature, string $version)

Checks if the asked feature is supported for the specified version.

Parameters

feature

The feature to test. See the example of DOMImplementation::hasFeature for a list of
features.

version

The version number of the feature to test.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• DOMImplementation::hasFeature

DOMNode::lookupNamespaceURI

DOMNode::lookupNamespaceURI -- Gets the namespace URI of the node based on the
prefix

Description

string DOMNode::lookupNamespaceURI (string $prefix)

Gets the namespace URI of the node based on the prefix.

Parameters

prefix

The prefix of the namespace.

Return Values

The namespace URI of the node.

See Also

• DOMNode::lookupPrefix

DOMNode::lookupPrefix

DOMNode::lookupPrefix -- Gets the namespace prefix of the node based on the
namespace URI

Description

string DOMNode::lookupPrefix (string $namespaceURI)

Gets the namespace prefix of the node based on the namespace URI.

Parameters

namespaceURI

The namespace URI.

Return Values

The prefix of the namespace.

See Also

• DOMNode::lookupNamespaceURI

DOMNode::normalize

DOMNode::normalize -- Normalizes the node

Description

void DOMNode::normalize (void)

Normalizes the node.

Return Values

No value is returned.

See Also

• » The DOM Specification
• DOMDocument::normalizeDocument

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/DOM3-Core.html#core-ID-normalize

DOMNode::removeChild

DOMNode::removeChild -- Removes child from list of children

Description

DOMNode DOMNode::removeChild (DOMNode $oldnode)

This functions removes a child from a list of children.

Parameters

oldnode

The removed child.

Return Values

If the child could be removed the functions returns the old child.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly.

DOM_NOT_FOUND
Raised if oldnode is not a child of this node.

Examples

The following example will delete the chapter element of our XML document.

Example #2873 - Removing a child

<?php

$doc = new DOMDocument;

$doc->load('book.xml');

$book = $doc->documentElement;

// we retrieve the chapter and remove it from the book

$chapter = $book->getElementsByTagName('chapter')->item(0);

$oldchapter = $book->removeChild($chapter);

echo $doc->saveXML();

?>

The above example will output:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">

<book id="listing">

<title>My lists</title>

</book>

See Also

• DOMNode::appendChild
• DOMNode::replaceChild

DOMNode::replaceChild

DOMNode::replaceChild -- Replaces a child

Description

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)

This function replaces the child oldnode with the passed new node. If the new node is
already a child it will not be added a second time. If the replacement succeeds the old
node is returned.

Parameters

newnode

The new node. It must be a member of the target document, i.e. created by one of the
DOMDocument->createXXX() methods or imported in the document by
DOMDocument::importNode.

oldnode

The old node.

Return Values

The old node or FALSE if an error occur.

Errors/Exceptions

DOM_NO_MODIFICATION_ALLOWED_ERR
Raised if this node is readonly or if the previous parent of the node being inserted is
readonly.

DOM_HIERARCHY_REQUEST_ERR
Raised if this node is of a type that does not allow children of the type of the newnode
node, or if the node to put in is one of this node's ancestors or this node itself.

DOM_WRONG_DOCUMENT_ERR
Raised if newnode was created from a different document than the one that created this
node.

DOM_NOT_FOUND
Raised if oldnode is not a child of this node.

See Also

• DOMNode::appendChild
• DOMNode::removeChild

The DOMNodeList class

Class synopsis

DOMNodeList

DOMNodeList {

/* Properties */

readonly public int length;

/* Methods */

DOMNode DOMNodelist::item (int $index)
}

Properties

length
The number of nodes in the list. The range of valid child node indices is 0 to length - 1
inclusive.

DOMNodelist::item

DOMNodelist::item -- Retrieves a node specified by index

Description

DOMNode DOMNodelist::item (int $index)

Retrieves a node specified by index within the DOMNodeList object.

Tip

If you need to know the number of nodes in the collection, use the length property of
the DOMNodeList object.

Parameters

index

Index of the node into the collection.

Return Values

The node at the index th position in the DOMNodeList, or NULL if that is not a valid index.

Examples

Example #2874 - Traversing all the entries of the table

<?php

$doc = new DOMDocument;

$doc->load('book.xml');

$items = $doc->getElementsByTagName('entry');

for ($i = 0; $i < $items->length; $i++) {

 echo $items->item($i)->nodeValue . "\n";

}

?>

Alternatively, you can use foreach, which is a much more convenient way:

<?php

foreach ($items as $item) {

 echo $item->nodeValue . "\n";

}

?>

The above example will output:

Title

Author

Language

ISBN

The Grapes of Wrath

John Steinbeck

en

0140186409

The Pearl

John Steinbeck

en

014017737X

Samarcande

Amine Maalouf

fr

2253051209

The DOMNotation class

Class synopsis

DOMNotation

DOMNotation extends DOMNode {

/* Properties */

readonly public string publicId;

readonly public string systemId;

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

publicId
Prop description

systemId
Prop description

The DOMProcessingInstruction class

Class synopsis

DOMProcessingInstruction

DOMProcessingInstruction extends DOMNode {

/* Properties */

readonly public string target;

public string data;

/* Methods */

__construct (string $name [, string $value])

/* Inherited methods */

DOMNode DOMNode::appendChild (DOMNode $newnode)

DOMNode DOMNode::cloneNode ([bool $deep])

bool DOMNode::hasAttributes (void)

bool DOMNode::hasChildNodes (void)

DOMNode DOMNode::insertBefore (DOMNode $newnode [, DOMNode $refnode])

bool DOMNode::isDefaultNamespace (string $namespaceURI)

bool DOMNode::isSameNode (DOMNode $node)

bool DOMNode::isSupported (string $feature, string $version)

string DOMNode::lookupNamespaceURI (string $prefix)

string DOMNode::lookupPrefix (string $namespaceURI)

void DOMNode::normalize (void)

DOMNode DOMNode::removeChild (DOMNode $oldnode)

DOMNode DOMNode::replaceChild (DOMNode $newnode, DOMNode $oldnode)
}

Properties

target
Prop description

data
Prop description

DOMProcessingInstruction::__construct

DOMProcessingInstruction::__construct -- Creates a new DOMProcessingInstruction
object

Description

DOMProcessingInstruction

__construct (string $name [, string $value])

Creates a new DOMProcessingInstruction object. This object is read only. It may be
appended to a document, but additional nodes may not be appended to this node until the
node is associated with a document. To create a writeable node, use
DOMDocument::createProcessingInstruction.

Parameters

name

The tag name of the processing instruction.

value

The value of the processing instruction.

Examples

Example #2875 - Creating a new DOMProcessingInstruction

<?php

$dom = new DOMDocument('1.0', 'UTF-8');

$html = $dom->appendChild(new DOMElement('html'));

$body = $html->appendChild(new DOMElement('body'));

$pinode = new DOMProcessingInstruction('php', 'echo "Hello World"; ');

$body->appendChild($pinode);

echo $dom->saveXML();

?>

The above example will output:

<?xml version="1.0" encoding="UTF-8"?>

<html><body><?php echo "Hello World"; ?></body></html>

See Also

• DOMDocument::createProcessingInstruction

The DOMText class

Class synopsis

DOMText

DOMText extends DOMCharacterData {

/* Properties */

readonly public string wholeText;

/* Methods */

__construct ([string $value])

bool DOMText::isWhitespaceInElementContent (void)

DOMText DOMText::splitText (int $offset)

/* Inherited methods */

void DOMCharacterData::appendData (string $data)

void DOMCharacterData::deleteData (int $offset, int $count)

void DOMCharacterData::insertData (int $offset, string $data)

void DOMCharacterData::replaceData (int $offset, int $count, string $data)

string DOMCharacterData::substringData (int $offset, int $count)
}

Properties

wholeText
Prop description

DOMText::__construct

DOMText::__construct -- Creates a new DOMText object

Description

DOMText

__construct ([string $value])

Creates a new DOMText object.

Parameters

value

The value of the text node. If not supplied an empty text node is created.

Examples

Example #2876 - Creating a new DOMText

<?php

$dom = new DOMDocument('1.0', 'iso-8859-1');

$element = $dom->appendChild(new DOMElement('root'));

$text = $element->appendChild(new DOMText('root value'));

echo $dom->saveXML(); /* <?xml version="1.0"
encoding="iso-8859-1"?><root>root value</root> */

?>

See Also

• DOMDocument::createTextNode

DOMText::isWhitespaceInElementContent

DOMText::isWhitespaceInElementContent -- Indicates whether this text node contains
whitespace

Description

bool DOMText::isWhitespaceInElementContent (void)

Indicates whether this text node contains whitespace. The text node is determined to
contain whitespace in element content during the load of the document.

Return Values

Returns TRUE on success or FALSE on failure.

DOMText::splitText

DOMText::splitText -- Breaks this node into two nodes at the specified offset

Description

DOMText DOMText::splitText (int $offset)

Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings.

After being split, this node will contain all the content up to the offset. If the original node
had a parent node, the new node is inserted as the next sibling of the original node. When
the offset is equal to the length of this node, the new node has no data.

Parameters

offset

The offset at which to split, starting from 0.

Return Values

The new node of the same type, which contains all the content at and after the offset.

The DOMXPath class

Class synopsis

DOMXPath

DOMXPath {

/* Properties */

public DOMDocument document;

/* Methods */

__construct (DOMDocument $doc)

mixed DOMXPath::evaluate (string $expression [, DOMNode $contextnode])

DOMNodeList DOMXPath::query (string $expression [, DOMNode $contextnode])

bool DOMXPath::registerNamespace (string $prefix, string $namespaceURI)
}

Properties

document
Prop description

DOMXPath::__construct

DOMXPath::__construct -- Creates a new DOMXPath object

Description

DOMXPath

__construct (DOMDocument $doc)

Creates a new DOMXPath object.

Parameters

doc

The DOMDocument associated with the DOMXPath.

DOMXPath::evaluate

DOMXPath::evaluate -- Evaluates the given XPath expression and returns a typed result if
possible.

Description

mixed DOMXPath::evaluate (string $expression [, DOMNode $contextnode])

Executes the given XPath expression and returns a typed result if possible.

Parameters

expression

The XPath expression to execute.

contextnode

The optional contextnode can be specified for doing relative XPath queries. By
default, the queries are relative to the root element.

Return Values

Returns a typed result if possible or a DOMNodeList containing all nodes matching the
given XPath expression.

Examples

Example #2877 - Getting the count of all the english books

<?php

$doc = new DOMDocument;

$doc->load('book.xml');

$xpath = new DOMXPath($doc);

$tbody = $doc->getElementsByTagName('tbody')->item(0);

// our query is relative to the tbody node

$query = 'count(row/entry[. = "en"])';

$entries = $xpath->evaluate($query, $tbody);

echo "There are $entries english books\n";

?>

The above example will output:

There are 2 english books

See Also

• DOMXPath::query

DOMXPath::query

DOMXPath::query -- Evaluates the given XPath expression

Description

DOMNodeList DOMXPath::query (string $expression [, DOMNode $contextnode])

Executes the given XPath expression.

Parameters

expression

The XPath expression to execute.

contextnode

The optional contextnode can be specified for doing relative XPath queries. By
default, the queries are relative to the root element.

Return Values

Returns a DOMNodeList containing all nodes matching the given XPath expression. Any
expression which do not return nodes will return an empty DOMNodeList.

Examples

Example #2878 - Getting all the english books

<?php

$doc = new DOMDocument;

// We don't want to bother with white spaces

$doc->preserveWhiteSpace = false;

$doc->Load('book.xml');

$xpath = new DOMXPath($doc);

// We starts from the root element

$query = '//book/chapter/para/informaltable/tgroup/tbody/row/entry[. =
"en"]';

$entries = $xpath->query($query);

foreach ($entries as $entry) {

 echo "Found {$entry->previousSibling->previousSibling->nodeValue}," .

 " by {$entry->previousSibling->nodeValue}\n";

}

?>

The above example will output:

Found The Grapes of Wrath, by John Steinbeck

Found The Pearl, by John Steinbeck

We can also use the contextnode parameter to shorten our expression:

<?php

$doc = new DOMDocument;

$doc->preserveWhiteSpace = false;

$doc->load('book.xml');

$xpath = new DOMXPath($doc);

$tbody = $doc->getElementsByTagName('tbody')->item(0);

// our query is relative to the tbody node

$query = 'row/entry[. = "en"]';

$entries = $xpath->query($query, $tbody);

foreach ($entries as $entry) {

 echo "Found {$entry->previousSibling->previousSibling->nodeValue}," .

 " by {$entry->previousSibling->nodeValue}\n";

}

?>

See Also

• DOMXPath::evaluate

DOMXPath::registerNamespace

DOMXPath::registerNamespace -- Registers the namespace with the DOMXPath object

Description

bool DOMXPath::registerNamespace (string $prefix, string $namespaceURI)

Registers the namespaceURI and prefix with the DOMXPath object.

Parameters

prefix

The prefix.

namespaceURI

The URI of the namespace.

Return Values

Returns TRUE on success or FALSE on failure.

DOM Functions

dom_import_simplexml

dom_import_simplexml -- Gets a DOMElement object from a SimpleXMLElement object

Description

DOMElement dom_import_simplexml (SimpleXMLElement $node)

This function takes the node node of class SimpleXML and makes it into a DOMElement
node. This new object can then be used as a native DOMElement node.

Parameters

node

The SimpleXMLElement node.

Return Values

The DOMElement node added or FALSE if any errors occur.

Examples

Example #2879 - Import SimpleXML into DOM with dom_import_simplexml()

<?php

$sxe =
simplexml_load_string('<books><book><title>blah</title></book></books>');

if ($sxe === false) {

 echo 'Error while parsing the document';

 exit;

}

$dom_sxe = dom_import_simplexml($sxe);

if (!$dom_sxe) {

 echo 'Error while converting XML';

 exit;

}

$dom = new DOMDocument('1.0');

$dom_sxe = $dom->importNode($dom_sxe, true);

$dom_sxe = $dom->appendChild($dom_sxe);

echo $dom->saveXML();

?>

See Also

• simplexml_import_dom()

DOM XML

Introduction

The DOM XML extension has been overhauled in PHP 4.3.0 to better comply with the
DOM standard. The extension still contains many old functions, but they should no longer
be used. In particular, functions that are not object-oriented should be avoided.

The extension allows you to operate on an XML document with the DOM API. It also
provides a function domxml_xmltree() to turn the complete XML document into a tree of
PHP objects. Currently, this tree should be considered read-only - you can modify it, but
this would not make any sense since DomDocument_dump_mem() cannot be applied to it.
Therefore, if you want to read an XML file and write a modified version, use
DomDocument_create_element(), DomDocument_create_text_node(), set_attribute(),
etc. and finally the DomDocument_dump_mem() function.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

Note

This extension is no longer marked experimental. It will, however, never be released
with PHP 5, and will only be distributed with PHP 4. If you need DOM XML support
with PHP 5 you can use the DOM extension. This domxml extension is not compatible
with the DOM extension.

http://pecl.php.net/

Installing/Configuring

Requirements

This extension makes use of the » GNOME XML library. Download and install this library.
You will need at least libxml-2.4.14. To use DOM XSLT features you can use the » libxslt
library and EXSLT enhancements from » http://www.exslt.org/. Download and install these
libraries if you plan to use (enhanced) XSLT features. You will need at least libxslt-1.0.18.

Installation

This » PECL extension is not bundled with PHP. Information for installing this PECL
extension may be found in the manual chapter titled Installation of PECL extensions.
Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here:
» http://pecl.php.net/package/domxml.

In PHP 4 this PECL extensions source can be found in the ext/ directory within the PHP
source or at the PECL link above. This extension is only available if PHP was configured
with --with-dom[=DIR]. Add --with-dom-xslt[=DIR] to include DOM XSLT support. DIR is
the libxslt install directory. Add --with-dom-exslt[=DIR] to include DOM EXSLT support,
where DIR is the libexslt install directory.

Windows users will enable php_domxml.dll inside of php.ini in order to use these
functions. In PHP 4 this DLL resides in the extensions/ directory within the PHP Windows
binaries download. The DLL for this PECL extension may be downloaded from either the
» PHP Downloads page or from » http://pecl4win.php.net/ Also, there is one additional DLL
that must be made available to your system's PATH in order for this extension to work. In
PHP 4 this is in the dlls/ directory. It's name: For PHP <= 4.2.0, it's libxml2.dll. For PHP >=
4.3.0, it's iconv.dll. And as of PHP 5.0.0, iconv is compiled into your Windows PHP
binaries by default so no extra DLL is needed.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.xmlsoft.org/
http://xmlsoft.org/XSLT/
http://xmlsoft.org/XSLT/
http://www.exslt.org/
http://pecl.php.net/
http://pecl.php.net/package/domxml
http://pecl.php.net/package/domxml
http://www.php.net/downloads.php
http://www.php.net/downloads.php
http://pecl4win.php.net/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XML constants

Constant Value Description

XML_ELEMENT_NODE (
integer)

1 Node is an element

XML_ATTRIBUTE_NODE (
integer)

2 Node is an attribute

XML_TEXT_NODE (integer
)

3 Node is a piece of text

XML_CDATA_SECTION_N
ODE (integer)

4

XML_ENTITY_REF_NODE (
integer)

5

XML_ENTITY_NODE (
integer)

6 Node is an entity like

XML_PI_NODE (integer) 7 Node is a processing
instruction

XML_COMMENT_NODE (
integer)

8 Node is a comment

XML_DOCUMENT_NODE (
integer)

9 Node is a document

XML_DOCUMENT_TYPE_N
ODE (integer)

10

XML_DOCUMENT_FRAG_
NODE (integer)

11

XML_NOTATION_NODE (
integer)

12

XML_GLOBAL_NAMESPA
CE (integer)

1

XML_LOCAL_NAMESPAC 2

E (integer)

XML_HTML_DOCUMENT_
NODE (integer)

XML_DTD_NODE (integer)

XML_ELEMENT_DECL_NO
DE (integer)

XML_ATTRIBUTE_DECL_N
ODE (integer)

XML_ENTITY_DECL_NODE
(integer)

XML_NAMESPACE_DECL_
NODE (integer)

XML_ATTRIBUTE_CDATA (
integer)

XML_ATTRIBUTE_ID (
integer)

XML_ATTRIBUTE_IDREF (
integer)

XML_ATTRIBUTE_IDREFS
(integer)

XML_ATTRIBUTE_ENTITY
(integer)

XML_ATTRIBUTE_NMTOK
EN (integer)

XML_ATTRIBUTE_NMTOK
ENS (integer)

XML_ATTRIBUTE_ENUME
RATION (integer)

XML_ATTRIBUTE_NOTATI
ON (integer)

XPATH_UNDEFINED (
integer)

XPATH_NODESET (integer
)

XPATH_BOOLEAN (integer
)

XPATH_NUMBER (integer)

XPATH_STRING (integer)

XPATH_POINT (integer)

XPATH_RANGE (integer)

XPATH_LOCATIONSET (
integer)

XPATH_USERS (integer)

XPATH_NUMBER (integer)

DOM XML Functions

Deprecated functions

There are quite a few functions that do not fit into the DOM standard and should no longer
be used. These functions are listed in the following table. The function
DomNode_append_child() has changed its behaviour. It now adds a child and not a
sibling. If this breaks your application, use the non-DOM function
DomNode_append_sibling().

Deprecated functions and their replacements

Old function New function

xmldoc domxml_open_mem()

xmldocfile domxml_open_file()

domxml_new_xmldoc domxml_new_doc()

domxml_dump_mem DomDocument_dump_mem()

domxml_dump_mem_file DomDocument_dump_file()

DomDocument_dump_mem_file DomDocument_dump_file()

DomDocument_add_root DomDocument_create_element() followed
by DomNode_append_child()

DomDocument_dtd DomDocument_doctype()

DomDocument_root DomDocument_document_element()

DomDocument_children DomNode_child_nodes()

DomDocument_imported_node No replacement.

DomNode_add_child Create a new node with e.g.
DomDocument_create_element() and add it
with DomNode_append_child().

DomNode_children DomNode_child_nodes()

DomNode_parent DomNode_parent_node()

DomNode_new_child Create a new node with e.g.
DomDocument_create_element() and add it
with DomNode_append_child().

DomNode_set_content Create a new node with e.g.
DomDocument_create_text_node() and add
it with DomNode_append_child().

DomNode_get_content Content is just a text node and can be
accessed with DomNode_child_nodes().

DomNode_set_content Content is just a text node and can be
added with DomNode_append_child().

Classes

The API of the module follows the DOM Level 2 standard as closely as possible.
Consequently, the API is fully object-oriented. It is a good idea to have the DOM standard
available when using this module. Though the API is object-oriented, there are many
functions which can be called in a non-object-oriented way by passing the object to
operate on as the first argument. These functions are mainly to retain compatibility to older
versions of the extension, and should not be used when creating new scripts.

This API differs from the official DOM API in two ways. First, all class attributes are
implemented as functions with the same name. Secondly, the function names follow the
PHP naming convention. This means that a DOM function lastChild() will be written as
last_child().

This module defines a number of classes, which are listed - including their method - in the
following tables. Classes with an equivalent in the DOM standard are named DOMxxx.

List of classes

Class name Parent classes

DomAttribute DomNode

DomCData DomNode

DomComment DomCData : DomNode

DomDocument DomNode

DomDocumentType DomNode

DomElement DomNode

DomEntity DomNode

DomEntityReference DomNode

DomProcessingInstruction DomNode

DomText DomCData : DomNode

Parser Currently still called DomParser

XPathContext

DomDocument class (DomDocument : DomNode)

Method name Function name Remark

doctype DomDocument_doctype()

document_element DomDocument_document_el
ement()

create_element DomDocument_create_elem
ent()

create_text_node DomDocument_create_text_
node()

create_comment DomDocument_create_com
ment()

create_cdata_section DomDocument_create_cdata
_section()

create_processing_instructio
n

DomDocument_create_proc
essing_instruction()

create_attribute DomDocument_create_attrib
ute()

create_entity_reference DomDocument_create_entity
_reference()

get_elements_by_tagname DomDocument_get_element
s_by_tagname()

get_element_by_id DomDocument_get_element
_by_id()

dump_mem DomDocument_dump_mem(
)

not DOM standard

dump_file DomDocument_dump_file() not DOM standard

html_dump_mem DomDocument_html_dump_
mem()

not DOM standard

xpath_init xpath_init not DOM standard

xpath_new_context xpath_new_context not DOM standard

xptr_new_context xptr_new_context not DOM standard

DomElement class (DomElement : DomNode)

Method name Function name Remark

tagname DomElement_tagname()

get_attribute DomElement_get_attribute
()

set_attribute DomElement_set_attribute(
)

remove_attribute DomElement_remove_attri
bute()

get_attribute_node DomElement_get_attribute
_node()

set_attribute_node DomElement_set_attribute
_node()

get_elements_by_tagname DomElement_get_element
s_by_tagname()

has_attribute DomElement_has_attribute
()

DomNode class

Method name Remark

DomNode_node_name()

DomNode_node_value()

DomNode_node_type()

DomNode_last_child()

DomNode_first_child()

DomNode_child_nodes()

DomNode_previous_sibling()

DomNode_next_sibling()

DomNode_parent_node()

DomNode_owner_document()

DomNode_insert_before()

DomNode_append_child()

DomNode_append_sibling() Not in DOM standard. This function
emulates the former behaviour of
DomNode_append_child().

DomNode_remove_child()

DomNode_has_child_nodes()

DomNode_has_attributes()

DomNode_clone_node()

DomNode_attributes()

DomNode_unlink_node() Not in DOM standard

DomNode_replace_node() Not in DOM standard

DomNode_set_content() Not in DOM standard, deprecated

DomNode_get_content() Not in DOM standard, deprecated

DomNode_dump_node() Not in DOM standard

DomNode_is_blank_node() Not in DOM standard

DomAttribute class (DomAttribute : DomNode)

Method name Remark

name DomAttribute_name()

value DomAttribute_value()

specified DomAttribute_specified()

DomProcessingInstruction class (DomProcessingInstruction : DomNode)

Method name Function name Remark

target DomProcessingInstruction_t
arget()

data DomProcessingInstruction_d
ata()

Parser class

Method name Function name Remark

add_chunk Parser_add_chunk()

end Parser_end()

XPathContext class

Method name Function name Remark

eval XPathContext_eval()

eval_expression XPathContext_eval_expres
sion()

register_ns XPathContext_register_ns(
)

DomDocumentType class (DomDocumentType : DomNode)

Method name Function name Remark

name DomDocumentType_name(
)

entities DomDocumentType_entitie
s()

notations DomDocumentType_notati
ons()

public_id DomDocumentType_public
_id()

system_id DomDocumentType_syste
m_id()

internal_subset DomDocumentType_intern
al_subset()

The classes DomDtd is derived from DomNode. DomComment is derived from
DomCData.

Examples

Many examples in this reference require an XML string. Instead of repeating this string in
every example, it will be put into a file which will be included by each example. This
include file is shown in the following example section. Alternatively, you could create an
XML document and read it with DomDocument_open_file().

Example #2880 - Include file example.inc with XML string

<?php

$xmlstr = "<?xml version='1.0' standalone='yes'?>

<!DOCTYPE chapter SYSTEM '/share/sgml/Norman_Walsh/db3xml10/db3xml10.dtd'

[<!ENTITY sp \"spanish\">

]>

<!-- lsfj -->

<chapter language='en'><title language='en'>Title</title>

<para language='ge'>

 &sp;

 <!-- comment -->

 <informaltable ID='findme' language='&sp;'>

 <tgroup cols='3'>

 <tbody>

 <row><entry>a1</entry><entry

morerows='1'>b1</entry><entry>c1</entry></row>

<row><entry>a2</entry><entry>c2</entry></row>

 <row><entry>a3</entry><entry>b3</entry><entry>c3</entry></row>

 </tbody>

 </tgroup>

 </informaltable>

</para>

</chapter>";

?>

DomAttribute->name

DomAttribute->name -- Returns the name of attribute

Description

DomAttribute

string name (void)

Gets the name of the attribute.

Return Values

Returns the name of the attribute.

Migrating to PHP 5

Use the name property of DOMAttr.

See Also

• DomAttribute->value for an example

DomAttribute->set_value

DomAttribute->set_value -- Sets the value of an attribute

Description

DomAttribute

bool set_value (string $content)

This function sets the value of an attribute.

Parameters

content

The new value.

Return Values

Returns TRUE on success or FALSE on failure.

Migrating to PHP 5

Set the value property of DOMAttr.

See Also

• DomAttribute->value

DomAttribute->specified

DomAttribute->specified -- Checks if attribute is specified

Description

DomAttribute

bool specified (void)

Checks if the attribute was explicitly given a value in the original document.

Note

This method is not implemented yet.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• The definition of » specified in the DOM Recommendations

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-862529273

DomAttribute->value

DomAttribute->value -- Returns value of attribute

Description

DomAttribute

string value (void)

This function returns the value of the attribute.

Examples

Example #2881 - Getting all the attributes of a node

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

$attrs = $root->attributes();

echo 'Attributes of ' . $root->node_name() . "\n";

foreach ($attrs as $attribute) {

 echo ' - ' . $attribute->name . ' : ' . $attribute->value . "\n";

}

?>

The above example will output:

Attributes of chapter

- language : en

Return Values

Returns the value of the attribute.

Migrating to PHP 5

Use the value property of DOMAttr.

See Also

• DomAttribute->set_value
• DomAttribute->name

DomDocument->add_root

DomDocument->add_root -- Adds a root node [deprecated]

Description

domelement DomDocument->add_root (string $name)

Adds a root element node to a dom document and returns the new node. The element
name is given in the passed parameter.

Example #2882 - Creating a simple HTML document header

<?php

$doc = domxml_new_doc("1.0");

$root = $doc->add_root("html");

$head = $root->new_child("head", "");

$head->new_child("title", "Hier der Titel");

echo htmlentities($doc->dump_mem());

?>

DomDocument->create_attribute

DomDocument->create_attribute -- Create new attribute

Description

domattribute DomDocument->create_attribute (string $name, string $value)

This function returns a new instance of class DomAttribute. The name of the attribute is
the value of the first parameter. The value of the attribute is the value of the second
parameter. This node will not show up in the document unless it is inserted with (e.g.)
domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_text(), domdocument_create_cdata_section(),
domdocument_create_processing_instruction(), domdocument_create_entity_reference(),
and domnode_insert_before().

DomDocument->create_cdata_section

DomDocument->create_cdata_section -- Create new cdata node

Description

domcdata DomDocument->create_cdata_section (string $content)

This function returns a new instance of class DomCData. The content of the cdata is the
value of the passed parameter. This node will not show up in the document unless it is
inserted with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_text(), domdocument_create_attribute(),
domdocument_create_processing_instruction(), domdocument_create_entity_reference(),
and domnode_insert_before().

DomDocument->create_comment

DomDocument->create_comment -- Create new comment node

Description

domcomment DomDocument->create_comment (string $content)

This function returns a new instance of class DomComment. The content of the comment
is the value of the passed parameter. This node will not show up in the document unless it
is inserted with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_text(), domdocument_create_attribute(),
domdocument_create_processing_instruction(), domdocument_create_entity_reference(),
and domnode_insert_before().

DomDocument->create_element_ns

DomDocument->create_element_ns -- Create new element node with an associated
namespace

Description

domelement DomDocument->create_element_ns (string $uri, string $name [, string $
prefix])

This function returns a new instance of class DomElement. The tag name of the element is
the value of the passed parameter name. The URI of the namespace is the value of the
passed parameter uri. If there is already a namespace declaration with the same uri in
the root-node of the document, the prefix of this is taken, otherwise it will take the one
provided in the optional parameter prefix or generate a random one. This node will not
show up in the document unless it is inserted with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domdocument_create_element_ns(), domnode_add_namespace(),
domnode_set_namespace(), domnode_append_child(), domdocument_create_text(),
domdocument_create_comment(), domdocument_create_attribute(),
domdocument_create_processing_instruction(), domdocument_create_entity_reference(),
and domnode_insert_before().

DomDocument->create_element

DomDocument->create_element -- Create new element node

Description

domelement DomDocument->create_element (string $name)

This function returns a new instance of class DomElement. The tag name of the element is
the value of the passed parameter. This node will not show up in the document unless it is
inserted with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domdocument_create_element_ns(), domnode_append_child(),
domdocument_create_text(), domdocument_create_comment(),
domdocument_create_attribute(), domdocument_create_processing_instruction(),
domdocument_create_entity_reference(), and domnode_insert_before().

DomDocument->create_entity_reference

DomDocument->create_entity_reference -- Create an entity reference

Description

domentityreference DomDocument->create_entity_reference (string $content)

This function returns a new instance of class DomEntityReference. The content of the
entity reference is the value of the passed parameter. This node will not show up in the
document unless it is inserted with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_text(), domdocument_create_cdata_section(),
domdocument_create_processing_instruction(), domdocument_create_attribute(), and
domnode_insert_before().

DomDocument->create_processing_instruction

DomDocument->create_processing_instruction -- Creates new PI node

Description

domprocessinginstruction DomDocument->create_processing_instruction (string $
content)

This function returns a new instance of class DomCData. The content of the pi is the value
of the passed parameter. This node will not show up in the document unless it is inserted
with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_text(), domdocument_create_cdata_section(),
domdocument_create_attribute(), domdocument_create_entity_reference(), and
domnode_insert_before().

DomDocument->create_text_node

DomDocument->create_text_node -- Create new text node

Description

domtext DomDocument->create_text_node (string $content)

This function returns a new instance of class DomText. The content of the text is the value
of the passed parameter. This node will not show up in the document unless it is inserted
with (e.g.) domnode_append_child().

The return value is FALSE if an error occurred.

See also domnode_append_child(), domdocument_create_element(),
domdocument_create_comment(), domdocument_create_text(),
domdocument_create_attribute(), domdocument_create_processing_instruction(),
domdocument_create_entity_reference(), and domnode_insert_before().

DomDocument->doctype

DomDocument->doctype -- Returns the document type

Description

domdocumenttype DomDocument->doctype (void)

This function returns an object of class DomDocumentType. In versions of PHP before 4.3
this has been the class Dtd, but the DOM Standard does not know such a class.

See also the methods of class DomDocumentType.

DomDocument->document_element

DomDocument->document_element -- Returns root element node

Description

domelement DomDocument->document_element (void)

This function returns the root element node of a document.

The following example returns just the element with name CHAPTER and prints it. The
other node -- the comment -- is not returned.

Example #2883 - Retrieving root element

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

print_r($root);

?>

The above example will output:

domelement Object

(

 [type] => 1

 [tagname] => chapter

 [0] => 6

 [1] => 137960648

)

DomDocument->dump_file

DomDocument->dump_file -- Dumps the internal XML tree back into a file

Description

string DomDocument->dump_file (string $filename [, bool $compressionmode [, bool $
format]])

Creates an XML document from the dom representation. This function usually is called
after building a new dom document from scratch as in the example below. The format
specifies whether the output should be neatly formatted, or not. The first parameter
specifies the name of the filename and the second parameter, whether it should be
compressed or not.

Example #2884 - Creating a simple HTML document header

<?php

$doc = domxml_new_doc("1.0");

$root = $doc->create_element("HTML");

$root = $doc->append_child($root);

$head = $doc->create_element("HEAD");

$head = $root->append_child($head);

$title = $doc->create_element("TITLE");

$title = $head->append_child($title);

$text = $doc->create_text_node("This is the title");

$text = $title->append_child($text);

$doc->dump_file("/tmp/test.xml", false, true);

?>

See also domdocument_dump_mem(), and domdocument_html_dump_mem().

DomDocument->dump_mem

DomDocument->dump_mem -- Dumps the internal XML tree back into a string

Description

string DomDocument->dump_mem ([bool $format [, string $encoding]])

Creates an XML document from the dom representation. This function usually is called
after building a new dom document from scratch as in the example below. The format
specifies whether the output should be neatly formatted, or not.

Example #2885 - Creating a simple HTML document header

<?php

$doc = domxml_new_doc("1.0");

$root = $doc->create_element("HTML");

$root = $doc->append_child($root);

$head = $doc->create_element("HEAD");

$head = $root->append_child($head);

$title = $doc->create_element("TITLE");

$title = $head->append_child($title);

$text = $doc->create_text_node("This is the title");

$text = $title->append_child($text);

echo "<PRE>";

echo htmlentities($doc->dump_mem(true));

echo "</PRE>";

?>

Note

The first parameter was added in PHP 4.3.0.

See also domdocument_dump_file(), and domdocument_html_dump_mem().

DomDocument->get_element_by_id

DomDocument->get_element_by_id -- Searches for an element with a certain id

Description

domelement DomDocument->get_element_by_id (string $id)

This function is similar to domdocument_get_elements_by_tagname() but searches for an
element with a given id. According to the DOM standard this requires a DTD which defines
the attribute ID to be of type ID, though the current implementation simply does an xpath
search for "//*[@ID = '%s']". This does not comply to the DOM standard which requires to
return null if it is not known which attribute is of type id. This behaviour is likely to be fixed,
so do not rely on the current behaviour.

See also domdocument_get_elements_by_tagname()

DomDocument->get_elements_by_tagname

DomDocument->get_elements_by_tagname -- Returns array with nodes with given
tagname in document or empty array, if not found

Description

array DomDocument->get_elements_by_tagname (string $name)

See also domdocument_add_root()

DomDocument->html_dump_mem

DomDocument->html_dump_mem -- Dumps the internal XML tree back into a string as
HTML

Description

string DomDocument->html_dump_mem (void)

Creates an HTML document from the dom representation. This function usually is called
after building a new dom document from scratch as in the example below.

Example #2886 - Creating a simple HTML document header

<?php

// Creates the document

$doc = domxml_new_doc("1.0");

$root = $doc->create_element("html");

$root = $doc->append_child($root);

$head = $doc->create_element("head");

$head = $root->append_child($head);

$title = $doc->create_element("title");

$title = $head->append_child($title);

$text = $doc->create_text_node("This is the title");

$text = $title->append_child($text);

echo $doc->html_dump_mem();

?>

The above example will output:

<html><head><title>This is the title</title></head></html>

See also domdocument_dump_file(), and domdocument_html_dump_mem().

DomDocument->xinclude

DomDocument->xinclude -- Substitutes XIncludes in a DomDocument Object

Description

int DomDocument->xinclude (void)

This function substitutes » XIncludes in a DomDocument object.

Example #2887 - Substituting Xincludes

<?php

// include.xml contains :

// <child>test</child>

$xml = '<?xml version="1.0"?>

<root xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="include.xml">

 <xi:fallback>

 <error>xinclude: include.xml not found</error>

 </xi:fallback>

 </xi:include>

</root>';

$domxml = domxml_open_mem($xml);

$domxml->xinclude();

echo $domxml->dump_mem();

?>

The above example will output:

<?xml version="1.0"?>

<root xmlns:xi="http://www.w3.org/2001/XInclude">

 <child>test</child>

</root>

If include.xml doesn't exist, you'll see:

<?xml version="1.0"?>

<root xmlns:xi="http://www.w3.org/2001/XInclude">

 <error>xinclude:dom.xml not found</error>

</root>

http://www.w3.org/TR/xinclude/

DomDocumentType->entities()

DomDocumentType->entities() -- Returns list of entities

Description

DomDocumentType

array entities (void)

Warning

This function is currently not documented; only its argument list is available.

Migrating to PHP 5

Use the entities property of the DOMDocumentType object.

DomDocumentType->internal_subset()

DomDocumentType->internal_subset() -- Returns internal subset

Description

DomDocumentType

bool internal_subset (void)

Warning

This function is currently not documented; only its argument list is available.

Migrating to PHP 5

Use the internalSubset property of the DOMDocumentType object.

DomDocumentType->name()

DomDocumentType->name() -- Returns name of document type

Description

DomDocumentType

string name (void)

This function returns the name of the document type.

Return Values

Returns the name of the DomDocumentType, as a string.

Examples

Example #2888 - Getting the document type's name

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$doctype = $dom->doctype();

echo $doctype->name(); // chapter

?>

Migrating to PHP 5

Use the name property of the DOMDocumentType object.

DomDocumentType->notations()

DomDocumentType->notations() -- Returns list of notations

Description

DomDocumentType

array notations (void)

Warning

This function is currently not documented; only its argument list is available.

Migrating to PHP 5

Use the notations property of the DOMDocumentType object.

DomDocumentType->public_id()

DomDocumentType->public_id() -- Returns public id of document type

Description

DomDocumentType

string public_id (void)

This function returns the public id of the document type.

Return Values

Returns the public id of the DomDocumentType, as a string.

Examples

The following example echos nothing.

Example #2889 - Retrieving the public id

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$doctype = $dom->doctype();

echo $doctype->public_id();

?>

Migrating to PHP 5

Use the publicId property of the DOMDocumentType object.

DomDocumentType->system_id()

DomDocumentType->system_id() -- Returns the system id of document type

Description

DomDocumentType

string system_id (void)

Returns the system id of the document type.

Return Values

Returns the system id of the DomDocumentType, as a string.

Examples

Example #2890 - Retrieving the system id

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$doctype = $dom->doctype();

echo $doctype->system_id();

?>

The above example will output:

/share/sgml/Norman_Walsh/db3xml10/db3xml10.dtd

Migrating to PHP 5

Use the systemId property of the DOMDocumentType object.

DomElement->get_attribute_node()

DomElement->get_attribute_node() -- Returns the node of the given attribute

Description

DomElement

DomAttribute get_attribute_node (string $name)

Returns the node of the given attribute in the current element.

Parameters

name

The name of the seeked attribute. This parameter is case sensitive.

Return Values

Returns the node of the attribute as a DomAttribute or FALSE if no attribute with the given
name is found.

Examples

Example #2891 - Getting an attribute node

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

if ($attribute = $root->get_attribute_node('language')) {

 echo 'Language is: ' . $attribute->value() . "\n";

}

?>

Migrating to PHP 5

Use DOMElement::getAttributeNode.

See Also

• DomElement->get_attribute()
• DomElement->set_attribute()

DomElement->get_attribute()

DomElement->get_attribute() -- Returns the value of the given attribute

Description

DomElement

string get_attribute (string $name)

Returns the value of the given attribute in the current element.

Since PHP 4.3, if no attribute with given name is found, an empty string is returned.

Parameters

name

The name of the seeked attribute. This parameter is case sensitive.

Return Values

Returns the name of the attribute as a string or an empty string if no attribute with the
given name is found.

Examples

Example #2892 - Getting the value of an attribute

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

// get chapter

$root = $dom->document_element();

echo $root->get_attribute('language'); // en

?>

Migrating to PHP 5

Use DOMElement::getAttribute.

See Also

• DomElement->get_attribute_node()
• DomElement->set_attribute()

DomElement->get_elements_by_tagname()

DomElement->get_elements_by_tagname() -- Gets elements by tagname

Description

DomElement

array get_elements_by_tagname (string $name)

Gets all the sub elements with the specific name within the current element.

Parameters

name

The name of the seeked element.

Return Values

Returns an array of DomElement objects.

Examples

Example #2893 - Getting a content

<?php

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

$node_array = $root->get_elements_by_tagname('element');

foreach ($node_array as $node) {

 echo ' - ' . $node->get_content() . "\n";

}

?>

Migrating to PHP 5

Use DOMElement::getElementsByTagName.

DomElement->has_attribute()

DomElement->has_attribute() -- Checks to see if an attribute exists in the current node

Description

DomElement

bool has_attribute (string $name)

This functions checks to see if an attribute named name exists in the current node.

Parameters

name

The name of the tested attribute.

Return Values

Returns TRUE if the asked attribute exists, FALSE otherwise.

Examples

Example #2894 - Testing the existence of an attribute

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

$buffer = '<html';

if ($root->has_attribute('language')) {

 $buffer .= 'lang="' . $root->get_attribute('language') . '"';

}

$buffer .= '>';

?>

Migrating to PHP 5

Use DOMElement::hasAttribute.

DomElement->remove_attribute()

DomElement->remove_attribute() -- Removes attribute

Description

DomElement

bool remove_attribute (string $name)

Removes an attribute from the current DomElement node.

Parameters

name

The name of the attribute to remove.

Return Values

Returns TRUE on success or FALSE on failure.

Migrating to PHP 5

Use DOMElement::removeAttribute.

DomElement->set_attribute_node()

DomElement->set_attribute_node() -- Adds new attribute

Description

DomElement

DomNode set_attribute_node (DomNode $attr)

Warning

This function is currently not documented; only its argument list is available.

DomElement->set_attribute()

DomElement->set_attribute() -- Sets the value of an attribute

Description

DomElement

DomAttribute set_attribute (string $name, string $value)

Sets an attribute with name name to the given value.

Parameters

name

The name of the attribute. If this attribute doesn't exist, it will be created.

value

The value of the attribute.

Return Values

Returns the old DomAttribute node, or the new one if you are creating the attribute for the
first time.

Examples

Example #2895 - Setting an attribute

<?php

$doc = domxml_new_doc("1.0");

$node = $doc->create_element("para");

$newnode = $doc->append_child($node);

$newnode->set_attribute("align", "left");

?>

Migrating to PHP 5

Use DOMElement::setAttribute.

See Also

• DomElement->get_attribute_node()
• DomElement->get_attribute()

DomElement->tagname()

DomElement->tagname() -- Returns the name of the current element

Description

DomElement

string tagname (void)

Returns the name of the current node. Calling this function is the same as accessing the
tagname property, or calling DomNode->node_name on the current node.

Return Values

Returns the name of the current DomElement node.

Examples

Example #2896 - Getting the node name

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

echo $root->tagname(); // chapter

echo $root->tagname; // chapter

echo $root->node_name(); // chapter

?>

Migrating to PHP 5

Use the tagName property of the DOMElement object.

DomNode->add_namespace

DomNode->add_namespace -- Adds a namespace declaration to a node

Description

DOMNode

bool add_namespace (string $uri, string $prefix)

This method adds a namespace declaration to a node.

Note

This method is not part of the DOM specification.

Parameters

uri

The namespace URI of the node.

prefix

The namespace prefix of the node.

Return Values

Returns TRUE on success or FALSE on failure.

Migrating to PHP 5

You can set the namespace URI and prefix of a DOMElement or a DOMAttr at creation
time by using DOMDocument::createElementNS or DOMDocument::createAttributeNS.

Note

Remember the an attribute does not inherit its namespace from the element it is
attached to.

See Also

• DomDocument->create_element_ns
• DomNode->set_namespace

DomNode->append_child

DomNode->append_child -- Adds a new child at the end of the children

Description

DOMNode

DOMNode append_child (DOMNode $newnode)

This functions appends a child to an existing list of children or creates a new list of
children.

Parameters

newnode

The node being appended. It can be created with e.g. DomDocument->create_element
, DomDocument->create_text_node etc. or simply by using any other node.

Note

You can not append a DOMAttribute using this method. Use
DomElement->set_attribute() instead.

Return Values

Returns the appended node on success or FALSE on failure.

ChangeLog

Version Description

4.3.0 You are not allowed anymore to insert a
node from another document.

4.3.0 Prior to PHP 4.3.0, the new child is
duplicated before being appended.
Therefore the new child is a completely new

copy which can be modified without
changing the node which was passed to this
function. If the node passed has children
itself, they will be duplicated as well, which
makes it quite easy to duplicate large parts
of an XML document. The return value is the
appended child. If you plan to do further
modifications on the appended child you
must use the returned node.

4.3.0 and 4.3.1 The new child newnode is first unlinked from
its existing context, if it's already a child of
DomNode. Therefore the newnode is moved
and not copies anymore. This is the
behaviour according to the W3C
specifications. If you need the old behaviour,
use DomNode->clone_node before
appending.

4.3.2 The new child newnode is first unlinked from
its existing context, if it's already in the tree.
Same rules apply.

Examples

The following example adds a new element node to a fresh document and sets the
attribute align to left.

Example #2897 - Adding a child

<?php

$doc = domxml_new_doc("1.0");

$node = $doc->create_element("para");

$newnode = $doc->append_child($node);

$newnode->set_attribute("align", "left");

?>

The above example could also be written as the following:

Example #2898 - Adding a child

<?php

$doc = domxml_new_doc("1.0");

$node = $doc->create_element("para");

$node->set_attribute("align", "left");

$newnode = $doc->append_child($node);

?>

A more complex example is the one below. It first searches for a certain element,
duplicates it including its children and adds it as a sibling. Finally a new attribute is added
to one of the children of the new sibling and the whole document is dumped.

Example #2899 - Adding a child

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$elements = $dom->get_elements_by_tagname("informaltable");

print_r($elements);

$element = $elements[0];

$parent = $element->parent_node();

$newnode = $parent->append_child($element);

$children = $newnode->children();

$attr = $children[1]->set_attribute("align", "left");

$xmlfile = $dom->dump_mem();

echo htmlentities($xmlfile);

?>

The above example could also be done with DomNode->insert_before instead of
DomNode->append_child.

Migrating to PHP 5

You should use DOMNode::appendChild.

See Also

• DomNode->insert_before
• DomNode->clone_node

DomNode->append_sibling

DomNode->append_sibling -- Adds new sibling to a node

Description

domelement DomNode->append_sibling (domelement $newnode)

This functions appends a sibling to an existing node. The child can be created with e.g.
domdocument_create_element(), domdocument_create_text() etc. or simply by using
any other node.

Before a new sibling is added it is first duplicated. Therefore the new child is a completely
new copy which can be modified without changing the node which was passed to this
function. If the node passed has children itself, they will be duplicated as well, which
makes it quite easy to duplicate large parts of an XML document. The return value is the
added sibling. If you plan to do further modifications on the added sibling you must use the
returned node.

This function has been added to provide the behaviour of domnode_append_child() as it
works till PHP 4.2.

See also domnode_append_before().

DomNode->attributes

DomNode->attributes -- Returns list of attributes

Description

array DomNode->attributes (void)

This function only returns an array of attributes if the node is of type
XML_ELEMENT_NODE.

(PHP >= 4.3 only) If no attributes are found, NULL is returned.

DomNode->child_nodes

DomNode->child_nodes -- Returns children of node

Description

array DomNode->child_nodes (void)

Returns all children of the node.

See also domnode_next_sibling(), and domnode_previous_sibling().

DomNode->clone_node

DomNode->clone_node -- Clones a node

Description

domelement DomNode->clone_node (void)

Warning

This function is currently not documented; only its argument list is available.

DomNode->dump_node

DomNode->dump_node -- Dumps a single node

Description

string DomNode->dump_node (void)

Warning

This function is currently not documented; only its argument list is available.

See also domdocument_dump_mem().

DomNode->first_child

DomNode->first_child -- Returns first child of node

Description

domelement DomNode->first_child (void)

Returns the first child of the node.

(PHP >= 4.3 only) If no first child is found, NULL is returned.

See also domnode_last_child(), and domnode_next_sibling(), domnode_previous_sibling()
.

DomNode->get_content

DomNode->get_content -- Gets content of node

Description

string DomNode->get_content (void)

This function returns the content of the actual node.

Example #2900 - Getting a content

<?php

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

$node_array = $root->get_elements_by_tagname("element");

for ($i = 0; $i<count($node_array); $i++) {

 $node = $node_array[$i];

 echo "The element[$i] is: " . $node->get_content();

}

?>

DomNode->has_attributes

DomNode->has_attributes -- Checks if node has attributes

Description

bool DomNode->has_attributes (void)

This function checks if the node has attributes.

See also domnode_has_child_nodes().

DomNode->has_child_nodes

DomNode->has_child_nodes -- Checks if node has children

Description

bool DomNode->has_child_nodes (void)

This function checks if the node has children.

See also domnode_child_nodes().

DomNode->insert_before

DomNode->insert_before -- Inserts new node as child

Description

domelement DomNode->insert_before (domelement $newnode, domelement $refnode)

This function inserts the new node newnode right before the node refnode. The return
value is the inserted node. If you plan to do further modifications on the appended child
you must use the returned node.

(PHP >= 4.3 only) If newnode already is part of a document, it will be first unlinked from its
existing context. If refnode is NULL, then newnode will be inserted at the end of the list of
children.

domnode_insert_before() is very similar to domnode_append_child() as the following
example shows which does the same as the example at domnode_append_child().

Example #2901 - Adding a child

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$elements = $dom->get_elements_by_tagname("informaltable");

print_r($elements);

$element = $elements[0];

$newnode = $element->insert_before($element, $element);

$children = $newnode->children();

$attr = $children[1]->set_attribute("align", "left");

echo "<pre>";

$xmlfile = $dom->dump_mem();

echo htmlentities($xmlfile);

echo "</pre>";

?>

See also domnode_append_child().

DomNode->is_blank_node

DomNode->is_blank_node -- Checks if node is blank

Description

bool DomNode->is_blank_node (void)

Warning

This function is currently not documented; only its argument list is available.

DomNode->last_child

DomNode->last_child -- Returns last child of node

Description

domelement DomNode->last_child (void)

Returns the last child of the node.

(PHP >= 4.3 only) If no last child is found, NULL is returned.

See also domnode_first_child(), and domnode_next_sibling(), domnode_previous_sibling()
.

DomNode->next_sibling

DomNode->next_sibling -- Returns the next sibling of node

Description

domelement DomNode->next_sibling (void)

This function returns the next sibling of the current node. If there is no next sibling it
returns FALSE (< 4.3) or null (>= 4.3). You can use this function to iterate over all children
of a node as shown in the example.

Example #2902 - Iterate over children

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$elements = $dom->get_elements_by_tagname("tbody");

$element = $elements[0];

$child = $element->first_child();

while ($child) {

 print_r($child);

 $child = $child->next_sibling();

}

?>

See also domnode_previous_sibling().

DomNode->node_name

DomNode->node_name -- Returns name of node

Description

string DomNode->node_name (void)

Returns name of the node. The name has different meanings for the different types of
nodes as illustrated in the following table.

Meaning of value

Type Meaning

DomAttribute value of attribute

DomAttribute

DomCDataSection #cdata-section

DomComment #comment

DomDocument #document

DomDocumentType document type name

DomElement tag name

DomEntity name of entity

DomEntityReference name of entity reference

DomNotation notation name

DomProcessingInstruction target

DomText #text

DomNode->node_type

DomNode->node_type -- Returns type of node

Description

int DomNode->node_type (void)

Returns the type of the node. All possible types are listed in the table in the introduction.

Example #2903

<?php

include 'example.inc';

$dom = domxml_open_mem($xmlstr);

$chapter = $dom->document_element();

// Let's see the elements contained in chapter

foreach($chapter->child_nodes() as $node) {

 if ($node->node_type() == XML_ELEMENT_NODE) {

 echo $node->node_name() . "\n";

 }

}

?>

The above example will output:

title

para

DomNode->node_value

DomNode->node_value -- Returns value of a node

Description

string DomNode->node_value (void)

Returns value of the node. The value has different meanings for the different types of
nodes as illustrated in the following table.

Meaning of value

Type Meaning

DomAttribute value of attribute

DomAttribute

DomCDataSection content

DomComment content of comment

DomDocument null

DomDocumentType null

DomElement null

DomEntity null

DomEntityReference null

DomNotation null

DomProcessingInstruction entire content without target

DomText content of text

DomNode->owner_document

DomNode->owner_document -- Returns the document this node belongs to

Description

domdocument DomNode->owner_document (void)

This function returns the document the current node belongs to.

The following example will create two identical lists of children.

Example #2904 - Finding the document of a node

<?php

$doc = domxml_new_doc("1.0");

$node = $doc->create_element("para");

$node = $doc->append_child($node);

$children = $doc->children();

print_r($children);

$doc2 = $node->owner_document();

$children = $doc2->children();

print_r($children);

?>

See also domnode_insert_before().

DomNode->parent_node

DomNode->parent_node -- Returns the parent of the node

Description

domnode DomNode->parent_node (void)

This function returns the parent node.

(PHP >= 4.3 only) If no parent is found, NULL is returned.

The following example will show two identical lists of children.

Example #2905 - Finding the document of a node

<?php

$doc = domxml_new_doc("1.0");

$node = $doc->create_element("para");

$node = $doc->append_child($node);

$children = $doc->children();

print_r($children);

$doc2 = $node->parent_node();

$children = $doc2->children();

print_r($children);

?>

DomNode->prefix

DomNode->prefix -- Returns name space prefix of node

Description

string DomNode->prefix (void)

Returns the name space prefix of the node.

DomNode->previous_sibling

DomNode->previous_sibling -- Returns the previous sibling of node

Description

domelement DomNode->previous_sibling (void)

This function returns the previous sibling of the current node. If there is no previous sibling
it returns FALSE (< 4.3) or NULL (>= 4.3). You can use this function to iterate over all
children of a node as shown in the example.

See also domnode_next_sibling().

DomNode->remove_child

DomNode->remove_child -- Removes child from list of children

Description

domtext DomNode->remove_child (domtext $oldchild)

This functions removes a child from a list of children. If child cannot be removed or is not a
child the function will return FALSE. If the child could be removed the functions returns the
old child.

Example #2906 - Removing a child

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$elements = $dom->get_elements_by_tagname("tbody");

$element = $elements[0];

$children = $element->child_nodes();

$child = $element->remove_child($children[0]);

echo "<PRE>";

$xmlfile = $dom->dump_mem(true);

echo htmlentities($xmlfile);

echo "</PRE>";

?>

See also domnode_append_child().

DomNode->replace_child

DomNode->replace_child -- Replaces a child

Description

domelement DomNode->replace_child (domelement $newnode, domelement $oldnode)

(PHP 4.2) This function replaces the child oldnode with the passed new node. If the new
node is already a child it will not be added a second time. If the old node cannot be found
the function returns FALSE. If the replacement succeeds the old node is returned.

(PHP 4.3) This function replaces the child oldnode with the passed newnode, even if the
new node already is a child of the DomNode. If newnode was already inserted in the
document it is first unlinked from its existing context. If the old node cannot be found the
function returns FALSE. If the replacement succeeds the old node is returned. (This
behaviour is according to the W3C specs).

See also domnode_append_child()

DomNode->replace_node

DomNode->replace_node -- Replaces node

Description

domelement DomNode->replace_node (domelement $newnode)

(PHP 4.2) This function replaces an existing node with the passed new node. Before the
replacement newnode is copied if it has a parent to make sure a node which is already in
the document will not be inserted a second time. This behaviour enforces doing all
modifications on the node before the replacement or to refetch the inserted node
afterwards with functions like domnode_first_child(), domnode_child_nodes() etc..

(PHP 4.3) This function replaces an existing node with the passed new node. It is not
copied anymore. If newnode was already inserted in the document it is first unlinked from
its existing context. If the replacement succeeds the old node is returned.

See also domnode_append_child()

DomNode->set_content

DomNode->set_content -- Sets content of node

Description

bool DomNode->set_content (string $content)

Warning

This function is currently not documented; only its argument list is available.

DomNode->set_name

DomNode->set_name -- Sets name of node

Description

bool DomNode->set_name (void)

Sets name of node.

See also domnode_node_name().

DomNode->set_namespace

DomNode->set_namespace -- Sets namespace of a node

Description

void DomNode->set_namespace (string $uri [, string $prefix])

Sets the namespace of a node to uri. If there is already a namespace declaration with the
same uri in one of the parent nodes of the node, the prefix of this is taken, otherwise it will
take the one provided in the optional parameter prefix or generate a random one.

See also domdocument_create_element_ns(), and domnode_add_namespace()

DomNode->unlink_node

DomNode->unlink_node -- Deletes node

Description

void DomNode->unlink_node (void)

Warning

This function is currently not documented; only its argument list is available.

DomProcessingInstruction->data

DomProcessingInstruction->data -- Returns the data of ProcessingInstruction node

Description

DomProcessingInstruction

string data (void)

This method gets the data of the ProcessingInstruction node.

Return Values

Returns the data of the Processing Instruction.

Migrating to PHP 5

Use the data property of DOMProcessingInstruction.

DomProcessingInstruction->target

DomProcessingInstruction->target -- Returns the target of a ProcessingInstruction node

Description

DomProcessingInstruction

string target (void)

This method gets the target of the ProcessingInstruction node.

Return Values

Returns the target of the Processing Instruction.

Migrating to PHP 5

Use the target property of DOMProcessingInstruction.

DomXsltStylesheet->process()

DomXsltStylesheet->process() -- Applies the XSLT-Transformation on a DomDocument
Object

Description

DomXsltStylesheet

DomDocument process (DomDocument $xml_doc [, array $xslt_params [, bool $
is_xpath_param [, string $profile_filename]]])

Applies an XSLT Transformation on the given DomDocument object.

Parameters

xml_doc

The XML document being transformed, as a DomDocument object.

xslt_params

An associative array that takes pairs of parameter names and values.

is_xpath_param

If set to FALSE the values of the xslt_params will be quoted. This is the default
behavior. It allows you to pass the values as PHP strings.

Note

If your strings contains both single and double quotes, you must take care of
quoting all the values by yourself and set this parameter to TRUE.

profile_filename

Set this to the path of a filename, if you want profiling information.

Return Values

Returns the result of the processing, as a DomDocument object.

Migrating to PHP 5

Use XSLTProcessor::setParameter() and XSLTProcessor::transform-to-doc().

ChangeLog

Version Description

4.3.0 The profile_filename parameter was
added.

See Also

• domxml_xslt_stylesheet()
• domxml_xslt_stylesheet_file()
• domxml_xslt_stylesheet_doc()

DomXsltStylesheet->result_dump_file()

DomXsltStylesheet->result_dump_file() -- Dumps the result from a XSLT-Transformation
into a file

Description

DomXsltStylesheet

string result_dump_file (DomDocument $xmldoc, string $filename)

Since DomXsltStylesheet->process() always returns a well-formed XML DomDocument,
no matter what output method was declared in<xsl:output> and similar attributes/elements,
it's of not much use, if you want to output HTML 4 or text data.

This function on the contrary honors<xsl:output method="html|text"> and other output
control directives. See the example for instruction on how to use it.

Examples

Example #2907 - Saving the result of a XSLT transformation in a file

<?php

$filename = "stylesheet.xsl";

$xmldoc = domxml_open_file("data.xml");

$xsldoc = domxml_xslt_stylesheet_file($filename);

$result = $xsldoc->process($xmldoc);

echo $xsldoc->result_dump_file($result, "filename");

?>

See Also

• DomXsltStylesheet->result_dump_mem()
• DomXsltStylesheet->process()

DomXsltStylesheet->result_dump_mem()

DomXsltStylesheet->result_dump_mem() -- Dumps the result from a XSLT-Transformation
back into a string

Description

DomXsltStylesheet

string result_dump_mem (DomDocument $xmldoc)

Since DomXsltStylesheet->process() always returns a well-formed XML DomDocument,
no matter what output method was declared in<xsl:output> and similar attributes/elements,
it's of not much use, if you want to output HTML 4 or text data.

This function on the contrary honors<xsl:output method="html|text"> and other output
control directives. See the example for instruction on how to use it.

Examples

Example #2908 - Outputting the result of a XSLT transformation

<?php

$filename = "stylesheet.xsl";

$xmldoc = domxml_open_file("data.xml");

$xsldoc = domxml_xslt_stylesheet_file($filename);

$result = $xsldoc->process($xmldoc);

echo $xsldoc->result_dump_mem($result);

?>

See Also

• DomXsltStylesheet->result_dump_file()
• DomXsltStylesheet->process()

domxml_new_doc

domxml_new_doc -- Creates new empty XML document

Description

DomDocument domxml_new_doc (string $version)

Creates a new Dom document from scratch and returns it.

Parameters

version

The XML version number of the document.

Return Values

Returns a new DomDocument instance.

domxml_open_file

domxml_open_file -- Creates a DOM object from an XML file

Description

DomDocument domxml_open_file (string $filename [, int $mode [, array &$error]])

The function parses the XML document in the given file.

Parameters

filename

The path to the XML file. The file is accessed in read-only mode.

mode

This optional parameter can be used to change the behavior of this function. You can
use one of the following constants for it: DOMXML_LOAD_PARSING (default),
DOMXML_LOAD_VALIDATING or DOMXML_LOAD_RECOVERING. You can add to
it also DOMXML_LOAD_DONT_KEEP_BLANKS,
DOMXML_LOAD_SUBSTITUTE_ENTITIES and
DOMXML_LOAD_COMPLETE_ATTRS by bitwise or.

error

If used, it will contain the error messages. error must be passed in by reference.

Return Values

Returns a DomDocument instance of the given file.

Examples

Example #2909 - Opening an XML document from a file

<?php

if (!$dom = domxml_open_file("example.xml")) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

?>

ChangeLog

Version Description

4.3.0 The parameters mode and error were
added.

See Also

• domxml_open_mem()
• domxml_new_doc()

domxml_open_mem

domxml_open_mem -- Creates a DOM object of an XML document

Description

DomDocument domxml_open_mem (string $str [, int $mode [, array &$error]])

The function parses the XML document in the given string.

Parameters

str

The contents of the XML file.

mode

This optional parameter can be used to change the behavior of this function. You can
use one of the following constants for it: DOMXML_LOAD_PARSING (default),
DOMXML_LOAD_VALIDATING or DOMXML_LOAD_RECOVERING. You can add to
it also DOMXML_LOAD_DONT_KEEP_BLANKS,
DOMXML_LOAD_SUBSTITUTE_ENTITIES and
DOMXML_LOAD_COMPLETE_ATTRS by bitwise or.

error

If used, it will contain the error messages. error must be passed in by reference.

Return Values

Returns a DomDocument instance of the given XML contents.

ChangeLog

Version Description

4.3.0 The mode and error parameters were
added.

Examples

Example #2910 - Opening an XML document in a string

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$root = $dom->document_element();

?>

See Also

• domxml_open_file()
• domxml_new_doc()

domxml_version

domxml_version -- Gets the XML library version

Description

string domxml_version (void)

Gets the version of the XML library currently used.

Return Values

The version of the XML library, as a string.

Examples

Example #2911 - domxml_version() Example

<?php

echo domxml_version();

?>

The above example will output something similar to:

20607

domxml_xmltree

domxml_xmltree -- Creates a tree of PHP objects from an XML document

Description

DomDocument domxml_xmltree (string $str)

The function parses the XML document in str and returns a tree PHP objects as the
parsed document.

This function is isolated from the other functions, which means you cannot access the tree
with any of the other functions. Modifying it, for example by adding nodes, makes no sense
since there is currently no way to dump it as an XML file.

However this function may be valuable if you want to read a file and investigate the
content.

Parameters

str

The contents of the XML file.

Return Values

Returns a tree of Dom objects starting by a DomDocument.

domxml_xslt_stylesheet_doc

domxml_xslt_stylesheet_doc -- Creates a DomXsltStylesheet Object from a
DomDocument Object

Description

DomXsltStylesheet domxml_xslt_stylesheet_doc (DomDocument $xsl_doc)

Creates a DomXsltStylesheet object from the given XSL document.

Parameters

xsl_doc

The XSL document, as a DomDocument object.

Return Values

Returns a new instance of DomXsltStylesheet.

Migrating to PHP 5

Call XSLTProcessor::importStylesheet() with the xsl_doc parameter.

See Also

• DomXsltStylesheet->process()
• domxml_xslt_stylesheet()
• domxml_xslt_stylesheet_file()

domxml_xslt_stylesheet_file

domxml_xslt_stylesheet_file -- Creates a DomXsltStylesheet Object from an XSL
document in a file

Description

DomXsltStylesheet domxml_xslt_stylesheet_file (string $xsl_file)

Creates a DomXsltStylesheet object from the given XSL file.

Parameters

xsl_file

The path to the XSL document, as a string.

Return Values

Returns a new instance of DomXsltStylesheet.

Migrating to PHP 5

Call XSLTProcessor::importStylesheet() with DOMDocument::load($xsl_file) as parameter.

See Also

• DomXsltStylesheet->process()
• domxml_xslt_stylesheet()
• domxml_xslt_stylesheet_doc()

domxml_xslt_stylesheet

domxml_xslt_stylesheet -- Creates a DomXsltStylesheet object from an XSL document in
a string

Description

DomXsltStylesheet domxml_xslt_stylesheet (string $xsl_buf)

Creates a DomXsltStylesheet object from the given XSL buffer.

Parameters

xsl_buf

The XSL document, as a string.

Return Values

Returns a new instance of DomXsltStylesheet.

Migrating to PHP 5

Call XSLTProcessor::importStylesheet() with DOMDocument::loadXML($xsl_buf) as
parameter.

See Also

• DomXsltStylesheet->process()
• domxml_xslt_stylesheet_file()
• domxml_xslt_stylesheet_doc()

domxml_xslt_version

domxml_xslt_version -- Gets the XSLT library version

Description

int domxml_xslt_version (void)

Gets the XSLT library version.

Return Values

Returns the version number of the XSLT library, as an integer.

Examples

Example #2912 - domxml_xslt_version() Example

<?php

echo domxml_xslt_version();

?>

The above example will output something similar to:

10112

See Also

• domxml_version()

xpath_eval_expression

xpath_eval_expression -- Evaluates the XPath Location Path in the given string

Description

XPathContext

XPathObject xpath_eval_expression (string $expression [, domnode $contextnode])

XPathObject xpath_eval_expression (XPathContext $xpath_context, string $
expression [, domnode $contextnode])

Example #2913 - xpath_eval_expression() Example

<?php

include("example.inc");

if (!$dom = domxml_open_mem($xmlstr)) {

 echo "Error while parsing the document\n";

 exit;

}

$xpath = xpath_new_context($dom);

var_dump(xpath_eval_expression($xpath, '/chapter/@language'));

?>

The above example will output:

object(XPathObject)(2) {

 ["type"]=>

 int(1)

 ["nodeset"]=>

 array(1) {

 [0]=>

 object(domattribute)(5) {

 ["type"]=>

 int(2)

 ["name"]=>

 string(8) "language"

 ["value"]=>

 string(2) "en"

 [0]=>

 int(7)

 [1]=>

 int(138004256)

 }

 }

}

See also xpath_eval().

xpath_eval

xpath_eval -- Evaluates the XPath Location Path in the given string

Description

XPathContext

XPathObject xpath_eval (string $xpath_expression [, domnode $contextnode])

XPathObject xpath_eval (XPathContext $xpath_context, string $xpath_expression [,
domnode $contextnode])

The optional contextnode can be specified for doing relative XPath queries.

See also xpath_new_context().

xpath_new_context

xpath_new_context -- Creates new xpath context

Description

XPathContext xpath_new_context (domdocument $dom_document)

Creates a new xpath context.

See Also

• xpath_eval()

xpath_register_ns_auto

xpath_register_ns_auto -- Register the given namespace in the passed XPath context

Description

bool xpath_register_ns_auto (XPathContext $xpath_context [, object $context_node])

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• xpath_register_ns()

xpath_register_ns

xpath_register_ns -- Register the given namespace in the passed XPath context

Description

bool xpath_register_ns (XPathContext $xpath_context, string $prefix, string $uri)

Warning

This function is currently not documented; only its argument list is available.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• xpath_register_ns_auto()

xptr_eval

xptr_eval -- Evaluate the XPtr Location Path in the given string

Description

XPathContext

int xptr_eval (string $eval_str [, domnode $contextnode])

int xptr_eval (XPathContext $xpath_context, string $eval_str [, domnode $contextnode
])

Warning

This function is currently not documented; only its argument list is available.

xptr_new_context

xptr_new_context -- Create new XPath Context

Description

XPathContext xptr_new_context (void)

Warning

This function is currently not documented; only its argument list is available.

libxml

Introduction

These functions/constants are available since PHP 5.1.0 and if you have compiled one of
the extensions based on libxml, like DOM, SimpleXML and XSLT.

Installing/Configuring

Requirements

This extension requires » libxml >= 2.6.0.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://www.xmlsoft.org/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

LIBXML_COMPACT (integer)
Activate small nodes allocation optimization. This may speed up your application
without needing to change the code.

Note

Only available in Libxml >= 2.6.21

LIBXML_DTDATTR (integer)
Default DTD attributes

LIBXML_DTDLOAD (integer)
Load the external subset

LIBXML_DTDVALID (integer)
Validate with the DTD

LIBXML_NOBLANKS (integer)
Remove blank nodes

LIBXML_NOCDATA (integer)
Merge CDATA as text nodes

LIBXML_NOEMPTYTAG (integer)
Expand empty tags (e.g.
 to
</br>)

Note

This option is currently just available in the DOMDocument::save and
DOMDocument::saveXML functions.

LIBXML_NOENT (integer)
Substitute entities

LIBXML_NOERROR (integer)
Suppress error reports

LIBXML_NONET (integer)
Disable network access when loading documents

LIBXML_NOWARNING (integer)

Suppress warning reports

LIBXML_NOXMLDECL (integer)
Drop the XML declaration when saving a document

Note

Only available in Libxml >= 2.6.21

LIBXML_NSCLEAN (integer)
Remove redundant namespaces declarations

LIBXML_XINCLUDE (integer)
Implement XInclude substitution

LIBXML_ERR_ERROR (integer)
A recoverable error

LIBXML_ERR_FATAL (integer)
A fatal error

LIBXML_ERR_NONE (integer)
No errors

LIBXML_ERR_WARNING (integer)
A simple warning

LIBXML_VERSION (integer)
libxml version like 20605 or 20617

LIBXML_DOTTED_VERSION (string)
libxml version like 2.6.5 or 2.6.17

libxml Functions

Predefined Classes

LibXMLError

Properties

• code - the error's code

• column - the column where the error occurred. Please note that this property isn't
entirely implemented in libxml and therefore 0 is often returned.

• file - the filename, or empty if the XML was loaded from a string

• level - the severity of the error (one of the following constants:
LIBXML_ERR_WARNING, LIBXML_ERR_ERROR or LIBXML_ERR_FATAL)

• line - the line where the error occurred

• message - the error message

libxml_clear_errors

libxml_clear_errors -- Clear libxml error buffer

Description

void libxml_clear_errors (void)

libxml_clear_errors() clears the libxml error buffer.

Return Values

No value is returned.

See Also

• libxml_get_errors()
• libxml_get_last_error()

libxml_get_errors

libxml_get_errors -- Retrieve array of errors

Description

array libxml_get_errors (void)

Retrieve array of errors.

Return Values

Returns an array with LibXMLError objects if there are any errors in the buffer, or an empty
array otherwise.

Examples

Example #2914 - A libxml_get_errors() example

This example demonstrates how to build a simple libxml error handler.

<?php

libxml_use_internal_errors(true);

$xmlstr = <<< XML

<?xml version='1.0' standalone='yes'?>

<movies>

<movie>

 <titles>PHP: Behind the Parser</title>

</movie>

</movies>

XML;

$doc = simplexml_load_string($xmlstr);

$xml = explode("\n", $xmlstr);

if (!$doc) {

 $errors = libxml_get_errors();

 foreach ($errors as $error) {

 echo display_xml_error($error, $xml);

 }

 libxml_clear_errors();

}

function display_xml_error($error, $xml)

{

 $return = $xml[$error->line - 1] . "\n";

 $return .= str_repeat('-', $error->column) . "^\n";

 switch ($error->level) {

 case LIBXML_ERR_WARNING:

 $return .= "Warning $error->code: ";

 break;

 case LIBXML_ERR_ERROR:

 $return .= "Error $error->code: ";

 break;

 case LIBXML_ERR_FATAL:

 $return .= "Fatal Error $error->code: ";

 break;

 }

 $return .= trim($error->message) .

 "\n Line: $error->line" .

 "\n Column: $error->column";

 if ($error->file) {

 $return .= "\n File: $error->file";

 }

 return "$return\n\n--\n\n";

}

?>

The above example will output:

<titles>PHP: Behind the Parser</title>

^

Fatal Error 76: Opening and ending tag mismatch: titles line 4 and title

 Line: 4

 Column: 0

--

See Also

• libxml_get_last_error()
• libxml_clear_errors()

libxml_get_last_error

libxml_get_last_error -- Retrieve last error from libxml

Description

LibXMLError libxml_get_last_error (void)

Retrieve last error from libxml.

Return Values

Returns a LibXMLError object if there is any error in the buffer, FALSE otherwise.

See Also

• libxml_get_errors()
• libxml_clear_errors()

libxml_set_streams_context

libxml_set_streams_context -- Set the streams context for the next libxml document load
or write

Description

void libxml_set_streams_context (resource $streams_context)

Sets the streams context for the next libxml document load or write.

Parameters

streams_context

The stream context resource (created with stream_context_create())

Return Values

No value is returned.

Examples

Example #2915 - A libxml_set_streams_context() example

<?php

$opts = array(

 'http' => array(

 'user_agent' => 'PHP libxml agent',

)

);

$context = stream_context_create($opts);

libxml_set_streams_context($context);

// request a file through HTTP

$doc = DOMDocument::load('http://www.example.com/file.xml');

?>

See Also

• stream_context_create()

libxml_use_internal_errors

libxml_use_internal_errors -- Disable libxml errors and allow user to fetch error information
as needed

Description

bool libxml_use_internal_errors ([bool $use_errors])

libxml_use_internal_errors() allows you to disable standard libxml errors and enable user
error handling.

Parameters

use_errors

Whether to enable user error handling. Defaults to FALSE.

Return Values

This function returns the previous value of use_errors.

Examples

Example #2916 - A libxml_use_internal_errors() example

This example demonstrates the basic usage of libxml errors and the value returned by
this function.

<?php

// enable user error handling

var_dump(libxml_use_internal_errors(true));

$doc = DOMDocument::load('file.xml');

if (!$doc) {

 $errors = libxml_get_errors();

 foreach ($errors as $error) {

 // handle errors here

 }

 libxml_clear_errors();

}

?>

The above example will output:

bool(false)

See Also

• libxml_clear_errors()
• libxml_get_errors()

qtdom

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

Note

This extension is not available on Windows platforms.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

http://pecl.php.net/

Installing/Configuring

Requirements

You need the Qt-library >=2.2.0

Installation

Configure PHP --with-qtdom to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

qtdom Functions

qdom_error

qdom_error -- Returns the error string from the last QDOM operation or FALSE if no errors
occurred

Description

string qdom_error (void)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

qdom_tree

qdom_tree -- Creates a tree of an XML string

Description

QDomDocument qdom_tree (string $doc)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Warning

This function is currently not documented; only its argument list is available.

SCA

Introduction

Warning

This extension is EXPERIMENTAL. The behaviour of this extension?including the
names of its functions and any other documentation surrounding this extension?may
change without notice in a future release of PHP. This extension should be used at
your own risk.

SCA for PHP makes it possible for a PHP programmer to write reusable components,
which can be called in a variety of ways, with an identical interface and with a minimum of
fuss. At present components can call each other either locally or via Web services, but in
the future it is expected that other ways will be possible. It provides the programmer with a
way of doing this which will look as natural as possible in PHP.

SCA components use phpDocumentor-style (see http://www.phpdoc.org/) annotations to
declare dependencies on other SCA components or Web services. The SCA for PHP
runtime resolves these dependencies at runtime on behalf of the components, and thus
allows the PHP programmer to focus on the business logic rather than on locating and
obtaining references to dependencies.

The SCA for PHP programming model can be extended to support a number of service
types, such as REST and Atompub. However, Web services (more accurately, WSDL
defined, SOAP/HTTP services), are the only type currently specified.

Components also use annotations to define the interface which they expose as a service.
The SCA for PHP runtime will automatically generate WSDL from these annotations, so
that an SCA component is easily exposed as a web service. These annotations are a
natural extension to those provided by phpDocumentor. Deploying a Web service can be
as simple as placing a PHP component under the document root of a web server.

Components also use annotations to specify data structures (expressed using XML
schema complex types) which are then handled using Service Data Objects (SDOs).

A PHP script which is not an SCA component and which contains no annotations can use
the services of an SCA component. A PHP script or component can make calls to a web
service that is not an SCA component, but using the same system of calls or annotations
to obtain a reference.

First we show a single SCA component, ConvertedStockQuote which illustrates many of
the features of SCA for PHP. It has one method, getQuote(), which given a stock "ticker"
obtains a price quote for that stock, converted to a given currency. We shall be using this
example as a basis for explaining the SCA for PHP throughout the rest of this document.

Example #2917 - A sample SCA component

<?php

include "SCA/SCA.php";

/**

* Calculate a stock price for a given ticker symbol in a given currency.

*

* @service

* @binding.soap

*/

class ConvertedStockQuote {

 /**

 * The currency exchange rate service to use.

 *

 * @reference

 * @binding.php ../ExchangeRate/ExchangeRate.php

 */

 public $exchange_rate;

 /**

 * The stock quote service to use.

 *

 * @reference

 * @binding.soap ../StockQuote/StockQuote.wsdl

 */

 public $stock_quote;

 /**

 * Get a stock quote for a given ticker symbol in a given currency.

 *

 * @param string $ticker The ticker symbol.

 * @param string $currency What currency to convert the value to.

 * @return float The stock value is the target currency.

 */

 function getQuote($ticker, $currency)

 {

 $quote = $this->stock_quote->getQuote($ticker);

 $rate = $this->exchange_rate->getRate($currency);

 return $rate * $quote;

 }

}

?>

In this example, we see that an SCA component is implemented by a script containing a
PHP class and includes SCA.php. The class contains a mixture of business logic and
references to other components or services. In the illustrated getQuote() method there is
only business logic, but it relies on the instance variables $stock_quote and
$exchange_rate having been initialized. These refer to two other components and will be
initialized by the SCA runtime with proxies for these two services, whenever this
component executes. The annotations for these two services show one to be a local
component, which will be called within the same PHP runtime, and one to be a remote
component which will be called via a SOAP request. This component also exposes the

getQuote() method both locally and as a web service, so it in turn can be called either
locally or remotely.

Installing/Configuring

Requirements

If you want to use SCA to consume or produce Web services then you need PHP 5.2.0 or
later, built with the soap extension enabled. If you just want to use local components, and
do not wish to use the Web service bindings, then this version of SCA for PHP will also run
with PHP 5.1.6.

Installation

SCA is packaged along with SDO in one combined package on PECL. See
http://www.php.net/sdo#sdo.installation for installing the SCA_SDO package from PECL.
The SCA code must be on the include path of your PHP installation, for example if it is
installed as /usr/local/lib/php/SCA, the include_path directive must include /usr/local/lib/php

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

The examples in the subsequent sections illustrate the following aspects of PHP for SCA:

• How PHP annotations are used to define PHP classes as SCA components, and how
annotations are used to define the services.

• How an SCA component can be exposed as a Web service

• How an SCA component can consume a Web service, whether provided by another
SCA component or by some other service which knows nothing of SCA

• How an SCA component can call another SCA component locally (within the same
process and on the same call stack)

• How a client script which is not an SCA component can use the getService call to
obtain a proxy for an SCA component.

• How data structures such as Addresses, or Puchase Orders, are represented as
Service Data Objects, and handled.

• How SCA components are deployed, and in particular how and when WSDL is
generated for a service.

• How parameters are always passed by value (and not by reference) between
components, even when the calls are local. This ensures that the semantics of a call
do not change depending on the location of a component.

• How positional parameters to a service are supported, even when the underlying
WSDL is document literal wrapped, and naturally supports only named parameters.

• How business and runtime exceptions are handled.

The structure of a Service Component

A service component is implemented by a class. To identify it as a service component, it
contains an @service annotation. The SCA runtime will use the file name of the script to
determine the component name, by convention. The class and script file must therefore
share the same name.

PHP SCA components always expose a service, and there is no way for a component to
be invoked other than to be called as a result of a Web service request, or called directly
from another component or from a script. For this reason a valid PHP SCA component will
always contain an @service annotation and at least one public method.

Each SCA Component requires that the SCA.php script is included. As well as containing
the definition of the SCA class, this script contains executable PHP code that will run
whenever the script is called, and which will be responsible for making the component
behave as needed.

Caution

It is very important that if your file contains other includes, they come before the
include for SCA.php. If there are includes after the include for SCA.php, they will not
have been processed when the SCA runtime runs your class.

The example below illustrates this overall structure

Example #2918 - The structure of an SCA for PHP component

<?php

// any includes

include "SCA/SCA.php";

/**

* @service

*/

class ConvertedStockQuote {

 // instance variables, business logic, including at least one public
method

}

?>

Obtaining a proxy for another Service Component

One SCA component can call the service provided by another SCA component. The
service a component provides is made up of all of its public methods. SCA for PHP
currently provides two ways for one component to call another: either locally (i.e. within the
same PHP run-time, and on the same call stack) or remotely if the called component
exposes a Web service binding.

In order for one component to call another, the calling component needs a proxy for the
called component. This proxy is usually provided as an instance variable in the calling
component, though proxies can also be obtained with the SCA::getService() call, as we
shall see later. When a component is constructed, proxies are constructed for any instance
variable which refer to another component, and these proxies are "injected" into the
instance variables. Proxies are always used, whether the component is local or remote, in
order to provide identical calling behavior between remote and local calls (for example,
local calls are made to always pass data by-value). The proxies know how to locate the
required component and to pass the calls made on to them.

Instance variables which are intended to hold proxies for services are indicated by the two

PHPDocumentor-style annotations, @reference and @binding. Both annotations are
placed in the documentation section for a class instance variable, as shown by the code
below.

The @reference annotation before an instance variable indicates that that instance
variable is to be initialized with a proxy to a component.

The @binding annotation has two forms @binding.php and @binding.soap, and indicates
that the proxy is either for a local component or for a Web service respectively. For both
@binding.php and @binding.soap, the annotation gives a target URI.

At the moment, with the annotation-based method of specifying dependencies, the only
way to alter the intended target of a reference is to alter the annotation within the
component.

In our ConvertedStockQuote example, the $exchange_rate instance variable will be
initialized with a proxy to the local ExchangeRate component whenever an instance of the
ConvertedStockQuote is constructed.

Example #2919 - Obtaining a proxy for a local PHP class

<?php

 /**

 * The currency exchange rate service to use.

 *

 * @reference

 * @binding.php ../ExchangeRate/ExchangeRate.php

 */

 public $exchange_rate;

?>

For @binding.php, the URI identifies the location of the script containing the
implementation of the component. The component will be called locally. The service
provided is the set of public methods of the component. The URI must be a simple
pathname, either absolute or relative. The component will be loaded with the PHP include
directive, after testing to see if it is already loaded with class_exists(). If the URI is a
relative path, it is resolved relative to the component containing the annotation. Note that
this is different from the normal PHP behaviour where scripts would be looked for along
the PHP include_path, This is intended to provide some location-independence for
cross-component references.

If this ExchangeRate service were remote and to be called as a Web service, only the
@binding line changes. Instead of giving the location of a PHP class, it gives the location
of the WSDL describing the web service. In our example component, this is illustrated by
the second reference:

Example #2920 - Obtaining a proxy for a web service

<?php

/**

 * The stock quote service to use.

 *

 * @reference

 * @binding.soap ../StockQuote/StockQuote.wsdl

 */

 public $stock_quote;

?>

The StockQuote component will be called via a Web service request. In this case the URI
for the WSDL can be a simple pathname, or may contain a PHP wrapper and begin, for
example, with file:// or http://. In the event that it is a simple pathname, it can be absolute
or relative, and if relative will be resolved relative to the component containing the
annotation. Note that this is like the behaviour for @binding.php, and different from the
normal PHP behaviour where the file would be looked for relative to the PHP current
working directory, which would usually be the location of the first script to be called. This
behaviour is intended to give consistency across the different bindings and to provide
some location-independence for references between components.

Calling another Service Component

The ConvertedStockQuote example also calls the proxies for the two components to which
it refers.

Example #2921 - Calling services

<?php

$quote = $this->stock_quote->getQuote($ticker);

$rate = $this->exchange_rate->getRate($currency);

?>

The call to the StockQuote service is a call to a local service; the call to the ExchangeRate
service is a call to a remote service. Note that the way the call is made looks the same
regardless of whether the call is to a local service or a remote one.

The proxies which have been injected ensure that the way calls to components look and
behave are the same way regardless of whether they are to a local or remote service, so
that components are not sensitive to whether a call is to a local or a remote service. For
example, the proxy for a local service takes copies of the arguments and passes only
those copies, to ensure that calls are made to be pass-by-value, as they would be for a
remote call. Also, the proxy for a remote service takes the arguments from a positional
parameter list and ensures they are packaged properly in a SOAP request and converted
back to a positional parameter list at the far end.

In the example above, the $ticker and $currency are clearly PHP scalar types.
Components can pass the PHP scalar types string, integer, float and boolean, but data
structures on service calls are always passed as Service Data Objects (SDOs). A later
section describes how a component can create an SDO to pass on a local or Web service
call, or how a component can create an SDO to return. The PHP SDO project
documentation describes how to work with the SDO APIs (see the SDO pages.

Locating and calling services from a script which is not an SCA
Component

SCA components obtain proxies for other components or services as instance variables
annotated with @reference, but this is not possible for a script that is not itself also a
component. A client script which is not a component must use the SCA::getService() static
method to obtain a proxy for a service, whether local or remote. The getService() method
takes a URI as the argument. Typically this is the location of a local PHP script containing
a component, or of a wsdl file, and is used in exactly the same way as the targets of the
@binding annotations described in the previous section: that is, relative URIs are resolved
against the location of the client script and not against the PHP include_path or current
working directory.

For example, a script that needed to obtain proxies for the ExchangeRate and StockQuote
services but was not a component would use the getService() method as follows:

Example #2922 - Obtaining a proxy using getService

<?php

$exchange_rate = SCA::getService('../ExchangeRate/ExchangeRate.php');

$stock_quote = SCA::getService('../StockQuote/StockQuote.wsdl');

?>

Methods on services can then be called on the returned proxy, just as they can in a
component.

Example #2923 - Making calls on the proxy

<?php

$quote = $stock_quote->getQuote($ticker);

$rate = $exchange_rate->getRate($currency);

?>

Exposing a Service Component as a Web service

SCA for PHP can generate WSDL from the annotations within a service component, so
that it can be easily deployed and exposed as a Web service. To provide SCA with the
information it needs to generate the WSDL, it is necessary to add the annotation
@binding.soap under the @service annotation and to specify the parameters and return
values of the methods using the @param and @return annotations. These annotations will
be read when WSDL is generated, and the order and types of the parameters determine
the contents of the <schema> section of the WSDL.

SCA for PHP always generates document/literal wrapped WSDL for components that are
exposing a Web service. Note that this does not stop components from consuming Web
services which are not SCA components and which are documented with WSDL written in
a different style.

The scalar types which can be used in the @param annotation are the four common PHP
scalar types: boolean, integer, float and string. These are simply mapped to the XML
schema types of the same name in the WSDL. The example below, which is a trivial
implementation of the StockQuote service that the ConvertedStockQuote component calls,
illustrates string and float types.

Example #2924 - StockQuote Service

<?php

include "SCA/SCA.php";

/**

* Scaffold implementation for a remote StockQuote Web service.

*

* @service

* @binding.soap

*

*/

class StockQuote {

 /**

 * Get a stock quote for a given ticker symbol.

 *

 * @param string $ticker The ticker symbol.

 * @return float The stock quote.

 */

 function getQuote($ticker) {

 return 80.9;

 }

}

?>

WSDL much like the following (though with a service location other than 'localhost',
probably) would be generated from this service:

Example #2925 - Generated WSDL

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xsi:type="tDefinitions"

 xmlns:tns2="http://StockQuote"
xmlns:tns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:tns3="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
targetNamespace="http://StockQuote">

 <types>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://StockQuote">

 <xs:element name="getQuote">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ticker" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getQuoteResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="getQuoteReturn" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </types>

 <message name="getQuoteRequest">

 <part name="getQuoteRequest" element="tns2:getQuote"/>

 </message>

 <message name="getQuoteResponse">

 <part name="return" element="tns2:getQuoteResponse"/>

 </message>

 <portType name="StockQuotePortType">

 <operation name="getQuote">

 <input message="tns2:getQuoteRequest"/>

 <output message="tns2:getQuoteResponse"/>

 </operation>

 </portType>

 <binding name="StockQuoteBinding" type="tns2:StockQuotePortType">

 <operation name="getQuote">

 <input>

 <tns3:body xsi:type="tBody" use="literal"/>

 </input>

 <output>

 <tns3:body xsi:type="tBody" use="literal"/>

 </output>

 <tns3:operation xsi:type="tOperation" soapAction=""/>

 </operation>

 <tns3:binding xsi:type="tBinding"
transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns2:StockQuoteBinding">

 <tns3:address xsi:type="tAddress"
location="http://localhost/StockQuote/StockQuote.php"/>

 </port>

 </service>

</definitions>

<!-- this line identifies this file as WSDL generated by SCA for PHP. Do not
remove -->

Deploying an SCA component

There are no special steps needed to deploy a PHP SCA component. It is sufficient to
place the component PHP script in its proper place under the web server document root,
just like any other PHP script. It is the SCA::initComponent() executable line within each
component that will be executed whenever the script is called, and which will be
responsible for making the component respond appropriately to Web service calls, local
calls, or requests for WSDL.

Obtaining the WSDL for an SCA component offering a Service as a Web
service

SCA components that expose a Web service interface (i.e. have an @binding.soap
annotation) will return their WSDL definition in response to an HTTP request with a get
parameter of "wsdl". The usual way to obtain this is with "?wsdl" on the end of a URL. The
example below uses file_get_contents() to obtain WSDL from a service and writes it to a
temporary file before then obtaining a proxy for the service in the usual way. You could of
course also obtain the WSDL in a browser, or by some other means, and save the file
yourself.

Example #2926 - Generated WSDL

<?php

$wsdl =
file_get_contents('http://www.example.com/Services/Example.php?wsdl');

file_put_contents("service.wsdl",$wsdl); //write the wsdl to a file

$service = SCA::getService('service.wsdl');

?>

NOTE: If the wsdl requires imported xsds, these will need to be fetched separately.

Understanding how the WSDL is generated

SCA for PHP generates WSDL for components which contain an @binding.soap
annotation after the @service annotation. To generate WSDL, the SCA runtime reflects on
the component and examines the @param and @return annotations for each public
method, as well as any @types annotations within the component. The information from

the @param and @return annotations is used to build the <types> section of the WSDL.
Any @types annotations which specify a separate schema file will result in an <import>
element for that schema within the WSDL.

Location attribute of the <service> element

At the bottom of the WSDL is the <service> element which uses the location attribute to
identify the URL of the service. For example this might look as follows:

Example #2927 - location attribute

<service name="ConvertedStockQuote"

...

location="http://localhost/ConvertedStockQuote/ConvertedStockQuote.php"/>

Note that this location is relative to the document root of the web server, and cannot be
worked out in advance. It can only be worked out once the component is in its proper
place under a running web server, when the hostname and port can be known and placed
in the WSDL. Detail from the URL that requests the WSDL is used, so for example if the
WSDL is generated in response to a request to
http://www.example.com:1111/ConvertedStockQuote/ConvertedStockQuote.php?wsdl, a
location of
http://www.example.com:1111/ConvertedStockQuote/ConvertedStockQuote.php is what
will be inserted into the location attribute in the WSDL.

Document/literal wrapped WSDL and positional parameters

SCA for PHP generates WSDL in the document/literal wrapped style. This style encloses
the parameters and return types of a method in 'wrappers' which are named after the
corresponding method. The <types> element at the top of the WSDL defines each of these
wrappers. If we consider the getQuote() method of the ConvertedStockQuote example:

Example #2928 - method with two arguments

<?php

 /**

 * Get a stock quote for a given ticker symbol in a given currency.

 *

 * @param string $ticker The ticker symbol.

 * @param string $currency What currency to convert the value to.

 * @return float The stock value is the target currency.

 */

 function getQuote($ticker, $currency)

 {

 $quote = $this->stock_quote->getQuote($ticker);

 $rate = $this->exchange_rate->getRate($currency);

 return $rate * $quote;

 }

?>

The WSDL generated to define this method will name both the method and the
parameters, and give an XML schema type for the parameters. The types section of the
WSDL looks like this:

Example #2929 - types section illustrating named parameters

<types>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://ConvertedStockQuote">

 <xs:element name="getQuote">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ticker" type="xs:string"/>

 <xs:element name="currency" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getQuoteResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="getQuoteReturn" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </types>

The SCA run-time has special processing to handle how positional parameter lists in the
interface are converted to XML containing named parameters in the soap request, and
then back to positional parameter lists again. To see why this matters, consider how a
PHP script which used a different interface to make a SOAP call would need to construct
the parameter list. A PHP script using the PHP SoapClient, for example, would need to
pass the SoapClient a single parameter giving the values for "ticker" and "currency",
perhaps as an associative array. To insist that SCA components construct parameter lists
to make Web service calls in this way would be to make local and remote calls look
different, so a different approach is needed.

When SCA generates WSDL for an SCA component it includes a comment in the WSDL
which marks that WSDL as being the interface for an SCA component. In this case, when
one SCA component calls another through a Web service, the SCA runtime on the calling
end takes the positional parameter list from the call and assigns the values one by one to
the named elements in the soap message. For example a call to the getQuote() method
defined above that passes the values 'IBM' and 'USD' and looks like this:

$quote = $remote_service->getQuote('IBM','USD');

will result in a soap message containing the following:

<getQuote>

 <ticker>IBM</ticker>

 <currency>USD</currency>

</getQuote>

On the service-providing end, the SCA run-time takes the parameters one by one from the
soap message and forms a positional parameter list from them, re-forming the argument
list ('IBM','USD').

Caution

At both ends the SCA runtime relies on the order in which the parameters appear in
the soap message being the same as that in the target method's parameter list. This is
ultimately determined by the order of the @param annotations: this determines the
order in which the parameters appear in the WSDL and thereby the order in which they
appear in the soap message. Therefore it is essential that the order of the @param
annotations matches that of the parameters in the method's parameter list.

Working with Data Structures

SCA components can pass and return the four PHP scalar types boolean, integer, float
and string, but to pass or return data structures, SCA components use Service Data
Objects (SDOs). SDOs are described in much more detail in the SDO pages of this
manual. Readers familiar with SDOs will know that they are suitable for representing the
sort of structured and semi-structured data that is frequently modeled in XML, and that
they serialize very naturally for passing between remote components, or in Web services.
SDOs are presently the only supported way to pass and return data structures. It is not
possible to pass or return PHP objects, or PHP arrays.

The SCA runtime always assures data is passed by-value, even for local calls. To do this,
the SCA runtime copies any SDOs in the parameter list before passing them on, just as it
does for scalar types.

How data structures are defined to SCA components

Currently the only mechanism for specifying the location of a data structure definition is by
specifying the types in an XML schema file. However, in the future it may be possible to
define types in other ways, such as based on PHP classes or interfaces, or based on
definitions expressed as associative arrays.

To illustrate the use of SDOs we introduce a new component. The PortfolioMangement

service below returns an SDO representing a stock portfolio for a given customer.

Example #2930 - A Component that uses Data Structures

<?php

include "SCA/SCA.php";

/**

* Manage the portfolio for a customer.

*

* @service

* @binding.soap

*

* @types http://www.example.org/Portfolio PortfolioTypes.xsd

*

*/

class PortfolioManagement {

 /**

 * Get the stock portfolio for a given customer.

 *

 * @param integer $customer_id The id for the customer

 * @return Portfolio http://www.example.org/Portfolio The stock portfolio
(symbols and quantities)

 */

 function getPortfolio($customer_id) {

 // Pretend we just got this from a database

 $portfolio =
SCA::createDataObject('http://www.example.org/Portfolio', 'Portfolio');

 $holding = $portfolio->createDataObject('holding');

 $holding->ticker = 'AAPL';

 $holding->number = 100.5;

 $holding = $portfolio->createDataObject('holding');

 $holding->ticker = 'INTL';

 $holding->number = 100.5;

 $holding = $portfolio->createDataObject('holding');

 $holding->ticker = 'IBM';

 $holding->number = 100.5;

 return $portfolio;

 }

}

?>

The @types annotation:

<?php

@types http://www.example.org/Portfolio PortfolioTypes.xsd

?>

indicates that types in the namespace http://www.example.org/Portfolio will be found in the

schema file located by the URI PortfolioTypes.xsd. The generated WSDL would reproduce
this information with an import statement as follows:

<xs:import schemaLocation="PortfolioTypes.xsd"

 namespace="http://www.example.org/Portfolio"/>

so the URI, absolute or relative, must be one that can be resolved when included in the
schemaLocation attribute.

Creating SDOs

Readers familiar with SDOs will know that they are always created according to a
description of the permitted structure (sometimes referred to as the 'schema' or 'model')
and that, rather than creating them directly using 'new', some form of data factory is
needed. Often, an existing data object can be used as the data factory, but sometimes,
and especially in order to get the first data object, something else must act as the data
factory.

In SCA, either the SCA runtime class or the proxies for services, whether local or remote,
can act as the data factories for SDOs. The choice of which to use, and when, is described
in the next two sections.

We switch to a new example in order to illustrate the creation of SDOs, both to pass to a
service, and to be returned from a service.

Creating an SDO to pass to a service

A caller of a service which requires a data structure to be passed in to it uses the proxy to
the service as the data factory for the corresponding SDOs. For example, suppose a
component makes use of a proxy for a service provided by a local AddressBook
component.

<?php

/**

* @reference

* @binding.local AddressBook.php

*/

$address_book;

?>

The AddressBook component that it wishes to call is defined as follows:

<?php

/**

* @service

* @binding.soap

* @types http://addressbook ../AddressBook/AddressBook.xsd

*/

class AddressBook {

 /**

 * @param personType $person http://addressbook (a person object)

 * @return addressType http://addressbook (the address object for the person
object)

 */

 function lookupAddress($person) {

 ...

 }

}

?>

The AddressBook component provides a service method called lookupAddress() which
uses types from the http://addressbook namespace. The lookupAddress method takes a
personType data structure and returns an addressType. Both types are defined in the
schema file addressbook.xsd.

Once the component that wishes to use the AddressBook component has been
constructed, so that the $address_book instance variable contains a proxy for the service,
the calling component can use the proxy in $address_book to create the person SDO, as
shown below:

<?php

$william_shakespeare =
$address_book->createDataObject('http://addressbook','personType');

$william_shakespeare ->name = "William Shakespeare";

$address =
$address_book->lookupAddress($william_shakespeare);

?>

Note, the use of the proxy as the means to create the SDO is not limited to SCA
components. If a service is being called from a general PHP script, and the proxy was
obtained with getService() then the same approach is used.

<?php

$address_book = SCA::getService('AddressBook.php');

$william_shakespeare =
$address_book->createDataObject('http://addressbook','personType');

?>

Creating an SDO to return from a component

A component that needs to create a data object for return to a caller will not have a proxy
to use as a data object, In this case it uses the createDataObject() static method on
SCA.php. Hence if the AddressBook component described above needed to create an
object of type addressType within the namespace http://addressbook, it might do so as
follows:

<?php

$address = SCA::createDataObject('http://addressbook','addressType');

?>

Error handling

This section describes how errors are handled. There are two types of errors:

• SCA runtime exceptions are those that signal problems in the management of the
execution of components, and in the interaction with remote services. These might
occur due to network or configuration problems.

• Business exceptions are those that are defined by the programmer. They extend the
PHP Exception class, and are thrown and caught deliberately as part of the business
logic.

Handling of Runtime exceptions

There are two types of SCA runtime exception:

• SCA_RuntimeException - signals a problem found by or perhaps occurring within the
SCA runtime. This can be thrown for a variety of reasons, many of which can occur
regardless of whether a connection is being made to a local or a remote service: an
error in one of the annotations within a component, a missing WSDL or php file, and so
on. In the case of Web services, an SCA_RuntimeException can also be thrown if a
SoapFault is received from a remote Web service and the fault code in the SoapFault
indicates that a retry is unlikely to be successful.

• SCA_ServiceUnavailableException - this is a subclass of SCA_RuntimeException and
signals a problem in connecting to or using a remote service, but one which might
succeed if retried. In the case of Web services, this exception is thrown if a SoapFault
is received with a fault code that indicates that a retry might be successful.

Handling of Business exceptions

Business exceptions may be defined and thrown by a component in the normal way,
regardless of whether the component has been called locally or remotely. The SCA
runtime does not catch business exceptions that have been thrown by a component called
locally, so they will be returned to a caller in the normal way. If a component has been
called via a Web service, on the other hand, the SCA runtime on the service providing end
does catch business exceptions, and will ensure these are passed back to the calling end
and re-thrown. Assuming that the calling end has a definition of the exception (that is, is
able to include a file containing the PHP class defining the exception) the re-thrown
exception will contain the same details as the original, so that the getLine() and getFile()
methods for example will contain the location where the exception was thrown within the

business logic. The exception will be passed in the detail field of a soap fault with a fault
code of "Client".

SCA Functions

Predefined Classes

Most of the interface to SCA is through the annotations within SCA components so there
are few public classes and methods. The only SCA classes that scripts or components can
call are the SCA class itself, and the proxy classes SCA_LocalProxy and
SCA_SoapProxy.

SCA

Much of the work of the SCA class is performed when the file SCA.php is included within
an SCA component. However, a PHP script may include SCA.php and call the
getService() method on the SCA class in order to obtain a proxy for a service. A
component will not need to do this as proxies are obtained instead by defining an instance
variable with the @reference annotation.

Components that need to create an SDO to return to a caller will need a data factory to
call. For this purpose the SCA class supports the createDataObject() method, which will
create an SDO according to the model defined by the component's @types annotations.
The arguments to createDataObject() are the same as those to SDO's XML Data Access
Service.

Methods

• getService - obtain a proxy for a service

• createDataObject - create an SDO

SCA_LocalProxy

When getService() is called with the target of a local PHP component, a local proxy is
returned. A local proxy is also injected into the instance variables of a component that are
defined with an @reference and an @binding.php anotation. When the script or
component makes calls on the local proxy, they are passed on to the target component
itself.

Components that need to create an SDO to pass to a component will need a data factory
to call. For this purpose the SCA_LocalProxy class supports the createDataObject
method, which will create an SDO according to the model defined by the components'
@types annotations. The arguments to the createDataObject are the same as those to
SDO's XML Data Access Service.

Methods

• createDataObject - create an SDO

SCA_SoapProxy

When getService() is called with the target of a WSDL file, a SOAP proxy is returned. A
SOAP proxy is also injected into the instance variables of a component that are defined
with an @reference and an @binding.soap anotations. When the script or component
makes calls on the SOAP proxy, they are formed into Web service SOAP requests and
passed on to the target component, with the help of the PHP Soap extension.

Components that need to create an SDO to pass to a component will need a data factory
to call. For this purpose the SCA_SoapProxy class supports the createDataObject method,
which will create an SDO according to the model defined within the target WSDL. The
arguments to the createDataObject are the same as those to SDO's XML Data Access
Service.

Methods

• createDataObject - create an SDO

SCA_LocalProxy::createDataObject

SCA_LocalProxy::createDataObject -- create an SDO

Description

SDO_DataObject SCA_LocalProxy::createDataObject (string $type_namespace_uri,
string $type_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method is used inside either an ordinary PHP script or an SCA component that needs
to create an SDO to pass to a local service. The parameters are the desired SDO's
namespace URI and type name. The namespace and type must be defined in the interface
of the component that is to be called, so the namespace and type must be defined in one
of the schema files which are specfied on the @types annotation within the component for
which the SCA_LocalProxy object is a proxy.

Parameters

type_namespace_uri

The namespace of the type.

type_name

The name of the type.

Return Values

Returns the newly created SDO_DataObject.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if the namespaceURI and typeName do not correspond to a type in any of the
schema files specified in the @types annotations within the component for which the
SCA_LocalProxy object is a proxy..

SCA_SoapProxy::createDataObject

SCA_SoapProxy::createDataObject -- create an SDO

Description

SDO_DataObject SCA_SoapProxy::createDataObject (string $type_namespace_uri,
string $type_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method is used inside either an ordinary PHP script or an SCA component that needs
to create an SDO to pass to a web service. The parameters are the desired SDO's
namespace URI and type name. The namespace and type must be defined in the interface
of the component that is to be called, so the namespace and type must be defined within
the WSDL for the web service. If the web service is also an SCA component then the
types will have been defined within one of the schema files which are specfied on the
@types annotation within the component for which the SCA_SoapProxy object is a proxy.

Parameters

type_namespace_uri

The namespace of the type.

type_name

The name of the type.

Return Values

Returns the newly created SDO_DataObject.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if the namespaceURI and typeName do not correspond to a type found in the
WSDL that was used to initialise this SCA_SoapProxy.

SCA::createDataObject

SCA::createDataObject -- create an SDO

Description

SDO_DataObject SCA::createDataObject (string $type_namespace_uri, string $
type_name)

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

This method is used inside an SCA component that needs to create an SDO to return. The
parameters are the desired SDO's namespace URI and type name. The namespace and
type must be defined in one of the schema files which are specfied on the @types
annotation within the component.

Parameters

type_namespace_uri

The namespace of the type.

type_name

The name of the type.

Return Values

Returns the newly created SDO_DataObject.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if the namespaceURI and typeName do not correspond to a type in any of the
schema files specified in the @types annotations.

SCA::getService

SCA::getService -- Obtain a proxy for a service

Description

mixed SCA::getService (string $target [, string $binding [, array $config]])

Warning

This function is EXPERIMENTAL. The behaviour of this function, its name, and
surrounding documentation may change without notice in a future release of PHP. This
function should be used at your own risk.

Examine the target and initialise and return a proxy of the appropriate sort. If the target is
for a local PHP component the returned proxy will be an SCA_LocalProxy. If the target is
for a WSDL file, the returned proxy will be a SCA_SoapProxy.

Parameters

target

An absolute or relative path to the target service or service description (e.g. a URL to a
json-rpc service description, a PHP component, a WSDL file, and so on.). A relative
path, if specified, is resolved relative to the location of the script issuing the
getService() call, and not against the include_path or current working directory.

binding

The binding (i.e. protocol) to use to communicate with the service (e.g binding.jsonrpc
for a json-rpc service). Note, some service types can be deduced from the target
parameter (e.g. if the target parameter ends in .wsdl then SCA will assume
binding.soap). Any binding which can be specified in an annotation can be specified
here. For example 'binding.soap' is equivalent to the '@binding.soap' annotation.

config

Any additional configuration prioperties for the binding (e.g. array('location' =>
'http://example.org')). Any binding configuration which can be specified in an
annotation can be specified here. For example, 'location' is equivalent to the
'@location' annotation to configure the location of a target soap service.

Return Values

The SCA_LocalProxy or SCA_SoapProxy.

Examples

Example #2931 - An SCA::getService() example

This example shows how to get a proxy to an email soap service described by
EmailService.wsdl and located at http://example.org.

<?php

include 'SCA/SCA.php';

$service = SCA::getService('EmailService.wsdl', 'binding.soap',
array('location' => 'http://example.org'));

$service->send(...);

?>

The above example will output:

SDO XML Data Access Service

Introduction

In order to use the XML Data Access Service for Service Data Objects, you will need to
understand some of the concepts behind SDO: the data graph, the data object, XPath and
property expressions, and so on. If you are not familiar with these ideas, you might want to
look first at the section on SDO.

The job of the XML DAS is to move data between the application and an XML data source,
which can be either a file or a URL. SDOs are always created and maintained according to
a model which defines type names and what property names each type may have. For
data which is from XML, this SDO model is built from a schema file written in XML schema
language (an xsd file). This schema file is usually passed to the create method when the
XMLDAS is initialised. The » SDO 2.0 specification defines the mapping between XML
types and SDO types. There are a number of small limitations in the PHP support - not
everything which is in the specification can be done - and these limitations are
summarised in a later section.

http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/

Installing/Configuring

Requirements

The SDO XML Data Access Service requires PHP 5.1.0 or higher. It is packaged with the
SDO extension and requires SDO to have been installed. See the SDO installation
instructions for the details of how to do this.

Installation

The XML Data Access Service is packaged and installed as part of the SDO extension.
Please Refer SDO installation instructions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Several of the following examples are based on the letter example described in the SDO
documentation. The examples assume the XML Schema for the letter is contained in a file
letter.xsd and the letter instance is in the file letter.xml. These two files are reproduced
here:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:letter="http://letterSchema"

 targetNamespace="http://letterSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 <xsd:sequence>

 <xsd:element name="date" minOccurs="0" type="xsd:string"/>

 <xsd:element name="firstName" minOccurs="0" type="xsd:string"/>

 <xsd:element name="lastName" minOccurs="0" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

<letter:letters xmlns:letter="http://letterSchema">

 <date>March 1, 2005</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Casy</firstName>

 <lastName>Crocodile</lastName>

 Please buy more shark repellent.

 Your premium is past due.

</letter:letters>

Example #2932 - Loading, altering, and saving an XML document

The following example shows how an XML document can be loaded from a file,
altered, and written back.

<?php

/**

* Load, update, and save an XML document

*/

try {

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 $document = $xmldas->loadFile("letter.xml");

 $root_data_object = $document->getRootDataObject();

 $root_data_object->date = "September 03, 2004";

 $root_data_object->firstName = "Anantoju";

 $root_data_object->lastName = "Madhu";

 $xmldas->saveFile($document, "letter-out.xml");

 echo "New file has been written:\n";

 print file_get_contents("letter-out.xml");

} catch (SDO_Exception $e) {

 print($e->getMessage());

}

?>

An instance of the XML DAS is first obtained from the SDO_DAS_XML::create()
method, which is a static method of the SDO_DAS_XML class. The location of the xsd
is passed as a parameter. Once we have an instance of the XML DAS initialised with a
given schema, we can use it to load the instance document using the loadFile()
method. There is also a loadString() method if you want to load an XML instance
document from a string. If the instance document loads successfully, you will be
returned an object of type SDO_DAS_XML_Document, on which you can call the
getRootDataObject() method to get the SDO data object which is the root of the SDO
data graph. You can then use SDO operations to change the graph. In this example
we alter the date, firstName, and lastName properties. Then we use the saveFile()
method to write the changed document back to the file system. The saveFile method
has an optional extra integer argument which if specified will cause the XML DAS to
format the XML, using the integer as the amount to indent by at each change in level
on the document.

This will write the following to letter-out.xml.

<?xml version="1.0" encoding="UTF-8"?>

<FormLetter xmlns="http://letterSchema" xsi:type="FormLetter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <date>September 03, 2004</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Anantoju</firstName>

 <lastName>Madhu</lastName>

 Please buy more shark repellent.

 Your premium is past due.

</FormLetter>

Example #2933 - Creating a new XML document

The previous example loaded the document from a file. This example shows how to
create an SDO data graph in memory. In this example it is then saved to an XML
string. Furthermore, because the letter contains both structured and unstructured
content, it uses the Sequence API as well assignments to properties to construct the
data graph.

<?php

/**

* Create an XML document from scratch

*/

try {

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 try {

 $doc = $xmldas->createDocument();

 $rdo = $doc->getRootDataObject();

 $seq = $rdo->getSequence();

 $seq->insert("April 09, 2005", NULL, 'date');

 $seq->insert("Acme Inc. ", NULL, NULL);

 $seq->insert("United Kingdom. ");

 $seq->insert("Dear", NULL, NULL);

 $seq->insert("Tarun", NULL, "firstName");

 $seq->insert("Nayaraaa", NULL, "lastName");

 $rdo->lastName = "Nayar";

 $seq->insert("Please note that your order number ");

 $seq->insert(12345);

 $seq->insert(" has been dispatched today. Thanks for your business
with us.");

 print($xmldas->saveString($doc));

 } catch (SDO_Exception $e) {

 print($e);

 }

} catch (SDO_Exception $e) {

 print("Problem creating an XML document: " . $e->getMessage());

}

?>

The createDocument() method on the XML DAS returns a document object with a single
root data object corresponding to an empty document element. The element name of the
document element is known from the schema file. If there is any ambiguity about what the
document element is, as there can be when more than one schema has been loaded into
the same XML DAS, the element name and the namespace URI can be passed to the
createDocument() method.

This will emit the following output (line breaks have been inserted for readability):

<?xml version="1.0" encoding="UTF-8"?>

<FormLetter xmlns="http://letterSchema" xsi:type="FormLetter"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<date>April 09, 2005</date>

Acme Inc. United Kingdom.

Dear

<firstName>Tarun</firstName>

<lastName>Nayar</lastName>

Please note that your order number 12345 has been

dispatched today. Thanks for your business with us.

</FormLetter>

Example #2934 - Setting XML document properties

This third example shows you how to set the XML version and encoding on the
document object. These will be used when the XML is written out. If no XML
declaration is wanted at all (perhaps you want to generate the XML as a string to
embed in something) then you can use the setXMLDeclaration() method to suppress
it.

<?php

/**

* Illustrate the calls that control the XML declaration

*/

 $xmldas = SDO_DAS_XML::create("letter.xsd");

 $document = $xmldas->loadFile("letter.xml");

 $document->setXMLVersion("1.1");

 $document->setEncoding("ISO-8859-1");

 print($xmldas->saveString($document));

?>

The XML version and encoding are set in the XML declaration at the top of the XML
document.

<?xml version="1.1" encoding="ISO-8859-1"?>

.../...

Example #2935 - Using an open type

This fourth example illustrates the use of an SDO open type and the use of the
createDataObject() method. For this example we use the following two schema:

<schema

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="jungle">

 <complexType>

 <sequence>

 <any minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

</schema>

Note the presence of the any element in the definition. This first schema defines the
jungle complex type as containing a sequence of any other type. The other types that
the example will use are defined in a second schema file:

<schema xmlns= "http://www.w3.org/2001/XMLSchema">

 <complexType name="snakeType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "length" type="positiveInteger" />

 </sequence>

 </complexType>

 <complexType name="bearType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "weight" type="positiveInteger" />

 </sequence>

 </complexType>

 <complexType name="pantherType">

 <sequence>

 <element name= "name" type="string"/>

 <element name= "colour" type="string" />

 </sequence>

 </complexType>

</schema>

Here is the example PHP code that uses these two schema files:

<?php

/**

* Illustrate open types and the use of the addTypes() method

*/

$xmldas = SDO_DAS_XML::create();

$xmldas->addTypes("jungle.xsd"); // this is an open type i.e. the xsd
specifies it can contain "any" type

$xmldas->addTypes('animalTypes.xsd');

$baloo = $xmldas->createDataObject('','bearType');

$baloo->name = "Baloo";

$baloo->weight = 800;

$bagheera = $xmldas->createDataObject('','pantherType');

$bagheera->name = "Bagheera";

$bagheera->colour = 'inky black';

$kaa = $xmldas->createDataObject('','snakeType');

$kaa->name = "Kaa";

$kaa->length = 25;

$document = $xmldas->createDocument();

$do = $document->getRootDataObject();

$do->bear = $baloo;

$do->panther = $bagheera;

$do->snake = $kaa;

print($xmldas->saveString($document,2));

?>

These two schema files are loaded into the XML DAS with first the create() and
addTypes() methods. The createDataObject() method is used to create three
separate data objects. In each case the namespaceURI and typename of the type are
passed to the createDataObject() method: in this example the namespace URI is
blank because no namespace is used in the schema. Once the three data objects -
representing a bear, a panther and a snake - have been created, a document object is
created with the createDocument() method. In this case there is no ambiguity about
what the document element of the document should be - as the second schema file
only defines complex types, the document element can only be the global jungle
element defined in the first schema. This document will have a single root data object
corresponding to an empty document element jungle. As this is an open type,
properties can be added at will. When the first assignment is made to $do->bear, a
property bear is added to the root data object: likewise for the next two assignments.
When the document is written out by the saveString() method, the resulting document
is:

<?xml version="1.0" encoding="UTF-8"?>

<jungle xsi:type="jungle"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <bear xsi:type="bearType">

 <name>Baloo</name>

 <weight>800</weight>

 </bear>

 <panther xsi:type="pantherType">

 <name>Bagheera</name>

 <colour>inky black</colour>

 </panther>

 <snake xsi:type="snakeType">

 <name>Kaa</name>

 <length>25</length>

 </snake>

</jungle>

Example #2936 - Finding out what you can from the document

This example is intended to illustrate how you can find the element name and
namespace of the document element from the XML Document object, and the SDO
type and namespace from the root data object of the XML data object, and how they
relate to one another. This can be difficult to understand because there are four
method calls: two can be made against the Document object, and two that can be
made against any data object including the root data object. Because of the rules that
define how the SDO model is derived from the XML model, when the data object
concerned is the root object that represents the document object for the document,
only three possible values can come back from these four method calls.

The two method calls that can be made against the document are
getRootElementName() and getRootEelementURI(). These return the element name
and namespace of the document element, respectively.

The two method calls that can be made against any data object are getTypeName()
and getTypeNamespaceURI(). These return the SDO type name and type
namespace of the data object, respectively.

Always, calling getRootElementURI() on the document object will return the same
value as calling getNamespaceURI() on the root data object. Essentially, the
information is all derived from the first few lines of the schema file, where there are
three distinct pieces of information. For illustration, here again are the first few lines of
the letter.xsd that we used above.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:letter="http://letterSchema"

 targetNamespace="http://letterSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 .../...

The three important values are:

• letters, the name of the document element

• FormLetter, the name of the complex type of the document element. This is also
the name of the SDO type of the root data object.

• http://letterSchema, the namespace to which the document element belongs. This
is also the namespaceURI of the SDO type of the root data object.

It is part of the XML-SDO mapping rules that when the SDO model is built from the
schema file, the typename and namespaceURI of the SDO types for the root element
are taken from those of the complex type of the document element, where it exists.
Hence in this example the typename of the root data object is FormLetter. In the event
that there is no separate complex type definition for the document element, when the
the type is defined inline and is anonymous, the SDO type name will be the same as
the element name.

The following program loads the letter document and checks the return values from
each of the four calls.

<?php

/**

* Finding out what you can about the document and document element

* This can be quite hard to understand because there are four calls

* Two calls are made against the document

* Two calls are made against the root data object and its model

* Because of the SDO-XML mapping rules and how the SDO model is derived

* from the XML model, only three possible values can come back from these
four calls.

* Always, $document->getRootElementURI() == (type of root data
object)->namespaceURI

* Essentially, it all comes form the first few lines of the xsd:

* <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

* xmlns:letter="http://letterSchema"

* targetNamespace="http://letterSchema">

* <xsd:element name="letters" type="letter:FormLetter"/>

*/

$xmldas = SDO_DAS_XML::create("letter.xsd");

$document = $xmldas->loadFile("letter.xml");

$root_do = $document->getRootDataObject();

/**

* The "root element name" is the element name of the document element

* in this case 'letters'

* This matches the 'name' attribute of the document element in the xsd and
matches

* the element name from the xml

*/

echo "The document element name is " . $document->getRootElementName() .
"\n";

assert($document->getRootElementName() == 'letters'); // a property of the
document

/**

* The "root element URI" is the namespace part of the element name of the
document element

* in this case 'http://letterSchema' since 'letters' is in that namespace

* This is taken from the xsd and matches the namespace picked up from the
xml

*/

echo "The document element is in the namespace " .
$document->getRootElementURI() . "\n";

assert($document->getRootElementURI() == 'http://letterSchema'); // a
property of the document

/**

* The type name is taken from the SDO model

* The XML-SDO mapping rules make this either:

* The name of the complexType if there is one (in this case there is)

* The document element name if there no complexType

* This is taken from the xsd

*/

echo "The type name of the root data object is " . $root_do->getTypeName() .
"\n";

assert($root_do->getTypeName() == 'FormLetter');

/**

* The type's namespaceURI is taken from the SDO model

* The XML-SDO mapping rules ensure that this will always be the same as

* the namepace URI of the document element

*/

echo "The namespaceURI of the root data object is " .
$root_do->getTypeNamespaceURI() . "\n";

assert($root_do->getTypeNamespaceURI() == 'http://letterSchema');

?>

The output from this program is as follows:

The document element name is letters

The document element is in the namespace http://letterSchema

The type name of the root data object is FormLetter

The namespaceURI of the root data object is http://letterSchema

Example #2937 - Printing the SDO model

The XML DAS provides a simple means to see what types and properties have been
loaded. The php "print" or "echo" instruction will print out the types and properties.

<?php

/**

* Illustrate printing out the model

*/

$xmldas = SDO_DAS_XML::create("letter.xsd");

print $xmldas;

?>

The output from this program is as follows:

object(SDO_XML_DAS)#1 {

18 types have been defined. The types and their properties are::

1. commonj.sdo:BigDecimal

2. commonj.sdo:BigInteger

3. commonj.sdo:Boolean

4. commonj.sdo:Byte

5. commonj.sdo:Bytes

6. commonj.sdo:ChangeSummary

7. commonj.sdo:Character

8. commonj.sdo:DataObject

9. commonj.sdo:Date

10. commonj.sdo:Double

11. commonj.sdo:Float

12. commonj.sdo:Integer

13. commonj.sdo:Long

14. commonj.sdo:Short

15. commonj.sdo:String

16. commonj.sdo:URI

17. http://letterSchema:FormLetter

 - date (commonj.sdo:String)

 - firstName (commonj.sdo:String)

 - lastName (commonj.sdo:String)

18. http://letterSchema:RootType

 - letters (http://letterSchema:FormLetter)

SDO DAS XML Functions

Predefined Classes

The XML DAS provides two main classes. The first is SDO_DAS_XML which is the main
class used to fetch the data from the XML source and used to write the data back. The
second is the SDO_DAS_XML_Document class, which represents the data in the XML
document.

There are also some exception classes which can be thrown if errors are found when
looking for or parsing the xsd or xml files.

SDO_DAS_XML

This is the main class of the XML DAS, which is used fetch the data from the xml source
and also used to write the data back. Other than the methods to load and save xml files,

Methods

• create This is a static method available in the SDO_DAS_XML class. Used to
construct an SDO_DAS_XML object.

• addTypes Works in much the same way as create() but used to add the contents of a
second or subsequent schema file to an XML DAS that has already been created.

• createDataObject Can be used to construct an SDO data object of a given type.

• createDocument Can be used to construct an XML Document object from scratch.

• loadFile Loads the xml instance document from a file. This file can be at local file
system or it can be on a remote host.

• loadString same as the above method. Loads the xml instance which is available as
string.

• saveFile save SDO_DAS_XML_Document object as a xml file.

• saveString save SDO_DAS_XML_Document object as a xml string.

SDO_DAS_XML_Document

This class can be used to get to the name and namespace of the document element, and
to get to the root data object of the document. Lastly, it can also be used to set the XML
version and encoding of a document on output.

Methods

• getRootDataObject gets the root DataObject.

• getRootElementName gets the root DataObject's name.

• getRootElementURI gets the root DataObject's URI.

• setEncoding sets the encoding string with the given value.

• setXMLDeclaraion to set/unset the xml declaration.

• setXMLVersion sets the xml version with the given value.

SDO_DAS_XML_ParserException

Is a subclass of SDO_Exception. Thrown for any parser errors while loading the xsd/xml
file.

SDO_DAS_XML_FileException

Is a subclass of SDO_Exception. Thrown by any of the methods that load data from a file,
when the file cannot be found.

Limitations compared with SDO 2.0 specification

The » SDO 2.0 specification defines the mapping between XML types and SDO types.
With Java SDO, this mapping is implemented by the XMLHelper. With SDO for PHP, this
mapping is implemented by the XML Data Access Service. The XML DAS implements the
mapping described in the SDO 2.0 specification with some restrictions. A detailed list is of
the limitations is:

XML Simple Types
1. Simple Type with sdoJava:instanceClass - no PHP equivalent provided.

2. Simple Type with sdoJava:extendedInstanceClass - no PHP equivalent provided.

3. Simple Type with list of itemType.

4. Simple Type with union.

XML Complex Types
1. Complex Type with sdo:aliasName - no PHP support for SDO Type aliases.

XSD Attribute
1. Attribute with sdo:aliasName - no PHP support for SDO property aliases.

2. Attribute with default value - no PHP support for SDO property defaults.

3. Attribute with fixed value - no PHP support for SDO read-only properties or default

http://www.ibm.com/developerworks/webservices/library/specification/ws-sdo/

values.

4. Attribute referencing a DataObject with sdo:propertyType - no support for
sdo:propertyType="...".

5. Attribute with bi-directional property to a DataObject with sdo:oppositeProperty and
sdo:propertyType - no PHP support for SDO opposite.

XSD Elements
1. Element with sdo:aliasName - no PHP support for SDO property aliases.

2. Element with substitution group.

XSD Elements with Simple Type
1. Element of SimpleType with default - no PHP support for SDO defaults

2. Element of SimpleType with fixed value - no PHP support for SDO read-only properties
or default values.

3. Element of SimpleType with sdo:string - no support for sdo:string="true".

4. Element referencing a DataObject with sdo:propertyType - no support for
sdo:propertyType="..."

5. Element with bi-directional reference to a DataObject with sdo:oppositeProperty and
sdo:propertyType - no PHP support for SDO opposite.

SDO_DAS_XML_Document::getRootDataObject

SDO_DAS_XML_Document::getRootDataObject -- Returns the root SDO_DataObject

Description

SDO_DataObject SDO_DAS_XML_Document::getRootDataObject (void)

Returns the root SDO_DataObject.

Parameters

Return Values

Returns the root SDO_DataObject.

SDO_DAS_XML_Document::getRootElementName

SDO_DAS_XML_Document::getRootElementName -- Returns root element's name

Description

string SDO_DAS_XML_Document::getRootElementName (void)

Returns root element's name.

Parameters

Return Values

Returns root element's name.

SDO_DAS_XML_Document::getRootElementURI

SDO_DAS_XML_Document::getRootElementURI -- Returns root element's URI string

Description

string SDO_DAS_XML_Document::getRootElementURI (void)

Returns root element's URI string.

Parameters

Return Values

Returns root element's URI string.

SDO_DAS_XML_Document::setEncoding

SDO_DAS_XML_Document::setEncoding -- Sets the given string as encoding

Description

void SDO_DAS_XML_Document::setEncoding (string $encoding)

Sets the given string as encoding.

Parameters

encoding

Encoding string.

Return Values

None.

SDO_DAS_XML_Document::setXMLDeclaration

SDO_DAS_XML_Document::setXMLDeclaration -- Sets the xml declaration

Description

void SDO_DAS_XML_Document::setXMLDeclaration (bool $xmlDeclatation)

Controls whether an XML declaration will be generated at the start of the XML document.
Set to true to generate the XML declaration, or false to suppress it.

Parameters

xmlDeclatation

Boolean value to set the XML declaration.

Return Values

None.

SDO_DAS_XML_Document::setXMLVersion

SDO_DAS_XML_Document::setXMLVersion -- Sets the given string as xml version

Description

void SDO_DAS_XML_Document::setXMLVersion (string $xmlVersion)

Sets the given string as xml version.

Parameters

xmlVersion

xml version string.

Return Values

None.

SDO_DAS_XML::addTypes

SDO_DAS_XML::addTypes -- To load a second or subsequent schema file to a
SDO_DAS_XML object

Description

void SDO_DAS_XML::addTypes (string $xsd_file)

Load a second or subsequent schema file to an XML DAS that has already been created
with the static method create(). Although the file may be any valid schema file, a likely
reason for using this method is to add a schema file containing definitions of extra complex
types, hence the name. See Example 4 of the parent document for an example.

Parameters

xsd_file

Path to XSD Schema file.

Return Values

None if successful, otherwise throws an exception as described below.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::create

SDO_DAS_XML::create -- To create SDO_DAS_XML object for a given schema file

Description

SDO_DAS_XML SDO_DAS_XML::create ([mixed $xsd_file [, string $key]])

This is the only static method of SDO_DAS_XML class. Used to instantiate
SDO_DAS_XML object.

Parameters

xsd_file

Path to XSD Schema file. This is optional. If omitted a DAS will be created that only
has the SDO base types defined. Schema files can then be loaded with the
addTypes() method. Can be string or array of values.

key

Return Values

Returns SDO_DAS_XML object on success otherwise throws an exception as described
below.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::createDataObject

SDO_DAS_XML::createDataObject -- Creates SDO_DataObject for a given namespace
URI and type name

Description

SDO_DataObject SDO_DAS_XML::createDataObject (string $namespace_uri, string $
type_name)

Creates SDO_DataObject for a given namespace URI and type name. The type should be
defined in the underlying model otherwise SDO_TypeNotFoundException will be thrown.

Parameters

namespace_uri

Namespace URI of the type name.

type_name

Type Name.

Return Values

Returns SDO_DataObject on success.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined in the underlying model.

SDO_DAS_XML::createDocument

SDO_DAS_XML::createDocument -- Creates an XML Document object from scratch,
without the need to load a document from a file or string.

Description

SDO_DAS_XML_Document SDO_DAS_XML::createDocument ([string $
document_element_name])

SDO_DAS_XML_Document SDO_DAS_XML::createDocument (string $
document_element_namespace_URI, string $document_element_name [, SDO_DataObject $
dataobject])

Creates an XML Document object. This will contain just one empty root element on which
none of the properties will have been set. The purpose of this call is to allow an application
to create an XML document from scratch without the need to load a document from a file
or string. The document that is created will be as if a document had been loaded that
contained just a single empty document element with no attributes set or elements within
it.

createDocument() may need to be told what the document element is. This will not be
necessary in simple cases. When there is no ambiguity then no parameter need be
passed to the method. However it is possible to load more than one schema file into the
same XML DAS and in this case there may be more than one possible document element
defined: furthermore it is even possible that there are two possible document elements that
differ only in the namespace. To cope with these cases it is possible to specify either the
document element name, or both the document element name and namespace to the
method.

Parameters

document_element_name

The name of the document element. Only needed if there is more than one possibility.

document_element_namespace_URI

The namespace part of the document element name. Only needed if there is more
than one possible document element with the same name.

dataobject

Return Values

Returns an SDO_XML_DAS_Document object on success.

Errors/Exceptions

SDO_UnsupportedOperationException

Thrown if an element name or element name and namespace URI is passed, but not
found in the underlying model.

SDO_DAS_XML::loadFile

SDO_DAS_XML::loadFile -- Returns SDO_DAS_XML_Document object for a given path
to xml instance document

Description

SDO_XMLDocument SDO_DAS_XML::loadFile (string $xml_file)

Constructs the tree of SDO_DataObjects from the given address to xml instance
document. Returns SDO_DAS_XML_Document Object. Use
SDO_DAS_XML_Document::getRootDataObject method to get root data object.

Parameters

xml_file

Path to Instance document. This can be a path to a local file or it can be a URL.

Return Values

Returns SDO_DAS_XML_Document object on Success or throws exception as described.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined by the underlying model.

SDO_PropertyNotFoundException

Thrown if a property within a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::loadString

SDO_DAS_XML::loadString -- Returns SDO_DAS_XML_Document for a given xml
instance string

Description

SDO_DAS_XML_Document SDO_DAS_XML::loadString (string $xml_string)

Constructs the tree of SDO_DataObjects from the given xml instance string. Returns
SDO_DAS_XML_Document Object. Use SDO_DAS_XML_Document::getRootDataObject
method to get root data object.

Parameters

xml_string

xml string.

Return Values

Returns SDO_DAS_XML_Document object on Success or throws exception as described.

Errors/Exceptions

SDO_TypeNotFoundException

Thrown if a type is not defined by the underlying model.

SDO_PropertyNotFoundException

Thrown if the a property within a type is not defined in the underlying model.

SDO_DAS_XML_ParserException

Thrown for any problems while parsing the given XSD File.

SDO_DAS_XML::saveFile

SDO_DAS_XML::saveFile -- Saves the SDO_DAS_XML_Document object to a file

Description

void SDO_DAS_XML::saveFile (SDO_XMLDocument $xdoc, string $xml_file [, int $
indent])

Saves the SDO_DAS_XML_Document object to a file.

Parameters

xdoc

SDO_DAS_XML_Document object.

xml_file

xml file.

indent

Optional argument to specify that the xml should be formatted. A non-negative integer
is the amount to indent each level of the xml. So, the integer 2, for example, will indent
the xml so that each contained element is two spaces further to the right than its
containing element. The integer 0 will cause the xml to be completely left-aligned. The
integer -1 means no formatting - the xml will come out on one long line.

Return Values

None.

Errors/Exceptions

SDO_DAS_XML_FileException

Thrown if the specified file cannot be found.

SDO_DAS_XML::saveString

SDO_DAS_XML::saveString -- Saves the SDO_DAS_XML_Document object to a string

Description

string SDO_DAS_XML::saveString (SDO_XMLDocument $xdoc [, int $indent])

Saves the SDO_DAS_XML_Document object to string.

Parameters

xdoc

SDO_DAS_XML_Document object.

indent

Optional argument to specify that the xml should be formatted. A non-negative integer
is the amount to indent each level of the xml. So, the integer 2, for example, will indent
the xml so that each contained element is two spaces further to the right than its
containing element. The integer 0 will cause the xml to be completely left-aligned. The
integer -1 means no formatting - the xml will come out on one long line.

Return Values

xml string.

SimpleXML

Introduction

The SimpleXML extension provides a very simple and easily usable toolset to convert XML
to an object that can be processed with normal property selectors and array iterators.

Installing/Configuring

Requirements

The SimpleXML extension requires PHP 5.

Installation

The SimpleXML extension is enabled by default. To disable it, use the --disable-simplexml
configure option.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

Predefined Constants

This extension has no constants defined.

Examples

Many examples in this reference require an XML string. Instead of repeating this string in
every example, we put it into a file which we include in each example. This included file is
shown in the following example section. Alternatively, you could create an XML document
and read it with simplexml_load_file().

Example #2938 - Include file example.php with XML string

<?php

$xmlstr = <<<XML

<?xml version='1.0' standalone='yes'?>

<movies>

<movie>

 <title>PHP: Behind the Parser</title>

 <characters>

 <character>

 <name>Ms. Coder</name>

 <actor>Onlivia Actora</actor>

 </character>

 <character>

 <name>Mr. Coder</name>

 <actor>El ActÓr</actor>

 </character>

 </characters>

 <plot>

 So, this language. It's like, a programming language. Or is it a

 scripting language? All is revealed in this thrilling horror spoof

 of a documentary.

 </plot>

 <great-lines>

 <line>PHP solves all my web problems</line>

 </great-lines>

 <rating type="thumbs">7</rating>

 <rating type="stars">5</rating>

</movie>

</movies>

XML;

?>

The simplicity of SimpleXML appears most clearly when one extracts a string or number
from a basic XML document.

Example #2939 - Getting <plot>

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

echo $xml->movie[0]->plot; // "So this language. It's like..."

?>

Accessing elements within an XML document that contain characters not permitted under
PHP's naming convention (e.g. the hyphen) can be accomplished by encapsulating the
element name within braces and the apostrophe.

Example #2940 - Getting <line>

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

echo $xml->movie->{'great-lines'}->line; // "PHP solves all my web problems"

?>

Example #2941 - Accessing non-unique elements in SimpleXML

When multiple instances of an element exist as children of a single parent element,
normal iteration techniques apply.

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

/* For each <movie> node, we echo a separate <plot>. */

foreach ($xml->movie as $movie) {

 echo $movie->plot, '
';

}

?>

Example #2942 - Using attributes

So far, we have only covered the work of reading element names and their values.
SimpleXML can also access element attributes. Access attributes of an element just as
you would elements of an array.

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

/* Access the <rating> nodes of the first movie.

* Output the rating scale, too. */

foreach ($xml->movie[0]->rating as $rating) {

 switch((string) $rating['type']) { // Get attributes as element indices

 case 'thumbs':

 echo $rating, ' thumbs up';

 break;

 case 'stars':

 echo $rating, ' stars';

 break;

 }

}

?>

Example #2943 - Comparing Elements and Attributes with Text

To compare an element or attribute with a string or pass it into a function that requires
a string, you must cast it to a string using (string). Otherwise, PHP treats the element
as an object.

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

if ((string) $xml->movie->title == 'PHP: Behind the Parser') {

 print 'My favorite movie.';

}

htmlentities((string) $xml->movie->title);

?>

Example #2944 - Using XPath

SimpleXML includes built-in XPath support. To find all <character> elements:

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

foreach ($xml->xpath('//character') as $character) {

 echo $character->name, 'played by ', $character->actor, '
';

}

?>

' // ' serves as a wildcard. To specify absolute paths, omit one of the slashes.

Example #2945 - Setting values

Data in SimpleXML doesn't have to be constant. The object allows for manipulation of
all of its elements.

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

$xml->movie[0]->characters->character[0]->name = 'Miss Coder';

echo $xml->asXML();

?>

The above code will output a new XML document, just like the original, except that the
new XML will change Ms. Coder to Miss Coder.

Example #2946 - Adding elements and attributes

Since PHP 5.1.3, SimpleXML has had the ability to easily add children and attributes.

<?php

include 'example.php';

$xml = new SimpleXMLElement($xmlstr);

$character = $xml->movie[0]->characters->addChild('character');

$character->addChild('name', 'Mr. Parser');

$character->addChild('actor', 'John Doe');

$rating = $xml->movie[0]->addChild('rating', 'PG');

$rating->addAttribute('type', 'mpaa');

echo $xml->asXML();

?>

The above code will output an XML document based on the original but having a new
character and rating.

Example #2947 - DOM Interoperability

PHP has a mechanism to convert XML nodes between SimpleXML and DOM formats.
This example shows how one might change a DOM element to SimpleXML.

<?php

$dom = new domDocument;

$dom->loadXML('<books><book><title>blah</title></book></books>');

if (!$dom) {

 echo 'Error while parsing the document';

 exit;

}

$s = simplexml_import_dom($dom);

echo $s->book[0]->title;

?>

SimpleXML Functions

SimpleXMLElement->addAttribute()

SimpleXMLElement->addAttribute() -- Adds an attribute to the SimpleXML element

Description

SimpleXMLElement

void addAttribute (string $name, string $value [, string $namespace])

Adds an attribute to the SimpleXML element.

Parameters

name

The name of the attribute to add.

value

The value of the attribute.

namespace

If specified, the namespace to which the attribute belongs.

Return Values

No value is returned.

Examples

Example #2948 - Add attributes and children to a SimpleXML element

<?php

include 'example.php';

$sxe = new SimpleXMLElement($xmlstr);

$sxe->addAttribute('type', 'documentary');

$movie = $sxe->addChild('movie');

$movie->addChild('title', 'PHP2: More Parser Stories');

$movie->addChild('plot', 'This is all about the people who make it work.');

$characters = $movie->addChild('characters');

$character = $characters->addChild('character');

$character->addChild('name', 'Mr. Parser');

$character->addChild('actor', 'John Doe');

$rating = $movie->addChild('rating', '5');

$rating->addAttribute('type', 'stars');

echo $sxe->asXML();

?>

See Also

• SimpleXMLElement->addChild()

SimpleXMLElement->addChild()

SimpleXMLElement->addChild() -- Adds a child element to the XML node

Description

SimpleXMLElement

SimpleXMLElement addChild (string $name [, string $value [, string $namespace]])

Adds a child element to the node and returns a SimpleXMLElement of the child.

Parameters

name

The name of the child element to add.

value

If specified, the value of the child element.

namespace

If specified, the namespace to which the child element belongs.

Return Values

The addChild method returns a SimpleXMLElement object representing the child added to
the XML node.

Examples

Example #2949 - Add attributes and children to a SimpleXML element

<?php

include 'example.php';

$sxe = new SimpleXMLElement($xmlstr);

$sxe->addAttribute('type', 'documentary');

$movie = $sxe->addChild('movie');

$movie->addChild('title', 'PHP2: More Parser Stories');

$movie->addChild('plot', 'This is all about the people who make it work.');

$characters = $movie->addChild('characters');

$character = $characters->addChild('character');

$character->addChild('name', 'Mr. Parser');

$character->addChild('actor', 'John Doe');

$rating = $movie->addChild('rating', '5');

$rating->addAttribute('type', 'stars');

echo $sxe->asXML();

?>

See Also

• SimpleXMLElement->addAttribute()

SimpleXMLElement->asXML()

SimpleXMLElement->asXML() -- Return a well-formed XML string based on SimpleXML
element

Description

SimpleXMLElement

mixed asXML ([string $filename])

The asXML method formats the parent object's data in XML version 1.0.

Parameters

filename

If specified, the function writes the data to the file rather than returning it.

Return Values

If the filename isn't specified, this function returns a string on success and FALSE on
error. If the parameter is specified, it returns TRUE if the file was written successfully and
FALSE otherwise.

Examples

Example #2950 - Get XML

<?php

$string = <<<XML

<a>

 <c>text</c>

 <c>stuff</c>

<d>

 <c>code</c>

</d>

XML;

$xml = new SimpleXMLElement($string);

echo $xml->asXML(); // <?xml ... <a><c>text</c><c>stuff</c> ...

?>

asXML also works on Xpath results:

Example #2951 - Using asXML() on Xpath results

<?php

// Continued from example XML above.

/* Search for <a><c> */

$result = $xml->xpath('/a/b/c');

while(list(, $node) = each($result)) {

 echo $node->asXML(); // <c>text</c> and <c>stuff</c>

}

?>

SimpleXMLElement->attributes()

SimpleXMLElement->attributes() -- Identifies an element's attributes

Description

SimpleXMLElement

SimpleXMLElement attributes ([string $ns [, bool $is_prefix]])

This function provides the attributes and values defined within an xml tag.

Note

SimpleXML has made a rule of adding iterative properties to most methods. They
cannot be viewed using var_dump() or anything else which can examine objects.

Parameters

ns

An optional namespace for the retrieved attributes

is_prefix

Default to FALSE

Return Values

Examples

Example #2952 - Interpret an XML string

<?php

$string = <<<XML

<a xmlns:b>

<foo name="one" game="lonely">1</foo>

XML;

$xml = simplexml_load_string($string);

foreach($xml->foo[0]->attributes() as $a => $b) {

 echo $a,'="',$b,"\"\n";

}

?>

The above example will output:

name="one"

game="lonely"

SimpleXMLElement->children()

SimpleXMLElement->children() -- Finds children of given node

Description

SimpleXMLElement

SimpleXMLElement children ([string $ns [, bool $is_prefix]])

This method finds the children of the element of which it is a member. The result follows
normal iteration rules.

Note

SimpleXML has made a rule of adding iterative properties to most methods. They
cannot be viewed using var_dump() or anything else which can examine objects.

Parameters

ns

is_prefix

Default to FALSE

Return Values

ChangeLog

Version Description

5.2.0 The optional parameter is_prefix was
added.

Examples

Example #2953 - Traversing a children() pseudo-array

<?php

$xml = new SimpleXMLElement(

'<person>

<child role="son">

 <child role="daughter"/>

</child>

<child role="daughter">

 <child role="son">

 <child role="son"/>

 </child>

</child>

</person>');

foreach ($xml->children() as $second_gen) {

 echo ' The person begot a ' . $second_gen['role'];

 foreach ($second_gen->children() as $third_gen) {

 echo ' who begot a ' . $third_gen['role'] . ';';

 foreach ($third_gen->children() as $fourth_gen) {

 echo ' and that ' . $third_gen['role'] .

 ' begot a ' . $fourth_gen['role'];

 }

 }

}

?>

The above example will output:

The person begot a son who begot a daughter; The person

begot a daughter who begot a son; and that son begot a son

SimpleXMLElement->__construct()

SimpleXMLElement->__construct() -- Creates a new SimpleXMLElement object

Description

SimpleXMLElement

__construct (string $data [, int $options [, bool $data_is_url [, string $ns [, bool $
is_prefix]]]])

Creates a new SimpleXMLElement object.

Parameters

data

A well-formed XML string or the path or URL to an XML document if data_is_url is
TRUE.

options

Optionally used to specify additional Libxml parameters.

data_is_url

By default, data_is_url is FALSE. Use TRUE to specify that data is a path or URL to
an XML document instead of string data.

ns

is_prefix

Return Values

Returns a SimpleXMLElement object representing data.

Errors/Exceptions

Produces an E_WARNING error message for each error found in the XML data and
throws an exception if errors were detected.

Examples

Example #2954 - Create a SimpleXMLElement object

<?php

include 'example.php';

$sxe = new SimpleXMLElement($xmlstr);

echo $sxe->movie[0]->title;

?>

Example #2955 - Create a SimpleXMLElement object from a URL

<?php

$sxe = new SimpleXMLElement('http://example.org/document.xml', NULL, TRUE);

echo $sxe->asXML();

?>

See Also

• simplexml_load_string
• simplexml_load_file

SimpleXMLElement->getDocNamespaces()

SimpleXMLElement->getDocNamespaces() -- Returns namespaces declared in document

Description

SimpleXMLElement

array getDocNamespaces ([bool $recursive])

Returns namespaces declared in document

Parameters

recursive

If specified, returns all namespaces declared in parent and child nodes. Otherwise,
returns only namespaces declared in root node.

Return Values

The getDocNamespaces method returns an array of namespace names with their
associated URIs.

Examples

Example #2956 - Get document namespaces

<?php

$xml = <<<XML

<?xml version="1.0" standalone="yes"?>

<people xmlns:p="http://example.org/ns">

 <p:person id="1">John Doe</p:person>

 <p:person id="2">Susie Q. Public</p:person>

</people>

XML;

$sxe = new SimpleXMLElement($xml);

$namespaces = $sxe->getDocNamespaces();

var_dump($namespaces);

?>

Example #2957 - Working with multiple namespaces

<?php

$xml = <<<XML

<?xml version="1.0" standalone="yes"?>

<people xmlns:p="http://example.org/ns" xmlns:t="http://example.org/test">

 <p:person t:id="1">John Doe</p:person>

 <p:person t:id="2" a:addr="123 Street" xmlns:a="http://example.org/addr">

 Susie Q. Public

 </p:person>

</people>

XML;

$sxe = new SimpleXMLElement($xml);

$namespaces = $sxe->getDocNamespaces(TRUE);

var_dump($namespaces);

?>

See Also

• SimpleXMLElement->getNamespaces()
• SimpleXMLElement->registerXPathNamespace()

SimpleXMLElement->getName()

SimpleXMLElement->getName() -- Gets the name of the XML element

Description

SimpleXMLElement

string getName (void)

Gets the name of the XML element.

Return Values

The getName method returns as a string the name of the XML tag referenced by the
SimpleXMLElement object.

Examples

Example #2958 - Get XML element names

<?php

$sxe = new SimpleXMLElement($xmlstr);

echo $sxe->getName() . "\n";

foreach ($sxe->children() as $child)

{

 echo $child->getName() . "\n";

}

?>

SimpleXMLElement->getNamespaces()

SimpleXMLElement->getNamespaces() -- Returns namespaces used in document

Description

SimpleXMLElement

array getNamespaces ([bool $recursive])

Returns namespaces used in document

Parameters

recursive

If specified, returns all namespaces used in parent and child nodes. Otherwise, returns
only namespaces used in root node.

Return Values

The getNamespaces method returns an array of namespace names with their associated
URIs.

Examples

Example #2959 - Get document namespaces in use

<?php

$xml = <<<XML

<?xml version="1.0" standalone="yes"?>

<people xmlns:p="http://example.org/ns" xmlns:t="http://example.org/test">

 <p:person id="1">John Doe</p:person>

 <p:person id="2">Susie Q. Public</p:person>

</people>

XML;

$sxe = new SimpleXMLElement($xml);

$namespaces = $sxe->getNamespaces(true);

var_dump($namespaces);

?>

The above example will output:

array(1) {

 ["p"]=>

 string(21) "http://example.org/ns"

}

See Also

• SimpleXMLElement->getDocNamespaces()
• SimpleXMLElement->registerXPathNamespace()

SimpleXMLElement->registerXPathNamespace()

SimpleXMLElement->registerXPathNamespace() -- Creates a prefix/ns context for the next
XPath query

Description

SimpleXMLElement

bool registerXPathNamespace (string $prefix, string $ns)

Creates a prefix/ns context for the next XPath query. In particular, this is helpful if the
provider of the given XML document alters the namespace prefixes.
registerXPathNamespace will create a prefix for the associated namespace, allowing one
to access nodes in that namespace without the need to change code to allow for the new
prefixes dictated by the provider.

Parameters

prefix

The namespace prefix to use in the XPath query for the namespace given in ns.

ns

The namespace to use for the XPath query. This must match a namespace in use by
the XML document or the XPath query using prefix will not return any results.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2960 - Setting a namespace prefix to use in an XPath query

<?php

$xml = <<<EOD

<book xmlns:chap="http://example.org/chapter-title">

 <title>My Book</title>

 <chapter id="1">

 <chap:title>Chapter 1</chap:title>

 <para>Donec velit. Nullam eget tellus vitae tortor gravida

scelerisque.

 In orci lorem, cursus imperdiet, ultricies non, hendrerit et,
orci.

 Nulla facilisi. Nullam velit nisl, laoreet id, condimentum ut,

 ultricies id, mauris.</para>

 </chapter>

 <chapter id="2">

 <chap:title>Chapter 2</chap:title>

 <para>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin

 gravida. Phasellus tincidunt massa vel urna. Proin adipiscing
quam

 vitae odio. Sed dictum. Ut tincidunt lorem ac lorem. Duis eros

 tellus, pharetra id, faucibus eu, dapibus dictum, odio.</para>

 </chapter>

</book>

EOD;

$sxe = new SimpleXMLElement($xml);

$sxe->registerXPathNamespace('c', 'http://example.org/chapter-title');

$result = $sxe->xpath('//c:title');

foreach ($result as $title) {

 echo $title . "\n";

}

?>

Notice how the XML document shown in the example sets a namespace with a prefix
of chap. Imagine that this document (or another one like it) may have used a prefix of c
in the past for the same namespace. Since it has changed, the XPath query will no
longer return the proper results and the query will require modification. Using
registerXPathNamespace avoids future modification of the query even if the provider
changes the namespace prefix.

See Also

• SimpleXMLElement->getDocNamespaces()
• SimpleXMLElement->getNamespaces()

SimpleXMLElement->xpath()

SimpleXMLElement->xpath() -- Runs XPath query on XML data

Description

SimpleXMLElement

array xpath (string $path)

The xpath method searches the SimpleXML node for children matching the XPath path.

Parameters

path

An XPath path

Return Values

Returns an array of SimpleXMLElement objects or FALSE in case of an error.

Examples

Example #2961 - Xpath

<?php

$string = <<<XML

<a>

 <c>text</c>

 <c>stuff</c>

<d>

 <c>code</c>

</d>

XML;

$xml = new SimpleXMLElement($string);

/* Search for <a><c> */

$result = $xml->xpath('/a/b/c');

while(list(, $node) = each($result)) {

 echo '/a/b/c: ',$node,"\n";

}

/* Relative paths also work... */

$result = $xml->xpath('b/c');

while(list(, $node) = each($result)) {

 echo 'b/c: ',$node,"\n";

}

?>

The above example will output:

/a/b/c: text

/a/b/c: stuff

b/c: text

b/c: stuff

Notice that the two results are equal.

simplexml_import_dom

simplexml_import_dom -- Get a SimpleXMLElement object from a DOM node.

Description

SimpleXMLElement simplexml_import_dom (DOMNode $node [, string $class_name])

This function takes a node of a DOM document and makes it into a SimpleXML node. This
new object can then be used as a native SimpleXML element.

Parameters

node

A DOM Element node

class_name

You may use this optional parameter so that simplexml_import_dom() will return an
object of the specified class. That class should extend the SimpleXMLElement class.

Return Values

Returns a SimpleXMLElement or FALSE on failure.

Examples

Example #2962 - Importing DOM

<?php

$dom = new DOMDocument;

$dom->loadXML('<books><book><title>blah</title></book></books>');

if (!$dom) {

 echo 'Error while parsing the document';

 exit;

}

$s = simplexml_import_dom($dom);

echo $s->book[0]->title; // blah

?>

See Also

• dom_import_simplexml()

simplexml_load_file

simplexml_load_file -- Interprets an XML file into an object

Description

object simplexml_load_file (string $filename [, string $class_name [, int $options [,
string $ns [, bool $is_prefix]]]])

Convert the well-formed XML document in the given file to an object.

Parameters

filename

Path to the XML file

Note

Libxml 2 unescapes the URI, so if you want to pass e.g. b&c as the URI parameter
a, you have to call simplexml_load_file(rawurlencode('http://example.com/?a=' .
urlencode('b&c'))). Since PHP 5.1.0 you don't need to do this because PHP will do
it for you.

class_name

You may use this optional parameter so that simplexml_load_file() will return an object
of the specified class. That class should extend the SimpleXMLElement class.

options

Since PHP 5.1.0 and Libxml 2.6.0, you may also use the options parameter to specify
additional Libxml parameters.

ns

is_prefix

Return Values

Returns an object of class SimpleXMLElement with properties containing the data held
within the XML document. On errors, it will return FALSE.

Examples

Example #2963 - Interpret an XML document

<?php

// The file test.xml contains an XML document with a root element

// and at least an element /[root]/title.

if (file_exists('test.xml')) {

 $xml = simplexml_load_file('test.xml');

 print_r($xml);

} else {

 exit('Failed to open test.xml.');

}

?>

This script will display, on success:

SimpleXMLElement Object

(

 [title] => Example Title

 ...

)

At this point, you can go about using $xml->title and any other elements.

See Also

• simplexml_load_string
• SimpleXMLElement->__construct()

simplexml_load_string

simplexml_load_string -- Interprets a string of XML into an object

Description

object simplexml_load_string (string $data [, string $class_name [, int $options [, string
$ns [, bool $is_prefix]]]])

Takes a well-formed XML string and returns it as an object.

Parameters

data

A well-formed XML string

class_name

You may use this optional parameter so that simplexml_load_string() will return an
object of the specified class. That class should extend the SimpleXMLElement class.

options

Since PHP 5.1.0 and Libxml 2.6.0, you may also use the options parameter to specify
additional Libxml parameters.

ns

is_prefix

Return Values

Returns an object of class SimpleXMLElement with properties containing the data held
within the xml document. On errors, it will return FALSE.

Examples

Example #2964 - Interpret an XML string

<?php

$string = <<<XML

<?xml version='1.0'?>

<document>

<title>Forty What?</title>

<from>Joe</from>

<to>Jane</to>

<body>

 I know that's the answer -- but what's the question?

</body>

</document>

XML;

$xml = simplexml_load_string($string);

var_dump($xml);

?>

The above example will output:

SimpleXMLElement Object

(

 [title] => Forty What?

 [from] => Joe

 [to] => Jane

 [body] =>

 I know that's the answer -- but what's the question?

)

At this point, you can go about using $xml->body and such.

See Also

• simplexml_load_file
• SimpleXMLElement->__construct()

WDDX

Introduction

These functions are intended for work with » WDDX.

http://www.openwddx.org/

Installing/Configuring

Requirements

In order to use WDDX, you will need to install the expat library (which comes with Apache
1.3.7 or higher).

Installation

After installing expat compile PHP with --enable-wddx.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a WDDX packet identifier returned by wddx_packet_start().

Predefined Constants

This extension has no constants defined.

Examples

All the functions that serialize variables use the first element of an array to determine
whether the array is to be serialized into an array or structure. If the first element has string
key, then it is serialized into a structure, otherwise, into an array.

Example #2965 - Serializing a single value with WDDX

<?php

echo wddx_serialize_value("PHP to WDDX packet example", "PHP packet");

?>

This example will produce:

<wddxPacket version='1.0'><header comment='PHP packet'/><data>

<string>PHP to WDDX packet example</string></data></wddxPacket>

Example #2966 - Using incremental packets with WDDX

<?php

$pi = 3.1415926;

$packet_id = wddx_packet_start("PHP");

wddx_add_vars($packet_id, "pi");

/* Suppose $cities came from database */

$cities = array("Austin", "Novato", "Seattle");

wddx_add_vars($packet_id, "cities");

$packet = wddx_packet_end($packet_id);

echo $packet;

?>

This example will produce:

<wddxPacket version='1.0'><header comment='PHP'/><data><struct>

<var name='pi'><number>3.1415926</number></var><var name='cities'>

<array length='3'><string>Austin</string><string>Novato</string>

<string>Seattle</string></array></var></struct></data></wddxPacket>

Note

If you want to serialize non-ASCII characters you have to convert your data to UTF-8
first (see utf8_encode() and iconv()).

WDDX Functions

wddx_add_vars

wddx_add_vars -- Add variables to a WDDX packet with the specified ID

Description

bool wddx_add_vars (resource $packet_id, mixed $var_name [, mixed $...])

Serializes the passed variables and add the result to the fiven packet.

Parameters

This function takes a variable number of parameters.
packet_id

A WDDX packet, returned by wddx_packet_start().

var_name

Can be either a string naming a variable or an array containing strings naming the
variables or another array, etc.

...

Return Values

Returns TRUE on success or FALSE on failure.

wddx_deserialize

wddx_deserialize -- Alias of wddx_unserialize()

Description

This function is an alias of: wddx_unserialize().

wddx_packet_end

wddx_packet_end -- Ends a WDDX packet with the specified ID

Description

string wddx_packet_end (resource $packet_id)

Ends and returns the given WDDX packet.

Parameters

packet_id

A WDDX packet, returned by wddx_packet_start().

Return Values

Returns the string containing the WDDX packet.

wddx_packet_start

wddx_packet_start -- Starts a new WDDX packet with structure inside it

Description

resource wddx_packet_start ([string $comment])

Start a new WDDX packet for incremental addition of variables. It automatically creates a
structure definition inside the packet to contain the variables.

Parameters

comment

An optional comment string.

Return Values

Returns a packet ID for use in later functions, or FALSE on error.

wddx_serialize_value

wddx_serialize_value -- Serialize a single value into a WDDX packet

Description

string wddx_serialize_value (mixed $var [, string $comment])

Creates a WDDX packet from a single given value.

Parameters

var

The value to be serialized

comment

An optional comment string that appears in the packet header.

Return Values

Returns the WDDX packet, or FALSE on error.

wddx_serialize_vars

wddx_serialize_vars -- Serialize variables into a WDDX packet

Description

string wddx_serialize_vars (mixed $var_name [, mixed $...])

Creates a WDDX packet with a structure that contains the serialized representation of the
passed variables.

Parameters

This function takes a variable number of parameters.
var_name

Can be either a string naming a variable or an array containing strings naming the
variables or another array, etc.

...

Return Values

Returns the WDDX packet, or FALSE on error.

Examples

Example #2967 - wddx_serialize_vars() example

<?php

$a = 1;

$b = 5.5;

$c = array("blue", "orange", "violet");

$d = "colors";

$clvars = array("c", "d");

echo wddx_serialize_vars("a", "b", $clvars);

?>

The above example will output:

<wddxPacket version='1.0'><header/><data><struct><var
name='a'><number>1</number></var>

<var name='b'><number>5.5</number></var><var name='c'><array length='3'>

<string>blue</string><string>orange</string><string>violet</string></array><
/var>

<var name='d'><string>colors</string></var></struct></data></wddxPacket>

wddx_unserialize

wddx_unserialize -- Unserializes a WDDX packet

Description

mixed wddx_unserialize (string $packet)

Unserializes a WDDX packet.

Parameters

packet

A WDDX packet, as a string or stream.

Return Values

Returns the unserialized value which can be a string, a number or an array. Note that
structures are unserialized into associative arrays.

XML Parser

Introduction

XML (eXtensible Markup Language) is a data format for structured document interchange
on the Web. It is a standard defined by The World Wide Web consortium (W3C).
Information about XML and related technologies can be found at » http://www.w3.org/XML/
.

This PHP extension implements support for James Clark's expat in PHP. This toolkit lets
you parse, but not validate, XML documents. It supports three source character encodings
also provided by PHP: US-ASCII, ISO-8859-1 and UTF-8. UTF-16 is not supported.

This extension lets you create XML parsers and then define handlers for different XML
events. Each XML parser also has a few parameters you can adjust.

http://www.w3.org/XML/

Installing/Configuring

Requirements

This extension uses an expat compat layer by default. It can use also expat, which can be
found at » http://www.jclark.com/xml/expat.html. The Makefile that comes with expat does
not build a library by default, you can use this make rule for that:
libexpat.a: $(OBJS)

 ar -rc $@ $(OBJS)

 ranlib $@
A source RPM package of expat can be found at » http://sourceforge.net/projects/expat/.

Installation

These functions are enabled by default, using the bundled expat library. You can disable
XML support with --disable-xml. If you compile PHP as a module for Apache 1.3.9 or later,
PHP will automatically use the bundled expat library from Apache. In order you don't want
to use the bundled expat library configure PHP --with-expat-dir=DIR, where DIR should
point to the base installation directory of expat.

The Windows version of PHP has built-in support for this extension. You do not need to
load any additional extensions in order to use these functions.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

The xml resource as returned by xml_parser_create() and xml_parser_create_ns()
references an xml parser instance to be used with the functions provided by this extension.

http://www.jclark.com/xml/expat.html
http://sourceforge.net/projects/expat/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XML_ERROR_NONE (integer)

XML_ERROR_NO_MEMORY (integer)

XML_ERROR_SYNTAX (integer)

XML_ERROR_NO_ELEMENTS (integer)

XML_ERROR_INVALID_TOKEN (integer)

XML_ERROR_UNCLOSED_TOKEN (integer)

XML_ERROR_PARTIAL_CHAR (integer)

XML_ERROR_TAG_MISMATCH (integer)

XML_ERROR_DUPLICATE_ATTRIBUTE (integer)

XML_ERROR_JUNK_AFTER_DOC_ELEMENT (integer)

XML_ERROR_PARAM_ENTITY_REF (integer)

XML_ERROR_UNDEFINED_ENTITY (integer)

XML_ERROR_RECURSIVE_ENTITY_REF (integer)

XML_ERROR_ASYNC_ENTITY (integer)

XML_ERROR_BAD_CHAR_REF (integer)

XML_ERROR_BINARY_ENTITY_REF (integer)

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF (integer)

XML_ERROR_MISPLACED_XML_PI (integer)

XML_ERROR_UNKNOWN_ENCODING (integer)

XML_ERROR_INCORRECT_ENCODING (integer)

XML_ERROR_UNCLOSED_CDATA_SECTION (integer)

XML_ERROR_EXTERNAL_ENTITY_HANDLING (integer)

XML_OPTION_CASE_FOLDING (integer)

XML_OPTION_TARGET_ENCODING (integer)

XML_OPTION_SKIP_TAGSTART (integer)

XML_OPTION_SKIP_WHITE (integer)

Event Handlers

The XML event handlers defined are:

Supported XML handlers

PHP function to set handler Event description

xml_set_element_handler() Element events are issued whenever the
XML parser encounters start or end tags.
There are separate handlers for start tags
and end tags.

xml_set_character_data_handler() Character data is roughly all the non-markup
contents of XML documents, including
whitespace between tags. Note that the
XML parser does not add or remove any
whitespace, it is up to the application (you)
to decide whether whitespace is significant.

xml_set_processing_instruction_handler() PHP programmers should be familiar with
processing instructions (PIs) already. <?php
?> is a processing instruction, where php is
called the "PI target". The handling of these
are application-specific, except that all PI
targets starting with "XML" are reserved.

xml_set_default_handler() What goes not to another handler goes to
the default handler. You will get things like
the XML and document type declarations in
the default handler.

xml_set_unparsed_entity_decl_handler() This handler will be called for declaration of
an unparsed (NDATA) entity.

xml_set_notation_decl_handler() This handler is called for declaration of a
notation.

xml_set_external_entity_ref_handler() This handler is called when the XML parser
finds a reference to an external parsed
general entity. This can be a reference to a
file or URL, for example. See the external
entity example for a demonstration.

Case Folding

The element handler functions may get their element names case-folded. Case-folding is
defined by the XML standard as "a process applied to a sequence of characters, in which
those identified as non-uppercase are replaced by their uppercase equivalents". In other
words, when it comes to XML, case-folding simply means uppercasing.

By default, all the element names that are passed to the handler functions are case-folded.
This behaviour can be queried and controlled per XML parser with the
xml_parser_get_option() and xml_parser_set_option() functions, respectively.

Error Codes

The following constants are defined for XML error codes (as returned by xml_parse()):

• XML_ERROR_NONE
• XML_ERROR_NO_MEMORY
• XML_ERROR_SYNTAX
• XML_ERROR_NO_ELEMENTS
• XML_ERROR_INVALID_TOKEN
• XML_ERROR_UNCLOSED_TOKEN
• XML_ERROR_PARTIAL_CHAR
• XML_ERROR_TAG_MISMATCH
• XML_ERROR_DUPLICATE_ATTRIBUTE
• XML_ERROR_JUNK_AFTER_DOC_ELEMENT
• XML_ERROR_PARAM_ENTITY_REF
• XML_ERROR_UNDEFINED_ENTITY
• XML_ERROR_RECURSIVE_ENTITY_REF
• XML_ERROR_ASYNC_ENTITY
• XML_ERROR_BAD_CHAR_REF
• XML_ERROR_BINARY_ENTITY_REF
• XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
• XML_ERROR_MISPLACED_XML_PI
• XML_ERROR_UNKNOWN_ENCODING
• XML_ERROR_INCORRECT_ENCODING
• XML_ERROR_UNCLOSED_CDATA_SECTION
• XML_ERROR_EXTERNAL_ENTITY_HANDLING

Character Encoding

PHP's XML extension supports the » Unicode character set through different character
encoding s. There are two types of character encodings, source encoding and target
encoding. PHP's internal representation of the document is always encoded with UTF-8.

Source encoding is done when an XML document is parsed. Upon creating an XML parser
, a source encoding can be specified (this encoding can not be changed later in the XML
parser's lifetime). The supported source encodings are ISO-8859-1, US-ASCII and UTF-8.
The former two are single-byte encodings, which means that each character is
represented by a single byte. UTF-8 can encode characters composed by a variable
number of bits (up to 21) in one to four bytes. The default source encoding used by PHP is
ISO-8859-1.

Target encoding is done when PHP passes data to XML handler functions. When an XML
parser is created, the target encoding is set to the same as the source encoding, but this
may be changed at any point. The target encoding will affect character data as well as tag
names and processing instruction targets.

If the XML parser encounters characters outside the range that its source encoding is
capable of representing, it will return an error.

If PHP encounters characters in the parsed XML document that can not be represented in
the chosen target encoding, the problem characters will be "demoted". Currently, this
means that such characters are replaced by a question mark.

http://www.unicode.org/

Examples

XML Element Structure Example

This first example displays the structure of the start elements in a document with
indentation.

Example #2968 - Show XML Element Structure

<?php

$file = "data.xml";

$depth = array();

function startElement($parser, $name, $attrs)

{

 global $depth;

 for ($i = 0; $i < $depth[$parser]; $i++) {

 echo " ";

 }

 echo "$name\n";

 $depth[$parser]++;

}

function endElement($parser, $name)

{

 global $depth;

 $depth[$parser]--;

}

$xml_parser = xml_parser_create();

xml_set_element_handler($xml_parser, "startElement", "endElement");

if (!($fp = fopen($file, "r"))) {

 die("could not open XML input");

}

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

xml_parser_free($xml_parser);

?>

XML Tag Mapping Example

Example #2969 - Map XML to HTML

This example maps tags in an XML document directly to HTML tags. Elements not
found in the "map array" are ignored. Of course, this example will only work with a
specific XML document type.

<?php

$file = "data.xml";

$map_array = array(

 "BOLD" => "B",

 "EMPHASIS" => "I",

 "LITERAL" => "TT"

);

function startElement($parser, $name, $attrs)

{

 global $map_array;

 if (isset($map_array[$name])) {

 echo "<$map_array[$name]>";

 }

}

function endElement($parser, $name)

{

 global $map_array;

 if (isset($map_array[$name])) {

 echo "</$map_array[$name]>";

 }

}

function characterData($parser, $data)

{

 echo $data;

}

$xml_parser = xml_parser_create();

// use case-folding so we are sure to find the tag in $map_array

xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, true);

xml_set_element_handler($xml_parser, "startElement", "endElement");

xml_set_character_data_handler($xml_parser, "characterData");

if (!($fp = fopen($file, "r"))) {

 die("could not open XML input");

}

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

xml_parser_free($xml_parser);

?>

XML External Entity Example

This example highlights XML code. It illustrates how to use an external entity reference
handler to include and parse other documents, as well as how PIs can be processed, and
a way of determining "trust" for PIs containing code.

XML documents that can be used for this example are found below the example (
xmltest.xml and xmltest2.xml.)

Example #2970 - External Entity Example

<?php

$file = "xmltest.xml";

function trustedFile($file)

{

 // only trust local files owned by ourselves

 if (!eregi("^([a-z]+)://", $file)

 && fileowner($file) == getmyuid()) {

 return true;

 }

 return false;

}

function startElement($parser, $name, $attribs)

{

 echo "<$name";

 if (count($attribs)) {

 foreach ($attribs as $k => $v) {

 echo " $k=\"<font

 color=\"#990000\">$v\"";

 }

 }

 echo ">";

}

function endElement($parser, $name)

{

 echo "</$name>";

}

function characterData($parser, $data)

{

 echo "$data";

}

function PIHandler($parser, $target, $data)

{

 switch (strtolower($target)) {

 case "php":

 global $parser_file;

 // If the parsed document is "trusted", we say it is safe

 // to execute PHP code inside it. If not, display the code

 // instead.

 if (trustedFile($parser_file[$parser])) {

 eval($data);

 } else {

 printf("Untrusted PHP code: <i>%s</i>",

 htmlspecialchars($data));

 }

 break;

 }

}

function defaultHandler($parser, $data)

{

 if (substr($data, 0, 1) == "&" && substr($data, -1, 1) == ";") {

 printf('%s',

 htmlspecialchars($data));

 } else {

 printf('%s',

 htmlspecialchars($data));

 }

}

function externalEntityRefHandler($parser, $openEntityNames, $base,
$systemId,

 $publicId) {

 if ($systemId) {

 if (!list($parser, $fp) = new_xml_parser($systemId)) {

 printf("Could not open entity %s at %s\n", $openEntityNames,

 $systemId);

 return false;

 }

 while ($data = fread($fp, 4096)) {

 if (!xml_parse($parser, $data, feof($fp))) {

 printf("XML error: %s at line %d while parsing entity %s\n",

 xml_error_string(xml_get_error_code($parser)),

 xml_get_current_line_number($parser),
$openEntityNames);

 xml_parser_free($parser);

 return false;

 }

 }

 xml_parser_free($parser);

 return true;

 }

 return false;

}

function new_xml_parser($file)

{

 global $parser_file;

 $xml_parser = xml_parser_create();

 xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, 1);

 xml_set_element_handler($xml_parser, "startElement", "endElement");

 xml_set_character_data_handler($xml_parser, "characterData");

 xml_set_processing_instruction_handler($xml_parser, "PIHandler");

 xml_set_default_handler($xml_parser, "defaultHandler");

 xml_set_external_entity_ref_handler($xml_parser,
"externalEntityRefHandler");

 if (!($fp = @fopen($file, "r"))) {

 return false;

 }

 if (!is_array($parser_file)) {

 settype($parser_file, "array");

 }

 $parser_file[$xml_parser] = $file;

 return array($xml_parser, $fp);

}

if (!(list($xml_parser, $fp) = new_xml_parser($file))) {

 die("could not open XML input");

}

echo "<pre>";

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d\n",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

echo "</pre>";

echo "parse complete\n";

xml_parser_free($xml_parser);

?>

Example #2971 - xmltest.xml

<?xml version='1.0'?>

<!DOCTYPE chapter SYSTEM "/just/a/test.dtd" [

<!ENTITY plainEntity "FOO entity">

<!ENTITY systemEntity SYSTEM "xmltest2.xml">

]>

<chapter>

<TITLE>Title &plainEntity;</TITLE>

<para>

 <informaltable>

 <tgroup cols="3">

 <tbody>

 <row><entry>a1</entry><entry
morerows="1">b1</entry><entry>c1</entry></row>

 <row><entry>a2</entry><entry>c2</entry></row>

 <row><entry>a3</entry><entry>b3</entry><entry>c3</entry></row>

 </tbody>

 </tgroup>

 </informaltable>

</para>

&systemEntity;

<section id="about">

 <title>About this Document</title>

 <para>

 <!-- this is a comment -->

 <?php echo 'Hi! This is PHP version ' . phpversion(); ?>

 </para>

</section>

</chapter>

This file is included from xmltest.xml:

Example #2972 - xmltest2.xml

<?xml version="1.0"?>

<!DOCTYPE foo [

<!ENTITY testEnt "test entity">

]>

<foo>

 <element attrib="value"/>

 &testEnt;

 <?php echo "This is some more PHP code being executed."; ?>

</foo>

XML Parser Functions

utf8_decode

utf8_decode -- Converts a string with ISO-8859-1 characters encoded with UTF-8 to
single-byte ISO-8859-1

Description

string utf8_decode (string $data)

This function decodes data, assumed to be UTF-8 encoded, to ISO-8859-1.

Parameters

data

An UTF-8 encoded string.

Return Values

Returns the ISO-8859-1 translation of data.

See Also

• utf8_encode() for an explanation of UTF-8 encoding

utf8_encode

utf8_encode -- Encodes an ISO-8859-1 string to UTF-8

Description

string utf8_encode (string $data)

This function encodes the string data to UTF-8, and returns the encoded version. UTF-8 is
a standard mechanism used by Unicode for encoding wide character values into a byte
stream. UTF-8 is transparent to plain ASCII characters, is self-synchronized (meaning it is
possible for a program to figure out where in the bytestream characters start) and can be
used with normal string comparison functions for sorting and such. PHP encodes UTF-8
characters in up to four bytes, like this:

UTF-8 encoding

bytes bits representation

1 7 0bbbbbbb

2 11 110bbbbb 10bbbbbb

3 16 1110bbbb 10bbbbbb
10bbbbbb

4 21 11110bbb 10bbbbbb
10bbbbbb 10bbbbbb

Each b represents a bit that can be used to store character data.

Parameters

data

An ISO-8859-1 string.

Return Values

Returns the UTF-8 translation of data.

xml_error_string

xml_error_string -- Get XML parser error string

Description

string xml_error_string (int $code)

Gets the XML parser error string associated with the given code.

Parameters

code

An error code from xml_get_error_code().

Return Values

Returns a string with a textual description of the error code, or FALSE if no description
was found.

See Also

• xml_get_error_code()

xml_get_current_byte_index

xml_get_current_byte_index -- Get current byte index for an XML parser

Description

int xml_get_current_byte_index (resource $parser)

Gets the current byte index of the given XML parser.

Parameters

parser

A reference to the XML parser to get byte index from.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or else it returns
which byte index the parser is currently at in its data buffer (starting at 0).

Notes

Warning

This function returns byte index according to UTF-8 encoded text disregarding if input
is in another encoding.

See Also

• xml_get_current_column_index()
• xml_get_current_line_index()

xml_get_current_column_number

xml_get_current_column_number -- Get current column number for an XML parser

Description

int xml_get_current_column_number (resource $parser)

Gets the current column number of the given XML parser.

Parameters

parser

A reference to the XML parser to get column number from.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or else it returns
which column on the current line (as given by xml_get_current_line_number()) the parser
is currently at.

See Also

• xml_get_current_byte_index()
• xml_get_current_line_index()

xml_get_current_line_number

xml_get_current_line_number -- Get current line number for an XML parser

Description

int xml_get_current_line_number (resource $parser)

Gets the current line number for the given XML parser.

Parameters

parser

A reference to the XML parser to get line number from.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or else it returns
which line the parser is currently at in its data buffer.

See Also

• xml_get_current_column_index()
• xml_get_current_byte_index()

xml_get_error_code

xml_get_error_code -- Get XML parser error code

Description

int xml_get_error_code (resource $parser)

Gets the XML parser error code.

Parameters

parser

A reference to the XML parser to get error code from.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or else it returns
one of the error codes listed in the error codes section.

See Also

• xml_error_string()

xml_parse_into_struct

xml_parse_into_struct -- Parse XML data into an array structure

Description

int xml_parse_into_struct (resource $parser, string $data, array &$values [, array &$
index])

This function parses an XML file into 2 parallel array structures, one (index) containing
pointers to the location of the appropriate values in the values array. These last two
parameters must be passed by reference.

Parameters

parser

data

values

index

Return Values

xml_parse_into_struct() returns 0 for failure and 1 for success. This is not the same as
FALSE and TRUE, be careful with operators such as ===.

Examples

Below is an example that illustrates the internal structure of the arrays being generated by
the function. We use a simple note tag embedded inside a para tag, and then we parse
this and print out the structures generated:

Example #2973 - xml_parse_into_struct() example

<?php

$simple = "<para><note>simple note</note></para>";

$p = xml_parser_create();

xml_parse_into_struct($p, $simple, $vals, $index);

xml_parser_free($p);

echo "Index array\n";

print_r($index);

echo "\nVals array\n";

print_r($vals);

?>

When we run that code, the output will be:

Index array

Array

(

 [PARA] => Array

 (

 [0] => 0

 [1] => 2

)

 [NOTE] => Array

 (

 [0] => 1

)

)

Vals array

Array

(

 [0] => Array

 (

 [tag] => PARA

 [type] => open

 [level] => 1

)

 [1] => Array

 (

 [tag] => NOTE

 [type] => complete

 [level] => 2

 [value] => simple note

)

 [2] => Array

 (

 [tag] => PARA

 [type] => close

 [level] => 1

)

)

Event-driven parsing (based on the expat library) can get complicated when you have an
XML document that is complex. This function does not produce a DOM style object, but it
generates structures amenable of being transversed in a tree fashion. Thus, we can create
objects representing the data in the XML file easily. Let's consider the following XML file
representing a small database of aminoacids information:

Example #2974 - moldb.xml - small database of molecular information

<?xml version="1.0"?>

<moldb>

 <molecule>

 <name>Alanine</name>

 <symbol>ala</symbol>

 <code>A</code>

 <type>hydrophobic</type>

 </molecule>

 <molecule>

 <name>Lysine</name>

 <symbol>lys</symbol>

 <code>K</code>

 <type>charged</type>

 </molecule>

</moldb>

And some code to parse the document and generate the appropriate objects:

Example #2975 - parsemoldb.php - parses moldb.xml into an array of molecular
objects

<?php

class AminoAcid {

 var $name; // aa name

 var $symbol; // three letter symbol

 var $code; // one letter code

 var $type; // hydrophobic, charged or neutral

 function AminoAcid ($aa)

 {

 foreach ($aa as $k=>$v)

 $this->$k = $aa[$k];

 }

}

function readDatabase($filename)

{

 // read the XML database of aminoacids

 $data = implode("", file($filename));

 $parser = xml_parser_create();

 xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

 xml_parser_set_option($parser, XML_OPTION_SKIP_WHITE, 1);

 xml_parse_into_struct($parser, $data, $values, $tags);

 xml_parser_free($parser);

 // loop through the structures

 foreach ($tags as $key=>$val) {

 if ($key == "molecule") {

 $molranges = $val;

 // each contiguous pair of array entries are the

 // lower and upper range for each molecule definition

 for ($i=0; $i < count($molranges); $i+=2) {

 $offset = $molranges[$i] + 1;

 $len = $molranges[$i + 1] - $offset;

 $tdb[] = parseMol(array_slice($values, $offset, $len));

 }

 } else {

 continue;

 }

 }

 return $tdb;

}

function parseMol($mvalues)

{

 for ($i=0; $i < count($mvalues); $i++) {

 $mol[$mvalues[$i]["tag"]] = $mvalues[$i]["value"];

 }

 return new AminoAcid($mol);

}

$db = readDatabase("moldb.xml");

echo "** Database of AminoAcid objects:\n";

print_r($db);

?>

After executing parsemoldb.php, the variable $db contains an array of AminoAcid objects,
and the output of the script confirms that:

** Database of AminoAcid objects:

Array

(

 [0] => aminoacid Object

 (

 [name] => Alanine

 [symbol] => ala

 [code] => A

 [type] => hydrophobic

)

 [1] => aminoacid Object

 (

 [name] => Lysine

 [symbol] => lys

 [code] => K

 [type] => charged

)

)

xml_parse

xml_parse -- Start parsing an XML document

Description

int xml_parse (resource $parser, string $data [, bool $is_final])

xml_parse() parses an XML document. The handlers for the configured events are called
as many times as necessary.

Parameters

parser

A reference to the XML parser to use.

data

Chunk of data to parse. A document may be parsed piece-wise by calling xml_parse()
several times with new data, as long as the is_final parameter is set and TRUE
when the last data is parsed.

is_final

If set and TRUE, data is the last piece of data sent in this parse.

Return Values

Returns 1 on success or 0 on failure.

For unsuccessful parses, error information can be retrieved with xml_get_error_code(),
xml_error_string(), xml_get_current_line_number(), xml_get_current_column_number()
and xml_get_current_byte_index().

Note

Entity errors are reported at the end of the data thus only if is_final is set and TRUE.

xml_parser_create_ns

xml_parser_create_ns -- Create an XML parser with namespace support

Description

resource xml_parser_create_ns ([string $encoding [, string $separator]])

xml_parser_create_ns() creates a new XML parser with XML namespace support and
returns a resource handle referencing it to be used by the other XML functions.

Parameters

encoding

The optional encoding specifies the character encoding for the input/output in PHP 4.
Starting from PHP 5, the input encoding is automatically detected, so that the
encoding parameter specifies only the output encoding. In PHP 4, the default output
encoding is the same as the input charset. In PHP 5.0.0 and 5.0.1, the default output
charset is ISO-8859-1, while in PHP 5.0.2 and upper is UTF-8. The supported
encodings are ISO-8859-1, UTF-8 and US-ASCII.

separator

With a namespace aware parser tag parameters passed to the various handler
functions will consist of namespace and tag name separated by the string specified in
seperator or ':' by default.

Return Values

Returns a resource handle for the new XML parser.

See Also

• xml_parser_create()
• xml_parser_free()

xml_parser_create

xml_parser_create -- Create an XML parser

Description

resource xml_parser_create ([string $encoding])

xml_parser_create() creates a new XML parser and returns a resource handle referencing
it to be used by the other XML functions.

Parameters

encoding

The optional encoding specifies the character encoding for the input/output in PHP 4.
Starting from PHP 5, the input encoding is automatically detected, so that the
encoding parameter specifies only the output encoding. In PHP 4, the default output
encoding is the same as the input charset. If empty string is passed, the parser
attempts to identify which encoding the document is encoded in by looking at the
heading 3 or 4 bytes. In PHP 5.0.0 and 5.0.1, the default output charset is ISO-8859-1,
while in PHP 5.0.2 and upper is UTF-8. The supported encodings are ISO-8859-1,
UTF-8 and US-ASCII.

Return Values

Returns a resource handle for the new XML parser.

See Also

• xml_parser_create_ns()
• xml_parser_free()

xml_parser_free

xml_parser_free -- Free an XML parser

Description

bool xml_parser_free (resource $parser)

Frees the given XML parser.

Parameters

parser

A reference to the XML parser to free.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or else it frees the
parser and returns TRUE.

xml_parser_get_option

xml_parser_get_option -- Get options from an XML parser

Description

mixed xml_parser_get_option (resource $parser, int $option)

Gets an option value from an XML parser.

Parameters

parser

A reference to the XML parser to get an option from.

option

Which option to fetch. XML_OPTION_CASE_FOLDING and
XML_OPTION_TARGET_ENCODING are available. See xml_parser_set_option() for
their description.

Return Values

This function returns FALSE if parser does not refer to a valid parser or if option isn't
valid (generates also a E_WARNING). Else the option's value is returned.

xml_parser_set_option

xml_parser_set_option -- Set options in an XML parser

Description

bool xml_parser_set_option (resource $parser, int $option, mixed $value)

Sets an option in an XML parser.

Parameters

parser

A reference to the XML parser to set an option in.

option

Which option to set. See below. The following options are available:

XML parser options

Option constant Data type Description

XML_OPTION_CASE_FOL
DING

integer Controls whether
case-folding is enabled for
this XML parser. Enabled by
default.

XML_OPTION_SKIP_TAGS
TART

integer Specify how many
characters should be skipped
in the beginning of a tag
name.

XML_OPTION_SKIP_WHIT
E

integer Whether to skip values
consisting of whitespace
characters.

XML_OPTION_TARGET_E
NCODING

string Sets which target encoding
to use in this XML parser.By
default, it is set to the same
as the source encoding used
by xml_parser_create().
Supported target encodings
are ISO-8859-1, US-ASCII
and UTF-8.

value

The option's new value.

Return Values

This function returns FALSE if parser does not refer to a valid parser, or if the option could
not be set. Else the option is set and TRUE is returned.

xml_set_character_data_handler

xml_set_character_data_handler -- Set up character data handler

Description

bool xml_set_character_data_handler (resource $parser, callback $handler)

Sets the character data handler function for the XML parser parser.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept two parameters:
handler (resource $parser, string $data)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

data

The second parameter, data, contains the character data as a string.
Character data handler is called for every piece of a text in the XML document. It can be
called multiple times inside each fragment (e.g. for non-ASCII strings). If a handler function
is set to an empty string, or FALSE, the handler in question is disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_default_handler

xml_set_default_handler -- Set up default handler

Description

bool xml_set_default_handler (resource $parser, callback $handler)

Sets the default handler function for the XML parser parser.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept two parameters:
handler (resource $parser, string $data)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

data

The second parameter, data, contains the character data.This may be the XML
declaration, document type declaration, entities or other data for which no other
handler exists.

If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_element_handler

xml_set_element_handler -- Set up start and end element handlers

Description

bool xml_set_element_handler (resource $parser, callback $start_element_handler,
callback $end_element_handler)

Sets the element handler functions for the XML parser. start_element_handler and
end_element_handler are strings containing the names of functions that must exist when
xml_parse() is called for parser.

Parameters

parser

start_element_handler

The function named by start_element_handler must accept three parameters:
start_element_handler (resource $parser, string $name, array $attribs)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

name

The second parameter, name, contains the name of the element for which this handler
is called.If case-folding is in effect for this parser, the element name will be in
uppercase letters.

attribs

The third parameter, attribs, contains an associative array with the element's
attributes (if any).The keys of this array are the attribute names, the values are the
attribute values.Attribute names are case-folded on the same criteria as element
names.Attribute values are not case-folded. The original order of the attributes can be
retrieved by walking through attribs the normal way, using each().The first key in the
array was the first attribute, and so on.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

end_element_handler

The function named by end_element_handler must accept two parameters:

end_element_handler (resource $parser, string $name)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

name

The second parameter, name, contains the name of the element for which this handler
is called.If case-folding is in effect for this parser, the element name will be in
uppercase letters.

If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_end_namespace_decl_handler

xml_set_end_namespace_decl_handler -- Set up end namespace declaration handler

Description

bool xml_set_end_namespace_decl_handler (resource $parser, callback $handler)

Set a handler to be called when leaving the scope of a namespace declaration. This will be
called, for each namespace declaration, after the handler for the end tag of the element in
which the namespace was declared.

Parameters

parser

A reference to the XML parser.

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept three parameters, and
should return an integer value. If the value returned from the handler is FALSE (which it
will be if no value is returned), the XML parser will stop parsing and xml_get_error_code()
will return XML_ERROR_EXTERNAL_ENTITY_HANDLING.
handler (resource $parser, string $user_data, string $prefix)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

user_data

prefix

If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• xml_set_start_namespace_decl_handler()

xml_set_external_entity_ref_handler

xml_set_external_entity_ref_handler -- Set up external entity reference handler

Description

bool xml_set_external_entity_ref_handler (resource $parser, callback $handler)

Sets the external entity reference handler function for the XML parser parser.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept five parameters, and
should return an integer value.If the value returned from the handler is FALSE (which it will
be if no value is returned), the XML parser will stop parsing and xml_get_error_code() will
return XML_ERROR_EXTERNAL_ENTITY_HANDLING.
handler (resource $parser, string $open_entity_names, string $base, string $system_id,
string $public_id)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

open_entity_names

The second parameter, open_entity_names, is a space-separated list of the names of
the entities that are open for the parse of this entity (including the name of the
referenced entity).

base

This is the base for resolving the system identifier (system_id) of the external
entity.Currently this parameter will always be set to an empty string.

system_id

The fourth parameter, system_id, is the system identifier as specified in the entity
declaration.

public_id

The fifth parameter, public_id, is the public identifier as specified in the entity
declaration, or an empty string if none was specified; the whitespace in the public
identifier will have been normalized as required by the XML spec.

If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_notation_decl_handler

xml_set_notation_decl_handler -- Set up notation declaration handler

Description

bool xml_set_notation_decl_handler (resource $parser, callback $handler)

Sets the notation declaration handler function for the XML parser parser.

A notation declaration is part of the document's DTD and has the following format:
<!NOTATION <parameter>name</parameter>

{ <parameter>systemId</parameter> | <parameter>publicId</parameter>?>
See » section 4.7 of the XML 1.0 spec for the definition of notation declarations.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept five parameters:
handler (resource $parser, string $notation_name, string $base, string $system_id, string
$public_id)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

notation_name

This is the notation's name, as per the notation format described above.

base

This is the base for resolving the system identifier (system_id) of the notation
declaration. Currently this parameter will always be set to an empty string.

system_id

System identifier of the external notation declaration.

public_id

Public identifier of the external notation declaration.
If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

http://www.w3.org/TR/1998/REC-xml-19980210#Notations

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_object

xml_set_object -- Use XML Parser within an object

Description

bool xml_set_object (resource $parser, object &$object)

This function allows to use parser inside object. All callback functions could be set with
xml_set_element_handler() etc and assumed to be methods of object.

Parameters

parser

object

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2976 - xml_set_object() example

<?php

class xml {

 var $parser;

 function xml()

 {

 $this->parser = xml_parser_create();

 xml_set_object($this->parser, $this);

 xml_set_element_handler($this->parser, "tag_open", "tag_close");

 xml_set_character_data_handler($this->parser, "cdata");

 }

 function parse($data)

 {

 xml_parse($this->parser, $data);

 }

 function tag_open($parser, $tag, $attributes)

 {

 var_dump($parser, $tag, $attributes);

 }

 function cdata($parser, $cdata)

 {

 var_dump($parser, $cdata);

 }

 function tag_close($parser, $tag)

 {

 var_dump($parser, $tag);

 }

} // end of class xml

$xml_parser = new xml();

$xml_parser->parse("PHP");

?>

xml_set_processing_instruction_handler

xml_set_processing_instruction_handler -- Set up processing instruction (PI) handler

Description

bool xml_set_processing_instruction_handler (resource $parser, callback $handler)

Sets the processing instruction (PI) handler function for the XML parser parser.

A processing instruction has the following format:

<?targetdata?>

You can put PHP code into such a tag, but be aware of one limitation: in an XML PI, the PI
end tag (?>) can not be quoted, so this character sequence should not appear in the PHP
code you embed with PIs in XML documents.If it does, the rest of the PHP code, as well as
the "real" PI end tag, will be treated as character data.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept three parameters:
handler (resource $parser, string $target, string $data)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

target

The second parameter, target, contains the PI target.

data

The third parameter, data, contains the PI data.
If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

xml_set_start_namespace_decl_handler

xml_set_start_namespace_decl_handler -- Set up start namespace declaration handler

Description

bool xml_set_start_namespace_decl_handler (resource $parser, callback $handler)

Set a handler to be called when a namespace is declared. Namespace declarations occur
inside start tags. But the namespace declaration start handler is called before the start tag
handler for each namespace declared in that start tag.

Parameters

parser

A reference to the XML parser.

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept four parameters, and
should return an integer value. If the value returned from the handler is FALSE (which it
will be if no value is returned), the XML parser will stop parsing and xml_get_error_code()
will return XML_ERROR_EXTERNAL_ENTITY_HANDLING.
handler (resource $parser, string $user_data, string $prefix, string $uri)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

user_data

prefix

uri

If a handler function is set to an empty string, or FALSE, the handler in question is
disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• xml_set_end_namespace_decl_handler()

xml_set_unparsed_entity_decl_handler

xml_set_unparsed_entity_decl_handler -- Set up unparsed entity declaration handler

Description

bool xml_set_unparsed_entity_decl_handler (resource $parser, callback $handler)

Sets the unparsed entity declaration handler function for the XML parser parser.

The handler will be called if the XML parser encounters an external entity declaration with an
NDATA declaration, like the following:
<!ENTITY <parameter>name</parameter> {<parameter>publicId</parameter> |
<parameter>systemId</parameter>}

 NDATA <parameter>notationName</parameter>

See » section 4.2.2 of the XML 1.0 spec for the definition of notation declared external entities.

Parameters

parser

handler

handler is a string containing the name of a function that must exist when xml_parse() is
called for parser. The function named by handler must accept six parameters:
handler (resource $parser, string $entity_name, string $base, string $system_id, string $
public_id, string $notation_name)

parser

The first parameter, parser, is a reference to the XML parser calling the handler.

entity_name

The name of the entity that is about to be defined.

base

This is the base for resolving the system identifier (systemId) of the external
entity.Currently this parameter will always be set to an empty string.

system_id

System identifier for the external entity.

public_id

Public identifier for the external entity.

notation_name

Name of the notation of this entity (see xml_set_notation_decl_handler()).
If a handler function is set to an empty string, or FALSE, the handler in question is

http://www.w3.org/TR/1998/REC-xml-19980210#sec-external-ent

disabled.

Note

Instead of a function name, an array containing an object reference and a method
name can also be supplied.

Return Values

Returns TRUE on success or FALSE on failure.

XMLReader

Introduction

The XMLReader extension is an XML Pull parser. The reader acts as a cursor going forward
on the document stream and stopping at each node on the way.

Encoding

It is important to note that internally, libxml uses the UTF-8 encoding and as such, the
encoding of the retrieved contents will always be in UTF-8 encoding.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

The XMLReader extension is available in PECL as of PHP 5.0.0 and is included and enabled
as of PHP 5.1.0 by default. It can be enabled by adding the argument --enable-xmlreader (or
--with-xmlreader before 5.1.0) to your configure line. The libxml extension is required.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

The XMLReader class

Introduction

The XMLReader extension is an XML Pull parser. The reader acts as a cursor going forward
on the document stream and stopping at each node on the way.

Class synopsis

XMLReader

XMLReader {

/* Constants */

const int XMLReader::NONE = 0;

const int XMLReader::ELEMENT = 1;

const int XMLReader::ATTRIBUTE = 2;

const int XMLReader::TEXT = 3;

const int XMLReader::CDATA = 4;

const int XMLReader::ENTITY_REF = 5;

const int XMLReader::ENTITY = 6;

const int XMLReader::PI = 7;

const int XMLReader::COMMENT = 8;

const int XMLReader::DOC = 9;

const int XMLReader::DOC_TYPE = 10;

const int XMLReader::DOC_FRAGMENT = 11;

const int XMLReader::NOTATION = 12;

const int XMLReader::WHITESPACE = 13;

const int XMLReader::SIGNIFICANT_WHITESPACE = 14;

const int XMLReader::END_ELEMENT = 15;

const int XMLReader::END_ENTITY = 16;

const int XMLReader::XML_DECLARATION = 17;

const int XMLReader::LOADDTD = 1;

const int XMLReader::DEFAULTATTRS = 2;

const int XMLReader::VALIDATE = 3;

const int XMLReader::SUBST_ENTITIES = 4;

/* Properties */

public readonly int attributeCount;

public readonly string baseURI;

public readonly int depth;

public readonly bool hasAttributes;

public readonly bool hasValue;

public readonly bool isDefault;

public readonly bool isEmptyElement;

public readonly string localName;

public readonly string name;

public readonly string namespaceURI;

public readonly int nodeType;

public readonly string prefix;

public readonly string value;

public readonly string xmlLang;

/* Methods */

bool XMLReader::close (void)

DOMNode XMLReader::expand (void)

string XMLReader::getAttribute (string $name)

string XMLReader::getAttributeNo (int $index)

string XMLReader::getAttributeNs (string $localName, string $namespaceURI)

bool XMLReader::getParserProperty (int $property)

bool XMLReader::isValid (void)

bool XMLReader::lookupNamespace (string $prefix)

bool XMLReader::moveToAttribute (string $name)

bool XMLReader::moveToAttributeNo (int $index)

bool XMLReader::moveToAttributeNs (string $localName, string $namespaceURI)

bool XMLReader::moveToElement (void)

bool XMLReader::moveToFirstAttribute (void)

bool XMLReader::moveToNextAttribute (void)

bool XMLReader::next ([string $localname])

bool XMLReader::open (string $URI [, string $encoding [, int $options]])

bool XMLReader::read (void)

bool XMLReader::setParserProperty (int $property, bool $value)

bool XMLReader::setRelaxNGSchema (string $filename)

bool XMLReader::setRelaxNGSchemaSource (string $source)

bool XMLReader::xml (string $source [, string $encoding [, int $options]])
}

Properties

attributeCount
The number of attributes on the node

baseURI
The base URI of the node

depth
Depth of the node in the tree, starting at 0

hasAttributes
Indicates if node has attributes

hasValue
Indicates if node has a text value

isDefault
Indicates if attribute is defaulted from DTD

isEmptyElement
Indicates if node is an empty element tag

localName
The local name of the node

name
The qualified name of the node

namespaceURI
The URI of the namespace associated with the node

nodeType
The node type for the node

prefix
The prefix of the namespace associated with thenode

value
The text value of the node

xmlLang
The xml:lang scope which the node resides

Predefined Constants

XMLReader Node Types

XMLReader::NONE
No node type

XMLReader::ELEMENT
Start element

XMLReader::ATTRIBUTE
Attribute node

XMLReader::TEXT
Text node

XMLReader::CDATA
CDATA node

XMLReader::ENTITY_REF
Entity Reference node

XMLReader::ENTITY
Entity Declaration node

XMLReader::PI
Processing Instruction node

XMLReader::COMMENT
Comment node

XMLReader::DOC
Document node

XMLReader::DOC_TYPE
Document Type node

XMLReader::DOC_FRAGMENT
Document Fragment node

XMLReader::NOTATION
Notation node

XMLReader::WHITESPACE
Whitespace node

XMLReader::SIGNIFICANT_WHITESPACE
Significant Whitespace node

XMLReader::END_ELEMENT
End Element

XMLReader::END_ENTITY
End Entity

XMLReader::XML_DECLARATION
XML Declaration node

XMLReader Parser Options

XMLReader::LOADDTD
Load DTD but do not validate

XMLReader::DEFAULTATTRS
Load DTD and default attributes but do not validate

XMLReader::VALIDATE
Load DTD and validate while parsing

XMLReader::SUBST_ENTITIES
Substitute entities and expand references

XMLReader::close

XMLReader::close -- Close the XMLReader input

Description

bool XMLReader::close (void)

Closes the input the XMLReader object is currently parsing.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::open
• XMLReader::XML

XMLReader::expand

XMLReader::expand -- Returns a copy of the current node as a DOM object

Description

DOMNode XMLReader::expand (void)

This method copies the current node and returns the appropriate DOM object.

Return Values

The resulting DOMNode or FALSE on error.

XMLReader::getAttribute

XMLReader::getAttribute -- Get the value of a named attribute

Description

string XMLReader::getAttribute (string $name)

Returns the value of a named attribute or an empty string if attribute does not exist or not
positioned on an element node.

Parameters

name

The name of the attribute.

Return Values

The value of the attribute, or an empty string if no attribute with the given name is found or not
positioned of element.

See Also

• XMLReader::getAttributeNo
• XMLReader::getAttributeNs

XMLReader::getAttributeNo

XMLReader::getAttributeNo -- Get the value of an attribute by index

Description

string XMLReader::getAttributeNo (int $index)

Returns the value of an attribute based on its position or an empty string if attribute does not
exist or not positioned on an element node.

Parameters

index

The position of the attribute.

Return Values

The value of the attribute, or an empty string if no attribute exists at index or not positioned of
element.

See Also

• XMLReader::getAttribute
• XMLReader::getAttributeNs

XMLReader::getAttributeNs

XMLReader::getAttributeNs -- Get the value of an attribute by localname and URI

Description

string XMLReader::getAttributeNs (string $localName, string $namespaceURI)

Returns the value of an attribute by name and namespace URI or an empty string if attribute
does not exist or not positioned on an element node.

Parameters

localName

The local name.

namespaceURI

The namespace URI.

Return Values

The value of the attribute, or an empty string if no attribute with the given localName and
namespaceURI is found or not positioned of element.

See Also

• XMLReader::getAttribute
• XMLReader::getAttributeNo

XMLReader::getParserProperty

XMLReader::getParserProperty -- Indicates if specified property has been set

Description

bool XMLReader::getParserProperty (int $property)

Indicates if specified property has been set.

Parameters

property

One of the parser option constants.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::setParserProperty

XMLReader::isValid

XMLReader::isValid -- Indicates if the parsed document is valid

Description

bool XMLReader::isValid (void)

Returns a boolean indicating if the document being parsed is currently valid.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2977 - Validating XML

<?php

$xml = XMLReader::open('test.xml');

// You must to use it

$xml->setParserProperty(XMLReader::VALIDATE, true);

var_dump($xml->isValid());

?>

See Also

• XMLReader::setParserProperty
• XMLReader::setRelaxNGSchema
• XMLReader::setRelaxNGSchemaSource

XMLReader::lookupNamespace

XMLReader::lookupNamespace -- Lookup namespace for a prefix

Description

bool XMLReader::lookupNamespace (string $prefix)

Lookup in scope namespace for a given prefix.

Parameters

prefix

String containing the prefix.

Return Values

Returns TRUE on success or FALSE on failure.

XMLReader::moveToAttribute

XMLReader::moveToAttribute -- Move cursor to a named attribute

Description

bool XMLReader::moveToAttribute (string $name)

Positions cursor on the named attribute.

Parameters

name

The name of the attribute.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttributeNo
• XMLReader::moveToAttributeNs
• XMLReader::moveToFirstAttribute

XMLReader::moveToAttributeNo

XMLReader::moveToAttributeNo -- Move cursor to an attribute by index

Description

bool XMLReader::moveToAttributeNo (int $index)

Positions cursor on attribute based on its position.

Parameters

index

The position of the attribute.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttribute
• XMLReader::moveToAttributeNs
• XMLReader::moveToFirstAttribute

XMLReader::moveToAttributeNs

XMLReader::moveToAttributeNs -- Move cursor to a named attribute

Description

bool XMLReader::moveToAttributeNs (string $localName, string $namespaceURI)

Positions cursor on the named attribute in specified namespace.

Parameters

localName

The local name.

namespaceURI

The namespace URI.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttribute
• XMLReader::moveToAttributeNo
• XMLReader::moveToFirstAttribute

XMLReader::moveToElement

XMLReader::moveToElement -- Position cursor on the parent Element of current Attribute

Description

bool XMLReader::moveToElement (void)

Moves cursor to the parent Element of current Attribute.

Return Values

Returns TRUE if successful and FALSE if it fails or not positioned on Attribute when this
method is called.

See Also

• XMLReader::moveToAttribute
• XMLReader::moveToAttributeNo
• XMLReader::moveToAttributeNs
• XMLReader::moveToFirstAttribute

XMLReader::moveToFirstAttribute

XMLReader::moveToFirstAttribute -- Position cursor on the first Attribute

Description

bool XMLReader::moveToFirstAttribute (void)

Moves cursor to the first Attribute.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttribute
• XMLReader::moveToAttributeNo
• XMLReader::moveToAttributeNs
• XMLReader::moveToNextAttribute

XMLReader::moveToNextAttribute

XMLReader::moveToNextAttribute -- Position cursor on the next Attribute

Description

bool XMLReader::moveToNextAttribute (void)

Moves cursor to the next Attribute if positioned on an Attribute or moves to first attribute if
positioned on an Element.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttribute
• XMLReader::moveToAttributeNo
• XMLReader::moveToAttributeNs
• XMLReader::moveToFirstAttribute

XMLReader::next

XMLReader::next -- Move cursor to next node skipping all subtrees

Description

bool XMLReader::next ([string $localname])

Positions cursor on the next node skipping all subtrees.

Parameters

localname

The name of the next node to move to.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::next
• XMLReader::moveToElement
• XMLReader::moveToAttribute

XMLReader::open

XMLReader::open -- Set the URI containing the XML to parse

Description

bool XMLReader::open (string $URI [, string $encoding [, int $options]])

Set the URI containing the XML document to be parsed.

Parameters

URI

URI pointing to the document.

encoding

The document encoding or NULL.

options

A bitmask of the XMLReader Options constants.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.0 encoding and options were added.

See Also

• XMLReader::XML
• XMLReader::close

XMLReader::read

XMLReader::read -- Move to next node in document

Description

bool XMLReader::read (void)

Moves cursor to the next node in the document.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::moveToElement
• XMLReader::moveToAttribute
• XMLReader::next

XMLReader::setParserProperty

XMLReader::setParserProperty -- Set or Unset parser options

Description

bool XMLReader::setParserProperty (int $property, bool $value)

Set or Unset parser option for the parser. The options must be set after xmlreader-open()
or xmlreader-xml() are called and before the first xmlreader-read() call.

Parameters

property

One of the parser option constants.

value

If set to TRUE the option will be enabled otherwise will be disabled.

Return Values

Returns TRUE on success or FALSE on failure.

XMLReader::setRelaxNGSchema

XMLReader::setRelaxNGSchema -- Set the filename or URI for a RelaxNG Schema

Description

bool XMLReader::setRelaxNGSchema (string $filename)

Set the filename or URI for the RelaxNG Schema to use for validation.

Parameters

filename

filename or URI pointing to a RelaxNG Schema.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::setRelaxNGSchemaSource

XMLReader::setRelaxNGSchemaSource

XMLReader::setRelaxNGSchemaSource -- Set the data containing a RelaxNG Schema

Description

bool XMLReader::setRelaxNGSchemaSource (string $source)

Set the data containing a RelaxNG Schema to use for validation.

Parameters

source

String containing the RelaxNG Schema.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLReader::setRelaxNGSchema

XMLReader::XML

XMLReader::XML -- Set the data containing the XML to parse

Description

bool XMLReader::xml (string $source [, string $encoding [, int $options]])

Set the data containing the XML to parse.

Parameters

source

String containing the XML to be parsed.

encoding

The document encoding or NULL.

options

A bitmask of the XMLReader Options constants.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

5.2.0 encoding and options were added.

See Also

• XMLReader::open
• XMLReader::close

XMLWriter

Introduction

This is the XMLWriter extension. It wraps the libxml xmlWriter API.

This extension represents a writer that provides a non-cached, forward-only means of
generating streams or files containing XML data.

This extension can be used in an object oriented style or a procedural one. Every method
documented describes the alternative procedural call.

Installing/Configuring

Requirements

No external libraries are needed to build this extension.

Installation

There is no installation needed to use these functions; they are part of the PHP core.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

There is one resource used by the procedural version of the XMLWriter extension:
returned by xmlwriter_open_memory() or xmlwriter_open_uri().

Predefined Constants

This extension has no constants defined.

XMLWriter Functions

Predefined Classes

XMLWriter

Methods

• XMLWriter::endAttribute - End attribute

• XMLWriter::endCData - End current CDATA

• XMLWriter::endComment - Create end comment

• XMLWriter::endDocument - End current document

• XMLWriter::endDTDAttlist - End current DTD AttList

• XMLWriter::endDTDElement - End current DTD element

• XMLWriter::endDTDEntity - End current DTD Entity

• XMLWriter::endDTD - End current DTD

• XMLWriter::endElement - End current element

• XMLWriter::endPI - End current PI

• XMLWriter::flush - Flush current buffer

• XMLWriter::fullEndElement - End current element

• XMLWriter::openMemory - Create new xmlwriter using memory for string output

• XMLWriter::openURI - Create new xmlwriter using source uri for output

• XMLWriter::outputMemory - Returns current buffer

• XMLWriter::setIndentString - Set string used for indenting

• XMLWriter::setIndent - Toggle indentation on/off

• XMLWriter::startAttributeNS - Create start namespaced attribute

• XMLWriter::startAttribute - Create start attribute

• XMLWriter::startCData - Create start CDATA tag

• XMLWriter::startComment - Create start comment

• XMLWriter::startDocument - Create document tag

• XMLWriter::startDTDAttlist - Create start DTD AttList

• XMLWriter::startDTDElement - Create start DTD element

• XMLWriter::startDTDEntity - Create start DTD Entity

• XMLWriter::startDTD - Create start DTD tag

• XMLWriter::startElementNS - Create start namespaced element tag

• XMLWriter::startElement - Create start element tag

• XMLWriter::startPI - Create start PI tag

• XMLWriter::text - Write text

• XMLWriter::writeAttributeNS - Write full namespaced attribute

• XMLWriter::writeAttribute - Write full attribute

• XMLWriter::writeCData - Write full CDATA tag

• XMLWriter::writeComment - Write full comment tag

• XMLWriter::writeDTDAttlist - Write full DTD AttList tag

• XMLWriter::writeDTDElement - Write full DTD element tag

• XMLWriter::writeDTDEntity - Write full DTD Entity tag

• XMLWriter::writeDTD - Write full DTD tag

• XMLWriter::writeElementNS - Write full namesapced element tag

• XMLWriter::writeElement - Write full element tag

• XMLWriter::writePI - Writes a PI

• XMLWriter::writeRaw - Write a raw XML text

XMLWriter::endAttribute

XMLWriter::endAttribute -- End attribute

Description

Object oriented style:

XMLWriter

bool endAttribute (void)

Procedural style:

bool xmlwriter_end_attribute (resource $xmlwriter)

Ends the current attribute.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startAttribute
• XMLWriter::startAttributeNS
• XMLWriter::writeAttribute
• XMLWriter::writeAttributeNS

XMLWriter::endCData

XMLWriter::endCData -- End current CDATA

Description

Object oriented style:

XMLWriter

bool endCData (void)

Procedural style:

bool xmlwriter_end_cdata (resource $xmlwriter)

Ends the current CDATA section.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startCData
• XMLWriter::writeCData

XMLWriter::endComment

XMLWriter::endComment -- Create end comment

Description

Object oriented style:

XMLWriter

bool endComment (void)

Procedural style:

bool xmlwriter_end_comment (resource $xmlwriter)

Ends the current comment.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startComment
• XMLWriter::writeComment

XMLWriter::endDocument

XMLWriter::endDocument -- End current document

Description

Object oriented style:

XMLWriter

bool endDocument (void)

Procedural style:

bool xmlwriter_end_document (resource $xmlwriter)

Ends the current document.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDocument

XMLWriter::endDTDAttlist

XMLWriter::endDTDAttlist -- End current DTD AttList

Description

Object oriented style:

XMLWriter

bool endDTDAttlist (void)

Procedural style:

bool xmlwriter_end_dtd_attlist (resource $xmlwriter)

Ends the current DTD attribute list.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDAttlist
• XMLWriter::writeDTDAttlist

XMLWriter::endDTDElement

XMLWriter::endDTDElement -- End current DTD element

Description

Object oriented style:

XMLWriter

bool endDTDElement (void)

Procedural style:

bool xmlwriter_end_dtd_element (resource $xmlwriter)

Ends the current DTD element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDElement
• XMLWriter::writeDTDElement

XMLWriter::endDTDEntity

XMLWriter::endDTDEntity -- End current DTD Entity

Description

Object oriented style:

XMLWriter

bool endDTDEntity (void)

Procedural style:

bool xmlwriter_end_dtd_entity (resource $xmlwriter)

Ends the current DTD entity.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDEntity
• XMLWriter::writeDTDEntity

XMLWriter::endDTD

XMLWriter::endDTD -- End current DTD

Description

Object oriented style:

XMLWriter

bool endDTD (void)

Procedural style:

bool xmlwriter_end_dtd (resource $xmlwriter)

Ends the DTD of the document.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTD
• XMLWriter::writeDTD

XMLWriter::endElement

XMLWriter::endElement -- End current element

Description

Object oriented style:

XMLWriter

bool endElement (void)

Procedural style:

bool xmlwriter_end_element (resource $xmlwriter)

Ends the current element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startElement
• XMLWriter::writeElement

XMLWriter::endPI

XMLWriter::endPI -- End current PI

Description

Object oriented style:

XMLWriter

bool endPI (void)

Procedural style:

bool xmlwriter_end_pi (resource $xmlwriter)

Ends the current processing instruction.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startPI
• XMLWriter::writePI

XMLWriter::flush

XMLWriter::flush -- Flush current buffer

Description

Object oriented style:

XMLWriter

mixed flush ([bool $empty])

Procedural style:

mixed xmlwriter_flush (resource $xmlwriter [, bool $empty])

Flushes the current buffer.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

empty

Whether to empty the buffer or no. Default is TRUE.

Return Values

If you opened the writer in memory, this function returns the generated XML buffer, Else, if
using URI, this function will write the buffer and return the number of written bytes.

XMLWriter::fullEndElement

XMLWriter::fullEndElement -- End current element

Description

Object oriented style:

XMLWriter

bool fullEndElement (void)

Procedural style:

bool xmlwriter_full_end_element (resource $xmlwriter)

End the current xml element. Writes an end tag even if the element is empty.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endElement

XMLWriter::openMemory

XMLWriter::openMemory -- Create new xmlwriter using memory for string output

Description

Object oriented style:

XMLWriter

bool openMemory (void)

Procedural style:

resource xmlwriter_open_memory (void)

Creates a new XMLWriter using memory for string output.

Parameters

Return Values

Object oriented style: Returns TRUE on success or FALSE on failure..

Procedural style: Returns a new xmlwriter resource for later use with the xmlwriter
functions on success, FALSE on error.

See Also

• XMLWriter::openURI

XMLWriter::openURI

XMLWriter::openURI -- Create new xmlwriter using source uri for output

Description

Object oriented style:

XMLWriter

bool openURI (string $uri)

Procedural style:

resource xmlwriter_open_uri (string $uri)

Creates a new XMLWriter using uri for the output.

Parameters

uri

The URI of the resource for the output.

Return Values

Object oriented style: Returns TRUE on success or FALSE on failure..

Procedural style: Returns a new xmlwriter resource for later use with the xmlwriter
functions on success, FALSE on error.

See Also

• XMLWriter::openMemory

XMLWriter::outputMemory

XMLWriter::outputMemory -- Returns current buffer

Description

Object oriented style:

XMLWriter

string outputMemory ([bool $flush])

Procedural style:

string xmlwriter_output_memory (resource $xmlwriter [, bool $flush])

Returns the current buffer.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

flush

Whether to flush the output buffer or no. Default is TRUE.

Return Values

Returns the current buffer as a string.

See Also

• XMLWriter::flush

XMLWriter::setIndentString

XMLWriter::setIndentString -- Set string used for indenting

Description

Object oriented style:

XMLWriter

bool setIndentString (string $indentString)

Procedural style:

bool xmlwriter_set_indent_string (resource $xmlwriter, string $indentString)

Sets the string which will be used to indent each element/attribute of the resulting xml.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

indentString

The indentation string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::setIndent

XMLWriter::setIndent

XMLWriter::setIndent -- Toggle indentation on/off

Description

Object oriented style:

XMLWriter

bool setIndent (bool $indent)

Procedural style:

bool xmlwriter_set_indent (resource $xmlwriter, bool $indent)

Toggles indentation on or off.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

indent

Whether indentation is enabled. Defaults to FALSE.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::setIndentString

XMLWriter::startAttributeNS

XMLWriter::startAttributeNS -- Create start namespaced attribute

Description

Object oriented style:

XMLWriter

bool startAttributeNS (string $prefix, string $name, string $uri)

Procedural style:

bool xmlwriter_start_attribute_ns (resource $xmlwriter, string $prefix, string $name,
string $uri)

Starts a namespaced attribute.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

prefix

The namespace prefix.

name

The attribute name.

uri

The namespace URI.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startAttribute
• XMLWriter::endAttribute
• XMLWriter::writeAttribute
• XMLWriter::writeAttributeNS

XMLWriter::startAttribute

XMLWriter::startAttribute -- Create start attribute

Description

Object oriented style:

XMLWriter

bool startAttribute (string $name)

Procedural style:

bool xmlwriter_start_attribute (resource $xmlwriter, string $name)

Starts an attribute.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The attribute name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startAttributeNS
• XMLWriter::endAttribute
• XMLWriter::writeAttribute
• XMLWriter::writeAttributeNS

XMLWriter::startCData

XMLWriter::startCData -- Create start CDATA tag

Description

Object oriented style:

XMLWriter

bool startCData (void)

Procedural style:

bool xmlwriter_start_cdata (resource $xmlwriter)

Starts a CDATA.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endCData
• XMLWriter::writeCData

XMLWriter::startComment

XMLWriter::startComment -- Create start comment

Description

Object oriented style:

XMLWriter

bool startComment (void)

Procedural style:

bool xmlwriter_start_comment (resource $xmlwriter)

Starts a comment.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endComment
• XMLWriter::writeComment

XMLWriter::startDocument

XMLWriter::startDocument -- Create document tag

Description

Object oriented style:

XMLWriter

bool startDocument ([string $version [, string $encoding [, string $standalone]]])

Procedural style:

bool xmlwriter_start_document (resource $xmlwriter [, string $version [, string $
encoding [, string $standalone]]])

Starts a document.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

version

The version number of the document as part of the XML declaration. Defaults to 1.0.

encoding

The encoding of the document as part of the XML declaration. NULL by default.

standalone

yes or no. NULL by default.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endDocument

XMLWriter::startDTDAttlist

XMLWriter::startDTDAttlist -- Create start DTD AttList

Description

Object oriented style:

XMLWriter

bool startDTDAttlist (string $name)

Procedural style:

bool xmlwriter_start_dtd_attlist (resource $xmlwriter, string $name)

Starts a DTD attribute list.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The attribute list name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endDTDAttlist
• XMLWriter::writeDTDAttlist

XMLWriter::startDTDElement

XMLWriter::startDTDElement -- Create start DTD element

Description

Object oriented style:

XMLWriter

bool startDTDElement (string $qualifiedName)

Procedural style:

bool xmlwriter_start_dtd_element (resource $xmlwriter, string $qualifiedName)

Starts a DTD element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

qualifiedName

The qualified name of the document type to create.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endDTDElement
• XMLWriter::writeDTDElement

XMLWriter::startDTDEntity

XMLWriter::startDTDEntity -- Create start DTD Entity

Description

Object oriented style:

XMLWriter

bool startDTDEntity (string $name, bool $isparam)

Procedural style:

bool xmlwriter_start_dtd_entity (resource $xmlwriter, string $name, bool $isparam)

Starts a DTD entity.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The name of the entity.

isparam

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endDTDEntity
• XMLWriter::writeDTDEntity

XMLWriter::startDTD

XMLWriter::startDTD -- Create start DTD tag

Description

Object oriented style:

XMLWriter

bool startDTD (string $qualifiedName [, string $publicId [, string $systemId]])

Procedural style:

bool xmlwriter_start_dtd (resource $xmlwriter, string $qualifiedName [, string $
publicId [, string $systemId]])

Starts a DTD.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

qualifiedName

The qualified name of the document type to create.

publicId

The external subset public identifier.

systemId

The external subset system identifier.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endDTD

• XMLWriter::writeDTD

XMLWriter::startElementNS

XMLWriter::startElementNS -- Create start namespaced element tag

Description

Object oriented style:

XMLWriter

bool startElementNS (string $prefix, string $name, string $uri)

Procedural style:

bool xmlwriter_start_element_ns (resource $xmlwriter, string $prefix, string $name,
string $uri)

Starts a namespaced element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

prefix

The namespace prefix.

name

The element name.

uri

The namespace URI.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endElement
• XMLWriter::writeElementNS

XMLWriter::startElement

XMLWriter::startElement -- Create start element tag

Description

Object oriented style:

XMLWriter

bool startElement (string $name)

Procedural style:

bool xmlwriter_start_element (resource $xmlwriter, string $name)

Starts an element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The element name.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endElement
• XMLWriter::writeElement

XMLWriter::startPI

XMLWriter::startPI -- Create start PI tag

Description

Object oriented style:

XMLWriter

bool startPI (string $target)

Procedural style:

bool xmlwriter_start_pi (resource $xmlwriter, string $target)

Starts a processing instruction tag.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

target

The target of the processing instruction.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::endPI
• XMLWriter::writePI

XMLWriter::text

XMLWriter::text -- Write text

Description

Object oriented style:

XMLWriter

bool text (string $content)

Procedural style:

bool xmlwriter_text (resource $xmlwriter, string $content)

Writes a text.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

content

The contents of the text.

Return Values

Returns TRUE on success or FALSE on failure.

XMLWriter::writeAttributeNS

XMLWriter::writeAttributeNS -- Write full namespaced attribute

Description

Object oriented style:

XMLWriter

bool writeAttributeNS (string $prefix, string $name, string $uri, string $content)

Procedural style:

bool xmlwriter_write_attribute_ns (resource $xmlwriter, string $prefix, string $name,
string $uri, string $content)

Writes a full namespaced attribute.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

prefix

The namespace prefix.

name

The attribute name.

uri

The namespace URI.

content

The attribute value.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::writeAttribute
• XMLWriter::startAttribute
• XMLWriter::startAttributeNS
• XMLWriter::endAttribute

XMLWriter::writeAttribute

XMLWriter::writeAttribute -- Write full attribute

Description

Object oriented style:

XMLWriter

bool writeAttribute (string $name, string $value)

Procedural style:

bool xmlwriter_write_attribute (resource $xmlwriter, string $name, string $value)

Writes a full attribute.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The name of the attribute.

value

The value of the attribute.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::writeAttributeNS
• XMLWriter::startAttribute
• XMLWriter::startAttributeNS
• XMLWriter::endAttribute

XMLWriter::writeCData

XMLWriter::writeCData -- Write full CDATA tag

Description

Object oriented style:

XMLWriter

bool writeCData (string $content)

Procedural style:

bool xmlwriter_write_cdata (resource $xmlwriter, string $content)

Writes a full CDATA.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

content

The contents of the CDATA.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startCData
• XMLWriter::endCData

XMLWriter::writeComment

XMLWriter::writeComment -- Write full comment tag

Description

Object oriented style:

XMLWriter

bool writeComment (string $content)

Procedural style:

bool xmlwriter_write_comment (resource $xmlwriter, string $content)

Writes a full comment.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

content

The contents of the comment.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startComment
• XMLWriter::endComment

XMLWriter::writeDTDAttlist

XMLWriter::writeDTDAttlist -- Write full DTD AttList tag

Description

Object oriented style:

XMLWriter

bool writeDTDAttlist (string $name, string $content)

Procedural style:

bool xmlwriter_write_dtd_attlist (resource $xmlwriter, string $name, string $content)

Writes a DTD attribute list.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The name of the DTD attribute list.

content

The content of the DTD attribute list.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDAttlist
• XMLWriter::endDTDAttlist

XMLWriter::writeDTDElement

XMLWriter::writeDTDElement -- Write full DTD element tag

Description

Object oriented style:

XMLWriter

bool writeDTDElement (string $name, string $content)

Procedural style:

bool xmlwriter_write_dtd_element (resource $xmlwriter, string $name, string $content
)

Writes a full DTD element.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The name of the DTD element.

content

The content of the element.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDElement
• XMLWriter::endDTDElement

XMLWriter::writeDTDEntity

XMLWriter::writeDTDEntity -- Write full DTD Entity tag

Description

Object oriented style:

XMLWriter

bool writeDTDEntity (string $name, string $content)

Procedural style:

bool xmlwriter_write_dtd_entity (resource $xmlwriter, string $name, string $content)

Writes a full DTD entity.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The name of the entity.

content

The content of the entity.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTDEntity
• XMLWriter::endDTDEntity

XMLWriter::writeDTD

XMLWriter::writeDTD -- Write full DTD tag

Description

Object oriented style:

XMLWriter

bool writeDTD (string $name [, string $publicId [, string $systemId [, string $subset]]])

Procedural style:

bool xmlwriter_write_dtd (resource $xmlwriter, string $name [, string $publicId [, string
$systemId [, string $subset]]])

Writes a full DTD.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The DTD name.

publicId

The external subset public identifier.

systemId

The external subset system identifier.

subset

The content of the DTD.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startDTD
• XMLWriter::endDTD

XMLWriter::writeElementNS

XMLWriter::writeElementNS -- Write full namesapced element tag

Description

Object oriented style:

XMLWriter

bool writeElementNS (string $prefix, string $name, string $uri [, string $content])

Procedural style:

bool xmlwriter_write_element_ns (resource $xmlwriter, string $prefix, string $name,
string $uri [, string $content])

Writes a full namesapced element tag.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

prefix

The namespace prefix.

name

The element name.

uri

The namespace URI.

content

The element contents.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

PHP 5.2.3 The content parameter became optional.

See Also

• XMLWriter::startElementNS
• XMLWriter::endElement
• XMLWriter::writeElement

XMLWriter::writeElement

XMLWriter::writeElement -- Write full element tag

Description

Object oriented style:

XMLWriter

bool writeElement (string $name [, string $content])

Procedural style:

bool xmlwriter_write_element (resource $xmlwriter, string $name [, string $content])

Writes a full element tag.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

name

The element name.

content

The element contents.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

PHP 5.2.3 The content parameter became optional.

See Also

• XMLWriter::startElement
• XMLWriter::endElement
• XMLWriter::writeElementNS

XMLWriter::writePI

XMLWriter::writePI -- Writes a PI

Description

Object oriented style:

XMLWriter

bool writePI (string $target, string $content)

Procedural style:

bool xmlwriter_write_pi (resource $xmlwriter, string $target, string $content)

Writes a processing instruction.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

target

The target of the processing instruction.

content

The content of the processing instruction.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::startPI
• XMLWriter::endPI

XMLWriter::writeRaw

XMLWriter::writeRaw -- Write a raw XML text

Description

Object oriented style:

XMLWriter

bool writeRaw (string $content)

Procedural style:

bool xmlwriter_write_raw (resource $xmlwriter, string $content)

Writes a raw xml text.

Parameters

xmlwriter

Only for procedural calls. The XMLWriter resource that is being modified. This
resource comes from a call to xmlwriter_open_uri() or xmlwriter_open_memory().

content

The text string to write.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XMLWriter::text

XSL

Introduction

The XSL extension implements the XSL standard, performing » XSLT transformations
using the » libxslt library

http://www.w3.org/TR/xslt
http://xmlsoft.org/XSLT/

Installing/Configuring

Requirements

This extension uses libxslt which can be found at » http://xmlsoft.org/XSLT/. libxslt version
1.1.0 or greater is required.

Installation

PHP 5 includes the XSL extension by default and can be enabled by adding the argument
--with-xsl[=DIR] to your configure line. DIR is the libxslt installation directory.

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension has no resource types defined.

http://xmlsoft.org/XSLT/

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XSL_CLONE_AUTO (integer)

XSL_CLONE_NEVER (integer)

XSL_CLONE_ALWAYS (integer)

LIBXSLT_VERSION (integer)
libxslt version like 10117. Available as of PHP 5.1.2.

LIBXSLT_DOTTED_VERSION (string)
libxslt version like 1.1.17. Available as of PHP 5.1.2.

LIBEXSLT_VERSION (integer)
libexslt version like 813. Available as of PHP 5.1.2.

LIBEXSLT_DOTTED_VERSION (string)
libexslt version like 1.1.17. Available as of PHP 5.1.2.

Examples

Many examples in this reference require both an XML and an XSL file. We will use
collection.xml and collection.xsl that contains the following:

Example #2978 - collection.xml

<collection>

<cd>

 <title>Fight for your mind</title>

 <artist>Ben Harper</artist>

 <year>1995</year>

</cd>

<cd>

 <title>Electric Ladyland</title>

 <artist>Jimi Hendrix</artist>

 <year>1997</year>

</cd>

</collection>

Example #2979 - collection.xsl

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="owner" select="'Nicolas Eliaszewicz'"/>

<xsl:output method="html" encoding="iso-8859-1" indent="no"/>

<xsl:template match="collection">

 Hey! Welcome to <xsl:value-of select="$owner"/>'s sweet CD collection!

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="cd">

 <h1><xsl:value-of select="title"/></h1>

 <h2>by <xsl:value-of select="artist"/> - <xsl:value-of select="year"/></h2>

 <hr />

</xsl:template>

</xsl:stylesheet>

The XSLTProcessor class

Introduction

Description of the class.

Class synopsis

XSLTProcessor

XSLTProcessor {

/* Methods */

string getParameter (string $namespaceURI, string $localName)

bool hasExsltSupport (void)

void importStylesheet (DOMDocument $stylesheet)

void registerPHPFunctions ([mixed $restrict])

bool removeParameter (string $namespaceURI, string $localName)

bool setParameter (string $namespace, string $name, string $value)

DOMDocument transformToDoc (DOMNode $doc)

int transformToURI (DOMDocument $doc, string $uri)

string transformToXML (DOMDocument $doc)
}

XSLTProcessor::__construct

XSLTProcessor::__construct -- Creates a new XSLTProcessor object

Description

XSLTProcessor

__construct (void)

Creates a new XSLTProcessor object.

Parameters

This function has no parameters.

Return Values

No value is returned.

Examples

Example #2980 - Creating an XSLTProcessor

<?php

$doc = new DOMDocument();

$xsl = new XSLTProcessor();

$doc->load($xsl_filename);

$xsl->importStyleSheet($doc);

$doc->load($xml_filename);

echo $xsl->transformToXML($doc);

?>

XSLTProcessor::getParameter

XSLTProcessor::getParameter -- Get value of a parameter

Description

XSLTProcessor

string getParameter (string $namespaceURI, string $localName)

Gets a parameter if previously set by XSLTProcessor::setParameter().

Parameters

namespaceURI

The namespace URI of the XSLT parameter.

localName

The local name of the XSLT parameter.

Return Values

The value of the parameter or NULL if it's not set.

See Also

• XSLTProcessor::setParameter()
• XSLTProcessor::removeParameter()

XSLTProcessor::hasExsltSupport

XSLTProcessor::hasExsltSupport -- Determine if PHP has EXSLT support

Description

XSLTProcessor

bool hasExsltSupport (void)

This method determine if PHP was built with the » EXSLT library.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2981 - Testing EXSLT support

<?php

$proc = new XSLTProcessor;

if (!$proc->hasExsltSupport()) {

 die('EXSLT support not available');

}

// do EXSLT stuff here ..

?>

http://xmlsoft.org/XSLT/EXSLT/index.html

XSLTProcessor::importStylesheet

XSLTProcessor::importStylesheet -- Import stylesheet

Description

XSLTProcessor

void importStylesheet (DOMDocument $stylesheet)

This method import the stylesheet into the XSLTProcessor for transformations.

Parameters

stylesheet

The imported style sheet as a DOMDocument object.

Return Values

No value is returned.

XSLTProcessor::registerPHPFunctions

XSLTProcessor::registerPHPFunctions -- Enables the ability to use PHP functions as
XSLT functions

Description

XSLTProcessor

void registerPHPFunctions ([mixed $restrict])

This method enables the ability to use PHP functions as XSLT functions within XSL
stylesheets.

Parameters

restrict

Use this parameter to only allow certain functions to be called from XSLT. This
parameter can be either a string (a function name) or an array of functions.

Return Values

No value is returned.

Examples

Example #2982 - Simple PHP Function call from a stylesheet

<?php

$xml = <<<EOB

<allusers>

<user>

 <uid>bob</uid>

</user>

<user>

 <uid>joe</uid>

</user>

</allusers>

EOB;

$xsl = <<<EOB

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:php="http://php.net/xsl">

<xsl:output method="html" encoding="utf-8" indent="yes"/>

<xsl:template match="allusers">

 <html><body>

 <h2>Users</h2>

 <table>

 <xsl:for-each select="user">

 <tr><td>

 <xsl:value-of

 select="php:function('ucfirst',string(uid))"/>

 </td></tr>

 </xsl:for-each>

 </table>

 </body></html>

</xsl:template>

</xsl:stylesheet>

EOB;

$xmldoc = DOMDocument::loadXML($xml);

$xsldoc = DOMDocument::loadXML($xsl);

$proc = new XSLTProcessor();

$proc->registerPHPFunctions();

$proc->importStyleSheet($xsldoc);

echo $proc->transformToXML($xmldoc);

?>

ChangeLog

Version Description

5.1.0 The restrict parameter was added.

XSLTProcessor::removeParameter

XSLTProcessor::removeParameter -- Remove parameter

Description

XSLTProcessor

bool removeParameter (string $namespaceURI, string $localName)

Removes a parameter, if set. This will make the processor use the default value for the
parameter as specified in the stylesheet.

Parameters

namespaceURI

The namespace URI of the XSLT parameter.

localName

The local name of the XSLT parameter.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

• XSLTProcessor::setParameter()
• XSLTProcessor::getParameter()

XSLTProcessor::setParameter

XSLTProcessor::setParameter -- Set value for a parameter

Description

XSLTProcessor

bool setParameter (string $namespace, string $name, string $value)

XSLTProcessor

bool setParameter (string $namespace, array $options)

Sets the value of one or more parameters to be used in subsequent transformations with
XSLTProcessor. If the parameter doesn't exist in the stylesheet it will be ignored.

Parameters

namespace

The namespace URI of the XSLT parameter.

name

The local name of the XSLT parameter.

value

The new value of the XSLT parameter.

options

An array of name => value pairs. This syntax is available since PHP 5.1.0.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2983 - Changing the owner before the transformation

<?php

$collections = array(

 'Marc Rutkowski' => 'marc',

 'Olivier Parmentier' => 'olivier'

);

$xsl = new DOMDocument;

$xsl->load('collection.xsl');

// Configure the transformer

$proc = new XSLTProcessor;

$proc->importStyleSheet($xsl); // attach the xsl rules

foreach ($collections as $name => $file) {

 // Load the XML source

 $xml = new DOMDocument;

 $xml->load('collection_' . $file . '.xml');

 $proc->setParameter('', 'owner', $name);

 $proc->transformToURI($xml, 'file:///tmp/' . $file . '.html');

}

?>

See Also

• XSLTProcessor::getParameter()
• XSLTProcessor::removeParameter()

XSLTProcessor::transformToDoc

XSLTProcessor::transformToDoc -- Transform to a DOMDocument

Description

XSLTProcessor

DOMDocument transformToDoc (DOMNode $doc)

Transforms the source node to a DOMDocument applying the stylesheet given by the
XSLTProcessor::importStylesheet() method.

Parameters

doc

The node to be transformed.

Return Values

The resulting DOMDocument or FALSE on error.

Examples

Example #2984 - Transforming to a DOMDocument

<?php

// Load the XML source

$xml = new DOMDocument;

$xml->load('collection.xml');

$xsl = new DOMDocument;

$xsl->load('collection.xsl');

// Configure the transformer

$proc = new XSLTProcessor;

$proc->importStyleSheet($xsl); // attach the xsl rules

echo trim($proc->transformToDoc($xml)->firstChild->wholeText);

?>

The above example will output:

Hey! Welcome to Nicolas Eliaszewicz's sweet CD collection!

See Also

• XSLTProcessor::transformToUri()
• XSLTProcessor::transformToXml()

XSLTProcessor::transformToURI

XSLTProcessor::transformToURI -- Transform to URI

Description

XSLTProcessor

int transformToURI (DOMDocument $doc, string $uri)

Transforms the source node to an URI applying the stylesheet given by the
XSLTProcessor::importStylesheet() method.

Parameters

doc

The transformed document.

uri

Return Values

Returns the number of bytes written or FALSE if an error occurred.

Examples

Example #2985 - Transforming to a HTML file

<?php

// Load the XML source

$xml = new DOMDocument;

$xml->load('collection.xml');

$xsl = new DOMDocument;

$xsl->load('collection.xsl');

// Configure the transformer

$proc = new XSLTProcessor;

$proc->importStyleSheet($xsl); // attach the xsl rules

$proc->transformToURI($xml, 'file:///tmp/out.html');

?>

See Also

• XSLTProcessor::transformToDoc()
• XSLTProcessor::transformToXml()

XSLTProcessor::transformToXML

XSLTProcessor::transformToXML -- Transform to XML

Description

XSLTProcessor

string transformToXML (DOMDocument $doc)

Transforms the source node to a string applying the stylesheet given by the
xsltprocessor::importStylesheet() method.

Parameters

doc

The transformed document.

Return Values

The result of the transformation as a string or FALSE on error.

Examples

Example #2986 - Transforming to a string

<?php

// Load the XML source

$xml = new DOMDocument;

$xml->load('collection.xml');

$xsl = new DOMDocument;

$xsl->load('collection.xsl');

// Configure the transformer

$proc = new XSLTProcessor;

$proc->importStyleSheet($xsl); // attach the xsl rules

echo $proc->transformToXML($xml);

?>

The above example will output:

Hey! Welcome to Nicolas Eliaszewicz's sweet CD collection!

<h1>Fight for your mind</h1><h2>by Ben Harper - 1995</h2><hr>

<h1>Electric Ladyland</h1><h2>by Jimi Hendrix - 1997</h2><hr>

See Also

• XSLTProcessor::transformToDoc()
• XSLTProcessor::transformToUri()

XSLT

Introduction

This PHP extension provides a processor independent API to XSLT transformations.
Currently this extension only supports the Sablotron library from the Ginger Alliance.
Support is planned for other libraries, such as the Xalan library or the libxslt library.

XSLT (Extensible Stylesheet Language (XSL) Transformations) is a language for
transforming XML documents into other XML documents. It is a standard defined by The
World Wide Web Consortium (W3C). Information about XSLT and related technologies
can be found at » http://www.w3.org/TR/xslt.

Note

This extension is different than the sablotron extension distributed with versions of
PHP prior to PHP 4.1.0, currently only the new XSLT extension in PHP 4.1.0 is
supported. If you need support for the old extension, please ask your questions on the
PHP mailing lists.

Note

This extension has been moved to the » PECL repository and is no longer bundled
with PHP as of PHP 5.0.0.

Note

If you need xslt support with PHP 5 you can use the XSL extension.

http://www.w3.org/TR/xslt
http://pecl.php.net/

Installing/Configuring

Requirements

This extension uses Sablotron and expat, which can both be found at
» http://www.gingerall.org/sablotron.html. Binaries are provided as well as source.

Installation

On Unix, run configure with the --enable-xslt --with-xslt-sablot options. The Sablotron
library should be installed somewhere your compiler can find it.

Make sure you have the same libraries linked to the Sablotron library as those, which are
linked with PHP. The configuration options: --with-expat-dir=DIR --with-iconv-dir=DIR are
there to help you specify them. When asking for support, always mention these directives,
and whether there are other versions of those libraries installed on your system
somewhere. Naturally, provide all the version numbers.

Caution

Be sure your Sablot library is linked to -lstdc++ as otherwise your configure will fail, or
PHP will fail to run or load.

Note

JavaScript E-XSLT support

If you compiled Sablotron with JavaScript support, you must specify the option:
--with-sablot-js=DIR.

Note

Note to Win32 Users

In order for this extension to work, there are DLL files that must be available to the
Windows system PATH. For information on how to do this, see the FAQ entitled " How
do I add my PHP directory to the PATH on Windows ". Although copying DLL files from
the PHP folder into the Windows system directory also works (because the system
directory is by default in the system's PATH), this is not recommended. This extension
requires the following files to be in the PATH: sablot.dll, expat.dll, and iconv.dll

For PHP <= 4.2.0, the file iconv.dll is not required.

http://www.gingerall.org/sablotron.html
http://www.gingerall.org/sablotron.html

Runtime Configuration

This extension has no configuration directives defined in php.ini.

Resource Types

This extension defines a XSLT processor resource returned by xslt_create().

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

XSLT_OPT_SILENT (integer)
Drop all logging and error reporting. This is a generic option for all backends that may
be added in the future.

XSLT_SABOPT_PARSE_PUBLIC_ENTITIES (integer)
Tell Sablotron to parse public entities. By default this has been turned off.

XSLT_SABOPT_DISABLE_ADDING_META (integer)
Do not add the meta tag "Content-Type" for HTML output. The default is set during
compilation of Sablotron.

XSLT_SABOPT_DISABLE_STRIPPING (integer)
Suppress the whitespace stripping (on data files only).

XSLT_SABOPT_IGNORE_DOC_NOT_FOUND (integer)
Consider unresolved documents (the document() function) non-lethal.

XSLT_SABOPT_FILES_TO_HANDLER (integer)

XSLT_ERR_UNSUPPORTED_SCHEME (integer)
Error return code, for scheme handlers.

XSLT Functions

xslt_backend_info

xslt_backend_info -- Returns the information on the compilation settings of the backend

Description

string xslt_backend_info (void)

xslt_backend_info() gets information about the compilation settings of the backend.

Return Values

Returns a string with information about the compilation setting of the backend or an error
string when no information available.

See Also

• xslt_backend_name()
• xslt_backend_version()

xslt_backend_name

xslt_backend_name -- Returns the name of the backend

Description

string xslt_backend_name (void)

xslt_backend_name() gets the name of the backend.

Return Values

Returns Sablotron.

Examples

Example #2987 - xslt_backend_name() example

<?php

echo xslt_backend_name(); // Sablotron

?>

See Also

• xslt_backend_info()
• xslt_backend_version()

xslt_backend_version

xslt_backend_version -- Returns the version number of Sablotron

Description

string xslt_backend_version (void)

xslt_backend_version() gets the version number of Sablotron.

Return Values

Returns the version number, or FALSE if not available.

Examples

Example #2988 - xslt_backend_version() example

<?php

echo xslt_backend_version(); // 0.98 for example

?>

See Also

• xslt_backend_info()
• xslt_backend_name()

xslt_create

xslt_create -- Create a new XSLT processor

Description

resource xslt_create (void)

Create and return a new XSLT processor resource for manipulation by the other XSLT
functions.

Return Values

Returns an XSLT processor link identifier on success, or FALSE on error.

Examples

Example #2989 - xslt_create() example

<?php

function xml2html($xmldata, $xsl)

{

 /* $xmldata -> your XML */

 /* $xsl -> XSLT file */

 $path = 'include';

 $arguments = array('/_xml' => $xmldata);

 $xsltproc = xslt_create();

 xslt_set_encoding($xsltproc, 'ISO-8859-1');

 $html =

 xslt_process($xsltproc, 'arg:/_xml', "$path/$xsl", NULL, $arguments);

 if (empty($html)) {

 die('XSLT processing error: '. xslt_error($xsltproc));

 }

 xslt_free($xsltproc);

 return $html;

}

?>

See Also

• xslt_free()

xslt_errno

xslt_errno -- Returns an error number

Description

int xslt_errno (resource $xh)

Returns an error code describing the last error that occurred on the passed XSLT
processor.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

Return Values

Returns the error code, as an integer.

See Also

• xslt_error()

xslt_error

xslt_error -- Returns an error string

Description

string xslt_error (resource $xh)

Returns a string describing the last error that occurred on the passed XSLT processor.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

Return Values

Returns the error message, as a string.

Examples

Example #2990 - Handling errors using the xslt_error() and xslt_errno() functions.

<?php

$xh = xslt_create();

$result = xslt_process($xh, 'dog.xml', 'pets.xsl');

if (!$result) {

 die(sprintf("Cannot process XSLT document [%d]: %s",

 xslt_errno($xh), xslt_error($xh)));

}

echo $result;

xslt_free($xh);

?>

See Also

• xslt_errno()

xslt_free

xslt_free -- Free XSLT processor

Description

void xslt_free (resource $xh)

Free the XSLT processor identified by the given handle.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

Return Values

No value is returned.

See Also

• xslt_create()

xslt_getopt

xslt_getopt -- Get options on a given xsl processor

Description

int xslt_getopt (resource $processor)

xslt_getopt() returns the options on the given processor.

Parameters

processor

The XSLT processor link identifier, created with xslt_create().

Return Values

Returns the options, a bitmask constructed with the XSLT_SABOPT_XXX constants.

See Also

• xslt_setopt()

xslt_process

xslt_process -- Perform an XSLT transformation

Description

mixed xslt_process (resource $xh, string $xmlcontainer, string $xslcontainer [, string
$resultcontainer [, array $arguments [, array $parameters]]])

The xslt_process() function is the crux of the XSLT extension. It allows you to perform an
XSLT transformation using almost any type of input source - the containers. This is
accomplished through the use of argument buffers -- a concept taken from the Sablotron
XSLT processor (currently the only XSLT processor this extension supports). The input
containers default to a filename 'containing' the document to be processed.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

xmlcontainer

Path to XML file or placeholder for the XML argument.

xslcontainer

Path to XSL file or placeholder for the XML argument.

resultcontainer

The result container defaults to a filename for the transformed document. If the result
container is not specified - i.e. NULL - than the result is returned.

arguments

Instead of files as the XML and XSLT arguments to the xslt_process() function, you
can specify "argument place holders" which are then substituted by values given in the
arguments array.

parameters

An array for any top-level parameters that will be passed to the XSLT document.
These parameters can then be accessed within your XSL files using the <xsl:param
name="parameter_name"> instruction. The parameters must be UTF-8 encoded and
their values will be interpreted as strings by the Sablotron processor. In other words -
you cannot pass node-sets as parameters to the XSLT document.

Containers can also be set via the arguments array (see below).

Return Values

Returns TRUE on success or FALSE on failure. If the result container is not specified - i.e.

NULL - than the result is returned.

ChangeLog

Version Description

4.0.6 This function no longer takes XML strings in
xmlcontainer or xslcontainer. Passing a
string containing XML to either of these
parameters will result in a segmentation
fault in Sablotron versions up to and
including version 0.95.

Examples

The simplest type of transformation with the xslt_process() function is the transformation of
an XML file with an XSLT file, placing the result in a third file containing the new XML (or
HTML) document. Doing this with sablotron is really quite easy...

Example #2991 - Using the xslt_process() to transform an XML file and a XSL file
to a new XML file

<?php

// Allocate a new XSLT processor

$xh = xslt_create();

// Process the document

if (xslt_process($xh, 'sample.xml', 'sample.xsl', 'result.xml')) {

 echo "SUCCESS, sample.xml was transformed by sample.xsl into result.xml";

 echo ", result.xml has the following contents\n
\n";

 echo "<pre>\n";

 readfile('result.xml');

 echo "</pre>\n";

} else {

 echo "Sorry, sample.xml could not be transformed by sample.xsl into";

 echo " result.xml the reason is that " . xslt_error($xh) . " and the ";

 echo "error code is " . xslt_errno($xh);

}

xslt_free($xh);

?>

While this functionality is great, many times, especially in a web environment, you want to
be able to print out your results directly. Therefore, if you omit the third argument to the
xslt_process() function (or provide a NULL value for the argument), it will automatically
return the value of the XSLT transformation, instead of writing it to a file...

Example #2992 - Using the xslt_process() to transform an XML file and a XSL file
to a variable containing the resulting XML data

<?php

// Allocate a new XSLT processor

$xh = xslt_create();

// Process the document, returning the result into the $result variable

$result = xslt_process($xh, 'sample.xml', 'sample.xsl');

if ($result) {

 echo "SUCCESS, sample.xml was transformed by sample.xsl into the
\$result";

 echo " variable, the \$result variable has the following contents\n
\n";

 echo "<pre>\n";

 echo $result;

 echo "</pre>\n";

} else {

 echo "Sorry, sample.xml could not be transformed by sample.xsl into";

 echo " the \$result variable the reason is that " . xslt_error($xh);

 echo " and the error code is " . xslt_errno($xh);

}

xslt_free($xh);

?>

The above two cases are the two simplest cases there are when it comes to XSLT
transformation and I'd dare say that they are the most common cases, however,
sometimes you get your XML and XSLT code from external sources, such as a database
or a socket. In these cases you'll have the XML and/or XSLT data in a variable -- and in
production applications the overhead of dumping these to file may be too much. This is
where XSLT's "argument" syntax, comes to the rescue. Instead of files as the XML and
XSLT arguments to the xslt_process() function, you can specify "argument place holders"
which are then substituted by values given in the arguments array (5th parameter to the
xslt_process() function). The following is an example of processing XML and XSLT into a
result variable without the use of files at all.

Example #2993 - Using the xslt_process() to transform a variable containing XML
data and a variable containing XSL data into a variable containing the resulting
XML data

<?php

// $xml and $xsl contain the XML and XSL data

$arguments = array(

 '/_xml' => $xml,

 '/_xsl' => $xsl

);

// Allocate a new XSLT processor

$xh = xslt_create();

// Process the document

$result = xslt_process($xh, 'arg:/_xml', 'arg:/_xsl', NULL, $arguments);

if ($result) {

 echo "SUCCESS, sample.xml was transformed by sample.xsl into the
\$result";

 echo " variable, the \$result variable has the following contents\n
\n";

 echo "<pre>\n";

 echo $result;

 echo "</pre>\n";

} else {

 echo "Sorry, sample.xml could not be transformed by sample.xsl into";

 echo " the \$result variable the reason is that " . xslt_error($xh);

 echo " and the error code is " . xslt_errno($xh);

}

xslt_free($xh);

?>

Example #2994 - Passing PHP variables to XSL files

<?php

// XML string

$xml = '<?xml version="1.0"?>

<para>

change me

</para>';

// XSL string

$xsl = '

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" encoding="ISO-8859-1" indent="no"

omit-xml-declaration="yes" media-type="text/html"/>

<xsl:param name="myvar"/>

<xsl:param name="mynode"/>

<xsl:template match="/">

My PHP variable : <xsl:value-of select="$myvar"/>

My node set : <xsl:value-of select="$mynode"/>

</xsl:template>

</xsl:stylesheet>';

$xh = xslt_create();

// the second parameter will be interpreted as a string

$parameters = array (

 'myvar' => 'test',

 'mynode' => '<foo>bar</foo>'

);

$arguments = array (

 '/_xml' => $xml,

 '/_xsl' => $xsl

);

echo xslt_process($xh, 'arg:/_xml', 'arg:/_xsl', NULL, $arguments,
$parameters);

?>

The above example will output:

My PHP variable : test

My node set : <foo>bar</foo>

Notes

Note

Please note that file:// is needed in front of the path when using Windows.

xslt_set_base

xslt_set_base -- Set the base URI for all XSLT transformations

Description

void xslt_set_base (resource $xh, string $uri)

Sets the base URI for all XSLT transformations, the base URI is used with Xpath
instructions to resolve document() and other commands which access external resources.
It is also used to resolve URIs for the <xsl:include> and <xsl:import> elements.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

uri

The base URI to be used.

Return Values

No value is returned.

ChangeLog

Version Description

4.3.0 As of PHP 4.3.0, the default base URI is the
directory of the executing script. In effect, it
is the directory name value of the __FILE__
constant. The default base URI is less
predictable with older versions.

Notes

Note

Please note that file:// is needed in front of the path when using Windows.

xslt_set_encoding

xslt_set_encoding -- Set the encoding for the parsing of XML documents

Description

void xslt_set_encoding (resource $xh, string $encoding)

Set the output encoding for the XSLT transformations. When using the Sablotron backend,
this option is only available when you compile Sablotron with encoding support.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

encoding

An output encoding, e.g iso-8859-1.

Return Values

No value is returned.

xslt_set_error_handler

xslt_set_error_handler -- Set an error handler for a XSLT processor

Description

void xslt_set_error_handler (resource $xh, mixed $handler)

Set an error handler function for the XSLT processor given by xh, this function will be
called whenever an error occurs in the XSLT transformation (this function is also called for
notices).

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

handler

The user function needs to accept four parameters: the XSLT processor, the error
level, the error code and an array of messages. The function can be shown as:
error_handler (resource $xh, int $error_level, int $error_code, array $messages)

Return Values

No value is returned.

Examples

Example #2995 - xslt_set_error_handler() Example

<?php

// Our XSLT error handler

function xslt_error_handler($handler, $errno, $level, $info)

{

 // for now, let's just see the arguments

 var_dump(func_get_args());

}

// XML content :

$xml='<?xml version="1.0"?>

<para>

oops, I misspelled the closing tag

</pata>';

// XSL content :

$xsl='<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <xsl:value-of select="para"/>

</xsl:template>

</xsl:stylesheet>';

$xh = xslt_create();

xslt_set_error_handler($xh, "xslt_error_handler");

echo xslt_process($xh, 'arg:/_xml', 'arg:/_xsl',

 NULL, array("/_xml" => $xml, "/_xsl" => $xsl));

?>

The above example will output something similar to:

array(4) {

 [0]=>

 resource(1) of type (XSLT Processor)

 [1]=>

 int(3)

 [2]=>

 int(0)

 [3]=>

 array(6) {

 ["msgtype"]=>

 string(5) "error"

 ["code"]=>

 string(1) "2"

 ["module"]=>

 string(9) "Sablotron"

 ["URI"]=>

 string(9) "arg:/_xml"

 ["line"]=>

 string(1) "4"

 ["msg"]=>

 string(34) "XML parser error 7: mismatched tag"

 }

}

See Also

• xslt_set_object() if you want to use an object method as handler

xslt_set_log

xslt_set_log -- Set the log file to write log messages to

Description

void xslt_set_log (resource $xh [, mixed $log])

This function allows you to set the file in which you want XSLT log messages to, XSLT log
messages are different than error messages, in that log messages are not actually error
messages but rather messages related to the state of the XSLT processor. They are
useful for debugging XSLT, when something goes wrong.

By default logging is disabled, in order to enable logging you must first call xslt_set_log()
with a boolean parameter which enables logging, then if you want to set the log file to
debug to, you must then pass it a string containing the filename.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

log

This parameter is either a boolean value which toggles logging on and off, or a string
containing the logfile in which log errors too.

Return Values

No value is returned.

Notes

Note

Please note that file:// is needed in front of the path when using Windows.

Examples

Example #2996 - Using the XSLT Logging features

<?php

$xh = xslt_create();

xslt_set_log($xh, true);

xslt_set_log($xh, getcwd() . '/myfile.log');

$result = xslt_process($xh, 'dog.xml', 'pets.xsl');

echo $result;

xslt_free($xh);

?>

xslt_set_object

xslt_set_object -- Sets the object in which to resolve callback functions

Description

bool xslt_set_object (resource $processor, object &$obj)

This function allows to use the processor inside an object and to resolve all callback
functions in it.

The callback functions can be declared with xml_set_sax_handlers(),
xslt_set_scheme_handlers() or xslt_set_error_handler() and are assumed to be methods
of object.

Parameters

processor

The XSLT processor link identifier, created with xslt_create().

obj

An object.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example #2997 - Using your own error handler as a method

<?php

class my_xslt_processor {

 var $_xh; // our XSLT processor

 function my_xslt_processor()

 {

 $this->_xh = xslt_create();

 // Make $this object the callback resolver

 xslt_set_object($this->_xh, $this);

 // Let's handle the errors

 xslt_set_error_handler($this->_xh, "my_xslt_error_handler");

 }

 function my_xslt_error_handler($handler, $errno, $level, $info)

 {

 // for now, let's just see the arguments

 var_dump(func_get_args());

 }

}

?>

xslt_set_sax_handler

xslt_set_sax_handler -- Set SAX handlers for a XSLT processor

Description

void xslt_set_sax_handler (resource $xh, array $handlers)

Set SAX handlers on the resource handle given by xh.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

handlers

SAX handlers should be a two dimensional array with the format (all top level elements
are optional):

array(

[document] =>

 array(

 start document handler,

 end document handler

),

[element] =>

 array(

 start element handler,

 end element handler

),

[namespace] =>

 array(

 start namespace handler,

 end namespace handler

),

[comment] => comment handler,

[pi] => processing instruction handler,

[character] => character data handler

)

Return Values

No value is returned.

xslt_set_sax_handlers

xslt_set_sax_handlers -- Set the SAX handlers to be called when the XML document gets
processed

Description

void xslt_set_sax_handlers (resource $processor, array $handlers)

xslt_set_sax_handlers() registers the SAX handlers for the document, given a XSLT
processor resource.

Using xslt_set_sax_handlers() doesn't look very different than running a SAX parser like
xml_parse() on the result of an xslt_process() transformation.

Parameters

processor

The XSLT processor link identifier, created with xslt_create().

handlers

handlers should be an array in the following format:

<?php

$handlers = array(

 "document" => array(

 "start_doc",

 "end_doc"),

 "element" => array(

 "start_element",

 "end_element"),

 "namespace" => array(

 "start_namespace",

 "end_namespace"),

 "comment" => "comment",

 "pi" => "pi",

 "character" => "characters"

);

?>

Where the functions follow the syntax described for the scheme handler functions.

Note

The given array does not need to contain all of the different sax handler elements
(although it can), but it only needs to conform to "handler" => "function" format
described above.

Each of the individual SAX handler functions are in the format below:

•
start_doc (resource $processor)

•
end_doc (resource $processor)

•
start_element (resource $processor, string $name, array $attributes)

•
end_element (resource $processor, string $name)

•
start_namespace (resource $processor, string $prefix, string $uri)

•
end_namespace (resource $processor, string $prefix)

•
comment (resource $processor, string $contents)

•
pi (resource $processor, string $target, string $contents)

•
characters (resource $processor, string $contents)

Return Values

No value is returned.

Examples

Example #2998 - xslt_set_sax_handlers() Example

<?php

// From ohlesbeauxjours at yahoo dot fr

// Here's a simple example that applies strtoupper() on

// the content of every <auteur> tag and then displays the

// resulting XML tree:

$xml='<?xml version="1.0"?>

<books>

<book>

 <title>Mme Bovary</title>

 <author>Gustave Flaubert</author>

</book>

<book>

 <title>Mrs Dalloway</title>

 <author>Virginia Woolf</author>

</book>

</books>';

$xsl='<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" encoding="ISO-8859-1" indent="no"
omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:for-each select="books/book">

 <livre>

 <auteur><xsl:value-of select="author/text()"/></auteur>

 </livre>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>';

// Handlers :

function start_document()

{

 // start reading the document

}

function end_document()

{

 // end reading the document

}

function start_element($parser, $name, $attributes)

{

 global $result,$tag;

 $result .= "<". $name . ">";

 $tag = $name;

}

function end_element($parser, $name)

{

 global $result;

 $result .= "</" . $name . ">";

}

function characters($parser, $data)

{

 global $result,$tag;

 if ($tag == "auteur") {

 $data = strtoupper($data);

 }

 $result .= $data;

}

// Transformation :

$xh = xslt_create();

$handlers = array("document" => array("start_document","end_document"),

 "element" => array("start_element","end_element"),

 "character" => "characters");

xslt_set_sax_handlers($xh, $handlers);

xslt_process($xh, 'arg:/_xml', 'arg:/_xsl', NULL, array("/_xml"=>$xml,
"/_xsl"=>$xsl));

xslt_free($xh);

?>

You can also use xslt_set_object() if you want to implement your handlers in an object.

Example #2999 - Object oriented handler

<?php

// This is the object oriented version of the previous example

class data_sax_handler {

 var $buffer, $tag, $attrs;

 var $_xh;

 function data_sax_handler($xml, $xsl)

 {

 // our xslt resource

 $this->_xh = xslt_create();

 xslt_set_object($this->_xs, $this);

 // configure sax handlers

 $handlers = array(

 "document" => array('start_document', 'end_document'),

 "element" => array('start_element', 'end_element'),

 "character" => 'characters'

);

 xslt_set_sax_handlers($this->_xh, $handlers);

 xslt_process($this->_xh, 'arg:/_xml', 'arg:/_xsl', NULL,
array("/_xml"=>$xml, "/_xsl"=>$xsl));

 xslt_free($this->_xh);

 }

 function start_document()

 {

 // start reading the document

 }

 function end_document() {

 // complete reading the document

 }

 function start_element($parser, $name, $attributes) {

 $this->tag = $name;

 $this->buffer .= "<" . $name . ">";

 $this->attrs = $attributes;

 }

 function end_element($parser, $name)

 {

 $this->tag = '';

 $this->buffer .= "</" . $name . ">";

 }

 function characters($parser, $data)

 {

 if ($this->tag == 'auteur') {

 $data = strtoupper($data);

 }

 $this->buffer .= $data;

 }

 function get_buffer() {

 return $this->buffer;

 }

}

$exec = new data_sax_handler($xml, $xsl);

?>

Both examples will output:

<livre>

 <auteur>GUSTAVE FLAUBERT</auteur>

</livre>

<livre>

 <auteur>VIRGINIA WOOLF</auteur>

</livre>

xslt_set_scheme_handler

xslt_set_scheme_handler -- Set Scheme handlers for a XSLT processor

Description

void xslt_set_scheme_handler (resource $xh, array $handlers)

Set Scheme handlers on the resource handle given by xh.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

handlers

Scheme handlers should be an array with the format (all elements are optional):

array(

[get_all] => get all handler,

[open] => open handler,

[get] => get handler,

[put] => put handler,

[close] => close handler

)

Return Values

No value is returned.

xslt_set_scheme_handlers

xslt_set_scheme_handlers -- Set the scheme handlers for the XSLT processor

Description

void xslt_set_scheme_handlers (resource $xh, array $handlers)

Registers the scheme handlers (XPath handlers) for the document.

Parameters

xh

The XSLT processor link identifier, created with xslt_create().

handlers

An array with the following keys: "get_all", "open", "get", "put", and "close". Every entry
must be a function name or an array in the following format: array($obj, "method").
Note that the given array does not need to contain all of the different scheme handler
elements (although it can), but it only needs to conform to the "handler" => "function"
format described above. Each of the individual scheme handler functions called are in
the formats below:
string get_all(resource processor, string scheme, string rest)

resource open(resource processor, string scheme, string rest)

int get(resource processor, resource fp, string &data)

int put(resource processor, resource fp, string data)

void close(resource processor, resource fp)

Return Values

No value is returned.

Examples

Example #3000 - xslt_set_scheme_handlers() example

For example, here is an implementation of the "file_exists()" PHP function.

<?php

// Definition of the handler

function mySchemeHandler($processor, $scheme, $rest)

{

 $rest = substr($rest,1); // to remove the first / automatically added
by the engine

 if ($scheme == 'file_exists') {

 // result is embedded in a small xml string

 return '<?xml version="1.0" encoding="UTF-8"?><root>' .
(file_exists($rest) ? 'true' : 'false') . '</root>';

 }

}

$SchemeHandlerArray = array('get_all' => 'mySchemeHandler');

// Start the engine

$params = array();

$xh = xslt_create();

xslt_set_scheme_handlers($xh, $SchemeHandlerArray);

$result = xslt_process($xh, "myFile.xml", "myFile.xsl", NULL, array(),
$params);

xslt_free($xh);

echo $result;

?>

Then, inside the stylesheet, you can test whether a certain file exists with:

<xsl:if test="document('file_exists:anotherXMLfile.xml')/root='true'">

<!-- The file exist -->

</xsl:if>

See Also

• xslt_set_scheme_handler()

xslt_setopt

xslt_setopt -- Set options on a given xsl processor

Description

mixed xslt_setopt (resource $processor, int $newmask)

xslt_setopt() sets the options specified by newmask on the given processor.

Parameters

processor

The XSLT processor link identifier, created with xslt_create().

newmask

newmask is a bitmask constructed with the following constants:

• XSLT_SABOPT_PARSE_PUBLIC_ENTITIES - Tell the processor to parse public
entities. By default this has been turned off.

• XSLT_SABOPT_DISABLE_ADDING_META - Do not add the meta tag
"Content-Type" for HTML output. The default is set during the compilation of the
processor.

• XSLT_SABOPT_DISABLE_STRIPPING - Suppress the whitespace stripping (on
data files only).

• XSLT_SABOPT_IGNORE_DOC_NOT_FOUND - Consider unresolved documents
(the document() function) non-lethal.

Return Values

Returns the number of previous mask is possible, TRUE otherwise, FALSE in case of an
error.

Examples

Example #3001 - xslt_setopt() Example

<?php

$xh = xslt_create();

// Tell Sablotron to process public entities

xslt_setopt($xh, XSLT_SABOPT_PARSE_PUBLIC_ENTITIES);

// Let's also ask him to suppress whitespace stripping

xslt_setopt($xh, xslt_getopt($xh) | XSLT_SABOPT_DISABLE_STRIPPING);

?>

See Also

• xslt_getopt()

PHP at the Core: A Hacker's Guide to the Zend
Engine

Preface

The Zend API has evolved considerably over time, as PHP has become a more robust and
widespread language. With the introduction of PHP 5 came the Zend Engine 2 (ZE2). ZE2
came with an almost entirely new Object-Oriented Programming (OOP) model, as well as
improvements in most aspects of the API. PHP 6, which is still under active development
at the time of this writing, introduces the Zend Engine 3 (ZE3), which brings full Unicode
support to the language.

Warning

This documentation is still under heavy development. The original Zend documentation
is preserved in its entirety in the Zend Engine 1 section for those who need it before
this documentation is completed.

This section of the manual is devoted to ZE2. While PHP 4.4 is still in widespread use, the
differences in how extensions are written in ZE1 are small; a short reference to them is
given in an appendix to this section. ZE3's API may yet change significantly, and is
covered in another appendix. It will be more fully documented when PHP 6 enters a beta
testing stage.

The documentation in this section is current as of PHP 5.2.5, the most recent stable
release at the time of this writing. Notable differences in the minor PHP 5 releases (5.0
through 5.3) are given as appropriate.

The "counter" Extension - A Continuing Example

Preface

Throughout this Zend documentation, references are made to an example module in order
to illustrate various concepts. The "counter" extension is this example, a fictional yet
functional Zend module which strives to use as much of the Zend API as is reasonably
possible. This short chapter describes the userland interface to the completed extension.

Note

"counter" serves no practical purpose whatsoever, as the functionality it provides is far
more effectively implemented by appropriate userland code.

Installing/Configuring

Introduction

The "counter" extension provides any number of counters to PHP code using it which reset
at times determined by the caller.

There are three interfaces to "counter": basic, extended, and objective. The basic interface
provides a single counter controlled by INI settings and function calls. The extended
interface provides an arbitrary number of named counter resources which may optionally
persist beyond the lifetime of a single PHP request. The objective interface combines both
the basic and extended interfaces into a Counter class.

Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

Counter configuration options

Name Default Changeable Changelog

counter.reset_time COUNTER_RESET_
PER_REQUEST

PHP_INI_ALL

counter.save_path "" PHP_INI_ALL

counter.initial_value "0" PHP_INI_ALL

For further details and definitions of the PHP_INI_* constants, see the php.ini directives.

counter.reset_time integer
counter.reset_time tells "counter" to reset the counter used by the basic interface. It
may be any of the COUNTER_RESET_* constants (see below).

counter.save_path string
Tells "counter" where to save data that has to persist between invocations of PHP (i.e.
any counter that has COUNTER_RESET_NEVER or COUNTER_FLAG_SAVE). A file
will be created at this path, which must be readable and writeable to whatever user
PHP is running as.

counter.initial_value integer
Sets the initial value of the counter used by the basic interface whenever it is reset.

Resource Types

The "counter" extension defines one resource type, a counter.

Predefined Constants

The constants below are defined by this extension, and will only be available when the
extension has either been compiled into PHP or dynamically loaded at runtime.

COUNTER_FLAG_PERSIST (integer)
A counter with this flag will be created as a persistent resource.

COUNTER_FLAG_SAVE (integer)
A counter with this flag will be saved between invocations of PHP.

COUNTER_FLAG_NO_OVERWRITE (integer)
This flag causes counter_create() to avoid overwriting an existing named counter with
a new one.

COUNTER_META_NAME (string)
Pass this constant to get the name of a counter resource or object.

COUNTER_META_IS_PERISTENT (string)
Pass this constant to determine whether a counter resource or object is persistent (has
the COUNTER_FLAG_PERSIST flag).

COUNTER_RESET_NEVER (integer)
The counter will never be reset.

COUNTER_RESET_PER_LOAD (integer)
The counter will be reset on each invocation of PHP.

COUNTER_RESET_PER_REQUEST (integer)
The counter will be reset on each request.

Examples

Basic interface

The basic interface provides three simple functions, illustrated here:

Example #3002 - "counter"'s basic interface

<?php

$starting_counter_value = counter_get();

counter_bump(1);

$second_counter_value = counter_get();

counter_reset();

$final_counter_value = counter_get();

printf("%3d %3d %3d", $starting_counter_value, $second_counter_value,
$final_counter_value);

?>

The above example will output:

0 1 0

The basic interface also provides a number of INI settings, documented below.

Extended interface

The extended interface provides a small suite of functions that allow the user to define an
arbitrary number of named counters with unique settings. The basic interface can be used
in parallel with the extended interface.

Example #3003 - "counter"'s extended interface

<?php

function print_counter_info($counter)

{

 if (is_resource($counter)) {

 printf("Counter's name is '%s' and is%s persistent. Its current value
is %d.\n",

 counter_get_meta($counter, COUNTER_META_NAME),

 counter_get_meta($counter, COUNTER_META_IS_PERSISTENT) ? '' : '
not',

 counter_get_value($counter));

 } else {

 print "Not a valid counter!\n";

 }

}

if (($counter_one = counter_get_named("one")) === NULL) {

 $counter_one = counter_create("one", 0, COUNTER_FLAG_PERSIST);

}

counter_bump_value($counter_one, 2);

$counter_two = counter_create("two", 5);

$counter_three = counter_get_named("three");

$counter_four = counter_create("four", 2, COUNTER_FLAG_PERSIST |
COUNTER_FLAG_SAVE | COUNTER_FLAG_NO_OVERWRITE);

counter_bump_value($counter_four, 1);

print_counter_info($counter_one);

print_counter_info($counter_two);

print_counter_info($counter_three);

print_counter_info($counter_four);

?>

When run once, the above example outputs:

Counter's name is 'one' and is persistent. Its current value is 2.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 3.

If run a second time within the same instance of PHP, it outputs:

Counter's name is 'one' and is persistent. Its current value is 4.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 4.

If then run a third time in a different instance of PHP, it outputs:

Counter's name is 'one' and is persistent. Its current value is 2.

Counter's name is 'two' and is not persistent. Its current value is 5.

Not a valid counter!

Counter's name is 'four' and is persistent. Its current value is 5.

Objective interface

The objective interface provides an object-oriented way to access the extended interfaces.
The following example shows how the above one would be implemented using the
objective interface. The output of this example is exactly the same, except that instead of
printing "Not a valid counter!", this will instead issue a PHP warning that the variable
$counter_three is not an object. This example shows that it is possible to subclass the
Counter class defined by the extension, as well as that the counter's value is maintained
using an instance variable rather than method access.

Example #3004 - "counter"'s objective interface

<?php

class MyCounter extends Counter

{

 public function printCounterInfo() {

 printf("Counter's name is '%s' and is%s persistent. Its current value
is %d.\n",

 $this->getMeta(COUNTER_META_NAME),

 $this->getMeta(COUNTER_META_IS_PERSISTENT) ? '' : ' not',

 $this->value);

 }

}

Counter::setCounterClass("MyCounter");

if (($counter_one = Counter::getNamed("one")) === NULL) {

 $counter_one = new Counter("one", 0, COUNTER_FLAG_PERSIST);

}

$counter_one->bumpValue(2); // we aren't allowed to "set" the value directly

$counter_two = new Counter("two", 5);

$counter_three = Counter::getNamed("three");

$counter_four = new Counter("four", 2, COUNTER_FLAG_PERSIST |
COUNTER_FLAG_SAVE | COUNTER_FLAG_NO_OVERWRITE);

$counter_four->bumpValue(1);

$counter_one->printCounterInfo();

$counter_two->printCounterInfo();

$counter_three->printCounterInfo();

$counter_four->printCounterInfo();

?>

The Counter class

Introduction

Represents a single counter object.

Class synopsis

Counter

Counter {

Counter::__construct (string $name [, integer $initial_value [, integer $flags]])

integer Counter::getValue (void)

void Counter::bumpValue (integer $offset)

void Counter::resetValue (void)

mixed Counter::getMeta (integer $attribute)

static Counter Counter::getNamed (string $name)

static void Counter::setCounterClass (string $name)
}

Counter::__construct

Counter::__construct -- Creates an instance of a Counter which maintains a single numeric
value.

Description

Counter::__construct (string $name [, integer $initial_value [, integer $flags]])

Creates an instance of a Counter which maintains a single numeric value.

Parameters

name
The new counter's name.

initial_value
The initial value of the counter. Defaults to zero (0).

flags
Flags for the new counter, chosen from the COUNTER_FLAG_* constants.

Return Values

Returns a Counter object on success.

Errors/Exceptions

Counter::__construct() throws an Exception if something goes wrong.

Counter::getValue

Counter::getValue -- Get the current value of a counter.

Description

integer Counter::getValue (void)

Counter::getValue() returns the current value of a counter.

Return Values

Counter::getValue() returns an integer.

See Also

• Counter::bumpValue()
• Counter::resetValue()

Counter::bumpValue

Counter::bumpValue -- Change the current value of a counter.

Description

void Counter::bumpValue (integer $offset)

Counter::bumpValue() updates the current value of a counter.

Parameters

offset

The amount by which to change the counter's value. Can be negative.

See Also

• Counter::getValue()
• Counter::resetValue()

Counter::resetValue

Counter::resetValue -- Reset the current value of a counter.

Description

void Counter::resetValue (void)

Counter::resetValue() resets the current value of a counter to its original initial value.

See Also

• Counter::getValue()
• Counter::bumpValue()

Counter::getMeta

Counter::getMeta -- Return a piece of metainformation about a counter.

Description

mixed Counter::getMeta (integer $attribute)

Counter::getMeta() returns metainformation about a counter.

Parameters

attribute

The metainformation to retrieve.

Return Values

Counter::getMeta() returns values of varying types based on which metainformation was
requested.

Counter::getNamed

Counter::getNamed -- Retrieve an existing named counter.

Description

static Counter Counter::getNamed (string $name)

Counter::getNamed() returns an existing counter by name if that name exists, or NULL
otherwise. This is a static function.

Parameters

name

The counter name to search for.

Return Values

Counter::getNamed() returns an existing counter by name if that name exists, or NULL
otherwise.

Counter::setCounterClass

Counter::setCounterClass -- Set the class returned by Counter::getNamed.

Description

static void Counter::setCounterClass (string $name)

Counter::setCounterClass() changes the class of objects returned by Counter::getNamed()
. The class being set must not have a public constructor and must be a subclass of
Counter. If these conditions are not met, a fatal error is raised. This is a static function.

Parameters

name

The name of the class to use.

The basic interface

counter_get

counter_get -- Get the current value of the basic counter.

Description

integer counter_get (void)

counter_get() returns the current value of the basic interface's counter.

Return Values

counter_get() returns an integer.

See Also

• counter_bump()
• counter_reset()

counter_bump

counter_bump -- Update the current value of the basic counter.

Description

void counter_bump (integer $offset)

counter_bump() updates the current value of the basic interface's counter.

Parameters

offset

The amount by which to change the counter's value. Can be negative.

See Also

• counter_get()
• counter_reset()

counter_reset

counter_reset -- Reset the current value of the basic counter.

Description

void counter_reset (void)

counter_reset() resets the current value of the basic interface's counter to its original initial
value.

See Also

• counter_get()
• counter_bump()

The extended interface

counter_create

counter_create -- Creates a counter which maintains a single numeric value.

Description

resource counter_create (string $name [, integer $initial_value [, integer $flags]])

Creates a counter which maintains a single numeric value.

Parameters

name
The new counter's name.

initial_value
The initial value of the counter. Defaults to zero (0).

flags
Flags for the new counter, chosen from the COUNTER_FLAG_* constants.

Return Values

Returns a counter resource.

counter_get_value

counter_get_value -- Get the current value of a counter resource.

Description

integer counter_get_value (resource $counter)

counter_get_value() returns the current value of a counter resource.

Parameters

counter

The counter resource to operate on.

Return Values

counter_get_value() returns an integer.

See Also

• counter_bump_value()
• counter_reset_value()

counter_bump_value

counter_bump_value -- Change the current value of a counter resource.

Description

void counter_bump_value (resource $counter, integer $offset)

counter_bump_value() updates the current value of a counter resource.

Parameters

counter

The counter resource to operate on.

offset

The amount by which to change the counter's value. Can be negative.

See Also

• counter_get_value()
• counter_reset_value()

counter_reset_value

counter_reset_value -- Reset the current value of a counter resource.

Description

void counter_reset_value (resource $counter)

counter_reset_value() resets the current value of a counter resource to its original initial
value.

Parameters

counter

The counter resource to operate on.

See Also

• counter_get_value()
• counter_bump_value()

counter_get_meta

counter_get_meta -- Return a piece of metainformation about a counter resource.

Description

mixed counter_get_meta (resource $counter, integer $attribute)

counter_get_meta() returns metainformation about a counter resource.

Parameters

counter

The counter resource to operate on.

attribute

The metainformation to retrieve.

Return Values

counter_get_meta() returns values of varying types based on which metainformation was
requested.

counter_get_named

counter_get_named -- Retrieve an existing named counter as a resource.

Description

resource Counter::getNamed (string $name)

counter_get_named() returns an existing counter by name if that name exists, or NULL
otherwise.

Parameters

name

The counter name to search for.

Return Values

counter_get_name() returns an existing counter by name if that name exists, or NULL
otherwise.

The PHP 5 build system

With all the functionality and flexibility available in PHP 5, it is no surprise that it consists of
several thousand files and over one million lines of source code. Equally unsurprising is
the necessity of a build system to manage so much data. This section describes how to
set PHP up for extension development, the layout of an extension within the PHP source
tree, and how to interface your extension with the build system.

Building PHP for extension development

In a typical PHP installation, the need for high performance almost always results in
optimization at the cost of debugging facilities. This is a reasonable tradeoff for production
use, but when developing an extension it falls short. What we need is a build of PHP which
will give us some hints what has gone wrong when something does.

The Zend Engine provides a memory manager which is capable of tracking memory leaks
in extensions and providing detailed debugging information. This tracking is disabled by
default, as is thread-safety. To turn them on, pass the --enable-debug and
--enable-maintainer-zts options to configure, along with whatever options you typically use.
For instructions on building PHP from source, see the instructions at General Installation
Considerations. A typical configure line might look like this:
$./configure --prefix=/where/to/install/php --enable-debug
--enable-maintainer-zts --enable-cgi --enable-cli --with-mysql=/path/to/mysql

The ext_skel script

A Zend extension is composed of several files common to all extensions. As the details of
many of those files are similar from extension to extension, it can be laborous to duplicate
the content for each one. Fortunately, there is a script which can do all of the initial setup
for you. It's called ext_skel, and it's been distributed with PHP since 4.0.

Running ext_skel with no parameters produces this output in PHP 5.2.2:
php-5.2.2/ext$./ext_skel

./ext_skel --extname=module [--proto=file] [--stubs=file] [--xml[=file]]

 [--skel=dir] [--full-xml] [--no-help]

 --extname=module module is the name of your extension

 --proto=file file contains prototypes of functions to create

 --stubs=file generate only function stubs in file

 --xml generate xml documentation to be added to phpdoc-cvs

 --skel=dir path to the skeleton directory

 --full-xml generate xml documentation for a self-contained extension

 (not yet implemented)

 --no-help don't try to be nice and create comments in the code

 and helper functions to test if the module compiled
Generally, when developing a new extension the only parameters you will be interested in
are --extname and --no-help. Unless you are already experienced with the structure of an
extension, you will not want to use --no-help; specifying it causes ext_skel to leave out

many helpful comments in the files it generates.

This leaves you with --extname, which tells ext_skel what the name of your extension is.
This "name" is an all-lowercase identifier containing only letters and underscores which is
unique among everything in the ext/ folder of your PHP distribution.

The --proto option is intended to allow the developer to specify a header file from which a
set of PHP functions will be created, ostensibly for the purpose of developing an extension
based on a library, but it often functions poorly with most modern header files. A test run
on the zlib.h header resulted in a very large number of empty and nonsense prototypes in
the ext_skel output files. The --xml and --full-xml options are entirely nonfunctional thus far.
The --skel option can be used to specify a modified set of skeleton files to work from, a
topic which is beyond the scope of this section.

Talking to the UNIX build system: config.m4

The config.m4 file for an extension tells the UNIX build system what configure options your
extension supports, what external libraries and includes you require, and what source files
are to be compiled as part of it. A reference to all the commonly used autoconf macros,
both PHP-specific and those built into autoconf, is given in the Zend Engine 2 API
reference section.

Tip

When developing a PHP extension, it is strongly recommended that autoconf version
2.13 be installed, despite the newer releases which are available. Version 2.13 is
recognized as a common denominator of autoconf availability, usability, and user base.
Using later versions will sometimes produce cosmetic differences from the expected
output of configure.

Example #3005 - An example config.m4 file

dnl Id

dnl config.m4 for extension example
PHP_ARG_WITH(example, for example
support,

[--with-example[=FILE] Include example support. File is the optional
path to example-config])

PHP_ARG_ENABLE(example-debug, whether to enable debugging support in
example,

[--enable-example-debug example: Enable debugging support in
example], no, no)

PHP_ARG_WITH(example-extra, for extra libraries for example,

[--with-example-extra=DIR example: Location of extra libraries for
example], no, no)

dnl Check whether the extension is enabled at all

if test "$PHP_EXAMPLE" != "no"; then

 dnl Check for example-config. First try any path that was given to us, then

look in $PATH

 AC_MSG_CHECKING([for example-config])

 EXAMPLE_CONFIG="example-config"

 if test "$PHP_EXAMPLE" != "yes"; then

 EXAMPLE_PATH=$PHP_EXAMPLE

 else

 EXAMPLE_PATH=`$php_shtool path $EXAMPLE_CONFIG`

 fi

 dnl If a usable example-config was found, use it

 if test -f "$EXAMPLE_PATH" && test -x "$EXAMPLE_PATH" && $EXAMPLE_PATH
--version > /dev/null 2>&1; then

 AC_MSG_RESULT([$EXAMPLE_PATH])

 EXAMPLE_LIB_NAME=`$EXAMPLE_PATH --libname`

 EXAMPLE_INCDIRS=`$EXAMPLE_PATH --incdirs`

 EXAMPLE_LIBS=`$EXAMPLE_PATH --libs`

 dnl Check that the library works properly

 PHP_CHECK_LIBRARY($EXAMPLE_LIB_NAME, example_critical_function,

 [

 dnl Add the necessary include dirs

 PHP_EVAL_INCLINE($EXAMPLE_INCDIRS)

 dnl Add the necessary libraries and library dirs

 PHP_EVAL_LIBLINE($EXAMPLE_LIBS, EXAMPLE_SHARED_LIBADD)

],[

 dnl Bail out

 AC_MSG_ERROR([example library not found. Check config.log for more
information.])

],[$EXAMPLE_LIBS]

)

 else

 dnl No usable example-config, bail

 AC_MSG_RESULT([not found])

 AC_MSG_ERROR([Please check your example installation.])

 fi

 dnl Check whether to enable debugging

 if test "$PHP_EXAMPLE_DEBUG" != "no"; then

 dnl Yes, so set the C macro

 AC_DEFINE(USE_EXAMPLE_DEBUG,1,[Include debugging support in example])

 fi

 dnl Check for the extra support

 if test "$PHP_EXAMPLE_EXTRA" != "no"; then

 if test "$PHP_EXAMPLE_EXTRA" == "yes"; then

 AC_MSG_ERROR([You must specify a path when using --with-example-extra])

 fi

 PHP_CHECK_LIBRARY(example-extra, example_critical_extra_function,

 [

 dnl Add the neccessary paths

 PHP_ADD_INCLUDE($PHP_EXAMPLE_EXTRA/include)

 PHP_ADD_LIBRARY_WITH_PATH(example-extra, $PHP_EXAMPLE_EXTRA/lib,
EXAMPLE_SHARED_LIBADD)

 AC_DEFINE(HAVE_EXAMPLEEXTRALIB,1,[Whether example-extra support is
present and requested])

 EXAMPLE_SOURCES="$EXAMPLE_SOURCES example_extra.c"

],[

 AC_MSG_ERROR([example-extra lib not found. See config.log for more
information.])

],[-L$PHP_EXAMPLE_EXTRA/lib]

)

 fi

 dnl Finally, tell the build system about the extension and what files are
needed

 PHP_NEW_EXTENSION(example, example.c $EXAMPLE_SOURCES, $ext_shared)

 PHP_SUBST(EXAMPLE_SHARED_LIBADD)

fi

A short introduction to autoconf syntax

config.m4 files are written using the GNU autoconf syntax. It can be described in a nutshell
as shell scripting augmented by a powerful macro language. Comments are delimited by
the string dnl, and strings are quoted using left and right brackets (e.g. [and]). Quoting of
strings can be nested as many times as needed. A full reference to the syntax can be
found in the autoconf manual at.

PHP_ARG_*: Giving users the option

The very first thing seen in the example config.m4 above, aside from a couple of
comments, are three lines using PHP_ARG_WITH() and PHP_ARG_ENABLE(). These
provide configure with the options and help text seen when running./configure --help. As
the names suggest, the difference between the two is whether they create a --with-* option
or an --enable-* option. Every extension should provide at least one or the other with the
extension name, so that users can choose whether or not to build the extension into PHP.
By convention, PHP_ARG_WITH() is used for an option which takes a parameter, such as
the location of a library or program required by an extension, while PHP_ARG_ENABLE()
is used for an option which represents a simple flag.

Example #3006 - Sample configure output

$./configure --help

...

 --with-example[=FILE] Include example support. FILE is the optional
path to example-config

 --enable-example-debug example: Enable debugging support in example

 --with-example-extra=DIR example: Location of extra libraries for
example

...

$./configure --with-example=/some/library/path/example-config
--disable-example-debug --with-example-extra=/another/library/path

...

checking for example support... yes

checking whether to enable debugging support in example... no

checking for extra libraries for example... /another/library/path

...

Note

Regardless of the order in which options are specified on the command line when
configure is called, the checks will be run in the order they are specified in config.m4.

Processing the user's choices

Now that config.m4 can provide the user with some choices of what to do, it's time to act
upon those choices. In the example above, the obvious default for all three options, if any
of them are unspecified, is "no". As a matter of convention, it is best to use this as the
default for the option which enables the extension, as it will be overridden by phpize for
extensions built separately, and should not clutter the extension space by default when
being built into PHP. The code to process the three options is by far the most complicated.

Handling the --with-example[=FILE] option

The first check made of the --with-example[=FILE] option is whether it was set at all. As
this option controls the inclusion of the entire extension, if it was unspecified, given in the
negative form (--without-example), or given the value "no", nothing else is done at all. In
the example above, it is specified with the value /some/library/path/example-config, so the
first test succeeds.

Next, the code calls AC_MSG_CHECKING(), an autoconf macro which outputs a standard
"checking for something" line, and checks whether the user gave an explicit path to the
fictional example-config. In this example, PHP_EXAMPLE got the value
/some/library/path/example-config, which is now copied into the EXAMPLE_PATH
variable. Had the user specified only --with-example, the code would have executed
$php_shtool path $EXAMPLE_CONFIG, which would try to guess the location of
example-config using the user's current PATH. Either way, the next step is to check
whether the chosen EXAMPLE_PATH is a regular file, is executable, and can be run
successfully. If so, AC_MSG_RESULT() is called, which completes the output line started
by AC_MSG_CHECKING(). Otherwise, AC_MSG_ERROR() is called, which prints the
given message and halts configure immediately.

The code now determines some site-specific configuration information by running
example-config several times. The next call is to PHP_CHECK_LIBRARY(), a macro
provided by the PHP buildsystem as a wrapper around autoconf 's AC_CHECK_LIB().
PHP_CHECK_LIBRARY() attempts to compile, link, and run a program which calls the
symbol specified by the second parameter in the library specified by the first, using the
string given in the fifth as extra linker options. If the attempt succeeds, the script given in
the third parameter is run. This script tells the PHP buildsystem to extract include paths,
library paths, and library names from the raw option strings example-config provided. If the
attempt fails, the script in the fourth parameter is run instead. In this case,
AC_MSG_ERROR() is called to stop processing.

Handling the --enable-example-debug option

Processing the --enable-example-debug is much simpler. A simple check for its truth value
is performed. If that check succeeds, AC_DEFINE() is called to make the C macro
USE_EXAMPLE_DEBUG available to the source of the extension. The third parameter is
a comment string for config.h; it is safe to leave this empty, and often is.

Handling the --with-example-extra=DIR option

For the sake of this example, the fictional "extra" functionality requested by the
--with-example-extra=DIR option does not share the fictional example-config program, nor
does it have any default paths to search. Therefore, the user is required to provide the
installation prefix of the necessary library. This setup is somewhat unlikely in a real-world
extension, but is considered illustrative.

The code begins in a now-familiar way by checking the truth value of
PHP_EXAMPLE_EXTRA. If a negative form was provided, no further processing is done;
the user did not request extra functionality. If a positive form was provided without a
parameter, AC_MSG_ERROR() is called to halt processing. The next step is another
invocation of PHP_CHECK_LIBRARY(). This time, since there is no set of predefined
compiler options provided, PHP_ADD_INCLUDE() and
PHP_ADD_LIBRARY_WITH_PATH() are used to construct the necessary include paths,
library paths, and library flags for the extra functionality. AC_DEFINE() is also called to
indicate to the code that the extra functionality was both requested and available, and a
variable is set to tell later code that there are extra source files to build. If the check fails,
the familiar AC_MSG_ERROR() is called. A different way to handle the failure would have
been to call AC_MSG_WARNING() instead, e.g.:

AC_MSG_WARNING([example-extra lib not found. example will be built without extra
functionality.])

In this case, configure would print a warning message rather than an error, and continue
processing. Which way such failures are handled is a design decision left to the extension
developer.

Telling the buildsystem what was decided

With all the necessary includes and libraries specified, with all the options processed and
macros defined, one more thing remains to be done: The build system must be told to
build the extension itself, and which files are to be used for that. To do this, the
PHP_NEW_EXTENSION() macro is called. The first parameter is the name of the
extension, which is the same as the name of the directory containing it. The second
parameter is the list of all source files which are part of the extension. See
PHP_ADD_BUILD_DIR() for information about adding source files in subdirectories to the
build process. The third parameter should always be $ext_shared, a value which was
determined by configure when PHP_ARG_WITH() was called for --with-example[=FILE].
The fourth parameter specifies a "SAPI class", and is only useful for extensions which
require the CGI or CLI SAPIs specifically. It should be left empty in all other cases. The
fifth parameter specifies a list of flags to be added to CFLAGS while building the
extension; the sixth is a boolean value which, if "yes", will force the entire extension to be

built using $CXX instead of $CC. All parameters after the third are optional. Finally,
PHP_SUBST() is called to enable shared builds of the extension. See Extension FAQs for
more information on disabling support for building an extension in shared mode.

The counter extension's config.m4 file

The counter extension previously documented has a much simpler config.m4 file than that
described above, as it doesn't make use of many buildsystem features. This is a preferred
method of operation for any extension that doesn't use an external or bundled library.

Example #3007 - counter's config.m4 file

dnlId

dnl config.m4 for extension counter

PHP_ARG_ENABLE(counter, for counter support,

[--enable-counter Include counter support])

dnl Check whether the extension is enabled at all

if test "$PHP_COUNTER" != "no"; then

 dnl Finally, tell the build system about the extension and what files are
needed

 PHP_NEW_EXTENSION(counter, counter.c counter_util.c, $ext_shared)

 PHP_SUBST(COUNTER_SHARED_LIBADD)

fi

Talking to the Windows build system: config.w32

An extension's config.w32 file is similar in usage to the config.m4 file, with two critical
differences: first, it is used for Windows builds, and second, it is written in JavaScript. This
section makes no attempt to cover JavaScript syntax. For the moment, this section is
incomplete in lieu of a Win32 testbed, and an experimental-only port of the example
config.m4 is the only example provided.

Example #3008 - An example config.w32 file

// Id

// vim:ft=javascript
ARG_WITH("example", "for example support", "no");

ARG_ENABLE("example-debug", "for debugging support in example", "no")

ARG_WITH("example-extra", "for extra functionality in example", "no")

if (PHP_EXAMPLE != "no") {

 if (CHECK_LIB("libexample.lib", "example", PHP_EXAMPLE) &&

 CHECK_HEADER_ADD_INCLUDE("example.h", "CFLAGS_EXAMPLE", PHP_EXAMPLE +
"\\include")) {

 if (PHP_EXAMPLE_DEBUG != "no") {

 AC_DEFINE('USE_EXAMPLE_DEBUG', 1, 'Debug support in example');

 }

 if (PHP_EXAMPLE_EXTRA != "no" &&

 CHECK_LIB("libexample-extra.lib", "example", PHP_EXAMPLE) &&

 CHECK_HEADER_ADD_INCLUDE("example-extra.h", "CFLAGS_EXAMPLE",
PHP_EXAMPLE + ";" + PHP_PHP_BUILD + "\\include") {

 AC_DEFINE('HAVE_EXAMPLEEXTRA', 1, 'Extra functionality in
example');

 HAVE_EXTRA = 1;

 } else {

 WARNING("extra example functionality not enabled, lib not found"
);

 }

 EXTENSION("example", "example.c");

 if (HAVE_EXTRA == 1) {

 ADD_SOURCES("example-extra.c");

 }

 } else {

 WARNING("example not enabled; libraries not found");

 }

}

The counter extension's config.w32 file

The counter extension previously documented has a much simpler config.w32 file than
that described above, as it doesn't make use of many buildsystem features.

Example #3009 - counter's config.w32 file

// Id

// vim:ft=javascript
ARG_ENABLE("counter", "for counter support", "no");

if (PHP_COUNTER != "no") {

	EXTENSION("counter", "counter.c");

	ADD_SOURCE("counter-util.c");

}

Extension structure

Many extension-writing guides focus on simple examples first and ignore the requirements
of more complex implementations until later. Often such guides must repeat themselves
over and over in order to describe these new features. This section describes extension
structure from the perspective of a mature, practical implementation, in order to prepare
users for needs and issues they will almost always encounter in the process of extension
development.

Files which make up an extension

Whether created by hand, using ext_skel, or by an alternate extension generator, such as
» CodeGen, all extensions will have at least four files:

config.m4
UNIX build system configuration (see Talking to the UNIX build system: config.m4)

config.w32
Windows buildsystem configuration (see Talking to the Windows build system:
config.w32)

php_counter.h
When building an extension as static module into the PHP binary the build system
expects a header file with php_ prepended to the extension name which includes a
declaration for a pointer to the extension's module structure. This file usually contains
additional macros, prototypes, and globals, just like any header.

counter.c
Main extension source file. By convention, the name of this file is the extension name,
but this is not a requirement. This file contains the module structure declaration, INI
entries, management functions, userspace functions, and other requirements of an
extension.

The buildsystem files are discussed elsewhere; this section concentrates on the rest.
These four files make up the bare minimum for an extension, which may also contain any
number of headers, source files, unit tests, and other support files. The list of files in the
counter extension might look like this:

Example #3010 - Files in the counter extension, in no particular order

ext/

counter/

 .cvsignore

 config.m4

 config.w32

 counter_util.h

 counter_util.c

 php_counter.h

 counter.c

http://codegenerators.php-baustelle.de/
http://codegenerators.php-baustelle.de/

 package.xml

 CREDITS

 tests/

 critical_function_001.phpt

 critical_function_002.phpt

 optional_function_001.phpt

 optional_function_002.phpt

Non-source files

The.cvsignore file is used for extensions which are checked into one of the PHP CVS
repositories (usually » PECL); the one generated by ext_skel contains:

.deps

*.lo

*.la

These lines tell CVS to ignore interim files generated by the PHP buildsystem. This is only
a convenience, and can be omitted completely without ill effect.

The CREDITS file lists the contributors and/or maintainers of the extension in plain text
format. The main purpose of this file is generating the credits information for bundled
extensions as used by phpcredits(). By convention the first line of the file should hold the
name of the extension, the second a comma separated list of contributors. The
contributors are usually ordered by the chronological order of their contributions. In a
» PECL package, this information is already maintained in package.xml, for example. This
is another file which can be omitted without ill effect.

The package.xml file is specific to » PECL -based extensions; it is a metainformation file
which gives details about an extension's dependencies, authors, installation requirements,
and other tidbits. In an extension not being hosted in » PECL, this file is extraneous.

Basic constructs

C is a very low-level language by modern definitions. This means that it has no built-in
support for many features that PHP takes for granted, such as reflection, dynamic module
loading, bounds checking, threadsafe data management and various useful data
structures including linked lists and hash tables. At the same time, C is a common
denominator of language support and functionality. Given enough work, none of these
concepts are impossible; the Zend Engine uses them all.

A lot of effort has gone into making the Zend API both extensible and understandable, but
C forces certain necessary declarations upon any extension that to an inexperienced eye
seem redundant or plain unnecessary. All of those constructs, detailed in this section, are
"write once and forget" in Zend Engine 2 and 3. Here are some excerpts from the
pregenerated php_counter.h and counter.c files created by PHP 5.3's ext_skel, showing
the pregenerated declarations:

http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/
http://pecl.php.net/

Note

The astute reader will notice that there are several delcarations in the real files that
aren't shown here. Those declaractions are specific to various Zend subsystems and
are discussed elsewhere as appropriate.

extern zend_module_entry counter_module_entry;

#define phpext_counter_ptr &counter_module_entry

#ifdef PHP_WIN32

#	define PHP_COUNTER_API __declspec(dllexport)

#elif defined(__GNUC__) && __GNUC__ >= 4

#	define PHP_COUNTER_API __attribute__ ((visibility("default")))

#else

#	define PHP_COUNTER_API

#endif

#ifdef ZTS

#include "TSRM.h"

#endif

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "php.h"

#include "php_ini.h"

#include "ext/standard/info.h"

#include "php_counter.h"

/* ... */

#ifdef COMPILE_DL_COUNTER

ZEND_GET_MODULE(counter)

#endif

• The lines concerning counter_module_entry declare a global variable, and a macroed
pointer to it, which contains the zend_module_entry for the extension. Despite the later
discussion regarding the drawbacks of "true" globals, this usage is intentional; Zend
takes precautions to avoid misusing this variable.

• PHP_COUNTER_API is declared for use by non-PHP functions the module intends to
export for the use of other modules. The counter extension doesn't declare any of
these, and in the final version of the header file, this macro has been removed. The
PHPAPI macro is declared identically elsewhere and is used by the standard
extension to make the phpinfo() utility functions available to other extensions.

• The include of TSRM.h is skipped if PHP, or the extension, isn't being compiled with
thread-safety, since in that case TSRM isn't used.

• A standard list of includes, especially the extension's own php_counter.h, is given.
config.h gives the extension access to determinations made by configure. php.h is the
gateway to the entire PHP and Zend APIs. php_ini.h adds the APIs for runtime
configuration (INI) entries. Not all extensions will use this. Finally, ext/standard/info.h

imports the aforementioned phpinfo() utility API.

• COMPILE_DL_COUNTER will only be defined by configure if the counter extension is
both enabled and wants to be built as a dynamically loadable module instead of being
statically linked into PHP. ZEND_GET_MODULE defines a tiny function which Zend
can use to get the extension's zend_module_entry at runtime.

Note

The astute reader who has peeked into main/php_config.h after trying to build with
the counter module enabled statically may have noticed that there is also a
HAVE_COUNTER constant defined that the source code doesn't check for.
There's a simple reason this check isn't done: It's unnecessary. If the extension
isn't enabled, the source file will never be compiled.

The zend_module structure

The main source file of a PHP extension contains several new constructs for a C
programmer. The most important of these, the one touched first when starting a new
extension, is the zend_module structure. This structure contains a wealth of information
that tells the Zend Engine about the extension's dependencies, version, callbacks, and
other critical data. The structure has mutated considerably over time; this section will focus
on the structure as it has appeared since PHP 5.2, and will identify the very few parts
which have changed in PHP 5.3.

The zend_module declaration from counter.c looks like this before any code has been
written. The example file was generated by ext_skel --extname=counter, with some
obsolete constructs removed:

Example #3011 - zend_module declaration in the counter extension

/* {{{ counter_module_entry

*/

zend_module_entry counter_module_entry = {

 STANDARD_MODULE_HEADER,

 "counter",

 counter_functions,

 PHP_MINIT(counter),

 PHP_MSHUTDOWN(counter),

 PHP_RINIT(counter), /* Replace with NULL if there's nothing to do
at request start */

 PHP_RSHUTDOWN(counter), /* Replace with NULL if there's nothing to do
at request end */

 PHP_MINFO(counter),

 "0.1", /* Replace with version number for your extension */

 STANDARD_MODULE_PROPERTIES

};

/* }}} */

This may look a bit daunting at first glance, but most of it is very simple to understand.
Here's the declaration of zend_module from zend_modules.h in PHP 5.3:

Example #3012 - zend_module definition in PHP 5.3

struct _zend_module_entry {

 unsigned short size;

 unsigned int zend_api;

 unsigned char zend_debug;

 unsigned char zts;

 const struct _zend_ini_entry *ini_entry;

 const struct _zend_module_dep *deps;

 const char *name;

 const struct _zend_function_entry *functions;

 int (*module_startup_func)(INIT_FUNC_ARGS);

 int (*module_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 int (*request_startup_func)(INIT_FUNC_ARGS);

 int (*request_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 void (*info_func)(ZEND_MODULE_INFO_FUNC_ARGS);

 const char *version;

 size_t globals_size;

#ifdef ZTS

 ts_rsrc_id* globals_id_ptr;

#else

 void* globals_ptr;

#endif

 void (*globals_ctor)(void *global TSRMLS_DC);

 void (*globals_dtor)(void *global TSRMLS_DC);

 int (*post_deactivate_func)(void);

 int module_started;

 unsigned char type;

 void *handle;

 int module_number;

};

Many of these fields will never be touched by an extension writer. There are a number of
standard macros that set them to their proper values automatically. The macro
STANDARD_MODULE_HEADER fills in everything up to the deps field. Alternatively, the
STANDARD_MODULE_HEADER_EX will leave the deps field empty for the developer's
use. The developer is always responsible for everything from name to version. After that,
the STANDARD_MODULE_PROPERTIES macro will fill in the rest of the structure, or the
STANDARD_MODULE_PROPERTIES_EX macro can be used to leave the extension
globals and post-deactivation function fields unfilled. Most modern extensions will make
use of module globals.

Note

This table gives the values that each field would have if the developer were to fill in the
structure entirely by hand, without recourse to any of the shortcut macros. This is not
recommended. The "correct" values for many fields may change. Use the macros
whenever possible.

Module structure field values

Field Value Description

size [1] [2] [3] sizeof(zend_module_entry) The size in bytes of the
structure.

zend_api [1] [2] [3] ZEND_MODULE_API_NO The version of the Zend API
this module was compiled
against.

zend_debug [1] [2] [3] ZEND_DEBUG A flag indicating whether the
module was compiled with
debugging turned on.

zts [1] [2] [3] USING_ZTS A flag indicating whether the
module was compiled with
ZTS (TSRM) enabled (see
Memory management).

ini_entry [1] [3] NULL This pointer is used internally
by Zend to keep a non-local
reference to any INI entries
declared for the module.

deps [3] NULL A pointer to a list of
dependencies for the
module.

name "mymodule" The name of the module.
This is the short name, such
as "spl" or "standard".

functions mymodule_functions A pointer to the module's
function table, which Zend
uses to expose functions in
the module to user space.

module_startup_func PHP_MINIT(mymodule) A callback function that Zend
will call the first time a
module is loaded into a
particular instance of PHP.

module_shutdown_func PHP_MSHUTDOWN(mymod
ule)

A callback function that Zend
will call the when a module is
unloaded from a particular
instance of PHP, typically
during final shutdown.

request_startup_func PHP_RINIT(mymodule) A callback function that Zend
will call at the beginning of
each request.

request_shutdown_func PHP_RSHUTDOWN(mymod
ule)

A callback function that Zend
will call at the end of each
request.

info_func PHP_MINFO(mymodule) A callback function that Zend
will call when the phpinfo()
function is called.

version NO_VERSION_YET A string giving the version of
the module, as specified by
the module developer. It is
recommended that the
version number be either in
the format expected by
version_compare() (e.g.
"1.0.5-dev"), or a CVS or
SVN revision number (e.g.
"Rev").

globals_size [1] [4] [5] [6] sizeof(zend_mymodule_glob
als)

The size of the data structure
containing the module's
globals, if any.

globals_id_ptr [1] [4] [5] [6]
[7]

&mymodule_globals_id Only one of these two fields
will exist, depending upon
whether the USING_ZTS
constant is TRUE. The
former is an index into
TSRM's allocation table for
the module's globals, and the
latter is a pointer directly to
the globals.

globals_ptr [1] [4] [5] [6] [8] &mymodule_globals

globals_ctor [4] [5] [6] PHP_GINIT(mymodule) This funtion is called to
initialize a module's globals
before any
module_startup_func.

globals_dtor [4] [5] [6] PHP_GSHUTDOWN(mymod
ule)

This funtion is called to
deallocate a module's
globals after any
module_shutdown_func.

post_deactivate_func [4] ZEND_MODULE_POST_ZE
ND_DEACTIVATE_N(mymo
dule)

This function is called by
Zend after request shutdown.
It is rarely used.

module_started [1] [9] [4] 0 These fields are used for
Zend's internal tracking
information.

type [1] [9] [4] 0

handle [1] [9] [4] NULL

module_number [1] [9] [4] 0

[1] This field is not intended for use by module developers.
[2] This field is filled in by STANDARD_MODULE_HEADER_EX.
[3] This field is filled in by STANDARD_MODULE_HEADER.
[4] This field is filled in by STANDARD_MODULE_PROPERTIES.
[5] This field is filled in by NO_MODULE_GLOBALS.
[6] This field is filled in by PHP_MODULE_GLOBALS.
[7] This field only exists when USING_ZTS is TRUE.
[8] This field only exists when USING_ZTS is FALSE.
[9] This field is filled in by STANDARD_MODULE_PROPERTIES_EX.

Filling in the structure in a practical situation

With all these fields to play with, it can be confusing to know which to use for what
purpose. Here is the zend_module definition from the "counter" example extension after
updating it to its final form.

Example #3013 - Counter extension module definition

/* {{{ counter_module_entry

*/

zend_module_entry counter_module_entry = {

 STANDARD_MODULE_HEADER,

 "counter",

 counter_functions,

 PHP_MINIT(counter),

 PHP_MSHUTDOWN(counter),

 PHP_RINIT(counter),

 PHP_RSHUTDOWN(counter),

 PHP_MINFO(counter),

 NO_VERSION_YET,

 PHP_MODULE_GLOBALS(counter),

 PHP_GINIT(counter),

 PHP_GSHUTDOWN(counter),

 NULL,

 STANDARD_MODULE_PROPERTIES_EX

};

/* }}} */

• STANDARD_MODULE_HEADER is used since this module doesn't define any
dependencies.

• "counter" is the extension's name, and is used to define the various callback functions

the module passes to Zend. "counter" uses module, globals, and request functions at
startup and shutdown times, and provides information to phpinfo(), so all seven
callbacks are defined.

• It is assumed that there is a variable of type zend_function_entry * named
counter_functions earlier in the file that contains the module definition, listing the
functions the module exports to userspace.

• NO_VERSION_YET is a particularly nice way of telling Zend the module doesn't have
a version. It might have been more correct to place "1.0" here instead in a real module.

• "counter" uses per-module globals, so PHP_MODULE_GLOBALS is used

• This module has no post-deactivate function, so NULL is used.

• Since this module does use globals, STANDARD_MODULE_PROPERTIES_EX is
used to finish the structure.

What's changed between 5.2 and 5.3?

Nothing. The only differences in the zend_module structure between PHP 5.2 and PHP
5.3 are a few const keywords.

Extension globals

Introduction to globals in a PHP extension

In a language such as C, a "global" variable is a variable that can be accessed from any
function without any extra declaration. These traditional globals have a few drawbacks:

• Barring any special options passed to the compiler, a global varaible can be accessed
and changed by any piece of code anywhere in the program, whether or not that code
should be doing so.

• A typical global variable is not thread safe.

• The names of global variables are as global as the variables themselves.

A PHP extension's globals are more properly called the "extension state", since most
modules must remember what they're doing between function calls. The "counter"
extension is a perfect example of this need: The basic interface calls for a counter with a
persistant value. A programmer new to Zend and PHP might do something like this in
counter.c to store that value:

Example #3014 - The wrong way to store the basic counter interface's value

/* ... */

static long basic_counter_value;

/* ... */

PHP_FUNCTION(counter_get)

{

 RETURN_LONG(basic_counter_value);

}

On the surface this appears a viable solution, and indeed in a simple test it would function
correctly. However, there are a number of situations in which more than one copy of PHP
is running in the same thread, which means more than one instance of the counter
module. Suddenly these multiple threads are sharing the same counter value, which is
clearly undesireable. Another problem shows itself when considering that another
extension might someday happen to have a global with the same name, and due to the
rules of C scoping, this has the potential to cause a compile failure, or worse, a runtime
error. Something more elaborate is needed, and so exists Zend's support for threadsafe
per-module globals.

Declaring module globals

Whether a module uses only a single global or dozens, they must be defined in a
structure, and that structure must be declared. There are some macros that assist with
doing so in a way that avoids name conflicts between modules:
ZEND_BEGIN_MODULE_GLOBALS(), ZEND_END_MODULE_GLOBALS(), and
ZEND_DECLARE_MODULE_GLOBALS(). All three take as a parameter the short name
of the module, which in the case of the counter module is simply "counter". Here is the
global structure declaration from php_counter.h:

Example #3015 - The counter module's globals

ZEND_BEGIN_MODULE_GLOBALS(counter)

 long basic_counter_value;

ZEND_END_MODULE_GLOBALS(counter)

And this is the declaration from counter.c:

Example #3016 - The counter module's global structure declaration

ZEND_DECLARE_MODULE_GLOBALS(counter)

Accessing module globals

As discussed above, per-module globals are declared inside a C structure whose name is
obscured by Zend macros. As a result, the ideal way to access members of this structure
is by the use of further macros. Accordingly, most if not all extensions which have globals
have a declaration like this somewhere in their header file:

Example #3017 - Accessor macros for per-module globals

#ifdef ZTS

#define COUNTER_G(v) TSRMG(counter_globals_id, zend_counter_globals *, v)

#else

#define COUNTER_G(v) (counter_globals.v)

#endif

Note

This could have been generalized into a macro of its own by the Zend API, but as of
PHP 5.3 (and PHP 6 at the time of this writing), that hasn't happened. The global
accessor construct is written into the header by ext_skel and thus is generally left
alone by extension writers, unless they wish to change the name of the accessor
macro.

Note

COUNTER_G was the name given to the macro by ext_skel, but it's not necessary for
it to have that name and could just as easily be called FOO instead.

Any code in the counter extension that accesses a global must thus wrap it in the macro
COUNTER_G.

Warning

Any function which accesses globals must either be declared by Zend macros, have
TSRMLS_DC as its last argument, or call the macro TSRMLS_FETCH before
accessing the globals. See the TSRM documentation for more information.

Life cycle of an extension

Testing an extension

Memory management

Working with variables

Writing functions

PHP is also known as a Glue language, and extending it, can be easily done with those
extensions generators. When you use ext_skel and a prototype file to generate the C
function stubs, you will notice that all of the exported functions created have a simple
prototype such as the following: PHP_FUNCTION(func_name)

Working with classes and objects

Working with resources

Working with INI settings

Working with streams

Note

Information on using streams within the PHP source code can be found in the Streams
API for PHP Extension Authors reference.

PDO Driver How-To

The purpose of this How-To is to provide a basic understanding of the steps required to
write a database driver that interfaces with the PDO layer. Please note that this is still an
evolving API and as such, subject to change. This document was prepared based on
version 0.3 of PDO. The learning curve is steep; expect to spend a lot of time on the
prerequisites.

Prerequisites

The following is list of prerequisites and assumptions needed for writing a PDO database
driver:

• A working target database, examples, demos, etc. working as per vendor
specifications;

• A working development environment:

• Linux: standard development tools, gcc, ld, make, autoconf, automake, etc.,
versions dependent on distribution;

• Other Unix: standard development tools supplied by vendor plus the GNU
development tool set;

• Win32: Visual Studio compiler suite;

• A working PHP environment version 5.0.3 or higher with a working PEAR extension
version 1.3.5 or higher;

• A working PDO environment (can be installed using 'sudo pecl install PDO'), including
the headers which will be needed to access the PDO type definitions and function
declarations;

• A good working knowledge of the C programming language;

• A good working knowledge of the way to write a PHP extension; George
Schlossnagle's Advanced PHP Programming (published by Developer's Library,
chapters 21 and 22) is recommended;

• Finally, a familiarity with the Zend API that forms the heart of PHP, in particular paying
attention to the memory management aspects.

Preparation and Housekeeping

Source directory layout

The source directory for a typical PDO driver is laid out as follows, where SKEL represents

a shortened form of the name of the database that the driver is going to connect to. Even
though SKEL is presented here in uppercase (for clarity), the convention is to use
lowercase characters.

pdo_SKEL/

 config.m4 # unix build script

 config.w32 # win32 build script

 CREDITS

 package.xml # meta information about the package

 pdo_SKEL.c # standard PHP extension glue

 php_pdo_SKEL.h

 php_pdo_SKEL_int.h # driver private header

 SKEL_dbh.c # contains the implementation of the PDO driver
interface

 SKEL_stmt.c # contains the implementation of the PDO statement
interface

 tests/

The contents of these files are defined later in this document.

Creating a skeleton

The easiest way to get started is to use the ext_skel shell script found in the PHP build
tree in the ext directory. This will build a skeleton directory containing a lot of the files listed
above. It can be build by executing the following command from within the ext directory:

./ext_skel --extname=pdo_SKEL

This will generate a directory called pdo_SKEL containing the skeleton files that you can
then modify. This directory should then be moved out of the php extension directory . PDO
is a PECL extension and should not be included in the standard extension directory. As
long as you have PHP and PDO installed, you should be able to build from any directory.

Standard Includes

Build Specific Headers

The header file config.h is generated by the configure process for the platform for the
which the driver is being built. If this header is present, the HAVE_CONFIG_H compiler
variable is set. This variable should be tested for and if set, the file config.h should be
included in the compilation unit.

PHP Headers

The following standard public php headers should be included in each source module:

• php.h

• php_ini.h

• ext/standard/info.h

PDO Interface Headers

The following standard public PDO header files are also included in each source module:

pdo/php_pdo.h
This header file contains definitions of the initialization and shutdown functions in the
main driver as well as definitions of global PDO variables.

pdo/php_pdo_driver.h
This header contains the types and API contracts that are used to write a PDO driver.
It also contains method signature for calling back into the PDO layer and
registering/unregistering your driver with PDO. Most importantly, this header file
contains the type definitions for PDO database handles and statements. The two main
structures a driver has to deal with, pdo_dbh_t and pdo_stmt_t, are described in more
detail in Appendix A and B.

Driver Specific Headers

The typical PDO driver has two header files that are specific to the database
implementation. This does not preclude the use of more depending on the implementation.
The following two headers are, by convention, standard:

php_pdo_SKEL.h
This header file is virtually an exact duplicate in functionality and content of the
previously defined pdo/php_pdo.h that has been specifically tailored for your database.
If your driver requires the use of global variables they should be defined using the
ZEND_BEGIN_MODULE_GLOBALS and ZEND_END_MODULE_GLOBALS macros.
Macros are then used to access these variables. This macro is usually named
PDO_SKEL_G(v) where v is global variable to be accessed. Consult the Zend
programmer documentation for more information.

php_pdo_SKEL_int.h
This header file typically contains type definitions and function declarations specific to
the driver implementation. It also should contain the db specific definitions of a
pdo_SKEL_handle and pdo_SKEL_stmt structures. These are the names of the
private data structures that are then referenced by the driver_data members of the
handle and statement structures.

Optional Headers

Depending on the implementation details for a particular driver it may be necessary to
include the following header:

#include <zend_exceptions.h>

Fleshing out your skeleton

Major Structures and Attributes

The major structures, pdo_dbh_t and pdo_stmt_t are defined and explained in Appendix A
and B respectively. Database and Statement attributes are defined in Appendix C. Error
handling is explained in Appendix D.

pdo_SKEL.c: PHP extension glue

function entries

static function_entry pdo_SKEL_functions[] = {

 { NULL, NULL, NULL }

};

This structure is used to register functions into the global php function namespace. PDO
drivers should try to avoid doing this, so it is recommended that you leave this structure
initialized to NULL, as shown in the synopsis above.

Module entry

/* {{{ pdo_SKEL_module_entry */

#if ZEND_EXTENSION_API_NO >= 220050617

static zend_module_dep pdo_SKEL_deps[] = {

 ZEND_MOD_REQUIRED("pdo")

 {NULL, NULL, NULL}

};

#endif

/* }}} */

zend_module_entry pdo_SKEL_module_entry = {

#if ZEND_EXTENSION_API_NO >= 220050617

 STANDARD_MODULE_HEADER_EX, NULL,

 pdo_SKEL_deps,

#else

 STANDARD_MODULE_HEADER,

#endif

 "pdo_SKEL",

 pdo_SKEL_functions,

 PHP_MINIT(pdo_SKEL),

 PHP_MSHUTDOWN(pdo_SKEL),

 NULL,

 NULL,

 PHP_MINFO(pdo_SKEL),

 PHP_PDO_<DB>_MODULE_VERSION,

 STANDARD_MODULE_PROPERTIES

};

/* }}} */

#ifdef COMPILE_DL_PDO_<DB>

ZEND_GET_MODULE(pdo_db)

#endif

A structure of type zend_module_entry called pdo_SKEL_module_entry must be declared
and should include reference to the pdo_SKEL_functions table defined previously.

Standard PHP Module Extension Functions

PHP_MINIT_FUNCTION

/* {{{ PHP_MINIT_FUNCTION */

PHP_MINIT_FUNCTION(pdo_SKEL)

{

 return php_pdo_register_driver(&pdo_SKEL_driver);

}

/* }}} */

This standard PHP extension function should be used to register your driver with the PDO
layer. This is done by calling the php_pdo_register_driver() function passing a pointer to
a structure of type pdo_driver_t typically named pdo_SKEL_driver. A pdo_driver_t
contains a header that is generated using the PDO_DRIVER_HEADER(SKEL) macro and
pdo_SKEL_handle_factory() function pointer. The actual function is described during the
discussion of the SKEL_dbh.c unit.

PHP_MSHUTDOWN_FUNCTION

/* {{{ PHP_MSHUTDOWN_FUNCTION */

PHP_MSHUTDOWN_FUNCTION(pdo_SKEL)

{

 php_pdo_unregister_driver(&pdo_SKEL_driver);

 return SUCCESS;

}

/* }}} */

This standard PHP extension function is used to unregister your driver from the PDO layer.
This is done by calling the php_pdo_unregister_driver() function, passing the same
pdo_SKEL_driver structure that was passed in the init function above.

PHP_MINFO_FUNCTION

This is again a standard PHP extension function. Its purpose is to display information
regarding the module when the phpinfo() is called from a script. The convention is to
display the version of the module and also what version of the db you are dependent on,
along with any other configuration style information that might be relevant.

SKEL_driver.c: Driver implementation

This unit implements all of the database handling methods that support the PDO database
handle object. It also contains the error fetching routines. All of these functions will typically
need to access the global variable pool. Therefore, it is necessary to use the Zend macro

TSRMLS_DC macro at the end of each of these statements. Consult the Zend
programmer documentation for more information on this macro.

pdo_SKEL_error

static int pdo_SKEL_error(pdo_dbh_t *dbh,

 pdo_stmt_t *stmt, const char *file, int line TSRMLS_DC)

The purpose of this function is to be used as a generic error handling function within the
driver. It is called by the driver when an error occurs within the driver. If an error occurs
that is not related to SQLSTATE, the driver should set either dbh->error_code or
stmt->error_code to an SQLSTATE that most closely matches the error or the generic
SQLSTATE error "HY000". The file pdo_sqlstate.c in the PDO source contains a table of
commonly used SQLSTATE codes that the PDO code explicitly recognizes. This setting of
the error code should be done prior to calling this function.; This function should set the
global pdo_err variable to the error found in either the dbh or the stmt (if the variable stmt
is not NULL).

dbh
Pointer to the database handle initialized by the handle factory

stmt
Pointer to the current statement or NULL. If NULL, the error is derived by error code
found in the dbh.

file
The source file where the error occurred or NULL if not available.

line
The line number within the source file if available.

If the dbh member methods is NULL (which implies that the error is being raised from
within the PDO constructor), this function should call the zend_throw_exception_ex()
function otherwise it should return the error code. This function is usually called using a
helper macro that customizes the calling sequence for either database handling errors or
statement handling errors.

Example #3018 - Example macros for invoking pdo_SKEL_error

#define pdo_SKEL_drv_error(what) \

 pdo_SKEL_error(dbh, NULL, what, __FILE__, __LINE__ TSRMLS_CC)

#define pdo_SKEL_drv_error(what) \

 pdo_SKEL_error(dbh, NULL, what, __FILE__, __LINE__ TSRMLS_CC)

For more info on error handling, see Error handling.

Note

Despite being documented here, the PDO driver interface does not specify that this

function be present; it is merely a convenient way to handle errors, and it just happens
to be equally convenient for the majority of database client library APIs to structure
your driver implementation in this way.

pdo_SKEL_fetch_error_func

static int pdo_SKEL_fetch_error_func(pdo_dbh_t *dbh, pdo_stmt_t *stmt,

 zval *info TSRMLS_DC)

The purpose of this function is to obtain additional information about the last error that was
triggered. This includes the driver specific error code and a human readable string. It may
also include additional information if appropriate. This function is called as a result of the
PHP script calling the PDO::errorInfo() method.

dbh
Pointer to the database handle initialized by the handle factory

stmt
Pointer to the most current statement or NULL. If NULL, the error translated is derived
by error code found in the dbh.

info
A hash table containing error codes and messages.

The error_func should return two pieces of information as successive array elements. The
first item is expected to be a numeric error code, the second item is a descriptive string.
The best way to set this item is by using add_next_index. Note that the type of the first
argument need not be long; use whichever type most closely matches the error code
returned by the underlying database API.

/* now add the error information. */

/* These need to be added in a specific order */

add_next_index_long(info, error_code); /* driver specific error code */

add_next_index_string(info, message, 0); /* readable error message */

This function should return 1 if information is available, 0 if the driver does not have
additional info.

SKEL_handle_closer

static int SKEL_handle_closer(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to close an open database.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to close
the open database. PDO ignores the return value from this function.

SKEL_handle_preparer

static int SKEL_handle_preparer(pdo_dbh_t *dbh, const char *sql,

long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)

This function will be called by PDO in response to PDO::query() and PDO::prepare() calls
from the PHP script. The purpose of the function is to prepare raw SQL for execution,
storing whatever state is appropriate into the stmt that is passed in.

dbh
Pointer to the database handle initialized by the handle factory

sql
Pointer to a character string containing the SQL statement to be prepared.

sql_len
The length of the SQL statement.

Stmt
Pointer to the returned statement or NULL if an error occurs.

driver_options
Any driver specific/defined options.

This function is essentially the constructor for a stmt object. This function is responsible for
processing statement options, and setting driver-specific option fields in the pdo_stmt_t
structure.

PDO does not process any statement options on the driver's behalf before calling the
preparer function. It is your responsibility to process them before you return, raising an
error for any unknown options that are passed.

One very important responsibility of this function is the processing of SQL statement
parameters. At the time of this call, PDO does not know if your driver supports binding
parameters into prepared statements, nor does it know if it supports named or positional
parameter naming conventions.

Your driver is responsible for setting stmt->supports_placeholders as appropriate for the
underlying database. This may involve some run-time determination on the part of your
driver, if this setting depends on the version of the database server to which it is
connected. If your driver doesn't directly support both named and positional parameter
conventions, you should use the pdo_parse_params() API to have PDO rewrite the query
to take advantage of the support provided by your database.

Example #3019 - Using pdo_parse_params

int ret;

 char *nsql = NULL;

 int nsql_len = 0;

 /* before we prepare, we need to peek at the query; if it uses named
parameters,

 * we want PDO to rewrite them for us */

 stmt->supports_placeholders = PDO_PLACEHOLDER_POSITIONAL;

 ret = pdo_parse_params(stmt, (char*)sql, sql_len, &nsql, &nsql_len
TSRMLS_CC);

 if (ret == 1) {

 /* query was re-written */

 sql = nsql;

 } else if (ret == -1) {

 /* couldn't grok it */

 strcpy(dbh->error_code, stmt->error_code);

 return 0;

 }

 /* now proceed to prepare the query in "sql" */

Possible values for supports_placeholders are: PDO_PLACEHOLDER_NAMED,
PDO_PLACEHOLDER_POSITIONAL and PDO_PLACEHOLDER_NONE. If the driver
doesn't support prepare statements at all, then this function should simply allocate any
state that it might need, and then return:

Example #3020 - Implementing preparer for drivers that don't support native
prepared statements

static int SKEL_handle_preparer(pdo_dbh_t *dbh, const char *sql,

 long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)

{

 pdo_SKEL_db_handle *H = (pdo_SKEL_db_handle *)dbh->driver_data;

 pdo_SKEL_stmt *S = ecalloc(1, sizeof(pdo_SKEL_stmt));

 S->H = H;

 stmt->driver_data = S;

 stmt->methods = &SKEL_stmt_methods;

 stmt->supports_placeholders = PDO_PLACEHOLDER_NONE;

 return 1;

}

This function returns 1 on success or 0 on failure.

SKEL_handle_doer

static long SKEL_handle_doer(pdo_dbh_t *dbh, const char *sql, long sql_len
TSRMLS_DC)

This function will be called by PDO to execute a raw SQL statement. No pdo_stmt_t is
created.

dbh
Pointer to the database handle initialized by the handle factory

sql

Pointer to a character string containing the SQL statement to be prepared.

sql_len
The length of the SQL statement.

This function returns 1 on success or 0 on failure.

SKEL_handle_quoter

static int SKEL_handle_quoter(pdo_dbh_t *dbh, const char *unquoted,

 int unquoted_len, char **quoted, int quoted_len, enum pdo_param_type param_type
TSRMLS_DC)

This function will be called by PDO to turn an unquoted string into a quoted string for use
in a query.

dbh
Pointer to the database handle initialized by the handle factory

unquoted
Pointer to a character string containing the string to be quoted.

unquoted_len
The length of the string to be quoted.

quoted
Pointer to the address where a pointer to the newly quoted string will be returned.

quoted_len
The length of the new string.

param_type
A driver specific hint for driver that have alternate quoting styles

This function is called in response to a call to PDO::quote() or when the driver has set
supports_placeholder to PDO_PLACEHOLDER_NONE. The purpose is to quote a
parameter when building SQL statements.

If your driver does not support native prepared statements, implementation of this function
is required.

This function returns 1 if the quoting process reformatted the string, and 0 if it was not
necessary to change the string. The original string will be used unchanged with a 0 return.

SKEL_handle_begin

static int SKEL_handle_begin(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to begin a database transaction.

dbh

Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to begin
a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_commit

static int SKEL_handle_commit(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to end a database transaction.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to
commit a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_rollback

static int SKEL_handle_rollback(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to rollback a database transaction.

dbh
Pointer to the database handle initialized by the handle factory

This should do whatever database specific activity that needs to be accomplished to
rollback a transaction. This function returns 1 for success or 0 if an error occurred.

SKEL_handle_get_attribute

static int SKEL_handle_get_attribute(pdo_dbh_t *dbh, long attr, zval
*return_value TSRMLS_DC)

This function will be called by PDO to retrieve a database attribute.

dbh
Pointer to the database handle initialized by the handle factory

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

return_value
The returned value for the attribute.

It is up to the driver to decide which attributes will be supported for a particular
implementation. It is not necessary for a driver to supply this function. PDO driver handles
the PDO_ATTR_PERSISTENT, PDO_ATTR_CASE, PDO_ATTR_ORACLE_NULLS, and
PDO_ATTR_ERRMODE attributes directly.

This function returns 1 on success or 0 on failure.

SKEL_handle_set_attribute

static int SKEL_handle_set_attribute(pdo_dbh_t *dbh, long attr, zval *val
TSRMLS_DC)

This function will be called by PDO to set a database attribute, usually in response to a
script calling PDO::setAttribute().

dbh
Pointer to the database handle initialized by the handle factory

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

val
The new value for the attribute.

It is up to the driver to decide which attributes will be supported for a particular
implementation. It is not necessary for a driver to provide this function if it does not need to
support additional attributes. The PDO driver handles the PDO_ATTR_CASE,
PDO_ATTR_ORACLE_NULLS, and PDO_ATTR_ERRMODE attributes directly.

This function returns 1 on success or 0 on failure.

SKEL_handle_last_id

static char * SKEL_handle_last_id(pdo_dbh_t *dbh, const char *name, unsigned int
len TSRMLS_DC)

This function will be called by PDO to retrieve the ID of the last inserted row.

dbh
Pointer to the database handle initialized by the handle factory

name
string representing a table or sequence name.

len
the length of the name parameter.

This function returns a character string containing the id of the last inserted row on
success or NULL on failure. This is an optional function.

SKEL_check_liveness

static int SKEL_check_liveness(pdo_dbh_t *dbh TSRMLS_DC)

This function will be called by PDO to test whether or not a persistent connection to a
database is alive and ready for use.

dbh
Pointer to the database handle initialized by the handle factory

This function returns 1 if the database connection is alive and ready for use, otherwise it
should return 0 to indicate failure or lack of support.

Note

This is an optional function.

SKEL_get_driver_methods

static function_entry *SKEL_get_driver_methods(pdo_dbh_t *dbh, int kind
TSRMLS_DC)

This function will be called by PDO in response to a call to any method that is not a part of
either the PDO or PDOStatement classes. It's purpose is to allow the driver to provide
additional driver specific methods to those classes.

dbh
Pointer to the database handle initialized by the handle factory

kind
One of the following:
PDO_DBH_DRIVER_METHOD_KIND_DBH

Set when the method call was attempted on an instance of the PDO class. The
driver should return a pointer a function_entry table for any methods it wants to add
to that class, or NULL if there are none.

PDO_DBH_DRIVER_METHOD_KIND_STMT
Set when the method call was attempted on an instance of the PDOStatement
class. The driver should return a pointer to a function_entry table for any methods it
wants to add to that class, or NULL if there are none.

This function returns a pointer to the function_entry table requested, or NULL there are no
driver specific methods.

SKEL_handle_factory

static int SKEL_handle_factory(pdo_dbh_t *dbh, zval *driver_options TSRMLS_DC)

This function will be called by PDO to create a database handle. For most databases this
involves establishing a connection to the database. In some cases, a persistent connection
may be requested, in other cases connection pooling may be requested. All of these are

database/driver dependent.

dbh
Pointer to the database handle initialized by the handle factory

driver_options
An array of driver options, keyed by integer option number. See Database and
Statement Attributes Table for a list of possible attributes.

This function should fill in the passed database handle structure with its driver specific
information on success and return 1, otherwise it should return 0 to indicate failure.

PDO processes the AUTOCOMMIT and PERSISTENT driver options before calling the
handle_factory. It is the handle factory's responsibility to process other options.

Driver method table

A static structure of type pdo_dbh_methods named SKEL_methods must be declared and
initialized to the function pointers for each defined function. If a function is not supported or
not implemented the value for that function pointer should be set to NULL.

pdo_SKEL_driver

A structure of type pdo_driver_t named pdo_SKEL_driver should be declared. The
PDO_DRIVER_HEADER(SKEL) macro should be used to declare the header and the
function pointer to the handle factory function should set.

SKEL_statement.c: Statement implementation

This unit implements all of the database statement handling methods that support the PDO
statement object.

SKEL_stmt_dtor

static int SKEL_stmt_dtor(pdo_stmt_t *stmt TSRMLS_DC)

This function will be called by PDO to destroy a previously constructed statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

This should do whatever is necessary to free up any driver specific storage allocated for
the statement. The return value from this function is ignored.

SKEL_stmt_execute

static int SKEL_stmt_execute(pdo_stmt_t *stmt TSRMLS_DC)

This function will be called by PDO to execute the prepared SQL statement in the passed
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_fetch

static int SKEL_stmt_fetch(pdo_stmt_t *stmt, enum pdo_fetch_orientation ori,

 long offset TSRMLS_DC)

This function will be called by PDO to fetch a row from a previously executed statement
object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

ori
One of PDO_FETCH_ORI_xxx which will determine which row will be fetched.

offset
If ori is set to PDO_FETCH_ORI_ABS or PDO_FETCH_ORI_REL, offset represents
the row desired or the row relative to the current position, respectively. Otherwise, this
value is ignored.

The results of this fetch are driver dependent and the data is usually stored in the
driver_data member of the pdo_stmt_t object. The ori and offset parameters are only
meaningful if the statement represents a scrollable cursor. This function returns 1 for
success or 0 in the event of failure.

SKEL_stmt_param_hook

static int SKEL_stmt_param_hook(pdo_stmt_t *stmt,

 struct pdo_bound_param_data *param, enum pdo_param_event event_type TSRMLS_DC)

This function will be called by PDO for handling of both bound parameters and bound
columns.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

param
The structure describing either a statement parameter or a bound column.

event_type
The type of event to occur for this parameter, one of the following:
PDO_PARAM_EVT_ALLOC

Called when PDO allocates the binding. Occurs as part of
PDOStatement::bindParam(), PDOStatement::bindValue() or as part of an implicit

bind when calling PDOStatement::execute(). This is your opportunity to take some
action at this point; drivers that implement native prepared statements will typically
want to query the parameter information, reconcile the type with that requested by
the script, allocate an appropriately sized buffer and then bind the parameter to
that buffer. You should not rely on the type or value of the zval at
param->parameter at this point in time.

PDO_PARAM_EVT_FREE
Called once per parameter as part of cleanup. You should release any resources
associated with that parameter now.

PDO_PARAM_EXEC_PRE
Called once for each parameter immediately before calling SKEL_stmt_execute;
take this opportunity to make any final adjustments ready for execution. In
particular, you should note that variables bound via PDOStatement::bindParam()
are only legal to touch now, and not any sooner.

PDO_PARAM_EXEC_POST
Called once for each parameter immediately after calling SKEL_stmt_execute; take
this opportunity to make any post-execution actions that might be required by your
driver.

PDO_PARAM_FETCH_PRE
Called once for each parameter immediately prior to calling SKEL_stmt_fetch.

PDO_PARAM_FETCH_POST
Called once for each parameter immediately after calling SKEL_stmt_fetch.

This hook will be called for each bound parameter and bound column in the statement. For
ALLOC and FREE events, a single call will be made for each parameter or column. The
param structure contains a driver_data field that the driver can use to store implementation
specific information about each of the parameters.

For all other events, PDO may call you multiple times as the script issues
PDOStatement::execute() and PDOStatement::fetch() calls.

If this is a bound parameter, the is_param flag in the param structure is set, otherwise the
param structure refers to a bound column.

This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_describe_col

static int SKEL_stmt_describe_col(pdo_stmt_t *stmt, int colno TSRMLS_DC)

This function will be called by PDO to query information about a particular column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number to be queried.

The driver should populate the pdo_stmt_t member columns(colno) with the appropriate
information. This function returns 1 for success or 0 in the event of failure.

SKEL_stmt_get_col_data

static int SKEL_stmt_get_col_data(pdo_stmt_t *stmt, int colno,

 char **ptr, unsigned long *len, int *caller_frees TSRMLS_DC)

This function will be called by PDO to retrieve data from the specified column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number to be queried.

ptr
Pointer to the retrieved data.

len
The length of the data pointed to by ptr.

caller_frees
If set, ptr should point to emalloc'd memory and the main PDO driver will free it as
soon as it is done with it. Otherwise, it will be the responsibility of the driver to free any
allocated memory as a result of this call.

The driver should return the resultant data and length of that data in the ptr and len
variables respectively. It should be noted that the main PDO driver expects the driver to
manage the lifetime of the data. This function returns 1 for success or 0 in the event of
failure.

SKEL_stmt_set_attr

static int SKEL_stmt_set_attr(pdo_stmt_t *stmt, long attr, zval *val TSRMLS_DC)

This function will be called by PDO to allow the setting of driver specific attributes for a
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

val

The new value for the attribute.

This function is driver dependent and allows the driver the capability to set database
specific attributes for a statement. This function returns 1 for success or 0 in the event of
failure. This is an optional function. If the driver does not support additional settable
attributes, it can be NULLed in the method table. The PDO driver does not handle any
settable attributes on the database driver's behalf.

SKEL_stmt_get_attr

static int SKEL_stmt_get_attr(pdo_stmt_t *stmt, long attr, zval

 *return_value TSRMLS_DC)

This function will be called by PDO to allow the retrieval of driver specific attributes for a
statement object.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

attr
long value of one of the PDO_ATTR_xxxx types. See Database and Statement
Attributes Table for valid attributes.

return_value
The returned value for the attribute.

This function is driver dependent and allows the driver the capability to retrieve a
previously set database specific attribute for a statement. This function returns 1 for
success or 0 in the event of failure. This is an optional function. If the driver does not
support additional gettable attributes, it can be NULLed in the method table. The PDO
driver does not handle any settable attributes on the database driver's behalf.

SKEL_stmt_get_col_meta

static int SKEL_stmt_get_col_meta(pdo_stmt_t *stmt, int colno,

 zval *return_value TSRMLS_DC)

Warning

This function is not well defined and is subject to change.

This function will be called by PDO to retrieve meta data from the specified column.

stmt
Pointer to the statement structure initialized by SKEL_handle_preparer.

colno
The column number for which data is to be retrieved.

return_value
Holds the returned meta data.

The driver author should consult the documentation for this function that can be found in
the php_pdo_driver.h header as this will be the most current. This function returns 1 for
success or 0 in the event of failure. The database driver does not need to provide this
function.

Statement handling method table

A static structure of type pdo_stmt_methods named SKEL_stmt_methods should be
declared and initialized to the function pointers for each defined function. If a function is
not supported or not implemented the value for that function pointer should be set to
NULL.

Building

The build process is designed to work with PEAR (see for more information about PEAR).
There are two files that are used to assist in configuring your package for building. The first
is config.m4 which is the autoconf configuration file for all platforms except Win32. The
second is config.w32 which is a build configuration file for use on Win32. Skeleton files for
these are built for you when you first set up your project. You then need to customize them
to fit the needs of your project. Once you've customized your config files, you can build
your driver using the following sequence of commands:

Before first build:

$ sudo pecl install PDO

For each build:

$ cd pdo_SKEL

$ phpize

$./configure

$ make

$ sudo make install

The process can then be repeated as necessary during the development process.

Testing

PDO has a set of "core" tests that all drivers should pass before being released. They're
designed to run from the PHP source distribution, so running the tests for your driver
requires moving things around a bit. The suggested procedure is to obtain the latest PHP
5.1 snapshot and perform the following step:

$ cp -r pdo_SKEL /path/to/php-5.1/ext

This will allow the test harness to run your tests. The next thing you need to do is create a
test that will redirect into the PDO common core tests. The convention is to name this file

common.phpt; it should be placed in the tests subdirectory that was created by ext_skel
when you created your extension skeleton. The content of this file should look something
like the following:

--TEST--

SKEL

--SKIPIF--

<?php # vim:ft=php

if (!extension_loaded('pdo_SKEL')) print 'skip'; ?>

--REDIRECTTEST--

if (false !== getenv('PDO_SKEL_TEST_DSN')) {

user set them from their shell

 $config['ENV']['PDOTEST_DSN'] = getenv('PDO_SKEL_TEST_DSN');

 $config['ENV']['PDOTEST_USER'] = getenv('PDO_SKEL_TEST_USER');

 $config['ENV']['PDOTEST_PASS'] = getenv('PDO_SKEL_TEST_PASS');

 if (false !== getenv('PDO_SKEL_TEST_ATTR')) {

 $config['ENV']['PDOTEST_ATTR'] = getenv('PDO_SKEL_TEST_ATTR');

 }

 return $config;

}

return array(

 'ENV' => array(

 'PDOTEST_DSN' => 'SKEL:dsn',

 'PDOTEST_USER' => 'username',

 'PDOTEST_PASS' => 'password'

),

 'TESTS' => 'ext/pdo/tests'

);

This will cause the common core tests to be run, passing the values of PDOTEST_DSN,
PDOTEST_USER and PDOTEST_PASS to the PDO constructor as the dsn, username
and password parameters. It will first check the environment, so that appropriate values
can be passed in when the test harness is run, rather than hard-coding the database
credentials into the test file.

The test harness can be invoked as follows:

$ cd /path/to/php-5.1

$ make TESTS=ext/pdo_SKEL/tests PDO_SKEL_TEST_DSN="skel:dsn" \

PDO_SKEL_TEST_USER=user PDO_SKEL_TEST_PASS=pass test

Packaging and distribution

Creating a package

PDO drivers are released via PECL; all the usual rules for PECL extensions apply.
Packaging is accomplished by creating a valid package.xml file and then running:

$ pecl package

This will create a tarball named PDO_SKEL-X.Y.Z.tgz.

Before releasing the package, you should test that it builds correctly; if you've made a
mistake in your config.m4 or package.xml files, the package may not function correctly.

You can test the build, without installing anything, using the following invocation:

$ pecl build package.xml

Once this is proven to work, you can test installation:

$ pecl package

$ sudo pecl install PDO_SKEL-X.Y.X.tgz

Full details about package.xml can be found in the PEAR Programmer's documentation ().

Releasing the package

A PDO driver is released via the PHP Extension Community Library (PECL). Information
about PECL can be found at » http://pecl.php.net/index.php.

pdo_dbh_t definition

All fields should be treated as read-only by the driver, unless explicitly stated otherwise.

pdo_dbh_t

/* represents a connection to a database */

struct _pdo_dbh_t {

 /* driver specific methods */

 struct pdo_dbh_methods *methods; [1]
 /* driver specific data */

 void *driver_data; [2]

 /* credentials */

 char *username, *password; [3]

 /* if true, then data stored and pointed at by this handle must all be

 * persistently allocated */

 unsigned is_persistent:1; [4]

 /* if true, driver should act as though a COMMIT were executed between

 * each executed statement; otherwise, COMMIT must be carried out manually

 * */

 unsigned auto_commit:1; [5]

 /* if true, the driver requires that memory be allocated explicitly for

 * the columns that are returned */

 unsigned alloc_own_columns:1; [6]

 /* if true, commit or rollBack is allowed to be called */

 unsigned in_txn:1;

 /* max length a single character can become after correct quoting */

 unsigned max_escaped_char_length:3; [7]

 /* data source string used to open this handle */

 const char *data_source; [8]

http://pecl.php.net/index.php

 unsigned long data_source_len;

 /* the global error code. */

 pdo_error_type error_code; [9]

 enum pdo_case_conversion native_case [10], desired_case;

};

[1] The driver must set this during SKEL_handle_factory().
[2] This item is for use by the driver; the intended usage is to store a pointer (during
SKEL_handle_factory()) to whatever instance data is required to maintain a connection
to the database.
[3] The username and password that were passed into the PDO constructor. The driver
should use these values when it initiates a connection to the database.
[4] If this is set to 1, then any data that is referenced by the dbh, including whatever
structure your driver allocates, MUST be allocated persistently. This is easy to achieve;
rather than using the usual emalloc() simply use pemalloc() and pass the value of this
flag as the last parameter. Failure to use the appropriate kind of memory can lead to
serious memory faults, resulting (in the best case) a hard crash, and in the worst case, an
exploitable memory problem. If, for whatever reason, your driver is not suitable to run
persistently, you MUST check this flag in your SKEL_handle_factory() and raise an
appropriate error.
[5] You should check this value in your SKEL_handle_doer() and SKEL_stmt_execute()
functions; if it evaluates to true, you must attempt to commit the query now. Most database
implementations offer an auto-commit mode that handles this automatically.
[6] If your database client library API operates by fetching data into a caller-supplied
buffer, you should set this flag to 1 during your SKEL_handle_factory(). When set, PDO
will call your SKEL_stmt_describer() earlier than it would otherwise. This early call allows
you to determine those buffer sizes and issue appropriate calls to the database client
library. If your database client library API simply returns pointers to its own internal buffers
for you to copy after each fetch call, you should leave this value set to 0.
[7] If your driver doesn't support native prepared statements (supports_placeholders is
set to PDO_PLACEHOLDER_NONE), you must set this value to the maximum length
that can be taken up by a single character when it is quoted by your
SKEL_handle_quoter() function. This value is used to calculate the amount of buffer
space required when PDO executes the statement.
[8] This holds the value of the DSN that was passed into the PDO constructor. If your
driver implementation needed to modify the DSN for whatever reason, it should update this
member during SKEL_handle_factory(). Modifying this member should be avoided. If you
do change it, you must ensure that data_source_len is also correct.
[9] Whenever an error occurs during a call to one of your driver methods, you should set
this member to the SQLSTATE code that best describes the error and return an error. In
this HOW-TO, the suggested practice is to call SKEL_handle_error() when an error is
detected, and have it set the error code.
[10] Your driver should set this during SKEL_handle_factory(); the value should reflect
how the database returns the names of the columns in result sets. If the name matches
the case that was used in the query, set it to PDO_CASE_NATURAL (this is actually the
default). If the column names are always returned in upper case, set it to
PDO_CASE_UPPER. If the column names are always returned in lower case, set it to
PDO_CASE_LOWER. The value you set is used to determine if PDO should perform case
folding when the user sets the PDO_ATTR_CASE attribute.

pdo_stmt_t definition

All fields should be treated as read-only unless explicitly stated otherwise.

pdo_stmt_t

/* represents a prepared statement */

struct _pdo_stmt_t {

 /* driver specifics */

 struct pdo_stmt_methods *methods; [1]
 void *driver_data; [2]

 /* if true, we've already successfully executed this statement at least

 * once */

 unsigned executed:1; [3]
 /* if true, the statement supports placeholders and can implement

 * bindParam() for its prepared statements, if false, PDO should

 * emulate prepare and bind on its behalf */

 unsigned supports_placeholders:2; [4]

 /* the number of columns in the result set; not valid until after

 * the statement has been executed at least once. In some cases, might

 * not be valid until fetch (at the driver level) has been called at least
once.

 * */

 int column_count; [5]
 struct pdo_column_data *columns; [6]

 /* points at the dbh that this statement was prepared on */

 pdo_dbh_t *dbh;

 /* keep track of bound input parameters. Some drivers support

 * input/output parameters, but you can't rely on that working */

 HashTable *bound_params;

 /* When rewriting from named to positional, this maps positions to names */

 HashTable *bound_param_map;

 /* keep track of PHP variables bound to named (or positional) columns

 * in the result set */

 HashTable *bound_columns;

 /* not always meaningful */

 long row_count;

 /* used to hold the statement's current query */

 char *query_string;

 int query_stringlen;

 /* the copy of the query with expanded binds ONLY for emulated-prepare
drivers */

 char *active_query_string;

 int active_query_stringlen;

 /* the cursor specific error code. */

 pdo_error_type error_code;

 /* used by the query parser for driver specific

 * parameter naming (see pgsql driver for example) */

 const char *named_rewrite_template;

};

[1] The driver must set this during SKEL_handle_preparer().
[2] This item is for use by the driver; the intended usage is to store a pointer (during
SKEL_handle_factory()) to whatever instance data is required to maintain a connection
to the database.
[3] This is set by PDO after the statement has been executed for the first time. Your driver
can inspect this value to determine if it can skip one-time actions as an optimization.
[4] Discussed in more detail in SKEL_handle_preparer.
[5] Your driver is responsible for setting this field to the number of columns available in a
result set. This is usually set during SKEL_stmt_execute() but with some database
implementations, the column count may not be available until SKEL_stmt_fetch() has
been called at least once. Drivers that implement SKEL_stmt_next_rowset() should
update the column count when a new rowset is available.
[6] PDO will allocate this field based on the value that you set for the column count. You
are responsible for populating each column during SKEL_stmt_describe(). You must set
the precision, maxlen, name, namelen and param_type members for each column. The
name is expected to be allocated using emalloc(); PDO will call efree() at the appropriate
time.

Constants

Database and Statement Attributes Table

Attribute Valid value(s)

PDO_ATTR_AUTOCOMMIT BOOL

TRUE if autocommit is set, FALSE
otherwise.

dbh->auto_commit contains value.
Processed by PDO directly.

PDO_ATTR_PREFETCH LONG

Value of the prefetch size in drivers that
support it.

PDO_ATTR_TIMEOUT LONG

How long to wait for a db operation before
timing out.

PDO_ATTR_ERRMODE LONG

Processed and handled by PDO

PDO_ATTR_SERVER_VERSION STRING

The "human-readable" string representing
the Server/Version this driver is currently
connected to.

PDO_ATTR_CLIENT_VERSION STRING

The "human-readable" string representing
the Client/Version this driver supports.

PDO_ATTR_SERVER_INFO STRING

The "human-readable" description of the
Server.

PDO_ATTR_CONNECTION_STATUS LONG

Values not yet defined

PDO_ATTR_CASE LONG

Processed and handled by PDO.

PDO_ATTR_CURSOR_NAME STRING

String representing the name for a database
cursor for use in "where current in <name>"
SQL statements.

PDO_ATTR_CURSOR LONG

PDO_CURSOR_FWDONLY
Forward only cursor

PDO_CURSOR_SCROLL
Scrollable cursor

The values for the attributes above are all defined in terms of the Zend API. The Zend API
contains macros that can be used to convert a *zval to a value. These macros are defined
in the Zend header file, zend_API.h in the Zend directory of your PHP build directory.
Some of these attributes can be used with the statement attribute handlers such as the
PDO_ATTR_CURSOR and PDO_ATTR_CURSOR_NAME. See the statement attribute
handling functions for more information.

Error handling

Error handling is implemented using a hand-shaking protocol between PDO and the
database driver code. The database driver code signals PDO that an error has occurred
via a failure (0) return from any of the interface functions. If a zero is returned, set the
field error_code in the control block appropriate to the context (either the pdo_dbh_t or
pdo_stmt_t block). In practice, it is probably a good idea to set the field in both blocks to
the same value to ensure the correct one is getting used.

The error_mode field is a six-byte field containing a 5 character ASCIIZ SQLSTATE
identifier code. This code drives the error message process. The SQLSTATE code is used
to look up an error message in the internal PDO error message table (see pdo_sqlstate.c
for a list of error codes and their messages). If the code is not known to PDO, a default
"Unknown Message" value will be used.

In addition to the SQLSTATE code and error message, PDO will call the driver-specific
fetch_err() routine to obtain supplemental data for the particular error condition. This
routine is passed an array into which the driver may place additional information. This
array has slot positions assigned to particular types of supplemental info:

• A native error code. This will frequently be an error code obtained from the database
API.

• A descriptive string. This string can contain any additional information related to the
failure. Database drivers typically include information such as an error message, code
location of the failure, and any additional descriptive information the driver developer
feels worthy of inclusion. It is generally a good idea to include all diagnostic information
obtainable from the database interface at the time of the failure. For driver-detected
errors (such as memory allocation problems), the driver developer can define whatever
error information that seems appropriate.

Extension FAQs

Zend Engine 2 API reference

Zend Engine 1

Zend Engine 1 is the internal engine used by PHP for the entire version 4 release line. It is
no longer considered active, but PHP 4 is still in widespread use, so the old ZE1
documentation is preserved here exactly as it was.

Old introduction

If you are about to begin developing PHP or Zend extensions, you need to prepare
yourself for the programming environment provided by the various APIs. This part of the
documentation tries to introduce the APIs provided by the different PHP and Zend Engine
versions available. Since most of the information available here is somewhat outdated,
you'll want to read various files found in the PHP source, files such as
README.SELF-CONTAINED-EXTENSIONS and README.EXT_SKEL in addition to the
manual.

Streams API for PHP Extension Authors

Note

The functions in this chapter are for use in the PHP source code and are not PHP
functions. Information on userland stream functions can be found in the Stream
Reference.

Overview

The PHP Streams API introduces a unified approach to the handling of files and sockets in
PHP extension. Using a single API with standard functions for common operations, the
streams API allows your extension to access files, sockets, URLs, memory and
script-defined objects. Streams is a run-time extensible API that allows dynamically loaded
modules (and scripts!) to register new streams.

The aim of the Streams API is to make it comfortable for developers to open files, URLs
and other streamable data sources with a unified API that is easy to understand. The API
is more or less based on the ANSI C stdio family of functions (with identical semantics for
most of the main functions), so C programmers will have a feeling of familiarity with
streams.

The streams API operates on a couple of different levels: at the base level, the API defines
php_stream objects to represent streamable data sources. On a slightly higher level, the
API defines php_stream_wrapper objects which "wrap" around the lower level API to
provide support for retrieving data and meta-data from URLs. An additional context

parameter, accepted by most stream creation functions, is passed to the wrapper's
stream_opener method to fine-tune the behavior of the wrapper.

Any stream, once opened, can also have any number of filters applied to it, which process
data as it is read from/written to the stream.

Streams can be cast (converted) into other types of file-handles, so that they can be used
with third-party libraries without a great deal of trouble. This allows those libraries to
access data directly from URL sources. If your system has the fopencookie() or
funopen() function, you can even pass any PHP stream to any library that uses ANSI
stdio!

Streams Basics

Using streams is very much like using ANSI stdio functions. The main difference is in how
you obtain the stream handle to begin with. In most cases, you will use
php_stream_open_wrapper() to obtain the stream handle. This function works very much
like fopen, as can be seen from the example below:

Example #3021 - simple stream example that displays the PHP home page

php_stream * stream = php_stream_open_wrapper("http://www.php.net", "rb",
REPORT_ERRORS, NULL);

if (stream) {

 while(!php_stream_eof(stream)) {

 char buf[1024];

 if (php_stream_gets(stream, buf, sizeof(buf))) {

 printf(buf);

 } else {

 break;

 }

 }

 php_stream_close(stream);

}

The table below shows the Streams equivalents of the more common ANSI stdio
functions. Unless noted otherwise, the semantics of the functions are identical.

ANSI stdio equivalent functions in the Streams API

ANSI Stdio Function PHP Streams Function Notes

fopen php_stream_open_wrapper Streams includes additional
parameters

fclose php_stream_close

fgets php_stream_gets

fread php_stream_read The nmemb parameter is
assumed to have a value of
1, so the prototype looks
more like read(2)

fwrite php_stream_write The nmemb parameter is
assumed to have a value of
1, so the prototype looks
more like write(2)

fseek php_stream_seek

ftell php_stream_tell

rewind php_stream_rewind

feof php_stream_eof

fgetc php_stream_getc

fputc php_stream_putc

fflush php_stream_flush

puts php_stream_puts Same semantics as puts,
NOT fputs

fstat php_stream_stat Streams has a richer stat
structure

Streams as Resources

All streams are registered as resources when they are created. This ensures that they will
be properly cleaned up even if there is some fatal error. All of the filesystem functions in
PHP operate on streams resources - that means that your extensions can accept regular
PHP file pointers as parameters to, and return streams from their functions. The streams
API makes this process as painless as possible:

Example #3022 - How to accept a stream as a parameter

PHP_FUNCTION(example_write_hello)

{

 zval *zstream;

 php_stream *stream;

 if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r",
&zstream))

 return;

 php_stream_from_zval(stream, &zstream);

 /* you can now use the stream. However, you do not "own" the

 stream, the script does. That means you MUST NOT close the

 stream, because it will cause PHP to crash! */

 php_stream_write(stream, "hello\n");

 RETURN_TRUE();

}

Example #3023 - How to return a stream from a function

PHP_FUNCTION(example_open_php_home_page)

{

 php_stream *stream;

 stream = php_stream_open_wrapper("http://www.php.net", "rb",
REPORT_ERRORS, NULL);

 php_stream_to_zval(stream, return_value);

 /* after this point, the stream is "owned" by the script.

 If you close it now, you will crash PHP! */

}

Since streams are automatically cleaned up, it's tempting to think that we can get away
with being sloppy programmers and not bother to close the streams when we are done
with them. Although such an approach might work, it is not a good idea for a number of
reasons: streams hold locks on system resources while they are open, so leaving a file
open after you have finished with it could prevent other processes from accessing it. If a
script deals with a large number of files, the accumulation of the resources used, both in
terms of memory and the sheer number of open files, can cause web server requests to
fail. Sounds bad, doesn't it? The streams API includes some magic that helps you to keep
your code clean - if a stream is not closed by your code when it should be, you will find
some helpful debugging information in you web server error log.

Note

Always use a debug build of PHP when developing an extension (--enable-debug
when running configure), as a lot of effort has been made to warn you about memory
and stream leaks.

In some cases, it is useful to keep a stream open for the duration of a request, to act as a
log or trace file for example. Writing the code to safely clean up such a stream is not
difficult, but it's several lines of code that are not strictly needed. To save yourself the

trouble of writing the code, you can mark a stream as being OK for auto cleanup. What this
means is that the streams API will not emit a warning when it is time to auto-cleanup a
stream. To do this, you can use php_stream_auto_cleanup().

Streams open options

These constants affect the operation of stream factory functions.
IGNORE_PATH

This is the default option for streams; it requests that the include_path is not to be
searched for the requested file.

USE_PATH
Requests that the include_path is to be searched for the requested file.

IGNORE_URL
Requests that registered URL wrappers are to be ignored when opening the stream.
Other non-URL wrappers will be taken into consideration when decoding the path.
There is no opposite form for this flag; the streams API will use all registered wrappers
by default.

IGNORE_URL_WIN
On Windows systems, this is equivalent to IGNORE_URL. On all other systems, this
flag has no effect.

ENFORCE_SAFE_MODE
Requests that the underlying stream implementation perform safe_mode checks on
the file before opening the file. Omitting this flag will skip safe_mode checks and allow
opening of any file that the PHP process has rights to access.

REPORT_ERRORS
If this flag is set, and there was an error during the opening of the file or URL, the
streams API will call the php_error function for you. This is useful because the path
may contain username/password information that should not be displayed in the
browser output (it would be a security risk to do so). When the streams API raises the
error, it first strips username/password information from the path, making the error
message safe to display in the browser.

STREAM_MUST_SEEK
This flag is useful when your extension really must be able to randomly seek around in
a stream. Some streams may not be seekable in their native form, so this flag asks the
streams API to check to see if the stream does support seeking. If it does not, it will
copy the stream into temporary storage (which may be a temporary file or a memory
stream) which does support seeking. Please note that this flag is not useful when you
want to seek the stream and write to it, because the stream you are accessing might
not be bound to the actual resource you requested.

Note

If the requested resource is network based, this flag will cause the opener to block
until the whole contents have been downloaded.

STREAM_WILL_CAST
If your extension is using a third-party library that expects a FILE* or file descriptor, you
can use this flag to request the streams API to open the resource but avoid buffering.
You can then use php_stream_cast() to retrieve the FILE* or file descriptor that the
library requires. The is particularly useful when accessing HTTP URLs where the start
of the actual stream data is found after an indeterminate offset into the stream. Since
this option disables buffering at the streams API level, you may experience lower
performance when using streams functions on the stream; this is deemed acceptable
because you have told streams that you will be using the functions to match the
underlying stream implementation. Only use this option when you are sure you need it.

Zend API: Hacking the Core of PHP

Introduction

Those who know don't talk.

Those who talk don't know.

Sometimes, PHP "as is" simply isn't enough. Although these cases are rare for the
average user, professional applications will soon lead PHP to the edge of its capabilities,
in terms of either speed or functionality. New functionality cannot always be implemented
natively due to language restrictions and inconveniences that arise when having to carry
around a huge library of default code appended to every single script, so another method
needs to be found for overcoming these eventual lacks in PHP.

As soon as this point is reached, it's time to touch the heart of PHP and take a look at its
core, the C code that makes PHP go.

Warning

This information is currently rather outdated, parts of it only cover early stages of the
ZendEngine 1.0 API as it was used in early versions of PHP 4.

More recent information may be found in the various README files that come with the
PHP source and the » Internals section on the Zend website.

Overview

"Extending PHP" is easier said than done. PHP has evolved to a full-fledged tool
consisting of a few megabytes of source code, and to hack a system like this quite a few
things have to be learned and considered. When structuring this chapter, we finally
decided on the "learn by doing" approach. This is not the most scientific and professional
approach, but the method that's the most fun and gives the best end results. In the

http://devzone.zend.com/public/view/tag/Extension

following sections, you'll learn quickly how to get the most basic extensions to work almost
instantly. After that, you'll learn about Zend's advanced API functionality. The alternative
would have been to try to impart the functionality, design, tips, tricks, etc. as a whole, all at
once, thus giving a complete look at the big picture before doing anything practical.
Although this is the "better" method, as no dirty hacks have to be made, it can be very
frustrating as well as energy- and time-consuming, which is why we've decided on the
direct approach.

Note that even though this chapter tries to impart as much knowledge as possible about
the inner workings of PHP, it's impossible to really give a complete guide to extending PHP
that works 100% of the time in all cases. PHP is such a huge and complex package that its
inner workings can only be understood if you make yourself familiar with it by practicing, so
we encourage you to work with the source.

What Is Zend? and What Is PHP?

The name Zend refers to the language engine, PHP's core. The term PHP refers to the
complete system as it appears from the outside. This might sound a bit confusing at first,
but it's not that complicated (see below). To implement a Web script interpreter, you need
three parts:

• The interpreter part analyzes the input code, translates it, and executes it.

• The functionality part implements the functionality of the language (its functions, etc.).

• The interface part talks to the Web server, etc.

Zend takes part 1 completely and a bit of part 2; PHP takes parts 2 and 3. Together they
form the complete PHP package. Zend itself really forms only the language core,
implementing PHP at its very basics with some predefined functions. PHP contains all the
modules that actually create the language's outstanding capabilities. The internal structure
of PHP.

The following sections discuss where PHP can be extended and how it's done.

Extension Possibilities

As shown above, PHP can be extended primarily at three points: external modules, built-in
modules, and the Zend engine. The following sections discuss these options.

External Modules

External modules can be loaded at script runtime using the function dl(). This function
loads a shared object from disk and makes its functionality available to the script to which
it's being bound. After the script is terminated, the external module is discarded from
memory. This method has both advantages and disadvantages, as described in the
following table:

Advantages Disadvantages

External modules don't require recompiling
of PHP.

The shared objects need to be loaded every
time a script is being executed (every hit),
which is very slow.

The size of PHP remains small by
"outsourcing" certain functionality.

External additional files clutter up the disk.

Every script that wants to use an external
module's functionality has to specifically
include a call to dl(), or the extension tag in
php.ini needs to be modified (which is not
always a suitable solution).

To sum up, external modules are great for third-party products, small additions to PHP that
are rarely used, or just for testing purposes. To develop additional functionality quickly,
external modules provide the best results. For frequent usage, larger implementations, and
complex code, the disadvantages outweigh the advantages.

Third parties might consider using the extension tag in php.ini to create additional external
modules to PHP. These external modules are completely detached from the main
package, which is a very handy feature in commercial environments. Commercial
distributors can simply ship disks or archives containing only their additional modules,
without the need to create fixed and solid PHP binaries that don't allow other modules to
be bound to them.

Built-in Modules

Built-in modules are compiled directly into PHP and carried around with every PHP
process; their functionality is instantly available to every script that's being run. Like
external modules, built-in modules have advantages and disadvantages, as described in
the following table:

Advantages Disadvantages

No need to load the module specifically; the
functionality is instantly available.

Changes to built-in modules require
recompiling of PHP.

No external files clutter up the disk;
everything resides in the PHP binary.

The PHP binary grows and consumes more
memory.

Built-in modules are best when you have a solid library of functions that remains relatively
unchanged, requires better than poor-to-average performance, or is used frequently by
many scripts on your site. The need to recompile PHP is quickly compensated by the
benefit in speed and ease of use. However, built-in modules are not ideal when rapid
development of small additions is required.

The Zend Engine

Of course, extensions can also be implemented directly in the Zend engine. This strategy
is good if you need a change in the language behavior or require special functions to be
built directly into the language core. In general, however, modifications to the Zend engine
should be avoided. Changes here result in incompatibilities with the rest of the world, and
hardly anyone will ever adapt to specially patched Zend engines. Modifications can't be
detached from the main PHP sources and are overridden with the next update using the
"official" source repositories. Therefore, this method is generally considered bad practice
and, due to its rarity, is not covered in this book.

Source Layout

Note

Prior to working through the rest of this chapter, you should retrieve clean, unmodified
source trees of your favorite Web server. We're working with Apache (available at
» http://www.apache.org/) and, of course, with PHP (available at » http://www.php.net/
- does it need to be said?).

Make sure that you can compile a working PHP environment by yourself! We won't go
into this issue here, however, as you should already have this most basic ability when
studying this chapter.

Before we start discussing code issues, you should familiarize yourself with the source
tree to be able to quickly navigate through PHP's files. This is a must-have ability to
implement and debug extensions.

The following table describes the contents of the major directories.

Directory Contents

php-src Main PHP source files and main header
files; here you'll find all of PHP's API
definitions, macros, etc. (important).
Everything else is below this directory.

php-src/ext Repository for dynamic and built-in modules;
by default, these are the "official" PHP
modules that have been integrated into the
main source tree. From PHP 4.0, it's
possible to compile these standard
extensions as dynamic loadable modules (at
least, those that support it).

php-src/main This directory contains the main php macros
and definitions. (important)

php-src/pear Directory for the PHP Extension and
Application Repository. This directory

http://www.apache.org/
http://www.apache.org/
http://www.php.net/

contains core PEAR files.

php-src/sapi Contains the code for the different server
abstraction layers.

TSRM Location of the "Thread Safe Resource
Manager" (TSRM) for Zend and PHP.

ZendEngine2 Location of the Zend Engine files; here you'll
find all of Zend's API definitions, macros,
etc. (important).

Discussing all the files included in the PHP package is beyond the scope of this chapter.
However, you should take a close look at the following files:

• php-src/main/php.h, located in the main PHP directory. This file contains most of
PHP's macro and API definitions.

• php-src/Zend/zend.h, located in the main Zend directory. This file contains most of
Zend's macros and definitions.

• php-src/Zend/zend_API.h, also located in the Zend directory, which defines Zend's
API.

You should also follow some sub-inclusions from these files; for example, the ones relating
to the Zend executor, the PHP initialization file support, and such. After reading these files,
take the time to navigate around the package a little to see the interdependencies of all
files and modules - how they relate to each other and especially how they make use of
each other. This also helps you to adapt to the coding style in which PHP is authored. To
extend PHP, you should quickly adapt to this style.

Extension Conventions

Zend is built using certain conventions; to avoid breaking its standards, you should follow
the rules described in the following sections.

Macros

For almost every important task, Zend ships predefined macros that are extremely handy.
The tables and figures in the following sections describe most of the basic functions,
structures, and macros. The macro definitions can be found mainly in zend.h and
zend_API.h. We suggest that you take a close look at these files after having studied this
chapter. (Although you can go ahead and read them now, not everything will make sense
to you yet.)

Memory Management

Resource management is a crucial issue, especially in server software. One of the most
valuable resources is memory, and memory management should be handled with extreme

care. Memory management has been partially abstracted in Zend, and you should stick to
this abstraction for obvious reasons: Due to the abstraction, Zend gets full control over all
memory allocations. Zend is able to determine whether a block is in use, automatically
freeing unused blocks and blocks with lost references, and thus prevent memory leaks.
The functions to be used are described in the following table:

Function Description

emalloc() Serves as replacement for malloc().

efree() Serves as replacement for free().

estrdup() Serves as replacement for strdup().

estrndup() Serves as replacement for strndup(). Faster
than estrdup() and binary-safe. This is the
recommended function to use if you know
the string length prior to duplicating it.

ecalloc() Serves as replacement for calloc().

erealloc() Serves as replacement for realloc().

emalloc(), estrdup(), estrndup(), ecalloc(), and erealloc() allocate internal memory;
efree() frees these previously allocated blocks. Memory handled by the e*() functions is
considered local to the current process and is discarded as soon as the script executed by
this process is terminated.

Warning

To allocate resident memory that survives termination of the current script, you can
use malloc() and free(). This should only be done with extreme care, however, and
only in conjunction with demands of the Zend API; otherwise, you risk memory leaks.

Zend also features a thread-safe resource manager to provide better native support for
multithreaded Web servers. This requires you to allocate local structures for all of your
global variables to allow concurrent threads to be run. Because the thread-safe mode of
Zend was not finished back when this was written, it is not yet extensively covered here.

Directory and File Functions

The following directory and file functions should be used in Zend modules. They behave
exactly like their C counterparts, but provide virtual working directory support on the thread
level.

Zend Function Regular C Function

V_GETCWD() getcwd()

V_FOPEN() fopen()

V_OPEN() open()

V_CHDIR() chdir()

V_GETWD() getwd()

V_CHDIR_FILE() Takes a file path as an argument and
changes the current working directory to that
file's directory.

V_STAT() stat()

V_LSTAT() lstat()

String Handling

Strings are handled a bit differently by the Zend engine than other values such as integers,
Booleans, etc., which don't require additional memory allocation for storing their values. If
you want to return a string from a function, introduce a new string variable to the symbol
table, or do something similar, you have to make sure that the memory the string will be
occupying has previously been allocated, using the aforementioned e*() functions for
allocation. (This might not make much sense to you yet; just keep it somewhere in your
head for now - we'll get back to it shortly.)

Complex Types

Complex types such as arrays and objects require different treatment. Zend features a
single API for these types - they're stored using hash tables.

Note

To reduce complexity in the following source examples, we're only working with simple
types such as integers at first. A discussion about creating more advanced types
follows later in this chapter.

PHP's Automatic Build System

PHP 4 features an automatic build system that's very flexible. All modules reside in a
subdirectory of the ext directory. In addition to its own sources, each module consists of a
config.m4 file, for extension configuration. (for example, see
» http://www.gnu.org/software/m4/manual/m4.html)

All these stub files are generated automatically, along with.cvsignore, by a little shell script
named ext_skel that resides in the ext directory. As argument it takes the name of the
module that you want to create. The shell script then creates a directory of the same

http://www.gnu.org/software/m4/manual/m4.html
http://www.gnu.org/software/m4/manual/m4.html

name, along with the appropriate stub files.

Step by step, the process looks like this:
:~/cvs/php4/ext:> ./ext_skel --extname=my_module

Creating directory my_module

Creating basic files: config.m4 .cvsignore my_module.c php_my_module.h CREDITS
EXPERIMENTAL tests/001.phpt my_module.php [done].

To use your new extension, you will have to execute the following steps:

1. $ cd ..

2. $ vi ext/my_module/config.m4

3. $./buildconf

4. $./configure --[with|enable]-my_module

5. $ make

6. $./php -f ext/my_module/my_module.php

7. $ vi ext/my_module/my_module.c

8. $ make

Repeat steps 3-6 until you are satisfied with ext/my_module/config.m4 and

step 6 confirms that your module is compiled into PHP. Then, start writing

code and repeat the last two steps as often as necessary.
This instruction creates the aforementioned files. To include the new module in the
automatic configuration and build process, you have to run buildconf, which regenerates
the configure script by searching through the ext directory and including all found
config.m4 files.

The default config.m4 shown in The default config.m4. is a bit more complex:

Example #3024 - The default config.m4.

dnl $Id: build.xml,v 1.3 2007/11/01 16:40:36 rquadling Exp $

dnl config.m4 for extension my_module

dnl Comments in this file start with the string 'dnl'.

dnl Remove where necessary. This file will not work

dnl without editing.

dnl If your extension references something external, use with:

dnl PHP_ARG_WITH(my_module, for my_module support,

dnl Make sure that the comment is aligned:

dnl [--with-my_module Include my_module support])

dnl Otherwise use enable:

dnl PHP_ARG_ENABLE(my_module, whether to enable my_module support,

dnl Make sure that the comment is aligned:

dnl [--enable-my_module Enable my_module support])

if test "$PHP_MY_MODULE" != "no"; then

 dnl Write more examples of tests here...

 dnl # --with-my_module -> check with-path

 dnl SEARCH_PATH="/usr/local /usr" # you might want to change this

 dnl SEARCH_FOR="/include/my_module.h" # you most likely want to change
this

 dnl if test -r $PHP_MY_MODULE/; then # path given as parameter

 dnl MY_MODULE_DIR=$PHP_MY_MODULE

 dnl else # search default path list

 dnl AC_MSG_CHECKING([for my_module files in default path])

 dnl for i in $SEARCH_PATH ; do

 dnl if test -r $i/$SEARCH_FOR; then

 dnl MY_MODULE_DIR=$i

 dnl AC_MSG_RESULT(found in $i)

 dnl fi

 dnl done

 dnl fi

 dnl

 dnl if test -z "$MY_MODULE_DIR"; then

 dnl AC_MSG_RESULT([not found])

 dnl AC_MSG_ERROR([Please reinstall the my_module distribution])

 dnl fi

 dnl # --with-my_module -> add include path

 dnl PHP_ADD_INCLUDE($MY_MODULE_DIR/include)

 dnl # --with-my_module -> chech for lib and symbol presence

 dnl LIBNAME=my_module # you may want to change this

 dnl LIBSYMBOL=my_module # you most likely want to change this

 dnl PHP_CHECK_LIBRARY($LIBNAME,$LIBSYMBOL,

 dnl [

 dnl PHP_ADD_LIBRARY_WITH_PATH($LIBNAME, $MY_MODULE_DIR/lib,
MY_MODULE_SHARED_LIBADD)

 dnl AC_DEFINE(HAVE_MY_MODULELIB,1,[])

 dnl],[

 dnl AC_MSG_ERROR([wrong my_module lib version or lib not found])

 dnl],[

 dnl -L$MY_MODULE_DIR/lib -lm -ldl

 dnl])

 dnl

 dnl PHP_SUBST(MY_MODULE_SHARED_LIBADD)

 PHP_NEW_EXTENSION(my_module, my_module.c, $ext_shared)

fi

If you're unfamiliar with M4 files (now is certainly a good time to get familiar), this might be
a bit confusing at first; but it's actually quite easy.

Note: Everything prefixed with dnl is treated as a comment and is not parsed.

The config.m4 file is responsible for parsing the command-line options passed to configure
at configuration time. This means that it has to check for required external files and do
similar configuration and setup tasks.

The default file creates two configuration directives in the configure script:
--with-my_module and --enable-my_module. Use the first option when referring external
files (such as the --with-apache directive that refers to the Apache directory). Use the
second option when the user simply has to decide whether to enable your extension.
Regardless of which option you use, you should uncomment the other, unnecessary one;
that is, if you're using --enable-my_module, you should remove support for
--with-my_module, and vice versa.

By default, the config.m4 file created by ext_skel accepts both directives and automatically
enables your extension. Enabling the extension is done by using the PHP_EXTENSION
macro. To change the default behavior to include your module into the PHP binary when
desired by the user (by explicitly specifying --enable-my_module or --with-my_module),
change the test for $PHP_MY_MODULE to == "yes":
if test "$PHP_MY_MODULE" == "yes"; then dnl

 Action.. PHP_EXTENSION(my_module, $ext_shared)

 fi
This would require you to use --enable-my_module each time when reconfiguring and
recompiling PHP.

Note: Be sure to run buildconf every time you change config.m4 !

We'll go into more details on the M4 macros available to your configuration scripts later in
this chapter. For now, we'll simply use the default files.

Creating Extensions

We'll start with the creation of a very simple extension at first, which basically does nothing
more than implement a function that returns the integer it receives as parameter. A simple
extension. shows the source.

Example #3025 - A simple extension.

/* include standard header */

#include "php.h"

/* declaration of functions to be exported */

ZEND_FUNCTION(first_module);

/* compiled function list so Zend knows what's in this module */

zend_function_entry firstmod_functions[] =

{

 ZEND_FE(first_module, NULL)

 {NULL, NULL, NULL}

};

/* compiled module information */

zend_module_entry firstmod_module_entry =

{

 STANDARD_MODULE_HEADER,

 "First Module",

 firstmod_functions,

 NULL,

 NULL,

 NULL,

 NULL,

 NULL,

 NO_VERSION_YET,

 STANDARD_MODULE_PROPERTIES

};

/* implement standard "stub" routine to introduce ourselves to Zend */

#if COMPILE_DL_FIRST_MODULE

ZEND_GET_MODULE(firstmod)

#endif

/* implement function that is meant to be made available to PHP */

ZEND_FUNCTION(first_module)

{

 long parameter;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &parameter)
== FAILURE) {

 return;

 }

 RETURN_LONG(parameter);

}

This code contains a complete PHP module. We'll explain the source code in detail shortly,
but first we'd like to discuss the build process. (This will allow the impatient to experiment
before we dive into API discussions.)

Note

The example source makes use of some features introduced with the Zend version
used in PHP 4.1.0 and above, it won't compile with older PHP 4.0.x versions.

Compiling Modules

There are basically two ways to compile modules:

• Use the provided "make" mechanism in the ext directory, which also allows building of
dynamic loadable modules.

• Compile the sources manually.

The first method should definitely be favored, since, as of PHP 4.0, this has been
standardized into a sophisticated build process. The fact that it is so sophisticated is also
its drawback, unfortunately - it's hard to understand at first. We'll provide a more detailed
introduction to this later in the chapter, but first let's work with the default files.

The second method is good for those who (for some reason) don't have the full PHP
source tree available, don't have access to all files, or just like to juggle with their
keyboard. These cases should be extremely rare, but for the sake of completeness we'll
also describe this method.

Compiling Using Make

To compile the sample sources using the standard mechanism, copy all their
subdirectories to the ext directory of your PHP source tree. Then run buildconf, which will
create an updated configure script containing appropriate options for the new extension.
By default, all the sample sources are disabled, so you don't have to fear breaking your
build process.

After you run buildconf, configure --help shows the following additional modules:

--enable-array_experiments BOOK: Enables array experiments

 --enable-call_userland BOOK: Enables userland module

 --enable-cross_conversion BOOK: Enables cross-conversion module

 --enable-first_module BOOK: Enables first module

 --enable-infoprint BOOK: Enables infoprint module

 --enable-reference_test BOOK: Enables reference test module

 --enable-resource_test BOOK: Enables resource test module

 --enable-variable_creation BOOK: Enables variable-creation module

The module shown earlier in A simple extension. can be enabled with
--enable-first_module or --enable-first_module=yes.

Compiling Manually

To compile your modules manually, you need the following commands:

Action Command

Compiling cc -fpic
-DCOMPILE_DL_FIRST_MODULE=1
-I/usr/local/include -I. -I.. -I../Zend -c -o
<your_object_file> <your_c_file>

Linking cc -shared -L/usr/local/lib -rdynamic -o
<your_module_file> <your_object_file(s)>

The command to compile the module simply instructs the compiler to generate
position-independent code (-fpic shouldn't be omitted) and additionally defines the
constant COMPILE_DL_FIRST_MODULE to tell the module code that it's compiled as a
dynamically loadable module (the test module above checks for this; we'll discuss it
shortly). After these options, it specifies a number of standard include paths that should be
used as the minimal set to compile the source files.

Note: All include paths in the example are relative to the directory ext. If you're compiling
from another directory, change the pathnames accordingly. Required items are the PHP
directory, the Zend directory, and (if necessary), the directory in which your module
resides.

The link command is also a plain vanilla command instructing linkage as a dynamic
module.

You can include optimization options in the compilation command, although these have
been omitted in this example (but some are included in the makefile template described in
an earlier section).

Note: Compiling and linking manually as a static module into the PHP binary involves very
long instructions and thus is not discussed here. (It's not very efficient to type all those
commands.)

Using Extensions

Depending on the build process you selected, you should either end up with a new PHP
binary to be linked into your Web server (or run as CGI), or with an .so (shared object) file.
If you compiled the example file first_module.c as a shared object, your result file should
be first_module.so. To use it, you first have to copy it to a place from which it's accessible
to PHP. For a simple test procedure, you can copy it to your htdocs directory and try it with
the source in A test file for first_module.so.. If you compiled it into the PHP binary, omit the
call to dl(), as the module's functionality is instantly available to your scripts.

Warning

For security reasons, you should not put your dynamic modules into publicly
accessible directories. Even though it can be done and it simplifies testing, you should
put them into a separate directory in production environments.

Example #3026 - A test file for first_module.so.

<?php

// remove next comment if necessary

// dl("first_module.so");

$param = 2;

$return = first_module($param);

print("We sent '$param' and got '$return'");

?>

Calling this PHP file should output the following:
We sent '2' and got '2'

If required, the dynamic loadable module is loaded by calling the dl() function. This
function looks for the specified shared object, loads it, and makes its functions available to
PHP. The module exports the function first_module(), which accepts a single parameter,
converts it to an integer, and returns the result of the conversion.

If you've gotten this far, congratulations! You just built your first extension to PHP.

Troubleshooting

Actually, not much troubleshooting can be done when compiling static or dynamic
modules. The only problem that could arise is that the compiler will complain about
missing definitions or something similar. In this case, make sure that all header files are
available and that you specified their path correctly in the compilation command. To be
sure that everything is located correctly, extract a clean PHP source tree and use the
automatic build in the ext directory with the fresh files; this will guarantee a safe

compilation environment. If this fails, try manual compilation.

PHP might also complain about missing functions in your module. (This shouldn't happen
with the sample sources if you didn't modify them.) If the names of external functions
you're trying to access from your module are misspelled, they'll remain as "unlinked
symbols" in the symbol table. During dynamic loading and linkage by PHP, they won't
resolve because of the typing errors - there are no corresponding symbols in the main
binary. Look for incorrect declarations in your module file or incorrectly written external
references. Note that this problem is specific to dynamic loadable modules; it doesn't occur
with static modules. Errors in static modules show up at compile time.

Source Discussion

Now that you've got a safe build environment and you're able to include the modules into
PHP files, it's time to discuss how everything works.

Module Structure

All PHP modules follow a common structure:

• Header file inclusions (to include all required macros, API definitions, etc.)

• C declaration of exported functions (required to declare the Zend function block)

• Declaration of the Zend function block

• Declaration of the Zend module block

• Implementation of get_module()

• Implementation of all exported functions

Header File Inclusions

The only header file you really have to include for your modules is php.h, located in the
PHP directory. This file makes all macros and API definitions required to build new
modules available to your code.

Tip: It's good practice to create a separate header file for your module that contains
module-specific definitions. This header file should contain all the forward definitions for
exported functions and include php.h. If you created your module using ext_skel you
already have such a header file prepared.

Declaring Exported Functions

To declare functions that are to be exported (i.e., made available to PHP as new native
functions), Zend provides a set of macros. A sample declaration looks like this:
ZEND_FUNCTION (my_function);

ZEND_FUNCTION declares a new C function that complies with Zend's internal API. This
means that the function is of type void and accepts
INTERNAL_FUNCTION_PARAMETERS (another macro) as parameters. Additionally, it
prefixes the function name with zif. The immediately expanded version of the above
definitions would look like this:
void zif_my_function (INTERNAL_FUNCTION_PARAMETERS);
Expanding INTERNAL_FUNCTION_PARAMETERS results in the following:
void zif_my_function(int ht

 , zval * return_value

 , zval * this_ptr

 , int return_value_used

 , zend_executor_globals * executor_globals

);

Since the interpreter and executor core have been separated from the main PHP package,
a second API defining macros and function sets has evolved: the Zend API. As the Zend
API now handles quite a few of the responsibilities that previously belonged to PHP, a lot
of PHP functions have been reduced to macros aliasing to calls into the Zend API. The
recommended practice is to use the Zend API wherever possible, as the old API is only
preserved for compatibility reasons. For example, the types zval and pval are identical.
zval is Zend's definition; pval is PHP's definition (actually, pval is an alias for zval now). As
the macro INTERNAL_FUNCTION_PARAMETERS is a Zend macro, the above
declaration contains zval. When writing code, you should always use zval to conform to
the new Zend API.

The parameter list of this declaration is very important; you should keep these parameters
in mind (see Zend's Parameters to Functions Called from PHP for descriptions).

Zend's Parameters to Functions Called from PHP

Parameter Description

ht The number of arguments passed to the
Zend function. You should not touch this
directly, but instead use
ZEND_NUM_ARGS() to obtain the value.

return_value This variable is used to pass any return
values of your function back to PHP. Access
to this variable is best done using the
predefined macros. For a description of
these see below.

this_ptr Using this variable, you can gain access to
the object in which your function is
contained, if it's used within an object. Use
the function getThis() to obtain this pointer.

return_value_used This flag indicates whether an eventual
return value from this function will actually
be used by the calling script. 0 indicates that
the return value is not used; 1 indicates that

the caller expects a return value. Evaluation
of this flag can be done to verify correct
usage of the function as well as speed
optimizations in case returning a value
requires expensive operations (for an
example, see how array.c makes use of
this).

executor_globals This variable points to global settings of the
Zend engine. You'll find this useful when
creating new variables, for example (more
about this later). The executor globals can
also be introduced to your function by using
the macro TSRMLS_FETCH().

Declaration of the Zend Function Block

Now that you have declared the functions to be exported, you also have to introduce them
to Zend. Introducing the list of functions is done by using an array of zend_function_entry.
This array consecutively contains all functions that are to be made available externally,
with the function's name as it should appear in PHP and its name as defined in the C
source. Internally, zend_function_entry is defined as shown in Internal declaration of
zend_function_entry..

Example #3027 - Internal declaration of zend_function_entry.

typedef struct _zend_function_entry {

 char *fname;

 void (*handler)(INTERNAL_FUNCTION_PARAMETERS);

 unsigned char *func_arg_types;

} zend_function_entry;

Entry Description

fname Denotes the function name as seen in PHP
(for example, fopen, mysql_connect, or, in
our example, first_module).

handler Pointer to the C function responsible for
handling calls to this function. For example,
see the standard macro
INTERNAL_FUNCTION_PARAMETERS
discussed earlier.

func_arg_types Allows you to mark certain parameters so
that they're forced to be passed by
reference. You usually should set this to

NULL.

In the example above, the declaration looks like this:
zend_function_entry firstmod_functions[] =

{

 ZEND_FE(first_module, NULL)

 {NULL, NULL, NULL}

};
You can see that the last entry in the list always has to be {NULL, NULL, NULL}. This marker
has to be set for Zend to know when the end of the list of exported functions is reached.

Note

You cannot use the predefined macros for the end marker, as these would try to refer to a
function named "NULL"!

The macro ZEND_FE (short for 'Zend Function Entry') simply expands to a structure entry in
zend_function_entry. Note that these macros introduce a special naming scheme to your
functions - your C functions will be prefixed with zif_, meaning that ZEND_FE(first_module)
will refer to a C function zif_first_module(). If you want to mix macro usage with hand-coded
entries (not a good practice), keep this in mind.

Tip: Compilation errors that refer to functions named zif_*() relate to functions defined with
ZEND_FE.

Macros for Defining Functions shows a list of all the macros that you can use to define
functions.

Macros for Defining Functions

Macro Name Description

ZEND_FE(name, arg_types) Defines a function entry of the name name
in zend_function_entry. Requires a
corresponding C function. arg_types needs
to be set to NULL. This function uses
automatic C function name generation by
prefixing the PHP function name with zif_.
For example, ZEND_FE("first_module",
NULL) introduces a function first_module()
to PHP and links it to the C function
zif_first_module(). Use in conjunction with
ZEND_FUNCTION.

ZEND_NAMED_FE(php_name, name,
arg_types)

Defines a function that will be available to
PHP by the name php_name and links it to
the corresponding C function name.
arg_types needs to be set to NULL. Use this
function if you don't want the automatic

name prefixing introduced by ZEND_FE.
Use in conjunction with
ZEND_NAMED_FUNCTION.

ZEND_FALIAS(name, alias, arg_types) Defines an alias named alias for name.
arg_types needs to be set to NULL. Doesn't
require a corresponding C function; refers to
the alias target instead.

PHP_FE(name, arg_types) Old PHP API equivalent of ZEND_FE.

PHP_NAMED_FE(runtime_name, name,
arg_types)

Old PHP API equivalent of
ZEND_NAMED_FE.

Note: You can't use ZEND_FE in conjunction with PHP_FUNCTION, or PHP_FE in
conjunction with ZEND_FUNCTION. However, it's perfectly legal to mix ZEND_FE and
ZEND_FUNCTION with PHP_FE and PHP_FUNCTION when staying with the same
macro set for each function to be declared. But mixing is not recommended; instead,
you're advised to use the ZEND_* macros only.

Declaration of the Zend Module Block

This block is stored in the structure zend_module_entry and contains all necessary
information to describe the contents of this module to Zend. You can see the internal
definition of this module in Internal declaration of zend_module_entry..

Example #3028 - Internal declaration of zend_module_entry.

typedef struct _zend_module_entry zend_module_entry;

 struct _zend_module_entry {

 unsigned short size;

 unsigned int zend_api;

 unsigned char zend_debug;

 unsigned char zts;

 char *name;

 zend_function_entry *functions;

 int (*module_startup_func)(INIT_FUNC_ARGS);

 int (*module_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 int (*request_startup_func)(INIT_FUNC_ARGS);

 int (*request_shutdown_func)(SHUTDOWN_FUNC_ARGS);

 void (*info_func)(ZEND_MODULE_INFO_FUNC_ARGS);

 char *version;

[Rest of the structure is not interesting here]

};

Entry Description

size, zend_api, zend_debug and zts Usually filled with the

"STANDARD_MODULE_HEADER", which
fills these four members with the size of the
whole zend_module_entry, the
ZEND_MODULE_API_NO, whether it is a
debug build or normal build (
ZEND_DEBUG) and if ZTS is enabled (
USING_ZTS).

name Contains the module name (for example,
"File functions", "Socket functions", "Crypt",
etc.). This name will show up in phpinfo(), in
the section "Additional Modules."

functions Points to the Zend function block, discussed
in the preceding section.

module_startup_func This function is called once upon module
initialization and can be used to do one-time
initialization steps (such as initial memory
allocation, etc.). To indicate a failure during
initialization, return FAILURE; otherwise,
SUCCESS. To mark this field as unused,
use NULL. To declare a function, use the
macro ZEND_MINIT.

module_shutdown_func This function is called once upon module
shutdown and can be used to do one-time
deinitialization steps (such as memory
deallocation). This is the counterpart to
module_startup_func(). To indicate a
failure during deinitialization, return
FAILURE; otherwise, SUCCESS. To mark
this field as unused, use NULL. To declare a
function, use the macro
ZEND_MSHUTDOWN.

request_startup_func This function is called once upon every page
request and can be used to do one-time
initialization steps that are required to
process a request. To indicate a failure
here, return FAILURE; otherwise,
SUCCESS. Note: As dynamic loadable
modules are loaded only on page requests,
the request startup function is called right
after the module startup function (both
initialization events happen at the same
time). To mark this field as unused, use
NULL. To declare a function, use the macro
ZEND_RINIT.

request_shutdown_func This function is called once after every page
request and works as counterpart to

request_startup_func(). To indicate a
failure here, return FAILURE; otherwise,
SUCCESS. Note: As dynamic loadable
modules are loaded only on page requests,
the request shutdown function is
immediately followed by a call to the module
shutdown handler (both deinitialization
events happen at the same time). To mark
this field as unused, use NULL. To declare a
function, use the macro
ZEND_RSHUTDOWN.

info_func When phpinfo() is called in a script, Zend
cycles through all loaded modules and calls
this function. Every module then has the
chance to print its own "footprint" into the
output page. Generally this is used to dump
environmental or statistical information. To
mark this field as unused, use NULL. To
declare a function, use the macro
ZEND_MINFO.

version The version of the module. You can use
NO_VERSION_YET if you don't want to
give the module a version number yet, but
we really recommend that you add a version
string here. Such a version string can look
like this (in chronological order): "2.5-dev",
"2.5RC1", "2.5" or "2.5pl3".

Remaining structure elements These are used internally and can be
prefilled by using the macro
STANDARD_MODULE_PROPERTIES_EX.
You should not assign any values to them.
Use
STANDARD_MODULE_PROPERTIES_EX
only if you use global startup and shutdown
functions; otherwise, use
STANDARD_MODULE_PROPERTIES
directly.

In our example, this structure is implemented as follows:
zend_module_entry firstmod_module_entry =

{

 STANDARD_MODULE_HEADER,

 "First Module",

 firstmod_functions,

 NULL, NULL, NULL, NULL, NULL,

 NO_VERSION_YET,

 STANDARD_MODULE_PROPERTIES,

};

This is basically the easiest and most minimal set of values you could ever use. The module
name is set to First Module, then the function list is referenced, after which all startup and
shutdown functions are marked as being unused.

For reference purposes, you can find a list of the macros involved in declared startup and
shutdown functions in Macros to Declare Startup and Shutdown Functions. These are not
used in our basic example yet, but will be demonstrated later on. You should make use of
these macros to declare your startup and shutdown functions, as these require special
arguments to be passed (INIT_FUNC_ARGS and SHUTDOWN_FUNC_ARGS), which are
automatically included into the function declaration when using the predefined macros. If you
declare your functions manually and the PHP developers decide that a change in the
argument list is necessary, you'll have to change your module sources to remain compatible.

Macros to Declare Startup and Shutdown Functions

Macro Description

ZEND_MINIT(module) Declares a function for module startup. The
generated name will be
zend_minit_<module> (for example,
zend_minit_first_module). Use in
conjunction with ZEND_MINIT_FUNCTION.

ZEND_MSHUTDOWN(module) Declares a function for module shutdown.
The generated name will be
zend_mshutdown_<module> (for example,
zend_mshutdown_first_module). Use in
conjunction with
ZEND_MSHUTDOWN_FUNCTION.

ZEND_RINIT(module) Declares a function for request startup. The
generated name will be
zend_rinit_<module> (for example,
zend_rinit_first_module). Use in conjunction
with ZEND_RINIT_FUNCTION.

ZEND_RSHUTDOWN(module) Declares a function for request shutdown.
The generated name will be
zend_rshutdown_<module> (for example,
zend_rshutdown_first_module). Use in
conjunction with
ZEND_RSHUTDOWN_FUNCTION.

ZEND_MINFO(module) Declares a function for printing module
information, used when phpinfo() is called.
The generated name will be
zend_info_<module> (for example,
zend_info_first_module). Use in conjunction
with ZEND_MINFO_FUNCTION.

Creation of get_module()

This function is special to all dynamic loadable modules. Take a look at the creation via the
ZEND_GET_MODULE macro first:

#if COMPILE_DL_FIRSTMOD

 ZEND_GET_MODULE(firstmod)

#endif

The function implementation is surrounded by a conditional compilation statement. This is
needed since the function get_module() is only required if your module is built as a
dynamic extension. By specifying a definition of COMPILE_DL_FIRSTMOD in the compiler
command (see above for a discussion of the compilation instructions required to build a
dynamic extension), you can instruct your module whether you intend to build it as a
dynamic extension or as a built-in module. If you want a built-in module, the
implementation of get_module() is simply left out.

get_module() is called by Zend at load time of the module. You can think of it as being
invoked by the dl() call in your script. Its purpose is to pass the module information block
back to Zend in order to inform the engine about the module contents.

If you don't implement a get_module() function in your dynamic loadable module, Zend
will compliment you with an error message when trying to access it.

Implementation of All Exported Functions

Implementing the exported functions is the final step. The example function in first_module
looks like this:
ZEND_FUNCTION(first_module)

{

 long parameter;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &parameter) ==
FAILURE) {

 return;

 }

 RETURN_LONG(parameter);

}
The function declaration is done using ZEND_FUNCTION, which corresponds to
ZEND_FE in the function entry table (discussed earlier).

After the declaration, code for checking and retrieving the function's arguments, argument
conversion, and return value generation follows (more on this later).

Summary

That's it, basically - there's nothing more to implementing PHP modules. Built-in modules
are structured similarly to dynamic modules, so, equipped with the information presented
in the previous sections, you'll be able to fight the odds when encountering PHP module
source files.

Now, in the following sections, read on about how to make use of PHP's internals to build
powerful extensions.

Accepting Arguments

One of the most important issues for language extensions is accepting and dealing with
data passed via arguments. Most extensions are built to deal with specific input data (or
require parameters to perform their specific actions), and function arguments are the only
real way to exchange data between the PHP level and the C level. Of course, there's also
the possibility of exchanging data using predefined global values (which is also discussed
later), but this should be avoided by all means, as it's extremely bad practice.

PHP doesn't make use of any formal function declarations; this is why call syntax is always
completely dynamic and never checked for errors. Checking for correct call syntax is left to
the user code. For example, it's possible to call a function using only one argument at one
time and four arguments the next time - both invocations are syntactically absolutely
correct.

Determining the Number of Arguments

Since PHP doesn't have formal function definitions with support for call syntax checking,
and since PHP features variable arguments, sometimes you need to find out with how
many arguments your function has been called. You can use the ZEND_NUM_ARGS
macro in this case. In previous versions of PHP, this macro retrieved the number of
arguments with which the function has been called based on the function's hash table
entry, ht, which is passed in the INTERNAL_FUNCTION_PARAMETERS list. As ht itself
now contains the number of arguments that have been passed to the function,
ZEND_NUM_ARGS has been stripped down to a dummy macro (see its definition in
zend_API.h). But it's still good practice to use it, to remain compatible with future changes
in the call interface. Note: The old PHP equivalent of this macro is ARG_COUNT.

The following code checks for the correct number of arguments:

if(ZEND_NUM_ARGS() != 2) WRONG_PARAM_COUNT;

If the function is not called with two arguments, it exits with an error message. The code
snippet above makes use of the tool macro WRONG_PARAM_COUNT, which can be
used to generate a standard error message like:"Warning: Wrong parameter count for
firstmodule() in /home/www/htdocs/firstmod.php on line 5"

This macro prints a default error message and then returns to the caller. Its definition can
also be found in zend_API.h and looks like this:
ZEND_API void wrong_param_count(void);

#define WRONG_PARAM_COUNT { wrong_param_count(); return; }
As you can see, it calls an internal function named wrong_param_count() that's
responsible for printing the warning. For details on generating customized error messages,
see the later section "Printing Information."

Retrieving Arguments

Note

New parameter parsing API

This chapter documents the new Zend parameter parsing API introduced by Andrei
Zmievski. It was introduced in the development stage between PHP 4.0.6 and 4.1.0 .

Parsing parameters is a very common operation and it may get a bit tedious. It would also
be nice to have standardized error checking and error messages. Since PHP 4.1.0, there
is a way to do just that by using the new parameter parsing API. It greatly simplifies the
process of receiving parameters, but it has a drawback in that it can't be used for functions
that expect variable number of parameters. But since the vast majority of functions do not
fall into those categories, this parsing API is recommended as the new standard way.

The prototype for parameter parsing function looks like this:
int zend_parse_parameters(int num_args TSRMLS_DC, char *type_spec, ...);
The first argument to this function is supposed to be the number of actual parameters
passed to your function, so ZEND_NUM_ARGS() can be used for that. The second
parameter should always be TSRMLS_CC macro. The third argument is a string that
specifies the number and types of arguments your function is expecting, similar to how
printf format string specifies the number and format of the output values it should operate
on. And finally the rest of the arguments are pointers to variables which should receive the
values from the parameters.

zend_parse_parameters() also performs type conversions whenever possible, so that
you always receive the data in the format you asked for. Any type of scalar can be
converted to another one, but conversions between complex types (arrays, objects, and
resources) and scalar types are not allowed.

If the parameters could be obtained successfully and there were no errors during type
conversion, the function will return SUCCESS, otherwise it will return FAILURE. The
function will output informative error messages, if the number of received parameters does
not match the requested number, or if type conversion could not be performed.

Here are some sample error messages:

 Warning - ini_get_all() requires at most 1 parameter, 2 given

 Warning - wddx_deserialize() expects parameter 1 to be string, array given

Of course each error message is accompanied by the filename and line number on which
it occurs.

Here is the full list of type specifiers:

• l - long

• d - double

• s - string (with possible null bytes) and its length

• b - boolean

• r - resource, stored in zval*

• a - array, stored in zval*

• o - object (of any class), stored in zval*

• O - object (of class specified by class entry), stored in zval*

• z - the actual zval*

The following characters also have a meaning in the specifier string:

• | - indicates that the remaining parameters are optional. The storage variables
corresponding to these parameters should be initialized to default values by the
extension, since they will not be touched by the parsing function if the parameters are
not passed.

• / - the parsing function will call SEPARATE_ZVAL_IF_NOT_REF() on the parameter it
follows, to provide a copy of the parameter, unless it's a reference.

• ! - the parameter it follows can be of specified type or NULL (only applies to a, o, O, r,
and z). If NULL value is passed by the user, the storage pointer will be set to NULL.

The best way to illustrate the usage of this function is through examples:
/* Gets a long, a string and its length, and a zval. */

long l;

char *s;

int s_len;

zval *param;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

 "lsz", &l, &s, &s_len, ¶m) == FAILURE) {

 return;

}

/* Gets an object of class specified by my_ce, and an optional double. */

zval *obj;

double d = 0.5;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

 "O|d", &obj, my_ce, &d) == FAILURE) {

 return;

}

/* Gets an object or null, and an array.

 If null is passed for object, obj will be set to NULL. */

zval *obj;

zval *arr;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "O!a", &obj, &arr) ==
FAILURE) {

 return;

}

/* Gets a separated array. */

zval *arr;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "a/", &arr) == FAILURE) {

 return;

}

/* Get only the first three parameters (useful for varargs functions). */

zval *z;

zend_bool b;

zval *r;

if (zend_parse_parameters(3, "zbr!", &z, &b, &r) == FAILURE) {

 return;

}

Note that in the last example we pass 3 for the number of received parameters, instead of
ZEND_NUM_ARGS(). What this lets us do is receive the least number of parameters if our
function expects a variable number of them. Of course, if you want to operate on the rest
of the parameters, you will have to use zend_get_parameters_array_ex() to obtain them.

The parsing function has an extended version that allows for an additional flags argument
that controls its actions.
int zend_parse_parameters_ex(int flags, int num_args TSRMLS_DC, char *type_spec,
...);

The only flag you can pass currently is ZEND_PARSE_PARAMS_QUIET, which instructs
the function to not output any error messages during its operation. This is useful for
functions that expect several sets of completely different arguments, but you will have to
output your own error messages.

For example, here is how you would get either a set of three longs or a string:
long l1, l2, l3;

char *s;

if (zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,

 ZEND_NUM_ARGS() TSRMLS_CC,

 "lll", &l1, &l2, &l3) == SUCCESS) {

 /* manipulate longs */

} else if (zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,

 ZEND_NUM_ARGS(), "s", &s, &s_len) == SUCCESS)
{

 /* manipulate string */

} else {

 php_error(E_WARNING, "%s() takes either three long values or a string as
argument",

 get_active_function_name(TSRMLS_C));

 return;

}

With all the abovementioned ways of receiving function parameters you should have a
good handle on this process. For even more example, look through the source code for
extensions that are shipped with PHP - they illustrate every conceivable situation.

Old way of retrieving arguments (deprecated)

Note

Deprecated parameter parsing API

This API is deprecated and superseded by the new ZEND parameter parsing API.

After having checked the number of arguments, you need to get access to the arguments
themselves. This is done with the help of zend_get_parameters_ex():
zval **parameter;

if(zend_get_parameters_ex(1, ¶meter) != SUCCESS)

 WRONG_PARAM_COUNT;
All arguments are stored in a zval container, which needs to be pointed to twice. The
snippet above tries to retrieve one argument and make it available to us via the parameter
pointer.

zend_get_parameters_ex() accepts at least two arguments. The first argument is the
number of arguments to retrieve (which should match the number of arguments with which
the function has been called; this is why it's important to check for correct call syntax). The
second argument (and all following arguments) are pointers to pointers to pointers to zval
s. (Confusing, isn't it?) All these pointers are required because Zend works internally with
**zval; to adjust a local **zval in our function, zend_get_parameters_ex() requires a
pointer to it.

The return value of zend_get_parameters_ex() can either be SUCCESS or FAILURE,
indicating (unsurprisingly) success or failure of the argument processing. A failure is most
likely related to an incorrect number of arguments being specified, in which case you
should exit with WRONG_PARAM_COUNT.

To retrieve more than one argument, you can use a similar snippet:
zval **param1, **param2, **param3, **param4;

if(zend_get_parameters_ex(4, ¶m1, ¶m2, ¶m3, ¶m4) != SUCCESS)

 WRONG_PARAM_COUNT;

zend_get_parameters_ex() only checks whether you're trying to retrieve too many
parameters. If the function is called with five arguments, but you're only retrieving three of
them with zend_get_parameters_ex(), you won't get an error but will get the first three
parameters instead. Subsequent calls of zend_get_parameters_ex() won't retrieve the
remaining arguments, but will get the same arguments again.

Dealing with a Variable Number of Arguments/Optional Parameters

If your function is meant to accept a variable number of arguments, the snippets just
described are sometimes suboptimal solutions. You have to create a line calling
zend_get_parameters_ex() for every possible number of arguments, which is often
unsatisfying.

For this case, you can use the function zend_get_parameters_array_ex(), which accepts
the number of parameters to retrieve and an array in which to store them:
zval **parameter_array[4];

/* get the number of arguments */

argument_count = ZEND_NUM_ARGS();

/* see if it satisfies our minimal request (2 arguments) */

/* and our maximal acceptance (4 arguments) */

if(argument_count < 2 || argument_count > 4)

 WRONG_PARAM_COUNT;

/* argument count is correct, now retrieve arguments */

if(zend_get_parameters_array_ex(argument_count, parameter_array) != SUCCESS)

 WRONG_PARAM_COUNT;
First, the number of arguments is checked to make sure that it's in the accepted range.
After that, zend_get_parameters_array_ex() is used to fill parameter_array with valid
pointers to the argument values.

A very clever implementation of this can be found in the code handling PHP's fsockopen()
located in ext/standard/fsock.c, as shown in PHP's implementation of variable arguments
in fsockopen().. Don't worry if you don't know all the functions used in this source yet; we'll
get to them shortly.

Example #3029 - PHP's implementation of variable arguments in fsockopen().

pval **args[5];

int *sock=emalloc(sizeof(int));

int *sockp;

int arg_count=ARG_COUNT(ht);

int socketd = -1;

unsigned char udp = 0;

struct timeval timeout = { 60, 0 };

unsigned short portno;

unsigned long conv;

char *key = NULL;

FLS_FETCH();

if (arg_count > 5 || arg_count < 2 ||
zend_get_parameters_array_ex(arg_count,args)==FAILURE) {

 CLOSE_SOCK(1);

 WRONG_PARAM_COUNT;

}

switch(arg_count) {

 case 5:

 convert_to_double_ex(args[4]);

 conv = (unsigned long) (Z_DVAL_PP(args[4]) * 1000000.0);

 timeout.tv_sec = conv / 1000000;

 timeout.tv_usec = conv % 1000000;

 /* fall-through */

 case 4:

 if (!PZVAL_IS_REF(*args[3])) {

 php_error(E_WARNING,"error string argument to fsockopen not
passed by reference");

 }

 pval_copy_constructor(*args[3]);

 ZVAL_EMPTY_STRING(*args[3]);

 /* fall-through */

 case 3:

 if (!PZVAL_IS_REF(*args[2])) {

 php_error(E_WARNING,"error argument to fsockopen not passed by
reference");

 return;

 }

 ZVAL_LONG(*args[2], 0);

 break;

}

convert_to_string_ex(args[0]);

convert_to_long_ex(args[1]);

portno = (unsigned short) Z_LVAL_P(args[1]);

key = emalloc(Z_STRLEN_P(args[0]) + 10);

fsockopen() accepts two, three, four, or five parameters. After the obligatory variable
declarations, the function checks for the correct range of arguments. Then it uses a
fall-through mechanism in a switch() statement to deal with all arguments. The switch()
statement starts with the maximum number of arguments being passed (five). After that, it
automatically processes the case of four arguments being passed, then three, by omitting
the otherwise obligatory break keyword in all stages. After having processed the last case,
it exits the switch() statement and does the minimal argument processing needed if the
function is invoked with only two arguments.

This multiple-stage type of processing, similar to a stairway, allows convenient processing
of a variable number of arguments.

Accessing Arguments

To access arguments, it's necessary for each argument to have a clearly defined type.
Again, PHP's extremely dynamic nature introduces some quirks. Because PHP never does
any kind of type checking, it's possible for a caller to pass any kind of data to your
functions, whether you want it or not. If you expect an integer, for example, the caller might
pass an array, and vice versa - PHP simply won't notice.

To work around this, you have to use a set of API functions to force a type conversion on
every argument that's being passed (see Argument Conversion Functions).

Note: All conversion functions expect a **zval as parameter.

Argument Conversion Functions

Function Description

convert_to_boolean_ex() Forces conversion to a Boolean type.
Boolean values remain untouched. Longs,
doubles, and strings containing 0 as well as
NULL values will result in Boolean 0
(FALSE). Arrays and objects are converted
based on the number of entries or
properties, respectively, that they have.
Empty arrays and objects are converted to
FALSE; otherwise, to TRUE. All other
values result in a Boolean 1 (TRUE).

convert_to_long_ex() Forces conversion to a long, the default
integer type. NULL values, Booleans,
resources, and of course longs remain

untouched. Doubles are truncated. Strings
containing an integer are converted to their
corresponding numeric representation,
otherwise resulting in 0. Arrays and objects
are converted to 0 if empty, 1 otherwise.

convert_to_double_ex() Forces conversion to a double, the default
floating-point type. NULL values, Booleans,
resources, longs, and of course doubles
remain untouched. Strings containing a
number are converted to their corresponding
numeric representation, otherwise resulting
in 0.0. Arrays and objects are converted to
0.0 if empty, 1.0 otherwise.

convert_to_string_ex() Forces conversion to a string. Strings
remain untouched. NULL values are
converted to an empty string. Booleans
containing TRUE are converted to "1",
otherwise resulting in an empty string.
Longs and doubles are converted to their
corresponding string representation. Arrays
are converted to the string "Array" and
objects to the string "Object".

convert_to_array_ex(value) Forces conversion to an array. Arrays
remain untouched. Objects are converted to
an array by assigning all their properties to
the array table. All property names are used
as keys, property contents as values. NULL
values are converted to an empty array. All
other values are converted to an array that
contains the specific source value in the
element with the key 0.

convert_to_object_ex(value) Forces conversion to an object. Objects
remain untouched. NULL values are
converted to an empty object. Arrays are
converted to objects by introducing their
keys as properties into the objects and their
values as corresponding property contents
in the object. All other types result in an
object with the property scalar, having the
corresponding source value as content.

convert_to_null_ex(value) Forces the type to become a NULL value,
meaning empty.

Note

You can find a demonstration of the behavior in cross_conversion.php on the
accompanying CD-ROM.

Cross-conversion behavior of PHP.

Using these functions on your arguments will ensure type safety for all data that's passed
to you. If the supplied type doesn't match the required type, PHP forces dummy contents
on the resulting value (empty strings, arrays, or objects, 0 for numeric values, FALSE for
Booleans) to ensure a defined state.

Following is a quote from the sample module discussed previously, which makes use of
the conversion functions:
zval **parameter;

if((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, ¶meter) != SUCCESS))

{

 WRONG_PARAM_COUNT;

}

convert_to_long_ex(parameter);

RETURN_LONG(Z_LVAL_P(parameter));
After retrieving the parameter pointer, the parameter value is converted to a long (an
integer), which also forms the return value of this function. Understanding access to the
contents of the value requires a short discussion of the zval type, whose definition is
shown in PHP/Zend zval type definition..

Example #3030 - PHP/Zend zval type definition.

typedef pval zval;

typedef struct _zval_struct zval;

typedef union _zvalue_value {

 long lval; /* long value */

 double dval; /* double value */

 struct {

 char *val;

 int len;

 } str;

 HashTable *ht; /* hash table value */

 struct {

 zend_class_entry *ce;

 HashTable *properties;

 } obj;

} zvalue_value;

struct _zval_struct {

 /* Variable information */

 zvalue_value value; /* value */

 unsigned char type; /* active type */

 unsigned char is_ref;

 short refcount;

};

Actually, pval (defined in php.h) is only an alias of zval (defined in zend.h), which in turn
refers to _zval_struct. This is a most interesting structure. _zval_struct is the "master"
structure, containing the value structure, type, and reference information. The substructure
zvalue_value is a union that contains the variable's contents. Depending on the variable's
type, you'll have to access different members of this union. For a description of both
structures, see Zend zval Structure, Zend zvalue_value Structure and Zend Variable Type
Constants.

Zend zval Structure

Entry Description

value Union containing this variable's contents.
See Zend zvalue_value Structure for a
description.

type Contains this variable's type. For a list of
available types, see Zend Variable Type
Constants.

is_ref 0 means that this variable is not a reference;
1 means that this variable is a reference to
another variable.

refcount The number of references that exist for this
variable. For every new reference to the
value stored in this variable, this counter is
increased by 1. For every lost reference, this
counter is decreased by 1. When the
reference counter reaches 0, no references
exist to this value anymore, which causes
automatic freeing of the value.

Zend zvalue_value Structure

Entry Description

lval Use this property if the variable is of the type
IS_LONG, IS_BOOLEAN, or
IS_RESOURCE.

dval Use this property if the variable is of the type
IS_DOUBLE.

str This structure can be used to access

variables of the type IS_STRING. The
member len contains the string length; the
member val points to the string itself. Zend
uses C strings; thus, the string length
contains a trailing 0x00.

ht This entry points to the variable's hash table
entry if the variable is an array.

obj Use this property if the variable is of the type
IS_OBJECT.

Zend Variable Type Constants

Constant Description

IS_NULL Denotes a NULL (empty) value.

IS_LONG A long (integer) value.

IS_DOUBLE A double (floating point) value.

IS_STRING A string.

IS_ARRAY Denotes an array.

IS_OBJECT An object.

IS_BOOL A Boolean value.

IS_RESOURCE A resource (for a discussion of resources,
see the appropriate section below).

IS_CONSTANT A constant (defined) value.

To access a long you access zval.value.lval, to access a double you use zval.value.dval,
and so on. Because all values are stored in a union, trying to access data with incorrect
union members results in meaningless output.

Accessing arrays and objects is a bit more complicated and is discussed later.

Dealing with Arguments Passed by Reference

If your function accepts arguments passed by reference that you intend to modify, you
need to take some precautions.

What we didn't say yet is that under the circumstances presented so far, you don't have
write access to any zval containers designating function parameters that have been

passed to you. Of course, you can change any zval containers that you created within your
function, but you mustn't change any zval s that refer to Zend-internal data!

We've only discussed the so-called *_ex() API so far. You may have noticed that the API
functions we've used are called zend_get_parameters_ex() instead of
zend_get_parameters(), convert_to_long_ex() instead of convert_to_long(), etc. The
*_ex() functions form the so-called new "extended" Zend API. They give a minor speed
increase over the old API, but as a tradeoff are only meant for providing read-only access.

Because Zend works internally with references, different variables may reference the
same value. Write access to a zval container requires this container to contain an isolated
value, meaning a value that's not referenced by any other containers. If a zval container
were referenced by other containers and you changed the referenced zval, you would
automatically change the contents of the other containers referencing this zval (because
they'd simply point to the changed value and thus change their own value as well).

zend_get_parameters_ex() doesn't care about this situation, but simply returns a pointer
to the desired zval containers, whether they consist of references or not. Its corresponding
function in the traditional API, zend_get_parameters(), immediately checks for referenced
values. If it finds a reference, it creates a new, isolated zval container; copies the
referenced data into this newly allocated space; and then returns a pointer to the new,
isolated value.

This action is called zval separation (or pval separation). Because the *_ex() API doesn't
perform zval separation, it's considerably faster, while at the same time disabling write
access.

To change parameters, however, write access is required. Zend deals with this situation in
a special way: Whenever a parameter to a function is passed by reference, it performs
automatic zval separation. This means that whenever you're calling a function like this in
PHP, Zend will automatically ensure that $parameter is being passed as an isolated value,
rendering it to a write-safe state:
my_function(&$parameter);

But this is not the case with regular parameters! All other parameters that are not passed
by reference are in a read-only state.

This requires you to make sure that you're really working with a reference - otherwise you
might produce unwanted results. To check for a parameter being passed by reference, you
can use the macro PZVAL_IS_REF. This macro accepts a zval* to check if it is a reference
or not. Examples are given in in Testing for referenced parameter passing..

Example #3031 - Testing for referenced parameter passing.

zval *parameter;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z", ¶meter) ==
FAILURE)

 return;

/* check for parameter being passed by reference */

if (!PZVAL_IS_REF(parameter)) {

{

 zend_error(E_WARNING, "Parameter wasn't passed by reference");

 RETURN_NULL();

}

/* make changes to the parameter */

ZVAL_LONG(parameter, 10);

Assuring Write Safety for Other Parameters

You might run into a situation in which you need write access to a parameter that's
retrieved with zend_get_parameters_ex() but not passed by reference. For this case, you
can use the macro SEPARATE_ZVAL, which does a zval separation on the provided
container. The newly generated zval is detached from internal data and has only a local
scope, meaning that it can be changed or destroyed without implying global changes in the
script context:
zval **parameter;

/* retrieve parameter */

zend_get_parameters_ex(1, ¶meter);

/* at this stage, <parameter> still is connected */

/* to Zend's internal data buffers */

/* make <parameter> write-safe */

SEPARATE_ZVAL(parameter);

/* now we can safely modify <parameter> */

/* without implying global changes */
SEPARATE_ZVAL uses emalloc() to allocate the new zval container, which means that
even if you don't deallocate this memory yourself, it will be destroyed automatically upon
script termination. However, doing a lot of calls to this macro without freeing the resulting
containers will clutter up your RAM.

Note: As you can easily work around the lack of write access in the "traditional" API (with
zend_get_parameters() and so on), this API seems to be obsolete, and is not discussed
further in this chapter.

Creating Variables

When exchanging data from your own extensions with PHP scripts, one of the most
important issues is the creation of variables. This section shows you how to deal with the
variable types that PHP supports.

Overview

To create new variables that can be seen "from the outside" by the executing script, you
need to allocate a new zval container, fill this container with meaningful values, and then

introduce it to Zend's internal symbol table. This basic process is common to all variable
creations:

zval *new_variable;

/* allocate and initialize new container */

MAKE_STD_ZVAL(new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol table
*/

ZEND_SET_SYMBOL(EG(active_symbol_table), "new_variable_name", new_variable);

/* the variable is now accessible to the script by using $new_variable_name */

The macro MAKE_STD_ZVAL allocates a new zval container using ALLOC_ZVAL and
initializes it using INIT_ZVAL. As implemented in Zend at the time of this writing, initializing
means setting the reference count to 1 and clearing the is_ref flag, but this process could
be extended later - this is why it's a good idea to keep using MAKE_STD_ZVAL instead of
only using ALLOC_ZVAL. If you want to optimize for speed (and you don't have to
explicitly initialize the zval container here), you can use ALLOC_ZVAL, but this isn't
recommended because it doesn't ensure data integrity.

ZEND_SET_SYMBOL takes care of introducing the new variable to Zend's symbol table.
This macro checks whether the value already exists in the symbol table and converts the
new symbol to a reference if so (with automatic deallocation of the old zval container). This
is the preferred method if speed is not a crucial issue and you'd like to keep memory
usage low.

Note that ZEND_SET_SYMBOL makes use of the Zend executor globals via the macro
EG. By specifying EG(active_symbol_table), you get access to the currently active symbol
table, dealing with the active, local scope. The local scope may differ depending on
whether the function was invoked from within a function.

If you need to optimize for speed and don't care about optimal memory usage, you can
omit the check for an existing variable with the same value and instead force insertion into
the symbol table by using zend_hash_update():
zval *new_variable;

/* allocate and initialize new container */

MAKE_STD_ZVAL(new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol table
*/

zend_hash_update(

 EG(active_symbol_table),

 "new_variable_name",

 strlen("new_variable_name") + 1,

 &new_variable,

 sizeof(zval *),

 NULL

);
This is actually the standard method used in most modules.

The variables generated with the snippet above will always be of local scope, so they
reside in the context in which the function has been called. To create new variables in the
global scope, use the same method but refer to another symbol table:
zval *new_variable;

// allocate and initialize new container

MAKE_STD_ZVAL(new_variable);

//

// set type and variable contents here

//

// introduce this variable by the name "new_variable_name" into the global
symbol table

ZEND_SET_SYMBOL(&EG(symbol_table), "new_variable_name", new_variable);
The macro ZEND_SET_SYMBOL is now being called with a reference to the main, global
symbol table by referring EG(symbol_table).

Note: The active_symbol_table variable is a pointer, but symbol_table is not. This is why
you have to use EG(active_symbol_table) and &EG(symbol_table) as parameters to
ZEND_SET_SYMBOL - it requires a pointer.

Similarly, to get a more efficient version, you can hardcode the symbol table update:
zval *new_variable;

// allocate and initialize new container

MAKE_STD_ZVAL(new_variable);

//

// set type and variable contents here

//

// introduce this variable by the name "new_variable_name" into the global
symbol table

zend_hash_update(

 &EG(symbol_table),

 "new_variable_name",

 strlen("new_variable_name") + 1,

 &new_variable,

 sizeof(zval *),

 NULL

);
Creating variables with different scopes. shows a sample source that creates two variables
- local_variable with a local scope and global_variable with a global scope (see Figure
9.7). The full example can be found on the CD-ROM.

Note: You can see that the global variable is actually not accessible from within the
function. This is because it's not imported into the local scope using global
$global_variable; in the PHP source.

Example #3032 - Creating variables with different scopes.

ZEND_FUNCTION(variable_creation)

{

 zval *new_var1, *new_var2;

 MAKE_STD_ZVAL(new_var1);

 MAKE_STD_ZVAL(new_var2);

 ZVAL_LONG(new_var1, 10);

 ZVAL_LONG(new_var2, 5);

 ZEND_SET_SYMBOL(EG(active_symbol_table), "local_variable", new_var1);

 ZEND_SET_SYMBOL(&EG(symbol_table), "global_variable", new_var2);

 RETURN_NULL();

}

Longs (Integers)

Now let's get to the assignment of data to variables, starting with longs. Longs are PHP's
integers and are very simple to store. Looking at the zval.value container structure
discussed earlier in this chapter, you can see that the long data type is directly contained
in the union, namely in the lval field. The corresponding type value for longs is IS_LONG
(see Creation of a long.).

Example #3033 - Creation of a long.

zval *new_long;

MAKE_STD_ZVAL(new_long);

new_long->type = IS_LONG;

new_long->value.lval = 10;

Alternatively, you can use the macro ZVAL_LONG:
zval *new_long;

MAKE_STD_ZVAL(new_long);

ZVAL_LONG(new_long, 10);

Doubles (Floats)

Doubles are PHP's floats and are as easy to assign as longs, because their value is also
contained directly in the union. The member in the zval.value container is dval; the
corresponding type is IS_DOUBLE.
zval *new_double;

MAKE_STD_ZVAL(new_double);

new_double->type = IS_DOUBLE;

new_double->value.dval = 3.45;
Alternatively, you can use the macro ZVAL_DOUBLE:
zval *new_double;

MAKE_STD_ZVAL(new_double);

ZVAL_DOUBLE(new_double, 3.45);

Strings

Strings need slightly more effort. As mentioned earlier, all strings that will be associated
with Zend's internal data structures need to be allocated using Zend's own
memory-management functions. Referencing of static strings or strings allocated with
standard routines is not allowed. To assign strings, you have to access the structure str in
the zval.value container. The corresponding type is IS_STRING:
zval *new_string;

char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);

new_string->type = IS_STRING;

new_string->value.str.len = strlen(string_contents);

new_string->value.str.val = estrdup(string_contents);

 </programlisting>

 Note the usage of Zend's <function>estrdup</function> here.

 Of course, you can also use the predefined macro

 <literal>ZVAL_STRING</literal>:

 <programlisting>

zval *new_string;

char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);

ZVAL_STRING(new_string, string_contents, 1);
ZVAL_STRING accepts a third parameter that indicates whether the supplied string
contents should be duplicated (using estrdup()). Setting this parameter to 1 causes the
string to be duplicated; 0 simply uses the supplied pointer for the variable contents. This is
most useful if you want to create a new variable referring to a string that's already
allocated in Zend internal memory.

If you want to truncate the string at a certain position or you already know its length, you
can use ZVAL_STRINGL(zval, string, length, duplicate), which accepts an explicit string
length to be set for the new string. This macro is faster than ZVAL_STRING and also
binary-safe.

To create empty strings, set the string length to 0 and use empty_string as contents:
new_string->type = IS_STRING;

new_string->value.str.len = 0;

new_string->value.str.val = empty_string;
Of course, there's a macro for this as well (ZVAL_EMPTY_STRING):
MAKE_STD_ZVAL(new_string);

ZVAL_EMPTY_STRING(new_string);

Booleans

Booleans are created just like longs, but have the type IS_BOOL. Allowed values in lval
are 0 and 1:
zval *new_bool;

MAKE_STD_ZVAL(new_bool);

new_bool->type = IS_BOOL;

new_bool->value.lval = 1;
The corresponding macros for this type are ZVAL_BOOL (allowing specification of the
value) as well as ZVAL_TRUE and ZVAL_FALSE (which explicitly set the value to TRUE
and FALSE, respectively).

Arrays

Arrays are stored using Zend's internal hash tables, which can be accessed using the
zend_hash_*() API. For every array that you want to create, you need a new hash table
handle, which will be stored in the ht member of the zval.value container.

There's a whole API solely for the creation of arrays, which is extremely handy. To start a
new array, you call array_init().
zval *new_array;

MAKE_STD_ZVAL(new_array);

array_init(new_array);
array_init() always returns SUCCESS.

To add new elements to the array, you can use numerous functions, depending on what
you want to do. Zend's API for Associative Arrays, Zend's API for Indexed Arrays, Part 1
and Zend's API for Indexed Arrays, Part 2 describe these functions. All functions return
FAILURE on failure and SUCCESS on success.

Zend's API for Associative Arrays

Function Description

add_assoc_long(zval *array, char *key,
long n);()

Adds an element of type long.

add_assoc_unset(zval *array, char
*key);()

Adds an unset element.

add_assoc_bool(zval *array, char *key,
int b);()

Adds a Boolean element.

add_assoc_resource(zval *array, char
*key, int r);()

Adds a resource to the array.

add_assoc_double(zval *array, char *key,
double d);()

Adds a floating-point value.

add_assoc_string(zval *array, char *key,
char *str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_assoc_stringl(zval *array, char *key,
char *str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. Otherwise, behaves like
add_assoc_string().

add_assoc_zval(zval *array, char *key,
zval *value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

Zend's API for Indexed Arrays, Part 1

Function Description

add_index_long(zval *array, uint idx, long
n);()

Adds an element of type long.

add_index_unset(zval *array, uint idx);() Adds an unset element.

add_index_bool(zval *array, uint idx, int
b);()

Adds a Boolean element.

add_index_resource(zval *array, uint idx,
int r);()

Adds a resource to the array.

add_index_double(zval *array, uint idx,
double d);()

Adds a floating-point value.

add_index_string(zval *array, uint idx,
char *str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_index_stringl(zval *array, uint idx,
char *str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

add_index_zval(zval *array, uint idx, zval
*value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

Zend's API for Indexed Arrays, Part 2

Function Description

add_next_index_long(zval *array, long
n);()

Adds an element of type long.

add_next_index_unset(zval *array);() Adds an unset element.

add_next_index_bool(zval *array, int b);() Adds a Boolean element.

add_next_index_resource(zval *array, int
r);()

Adds a resource to the array.

add_next_index_double(zval *array,
double d);()

Adds a floating-point value.

add_next_index_string(zval *array, char
*str, int duplicate);()

Adds a string to the array. The flag duplicate
specifies whether the string contents have to
be copied to Zend internal memory.

add_next_index_stringl(zval *array, char
*str, uint length, int duplicate);()

Adds a string with the desired length length
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

add_next_index_zval(zval *array, zval
*value);()

Adds a zval to the array. Useful for adding
other arrays, objects, streams, etc...

All these functions provide a handy abstraction to Zend's internal hash API. Of course, you
can also use the hash functions directly - for example, if you already have a zval container
allocated that you want to insert into an array. This is done using zend_hash_update() for
associative arrays (see Adding an element to an associative array.) and
zend_hash_index_update() for indexed arrays (see Adding an element to an indexed
array.):

Example #3034 - Adding an element to an associative array.

zval *new_array, *new_element;

char *key = "element_key";

MAKE_STD_ZVAL(new_array);

MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_update(new_array->value.ht, key, strlen(key) + 1, (void
*)&new_element, sizeof(zval *), NULL) == FAILURE)

{

 // do error handling here

}

Example #3035 - Adding an element to an indexed array.

zval *new_array, *new_element;

int key = 2;

MAKE_STD_ZVAL(new_array);

MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_index_update(new_array->value.ht, key, (void
*)&new_element, sizeof(zval *), NULL) == FAILURE)

{

 // do error handling here

}

To emulate the functionality of add_next_index_*(), you can use this:

zend_hash_next_index_insert(ht, zval **new_element, sizeof(zval *), NULL)

Note: To return arrays from a function, use array_init() and all following actions on the
predefined variable return_value (given as argument to your exported function; see the
earlier discussion of the call interface). You do not have to use MAKE_STD_ZVAL on this.

Tip: To avoid having to write new_array->value.ht every time, you can use
HASH_OF(new_array), which is also recommended for compatibility and style reasons.

Objects

Since objects can be converted to arrays (and vice versa), you might have already
guessed that they have a lot of similarities to arrays in PHP. Objects are maintained with
the same hash functions, but there's a different API for creating them.

To initialize an object, you use the function object_init():
zval *new_object;

MAKE_STD_ZVAL(new_object);

if(object_init(new_object) != SUCCESS)

{

 // do error handling here

}
You can use the functions described in Zend's API for Object Creation to add members to
your object.

Zend's API for Object Creation

Function Description

add_property_long(zval *object, char
*key, long l);()

Adds a long to the object.

add_property_unset(zval *object, char
*key);()

Adds an unset property to the object.

add_property_bool(zval *object, char
*key, int b);()

Adds a Boolean to the object.

add_property_resource(zval *object, char
*key, long r);()

Adds a resource to the object.

add_property_double(zval *object, char
*key, double d);()

Adds a double to the object.

add_property_string(zval *object, char
*key, char *str, int duplicate);()

Adds a string to the object.

add_property_stringl(zval *object, char
*key, char *str, uint length, int
duplicate);()

Adds a string of the specified length to the
object. This function is faster than
add_property_string() and also
binary-safe.

add_property_zval(zval *obect, char *key,
zval *container):()

Adds a zval container to the object. This is
useful if you have to add properties which
aren't simple types like integers or strings
but arrays or other objects.

Resources

Resources are a special kind of data type in PHP. The term resources doesn't really refer
to any special kind of data, but to an abstraction method for maintaining any kind of
information. Resources are kept in a special resource list within Zend. Each entry in the list
has a correspondending type definition that denotes the kind of resource to which it refers.
Zend then internally manages all references to this resource. Access to a resource is
never possible directly - only via a provided API. As soon as all references to a specific
resource are lost, a corresponding shutdown function is called.

For example, resources are used to store database links and file descriptors. The de facto
standard implementation can be found in the MySQL module, but other modules such as
the Oracle module also make use of resources.

Note

In fact, a resource can be a pointer to anything you need to handle in your functions
(e.g. pointer to a structure) and the user only has to pass a single resource variable to
your function.

To create a new resource you need to register a resource destruction handler for it. Since
you can store any kind of data as a resource, Zend needs to know how to free this
resource if its not longer needed. This works by registering your own resource destruction
handler to Zend which in turn gets called by Zend whenever your resource can be freed
(whether manually or automatically). Registering your resource handler within Zend
returns you the resource type handle for that resource. This handle is needed whenever
you want to access a resource of this type later and is most of time stored in a global static
variable within your extension. There is no need to worry about thread safety here
because you only register your resource handler once during module initialization.

The Zend function to register your resource handler is defined as:
ZEND_API int zend_register_list_destructors_ex(rsrc_dtor_func_t ld,
rsrc_dtor_func_t pld, char *type_name, int module_number);

There are two different kinds of resource destruction handlers you can pass to this
function: a handler for normal resources and a handler for persistent resources. Persistent
resources are for example used for database connection. When registering a resource,
either of these handlers must be given. For the other handler just pass NULL.

zend_register_list_destructors_ex() accepts the following parameters:

ld Normal resource destruction handler
callback

pld Pesistent resource destruction handler
callback

type_name A string specifying the name of your
resource. It's always a good thing to specify
a unique name within PHP for the resource
type so when the user for example calls
var_dump($resource); he also gets the
name of the resource.

module_number The module_number is automatically
available in your PHP_MINIT_FUNCTION
function and therefore you just pass it over.

The return value is a unique integer ID for your resource type.

The resource destruction handler (either normal or persistent resources) has the following
prototype:
void resource_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC);
The passed rsrc is a pointer to the following structure:
typedef struct _zend_rsrc_list_entry {

 void *ptr;

 int type;

 int refcount;

} zend_rsrc_list_entry;
The member void *ptr is the actual pointer to your resource.

Now we know how to start things, we define our own resource we want register within
Zend. It is only a simple structure with two integer members:
typedef struct {

 int resource_link;

 int resource_type;

} my_resource;
Our resource destruction handler is probably going to look something like this:
void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

 // You most likely cast the void pointer to your structure type

 my_resource *my_rsrc = (my_resource *) rsrc->ptr;

 // Now do whatever needs to be done with you resource. Closing

 // Files, Sockets, freeing additional memory, etc.

 // Also, don't forget to actually free the memory for your resource too!

 do_whatever_needs_to_be_done_with_the_resource(my_rsrc);

}

Note

One important thing to mention: If your resource is a rather complex structure which
also contains pointers to memory you allocated during runtime you have to free them
before freeing the resource itself!

Now that we have defined

• what our resource is and

• our resource destruction handler

we can go on and do the rest of the steps:

• create a global variable within the extension holding the resource ID so it can be
accessed from every function which needs it

• define the resource name

• write the resource destruction handler

• and finally register the handler

// Somewhere in your extension, define the variable for your registered
resources.

 // If you wondered what 'le' stands for: it simply means 'list entry'.

 static int le_myresource;

 // It's nice to define your resource name somewhere

 #define le_myresource_name "My type of resource"

 [...]

 // Now actually define our resource destruction handler

 void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

 my_resource *my_rsrc = (my_resource *) rsrc->ptr;

 do_whatever_needs_to_be_done_with_the_resource(my_rsrc);

 }

 [...]

 PHP_MINIT_FUNCTION(my_extension) {

 // Note that 'module_number' is already provided through the

 // PHP_MINIT_FUNCTION() function definition.

 le_myresource = zend_register_list_destructors_ex(my_destruction_handler,
NULL, le_myresource_name, module_number);

 // You can register additional resources, initialize

 // your global vars, constants, whatever.

 }

To actually register a new resource you use can either use the zend_register_resource()
function or the ZEND_REGISTER_RESOURE() macro, both defined in zend_list.h .
Although the arguments for both map 1:1 it's a good idea to always use macros to be
upwards compatible:
int ZEND_REGISTER_RESOURCE(zval *rsrc_result, void *rsrc_pointer, int
rsrc_type);

rsrc_result This is an already initialized zval * container.

rsrc_pointer Your resource pointer you want to store.

rsrc_type The type which you received when you
registered the resource destruction handler.
If you followed the naming scheme this
would be le_myresource.

The return value is a unique integer identifier for that resource.

What is really going on when you register a new resource is it gets inserted in an internal
list in Zend and the result is just stored in the given zval * container:
rsrc_id = zend_list_insert(rsrc_pointer, rsrc_type);

 if (rsrc_result) {

 rsrc_result->value.lval = rsrc_id;

 rsrc_result->type = IS_RESOURCE;

 }

 return rsrc_id;
The returned rsrc_id uniquely identifies the newly registered resource. You can use the
macro RETURN_RESOURE to return it to the user:
 RETURN_RESOURCE(rsrc_id)

Note

It is common practice that if you want to return the resource immediately to the user
you specify the return_value as the zval * container.

Zend now keeps track of all references to this resource. As soon as all references to the
resource are lost, the destructor that you previously registered for this resource is called.
The nice thing about this setup is that you don't have to worry about memory leakages

introduced by allocations in your module - just register all memory allocations that your
calling script will refer to as resources. As soon as the script decides it doesn't need them
anymore, Zend will find out and tell you.

Now that the user got his resource, at some point he is passing it back to one of your
functions. The value.lval inside the zval * container contains the key to your resource and
thus can be used to fetch the resource with the following macro:
ZEND_FETCH_RESOURCE:
ZEND_FETCH_RESOURCE(rsrc, rsrc_type, rsrc_id, default_rsrc_id,
resource_type_name, resource_type)

rsrc This is your pointer which will point to your
previously registered resource.

rsrc_type This is the typecast argument for your
pointer, e.g. myresource *.

rsrc_id This is the address of the zval * container
the user passed to your function, e.g.
&z_resource if zval *z_resource is given.

default_rsrc_id This integer specifies the default resource
ID if no resource could be fetched or -1.

resource_type_name This is the name of the requested resource.
It's a string and is used when the resource
can't be found or is invalid to form a
meaningful error message.

resource_type The resource_type you got back when
registering the resource destruction handler.
In our example this was le_myresource.

This macro has no return value. It is for the developers convenience and takes care of
TSRMLS arguments passing and also does check if the resource could be fetched. It
throws a warning message and returns the current PHP function with NULL if there was a
problem retrieving the resource.

To force removal of a resource from the list, use the function zend_list_delete(). You can
also force the reference count to increase if you know that you're creating another
reference for a previously allocated value (for example, if you're automatically reusing a
default database link). For this case, use the function zend_list_addref(). To search for
previously allocated resource entries, use zend_list_find(). The complete API can be
found in zend_list.h.

Macros for Automatic Global Variable Creation

In addition to the macros discussed earlier, a few macros allow easy creation of simple
global variables. These are nice to know in case you want to introduce global flags, for
example. This is somewhat bad practice, but Table Macros for Global Variable Creation

describes macros that do exactly this task. They don't need any zval allocation; you simply
have to supply a variable name and value.

Macros for Global Variable Creation

Macro Description

SET_VAR_STRING(name, value) Creates a new string.

SET_VAR_STRINGL(name, value, length) Creates a new string of the specified length.
This macro is faster than
SET_VAR_STRING and also binary-safe.

SET_VAR_LONG(name, value) Creates a new long.

SET_VAR_DOUBLE(name, value) Creates a new double.

Creating Constants

Zend supports the creation of true constants (as opposed to regular variables). Constants
are accessed without the typical dollar sign ($) prefix and are available in all scopes.
Examples include TRUE and FALSE, to name just two.

To create your own constants, you can use the macros in Macros for Creating Constants.
All the macros create a constant with the specified name and value.

You can also specify flags for each constant:

• CONST_CS - This constant's name is to be treated as case sensitive.

• CONST_PERSISTENT - This constant is persistent and won't be "forgotten" when the
current process carrying this constant shuts down.

To use the flags, combine them using a inary OR:
// register a new constant of type "long"

 REGISTER_LONG_CONSTANT("NEW_MEANINGFUL_CONSTANT", 324, CONST_CS |

 CONST_PERSISTENT);
There are two types of macros - REGISTER_*_CONSTANT and
REGISTER_MAIN_*_CONSTANT. The first type creates constants bound to the current
module. These constants are dumped from the symbol table as soon as the module that
registered the constant is unloaded from memory. The second type creates constants that
remain in the symbol table independently of the module.

Macros for Creating Constants

Macro Description

REGISTER_LONG_CONSTANT(name,
value, flags)

Registers a new constant of type long.

REGISTER_MAIN_LONG_CONSTANT(na
me, value, flags)

REGISTER_DOUBLE_CONSTANT(name,
value, flags)
REGISTER_MAIN_DOUBLE_CONSTANT(
name, value, flags)

Registers a new constant of type double.

REGISTER_STRING_CONSTANT(name,
value, flags)
REGISTER_MAIN_STRING_CONSTANT(n
ame, value, flags)

Registers a new constant of type string. The
specified string must reside in Zend's
internal memory.

REGISTER_STRINGL_CONSTANT(name,
value, length, flags)
REGISTER_MAIN_STRINGL_CONSTANT(
name, value, length, flags)

Registers a new constant of type string. The
string length is explicitly set to length. The
specified string must reside in Zend's
internal memory.

Duplicating Variable Contents: The Copy Constructor

Sooner or later, you may need to assign the contents of one zval container to another.
This is easier said than done, since the zval container doesn't contain only type
information, but also references to places in Zend's internal data. For example, depending
on their size, arrays and objects may be nested with lots of hash table entries. By
assigning one zval to another, you avoid duplicating the hash table entries, using only a
reference to them (at most).

To copy this complex kind of data, use the copy constructor. Copy constructors are
typically defined in languages that support operator overloading, with the express purpose
of copying complex types. If you define an object in such a language, you have the
possibility of overloading the "=" operator, which is usually responsible for assigning the
contents of the rvalue (result of the evaluation of the right side of the operator) to the lvalue
(same for the left side).

Overloading means assigning a different meaning to this operator, and is usually used to
assign a function call to an operator. Whenever this operator would be used on such an
object in a program, this function would be called with the lvalue and rvalue as parameters.
Equipped with that information, it can perform the operation it intends the "=" operator to
have (usually an extended form of copying).

This same form of "extended copying" is also necessary for PHP's zval containers. Again,
in the case of an array, this extended copying would imply re-creation of all hash table
entries relating to this array. For strings, proper memory allocation would have to be
assured, and so on.

Zend ships with such a function, called zend_copy_ctor() (the previous PHP equivalent
was pval_copy_constructor()).

A most useful demonstration is a function that accepts a complex type as argument,
modifies it, and then returns the argument:

zval *parameter;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z", &parameter) ==
FAILURE)

 return;

}

// do modifications to the parameter here

// now we want to return the modified container:

*return_value = *parameter;

zval_copy_ctor(return_value);

The first part of the function is plain-vanilla argument retrieval. After the (left out)
modifications, however, it gets interesting: The container of parameter is assigned to the
(predefined) return_value container. Now, in order to effectively duplicate its contents, the
copy constructor is called. The copy constructor works directly with the supplied argument,
and the standard return values are FAILURE on failure and SUCCESS on success.

If you omit the call to the copy constructor in this example, both parameter and
return_value would point to the same internal data, meaning that return_value would be an
illegal additional reference to the same data structures. Whenever changes occurred in the
data that parameter points to, return_value might be affected. Thus, in order to create
separate copies, the copy constructor must be used.

The copy constructor's counterpart in the Zend API, the destructor zval_dtor(), does the
opposite of the constructor.

Returning Values

Returning values from your functions to PHP was described briefly in an earlier section;
this section gives the details. Return values are passed via the return_value variable,
which is passed to your functions as argument. The return_value argument consists of a
zval container (see the earlier discussion of the call interface) that you can freely modify.
The container itself is already allocated, so you don't have to run MAKE_STD_ZVAL on it.
Instead, you can access its members directly.

To make returning values from functions easier and to prevent hassles with accessing the
internal structures of the zval container, a set of predefined macros is available (as usual).
These macros automatically set the correspondent type and value, as described in
Predefined Macros for Returning Values from a Function and Predefined Macros for
Setting the Return Value of a Function.

Note

The macros in Predefined Macros for Returning Values from a Function automatically
return from your function, those in Predefined Macros for Setting the Return Value of a
Function only set the return value; they don't return from your function.

Predefined Macros for Returning Values from a Function

Macro Description

RETURN_RESOURCE(resource) Returns a resource.

RETURN_BOOL(bool) Returns a Boolean.

RETURN_NULL() Returns nothing (a NULL value).

RETURN_LONG(long) Returns a long.

RETURN_DOUBLE(double) Returns a double.

RETURN_STRING(string, duplicate) Returns a string. The duplicate flag indicates
whether the string should be duplicated
using estrdup().

RETURN_STRINGL(string, length,
duplicate)

Returns a string of the specified length;
otherwise, behaves like RETURN_STRING.
This macro is faster and binary-safe,
however.

RETURN_EMPTY_STRING() Returns an empty string.

RETURN_FALSE Returns Boolean false.

RETURN_TRUE Returns Boolean true.

Predefined Macros for Setting the Return Value of a Function

Macro Description

RETVAL_RESOURCE(resource) Sets the return value to the specified
resource.

RETVAL_BOOL(bool) Sets the return value to the specified
Boolean value.

RETVAL_NULL Sets the return value to NULL.

RETVAL_LONG(long) Sets the return value to the specified long.

RETVAL_DOUBLE(double) Sets the return value to the specified
double.

RETVAL_STRING(string, duplicate) Sets the return value to the specified string
and duplicates it to Zend internal memory if
desired (see also RETURN_STRING).

RETVAL_STRINGL(string, length, duplicate) Sets the return value to the specified string
and forces the length to become length (see

also RETVAL_STRING). This macro is
faster and binary-safe, and should be used
whenever the string length is known.

RETVAL_EMPTY_STRING Sets the return value to an empty string.

RETVAL_FALSE Sets the return value to Boolean false.

RETVAL_TRUE Sets the return value to Boolean true.

Complex types such as arrays and objects can be returned by using array_init() and
object_init(), as well as the corresponding hash functions on return_value. Since these
types cannot be constructed of trivial information, there are no predefined macros for
them.

Printing Information

Often it's necessary to print messages to the output stream from your module, just as
print() would be used within a script. PHP offers functions for most generic tasks, such as
printing warning messages, generating output for phpinfo(), and so on. The following
sections provide more details. Examples of these functions can be found on the CD-ROM.

zend_printf()

zend_printf() works like the standard printf(), except that it prints to Zend's output stream.

zend_error()

zend_error() can be used to generate error messages. This function accepts two
arguments; the first is the error type (see zend_errors.h), and the second is the error
message.
zend_error(E_WARNING, "This function has been called with empty arguments");
Zend's Predefined Error Messages. shows a list of possible values (see below). These
values are also referred to in php.ini. Depending on which error type you choose, your
messages will be logged.

Zend's Predefined Error Messages.

Error Description

E_ERROR Signals an error and terminates execution of
the script immediately.

E_WARNING Signals a generic warning. Execution
continues.

E_PARSE Signals a parser error. Execution continues.

E_NOTICE Signals a notice. Execution continues. Note
that by default the display of this type of
error messages is turned off in php.ini.

E_CORE_ERROR Internal error by the core; shouldn't be used
by user-written modules.

E_COMPILE_ERROR Internal error by the compiler; shouldn't be
used by user-written modules.

E_COMPILE_WARNING Internal warning by the compiler; shouldn't
be used by user-written modules.

Display of warning messages in the browser.

Including Output in phpinfo()

After creating a real module, you'll want to show information about the module in phpinfo()
(in addition to the module name, which appears in the module list by default). PHP allows
you to create your own section in the phpinfo() output with the ZEND_MINFO() function.
This function should be placed in the module descriptor block (discussed earlier) and is
always called whenever a script calls phpinfo().

PHP automatically prints a section in phpinfo() for you if you specify the ZEND_MINFO
function, including the module name in the heading. Everything else must be formatted
and printed by you.

Typically, you can print an HTML table header using php_info_print_table_start() and
then use the standard functions php_info_print_table_header() and
php_info_print_table_row(). As arguments, both take the number of columns (as
integers) and the column contents (as strings). Source code and screenshot for output in
phpinfo. shows a source example and its output. To print the table footer, use
php_info_print_table_end().

Example #3036 - Source code and screenshot for output in phpinfo().

php_info_print_table_start();

php_info_print_table_header(2, "First column", "Second column");

php_info_print_table_row(2, "Entry in first row", "Another entry");

php_info_print_table_row(2, "Just to fill", "another row here");

php_info_print_table_end();

Execution Information

You can also print execution information, such as the current file being executed. The

name of the function currently being executed can be retrieved using the function
get_active_function_name(). This function returns a pointer to the function name and
doesn't accept any arguments. To retrieve the name of the file currently being executed,
use zend_get_executed_filename(). This function accesses the executor globals, which
are passed to it using the TSRMLS_C macro. The executor globals are automatically
available to every function that's called directly by Zend (they're part of the
INTERNAL_FUNCTION_PARAMETERS described earlier in this chapter). If you want to
access the executor globals in another function that doesn't have them available
automatically, call the macro TSRMLS_FETCH() once in that function; this will introduce
them to your local scope.

Finally, the line number currently being executed can be retrieved using the function
zend_get_executed_lineno(). This function also requires the executor globals as
arguments. For examples of these functions, see Printing execution information..

Example #3037 - Printing execution information.

zend_printf("The name of the current function is %s
",
get_active_function_name(TSRMLS_C));

zend_printf("The file currently executed is %s
",
zend_get_executed_filename(TSRMLS_C));

zend_printf("The current line being executed is %i
",
zend_get_executed_lineno(TSRMLS_C));

Startup and Shutdown Functions

Startup and shutdown functions can be used for one-time initialization and deinitialization
of your modules. As discussed earlier in this chapter (see the description of the Zend
module descriptor block), there are module, and request startup and shutdown events.

The module startup and shutdown functions are called whenever a module is loaded and
needs initialization; the request startup and shutdown functions are called every time a
request is processed (meaning that a file is being executed).

For dynamic extensions, module and request startup/shutdown events happen at the
same time.

Declaration and implementation of these functions can be done with macros; see the
earlier section "Declaration of the Zend Module Block" for details.

Calling User Functions

You can call user functions from your own modules, which is very handy when
implementing callbacks; for example, for array walking, searching, or simply for
event-based programs.

User functions can be called with the function call_user_function_ex(). It requires a hash

value for the function table you want to access, a pointer to an object (if you want to call a
method), the function name, return value, number of arguments, argument array, and a
flag indicating whether you want to perform zval separation.

ZEND_API int call_user_function_ex(HashTable *function_table, zval *object,

zval *function_name, zval **retval_ptr_ptr,

int param_count, zval **params[],

int no_separation);

Note that you don't have to specify both function_table and object; either will do. If you
want to call a method, you have to supply the object that contains this method, in which
case call_user_function() automatically sets the function table to this object's function
table. Otherwise, you only need to specify function_table and can set object to NULL.

Usually, the default function table is the "root" function table containing all function entries.
This function table is part of the compiler globals and can be accessed using the macro
CG. To introduce the compiler globals to your function, call the macro TSRMLS_FETCH
once.

The function name is specified in a zval container. This might be a bit surprising at first, but
is quite a logical step, since most of the time you'll accept function names as parameters
from calling functions within your script, which in turn are contained in zval containers
again. Thus, you only have to pass your arguments through to this function. This zval must
be of type IS_STRING.

The next argument consists of a pointer to the return value. You don't have to allocate
memory for this container; the function will do so by itself. However, you have to destroy
this container (using zval_dtor()) afterward!

Next is the parameter count as integer and an array containing all necessary parameters.
The last argument specifies whether the function should perform zval separation - this
should always be set to 0. If set to 1, the function consumes less memory but fails if any of
the parameters need separation.

Calling user functions. shows a small demonstration of calling a user function. The code
calls a function that's supplied to it as argument and directly passes this function's return
value through as its own return value. Note the use of the constructor and destructor calls
at the end - it might not be necessary to do it this way here (since they should be separate
values, the assignment might be safe), but this is bulletproof.

Example #3038 - Calling user functions.

zval **function_name;

zval *retval;

if((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, &function_name) !=
SUCCESS))

{

 WRONG_PARAM_COUNT;

}

if((*function_name)->type != IS_STRING)

{

 zend_error(E_ERROR, "Function requires string argument");

}

TSRMSLS_FETCH();

if(call_user_function_ex(CG(function_table), NULL, *function_name, &retval,
0, NULL, 0) != SUCCESS)

{

 zend_error(E_ERROR, "Function call failed");

}

zend_printf("We have %i as type\n", retval->type);

*return_value = *retval;

zval_copy_ctor(return_value);

zval_ptr_dtor(&retval);

<?php

dl("call_userland.so");

function test_function()

{

 echo "We are in the test function!\n";

 return 'hello';

}

$return_value = call_userland("test_function");

echo "Return value: '$return_value'";

?>

The above example will output:

We are in the test function!

We have 3 as type

Return value: 'hello'

Initialization File Support

PHP 4 features a redesigned initialization file support. It's now possible to specify default
initialization entries directly in your code, read and change these values at runtime, and
create message handlers for change notifications.

To create an .ini section in your own module, use the macros PHP_INI_BEGIN() to mark
the beginning of such a section and PHP_INI_END() to mark its end. In between you can
use PHP_INI_ENTRY() to create entries.
PHP_INI_BEGIN()

PHP_INI_ENTRY("first_ini_entry", "has_string_value", PHP_INI_ALL, NULL)

PHP_INI_ENTRY("second_ini_entry", "2", PHP_INI_SYSTEM,
OnChangeSecond)

PHP_INI_ENTRY("third_ini_entry", "xyz", PHP_INI_USER, NULL)

PHP_INI_END()
The PHP_INI_ENTRY() macro accepts four parameters: the entry name, the entry value,
its change permissions, and a pointer to a change-notification handler. Both entry name

and value must be specified as strings, regardless of whether they really are strings or
integers.

The permissions are grouped into three sections: PHP_INI_SYSTEM allows a change only
directly in the php.ini file; PHP_INI_USER allows a change to be overridden by a user at
runtime using additional configuration files, such as.htaccess; and PHP_INI_ALL allows
changes to be made without restrictions. There's also a fourth level, PHP_INI_PERDIR, for
which we couldn't verify its behavior yet.

The fourth parameter consists of a pointer to a change-notification handler. Whenever one
of these initialization entries is changed, this handler is called. Such a handler can be
declared using the PHP_INI_MH macro:
PHP_INI_MH(OnChangeSecond); // handler for ini-entry
"second_ini_entry"

// specify ini-entries here

PHP_INI_MH(OnChangeSecond)

{

 zend_printf("Message caught, our ini entry has been changed to %s
",
new_value);

 return(SUCCESS);

}
The new value is given to the change handler as string in the variable new_value. When
looking at the definition of PHP_INI_MH, you actually have a few parameters to use:
#define PHP_INI_MH(name) int name(php_ini_entry *entry, char *new_value,

 uint new_value_length, void *mh_arg1,

 void *mh_arg2, void *mh_arg3)
All these definitions can be found in php_ini.h. Your message handler will have access to a
structure that contains the full entry, the new value, its length, and three optional
arguments. These optional arguments can be specified with the additional macros
PHP_INI_ENTRY1 (allowing one additional argument), PHP_INI_ENTRY2 (allowing two
additional arguments), and PHP_INI_ENTRY3 (allowing three additional arguments).

The change-notification handlers should be used to cache initialization entries locally for
faster access or to perform certain tasks that are required if a value changes. For example,
if a constant connection to a certain host is required by a module and someone changes
the hostname, automatically terminate the old connection and attempt a new one.

Access to initialization entries can also be handled with the macros shown in Macros to
Access Initialization Entries in PHP.

Macros to Access Initialization Entries in PHP

Macro Description

INI_INT(name) Returns the current value of entry name as
integer (long).

INI_FLT(name) Returns the current value of entry name as

float (double).

INI_STR(name) Returns the current value of entry name as
string. Note: This string is not duplicated, but
instead points to internal data. Further
access requires duplication to local memory.

INI_BOOL(name) Returns the current value of entry name as
Boolean (defined as zend_bool, which
currently means unsigned char).

INI_ORIG_INT(name) Returns the original value of entry name as
integer (long).

INI_ORIG_FLT(name) Returns the original value of entry name as
float (double).

INI_ORIG_STR(name) Returns the original value of entry name as
string. Note: This string is not duplicated, but
instead points to internal data. Further
access requires duplication to local memory.

INI_ORIG_BOOL(name) Returns the original value of entry name as
Boolean (defined as zend_bool, which
currently means unsigned char).

Finally, you have to introduce your initialization entries to PHP. This can be done in the
module startup and shutdown functions, using the macros REGISTER_INI_ENTRIES()
and UNREGISTER_INI_ENTRIES():
ZEND_MINIT_FUNCTION(mymodule)

{

 REGISTER_INI_ENTRIES();

}

ZEND_MSHUTDOWN_FUNCTION(mymodule)

{

 UNREGISTER_INI_ENTRIES();

}

Where to Go from Here

You've learned a lot about PHP. You now know how to create dynamic loadable modules
and statically linked extensions. You've learned how PHP and Zend deal with internal
storage of variables and how you can create and access these variables. You know quite
a set of tool functions that do a lot of routine tasks such as printing informational texts,
automatically introducing variables to the symbol table, and so on.

Even though this chapter often had a mostly "referential" character, we hope that it gave
you insight on how to start writing your own extensions. For the sake of space, we had to
leave out a lot; we suggest that you take the time to study the header files and some
modules (especially the ones in the ext/standard directory and the MySQL module, as
these implement commonly known functionality). This will give you an idea of how other
people have used the API functions - particularly those that didn't make it into this chapter.

Reference: Some Configuration Macros

config.m4

The file config.m4 is processed by buildconf and must contain all the instructions to be
executed during configuration. For example, these can include tests for required external
files, such as header files, libraries, and so on. PHP defines a set of macros that can be
used in this process, the most useful of which are described in M4 Macros for config.m4.

M4 Macros for config.m4

Macro Description

AC_MSG_CHECKING(message) Prints a "checking <message>" text during
configure.

AC_MSG_RESULT(value) Gives the result to AC_MSG_CHECKING;
should specify either yes or no as value.

AC_MSG_ERROR(message) Prints message as error message during
configure and aborts the script.

AC_DEFINE(name,value,description) Adds #define to php_config.h with the value
of value and a comment that says
description (this is useful for conditional
compilation of your module).

AC_ADD_INCLUDE(path) Adds a compiler include path; for example,
used if the module needs to add search
paths for header files.

AC_ADD_LIBRARY_WITH_PATH(libraryna
me,librarypath)

Specifies an additional library to link.

AC_ARG_WITH(modulename,description,u
nconditionaltest,conditionaltest)

Quite a powerful macro, adding the module
with description to the configure --help
output. PHP checks whether the option
--with-<modulename> is given to the
configure script. If so, it runs the script
unconditionaltest (for example,
--with-myext=yes), in which case the value
of the option is contained in the variable

$withval. Otherwise, it executes
conditionaltest.

PHP_EXTENSION(modulename, [shared]) This macro is a must to call for PHP to
configure your extension. You can supply a
second argument in addition to your module
name, indicating whether you intend
compilation as a shared module. This will
result in a definition at compile time for your
source as COMPILE_DL_<modulename>.

API Macros

A set of macros was introduced into Zend's API that simplify access to zval containers
(see API Macros for Accessing zval Containers).

API Macros for Accessing zval Containers

Macro Refers to

Z_LVAL(zval) (zval).value.lval

Z_DVAL(zval) (zval).value.dval

Z_STRVAL(zval) (zval).value.str.val

Z_STRLEN(zval) (zval).value.str.len

Z_ARRVAL(zval) (zval).value.ht

Z_LVAL_P(zval) (*zval).value.lval

Z_DVAL_P(zval) (*zval).value.dval

Z_STRVAL_P(zval_p) (*zval).value.str.val

Z_STRLEN_P(zval_p) (*zval).value.str.len

Z_ARRVAL_P(zval_p) (*zval).value.ht

Z_LVAL_PP(zval_pp) (**zval).value.lval

Z_DVAL_PP(zval_pp) (**zval).value.dval

Z_STRVAL_PP(zval_pp) (**zval).value.str.val

Z_STRLEN_PP(zval_pp) (**zval).value.str.len

Z_ARRVAL_PP(zval_pp) (**zval).value.ht

TSRM API

The future: PHP 6 and Zend Engine 3

FAQ: Frequently Asked Questions

General Information

This section holds the most general questions about PHP: what it is and what it does.

What is PHP?

From the preface of the manual:

PHP is an HTML-embedded scripting language. Much of its syntax is borrowed from C,
Java and Perl with a couple of unique PHP-specific features thrown in. The goal of the
language is to allow web developers to write dynamically generated pages quickly.

What does PHP stand for?

PHP stands for PHP: Hypertext Preprocessor. This confuses many people because
the first word of the acronym is the acronym. This type of acronym is called a recursive
acronym. The curious can visit » Free On-Line Dictionary of Computing for more
information on recursive acronyms.

What is the relation between the versions?

PHP/FI 2.0 is an early and no longer supported version of PHP. PHP 3 is the
successor to PHP/FI 2.0 and is a lot nicer. PHP 4 is the current generation of PHP,
which uses the » Zend engine under the hood. PHP 5 uses the Zend engine 2 which,
among other things, offers many additional OOP features.

Can I run several versions of PHP at the same time?

Yes. See the INSTALL file that is included in the PHP source distribution.

What are the differences between PHP 3 and PHP 4?

http://foldoc.org/
http://www.zend.com/

Here's a list of some of the more important new features:

• Extended API module

• Generalized build process under Unix

• Generic web server interface that also supports multi-threaded web servers

• Improved syntax highlighter

• Native HTTP session support

• Output buffering support

• More powerful configuration system

• Reference counting

Please see the » What's new in PHP 4 overview for a detailed explanation of these
features and more.

I think I found a bug! Who should I tell?

You should go to the PHP Bug Database and make sure the bug isn't a known bug. If
you don't see it in the database, use the reporting form to report the bug. It is important
to use the bug database instead of just sending an email to one of the mailing lists
because the bug will have a tracking number assigned and it will then be possible for
you to go back later and check on the status of the bug. The bug database can be
found at » http://bugs.php.net/.

http://www.zend.com/zend/whats-new.php
http://bugs.php.net/

Mailing lists

This section holds questions about how to get in touch with the PHP community. The best
way is the mailing lists.

Are there any PHP mailing lists?

Of course! There are many mailing lists for several subjects. A whole list of mailing lists
can be found on our » Support page.

The most general mailing list is php-general. To subscribe, send mail to
» php-general-subscribe@lists.php.net. You don't need to include anything special in
the subject or body of the message. To unsubscribe, send mail to
» php-general-unsubscribe@lists.php.net.

You can also subscribe and unsubscribe using the web interface on our » Support
page.

Are there any other communities?

There are countless of them around the world. We have links for example to some IRC
servers and foreign language mailing lists on our » Support page.

Help! I can't seem to subscribe/unsubscribe to/from one of the mailing lists!

If you have problems subscribing to or unsubscribing from the php-general mailing list,
it may be because the mailing list software can't figure out the correct mailing address
to use. If your email address was joeblow@example.com, you can send your
subscription request to php-general-subscribe-joeblow=example.com@lists.php.net, or
your unsubscription request to
php-general-unsubscribe-joeblow=example.com@lists.php.net. Use similar addresses
for the other mailing lists.

Is there an archive of the mailing lists anywhere?

http://www.php.net/support.php
mailto:php-general-subscribe@lists.php.net
mailto:php-general-subscribe@lists.php.net
mailto:php-general-unsubscribe@lists.php.net
mailto:php-general-unsubscribe@lists.php.net
http://www.php.net/support.php
http://www.php.net/support.php

Yes, you will find a list of archive sites on the » Support page. The mailing list articles
are also archived as news messages. You can access the news server at
» news://news.php.net/ with a news client. There is also an experimental web interface
for the news server at » http://news.php.net/

What can I ask the mailing list?

Since PHP is growing more and more popular by the day the traffic has increased on
the php-general mailing list and as of now the list gets about 150 to 200 posts a day.
Because of this it is in everyone's interest that you use the list as a last resort when
you have looked everywhere else.

Before you post to the list please have a look in this FAQ and the manual to see if you
can find the help there. If there is nothing to be found there try out the mailing list
archives (see above). If you're having problem with installing or configuring PHP
please read through all included documentation and README's. If you still can't find
any information that helps you out you're more than welcome to use the mailing list.

Before asking questions, you may want to read the paper on » How To Ask Questions
The Smart Way as this is a good idea for everyone.

What information should I include when posting to the mailing list?

Posts like "I can't get PHP up and running! Help me! What is wrong?" are of absolutely
no use to anyone. If you're having problems getting PHP up and running you must
include what operating system you are running on, what version of PHP you're trying to
set up, how you got it (pre-compiled, CVS, RPMs and so on), what you have done so
far, where you got stuck and the exact error message.

This goes for any other problem as well. You have to include information on what you
have done, where you got stuck, what you're trying to do and, if applicable, exact error
messages. If you're having problems with your source code you need to include the
part of the code that isn't working. Do not include more code than necessary though! It
makes the post hard to read and a lot of people might just skip it all together because
of this. If you're unsure about how much information to include in the mail it's better
that you include to much than to little.

Another important thing to remember is to summarize your problem on the subject line.
A subject like "HELP MEEEE!!!" or "What is the problem here?" will be ignored by the
majority of the readers.

And lastly, you're encouraged to read the paper on » How To Ask Questions The
Smart Way as this will be a great help for everyone, especially yourself.

http://www.php.net/support.php
news://news.php.net/
news://news.php.net/
http://news.php.net/
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html

Obtaining PHP

This section has details about PHP download locations, and OS issues.

Where can I obtain PHP?

You can download PHP from any of the members of the PHP network of sites. These
can be found at » http://www.php.net/. You can also use anonymous CVS to get the
absolute latest version of the source. For more information, go to
» http://www.php.net/anoncvs.php.

Are pre-compiled binary versions available?

We only distribute precompiled binaries for Windows systems, as we are not able to
compile PHP for every major Linux/Unix platform with every extension combination.
Also note, that many Linux distributions come with PHP built in these days. Windows
binaries can be downloaded from our » Downloads page, for Linux binaries, please
visit your distribution's website.

Where can I get libraries needed to compile some of the optional PHP extensions?

Note

Those marked with * are not thread-safe libraries, and should not be used with
PHP as a server module in the multi-threaded Windows web servers (IIS,
Netscape). This does not matter in Unix environments, yet.

• » LDAP (Unix).

• » LDAP (Unix/Win): Mozilla Directory (LDAP) SDK

• » free LDAP server.

• » Berkeley DB2 (Unix/Win): http://www.sleepycat.com/.

http://www.php.net/
http://www.php.net/anoncvs.php
http://www.php.net/anoncvs.php
http://www.php.net/downloads.php
ftp://ftp.openldap.org/pub/OpenLDAP/openldap-stable/
http://developer.netscape.com/tech/directory/downloads.html
http://www.bind9.net/download-openldap/
http://www.sleepycat.com/

• » SNMP* (Unix):.

• » GD* (Unix/Win).

• » mSQL* (Unix).

• » PostgreSQL (Unix).

• » IMAP* (Win/Unix).

• » Sybase-CT* (Linux, libc5): Available locally.

• » FreeType (libttf):.

• » ZLib (Unix/Win32).

• » expat XML parser (Unix/Win32).

• » PDFLib.

• » mcrypt.

• » mhash.

• » t1lib.

• » dmalloc.

• » aspell.

• » readline.

How do I get these libraries to work?

You will need to follow instructions provided with the library. Some of these libraries
are detected automatically when you run the 'configure' script of PHP (such as the GD
library), and others you will have to enable using ' --with-EXTENSION ' options to '
configure '. Run ' configure --help ' for a listing of these.

I got the latest version of the PHP source code from the CVS repository on my
Windows machine, what do I need to compile it?

First, you will need Microsoft Visual C++ v6 (v5 may do it also, but we do it with v6),
and you will need some support files. See the manual section about building PHP from
source on Windows.

Where do I find the Browser Capabilities File?

http://www.net-snmp.org/
http://www.libgd.org/
http://www.hughes.com.au/
http://www.postgresql.org/
ftp://ftp.cac.washington.edu/imap/
http://www.sybase.com/
http://www.freetype.org/
http://www.zlib.net/
http://www.jclark.com/xml/expat.html
http://www.pdflib.com/products/pdflib-family/
http://mcrypt.sourceforge.net/
http://mhash.sourceforge.net/
ftp://sunsite.unc.edu/pub/Linux/libs/graphics/
http://dmalloc.com/
http://aspell.sourceforge.net/
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

You can find a browscap.ini file at » http://browsers.garykeith.com/downloads.asp.

http://browsers.garykeith.com/downloads.asp

Database issues

This section holds common questions about relation between PHP and databases. Yes,
PHP can access virtually any database available today.

I heard it's possible to access Microsoft SQL Server from PHP. How?

On Windows machines, you can simply use the included ODBC support and the
correct ODBC driver.

On Unix machines, you can use the Sybase-CT driver to access Microsoft SQL
Servers because they are (at least mostly) protocol-compatible. Sybase has made a
» free version of the necessary libraries for Linux systems. For other Unix operating
systems, you need to contact Sybase for the correct libraries. Also see the answer to
the next question.

Can I access Microsoft Access databases?

Yes. You already have all the tools you need if you are running entirely under Windows
9x/Me, or NT/2000, where you can use ODBC and Microsoft's ODBC drivers for
Microsoft Access databases.

If you are running PHP on a Unix box and want to talk to MS Access on a Windows
box you will need Unix ODBC drivers. » OpenLink Software has Unix-based ODBC
drivers that can do this.

Another alternative is to use an SQL server that has Windows ODBC drivers and use
that to store the data, which you can then access from Microsoft Access (using ODBC)
and PHP (using the built in drivers), or to use an intermediary file format that Access
and PHP both understand, such as flat files or dBase databases. On this point Tim
Hayes from OpenLink software writes:

Using another database as an intermediary is not a good idea, when you can use
ODBC from PHP straight to your database - i.e. with OpenLink's drivers. If you do need
to use an intermediary file format, OpenLink have now released Virtuoso (a virtual
database engine) for NT, Linux and other Unix platforms. Please visit our » website for
a free download.

One option that has proved successful is to use MySQL and its MyODBC drivers on
Windows and synchronizing the databases. Steve Lawrence writes:

http://www.php.net/extra/ctlib-linux-elf.tar.gz
http://www.php.net/extra/ctlib-linux-elf.tar.gz
http://www.openlinksw.com/
http://www.openlinksw.com/

• Install MySQL on your platform according to instructions with MySQL. Latest
available from » http://www.mysql.com/ No special configuration required except
when you set up a database, and configure the user account, you should put % in
the host field, or the host name of the Windows computer you wish to access
MySQL with. Make a note of your server name, username, and password.

• Download the MyODBC for Windows driver from the MySQL site. Install it on your
Windows machine. You can test the operation with the utilities included with this
program.

• Create a user or system dsn in your ODBC administrator, located in the control
panel. Make up a dsn name, enter your hostname, user name, password, port, etc
for you MySQL database configured in step 1.

• Install Access with a full install, this makes sure you get the proper add-ins... at the
least you will need ODBC support and the linked table manager.

• Now the fun part! Create a new access database. In the table window right click
and select Link Tables, or under the file menu option, select Get External Data and
then Link Tables. When the file browser box comes up, select files of type: ODBC.
Select System dsn and the name of your dsn created in step 3. Select the table to
link, press OK, and presto! You can now open the table and add/delete/edit data
on your MySQL server! You can also build queries, import/export tables to MySQL,
build forms and reports, etc.

Tips and Tricks:

• You can construct your tables in Access and export them to MySQL, then link them
back in. That makes table creation quick.

• When creating tables in Access, you must have a primary key defined in order to
have write access to the table in access. Make sure you create a primary key in
MySQL before linking in access

• If you change a table in MySQL, you have to re-link it in Access. Go to
tools>add-ins>linked table manager, cruise to your ODBC DSN, and select the
table to re-link from there. you can also move your dsn source around there, just hit
the always prompt for new location checkbox before pressing OK.

PHP 5 no longer bundles MySQL client libraries, what does this mean to me? Can I
still use MySQL with PHP? I try to use MySQL and get "function undefined" errors,
what gives?

Yes. There will always be MySQL support in PHP of one kind or another. The only
change in PHP 5 is that we are no longer bundling the client library itself. Some
reasons in no particular order:

http://www.mysql.com/

• Most systems these days already have the client library installed.

• Given the above, having multiple versions of the library can get messy. For
example, if you link mod_auth_mysql against one version and PHP against
another, and then enable both in Apache, you get a nice fat crash. Also, the
bundled library didn't always play well with the installed server version. The most
obvious symptom of this being disagreement over where to find the mysql.socket
Unix domain socket file.

• Maintenance was somewhat lax and it was falling further and further behind the
released version.

• Future versions of the library are under the GPL and thus we don't have an
upgrade path since we cannot bundle a GPL'ed library in a BSD/Apache-style
licensed project. A clean break in PHP 5 seemed like the best option.

This won't actually affect that many people. Unix users, at least the ones who know
what they are doing, tend to always build PHP against their system's libmyqlclient
library simply by adding the --with-mysql=/usr option when building PHP. Windows
users may enable the extension php_mysql.dll inside php.ini. For more details, see the
MySQL Reference for installation instructions. Also, be sure libmysql.dll is available to
the systems PATH. For more details on how, read the FAQ on setting up the Windows
systems PATH. Because libmysql.dll (and many other PHP related files) exist in the
PHP folder, you'll want to add the PHP folder to your systems PATH.

After installing shared MySQL support, Apache dumps core as soon as libphp4.so
is loaded. Can this be fixed?

If your MySQL libs are linked against pthreads this will happen. Check using ldd. If
they are, grab the MySQL tarball and compile from source, or recompile from the
source rpm and remove the switch in the spec file that turns on the threaded client
code. Either of these suggestions will fix this. Then recompile PHP with the new
MySQL libs.

Why do I get an error that looks something like this: "Warning: 0 is not a MySQL
result index in <file> on line <x>" or "Warning: Supplied argument is not a valid
MySQL result resource in <file> on line <x>"?

You are trying to use a result identifier that is 0. The 0 indicates that your query failed
for some reason. You need to check for errors after submitting a query and before you
attempt to use the returned result identifier. The proper way to do this is with code
similar to the following:
<?php

$result = mysql_query("SELECT * FROM tables_priv");

if (!$result) {

 echo mysql_error();

 exit;

}

?>
or
<?php

$result = mysql_query("SELECT * FROM tables_priv")

 or die("Bad query: " . mysql_error());

?>

Installation

This section holds common questions about the way to install PHP. PHP is available for
almost any OS (except maybe for MacOS before OSX), and almost any web server.

To install PHP, follow the instructions in Installation and Configuration.

Why shouldn't I use Apache2 with a threaded MPM in a production environment?

PHP is glue. It is the glue used to build cool web applications by sticking dozens of
3rd-party libraries together and making it all appear as one coherent entity through an
intuitive and easy to learn language interface. The flexibility and power of PHP relies
on the stability and robustness of the underlying platform. It needs a working OS, a
working web server and working 3rd-party libraries to glue together. When any of these
stop working PHP needs ways to identify the problems and fix them quickly. When you
make the underlying framework more complex by not having completely separate
execution threads, completely separate memory segments and a strong sandbox for
each request to play in, feet of clay are introduced into PHP's system.

If you feel you have to use a threaded MPM, look at a FastCGI configuration where
PHP is running in its own memory space.

And finally, this warning against using a threaded MPM is not as strong for Windows
systems because most libraries on that platform tend to be threadsafe.

Unix/Windows: Where should my php.ini file be located?

By default on Unix it should be in /usr/local/lib which is <install-path>/lib. Most people
will want to change this at compile-time with the --with-config-file-path flag. You would,
for example, set it with something like:

--with-config-file-path=/etc

And then you would copy php.ini-dist from the distribution to /etc/php.ini and edit it to
make any local changes you want.

--with-config-file-scan-dir=PATH

On Windows the default path for the php.ini file is the Windows directory. If you're
using the Apache webserver, php.ini is first searched in the Apaches install directory,
e.g. c:\program files\apache group\apache. This way you can have different php.ini
files for different versions of Apache on the same machine.

See also the chapter about the configuration file.

Unix: I installed PHP, but every time I load a document, I get the message
'Document Contains No Data'! What's going on here?

This probably means that PHP is having some sort of problem and is core-dumping.
Look in your server error log to see if this is the case, and then try to reproduce the
problem with a small test case. If you know how to use 'gdb', it is very helpful when you
can provide a backtrace with your bug report to help the developers pinpoint the
problem. If you are using PHP as an Apache module try something like:

• Stop your httpd processes

• gdb httpd

• Stop your httpd processes

• > run -X -f /path/to/httpd.conf

• Then fetch the URL causing the problem with your browser

• > run -X -f /path/to/httpd.conf

• If you are getting a core dump, gdb should inform you of this now

• type: bt

• You should include your backtrace in your bug report. This should be submitted to
» http://bugs.php.net/

If your script uses the regular expression functions (ereg() and friends), you should
make sure that you compiled PHP and Apache with the same regular expression
package. This should happen automatically with PHP and Apache 1.3.x

Unix: I installed PHP using RPMS, but Apache isn't processing the PHP pages!
What's going on here?

Assuming you installed both Apache and PHP from RPM packages, you need to
uncomment or add some or all of the following lines in your httpd.conf file:
Extra Modules

AddModule mod_php.c

AddModule mod_php.c

AddModule mod_perl.c

Extra Modules

LoadModule php_module modules/mod_php.so

LoadModule php5_module modules/libphp5.so # for PHP 5

http://bugs.php.net/
http://bugs.php.net/

LoadModule perl_module modules/libperl.so
And add:
AddType application/x-httpd-php .php
... to the global properties, or to the properties of the VirtualDomain you want to have
PHP support added to.

Unix: I patched Apache with the FrontPage extensions patch, and suddenly PHP
stopped working. Is PHP incompatible with the Apache FrontPage extensions?

No, PHP works fine with the FrontPage extensions. The problem is that the FrontPage
patch modifies several Apache structures, that PHP relies on. Recompiling PHP (using
'make clean ; make') after the FP patch is applied would solve the problem.

Unix/Windows: I have installed PHP, but when I try to access a PHP script file via my
browser, I get a blank screen.

Do a 'view source' in the web browser and you will probably find that you can see the
source code of your PHP script. This means that the web server did not send the script
to PHP for interpretation. Something is wrong with the server configuration - double
check the server configuration against the PHP installation instructions.

Unix/Windows: I have installed PHP, but when try to access a PHP script file via my
browser, I get a server 500 error.

Something went wrong when the server tried to run PHP. To get to see a sensible
error message, from the command line, change to the directory containing the PHP
executable (php.exe on Windows) and run php -i. If PHP has any problems running,
then a suitable error message will be displayed which will give you a clue as to what
needs to be done next. If you get a screen full of HTML codes (the output of the
phpinfo() function) then PHP is working, and your problem may be related to your
server configuration which you should double check.

Some operating systems: I have installed PHP without errors, but when I try to start
apache I get undefined symbol errors:

[mybox:user /src/php4] root# apachectl configtest

apachectl: /usr/local/apache/bin/httpd Undefined symbols:

 _compress

 _uncompress

This has actually nothing to do with PHP, but with the MySQL client libraries. Some
need --with-zlib, others do not. This is also covered in the MySQL FAQ.

Windows: I have installed PHP, but when I to access a PHP script file via my
browser, I get the error:

cgi error:

The specified CGI application misbehaved by not

returning a complete set of HTTP headers.

The headers it did return are:

This error message means that PHP failed to output anything at all. To get to see a
sensible error message, from the command line, change to the directory containing the
PHP executable (php.exe on Windows) and run php -i. If PHP has any problems
running, then a suitable error message will be displayed which will give you a clue as
to what needs to be done next. If you get a screen full of HTML codes (the output of
the phpinfo() function) then PHP is working.

Once PHP is working at the command line, try accessing the script via the browser
again. If it still fails then it could be one of the following:

• File permissions on your PHP script, php.exe, php4ts.dll, php.ini or any PHP
extensions you are trying to load are such that the anonymous internet user
ISUR_<machinename> cannot access them.

• The script file does not exist (or possibly isn't where you think it is relative to your
web root directory). Note that for IIS you can trap this error by ticking the 'check file
exists' box when setting up the script mappings in the Internet Services Manager. If
a script file does not exist then the server will return a 404 error instead. There is
also the additional benefit that IIS will do any authentication required for you based
on the NTLanMan permissions on your script file.

Windows: I've followed all the instructions, but still can't get PHP and IIS to work
together!

Make sure any user who needs to run a PHP script has the rights to run php.exe ! IIS
uses an anonymous user which is added at the time IIS is installed. This user needs

rights to php.exe. Also, any authenticated user will also need rights to execute php.exe
. And for IIS4 you need to tell it that PHP is a script engine. Also, you will want to read
this faq.

When running PHP as CGI with IIS, PWS, OmniHTTPD or Xitami, I get the following
error: Security Alert! PHP CGI cannot be accessed directly..

You must set the cgi.force_redirect directive to 0. It defaults to 1 so be sure the
directive isn't commented out (with a;). Like all directives, this is set in php.ini

Because the default is 1, it's critical that you're 100% sure that the correct php.ini file is
being read. Read this faq for details.

How do I know if my php.ini is being found and read? It seems like it isn't as my
changes aren't being implemented.

To be sure your php.ini is being read by PHP, make a call to phpinfo(). Near the top,
there will be a listing called Configuration File (php.ini). This will tell you where PHP is
looking for php.ini and whether or not it's being read. If just a directory PATH exists,
then it's not being read, and you should put your php.ini in that directory. If php.ini is
included within the PATH, it is being read.

If php.ini is being read and you're running PHP as a module, then be sure to restart
your web server after making changes to php.ini

See also php_ini_loaded_file().

How do I add my PHP directory to the PATH on Windows?

On Windows NT, 2000, XP and 2003:

• Go to Control Panel and open the System icon (Start -> Settings -> Control Panel
-> System, or just Start -> Control Panel -> System for Windows XP/2003)

• Go to the Advanced tab

• Click on the 'Environment Variables' button

• Look into the 'System Variables' pane

• Find the Path entry (you may need to scroll to find it)

• Double click on the Path entry

• Enter your PHP directory at the end, including ';' before (e.g.;C:\php)

• Press OK and restart your computer

On Windows 98/Me you need to edit the autoexec.bat file:

• Open the Notepad (Start -> Run and enter notepad)

• Open the C:\autoexec.bat file

• Locate the line with PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;..... and add:
;C:\php to the end of the line

• Save the file and restart your computer

Note

Be sure to reboot after following the steps above to ensure that the PATH changes
are applied.

The PHP manual used to promote the copying of files into the Windows system
directory, this is because this directory (C:\Windows, C:\WINNT, etc.) is by default in
the systems PATH. Copying files into the Windows system directory has long since
been deprecated and may cause problems.

How do I make the php.ini file available to PHP on windows?

There are several ways of doing this. If you are using Apache, read their installation
specific instructions (Apache 1, Apache 2), otherwise you must set the PHPRC
environment variable:

On Windows NT, 2000, XP and 2003:

• Go to Control Panel and open the System icon (Start -> Settings -> Control Panel
-> System, or just Start -> Control Panel -> System for Windows XP/2003)

• Go to the Advanced tab

• Click on the 'Environment Variables' button

• Look into the 'System variables' pane

• Click on 'New' and enter 'PHPRC' as the variable name and the directory where
php.ini is located as the variable value (e.g. C:\php)

• Press OK and restart your computer

On Windows 98/Me you need to edit the autoexec.bat file:

• Open the Notepad (Start -> Run and enter notepad)

• Open the C:\autoexec.bat file

• Add a new line to the end of the file: set PHPRC=C:\php (replace C:\php with the
directory where php.ini is located). Please note that the path cannot contain
spaces. For instance, if you have installed PHP in C:\Program Files\PHP, you
would enter C:\PROGRA~1\PHP instead.

• Save the file and restart your computer

Is it possible to use Apache content negotiation (MultiViews option) with PHP?

If links to PHP files include extension, everything works perfect. This FAQ is only for
the case when links to PHP files don't include extension and you want to use content
negotiation to choose PHP files from URL with no extension. In this case, replace the
line AddType application/x-httpd-php .php with:
PHP 4

AddHandler php-script php

AddType text/html php

PHP 5

AddHandler php5-script php

AddType text/html php
This solution doesn't work for Apache 1 as PHP module doesn't catch php-script.

Is PHP limited to process GET and POST request methods only?

No, it is possible to handle any request method, e.g. CONNECT. Proper response
status can be sent with header(). If only GET and POST methods should be handled, it
can be achieved with this Apache configuration:
<LimitExcept GET POST>

Deny from all

</LimitExcept>

Build Problems

This section gathers most common errors that occur at build time.

I got the latest version of PHP using the anonymous CVS service, but there's no
configure script!

You have to have the GNU autoconf package installed so you can generate the
configure script from configure.in. Just run./buildconf in the top-level directory after
getting the sources from the CVS server. (Also, unless you run configure with the
--enable-maintainer-mode option, the configure script will not automatically get rebuilt
when the configure.in file is updated, so you should make sure to do that manually
when you notice configure.in has changed. One symptom of this is finding things like
@VARIABLE@ in your Makefile after configure or config.status is run.)

I'm having problems configuring PHP to work with Apache. It says it can't find
httpd.h, but it's right where I said it is!

You need to tell the configure/setup script the location of the top-level of your Apache
source tree. This means that you want to specify --with-apache=/path/to/apache and
not --with-apache=/path/to/apache/src.

While configuring PHP (./configure), you come across an error similar to the
following:

 checking lex output file root... ./configure: lex: command not found

 configure: error: cannot find output from lex; giving up

Be sure to read the installation instructions carefully and note that you need both flex
and bison installed to compile PHP. Depending on your setup you will install bison and
flex from either source or a package, such as a RPM.

When I try to start Apache, I get the following message:

 fatal: relocation error: file /path/to/libphp4.so:

 symbol ap_block_alarms: referenced symbol not found

This error usually comes up when one compiles the Apache core program as a DSO
library for shared usage. Try to reconfigure apache, making sure to use at least the
following flags:

 --enable-shared=max --enable-rule=SHARED_CORE

For more information, read the top-level Apache INSTALL file or the Apache » DSO
manual page.

When I run configure, it says that it can't find the include files or library for GD,
gdbm, or some other package!

You can make the configure script looks for header files and libraries in non-standard
locations by specifying additional flags to pass to the C preprocessor and linker, such
as:
CPPFLAGS=-I/path/to/include LDFLAGS=-L/path/to/library ./configure
If you're using a csh-variant for your login shell (why?), it would be:
env CPPFLAGS=-I/path/to/include LDFLAGS=-L/path/to/library ./configure

When it is compiling the file language-parser.tab.c, it gives me errors that say
yytname undeclared.

You need to update your version of Bison. You can find the latest version at
» http://www.gnu.org/software/bison/bison.html.

When I run make, it seems to run fine but then fails when it tries to link the final
application complaining that it can't find some files.

http://httpd.apache.org/docs/1.3/dso.html
http://httpd.apache.org/docs/1.3/dso.html
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html

Some old versions of make that don't correctly put the compiled versions of the files in
the functions directory into that same directory. Try running cp *.o functions and then
re-running make to see if that helps. If it does, you should really upgrade to a recent
version of GNU make.

When linking PHP, it complains about a number of undefined references.

Take a look at the link line and make sure that all of the appropriate libraries are being
included at the end. Common ones that you might have missed are '-ldl' and any
libraries required for any database support you included.

If you're linking with Apache 1.2.x, did you remember to add the appropriate
information to the EXTRA_LIBS line of the Configuration file and re-rerun Apache's
Configure script? See the installation chapter for more information.

Some people have also reported that they had to add '-ldl' immediately following
libphp4.a when linking with Apache.

I can't figure out how to build PHP with Apache 1.3.

This is actually quite easy. Follow these steps carefully:

• Grab the latest Apache 1.3 distribution from » http://www.apache.org/dist/httpd/.

• Ungzip and untar it somewhere, for example /usr/local/src/apache-1.3.

• Compile PHP by first running./configure --with-apache=/<path>/apache-1.3
(substitute <path> for the actual path to your apache-1.3 directory.

• Type make followed by make install to build PHP and copy the necessary files to
the Apache distribution tree.

• Change directories into to your /<path>/apache-1.3/src directory and edit the
Configuration file. Add to the file: AddModule modules/php4/libphp4.a.

• Type:./configure followed by make.

• You should now have a PHP-enabled httpd binary!

Note: You can also use the new Apache./configure script. See the instructions in the
README.configure file which is part of your Apache distribution. Also have a look at
the INSTALL file in the PHP distribution.

http://www.apache.org/dist/httpd/

I have followed all the steps to install the Apache module version on Unix, and my
PHP scripts show up in my browser or I am being asked to save the file.

This means that the PHP module is not getting invoked for some reason. Three things
to check before asking for further help:

• Make sure that the httpd binary you are running is the actual new httpd binary you
just built. To do this, try running: /path/to/binary/httpd -l If you don't see
mod_php4.c listed then you are not running the right binary. Find and install the
correct binary.

• Make sure you have added the correct Mime Type to one of your Apache .conf
files. It should be: AddType application/x-httpd-php .php Also make sure that this
AddType line is not hidden away inside a <Virtualhost> or <Directory> block which
would prevent it from applying to the location of your test script.

• Finally, the default location of the Apache configuration files changed between
Apache 1.2 and Apache 1.3. You should check to make sure that the configuration
file you are adding the AddType line to is actually being read. You can put an
obvious syntax error into your httpd.conf file or some other obvious change that will
tell you if the file is being read correctly.

It says to use: --activate-module=src/modules/php4/libphp4.a, but that file doesn't exist,
so I changed it to --activate-module=src/modules/php4/libmodphp4.a and it doesn't
work!? What's going on?

Note that the libphp4.a file is not supposed to exist. The apache process will create it!

When I try to build Apache with PHP as a static module using
--activate-module=src/modules/php4/libphp4.a it tells me that my compiler is not ANSI
compliant.

This is a misleading error message from Apache that has been fixed in more recent
versions.

When I try to build PHP using --with-apxs I get strange error messages.

There are three things to check here. First, for some reason when Apache builds the

apxs Perl script, it sometimes ends up getting built without the proper compiler and
flags variables. Find your apxs script (try the command which apxs), it's sometimes
found in /usr/local/apache/bin/apxs or /usr/sbin/apxs. Open it and check for lines
similar to these:
my $CFG_CFLAGS_SHLIB = ' '; # substituted via Makefile.tmpl

my $CFG_LD_SHLIB = ' '; # substituted via Makefile.tmpl

my $CFG_LDFLAGS_SHLIB = ' '; # substituted via Makefile.tmpl
If this is what you see, you have found your problem. They may contain just spaces or
other incorrect values, such as 'q()'. Change these lines to say:
my $CFG_CFLAGS_SHLIB = '-fpic -DSHARED_MODULE'; # substituted via
Makefile.tmpl

my $CFG_LD_SHLIB = 'gcc'; # substituted via
Makefile.tmpl

my $CFG_LDFLAGS_SHLIB = q(-shared); # substituted via
Makefile.tmpl
The second possible problem should only be an issue on Red Hat 6.1 and 6.2. The
apxs script Red Hat ships is broken. Look for this line:
my $CFG_LIBEXECDIR = 'modules'; # substituted via APACI install
If you see the above line, change it to this:
my $CFG_LIBEXECDIR = '/usr/lib/apache'; # substituted via APACI install
Last, if you reconfigure/reinstall Apache, add a make clean to the process after
./configure and before make.

During make, I get errors in microtime, and a lot of RUSAGE_ stuff.

During the make portion of installation, if you encounter problems that look similar to
this:
microtime.c: In function `php_if_getrusage':

microtime.c:94: storage size of `usg' isn't known

microtime.c:97: `RUSAGE_SELF' undeclared (first use in this function)

microtime.c:97: (Each undeclared identifier is reported only once

microtime.c:97: for each function it appears in.)

microtime.c:103: `RUSAGE_CHILDREN' undeclared (first use in this function)

make[3]: *** [microtime.lo] Error 1

make[3]: Leaving directory `/home/master/php-4.0.1/ext/standard'

make[2]: *** [all-recursive] Error 1

make[2]: Leaving directory `/home/master/php-4.0.1/ext/standard'

make[1]: *** [all-recursive] Error 1

make[1]: Leaving directory `/home/master/php-4.0.1/ext'

make: *** [all-recursive] Error 1

Your system is broken. You need to fix your /usr/include files by installing a glibc-devel
package that matches your glibc. This has absolutely nothing to do with PHP. To prove
this to yourself, try this simple test:
$ cat >test.c <<X

#include <sys/resource.h>

X

$ gcc -E test.c >/dev/null
If that spews out errors, you know your include files are messed up.

When compiling PHP with MySQL, configure runs fine but during make I get an error
similar to the following: ext/mysql/libmysql/my_tempnam.o(.text+0x46): In function
my_tempnam': /php4/ext/mysql/libmysql/my_tempnam.c:103: the use of tempnam' is
dangerous, better use mkstemp', what's wrong?

First, it's important to realize that this is a Warning and not a fatal error. Because this is
often the last output seen during make, it may seem like a fatal error but it's not. Of
course, if you set your compiler to die on Warnings, it will. Also keep in mind that
MySQL support is enabled by default.

Note

As of PHP 4.3.2, you'll also see the following text after the build (make) completes:

 Build complete.

 (It is safe to ignore warnings about tempnam and tmpnam).

I want to upgrade my PHP. Where can I find the./configure line that was used to build
my current PHP installation?

Either you look at config.nice file, in the source tree of your current PHP installation or,
if this is not available, you simply run a
<?php phpinfo(); ?>
script. On top of the output the./configure line, that was used to build this PHP
installation is shown.

When building PHP with the GD library it either gives strange compile errors or
segfaults on execution.

Make sure your GD library and PHP are linked against the same depending libraries
(e.g. libpng).

When compiling PHP I seemingly get random errors, like it hangs. I'm using Solaris
if that matters.

Using non-GNU utilities while compiling PHP may cause problems. Be sure to use
GNU tools in order to be certain that compiling PHP will work. For example, on Solaris,
using either the SunOS BSD-compatible or Solaris versions of sed will not work, but
using the GNU or Sun POSIX (xpg4) versions of sed will work. Links: » GNU sed,
» GNU flex, and » GNU bison.

http://www.gnu.org/software/sed/sed.html
http://www.gnu.org/software/flex/flex.html
http://www.gnu.org/software/flex/flex.html
http://www.gnu.org/software/bison/bison.html

Using PHP

This section gathers many common errors that you may face while writing PHP scripts.

I would like to write a generic PHP script that can handle data coming from any
form. How do I know which POST method variables are available?

PHP offers many predefined variables, like the superglobal $_POST. You may loop
through $_POST as it's an associate array of all POSTed values. For example, let's
simply loop through it with foreach, check for empty() values, and print them out.
<?php

$empty = $post = array();

foreach ($_POST as $varname => $varvalue) {

 if (empty($varvalue)) {

 $empty[$varname] = $varvalue;

 } else {

 $post[$varname] = $varvalue;

 }

}

print "<pre>";

if (empty($empty)) {

 print "None of the POSTed values are empty, posted:\n";

 var_dump($post);

} else {

 print "We have " . count($empty) . " empty values\n";

 print "Posted:\n"; var_dump($post);

 print "Empty:\n"; var_dump($empty);

 exit;

}

?>

Note

Superglobals: availability note

Superglobal arrays such as $_GET, $_POST, and $_SERVER, etc. are available
as of PHP 4.1.0. For more information, read the manual section on superglobals

I need to convert all single-quotes (') to a backslash followed by a single-quote (\').
How can I do this with a regular expression? I'd also like to convert " to \" and \ to \\.

The function addslashes() will do this. See also mysql_escape_string(). You may also

strip backslashes with stripslashes().

Note

directive note: magic_quotes_gpc

The magic_quotes_gpc directive defaults to on. It essentially runs addslashes() on
all GET, POST, and COOKIE data. stripslashes() may be used to remove them.

All my " turn into \" and my ' turn into \', how do I get rid of all these unwanted
backslashes? How and why did they get there?

The PHP function stripslashes() will strip those backslashes from your string. Most
likely the backslashes magically exist because the PHP directive magic_quotes_gpc is
on.

Note

directive note: magic_quotes_gpc

The magic_quotes_gpc directive defaults to on. It essentially runs addslashes() on
all GET, POST, and COOKIE data. stripslashes() may be used to remove them.

How does the PHP directive register_globals affect me?

First, an explanation about what this ini setting does. Let's say the following URL is
used: http://example.com/foo.php?animal=cat and in foo.php we might have the
following PHP code:

<?php

// Using $_GET here is preferred

echo $_GET['animal'];

// For $animal to exist, register_globals must be on

// DO NOT DO THIS

echo $animal;

// This applies to all variables, so $_SERVER too

echo $_SERVER['PHP_SELF'];

// Again, for $PHP_SELF to exist, register_globals must be on

// DO NOT DO THIS

echo $PHP_SELF;

?>

The code above demonstrates how register_globals creates a lot of variables. For
years this type of coding has been frowned upon, and for years it's been disabled by
default. Note that PHP 6 removes this deprecated feature. So although most web
hosts disable register_globals, there are still outdated articles, tutorials, and books that
require it to be on. Plan accordingly.

See also the following resources for additional information:

• The register_globals directive
• The security chapter about register globals
• Handling external variables
• Use superglobals instead

Note

In the example above, we used an URL that contained a QUERY_STRING.
Passing information like this is done through a GET HTTP Request, so this is why
the superglobal $_GET was used.

When I do the following, the output is printed in the wrong order:
<?php

function myfunc($argument)

{

 echo $argument + 10;

}

$variable = 10;

echo "myfunc($variable) = " . myfunc($variable);

?>
what's going on?

To be able to use the results of your function in an expression (such as concatenating
it with other strings in the example above), you need to return() the value, not echo()
it.

Hey, what happened to my newlines?
<pre>

<?php echo "This should be the first line."; ?>

<?php echo "This should show up after the new line above."; ?>

</pre>

In PHP, the ending for a block of code is either "?>" or "?>\n" (where \n means a
newline). So in the example above, the echoed sentences will be on one line, because
PHP omits the newlines after the block ending. This means that you need to insert an
extra newline after each block of PHP code to make it print out one newline.

Why does PHP do this? Because when formatting normal HTML, this usually makes
your life easier because you don't want that newline, but you'd have to create
extremely long lines or otherwise make the raw page source unreadable to achieve
that effect.

I get the message 'Warning: Cannot send session cookie - headers already sent...'
or 'Cannot add header information - headers already sent...'.

The functions header(), setcookie(), and the session functions need to add headers to
the output stream but headers can only be sent before all other content. There can be
no output before using these functions, output such as HTML. The function
headers_sent() will check if your script has already sent headers and see also the
Output Control functions.

I need to access information in the request header directly. How can I do this?

The getallheaders() function will do this if you are running PHP as an Apache module.
So, the following bit of code will show you all the request headers:
<?php

$headers = getallheaders();

foreach ($headers as $name => $content) {

 echo "headers[$name] = $content
\n";

}

?>

See also apache_lookup_uri(), apache_response_headers(), and fsockopen()

When I try to use authentication with IIS I get 'No Input file specified'.

The security model of IIS is at fault here. This is a problem common to all CGI
programs running under IIS. A workaround is to create a plain HTML file (not parsed

by PHP) as the entry page into an authenticated directory. Then use a META tag to
redirect to the PHP page, or have a link to the PHP page. PHP will then recognize the
authentication correctly. With the ISAPI module, this is not a problem. This should not
effect other NT web servers. For more information, see:
» http://support.microsoft.com/kb/q160422/ and the manual section on HTTP
Authentication.

Windows: I can't access files shared on another computer using IIS

You have to change the Go to Internet Information Services. Locate your PHP file and
go to its properties. Go to the File Security tab, Edit -< Anonymous access and
authentication control.

You can fix the problem either by unticking Anonymous Access and leaving Integrated
Window Authentication ticked, or, by ticking Anonymous Access and editing the user
as he may not have the access right.

My PHP script works on IE and Lynx, but on Netscape some of my output is
missing. When I do a "View Source" I see the content in IE but not in Netscape.

Netscape is more strict regarding HTML tags (such as tables) then IE. Running your
HTML output through a HTML validator, such as » validator.w3.org, might be helpful.
For example, a missing </table> might cause this.

Also, both IE and Lynx ignore any NULs (\0) in the HTML stream, Netscape does not.
The best way to check for this is to compile the command line version of PHP (also
known as the CGI version) and run your script from the command line. In *nix, pipe it
through od -c and look for any \0 characters. If you are on Windows you need to find
an editor or some other program that lets you look at binary files. When Netscape sees
a NUL in a file it will typically not output anything else on that line whereas both IE and
Lynx will.

How am I supposed to mix XML and PHP? It complains about my <?xml tags!

In order to embed <?xml straight into your PHP code, you'll have to turn off short tags
by having the PHP directive short_open_tags set to 0. You cannot set this directive
with ini_set(). Regardless of short_open_tags being on or off, you can do something
like: <?php echo '<?xml'; ?>. The default for this directive is on.

http://support.microsoft.com/kb/q160422/
http://support.microsoft.com/kb/q160422/
http://validator.w3.org/

How can I use PHP with FrontPage or some other HTML editor that insists on
moving my code around?

One of the easiest things to do is to enable using ASP tags in your PHP code. This
allows you to use the ASP-style <% and %> code delimiters. Some of the popular
HTML editors handle those more intelligently (for now). To enable the ASP-style tags,
you need to set the asp_tags php.ini variable, or use the appropriate Apache directive.

Where can I find a complete list of variables are available to me in PHP?

Read the manual page on predefined variables as it includes a partial list of predefined
variables available to your script. A complete list of available variables (and much more
information) can be seen by calling the phpinfo() function. Be sure to read the manual
section on variables from outside of PHP as it describes common scenarios for
external variables, like from a HTML form, a Cookie, and the URL.

Note

register_globals: important note

As of PHP 4.2.0, the default value for the PHP directive register_globals is off, and
it was completely removed as of PHP 6.0.0. The PHP community discourages
developers from relying on this directive, and encourages the use of other means,
such as the superglobals.

How can I generate PDF files without using the non-free and commercial libraries
like PDFLib ? I'd like something that's free and doesn't require external PDF
libraries.

There are a few alternatives written in PHP such as » http://www.ros.co.nz/pdf/,
» http://www.fpdf.org/, » http://www.gnuvox.com/pdf4php/, and
» http://www.potentialtech.com/ppl.php. There is also the » Panda module.

I'm trying to access one of the standard CGI variables (such as $DOCUMENT_ROOT
or $HTTP_REFERER) in a user-defined function, and it can't seem to find it. What's
wrong?

http://www.ros.co.nz/pdf/
http://www.fpdf.org/
http://www.fpdf.org/
http://www.gnuvox.com/pdf4php/
http://www.potentialtech.com/ppl.php
http://www.potentialtech.com/ppl.php
http://www.stillhq.com/cgi-bin/getpage?area=panda

It's important to realize that the PHP directive register_globals also affects server and
environment variables. When register_globals = off (the default is off since PHP 4.2.0),
$DOCUMENT_ROOT will not exist. Instead, use $_SERVER['DOCUMENT_ROOT']. If
register_globals = on then the variables $DOCUMENT_ROOT and
$GLOBALS['DOCUMENT_ROOT'] will also exist.

If you're sure register_globals = on and wonder why $DOCUMENT_ROOT isn't
available inside functions, it's because these are like any other variables and would
require global $DOCUMENT_ROOT inside the function. See also the manual page on
variable scope. It's preferred to code with register_globals = off.

Note

Superglobals: availability note

Superglobal arrays such as $_GET, $_POST, and $_SERVER, etc. are available
as of PHP 4.1.0. For more information, read the manual section on superglobals

A few PHP directives may also take on shorthand byte values, as opposed to only
integer byte values. What are all the available shorthand byte options? And can I use
these outside of php.ini ?

The available options are K (for Kilobytes), M (for Megabytes) and G (for Gigabytes;
available since PHP 5.1.0), these are case insensitive. Anything else assumes bytes.
1M equals one Megabyte or 1048576 bytes. 1K equals one Kilobyte or 1024 bytes.
You may not use these shorthand notations outside of php.ini, instead use an integer
value of bytes. See the ini_get() documentation for an example on how to convert
these values.

PHP and HTML

PHP and HTML interact a lot: PHP can generate HTML, and HTML can pass information
to PHP. Before reading these faqs, it's important you learn how to retrieve variables from
external sources. The manual page on this topic includes many examples as well. Pay
close attention to what register_globals means to you too.

What encoding/decoding do I need when I pass a value through a form/URL?

There are several stages for which encoding is important. Assuming that you have a
string $data, which contains the string you want to pass on in a non-encoded way,
these are the relevant stages:

• HTML interpretation. In order to specify a random string, you must include it in
double quotes, and htmlspecialchars() the whole value.

• URL: A URL consists of several parts. If you want your data to be interpreted as
one item, you must encode it with urlencode().

Example #3039 - A hidden HTML form element

<?php

 echo "<input type='hidden' value='" . htmlspecialchars($data) . "'
/>\n";

?>

Note

It is wrong to urlencode() $data, because it's the browsers responsibility to
urlencode() the data. All popular browsers do that correctly. Note that this will
happen regardless of the method (i.e., GET or POST). You'll only notice this in
case of GET request though, because POST requests are usually hidden.

Example #3040 - Data to be edited by the user

<?php

 echo "<textarea name='mydata'>\n";

 echo htmlspecialchars($data)."\n";

 echo "</textarea>";

?>

Note

The data is shown in the browser as intended, because the browser will interpret
the HTML escaped symbols.

Upon submitting, either via GET or POST, the data will be urlencoded by the
browser for transferring, and directly urldecoded by PHP. So in the end, you don't
need to do any urlencoding/urldecoding yourself, everything is handled
automagically.

Example #3041 - In a URL

<?php

 echo "<a href='" . htmlspecialchars("/nextpage.php?stage=23&data=" .

 urlencode($data)) . "'>\n";

?>

Note

In fact you are faking a HTML GET request, therefore it's necessary to manually
urlencode() the data.

Note

You need to htmlspecialchars() the whole URL, because the URL occurs as value
of an HTML-attribute. In this case, the browser will first un- htmlspecialchars() the
value, and then pass the URL on. PHP will understand the URL correctly, because
you urlencoded() the data.

You'll notice that the &in the URL is replaced by &. Although most browsers
will recover if you forget this, this isn't always possible. So even if your URL is not
dynamic, you need to htmlspecialchars() the URL.

I'm trying to use an <input type="image"> tag, but the $foo.x and $foo.y variables
aren't available. $_GET['foo.x'] isn't existing either. Where are they?

When submitting a form, it is possible to use an image instead of the standard submit
button with a tag like:
<input type="image" src="image.gif" name="foo" />
When the user clicks somewhere on the image, the accompanying form will be

transmitted to the server with two additional variables: foo.x and foo.y.

Because foo.x and foo.y would make invalid variable names in PHP, they are
automagically converted to foo_x and foo_y. That is, the periods are replaced with
underscores. So, you'd access these variables like any other described within the
section on retrieving variables from external sources. For example, $_GET['foo_x'].

Note

Spaces in request variable names are converted to underscores.

How do I create arrays in a HTML <form>?

To get your <form> result sent as an array to your PHP script you name the <input>,
<select> or <textarea> elements like this:
<input name="MyArray[]" />

<input name="MyArray[]" />

<input name="MyArray[]" />

<input name="MyArray[]" />
Notice the square brackets after the variable name, that's what makes it an array. You
can group the elements into different arrays by assigning the same name to different
elements:
<input name="MyArray[]" />

<input name="MyArray[]" />

<input name="MyOtherArray[]" />

<input name="MyOtherArray[]" />
This produces two arrays, MyArray and MyOtherArray, that gets sent to the PHP
script. It's also possible to assign specific keys to your arrays:
<input name="AnotherArray[]" />

<input name="AnotherArray[]" />

<input name="AnotherArray[email]" />

<input name="AnotherArray[phone]" />
The AnotherArray array will now contain the keys 0, 1, email and phone.

Note

Specifying an arrays key is optional in HTML. If you do not specify the keys, the
array gets filled in the order the elements appear in the form. Our first example will
contain keys 0, 1, 2 and 3.

See also Array Functions and Variables From External Sources.

How do I get all the results from a select multiple HTML tag?

The select multiple tag in an HTML construct allows users to select multiple items from
a list. These items are then passed to the action handler for the form. The problem is
that they are all passed with the same widget name. I.e.
<select name="var" multiple="yes">
Each selected option will arrive at the action handler as:

var=option1

var=option2

var=option3

Each option will overwrite the contents of the previous $var variable. The solution is to
use PHP's "array from form element" feature. The following should be used:
<select name="var[]" multiple="yes">
This tells PHP to treat $var as an array and each assignment of a value to var[] adds
an item to the array. The first item becomes $var[0], the next $var[1], etc. The count()
function can be used to determine how many options were selected, and the sort()
function can be used to sort the option array if necessary.

Note that if you are using JavaScript the [] on the element name might cause you
problems when you try to refer to the element by name. Use it's numerical form
element ID instead, or enclose the variable name in single quotes and use that as the
index to the elements array, for example:

variable = documents.forms[0].elements['var[]'];

How can I pass a variable from Javascript to PHP?

Since Javascript is (usually) a client-side technology, and PHP is (usually) a
server-side technology, and since HTTP is a "stateless" protocol, the two languages
cannot directly share variables.

It is, however, possible to pass variables between the two. One way of accomplishing
this is to generate Javascript code with PHP, and have the browser refresh itself,
passing specific variables back to the PHP script. The example below shows precisely
how to do this -- it allows PHP code to capture screen height and width, something that
is normally only possible on the client side.

<?php

if (isset($_GET['width']) AND isset($_GET['height'])) {

 // output the geometry variables

 echo "Screen width is: ". $_GET['width'] ."
\n";

 echo "Screen height is: ". $_GET['height'] ."
\n";

} else {

 // pass the geometry variables

 // (preserve the original query string

 // -- post variables will need to handled differently)

 echo "<script language='javascript'>\n";

 echo "
location.href=\"${_SERVER['SCRIPT_NAME']}?${_SERVER['QUERY_STRING']}"

 . "&width=\" + screen.width + \"&height=\" + screen.height;\n";

 echo "</script>\n";

 exit();

}

?>

PHP and COM

PHP can be used to access COM and DCOM objects on Win32 platforms.

I have built a DLL to calculate something. Is there any way to run this DLL under
PHP ?

If this is a simple DLL there is no way yet to run it from PHP. If the DLL contains a
COM server you may be able to access it if it implements the IDispatch interface.

What does 'Unsupported variant type: xxxx (0xxxxx)' mean ?

There are dozens of VARIANT types and combinations of them. Most of them are
already supported but a few still have to be implemented. Arrays are not completely
supported. Only single dimensional indexed only arrays can be passed between PHP
and COM. If you find other types that aren't supported, please report them as a bug (if
not already reported) and provide as much information as available.

Is it possible manipulate visual objects in PHP ?

Generally it is, but as PHP is mostly used as a web scripting language it runs in the
web servers context, thus visual objects will never appear on the servers desktop. If
you use PHP for application scripting e.g. in conjunction with PHP-GTK there is no
limitation in accessing and manipulating visual objects through COM.

Can I store a COM object in a session ?

No, you can't. COM instances are treated as resources and therefore they are only
available in a single script's context.

How can I trap COM errors ?

In PHP 5, the COM extension throws com_exception exceptions, which you can catch
and then inspect the code member to determine what to do next.

In PHP 4 it's not possible to trap COM errors beside the ways provided by PHP itself
(@, track_errors, ..).

Can I generate DLL files from PHP scripts like i can in Perl ?

No, unfortunately there is no such tool available for PHP.

What does 'Unable to obtain IDispatch interface for CLSID
{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}' mean ?

This error can have multiple reasons:

• the CLSID is wrong

• the requested DLL is missing

• the requested component doesn't implement the IDispatch interface

How can I run COM object from remote server ?

Exactly like you run local objects. You only have to pass the IP of the remote machine
as second parameter to the COM constructor.

Make sure that you have set = TRUE in your php.ini.

I get 'DCOM is disabled in C:\path...\scriptname.php on line 6', what can I do ?

Edit your php.ini and set = TRUE.

Is it possible to load/manipulate an ActiveX object in a page with PHP ?

This has nothing to do with PHP. ActiveX objects are loaded on client side if they are
requested by the HTML document. There is no relation to the PHP script and therefore
there is no direct server side interaction possible.

Is it possible to get a running instance of a component ?

This is possible with the help of monikers. If you want to get multiple references to the
same word instance you can create that instance like shown:

<?php

$word = new COM("C:\docs\word.doc");

?>

This will create a new instance if there is no running instance available or it will return a
handle to the running instance, if available.

Is there a way to handle an event sent from COM object ?

You can define an event sink and bind it using com_event_sink(). You can use
com_print_typeinfo() to have PHP generate a skeleton for the event sink class.

I'm having problems when trying to invoke a method of a COM object which
exposes more than one interface. What can I do ?

The answer is as simple as unsatisfying. I don't know exactly but i think you can do
nothing. If someone has specific information about this, please let » me know :)

So PHP works with COM, how about COM+ ?

COM+ extends COM by a framework for managing components through MTS and
MSMQ but there is nothing special that PHP has to support to use such components.

mailto:harald.radi@nme.at

If PHP can manipulate COM objects, can we imagine to use MTS to manage
components resources, in conjunction with PHP ?

PHP itself doesn't handle transactions yet. Thus if an error occurs no rollback is
initiated. If you use components that support transactions you will have to implement
the transaction management yourself.

PHP and other languages

PHP is the best language for web programing, but what about other languages?

PHP vs. ASP?

ASP is not really a language in itself, it's an acronym for Active Server Pages, the
actual language used to program ASP with is Visual Basic Script or JScript. The
biggest drawback of ASP is that it's a proprietary system that is natively used only on
Microsoft Internet Information Server (IIS). This limits it's availability to Win32 based
servers. There are a couple of projects in the works that allows ASP to run in other
environments and webservers: » InstantASP from » Halcyon (commercial), Chili!Soft
ASP from » Chili!Soft (commercial). ASP is said to be a slower and more cumbersome
language than PHP, less stable as well. Some of the pros of ASP is that since it
primarily uses VBScript it's relatively easy to pick up the language if you're already
know how to program in Visual Basic. ASP support is also enabled by default in the IIS
server making it easy to get up and running. The components built in ASP are really
limited, so if you need to use "advanced" features like interacting with FTP servers,
you need to buy additional components.

Is there an ASP to PHP converter?

Yes, the server-side » asp2php is the one most often referred to as well as » this
client-side option.

PHP vs. Cold Fusion?

PHP is commonly said to be faster and more efficient for complex programming tasks
and trying out new ideas. PHP is generally referred to as more stable and less
resource intensive as well. Cold Fusion has better error handling, database abstraction
and date parsing although database abstraction is addressed in PHP 4. Another thing
that is listed as one of Cold Fusion's strengths is its excellent search engine, but it has
been mentioned that a search engine is not something that should be included in a
web scripting language. PHP runs on almost every platform there is; Cold Fusion is
only available on Win32, Solaris, Linux and HP/UX. Cold Fusion has a good IDE and is
generally easier to get started with, whereas PHP initially requires more programming
knowledge. Cold Fusion is designed with non-programmers in mind, while PHP is
focused on programmers.

http://www.stryon.com/products.asp?s=1
http://www.halcyonsoft.com/
http://www.chilisoft.com/
http://asp2php.naken.cc/
http://www.design215.com/toolbox/translator/
http://www.design215.com/toolbox/translator/

A great summary by Michael J Sheldon on this topic has been posted to the PHP
mailing list. A copy can be found at
» http://marc.theaimsgroup.com/?l=php-general&m=95602167412542&w=1.

PHP vs. Perl?

The biggest advantage of PHP over Perl is that PHP was designed for scripting for the
web where Perl was designed to do a lot more and can because of this get very
complicated. The flexibility / complexity of Perl makes it easier to write code that
another author / coder has a hard time reading. PHP has a less confusing and stricter
format without losing flexibility. PHP is easier to integrate into existing HTML than Perl.
PHP has pretty much all the 'good' functionality of Perl: constructs, syntax and so on,
without making it as complicated as Perl can be. Perl is a very tried and true language,
it's been around since the late eighties, but PHP is maturing very quickly.

http://marc.theaimsgroup.com/?l=php-general&m=95602167412542&w=1
http://marc.theaimsgroup.com/?l=php-general&m=95602167412542&w=1

Migrating from PHP 4 to PHP 5

This faq section will help you migrate from PHP 4 to PHP 5.

Migrating from PHP 4 to PHP 5

Although PHP 5 offers many new features, it's designed to be as compatible with
earlier versions of PHP as possible with little functionality being broken in the process.

Be sure to read the appropriate PHP 5 migration appendix of this manual as it contains
even more information on the topic of migrating to PHP 5.

Does MySQL work in PHP 5? It seemed to have disappeared.

MySQL is supported with the only change being that MySQL support is no longer
enabled by default in PHP 5. This essentially means that PHP doesn't include the
--with-mysql option in the configure line so that you must now manually do this when
compiling PHP. Windows users will edit php.ini and enable the php_mysql.dll DLL as in
PHP 4 no such DLL existed, it was simply built into your Windows PHP binaries.

Also, the MySQL client libraries are no longer bundled with PHP. More details on this
topic are covered in the following FAQ and be sure to read the MySQL section for
details on installing MySQL. An example configure line would be --with-mysql=/usr
while Windows users will need the libmySQL.dll available to the system.

I hear PHP 5 has an entirely new OOP model, will my existing OOP code work?
Where do I find information on these new OOP features?

The main change in PHP 5 is to the OOP model as PHP 5 now uses the Zend Engine
2.0. The zend.ze1_compatibility_mode directive enables compatability with the Zend
Engine 1.0 (PHP 4).

The new OOP model is documented in the OOP language reference and OOP
migration appendix sections.

So besides the new OOP model, what else has changed in PHP 5? Also, is there a

PHP 5 specific version of the PHP manual?

Few other changes exist, see the migration 5 appendix for details. There won't be a
PHP 5 specific version of the manual as the bulk of PHP remains the same.

Miscellaneous Questions

There can be some questions we can't put into other categories. Here you can find them.

How can I handle the bz2 compressed manuals on Windows?

If you don't have an archiver-tool to handle bz2 files » download the command line tool
from Redhat (please find further information below).

If you would not like to use a command line tool, you can try free tools like » Stuffit
Expander, » UltimateZip, » 7-Zip, or » Quick Zip. If you have tools like » WinRAR or
» Power Archiver, you can easily decompress the bz2 files with it. If you use Total
Commander (formerly Windows Commander), a bz2 plugin for that program is
available freely from the » Total Commander site.

The bzip2 command line tool from Redhat:

Win2k Sp2 users grab the latest version 1.0.2, all other Windows user should grab
version 1.00. After downloading rename the executable to bzip2.exe. For convenience
put it into a directory in your path, e.g. C:\Windows where C represents your Windows
installation drive.

Note: lang stands for your language and x for the desired format, e.g.: pdf. To
uncompress the php_manual_lang.x.bz2 follow these simple instructions:

• open a command prompt window

• cd to the folder where you stored the downloaded php_manual_lang.x.bz2

• invoke bzip2 -d php_manual_lang.x.bz2, extracting php_manual_lang.x in the
same folder

In case you downloaded the php_manual_lang.tar.bz2 with many html-files in it, the
procedure is the same. The only difference is that you got a file php_manual_lang.tar.
The tar format is known to be treated with most common archivers on Windows like
e.g. » WinZip.

What does & beside argument mean in function declaration of e.g. asort() ?

It means that the argument is passed by reference and the function will likely modify it
corresponding to the documentation. You can pass only variables this way and you
don't need to pass them with & in function call (it's even deprecated).

http://www.bzip.org/
http://www.stuffit.com/
http://www.stuffit.com/
http://www.ultimatezip.com/
http://www.7-zip.org/
http://www.quickzip.org/
http://www.rarlab.com/
http://www.powerarchiver.com/
http://www.powerarchiver.com/
http://www.ghisler.com/
http://www.winzip.com/

How do I deal with register_globals ?

For information about the security implications of register_globals, read the security
chapter on Using register_globals.

It's preferred to use superglobals, rather than relying upon register_globals being on.

If you are on a shared host with register_globals turned off and need to use some
legacy applications, which require this option to be turned on, or you are on some
hosting server, where this feature is turned on, but you would like to eliminate security
risks, you might need to emulate the opposite setting with PHP. It is always a good
idea to first ask if it would be possible to change the option somehow in PHP's
configuration, but if it is not possible, then you can use these compatibility snippets.

Example #3042 - Emulating Register Globals

This will emulate register_globals On. If you altered your variables_order directive,
consider changing the $superglobals accordingly.

<?php

// Emulate register_globals on

if (!ini_get('register_globals')) {

 $superglobals = array($_SERVER, $_ENV,

 $_FILES, $_COOKIE, $_POST, $_GET);

 if (isset($_SESSION)) {

 array_unshift($superglobals, $_SESSION);

 }

 foreach ($superglobals as $superglobal) {

 extract($superglobal, EXTR_SKIP);

 }

}

?>

This will emulate register_globals Off. Keep in mind, that this code should be called
at the very beginning of your script, or after session_start() if you use it to start your
session.

<?php

// Emulate register_globals off

function unregister_GLOBALS()

{

 if (!ini_get('register_globals')) {

 return;

 }

 // Might want to change this perhaps to a nicer error

 if (isset($_REQUEST['GLOBALS']) || isset($_FILES['GLOBALS'])) {

 die('GLOBALS overwrite attempt detected');

 }

 // Variables that shouldn't be unset

 $noUnset = array('GLOBALS', '_GET',

 '_POST', '_COOKIE',

 '_REQUEST', '_SERVER',

 '_ENV', '_FILES');

 $input = array_merge($_GET, $_POST,

 $_COOKIE, $_SERVER,

 $_ENV, $_FILES,

 isset($_SESSION) && is_array($_SESSION) ?
$_SESSION : array());

 foreach ($input as $k => $v) {

 if (!in_array($k, $noUnset) && isset($GLOBALS[$k])) {

 unset($GLOBALS[$k]);

 }

 }

}

unregister_GLOBALS();

?>

Appendices

History of PHP and related projects

PHP has come a long way in the last few years. Growing to be one of the most prominent
languages powering the Web was not an easy task. Those of you interested in briefly
seeing how PHP grew out to what it is today, read on. Old PHP releases can be found at
the » PHP Museum.

History of PHP

PHP/FI

PHP succeeds an older product, named PHP/FI. PHP/FI was created by Rasmus Lerdorf
in 1995, initially as a simple set of Perl scripts for tracking accesses to his online resume.
He named this set of scripts 'Personal Home Page Tools'. As more functionality was
required, Rasmus wrote a much larger C implementation, which was able to communicate
with databases, and enabled users to develop simple dynamic Web applications. Rasmus
chose to » release the source code for PHP/FI for everybody to see, so that anybody can
use it, as well as fix bugs in it and improve the code.

PHP/FI, which stood for Personal Home Page / Forms Interpreter, included some of the
basic functionality of PHP as we know it today. It had Perl-like variables, automatic
interpretation of form variables and HTML embedded syntax. The syntax itself was similar
to that of Perl, albeit much more limited, simple, and somewhat inconsistent.

By 1997, PHP/FI 2.0, the second write-up of the C implementation, had a cult of several
thousand users around the world (estimated), with approximately 50,000 domains
reporting as having it installed, accounting for about 1% of the domains on the Internet.
While there were several people contributing bits of code to this project, it was still at large
a one-man project.

PHP/FI 2.0 was officially released only in November 1997, after spending most of its life in
beta releases. It was shortly afterwards succeeded by the first alphas of PHP 3.0.

PHP 3

PHP 3.0 was the first version that closely resembles PHP as we know it today. It was
created by Andi Gutmans and Zeev Suraski in 1997 as a complete rewrite, after they
found PHP/FI 2.0 severely underpowered for developing an eCommerce application they
were working on for a University project. In an effort to cooperate and start building upon
PHP/FI's existing user-base, Andi, Rasmus and Zeev decided to cooperate and announce
PHP 3.0 as the official successor of PHP/FI 2.0, and development of PHP/FI 2.0 was
mostly halted.

One of the biggest strengths of PHP 3.0 was its strong extensibility features. In addition to
providing end users with a solid infrastructure for lots of different databases, protocols and
APIs, PHP 3.0's extensibility features attracted dozens of developers to join in and submit

http://museum.php.net/
http://groups.google.com/group/comp.infosystems.www.authoring.cgi/msg/cc7d43454d64d133

new extension modules. Arguably, this was the key to PHP 3.0's tremendous success.
Other key features introduced in PHP 3.0 were the object oriented syntax support and the
much more powerful and consistent language syntax.

The whole new language was released under a new name, that removed the implication of
limited personal use that the PHP/FI 2.0 name held. It was named plain 'PHP', with the
meaning being a recursive acronym - PHP: Hypertext Preprocessor.

By the end of 1998, PHP grew to an install base of tens of thousands of users (estimated)
and hundreds of thousands of Web sites reporting it installed. At its peak, PHP 3.0 was
installed on approximately 10% of the Web servers on the Internet.

PHP 3.0 was officially released in June 1998, after having spent about 9 months in public
testing.

PHP 4

By the winter of 1998, shortly after PHP 3.0 was officially released, Andi Gutmans and
Zeev Suraski had begun working on a rewrite of PHP's core. The design goals were to
improve performance of complex applications, and improve the modularity of PHP's code
base. Such applications were made possible by PHP 3.0's new features and support for a
wide variety of third party databases and APIs, but PHP 3.0 was not designed to handle
such complex applications efficiently.

The new engine, dubbed 'Zend Engine' (comprised of their first names, Zeev and Andi),
met these design goals successfully, and was first introduced in mid 1999. PHP 4.0, based
on this engine, and coupled with a wide range of additional new features, was officially
released in May 2000, almost two years after its predecessor, PHP 3.0. In addition to the
highly improved performance of this version, PHP 4.0 included other key features such as
support for many more Web servers, HTTP sessions, output buffering, more secure ways
of handling user input and several new language constructs.

Today, PHP is being used by hundreds of thousands of developers (estimated), and
several million sites report as having it installed, which accounts for over 20% of the
domains on the Internet.

PHP's development team includes dozens of developers, as well as dozens others
working on PHP-related projects such as PEAR and the documentation project.

PHP 5

PHP 5 was released in July 2004 after long development and several pre-releases. It is
mainly driven by its core, the Zend Engine 2.0 with a new object model and dozens of
other new features.

History of PHP related projects

PEAR

» PEAR, the PHP Extension and Application Repository (originally, PHP Extension and
Add-on Repository) is PHP's version of foundation classes, and may grow in the future to
be one of the key ways to distribute PHP extensions among developers.

PEAR was born in discussions held in the PHP Developers' Meeting (PDM) held in
January 2000 in Tel Aviv. It was created by Stig S. Bakken, and is dedicated to his
first-born daughter, Malin Bakken.

Since early 2000, PEAR has grown to be a big, significant project with a large number of
developers working on implementing common, reusable functionality for the benefit of the
entire PHP community. PEAR today includes a wide variety of infrastructure foundation
classes for database access, content caching, mathematical calculations, eCommerce and
much more.

More information about PEAR can be found in » the manual.

PHP Quality Assurance Initiative

The » PHP Quality Assurance Initiative was set up in the summer of 2000 in response to
criticism that PHP releases were not being tested well enough for production
environments. The team now consists of a core group of developers with a good
understanding of the PHP code base. These developers spend a lot of their time localizing
and fixing bugs within PHP. In addition there are many other team members who test and
provide feedback on these fixes using a wide variety of platforms.

PHP-GTK

» PHP-GTK is the PHP solution for writing client side GUI applications. Andrei Zmievski
remembers the planing and creation process of PHP-GTK:

GUI programming has always been of my interests, and I found that Gtk+ is a very nice
toolkit, except that programming with it in C is somewhat tedious. After witnessing PyGtk
and GTK-Perl implementations, I decided to see if PHP could be made to interface with
Gtk+, even minimally. Starting in August of 2000, I began to have a bit more free time so
that is when I started experimenting. My main guideline was the PyGtk implementation as
it was fairly feature complete and had a nice object-oriented interface. James Henstridge,
the author of PyGtk, provided very helpful advice during those initial stages.

Hand-writing the interfaces to all the Gtk+ functions was out of the question, so I seized
upon the idea of code-generator, similar to how PyGtk did it. The code generator is a PHP
program that reads a set of .defs file containing the Gtk+ classes, constants, and methods
information and generates C code that interfaces PHP with them. What cannot be
generated automatically can be written by hand in .overrides file.

Working on the code generator and the infrastructure took some time, because I could
spend little time on PHP-GTK during the fall of 2000. After I showed PHP-GTK to Frank
Kromann, he got interested and started helping me out with code generator work and

http://pear.php.net/
http://pear.php.net/manual/
http://qa.php.net/
http://gtk.php.net/

Win32 implementation. When we wrote the first Hello World program and fired it up, it was
extremely exciting. It took a couple more months to get the project to a presentable
condition and the initial version was released on March 1, 2001. The story promptly hit
SlashDot.

Sensing that PHP-GTK might be extensive, I set up separate mailing lists and CVS
repositories for it, as well as the gtk.php.net website with the help of Colin Viebrock. The
documentation would also need to be done and James Moore came in to help with that.

Since its release PHP-GTK has been gaining popularity. We have our own documentation
team, the manual keeps improving, people start writing extensions for PHP-GTK, and
more and more exciting applications with it.

Books about PHP

As PHP grew, it began to be recognized as a world-wide popular development platform.
One of the most interesting ways of seeing this trend was by observing the books about
PHP that came out throughout the years.

To the best of our knowledge, the first book dedicated to PHP was 'PHP - tvorba
interaktivních internetových aplikací' - a Czech book published in April 1999, authored by
Jirka Kosek. Next month followed a German book authored by Egon Schmid, Christian
Cartus and Richard Blume. The first book in English about PHP was published shortly
afterwards, and was 'Core PHP Programming' by Leon Atkinson. Both of these books
covered PHP 3.0.

While these books were the first of their kind - they were followed by a large number of
books from a host of authors and publishers. There are over 40 books in English, 50 books
in German, and over 20 books in French! In addition, you can find books about PHP in
many other languages, including Spanish, Korean, Japanese and Hebrew.

Clearly, this large number of books, written by different authors, published by many
publishers, and their availability in so many languages - are a strong testimony for PHP's
world-wide success.

Publications about PHP

To the best of our knowledge, the first article about PHP in a hard-copy magazine was
published in the Czech mutation of Computerworld in the spring of 1998, and covered PHP
3.0. As with books, this was the first in a series of many articles published about PHP in
various prominent magazines.

Articles about PHP appeared in Dr. Dobbs, Linux Enterprise, Linux Magazine and many
more. Articles about migrating ASP-based applications to PHP under Windows even
appear on Microsoft 's very own MSDN !

Migrating from PHP 5.1.x to PHP 5.2.x

What has changed in PHP 5.2.x

Most improvements in PHP 5.2.x have no impact on existing code. There are a few
incompatibilities and new error messages that should be considered, and code should be
tested before switching PHP versions in production environments.

If the system is being upgraded from PHP 5.0.x, the manual section titled Upgrade Notes
for PHP 5.1.x should also be read.

Similarly, if the system is being upgraded from PHP 4, the manual section titled Migrating
from PHP 4 to PHP 5 should be read as well.

Backward Incompatible Changes

Although most existing PHP 5 code should work without changes, you should pay
attention to the following backward incompatible changes:

• getrusage() returns NULL when passed incompatible arguments as of PHP 5.2.1.

• ZipArchive::setCommentName() returns TRUE on success as of PHP 5.2.1.

• ZipArchive::setCommentIndex() returns TRUE on success as of PHP 5.2.1.

• SplFileObject::getFilename() returns the filename, not relative/path/to/file, as of PHP
5.2.1.

• Changed priority of PHPRC environment variable on Win32 The PHPRC environment
variable now takes priority over the path stored in the Windows registry.

• CLI SAPI no longer checks cwd for php.ini or the php-cli.ini file In PHP 5.1.x an
undocumented feature was added that made the CLI binary check the current working
directory for a PHP configuration file, potentially leading to unpredictable behavior if an
unexpected configuration file were read. This functionality was removed in 5.2.0, and
PHP will no longer search CWD for the presence of php.ini or php-cli.ini files. See also
the command line section of the manual.

• Added a warning when performing modulus 0 operations In earlier versions of PHP,
performing integer % 0 did not emit any warning messages, instead returning an
unexpected return value of FALSE. As of PHP 5.2.0, this operation will emit an
E_WARNING, as is the case in all other instances where division by zero is performed.

<?php

print 10 % 0;

/* Warning: Division by zero in filename on line n */

?>

• Changed __toString() to be called wherever applicable. The magic method
__toString() will now be called in a string context, that is, anywhere an object is used
as a string. The fallback of returning a string that contains the object identifier was
dropped in PHP 5.2.0. It became problematic because an object identifier cannot be
considered unique. This change will mean that your application is flawed if you have
relied on the object identifier as a return value. An attempt to use that value as a string
will now result in a catchable fatal error.

<?php

class foo {}

$foo = new foo;

print $foo;

/* Catchable fatal error: Object of class foo could

 not be converted to string in filename on line n */

?>

Even with __toString(), objects cannot be used as array indices or keys. We may add
built-in hash support for this at a later date, but as of PHP 5.2.x you will need to either
provide your own hashing or use the new SPL function spl_object_hash(). Exceptions
can not be thrown from __toString() methods.

<?php

class foo {

 public function __toString() {

 throw new Exception;

 }

}

try {

 print new foo;

 /* Fatal error: Method foo::__toString() must

 not throw an exception in filename on line n */

} catch(Exception $e) {}

?>

• Dropped abstract static class functions. Due to an oversight, PHP 5.0.x and 5.1.x
allowed abstract static functions in classes. As of PHP 5.2.x, only interfaces can have
them.

<?php

abstract class foo {

 abstract static function bar();

 /* Strict Standards: Static function foo::bar()

 should not be abstract in filename on line n */

}

?>

• Oracle extension requires at least Oracle 10 on Windows.

• Added RFC2397 (data: stream) support. The introduction of the 'data' URL scheme
has the potential to lead to a change of behavior under Windows. If you are working
with a NTFS file system and making use of meta streams in your application, and if
you just happen to be using a file with the name 'data:' that is accessed without any

path information - it won't work any more. The fix is to use the 'file:' protocol when
accessing it. See also » RFC 2397

<?php

/* when allow_url_include is OFF (default) */

include "data:;base64,PD9waHAgcGhwaW5mbygpOz8+";

/* Warning: include(): URL file-access is disabled

 in the server configuration in filename on line n */

?>

• Regression in glob() patterns In version 5.2.4 a security fix caused a regression for
patterns of the form "/foo/*/bar/*". Since version 5.2.5 instead of raising a warning the
glob() function will return FALSE when openbase_dir restrictions are violated.

New Error Messages

Below are the new error messages that have not been discussed elsewhere in this
document.

Example #3043 - In PHP Core

<?php

echo " ";

session_regenerate_id();

/* Warning: session_regenerate_id(): Cannot regenerate

 session id - headers already sent in filename on line n */

str_word_count("string", 4);

/* Warning: str_word_count(): Invalid format value 4

 in filename on line n */

strripos("foo", "f", 4);

/* Notice: strripos(): Offset is greater than the

 length of haystack string in filename on line n */

strrpos("foo", "f", 4);

/* Notice: strrpos(): Offset is greater than the

 length of haystack string in filename on line n */

/* As of PHP 5.2.1, when allow_url_include is OFF (default) */

include "php://input";

/* Warning: include(): URL file-access is disabled

 in the server configuration in filename on line n */

?>

http://www.faqs.org/rfcs/rfc2397

Example #3044 - Object Oriented Code in PHP Core

<?php

interface foo {

}

class bar implements foo, foo {

}

/* Fatal error: Class bar cannot implement previously

 implemented interface foo in filename on line n */

class foo {

 public $bar;

 function __get($var)

 {

 return $this->bar;

 }

}

$foo = new foo;

$bar =& $foo->prop;

/* Notice: Indirect modification of overloaded property

 foo::$prop has no effect in filename on line n */

class foo implements iterator {

 public function current() {

 }

 public function next() {

 }

 public function key() {

 }

 public function valid() {

 }

 public function rewind() {

 }

}

$foo = new foo();

foreach($foo as &$ref) {}

/* Fatal error: An iterator cannot be used with foreach

 by reference in filename on line n */

class foo {

 private function __construct() {

 }

}

class bar extends foo {

 public function __construct() {

 parent::__construct();

 /* Fatal error: Cannot call private

 foo::__construct() in filename on line n */

 }

}

new bar;

stream_filter_register("", "class");

/* Warning: stream_filter_register(): Filter name

 cannot be empty in filename on line n */

stream_filter_register("filter", "");

/* Warning: stream_filter_register(): Class name

 cannot be empty in filename on line n */

?>

Example #3045 - In the bzip2 Extension

<?php

bzopen("", "w");

/* Warning: bzopen(): filename cannot be empty

 in filename on line n */

bzopen("foo", "a");

/* Warning: bzopen(): 'a' is not a valid mode for

 bzopen(). Only 'w' and 'r' are supported in

 filename on line n */

$fp = fopen("foo", "w");

bzopen($fp, "r");

/* Warning: bzopen(): cannot read from a stream

 opened in write only mode in filename on line n */

?>

Example #3046 - In the datetime Extension

<?php

strtotime("today", "now");

/* Warning: strtotime() expects parameter 2 to be

 long, string given in filename on line n */

/* As of PHP 5.2.1 */

new DateTime(new stdclass);

/* Fatal error: Uncaught exception 'Exception' with

 message 'DateTime::__construct() expects parameter

 1 to be string, object given' in filename:n */

?>

Example #3047 - In the dBase Extension

<?php

dbase_open("foo", -1);

/* Warning: Invalid access mode -1 in filename on line n */

/* As of PHP 5.2.1 */

dbase_open("foo", null);

/* Warning: The filename cannot be empty in filename on line n */

?>

Example #3048 - In the mcrypt Extension

<?php

$key = "this is a secret key";

$td = mcrypt_module_open('tripledes', '', 'ecb', '');

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size($td),

 MCRYPT_RAND);

mcrypt_generic_init($td, $key, $iv);

$encrypted_data = mcrypt_generic($td, "");

/* Warning: mcrypt_generic(): An empty string was

 passed in filename on line n */

?>

Example #3049 - In the oci8 Extension

<?php

oci_connect("user", "pass", "db", "bogus_charset");

/* Warning: Invalid character set name:

 bogus_charset in filename on line n */

$oci = oci_connect("user", "pass", "db");

oci_password_change($oci, "", "old", "new");

/* Warning: username cannot be empty in filename

 on line n */

oci_password_change($oci, "user", "", "new");

/* Warning: old password cannot be empty in filename

 on line n */

oci_password_change($oci, "user", "old", "");

/* Warning: new password cannot be empty in filename

 on line n */

?>

Example #3050 - In the SPL Extension

<?php

$obj = new SplFileObject(__FILE__);

$obj->fgetcsv("foo");

/* Warning: SplFileObject::fgetcsv(): delimiter must

 be a character in filename on line n */

$obj->fgetcsv(",", "foo");

/* Warning: SplFileObject::fgetcsv(): enclosure must

 be a character in filename on line n */

?>

Example #3051 - In the Semaphore (sysvmsg) extension

<?php

/* Warning: maximum size of the message has to be

 greater then zero in filename on line n */

?>

Example #3052 - A 5.2.1+ Zip Example

<?php

$obj = new ZipArchive();

$obj->open('archive.zip');

$obj->setCommentName('', 'comment');

/* Notice: ZipArchive::setCommentName(): Empty string

 as entry name in filename on line n */

/* As of PHP 5.2.1 */

$obj->getCommentName('');

/* Notice: ZipArchive::getCommentName(): Empty string

 as entry name in filename on line n */

?>

Changes in PHP datetime support

Since PHP 5.1.0, there has been an extension named date in the PHP core. This is the
new implementation of PHP's datetime support. Although it will attempt to guess your
system's timezone setting, you should set the timezone manually. You can do this in any
of three ways:

• in your php.ini using the date.timezone INI directive

• on your system using the TZ environmental variable

• from your script using the convenience function date_default_timezone_set()

All supported timezones are listed in the PHP Manual.

With the advent of PHP 5.2.x, there are object representations of the date and timezone,
named DateTime and DateTimeZone respectively. The methods map to existing
procedural date functions.

New Parameters

Some functions were given new, optional, parameters in PHP 5.2.x:

PHP Core:

• htmlentities() - added double_encode in PHP 5.2.3.

• htmlspecialchars() - added double_encode in PHP 5.2.3.

• base64_decode() - added strict

• setcookie() - added httponly

• setrawcookie() - added httponly

• session_set_cookie_params() - added httponly

• memory_get_usage() - added real_usage

• get_loaded_extensions() - added zend_extensions in PHP 5.2.4

curl:

• curl_multi_info_read() - added msgs_in_queue

datetime

• date() - added "u" (milliseconds) format character in PHP 5.2.2

imap:

• imap_open() - added n_retries

• imap_reopen() - added n_retries

mbstring:

• mb_strrpos() - added offset

Warning

The offset parameter was put in the position the encoding parameter used to be.
Backward compatibility has been provided by allowing encoding to be specified as
the third parameter. Using this backward compatibility mode is not recommended
because it will be removed in a future release of PHP.

ming:

• swfmovie::streamMP3() - added skip in PHP 5.2.1

openssl:

• openssl_verify() - added signature_algo

pgsql:

• pg_escape_bytea() - added connection

• pg_escape_string() - added connection

simplexml:

• SimpleXMLElement::__construct() - added is_prefix

• SimpleXMLElement::attributes() - added is_prefix

• SimpleXMLElement::children() - added is_prefix

• simplexml_load_file() - added is_prefix

• simplexml_load_string() - added is_prefix

spl:

• array iterator_to_array(Traversable it [, bool use_keys = true]) - added use_keys in
PHP 5.2.1

xmlreader:

• XMLReader::open() - added encoding and options

• XMLReader::XML() - added encoding and options

XMLWriter:

• XMLWriter::WriteElement() - the content became optional in PHP 5.2.3

• XMLWriter::WriteElementNs() - the content became optional in PHP 5.2.3

New Functions

PHP 5.2.x introduced some new functions:

PHP Core:

• array_fill_keys() - Create an array using the elements of the first parameter as keys,
each initialized to val

• error_get_last() - Get the last occurred error as associative array. Returns NULL if
there hasn't been an error yet

• image_type_to_extension() - Get file extension for image-type returned by
getimagesize(), exif_read_data(), exif_thumbnail(), exif_imagetype()

• memory_get_peak_usage() - Returns the peak allocated by PHP memory

• sys_get_temp_dir() - Returns directory path used for temporary files. (Added in 5.2.1)

• timezone_abbreviations_list() - Returns associative array containing DST, offset and
the timezone name

• timezone_identifiers_list() - Returns numerically indexed array with all timezone
identifiers

• timezone_name_from_abbr() - Returns the timezone name from abbreviation

• stream_socket_shutdown() - Causes all or part of a full-duplex connection on the
socket associated with stream to be shut down. As of PHP 5.2.1.

Image:

• imagegrabscreen() - Grabs a screenshot of the whole screen. As of PHP 5.2.2.

• imagegrabwindow() - Captures a window. As of PHP 5.2.2.

mbstring:

• mb_stripos() - Finds position of first occurrence of a string within another, case
insensitive

• mb_stristr() - Finds first occurrence of a string within another, case insensitive

• mb_strrchr() - Finds the last occurrence of a character in a string within another

• mb_strrichr() - Finds the last occurrence of a character in a string within another, case
insensitive

• mb_strripos() - Finds position of last occurrence of a string within another, case
insensitive

• mb_strstr() - Finds first occurrence of a string within another

ming (As of PHP 5.2.1):

• void ming_setSWFCompression(int num) - Sets output compression

• void swfmovie::namedanchor(string name) - Creates anchor

• void swfmovie::protect([string pasword]) - Protects

openssl:

• openssl_csr_get_public_key() - Extracts public key from a CERT and prepares it for
use

• openssl_csr_get_subject() - Returns the subject of a CERT

• openssl_pkey_get_details() - Returns an array with the key details (bits, pkey, type)

spl:

• spl_object_hash() - Return hash id for given object

• int iterator_apply(Traversable it, mixed function [, mixed params]) - Calls a function for
every element in an iterator

pcre:

• preg_last_error() - Returns the error code of the last regex execution

pgsql:

• pg_field_table() - Returns the name of the table field belongs to, or table's oid if
oid_only is TRUE

posix:

• posix_initgroups() - Calculate the group access list for the user specified in name

gmp:

• gmp_nextprime() - Finds next prime number

xmlwriter:

• xmlwriter_full_end_element() - End current element - returns FALSE on error

• xmlwriter_write_raw() - Write text - returns FALSE on error

• xmlwriter_start_dtd_entity() - Create start DTD Entity - returns FALSE on error

• xmlwriter_end_dtd_entity() - End current DTD Entity - returns FALSE on error

• xmlwriter_write_dtd_entity() - Write full DTD Entity tag - returns FALSE on error

New Methods

New methods were introduced in 5.2.0:

dom:

• DOMDocument::registerNodeClass() - Register extended class used to create base
node type

• DOMElement::setIDAttribute() - Declares the attribute specified by name to be of type
ID

• DOMElement::setIDAttributeNode() - Declares the attribute specified by node to be of
type ID

• DOMElement::setIDAttributeNS() - Declares the attribute specified by local name and
namespace URI to be of type ID

• DOMNode::C14N([bool exclusive [, bool with_comments [, array xpath [, array
ns_prefixes]]]]) - Canonicalize nodes to a string

• DOMNode::C14NFile(string uri [, bool exclusive [, bool with_comments [, array xpath [,
array ns_prefixes]]]]) - Canonicalize nodes to a file

• DOMNode::getNodePath() - Gets an xpath for a node

soap:

• SoapServer::setObject(object obj) - Sets object which will handle SOAP requests

spl:

• int ArrayObject::asort(void) - Sort the entries by values

• int ArrayObject::ksort(void) - Sort the entries by key

• int ArrayObject::natcasesort(void) - Sort the entries by key using case insensitive
"natural order" algorithm.

• int ArrayObject::natsort(void) - Sort the entries by values using "natural order"
algorithm.

• int ArrayObject::uasort(callback cmp_function) - Sort the entries by values using a user
defined function

• int ArrayObject::uksort(callback cmp_function) - Sort the entries by key using a user
defined function.

• ArrayIterator AppendIterator::getArrayIterator() - Get access to inner ArrayIterator

• int AppendIterator::getIteratorIndex() - Get index of iterator

• bool CachingIterator::getCache() - Return the cache

• int CachingIterator::getFlags() - Return the internal flags

• bool CachingIterator::offsetExists(mixed index) - Returns TRUE if the requested index
exists

• string CachingIterator::offsetGet(mixed index) - Return the internal cache if used

• void CachingIterator::offsetSet(mixed index, mixed newval) - Set given index in cache

• void CachingIterator::offsetUnset(mixed index) - Unset given index in cache

• void CachingIterator::setFlags() - Set the internal flags

• array("delimiter" =>, "enclosure" =>) SplFileObject::getCsvControl(void) - Get the
delimiter and enclosure character used in fgetcsv()

• void SplFileObject::setCsvControl([string delimiter = ',' [, string enclosure = '"']]) - Set
the delimiter and enclosure character used in fgetcsv()

Tidy

• tidyNode tidyNode::getParent(void) - Returns the parent node of the current node
(Added in PHP 5.2.2)

XMLReader

• boolean XMLReader::setSchema(string filename) - Use W3C XSD schema to validate
the document as it is processed. Activation is only possible before the first Read()

zip:

• ZipArchive::addEmptyDir() - Creates an empty directory in the archive

Removed Extensions

These extensions have been moved to PECL and are no longer part of the PHP
distribution. The PECL package version of these extensions will be created according to
user demand.

• filePro

• Hyperwave API

New Extensions

The following are new extensions added (by default) as of PHP 5.2.0:

• Filter - validates and filters data, and is designed for use with insecure data such as
user input. This extension is enabled by default; the default mode RAW does not
impact input data in any way.

• JSON - implements the JavaScript Object Notation (JSON) data interchange format.
This extension is enabled by default.

• Zip - enables you to transparently read or write ZIP compressed archives and the files
inside them.

New Classes

The following classes were introduced in PHP 5.2.0:

• DateTime

• DateTimeZone

• RegexIterator - extends FilterIterator; implements Iterator, Traversable, OuterIterator
Constants:

• RegexIterator::ALL_MATCHES

• RegexIterator::GET_MATCH

• RegexIterator::MATCH

• RegexIterator::REPLACE

• RegexIterator::SPLIT

• RegexIterator::USE_KEY

Properties:

• public replacement

Methods:

• RegexIterator::__construct(Iterator it, string regex [, int mode [, int flags [, int
preg_flags]]]) - Create an RegexIterator from another iterator and a regular
expression

• bool RegexIterator::accept() - Match (string)current() against regular expression

• bool RegexIterator::getFlags() - Returns current operation flags

• bool RegexIterator::getMode() - Returns current operation mode

• bool RegexIterator::getPregFlags() - Returns current PREG flags (if in use or
NULL)

• bool RegexIterator::setFlags(int new_flags) - Set operation flags

• bool RegexIterator::setMode(int new_mode) - Set new operation mode

• bool RegexIterator::setPregFlags(int new_flags) - Set PREG flags

• RecursiveRegexIterator Constants:

• RecursiveRegexIterator::ALL_MATCHES

• RecursiveRegexIterator::GET_MATCH

• RecursiveRegexIterator::MATCH

• RecursiveRegexIterator::REPLACE

• RecursiveRegexIterator::SPLIT

• RecursiveRegexIterator::USE_KEY

Methods:

• RecursiveRegexIterator::__construct(RecursiveIterator it, string regex [, int mode [,
int flags [, int preg_flags]]]) - Create an RecursiveRegexIterator from another
recursive iterator and a regular expression

• RecursiveRegexIterator RecursiveRegexIterator::getChildren() - Return the inner
iterator's children contained in a RecursiveRegexIterator

• bool RecursiveRegexIterator::hasChildren() - Check whether the inner iterator's
current element has children

New Global Constants

PHP Core:

• M_EULER

• M_LNPI

• M_SQRT3

• M_SQRTPI

• PATHINFO_FILENAME

• PREG_BACKTRACK_LIMIT_ERROR

• PREG_BAD_UTF8_ERROR

• PREG_INTERNAL_ERROR

• PREG_NO_ERROR

• PREG_RECURSION_LIMIT_ERROR

• UPLOAD_ERR_EXTENSION

• STREAM_SHUT_RD

• STREAM_SHUT_WR

• STREAM_SHUT_RDWR

curl:

• CURLE_FILESIZE_EXCEEDED

• CURLE_FTP_SSL_FAILED

• CURLE_LDAP_INVALID_URL

• CURLFTPAUTH_DEFAULT

• CURLFTPAUTH_SSL

• CURLFTPAUTH_TLS

• CURLFTPSSL_ALL

• CURLFTPSSL_CONTROL

• CURLFTPSSL_NONE

• CURLFTPSSL_TRY

• CURLOPT_FTP_SSL

• CURLOPT_FTPSSLAUTH

• CURLOPT_TCP_NODELAY Added in PHP 5.2.1.

• CURLOPT_TIMEOUT_MS Added in PHP 5.2.3

• CURLOPT_CONNECTTIMEOUT_MS Added in PHP 5.2.3

GMP:

• GMP_VERSION Added in PHP 5.2.2.

ming:

• SWFTEXTFIELD_USEFONT

• SWFTEXTFIELD_AUTOSIZE

• SWF_SOUND_NOT_COMPRESSED

• SWF_SOUND_ADPCM_COMPRESSED

• SWF_SOUND_MP3_COMPRESSED

• SWF_SOUND_NOT_COMPRESSED_LE

• SWF_SOUND_NELLY_COMPRESSED

• SWF_SOUND_5KHZ

• SWF_SOUND_11KHZ

• SWF_SOUND_22KHZ

• SWF_SOUND_44KHZ

• SWF_SOUND_8BITS

• SWF_SOUND_16BITS

• SWF_SOUND_MONO

• SWF_SOUND_STEREO

openssl:

• OPENSSL_VERSION_NUMBER

• OPENSSL_VERSION_TEXT

snmp:

• SNMP_OID_OUTPUT_FULL

• SNMP_OID_OUTPUT_NUMERIC

Semaphore:

• MSG_EAGAIN

• MSG_ENOMSG

New Class Constants

pdo:

• PDO::ATTR_DEFAULT_FETCH_MODE

• PDO::FETCH_PROPS_LATE

• PDO::FETCH_KEY_PAIR Fetches a 2 column result set into an associated array.
(Added in PHP 5.2.3)

spl:

• CachingIterator::FULL_CACHE

• CachingIterator::TOSTRING_USE_INNER

• SplFileObject::READ_AHEAD

• SplFileObject::READ_CSV

• SplFileObject::SKIP_EMPTY

New INI Configuration Directives

New php.ini directives introduced in PHP 5.2.0:

• allow_url_include This useful option makes it possible to differentiate between
standard file operations on remote files, and the inclusion of remote files. While the
former is usually desirable, the latter can be a security risk if used naively. Starting with
PHP 5.2.0, you can allow remote file operations while disallowing the inclusion of
remote files in local scripts. In fact, this is the default configuration.

• pcre.backtrack_limit PCRE's backtracking limit.

• pcre.recursion_limit PCRE's recursion limit. Please note that if you set this value to a
high number you may consume all the available process stack and eventually crash
PHP (due to reaching the stack size limit imposed by the Operating System).

• session.cookie_httponly Marks the cookie as accessible only through the HTTP
protocol. This means that the cookie won't be accessible by scripting languages, such
as JavaScript. This setting can effectively help to reduce identity theft through XSS
attacks (although it is not supported by all browsers).

New directives in PHP 5.2.2:

• max_input_nesting_level Limits how deep input variables can be nested, default is 64.

Error Reporting

Some of the existing E_ERROR conditions have been converted to something that can be
caught with a user-defined error handler. If an E_RECOVERABLE_ERROR is not
handled, it will behave in the same way as E_ERROR behaves in all versions of PHP.
Errors of this type are logged as Catchable fatal error.

This change means that the value of the E_ALL error_reporting constant is now 6143,
where the previous value was 2047. Because PHP constants have no meaning outside of
PHP, in some cases the integer value is used instead so these will need to be adjusted.
So for example by setting the error_reporting mode from either the httpd.conf or the
.htaccess files, the value has to be changed accordingly. The same applies when the
numeric values are used rather than the constants in PHP scripts.

As a side-effect of a change made to prevent duplicate error messages when track_errors
is On, it is now necessary to return FALSE from user defined error handlers in order to
populate $php_errormsg. This provides a fine-grain control over the levels of messages
stored.

Other Enhancements

• Improved memory manager and increased default memory limit. The new memory
manager allocates less memory and works faster than the previous incarnation. It
allocates memory from the system in large blocks, and then manages the heap by
itself. The memory_limit value in php.ini is checked, not for each emalloc() call (as
before), but for actual blocks requested from the system. This means that
memory_limit is far more accurate than it used to be, since the old memory manager
didn't calculate all the memory overhead used by the malloc library. Thanks to this
new-found accuracy memory usage may appear to have increased, although actually it
has not. To accommodate this apparent increase, the default memory_limit setting was
also increased - from 8 to 16 megabytes.

• Added support for constructors in interfaces to force constructor signature checks in
implementations. Starting with PHP 5.2.0, interfaces can have constructors. However,
if you choose to declare a constructor in an interface, each class implementing that
interface MUST include a constructor with a signature matching that of the base
interface constructor. By 'signature' we mean the parameter and return type definitions,
including any type hints and including whether the data is passed by reference or by
value.

Migrating from PHP 5.0.x to PHP 5.1.x

Key PHP 5.1.x features

Some of the key features of PHP 5.1.x include:

• A complete rewrite of date handling code, with improved timezone support.

• Significant performance improvements compared to PHP 5.0.X.

• PDO extension is now enabled by default.

• Over 30 new functions in various extensions and built-in functionality.

• Over 400 various bug fixes.

Changes in reference handling

• Overview

• Code that worked under PHP 4.3.x, but now fails

• Code that worked under PHP 4.3.x, but now throws an error

• Code that failed under PHP 4.3.x, but now works

• Code that should have worked under PHP 5.0.x

• Warnings that came and went

Overview

From the PHP script writer's point of view, the change most likely to impact legacy code is
in the way that references are handled in all PHP versions post-dating the PHP 4.4.0
release.

Until and including PHP 4.3, it was possible to send, assign or return variables by
reference that should really be returned by value, such as a constant, a temporary value
(e.g. the result of an expression), or the result of a function that had itself been returned by
value, as here:

<?php

$foo = "123";

function return_value() {

 global $foo;

 return $foo;

}

$bar = &return_value();

?>

Although this code would usually work as expected under PHP 4.3, in the general case the
result is undefined. The Zend Engine could not act correctly on these values as
references. This bug could and did lead to various hard-to-reproduce memory corruption
problems, particularly where the code base was large.

In PHP 4.4.0, PHP 5.0.4 and all subsequent PHP releases, the Engine was fixed to 'know'
when the reference operation is being used on a value that should not be referenced. The
actual value is now used in such cases, and a warning is emitted. The warning takes the
form of an E_NOTICE in PHP 4.4.0 and up, and E_STRICT in PHP 5.0.4 and up.

Code that could potentially produce memory corruption can no longer do so. However,
some legacy code might work differently as a result.

Code that worked under PHP 4.3, but now fails

<?php

function func(&$arraykey) {

 return $arraykey; // function returns by value!

}

$array = array('a', 'b', 'c');

foreach (array_keys($array) as $key) {

 $y = &func($array[$key]);

 $z[] =& $y;

}

var_dump($z);

?>

<

Running the above script under any version of PHP that pre-dates the reference fix would
produce this output:

array(3) {

 [0]=>

 &string(1) "a"

 [1]=>

 &string(1) "b"

 [2]=>

 &string(1) "c"

}

Following the reference fix, the same code would result in:

array(3) {

 [0]=>

 &string(1) "c"

 [1]=>

 &string(1) "c"

 [2]=>

 &string(1) "c"

}

This is because, following the changes, func() assigns by value. The value of $y is
re-assigned, and reference-binding is preserved from $z. Prior to the fix, the value was
assigned by reference, leading $y to be re-bound on each assignment. The attempt to bind
to a temporary value by reference was the cause of the memory corruption.

Such code can be made to work identically in both the pre-fix and the post-fix PHP
versions. The signature of func() can be altered to return by reference, or the reference
assignment can be removed from the result of func().

<?php

function func() {

 return 'function return';

}

$x = 'original value';

$y =& $x;

$y = &func();

echo $x;

?>

In PHP 4.3 $x would be 'original value', whereas after the changes it would be 'function
return' - remember that where the function does not return by reference, the reference
assignment is converted to a regular assignment. Again, this can be brought to a common
base, either by forcing func() to return by reference or by eliminating the by-reference
assignment.

Code that worked under PHP 4.3.x, but now throws an error

<?php

class Foo {

 function getThis() {

 return $this;

 }

 function destroyThis() {

 $baz =& $this->getThis();

 }

}

$bar = new Foo();

$bar->destroyThis();

var_dump($bar);

?>

In PHP 5.0.3, $bar evaluated to NULL instead of returning an object. That happened
because getThis() returns by value, but the value here is assigned by reference. Although
it now works in the expected way, this is actually invalid code which will throw an
E_NOTICE under PHP 4.4 or an E_STRICT under PHP 5.0.4 and up.

Code that failed under PHP 4.3.x, but now works

<?php

function &f() {

 $x = "foo";

 var_dump($x);

 print "$x\n";

 return($a);

}

for ($i = 0; $i < 3; $i++) {

 $h = &f();

}

?>

In PHP 4.3 the third call to var_dump() produces NULL, due to the memory corruption
caused by returning an uninitialized value by reference. This is valid code in PHP 5.0.4
and up, but threw errors in earlier releases of PHP.

<?php

$arr = array('a1' => array('alfa' => 'ok'));

$arr =& $arr['a1'];

echo '-'.$arr['alfa']."-\n";

?>

Until PHP 5.0.5, it wasn't possible to assign an array element by reference in this way. It
now is.

Code that should have worked under PHP 5.0.x

There are a couple of instances of bugs reported under PHP 5.0 prior to the reference
fixes which now 'work'. However, in both cases errors are thrown by PHP 5.1.x, because
the code was invalid in the first place. Returning values by reference using self:: now
works in the general case but throws an E_STRICT warning, and although your mileage
may vary when assigning by reference to an overloaded object, you will still see an
E_ERROR when you try it, even where the assignment itself appears to work.

Warnings that came and went

Nested calls to functions returning by reference are valid code under both PHP 4.3.x and
PHP 5.1.x, but threw an unwarranted E_NOTICE or E_STRICT under the intervening PHP
releases.

<?php

function & foo() {

 $var = 'ok';

 return $var;

}

function & bar() {

 return foo();

}

$a =& bar();

echo "$a\n";

?>

Reading []

<?php

class XmlTest {

 function test_ref(&$test) {

 $test = "ok";

 }

 function test($test) { }

 function run() {

 $ar = array();

 $this->test_ref($ar[]);

 var_dump($ar);

 $this->test($ar[]);

 }

}

$o = new XmlTest();

$o->run();

?>

This should always have thrown a fatal E_ERROR, because [] cannot be used for reading
in PHP. It is invalid code in PHP 4.4.2 and PHP 5.0.5 upward.

Integer values in function parameters

With the advent of PHP 5.0.x, a new parameter parsing API was introduced which is used
by a large number of PHP functions. In all versions of PHP between 5.0.x and 5.1.x, the
handling of integer values was very strict and would reject non-well formed numeric values
when a PHP function expected an integer. These checks have now been relaxed to
support non-well formed numeric strings such as " 123" and "123 ", and will no longer fail
as they did under PHP 5.0.x. However, to promote code safety and input validation, PHP
functions will now emit an E_NOTICE when such strings are passed as integers.

Class and object changes

• instanceof , is_a() , is_subclass_of() and catch

• Abstract private methods

• Access modifiers in interfaces

• Changes in inheritance rules

• Class constants

instanceof, is_a(), is_subclass_of() and catch

In PHP 5.0, is_a() was deprecated and replaced by the instanceof operator. There were
some issues with the initial implementation of instanceof, which relied on __autoload() to
search for missing classes. If the class was not present, instanceof would throw a fatal
E_ERROR due to the failure of __autoload() to discover that class. The same behaviour
occurred in the catch operator and the is_subclass_of() function, for the same reason.

None of these functions or operators call __autoload() in PHP 5.1.x, and the class_exists()
workarounds used in code written for PHP 5.0.x, while not problematic in any way, are no
longer necessary.

Abstract private methods

Abstract private methods were supported between PHP 5.0.0 and PHP 5.0.4, but were
then disallowed on the grounds that the behaviours of private and abstract are mutually
exclusive.

Access modifiers in interfaces

Under PHP 5.0, function declarations in interfaces were treated in exactly the same way
as function declarations in classes. This has not been the case since October 2004, at
which point only the public access modifier was allowed in interface function declarations.
Since April 2005 - which pre-dates the PHP 5.0b1 release - the static modifier has also
been allowed. However, the protected and private modifiers will now throw an E_ERROR,
as will abstract. Note that this change should not affect your existing code, as none of
these modifiers makes sense in the context of interfaces anyway.

Changes in inheritance rules

Under PHP 5.0, it was possible to have a function declaration in a derived class that did
not match the declaration of the same function in the base class, e.g.

This code will cause an E_STRICT error to be emitted under PHP 5.1.x.

<?php

class Base {

 function &return_by_ref() {

 $r = 1;

 return $r;

 }

}

class Derived extends Base {

 function return_by_ref() {

 return 1;

 }

}

?>

Class constants

Under PHP 5.0.x, the following code was valid:

Under PHP 5.1.x, redefinition of a class constant will throw a fatal E_ERROR.

<?php

class test {

 const foobar = 'foo';

 const foobar = 'bar';

}

?>

Extensions

• Extensions that are gone from the PHP core

• Class constants in new PHP 5.1.x extensions

Extensions that are gone from the PHP core

One of the first things you're likely to notice when you download PHP 5.1.x is that several
of the older extensions have disappeared. Those extensions that are still actively
maintained are available in the PHP Extension Community Library (PECL), at
» http://pecl.php.net/. Windows binaries are built regularly, and you can obtain the binaries
for PECL extensions built against PHP 5.1.x from » http://pecl4win.php.net/.

Removed extensions

Extension Alternative/Status

http://pecl.php.net/
http://pecl.php.net/
http://pecl4win.php.net/

ext/cpdf pecl/pdflib

ext/dbx pecl/dbx

ext/dio pecl/dio

ext/fam Not actively maintained

ext/ingres_ii pecl/ingres

ext/ircg Not actively maintained

ext/mcve pecl/mcve

ext/mnogosearch Not actively maintained

ext/oracle ext/oci8 or ext/pdo_oci

ext/ovrimos Not actively maintained

ext/pfpro Not actively maintained

ext/w32api » pecl/ffi

ext/yp Not actively maintained

ext/activescript » pecl/activescript

Modules in PECL that are not actively maintained (i.e. have not been supported for some
time, have no active maintainer working on them currently, and do not have any PECL
package releases), are still available in CVS at » http://cvs.php.net/pecl. However,
unreleased PHP modules are by their nature unsupported, and your mileage may vary
when attempting to install or use them.

Class constants in new PHP 5.1.x extensions

The Zend Engine 2.1 API allows extension developers to declare class constants in object
oriented extensions. New extensions written for PHP 5.1.x, including SPL, PDO,
XMLReader and date, have their constants in the format PDO::CLASS_CONSTANT
rather than in the C format PDO_CLASS_CONSTANT in order to minimise pollution of the
global namespace in PHP.

Date/time support

Date/time support has been fully rewritten in PHP 5.1.x, and no longer uses the system
settings to 'know' the timezone in operation. It will instead utilize, in the following order:

http://pecl.php.net/package/ffi
url.pecl.win.ext;php5activescript.dll
http://cvs.php.net/pecl

• The timezone set using the date_default_timezone_set() function (if any)

• The TZ environment variable (if non empty)

• "magical" guess (if the operating system supports it)

• If none of the above options succeeds, UTC

To ensure accuracy (and avoid an E_STRICT warning), you will need to define your
timezone in your php.ini using the following format:

date.timezone = Europe/London

The supported timezones are listed, in this format, in the timezones appendix.

Also note that strtotime() now returns FALSE on failure, instead of -1.

Changes in database support

• PDO overview

• Changes in MySQL support

• Changes in SQLite support

PDO overview

PHP Data Objects (PDO) were introduced as a PECL extension under PHP 5.0, and
became part of the core PHP distribution in PHP 5.1.x. The PDO extension provides a
consistent interface for database access, and is used alongside database-specific PDO
drivers. Each driver may also have database-specific functions of its own, but basic data
access functionality such as issuing queries and fetching data is covered by PDO
functions, using the driver named in PDO::__construct().

Note that the PDO extension, and its drivers, are intended to be built as shared
extensions. This will enable straightforward driver upgrades from PECL, without forcing
you to rebuild all of PHP.

At the point of the PHP 5.1.x release, PDO is more than ready for widespread testing and
could be adopted in most situations. However, it is important to understand that PDO and
its drivers are comparatively young and may be missing certain database-specific features;
evaluate PDO carefully before you use it in new projects.

Legacy code will generally rely on the pre-existing database extensions, which are still
maintained.

Changes in MySQL support

In PHP 4, MySQL 3 support was built-in. With the release of PHP 5.0 there were two
MySQL extensions, named 'mysql' and 'mysqli', which were designed to support MySQL <
4.1 and MySQL 4.1 and up, respectively. With the introduction of PDO, which provides a
very fast interface to all the database APIs supported by PHP, the PDO_MYSQL driver
can support any of the current versions (MySQL 3, 4 or 5) in PHP code written for PDO,
depending on the MySQL library version used during compilation. The older MySQL
extensions remain in place for reasons of back compatibility, but are not enabled by
default.

Changes in SQLite support

In PHP 5.0.x, SQLite 2 support was provided by the built-in sqlite extension, which was
also available as a PECL extension in PHP 4.3 and PHP 4.4. With the introduction of
PDO, the sqlite extension doubles up to act as a 'sqlite2' driver for PDO; it is due to this
that the sqlite extension in PHP 5.1.x has a dependency upon the PDO extension.

PHP 5.1.x ships with a number of alternative interfaces to sqlite:

The sqlite extension provides the "classic" sqlite procedural/OO API that you may have
used in prior versions of PHP. It also provides the PDO 'sqlite2' driver, which allows you to
access legacy SQLite 2 databases using the PDO API.

PDO_SQLITE provides the 'sqlite' version 3 driver. SQLite version 3 is vastly superior to
SQLite version 2, but the file formats of the two versions are not compatible.

If your SQLite-based project is already written and working against earlier PHP versions,
then you can continue to use ext/sqlite without problems, but will need to explicitly enable
both PDO and sqlite. New projects should use PDO and the 'sqlite' (version 3) driver, as
this is faster than SQLite 2, has improved locking concurrency, and supports both
prepared statements and binary columns natively.

You must enable PDO to use the SQLite extension. If you want to build the PDO extension
as a shared extension, then the SQLite extension must also be built shared. The same
holds true for any extension that provides a PDO driver

Checking for E_STRICT

If you only have a single script to check, you can pick up E_STRICT errors using PHP's
commandline lint facility:

 php -d error_reporting=4095 -l script_to_check.php

For larger projects, the shell script below will achieve the same task:

#!/bin/sh

directory=$1

shift

These extensions are checked

extensions="php inc"

check_file ()

{

 echo -ne "Doing PHP syntax check on $1 ..."

 # Options:

 ERRORS=`/www/php/bin/php -d display_errors=1 -d html_errors=0 -d
error_prepend_string=" " -d error_append_string=" " -d error_reporting=4095 -l
$1 | grep -v "No syntax errors detected"`

 if test -z "$ERRORS"; then

 echo -ne "OK."

 else

 echo -e "Errors found!\n$ERRORS"

 fi

 echo

}

loop over remaining file args

for FILE in "$@" ; do

 for ext in $extensions; do

 if echo $FILE | grep "\.$ext$" > /dev/null; then

 if test -f $FILE; then

 check_file "$FILE"

 fi

 fi

 done

done

Migrating from PHP 4 to PHP 5

What has changed in PHP 5

PHP 5 and the integrated Zend Engine 2 have greatly improved PHP's performance and
capabilities, but great care has been taken to break as little existing code as possible. So
migrating your code from PHP 4 to 5 should be very easy. Most existing PHP 4 code
should be ready to run without changes, but you should still know about the few
differences and take care to test your code before switching versions in production
environments.

Backward Incompatible Changes

Although most existing PHP 4 code should work without changes, you should pay
attention to the following backward incompatible changes:

• There are some new reserved keywords.

• strrpos() and strripos() now use the entire string as a needle.

• Illegal use of string offsets causes E_ERROR instead of E_WARNING. An example
illegal use is: $str = 'abc'; unset($str[0]);.

• array_merge() was changed to accept only arrays. If a non-array variable is passed, a
E_WARNING will be thrown for every such parameter. Be careful because your code
may start emitting E_WARNING out of the blue.

• PATH_TRANSLATED server variable is no longer set implicitly under Apache2 SAPI in
contrast to the situation in PHP 4, where it is set to the same value as the
SCRIPT_FILENAME server variable when it is not populated by Apache. This change
was made to comply with the » CGI specification. Please refer to » bug #23610 for
further information, and see also the $_SERVER['PATH_TRANSLATED'] description in
the manual. This issue also affects PHP versions >= 4.3.2.

• The T_ML_COMMENT constant is no longer defined by the Tokenizer extension. If
error_reporting is set to E_ALL, PHP will generate a notice. Although the
T_ML_COMMENT was never used at all, it was defined in PHP 4. In both PHP 4 and
PHP 5 // and /* */ are resolved as the T_COMMENT constant. However the PHPDoc
style comments /** */, which starting PHP 5 are parsed by PHP, are recognized as
T_DOC_COMMENT.

• $_SERVER should be populated with argc and argv if variables_order includes "S". If
you have specifically configured your system to not create $_SERVER, then of course
it shouldn't be there. The change was to always make argc and argv available in the
CLI version regardless of the variables_order setting. As in, the CLI version will now
always populate the global $argc and $argv variables.

• An object with no properties is no longer considered "empty".

• In some cases classes must be declared before use. It only happens if some of the

http://hoohoo.ncsa.uiuc.edu/cgi/
http://bugs.php.net/23610

new features of PHP 5 (such as interfaces) are used. Otherwise the behaviour is the
old.

• get_class(), get_parent_class() and get_class_methods() now return the name of the
classes/methods as they were declared (case-sensitive) which may lead to problems
in older scripts that rely on the previous behaviour (the class/method name was always
returned lowercased). A possible solution is to search for those functions in all your
scripts and use strtolower(). This case sensitivity change also applies to the magical
predefined constants __CLASS__, __METHOD__, and __FUNCTION__. The values
are returned exactly as they're declared (case-sensitive).

• ip2long() now returns FALSE when an invalid IP address is passed as argument to the
function, and no longer -1.

• If there are functions defined in the included file, they can be used in the main file
independent if they are before return() or after. If the file is included twice, PHP 5
issues fatal error because functions were already declared, while PHP 4 doesn't
complain about it. It is recommended to use include_once() instead of checking if the
file was already included and conditionally return inside the included file.

• include_once() and require_once() first normalize the path of included file on
Windows so that including A.php and a.php include the file just once.

Example #3053 - strrpos() and strripos() now use the entire string as a needle

<?php

var_dump(strrpos('ABCDEF','DEF')); //int(3)

var_dump(strrpos('ABCDEF','DAF')); //bool(false)

?>

Example #3054 - An object with no properties is no longer considered "empty"

<?php

class test { }

$t = new test();

var_dump(empty($t)); // echo bool(false)

if ($t) {

 // Will be executed

}

?>

Example #3055 - In some cases classes must be declared before used

<?php

//works with no errors:

$a = new a();

class a {

}

//throws an error:

$a = new b();

interface c{

}

class b implements c {

}

?>

CLI and CGI

In PHP 5 there were some changes in CLI and CGI filenames. In PHP 5, the CGI version
was renamed to php-cgi.exe (previously php.exe) and the CLI version now sits in the main
directory (previously cli/php.exe).

In PHP 5 it was also introduced a new mode: php-win.exe. This is equal to the CLI version,
except that php-win doesn't output anything and thus provides no console (no "dos box"
appears on the screen). This behavior is similar to php-gtk.

In PHP 5, the CLI version will always populate the global $argv and $argc variables
regardless of any php.ini directive setting. Even having register_argc_argv set to off will
have no affect in CLI.

See also the command line reference.

Migrating Configuration Files

Since the ISAPI modules changed their names, from php4xxx to php5xxx, you need to
make some changes in the configuration files. There were also changes in the CLI and
CGI filenames. Please refer to the corresponding section for more information.

Migrating the Apache configuration is extremely easy. See the example below to check the
change you need to do:

Example #3056 - Migrating Apache configuration files for PHP 5

change this line:

LoadModule php4_module /php/sapi/php4apache2.dll

with this one:

LoadModule php5_module /php/php5apache2.dll

If your web server is running PHP in CGI mode, you should note that the CGI version has
changed its name from php.exe to php-cgi.exe. In Apache, you should do something like
this:

Example #3057 - Migrating Apache configuration files for PHP 5, CGI mode

change this line:

Action application/x-httpd-php "/php/php.exe"

with this one:

Action application/x-httpd-php "/php/php-cgi.exe"

In other web servers you need to change either the CGI or the ISAPI module filenames.

New Functions

In PHP 5 there are some new functions. Here is the list of them:

Arrays:

• array_combine() - Creates an array by using one array for keys and another for its
values

• array_diff_uassoc() - Computes the difference of arrays with additional index check
which is performed by a user supplied callback function

• array_udiff() - Computes the difference of arrays by using a callback function for data
comparison

• array_udiff_assoc() - Computes the difference of arrays with additional index check.
The data is compared by using a callback function

• array_udiff_uassoc() - Computes the difference of arrays with additional index check.
The data is compared by using a callback function. The index check is done by a
callback function also

• array_walk_recursive() - Apply a user function recursively to every member of an array

• array_uintersect_assoc() - Computes the intersection of arrays with additional index
check. The data is compared by using a callback function

• array_uintersect_uassoc() - Computes the intersection of arrays with additional index
check. Both the data and the indexes are compared by using separate callback
functions

• array_uintersect() - Computes the intersection of arrays. The data is compared by
using a callback function

InterBase:

• ibase_affected_rows() - Return the number of rows that were affected by the previous
query

• ibase_backup() - Initiates a backup task in the service manager and returns
immediately

• ibase_commit_ret() - Commit a transaction without closing it

• ibase_db_info() - Request statistics about a database

• ibase_drop_db() - Drops a database

• ibase_errcode() - Return an error code

• ibase_free_event_handler() - Cancels a registered event handler

• ibase_gen_id() - Increments the named generator and returns its new value

• ibase_maintain_db() - Execute a maintenance command on the database server

• ibase_name_result() - Assigns a name to a result set

• ibase_num_params() - Return the number of parameters in a prepared query

• ibase_param_info() - Return information about a parameter in a prepared query

• ibase_restore() - Initiates a restore task in the service manager and returns
immediately

• ibase_rollback_ret() - Rollback transaction and retain the transaction context

• ibase_server_info() - Request statistics about a database server

• ibase_service_attach() - Connect to the service manager

• ibase_service_detach() - Disconnect from the service manager

• ibase_set_event_handler() - Register a callback function to be called when events are
posted

• ibase_wait_event() - Wait for an event to be posted by the database

iconv:

• iconv_mime_decode() - Decodes a MIME header field

• iconv_mime_decode_headers() - Decodes multiple MIME header fields at once

• iconv_mime_encode() - Composes a MIME header field

• iconv_strlen() - Returns the character count of string

• iconv_strpos() - Finds position of first occurrence of a needle within a haystack

• iconv_strrpos() - Finds the last occurrence of a needle within a haystack

• iconv_substr() - Cut out part of a string

Streams:

• stream_copy_to_stream() - Copies data from one stream to another

• stream_get_line() - Gets line from stream resource up to a given delimiter

• stream_socket_accept() - Accept a connection on a socket created by
stream_socket_server()

• stream_socket_client() - Open Internet or Unix domain socket connection

• stream_socket_get_name() - Retrieve the name of the local or remote sockets

• stream_socket_recvfrom() - Receives data from a socket, connected or not

• stream_socket_sendto() - Sends a message to a socket, whether it is connected or not

• stream_socket_server() - Create an Internet or Unix domain server socket

Date and time related:

• idate() - Format a local time/date as integer

• date_sunset() - Time of sunset for a given day and location

• date_sunrise() - Time of sunrise for a given day and location

• time_nanosleep() - Delay for a number of seconds and nanoseconds

Strings:

• str_split() - Convert a string to an array

• strpbrk() - Search a string for any of a set of characters

• substr_compare() - Binary safe optionally case insensitive comparison of two strings
from an offset, up to length characters

Other:

• convert_uudecode() - decode a uuencoded string

• convert_uuencode() - uuencode a string

• curl_copy_handle() - Copy a cURL handle along with all of its preferences

• dba_key_split() - Splits a key in string representation into array representation

• dbase_get_header_info() - Get the header info of a dBase database

• dbx_fetch_row() - Fetches rows from a query-result that had the
DBX_RESULT_UNBUFFERED flag set

• fbsql_set_password() - Change the password for a given user

• file_put_contents() - Write a string to a file

• ftp_alloc() - Allocates space for a file to be uploaded

• get_declared_interfaces() - Returns an array of all declared interfaces

• get_headers() - Fetches all the headers sent by the server in response to a HTTP
request

• headers_list() - Returns a list of response headers sent (or ready to send)

• http_build_query() - Generate URL-encoded query string

• image_type_to_extension() - Get file extension for image-type returned by
getimagesize(), exif_read_data(), exif_thumbnail(), exif_imagetype()

• imagefilter() - Applies a filter to an image using custom arguments

• imap_getacl() - Gets the ACL for a given mailbox

• ldap_sasl_bind() - Bind to LDAP directory using SASL

• mb_list_encodings() - Returns an array of all supported encodings

• pcntl_getpriority() - Get the priority of any process

• pcntl_wait() - Waits on or returns the status of a forked child as defined by the waitpid()
system call

• pg_version() - Returns an array with client, protocol and server version (when
available)

• php_check_syntax() - Check the syntax of the specified file

• php_strip_whitespace() - Return source with stripped comments and whitespace

• proc_nice() - Change the priority of the current process

• pspell_config_data_dir() - Change location of language data files

• pspell_config_dict_dir() - Change location of the main word list

• setrawcookie() - Send a cookie without URL-encoding the value

• scandir() - List files and directories inside the specified path

• snmp_read_mib() - Reads and parses a MIB file into the active MIB tree

• sqlite_fetch_column_types() - Return an array of column types from a particular table

Note

The Tidy extension has also changed its API completely.

New Directives

There were some new php.ini directives introduced in PHP 5. Here is a list of them:

• mail.force_extra_parameters - Force the addition of the specified parameters to be
passed as extra parameters to the sendmail binary. These parameters will always
replace the value of the 5th parameter to mail(), even in safe mode

• register_long_arrays - allow/disallow PHP to register the deprecated long

$HTTP_*_VARS

• session.hash_function - select a hash function (MD5 or SHA-1)

• session.hash_bits_per_character - define how many bits are stored in each character
when converting the binary hash data to something readable (from 4 to 6)

• zend.ze1_compatibility_mode - Enable compatibility mode with Zend Engine 1 (PHP 4)

Databases

There were some changes in PHP 5 regarding databases (MySQL and SQLite).

In PHP 5 the MySQL client libraries are not bundled, because of license problems and
some others. For more information, read the FAQ entry.

There is also a new extension, MySQLi (Improved MySQL), which is designed to work with
MySQL 4.1 and above.

Since PHP 5, the SQLite extension is built-in PHP. SQLite is an embeddable SQL
database engine and is not a client library used to connect to a big database server (like
MySQL or PostgreSQL). The SQLite library reads and writes directly to and from the
database files on disk.

New Object Model

In PHP 5 there is a new Object Model. PHP's handling of objects has been completely
rewritten, allowing for better performance and more features. In previous versions of PHP,
objects were handled like primitive types (for instance integers and strings). The drawback
of this method was that semantically the whole object was copied when a variable was
assigned, or passed as a parameter to a method. In the new approach, objects are
referenced by handle, and not by value (one can think of a handle as an object's identifier).

Many PHP programmers aren't even aware of the copying quirks of the old object model
and, therefore, the majority of PHP applications will work out of the box, or with very few
modifications.

The new Object Model is documented at the Language Reference.

In PHP 5, function with the name of a class is called as a constructor only if defined in the
same class. In PHP 4, it is called also if defined in the parent class.

See also the zend.ze1_compatibility_mode directive for compatability with PHP 4.

Error Reporting

As of PHP 5 new error reporting constant E_STRICT was introduced with value 2048. It
enables run-time PHP suggestions on your code interoperability and forward compatibility,
that will help you to keep latest and greatest suggested method of coding. E.g. STRICT

message will warn you on using deprecated functions.

Note

E_ALL does not include E_STRICT so it's not enabled by default

Debugging in PHP

About debugging in PHP

PHP does not have an internal debugging facility. You can use one of the external
debuggers though. The » Zend IDE includes a debugger, and there are also some free
debugger extensions like DBG at » http://dd.cron.ru/dbg/, the » Advanced PHP Debugger
(APD) or » Xdebug.

http://www.zend.com/store/products/zend-studio/index.php
http://dd.cron.ru/dbg/
http://pecl.php.net/apd
http://www.xdebug.org/

Configure options

List of core configure options

Below is a partial list of configure options used by the PHP configure scripts when
compiling in Unix-like environments. Most configure options are listed in their appropriate
locations on the extension reference pages and not here. For a complete up-to-date list of
configure options, run./configure --help in your PHP source directory after running autoconf
(see also the Installation chapter). You may also be interested in reading the » GNU
configure documentation for information on additional configure options such as
--prefix=PREFIX.

Note

These are only used at compile time. If you want to alter PHP's runtime configuration,
please see the chapter on Runtime Configuration.

• Miscellaneous

• PHP Behaviour

• Server

Configure Options in PHP

Note

These options are only used in PHP as of PHP 4.1.0, although some are available in
older versions too. If you want to compile an older version, some options will probably
not be available.

Misc options

--enable-debug
Compile with debugging symbols.

--with-layout=TYPE
Sets how installed files will be laid out. Type is one of PHP (default) or GNU.

--with-pear=DIR
Install PEAR in DIR (default PREFIX/lib/php).

http://www.airs.com/ian/configure/
http://www.airs.com/ian/configure/

--without-pear
Do not install PEAR.

--enable-sigchild
Enable PHP's own SIGCHLD handler.

--disable-rpath
Disable passing additional runtime library search paths.

--enable-libgcc
Enable explicitly linking against libgcc.

--enable-php-streams
Include experimental PHP streams. Do not use unless you are testing the code!

--with-zlib-dir[=DIR]
Define the location of zlib install directory.

--enable-trans-sid
Enable transparent session id propagation. Only valid for PHP 4.1.2 or less. From PHP
4.2.0, trans-sid feature is always compiled.

--with-tsrm-pthreads
Use POSIX threads (default).

--enable-shared[=PKGS]
Build shared libraries [default=yes].

--enable-static[=PKGS]
Build static libraries [default=yes].

--enable-fast-install[=PKGS]
Optimize for fast installation [default=yes].

--with-gnu-ld
Assume the C compiler uses GNU ld [default=no].

--disable-libtool-lock
Avoid locking (might break parallel builds).

--with-pic
Try to use only PIC/non-PIC objects [default=use both].

--enable-memory-limit
Compile with memory limit support. (not available since PHP 5.2.1 - always enabled)

--disable-url-fopen-wrapper
Disable the URL-aware fopen wrapper that allows accessing files via HTTP or FTP.
(not available since PHP 5.2.5)

--enable-versioning
Export only required symbols. See INSTALL for more information.

PHP options

--enable-maintainer-mode
Enable make rules and dependencies not useful (and sometimes confusing) to the
casual installer.

--with-config-file-path=PATH
Sets the path in which to look for php.ini, defaults to PREFIX/lib.

--enable-safe-mode
Enable safe mode by default.

--with-exec-dir[=DIR]
Only allow executables in DIR when in safe mode defaults to /usr/local/php/bin.

--enable-magic-quotes
Enable magic quotes by default.

--disable-short-tags
Disable the short-form <? start tag by default.

SAPI options

The following list contains the available SAPI&s (Server Application Programming
Interface) for PHP.

--with-aolserver=DIR
Specify path to the installed AOLserver.

--with-apxs[=FILE]
Build shared Apache module. FILE is the optional pathname to the Apache apxs tool;
defaults to apxs. Make sure you specify the version of apxs that is actually installed on
your system and NOT the one that is in the apache source tarball.

--with-apache[=DIR]
Build a static Apache module. DIR is the top-level Apache build directory, defaults to
/usr/local/apache.

--with-mod_charset
Enable transfer tables for mod_charset (Russian Apache).

--with-apxs2[=FILE]
Build shared Apache 2.0 module. FILE is the optional pathname to the Apache apxs
tool; defaults to apxs.

--with-caudium=DIR
Build PHP as a Pike module for use with Caudium. DIR is the Caudium server dir, with
the default value /usr/local/caudium/server.

--disable-cli
Available with PHP 4.3.0. Disable building the CLI version of PHP (this forces

--without-pear). More information is available in the section about Using PHP from the
command line.

--enable-embed[=TYPE]
Enable building of the embedded SAPI library. TYPE is either shared or static, which
defaults to shared. Available with PHP 4.3.0.

--with-fhttpd[=DIR]
Build fhttpd module. DIR is the fhttpd sources directory, defaults to /usr/local/src/fhttpd.
No longer available as of PHP 4.3.0.

--with-isapi=DIR
Build PHP as an ISAPI module for use with Zeus.

--with-nsapi=DIR
Specify path to the installed Netscape/iPlanet/SunONE Webserver.

--with-phttpd=DIR
No information yet.

--with-pi3web=DIR
Build PHP as a module for use with Pi3Web.

--with-roxen=DIR
Build PHP as a Pike module. DIR is the base Roxen directory, normally
/usr/local/roxen/server.

--enable-roxen-zts
Build the Roxen module using Zend Thread Safety.

--with-servlet[=DIR]
Include servlet support. DIR is the base install directory for the JSDK. This SAPI
requires the java extension must be built as a shared dl.

--with-thttpd=SRCDIR
Build PHP as thttpd module.

--with-tux=MODULEDIR
Build PHP as a TUX module (Linux only).

--with-webjames=SRCDIR
Build PHP as a WebJames module (RISC OS only)

--disable-cgi
Disable building CGI version of PHP. Available with PHP 4.3.0.

--enable-force-cgi-redirect
Enable the security check for internal server redirects. You should use this if you are
running the CGI version with Apache.

--enable-discard-path
If this is enabled, the PHP CGI binary can safely be placed outside of the web tree and

people will not be able to circumvent.htaccess security.

--with-fastcgi
Build PHP as FastCGI application. No longer available as of PHP 4.3.0, instead you
should use --enable-fastcgi.

--enable-fastcgi
If this is enabled, the CGI module will be built with support for FastCGI also. Available
since PHP 4.3.0

--disable-path-info-check
If this is disabled, paths such as /info.php/test?a=b will fail to work. Available since
PHP 4.3.0. For more information see the » Apache Manual.

http://httpd.apache.org/docs/2.0/en/mod/core.html#acceptpathinfo

php.ini directives

List of php.ini directives

This list includes the php.ini directives you can set to configure your PHP setup.

Configuration options

Name Default Changeable Changelog

allow_call_time_pass
_reference

"1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.0.0. Removed in
PHP 6.0.0.

allow_url_fopen "1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.3.4.
PHP_INI_SYSTEM in
PHP < 6. Available
since PHP 4.0.4.

allow_url_include "0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 5. Available
since PHP 5.2.0.

always_populate_raw
_post_data

"0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3. Available
since PHP 4.1.0.

apc.cache_by_defaul
t

"1" PHP_INI_ALL PHP_INI_SYSTEM in
APC <= 3.0.12.
Available since APC
3.0.0.

apc.enabled "1" PHP_INI_SYSTEM PHP_INI_SYSTEM in
APC 2. PHP_INI_ALL
in APC <= 3.0.12.

apc.enable_cli "0" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.file_update_prote
ction

"2" PHP_INI_SYSTEM Available since APC
3.0.6.

apc.filters NULL PHP_INI_SYSTEM

apc.gc_ttl "3600" PHP_INI_SYSTEM

apc.include_once_ov
erride

"0" PHP_INI_SYSTEM Available since APC
3.0.12.

apc.localcache "0" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.localcache.size "512" PHP_INI_SYSTEM Available since APC
3.0.14.

apc.max_file_size "1M" PHP_INI_SYSTEM Available since APC
3.0.7.

apc.mmap_file_mask NULL PHP_INI_SYSTEM

apc.num_files_hint "1000" PHP_INI_SYSTEM

apc.optimization "0" PHP_INI_ALL PHP_INI_SYSTEM in
APC 2. Removed in
APC 3.0.13.

apc.report_autofilter "0" PHP_INI_SYSTEM Available since APC
3.0.11.

apc.rfc1867 "0" PHP_INI_SYSTEM Available since APC
3.0.13.

apc.rfc1867_freq "0" PHP_INI_SYSTEM

apc.rfc1867_name "APC_UPLOAD_PR
OGRESS"

PHP_INI_SYSTEM

apc.rfc1867_prefix "upload_" PHP_INI_SYSTEM

apc.shm_segments "1" PHP_INI_SYSTEM

apc.shm_size "30" PHP_INI_SYSTEM

apc.slam_defense "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.stat "1" PHP_INI_SYSTEM Available since APC
3.0.10.

apc.stat_ctime "0" PHP_INI_SYSTEM Available since APC
3.0.13.

apc.ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.user_entries_hint "4096" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.user_ttl "0" PHP_INI_SYSTEM Available since APC
3.0.0.

apc.write_lock "1" PHP_INI_SYSTEM Available since APC
3.0.11.

apd.bitmask "0" PHP_INI_ALL Removed in apd 0.9.

apd.dumpdir NULL PHP_INI_ALL

apd.statement_tracin
g

"0" PHP_INI_ALL Available since apd
0.9.

arg_separator "&" PHP_INI_ALL Removed in PHP
4.0.6.

arg_separator.input "&" PHP_INI_PERDIR Available since PHP
4.0.5.

arg_separator.output "&" PHP_INI_ALL Available since PHP
4.0.5.

asp_tags "0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.0.0.

assert.active "1" PHP_INI_ALL

assert.bail "0" PHP_INI_ALL

assert.callback NULL PHP_INI_ALL

assert.quiet_eval "0" PHP_INI_ALL

assert.warning "1" PHP_INI_ALL

async_send "0" PHP_INI_ALL Available since PHP
4.2.0. Removed in
PHP 4.3.0.

auto_append_file NULL PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

auto_detect_line_end
ings

"0" PHP_INI_ALL Available since PHP
4.3.0.

auto_globals_jit "1" PHP_INI_PERDIR Available since PHP
5.0.0.

auto_prepend_file NULL PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

axis2.client_home "~/work/axisc/c/deply" PHP_INI_ALL

axis2.enable_excepti
on

"1" PHP_INI_ALL

axis2.enable_trace "1" PHP_INI_ALL

axis2.log_path "/tmp" PHP_INI_ALL

bcmath.scale "0" PHP_INI_ALL

bcompiler.enabled "1" PHP_INI_ALL Available since
bcompiler 0.8.

birdstep.max_links "-1" PHP_INI_ALL Available since PHP
4.2.0.

blenc.key_file "/usr/local/etc/blencke
ys"

PHP_INI_ALL

browscap NULL PHP_INI_SYSTEM

cgi.check_shebang_li
ne

"1" PHP_INI_SYSTEM Available since PHP
5.2.1.

cgi.discard_path "0" PHP_INI_SYSTEM Available since PHP
5.3.0.

cgi.fix_pathinfo "1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 5.2.0. Available
since PHP 4.3.0.

cgi.force_redirect "1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 5.2.0. Available
since PHP 4.2.0.

cgi.nph "0" PHP_INI_ALL Available since PHP
4.3.5.

cgi.redirect_status_e
nv

NULL PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 5.2.0. Available
since PHP 4.2.0.

cgi.rfc2616_headers "0" PHP_INI_ALL Available since PHP
4.3.0.

child_terminate "0" PHP_INI_ALL Available since PHP
4.0.5.

coin_acceptor.autore
set

"On" PHP_INI_ALL Removed in
coin_acceptor 0.2.

coin_acceptor.auto_i
nitialize

"Off" PHP_INI_ALL Available since
coin_acceptor 0.2.

coin_acceptor.auto_r
eset

"On" PHP_INI_ALL Available since
coin_acceptor 0.2.

coin_acceptor.comm
and_function

"Off" PHP_INI_ALL Available since
coin_acceptor 0.3.

coin_acceptor.delay "53132" PHP_INI_ALL Removed in
coin_acceptor 0.2.

coin_acceptor.delay_
coins

"53132" PHP_INI_ALL Available since
coin_acceptor 0.2.

coin_acceptor.delay_
prom

"55748" PHP_INI_ALL Available since
coin_acceptor 0.2.

coin_acceptor.device "/dev/ttyS1" PHP_INI_ALL Removed in
coin_acceptor 0.2.

coin_acceptor.lock_o
n_close

"Off" PHP_INI_ALL Available since
coin_acceptor 0.2.

coin_acceptor.start_u
nlocked

"On" PHP_INI_ALL Available since
coin_acceptor 0.2.

com.allow_dcom "0" PHP_INI_SYSTEM Available since PHP
4.0.5.

com.autoregister_cas
esensitive

"1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_typ
elib

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.autoregister_ver
bose

"0" PHP_INI_ALL PHP_INI_SYSTEM in
PHP 4. Available
since PHP 4.1.0.

com.code_page "" PHP_INI_ALL Available since PHP
5.0.0.

com.typelib_file "" PHP_INI_SYSTEM Available since PHP
4.0.5.

crack.default_dictiona
ry

NULL PHP_INI_PERDIR PHP_INI_SYSTEM in
crack <= 0.2.
Available since PHP
4.0.5. Removed in
PHP 5.0.0.

daffodildb.default_ho "localhost" PHP_INI_ALL

st

daffodildb.default_pa
ssword

"daffodil" PHP_INI_ALL

daffodildb.default_so
cket

NULL PHP_INI_ALL

daffodildb.default_us
er

"DAFFODIL" PHP_INI_ALL

daffodildb.port "3456" PHP_INI_ALL

date.default_latitude "31.7667" PHP_INI_ALL Available since PHP
5.0.0.

date.default_longitud
e

"35.2333" PHP_INI_ALL Available since PHP
5.0.0.

date.sunrise_zenith "90.583333" PHP_INI_ALL Available since PHP
5.0.0.

date.sunset_zenith "90.583333" PHP_INI_ALL Available since PHP
5.0.0.

date.timezone "" PHP_INI_ALL Available since PHP
5.1.0.

dba.default_handler "" PHP_INI_ALL Available since PHP
4.3.3.

dbx.colnames_case "unchanged" PHP_INI_SYSTEM Available since PHP
4.3.0. Removed in
PHP 5.1.0.

default_charset "" PHP_INI_ALL

default_mimetype "text/html" PHP_INI_ALL

default_socket_timeo
ut

"60" PHP_INI_ALL Available since PHP
4.3.0.

define_syslog_variabl
es

"0" PHP_INI_ALL

detect_unicode "1" PHP_INI_ALL Available since PHP
5.1.0. Removed in
PHP 6.0.0.

disable_classes "" php.ini only Available since PHP
4.3.2.

disable_functions "" php.ini only Available since PHP
4.0.1.

display_errors "1" PHP_INI_ALL

display_startup_error
s

"0" PHP_INI_ALL Available since PHP
4.0.3.

docref_ext "" PHP_INI_ALL Available since PHP
4.3.2.

docref_root "" PHP_INI_ALL Available since PHP
4.3.0.

doc_root NULL PHP_INI_SYSTEM

enable_dl "1" PHP_INI_SYSTEM Removed in PHP
6.0.0.

engine "1" PHP_INI_ALL Available since PHP
4.0.5.

error_append_string NULL PHP_INI_ALL

error_log NULL PHP_INI_ALL

error_prepend_string NULL PHP_INI_ALL

error_reporting NULL PHP_INI_ALL

etpan.default.charset "utf-8" PHP_INI_ALL

etpan.default.protocol "imap" PHP_INI_ALL

exif.decode_jis_intel "JIS" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_jis_moto
rola

"JIS" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_unicode
_intel

"UCS-2LE" PHP_INI_ALL Available since PHP
4.3.0.

exif.decode_unicode
_motorola

"UCS-2BE" PHP_INI_ALL Available since PHP
4.3.0.

exif.encode_jis "" PHP_INI_ALL Available since PHP
4.3.0.

exif.encode_unicode "ISO-8859-15" PHP_INI_ALL Available since PHP
4.3.0.

expect.logfile "" PHP_INI_ALL

expect.loguser "1" PHP_INI_ALL

expect.timeout "10" PHP_INI_ALL

expose_php "1" php.ini only

extension_dir "/path/to/php" PHP_INI_SYSTEM

fastcgi.impersonate "0" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 5.2.0. Available
since PHP 4.3.0.

fastcgi.logging "1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 5.2.0. Available
since PHP 4.4.0.
Removed in PHP
5.0.0.

fbsql.allow_persistant "1" PHP_INI_SYSTEM Available since PHP
4.0.6. Removed in
PHP 4.2.0.

fbsql.allow_persistent "1" PHP_INI_SYSTEM Available since PHP
4.2.0.

fbsql.autocommit "1" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.batchSize "1000" PHP_INI_SYSTEM Available since PHP
4.2.0. Removed in
PHP 5.1.0.

fbsql.batchsize "1000" PHP_INI_ALL Available since PHP
5.1.0.

fbsql.default_databas
e

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_databas
e_password

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_host NULL PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_passwor
d

"" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.default_user "_SYSTEM" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.generate_warni
ngs

"0" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_connection
s

"128" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_links "128" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.max_results "128" PHP_INI_SYSTEM Available since PHP
4.0.6.

fbsql.mbatchSize "1000" PHP_INI_SYSTEM Available since PHP
4.0.6. Removed in
PHP 4.2.0.

fbsql.show_timestam
p_decimals

"0" PHP_INI_SYSTEM Available since PHP
5.1.5.

file_uploads "1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.2.3. Available
since PHP 4.0.3.

filter.default "unsafe_raw" PHP_INI_PERDIR PHP_INI_ALL in filter
<= 0.9.4. Available
since PHP 5.2.0.

filter.default_flags NULL PHP_INI_PERDIR PHP_INI_ALL in filter
<= 0.9.4. Available
since PHP 5.2.0.

from "" PHP_INI_ALL

gd.jpeg_ignore_warni
ng

"0" PHP_INI_ALL Available since PHP
5.1.3.

geoip.custom_directo
ry

NULL PHP_INI_ALL Available since geoip
1.0.1.

geoip.database_stan
dard

"GeoIP.dat" PHP_INI_ALL Removed in geoip
1.0.1.

gpc_order "GPC" PHP_INI_ALL Removed in PHP
5.0.0.

hidef.ini_path (char*)default_ini_pat
h

PHP_INI_SYSTEM

highlight.bg "#FFFFFF" PHP_INI_ALL Removed in PHP

6.0.0.

highlight.comment "#FF8000" PHP_INI_ALL

highlight.default "#0000BB" PHP_INI_ALL

highlight.html "#000000" PHP_INI_ALL

highlight.keyword "#007700" PHP_INI_ALL

highlight.string "#DD0000" PHP_INI_ALL

html_errors "1" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.0.2.

htscanner.config_file ".htaccess" PHP_INI_SYSTEM

htscanner.default_do
croot

"/" PHP_INI_SYSTEM

htscanner.default_ttl "300" PHP_INI_SYSTEM Available since
htscanner 0.6.0.

htscanner.stop_on_er
ror

"0" PHP_INI_SYSTEM Available since
htscanner 0.7.0.

http.allowed_method
s

"" PHP_INI_ALL Available since
pecl_http 0.4.0.
Removed in pecl_http
1.0.0.

http.allowed_method
s_log

"" PHP_INI_ALL Available since
pecl_http 0.12.0.
Removed in pecl_http
1.0.0.

http.cache_log "" PHP_INI_ALL Available since
pecl_http 0.8.0.
Removed in pecl_http
1.0.0.

http.composite_log "" PHP_INI_ALL Available since
pecl_http 0.12.0.
Removed in pecl_http
1.0.0.

http.etag.mode "MD5" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.etag_mode "MD5" PHP_INI_ALL Available since

pecl_http 0.12.0.
Removed in pecl_http
1.0.0.

http.force_exit "1" PHP_INI_ALL Available since
pecl_http 0.18.0.

http.log.allowed_met
hods

"" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.log.cache "" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.log.composite "" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.log.not_found "" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.log.redirect "" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.ob_deflate_auto "0" PHP_INI_PERDIR Available since
pecl_http 0.21.0.
Removed in pecl_http
1.0.0.

http.ob_deflate_flags "0" PHP_INI_ALL Available since
pecl_http 0.21.0.
Removed in pecl_http
1.0.0.

http.ob_inflate_auto "0" PHP_INI_PERDIR Available since
pecl_http 0.21.0.
Removed in pecl_http
1.0.0.

http.ob_inflate_flags "0" PHP_INI_ALL Available since
pecl_http 0.21.0.
Removed in pecl_http
1.0.0.

http.only_exceptions "0" PHP_INI_ALL Available since
pecl_http 0.11.0.

http.persistent.handle
s.ident

"GLOBAL" PHP_INI_ALL Available since
pecl_http 1.5.0.

http.persistent.handle
s.limit

"-1" PHP_INI_SYSTEM Available since
pecl_http 1.5.0.

http.redirect_log "" PHP_INI_ALL Available since

pecl_http 0.12.0.
Removed in pecl_http
1.0.0.

http.request.datashar
e.connect

"0" PHP_INI_SYSTEM Available since
pecl_http 1.3.0.

http.request.datashar
e.cookie

"0" PHP_INI_SYSTEM Available since
pecl_http 1.3.0.

http.request.datashar
e.dns

"1" PHP_INI_SYSTEM Available since
pecl_http 1.3.0.

http.request.datashar
e.ssl

"0" PHP_INI_SYSTEM Available since
pecl_http 1.3.0.

http.request.methods.
allowed

"" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.request.methods.
custom

"" PHP_INI_PERDIR Available since
pecl_http 1.0.0.

http.send.deflate.start
_auto

"0" PHP_INI_PERDIR Available since
pecl_http 1.0.0.

http.send.deflate.start
_flags

"0" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.send.inflate.start
_auto

"0" PHP_INI_PERDIR Available since
pecl_http 1.0.0.

http.send.inflate.start
_flags

"0" PHP_INI_ALL Available since
pecl_http 1.0.0.

http.send.not_found_
404

"1" PHP_INI_ALL Available since
pecl_http 1.0.0.

hyerwave.allow_persi
stent

"0" PHP_INI_SYSTEM Removed in PHP
4.3.2.

hyperwave.allow_per
sistent

"0" PHP_INI_SYSTEM Available since PHP
4.3.2. Removed in
PHP 5.0.0.

hyperwave.default_p
ort

"418" PHP_INI_ALL Removed in PHP
5.0.0.

ibase.allow_persisten
t

"1" PHP_INI_SYSTEM

ibase.dateformat "%Y-%m-%d" PHP_INI_ALL

ibase.default_charset NULL PHP_INI_ALL Available since PHP
5.0.0.

ibase.default_db NULL PHP_INI_SYSTEM Available since PHP
5.0.0.

ibase.default_passwo
rd

NULL PHP_INI_ALL

ibase.default_user NULL PHP_INI_ALL

ibase.max_links "-1" PHP_INI_SYSTEM

ibase.max_persistent "-1" PHP_INI_SYSTEM

ibase.timeformat "%H:%M:%S" PHP_INI_ALL

ibase.timestampform
at

"%Y-%m-%d
%H:%M:%S"

PHP_INI_ALL

ibm_db2.binmode "1" PHP_INI_ALL

ibm_db2.i5_allow_co
mmit

"0" PHP_INI_SYSTEM Available since
ibm_db2 1.4.9.

ibm_db2.i5_dbcs_allo
c

"0" PHP_INI_SYSTEM Available since
ibm_db2 1.5.0.

ibm_db2.instance_na
me

NULL PHP_INI_SYSTEM Available since
ibm_db2 1.0.2.

iconv.input_encoding "ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

iconv.internal_encodi
ng

"ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

iconv.output_encodin
g

"ISO-8859-1" PHP_INI_ALL Available since PHP
4.0.5.

ifx.allow_persistent "1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.blobinfile "1" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.byteasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.charasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.default_host NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.default_password NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.default_user NULL PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.max_links "-1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.max_persistent "-1" PHP_INI_SYSTEM Removed in PHP
5.2.1.

ifx.nullformat "0" PHP_INI_ALL Removed in PHP
5.2.1.

ifx.textasvarchar "0" PHP_INI_ALL Removed in PHP
5.2.1.

ignore_repeated_erro
rs

"0" PHP_INI_ALL Available since PHP
4.3.0.

ignore_repeated_sou
rce

"0" PHP_INI_ALL Available since PHP
4.3.0.

ignore_user_abort "0" PHP_INI_ALL

imlib2.font_cache_m
ax_size

"524288" PHP_INI_ALL

imlib2.font_path "/usr/share/php/fonts/
"

PHP_INI_ALL

implicit_flush "0" PHP_INI_ALL PHP_INI_PERDIR in
PHP <= 4.2.3.

include_path ".;/path/to/php/pear" PHP_INI_ALL

ingres.allow_persiste
nt

"1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.array_index_st
art

"1" PHP_INI_ALL Available since ingres
1.4.0.

ingres.blob_segment
_length

"4096" PHP_INI_ALL Available since ingres
1.2.0.

ingres.cursor_mode "0" PHP_INI_ALL Available since ingres
1.1.

ingres.default_databa
se

NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.default_passw
ord

NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.default_user NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.max_links "-1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.max_persisten
t

"-1" PHP_INI_SYSTEM Available since PHP
4.0.2. Removed in
PHP 5.1.0.

ingres.report_db_war
nings

"1" PHP_INI_ALL Available since ingres
1.1.

ingres.timeout "-1" PHP_INI_ALL Available since ingres
1.4.0.

ingres.trace_connect "0" PHP_INI_ALL Available since ingres
1.2.1.

ircg.control_user "nobody" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.1.0.

ircg.keep_alive_interv
al

"60" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.1.0.

ircg.max_format_mes
sage_sets

"12" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.1.0.

ircg.shared_mem_siz
e

"6000000" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.1.0.

ircg.work_dir "/tmp/ircg" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.1.0.

last_modified "0" PHP_INI_ALL Available since PHP
4.0.5.

ldap.base_dn NULL PHP_INI_ALL Removed in PHP
4.2.0.

ldap.max_links "-1" PHP_INI_SYSTEM

log.dbm_dir "" PHP_INI_ALL Removed in PHP
4.0.1.

log_errors "0" PHP_INI_ALL

log_errors_max_len "1024" PHP_INI_ALL Available since PHP
4.3.0.

magic_quotes_gpc "1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3. Removed in
PHP 6.0.0.

magic_quotes_runtim
e

"0" PHP_INI_ALL Removed in PHP
6.0.0.

magic_quotes_sybas
e

"0" PHP_INI_ALL Removed in PHP
6.0.0.

mail.force_extra_para
meters

NULL php.ini only Available since PHP
5.0.0.

mailparse.def_charse
t

"us-ascii" PHP_INI_ALL Available since PHP
4.1.0. Removed in
PHP 4.2.0.

maxdb.default_db NULL PHP_INI_ALL

maxdb.default_host NULL PHP_INI_ALL

maxdb.default_pw NULL PHP_INI_ALL

maxdb.default_user NULL PHP_INI_ALL

maxdb.long_readlen "200" PHP_INI_ALL

max_execution_time "30" PHP_INI_ALL

max_input_nesting_l
evel

"64" PHP_INI_PERDIR Available since PHP
4.4.8. Removed in
PHP 5.0.0.

max_input_time "-1" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.detect_orde
r

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.encoding_tr
anslation

"0" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.func_overlo
ad

"0" PHP_INI_PERDIR PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.2.0.

mbstring.http_input "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.http_output "pass" PHP_INI_ALL Available since PHP
4.0.6.

mbstring.internal_enc
oding

NULL PHP_INI_ALL Available since PHP
4.0.6.

mbstring.language "neutral" PHP_INI_PERDIR Available since PHP
4.3.0.

mbstring.script_enco
ding

NULL PHP_INI_ALL Available since PHP
4.3.0.

mbstring.strict_detect
ion

"0" PHP_INI_ALL Available since PHP
5.1.2.

mbstring.substitute_c
haracter

NULL PHP_INI_ALL Available since PHP
4.0.6.

mcrypt.algorithms_dir NULL PHP_INI_ALL Available since PHP
4.0.2.

mcrypt.modes_dir NULL PHP_INI_ALL Available since PHP
4.0.2.

memcache.allow_fail
over

"1" PHP_INI_ALL Available since
memcache 2.0.2.

memcache.chunk_siz
e

"8192" PHP_INI_ALL Available since
memcache 2.0.2.

memcache.default_p
ort

"11211" PHP_INI_ALL Available since
memcache 2.0.2.

memcache.hash_fun
ction

"crc32" PHP_INI_ALL Available since
memcache 2.2.0.

memcache.hash_stra
tegy

"standard" PHP_INI_ALL Available since
memcache 2.2.0.

memcache.max_failo
ver_attempts

"20" PHP_INI_ALL Available since
memcache 2.1.0.

memory_limit "128M" PHP_INI_ALL

mime_magic.debug "0" PHP_INI_SYSTEM Available since PHP
5.0.0.

mime_magic.magicfil
e

"/path/to/php/magic.m
ime"

PHP_INI_SYSTEM Available since PHP
4.3.0.

msql.allow_persistent "1" PHP_INI_ALL

msql.max_links "-1" PHP_INI_ALL

msql.max_persistent "-1" PHP_INI_ALL

mssql.allow_persiste
nt

"1" PHP_INI_SYSTEM

mssql.batchsize "0" PHP_INI_ALL Available since PHP
4.0.4.

mssql.charset "" PHP_INI_ALL Available since PHP
5.1.2.

mssql.compatability_
mode

"0" PHP_INI_ALL

mssql.connect_timeo
ut

"5" PHP_INI_ALL

mssql.datetimeconve
rt

"1" PHP_INI_ALL Available since PHP
4.2.0.

mssql.max_links "-1" PHP_INI_SYSTEM

mssql.max_persistent "-1" PHP_INI_SYSTEM

mssql.max_procs "-1" PHP_INI_ALL Available since PHP
4.3.0.

mssql.min_error_sev
erity

"10" PHP_INI_ALL

mssql.min_message_
severity

"10" PHP_INI_ALL

mssql.secure_connec
tion

"0" PHP_INI_SYSTEM Available since PHP
4.3.0.

mssql.textlimit "-1" PHP_INI_ALL

mssql.textsize "-1" PHP_INI_ALL

mssql.timeout "60" PHP_INI_ALL Available since PHP
4.1.0.

mysql.allow_local_infi
le

"1" PHP_INI_SYSTEM Available since PHP
6.0.0.

mysql.allow_persiste
nt

"1" PHP_INI_SYSTEM

mysql.cache_size "2000" PHP_INI_SYSTEM Available since PHP
6.0.0.

mysql.connect_timeo
ut

"60" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.3.2.
Available since PHP
4.3.0.

mysql.default_host NULL PHP_INI_ALL

mysql.default_passw
ord

NULL PHP_INI_ALL

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP
4.0.1.

mysql.default_user NULL PHP_INI_ALL

mysql.max_links "-1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP
4.3.0.

mysqli.allow_local_inf
ile

"1" PHP_INI_SYSTEM Available since PHP
6.0.0.

mysqli.cache_size "2000" PHP_INI_SYSTEM Available since PHP
6.0.0.

mysqli.default_host NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_port "3306" PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_socket NULL PHP_INI_ALL Available since PHP

5.0.0.

mysqli.default_user NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP
5.0.0.

mysqli.reconnect "0" PHP_INI_SYSTEM Available since PHP
5.0.0.

mysqlnd.collect_stati
stics

"1" PHP_INI_SYSTEM Available since PHP
6.0.0.

namazu.debugmode "0" PHP_INI_ALL

namazu.lang NULL PHP_INI_ALL

namazu.loggingmode "0" PHP_INI_ALL

namazu.sortmethod NULL PHP_INI_ALL

namazu.sortorder NULL PHP_INI_ALL

nsapi.read_timeout "60" PHP_INI_ALL Available since PHP
4.3.3.

oci8.default_prefetch "10" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.old_oci_close_s
emantics

"0" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.persistent_timeo
ut

"-1" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.ping_interval "60" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.privileged_conne
ct

"0" PHP_INI_SYSTEM Available since PHP
5.1.2.

oci8.statement_cach
e_size

"20" PHP_INI_SYSTEM Available since PHP
5.1.2.

odbc.allow_persistent "1" PHP_INI_SYSTEM

odbc.check_persisten
t

"1" PHP_INI_SYSTEM

odbc.defaultbinmode "1" PHP_INI_ALL

odbc.defaultlrl "4096" PHP_INI_ALL

odbc.default_db NULL PHP_INI_ALL

odbc.default_pw NULL PHP_INI_ALL

odbc.default_user NULL PHP_INI_ALL

odbc.max_links "-1" PHP_INI_SYSTEM

odbc.max_persistent "-1" PHP_INI_SYSTEM

odbtp.datetime_form
at

"object" PHP_INI_ALL

odbtp.detach_default
_queries

"0" PHP_INI_ALL

odbtp.guid_format "string" PHP_INI_ALL Available since odbtp
1.1.3.

odbtp.interface_file "/usr/local/share/odbt
p.conf"

PHP_INI_ALL

odbtp.truncation_erro
rs

"1" PHP_INI_ALL

opendirectory.default
_separator

"/" PHP_INI_ALL Removed in
opendirectory 0.2.2.

opendirectory.max_re
fs

"-1" PHP_INI_ALL

opendirectory.separat
or

"/" PHP_INI_ALL Available since
opendirectory 0.2.2.

open_basedir NULL PHP_INI_ALL PHP_INI_SYSTEM in
PHP < 6.

oracle.allow_persiste
nt

"-1" PHP_INI_ALL Removed in PHP
5.1.0.

oracle.max_links "-1" PHP_INI_ALL Removed in PHP
5.1.0.

oracle.max_persisten
t

"-1" PHP_INI_ALL Removed in PHP
5.1.0.

output_buffering "0" PHP_INI_PERDIR

output_handler NULL PHP_INI_PERDIR Available since PHP
4.0.4.

pam.servicename "php" PHP_INI_ALL

pcre.backtrack_limit "100000" PHP_INI_ALL Available since PHP
5.2.0.

pcre.recursion_limit "100000" PHP_INI_ALL Available since PHP
5.2.0.

pdo_odbc.connection
_pooling

"strict" PHP_INI_ALL Available since PHP
5.1.0.

pdo_odbc.db2_instan
ce_name

NULL PHP_INI_SYSTEM Available since PHP
5.1.1. Removed in
PHP 6.0.0.

pfpro.defaulthost "test-payflow.verisign.
com"

PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.defaultport "443" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.defaulttimeout "30" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.proxyaddress "" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.proxylogon "" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.proxypassword "" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pfpro.proxyport "" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 5.1.0.

pgsql.allow_persisten
t

"1" PHP_INI_SYSTEM

pgsql.auto_reset_per
sistent

"0" PHP_INI_SYSTEM Available since PHP
4.2.0.

pgsql.ignore_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

pgsql.log_notice "0" PHP_INI_ALL Available since PHP
4.3.0.

pgsql.max_links "-1" PHP_INI_SYSTEM

pgsql.max_persistent "-1" PHP_INI_SYSTEM

phar.extract_list "" PHP_INI_ALL Available since phar
1.1.0.

phar.readonly "1" PHP_INI_ALL

phar.require_hash "1" PHP_INI_ALL

post_max_size "8M" PHP_INI_PERDIR PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.0.3.

precision "14" PHP_INI_ALL

printer.default_printer "" PHP_INI_ALL Available since PHP
4.0.6. Removed in
PHP 4.1.1.

python.append_path "" PHP_INI_ALL

python.prepend_path "." PHP_INI_ALL

realpath_cache_size "16K" PHP_INI_SYSTEM Available since PHP
5.1.0.

realpath_cache_ttl "120" PHP_INI_SYSTEM Available since PHP
5.1.0.

register_argc_argv "1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

register_globals "0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3. Removed in
PHP 6.0.0.

register_long_arrays "1" PHP_INI_PERDIR Available since PHP
5.0.0. Removed in
PHP 6.0.0.

report_memleaks "1" PHP_INI_ALL Available since PHP
4.3.0.

report_zend_debug "1" PHP_INI_ALL Available since PHP
5.0.0.

runkit.internal_overrid
e

"0" PHP_INI_SYSTEM

runkit.superglobal "" PHP_INI_PERDIR

safe_mode "0" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_allowed_
env_vars

"PHP_" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_exec_dir "" PHP_INI_SYSTEM Removed in PHP
6.0.0.

safe_mode_gid "0" PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_include_
dir

NULL PHP_INI_SYSTEM Available since PHP
4.1.0. Removed in
PHP 6.0.0.

safe_mode_protected
_env_vars

"LD_LIBRARY_PATH
"

PHP_INI_SYSTEM Removed in PHP
6.0.0.

sendmail_from NULL PHP_INI_ALL

sendmail_path "/usr/sbin/sendmail -t
-i"

PHP_INI_SYSTEM

serialize_precision "100" PHP_INI_ALL Available since PHP
4.3.2.

session.auto_start "0" PHP_INI_ALL

session.bug_compat
_42

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.bug_compat
_warn

"1" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 6.0.0.

session.cache_expire "180" PHP_INI_ALL

session.cache_limiter "nocache" PHP_INI_ALL

session.cookie_doma
in

"" PHP_INI_ALL

session.cookie_httpo
nly

"" PHP_INI_ALL Available since PHP
5.2.0.

session.cookie_lifeti
me

"0" PHP_INI_ALL

session.cookie_path "/" PHP_INI_ALL

session.cookie_secur
e

"" PHP_INI_ALL Available since PHP
4.0.4.

session.entropy_file "" PHP_INI_ALL

session.entropy_leng
th

"0" PHP_INI_ALL

session.gc_dividend "100" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 4.3.2.

session.gc_divisor "100" PHP_INI_ALL Available since PHP
4.3.2.

session.gc_maxlifeti
me

"1440" PHP_INI_ALL

session.gc_probabilit
y

"1" PHP_INI_ALL

session.hash_bits_pe
r_character

"4" PHP_INI_ALL Available since PHP
5.0.0.

session.hash_functio
n

"0" PHP_INI_ALL Available since PHP
5.0.0.

session.name "PHPSESSID" PHP_INI_ALL

session.referer_chec
k

"" PHP_INI_ALL

session.save_handler "files" PHP_INI_ALL

session.save_path "" PHP_INI_ALL

session.serialize_han
dler

"php" PHP_INI_ALL

session.use_cookies "1" PHP_INI_ALL

session.use_only_co
okies

"1" PHP_INI_ALL Available since PHP
4.3.0.

session.use_trans_si
d

"0" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.2.3.
PHP_INI_PERDIR in
PHP < 5. Available
since PHP 4.0.3.

session_pgsql.create
_table

"1" PHP_INI_SYSTEM

session_pgsql.db "host=localhost
dbname=php_sessio
n user=nobody"

PHP_INI_SYSTEM

session_pgsql.disabl
e

"0" PHP_INI_SYSTEM

session_pgsql.failove
r_mode

"0" PHP_INI_SYSTEM

session_pgsql.gc_int
erval

"3600" PHP_INI_SYSTEM

session_pgsql.keep_
expired

"0" PHP_INI_SYSTEM

session_pgsql.sem_fi
le_name

"/tmp/php_session_p
gsql"

PHP_INI_SYSTEM

session_pgsql.seriali
zable

"0" PHP_INI_SYSTEM

session_pgsql.short_
circuit

"0" PHP_INI_SYSTEM

session_pgsql.use_a
pp_vars

"0" PHP_INI_SYSTEM

session_pgsql.vacuu
m_interval

"21600" PHP_INI_SYSTEM

short_open_tag "1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.0.
PHP_INI_PERDIR in
PHP < 5.3.0

simple_cvs.authMeth
od

"0" PHP_INI_ALL

simple_cvs.compress
ionLevel

"0" PHP_INI_ALL

simple_cvs.cvsRoot "0" PHP_INI_ALL

simple_cvs.host "0" PHP_INI_ALL

simple_cvs.moduleN
ame

"0" PHP_INI_ALL

simple_cvs.userNam
e

"0" PHP_INI_ALL

simple_cvs.workingDi
r

"0" PHP_INI_ALL

SMTP "localhost" PHP_INI_ALL

smtp_port "25" PHP_INI_ALL Available since PHP
4.3.0.

soap.wsdl_cache "1" PHP_INI_ALL Available since PHP
5.1.5.

soap.wsdl_cache_dir "/tmp" PHP_INI_ALL Available since PHP
5.0.0.

soap.wsdl_cache_en
abled

"1" PHP_INI_ALL Available since PHP
5.0.0.

soap.wsdl_cache_lim
it

"5" PHP_INI_ALL Available since PHP
5.1.5.

soap.wsdl_cache_ttl "86400" PHP_INI_ALL Available since PHP
5.0.0.

sql.safe_mode "0" PHP_INI_SYSTEM

sqlite.assoc_case "0" PHP_INI_ALL Available since PHP
5.0.0.

sqlite.iso8859.locale "1" PHP_INI_ALL Available since PHP
6.0.0.

sybase.allow_persist
ent

"1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.hostname NULL PHP_INI_ALL Removed in PHP
4.0.2.

sybase.interface_file "" PHP_INI_ALL

sybase.login_timeout "0" PHP_INI_ALL Removed in PHP
4.0.2.

sybase.max_links "-1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.max_persiste
nt

"-1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.2.
PHP_INI_SYSTEM in
PHP <= 4.0.3.

sybase.min_client_se
verity

"10" PHP_INI_ALL Removed in PHP
4.0.2.

sybase.min_error_se
verity

"10" PHP_INI_ALL

sybase.min_message
_severity

"10" PHP_INI_ALL

sybase.min_server_s
everity

"10" PHP_INI_ALL Removed in PHP
4.0.2.

sybase.timeout "0" PHP_INI_ALL Removed in PHP
4.0.2.

sybct.allow_persisten
t

"1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.deadlock_retry
_count

"0" PHP_INI_ALL Available since PHP
4.3.0.

sybct.hostname NULL PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.login_timeout "-1" PHP_INI_ALL Available since PHP
4.0.2.

sybct.max_links "-1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.max_persistent "-1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.0.2. Available
since PHP 4.0.2.
Removed in PHP
4.0.3.

sybct.min_client_sev
erity

"10" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.min_server_sev
erity

"10" PHP_INI_ALL Available since PHP
4.0.2. Removed in
PHP 4.0.3.

sybct.packet_size "0" PHP_INI_ALL Available since PHP
4.3.5.

sybct.timeout "0" PHP_INI_ALL Available since PHP
4.0.2.

sysvshm.init_mem "10000" PHP_INI_ALL

tidy.clean_output "0" PHP_INI_USER PHP_INI_PERDIR in
PHP 5. Available
since PHP 5.0.0.

tidy.default_config "" PHP_INI_SYSTEM Available since PHP
5.0.0.

track_errors "0" PHP_INI_ALL

track_vars "1" PHP_INI_ALL Removed in PHP
4.0.3.

unicode.fallback_enc
oding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.filesystem_e
ncoding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.http_input_e
ncoding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.output_enco
ding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.runtime_enc
oding

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.script_encodi
ng

NULL PHP_INI_ALL Available since PHP
6.0.0.

unicode.semantics "0" PHP_INI_SYSTEM Available since PHP
6.0.0.

unicode.stream_enco
ding

"UTF-8" PHP_INI_ALL Available since PHP
6.0.0.

unserialize_callback_
func

NULL PHP_INI_ALL Available since PHP
4.2.0.

uploadprogress.file.fil
ename_template

"/tmp/upt_%s.txt" PHP_INI_ALL

upload_max_filesize "2M" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

upload_tmp_dir NULL PHP_INI_SYSTEM

url_rewriter.tags "a=href,area=href,fra
me=src,form=,fieldset
="

PHP_INI_ALL Available since PHP
4.0.4.

user_agent NULL PHP_INI_ALL Available since PHP
4.3.0.

user_dir NULL PHP_INI_SYSTEM

user_ini.cache_ttl "300" PHP_INI_SYSTEM Available since PHP
5.3.0.

user_ini.filename ".user.ini" PHP_INI_SYSTEM Available since PHP
5.3.0.

valkyrie.auto_validate "0" PHP_INI_ALL

valkyrie.config_path NULL PHP_INI_ALL

variables_order "EGPCS" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 5.0.5.

request_order "" PHP_INI_SYSTEM|P
HP_INI_PERDIR

Added in PHP 5.3.0

velocis.max_links "-1" PHP_INI_ALL Removed in PHP
4.2.0.

vld.active "0" PHP_INI_SYSTEM

vld.execute "1" PHP_INI_SYSTEM Available since vld
0.8.0.

vld.skip_append "0" PHP_INI_SYSTEM Available since vld
0.8.0.

vld.skip_prepend "0" PHP_INI_SYSTEM Available since vld
0.8.0.

xbithack "0" PHP_INI_ALL Available since PHP
4.0.5.

xdebug.auto_profile "0" PHP_INI_ALL Removed in Xdebug
2.0.0.

xdebug.auto_profile_
mode

"0" PHP_INI_ALL Removed in Xdebug
2.0.0.

xdebug.auto_trace "0" PHP_INI_ALL

xdebug.collect_includ
es

"1" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.collect_para
ms

"0" PHP_INI_ALL

xdebug.collect_return "0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.collect_vars "0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.default_enabl
e

"1" PHP_INI_ALL PHP_INI_SYSTEM in
Xdebug 1.

xdebug.dump.COOKI
E

NULL PHP_INI_ALL

xdebug.dump.ENV NULL PHP_INI_ALL

xdebug.dump.FILES NULL PHP_INI_ALL

xdebug.dump.GET NULL PHP_INI_ALL

xdebug.dump.POST NULL PHP_INI_ALL

xdebug.dump.REQU
EST

NULL PHP_INI_ALL

xdebug.dump.SERV
ER

NULL PHP_INI_ALL

xdebug.dump.SESSI
ON

NULL PHP_INI_ALL

xdebug.dump_global
s

"1" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.dump_once "1" PHP_INI_ALL

xdebug.dump_undefi
ned

"0" PHP_INI_ALL

xdebug.extended_inf "1" PHP_INI_SYSTEM Available since

o Xdebug 2.0.0.

xdebug.idekey "" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.manual_url "http://www.php.net" PHP_INI_ALL

xdebug.max_nesting
_level

"100" PHP_INI_ALL

xdebug.output_dir "/tmp" PHP_INI_PERDIR PHP_INI_SYSTEM in
Xdebug <= 1.2.0.
Removed in Xdebug
2.0.0.

xdebug.profiler_aggr
egate

"0" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.profiler_appe
nd

"0" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.profiler_enabl
e

"0" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.profiler_enabl
e_trigger

"0" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.profiler_outpu
t_dir

"/tmp" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.profiler_outpu
t_name

"cachegrind.out.%p" PHP_INI_PERDIR Available since
Xdebug 2.0.0.

xdebug.remote_autos
tart

"0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.remote_enabl
e

"0" PHP_INI_PERDIR

xdebug.remote_handl
er

"dbgp" PHP_INI_ALL

xdebug.remote_host "localhost" PHP_INI_ALL

xdebug.remote_log "" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.remote_mod
e

"req" PHP_INI_ALL

xdebug.remote_port "9000" PHP_INI_ALL

xdebug.show_excepti
on_trace

"0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.show_local_v
ars

"0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.show_mem_
delta

"0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.trace_format "0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.trace_options "0" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.trace_output_
dir

"/tmp" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.trace_output_
name

"trace.%c" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.var_display_
max_children

"128" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.var_display_
max_data

"512" PHP_INI_ALL Available since
Xdebug 2.0.0.

xdebug.var_display_
max_depth

"3" PHP_INI_ALL Available since
Xdebug 2.0.0.

xmlrpc_errors "0" PHP_INI_SYSTEM Available since PHP
4.1.0.

xmlrpc_error_number "0" PHP_INI_ALL Available since PHP
4.1.0.

xmms.path "/usr/bin/xmms" PHP_INI_ALL

xmms.session "0" PHP_INI_ALL

y2k_compliance "1" PHP_INI_ALL

yami.response.timeo
ut

"5" PHP_INI_ALL Available since yami
1.0.1.

yaz.keepalive "120" PHP_INI_ALL

yaz.log_file NULL PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 5.0.0.

yaz.log_mask NULL PHP_INI_ALL Available since yaz

1.0.3.

yaz.max_links "100" PHP_INI_ALL Available since PHP
4.3.0. Removed in
PHP 5.0.0.

zend.ze1_compatibilit
y_mode

"0" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.3.0.

zlib.output_compressi
on

"0" PHP_INI_ALL Available since PHP
4.0.5.

zlib.output_compressi
on_level

"-1" PHP_INI_ALL Available since PHP
4.3.0.

zlib.output_handler "" PHP_INI_ALL Available since PHP
4.3.0.

Definition of PHP_INI_* constants

Constant Value Meaning

PHP_INI_USER 1 Entry can be set in user
scripts or in Windows registry

PHP_INI_PERDIR 2 Entry can be set in php.ini,
.htaccess or httpd.conf

PHP_INI_SYSTEM 4 Entry can be set in php.ini or
httpd.conf

PHP_INI_ALL 7 Entry can be set anywhere

List of php.ini sections

This list includes the php.ini sections you can set to configure your PHP setup on a per
Host or Path basis. These sections are optional.

These sections don't directly affect PHP. They are used to group other php.ini directives
together and to get them to act upon a particular host or on a particular path.

Sections

Name Changeable Changelog

[HOST=] PHP_INI_SYSTEM Added in PHP 5.3.0.

[PATH=] PHP_INI_SYSTEM Added in PHP 5.3.0.

Here's a short explanation of the configuration directives.

[HOST=<host>]

This section allows you to define a set of php.ini directives that will take effect on the
named host.

Example #3058 - Activate full on-screen error reporting for dev. domain

[HOST=dev.site.com]

error_reporting = E_ALL

display_errors = On

[PATH=<path>]

This section allows you to define a set of php.ini directives that will take effect when a
script runs from the named path.

Example #3059 - Add security script for protected areas

[PATH=/home/site/public/secure]

auto_prepend_file=security.php

Description of core php.ini directives

This list includes the core php.ini directives you can set to configure your PHP setup.
Directives handled by extensions are listed and detailed at the extension documentation
pages respectively; Information on the session directives for example can be found at the
sessions page.

Httpd Options

Httpd Options

Name Default Changeable Changelog

async_send "0" PHP_INI_ALL

Language Options

Language and Misc Configuration Options

Name Default Changeable Changelog

short_open_tag "1" PHP_INI_ALL PHP_INI_ALL in PHP
<= 4.0.0.
PHP_INI_PERDIR in
PHP < 5.3.0

asp_tags "0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.0.0.

precision "14" PHP_INI_ALL

y2k_compliance "1" PHP_INI_ALL

allow_call_time_pass
_reference

"1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.0.0.

expose_php "1" php.ini only

zend.ze1_compatibilit
y_mode

"0" PHP_INI_ALL Available since PHP
5.0.0. Removed in
PHP 5.3.0

Here's a short explanation of the configuration directives.

short_open_tag boolean
Tells whether the short form (<? ?>) of PHP's open tag should be allowed. If you
want to use PHP in combination with XML, you can disable this option in order to use
<?xml ?> inline. Otherwise, you can print it with PHP, for example: <?php echo
'<?xml version="1.0"'; ?>. Also if disabled, you must use the long form of the PHP
open tag (<?php ?>).

Note

This directive also affects the shorthand <?=, which is identical to <? echo. Use of
this shortcut requires short_open_tag to be on.

asp_tags boolean
Enables the use of ASP-like <% %> tags in addition to the usual <?php ?> tags. This
includes the variable-value printing shorthand of <%= $value %>. For more
information, see Escaping from HTML.

precision integer
The number of significant digits displayed in floating point numbers.

y2k_compliance boolean
Enforce year 2000 compliance (will cause problems with non-compliant browsers)

allow_call_time_pass_reference boolean
Whether to warn when arguments are passed by reference at function call time. This
method is deprecated and is likely to be unsupported in future versions of PHP/Zend.
The encouraged method of specifying which arguments should be passed by
reference is in the function declaration. You're encouraged to try and turn this option
Off and make sure your scripts work properly with it in order to ensure they will work
with future versions of the language (you will receive a warning each time you use this
feature). Passing arguments by reference at function call time was deprecated for code
cleanliness reason. Function can modify its argument in undocumented way if it didn't
declared that the argument is passed by reference. To prevent side-effects it's better to
specify which arguments are passed by reference in function declaration only. See
also References Explained.

expose_php boolean
Decides whether PHP may expose the fact that it is installed on the server (e.g. by
adding its signature to the Web server header). It is no security threat in any way, but it
makes it possible to determine whether you use PHP on your server or not.

zend.ze1_compatibility_mode boolean
Enable compatibility mode with Zend Engine 1 (PHP 4). It affects the cloning, casting
(objects with no properties cast to FALSE or 0), and comparing of objects. In this
mode, objects are passed by value instead of reference by default. See also the
section titled Migrating from PHP 4 to PHP 5.

Resource Limits

Resource Limits

Name Default Changeable Changelog

memory_limit "128M" PHP_INI_ALL "8M" before PHP
5.2.0, "16M" in PHP
5.2.0

Here's a short explanation of the configuration directives.

memory_limit integer
This sets the maximum amount of memory in bytes that a script is allowed to allocate.
This helps prevent poorly written scripts for eating up all available memory on a server.
Note that to have no memory limit, set this directive to -1. Prior to PHP 5.2.1, in order
to use this directive it had to be enabled at compile time by using -enable-memory-limit
in the configure line. This was also required to define the functions
memory_get_usage() and memory_get_peak_usage(). When an integer is used, the
value is measured in bytes. Shorthand notation, as described in this FAQ, may also be
used.

See also: max_execution_time.

Performance Tuning

Performance Tuning

Name Default Changeable Changelog

realpath_cache_size "16K" PHP_INI_SYSTEM Available since PHP
5.1.0.

realpath_cache_ttl "120" PHP_INI_SYSTEM Available since PHP
5.1.0.

Here's a short explanation of the configuration directives.

realpath_cache_size integer
Determines the size of the realpath cache to be used by PHP. This value should be
increased on systems where PHP opens many files, to reflect the quantity of the file
operations performed.

realpath_cache_ttl integer
Duration of time (in seconds) for which to cache realpath information for a given file or

directory. For systems with rarely changing files, consider increasing the value.

Data Handling

Data Handling Configuration Options

Name Default Changeable Changelog

track_vars "On" PHP_INI_??

arg_separator.output "&" PHP_INI_ALL Available since PHP
4.0.5.

arg_separator.input "&" PHP_INI_PERDIR Available since PHP
4.0.5.

variables_order "EGPCS" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 5.0.5.

request_order "" PHP_INI_SYSTEM|P
HP_INI_PERDIR

Available since PHP
5.3.0

auto_globals_jit "1" PHP_INI_PERDIR Available since PHP
5.0.0.

register_globals "0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

register_argc_argv "1" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

register_long_arrays "1" PHP_INI_PERDIR Available since PHP
5.0.0.

post_max_size "8M" PHP_INI_PERDIR PHP_INI_SYSTEM in
PHP <= 4.2.3.
Available since PHP
4.0.3.

gpc_order "GPC" PHP_INI_ALL

auto_prepend_file NULL PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

auto_append_file NULL PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

default_mimetype "text/html" PHP_INI_ALL

default_charset "" PHP_INI_ALL

always_populate_raw
_post_data

"0" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3. Available
since PHP 4.1.0.

allow_webdav_metho
ds

"0" PHP_INI_PERDIR

Here's a short explanation of the configuration directives.

track_vars boolean
If enabled, then Environment, GET, POST, Cookie, and Server variables can be found
in the global associative arrays $_ENV, $_GET, $_POST, $_COOKIE, and
$_SERVER. Note that as of PHP 4.0.3, track_vars is always turned on.

arg_separator.output string
The separator used in PHP generated URLs to separate arguments.

arg_separator.input string
List of separator(s) used by PHP to parse input URLs into variables.

Note

Every character in this directive is considered as separator!

variables_order string
Sets the order of the EGPCS (E nvironment, G et, P ost, C ookie, and S erver)
variable parsing. For example, if variables_order is set to "SP" then PHP will create the
superglobals $_SERVER and $_POST, but not create $_ENV, $_GET, and
$_COOKIE. Setting to "" means no superglobals will be set. If the deprecated
register_globals directive is on (removed as of PHP 6.0.0), then variables_order also
configures the order the ENV, GET, POST, COOKIE and SERVER variables are
populated in global scope. So for example if variables_order is set to "EGPCS",
register_globals is enabled, and both $_GET['action'] and $_POST['action'] are set,
then $action will contain the value of $_POST['action'] as P comes after G in our
example directive value.

Warning

In both the CGI and FastCGI SAPIs, $_SERVER is also populated by values from
the environment; S is always equivelant to ES regardless of the placement of E
elsewhere in this directive.

Note

The content and order of $_REQUEST is also affected by this directive.

request_order string
This directive describes the order in which PHP registers GET, POST and Cookie
variables into the _REQUEST array. Registration is done from left to right, newer
values override older values. If this directive is not set, variables_order is used for
$_REQUEST contents.

auto_globals_jit boolean
When enabled, the SERVER and ENV variables are created when they're first used
(Just In Time) instead of when the script starts. If these variables are not used within a
script, having this directive on will result in a performance gain. The PHP directives
register_globals, register_long_arrays, and register_argc_argv must be disabled for
this directive to have any affect. Since PHP 5.1.3 it is not necessary to have
register_argc_argv disabled.

register_globals boolean
Whether or not to register the EGPCS (Environment, GET, POST, Cookie, Server)
variables as global variables. As of » PHP 4.2.0, this directive defaults to off. Please
read the security chapter on Using register_globals for related information. Please note
that register_globals cannot be set at runtime (ini_set()). Although, you can use
.htaccess if your host allows it as described above. An example.htaccess entry:
php_flag register_globals off.

Note

register_globals is affected by the variables_order directive.

Warning

This feature has been DEPRECATED and REMOVED as of PHP 6.0.0. Relying on
this feature is highly discouraged.

register_argc_argv boolean
Tells PHP whether to declare the argv & argc variables (that would contain the GET
information). See also command line. Also, this directive became available in PHP
4.0.0 and was always "on" before that.

register_long_arrays boolean
Tells PHP whether or not to register the deprecated long $HTTP_*_VARS type
predefined variables. When On (default), long predefined PHP variables like
$HTTP_GET_VARS will be defined. If you're not using them, it's recommended to turn
them off, for performance reasons. Instead, use the superglobal arrays, like $_GET.

http://www.php.net/releases/4_2_0.php

This directive became available in PHP 5.0.0 and was dropped in PHP 6.0.0.

post_max_size integer
Sets max size of post data allowed. This setting also affects file upload. To upload
large files, this value must be larger than upload_max_filesize. If memory limit is
enabled by your configure script, memory_limit also affects file uploading. Generally
speaking, memory_limit should be larger than post_max_size. When an integer is
used, the value is measured in bytes. Shorthand notation, as described in this FAQ,
may also be used. If the size of post data is greater than post_max_size, the $_POST
and $_FILES superglobals are empty. This can be tracked in various ways, e.g. by
passing the $_GET variable to the script processing the data, i.e. <form
action="edit.php?processed=1">, and then checking if $_GET['processed'] is set.

gpc_order string
Set the order of GET/POST/COOKIE variable parsing. The default setting of this
directive is "GPC". Setting this to "GP", for example, will cause PHP to completely
ignore cookies and to overwrite any GET method variables with POST-method
variables of the same name.

Note

This option is not available in PHP 4. Use variables_order instead.

auto_prepend_file string
Specifies the name of a file that is automatically parsed before the main file. The file is
included as if it was called with the require() function, so include_path is used. The
special value none disables auto-prepending.

auto_append_file string
Specifies the name of a file that is automatically parsed after the main file. The file is
included as if it was called with the require() function, so include_path is used. The
special value none disables auto-appending.

Note

If the script is terminated with exit(), auto-append will not occur.

default_mimetype string

default_charset string
As of 4.0.0, PHP always outputs a character encoding by default in the Content-type:
header. To disable sending of the charset, simply set it to be empty.

always_populate_raw_post_data boolean
Always populate the $HTTP_RAW_POST_DATA containing the raw POST data.
Otherwise, the variable is populated only with unrecognized MIME type of the data.
However, the preferred method for accessing the raw POST data is php://input.

$HTTP_RAW_POST_DATA is not available with enctype="multipart/form-data".

allow_webdav_methods boolean
Allow handling of WebDAV http requests within PHP scripts (eg. PROPFIND,
PROPPATCH, MOVE, COPY, etc.). This directive does not exist as of PHP 4.3.2. If
you want to get the post data of those requests, you have to set
always_populate_raw_post_data as well.

See also: magic_quotes_gpc, magic_quotes_runtime, and magic_quotes_sybase.

Paths and Directories

Paths and Directories Configuration Options

Name Default Changeable Changelog

include_path ".;/path/to/php/pear" PHP_INI_ALL

doc_root NULL PHP_INI_SYSTEM

user_dir NULL PHP_INI_SYSTEM

extension_dir "/path/to/php" PHP_INI_SYSTEM

extension NULL php.ini only

cgi.check_shebang_li
ne

"1" PHP_INI_SYSTEM Available since PHP
5.2.0.

cgi.fix_pathinfo "1" PHP_INI_SYSTEM Available since PHP
4.3.0. PHP_INI_ALL
prior to PHP 5.2.1.

cgi.force_redirect "1" PHP_INI_SYSTEM Available since PHP
4.2.0. PHP_INI_ALL
prior to PHP 5.2.1.

cgi.redirect_status_e
nv

NULL PHP_INI_SYSTEM Available since PHP
4.2.0. PHP_INI_ALL
prior to PHP 5.2.1.

fastcgi.impersonate "0" PHP_INI_SYSTEM Available since PHP
4.3.0. PHP_INI_ALL
prior to PHP 5.2.1.

cgi.rfc2616_headers "0" PHP_INI_ALL Available since PHP
4.3.0.

Here's a short explanation of the configuration directives.

include_path string
Specifies a list of directories where the require(), include(), fopen(), file(), readfile()
and file_get_contents() functions look for files. The format is like the system's PATH
environment variable: a list of directories separated with a colon in Unix or semicolon
in Windows.

Example #3060 - Unix include_path

include_path=".:/php/includes"

Example #3061 - Windows include_path

include_path=".;c:\php\includes"

Using a. in the include path allows for relative includes as it means the current
directory.

doc_root string
PHP's "root directory" on the server. Only used if non-empty. If PHP is configured with
safe mode, no files outside this directory are served. If PHP was not compiled with
FORCE_REDIRECT, you should set doc_root if you are running PHP as a CGI under
any web server (other than IIS). The alternative is to use the cgi.force_redirect
configuration below.

user_dir string
The base name of the directory used on a user's home directory for PHP files, for
example public_html.

extension_dir string
In what directory PHP should look for dynamically loadable extensions. See also:
enable_dl, and dl().

extension string
Which dynamically loadable extensions to load when PHP starts up.

cgi.check_shebang_line boolean
Controls whether CGI PHP checks for line starting with #! (shebang) at the top of the
running script. This line might be needed if the script support running both as
stand-alone script and via PHP CGI. PHP in CGI mode skips this line and ignores its
content if this directive is turned on.

cgi.fix_pathinfo boolean
Provides real PATH_INFO/PATH_TRANSLATED support for CGI. PHP's previous
behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok
what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting
this to 1 will cause PHP CGI to fix it's paths to conform to the spec. A setting of zero
causes PHP to behave as before. Default is zero. You should fix your scripts to use

SCRIPT_FILENAME rather than PATH_TRANSLATED.

cgi.force_redirect boolean
cgi.force_redirect is necessary to provide security running PHP as a CGI under most
web servers. Left undefined, PHP turns this on by default. You can turn it off at your
own risk.

Note

Windows Users: You can safely turn this off for IIS, in fact, you must. To get
OmniHTTPD or Xitami to work you must turn it off.

cgi.redirect_status_env string
If cgi.force_redirect is turned on, and you are not running under Apache or Netscape
(iPlanet) web servers, you may need to set an environment variable name that PHP
will look for to know it is OK to continue execution.

Note

Setting this variable may cause security issues, know what you are doing first.

fastcgi.impersonate string
FastCGI under IIS (on WINNT based OS) supports the ability to impersonate security
tokens of the calling client. This allows IIS to define the security context that the
request runs under. mod_fastcgi under Apache does not currently support this feature
(03/17/2002) Set to 1 if running under IIS. Default is zero.

cgi.rfc2616_headers int
Tells PHP what type of headers to use when sending HTTP response code. If it's set 0,
PHP sends a Status: header that is supported by Apache and other web servers.
When this option is set to 1, PHP will send » RFC 2616 compliant headers. Leave it
set to 0 unless you know what you're doing.

File Uploads

File Uploads Configuration Options

Name Default Changeable Changelog

file_uploads "1" PHP_INI_SYSTEM PHP_INI_ALL in PHP
<= 4.2.3. Available
since PHP 4.0.3.

http://www.faqs.org/rfcs/rfc2616

upload_tmp_dir NULL PHP_INI_SYSTEM

upload_max_filesize "2M" PHP_INI_PERDIR PHP_INI_ALL in PHP
<= 4.2.3.

Here's a short explanation of the configuration directives.

file_uploads boolean
Whether or not to allow HTTP file uploads. See also the upload_max_filesize,
upload_tmp_dir, and post_max_size directives. When an integer is used, the value is
measured in bytes. Shorthand notation, as described in this FAQ, may also be used.

upload_tmp_dir string
The temporary directory used for storing files when doing file upload. Must be writable
by whatever user PHP is running as. If not specified PHP will use the system's default.

upload_max_filesize integer
The maximum size of an uploaded file. When an integer is used, the value is
measured in bytes. Shorthand notation, as described in this FAQ, may also be used.

General SQL

General SQL Configuration Options

Name Default Changeable Changelog

sql.safe_mode "0" PHP_INI_SYSTEM

Here's a short explanation of the configuration directives.

sql.safe_mode boolean
If turned on, database connect functions that specify default values will use those
values in place of supplied arguments. For default values see connect function
documentation for the relevant database.

Extension Categorization

This appendix categorizes more than 150 extensions documented in the PHP Manual by
several criteria.

Membership

Core Extensions

These are not actual extensions. They are part of the PHP core and cannot be left out of a
PHP binary with compilation options.

• Arrays

• Classes/Objects

• Date/Time

• Directories

• Error Handling

• Program execution

• Filesystem

• Function Handling

• i18n

• PHP Options/Info

• Mail

• Math

• Misc.

• Network

• Output Control

• POSIX Regex

• Sessions

• Streams

• Strings

• Tokenizer

• Unicode

• URLs

• Variable handling

Bundled Extensions

These extensions are bundled with PHP.

• Apache

• BC Math

• Bzip2

• Calendar

• COM

• Ctype

• cURL

• DBA

• dBase

• DOM

• .NET

• Exif

• FrontBase

• FDF

• FTP

• Gettext

• GMP

• Hash

• Firebird/InterBase

• iconv

• Informix

• GD

• IMAP

• JSON

• LDAP

• libxml

• Multibyte String

• Mcrypt

• Mhash

• Mimetype

• Ming

• mSQL

• Mssql

• MySQL

• Mysqli

• Ncurses

• NSAPI

• Object Aggregation

• OCI8

• OpenSSL

• PCNTL

• PCRE

• PDO

• MS SQL Server (PDO)

• Firebird/Interbase (PDO)

• MySQL (PDO)

• Oracle (PDO)

• ODBC and DB2 (PDO)

• PostgreSQL (PDO)

• SQLite (PDO)

• PostgreSQL

• POSIX

• Pspell

• Readline

• Recode

• Semaphore

• Shared Memory

• SimpleXML

• SNMP

• SOAP

• Sockets

• SPL

• SQLite

• SVN

• Sybase

• Tidy

• ODBC

• WDDX

• XML Parser

• XMLReader

• XML-RPC

• XSL

• XSLT

• Zip

• Zlib

External Extensions

In order to compile these extensions, external libraries will be needed.

• BBCode

• Bzip2

• Cracklib

• cURL

• dBase

• DB++

• dbx

• DOM

• DOM XML

• Enchant

• FAM

• FrontBase

• FDF

• Fileinfo

• FriBiDi

• GeoIP

• Gettext

• GMP

• haru

• Hyperwave

• Hyperwave API

• i18n

• Firebird/InterBase

• IBM DB2

• Informix

• ImageMagick

• IMAP

• Ingres II

• Java

• LDAP

• libxml

• MaxDB

• Mcrypt

• Memcache

• Mhash

• Ming

• mnoGoSearch

• Msession

• mSQL

• Mssql

• MySQL

• Mysqli

• Ncurses

• Newt

• OCI8

• oggvorbis

• OpenAL

• OpenSSL

• Ovrimos SQL

• Paradox

• PDF

• MS SQL Server (PDO)

• Firebird/Interbase (PDO)

• IBM (PDO)

• Informix (PDO)

• MySQL (PDO)

• Oracle (PDO)

• ODBC and DB2 (PDO)

• PostgreSQL (PDO)

• PostgreSQL

• PS

• Pspell

• qtdom

• Radius

• Rar

• Readline

• Recode

• Session PgSQL

• SimpleXML

• SNMP

• SOAP

• SSH2

• SWF

• Swish

• Sybase

• Tidy

• Unicode

• ODBC

• vpopmail

• WDDX

• xattr

• xdiff

• XML Parser

• XMLReader

• XSL

• XSLT

• YAZ

PECL Extensions

These extensions are available from » PECL. More PECL extensions exist but they are not

http://pecl.php.net/

documented in the PHP manual yet.

• APC

• APD

• BBCode

• bcompiler

• Classkit

• Cracklib

• Cyrus

• DB++

• dbx

• Direct IO

• DOM XML

• Enchant

• Expect

• FAM

• Fileinfo

• filePro

• Filter

• FriBiDi

• GeoIP

• GnuPG

• haru

• Hash

• HTTP

• Hyperwave

• Hyperwave API

• IBM DB2

• ID3

• IIS

• ImageMagick

• Ingres II

• Java

• JSON

• KADM5

• LZF

• Mailparse

• MaxDB

• MCVE

• Memcache

• mnoGoSearch

• Msession

• Ncurses

• Gopher

• Newt

• YP/NIS

• Lotus Notes

• oggvorbis

• OpenAL

• Ovrimos SQL

• Paradox

• Parsekit

• PDF

• PDO

• MS SQL Server (PDO)

• Firebird/Interbase (PDO)

• IBM (PDO)

• Informix (PDO)

• MySQL (PDO)

• Oracle (PDO)

• ODBC and DB2 (PDO)

• PostgreSQL (PDO)

• SQLite (PDO)

• Phar

• Printer

• PS

• qtdom

• Radius

• Rar

• RPM Reader

• runkit

• SAM

• SCA

• SDO

• SDO DAS XML

• SDO-DAS-Relational

• Session PgSQL

• SSH2

• Statistics

• SVN

• SWF

• Swish

• TCP

• Tidy

• vpopmail

• W32api

• win32ps

• win32service

• xattr

• xdiff

• XMLReader

• XMLWriter

• YAZ

• Zip

State

This part lists extensions not intended for the production use - they are either too "old"
(deprecated) or "new" (experimental).

Deprecated Extensions

These extensions have been deprecated usually in the favor of some other extensions.

• Mimetype

• Object overloading

Experimental Extensions

The behaviour of these extensions - including the names of their functions and anything
else documented about these extensions - may change without notice in a future release
of PHP. Use these extensions at your own risk.

• bcompiler

• DB++

• .NET

• haru

• Hash

• ImageMagick

• Java

• Ming

• Ncurses

• Newt

• Lotus Notes

• Object Aggregation

• Paradox

• MS SQL Server (PDO)

• Firebird/Interbase (PDO)

• Oracle (PDO)

• PS

• qtdom

• SCA

• SDO-DAS-Relational

• Swish

• vpopmail

• W32api

• XML-RPC

List of Function Aliases

There are quite a few functions in PHP which you can call with more than one name. In
some cases there is no preferred name among the multiple ones, is_int() and is_integer()
are equally good for example. However there are functions which changed names
because of an API cleanup or some other reason and the old names are only kept as
aliases for backward compatibility. It is usually a bad idea to use these kind of aliases, as
they may be bound to obsolescence or renaming, which will lead to unportable script. This
list is provided to help those who want to upgrade their old scripts to newer syntax.

This list is consistent with PHP 4.0.6.

Aliases

Alias Master function Extension used

_ gettext() Gettext

add swfmovie_add() Ming (flash)

add swfsprite_add() Ming (flash)

add_root domxml_add_root() DOM XML

addaction swfbutton_addAction() Ming (flash)

addcolor swfdisplayitem_addColor() Ming (flash)

addentry swfgradient_addEntry() Ming (flash)

addfill swfshape_addfill() Ming (flash)

addshape swfbutton_addShape() Ming (flash)

addstring swftext_addString() Ming (flash)

addstring swftextfield_addString() Ming (flash)

align swftextfield_align() Ming (flash)

attributes domxml_attributes() DOM XML

children domxml_children() DOM XML

chop rtrim() Base syntax

close closedir() Base syntax

com_get com_propget() COM

com_propset com_propput() COM

com_set com_propput() COM

die exit() Miscellaneous functions

dir getdir() Base syntax

diskfreespace disk_free_space() Filesystem

domxml_getattr domxml_get_attribute() DOM XML

domxml_setattr domxml_set_attribute() DOM XML

doubleval floatval() Base syntax

drawarc swfshape_drawarc() Ming (flash)

drawcircle swfshape_drawcircle() Ming (flash)

drawcubic swfshape_drawcubic() Ming (flash)

drawcubicto swfshape_drawcubicto() Ming (flash)

drawcurve swfshape_drawcurve() Ming (flash)

drawcurveto swfshape_drawcurveto() Ming (flash)

drawglyph swfshape_drawglyph() Ming (flash)

drawline swfshape_drawline() Ming (flash)

drawlineto swfshape_drawlineto() Ming (flash)

dtd domxml_intdtd() DOM XML

dumpmem domxml_dumpmem() DOM XML

fbsql fbsql_db_query() FrontBase

fputs fwrite() Base syntax

get_attribute domxml_get_attribute() DOM XML

getascent swffont_getAscent() Ming (flash)

getascent swftext_getAscent() Ming (flash)

getattr domxml_get_attribute() DOM XML

getdescent swffont_getDescent() Ming (flash)

getdescent swftext_getDescent() Ming (flash)

getheight swfbitmap_getHeight() Ming (flash)

getleading swffont_getLeading() Ming (flash)

getleading swftext_getLeading() Ming (flash)

getshape1 swfmorph_getShape1() Ming (flash)

getshape2 swfmorph_getShape2() Ming (flash)

getwidth swfbitmap_getWidth() Ming (flash)

getwidth swffont_getWidth() Ming (flash)

getwidth swftext_getWidth() Ming (flash)

gzputs gzwrite() Zlib

i18n_convert mb_convert_encoding() Multi-bytes Strings

i18n_discover_encoding mb_detect_encoding() Multi-bytes Strings

i18n_http_input mb_http_input() Multi-bytes Strings

i18n_http_output mb_http_output() Multi-bytes Strings

i18n_internal_encoding mb_internal_encoding() Multi-bytes Strings

i18n_ja_jp_hantozen mb_convert_kana() Multi-bytes Strings

i18n_mime_header_decode mb_decode_mimeheader() Multi-bytes Strings

i18n_mime_header_encode mb_encode_mimeheader() Multi-bytes Strings

imap_create imap_createmailbox() IMAP

imap_fetchtext imap_body() IMAP

imap_getmailboxes imap_list_full() IMAP

imap_getsubscribed imap_lsub_full() IMAP

imap_header imap_headerinfo() IMAP

imap_listmailbox imap_list() IMAP

imap_listsubscribed imap_lsub() IMAP

imap_rename imap_renamemailbox() IMAP

imap_scan imap_listscan() IMAP

imap_scanmailbox imap_listscan() IMAP

ini_alter ini_set() Base syntax

is_double is_float() Base syntax

is_integer is_int() Base syntax

is_long is_int() Base syntax

is_real is_float() Base syntax

is_writeable is_writable() Base syntax

join implode() Base syntax

labelframe swfmovie_labelFrame() Ming (flash)

labelframe swfsprite_labelFrame() Ming (flash)

last_child domxml_last_child() DOM XML

lastchild domxml_last_child() DOM XML

ldap_close ldap_unbind() LDAP

magic_quotes_runtime set_magic_quotes_runtime() Base syntax

mbstrcut mb_strcut() Multi-bytes Strings

mbstrlen mb_strlen() Multi-bytes Strings

mbstrpos mb_strpos() Multi-bytes Strings

mbstrrpos mb_strrpos() Multi-bytes Strings

mbsubstr mb_substr() Multi-bytes Strings

ming_setcubicthreshold ming_setCubicThreshold() Ming (flash)

ming_setscale ming_setScale() Ming (flash)

move swfdisplayitem_move() Ming (flash)

movepen swfshape_movepen() Ming (flash)

movepento swfshape_movepento() Ming (flash)

moveto swfdisplayitem_moveTo() Ming (flash)

moveto swffill_moveTo() Ming (flash)

moveto swftext_moveTo() Ming (flash)

msql msql_db_query() mSQL

msql_createdb msql_create_db() mSQL

msql_dbname msql_result() mSQL

msql_dropdb msql_drop_db() mSQL

msql_fieldflags msql_field_flags() mSQL

msql_fieldlen msql_field_len() mSQL

msql_fieldname msql_field_name() mSQL

msql_fieldtable msql_field_table() mSQL

msql_fieldtype msql_field_type() mSQL

msql_freeresult msql_free_result() mSQL

msql_listdbs msql_list_dbs() mSQL

msql_listfields msql_list_fields() mSQL

msql_listtables msql_list_tables() mSQL

msql_numfields msql_num_fields() mSQL

msql_numrows msql_num_rows() mSQL

msql_regcase sql_regcase() mSQL

msql_selectdb msql_select_db() mSQL

msql_tablename msql_result() mSQL

mssql_affected_rows sybase_affected_rows() Sybase

mssql_affected_rows sybase_affected_rows() Sybase

mssql_close sybase_close() Sybase

mssql_close sybase_close() Sybase

mssql_connect sybase_connect() Sybase

mssql_connect sybase_connect() Sybase

mssql_data_seek sybase_data_seek() Sybase

mssql_data_seek sybase_data_seek() Sybase

mssql_fetch_array sybase_fetch_array() Sybase

mssql_fetch_array sybase_fetch_array() Sybase

mssql_fetch_field sybase_fetch_field() Sybase

mssql_fetch_field sybase_fetch_field() Sybase

mssql_fetch_object sybase_fetch_object() Sybase

mssql_fetch_object sybase_fetch_object() Sybase

mssql_fetch_row sybase_fetch_row() Sybase

mssql_fetch_row sybase_fetch_row() Sybase

mssql_field_seek sybase_field_seek() Sybase

mssql_field_seek sybase_field_seek() Sybase

mssql_free_result sybase_free_result() Sybase

mssql_free_result sybase_free_result() Sybase

mssql_get_last_message sybase_get_last_message() Sybase

mssql_get_last_message sybase_get_last_message() Sybase

mssql_min_client_severity sybase_min_client_severity() Sybase

mssql_min_error_severity sybase_min_error_severity() Sybase

mssql_min_message_severit
y

sybase_min_message_sever
ity()

Sybase

mssql_min_server_severity sybase_min_server_severity(
)

Sybase

mssql_num_fields sybase_num_fields() Sybase

mssql_num_fields sybase_num_fields() Sybase

mssql_num_rows sybase_num_rows() Sybase

mssql_num_rows sybase_num_rows() Sybase

mssql_pconnect sybase_pconnect() Sybase

mssql_pconnect sybase_pconnect() Sybase

mssql_query sybase_query() Sybase

mssql_query sybase_query() Sybase

mssql_result sybase_result() Sybase

mssql_result sybase_result() Sybase

mssql_select_db sybase_select_db() Sybase

mssql_select_db sybase_select_db() Sybase

multcolor swfdisplayitem_multColor(
)

Ming (flash)

mysql mysql_db_query() MySQL

mysql_createdb mysql_create_db() MySQL

mysql_db_name mysql_result() MySQL

mysql_dbname mysql_result() MySQL

mysql_dropdb mysql_drop_db() MySQL

mysql_fieldflags mysql_field_flags() MySQL

mysql_fieldlen mysql_field_len() MySQL

mysql_fieldname mysql_field_name() MySQL

mysql_fieldtable mysql_field_table() MySQL

mysql_fieldtype mysql_field_type() MySQL

mysql_freeresult mysql_free_result() MySQL

mysql_listdbs mysql_list_dbs() MySQL

mysql_listfields mysql_list_fields() MySQL

mysql_listtables mysql_list_tables() MySQL

mysql_numfields mysql_num_fields() MySQL

mysql_numrows mysql_num_rows() MySQL

mysql_selectdb mysql_select_db() MySQL

mysql_tablename mysql_result() MySQL

name domxml_attrname() DOM XML

new_child domxml_new_child() DOM XML

new_xmldoc domxml_new_xmldoc() DOM XML

nextframe swfmovie_nextFrame() Ming (flash)

nextframe swfsprite_nextFrame() Ming (flash)

node domxml_node() DOM XML

oci8append ocicollappend() OCI8

oci8assign ocicollassign() OCI8

oci8assignelem ocicollassignelem() OCI8

oci8close ocicloselob() OCI8

oci8free ocifreecoll() OCI8

oci8free ocifreedesc() OCI8

oci8getelem ocicollgetelem() OCI8

oci8load ociloadlob() OCI8

oci8max ocicollmax() OCI8

oci8ocifreecursor ocifreestatement() OCI8

oci8save ocisavelob() OCI8

oci8savefile ocisavelobfile() OCI8

oci8size ocicollsize() OCI8

oci8trim ocicolltrim() OCI8

oci8writetemporary ociwritetemporarylob() OCI8

oci8writetofile ociwritelobtofile() OCI8

odbc_do odbc_exec() ODBC

odbc_field_precision odbc_field_len() ODBC

output swfmovie_output() Ming (flash)

parent domxml_parent() DOM XML

pdf_add_outline pdf_add_bookmark() PDF

pg_clientencoding pg_client_encoding() PostgreSQL

pg_setclientencoding pg_set_client_encoding() PostgreSQL

pos current() Base syntax

recode recode_string() Recode

remove swfmovie_remove() Ming (flash)

remove swfsprite_remove() Ming (flash)

rewind rewinddir() Base syntax

root domxml_root() DOM XML

rotate swfdisplayitem_rotate() Ming (flash)

rotateto swfdisplayitem_rotateTo() Ming (flash)

rotateto swffill_rotateTo() Ming (flash)

save swfmovie_save() Ming (flash)

savetofile swfmovie_saveToFile() Ming (flash)

scale swfdisplayitem_scale() Ming (flash)

scaleto swfdisplayitem_scaleTo() Ming (flash)

scaleto swffill_scaleTo() Ming (flash)

set_attribute domxml_set_attribute() DOM XML

set_content domxml_set_content() DOM XML

setaction swfbutton_setAction() Ming (flash)

setattr domxml_set_attribute() DOM XML

setbackground swfmovie_setBackground(
)

Ming (flash)

setbounds swftextfield_setBounds() Ming (flash)

setcolor swftext_setColor() Ming (flash)

setcolor swftextfield_setColor() Ming (flash)

setdepth swfdisplayitem_setDepth() Ming (flash)

setdimension swfmovie_setDimension() Ming (flash)

setdown swfbutton_setDown() Ming (flash)

setfont swftext_setFont() Ming (flash)

setfont swftextfield_setFont() Ming (flash)

setframes swfmovie_setFrames() Ming (flash)

setframes swfsprite_setFrames() Ming (flash)

setheight swftext_setHeight() Ming (flash)

setheight swftextfield_setHeight() Ming (flash)

sethit swfbutton_setHit() Ming (flash)

setindentation swftextfield_setIndentation
()

Ming (flash)

setleftfill swfshape_setleftfill() Ming (flash)

setleftmargin swftextfield_setLeftMargin(
)

Ming (flash)

setline swfshape_setline() Ming (flash)

setlinespacing swftextfield_setLineSpacin
g()

Ming (flash)

setmargins swftextfield_setMargins() Ming (flash)

setmatrix swfdisplayitem_setMatrix() Ming (flash)

setname swfdisplayitem_setName() Ming (flash)

setname swftextfield_setName() Ming (flash)

setover swfbutton_setOver() Ming (flash)

setrate swfmovie_setRate() Ming (flash)

setratio swfdisplayitem_setRatio() Ming (flash)

setrightfill swfshape_setrightfill() Ming (flash)

setrightmargin swftextfield_setRightMargi
n()

Ming (flash)

setspacing swftext_setSpacing() Ming (flash)

setup swfbutton_setUp() Ming (flash)

show_source highlight_file() Base syntax

sizeof count() Base syntax

skewx swfdisplayitem_skewX() Ming (flash)

skewxto swfdisplayitem_skewXTo() Ming (flash)

skewxto swffill_skewXTo() Ming (flash)

skewy swfdisplayitem_skewY() Ming (flash)

skewyto swfdisplayitem_skewYTo() Ming (flash)

skewyto swffill_skewYTo() Ming (flash)

snmpwalkoid snmprealwalk() SNMP

strchr strstr() Base syntax

streammp3 swfmovie_streamMp3() Ming (flash)

swfaction swfaction_init() Ming (flash)

swfbitmap swfbitmap_init() Ming (flash)

swfbutton swfbutton_init() Ming (flash)

swffill swffill_init() Ming (flash)

swffont swffont_init() Ming (flash)

swfgradient swfgradient_init() Ming (flash)

swfmorph swfmorph_init() Ming (flash)

swfmovie swfmovie_init() Ming (flash)

swfshape swfshape_init() Ming (flash)

swfsprite swfsprite_init() Ming (flash)

swftext swftext_init() Ming (flash)

swftextfield swftextfield_init() Ming (flash)

unlink domxml_unlink_node() DOM XML

xptr_new_context xpath_new_context() DOM XML

List of Reserved Words

The following is a listing of predefined identifiers in PHP. None of the identifiers listed here
should be used as identifiers in any of your scripts. These lists include keywords and
predefined variable, constant, and class names. These lists are neither exhaustive or
complete.

List of Keywords

These words have special meaning in PHP. Some of them represent things which look like
functions, some look like constants, and so on--but they're not, really: they are language
constructs. You cannot use any of the following words as constants, class names, function
or method names. Using them as variable names is generally OK, but could lead to
confusion.

PHP Keywords

and or xor __FILE__ exception (PHP
5)

__LINE__ array() as break case

class const continue declare default

die() do echo() else elseif

empty() enddeclare endfor endforeach endif

endswitch endwhile eval() exit() extends

for foreach function global if

include() include_once() isset() list() new

print() require() require_once() return() static

switch unset() use var while

__FUNCTION__ __CLASS__ __METHOD__ final (as of PHP
5)

php_user_filter
(as of PHP 5)

interface (as of
PHP 5)

implements (as
of PHP 5)

instanceof (as of
PHP 5)

public (as of
PHP 5)

private (as of
PHP 5)

protected (as of
PHP 5)

abstract (as of
PHP 5)

clone (as of PHP
5)

try (as of PHP 5) catch (as of PHP
5)

throw (as of PHP
5)

cfunction (PHP 4
only)

old_function
(PHP 4 only)

this (as of PHP
5)

final (as of PHP
5)

__NAMESPACE
__ (as of PHP
5.3)

namespace (as
of PHP 5.3)

goto (PHP 6
only)

__DIR__ (as of
PHP 5.3)

Predefined Classes

This section lists standard predefined classes. Miscellaneous extensions define other
classes which are described in their reference.

Standard Defined Classes

These classes are defined in the standard set of functions included in the PHP build.

Directory
The class from which dir is instantiated.

stdClass

__PHP_Incomplete_Class

Predefined classes as of PHP 5

These additional predefined classes were introduced in PHP 5.0.0

exception

php_user_filter

Predefined Constants

Core Predefined Constants

These constants are defined by the PHP core. This includes PHP, the Zend engine, and
SAPI modules.

PHP_VERSION (string)

PHP_MAJOR_VERSION (integer)
Available since PHP 5.3.0.

PHP_MINOR_VERSION (integer)
Available since PHP 5.3.0.

PHP_RELEASE_VERSION (integer)
Available since PHP 5.3.0.

PHP_VERSION_ID (integer)
Available since PHP 5.3.0.

PHP_EXTRA_VERSION (string)
Available since PHP 5.3.0.

PHP_ZTS (integer)
Available since PHP 5.3.0.

PHP_DEBUG (integer)
Available since PHP 5.3.0.

PHP_OS (string)

PHP_SAPI (string)
Available since PHP 4.2.0. See also php_sapi_name().

PHP_EOL (string)
Available since PHP 4.3.10 and PHP 5.0.2

PHP_INT_MAX (integer)
Available since PHP 4.4.0 and PHP 5.0.5

PHP_INT_SIZE (integer)
Available since PHP 4.4.0 and PHP 5.0.5

DEFAULT_INCLUDE_PATH (string)

PEAR_INSTALL_DIR (string)

PEAR_EXTENSION_DIR (string)

PHP_EXTENSION_DIR (string)

PHP_PREFIX (string)
Available since PHP 4.3.0

PHP_BINDIR (string)

PHP_LIBDIR (string)

PHP_DATADIR (string)

PHP_SYSCONFDIR (string)

PHP_LOCALSTATEDIR (string)

PHP_CONFIG_FILE_PATH (string)

PHP_CONFIG_FILE_SCAN_DIR (string)

PHP_SHLIB_SUFFIX (string)
Available since PHP 4.3.0

PHP_OUTPUT_HANDLER_START (integer)

PHP_OUTPUT_HANDLER_CONT (integer)

PHP_OUTPUT_HANDLER_END (integer)

E_ERROR (integer)

E_WARNING (integer)

E_PARSE (integer)

E_NOTICE (integer)

E_CORE_ERROR (integer)

E_CORE_WARNING (integer)

E_COMPILE_ERROR (integer)

E_COMPILE_WARNING (integer)

E_USER_ERROR (integer)

E_USER_WARNING (integer)

E_USER_NOTICE (integer)

E_ALL (integer)

E_STRICT (integer)
Available since PHP 5.0.0

__COMPILER_HALT_OFFSET__ (integer)
Available since PHP 5.1.0

See also: Magic constants.

Standard Predefined Constants

These constants are defined in PHP by default.

EXTR_OVERWRITE (integer)

EXTR_SKIP (integer)

EXTR_PREFIX_SAME (integer)

EXTR_PREFIX_ALL (integer)

EXTR_PREFIX_INVALID (integer)

EXTR_PREFIX_IF_EXISTS (integer)

EXTR_IF_EXISTS (integer)

SORT_ASC (integer)

SORT_DESC (integer)

SORT_REGULAR (integer)

SORT_NUMERIC (integer)

SORT_STRING (integer)

CASE_LOWER (integer)

CASE_UPPER (integer)

COUNT_NORMAL (integer)

COUNT_RECURSIVE (integer)

ASSERT_ACTIVE (integer)

ASSERT_CALLBACK (integer)

ASSERT_BAIL (integer)

ASSERT_WARNING (integer)

ASSERT_QUIET_EVAL (integer)

CONNECTION_ABORTED (integer)

CONNECTION_NORMAL (integer)

CONNECTION_TIMEOUT (integer)

INI_USER (integer)

INI_PERDIR (integer)

INI_SYSTEM (integer)

INI_ALL (integer)

M_E (float)

M_LOG2E (float)

M_LOG10E (float)

M_LN2 (float)

M_LN10 (float)

M_PI (float)

M_PI_2 (float)

M_PI_4 (float)

M_1_PI (float)

M_2_PI (float)

M_2_SQRTPI (float)

M_SQRT2 (float)

M_SQRT1_2 (float)

CRYPT_SALT_LENGTH (integer)

CRYPT_STD_DES (integer)

CRYPT_EXT_DES (integer)

CRYPT_MD5 (integer)

CRYPT_BLOWFISH (integer)

DIRECTORY_SEPARATOR (string)

SEEK_SET (integer)

SEEK_CUR (integer)

SEEK_END (integer)

LOCK_SH (integer)

LOCK_EX (integer)

LOCK_UN (integer)

LOCK_NB (integer)

HTML_SPECIALCHARS (integer)

HTML_ENTITIES (integer)

ENT_COMPAT (integer)

ENT_QUOTES (integer)

ENT_NOQUOTES (integer)

INFO_GENERAL (integer)

INFO_CREDITS (integer)

INFO_CONFIGURATION (integer)

INFO_MODULES (integer)

INFO_ENVIRONMENT (integer)

INFO_VARIABLES (integer)

INFO_LICENSE (integer)

INFO_ALL (integer)

CREDITS_GROUP (integer)

CREDITS_GENERAL (integer)

CREDITS_SAPI (integer)

CREDITS_MODULES (integer)

CREDITS_DOCS (integer)

CREDITS_FULLPAGE (integer)

CREDITS_QA (integer)

CREDITS_ALL (integer)

STR_PAD_LEFT (integer)

STR_PAD_RIGHT (integer)

STR_PAD_BOTH (integer)

PATHINFO_DIRNAME (integer)

PATHINFO_BASENAME (integer)

PATHINFO_EXTENSION (integer)

PATH_SEPARATOR (string)

CHAR_MAX (integer)

LC_CTYPE (integer)

LC_NUMERIC (integer)

LC_TIME (integer)

LC_COLLATE (integer)

LC_MONETARY (integer)

LC_ALL (integer)

LC_MESSAGES (integer)

ABDAY_1 (integer)

ABDAY_2 (integer)

ABDAY_3 (integer)

ABDAY_4 (integer)

ABDAY_5 (integer)

ABDAY_6 (integer)

ABDAY_7 (integer)

DAY_1 (integer)

DAY_2 (integer)

DAY_3 (integer)

DAY_4 (integer)

DAY_5 (integer)

DAY_6 (integer)

DAY_7 (integer)

ABMON_1 (integer)

ABMON_2 (integer)

ABMON_3 (integer)

ABMON_4 (integer)

ABMON_5 (integer)

ABMON_6 (integer)

ABMON_7 (integer)

ABMON_8 (integer)

ABMON_9 (integer)

ABMON_10 (integer)

ABMON_11 (integer)

ABMON_12 (integer)

MON_1 (integer)

MON_2 (integer)

MON_3 (integer)

MON_4 (integer)

MON_5 (integer)

MON_6 (integer)

MON_7 (integer)

MON_8 (integer)

MON_9 (integer)

MON_10 (integer)

MON_11 (integer)

MON_12 (integer)

AM_STR (integer)

PM_STR (integer)

D_T_FMT (integer)

D_FMT (integer)

T_FMT (integer)

T_FMT_AMPM (integer)

ERA (integer)

ERA_YEAR (integer)

ERA_D_T_FMT (integer)

ERA_D_FMT (integer)

ERA_T_FMT (integer)

ALT_DIGITS (integer)

INT_CURR_SYMBOL (integer)

CURRENCY_SYMBOL (integer)

CRNCYSTR (integer)

MON_DECIMAL_POINT (integer)

MON_THOUSANDS_SEP (integer)

MON_GROUPING (integer)

POSITIVE_SIGN (integer)

NEGATIVE_SIGN (integer)

INT_FRAC_DIGITS (integer)

FRAC_DIGITS (integer)

P_CS_PRECEDES (integer)

P_SEP_BY_SPACE (integer)

N_CS_PRECEDES (integer)

N_SEP_BY_SPACE (integer)

P_SIGN_POSN (integer)

N_SIGN_POSN (integer)

DECIMAL_POINT (integer)

RADIXCHAR (integer)

THOUSANDS_SEP (integer)

THOUSEP (integer)

GROUPING (integer)

YESEXPR (integer)

NOEXPR (integer)

YESSTR (integer)

NOSTR (integer)

CODESET (integer)

LOG_EMERG (integer)

LOG_ALERT (integer)

LOG_CRIT (integer)

LOG_ERR (integer)

LOG_WARNING (integer)

LOG_NOTICE (integer)

LOG_INFO (integer)

LOG_DEBUG (integer)

LOG_KERN (integer)

LOG_USER (integer)

LOG_MAIL (integer)

LOG_DAEMON (integer)

LOG_AUTH (integer)

LOG_SYSLOG (integer)

LOG_LPR (integer)

LOG_NEWS (integer)

LOG_UUCP (integer)

LOG_CRON (integer)

LOG_AUTHPRIV (integer)

LOG_LOCAL0 (integer)

LOG_LOCAL1 (integer)

LOG_LOCAL2 (integer)

LOG_LOCAL3 (integer)

LOG_LOCAL4 (integer)

LOG_LOCAL5 (integer)

LOG_LOCAL6 (integer)

LOG_LOCAL7 (integer)

LOG_PID (integer)

LOG_CONS (integer)

LOG_ODELAY (integer)

LOG_NDELAY (integer)

LOG_NOWAIT (integer)

LOG_PERROR (integer)

List of Resource Types

The following is a list of functions which create, use or destroy PHP resources. The
function is_resource() can be used to determine if a variable is a resource and
get_resource_type() will return the type of resource it is.

Resource Types

Resource Type
Name

Created By Used By Destroyed By Definition

aspell aspell_new() aspell_check(),
aspell_check_r
aw(),
aspell_suggest(
)

None Aspell dictionary

bzip2 bzopen() bzerrno(),
bzerror(),
bzerrstr(),
bzflush(),
bzread(),
bzwrite()

bzclose() Bzip2 file

COM com_load() com_invoke(),
com_propget(),
com_get(),
com_propput(),
com_set(),
com_propput()

None COM object
reference

VARIANT

cpdf cpdf_open() cpdf_page_init(
),
cpdf_finalize_p
age(),
cpdf_finalize(),
cpdf_output_bu
ffer(),
cpdf_save_to_fi
le(),
cpdf_set_curre
nt_page(),
cpdf_begin_text
(),
cpdf_end_text()
, cpdf_show(),
cpdf_show_xy()
, cpdf_text(),

cpdf_close() PDF document
with CPDF lib

cpdf_set_font(),
cpdf_set_leadin
g(),
cpdf_set_text_r
endering(),
cpdf_set_horiz_
scaling(),
cpdf_set_text_ri
se(),
cpdf_set_text_
matrix(),
cpdf_set_text_p
os(),
cpdf_set_text_p
os(),
cpdf_set_word_
spacing(),
cpdf_continue_
text(),
cpdf_stringwidt
h(), cpdf_save(),
cpdf_translate()
, cpdf_restore(),
cpdf_scale(),
cpdf_rotate(),
cpdf_setflat(),
cpdf_setlinejoin
(),
cpdf_setlinecap
(),
cpdf_setmiterli
mit(),
cpdf_setlinewid
th(),
cpdf_setdash(),
cpdf_moveto(),
cpdf_rmoveto(),
cpdf_curveto(),
cpdf_lineto(),
cpdf_rlineto(),
cpdf_circle(),
cpdf_arc(),
cpdf_rect(),
cpdf_closepath(
), cpdf_stroke(),
cpdf_closepath
_fill_stroke(),
cpdf_fill_stroke
(), cpdf_clip(),
cpdf_fill(),
cpdf_setgray_fil
l(),

cpdf_setgray_st
roke(),
cpdf_setgray(),
cpdf_setrgbcol
or_fill(),
cpdf_setrgbcol
or_stroke(),
cpdf_setrgbcol
or(),
cpdf_add_outli
ne(),
cpdf_set_page_
animation(),
cpdf_import_jp
eg(),
cpdf_place_inli
ne_image(),
cpdf_add_anno
tation()

cpdf outline

curl curl_copy_handl
e(), curl_init()

curl_copy_handl
e(), curl_errno(),
curl_error(),
curl_exec(),
curl_getinfo(),
curl_setopt()

curl_close() Curl session

dbm dbmopen() dbmexists(),
dbmfetch(),
dbminsert(),
dbmreplace(),
dbmdelete(),
dbmfirstkey(),
dbmnextkey()

dbmclose() Link to DBM
database

dba dba_open() dba_delete(),
dba_exists(),
dba_fetch(),
dba_firstkey(),
dba_insert(),
dba_nextkey(),
dba_optimize(),
dba_replace(),
dba_sync()

dba_close() Link to DBA
database

dba persistent dba_popen() dba_delete(),
dba_exists(),
dba_fetch(),
dba_firstkey(),
dba_insert(),

None Persistent link to
DBA database

dba_nextkey(),
dba_optimize(),
dba_replace(),
dba_sync()

dbase dbase_open() dbase_pack(), d
base_add_recor
d(), dbase_repla
ce_record(), dba
se_delete_recor
d(), dbase_get_r
ecord(), dbase_g
et_record_with_n
ames(), dbase_n
umfields(), dbase
_numrecords()

dbase_close() Link to Dbase
database

dbx_link_object dbx_connect() dbx_query() dbx_close() dbx connection

dbx_result_objec
t

dbx_query() None dbx result

domxml attribute

domxml
document

domxml node

xpath context

xpath object

fbsql link fbsql_change_us
er(),
fbsql_connect()

fbsql_autocommi
t(),
fbsql_blob_size()
,
fbsql_clob_size()
, fbsql_commit(),
fbsql_change_us
er(), fbsql_create
_blob(), fbsql_cr
eate_db(), fbsql_
create_clob(), fb
sql_data_seek(),
fbsql_database_
password(),
fbsql_database()
,
fbsql_db_query()
,
fbsql_db_status()

fbsql_close() Link to fbsql
database

, fbsql_drop_db()
, fbsql_errno(),
fbsql_error(), fbs
ql_get_autostart
_info(), fbsql_hos
tname(),
fbsql_insert_id(),
fbsql_list_dbs(),
fbsql_password()
, fbsql_read_blob
(), fbsql_read_cl
ob(),
fbsql_rollback(),
fbsql_select_db()
, fbsql_set_pass
word(), fbsql_set
_transaction(),
fbsql_start_db(),
fbsql_stop_db(),
fbsql_username(
)

fbsql plink fbsql_change_us
er(),
fbsql_pconnect()

fbsql_autocommi
t(), fbsql_change
_user(), fbsql_cr
eate_db(), fbsql_
data_seek(),
fbsql_db_query()
, fbsql_drop_db()
,
fbsql_select_db()
, fbsql_errno(),
fbsql_error(),
fbsql_insert_id(),
fbsql_list_dbs()

None Persistent link to
fbsql database

fbsql result fbsql_db_query()
, fbsql_list_dbs(),
fbsql_query(),
fbsql_list_fields()
, fbsql_list_tables
(), fbsql_tablena
me()

fbsql_affected_ro
ws(), fbsql_fetch
_array(), fbsql_fe
tch_assoc(), fbsq
l_fetch_field(), fb
sql_fetch_length
s(), fbsql_fetch_o
bject(),
fbsql_fetch_row()
, fbsql_field_flag
s(), fbsql_field_n
ame(),
fbsql_field_len(),
fbsql_field_seek(
), fbsql_field_tabl
e(),

fbsql_free_result
()

fbsql result

fbsql_field_type()
, fbsql_next_resu
lt(), fbsql_num_fi
elds(), fbsql_num
_rows(),
fbsql_result(), fbs
ql_num_rows()

fdf fdf_open() fdf_create(),
fdf_save(),
fdf_get_value(),
fdf_set_value(), f
df_next_field_na
me(),
fdf_set_ap(),
fdf_set_status(),
fdf_get_status(),
fdf_set_file(),
fdf_get_file(),
fdf_set_flags(),
fdf_set_opt(), fdf
_set_submit_for
m_action(), fdf_s
et_javascript_act
ion()

fdf_close() FDF File

ftp ftp_connect(),
ftp_ssl_connect()

ftp_login(),
ftp_pwd(),
ftp_cdup(),
ftp_chdir(),
ftp_mkdir(),
ftp_rmdir(),
ftp_nlist(),
ftp_rawlist(),
ftp_systype(),
ftp_pasv(),
ftp_get(),
ftp_fget(),
ftp_put(),
ftp_fput(),
ftp_size(),
ftp_mdtm(),
ftp_rename(),
ftp_delete(),
ftp_site(),
ftp_alloc(),
ftp_chmod(),
ftp_exec(),
ftp_get_option(),
ftp_nb_continue(
), ftp_nb_fget(),
ftp_nb_fput(),

ftp_close() FTP stream

ftp_nb_get(),
ftp_nb_put(),
ftp_raw(),
ftp_set_option()

gd imagecreate(), i
magecreatefrom
gd(), imagecreat
efromgd2(), imag
ecreatefromgd2p
art(), imagecreat
efromgif(), image
createfromjpeg(),
imagecreatefrom
png(), imagecrea
tefromwbmp(), i
magecreatefrom
string(), imagecr
eatefromxbm(), i
magecreatefrom
xpm(), imagecre
atetruecolor(),
imagerotate()

imagearc(),
imagechar(),
imagecharup(), i
magecolorallocat
e(),
imagecolorat(), i
magecolorcloses
t(), imagecolorex
act(), imagecolor
resolve(), image
gammacorrect(),
imagegammacor
rect(),
imagecolorset(), i
magecolorsforind
ex(), imagecolors
total(), imagecolo
rtransparent(),
imagecopy(), ima
gecopyresized(),
imagedashedline
(), imagefill(), im
agefilledpolygon(
), imagefilledrect
angle(), imagefillt
oborder(),
imagegif(),
imagepng(),
imagejpeg(),
imagewbmp(),
imageinterlace(),
imageline(),
imagepolygon(),
imagepstext(),
imagerectangle()
, imagerotate(),
imagesetpixel(),
imagestring(),
imagestringup(),
imagesx(),
imagesy(),
imagettftext(),
imagefilledarc(),
imageellipse(), i
magefilledellipse
(), imagecolorclo
sestalpha(), imag

imagedestroy() GD Image

ecolorexactalpha
(), imagecolorres
olvealpha(), imag
ecopymerge(), i
magecopymerge
gray(), imagecop
yresampled(), im
agetruecolortopa
lette(),
imagesetbrush(),
imagesettile(), im
agesetthickness(
), image2wbmp()
, imagealphablen
ding(),
imageantialias(),
imagecoloralloca
tealpha(), image
colorclosesthwb(
), imagecolordeal
locate(), imageco
lormatch(),
imagefilter(),
imagefttext(),
imagegd(),
imagegd2(), ima
geistruecolor(), i
magelayereffect(
), imagepaletteco
py(), imagesavea
lpha(),
imagesetstyle(),
imagexbm()

gd font imageloadfont() imagechar(),
imagecharup(), i
magefontheight()

None Font for GD

gd PS encoding

gd PS font imagepsloadfont(
)

imagepstext(), im
agepsslantfont(),
imagepsextendfo
nt(), imagepsenc
odefont(),
imagepsbbox()

imagepsfreefont(
)

PS font for GD

GMP integer gmp_init() gmp_intval(),
gmp_strval(),
gmp_add(),
gmp_sub(),
gmp_mul(),

None GMP Number

gmp_div_q(),
gmp_div_r(),
gmp_div_qr(),
gmp_div(),
gmp_mod(),
gmp_divexact(),
gmp_cmp(),
gmp_neg(),
gmp_abs(),
gmp_sign(),
gmp_fact(),
gmp_sqrt(),
gmp_sqrtrm(), g
mp_perfect_squ
are(), gmp_pow()
, gmp_powm(), g
mp_prob_prime()
, gmp_gcd(),
gmp_gcdext(),
gmp_invert(),
gmp_legendre(),
gmp_jacobi(),
gmp_random(),
gmp_and(),
gmp_or(),
gmp_xor(),
gmp_setbit(),
gmp_clrbit(),
gmp_scan0(),
gmp_scan1(),
gmp_popcount(),
gmp_hamdist()

hyperwave
document

hw_cp(), hw_doc
byanchor(),
hw_getremote(),
hw_getremotechi
ldren()

hw_children(),
hw_childrenobj(),
hw_getparents(),
hw_getparentsob
j(),
hw_getchildcoll()
, hw_getchildcoll
obj(),
hw_getremote(),
hw_getsrcbydest
obj(),
hw_getandlock(),
hw_gettext(), hw
_getobjectbyquer
ycoll(), hw_getob
jectbyquerycollo
bj(), hw_getchild
doccoll(), hw_get
childdoccollobj(),

hw_deleteobject(
)

Hyperwave
object

hw_getanchors()
, hw_getanchors
obj(),
hw_inscoll(), hw_
pipedocument(),
hw_unlock()

hyperwave link hw_connect() hw_children(),
hw_childrenobj(),
hw_cp(), hw_del
eteobject(), hw_d
ocbyanchor(), hw
_docbyanchorobj
(),
hw_errormsg(),
hw_edittext(),
hw_error(),
hw_getparents(),
hw_getparentsob
j(),
hw_getchildcoll()
, hw_getchildcoll
obj(),
hw_getremote(),
hw_getremotechi
ldren(), hw_getsr
cbydestobj(),
hw_getobject(),
hw_getandlock(),
hw_gettext(), hw
_getobjectbyquer
y(), hw_getobject
byqueryobj(), hw
_getobjectbyquer
ycoll(), hw_getob
jectbyquerycollo
bj(), hw_getchild
doccoll(), hw_get
childdoccollobj(),
hw_getanchors()
, hw_getanchors
obj(), hw_mv(), h
w_incollections(),
hw_info(),
hw_inscoll(),
hw_insdoc(), hw
_insertdocument
(),
hw_insertobject()
, hw_mapid(), hw
_modifyobject(),
hw_pipedocume

hw_close(), hw_f
ree_document()

Link to
Hyperwave
server

nt(), hw_unlock()
, hw_who(), hw_
getusername()

hyperwave link
persistent

hw_pconnect() hw_children(),
hw_childrenobj(),
hw_cp(), hw_del
eteobject(), hw_d
ocbyanchor(), hw
_docbyanchorobj
(),
hw_errormsg(),
hw_edittext(),
hw_error(),
hw_getparents(),
hw_getparentsob
j(),
hw_getchildcoll()
, hw_getchildcoll
obj(),
hw_getremote(),
hw_getremotechi
ldren(), hw_getsr
cbydestobj(),
hw_getobject(),
hw_getandlock(),
hw_gettext(), hw
_getobjectbyquer
y(), hw_getobject
byqueryobj(), hw
_getobjectbyquer
ycoll(), hw_getob
jectbyquerycollo
bj(), hw_getchild
doccoll(), hw_get
childdoccollobj(),
hw_getanchors()
, hw_getanchors
obj(), hw_mv(), h
w_incollections(),
hw_info(),
hw_inscoll(),
hw_insdoc(), hw
_insertdocument
(),
hw_insertobject()
, hw_mapid(), hw
_modifyobject(),
hw_pipedocume
nt(), hw_unlock()
, hw_who(), hw_
getusername()

None Persistent link to
Hyperwave
server

icap icap_open() icap_fetch_eve
nt(),
icap_list_event
s(),
icap_store_eve
nt(),
icap_snooze(),
icap_list_alarm
s(),
icap_delete_eve
nt()

icap_close() Link to icap
server

imap imap_open() imap_append(),
imap_body(),
imap_check(), im
ap_createmailbo
x(),
imap_delete(), i
map_deletemailb
ox(),
imap_expunge(),
imap_fetchbody(
), imap_fetchstru
cture(), imap_he
aderinfo(),
imap_header(),
imap_headers(),
imap_listmailbox
(), imap_getmail
boxes(), imap_g
et_quota(),
imap_status(), im
ap_listsubscribe
d(), imap_set_qu
ota(), imap_set_
quota(), imap_ge
tsubscribed(), im
ap_mail_copy(), i
map_mail_move(
), imap_num_ms
g(), imap_num_r
ecent(),
imap_ping(), ima
p_renamemailbo
x(),
imap_reopen(),
imap_subscribe()
,
imap_undelete(),
imap_unsubscrib
e(), imap_scanm
ailbox(), imap_m

imap_close() Link to IMAP,
POP3 server

ailboxmsginfo(), i
map_fetchheade
r(), imap_uid(),
imap_msgno(),
imap_search(), i
map_fetch_overv
iew()

imap chain
persistent

imap persistent

ingres ingres_connect() ingres_query(), i
ngres_num_rows
(), ingres_num_fi
elds(), ingres_fiel
d_name(), ingres
_field_type(), ing
res_field_nullabl
e(), ingres_field_l
ength(), ingres_fi
eld_precision(), i
ngres_field_scal
e(), ingres_fetch
_array(), ingres_f
etch_row(), ingre
s_fetch_object(),
ingres_rollback(),
ingres_commit(),
ingres_autocom
mit()

ingres_close() Link to ingresII
base

ingres persistent ingres_pconnect(
)

ingres_query(), i
ngres_num_rows
(), ingres_num_fi
elds(), ingres_fiel
d_name(), ingres
_field_type(), ing
res_field_nullabl
e(), ingres_field_l
ength(), ingres_fi
eld_precision(), i
ngres_field_scal
e(), ingres_fetch
_array(), ingres_f
etch_row(), ingre
s_fetch_object(),
ingres_rollback(),
ingres_commit(),
ingres_autocom
mit()

None Persistent link to
ingresII base

interbase blob

interbase link ibase_connect() ibase_query(),
ibase_prepare(),
ibase_trans()

ibase_close() Link to Interbase
database

interbase link
persistent

ibase_pconnect() ibase_query(),
ibase_prepare(),
ibase_trans()

None Persistent link to
Interbase
database

interbase query ibase_prepare() ibase_execute() ibase_free_quer
y()

Interbase query

interbase result ibase_query() ibase_fetch_row(
), ibase_fetch_ob
ject(),
ibase_field_info()
, ibase_num_fiel
ds()

ibase_free_result
()

Interbase Result

interbase
transaction

ibase_trans() ibase_commit() ibase_rollback() Interbase
transaction

java

ldap link ldap_connect(),
ldap_search()

ldap_count_entri
es(), ldap_first_a
ttribute(),
ldap_first_entry()
, ldap_get_attrib
utes(),
ldap_get_dn(), ld
ap_get_entries(),
ldap_get_values(
), ldap_get_value
s_len(), ldap_nex
t_attribute(), ldap
_next_entry()

ldap_close() ldap connection

ldap result ldap_read() ldap_add(),
ldap_compare(),
ldap_bind(), ldap
_count_entries(),
ldap_delete(),
ldap_errno(),
ldap_error(), ldap
_first_attribute(),
ldap_first_entry()
, ldap_get_attrib
utes(),
ldap_get_dn(), ld
ap_get_entries(),

ldap_free_result(
)

ldap search
result

ldap_get_values(
), ldap_get_value
s_len(), ldap_get
_option(),
ldap_list(),
ldap_modify(),
ldap_mod_add(),
ldap_mod_replac
e(), ldap_next_at
tribute(), ldap_ne
xt_entry(),
ldap_mod_del(),
ldap_set_option(
), ldap_unbind()

ldap result entry

mcal mcal_open(),
mcal_popen()

mcal_create_ca
lendar(),
mcal_rename_c
alendar(),
mcal_rename_c
alendar(),
mcal_delete_cal
endar(),
mcal_fetch_eve
nt(),
mcal_list_event
s(),
mcal_append_e
vent(),
mcal_store_eve
nt(),
mcal_delete_ev
ent(),
mcal_list_alarm
s(),
mcal_event_init
(),
mcal_event_set
_category(),
mcal_event_set
_title(),
mcal_event_set
_description(),
mcal_event_set
_start(),
mcal_event_set
_end(),
mcal_event_set
_alarm(),
mcal_event_set

mcal_close() Link to calendar
server

_class(),
mcal_next_recu
rrence(),
mcal_event_set
_recur_none(),
mcal_event_set
_recur_daily(),
mcal_event_set
_recur_weekly()
,
mcal_event_set
_recur_monthly
_mday(),
mcal_event_set
_recur_monthly
_wday(),
mcal_event_set
_recur_yearly(),
mcal_fetch_cur
rent_stream_ev
ent(),
mcal_event_ad
d_attribute(),
mcal_expunge()

SWFAction

SWFBitmap

SWFButton

SWFDisplayItem

SWFFill

SWFFont

SWFGradient

SWFMorph

SWFMovie

SWFShape

SWFSprite

SWFText

SWFTextField

mnogosearch

agent

mnogosearch
result

msql link msql_connect() msql(), msql_cre
ate_db(),
msql_createdb(),
msql_drop_db(),
msql_drop_db(),
msql_select_db()
,
msql_select_db()

msql_close() Link to mSQL
database

msql link
persistent

msql_pconnect() msql(), msql_cre
ate_db(),
msql_createdb(),
msql_drop_db(),
msql_drop_db(),
msql_select_db()
,
msql_select_db()

None Persistent link to
mSQL

msql query msql_db_query()
, msql_list_dbs(),
msql_list_fields()
, msql_list_tables
(), msql_query()

msql(), msql_affe
cted_rows(), msq
l_data_seek(),
msql_dbname(),
msql_fetch_array
(), msql_fetch_fie
ld(), msql_fetch_
object(),
msql_fetch_row()
, msql_field_see
k(), msql_field_ta
ble(), msql_field_
flags(),
msql_field_len(),
msql_field_name
(),
msql_field_type()
, msql_num_field
s(), msql_num_r
ows(),
msql_numfields()
,
msql_numrows(),
msql_result()

msql_free_result
(), msql_free_res
ult()

mSQL result

mssql link mssql_connect() mssql_query(),
mssql_select_db
()

mssql_close() Link to Microsoft
SQL Server
database

mssql link
persistent

mssql_pconnect(
)

mssql_query(),
mssql_select_db
()

None Persistent link to
Microsoft SQL
Server

mssql result mssql_query() mssql_data_see
k(), mssql_fetch_
array(), mssql_fe
tch_field(), mssql
_fetch_object(),
mssql_fetch_row
(), mssql_field_le
ngth(), mssql_fiel
d_name(), mssql
_field_seek(), ms
sql_field_type(),
mssql_num_field
s(), mssql_num_
rows(),
mssql_result()

mssql_free_resul
t()

Microsoft SQL
Server result

mysql link mysql_connect() mysql_affected_r
ows(), mysql_ch
ange_user(), my
sql_create_db(),
mysql_data_see
k(), mysql_db_na
me(), mysql_db_
query(),
mysql_drop_db()
, mysql_errno(),
mysql_error(),
mysql_insert_id()
,
mysql_list_dbs(),
mysql_list_fields(
), mysql_list_tabl
es(),
mysql_query(),
mysql_result(), m
ysql_select_db(),
mysql_tablenam
e(), mysql_get_h
ost_info(), mysql
_get_proto_info()
, mysql_get_serv
er_info()

mysql_close() Link to MySQL
database

mysql link
persistent

mysql_pconnect(
)

mysql_affected_r
ows(), mysql_ch
ange_user(), my
sql_create_db(),
mysql_data_see

None Persistent link to
MySQL
database

k(), mysql_db_na
me(), mysql_db_
query(),
mysql_drop_db()
, mysql_errno(),
mysql_error(),
mysql_insert_id()
,
mysql_list_dbs(),
mysql_list_fields(
), mysql_list_tabl
es(),
mysql_query(),
mysql_result(), m
ysql_select_db(),
mysql_tablenam
e(), mysql_get_h
ost_info(), mysql
_get_proto_info()
, mysql_get_serv
er_info()

mysql result mysql_db_query(
),
mysql_list_dbs(),
mysql_list_fields(
), mysql_list_pro
cesses(), mysql_
list_tables(),
mysql_query(),
mysql_unbuffere
d_query()

mysql_data_see
k(), mysql_db_na
me(), mysql_fetc
h_array(), mysql
_fetch_assoc(),
mysql_fetch_fiel
d(), mysql_fetch_
lengths(), mysql_
fetch_object(), m
ysql_fetch_row(),
mysql_fetch_row
(), mysql_field_fl
ags(), mysql_fiel
d_name(),
mysql_field_len()
, mysql_field_se
ek(), mysql_field
_table(), mysql_fi
eld_type(), mysql
_num_fields(), m
ysql_num_rows()
, mysql_result(),
mysql_tablenam
e()

mysql_free_resul
t()

MySQL result

oci8 collection

oci8 connection ocilogon(),
ociplogon(),
ocinlogon()

ocicommit(), ocis
erverversion(),
ocinewcursor(),

ocilogoff() Link to Oracle
database

ociparse(),
ocierror()

oci8 descriptor

oci8 server

oci8 session

oci8 statement ocinewdescriptor
()

ocirollback(), oci
newdescriptor(),
ocirowcount(), oc
idefinebyname(),
ocibindbyname(),
ociexecute(),
ocinumcols(),
ociresult(),
ocifetch(),
ocifetchinto(), oci
fetchstatement(),
ocicolumnisnull()
,
ocicolumnname()
, ocicolumnsize()
, ocicolumntype()
, ocistatementtyp
e(), ocierror()

ocifreestatement
()

Oracle Cursor

odbc link odbc_connect() odbc_autocommi
t(),
odbc_commit(),
odbc_error(),
odbc_errormsg(),
odbc_exec(),
odbc_tables(), o
dbc_tableprivileg
es(), odbc_do(),
odbc_prepare(),
odbc_columns(),
odbc_columnpriv
ileges(), odbc_pr
ocedurecolumns(
), odbc_specialc
olumns(),
odbc_rollback(),
odbc_setoption()
, odbc_gettypeinf
o(), odbc_primar
ykeys(), odbc_for
eignkeys(), odbc
_procedures(),
odbc_statistics()

odbc_close() Link to ODBC
database

odbc link
persistent

odbc_pconnect() odbc_autocommi
t(),
odbc_commit(),
odbc_error(),
odbc_errormsg(),
odbc_exec(),
odbc_tables(), o
dbc_tableprivileg
es(), odbc_do(),
odbc_prepare(),
odbc_columns(),
odbc_columnpriv
ileges(), odbc_pr
ocedurecolumns(
), odbc_specialc
olumns(),
odbc_rollback(),
odbc_setoption()
, odbc_gettypeinf
o(), odbc_primar
ykeys(), odbc_for
eignkeys(), odbc
_procedures(),
odbc_statistics()

None Persistent link to
ODBC database

odbc result odbc_prepare() odbc_binmode(),
odbc_cursor(),
odbc_execute(),
odbc_fetch_into(
), odbc_fetch_ro
w(), odbc_field_n
ame(), odbc_fiel
d_num(),
odbc_field_type()
, odbc_field_len()
, odbc_field_prec
ision(), odbc_fiel
d_scale(), odbc_l
ongreadlen(), od
bc_num_fields(),
odbc_num_rows(
), odbc_result(),
odbc_result_all(),
odbc_setoption()

odbc_free_result
()

ODBC result

birdstep link

birdstep result

OpenSSL key openssl_get_priv
atekey(), openssl
_get_publickey()

openssl_sign(),
openssl_seal(),
openssl_open(),

openssl_free_ke
y()

OpenSSL key

openssl_verify()

OpenSSL X.509 openssl_x509_re
ad()

openssl_x509_p
arse(), openssl_x
509_checkpurpo
se()

openssl_x509_fr
ee()

Public Key

oracle Cursor ora_open() ora_bind(),
ora_columnna
me(),
ora_columnsize
(),
ora_columntyp
e(), ora_error(),
ora_errorcode()
, ora_exec(),
ora_fetch(),
ora_fetch_into()
,
ora_getcolumn(
),
ora_numcols(),
ora_numrows(),
ora_parse()

ora_close() Oracle cursor

oracle link ora_logon() ora_do(),
ora_error(),
ora_errorcode()
, ora_rollback(),
ora_commitoff()
,
ora_commiton()
, ora_open(),
ora_commit()

ora_logoff() Link to oracle
database

oracle link
persistent

ora_plogon() ora_do(),
ora_error(),
ora_errorcode()
, ora_rollback(),
ora_commitoff()
,
ora_commiton()
, ora_open(),
ora_commit()

None Persistent link to
oracle database

pdf document pdf_new() pdf_add_bookm
ark(), pdf_add_la
unchlink(), pdf_a
dd_locallink(),
pdf_add_note(),
pdf_add_pdflink(
), pdf_add_webli

pdf_close(),
pdf_delete()

PDF document

nk(), pdf_arc(),
pdf_attach_file(),
pdf_begin_page(
), pdf_circle(),
pdf_clip(),
pdf_closepath(),
pdf_closepath_fil
l_stroke(), pdf_cl
osepath_stroke()
, pdf_concat(), p
df_continue_text(
), pdf_curveto(),
pdf_end_page(),
pdf_endpath(),
pdf_fill(),
pdf_fill_stroke(),
pdf_findfont(),
pdf_get_buffer(),
pdf_get_image_
height(), pdf_get
_image_width(),
pdf_get_paramet
er(),
pdf_get_value(),
pdf_lineto(),
pdf_moveto(),
pdf_open_ccitt(),
pdf_open_file(),
pdf_open_image
_file(), pdf_place
_image(),
pdf_rect(),
pdf_restore(),
pdf_rotate(),
pdf_save(),
pdf_scale(),
pdf_setdash(),
pdf_setflat(),
pdf_setfont(),
pdf_setgray(),
pdf_setgray_fill(),
pdf_setgray_stro
ke(),
pdf_setlinecap(),
pdf_setlinejoin(),
pdf_setlinewidth(
), pdf_setmiterlim
it(), pdf_setpolyd
ash(),
pdf_setrgbcolor()
, pdf_setrgbcolor
_fill(), pdf_setrgb

color_stroke(), p
df_set_border_c
olor(), pdf_set_b
order_dash(), pdf
_set_border_styl
e(), pdf_set_char
_spacing(), pdf_s
et_duration(),
pdf_set_font(),
pdf_set_horiz_sc
aling(), pdf_set_
parameter(), pdf
_set_text_pos(),
pdf_set_text_ren
dering(),
pdf_set_value(),
pdf_set_word_sp
acing(),
pdf_show(), pdf_
show_boxed(),
pdf_show_xy(),
pdf_skew(),
pdf_stringwidth(),
pdf_stroke(),
pdf_translate(), p
df_add_thumbna
il(), pdf_arcn(), p
df_begin_pattern
(), pdf_begin_te
mplate(), pdf_en
d_pattern(), pdf_
end_template(),
pdf_initgraphics()
, pdf_makespotc
olor(),
pdf_set_info(),
pdf_setcolor(),
pdf_setmatrix(),
pdf_open_memo
ry_image()

pdf image pdf_open_image
(), pdf_open_ima
ge_file(), pdf_op
en_memory_ima
ge()

pdf_get_image_
height(), pdf_get
_image_width(),
pdf_open_CCITT
(), pdf_place_im
age()

pdf_close_image
()

Image in PDF file

pdf object

pdf outline

pgsql large
object

pg_lo_open() pg_lo_open(),
pg_lo_create(),
pg_lo_read(),
pg_lo_read_all(),
pg_lo_seek(),
pg_lo_tell(),
pg_lo_unlink(),
pg_lo_write()

pg_lo_close() PostgreSQL
Large Object

pgsql link pg_connect() pg_affected_row
s(), pg_query(),
pg_send_query()
, pg_get_result(),
pg_connection_b
usy(), pg_connec
tion_reset(), pg_
connection_statu
s(),
pg_last_error(),
pg_last_notice(),
pg_lo_create(),
pg_lo_export(),
pg_lo_import(),
pg_lo_open(),
pg_lo_unlink(),
pg_host(),
pg_port(),
pg_dbname(),
pg_options(),
pg_copy_from(),
pg_copy_to(),
pg_end_copy(),
pg_put_line(),
pg_tty(),
pg_trace(),
pg_untrace(), pg
_set_client_enco
ding(), pg_client_
encoding(),
pg_metadata(),
pg_convert(),
pg_insert(),
pg_select(),
pg_delete(),
pg_update()

pg_close() Link to
PostgreSQL
database

pgsql link
persistent

pg_pconnect() pg_affected_row
s(), pg_query(),
pg_send_query()
, pg_get_result(),
pg_connection_b
usy(), pg_connec

None Persistent link to
PostgreSQL
database

tion_reset(), pg_
connection_statu
s(),
pg_last_error(),
pg_last_notice(),
pg_lo_create(),
pg_lo_export(),
pg_lo_import(),
pg_lo_open(),
pg_lo_unlink(),
pg_host(),
pg_port(),
pg_dbname(),
pg_options(),
pg_copy_from(),
pg_copy_to(),
pg_end_copy(),
pg_put_line(),
pg_tty(),
pg_trace(),
pg_untrace(), pg
_set_client_enco
ding(), pg_client_
encoding(),
pg_metadata(),
pg_convert(),
pg_insert(),
pg_select(),
pg_delete(),
pg_update()

pgsql result pg_execute(),
pg_query(), pg_q
uery_params(),
pg_get_result()

pg_fetch_array(),
pg_fetch_object(
),
pg_fetch_result()
, pg_fetch_row(),
pg_field_is_null()
,
pg_field_name(),
pg_field_num(),
pg_field_prtlen(),
pg_field_size(),
pg_field_type(),
pg_last_oid(),
pg_num_fields(),
pg_num_rows(),
pg_result_error()
, pg_result_statu
s()

pg_free_result() PostgreSQL
result

pgsql string

printer

printer brush

printer font

printer pen

pspell pspell_new(), ps
pell_new_config(
), pspell_new_pe
rsonal()

pspell_add_to_p
ersonal(), pspell_
add_to_session()
, pspell_check(),
pspell_clear_ses
sion(), pspell_co
nfig_ignore(), ps
pell_config_mod
e(), pspell_config
_personal(), psp
ell_config_repl(),
pspell_config_ru
ntogether(), pspe
ll_config_save_r
epl(), pspell_sav
e_wordlist(), psp
ell_store_replace
ment(),
pspell_suggest()

None pspell dictionary

pspell config pspell_config_cr
eate()

pspell_new_confi
g()

None pspell
configuration

Sablotron XSLT xslt_create() xslt_closelog(),
xslt_openlog(),
xslt_run(), xslt_s
et_sax_handler()
, xslt_errno(),
xslt_error(),
xslt_fetch_resul
t(), xslt_free()

xslt_free() XSLT parser

shmop shmop_open() shmop_read(),
shmop_write(),
shmop_size(),
shmop_delete()

shmop_close()

sockets file
descriptor set

socket() accept_connect
(), bind(),
connect(),
listen(), read(),
write()

close() Socket

sockets i/o

vector

stream opendir() readdir(),
rewinddir()

closedir() Dir handle

stream fopen(), tmpfile() feof(), fflush(),
fgetc(), fgetcsv(),
fgets(), fgetss(),
flock(),
fpassthru(),
fputs(), fwrite(),
fread(), fseek(),
ftell(), fstat(),
ftruncate(),
set_file_buffer(),
rewind()

fclose() File handle

stream popen() feof(), fflush(),
fgetc(), fgetcsv(),
fgets(), fgetss(),
fpassthru(),
fputs(), fwrite(),
fread()

pclose() Process handle

socket fsockopen(),
pfsockopen()

fflush(), fgetc(),
fgetcsv(), fgets(),
fgetss(),
fpassthru(),
fputs(), fwrite(),
fread()

fclose() Socket handle

sybase-db link sybase_connect(
)

sybase_query(),
sybase_select_d
b()

sybase_close() Link to Sybase
database using
DB library

sybase-db link
persistent

sybase_pconnec
t()

sybase_query(),
sybase_select_d
b()

None Persistent link to
Sybase
database using
DB library

sybase-db result sybase_query(),
sybase_unbuffer
ed_query()

sybase_data_se
ek(), sybase_fetc
h_array(), sybas
e_fetch_field(), s
ybase_fetch_obj
ect(), sybase_fet
ch_row(), sybase
_field_seek(), sy
base_num_fields
(), sybase_num_
rows(),
sybase_result()

sybase_free_res
ult()

Sybase result
using DB library

sybase-ct link sybase_connect(
)

sybase_affected
_rows(),
sybase_query(),
sybase_select_d
b()

sybase_close() Link to Sybase
database using
CT library

sybase-ct link
persistent

sybase_pconnec
t()

sybase_affected
_rows(),
sybase_query(),
sybase_select_d
b()

None Persistent link to
Sybase
database using
CT library

sybase-ct result sybase_query() sybase_data_se
ek(), sybase_fetc
h_array(), sybas
e_fetch_field(), s
ybase_fetch_obj
ect(), sybase_fet
ch_row(), sybase
_field_seek(), sy
base_num_fields
(), sybase_num_
rows(),
sybase_result()

sybase_free_res
ult()

Sybase result
using CT library

sysvsem sem_get() sem_acquire() sem_release() System V
Semaphore

sysvshm shm_attach() shm_remove(),
shm_put_var(),
shm_get_var(), s
hm_remove_var(
)

shm_detach() System V
Shared Memory

wddx wddx_packet_st
art()

wddx_add_vars() wddx_packet_en
d()

WDDX packet

xml xml_parser_crea
te(), xml_parser_
create_ns()

xml_set_object(),
xml_set_element
handler(), xml
set_character_d
ata_handler(), x
ml_set_processi
ng_instruction_h
andler(), xml_set
_default_handler
(), xml_set_unpa
rsed_entity_decl
handler(), xml
set_notation_dec
l_handler(), xml_
set_external_enti

xml_parser_free(
)

XML parser

ty_ref_handler(),
xml_parse(), xml
_get_error_code(
), xml_error_strin
g(), xml_get_curr
ent_line_number
(), xml_get_curre
nt_column_numb
er(), xml_get_cur
rent_byte_index(
), xml_parse_into
_struct(), xml_pa
rser_set_option()
, xml_parser_get
_option()

zlib gzopen() gzeof(), gzgetc(),
gzgets(),
gzgetss(),
gzpassthru(),
gzputs(),
gzread(),
gzrewind(),
gzseek(), gztell(),
gzwrite()

gzclose() gz-compressed
file

List of Supported Protocols/Wrappers

The following is a list of the various URL style protocols that PHP has built-in for use with
the filesystem functions such as fopen() and copy(). In addition to these wrappers, as of
PHP 4.3.0, you can write your own wrappers using PHP script and
stream_wrapper_register().

List of context options is available in the chapter Context options and parameters.

Filesystem

All versions of PHP. Explicitly using file:// since PHP 5.0.0.

• /path/to/file.ext

• relative/path/to/file.ext

• fileInCwd.ext

• C:/path/to/winfile.ext

• C:\path\to\winfile.ext

• \\smbserver\share\path\to\winfile.ext

• file:///path/to/file.ext

Filesystem is the default wrapper used with PHP and represents the local filesystem.
When a relative path is specified (a path which does not begin with /, \, \\, or a Windows
drive letter) the path provided will be applied against the current working directory. In many
cases this is the directory in which the script resides unless it has been changed. Using
the CLI sapi, this defaults to the directory from which the script was called.

With some functions, such as fopen() and file_get_contents(), include_path may be
optionally searched for relative paths as well.

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Allows Reading Yes

Allows Writing Yes

Allows Appending Yes

Allows Simultaneous Reading and Writing Yes

Supports stat() Yes

Supports unlink() Yes

Supports rename() Yes

Supports mkdir() Yes

Supports rmdir() Yes

HTTP and HTTPS

PHP 4, PHP 5, PHP 6. https:// since PHP 4.3.0

• http://example.com

• http://example.com/file.php?var1=val1&var2=val2

• http://user:password@example.com

• https://example.com

• https://example.com/file.php?var1=val1&var2=val2

• https://user:password@example.com

Allows read-only access to files/resources via HTTP 1.0, using the HTTP GET method. A
Host: header is sent with the request to handle name-based virtual hosts. If you have
configured a user_agent string using your ini file or the stream context, it will also be
included in the request.

Warning

When using SSL, Microsoft IIS will violate the protocol by closing the connection
without sending a close_notify indicator. PHP will report this as "SSL: Fatal Protocol
Error" when you reach the end of the data. To work around this, the value of
error_reporting should be lowered to a level that does not include warnings. PHP 4.3.7
and higher can detect buggy IIS server software when you open the stream using the
https:// wrapper and will suppress the warning. When using fsockopen() to create an
ssl:// socket, the developer is responsible for detecting and suppressing this warning.

Redirects have been supported since PHP 4.0.5; if you are using an earlier version you
will need to include trailing slashes in your URLs. If it's important to know the URL of the
resource where your document came from (after all redirects have been processed), you'll
need to process the series of response headers returned by the stream.

<?php

$url = 'http://www.example.com/redirecting_page.php';

$fp = fopen($url, 'r');

/* Prior to PHP 4.3.0 use $http_response_header

 instead of stream_get_meta_data() */

$meta_data = stream_get_meta_data($fp);

foreach($meta_data['wrapper_data'] as $response) {

 /* Were we redirected? */

 if (substr(strtolower($response), 0, 10) == 'location: ') {

 /* update $url with where we were redirected to */

 $url = substr($response, 18);

 }

}

?>

The stream allows access to the body of the resource; the headers are stored in the
$http_response_header variable. Since PHP 4.3.0, the headers are available using
stream_get_meta_data().

HTTP connections are read-only; you cannot write data or copy files to an HTTP resource.

Note

HTTPS is supported starting from PHP 4.3.0, if you have compiled in support for
OpenSSL.

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen Yes

Allows Reading Yes

Allows Writing No

Allows Appending No

Allows Simultaneous Reading and Writing N/A

Supports stat() No

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

Custom headers may be sent with an HTTP request prior to version 5 by taking advantage
of a side-effect in the handling of the user_agent INI setting. Set user_agent to any valid
string (such as the default PHP/version setting) followed by a carriage-return/line-feed pair
and any additional headers. This method works in PHP 4 and all later versions.

Example #3062 - Sending custom headers with an HTTP request

<?php

ini_set('user_agent', "PHP\r\nX-MyCustomHeader: Foo");

$fp = fopen('http://www.example.com/index.php', 'r');

?>

Results in the following request being sent:

GET /index.php HTTP/1.0

Host: www.example.com

User-Agent: PHP

X-MyCustomHeader: Foo

FTP and FTPS

PHP 4, PHP 5, PHP 6. ftps:// since PHP 4.3.0

• ftp://example.com/pub/file.txt

• ftp://user:password@example.com/pub/file.txt

• ftps://example.com/pub/file.txt

• ftps://user:password@example.com/pub/file.txt

Allows read access to existing files and creation of new files via FTP. If the server does not
support passive mode ftp, the connection will fail.

You can open files for either reading or writing, but not both simultaneously. If the remote
file already exists on the ftp server and you attempt to open it for writing but have not
specified the context option overwrite, the connection will fail. If you need to overwrite
existing files over ftp, specify the overwrite option in the context and open the file for
writing. Alternatively, you can use the FTP extension.

Note

Appending

As of PHP 5.0.0 files may be appended via the ftp:// URL wrapper. In prior versions,
attempting to append to a file via ftp:// will result in failure.

ftps:// was introduced in PHP 4.3.0. It is the same as ftp://, but attempts to negotiate a
secure connection with the ftp server. If the server does not support SSL, then the
connection falls back to regular unencrypted ftp.

Note

FTPS is supported starting from PHP 4.3.0, if you have compiled in support for
OpenSSL.

Wrapper Summary

Attribute PHP 4 PHP 5

Restricted by
allow_url_fopen

Yes Yes

Allows Reading Yes Yes

Allows Writing Yes (new files only) Yes (new files/existing files
with overwrite)

Allows Appending No Yes

Allows Simultaneous
Reading and Writing

No No

Supports stat() No As of PHP 5.0.0: filesize(),
filetype(), file_exists(),
is_file(), and is_dir()
elements only. As of PHP
5.1.0: filemtime().

Supports unlink() No Yes

Supports rename() No Yes

Supports mkdir() No Yes

Supports rmdir() No Yes

PHP input/output streams

• php://stdin

• php://stdout

• php://stderr

• php://output

• php://input

• php://filter (available since PHP 5.0.0)

• php://memory (available since PHP 5.1.0)

• php://temp (available since PHP 5.1.0)

php://stdin, php://stdout and php://stderr allow access to the corresponding input or output
stream of the PHP process. The stream references a duplicate file descriptor, so if you
open php://stdin and later close it, you close only your copy of the descriptor--the actual
stream referenced by STDIN is unaffected. Note that PHP exhibited buggy behavior in this
regard until PHP 5.2.1. It is recommended that you simply use the constants STDIN,
STDOUT and STDERR instead of manually opening streams using these wrappers.

php://output allows you to write to the output buffer mechanism in the same way as print()
and echo().

php://input allows you to read raw POST data. It is a less memory intensive alternative to
$HTTP_RAW_POST_DATA and does not need any special php.ini directives. php://input
is not available with enctype="multipart/form-data".

php://stdin and php://input are read-only, whereas php://stdout, php://stderr and
php://output are write-only.

php://filter is a kind of meta-wrapper designed to permit the application of filters to a
stream at the time of opening. This is useful with all-in-one file functions such as readfile(),
file(), and file_get_contents() where there is otherwise no opportunity to apply a filter to the
stream prior the contents being read.

The php://filter target takes the following 'parameters' as parts of its 'path'.

• /resource=<stream to be filtered> (required) This parameter must be located at the
end of your php://filter specification and should point to the stream which you want
filtered.

<?php

/* This is equivalent to simply:

 readfile("http://www.example.com");

 since no filters are actually specified */

readfile("php://filter/resource=http://www.example.com");

?>

• /read=<filter list to apply to read chain> (optional) This parameter takes one or more
filternames separated by the pipe character |.

<?php

/* This will output the contents of

 www.example.com entirely in uppercase */

readfile("php://filter/read=string.toupper/resource=http://www.example.com")
;

/* This will do the same as above

 but will also ROT13 encode it */

readfile("php://filter/read=string.toupper|string.rot13/resource=http://www.
example.com");

?>

• /write=<filter list to apply to write chain> (optional) This parameter takes one or more
filternames separated by the pipe character |.

<?php

/* This will filter the string "Hello World"

 through the rot13 filter, then write to

 example.txt in the current directory */

file_put_contents("php://filter/write=string.rot13/resource=example.txt","He
llo World");

?>

• /<filter list to apply to both chains> (optional) Any filter lists which are not prefixed
specifically by read= or write= will be applied to both the read and write chains (as
appropriate).

The php://memory wrapper stores the data in the memory. php://temp behaves similarly,
but uses a temporary file for storing the data when a certain memory limit is reached (the
default is 2 MB).

The php://temp wrapper takes the following 'parameters' as parts of its 'path':

• /maxmemory:<number of bytes> (optional). This parameter allows changing the
default value for the memory limit (when the data is moved to a temporary file).

<?php

$fiveMBs = 5 * 1024 * 1024;

$fp = fopen("php://temp/maxmemory:$fiveMBs", 'r+');

fputs($fp, "hello\n");

// read what we have written

rewind($fp);

echo stream_get_contents($fp);

?>

Wrapper Summary (For php://filter, refer to summary of wrapper being filtered.)

Attribute Supported

Restricted by allow_url_fopen No

Restricted by allow_url_include php://input, php://stdin, php://memory and
php://temp only.

Allows Reading php://stdin, php://input, php://memory and
php://temp only.

Allows Writing php://stdout, php://stderr, php://output,
php://memory and php://temp only.

Allows Appending php://stdout, php://stderr, php://output,
php://memory and php://temp only.
(Equivalent to writing)

Allows Simultaneous Reading and Writing php://memory and php://temp only.

Supports stat() php://memory and php://temp only.

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

Compression Streams

zlib: PHP 4.0.4 - PHP 4.2.3 (systems with fopencookie only)

compress.zlib:// and compress.bzip2:// PHP 4.3.0 and up

• zlib:

• compress.zlib://

• compress.bzip2://

zlib: works like gzopen(), except that the stream can be used with fread() and the other
filesystem functions. This is deprecated as of PHP 4.3.0 due to ambiguities with filenames
containing ':' characters; use compress.zlib:// instead.

compress.zlib:// and compress.bzip2:// are equivalent to gzopen() and bzopen()

respectively, and operate even on systems that do not support fopencookie.

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Allows Reading Yes

Allows Writing Yes

Allows Appending Yes

Allows Simultaneous Reading and Writing No

Supports stat() No, use the normal file:// wrapper to stat
compressed files.

Supports unlink() No, use the normal file:// wrapper to unlink
compressed files.

Supports rename() No

Supports mkdir() No

Supports rmdir() No

ZIP extension registers zip: wrapper.

Data (RFC 2397)

The data: (» RFC 2397) stream wrapper is available since PHP 5.2.0.

Example #3063 - Print data:// contents

<?php

// prints "I love PHP"

echo file_get_contents('data://text/plain;base64,SSBsb3ZlIFBIUAo=');

?>

Example #3064 - Fetch the media type

<?php

http://www.faqs.org/rfcs/rfc2397

$fp = fopen('data://text/plain;base64,', 'r');

$meta = stream_get_meta_data($fp);

// prints "text/plain"

echo $meta['mediatype'];

?>

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Restricted by allow_url_include Yes

Allows Reading Yes

Allows Writing No

Allows Appending No

Allows Simultaneous Reading and Writing No

Supports stat() No

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

Glob

The glob: stream wrapper is available since PHP 5.3.0.

Example #3065 - Basic usage

<?php

// Loop over all *.php files in ext/spl/examples/ directory

// and print the filename and its size

$it = new DirectoryIterator("glob://ext/spl/examples/*.php");

foreach($it as $f) {

 printf("%s: %.1FK\n", $f->getFilename(), $f->getSize()/1024);

}

?>

tree.php: 1.0K

findregex.php: 0.6K

findfile.php: 0.7K

dba_dump.php: 0.9K

nocvsdir.php: 1.1K

phar_from_dir.php: 1.0K

ini_groups.php: 0.9K

directorytree.php: 0.9K

dba_array.php: 1.1K

class_tree.php: 1.8K

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Restricted by allow_url_include No

Allows Reading No

Allows Writing No

Allows Appending No

Allows Simultaneous Reading and Writing No

Supports stat() No

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

Secure Shell 2

ssh2.shell:// ssh2.exec:// ssh2.tunnel:// ssh2.sftp:// ssh2.scp:// PHP 4.3.0 and up (PECL)

• ssh2.shell://user:pass@example.com:22/xterm

• ssh2.exec://user:pass@example.com:22/usr/local/bin/somecmd

• ssh2.tunnel://user:pass@example.com:22/192.168.0.1:14

• ssh2.sftp://user:pass@example.com:22/path/to/filename

Note

This wrapper is not enabled by default

In order to use the ssh2.*:// wrappers you must install the » SSH2 extension available
from » PECL.

In addition to accepting traditional URI login details, the ssh2 wrappers will also reuse
open connections by passing the connection resource in the host portion of the URL.

Example #3066 - Opening a stream from an active connection

<?php

$session = ssh2_connect('example.com', 22);

ssh2_auth_pubkey_file($session, 'username',
'/home/username/.ssh/id_rsa.pub',

 '/home/username/.ssh/id_rsa',
'secret');

$stream = fopen("ssh2.tunnel://$session/remote.example.com:1234", 'r');

?>

Wrapper Summary

Attribute ssh2.shell ssh2.exec ssh2.tunnel ssh2.sftp ssh2.scp

Restricted by
allow_url_fop
en

Yes Yes Yes Yes Yes

Allows
Reading

Yes Yes Yes Yes Yes

Allows Writing Yes Yes Yes Yes No

Allows
Appending

No No No Yes (When
supported by
server)

No

Allows
Simultaneous
Reading and
Writing

Yes Yes Yes Yes No

Supports No No No Yes No

http://pecl.php.net/package/ssh2
http://pecl.php.net/

stat()

Supports
unlink()

No No No Yes No

Supports
rename()

No No No Yes No

Supports
mkdir()

No No No Yes No

Supports
rmdir()

No No No Yes No

Context options

Name Usage Default

session Preconnected ssh2 resource
to be reused

sftp Preallocated sftp resource to
be reused

methods Key exchange, hostkey,
cipher, compression, and
MAC methods to use

callbacks

username Username to connect as

password Password to use with
password authentication

pubkey_file Name of public key file to
use for authentication

privkey_file Name of private key file to
use for authentication

env Associate array of
environment variables to set

term Terminal emulation type to
request when allocating a pty

term_width Width of terminal requested

when allocating a pty

term_height Height of terminal requested
when allocating a pty

term_units Units to use with term_width
and term_height

SSH2_TERM_UNIT_CHARS

Audio Streams

ogg:// PHP 4.3.0 and up (PECL)

• ogg://soundfile.ogg

• ogg:///path/to/soundfile.ogg

• ogg://http://www.example.com/path/to/soundstream.ogg

Note

This wrapper is not enabled by default

In order to use the ogg:// wrapper you must install the » OGG/Vorbis extension
available from » PECL.

Files opened for reading via the ogg:// wrapper are treated as compressed audio encoded
using the OGG/Vorbis codec. Similarly, files opened for writing or appending via the ogg://
wrapper are writen as compressed audio data. stream_get_meta_data(), when used on an
OGG/Vorbis file opened for reading will return various details about the stream including
the vendor tag, any included comments, the number of channels, the sampling rate, and
the encoding rate range described by: bitrate_lower, bitrate_upper, bitrate_nominal,
and bitrate_window.

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Allows Reading Yes

Allows Writing Yes

Allows Appending Yes

http://pecl.php.net/package/oggvorbis
http://pecl.php.net/

Allows Simultaneous Reading and Writing No

Supports stat() No

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

Context options

Name Usage Default Mode

pcm_mode PCM encoding to apply while
reading, one of:
OGGVORBIS_PCM_U8,
OGGVORBIS_PCM_S8,
OGGVORBIS_PCM_U16_B
E,
OGGVORBIS_PCM_S16_B
E,
OGGVORBIS_PCM_U16_L
E, and
OGGVORBIS_PCM_S16_L
E. (8 vs 16 bit, signed or
unsigned, big or little endian)

OGGVORBIS_PCM_S16_LE Read

rate Sampling rate of input data,
expressed in Hz

44100 Write/Append

bitrate When given as an integer,
the fixed bitrate at which to
encode. (16000 to 131072)
When given as a float, the
variable bitrate quality to use.
(-1.0 to 1.0)

128000 Write/Append

channels The number of audio
channels to encode, typically
1 (Mono), or 2 (Stero). May
range as high as 16.

2 Write/Append

comments An array of string values to
encode into the track header.

Write/Append

Process Interaction Streams

expect:// PHP 4.3.0 and up (PECL)

• expect://command

Note

This wrapper is not enabled by default

In order to use the expect:// wrapper you must install the » Expect extension available
from » PECL.

Streams opened via the expect:// wrapper provide access to process'es stdio, stdout and
stderr via PTY.

Wrapper Summary

Attribute Supported

Restricted by allow_url_fopen No

Allows Reading Yes

Allows Writing Yes

Allows Appending Yes

Allows Simultaneous Reading and Writing No

Supports stat() No

Supports unlink() No

Supports rename() No

Supports mkdir() No

Supports rmdir() No

http://pecl.php.net/package/expect
http://pecl.php.net/

List of Available Filters

The following is a list of a few built-in stream filters for use with stream_filter_append().
Your version of PHP may have more filters (or fewer) than those listed here.

It is worth noting a slight asymmetry between stream_filter_append() and
stream_filter_prepend(). Every PHP stream contains a small read buffer where it stores
blocks of data retrieved from the filesystem or other resource in order to process data in
the most efficient manner. As soon as data is pulled from the resource into the stream's
internal buffer, it is immediately processed through any attached filters whether the PHP
application is actually ready for the data or not. If data is sitting in the read buffer when a
filter is appended, this data will be immediately processed through that filter making the
fact that it was sitting in the buffer seem transparent. However, if data is sitting in the read
buffer when a filter is prepended, this data will NOT be processed through that filter. It will
instead wait until the next block of data is retrieved from the resource.

For a list of filters installed in your version of PHP use stream_get_filters().

String Filters

Each of these filters does precisely what their name implies and correspond to the
behavior of a built-in php string handling function. For more information on a given filter,
refer to the manual page for the corresponding function.

string.rot13 (since PHP 4.3.0) Use of this filter is equivalent to processing all stream data
through the str_rot13() function.

Example #3067 - string.rot13

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'string.rot13');

fwrite($fp, "This is a test.\n");

/* Outputs: Guvf vf n grfg. */

?>

string.toupper (since PHP 5.0.0) Use of this filter is equivalent to processing all stream
data through the strtoupper() function.

Example #3068 - string.toupper

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'string.toupper');

fwrite($fp, "This is a test.\n");

/* Outputs: THIS IS A TEST. */

?>

string.tolower (since PHP 5.0.0) Use of this filter is equivalent to processing all stream data
through the strtolower() function.

Example #3069 - string.tolower

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'string.tolower');

fwrite($fp, "This is a test.\n");

/* Outputs: this is a test. */

?>

string.strip_tags (since PHP 5.0.0) Use of this filter is equivalent to processing all stream
data through the strip_tags() function. It accepts parameters in one of two forms: Either as
a string containing a list of tags similar to the second parameter of the strip_tags() function,
or as an array of tag names.

Example #3070 - string.strip_tags

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'string.strip_tags', STREAM_FILTER_WRITE,
"<i><u>");

fwrite($fp, "bolded text enlarged to a <h1>level 1 heading</h1>\n");

fclose($fp);

/* Outputs: bolded text enlarged to a level 1 heading */

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'string.strip_tags', STREAM_FILTER_WRITE,
array('b','i','u'));

fwrite($fp, "bolded text enlarged to a <h1>level 1 heading</h1>\n");

fclose($fp);

/* Outputs: bolded text enlarged to a level 1 heading */

?>

Conversion Filters

Like the string.* filters, the convert.* filters perform actions similar to their names. The
convert filters were added with PHP 5.0.0. For more information on a given filter, refer to
the manual page for the corresponding function.

convert.base64-encode and convert.base64-decode Use of these filters are equivalent to
processing all stream data through the base64_encode() and base64_decode() functions
respectively. convert.base64-encode supports parameters given as an associative array. If
line-length is given, the base64 output will be split into chunks of line-length
characters each. If line-break-chars is given, each chunk will be delimited by the
characters given. These parameters give the same effect as using base64_encode() with
chunk_split().

Example #3071 - convert.base64-encode & convert.base64-decode

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'convert.base64-encode');

fwrite($fp, "This is a test.\n");

fclose($fp);

/* Outputs: VGhpcyBpcyBhIHRlc3QuCg== */

$param = array('line-length' => 8, 'line-break-chars' => "\r\n");

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'convert.base64-encode', STREAM_FILTER_WRITE,
$param);

fwrite($fp, "This is a test.\n");

fclose($fp);

/* Outputs: VGhpcyBp

 : cyBhIHRl

 : c3QuCg== */

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'convert.base64-decode');

fwrite($fp, "VGhpcyBpcyBhIHRlc3QuCg==");

fclose($fp);

/* Outputs: This is a test. */

?>

convert.quoted-printable-encode and convert.quoted-printable-decode Use of the decode
version of this filter is equivalent to processing all stream data through the
quoted_printable_decode() functions. There is no function equivalent to
convert.quoted-printable-encode. convert.quoted-printable-encode supports parameters
given as an associative array. In addition to the parameters supported by
convert.base64-encode, convert.quoted-printable-encode also supports boolean
arguments binary and force-encode-first. convert.base64-decode only supports the
line-break-chars parameter as a type-hint for striping from the encoded payload.

Example #3072 - convert.quoted-printable-encode &
convert.quoted-printable-decode

<?php

$fp = fopen('php://output', 'w');

stream_filter_append($fp, 'convert.quoted-printable-encode');

fwrite($fp, "This is a test.\n");

/* Outputs: =This is a test.=0A */

?>

Compression Filters

While the Compression Wrappers provide a way of creating gzip and bz2 compatible files
on the local filesystem, they do not provide a means for generalized compression over
network streams, nor do they provide a means to begin with a non-compressed stream
and transition to a compressed one. For this, a compression filter may be applied to any

stream resource at any time.

Note

Compression filters do not generate headers and trailers used by command line
utilities such as gzip. They only compress and decompress the payload portions of
compressed data streams.

zlib.deflate (compression) and zlib.inflate (decompression) are implementations of the
compression methods described in » RFC 1951. The deflate filter takes up to three
parameters passed as an associative array. level describes the compression strength to
use (1-9). Higher numbers will generally yield smaller payloads at the cost of additional
processing time. Two special compression levels also exist: 0 (for no compression at all),
and -1 (zlib internal default -- currently 6). window is the base-2 log of the compression
loopback window size. Higher values (up to 15 -- 32768 bytes) yield better compression at
a cost of memory, while lower values (down to 9 -- 512 bytes) yield worse compression in
a smaller memory footprint. Default window size is currently 15. memory is a scale
indicating how much work memory should be allocated. Valid values range from 1
(minimal allocation) to 9 (maximum allocation). This memory allocation affects speed only
and does not impact the size of the generated payload.

Note

Because compression level is the most commonly used parameter, it may be
alternatively provided as a simple integer value (rather than an array element).

zlib.* compression filters are available with PHP as of version 5.1.0 if zlib support is
enabled. They are also available as a backport in version 5.0.x by installing the » zlib_filter
package from » PECL. These filters are not available for PHP 4.

Example #3073 - zlib.deflate and zlib.inflate

<?php

$params = array('level' => 6, 'window' => 15, 'memory' => 9);

$original_text = "This is a test.\nThis is only a test.\nThis is not an
important string.\n";

echo "The original text is " . strlen($original_text) . " characters
long.\n";

$fp = fopen('test.deflated', 'w');

stream_filter_append($fp, 'zlib.deflate', STREAM_FILTER_WRITE, $params);

fwrite($fp, $original_text);

fclose($fp);

echo "The compressed file is " . filesize('test.deflated') . " bytes
long.\n";

echo "The original text was:\n";

/* Use readfile and zlib.inflate to decompress on the fly */

http://www.faqs.org/rfcs/rfc1951
http://pecl.php.net/package/zlib_filter
http://pecl.php.net/

readfile('php://filter/zlib.inflate/resource=test.deflated');

/* Generates output:

The original text is 70 characters long.

The compressed file is 56 bytes long.

The original text was:

This is a test.

This is only a test.

This is not an important string.

*/

?>

Example #3074 - zlib.deflate simple

<?php

$original_text = "This is a test.\nThis is only a test.\nThis is not an
important string.\n";

echo "The original text is " . strlen($original_text) . " characters
long.\n";

$fp = fopen('test.deflated', 'w');

/* Here "6" indicates compression level 6 */

stream_filter_append($fp, 'zlib.deflate', STREAM_FILTER_WRITE, 6);

fwrite($fp, $original_text);

fclose($fp);

echo "The compressed file is " . filesize('test.deflated') . " bytes
long.\n";

/* Generates output:

The original text is 70 characters long.

The compressed file is 56 bytes long.

*/

?>

bzip2.compress and bzip2.decompress work in the same manner as the zlib filters
described above. The bzip2.compress filter accepts up to two parameters given as
elements of an associative array: blocks is an integer value from 1 to 9 specifying the
number of 100kbyte blocks of memory to allocate for workspace. work is also an integer
value ranging from 0 to 250 indicating how much effort to expend using the normal
compression method before falling back on a slower, but more reliable method. Tuning this
parameter effects only compression speed. Neither size of compressed output nor
memory usage are changed by this setting. A work factor of 0 instructs the bzip library to
use an internal default. The bzip2.decompress filter only accepts one parameter, which
can be passed as either an ordinary boolean value, or as the small element of an
associative array. small, when set to a TRUE value, instructs the bzip library to perform
decompression in a minimal memory footprint at the cost of speed.

bzip2.* compression filters are available with PHP as of version 5.1.0 if bz2 support is
enabled. They are also available as a backport in version 5.0.x by installing the » bz2_filter

http://pecl.php.net/package/bz2_filter

package from » PECL. These filters are not available for PHP 4.

Example #3075 - bzip2.compress and bzip2.decompress

<?php

$param = array('blocks' => 9, 'work' => 0);

echo "The original file is " . filesize('LICENSE') . " bytes long.\n";

$fp = fopen('LICENSE.compressed', 'w');

stream_filter_append($fp, 'bzip2.compress', STREAM_FILTER_WRITE, $param);

fwrite($fp, file_get_contents('LICENSE'));

fclose($fp);

echo "The compressed file is " . filesize('LICENSE.compressed') . " bytes
long.\n";

/* Generates output:

The original text is 3288 characters long.

The compressed file is 1488 bytes long.

*/

?>

Encryption Filters

mcrypt.* and mdecrypt.* provide symmetric encryption and decryption using libmcrypt.
Both sets of filters support the same algorithms available to mcrypt extension in the form of
mcrypt.ciphername where ciphername is the name of the cipher as it would be passed to
mcrypt_module_open(). The following five filter parameters are also available:

mcrypt filter parameters

Parameter Required? Default Sample Values

mode Optional cbc cbc, cfb, ecb, nofb,
ofb, stream

algorithms_dir Optional ini_get('mcrypt.algorit
hms_dir')

Location of
algorithms modules

modes_dir Optional ini_get('mcrypt.mode
s_dir')

Location of modes
modules

iv Required N/A Typically 8, 16, or 32
bytes of binary data.
Depends on cipher

http://pecl.php.net/

key Required N/A Typically 8, 16, or 32
bytes of binary data.
Depends on cipher

Example #3076 - Encrypting file output using 3DES

<?php

$passphrase = 'My secret';

/* Turn a human readable passphrase

* into a reproducable iv/key pair

*/

$iv = substr(md5('iv'.$passphrase, true), 0, 8);

$key = substr(md5('pass1'.$passphrase, true) .

 md5('pass2'.$passphrase, true), 0, 24);

$opts = array('iv'=>$iv, 'key'=>$key);

$fp = fopen('secert-file.enc', 'wb');

stream_filter_append($fp, 'mcrypt.tripledes', STREAM_FILTER_WRITE, $opts);

fwrite($fp, 'Secret secret secret data');

fclose($fp);

?>

Example #3077 - Reading an encrypted file

<?php

$passphrase = 'My secret';

/* Turn a human readable passphrase

* into a reproducable iv/key pair

*/

$iv = substr(md5('iv'.$passphrase, true), 0, 8);

$key = substr(md5('pass1'.$passphrase, true) .

 md5('pass2'.$passphrase, true), 0, 24);

$opts = array('iv'=>$iv, 'key'=>$key);

$fp = fopen('secert-file.enc', 'rb');

stream_filter_append($fp, 'mdecrypt.tripledes', STREAM_FILTER_WRITE, $opts);

$data = rtrim(stream_get_contents($fp));

fclose($fp);

echo $data;

?>

List of Supported Socket Transports

The following is a list of the various URL style socket transports that PHP has built-in for
use with the streams based socket functions such as fsockopen(), and
stream_socket_client(). These transports do not apply to the Sockets Extension.

For a list of transports installed in your version of PHP use stream_get_transports().

Internet Domain: TCP, UDP, SSL, and TLS

PHP 4, PHP 5, PHP 6. ssl:// &tls:// since PHP 4.3.0 sslv2:// &sslv3:// since PHP 5.0.2

Note

If no transport is specified, tcp:// will be assumed.

• 127.0.0.1

• fe80::1

• www.example.com

• tcp://127.0.0.1

• tcp://fe80::1

• tcp://www.example.com

• udp://www.example.com

• ssl://www.example.com

• sslv2://www.example.com

• sslv3://www.example.com

• tls://www.example.com

Internet Domain sockets expect a port number in addition to a target address. In the case
of fsockopen() this is specified in a second parameter and therefore does not impact the
formatting of transport URL. With stream_socket_client() and related functions as with
traditional URLs however, the port number is specified as a suffix of the transport URL
delimited by a colon.

• tcp://127.0.0.1:80

• tcp://[fe80::1]:80

• tcp://www.example.com:80

Note

IPv6 numeric addresses with port numbers

In the second example above, while the IPv4 and hostname examples are left
untouched apart from the addition of their colon and portnumber, the IPv6 address is
wrapped in square brackets: [fe80::1]. This is to distinguish between the colons used in
an IPv6 address and the colon used to delimit the portnumber.

The ssl:// and tls:// transports (available only when openssl support is compiled into PHP)
are extensions of the tcp:// transport which include SSL encryption. Since PHP 4.3.0
OpenSSL support must be statically compiled into PHP, since PHP 5.0.0 it may be
compiled as a module or statically.

ssl:// will attempt to negotiate an SSL V2, or SSL V3 connection depending on the
capabilities and preferences of the remote host. sslv2:// and sslv3:// will select the SSL V2
or SSL V3 protocol explicitly.

Unix Domain: Unix and UDG

unix:// and udg:// (udg:// since PHP 5).

• unix:///tmp/mysock

• udg:///tmp/mysock

unix:// provides access to a socket stream connection in the Unix domain. udg:// provides
an alternate transport to a Unix domain socket using the user datagram protocol.

Unix domain sockets, unlike Internet domain sockets, do not expect a port number. In the
case of fsockopen() the portno parameter should be set to 0.

PHP type comparison tables

The following tables demonstrate behaviors of PHP types and comparison operators, for
both loose and strict comparisons. This supplemental is also related to the manual section
on type juggling. Inspiration was provided by various user comments and by the work over
at » BlueShoes.

Before utilizing these tables, it's important to understand types and their meanings. For
example, "42" is a string while 42 is an integer. FALSE is a boolean while "false" is a string
.

Note

HTML Forms do not pass integers, floats, or booleans; they pass strings. To find out if
a string is numeric, you may use is_numeric().

Note

Simply doing if ($x) while $x is undefined will generate an error of level E_NOTICE.
Instead, consider using empty() or isset() and/or initialize your variables.

Comparisons of $x with PHP functions

Expression gettype() empty() is_null() isset() boolean:
if($x)

$x = ""; string TRUE FALSE TRUE FALSE

$x = null; NULL TRUE TRUE FALSE FALSE

var $x; NULL TRUE TRUE FALSE FALSE

$x is
undefined

NULL TRUE TRUE FALSE FALSE

$x = array(); array TRUE FALSE TRUE FALSE

$x = false; boolean TRUE FALSE TRUE FALSE

$x = true; boolean FALSE FALSE TRUE TRUE

$x = 1; integer FALSE FALSE TRUE TRUE

$x = 42; integer FALSE FALSE TRUE TRUE

http://www.blueshoes.org/en/developer/php_cheat_sheet/

$x = 0; integer TRUE FALSE TRUE FALSE

$x = -1; integer FALSE FALSE TRUE TRUE

$x = "1"; string FALSE FALSE TRUE TRUE

$x = "0"; string TRUE FALSE TRUE FALSE

$x = "-1"; string FALSE FALSE TRUE TRUE

$x = "php"; string FALSE FALSE TRUE TRUE

$x = "true"; string FALSE FALSE TRUE TRUE

$x = "false"; string FALSE FALSE TRUE TRUE

Loose comparisons with ==

TRUE FALS
E

1 0 -1 "1" "0" "-1" NULL array() "php" ""

TRUE TRUE FALS
E

TRUE FALS
E

TRUE TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

TRUE TRUE FALS
E

TRUE

1 TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

0 FALS
E

TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

TRUE FALS
E

TRUE TRUE

-1 TRUE FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

"1" TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

"0" FALS
E

TRUE FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

"-1" TRUE FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

NULL FALS
E

TRUE FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

TRUE TRUE FALS
E

TRUE

array() FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE TRUE FALS
E

FALS
E

"php" TRUE FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

"" FALS
E

TRUE FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

TRUE

Strict comparisons with ===

TRUE FALS
E

1 0 -1 "1" "0" "-1" NULL array() "php" ""

TRUE TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

1 FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

0 FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

-1 FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

"1" FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

"0" FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

"-1" FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

FALS
E

NULL FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

FALS
E

array() FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

FALS
E

"php" FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

FALS
E

TRUE FALS
E

"" FALS FALS FALS FALS FALS FALS FALS FALS FALS FALS FALS TRUE

E E E E E E E E E E E

List of Parser Tokens

Various parts of the PHP language are represented internally by types like T_SR. PHP
outputs identifiers like this one in parse errors, like "Parse error: unexpected T_SR,
expecting ',' or ';' in script.php on line 10."

You're supposed to know what T_SR means. For everybody who doesn't know that, here
is a table with those identifiers, PHP-syntax and references to the appropriate places in the
manual.

Tokens

Token Syntax Reference

T_ABSTRACT abstract Class Abstraction (available
since PHP 5.0.0)

T_AND_EQUAL &= assignment operators

T_ARRAY array() array(), array syntax

T_ARRAY_CAST (array) type-casting

T_AS as foreach

T_BAD_CHARACTER anything below ASCII 32
except \t (0x09), \n (0x0a)
and \r (0x0d)

T_BOOLEAN_AND && logical operators

T_BOOLEAN_OR || logical operators

T_BOOL_CAST (bool) or (boolean) type-casting

T_BREAK break break

T_CASE case switch

T_CATCH catch Exceptions (available since
PHP 5.0.0)

T_CHARACTER

T_CLASS class classes and objects

T_CLASS_C __CLASS__ magic constants (available
since PHP 4.3.0)

T_CLONE clone classes and objects
(available since PHP 5.0.0)

T_CLOSE_TAG ?> or %>

T_COMMENT // or #, and /* */ in PHP 5 comments

T_CONCAT_EQUAL .= assignment operators

T_CONST const

T_CONSTANT_ENCAPSED
_STRING

"foo" or 'bar' string syntax

T_CONTINUE continue

T_CURLY_OPEN

T_DEC -- incrementing/decrementing
operators

T_DECLARE declare declare

T_DEFAULT default switch

T_DIR __DIR__ magic constants (available
since PHP 5.3.0)

T_DIV_EQUAL /= assignment operators

T_DNUMBER 0.12, etc floating point numbers

T_DOC_COMMENT /** */ PHPDoc style comments
(available since PHP 5.0.0)

T_DO do do..while

T_DOLLAR_OPEN_CURLY
_BRACES

${ complex variable parsed
syntax

T_DOUBLE_ARROW => array syntax

T_DOUBLE_CAST (real), (double) or (float) type-casting

T_DOUBLE_COLON :: see
T_PAAMAYIM_NEKUDOTA
YIM below

T_ECHO echo echo()

T_ELSE else else

T_ELSEIF elseif elseif

T_EMPTY empty empty()

T_ENCAPSED_AND_WHIT
ESPACE

T_ENDDECLARE enddeclare declare, alternative syntax

T_ENDFOR endfor for, alternative syntax

T_ENDFOREACH endforeach foreach, alternative syntax

T_ENDIF endif if, alternative syntax

T_ENDSWITCH endswitch switch, alternative syntax

T_ENDWHILE endwhile while, alternative syntax

T_END_HEREDOC heredoc syntax

T_EVAL eval() eval()

T_EXIT exit or die exit(), die()

T_EXTENDS extends extends, classes and objects

T_FILE __FILE__ magic constants

T_FINAL final Final Keyword (available
since PHP 5.0.0)

T_FOR for for

T_FOREACH foreach foreach

T_FUNCTION function or cfunction functions

T_FUNC_C __FUNCTION__ magic constants (available
since PHP 4.3.0)

T_GLOBAL global variable scope

T_HALT_COMPILER __halt_compiler() __halt_compiler (available
since PHP 5.1.0)

T_IF if if

T_IMPLEMENTS implements Object Interfaces (available
since PHP 5.0.0)

T_INC ++ incrementing/decrementing

operators

T_INCLUDE include() include()

T_INCLUDE_ONCE include_once() include_once()

T_INLINE_HTML

T_INSTANCEOF instanceof type operators (available
since PHP 5.0.0)

T_INT_CAST (int) or (integer) type-casting

T_INTERFACE interface Object Interfaces (available
since PHP 5.0.0)

T_ISSET isset() isset()

T_IS_EQUAL == comparison operators

T_IS_GREATER_OR_EQUA
L

>= comparison operators

T_IS_IDENTICAL === comparison operators

T_IS_NOT_EQUAL != or <> comparison operators

T_IS_NOT_IDENTICAL !== comparison operators

T_IS_SMALLER_OR_EQUA
L

<= comparison operators

T_LINE __LINE__ magic constants

T_LIST list() list()

T_LNUMBER 123, 012, 0x1ac, etc integers

T_LOGICAL_AND and logical operators

T_LOGICAL_OR or logical operators

T_LOGICAL_XOR xor logical operators

T_METHOD_C __METHOD__ magic constants (available
since PHP 5.0.0)

T_MINUS_EQUAL -= assignment operators

T_ML_COMMENT /* and */ comments (PHP 4 only)

T_MOD_EQUAL %= assignment operators

T_MUL_EQUAL *= assignment operators

T_NS_C __NAMESPACE__ namespaces. Also defined
as T_NAMESPACE
(available since PHP 5.3.0)

T_NEW new classes and objects

T_NUM_STRING

T_OBJECT_CAST (object) type-casting

T_OBJECT_OPERATOR -> classes and objects

T_OLD_FUNCTION old_function

T_OPEN_TAG <?php, <? or <% escaping from HTML

T_OPEN_TAG_WITH_ECH
O

<?= or <%= escaping from HTML

T_OR_EQUAL |= assignment operators

T_PAAMAYIM_NEKUDOTA
YIM

:: ::. Also defined as
T_DOUBLE_COLON.

T_PLUS_EQUAL += assignment operators

T_PRINT print() print()

T_PRIVATE private classes and objects
(available since PHP 5.0.0)

T_PUBLIC public classes and objects
(available since PHP 5.0.0)

T_PROTECTED protected classes and objects
(available since PHP 5.0.0)

T_REQUIRE require() require()

T_REQUIRE_ONCE require_once() require_once()

T_RETURN return returning values

T_SL << bitwise operators

T_SL_EQUAL <<= assignment operators

T_SR >> bitwise operators

T_SR_EQUAL >>= assignment operators

T_START_HEREDOC <<< heredoc syntax

T_STATIC static variable scope

T_STRING

T_STRING_CAST (string) type-casting

T_STRING_VARNAME

T_SWITCH switch switch

T_THROW throw Exceptions (available since
PHP 5.0.0)

T_TRY try Exceptions (available since
PHP 5.0.0)

T_UNSET unset() unset()

T_UNSET_CAST (unset) (not documented; casts to
NULL)

T_USE use namespaces (available since
PHP 5.3.0)

T_VAR var classes and objects

T_VARIABLE $foo variables

T_WHILE while while, do..while

T_WHITESPACE

T_XOR_EQUAL ^= assignment operators

See also token_name().

Userland Naming Guide

The following is a guide for how to best choose names for identifiers in userland PHP
code. When choosing names for any code that creates symbols in the global namespace,
it is important to take into account the following guidelines to prevent future versions of
PHP from clashing with your symbols.

Global Namespace

Here is an overview of code constructs that go into the global namespace:

• functions

• classes

• interfaces

• constants (not class constants)

• variables defined outside of functions/methods

Rules

The following list gives an overview of which rights the PHP project reserves for itself,
when choosing names for new internal identifiers. The definitive guide is the official
» CODING STANDARDS:

• PHP owns the top-level namespace but tries to find decent descriptive names and
avoid any obvious clashes.

• Function names use underscores between words, while class names use the camel
case rule (there are some exceptions for older classes and functions).

• PHP will prefix any global symbols of an extension with the name of the extension. (In
the past, there have been numerous exceptions to this rule.) Examples:

• curl_close()

• mysql_query()

• PREG_SPLIT_DELIM_CAPTURE

• new DOMDocument()

• strpos() (example of a past mistake)

• new SplFileObject()

• Iterators and Exceptions are however simply postfixed with " Iterator " and " Exception

http://cvs.php.net/viewvc.cgi/php-src/CODING_STANDARDS?view=co
http://cvs.php.net/viewvc.cgi/php-src/CODING_STANDARDS?view=co

." Examples:

• ArrayIterator

• LogicException

• PHP reserves all symbols starting with __ as magical. It is recommended that you do
not create symbols starting with __ in PHP unless you want to use documented
magical functionality. Examples:

• __get()

• __autoload()

Tips

In order to write future-proof code, it is recommended that you prefix (or suffix) anything
that goes into the global namespace with an uncommon 3-4 letter prefix (or suffix)
separated with an underscore. It is recommended that in order to prevent namespace
clashes with other userland code that projects research existing prefixes (or suffixes) used
in other projects and advertise their chosen prefix (or suffix) appropriately. Examples:

• MyPx_someFunc()

• Foo_Date

• $asdf_dbh

About the manual

Formats

The PHP manual is provided in several formats. These formats can be divided into two
groups: online readable formats, and downloadable packages.

Note

Some publishers have made available printed versions of this manual. We cannot
recommend any of those, as they tend to become out-of-date very quickly.

The manual can be read online at the » PHP.net website, and on the numerous mirror
sites. For best performance, choose the closest mirror. The online version of the PHP
manual has currently two CSS stylesheets, web friendly and a printer-friendly stylesheet.

Two notable advantages of the online manual over most of the offline formats is the
integration of user-contributed notes and the » URL shortcuts that may be used to get to
the desired manual parts quickly. An obvious disadvantage is the requirement to be online
to view this edition of the manual.

There are several offline formats of the manual, and the most appropriate format for
depends on the operating system, and personal reading style. For information on how the
manual is generated in so many formats, read the 'How we generate the formats' section
of this appendix.

The most cross-platform format of the manual is the HTML version. This is provided both
as a single HTML file and as a package of individual files for each section (which results in
a collection of several thousand files). We provide these versions compressed, so a
decompression utility is required to retrieve the files contained within the archives.

For Windows platforms, the Windows HTML Help version of the manual enhances the
HTML format for use with the Windows HTML Help application. This version provides
full-text search, a full index, and bookmarking. Many popular Windows PHP development
environments also integrate with this version of the documentation to provide easy access.
CHM viewers for Linux desktops are also available. Check out » xCHM or » GnoCHM.

There is also an » extended CHM version available, which is updated less frequently, but
provides many additional features. It will only work on Microsoft Windows though, because
of the technologies used to build the help pages.

About user notes

The user-contributed notes play an important role in the development of this manual. By
allowing readers of the manual to contribute examples, caveats, and further clarifications

http://www.php.net/
http://www.php.net/urlhowto.php
http://xchm.sourceforge.net/
http://gnochm.sourceforge.net/
http://www.php.net/docs-echm.php

from their browser, we are able to incorporate that feedback into the main text of the
manual. And until the notes have been incorporated, they may be viewed in their
submitted form online, and in some of the offline formats.

Note

The user-contributed notes are not moderated before they appear online, so the quality
of the writing or code examples, and even the veracity of the contribution, cannot be
guaranteed. (Not that there is any guarantee of the quality or accuracy of the manual
text itself.)

Note

For the purposes of license coverage the user-contributed notes are considered part of
the PHP manual, and are therefore covered by the same license that covers this
documentation (Open Publication License at the moment). For more details see the
Manual's Copyright page.

How to read a function definition (prototype)

Each function in the manual is documented for quick reference. Knowing how to read and
understand the text will make learning PHP much easier. Rather than relying on examples
or cut/paste, everyone should know how to read function definitions (prototypes). Let's
begin:

Note

Prerequisite: Basic understanding of types

Although PHP is a loosely typed language, it's important to have a basic understanding
of types as they have important meaning.

Function definitions tell us what type of value is returned. Let's use the definition for strlen()
as our first example:

strlen

(PHP 4, PHP 5)

strlen -- Get string length

Description

int strlen (string $string)

Returns the length of given string.

Explanation of a function definition

Part Description

strlen The function name.

(PHP 4, PHP 5, PHP 6) strlen() has been around in all versions of
PHP 4, PHP 5 and PHP 6

int Type of value this function returns, which is
an integer (i.e. the length of a string is
measured in numbers).

(string $string) The first (and in this case the only)
parameter/argument for this function is
named string, and it's a string.

We could rewrite the above function definition in a generic way:

returned type function name (parameter type parameter name)

Many functions take on multiple parameters, such as in_array(). Its prototype is as follows:

bool in_array (mixed $needle, array $haystack [, bool $strict])

What does this mean? in_array() returns a boolean value, TRUE on success (if the needle
was found in the haystack) or FALSE on failure (if the needle was not found in the
haystack). The first parameter is named needle and it can be of many different types, so
we call it " mixed ". This mixed needle (what we're looking for) can be either a scalar value
(string, integer, or float), or an array. haystack (the array we're searching in) is the second
parameter. The third optional parameter is named strict. All optional parameters are
seen in [brackets]. The manual states that the strict parameter defaults to boolean
FALSE. See the manual page on each function for details on how they work.

There are also functions with more complex PHP version information. Take
html_entity_decode() as an example:

(PHP 4 >= 4.3.0, PHP 5)

This means that this function has only been available in a released version since PHP
4.3.0.

PHP versions documented in this manual

The manual contains information about past, current, and future versions of PHP.
Changes in behaviour are documented as notes, changelogs, and inline text within the
manual pages. The earliest documented version is PHP 4.1.0, whereas the latest is PHP
6.x.x.

Documentation partly exists for the CVS version of PHP, which always means the very
latest development version. This has yet to be released so is only available through the
CVS version handling system, or via a » snapshot. So be aware that features marked
"available in CVS" are typically unavailable. These features, though, will most likely be
available in the next stable version of PHP. To download the CVS version, see the
» anonymous CVS access page.

So, documentation may exist for PHP versions that aren't yet released. (Something like
PHP 6.x.x while the latest stable version might be 5.x.x). Most of the time, this is not an
error in the documentation. Explanation is often added for features not available in the
current PHP release, but will be available as a known future PHP version. Typically, PHP
only adds new features in major releases otherwise only bugs are fixed. Using the A.B.C
versioning format, a major release increments A or B whereas minor releases increment
C. So for example it's not uncommon for a feature to be documented as available in PHP
x.1.x when the latest release is PHP x.0.x. Also note that the manual is written in present
tense, not future tense.

Many times the PHP manual lists "Default Values" for PHP directives. These values are
based on php.ini-dist and not php.ini-recommended. They also refer to the latest version of
PHP. See the PHP directive appendix for details on these values and changes.

How to find more information about PHP

This manual does not attempt to provide instruction about general programming practices.
First-time - or even just beginning - programmers may find it difficult to learn how to
program in PHP using this manual exclusively. Instead, seek out a text more oriented
towards beginners.

There are a number of active mailing lists for discussion on all aspects of programming
with PHP. If stuck with a problem, consider using these lists. For support options, including
mailing lists, view » the PHP.net support page. Furthermore, there is a list of websites
devoted to PHP articles, forums, and code galleries at » the PHP.net links page.

How to help improve the documentation

There are three ways everyone can help improve this documentation.

If an error is found in this manual, in any language, please report them using the bug
system at » http://bugs.php.net/. Classify the bug as "Documentation Problem". All
documentation related problems, including those about manual formats, should be
submitted as bug reports.

http://snaps.php.net/
http://www.php.net/anoncvs.php
http://www.php.net/anoncvs.php
http://www.php.net/support.php
http://www.php.net/links.php
http://bugs.php.net/

Note

Please don't abuse the bug system by submitting requests for help. Instead, use one
of the many » support options.

By contributing notes, users may provide additional examples, caveats, and clarifications
for other readers. But please do not submit bug reports using the annotation system. For
details, see the section titled 'About user notes'.

The PHP manual is translated into many languages. Knowing English and a foreign
language allows for another way to help improve the PHP manual by working with a
translation team. For information about starting a new translation, or helping a currently
translated version, please read » http://doc.php.net/php/dochowto/.

The PHP Documentation Project also has an IRC channel where many manual authors
hang out. Stop by #php.doc on irc.efnet.org and discuss ways to improve the PHP
documentation.

How we generate the formats

This manual is written in XML using the » DocBook XML DTD, using PhD (The [PH]P
based [D]ocBook renderer) for maintenance and formatting.

Using XML as a source format gives the ability to generate many output formats from the
source files, while only maintaining one source document for all formats. The tool used for
formatting the online manual is » PhD. We use » Microsoft HTML Help Workshop to
generate the Windows HTML Help format of the manual, and of course PHP itself to do
some additional conversions and formatting.

The PHP manual is generated in various languages and formats, see
» http://www.php.net/docs.php for additional details. The XML source code may be
downloaded from CVS and viewed at » http://cvs.php.net/. The documentation is stored in
the phpdoc module.

Translations

The PHP manual is available not only in various formats, but also in various languages.
The text of the manual is first written in English, then teams of people across the world
take care of translating it to their native languages. If a translation for a specified function
or chapter has not yet been made, the manual's build system falls back to the English
version of it.

People involved in the translations start from the XML source code available from
» http://cvs.php.net/ and from it they translate to their mother language. They do not use
the generated versions (like HTML or plain text) as it's the build system that takes care of
the conversions from XML to human readable formats.

http://www.php.net/support.php
http://doc.php.net/php/dochowto/
http://www.oasis-open.org/docbook/xml/
http://wiki.php.net/doc/phd/
http://msdn.microsoft.com/library/en-us/htmlhelp/html/vsconhh1start.asp
http://www.php.net/docs.php
http://www.php.net/docs.php
http://cvs.php.net/
http://cvs.php.net/
http://cvs.php.net/

Note

To help translate the documentation, please get in touch with the
translation/documentation team by subscribing to the phpdoc mailing list: send an
empty mail to » phpdoc-subscribe@lists.php.net. The mailing list address is
phpdoc@lists.php.net. State in the message an interest in translating the manual and
someone will reply with feedback on moving forward by helping start a new language
translation, or by contacting the existing team for the desired language.

At the moment the manual is available, partly or not, in over 10 languages.

They may all be downloaded here: » http://www.php.net/docs.php.

mailto:phpdoc-subscribe@lists.php.net
http://www.php.net/docs.php

Open Publication License

v1.0, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication works may be reproduced and distributed in whole or in part, in any
medium physical or electronic, provided that the terms of this license are adhered to, and
that this license or an incorporation of it by reference (with any options elected by the
author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author's name or designee>. This material may be distributed
only subject to the terms and conditions set forth in the Open Publication License, vX.Y or
later (the latest version is presently available at » http://www.opencontent.org/openpub/

The reference must be immediately followed with any options elected by the author(s)
and/or publisher of the document (see section VI). Commercial redistribution of Open
Publication-licensed material is permitted. Any publication in standard (paper) book form
shall require the citation of the original publisher and author. The publisher and author's
names shall appear on all outer surfaces of the book. On all outer surfaces of the book the
original publisher's name shall be as large as the title of the work and cited as possessive
with respect to the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee.

III. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless otherwise explicitly
stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with
other works or programs on the same media shall not cause this license to apply to those
other works. The aggregate work shall contain a notice specifying the inclusion of the
Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction,
the remaining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided "as is" without
warranty of any kind, express or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose or a warranty of
non-infringement.

http://www.opencontent.org/openpub/

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations,
anthologies, compilations and partial documents, must meet the following requirements:

• The modified version must be labeled as such.

• The person making the modifications must be identified and the modifications dated.

• Acknowledgement of the original author and publisher if applicable must be retained
according to normal academic citation practices.

• The location of the original unmodified document must be identified.

• The original author's (or authors') name(s) may not be used to assert or imply
endorsement of the resulting document without the original author's (or authors')
permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly
recommended of redistributors that:

• If you are distributing Open Publication works on hardcopy or CD-ROM, you provide
email notification to the authors of your intent to redistribute at least thirty days before
your manuscript or media freeze, to give the authors time to provide updated
documents. This notification should describe modifications, if any, made to the
document.

• All substantive modifications (including deletions) be either clearly marked up in the
document or else described in an attachment to the document.

• Finally, while it is not mandatory under this license, it is considered good form to offer a
free copy of any hardcopy and CD-ROM expression of an Open Publication-licensed
work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document may elect
certain options by appending language to the reference to or copy of the license. These
options are considered part of the license instance and must be included with the license
(or its incorporation by reference) in derived works.

A. To prohibit distribution of substantively modified versions without the explicit permission
of the author(s). "Substantive modification" is defined as a change to the semantic content

of the document, and excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase `Distribution of substantively modified versions of this
document is prohibited without the explicit permission of the copyright holder.' to the
license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or in part in
standard (paper) book form for commercial purposes is prohibited unless prior permission
is obtained from the copyright holder.

To accomplish this, add the phrase 'Distribution of the work or derivative of the work in any
standard (paper) book form is prohibited unless prior permission is obtained from the
copyright holder.' to the license reference or copy.

Function Index

Function Index

_

__halt_compiler()

A

abs()
acos()
acosh()
addcslashes()
addslashes()
aggregate()
aggregate_info()
aggregate_methods()
aggregate_methods_by_list()
aggregate_methods_by_regexp()
aggregate_properties()
aggregate_properties_by_list()
aggregate_properties_by_regexp()
aggregation_info()
apache_child_terminate()
apache_get_modules()
apache_get_version()
apache_getenv()
apache_lookup_uri()
apache_note()
apache_request_headers()
apache_reset_timeout()
apache_response_headers()
apache_setenv()
apc_add()
apc_cache_info()
apc_clear_cache()
apc_compile_file()
apc_define_constants()
apc_delete()
apc_fetch()
apc_load_constants()
apc_sma_info()

apc_store()
apd_breakpoint()
apd_callstack()
apd_clunk()
apd_continue()
apd_croak()
apd_dump_function_table()
apd_dump_persistent_resources()
apd_dump_regular_resources()
apd_echo()
apd_get_active_symbols()
apd_set_pprof_trace()
apd_set_session()
apd_set_session_trace()
apd_set_socket_session_trace()
array()
array_change_key_case()
array_chunk()
array_combine()
array_count_values()
array_diff()
array_diff_assoc()
array_diff_key()
array_diff_uassoc()
array_diff_ukey()
array_fill()
array_fill_keys()
array_filter()
array_flip()
array_intersect()
array_intersect_assoc()
array_intersect_key()
array_intersect_uassoc()
array_intersect_ukey()
array_key_exists()
array_keys()
array_map()
array_merge()
array_merge_recursive()
array_multisort()
array_pad()
array_pop()
array_product()
array_push()
array_rand()
array_reduce()
array_reverse()
array_search()
array_shift()
array_slice()
array_splice()
array_sum()

array_udiff()
array_udiff_assoc()
array_udiff_uassoc()
array_uintersect()
array_uintersect_assoc()
array_uintersect_uassoc()
array_unique()
array_unshift()
array_values()
array_walk()
array_walk_recursive()
ArrayIterator::current()
ArrayIterator::key()
ArrayIterator::next()
ArrayIterator::rewind()
ArrayIterator::seek()
ArrayIterator::valid()
ArrayObject::__construct()
ArrayObject::append()
ArrayObject::count()
ArrayObject::getIterator()
ArrayObject::offsetExists()
ArrayObject::offsetGet()
ArrayObject::offsetSet()
ArrayObject::offsetUnset()
arsort()
ascii2ebcdic()
asin()
asinh()
asort()
aspell_check()
aspell_check_raw()
aspell_new()
aspell_suggest()
assert()
assert_options()
atan()
atan2()
atanh()

B

base64_decode()
base64_encode()
base_convert()
basename()
bbcode_add_element()
bbcode_create()
bbcode_destroy()
bbcode_parse()

bcadd()
bccomp()
bcdiv()
bcmod()
bcmul()
bcompiler_load()
bcompiler_load_exe()
bcompiler_parse_class()
bcompiler_read()
bcompiler_write_class()
bcompiler_write_constant()
bcompiler_write_exe_footer()
bcompiler_write_file()
bcompiler_write_footer()
bcompiler_write_function()
bcompiler_write_functions_from_file()
bcompiler_write_header()
bcompiler_write_included_filename()
bcpow()
bcpowmod()
bcscale()
bcsqrt()
bcsub()
bin2hex()
bind_textdomain_codeset()
bindec()
bindtextdomain()
bzclose()
bzcompress()
bzdecompress()
bzerrno()
bzerror()
bzerrstr()
bzflush()
bzopen()
bzread()
bzwrite()

C

CachingIterator::__toString()
CachingIterator::hasNext()
CachingIterator::next()
CachingIterator::rewind()
CachingIterator::valid()
CachingRecursiveIterator::getChildren()
CachingRecursiveIterator::hasChildren()
cal_days_in_month()
cal_from_jd()
cal_info()

cal_to_jd()
call_user_func()
call_user_func_array()
call_user_method()
call_user_method_array()
ccvs_add()
ccvs_auth()
ccvs_command()
ccvs_count()
ccvs_delete()
ccvs_done()
ccvs_init()
ccvs_lookup()
ccvs_new()
ccvs_report()
ccvs_return()
ccvs_reverse()
ccvs_sale()
ccvs_status()
ccvs_textvalue()
ccvs_void()
ceil()
chdir()
checkdate()
checkdnsrr()
chgrp()
chmod()
chop()
chown()
chr()
chroot()
chunk_split()
class_exists()
class_implements()
class_parents()
classkit_import()
classkit_method_add()
classkit_method_copy()
classkit_method_redefine()
classkit_method_remove()
classkit_method_rename()
clearstatcache()
closedir()
closelog()
com()
com_addref()
com_create_guid()
com_event_sink()
com_get()
com_get_active_object()
com_invoke()
com_isenum()

com_load()
com_load_typelib()
com_message_pump()
com_print_typeinfo()
com_propget()
com_propput()
com_propset()
com_release()
com_set()
compact()
configuration()
connection_aborted()
connection_status()
connection_timeout()
constant()
constants()
constants()
constants()
convert_cyr_string()
convert_uudecode()
convert_uuencode()
copy()
cos()
cosh()
count()
count_chars()
cpdf_add_annotation()
cpdf_add_outline()
cpdf_arc()
cpdf_begin_text()
cpdf_circle()
cpdf_clip()
cpdf_close()
cpdf_closepath()
cpdf_closepath_fill_stroke()
cpdf_closepath_stroke()
cpdf_continue_text()
cpdf_curveto()
cpdf_end_text()
cpdf_fill()
cpdf_fill_stroke()
cpdf_finalize()
cpdf_finalize_page()
cpdf_global_set_document_limits()
cpdf_import_jpeg()
cpdf_lineto()
cpdf_moveto()
cpdf_newpath()
cpdf_open()
cpdf_output_buffer()
cpdf_page_init()
cpdf_place_inline_image()

cpdf_rect()
cpdf_restore()
cpdf_rlineto()
cpdf_rmoveto()
cpdf_rotate()
cpdf_rotate_text()
cpdf_save()
cpdf_save_to_file()
cpdf_scale()
cpdf_set_action_url()
cpdf_set_char_spacing()
cpdf_set_creator()
cpdf_set_current_page()
cpdf_set_font()
cpdf_set_font_directories()
cpdf_set_font_map_file()
cpdf_set_horiz_scaling()
cpdf_set_keywords()
cpdf_set_leading()
cpdf_set_page_animation()
cpdf_set_subject()
cpdf_set_text_matrix()
cpdf_set_text_pos()
cpdf_set_text_rendering()
cpdf_set_text_rise()
cpdf_set_title()
cpdf_set_viewer_preferences()
cpdf_set_word_spacing()
cpdf_setdash()
cpdf_setflat()
cpdf_setgray()
cpdf_setgray_fill()
cpdf_setgray_stroke()
cpdf_setlinecap()
cpdf_setlinejoin()
cpdf_setlinewidth()
cpdf_setmiterlimit()
cpdf_setrgbcolor()
cpdf_setrgbcolor_fill()
cpdf_setrgbcolor_stroke()
cpdf_show()
cpdf_show_xy()
cpdf_stringwidth()
cpdf_stroke()
cpdf_text()
cpdf_translate()
crack_check()
crack_closedict()
crack_getlastmessage()
crack_opendict()
crc32()
create_function()

crypt()
ctype_alnum()
ctype_alpha()
ctype_cntrl()
ctype_digit()
ctype_graph()
ctype_lower()
ctype_print()
ctype_punct()
ctype_space()
ctype_upper()
ctype_xdigit()
curl_close()
curl_copy_handle()
curl_errno()
curl_error()
curl_exec()
curl_getinfo()
curl_init()
curl_multi_add_handle()
curl_multi_close()
curl_multi_exec()
curl_multi_getcontent()
curl_multi_info_read()
curl_multi_init()
curl_multi_remove_handle()
curl_multi_select()
curl_setopt()
curl_setopt_array()
curl_version()
current()
cybercash_base64_decode()
cybercash_base64_encode()
cybercash_decr()
cybercash_encr()
cybermut_creerformulairecm()
cybermut_creerreponsecm()
cybermut_testmac()
cyrus_authenticate()
cyrus_bind()
cyrus_close()
cyrus_connect()
cyrus_query()
cyrus_unbind()

D

date()
date_create()
date_date_set()

date_default_timezone_get()
date_default_timezone_set()
date_format()
date_isodate_set()
date_modify()
date_offset_get()
date_parse()
date_sun_info()
date_sunrise()
date_sunset()
date_time_set()
date_timezone_get()
date_timezone_set()
db2_autocommit()
db2_bind_param()
db2_client_info()
db2_close()
db2_column_privileges()
db2_columns()
db2_commit()
db2_conn_error()
db2_conn_errormsg()
db2_connect()
db2_cursor_type()
db2_escape_string()
db2_exec()
db2_execute()
db2_fetch_array()
db2_fetch_assoc()
db2_fetch_both()
db2_fetch_object()
db2_fetch_row()
db2_field_display_size()
db2_field_name()
db2_field_num()
db2_field_precision()
db2_field_scale()
db2_field_type()
db2_field_width()
db2_foreign_keys()
db2_free_result()
db2_free_stmt()
db2_get_option()
db2_lob_read()
db2_next_result()
db2_num_fields()
db2_num_rows()
db2_pconnect()
db2_prepare()
db2_primary_keys()
db2_procedure_columns()
db2_procedures()

db2_result()
db2_rollback()
db2_server_info()
db2_set_option()
db2_special_columns()
db2_statistics()
db2_stmt_error()
db2_stmt_errormsg()
db2_table_privileges()
db2_tables()
dba_close()
dba_delete()
dba_exists()
dba_fetch()
dba_firstkey()
dba_handlers()
dba_insert()
dba_key_split()
dba_list()
dba_nextkey()
dba_open()
dba_optimize()
dba_popen()
dba_replace()
dba_sync()
dbase_add_record()
dbase_close()
dbase_create()
dbase_delete_record()
dbase_get_header_info()
dbase_get_record()
dbase_get_record_with_names()
dbase_numfields()
dbase_numrecords()
dbase_open()
dbase_pack()
dbase_replace_record()
dblist()
dbmclose()
dbmdelete()
dbmexists()
dbmfetch()
dbmfirstkey()
dbminsert()
dbmnextkey()
dbmopen()
dbmreplace()
dbplus_add()
dbplus_aql()
dbplus_chdir()
dbplus_close()
dbplus_curr()

dbplus_errcode()
dbplus_errno()
dbplus_find()
dbplus_first()
dbplus_flush()
dbplus_freealllocks()
dbplus_freelock()
dbplus_freerlocks()
dbplus_getlock()
dbplus_getunique()
dbplus_info()
dbplus_last()
dbplus_lockrel()
dbplus_next()
dbplus_open()
dbplus_prev()
dbplus_rchperm()
dbplus_rcreate()
dbplus_rcrtexact()
dbplus_rcrtlike()
dbplus_resolve()
dbplus_restorepos()
dbplus_rkeys()
dbplus_ropen()
dbplus_rquery()
dbplus_rrename()
dbplus_rsecindex()
dbplus_runlink()
dbplus_rzap()
dbplus_savepos()
dbplus_setindex()
dbplus_setindexbynumber()
dbplus_sql()
dbplus_tcl()
dbplus_tremove()
dbplus_undo()
dbplus_undoprepare()
dbplus_unlockrel()
dbplus_unselect()
dbplus_update()
dbplus_xlockrel()
dbplus_xunlockrel()
dbx_close()
dbx_compare()
dbx_connect()
dbx_error()
dbx_escape_string()
dbx_fetch_row()
dbx_query()
dbx_sort()
dcgettext()
dcngettext()

deaggregate()
debug_backtrace()
debug_print_backtrace()
debug_zval_dump()
debugger_off()
debugger_on()
decbin()
dechex()
decoct()
define()
define_syslog_variables()
defined()
deg2rad()
delete()
dgettext()
die()
dio_close()
dio_fcntl()
dio_open()
dio_read()
dio_seek()
dio_stat()
dio_tcsetattr()
dio_truncate()
dio_write()
dir()
DirectoryIterator::__construct()
DirectoryIterator::current()
DirectoryIterator::getATime()
DirectoryIterator::getCTime()
DirectoryIterator::getFilename()
DirectoryIterator::getGroup()
DirectoryIterator::getInode()
DirectoryIterator::getMTime()
DirectoryIterator::getOwner()
DirectoryIterator::getPath()
DirectoryIterator::getPathname()
DirectoryIterator::getPerms()
DirectoryIterator::getSize()
DirectoryIterator::getType()
DirectoryIterator::isDir()
DirectoryIterator::isDot()
DirectoryIterator::isExecutable()
DirectoryIterator::isFile()
DirectoryIterator::isLink()
DirectoryIterator::isReadable()
DirectoryIterator::isWritable()
DirectoryIterator::key()
DirectoryIterator::next()
DirectoryIterator::rewind()
DirectoryIterator::valid()
dirname()

disk_free_space()
disk_total_space()
diskfreespace()
dl()
dngettext()
dns_check_record()
dns_get_mx()
dns_get_record()
dom_import_simplexml()
DOMAttr->__construct()()
DOMAttr->isId()()
DomAttribute->name()
DomAttribute->set_value()
DomAttribute->specified()
DomAttribute->value()
DOMCharacterData->appendData()()
DOMCharacterData->deleteData()()
DOMCharacterData->insertData()()
DOMCharacterData->replaceData()()
DOMCharacterData->substringData()()
DOMComment->__construct()()
DOMDocument->__construct()()
DomDocument->add_root()
DomDocument->create_attribute()
DomDocument->create_cdata_section()
DomDocument->create_comment()
DomDocument->create_element()
DomDocument->create_element_ns()
DomDocument->create_entity_reference()
DomDocument->create_processing_instruction()
DomDocument->create_text_node()
DOMDocument->createAttribute()()
DOMDocument->createAttributeNS()()
DOMDocument->createCDATASection()()
DOMDocument->createComment()()
DOMDocument->createDocumentFragment()()
DOMDocument->createElement()()
DOMDocument->createElementNS()()
DOMDocument->createEntityReference()()
DOMDocument->createProcessingInstruction()()
DOMDocument->createTextNode()()
DomDocument->doctype()
DomDocument->document_element()
DomDocument->dump_file()
DomDocument->dump_mem()
DomDocument->get_element_by_id()
DomDocument->get_elements_by_tagname()
DOMDocument->getElementById()()
DOMDocument->getElementsByTagName()()
DOMDocument->getElementsByTagNameNS()()
DomDocument->html_dump_mem()
DOMDocument->importNode()()

DOMDocument->load()()
DOMDocument->loadHTML()()
DOMDocument->loadHTMLFile()()
DOMDocument->loadXML()()
DOMDocument->normalizeDocument()()
DOMDocument->registerNodeClass()()
DOMDocument->relaxNGValidate()()
DOMDocument->relaxNGValidateSource()()
DOMDocument->save()()
DOMDocument->saveHTML()()
DOMDocument->saveHTMLFile()()
DOMDocument->saveXML()()
DOMDocument->schemaValidate()()
DOMDocument->schemaValidateSource()()
DOMDocument->validate()()
DomDocument->xinclude()
DOMDocument->xinclude()()
DOMDocumentFragment->appendXML()()
DomDocumentType->entities()()
DomDocumentType->internal_subset()()
DomDocumentType->name()()
DomDocumentType->notations()()
DomDocumentType->public_id()()
DomDocumentType->system_id()()
DOMElement->__construct()()
DomElement->get_attribute()()
DomElement->get_attribute_node()()
DomElement->get_elements_by_tagname()()
DOMElement->getAttribute()()
DOMElement->getAttributeNode()()
DOMElement->getAttributeNodeNS()()
DOMElement->getAttributeNS()()
DOMElement->getElementsByTagName()()
DOMElement->getElementsByTagNameNS()()
DomElement->has_attribute()()
DOMElement->hasAttribute()()
DOMElement->hasAttributeNS()()
DomElement->remove_attribute()()
DOMElement->removeAttribute()()
DOMElement->removeAttributeNode()()
DOMElement->removeAttributeNS()()
DomElement->set_attribute()()
DomElement->set_attribute_node()()
DOMElement->setAttribute()()
DOMElement->setAttributeNode()()
DOMElement->setAttributeNodeNS()()
DOMElement->setAttributeNS()()
DOMElement->setIdAttribute()()
DOMElement->setIdAttributeNode()()
DOMElement->setIdAttributeNS()()
DomElement->tagname()()
DOMEntityReference->__construct()()

DOMImplementation->__construct()()
DOMImplementation->createDocument()()
DOMImplementation->createDocumentType()()
DOMImplementation->hasFeature()()
DOMNamedNodeMap->getNamedItem()()
DOMNamedNodeMap->getNamedItemNS()()
DOMNamedNodeMap->item()()
DomNode->add_namespace()
DomNode->append_child()
DomNode->append_sibling()
DOMNode->appendChild()()
DomNode->attributes()
DomNode->child_nodes()
DomNode->clone_node()
DOMNode->cloneNode()()
DomNode->dump_node()
DomNode->first_child()
DomNode->get_content()
DomNode->has_attributes()
DomNode->has_child_nodes()
DOMNode->hasAttributes()()
DOMNode->hasChildNodes()()
DomNode->insert_before()
DOMNode->insertBefore()()
DomNode->is_blank_node()
DOMNode->isDefaultNamespace()()
DOMNode->isSameNode()()
DOMNode->isSupported()()
DomNode->last_child()
DOMNode->lookupNamespaceURI()()
DOMNode->lookupPrefix()()
DomNode->next_sibling()
DomNode->node_name()
DomNode->node_type()
DomNode->node_value()
DOMNode->normalize()()
DomNode->owner_document()
DomNode->parent_node()
DomNode->prefix()
DomNode->previous_sibling()
DomNode->remove_child()
DOMNode->removeChild()()
DomNode->replace_child()
DomNode->replace_node()
DOMNode->replaceChild()()
DomNode->set_content()
DomNode->set_name()
DomNode->set_namespace()
DomNode->unlink_node()
DOMNodelist->item()()
DOMProcessingInstruction->__construct()()
DomProcessingInstruction->data()

DomProcessingInstruction->target()
DOMText->__construct()()
DOMText->isWhitespaceInElementContent()()
DOMText->splitText()()
domxml_new_doc()
domxml_open_file()
domxml_open_mem()
domxml_version()
domxml_xmltree()
domxml_xslt_stylesheet()
domxml_xslt_stylesheet_doc()
domxml_xslt_stylesheet_file()
domxml_xslt_version()
DOMXPath->__construct()()
DOMXPath->evaluate()()
DOMXPath->query()()
DOMXPath->registerNamespace()()
DomXsltStylesheet->process()()
DomXsltStylesheet->result_dump_file()()
DomXsltStylesheet->result_dump_mem()()
dotnet()
dotnet_load()
doubleval()

E

each()
easter_date()
easter_days()
ebcdic2ascii()
echo()
empty()
enchant_broker_describe()
enchant_broker_dict_exists()
enchant_broker_free()
enchant_broker_free_dict()
enchant_broker_get_error()
enchant_broker_init()
enchant_broker_list_dicts()
enchant_broker_request_dict()
enchant_broker_request_pwl_dict()
enchant_broker_set_ordering()
enchant_dict_add_to_personal()
enchant_dict_add_to_session()
enchant_dict_check()
enchant_dict_describe()
enchant_dict_get_error()
enchant_dict_is_in_session()
enchant_dict_quick_check()
enchant_dict_store_replacement()

enchant_dict_suggest()
end()
ereg()
ereg_replace()
eregi()
eregi_replace()
error_get_last()
error_log()
error_reporting()
escapeshellarg()
escapeshellcmd()
eval()
exec()
exif_imagetype()
exif_read_data()
exif_tagname()
exif_thumbnail()
exit()
exp()
expect_expectl()
expect_popen()
explode()
expm1()
extension_loaded()
extract()
ezmlm_hash()

F

fam_cancel_monitor()
fam_close()
fam_monitor_collection()
fam_monitor_directory()
fam_monitor_file()
fam_next_event()
fam_open()
fam_pending()
fam_resume_monitor()
fam_suspend_monitor()
fbsql_affected_rows()
fbsql_autocommit()
fbsql_blob_size()
fbsql_change_user()
fbsql_clob_size()
fbsql_close()
fbsql_commit()
fbsql_connect()
fbsql_create_blob()
fbsql_create_clob()
fbsql_create_db()

fbsql_data_seek()
fbsql_database()
fbsql_database_password()
fbsql_db_query()
fbsql_db_status()
fbsql_drop_db()
fbsql_errno()
fbsql_error()
fbsql_fetch_array()
fbsql_fetch_assoc()
fbsql_fetch_field()
fbsql_fetch_lengths()
fbsql_fetch_object()
fbsql_fetch_row()
fbsql_field_flags()
fbsql_field_len()
fbsql_field_name()
fbsql_field_seek()
fbsql_field_table()
fbsql_field_type()
fbsql_free_result()
fbsql_get_autostart_info()
fbsql_hostname()
fbsql_insert_id()
fbsql_list_dbs()
fbsql_list_fields()
fbsql_list_tables()
fbsql_next_result()
fbsql_num_fields()
fbsql_num_rows()
fbsql_password()
fbsql_pconnect()
fbsql_query()
fbsql_read_blob()
fbsql_read_clob()
fbsql_result()
fbsql_rollback()
fbsql_rows_fetched()
fbsql_select_db()
fbsql_set_characterset()
fbsql_set_lob_mode()
fbsql_set_password()
fbsql_set_transaction()
fbsql_start_db()
fbsql_stop_db()
fbsql_table_name()
fbsql_tablename()
fbsql_username()
fbsql_warnings()
fclose()
fdf_add_doc_javascript()
fdf_add_template()

fdf_close()
fdf_create()
fdf_enum_values()
fdf_errno()
fdf_error()
fdf_get_ap()
fdf_get_attachment()
fdf_get_encoding()
fdf_get_file()
fdf_get_flags()
fdf_get_opt()
fdf_get_status()
fdf_get_value()
fdf_get_version()
fdf_header()
fdf_next_field_name()
fdf_open()
fdf_open_string()
fdf_remove_item()
fdf_save()
fdf_save_string()
fdf_set_ap()
fdf_set_encoding()
fdf_set_file()
fdf_set_flags()
fdf_set_javascript_action()
fdf_set_on_import_javascript()
fdf_set_opt()
fdf_set_status()
fdf_set_submit_form_action()
fdf_set_target_frame()
fdf_set_value()
fdf_set_version()
feof()
fflush()
fgetc()
fgetcsv()
fgets()
fgetss()
file()
file_exists()
file_get_contents()
file_put_contents()
fileatime()
filectime()
filegroup()
fileinode()
filemtime()
fileowner()
fileperms()
filepro()
filepro_fieldcount()

filepro_fieldname()
filepro_fieldtype()
filepro_fieldwidth()
filepro_retrieve()
filepro_rowcount()
filesize()
filetype()
filter_has_var()
filter_id()
filter_input()
filter_input_array()
filter_list()
filter_var()
filter_var_array()
FilterIterator::current()
FilterIterator::getInnerIterator()
FilterIterator::key()
FilterIterator::next()
FilterIterator::rewind()
FilterIterator::valid()
finfo->__construct()()
finfo_buffer()
finfo_close()
finfo_file()
finfo_open()
finfo_set_flags()
floatval()
flock()
floor()
flush()
fmod()
fnmatch()
fopen()
fpassthru()
fprintf()
fputcsv()
fputs()
fread()
frenchtojd()
fribidi_log2vis()
fscanf()
fseek()
fsockopen()
fstat()
ftell()
ftok()
ftp_alloc()
ftp_cdup()
ftp_chdir()
ftp_chmod()
ftp_close()
ftp_connect()

ftp_delete()
ftp_exec()
ftp_fget()
ftp_fput()
ftp_get()
ftp_get_option()
ftp_login()
ftp_mdtm()
ftp_mkdir()
ftp_nb_continue()
ftp_nb_fget()
ftp_nb_fput()
ftp_nb_get()
ftp_nb_put()
ftp_nlist()
ftp_pasv()
ftp_put()
ftp_pwd()
ftp_quit()
ftp_raw()
ftp_rawlist()
ftp_rename()
ftp_rmdir()
ftp_set_option()
ftp_site()
ftp_size()
ftp_ssl_connect()
ftp_systype()
ftruncate()
func_get_arg()
func_get_args()
func_num_args()
function_exists()
fwrite()

G

gd_info()
geoip_country_code3_by_name()
geoip_country_code_by_name()
geoip_country_name_by_name()
geoip_database_info()
geoip_db_avail()
geoip_db_filename()
geoip_db_get_all_info()
geoip_id_by_name()
geoip_org_by_name()
geoip_record_by_name()
geoip_region_by_name()
get_browser()

get_cfg_var()
get_class()
get_class_methods()
get_class_vars()
get_current_user()
get_declared_classes()
get_declared_interfaces()
get_defined_constants()
get_defined_functions()
get_defined_vars()
get_extension_funcs()
get_headers()
get_html_translation_table()
get_include_path()
get_included_files()
get_loaded_extensions()
get_magic_quotes_gpc()
get_magic_quotes_runtime()
get_meta_tags()
get_object_vars()
get_parent_class()
get_required_files()
get_resource_type()
getallheaders()
getcwd()
getdate()
getenv()
gethostbyaddr()
gethostbyname()
gethostbynamel()
getimagesize()
getlastmod()
getmxrr()
getmygid()
getmyinode()
getmypid()
getmyuid()
getopt()
getprotobyname()
getprotobynumber()
getrandmax()
getrusage()
getservbyname()
getservbyport()
gettext()
gettimeofday()
gettype()
glob()
gmdate()
gmmktime()
gmp_abs()
gmp_add()

gmp_and()
gmp_clrbit()
gmp_cmp()
gmp_com()
gmp_div()
gmp_div_q()
gmp_div_qr()
gmp_div_r()
gmp_divexact()
gmp_fact()
gmp_gcd()
gmp_gcdext()
gmp_hamdist()
gmp_init()
gmp_intval()
gmp_invert()
gmp_jacobi()
gmp_legendre()
gmp_mod()
gmp_mul()
gmp_neg()
gmp_nextprime()
gmp_or()
gmp_perfect_square()
gmp_popcount()
gmp_pow()
gmp_powm()
gmp_prob_prime()
gmp_random()
gmp_scan0()
gmp_scan1()
gmp_setbit()
gmp_sign()
gmp_sqrt()
gmp_sqrtrem()
gmp_strval()
gmp_sub()
gmp_testbit()
gmp_xor()
gmstrftime()
gnupg_adddecryptkey()
gnupg_addencryptkey()
gnupg_addsignkey()
gnupg_cleardecryptkeys()
gnupg_clearencryptkeys()
gnupg_clearsignkeys()
gnupg_decrypt()
gnupg_decryptverify()
gnupg_encrypt()
gnupg_encryptsign()
gnupg_export()
gnupg_geterror()

gnupg_getprotocol()
gnupg_import()
gnupg_keyinfo()
gnupg_setarmor()
gnupg_seterrormode()
gnupg_setsignmode()
gnupg_sign()
gnupg_verify()
gopher_parsedir()
gregoriantojd()
gzclose()
gzcompress()
gzdecode()
gzdeflate()
gzencode()
gzeof()
gzfile()
gzgetc()
gzgets()
gzgetss()
gzinflate()
gzopen()
gzpassthru()
gzputs()
gzread()
gzrewind()
gzseek()
gztell()
gzuncompress()
gzwrite()

H

haruannotation()
HaruAnnotation::setBorderStyle()
HaruAnnotation::setHighlightMode()
HaruAnnotation::setIcon()
HaruAnnotation::setOpened()
harudestination()
HaruDestination::setFit()
HaruDestination::setFitB()
HaruDestination::setFitBH()
HaruDestination::setFitBV()
HaruDestination::setFitH()
HaruDestination::setFitR()
HaruDestination::setFitV()
HaruDestination::setXYZ()
harudoc()
HaruDoc::__construct()
HaruDoc::addPage()

HaruDoc::addPageLabel()
HaruDoc::createOutline()
HaruDoc::getCurrentEncoder()
HaruDoc::getCurrentPage()
HaruDoc::getEncoder()
HaruDoc::getFont()
HaruDoc::getInfoAttr()
HaruDoc::getPageLayout()
HaruDoc::getPageMode()
HaruDoc::getStreamSize()
HaruDoc::insertPage()
HaruDoc::loadJPEG()
HaruDoc::loadPNG()
HaruDoc::loadRaw()
HaruDoc::loadTTC()
HaruDoc::loadTTF()
HaruDoc::loadType1()
HaruDoc::output()
HaruDoc::readFromStream()
HaruDoc::resetError()
HaruDoc::resetStream()
HaruDoc::save()
HaruDoc::saveToStream()
HaruDoc::setCompressionMode()
HaruDoc::setCurrentEncoder()
HaruDoc::setEncryptionMode()
HaruDoc::setInfoAttr()
HaruDoc::setInfoDateAttr()
HaruDoc::setOpenAction()
HaruDoc::setPageLayout()
HaruDoc::setPageMode()
HaruDoc::setPagesConfiguration()
HaruDoc::setPassword()
HaruDoc::setPermission()
HaruDoc::useCNSEncodings()
HaruDoc::useCNSFonts()
HaruDoc::useCNTEncodings()
HaruDoc::useCNTFonts()
HaruDoc::useJPEncodings()
HaruDoc::useJPFonts()
HaruDoc::useKREncodings()
HaruDoc::useKRFonts()
haruencoder()
HaruEncoder::getByteType()
HaruEncoder::getType()
HaruEncoder::getUnicode()
HaruEncoder::getWritingMode()
haruexception()
harufont()
HaruFont::getAscent()
HaruFont::getCapHeight()
HaruFont::getDescent()

HaruFont::getEncodingName()
HaruFont::getFontName()
HaruFont::getTextWidth()
HaruFont::getUnicodeWidth()
HaruFont::getXHeight()
HaruFont::measureText()
haruimage()
HaruImage::getBitsPerComponent()
HaruImage::getColorSpace()
HaruImage::getHeight()
HaruImage::getSize()
HaruImage::getWidth()
HaruImage::setColorMask()
HaruImage::setMaskImage()
haruoutline()
HaruOutline::setDestination()
HaruOutline::setOpened()
harupage()
HaruPage::arc()
HaruPage::beginText()
HaruPage::circle()
HaruPage::closePath()
HaruPage::concat()
HaruPage::createDestination()
HaruPage::createLinkAnnotation()
HaruPage::createTextAnnotation()
HaruPage::createURLAnnotation()
HaruPage::curveTo()
HaruPage::curveTo2()
HaruPage::curveTo3()
HaruPage::drawImage()
HaruPage::ellipse()
HaruPage::endPath()
HaruPage::endText()
HaruPage::eofill()
HaruPage::eoFillStroke()
HaruPage::fill()
HaruPage::fillStroke()
HaruPage::getCharSpace()
HaruPage::getCMYKFill()
HaruPage::getCMYKStroke()
HaruPage::getCurrentFont()
HaruPage::getCurrentFontSize()
HaruPage::getCurrentPos()
HaruPage::getCurrentTextPos()
HaruPage::getDash()
HaruPage::getFillingColorSpace()
HaruPage::getFlatness()
HaruPage::getGMode()
HaruPage::getGrayFill()
HaruPage::getGrayStroke()
HaruPage::getHeight()

HaruPage::getHorizontalScaling()
HaruPage::getLineCap()
HaruPage::getLineJoin()
HaruPage::getLineWidth()
HaruPage::getMiterLimit()
HaruPage::getRGBFill()
HaruPage::getRGBStroke()
HaruPage::getStrokingColorSpace()
HaruPage::getTextLeading()
HaruPage::getTextMatrix()
HaruPage::getTextRenderingMode()
HaruPage::getTextRise()
HaruPage::getTextWidth()
HaruPage::getTransMatrix()
HaruPage::getWidth()
HaruPage::getWordSpace()
HaruPage::lineTo()
HaruPage::measureText()
HaruPage::moveTextPos()
HaruPage::moveTo()
HaruPage::moveToNextLine()
HaruPage::rectangle()
HaruPage::setCharSpace()
HaruPage::setCMYKFill()
HaruPage::setCMYKStroke()
HaruPage::setDash()
HaruPage::setFlatness()
HaruPage::setFontAndSize()
HaruPage::setGrayFill()
HaruPage::setGrayStroke()
HaruPage::setHeight()
HaruPage::setHorizontalScaling()
HaruPage::setLineCap()
HaruPage::setLineJoin()
HaruPage::setLineWidth()
HaruPage::setMiterLimit()
HaruPage::setRGBFill()
HaruPage::setRGBStroke()
HaruPage::setRotate()
HaruPage::setSize()
HaruPage::setSlideShow()
HaruPage::setTextLeading()
HaruPage::setTextMatrix()
HaruPage::setTextRenderingMode()
HaruPage::setTextRise()
HaruPage::setWidth()
HaruPage::setWordSpace()
HaruPage::showText()
HaruPage::showTextNextLine()
HaruPage::stroke()
HaruPage::textOut()
HaruPage::textRect()

hash()
hash_algos()
hash_file()
hash_final()
hash_hmac()
hash_hmac_file()
hash_init()
hash_update()
hash_update_file()
hash_update_stream()
header()
headers_list()
headers_sent()
hebrev()
hebrevc()
hexdec()
highlight_file()
highlight_string()
html_entity_decode()
htmlentities()
htmlspecialchars()
htmlspecialchars_decode()
http_build_cookie()
http_build_query()
http_build_str()
http_build_url()
http_cache_etag()
http_cache_last_modified()
http_chunked_decode()
http_date()
http_deflate()
http_get()
http_get_request_body()
http_get_request_body_stream()
http_get_request_headers()
http_head()
http_inflate()
http_match_etag()
http_match_modified()
http_match_request_header()
http_negotiate_charset()
http_negotiate_content_type()
http_negotiate_language()
http_parse_cookie()
http_parse_headers()
http_parse_message()
http_parse_params()
http_persistent_handles_clean()
http_persistent_handles_count()
http_persistent_handles_ident()
http_post_data()
http_post_fields()

http_put_data()
http_put_file()
http_put_stream()
http_redirect()
http_request()
http_request_body_encode()
http_request_method_exists()
http_request_method_name()
http_request_method_register()
http_request_method_unregister()
http_send_content_disposition()
http_send_content_type()
http_send_data()
http_send_file()
http_send_last_modified()
http_send_status()
http_send_stream()
http_support()
http_throttle()
httpdeflatestream()
HttpDeflateStream::__construct()
HttpDeflateStream::factory()
HttpDeflateStream::finish()
HttpDeflateStream::flush()
HttpDeflateStream::update()
httpinflatestream()
HttpInflateStream::__construct()
HttpInflateStream::factory()
HttpInflateStream::finish()
HttpInflateStream::flush()
HttpInflateStream::update()
httpmessage()
HttpMessage::__construct()
HttpMessage::addHeaders()
HttpMessage::detach()
HttpMessage::factory()
HttpMessage::fromEnv()
HttpMessage::fromString()
HttpMessage::getBody()
HttpMessage::getHeader()
HttpMessage::getHeaders()
HttpMessage::getHttpVersion()
HttpMessage::getParentMessage()
HttpMessage::getRequestMethod()
HttpMessage::getRequestUrl()
HttpMessage::getResponseCode()
HttpMessage::getResponseStatus()
HttpMessage::getType()
HttpMessage::guessContentType()
HttpMessage::prepend()
HttpMessage::reverse()
HttpMessage::send()

HttpMessage::setBody()
HttpMessage::setHeaders()
HttpMessage::setHttpVersion()
HttpMessage::setRequestMethod()
HttpMessage::setRequestUrl()
HttpMessage::setResponseCode()
HttpMessage::setResponseStatus()
HttpMessage::setType()
HttpMessage::toMessageTypeObject()
HttpMessage::toString()
httpquerystring()
HttpQueryString::__construct()
HttpQueryString::get()
HttpQueryString::mod()
HttpQueryString::set()
HttpQueryString::singleton()
HttpQueryString::toArray()
HttpQueryString::toString()
HttpQueryString::xlate()
httprequest()
HttpRequest::__construct()
HttpRequest::addCookies()
HttpRequest::addHeaders()
HttpRequest::addPostFields()
HttpRequest::addPostFile()
HttpRequest::addPutData()
HttpRequest::addQueryData()
HttpRequest::addRawPostData()
HttpRequest::addSslOptions()
HttpRequest::clearHistory()
HttpRequest::enableCookies()
HttpRequest::getContentType()
HttpRequest::getCookies()
HttpRequest::getHeaders()
HttpRequest::getHistory()
HttpRequest::getMethod()
HttpRequest::getOptions()
HttpRequest::getPostFields()
HttpRequest::getPostFiles()
HttpRequest::getPutData()
HttpRequest::getPutFile()
HttpRequest::getQueryData()
HttpRequest::getRawPostData()
HttpRequest::getRawRequestMessage()
HttpRequest::getRawResponseMessage()
HttpRequest::getRequestMessage()
HttpRequest::getResponseBody()
HttpRequest::getResponseCode()
HttpRequest::getResponseCookies()
HttpRequest::getResponseData()
HttpRequest::getResponseHeader()
HttpRequest::getResponseInfo()

HttpRequest::getResponseMessage()
HttpRequest::getResponseStatus()
HttpRequest::getSslOptions()
HttpRequest::getUrl()
HttpRequest::resetCookies()
HttpRequest::send()
HttpRequest::setContentType()
HttpRequest::setCookies()
HttpRequest::setHeaders()
HttpRequest::setMethod()
HttpRequest::setOptions()
HttpRequest::setPostFields()
HttpRequest::setPostFiles()
HttpRequest::setPutData()
HttpRequest::setPutFile()
HttpRequest::setQueryData()
HttpRequest::setRawPostData()
HttpRequest::setSslOptions()
HttpRequest::setUrl()
httprequestpool()
HttpRequestPool::__construct()
HttpRequestPool::__destruct()
HttpRequestPool::attach()
HttpRequestPool::detach()
HttpRequestPool::getAttachedRequests()
HttpRequestPool::getFinishedRequests()
HttpRequestPool::reset()
HttpRequestPool::send()
HttpRequestPool::socketPerform()
HttpRequestPool::socketSelect()
httpresponse()
HttpResponse::capture()
HttpResponse::getBufferSize()
HttpResponse::getCache()
HttpResponse::getCacheControl()
HttpResponse::getContentDisposition()
HttpResponse::getContentType()
HttpResponse::getData()
HttpResponse::getETag()
HttpResponse::getFile()
HttpResponse::getGzip()
HttpResponse::getHeader()
HttpResponse::getLastModified()
HttpResponse::getRequestBody()
HttpResponse::getRequestBodyStream()
HttpResponse::getRequestHeaders()
HttpResponse::getStream()
HttpResponse::getThrottleDelay()
HttpResponse::guessContentType()
HttpResponse::redirect()
HttpResponse::send()
HttpResponse::setBufferSize()

HttpResponse::setCache()
HttpResponse::setCacheControl()
HttpResponse::setContentDisposition()
HttpResponse::setContentType()
HttpResponse::setData()
HttpResponse::setETag()
HttpResponse::setFile()
HttpResponse::setGzip()
HttpResponse::setHeader()
HttpResponse::setLastModified()
HttpResponse::setStream()
HttpResponse::setThrottleDelay()
HttpResponse::status()
hw_api->checkin()
hw_api->checkout()
hw_api->children()
hw_api->content()
hw_api->copy()
hw_api->dbstat()
hw_api->dcstat()
hw_api->dstanchors()
hw_api->dstofsrcanchor()
hw_api->find()
hw_api->ftstat()
hw_api->hwstat()
hw_api->identify()
hw_api->info()
hw_api->insert()
hw_api->insertanchor()
hw_api->insertcollection()
hw_api->insertdocument()
hw_api->link()
hw_api->lock()
hw_api->move()
hw_api->object()
hw_api->objectbyanchor()
hw_api->parents()
hw_api->remove()
hw_api->replace()
hw_api->setcommittedversion()
hw_api->srcanchors()
hw_api->srcsofdst()
hw_api->unlock()
hw_api->user()
hw_api->userlist()
hw_api_attribute()
hw_api_attribute->key()
hw_api_attribute->langdepvalue()
hw_api_attribute->value()
hw_api_attribute->values()
hw_api_content()
hw_api_content->mimetype()

hw_api_content->read()
hw_api_error->count()
hw_api_error->reason()
hw_api_object()
hw_api_object->assign()
hw_api_object->attreditable()
hw_api_object->count()
hw_api_object->insert()
hw_api_object->remove()
hw_api_object->title()
hw_api_object->value()
hw_api_reason->description()
hw_api_reason->type()
hw_array2objrec()
hw_changeobject()
hw_children()
hw_childrenobj()
hw_close()
hw_connect()
hw_connection_info()
hw_cp()
hw_deleteobject()
hw_docbyanchor()
hw_docbyanchorobj()
hw_document_attributes()
hw_document_bodytag()
hw_document_content()
hw_document_setcontent()
hw_document_size()
hw_dummy()
hw_edittext()
hw_error()
hw_errormsg()
hw_free_document()
hw_getanchors()
hw_getanchorsobj()
hw_getandlock()
hw_getchildcoll()
hw_getchildcollobj()
hw_getchilddoccoll()
hw_getchilddoccollobj()
hw_getobject()
hw_getobjectbyquery()
hw_getobjectbyquerycoll()
hw_getobjectbyquerycollobj()
hw_getobjectbyqueryobj()
hw_getparents()
hw_getparentsobj()
hw_getrellink()
hw_getremote()
hw_getremotechildren()
hw_getsrcbydestobj()

hw_gettext()
hw_getusername()
hw_identify()
hw_incollections()
hw_info()
hw_inscoll()
hw_insdoc()
hw_insertanchors()
hw_insertdocument()
hw_insertobject()
hw_mapid()
hw_modifyobject()
hw_mv()
hw_new_document()
hw_objrec2array()
hw_output_document()
hw_pconnect()
hw_pipedocument()
hw_root()
hw_setlinkroot()
hw_stat()
hw_unlock()
hw_who()
hwapi_hgcsp()
hypot()

I

ibase_add_user()
ibase_affected_rows()
ibase_backup()
ibase_blob_add()
ibase_blob_cancel()
ibase_blob_close()
ibase_blob_create()
ibase_blob_echo()
ibase_blob_get()
ibase_blob_import()
ibase_blob_info()
ibase_blob_open()
ibase_close()
ibase_commit()
ibase_commit_ret()
ibase_connect()
ibase_db_info()
ibase_delete_user()
ibase_drop_db()
ibase_errcode()
ibase_errmsg()
ibase_execute()

ibase_fetch_assoc()
ibase_fetch_object()
ibase_fetch_row()
ibase_field_info()
ibase_free_event_handler()
ibase_free_query()
ibase_free_result()
ibase_gen_id()
ibase_maintain_db()
ibase_modify_user()
ibase_name_result()
ibase_num_fields()
ibase_num_params()
ibase_param_info()
ibase_pconnect()
ibase_prepare()
ibase_query()
ibase_restore()
ibase_rollback()
ibase_rollback_ret()
ibase_server_info()
ibase_service_attach()
ibase_service_detach()
ibase_set_event_handler()
ibase_timefmt()
ibase_trans()
ibase_wait_event()
iconv()
iconv_get_encoding()
iconv_mime_decode()
iconv_mime_decode_headers()
iconv_mime_encode()
iconv_set_encoding()
iconv_strlen()
iconv_strpos()
iconv_strrpos()
iconv_substr()
id3_get_frame_long_name()
id3_get_frame_short_name()
id3_get_genre_id()
id3_get_genre_list()
id3_get_genre_name()
id3_get_tag()
id3_get_version()
id3_remove_tag()
id3_set_tag()
idate()
ifx_affected_rows()
ifx_blobinfile_mode()
ifx_byteasvarchar()
ifx_close()
ifx_connect()

ifx_copy_blob()
ifx_create_blob()
ifx_create_char()
ifx_do()
ifx_error()
ifx_errormsg()
ifx_fetch_row()
ifx_fieldproperties()
ifx_fieldtypes()
ifx_free_blob()
ifx_free_char()
ifx_free_result()
ifx_get_blob()
ifx_get_char()
ifx_getsqlca()
ifx_htmltbl_result()
ifx_nullformat()
ifx_num_fields()
ifx_num_rows()
ifx_pconnect()
ifx_prepare()
ifx_query()
ifx_textasvarchar()
ifx_update_blob()
ifx_update_char()
ifxus_close_slob()
ifxus_create_slob()
ifxus_free_slob()
ifxus_open_slob()
ifxus_read_slob()
ifxus_seek_slob()
ifxus_tell_slob()
ifxus_write_slob()
ignore_user_abort()
iis_add_server()
iis_get_dir_security()
iis_get_script_map()
iis_get_server_by_comment()
iis_get_server_by_path()
iis_get_server_rights()
iis_get_service_state()
iis_remove_server()
iis_set_app_settings()
iis_set_dir_security()
iis_set_script_map()
iis_set_server_rights()
iis_start_server()
iis_start_service()
iis_stop_server()
iis_stop_service()
image2wbmp()
image_type_to_extension()

image_type_to_mime_type()
imagealphablending()
imageantialias()
imagearc()
imagechar()
imagecharup()
imagecolorallocate()
imagecolorallocatealpha()
imagecolorat()
imagecolorclosest()
imagecolorclosestalpha()
imagecolorclosesthwb()
imagecolordeallocate()
imagecolorexact()
imagecolorexactalpha()
imagecolormatch()
imagecolorresolve()
imagecolorresolvealpha()
imagecolorset()
imagecolorsforindex()
imagecolorstotal()
imagecolortransparent()
imageconvolution()
imagecopy()
imagecopymerge()
imagecopymergegray()
imagecopyresampled()
imagecopyresized()
imagecreate()
imagecreatefromgd()
imagecreatefromgd2()
imagecreatefromgd2part()
imagecreatefromgif()
imagecreatefromjpeg()
imagecreatefrompng()
imagecreatefromstring()
imagecreatefromwbmp()
imagecreatefromxbm()
imagecreatefromxpm()
imagecreatetruecolor()
imagedashedline()
imagedestroy()
imageellipse()
imagefill()
imagefilledarc()
imagefilledellipse()
imagefilledpolygon()
imagefilledrectangle()
imagefilltoborder()
imagefilter()
imagefontheight()
imagefontwidth()

imageftbbox()
imagefttext()
imagegammacorrect()
imagegd()
imagegd2()
imagegif()
imagegrabscreen()
imagegrabwindow()
imageinterlace()
imageistruecolor()
imagejpeg()
imagelayereffect()
imageline()
imageloadfont()
imagepalettecopy()
imagepng()
imagepolygon()
imagepsbbox()
imagepsencodefont()
imagepsextendfont()
imagepsfreefont()
imagepsloadfont()
imagepsslantfont()
imagepstext()
imagerectangle()
imagerotate()
imagesavealpha()
imagesetbrush()
imagesetpixel()
imagesetstyle()
imagesetthickness()
imagesettile()
imagestring()
imagestringup()
imagesx()
imagesy()
imagetruecolortopalette()
imagettfbbox()
imagettftext()
imagetypes()
imagewbmp()
imagexbm()
imagick()
Imagick::__construct()
Imagick::adaptiveBlurImage()
Imagick::adaptiveResizeImage()
Imagick::adaptiveSharpenImage()
Imagick::adaptiveThresholdImage()
Imagick::addImage()
Imagick::addNoiseImage()
Imagick::affineTransformImage()
Imagick::annotateImage()

Imagick::appendImages()
Imagick::averageImages()
Imagick::blackThresholdImage()
Imagick::blurImage()
Imagick::borderImage()
Imagick::charcoalImage()
Imagick::chopImage()
Imagick::clear()
Imagick::clipImage()
Imagick::clipPathImage()
Imagick::clone()
Imagick::coalesceImages()
Imagick::colorFloodfillImage()
Imagick::colorizeImage()
Imagick::combineImages()
Imagick::commentImage()
Imagick::compareImageChannels()
Imagick::compareImageLayers()
Imagick::compositeImage()
Imagick::contrastImage()
Imagick::contrastStretchImage()
Imagick::convolveImage()
Imagick::cropImage()
Imagick::cropThumbnailImage()
Imagick::current()
Imagick::cycleColormapImage()
Imagick::deconstructImages()
Imagick::despeckleImage()
Imagick::destroy()
Imagick::displayImage()
Imagick::displayImages()
Imagick::drawImage()
Imagick::edgeImage()
Imagick::embossImage()
Imagick::enhanceImage()
Imagick::equalizeImage()
Imagick::evaluateImage()
Imagick::flattenImages()
Imagick::flipImage()
Imagick::flopImage()
Imagick::frameImage()
Imagick::fxImage()
Imagick::gammaImage()
Imagick::gaussianBlurImage()
Imagick::getCompression()
Imagick::getCompressionQuality()
Imagick::getCopyright()
Imagick::getFilename()
Imagick::getFormat()
Imagick::getHomeURL()
Imagick::getImage()
Imagick::getImageBackgroundColor()

Imagick::getImageBlob()
Imagick::getImageBluePrimary()
Imagick::getImageBorderColor()
Imagick::getImageChannelDepth()
Imagick::getImageChannelDistortion()
Imagick::getImageChannelExtrema()
Imagick::getImageChannelMean()
Imagick::getImageChannelStatistics()
Imagick::getImageColormapColor()
Imagick::getImageColors()
Imagick::getImageColorspace()
Imagick::getImageCompose()
Imagick::getImageDelay()
Imagick::getImageDepth()
Imagick::getImageDispose()
Imagick::getImageDistortion()
Imagick::getImageExtrema()
Imagick::getImageFilename()
Imagick::getImageFormat()
Imagick::getImageGamma()
Imagick::getImageGeometry()
Imagick::getImageGreenPrimary()
Imagick::getImageHeight()
Imagick::getImageHistogram()
Imagick::getImageIndex()
Imagick::getImageInterlaceScheme()
Imagick::getImageInterpolateMethod()
Imagick::getImageIterations()
Imagick::getImageMatte()
Imagick::getImageMatteColor()
Imagick::getImagePage()
Imagick::getImagePixelColor()
Imagick::getImageProfile()
Imagick::getImageProperty()
Imagick::getImageRedPrimary()
Imagick::getImageRegion()
Imagick::getImageRenderingIntent()
Imagick::getImageResolution()
Imagick::getImageScene()
Imagick::getImageSignature()
Imagick::getImageSize()
Imagick::getImageTicksPerSecond()
Imagick::getImageTotalInkDensity()
Imagick::getImageType()
Imagick::getImageUnits()
Imagick::getImageVirtualPixelMethod()
Imagick::getImageWhitePoint()
Imagick::getImageWidth()
Imagick::getInterlaceScheme()
Imagick::getNumberImages()
Imagick::getOption()
Imagick::getPackageName()

Imagick::getPage()
Imagick::getPixelIterator()
Imagick::getPixelRegionIterator()
Imagick::getQuantumDepth()
Imagick::getQuantumRange()
Imagick::getReleaseDate()
Imagick::getResource()
Imagick::getResourceLimit()
Imagick::getSamplingFactors()
Imagick::getSize()
Imagick::getSizeOffset()
Imagick::getVersion()
Imagick::hasNextImage()
Imagick::hasPreviousImage()
Imagick::identifyImage()
Imagick::implodeImage()
Imagick::labelImage()
Imagick::levelImage()
Imagick::linearStretchImage()
Imagick::magnifyImage()
Imagick::matteFloodfillImage()
Imagick::medianFilterImage()
Imagick::minifyImage()
Imagick::modulateImage()
Imagick::montageImage()
Imagick::morphImages()
Imagick::mosaicImages()
Imagick::motionBlurImage()
Imagick::negateImage()
Imagick::newImage()
Imagick::newPseudoImage()
Imagick::nextImage()
Imagick::normalizeImage()
Imagick::oilPaintImage()
Imagick::optimizeImageLayers()
Imagick::paintOpaqueImage()
Imagick::paintTransparentImage()
Imagick::pingImage()
Imagick::pingImageBlob()
Imagick::pingImageFile()
Imagick::polaroidImage()
Imagick::posterizeImage()
Imagick::previousImage()
Imagick::profileImage()
Imagick::queryFontMetrics()
Imagick::queryFonts()
Imagick::queryFormats()
Imagick::radialBlurImage()
Imagick::raiseImage()
Imagick::randomThresholdImage()
Imagick::readImage()
Imagick::readImageBlob()

Imagick::readImageFile()
Imagick::reduceNoiseImage()
Imagick::removeImage()
Imagick::removeImageProfile()
Imagick::render()
Imagick::resampleImage()
Imagick::resizeImage()
Imagick::rollImage()
Imagick::rotateImage()
Imagick::roundCorners()
Imagick::sampleImage()
Imagick::scaleImage()
Imagick::separateImageChannel()
Imagick::sepiaToneImage()
Imagick::setBackgroundColor()
Imagick::setCompression()
Imagick::setCompressionQuality()
Imagick::setFilename()
Imagick::setFirstIterator()
Imagick::setFormat()
Imagick::setImageBackgroundColor()
Imagick::setImageBias()
Imagick::setImageBluePrimary()
Imagick::setImageBorderColor()
Imagick::setImageChannelDepth()
Imagick::setImageColormapColor()
Imagick::setImageColorspace()
Imagick::setImageCompose()
Imagick::setImageCompression()
Imagick::setImageDelay()
Imagick::setImageDepth()
Imagick::setImageDispose()
Imagick::setImageExtent()
Imagick::setImageFilename()
Imagick::setImageFormat()
Imagick::setImageGamma()
Imagick::setImageGreenPrimary()
Imagick::setImageIndex()
Imagick::setImageInterlaceScheme()
Imagick::setImageInterpolateMethod()
Imagick::setImageIterations()
Imagick::setImageMatte()
Imagick::setImageMatteColor()
Imagick::setImagePage()
Imagick::setImageProfile()
Imagick::setImageProperty()
Imagick::setImageRedPrimary()
Imagick::setImageRenderingIntent()
Imagick::setImageResolution()
Imagick::setImageScene()
Imagick::setImageTicksPerSecond()
Imagick::setImageType()

Imagick::setImageUnits()
Imagick::setImageVirtualPixelMethod()
Imagick::setImageWhitePoint()
Imagick::setInterlaceScheme()
Imagick::setOption()
Imagick::setPage()
Imagick::setResolution()
Imagick::setResourceLimit()
Imagick::setSamplingFactors()
Imagick::setSize()
Imagick::setSizeOffset()
Imagick::setType()
Imagick::shadeImage()
Imagick::shadowImage()
Imagick::sharpenImage()
Imagick::shaveImage()
Imagick::shearImage()
Imagick::sigmoidalContrastImage()
Imagick::sketchImage()
Imagick::solarizeImage()
Imagick::spliceImage()
Imagick::spreadImage()
Imagick::steganoImage()
Imagick::stereoImage()
Imagick::stripImage()
Imagick::swirlImage()
Imagick::textureImage()
Imagick::thresholdImage()
Imagick::thumbnailImage()
Imagick::tintImage()
Imagick::transverseImage()
Imagick::trimImage()
Imagick::uniqueImageColors()
Imagick::unsharpMaskImage()
Imagick::valid()
Imagick::vignetteImage()
Imagick::waveImage()
Imagick::whiteThresholdImage()
Imagick::writeImage()
Imagick::writeImages()
ImagickDraw::__construct()
ImagickDraw::affine()
ImagickDraw::annotation()
ImagickDraw::arc()
ImagickDraw::bezier()
ImagickDraw::circle()
ImagickDraw::clear()
ImagickDraw::clone()
ImagickDraw::color()
ImagickDraw::comment()
ImagickDraw::composite()
ImagickDraw::destroy()

ImagickDraw::ellipse()
ImagickDraw::getClipPath()
ImagickDraw::getClipRule()
ImagickDraw::getClipUnits()
ImagickDraw::getFillColor()
ImagickDraw::getFillOpacity()
ImagickDraw::getFillRule()
ImagickDraw::getFont()
ImagickDraw::getFontFamily()
ImagickDraw::getFontSize()
ImagickDraw::getFontStyle()
ImagickDraw::getFontWeight()
ImagickDraw::getGravity()
ImagickDraw::getStrokeAntialias()
ImagickDraw::getStrokeColor()
ImagickDraw::getStrokeDashArray()
ImagickDraw::getStrokeDashOffset()
ImagickDraw::getStrokeLineCap()
ImagickDraw::getStrokeLineJoin()
ImagickDraw::getStrokeMiterLimit()
ImagickDraw::getStrokeOpacity()
ImagickDraw::getStrokeWidth()
ImagickDraw::getTextAlignment()
ImagickDraw::getTextAntialias()
ImagickDraw::getTextDecoration()
ImagickDraw::getTextEncoding()
ImagickDraw::getTextUnderColor()
ImagickDraw::getVectorGraphics()
ImagickDraw::line()
ImagickDraw::matte()
ImagickDraw::pathClose()
ImagickDraw::pathCurveToAbsolute()
ImagickDraw::pathCurveToQuadraticBezierAbsolute()
ImagickDraw::pathCurveToQuadraticBezierRelative()
ImagickDraw::pathCurveToQuadraticBezierSmoothAbsolute()
ImagickDraw::pathCurveToQuadraticBezierSmoothRelative()
ImagickDraw::pathCurveToRelative()
ImagickDraw::pathCurveToSmoothAbsolute()
ImagickDraw::pathCurveToSmoothRelative()
ImagickDraw::pathEllipticArcAbsolute()
ImagickDraw::pathEllipticArcRelative()
ImagickDraw::pathFinish()
ImagickDraw::pathLineToAbsolute()
ImagickDraw::pathLineToHorizontalAbsolute()
ImagickDraw::pathLineToHorizontalRelative()
ImagickDraw::pathLineToRelative()
ImagickDraw::pathLineToVerticalAbsolute()
ImagickDraw::pathLineToVerticalRelative()
ImagickDraw::pathMoveToAbsolute()
ImagickDraw::pathMoveToRelative()
ImagickDraw::pathStart()
ImagickDraw::point()

ImagickDraw::polygon()
ImagickDraw::polyline()
ImagickDraw::pop()
ImagickDraw::popClipPath()
ImagickDraw::popDefs()
ImagickDraw::popPattern()
ImagickDraw::push()
ImagickDraw::pushClipPath()
ImagickDraw::pushDefs()
ImagickDraw::pushPattern()
ImagickDraw::rectangle()
ImagickDraw::render()
ImagickDraw::rotate()
ImagickDraw::roundRectangle()
ImagickDraw::scale()
ImagickDraw::setClipPath()
ImagickDraw::setClipRule()
ImagickDraw::setClipUnits()
ImagickDraw::setFillAlpha()
ImagickDraw::setFillColor()
ImagickDraw::setFillOpacity()
ImagickDraw::setFillPatternURL()
ImagickDraw::setFillRule()
ImagickDraw::setFont()
ImagickDraw::setFontFamily()
ImagickDraw::setFontSize()
ImagickDraw::setFontStretch()
ImagickDraw::setFontStyle()
ImagickDraw::setFontWeight()
ImagickDraw::setGravity()
ImagickDraw::setStrokeAlpha()
ImagickDraw::setStrokeAntialias()
ImagickDraw::setStrokeColor()
ImagickDraw::setStrokeDashArray()
ImagickDraw::setStrokeDashOffset()
ImagickDraw::setStrokeLineCap()
ImagickDraw::setStrokeLineJoin()
ImagickDraw::setStrokeMiterLimit()
ImagickDraw::setStrokeOpacity()
ImagickDraw::setStrokePatternURL()
ImagickDraw::setStrokeWidth()
ImagickDraw::setTextAlignment()
ImagickDraw::setTextAntialias()
ImagickDraw::setTextDecoration()
ImagickDraw::setTextEncoding()
ImagickDraw::setTextUnderColor()
ImagickDraw::setVectorGraphics()
ImagickDraw::setViewbox()
ImagickDraw::skewX()
ImagickDraw::skewY()
ImagickDraw::translate()
ImagickPixel::__construct()

ImagickPixel::clear()
ImagickPixel::destroy()
ImagickPixel::getColor()
ImagickPixel::getColorCount()
ImagickPixel::getColorValue()
ImagickPixel::getHSL()
ImagickPixel::isSimilar()
ImagickPixel::setColor()
ImagickPixel::setColorValue()
ImagickPixel::setHSL()
ImagickPixelIterator::__construct()
ImagickPixelIterator::clear()
ImagickPixelIterator::destroy()
ImagickPixelIterator::getCurrentIteratorRow()
ImagickPixelIterator::getIteratorRow()
ImagickPixelIterator::getNextIteratorRow()
ImagickPixelIterator::getPreviousIteratorRow()
ImagickPixelIterator::newPixelIterator()
ImagickPixelIterator::newPixelRegionIterator()
ImagickPixelIterator::resetIterator()
ImagickPixelIterator::setIteratorFirstRow()
ImagickPixelIterator::setIteratorLastRow()
ImagickPixelIterator::setIteratorRow()
ImagickPixelIterator::syncIterator()
imap_8bit()
imap_alerts()
imap_append()
imap_base64()
imap_binary()
imap_body()
imap_bodystruct()
imap_check()
imap_clearflag_full()
imap_close()
imap_createmailbox()
imap_delete()
imap_deletemailbox()
imap_errors()
imap_expunge()
imap_fetch_overview()
imap_fetchbody()
imap_fetchheader()
imap_fetchstructure()
imap_get_quota()
imap_get_quotaroot()
imap_getacl()
imap_getmailboxes()
imap_getsubscribed()
imap_header()
imap_headerinfo()
imap_headers()
imap_last_error()

imap_list()
imap_listmailbox()
imap_listscan()
imap_listsubscribed()
imap_lsub()
imap_mail()
imap_mail_compose()
imap_mail_copy()
imap_mail_move()
imap_mailboxmsginfo()
imap_mime_header_decode()
imap_msgno()
imap_num_msg()
imap_num_recent()
imap_open()
imap_ping()
imap_qprint()
imap_renamemailbox()
imap_reopen()
imap_rfc822_parse_adrlist()
imap_rfc822_parse_headers()
imap_rfc822_write_address()
imap_savebody()
imap_scanmailbox()
imap_search()
imap_set_quota()
imap_setacl()
imap_setflag_full()
imap_sort()
imap_status()
imap_subscribe()
imap_thread()
imap_timeout()
imap_uid()
imap_undelete()
imap_unsubscribe()
imap_utf7_decode()
imap_utf7_encode()
imap_utf8()
implode()
import_request_variables()
in_array()
inet_ntop()
inet_pton()
ingres_autocommit()
ingres_close()
ingres_commit()
ingres_connect()
ingres_cursor()
ingres_errno()
ingres_error()
ingres_errsqlstate()

ingres_fetch_array()
ingres_fetch_object()
ingres_fetch_row()
ingres_field_length()
ingres_field_name()
ingres_field_nullable()
ingres_field_precision()
ingres_field_scale()
ingres_field_type()
ingres_num_fields()
ingres_num_rows()
ingres_pconnect()
ingres_query()
ingres_rollback()
ini_alter()
ini_get()
ini_get_all()
ini_restore()
ini_set()
installation()
installation()
interface_exists()
intval()
ip2long()
iptcembed()
iptcparse()
ircg_channel_mode()
ircg_disconnect()
ircg_eval_ecmascript_params()
ircg_fetch_error_msg()
ircg_get_username()
ircg_html_encode()
ircg_ignore_add()
ircg_ignore_del()
ircg_invite()
ircg_is_conn_alive()
ircg_join()
ircg_kick()
ircg_list()
ircg_lookup_format_messages()
ircg_lusers()
ircg_msg()
ircg_names()
ircg_nick()
ircg_nickname_escape()
ircg_nickname_unescape()
ircg_notice()
ircg_oper()
ircg_part()
ircg_pconnect()
ircg_register_format_messages()
ircg_set_current()

ircg_set_file()
ircg_set_on_die()
ircg_topic()
ircg_who()
ircg_whois()
is_a()
is_array()
is_binary()
is_bool()
is_buffer()
is_callable()
is_dir()
is_double()
is_executable()
is_file()
is_finite()
is_float()
is_infinite()
is_int()
is_integer()
is_link()
is_long()
is_nan()
is_null()
is_numeric()
is_object()
is_readable()
is_real()
is_resource()
is_scalar()
is_soap_fault()
is_string()
is_subclass_of()
is_unicode()
is_uploaded_file()
is_writable()
is_writeable()
isset()
iterator_count()
iterator_to_array()

J

java_last_exception_clear()
java_last_exception_get()
jddayofweek()
jdmonthname()
jdtofrench()
jdtogregorian()
jdtojewish()

jdtojulian()
jdtounix()
jewishtojd()
join()
jpeg2wbmp()
json_decode()
json_encode()
juliantojd()

K

kadm5_chpass_principal()
kadm5_create_principal()
kadm5_delete_principal()
kadm5_destroy()
kadm5_flush()
kadm5_get_policies()
kadm5_get_principal()
kadm5_get_principals()
kadm5_init_with_password()
kadm5_modify_principal()
key()
krsort()
ksort()

L

lcg_value()
lchgrp()
lchown()
ldap_8859_to_t61()
ldap_add()
ldap_bind()
ldap_close()
ldap_compare()
ldap_connect()
ldap_count_entries()
ldap_delete()
ldap_dn2ufn()
ldap_err2str()
ldap_errno()
ldap_error()
ldap_explode_dn()
ldap_first_attribute()
ldap_first_entry()
ldap_first_reference()
ldap_free_result()

ldap_get_attributes()
ldap_get_dn()
ldap_get_entries()
ldap_get_option()
ldap_get_values()
ldap_get_values_len()
ldap_list()
ldap_mod_add()
ldap_mod_del()
ldap_mod_replace()
ldap_modify()
ldap_next_attribute()
ldap_next_entry()
ldap_next_reference()
ldap_parse_reference()
ldap_parse_result()
ldap_read()
ldap_rename()
ldap_sasl_bind()
ldap_search()
ldap_set_option()
ldap_set_rebind_proc()
ldap_sort()
ldap_start_tls()
ldap_t61_to_8859()
ldap_unbind()
levenshtein()
libxml_clear_errors()
libxml_get_errors()
libxml_get_last_error()
libxml_set_streams_context()
libxml_use_internal_errors()
LimitIterator::getPosition()
LimitIterator::next()
LimitIterator::rewind()
LimitIterator::seek()
LimitIterator::valid()
link()
linkinfo()
list()
locale_get_default()
locale_set_default()
localeconv()
localtime()
log()
log10()
log1p()
long2ip()
lstat()
ltrim()
lzf_compress()
lzf_decompress()

lzf_optimized_for()

M

m_checkstatus()
m_completeauthorizations()
m_connect()
m_connectionerror()
m_deletetrans()
m_destroyconn()
m_destroyengine()
m_getcell()
m_getcellbynum()
m_getcommadelimited()
m_getheader()
m_initconn()
m_initengine()
m_iscommadelimited()
m_maxconntimeout()
m_monitor()
m_numcolumns()
m_numrows()
m_parsecommadelimited()
m_responsekeys()
m_responseparam()
m_returnstatus()
m_setblocking()
m_setdropfile()
m_setip()
m_setssl()
m_setssl_cafile()
m_setssl_files()
m_settimeout()
m_sslcert_gen_hash()
m_transactionssent()
m_transinqueue()
m_transkeyval()
m_transnew()
m_transsend()
m_uwait()
m_validateidentifier()
m_verifyconnection()
m_verifysslcert()
mail()
mailparse_determine_best_xfer_encoding()
mailparse_msg_create()
mailparse_msg_extract_part()
mailparse_msg_extract_part_file()
mailparse_msg_extract_whole_part_file()
mailparse_msg_free()

mailparse_msg_get_part()
mailparse_msg_get_part_data()
mailparse_msg_get_structure()
mailparse_msg_parse()
mailparse_msg_parse_file()
mailparse_rfc822_parse_addresses()
mailparse_stream_encode()
mailparse_uudecode_all()
main()
max()
maxdb()()
maxdb->affected_rows()
maxdb->auto_commit()
maxdb->change_user()
maxdb->character_set_name()
maxdb->close()
maxdb->close_long_data()
maxdb->commit()
maxdb->disable_reads_from_master()
maxdb->errno()
maxdb->fetch_assoc()
maxdb->field_count()
maxdb->get_host_info()
maxdb->info()
maxdb->insert_id()
maxdb->kill()
maxdb->more_results()
maxdb->multi_query()
maxdb->next_result()
maxdb->options()
maxdb->ping()
maxdb->prepare()
maxdb->protocol_version()
maxdb->query()
maxdb->real_connect()
maxdb->real_escape_string()
maxdb->real_query()
maxdb->rollback()
maxdb->rpl_query_type()
maxdb->select_db()
maxdb->send_query()
maxdb->server_info()
maxdb->sqlstate()
maxdb->ssl_set()
maxdb->stat()
maxdb->stmt_init()
maxdb->store_result()
maxdb->store_result()
maxdb->thread_id()
maxdb->use_result()
maxdb->warning_count()
maxdb_affected_rows()

maxdb_autocommit()
maxdb_bind_param()
maxdb_bind_result()
maxdb_change_user()
maxdb_character_set_name()
maxdb_client_encoding()
maxdb_close()
maxdb_close_long_data()
maxdb_commit()
maxdb_connect()
maxdb_connect_errno()
maxdb_connect_error()
maxdb_data_seek()
maxdb_debug()
maxdb_disable_reads_from_master()
maxdb_disable_rpl_parse()
maxdb_dump_debug_info()
maxdb_embedded_connect()
maxdb_enable_reads_from_master()
maxdb_enable_rpl_parse()
maxdb_errno()
maxdb_error()
maxdb_escape_string()
maxdb_execute()
maxdb_fetch()
maxdb_fetch_array()
maxdb_fetch_assoc()
maxdb_fetch_field()
maxdb_fetch_field_direct()
maxdb_fetch_fields()
maxdb_fetch_lengths()
maxdb_fetch_object()
maxdb_fetch_row()
maxdb_field_count()
maxdb_field_seek()
maxdb_field_tell()
maxdb_free_result()
maxdb_get_client_info()
maxdb_get_client_version()
maxdb_get_host_info()
maxdb_get_metadata()
maxdb_get_proto_info()
maxdb_get_server_info()
maxdb_get_server_version()
maxdb_info()
maxdb_init()
maxdb_insert_id()
maxdb_kill()
maxdb_master_query()
maxdb_more_results()
maxdb_multi_query()
maxdb_next_result()

maxdb_num_fields()
maxdb_num_rows()
maxdb_options()
maxdb_param_count()
maxdb_ping()
maxdb_prepare()
maxdb_query()
maxdb_real_connect()
maxdb_real_escape_string()
maxdb_real_query()
maxdb_report()
maxdb_rollback()
maxdb_rpl_parse_enabled()
maxdb_rpl_probe()
maxdb_rpl_query_type()
maxdb_select_db()
maxdb_send_long_data()
maxdb_send_query()
maxdb_server_end()
maxdb_server_init()
maxdb_set_opt()
maxdb_sqlstate()
maxdb_ssl_set()
maxdb_stat()
maxdb_stmt->affected_rows()
maxdb_stmt->close()
maxdb_stmt->errno()
maxdb_stmt->error()
maxdb_stmt_affected_rows()
maxdb_stmt_bind_param()
maxdb_stmt_bind_result()
maxdb_stmt_close()
maxdb_stmt_close_long_data()
maxdb_stmt_data_seek()
maxdb_stmt_errno()
maxdb_stmt_error()
maxdb_stmt_execute()
maxdb_stmt_fetch()
maxdb_stmt_free_result()
maxdb_stmt_init()
maxdb_stmt_num_rows()
maxdb_stmt_param_count()
maxdb_stmt_prepare()
maxdb_stmt_reset()
maxdb_stmt_result_metadata()
maxdb_stmt_send_long_data()
maxdb_stmt_sqlstate()
maxdb_stmt_store_result()
maxdb_store_result()
maxdb_thread_id()
maxdb_thread_safe()
maxdb_use_result()

maxdb_warning_count()
mb_check_encoding()
mb_convert_case()
mb_convert_encoding()
mb_convert_kana()
mb_convert_variables()
mb_decode_mimeheader()
mb_decode_numericentity()
mb_detect_encoding()
mb_detect_order()
mb_encode_mimeheader()
mb_encode_numericentity()
mb_ereg()
mb_ereg_match()
mb_ereg_replace()
mb_ereg_search()
mb_ereg_search_getpos()
mb_ereg_search_getregs()
mb_ereg_search_init()
mb_ereg_search_pos()
mb_ereg_search_regs()
mb_ereg_search_setpos()
mb_eregi()
mb_eregi_replace()
mb_get_info()
mb_http_input()
mb_http_output()
mb_internal_encoding()
mb_language()
mb_output_handler()
mb_parse_str()
mb_preferred_mime_name()
mb_regex_encoding()
mb_regex_set_options()
mb_send_mail()
mb_split()
mb_strcut()
mb_strimwidth()
mb_stripos()
mb_stristr()
mb_strlen()
mb_strpos()
mb_strrchr()
mb_strrichr()
mb_strripos()
mb_strrpos()
mb_strstr()
mb_strtolower()
mb_strtoupper()
mb_strwidth()
mb_substitute_character()
mb_substr()

mb_substr_count()
mcal_append_event()
mcal_close()
mcal_create_calendar()
mcal_date_compare()
mcal_date_valid()
mcal_day_of_week()
mcal_day_of_year()
mcal_days_in_month()
mcal_delete_calendar()
mcal_delete_event()
mcal_event_add_attribute()
mcal_event_init()
mcal_event_set_alarm()
mcal_event_set_category()
mcal_event_set_class()
mcal_event_set_description()
mcal_event_set_end()
mcal_event_set_recur_daily()
mcal_event_set_recur_monthly_mday()
mcal_event_set_recur_monthly_wday()
mcal_event_set_recur_none()
mcal_event_set_recur_weekly()
mcal_event_set_recur_yearly()
mcal_event_set_start()
mcal_event_set_title()
mcal_expunge()
mcal_fetch_current_stream_event()
mcal_fetch_event()
mcal_is_leap_year()
mcal_list_alarms()
mcal_list_events()
mcal_next_recurrence()
mcal_open()
mcal_popen()
mcal_rename_calendar()
mcal_reopen()
mcal_snooze()
mcal_store_event()
mcal_time_valid()
mcal_week_of_year()
mcrypt_cbc()
mcrypt_cfb()
mcrypt_create_iv()
mcrypt_decrypt()
mcrypt_ecb()
mcrypt_enc_get_algorithms_name()
mcrypt_enc_get_block_size()
mcrypt_enc_get_iv_size()
mcrypt_enc_get_key_size()
mcrypt_enc_get_modes_name()
mcrypt_enc_get_supported_key_sizes()

mcrypt_enc_is_block_algorithm()
mcrypt_enc_is_block_algorithm_mode()
mcrypt_enc_is_block_mode()
mcrypt_enc_self_test()
mcrypt_encrypt()
mcrypt_generic()
mcrypt_generic_deinit()
mcrypt_generic_end()
mcrypt_generic_init()
mcrypt_get_block_size()
mcrypt_get_cipher_name()
mcrypt_get_iv_size()
mcrypt_get_key_size()
mcrypt_list_algorithms()
mcrypt_list_modes()
mcrypt_module_close()
mcrypt_module_get_algo_block_size()
mcrypt_module_get_algo_key_size()
mcrypt_module_get_supported_key_sizes()
mcrypt_module_is_block_algorithm()
mcrypt_module_is_block_algorithm_mode()
mcrypt_module_is_block_mode()
mcrypt_module_open()
mcrypt_module_self_test()
mcrypt_ofb()
md5()
md5_file()
mdecrypt_generic()
Memcache::add()
Memcache::addServer()
Memcache::close()
Memcache::connect()
Memcache::decrement()
Memcache::delete()
Memcache::flush()
Memcache::get()
Memcache::getExtendedStats()
Memcache::getServerStatus()
Memcache::getStats()
Memcache::getVersion()
Memcache::increment()
Memcache::pconnect()
Memcache::replace()
Memcache::set()
Memcache::setCompressThreshold()
Memcache::setServerParams()
memcache_debug()
memory_get_peak_usage()
memory_get_usage()
metaphone()
method_exists()
mhash()

mhash_count()
mhash_get_block_size()
mhash_get_hash_name()
mhash_keygen_s2k()
microtime()
mime_content_type()
min()
ming_keypress()
ming_setcubicthreshold()
ming_setscale()
ming_setswfcompression()
ming_useconstants()
ming_useswfversion()
mkdir()
mktime()
money_format()
move_uploaded_file()
msession_connect()
msession_count()
msession_create()
msession_destroy()
msession_disconnect()
msession_find()
msession_get()
msession_get_array()
msession_get_data()
msession_inc()
msession_list()
msession_listvar()
msession_lock()
msession_plugin()
msession_randstr()
msession_set()
msession_set_array()
msession_set_data()
msession_timeout()
msession_uniq()
msession_unlock()
msg_get_queue()
msg_receive()
msg_remove_queue()
msg_send()
msg_set_queue()
msg_stat_queue()
msql()
msql_affected_rows()
msql_close()
msql_connect()
msql_create_db()
msql_createdb()
msql_data_seek()
msql_db_query()

msql_dbname()
msql_drop_db()
msql_error()
msql_fetch_array()
msql_fetch_field()
msql_fetch_object()
msql_fetch_row()
msql_field_flags()
msql_field_len()
msql_field_name()
msql_field_seek()
msql_field_table()
msql_field_type()
msql_fieldflags()
msql_fieldlen()
msql_fieldname()
msql_fieldtable()
msql_fieldtype()
msql_free_result()
msql_list_dbs()
msql_list_fields()
msql_list_tables()
msql_num_fields()
msql_num_rows()
msql_numfields()
msql_numrows()
msql_pconnect()
msql_query()
msql_regcase()
msql_result()
msql_select_db()
msql_tablename()
mssql_bind()
mssql_close()
mssql_connect()
mssql_data_seek()
mssql_execute()
mssql_fetch_array()
mssql_fetch_assoc()
mssql_fetch_batch()
mssql_fetch_field()
mssql_fetch_object()
mssql_fetch_row()
mssql_field_length()
mssql_field_name()
mssql_field_seek()
mssql_field_type()
mssql_free_result()
mssql_free_statement()
mssql_get_last_message()
mssql_guid_string()
mssql_init()

mssql_min_error_severity()
mssql_min_message_severity()
mssql_next_result()
mssql_num_fields()
mssql_num_rows()
mssql_pconnect()
mssql_query()
mssql_result()
mssql_rows_affected()
mssql_select_db()
mt_getrandmax()
mt_rand()
mt_srand()
muscat_close()
muscat_get()
muscat_give()
muscat_setup()
muscat_setup_net()
mysql_affected_rows()
mysql_change_user()
mysql_client_encoding()
mysql_close()
mysql_connect()
mysql_create_db()
mysql_data_seek()
mysql_db_name()
mysql_db_query()
mysql_drop_db()
mysql_errno()
mysql_error()
mysql_escape_string()
mysql_fetch_array()
mysql_fetch_assoc()
mysql_fetch_field()
mysql_fetch_lengths()
mysql_fetch_object()
mysql_fetch_row()
mysql_field_flags()
mysql_field_len()
mysql_field_name()
mysql_field_seek()
mysql_field_table()
mysql_field_type()
mysql_free_result()
mysql_get_client_info()
mysql_get_host_info()
mysql_get_proto_info()
mysql_get_server_info()
mysql_info()
mysql_insert_id()
mysql_list_dbs()
mysql_list_fields()

mysql_list_processes()
mysql_list_tables()
mysql_num_fields()
mysql_num_rows()
mysql_pconnect()
mysql_ping()
mysql_query()
mysql_real_escape_string()
mysql_result()
mysql_select_db()
mysql_set_charset()
mysql_stat()
mysql_tablename()
mysql_thread_id()
mysql_unbuffered_query()
mysqli->__construct()()
mysqli->affected_rows()
mysqli->autocommit()()
mysqli->change_user()()
mysqli->character_set_name()()
mysqli->close()()
mysqli->commit()()
mysqli->debug()()
mysqli->disable_reads_from_master()()
mysqli->dump_debug_info()()
mysqli->errno()
mysqli->fetch_assoc()()
mysqli->field_count()()
mysqli->host_info()
mysqli->info()
mysqli->insert_id()
mysqli->kill()()
mysqli->more_results()
mysqli->multi_query()()
mysqli->next_result()()
mysqli->options()()
mysqli->ping()()
mysqli->prepare()()
mysqli->protocol_version()
mysqli->query()()
mysqli->real_connect()()
mysqli->real_escape_string()()
mysqli->real_query()()
mysqli->rollback()()
mysqli->rpl_query_type()()
mysqli->select_db()()
mysqli->send_query()()
mysqli->server_info()
mysqli->server_version()
mysqli->set_charset()
mysqli->sqlstate()
mysqli->ssl_set()()

mysqli->stat()()
mysqli->stmt_init()()
mysqli->store_result()()
mysqli->thread_id()
mysqli->use_result()()
mysqli->warning_count()
mysqli_affected_rows()
mysqli_autocommit()
mysqli_bind_param()
mysqli_bind_result()
mysqli_change_user()
mysqli_character_set_name()
mysqli_client_encoding()
mysqli_close()
mysqli_commit()
mysqli_connect()
mysqli_connect_errno()
mysqli_connect_error()
mysqli_data_seek()
mysqli_debug()
mysqli_disable_reads_from_master()
mysqli_disable_rpl_parse()
mysqli_dump_debug_info()
mysqli_embedded_server_end()
mysqli_embedded_server_start()
mysqli_enable_reads_from_master()
mysqli_enable_rpl_parse()
mysqli_errno()
mysqli_error()
mysqli_escape_string()
mysqli_execute()
mysqli_fetch()
mysqli_fetch_array()
mysqli_fetch_assoc()
mysqli_fetch_field()
mysqli_fetch_field_direct()
mysqli_fetch_fields()
mysqli_fetch_lengths()
mysqli_fetch_object()
mysqli_fetch_row()
mysqli_field_count()
mysqli_field_seek()
mysqli_field_tell()
mysqli_free_result()
mysqli_get_charset()
mysqli_get_client_info()
mysqli_get_client_version()
mysqli_get_host_info()
mysqli_get_metadata()
mysqli_get_proto_info()
mysqli_get_server_info()
mysqli_get_server_version()

mysqli_get_warnings()
mysqli_info()
mysqli_init()
mysqli_insert_id()
mysqli_kill()
mysqli_master_query()
mysqli_more_results()
mysqli_multi_query()
mysqli_next_result()
mysqli_num_fields()
mysqli_num_rows()
mysqli_options()
mysqli_param_count()
mysqli_ping()
mysqli_prepare()
mysqli_query()
mysqli_real_connect()
mysqli_real_escape_string()
mysqli_real_query()
mysqli_report()
mysqli_rollback()
mysqli_rpl_parse_enabled()
mysqli_rpl_probe()
mysqli_rpl_query_type()
mysqli_select_db()
mysqli_send_long_data()
mysqli_send_query()
mysqli_server_end()
mysqli_server_init()
mysqli_set_charset()
mysqli_set_local_infile_default()
mysqli_set_local_infile_handler()
mysqli_set_opt()
mysqli_slave_query()
mysqli_sqlstate()
mysqli_ssl_set()
mysqli_stat()
mysqli_stmt->affected_rows()
mysqli_stmt->close()()
mysqli_stmt->errno()
mysqli_stmt->error()
mysqli_stmt->sqlstate()()
mysqli_stmt->store_result()()
mysqli_stmt_affected_rows()
mysqli_stmt_attr_get()
mysqli_stmt_attr_set()
mysqli_stmt_bind_param()
mysqli_stmt_bind_result()
mysqli_stmt_close()
mysqli_stmt_data_seek()
mysqli_stmt_errno()
mysqli_stmt_error()

mysqli_stmt_execute()
mysqli_stmt_fetch()
mysqli_stmt_field_count()
mysqli_stmt_free_result()
mysqli_stmt_get_warnings()
mysqli_stmt_init()
mysqli_stmt_insert_id()
mysqli_stmt_num_rows()
mysqli_stmt_param_count()
mysqli_stmt_prepare()
mysqli_stmt_reset()
mysqli_stmt_result_metadata()
mysqli_stmt_send_long_data()
mysqli_stmt_sqlstate()
mysqli_stmt_store_result()
mysqli_store_result()
mysqli_thread_id()
mysqli_thread_safe()
mysqli_use_result()
mysqli_warning_count()

N

natcasesort()
natsort()
ncurses_addch()
ncurses_addchnstr()
ncurses_addchstr()
ncurses_addnstr()
ncurses_addstr()
ncurses_assume_default_colors()
ncurses_attroff()
ncurses_attron()
ncurses_attrset()
ncurses_baudrate()
ncurses_beep()
ncurses_bkgd()
ncurses_bkgdset()
ncurses_border()
ncurses_bottom_panel()
ncurses_can_change_color()
ncurses_cbreak()
ncurses_clear()
ncurses_clrtobot()
ncurses_clrtoeol()
ncurses_color_content()
ncurses_color_set()
ncurses_curs_set()
ncurses_def_prog_mode()
ncurses_def_shell_mode()

ncurses_define_key()
ncurses_del_panel()
ncurses_delay_output()
ncurses_delch()
ncurses_deleteln()
ncurses_delwin()
ncurses_doupdate()
ncurses_echo()
ncurses_echochar()
ncurses_end()
ncurses_erase()
ncurses_erasechar()
ncurses_filter()
ncurses_flash()
ncurses_flushinp()
ncurses_getch()
ncurses_getmaxyx()
ncurses_getmouse()
ncurses_getyx()
ncurses_halfdelay()
ncurses_has_colors()
ncurses_has_ic()
ncurses_has_il()
ncurses_has_key()
ncurses_hide_panel()
ncurses_hline()
ncurses_inch()
ncurses_init()
ncurses_init_color()
ncurses_init_pair()
ncurses_insch()
ncurses_insdelln()
ncurses_insertln()
ncurses_insstr()
ncurses_instr()
ncurses_isendwin()
ncurses_keyok()
ncurses_keypad()
ncurses_killchar()
ncurses_longname()
ncurses_meta()
ncurses_mouse_trafo()
ncurses_mouseinterval()
ncurses_mousemask()
ncurses_move()
ncurses_move_panel()
ncurses_mvaddch()
ncurses_mvaddchnstr()
ncurses_mvaddchstr()
ncurses_mvaddnstr()
ncurses_mvaddstr()
ncurses_mvcur()

ncurses_mvdelch()
ncurses_mvgetch()
ncurses_mvhline()
ncurses_mvinch()
ncurses_mvvline()
ncurses_mvwaddstr()
ncurses_napms()
ncurses_new_panel()
ncurses_newpad()
ncurses_newwin()
ncurses_nl()
ncurses_nocbreak()
ncurses_noecho()
ncurses_nonl()
ncurses_noqiflush()
ncurses_noraw()
ncurses_pair_content()
ncurses_panel_above()
ncurses_panel_below()
ncurses_panel_window()
ncurses_pnoutrefresh()
ncurses_prefresh()
ncurses_putp()
ncurses_qiflush()
ncurses_raw()
ncurses_refresh()
ncurses_replace_panel()
ncurses_reset_prog_mode()
ncurses_reset_shell_mode()
ncurses_resetty()
ncurses_savetty()
ncurses_scr_dump()
ncurses_scr_init()
ncurses_scr_restore()
ncurses_scr_set()
ncurses_scrl()
ncurses_show_panel()
ncurses_slk_attr()
ncurses_slk_attroff()
ncurses_slk_attron()
ncurses_slk_attrset()
ncurses_slk_clear()
ncurses_slk_color()
ncurses_slk_init()
ncurses_slk_noutrefresh()
ncurses_slk_refresh()
ncurses_slk_restore()
ncurses_slk_set()
ncurses_slk_touch()
ncurses_standend()
ncurses_standout()
ncurses_start_color()

ncurses_termattrs()
ncurses_termname()
ncurses_timeout()
ncurses_top_panel()
ncurses_typeahead()
ncurses_ungetch()
ncurses_ungetmouse()
ncurses_update_panels()
ncurses_use_default_colors()
ncurses_use_env()
ncurses_use_extended_names()
ncurses_vidattr()
ncurses_vline()
ncurses_waddch()
ncurses_waddstr()
ncurses_wattroff()
ncurses_wattron()
ncurses_wattrset()
ncurses_wborder()
ncurses_wclear()
ncurses_wcolor_set()
ncurses_werase()
ncurses_wgetch()
ncurses_whline()
ncurses_wmouse_trafo()
ncurses_wmove()
ncurses_wnoutrefresh()
ncurses_wrefresh()
ncurses_wstandend()
ncurses_wstandout()
ncurses_wvline()
newt_bell()
newt_button()
newt_button_bar()
newt_centered_window()
newt_checkbox()
newt_checkbox_get_value()
newt_checkbox_set_flags()
newt_checkbox_set_value()
newt_checkbox_tree()
newt_checkbox_tree_add_item()
newt_checkbox_tree_find_item()
newt_checkbox_tree_get_current()
newt_checkbox_tree_get_entry_value()
newt_checkbox_tree_get_multi_selection()
newt_checkbox_tree_get_selection()
newt_checkbox_tree_multi()
newt_checkbox_tree_set_current()
newt_checkbox_tree_set_entry()
newt_checkbox_tree_set_entry_value()
newt_checkbox_tree_set_width()
newt_clear_key_buffer()

newt_cls()
newt_compact_button()
newt_component_add_callback()
newt_component_takes_focus()
newt_create_grid()
newt_cursor_off()
newt_cursor_on()
newt_delay()
newt_draw_form()
newt_draw_root_text()
newt_entry()
newt_entry_get_value()
newt_entry_set()
newt_entry_set_filter()
newt_entry_set_flags()
newt_finished()
newt_form()
newt_form_add_component()
newt_form_add_components()
newt_form_add_hot_key()
newt_form_destroy()
newt_form_get_current()
newt_form_run()
newt_form_set_background()
newt_form_set_height()
newt_form_set_size()
newt_form_set_timer()
newt_form_set_width()
newt_form_watch_fd()
newt_get_screen_size()
newt_grid_add_components_to_form()
newt_grid_basic_window()
newt_grid_free()
newt_grid_get_size()
newt_grid_h_close_stacked()
newt_grid_h_stacked()
newt_grid_place()
newt_grid_set_field()
newt_grid_simple_window()
newt_grid_v_close_stacked()
newt_grid_v_stacked()
newt_grid_wrapped_window()
newt_grid_wrapped_window_at()
newt_init()
newt_label()
newt_label_set_text()
newt_listbox()
newt_listbox_append_entry()
newt_listbox_clear()
newt_listbox_clear_selection()
newt_listbox_delete_entry()
newt_listbox_get_current()

newt_listbox_get_selection()
newt_listbox_insert_entry()
newt_listbox_item_count()
newt_listbox_select_item()
newt_listbox_set_current()
newt_listbox_set_current_by_key()
newt_listbox_set_data()
newt_listbox_set_entry()
newt_listbox_set_width()
newt_listitem()
newt_listitem_get_data()
newt_listitem_set()
newt_open_window()
newt_pop_help_line()
newt_pop_window()
newt_push_help_line()
newt_radio_get_current()
newt_radiobutton()
newt_redraw_help_line()
newt_reflow_text()
newt_refresh()
newt_resize_screen()
newt_resume()
newt_run_form()
newt_scale()
newt_scale_set()
newt_scrollbar_set()
newt_set_help_callback()
newt_set_suspend_callback()
newt_suspend()
newt_textbox()
newt_textbox_get_num_lines()
newt_textbox_reflowed()
newt_textbox_set_height()
newt_textbox_set_text()
newt_vertical_scrollbar()
newt_wait_for_key()
newt_win_choice()
newt_win_entries()
newt_win_menu()
newt_win_message()
newt_win_messagev()
newt_win_ternary()
next()
ngettext()
nl2br()
nl_langinfo()
notes_body()
notes_copy_db()
notes_create_db()
notes_create_note()
notes_drop_db()

notes_find_note()
notes_header_info()
notes_list_msgs()
notes_mark_read()
notes_mark_unread()
notes_nav_create()
notes_search()
notes_unread()
notes_version()
nsapi_request_headers()
nsapi_response_headers()
nsapi_virtual()
number_format()

O

ob_clean()
ob_deflatehandler()
ob_end_clean()
ob_end_flush()
ob_etaghandler()
ob_flush()
ob_get_clean()
ob_get_contents()
ob_get_flush()
ob_get_length()
ob_get_level()
ob_get_status()
ob_gzhandler()
ob_iconv_handler()
ob_implicit_flush()
ob_inflatehandler()
ob_list_handlers()
ob_start()
ob_tidyhandler()
OCI-Collection->append()
OCI-Collection->assign()
OCI-Collection->assignElem()
OCI-Collection->free()
OCI-Collection->getElem()
OCI-Collection->max()
OCI-Collection->size()
OCI-Collection->trim()
OCI-Lob->append()
OCI-Lob->close()
OCI-Lob->eof()
OCI-Lob->erase()
OCI-Lob->export()
OCI-Lob->flush()
OCI-Lob->free()

OCI-Lob->getBuffering()
OCI-Lob->import()
OCI-Lob->load()
OCI-Lob->read()
OCI-Lob->rewind()
OCI-Lob->save()
OCI-Lob->saveFile()
OCI-Lob->seek()
OCI-Lob->setBuffering()
OCI-Lob->size()
OCI-Lob->tell()
OCI-Lob->truncate()
OCI-Lob->write()
OCI-Lob->writeTemporary()
OCI-Lob->writeToFile()
oci_bind_array_by_name()
oci_bind_by_name()
oci_cancel()
oci_close()
oci_commit()
oci_connect()
oci_define_by_name()
oci_error()
oci_execute()
oci_fetch()
oci_fetch_all()
oci_fetch_array()
oci_fetch_assoc()
oci_fetch_object()
oci_fetch_row()
oci_field_is_null()
oci_field_name()
oci_field_precision()
oci_field_scale()
oci_field_size()
oci_field_type()
oci_field_type_raw()
oci_free_statement()
oci_internal_debug()
oci_lob_copy()
oci_lob_is_equal()
oci_new_collection()
oci_new_connect()
oci_new_cursor()
oci_new_descriptor()
oci_num_fields()
oci_num_rows()
oci_parse()
oci_password_change()
oci_pconnect()
oci_result()
oci_rollback()

oci_server_version()
oci_set_prefetch()
oci_statement_type()
ocibindbyname()
ocicancel()
ocicloselob()
ocicollappend()
ocicollassign()
ocicollassignelem()
ocicollgetelem()
ocicollmax()
ocicollsize()
ocicolltrim()
ocicolumnisnull()
ocicolumnname()
ocicolumnprecision()
ocicolumnscale()
ocicolumnsize()
ocicolumntype()
ocicolumntyperaw()
ocicommit()
ocidefinebyname()
ocierror()
ociexecute()
ocifetch()
ocifetchinto()
ocifetchstatement()
ocifreecollection()
ocifreecursor()
ocifreedesc()
ocifreestatement()
ociinternaldebug()
ociloadlob()
ocilogoff()
ocilogon()
ocinewcollection()
ocinewcursor()
ocinewdescriptor()
ocinlogon()
ocinumcols()
ociparse()
ociplogon()
ociresult()
ocirollback()
ocirowcount()
ocisavelob()
ocisavelobfile()
ociserverversion()
ocisetprefetch()
ocistatementtype()
ociwritelobtofile()
ociwritetemporarylob()

octdec()
odbc_autocommit()
odbc_binmode()
odbc_close()
odbc_close_all()
odbc_columnprivileges()
odbc_columns()
odbc_commit()
odbc_connect()
odbc_cursor()
odbc_data_source()
odbc_do()
odbc_error()
odbc_errormsg()
odbc_exec()
odbc_execute()
odbc_fetch_array()
odbc_fetch_into()
odbc_fetch_object()
odbc_fetch_row()
odbc_field_len()
odbc_field_name()
odbc_field_num()
odbc_field_precision()
odbc_field_scale()
odbc_field_type()
odbc_foreignkeys()
odbc_free_result()
odbc_gettypeinfo()
odbc_longreadlen()
odbc_next_result()
odbc_num_fields()
odbc_num_rows()
odbc_pconnect()
odbc_prepare()
odbc_primarykeys()
odbc_procedurecolumns()
odbc_procedures()
odbc_result()
odbc_result_all()
odbc_rollback()
odbc_setoption()
odbc_specialcolumns()
odbc_statistics()
odbc_tableprivileges()
odbc_tables()
openal_buffer_create()
openal_buffer_data()
openal_buffer_destroy()
openal_buffer_get()
openal_buffer_loadwav()
openal_context_create()

openal_context_current()
openal_context_destroy()
openal_context_process()
openal_context_suspend()
openal_device_close()
openal_device_open()
openal_listener_get()
openal_listener_set()
openal_source_create()
openal_source_destroy()
openal_source_get()
openal_source_pause()
openal_source_play()
openal_source_rewind()
openal_source_set()
openal_source_stop()
openal_stream()
opendir()
openlog()
openssl_csr_export()
openssl_csr_export_to_file()
openssl_csr_get_public_key()
openssl_csr_get_subject()
openssl_csr_new()
openssl_csr_sign()
openssl_error_string()
openssl_free_key()
openssl_get_privatekey()
openssl_get_publickey()
openssl_open()
openssl_pkcs7_decrypt()
openssl_pkcs7_encrypt()
openssl_pkcs7_sign()
openssl_pkcs7_verify()
openssl_pkey_export()
openssl_pkey_export_to_file()
openssl_pkey_free()
openssl_pkey_get_details()
openssl_pkey_get_private()
openssl_pkey_get_public()
openssl_pkey_new()
openssl_private_decrypt()
openssl_private_encrypt()
openssl_public_decrypt()
openssl_public_encrypt()
openssl_seal()
openssl_sign()
openssl_verify()
openssl_x509_check_private_key()
openssl_x509_checkpurpose()
openssl_x509_export()
openssl_x509_export_to_file()

openssl_x509_free()
openssl_x509_parse()
openssl_x509_read()
ora_bind()
ora_close()
ora_columnname()
ora_columnsize()
ora_columntype()
ora_commit()
ora_commitoff()
ora_commiton()
ora_do()
ora_error()
ora_errorcode()
ora_exec()
ora_fetch()
ora_fetch_into()
ora_getcolumn()
ora_logoff()
ora_logon()
ora_numcols()
ora_numrows()
ora_open()
ora_parse()
ora_plogon()
ora_rollback()
orbitenum()
orbitobject()
orbitstruct()
ord()
output_add_rewrite_var()
output_reset_rewrite_vars()
overload()
override_function()
ovrimos_close()
ovrimos_commit()
ovrimos_connect()
ovrimos_cursor()
ovrimos_exec()
ovrimos_execute()
ovrimos_fetch_into()
ovrimos_fetch_row()
ovrimos_field_len()
ovrimos_field_name()
ovrimos_field_num()
ovrimos_field_type()
ovrimos_free_result()
ovrimos_longreadlen()
ovrimos_num_fields()
ovrimos_num_rows()
ovrimos_prepare()
ovrimos_result()

ovrimos_result_all()
ovrimos_rollback()

P

pack()
ParentIterator::getChildren()
ParentIterator::hasChildren()
ParentIterator::next()
ParentIterator::rewind()
parse_ini_file()
parse_str()
parse_url()
parsekit_compile_file()
parsekit_compile_string()
parsekit_func_arginfo()
passthru()
pathinfo()
pclose()
pcntl_alarm()
pcntl_exec()
pcntl_fork()
pcntl_getpriority()
pcntl_setpriority()
pcntl_signal()
pcntl_wait()
pcntl_waitpid()
pcntl_wexitstatus()
pcntl_wifexited()
pcntl_wifsignaled()
pcntl_wifstopped()
pcntl_wstopsig()
pcntl_wtermsig()
pdf_activate_item()
pdf_add_annotation()
pdf_add_bookmark()
pdf_add_launchlink()
pdf_add_locallink()
pdf_add_nameddest()
pdf_add_note()
pdf_add_outline()
pdf_add_pdflink()
pdf_add_table_cell()
pdf_add_textflow()
pdf_add_thumbnail()
pdf_add_weblink()
pdf_arc()
pdf_arcn()
pdf_attach_file()
pdf_begin_document()

pdf_begin_font()
pdf_begin_glyph()
pdf_begin_item()
pdf_begin_layer()
pdf_begin_page()
pdf_begin_page_ext()
pdf_begin_pattern()
pdf_begin_template()
pdf_begin_template_ext()
pdf_circle()
pdf_clip()
pdf_close()
pdf_close_image()
pdf_close_pdi()
pdf_close_pdi_page()
pdf_closepath()
pdf_closepath_fill_stroke()
pdf_closepath_stroke()
pdf_concat()
pdf_continue_text()
pdf_create_3dview()
pdf_create_action()
pdf_create_annotation()
pdf_create_bookmark()
pdf_create_field()
pdf_create_fieldgroup()
pdf_create_gstate()
pdf_create_pvf()
pdf_create_textflow()
pdf_curveto()
pdf_define_layer()
pdf_delete()
pdf_delete_pvf()
pdf_delete_table()
pdf_delete_textflow()
pdf_encoding_set_char()
pdf_end_document()
pdf_end_font()
pdf_end_glyph()
pdf_end_item()
pdf_end_layer()
pdf_end_page()
pdf_end_page_ext()
pdf_end_pattern()
pdf_end_template()
pdf_endpath()
pdf_fill()
pdf_fill_imageblock()
pdf_fill_pdfblock()
pdf_fill_stroke()
pdf_fill_textblock()
pdf_findfont()

pdf_fit_image()
pdf_fit_pdi_page()
pdf_fit_table()
pdf_fit_textflow()
pdf_fit_textline()
pdf_get_apiname()
pdf_get_buffer()
pdf_get_errmsg()
pdf_get_errnum()
pdf_get_font()
pdf_get_fontname()
pdf_get_fontsize()
pdf_get_image_height()
pdf_get_image_width()
pdf_get_majorversion()
pdf_get_minorversion()
pdf_get_parameter()
pdf_get_pdi_parameter()
pdf_get_pdi_value()
pdf_get_value()
pdf_info_font()
pdf_info_matchbox()
pdf_info_table()
pdf_info_textflow()
pdf_info_textline()
pdf_initgraphics()
pdf_lineto()
pdf_load_3ddata()
pdf_load_font()
pdf_load_iccprofile()
pdf_load_image()
pdf_makespotcolor()
pdf_moveto()
pdf_new()
pdf_open_ccitt()
pdf_open_file()
pdf_open_gif()
pdf_open_image()
pdf_open_image_file()
pdf_open_jpeg()
pdf_open_memory_image()
pdf_open_pdi()
pdf_open_pdi_page()
pdf_open_tiff()
pdf_pcos_get_number()
pdf_pcos_get_stream()
pdf_pcos_get_string()
pdf_place_image()
pdf_place_pdi_page()
pdf_process_pdi()
pdf_rect()
pdf_restore()

pdf_resume_page()
pdf_rotate()
pdf_save()
pdf_scale()
pdf_set_border_color()
pdf_set_border_dash()
pdf_set_border_style()
pdf_set_char_spacing()
pdf_set_duration()
pdf_set_gstate()
pdf_set_horiz_scaling()
pdf_set_info()
pdf_set_info_author()
pdf_set_info_creator()
pdf_set_info_keywords()
pdf_set_info_subject()
pdf_set_info_title()
pdf_set_layer_dependency()
pdf_set_leading()
pdf_set_parameter()
pdf_set_text_matrix()
pdf_set_text_pos()
pdf_set_text_rendering()
pdf_set_text_rise()
pdf_set_value()
pdf_set_word_spacing()
pdf_setcolor()
pdf_setdash()
pdf_setdashpattern()
pdf_setflat()
pdf_setfont()
pdf_setgray()
pdf_setgray_fill()
pdf_setgray_stroke()
pdf_setlinecap()
pdf_setlinejoin()
pdf_setlinewidth()
pdf_setmatrix()
pdf_setmiterlimit()
pdf_setpolydash()
pdf_setrgbcolor()
pdf_setrgbcolor_fill()
pdf_setrgbcolor_stroke()
pdf_shading()
pdf_shading_pattern()
pdf_shfill()
pdf_show()
pdf_show_boxed()
pdf_show_xy()
pdf_skew()
pdf_stringwidth()
pdf_stroke()

pdf_suspend_page()
pdf_translate()
pdf_utf16_to_utf8()
pdf_utf32_to_utf16()
pdf_utf8_to_utf16()
PDO->__construct()()
PDO->beginTransaction()()
PDO->commit()()
PDO->errorCode()()
PDO->errorInfo()()
PDO->exec()()
PDO->getAttribute()()
PDO->getAvailableDrivers()()
PDO->lastInsertId()()
PDO->prepare()()
PDO->query()()
PDO->quote()()
PDO->rollBack()()
PDO->setAttribute()()
PDO->sqliteCreateAggregate()()
PDO->sqliteCreateFunction()()
PDO::pgsqlLOBCreate()
PDO::pgsqlLOBOpen()
PDO::pgsqlLOBUnlink()
PDOStatement->bindColumn()()
PDOStatement->bindParam()()
PDOStatement->bindValue()()
PDOStatement->closeCursor()()
PDOStatement->columnCount()()
PDOStatement->errorCode()()
PDOStatement->errorInfo()()
PDOStatement->execute()()
PDOStatement->fetch()()
PDOStatement->fetchAll()()
PDOStatement->fetchColumn()()
PDOStatement->fetchObject()()
PDOStatement->getAttribute()()
PDOStatement->getColumnMeta()()
PDOStatement->nextRowset()()
PDOStatement->rowCount()()
PDOStatement->setAttribute()()
PDOStatement->setFetchMode()()
pfpro_cleanup()
pfpro_init()
pfpro_process()
pfpro_process_raw()
pfpro_version()
pfsockopen()
pg_affected_rows()
pg_cancel_query()
pg_client_encoding()
pg_close()

pg_connect()
pg_connection_busy()
pg_connection_reset()
pg_connection_status()
pg_convert()
pg_copy_from()
pg_copy_to()
pg_dbname()
pg_delete()
pg_end_copy()
pg_escape_bytea()
pg_escape_string()
pg_execute()
pg_fetch_all()
pg_fetch_all_columns()
pg_fetch_array()
pg_fetch_assoc()
pg_fetch_object()
pg_fetch_result()
pg_fetch_row()
pg_field_is_null()
pg_field_name()
pg_field_num()
pg_field_prtlen()
pg_field_size()
pg_field_table()
pg_field_type()
pg_field_type_oid()
pg_free_result()
pg_get_notify()
pg_get_pid()
pg_get_result()
pg_host()
pg_insert()
pg_last_error()
pg_last_notice()
pg_last_oid()
pg_lo_close()
pg_lo_create()
pg_lo_export()
pg_lo_import()
pg_lo_open()
pg_lo_read()
pg_lo_read_all()
pg_lo_seek()
pg_lo_tell()
pg_lo_unlink()
pg_lo_write()
pg_meta_data()
pg_num_fields()
pg_num_rows()
pg_options()

pg_parameter_status()
pg_pconnect()
pg_ping()
pg_port()
pg_prepare()
pg_put_line()
pg_query()
pg_query_params()
pg_result_error()
pg_result_error_field()
pg_result_seek()
pg_result_status()
pg_select()
pg_send_execute()
pg_send_prepare()
pg_send_query()
pg_send_query_params()
pg_set_client_encoding()
pg_set_error_verbosity()
pg_trace()
pg_transaction_status()
pg_tty()
pg_unescape_bytea()
pg_untrace()
pg_update()
pg_version()
Phar->compressAllFilesBZIP2()
Phar->compressAllFilesGZ()
Phar->count()
Phar->getMetaData()
Phar->getModified()
Phar->getSignature()
Phar->getStub()
Phar->getVersion()
Phar->isBuffering()
Phar->setMetaData()
Phar->setStub()
Phar->startBuffering()
Phar->stopBuffering()
Phar->uncompressAllFiles()
Phar::__construct()
Phar::apiVersion()
Phar::canCompress()
Phar::canWrite()
Phar::loadPhar()
Phar::mapPhar()
Phar::offsetExists()
Phar::offsetGet()
Phar::offsetSet()
Phar::offsetUnset()
PharFileInfo->chmod()
PharFileInfo->getCompressedSize()

PharFileInfo->getCRC32()
PharFileInfo->getMetaData()
PharFileInfo->getPharFlags()
PharFileInfo->isCompressed()
PharFileInfo->isCompressedBZIP2()
PharFileInfo->isCompressedGZ()
PharFileInfo->isCRCChecked()
PharFileInfo->setCompressedBZIP2()
PharFileInfo->setCompressedGZ()
PharFileInfo->setMetaData()
PharFileInfo->setUncompressed()
PharFileInfo::__construct()
php_check_syntax()
php_ini_scanned_files()
php_logo_guid()
php_sapi_name()
php_strip_whitespace()
php_uname()
phpcredits()
phpinfo()
phpversion()
pi()
png2wbmp()
popen()
pos()
posix_access()
posix_ctermid()
posix_get_last_error()
posix_getcwd()
posix_getegid()
posix_geteuid()
posix_getgid()
posix_getgrgid()
posix_getgrnam()
posix_getgroups()
posix_getlogin()
posix_getpgid()
posix_getpgrp()
posix_getpid()
posix_getppid()
posix_getpwnam()
posix_getpwuid()
posix_getrlimit()
posix_getsid()
posix_getuid()
posix_initgroups()
posix_isatty()
posix_kill()
posix_mkfifo()
posix_mknod()
posix_setegid()
posix_seteuid()

posix_setgid()
posix_setpgid()
posix_setsid()
posix_setuid()
posix_strerror()
posix_times()
posix_ttyname()
posix_uname()
pow()
preg_grep()
preg_last_error()
preg_match()
preg_match_all()
preg_quote()
preg_replace()
preg_replace_callback()
preg_split()
prev()
print()
print_r()
printer_abort()
printer_close()
printer_create_brush()
printer_create_dc()
printer_create_font()
printer_create_pen()
printer_delete_brush()
printer_delete_dc()
printer_delete_font()
printer_delete_pen()
printer_draw_bmp()
printer_draw_chord()
printer_draw_elipse()
printer_draw_line()
printer_draw_pie()
printer_draw_rectangle()
printer_draw_roundrect()
printer_draw_text()
printer_end_doc()
printer_end_page()
printer_get_option()
printer_list()
printer_logical_fontheight()
printer_open()
printer_select_brush()
printer_select_font()
printer_select_pen()
printer_set_option()
printer_start_doc()
printer_start_page()
printer_write()
printf()

proc_close()
proc_get_status()
proc_nice()
proc_open()
proc_terminate()
property_exists()
ps_add_bookmark()
ps_add_launchlink()
ps_add_locallink()
ps_add_note()
ps_add_pdflink()
ps_add_weblink()
ps_arc()
ps_arcn()
ps_begin_page()
ps_begin_pattern()
ps_begin_template()
ps_circle()
ps_clip()
ps_close()
ps_close_image()
ps_closepath()
ps_closepath_stroke()
ps_continue_text()
ps_curveto()
ps_delete()
ps_end_page()
ps_end_pattern()
ps_end_template()
ps_fill()
ps_fill_stroke()
ps_findfont()
ps_get_buffer()
ps_get_parameter()
ps_get_value()
ps_hyphenate()
ps_include_file()
ps_lineto()
ps_makespotcolor()
ps_moveto()
ps_new()
ps_open_file()
ps_open_image()
ps_open_image_file()
ps_open_memory_image()
ps_place_image()
ps_rect()
ps_restore()
ps_rotate()
ps_save()
ps_scale()
ps_set_border_color()

ps_set_border_dash()
ps_set_border_style()
ps_set_info()
ps_set_parameter()
ps_set_text_pos()
ps_set_value()
ps_setcolor()
ps_setdash()
ps_setflat()
ps_setfont()
ps_setgray()
ps_setlinecap()
ps_setlinejoin()
ps_setlinewidth()
ps_setmiterlimit()
ps_setoverprintmode()
ps_setpolydash()
ps_shading()
ps_shading_pattern()
ps_shfill()
ps_show()
ps_show2()
ps_show_boxed()
ps_show_xy()
ps_show_xy2()
ps_string_geometry()
ps_stringwidth()
ps_stroke()
ps_symbol()
ps_symbol_name()
ps_symbol_width()
ps_translate()
pspell_add_to_personal()
pspell_add_to_session()
pspell_check()
pspell_clear_session()
pspell_config_create()
pspell_config_data_dir()
pspell_config_dict_dir()
pspell_config_ignore()
pspell_config_mode()
pspell_config_personal()
pspell_config_repl()
pspell_config_runtogether()
pspell_config_save_repl()
pspell_new()
pspell_new_config()
pspell_new_personal()
pspell_save_wordlist()
pspell_store_replacement()
pspell_suggest()
putenv()

px_close()
px_create_fp()
px_date2string()
px_delete()
px_delete_record()
px_get_field()
px_get_info()
px_get_parameter()
px_get_record()
px_get_schema()
px_get_value()
px_insert_record()
px_new()
px_numfields()
px_numrecords()
px_open_fp()
px_put_record()
px_retrieve_record()
px_set_blob_file()
px_set_parameter()
px_set_tablename()
px_set_targetencoding()
px_set_value()
px_timestamp2string()
px_update_record()

Q

qdom_error()
qdom_tree()
quoted_printable_decode()
quotemeta()

R

rad2deg()
radius_acct_open()
radius_add_server()
radius_auth_open()
radius_close()
radius_config()
radius_create_request()
radius_cvt_addr()
radius_cvt_int()
radius_cvt_string()
radius_demangle()
radius_demangle_mppe_key()

radius_get_attr()
radius_get_vendor_attr()
radius_put_addr()
radius_put_attr()
radius_put_int()
radius_put_string()
radius_put_vendor_addr()
radius_put_vendor_attr()
radius_put_vendor_int()
radius_put_vendor_string()
radius_request_authenticator()
radius_send_request()
radius_server_secret()
radius_strerror()
rand()
range()
Rar::extract()
Rar::getAttr()
Rar::getCrc()
Rar::getFileTime()
Rar::getHostOs()
Rar::getMethod()
Rar::getName()
Rar::getPackedSize()
Rar::getUnpackedSize()
Rar::getVersion()
rar_close()
rar_entry_get()
rar_list()
rar_open()
rawurldecode()
rawurlencode()
read_exif_data()
readdir()
readfile()
readgzfile()
readline()
readline_add_history()
readline_callback_handler_install()
readline_callback_handler_remove()
readline_callback_read_char()
readline_clear_history()
readline_completion_function()
readline_info()
readline_list_history()
readline_on_new_line()
readline_read_history()
readline_redisplay()
readline_write_history()
readlink()
realpath()
recode()

recode_file()
recode_string()
RecursiveDirectoryIterator::getChildren()
RecursiveDirectoryIterator::hasChildren()
RecursiveDirectoryIterator::key()
RecursiveDirectoryIterator::next()
RecursiveDirectoryIterator::rewind()
RecursiveIteratorIterator::current()
RecursiveIteratorIterator::getDepth()
RecursiveIteratorIterator::getSubIterator()
RecursiveIteratorIterator::key()
RecursiveIteratorIterator::next()
RecursiveIteratorIterator::rewind()
RecursiveIteratorIterator::valid()
register_shutdown_function()
register_tick_function()
rename()
rename_function()
reset()
resources()
restore_error_handler()
restore_exception_handler()
restore_include_path()
result->current_field()
result->current_field()
result->data_seek()
result->data_seek()()
result->fetch_array()
result->fetch_array()()
result->fetch_field()
result->fetch_field()()
result->fetch_field_direct()
result->fetch_field_direct()()
result->fetch_fields()
result->fetch_fields()()
result->fetch_object()
result->fetch_object()()
result->fetch_row()
result->fetch_row()()
result->field_count()
result->field_count()
result->field_seek()
result->field_seek()()
result->free()
result->free()()
result->lengths()
result->lengths()()
result->num_rows()
rewind()
rewinddir()
rmdir()
round()

rpm_close()
rpm_get_tag()
rpm_is_valid()
rpm_open()
rpm_version()
rsort()
rtrim()
runkit_class_adopt()
runkit_class_emancipate()
runkit_constant_add()
runkit_constant_redefine()
runkit_constant_remove()
runkit_function_add()
runkit_function_copy()
runkit_function_redefine()
runkit_function_remove()
runkit_function_rename()
runkit_import()
runkit_lint()
runkit_lint_file()
runkit_method_add()
runkit_method_copy()
runkit_method_redefine()
runkit_method_remove()
runkit_method_rename()
runkit_return_value_used()
runkit_sandbox()
runkit_sandbox_output_handler()
runkit_sandbox_parent()
runkit_superglobals()

S

SAMConnection->__construct()()
SAMConnection->commit()()
SAMConnection->connect()()
SAMConnection->disconnect()()
SAMConnection->errno()
SAMConnection->error()
SAMConnection->isConnected()()
SAMConnection->peek()()
SAMConnection->peekAll()()
SAMConnection->receive()()
SAMConnection->remove()()
SAMConnection->rollback()()
SAMConnection->send()()
SAMConnection->subscribe()()
SAMConnection->unsubscribe()()
SAMConnection::setDebug()()
SAMMessage->__construct()()

SAMMessage->body()
SAMMessage->header()
satellite_caught_exception()
satellite_exception_id()
satellite_exception_value()
satellite_get_repository_id()
satellite_load_idl()
satellite_object_to_string()
SCA::createDataObject()
SCA::getService()
SCA_LocalProxy::createDataObject()
SCA_SoapProxy::createDataObject()
scandir()
SDO_DAS_ChangeSummary::beginLogging()
SDO_DAS_ChangeSummary::endLogging()
SDO_DAS_ChangeSummary::getChangedDataObjects()
SDO_DAS_ChangeSummary::getChangeType()
SDO_DAS_ChangeSummary::getOldContainer()
SDO_DAS_ChangeSummary::getOldValues()
SDO_DAS_ChangeSummary::isLogging()
SDO_DAS_DataFactory::addPropertyToType()
SDO_DAS_DataFactory::addType()
SDO_DAS_DataFactory::getDataFactory()
SDO_DAS_DataObject::getChangeSummary()
SDO_DAS_Relational::__construct()
SDO_DAS_Relational::applyChanges()
SDO_DAS_Relational::createRootDataObject()
SDO_DAS_Relational::executePreparedQuery()
SDO_DAS_Relational::executeQuery()
SDO_DAS_Setting::getListIndex()
SDO_DAS_Setting::getPropertyIndex()
SDO_DAS_Setting::getPropertyName()
SDO_DAS_Setting::getValue()
SDO_DAS_Setting::isSet()
SDO_DAS_XML::addTypes()
SDO_DAS_XML::create()
SDO_DAS_XML::createDataObject()
SDO_DAS_XML::createDocument()
SDO_DAS_XML::loadFile()
SDO_DAS_XML::loadString()
SDO_DAS_XML::saveFile()
SDO_DAS_XML::saveString()
SDO_DAS_XML_Document::getRootDataObject()
SDO_DAS_XML_Document::getRootElementName()
SDO_DAS_XML_Document::getRootElementURI()
SDO_DAS_XML_Document::setEncoding()
SDO_DAS_XML_Document::setXMLDeclaration()
SDO_DAS_XML_Document::setXMLVersion()
SDO_DataFactory::create()
SDO_DataObject::clear()
SDO_DataObject::createDataObject()
SDO_DataObject::getContainer()

SDO_DataObject::getSequence()
SDO_DataObject::getTypeName()
SDO_DataObject::getTypeNamespaceURI()
SDO_Exception::getCause()
SDO_List::insert()
SDO_Model_Property::getContainingType()
SDO_Model_Property::getDefault()
SDO_Model_Property::getName()
SDO_Model_Property::getType()
SDO_Model_Property::isContainment()
SDO_Model_Property::isMany()
SDO_Model_ReflectionDataObject::__construct()
SDO_Model_ReflectionDataObject::export()
SDO_Model_ReflectionDataObject::getContainmentProperty()
SDO_Model_ReflectionDataObject::getInstanceProperties()
SDO_Model_ReflectionDataObject::getType()
SDO_Model_Type::getBaseType()
SDO_Model_Type::getName()
SDO_Model_Type::getNamespaceURI()
SDO_Model_Type::getProperties()
SDO_Model_Type::getProperty()
SDO_Model_Type::isAbstractType()
SDO_Model_Type::isDataType()
SDO_Model_Type::isInstance()
SDO_Model_Type::isOpenType()
SDO_Model_Type::isSequencedType()
SDO_Sequence::getProperty()
SDO_Sequence::insert()
SDO_Sequence::move()
sem_acquire()
sem_get()
sem_release()
sem_remove()
serialize()
sesam_affected_rows()
sesam_commit()
sesam_connect()
sesam_diagnostic()
sesam_disconnect()
sesam_errormsg()
sesam_execimm()
sesam_fetch_array()
sesam_fetch_result()
sesam_fetch_row()
sesam_field_array()
sesam_field_name()
sesam_free_result()
sesam_num_fields()
sesam_query()
sesam_rollback()
sesam_seek_row()
sesam_settransaction()

session_cache_expire()
session_cache_limiter()
session_commit()
session_decode()
session_destroy()
session_encode()
session_get_cookie_params()
session_id()
session_is_registered()
session_module_name()
session_name()
session_pgsql_add_error()
session_pgsql_get_error()
session_pgsql_get_field()
session_pgsql_reset()
session_pgsql_set_field()
session_pgsql_status()
session_regenerate_id()
session_register()
session_save_path()
session_set_cookie_params()
session_set_save_handler()
session_start()
session_unregister()
session_unset()
session_write_close()
set_error_handler()
set_exception_handler()
set_file_buffer()
set_include_path()
set_magic_quotes_runtime()
set_time_limit()
setcookie()
setlocale()
setrawcookie()
settype()
sha1()
sha1_file()
shell_exec()
shm_attach()
shm_detach()
shm_get_var()
shm_put_var()
shm_remove()
shm_remove_var()
shmop_close()
shmop_delete()
shmop_open()
shmop_read()
shmop_size()
shmop_write()
show_source()

shuffle()
similar_text()
simplexml_import_dom()
simplexml_load_file()
simplexml_load_string()
SimpleXMLElement->__construct()()
SimpleXMLElement->addAttribute()()
SimpleXMLElement->addChild()()
SimpleXMLElement->asXML()()
SimpleXMLElement->attributes()()
SimpleXMLElement->children()()
SimpleXMLElement->getDocNamespaces()()
SimpleXMLElement->getName()()
SimpleXMLElement->getNamespaces()()
SimpleXMLElement->registerXPathNamespace()()
SimpleXMLElement->xpath()()
SimpleXMLIterator::current()
SimpleXMLIterator::getChildren()
SimpleXMLIterator::hasChildren()
SimpleXMLIterator::key()
SimpleXMLIterator::next()
SimpleXMLIterator::rewind()
SimpleXMLIterator::valid()
sin()
sinh()
sizeof()
sleep()
snmp_get_quick_print()
snmp_get_valueretrieval()
snmp_read_mib()
snmp_set_enum_print()
snmp_set_oid_numeric_print()
snmp_set_oid_output_format()
snmp_set_quick_print()
snmp_set_valueretrieval()
snmpget()
snmpgetnext()
snmprealwalk()
snmpset()
snmpwalk()
snmpwalkoid()
SoapClient->__call()()
SoapClient->__construct()()
SoapClient->__doRequest()()
SoapClient->__getFunctions()()
SoapClient->__getLastRequest()()
SoapClient->__getLastRequestHeaders()()
SoapClient->__getLastResponse()()
SoapClient->__getLastResponseHeaders()()
SoapClient->__getTypes()()
SoapClient->__setCookie()()
SoapClient->__soapCall()()

SoapFault->__construct()()
SoapHeader->__construct()()
SoapParam->__construct()()
SoapServer->__construct()()
SoapServer->addFunction()()
SoapServer->fault()()
SoapServer->getFunctions()()
SoapServer->handle()()
SoapServer->setClass()()
SoapServer->setPersistence()()
SoapVar->__construct()()
socket_accept()
socket_bind()
socket_clear_error()
socket_close()
socket_connect()
socket_create()
socket_create_listen()
socket_create_pair()
socket_get_option()
socket_get_status()
socket_getpeername()
socket_getsockname()
socket_last_error()
socket_listen()
socket_read()
socket_recv()
socket_recvfrom()
socket_select()
socket_send()
socket_sendto()
socket_set_block()
socket_set_blocking()
socket_set_nonblock()
socket_set_option()
socket_set_timeout()
socket_shutdown()
socket_strerror()
socket_write()
sort()
soundex()
spl_autoload()
spl_autoload_call()
spl_autoload_extensions()
spl_autoload_functions()
spl_autoload_register()
spl_autoload_unregister()
spl_classes()
spl_object_hash()
split()
spliti()
sprintf()

sql_regcase()
sqlite_array_query()
sqlite_busy_timeout()
sqlite_changes()
sqlite_close()
sqlite_column()
sqlite_create_aggregate()
sqlite_create_function()
sqlite_current()
sqlite_error_string()
sqlite_escape_string()
sqlite_exec()
sqlite_factory()
sqlite_fetch_all()
sqlite_fetch_array()
sqlite_fetch_column_types()
sqlite_fetch_object()
sqlite_fetch_single()
sqlite_fetch_string()
sqlite_field_name()
sqlite_has_more()
sqlite_has_prev()
sqlite_key()
sqlite_last_error()
sqlite_last_insert_rowid()
sqlite_libencoding()
sqlite_libversion()
sqlite_next()
sqlite_num_fields()
sqlite_num_rows()
sqlite_open()
sqlite_popen()
sqlite_prev()
sqlite_query()
sqlite_rewind()
sqlite_seek()
sqlite_single_query()
sqlite_udf_decode_binary()
sqlite_udf_encode_binary()
sqlite_unbuffered_query()
sqlite_valid()
SQLiteDatabase->arrayQuery()
SQLiteDatabase->busyTimeout()
SQLiteDatabase->changes()
SQLiteDatabase->createAggregate()
SQLiteDatabase->createFunction()
SQLiteDatabase->exec()
SQLiteDatabase->fetchColumnTypes()
SQLiteDatabase->lastError()
SQLiteDatabase->lastInsertRowid()
SQLiteDatabase->query()
SQLiteDatabase->singleQuery()

SQLiteDatabase->unbufferedQuery()
SQLiteResult->column()
SQLiteResult->current()
SQLiteResult->fetch()
SQLiteResult->fetchAll()
SQLiteResult->fetchObject()
SQLiteResult->fetchSingle()
SQLiteResult->fieldName()
SQLiteResult->hasPrev()
SQLiteResult->key()
SQLiteResult->next()
SQLiteResult->numFields()
SQLiteResult->numRows()
SQLiteResult->prev()
SQLiteResult->rewind()
SQLiteResult->seek()
SQLiteResult->valid()
SQLiteUnbuffered->column()
SQLiteUnbuffered->current()
SQLiteUnbuffered->fetch()
SQLiteUnbuffered->fetchAll()
SQLiteUnbuffered->fetchObject()
SQLiteUnbuffered->fetchSingle()
SQLiteUnbuffered->fieldName()
SQLiteUnbuffered->next()
SQLiteUnbuffered->numFields()
SQLiteUnbuffered->valid()
sqrt()
srand()
sscanf()
ssh2_auth_hostbased_file()
ssh2_auth_none()
ssh2_auth_password()
ssh2_auth_pubkey_file()
ssh2_connect()
ssh2_exec()
ssh2_fetch_stream()
ssh2_fingerprint()
ssh2_methods_negotiated()
ssh2_publickey_add()
ssh2_publickey_init()
ssh2_publickey_list()
ssh2_publickey_remove()
ssh2_scp_recv()
ssh2_scp_send()
ssh2_sftp()
ssh2_sftp_lstat()
ssh2_sftp_mkdir()
ssh2_sftp_readlink()
ssh2_sftp_realpath()
ssh2_sftp_rename()
ssh2_sftp_rmdir()

ssh2_sftp_stat()
ssh2_sftp_symlink()
ssh2_sftp_unlink()
ssh2_shell()
ssh2_tunnel()
stat()
stats_absolute_deviation()
stats_cdf_beta()
stats_cdf_binomial()
stats_cdf_cauchy()
stats_cdf_chisquare()
stats_cdf_exponential()
stats_cdf_f()
stats_cdf_gamma()
stats_cdf_laplace()
stats_cdf_logistic()
stats_cdf_negative_binomial()
stats_cdf_noncentral_chisquare()
stats_cdf_noncentral_f()
stats_cdf_poisson()
stats_cdf_t()
stats_cdf_uniform()
stats_cdf_weibull()
stats_covariance()
stats_den_uniform()
stats_dens_beta()
stats_dens_cauchy()
stats_dens_chisquare()
stats_dens_exponential()
stats_dens_f()
stats_dens_gamma()
stats_dens_laplace()
stats_dens_logistic()
stats_dens_negative_binomial()
stats_dens_normal()
stats_dens_pmf_binomial()
stats_dens_pmf_hypergeometric()
stats_dens_pmf_poisson()
stats_dens_t()
stats_dens_weibull()
stats_harmonic_mean()
stats_kurtosis()
stats_rand_gen_beta()
stats_rand_gen_chisquare()
stats_rand_gen_exponential()
stats_rand_gen_f()
stats_rand_gen_funiform()
stats_rand_gen_gamma()
stats_rand_gen_ibinomial()
stats_rand_gen_ibinomial_negative()
stats_rand_gen_int()
stats_rand_gen_ipoisson()

stats_rand_gen_iuniform()
stats_rand_gen_noncenral_chisquare()
stats_rand_gen_noncentral_f()
stats_rand_gen_noncentral_t()
stats_rand_gen_normal()
stats_rand_gen_t()
stats_rand_get_seeds()
stats_rand_phrase_to_seeds()
stats_rand_ranf()
stats_rand_setall()
stats_skew()
stats_standard_deviation()
stats_stat_binomial_coef()
stats_stat_correlation()
stats_stat_gennch()
stats_stat_independent_t()
stats_stat_innerproduct()
stats_stat_noncentral_t()
stats_stat_paired_t()
stats_stat_percentile()
stats_stat_powersum()
stats_variance()
stmt->bind_param()
stmt->bind_param()()
stmt->bind_result()
stmt->bind_result()()
stmt->close_long_data()
stmt->data_seek()
stmt->data_seek()()
stmt->execute()
stmt->execute()()
stmt->fetch()
stmt->fetch()()
stmt->free_result()
stmt->free_result()()
stmt->num_rows()
stmt->num_rows()
stmt->param_count()
stmt->param_count()
stmt->prepare()
stmt->prepare()()
stmt->reset()
stmt->reset()()
stmt->result_metadata()()
stmt->send_long_data()
stmt->send_long_data()()
str_getcsv()
str_ireplace()
str_pad()
str_repeat()
str_replace()
str_rot13()

str_shuffle()
str_split()
str_word_count()
strcasecmp()
strchr()
strcmp()
strcoll()
strcspn()
stream_bucket_append()
stream_bucket_make_writeable()
stream_bucket_new()
stream_bucket_prepend()
stream_context_create()
stream_context_get_default()
stream_context_get_options()
stream_context_set_option()
stream_context_set_params()
stream_copy_to_stream()
stream_encoding()
stream_filter_append()
stream_filter_prepend()
stream_filter_register()
stream_filter_remove()
stream_get_contents()
stream_get_filters()
stream_get_line()
stream_get_meta_data()
stream_get_transports()
stream_get_wrappers()
stream_register_wrapper()
stream_resolve_include_path()
stream_select()
stream_set_blocking()
stream_set_timeout()
stream_set_write_buffer()
stream_socket_accept()
stream_socket_client()
stream_socket_enable_crypto()
stream_socket_get_name()
stream_socket_pair()
stream_socket_recvfrom()
stream_socket_sendto()
stream_socket_server()
stream_socket_shutdown()
stream_wrapper_register()
stream_wrapper_restore()
stream_wrapper_unregister()
strftime()
strip_tags()
stripcslashes()
stripos()
stripslashes()

stristr()
strlen()
strnatcasecmp()
strnatcmp()
strncasecmp()
strncmp()
strpbrk()
strpos()
strptime()
strrchr()
strrev()
strripos()
strrpos()
strspn()
strstr()
strtok()
strtolower()
strtotime()
strtoupper()
strtr()
strval()
substr()
substr_compare()
substr_count()
substr_replace()
svn_add()
svn_auth_get_parameter()
svn_auth_set_parameter()
svn_cat()
svn_checkout()
svn_cleanup()
svn_client_version()
svn_commit()
svn_diff()
svn_fs_abort_txn()
svn_fs_apply_text()
svn_fs_begin_txn2()
svn_fs_change_node_prop()
svn_fs_check_path()
svn_fs_contents_changed()
svn_fs_copy()
svn_fs_delete()
svn_fs_dir_entries()
svn_fs_file_contents()
svn_fs_file_length()
svn_fs_is_dir()
svn_fs_is_file()
svn_fs_make_dir()
svn_fs_make_file()
svn_fs_node_created_rev()
svn_fs_node_prop()
svn_fs_props_changed()

svn_fs_revision_prop()
svn_fs_revision_root()
svn_fs_txn_root()
svn_fs_youngest_rev()
svn_import()
svn_log()
svn_ls()
svn_repos_create()
svn_repos_fs()
svn_repos_fs_begin_txn_for_commit()
svn_repos_fs_commit_txn()
svn_repos_hotcopy()
svn_repos_open()
svn_repos_recover()
svn_status()
svn_update()
swf_actiongeturl()
swf_actiongotoframe()
swf_actiongotolabel()
swf_actionnextframe()
swf_actionplay()
swf_actionprevframe()
swf_actionsettarget()
swf_actionstop()
swf_actiontogglequality()
swf_actionwaitforframe()
swf_addbuttonrecord()
swf_addcolor()
swf_closefile()
swf_definebitmap()
swf_definefont()
swf_defineline()
swf_definepoly()
swf_definerect()
swf_definetext()
swf_endbutton()
swf_enddoaction()
swf_endshape()
swf_endsymbol()
swf_fontsize()
swf_fontslant()
swf_fonttracking()
swf_getbitmapinfo()
swf_getfontinfo()
swf_getframe()
swf_labelframe()
swf_lookat()
swf_modifyobject()
swf_mulcolor()
swf_nextid()
swf_oncondition()
swf_openfile()

swf_ortho()
swf_ortho2()
swf_perspective()
swf_placeobject()
swf_polarview()
swf_popmatrix()
swf_posround()
swf_pushmatrix()
swf_removeobject()
swf_rotate()
swf_scale()
swf_setfont()
swf_setframe()
swf_shapearc()
swf_shapecurveto()
swf_shapecurveto3()
swf_shapefillbitmapclip()
swf_shapefillbitmaptile()
swf_shapefilloff()
swf_shapefillsolid()
swf_shapelinesolid()
swf_shapelineto()
swf_shapemoveto()
swf_showframe()
swf_startbutton()
swf_startdoaction()
swf_startshape()
swf_startsymbol()
swf_textwidth()
swf_translate()
swf_viewport()
swfaction()
SWFAction->__construct()()
swfbitmap()
SWFBitmap->__construct()()
SWFBitmap->getHeight()()
SWFBitmap->getWidth()()
swfbutton()
SWFButton->__construct()()
SWFButton->addAction()()
SWFButton->addASound()()
SWFButton->addShape()()
SWFButton->setAction()()
SWFButton->setDown()()
SWFButton->setHit()()
SWFButton->setMenu()()
SWFButton->setOver()()
SWFButton->setUp()()
swfdisplayitem()
SWFDisplayItem->addAction()()
SWFDisplayItem->addColor()()
SWFDisplayItem->endMask()()

SWFDisplayItem->getRot()()
SWFDisplayItem->getX()()
SWFDisplayItem->getXScale()()
SWFDisplayItem->getXSkew()()
SWFDisplayItem->getY()()
SWFDisplayItem->getYScale()()
SWFDisplayItem->getYSkew()()
SWFDisplayItem->move()()
SWFDisplayItem->moveTo()()
SWFDisplayItem->multColor()()
SWFDisplayItem->remove()()
SWFDisplayItem->rotate()()
SWFDisplayItem->rotateTo()()
SWFDisplayItem->scale()()
SWFDisplayItem->scaleTo()()
SWFDisplayItem->setDepth()()
SWFDisplayItem->setMaskLevel()()
SWFDisplayItem->setMatrix()()
SWFDisplayItem->setName()()
SWFDisplayItem->setRatio()()
SWFDisplayItem->skewX()()
SWFDisplayItem->skewXTo()()
SWFDisplayItem->skewY()()
SWFDisplayItem->skewYTo()()
swffill()
SWFFill->moveTo()()
SWFFill->rotateTo()()
SWFFill->scaleTo()()
SWFFill->skewXTo()()
SWFFill->skewYTo()()
swffont()
SWFFont->__construct()()
SWFFont->getAscent()()
SWFFont->getDescent()()
SWFFont->getLeading()()
SWFFont->getShape()()
SWFFont->getUTF8Width()()
SWFFont->getWidth()()
swffontchar()
SWFFontChar->addChars()()
SWFFontChar->addUTF8Chars()()
swfgradient()
SWFGradient->__construct()()
SWFGradient->addEntry()()
swfmorph()
SWFMorph->__construct()()
SWFMorph->getShape1()()
SWFMorph->getShape2()()
swfmovie()
SWFMovie->__construct()()
SWFMovie->add()()
SWFMovie->addExport()()

SWFMovie->addFont()()
SWFMovie->importChar()()
SWFMovie->importFont()()
SWFMovie->labelFrame()()
SWFMovie->nextFrame()()
SWFMovie->output()()
SWFMovie->remove()()
SWFMovie->save()()
SWFMovie->saveToFile()()
SWFMovie->setbackground()()
SWFMovie->setDimension()()
SWFMovie->setFrames()()
SWFMovie->setRate()()
SWFMovie->startSound()()
SWFMovie->stopSound()()
SWFMovie->streamMP3()()
SWFMovie->writeExports()()
swfprebuiltclip()
SWFPrebuiltClip->__construct()()
swfshape()
SWFShape->__construct()()
SWFShape->addFill()()
SWFShape->drawArc()()
SWFShape->drawCircle()()
SWFShape->drawCubic()()
SWFShape->drawCubicTo()()
SWFShape->drawCurve()()
SWFShape->drawCurveTo()()
SWFShape->drawGlyph()()
SWFShape->drawLine()()
SWFShape->drawLineTo()()
SWFShape->movePen()()
SWFShape->movePenTo()()
SWFShape->setLeftFill()()
SWFShape->setLine()()
SWFShape->setRightFill()()
swfsound()
swfsound()
swfsoundinstance()
SWFSoundInstance->loopCount()()
SWFSoundInstance->loopInPoint()()
SWFSoundInstance->loopOutPoint()()
SWFSoundInstance->noMultiple()()
swfsprite()
SWFSprite->__construct()()
SWFSprite->add()()
SWFSprite->labelFrame()()
SWFSprite->nextFrame()()
SWFSprite->remove()()
SWFSprite->setFrames()()
SWFSprite->startSound()()
SWFSprite->stopSound()()

swftext()
SWFText->__construct()()
SWFText->addString()()
SWFText->addUTF8String()()
SWFText->getAscent()()
SWFText->getDescent()()
SWFText->getLeading()()
SWFText->getUTF8Width()()
SWFText->getWidth()()
SWFText->moveTo()()
SWFText->setColor()()
SWFText->setFont()()
SWFText->setHeight()()
SWFText->setSpacing()()
swftextfield()
SWFTextField->__construct()()
SWFTextField->addChars()()
SWFTextField->addString()()
SWFTextField->align()()
SWFTextField->setBounds()()
SWFTextField->setColor()()
SWFTextField->setFont()()
SWFTextField->setHeight()()
SWFTextField->setIndentation()()
SWFTextField->setLeftMargin()()
SWFTextField->setLineSpacing()()
SWFTextField->setMargins()()
SWFTextField->setName()()
SWFTextField->setPadding()()
SWFTextField->setRightMargin()()
swfvideostream()
SWFVideoStream->__construct()()
SWFVideoStream->getNumFrames()()
SWFVideoStream->setDimension()()
Swish->getMetaList()
Swish->getPropertyList()
Swish->prepare()
Swish->query()
Swish::__construct()
SwishResult->getMetaList()
SwishResult->stem()
SwishResults->getParsedWords()
SwishResults->getRemovedStopwords()
SwishResults->nextResult()
SwishResults->seekResult()
SwishSearch->execute()
SwishSearch->resetLimit()
SwishSearch->setLimit()
SwishSearch->setPhraseDelimiter()
SwishSearch->setSort()
SwishSearch->setStructure()
sybase_affected_rows()

sybase_close()
sybase_connect()
sybase_data_seek()
sybase_deadlock_retry_count()
sybase_fetch_array()
sybase_fetch_assoc()
sybase_fetch_field()
sybase_fetch_object()
sybase_fetch_row()
sybase_field_seek()
sybase_free_result()
sybase_get_last_message()
sybase_min_client_severity()
sybase_min_error_severity()
sybase_min_message_severity()
sybase_min_server_severity()
sybase_num_fields()
sybase_num_rows()
sybase_pconnect()
sybase_query()
sybase_result()
sybase_select_db()
sybase_set_message_handler()
sybase_unbuffered_query()
symlink()
sys_get_temp_dir()
sys_getloadavg()
syslog()
system()

T

tan()
tanh()
tcpwrap_check()
tempnam()
textdomain()
tidy::__construct()
tidy_access_count()
tidy_clean_repair()
tidy_config_count()
tidy_diagnose()
tidy_error_count()
tidy_get_body()
tidy_get_config()
tidy_get_error_buffer()
tidy_get_head()
tidy_get_html()
tidy_get_html_ver()
tidy_get_opt_doc()

tidy_get_output()
tidy_get_release()
tidy_get_root()
tidy_get_status()
tidy_getopt()
tidy_is_xhtml()
tidy_is_xml()
tidy_load_config()
tidy_node->get_attr()
tidy_node->get_nodes()
tidy_node->next()
tidy_node->prev()
tidy_parse_file()
tidy_parse_string()
tidy_repair_file()
tidy_repair_string()
tidy_reset_config()
tidy_save_config()
tidy_set_encoding()
tidy_setopt()
tidy_warning_count()
tidyNode->hasChildren()
tidyNode->hasSiblings()
tidyNode->isAsp()
tidyNode->isComment()
tidyNode->isHtml()
tidyNode->isJste()
tidyNode->isPhp()
tidyNode->isText()
tidyNode::getParent()
time()
time_nanosleep()
time_sleep_until()
timezone_abbreviations_list()
timezone_identifiers_list()
timezone_name_from_abbr()
timezone_name_get()
timezone_offset_get()
timezone_open()
timezone_transitions_get()
tmpfile()
token_get_all()
token_name()
touch()
trigger_error()
trim()

U

uasort()

ucfirst()
ucwords()
udm_add_search_limit()
udm_alloc_agent()
udm_alloc_agent_array()
udm_api_version()
udm_cat_list()
udm_cat_path()
udm_check_charset()
udm_check_stored()
udm_clear_search_limits()
udm_close_stored()
udm_crc32()
udm_errno()
udm_error()
udm_find()
udm_free_agent()
udm_free_ispell_data()
udm_free_res()
udm_get_doc_count()
udm_get_res_field()
udm_get_res_param()
udm_hash32()
udm_load_ispell_data()
udm_open_stored()
udm_set_agent_param()
uksort()
umask()
unicode_decode()
unicode_encode()
unicode_get_error_mode()
unicode_get_subst_char()
unicode_semantics()
unicode_set_error_mode()
unicode_set_subst_char()
uniqid()
unixtojd()
unlink()
unpack()
unregister_tick_function()
unserialize()
unset()
urldecode()
urlencode()
usage()
use_soap_error_handler()
user_error()
usleep()
usort()
utf8_decode()
utf8_encode()

V

var_dump()
var_export()
variant()
variant_abs()
variant_add()
variant_and()
variant_cast()
variant_cat()
variant_cmp()
variant_date_from_timestamp()
variant_date_to_timestamp()
variant_div()
variant_eqv()
variant_fix()
variant_get_type()
variant_idiv()
variant_imp()
variant_int()
variant_mod()
variant_mul()
variant_neg()
variant_not()
variant_or()
variant_pow()
variant_round()
variant_set()
variant_set_type()
variant_sub()
variant_xor()
version_compare()
vfprintf()
virtual()
vpopmail_add_alias_domain()
vpopmail_add_alias_domain_ex()
vpopmail_add_domain()
vpopmail_add_domain_ex()
vpopmail_add_user()
vpopmail_alias_add()
vpopmail_alias_del()
vpopmail_alias_del_domain()
vpopmail_alias_get()
vpopmail_alias_get_all()
vpopmail_auth_user()
vpopmail_del_domain()
vpopmail_del_domain_ex()
vpopmail_del_user()
vpopmail_error()
vpopmail_passwd()
vpopmail_set_user_quota()

vprintf()
vsprintf()

W

w32api_deftype()
w32api_init_dtype()
w32api_invoke_function()
w32api_register_function()
w32api_set_call_method()
wddx_add_vars()
wddx_deserialize()
wddx_packet_end()
wddx_packet_start()
wddx_serialize_value()
wddx_serialize_vars()
wddx_unserialize()
win32_create_service()
win32_delete_service()
win32_get_last_control_message()
win32_ps_list_procs()
win32_ps_stat_mem()
win32_ps_stat_proc()
win32_query_service_status()
win32_set_service_status()
win32_start_service()
win32_start_service_ctrl_dispatcher()
win32_stop_service()
wordwrap()

X

xattr_get()
xattr_list()
xattr_remove()
xattr_set()
xattr_supported()
xdiff_file_diff()
xdiff_file_diff_binary()
xdiff_file_merge3()
xdiff_file_patch()
xdiff_file_patch_binary()
xdiff_string_diff()
xdiff_string_diff_binary()
xdiff_string_merge3()
xdiff_string_patch()
xdiff_string_patch_binary()

xml_error_string()
xml_get_current_byte_index()
xml_get_current_column_number()
xml_get_current_line_number()
xml_get_error_code()
xml_parse()
xml_parse_into_struct()
xml_parser_create()
xml_parser_create_ns()
xml_parser_free()
xml_parser_get_option()
xml_parser_set_option()
xml_set_character_data_handler()
xml_set_default_handler()
xml_set_element_handler()
xml_set_end_namespace_decl_handler()
xml_set_external_entity_ref_handler()
xml_set_notation_decl_handler()
xml_set_object()
xml_set_processing_instruction_handler()
xml_set_start_namespace_decl_handler()
xml_set_unparsed_entity_decl_handler()
XMLReader::close()
XMLReader::expand()
XMLReader::getAttribute()
XMLReader::getAttributeNo()
XMLReader::getAttributeNs()
XMLReader::getParserProperty()
XMLReader::isValid()
XMLReader::lookupNamespace()
XMLReader::moveToAttribute()
XMLReader::moveToAttributeNo()
XMLReader::moveToAttributeNs()
XMLReader::moveToElement()
XMLReader::moveToFirstAttribute()
XMLReader::moveToNextAttribute()
XMLReader::next()
XMLReader::open()
XMLReader::read()
XMLReader::setParserProperty()
XMLReader::setRelaxNGSchema()
XMLReader::setRelaxNGSchemaSource()
XMLReader::XML()
xmlrpc_decode()
xmlrpc_decode_request()
xmlrpc_encode()
xmlrpc_encode_request()
xmlrpc_get_type()
xmlrpc_is_fault()
xmlrpc_parse_method_descriptions()
xmlrpc_server_add_introspection_data()
xmlrpc_server_call_method()

xmlrpc_server_create()
xmlrpc_server_destroy()
xmlrpc_server_register_introspection_callback()
xmlrpc_server_register_method()
xmlrpc_set_type()
XMLWriter::endAttribute()
XMLWriter::endCData()
XMLWriter::endComment()
XMLWriter::endDocument()
XMLWriter::endDTD()
XMLWriter::endDTDAttlist()
XMLWriter::endDTDElement()
XMLWriter::endDTDEntity()
XMLWriter::endElement()
XMLWriter::endPI()
XMLWriter::flush()
XMLWriter::fullEndElement()
XMLWriter::openMemory()
XMLWriter::openURI()
XMLWriter::outputMemory()
XMLWriter::setIndent()
XMLWriter::setIndentString()
XMLWriter::startAttribute()
XMLWriter::startAttributeNS()
XMLWriter::startCData()
XMLWriter::startComment()
XMLWriter::startDocument()
XMLWriter::startDTD()
XMLWriter::startDTDAttlist()
XMLWriter::startDTDElement()
XMLWriter::startDTDEntity()
XMLWriter::startElement()
XMLWriter::startElementNS()
XMLWriter::startPI()
XMLWriter::text()
XMLWriter::writeAttribute()
XMLWriter::writeAttributeNS()
XMLWriter::writeCData()
XMLWriter::writeComment()
XMLWriter::writeDTD()
XMLWriter::writeDTDAttlist()
XMLWriter::writeDTDElement()
XMLWriter::writeDTDEntity()
XMLWriter::writeElement()
XMLWriter::writeElementNS()
XMLWriter::writePI()
XMLWriter::writeRaw()
xpath_eval()
xpath_eval_expression()
xpath_new_context()
xpath_register_ns()
xpath_register_ns_auto()

xptr_eval()
xptr_new_context()
xslt_backend_info()
xslt_backend_name()
xslt_backend_version()
xslt_create()
xslt_errno()
xslt_error()
xslt_free()
xslt_getopt()
xslt_process()
xslt_set_base()
xslt_set_encoding()
xslt_set_error_handler()
xslt_set_log()
xslt_set_object()
xslt_set_sax_handler()
xslt_set_sax_handlers()
xslt_set_scheme_handler()
xslt_set_scheme_handlers()
xslt_setopt()
XSLTProcessor::__construct()
XSLTProcessor::getParameter()
XSLTProcessor::hasExsltSupport()
XSLTProcessor::importStylesheet()
XSLTProcessor::registerPHPFunctions()
XSLTProcessor::removeParameter()
XSLTProcessor::setParameter()
XSLTProcessor::transformToDoc()
XSLTProcessor::transformToURI()
XSLTProcessor::transformToXML()

Y

yaz_addinfo()
yaz_ccl_conf()
yaz_ccl_parse()
yaz_close()
yaz_connect()
yaz_database()
yaz_element()
yaz_errno()
yaz_error()
yaz_es()
yaz_es_result()
yaz_get_option()
yaz_hits()
yaz_itemorder()
yaz_present()
yaz_range()

yaz_record()
yaz_scan()
yaz_scan_result()
yaz_schema()
yaz_search()
yaz_set_option()
yaz_sort()
yaz_syntax()
yaz_wait()
yp_all()
yp_cat()
yp_err_string()
yp_errno()
yp_first()
yp_get_default_domain()
yp_master()
yp_match()
yp_next()
yp_order()

Z

zend_logo_guid()
zend_thread_id()
zend_version()
zip_close()
zip_entry_close()
zip_entry_compressedsize()
zip_entry_compressionmethod()
zip_entry_filesize()
zip_entry_name()
zip_entry_open()
zip_entry_read()
zip_open()
zip_read()
ZipArchive::addEmptyDir()
ZipArchive::addFile()
ZipArchive::addFromString()
ZipArchive::close()
ZipArchive::deleteIndex()
ZipArchive::deleteName()
ZipArchive::extractTo()
ZipArchive::getArchiveComment()
ZipArchive::getCommentIndex()
ZipArchive::getCommentName()
ZipArchive::getFromIndex()
ZipArchive::getFromName()
ZipArchive::getNameIndex()
ZipArchive::getStream()
ZipArchive::locateName()

ZipArchive::open()
ZipArchive::renameIndex()
ZipArchive::renameName()
ZipArchive::setArchiveComment()
ZipArchive::setCommentIndex()
ZipArchive::setCommentName()
ZipArchive::statIndex()
ZipArchive::statName()
ZipArchive::unchangeAll()
ZipArchive::unchangeArchive()
ZipArchive::unchangeIndex()
ZipArchive::unchangeName()
zlib_get_coding_type()

	PHP Manual
	PHP Manual
	Copyright
	Preface
	Authors and Contributors

	Getting Started
	Introduction
	What is PHP?
	What can PHP do?

	A simple tutorial
	What do I need?
	Your first PHP-enabled page
	Something Useful
	Dealing with Forms
	Using old code with new versions of PHP
	What's next?

	Installation and Configuration
	General Installation Considerations
	Installation on Unix systems
	Apache 1.3.x on Unix systems
	Apache 2.0 on Unix systems
	Lighttpd 1.4 on Unix systems
	Letting Lighttpd spawn php processes
	Spawning with spawn-fcgi
	Spawning php-cgi
	Connecting to remote FCGI instances

	Caudium
	fhttpd related notes
	Sun, iPlanet and Netscape servers on Sun Solaris
	CGI environment and recommended modifications in php.ini
	Special use for error pages or self-made directory listings (PHP >= 4.3.3)
	Note about nsapi_virtual and subrequests (PHP >= 4.3.3)

	CGI and command line setups
	Testing
	Using Variables

	HP-UX specific installation notes
	OpenBSD installation notes
	Using Binary Packages
	Using Ports
	Common Problems
	Older Releases

	Solaris specific installation tips
	Required software
	Using Packages

	Debian GNU/Linux installation notes
	Using APT
	Better control on configuration
	Common Problems

	Installation on Mac OS X
	Using Packages
	Using the bundled PHP
	Compiling for OS X Server
	Compiling for MacOS X Client

	Installation on Windows systems
	Windows Installer (PHP 5.2 and later)
	Normal Install
	Silent Install
	Upgrading PHP with the Install
	Windows Installer (PHP 5.1.0 and earlier)
	Manual Installation Steps
	ActiveScript
	Microsoft IIS / PWS
	General considerations for all installations of PHP with IIS or PWS
	Windows NT/200x/XP and IIS 4 or newer
	Windows and PWS 4
	Windows and PWS/IIS 3

	Apache 1.3.x on Microsoft Windows
	Installing as an Apache module
	Installing as a CGI binary

	Apache 2.0.x on Microsoft Windows
	Installing as a CGI binary
	Installing as an Apache module

	Sun, iPlanet and Netscape servers on Microsoft Windows
	CGI setup on Sun, iPlanet and Netscape servers
	NSAPI setup on Sun, iPlanet and Netscape servers
	CGI environment and recommended modifications in php.ini
	Special use for error pages or self-made directory listings (PHP >= 4.3.3)
	Note about nsapi_virtual and subrequests (PHP >= 4.3.3)

	OmniHTTPd Server
	Sambar Server on Microsoft Windows
	Xitami on Microsoft Windows
	Building from source
	Quick Guide to Building On Windows
	Build Environment
	Setting up Microsoft Visual C++ 2005 Express
	Libraries
	Putting it all together
	Build resolv.lib
	Building PHP using the new build system [PHP >=5 only]
	Building PHP using DSW files [PHP 4]
	Configure MVC ++
	Compiling

	Installation of extensions on Windows

	Installation of PECL extensions
	Introduction to PECL Installations
	Downloading PECL extensions
	PECL for Windows users
	Compiling shared PECL extensions with the pecl command
	Compiling shared PECL extensions with phpize
	Compiling PECL extensions statically into PHP

	Problems?
	Read the FAQ
	Other problems
	Bug reports

	Runtime Configuration
	The configuration file
	How to change configuration settings
	Running PHP as an Apache module
	Changing PHP configuration via the Windows registry
	Other interfaces to PHP

	Language Reference
	Basic syntax
	Escaping from HTML
	Instruction separation
	Comments

	Types
	Introduction
	Booleans
	Syntax
	Converting to boolean

	Integers
	Syntax
	Integer overflow
	Converting to integer
	From booleans
	From floating point numbers
	From strings
	From other types

	Floating point numbers
	Converting to float

	Strings
	Syntax
	Single quoted
	Double quoted
	Heredoc
	Nowdoc
	Variable parsing
	Simple syntax
	Complex (curly) syntax
	String access and modification by character
	Useful functions and operators
	Converting to string
	String conversion to numbers

	Arrays
	Syntax
	Specifying with array
	Creating/modifying with square bracket syntax
	Useful functions
	Array do's and don'ts
	Why is $foo[bar] wrong?
	So why is it bad then?
	Converting to array
	Comparing
	Examples

	Objects
	Object Initialization
	Converting to object

	Resources
	Converting to resource
	Freeing resources

	NULL
	Syntax

	Pseudo-types and variables used in this documentation
	mixed
	number
	callback
	void
	...

	Type Juggling
	Type Casting

	Variables
	Basics
	Predefined variables
	Variable scope
	The global keyword
	Using static variables
	References with global and static variables

	Variable variables
	Variables From External Sources
	HTML Forms (GET and POST)
	IMAGE SUBMIT variable names
	HTTP Cookies
	Dots in incoming variable names
	Determining variable types

	Constants
	Syntax
	Magic constants

	Expressions
	Operators
	Operator Precedence
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Comparison Operators
	Ternary Operator

	Error Control Operators
	Execution Operators
	Incrementing/Decrementing Operators
	Logical Operators
	String Operators
	Array Operators
	Type Operators

	Control Structures
	Introduction
	if
	else
	elseif/else if
	Alternative syntax for control structures
	while
	do-while
	for
	foreach
	break
	continue
	switch
	declare
	Ticks

	return
	require
	include
	require_once
	include_once

	Functions
	User-defined functions
	Function arguments
	Making arguments be passed by reference
	Default argument values
	Variable-length argument lists

	Returning values
	Variable functions
	Internal (built-in) functions

	Classes and Objects (PHP 4)
	class
	extends
	Constructors
	Scope Resolution Operator (::)
	parent
	Serializing objects - objects in sessions
	The magic functions __sleep and __wakeup
	References inside the constructor
	Comparing objects

	Classes and Objects (PHP 5)
	Introduction
	The Basics
	class
	new
	extends

	Autoloading Objects
	Constructors and Destructors
	Constructor
	Destructor

	Visibility
	Members Visibility
	Method Visibility

	Scope Resolution Operator (::)
	Static Keyword
	Class Constants
	Class Abstraction
	Object Interfaces
	implements
	Examples

	Overloading
	ChangeLog
	Member overloading
	Method overloading

	Object Iteration
	Patterns
	Factory
	Singleton

	Magic Methods
	__sleep and __wakeup
	__toString
	__set_state

	Final Keyword
	Object cloning
	Comparing objects
	Reflection
	Table of Contents
	Introduction
	Reflector
	ReflectionException
	ReflectionFunction
	ReflectionParameter
	ReflectionClass
	ReflectionObject
	ReflectionMethod
	ReflectionProperty
	ReflectionExtension
	Extending the reflection classes

	Type Hinting
	Late Static Bindings
	Limitations of self::
	Late Static Bindings' usage
	Edge cases

	Namespaces
	Namespaces overview
	Namespace definition
	Using namespaces
	Global space
	__NAMESPACE__
	Name resolution rules

	Exceptions
	Extending Exceptions

	References Explained
	What References Are
	What References Do
	What References Are Not
	Passing by Reference
	Returning References
	Unsetting References
	Spotting References
	global References
	$this

	Predefined variables
	Superglobals
	$GLOBALS
	$_SERVER
	$_GET
	$_POST
	$_FILES
	$_REQUEST
	$_SESSION
	$_ENV
	$_COOKIE
	$php_errormsg
	$HTTP_RAW_POST_DATA
	$http_response_header
	$argc
	$argv

	Predefined Exceptions
	Exception
	Introduction
	Class synopsis
	Properties
	Exception::__construct
	Exception::getMessage
	Exception::getCode
	Exception::getFile
	Exception::getLine
	Exception::getTrace
	Exception::getTraceAsString
	Exception::__toString
	Exception::__clone

	ErrorException
	Introduction
	Class synopsis
	Properties
	Examples
	ErrorException::__construct
	ErrorException::getSeverity

	Context options and parameters
	Socket context options
	HTTP context options
	FTP context options
	SSL context options
	CURL context options
	Context parameters

	Security
	Introduction
	General considerations
	Installed as CGI binary
	Possible attacks
	Case 1: only public files served
	Case 2: using --enable-force-cgi-redirect
	Case 3: setting doc_root or user_dir
	Case 4: PHP parser outside of web tree

	Installed as an Apache module
	Filesystem Security
	Null bytes related issues

	Database Security
	Designing Databases
	Connecting to Database
	Encrypted Storage Model
	SQL Injection
	Avoiding techniques

	Error Reporting
	Using Register Globals
	User Submitted Data
	Magic Quotes
	What are Magic Quotes
	Why use Magic Quotes
	Why not to use Magic Quotes
	Disabling Magic Quotes

	Hiding PHP
	Keeping Current

	Features
	HTTP authentication with PHP
	Cookies
	Sessions
	Dealing with XForms
	Handling file uploads
	POST method uploads
	Error Messages Explained
	Common Pitfalls
	Uploading multiple files
	PUT method support

	Using remote files
	Connection handling
	Persistent Database Connections
	Safe Mode
	Security and Safe Mode
	Functions restricted/disabled by safe mode

	Using PHP from the command line

	Function Reference
	Affecting PHP's Behaviour
	APC
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	APC Functions
	apc_add
	apc_cache_info
	apc_clear_cache
	apc_compile_file
	apc_define_constants
	apc_delete
	apc_fetch
	apc_load_constants
	apc_sma_info
	apc_store

	APD
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Building on Win32
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	How to use PHP-APD in your scripts

	APD Functions
	Contact information
	apd_breakpoint
	apd_callstack
	apd_clunk
	apd_continue
	apd_croak
	apd_dump_function_table
	apd_dump_persistent_resources
	apd_dump_regular_resources
	apd_echo
	apd_get_active_symbols
	apd_set_pprof_trace
	apd_set_session_trace
	apd_set_session
	apd_set_socket_session_trace
	override_function
	rename_function

	bcompiler
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	bcompiler Functions
	Contact Information
	bcompiler_load_exe
	bcompiler_load
	bcompiler_parse_class
	bcompiler_read
	bcompiler_write_class
	bcompiler_write_constant
	bcompiler_write_exe_footer
	bcompiler_write_file
	bcompiler_write_footer
	bcompiler_write_function
	bcompiler_write_functions_from_file
	bcompiler_write_header
	bcompiler_write_included_filename

	Error Handling
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Error Handling Functions
	debug_backtrace
	debug_print_backtrace
	error_get_last
	error_log
	error_reporting
	restore_error_handler
	restore_exception_handler
	set_error_handler
	set_exception_handler
	trigger_error
	user_error

	Object overloading
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Overloading a PHP class

	Object overloading Functions
	overload

	Output Control
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Examples

	Output Control Functions
	flush
	ob_clean
	ob_end_clean
	ob_end_flush
	ob_flush
	ob_get_clean
	ob_get_contents
	ob_get_flush
	ob_get_length
	ob_get_level
	ob_get_status
	ob_gzhandler
	ob_implicit_flush
	ob_list_handlers
	ob_start
	output_add_rewrite_var
	output_reset_rewrite_vars

	PHP Options/Info
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	PHP Options/Info Functions
	assert_options
	assert
	dl
	extension_loaded
	get_cfg_var
	get_current_user
	get_defined_constants
	get_extension_funcs
	get_include_path
	get_included_files
	get_loaded_extensions
	get_magic_quotes_gpc
	get_magic_quotes_runtime
	get_required_files
	getenv
	getlastmod
	getmygid
	getmyinode
	getmypid
	getmyuid
	getopt
	getrusage
	ini_alter
	ini_get_all
	ini_get
	ini_restore
	ini_set
	main
	memory_get_peak_usage
	memory_get_usage
	php_ini_loaded_file
	php_ini_scanned_files
	php_logo_guid
	php_sapi_name
	php_uname
	phpcredits
	phpinfo
	phpversion
	putenv
	restore_include_path
	set_include_path
	set_magic_quotes_runtime
	set_time_limit
	sys_get_temp_dir
	version_compare
	zend_logo_guid
	zend_thread_id
	zend_version

	runkit
	Introduction
	Predefined Constants
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	runkit Functions
	Runkit_Sandbox
	Runkit_Sandbox_Parent
	runkit_class_adopt
	runkit_class_emancipate
	runkit_constant_add
	runkit_constant_redefine
	runkit_constant_remove
	runkit_function_add
	runkit_function_copy
	runkit_function_redefine
	runkit_function_remove
	runkit_function_rename
	runkit_import
	runkit_lint_file
	runkit_lint
	runkit_method_add
	runkit_method_copy
	runkit_method_redefine
	runkit_method_remove
	runkit_method_rename
	runkit_return_value_used
	runkit_sandbox_output_handler
	runkit_superglobals

	Audio Formats Manipulation
	ID3
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	ID3 Functions
	id3_get_frame_long_name
	id3_get_frame_short_name
	id3_get_genre_id
	id3_get_genre_list
	id3_get_genre_name
	id3_get_tag
	id3_get_version
	id3_remove_tag
	id3_set_tag

	oggvorbis
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Context options
	Examples
	Examples on using the ogg:// wrapper.

	OpenAL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	OpenAL Functions
	openal_buffer_create
	openal_buffer_data
	openal_buffer_destroy
	openal_buffer_get
	openal_buffer_loadwav
	openal_context_create
	openal_context_current
	openal_context_destroy
	openal_context_process
	openal_context_suspend
	openal_device_close
	openal_device_open
	openal_listener_get
	openal_listener_set
	openal_source_create
	openal_source_destroy
	openal_source_get
	openal_source_pause
	openal_source_play
	openal_source_rewind
	openal_source_set
	openal_source_stop
	openal_stream

	Authentication Services
	KADM5
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Constants for Attribute Flags
	Constants for Options

	Examples
	KADM5 extension overview example

	KADM5 Functions
	kadm5_chpass_principal
	kadm5_create_principal
	kadm5_delete_principal
	kadm5_destroy
	kadm5_flush
	kadm5_get_policies
	kadm5_get_principal
	kadm5_get_principals
	kadm5_init_with_password
	kadm5_modify_principal

	Radius
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Radius Functions
	Contact Information
	radius_acct_open
	radius_add_server
	radius_auth_open
	radius_close
	radius_config
	radius_create_request
	radius_cvt_addr
	radius_cvt_int
	radius_cvt_string
	radius_demangle_mppe_key
	radius_demangle
	radius_get_attr
	radius_get_vendor_attr
	radius_put_addr
	radius_put_attr
	radius_put_int
	radius_put_string
	radius_put_vendor_addr
	radius_put_vendor_attr
	radius_put_vendor_int
	radius_put_vendor_string
	radius_request_authenticator
	radius_send_request
	radius_server_secret
	radius_strerror

	Calendar and Event Related Extensions
	Calendar
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Calendar Functions
	cal_days_in_month
	cal_from_jd
	cal_info
	cal_to_jd
	easter_date
	easter_days
	FrenchToJD
	GregorianToJD
	JDDayOfWeek
	JDMonthName
	JDToFrench
	JDToGregorian
	jdtojewish
	JDToJulian
	jdtounix
	JewishToJD
	JulianToJD
	unixtojd

	Date/Time
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	List of Supported Timezones
	
	Africa
	America
	Antarctica
	Arctic
	Asia
	Atlantic
	Australia
	Europe
	Indian
	Pacific
	Others

	Date/Time Functions
	checkdate
	date_create
	date_date_set
	date_default_timezone_get
	date_default_timezone_set
	date_format
	date_isodate_set
	date_modify
	date_offset_get
	date_parse
	date_sun_info
	date_sunrise
	date_sunset
	date_time_set
	date_timezone_get
	date_timezone_set
	date
	getdate
	gettimeofday
	gmdate
	gmmktime
	gmstrftime
	idate
	localtime
	microtime
	mktime
	strftime
	strptime
	strtotime
	time
	timezone_abbreviations_list
	timezone_identifiers_list
	timezone_name_from_abbr
	timezone_name_get
	timezone_offset_get
	timezone_open
	timezone_transitions_get

	Command Line Specific Extensions
	Newt
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Newt form exit reasons
	Newt colorsets
	Newt argument flags
	Newt Flags Sense
	Newt Components Flags
	File Descriptor Flags
	Checkbox Tree Flags
	Entry Flags
	Listbox Flags
	Textbox Flags
	Form Flags
	Newt Keys
	Newt Anchors
	Grid Flags

	Examples
	Basic usage

	Newt Functions
	newt_bell
	newt_button_bar
	newt_button
	newt_centered_window
	newt_checkbox_get_value
	newt_checkbox_set_flags
	newt_checkbox_set_value
	newt_checkbox_tree_add_item
	newt_checkbox_tree_find_item
	newt_checkbox_tree_get_current
	newt_checkbox_tree_get_entry_value
	newt_checkbox_tree_get_multi_selection
	newt_checkbox_tree_get_selection
	newt_checkbox_tree_multi
	newt_checkbox_tree_set_current
	newt_checkbox_tree_set_entry_value
	newt_checkbox_tree_set_entry
	newt_checkbox_tree_set_width
	newt_checkbox_tree
	newt_checkbox
	newt_clear_key_buffer
	newt_cls
	newt_compact_button
	newt_component_add_callback
	newt_component_takes_focus
	newt_create_grid
	newt_cursor_off
	newt_cursor_on
	newt_delay
	newt_draw_form
	newt_draw_root_text
	newt_entry_get_value
	newt_entry_set_filter
	newt_entry_set_flags
	newt_entry_set
	newt_entry
	newt_finished
	newt_form_add_component
	newt_form_add_components
	newt_form_add_hot_key
	newt_form_destroy
	newt_form_get_current
	newt_form_run
	newt_form_set_background
	newt_form_set_height
	newt_form_set_size
	newt_form_set_timer
	newt_form_set_width
	newt_form_watch_fd
	newt_form
	newt_get_screen_size
	newt_grid_add_components_to_form
	newt_grid_basic_window
	newt_grid_free
	newt_grid_get_size
	newt_grid_h_close_stacked
	newt_grid_h_stacked
	newt_grid_place
	newt_grid_set_field
	newt_grid_simple_window
	newt_grid_v_close_stacked
	newt_grid_v_stacked
	newt_grid_wrapped_window_at
	newt_grid_wrapped_window
	newt_init
	newt_label_set_text
	newt_label
	newt_listbox_append_entry
	newt_listbox_clear_selection
	newt_listbox_clear
	newt_listbox_delete_entry
	newt_listbox_get_current
	newt_listbox_get_selection
	newt_listbox_insert_entry
	newt_listbox_item_count
	newt_listbox_select_item
	newt_listbox_set_current_by_key
	newt_listbox_set_current
	newt_listbox_set_data
	newt_listbox_set_entry
	newt_listbox_set_width
	newt_listbox
	newt_listitem_get_data
	newt_listitem_set
	newt_listitem
	newt_open_window
	newt_pop_help_line
	newt_pop_window
	newt_push_help_line
	newt_radio_get_current
	newt_radiobutton
	newt_redraw_help_line
	newt_reflow_text
	newt_refresh
	newt_resize_screen
	newt_resume
	newt_run_form
	newt_scale_set
	newt_scale
	newt_scrollbar_set
	newt_set_help_callback
	newt_set_suspend_callback
	newt_suspend
	newt_textbox_get_num_lines
	newt_textbox_reflowed
	newt_textbox_set_height
	newt_textbox_set_text
	newt_textbox
	newt_vertical_scrollbar
	newt_wait_for_key
	newt_win_choice
	newt_win_entries
	newt_win_menu
	newt_win_message
	newt_win_messagev
	newt_win_ternary

	Ncurses
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Error codes
	Colors
	Keys
	Mouse

	Ncurses Functions
	ncurses_addch
	ncurses_addchnstr
	ncurses_addchstr
	ncurses_addnstr
	ncurses_addstr
	ncurses_assume_default_colors
	ncurses_attroff
	ncurses_attron
	ncurses_attrset
	ncurses_baudrate
	ncurses_beep
	ncurses_bkgd
	ncurses_bkgdset
	ncurses_border
	ncurses_bottom_panel
	ncurses_can_change_color
	ncurses_cbreak
	ncurses_clear
	ncurses_clrtobot
	ncurses_clrtoeol
	ncurses_color_content
	ncurses_color_set
	ncurses_curs_set
	ncurses_def_prog_mode
	ncurses_def_shell_mode
	ncurses_define_key
	ncurses_del_panel
	ncurses_delay_output
	ncurses_delch
	ncurses_deleteln
	ncurses_delwin
	ncurses_doupdate
	ncurses_echo
	ncurses_echochar
	ncurses_end
	ncurses_erase
	ncurses_erasechar
	ncurses_filter
	ncurses_flash
	ncurses_flushinp
	ncurses_getch
	ncurses_getmaxyx
	ncurses_getmouse
	ncurses_getyx
	ncurses_halfdelay
	ncurses_has_colors
	ncurses_has_ic
	ncurses_has_il
	ncurses_has_key
	ncurses_hide_panel
	ncurses_hline
	ncurses_inch
	ncurses_init_color
	ncurses_init_pair
	ncurses_init
	ncurses_insch
	ncurses_insdelln
	ncurses_insertln
	ncurses_insstr
	ncurses_instr
	ncurses_isendwin
	ncurses_keyok
	ncurses_keypad
	ncurses_killchar
	ncurses_longname
	ncurses_meta
	ncurses_mouse_trafo
	ncurses_mouseinterval
	ncurses_mousemask
	ncurses_move_panel
	ncurses_move
	ncurses_mvaddch
	ncurses_mvaddchnstr
	ncurses_mvaddchstr
	ncurses_mvaddnstr
	ncurses_mvaddstr
	ncurses_mvcur
	ncurses_mvdelch
	ncurses_mvgetch
	ncurses_mvhline
	ncurses_mvinch
	ncurses_mvvline
	ncurses_mvwaddstr
	ncurses_napms
	ncurses_new_panel
	ncurses_newpad
	ncurses_newwin
	ncurses_nl
	ncurses_nocbreak
	ncurses_noecho
	ncurses_nonl
	ncurses_noqiflush
	ncurses_noraw
	ncurses_pair_content
	ncurses_panel_above
	ncurses_panel_below
	ncurses_panel_window
	ncurses_pnoutrefresh
	ncurses_prefresh
	ncurses_putp
	ncurses_qiflush
	ncurses_raw
	ncurses_refresh
	ncurses_replace_panel
	ncurses_reset_prog_mode
	ncurses_reset_shell_mode
	ncurses_resetty
	ncurses_savetty
	ncurses_scr_dump
	ncurses_scr_init
	ncurses_scr_restore
	ncurses_scr_set
	ncurses_scrl
	ncurses_show_panel
	ncurses_slk_attr
	ncurses_slk_attroff
	ncurses_slk_attron
	ncurses_slk_attrset
	ncurses_slk_clear
	ncurses_slk_color
	ncurses_slk_init
	ncurses_slk_noutrefresh
	ncurses_slk_refresh
	ncurses_slk_restore
	ncurses_slk_set
	ncurses_slk_touch
	ncurses_standend
	ncurses_standout
	ncurses_start_color
	ncurses_termattrs
	ncurses_termname
	ncurses_timeout
	ncurses_top_panel
	ncurses_typeahead
	ncurses_ungetch
	ncurses_ungetmouse
	ncurses_update_panels
	ncurses_use_default_colors
	ncurses_use_env
	ncurses_use_extended_names
	ncurses_vidattr
	ncurses_vline
	ncurses_waddch
	ncurses_waddstr
	ncurses_wattroff
	ncurses_wattron
	ncurses_wattrset
	ncurses_wborder
	ncurses_wclear
	ncurses_wcolor_set
	ncurses_werase
	ncurses_wgetch
	ncurses_whline
	ncurses_wmouse_trafo
	ncurses_wmove
	ncurses_wnoutrefresh
	ncurses_wrefresh
	ncurses_wstandend
	ncurses_wstandout
	ncurses_wvline

	Readline
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Readline Functions
	readline_add_history
	readline_callback_handler_install
	readline_callback_handler_remove
	readline_callback_read_char
	readline_clear_history
	readline_completion_function
	readline_info
	readline_list_history
	readline_on_new_line
	readline_read_history
	readline_redisplay
	readline_write_history
	readline

	Compression and Archive Extensions
	Bzip2
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Bzip2 Functions
	bzclose
	bzcompress
	bzdecompress
	bzerrno
	bzerror
	bzerrstr
	bzflush
	bzopen
	bzread
	bzwrite

	LZF
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	LZF Functions
	lzf_compress
	lzf_decompress
	lzf_optimized_for

	Phar
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Using Phar Archives
	Using Phar Archives: Introduction
	Using Phar Archives: the phar stream wrapper
	Using Phar Archives: the Phar and PharData class

	Creating Phar Archives
	Creating Phar Archives: Introduction

	What makes a phar a phar and not a tar or a zip?
	Ingredients of all Phar archives, independent of file format
	Phar file stub
	Head-to-head comparison of Phar, Tar and Zip
	Tar-based phars
	Zip-based phars
	Phar File Format
	Global Phar bitmapped flags
	Phar manifest file entry definition
	Phar Signature format

	Phar
	Introduction
	Class synopsis
	Phar::addEmptyDir
	Phar::addFile
	Phar::addFromString
	Phar::apiVersion
	Phar::buildFromDirectory
	Phar::buildFromIterator
	Phar::canCompress
	Phar::canWrite
	Phar::compress
	Phar::compressAllFilesBZIP2
	Phar::compressAllFilesGZ
	Phar::compressFiles
	Phar::__construct
	Phar::convertToData
	Phar::convertToExecutable
	Phar::copy
	Phar::count
	Phar::createDefaultStub
	Phar::decompress
	Phar::decompressFiles
	Phar::delMetadata
	Phar::delete
	Phar::extractTo
	Phar::getMetaData
	Phar::getModified
	Phar::getSignature
	Phar::getStub
	Phar::getSupportedCompression
	Phar::getSupportedSignatures
	Phar::getVersion
	Phar::hasMetaData
	Phar::interceptFileFuncs
	Phar::isBuffering
	Phar::isCompressed
	Phar::isFileFormat
	Phar::isValidPharFilename
	Phar::isWritable
	Phar::loadPhar
	Phar::mapPhar
	Phar::mount
	Phar::mungServer
	Phar::offsetExists
	Phar::offsetGet
	Phar::offsetSet
	Phar::offsetUnset
	Phar::running
	Phar::setAlias
	Phar::setDefaultStub
	Phar::setMetadata
	Phar::setSignatureAlgorithm
	Phar::setStub
	Phar::startBuffering
	Phar::stopBuffering
	Phar::uncompressAllFiles
	Phar::unlinkArchive
	Phar::webPhar

	PharData
	Introduction
	Class synopsis
	PharData::addEmptyDir
	PharData::addFile
	PharData::addFromString
	PharData::buildFromDirectory
	PharData::buildFromIterator
	PharData::compress
	PharData::compressFiles
	PharData::__construct
	PharData::convertToData
	PharData::convertToExecutable
	PharData::copy
	PharData::decompress
	PharData::decompressFiles
	PharData::delMetadata
	PharData::delete
	PharData::extractTo
	PharData::isWritable
	PharData::offsetSet
	PharData::offsetUnset
	PharData::setAlias
	PharData::setDefaultStub
	Phar::setMetadata
	Phar::setSignatureAlgorithm
	PharData::setStub

	PharFileInfo
	Introduction
	Class synopsis
	PharFileInfo::chmod
	PharFileInfo::compress
	PharFileInfo::__construct
	PharFileInfo::decompress
	PharFileInfo::delMetadata
	PharFileInfo::getCRC32
	PharFileInfo::getCompressedSize
	PharFileInfo::getMetaData
	PharFileInfo::getPharFlags
	PharFileInfo::hasMetadata
	PharFileInfo::isCRCChecked
	PharFileInfo::isCompressed
	PharFileInfo::isCompressedBZIP2
	PharFileInfo::isCompressedGZ
	PharFileInfo::setCompressedBZIP2
	PharFileInfo::setCompressedGZ
	PharFileInfo::setMetaData
	PharFileInfo::setUncompressed

	PharException
	Introduction
	Class synopsis
	PharException

	Rar
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Rar Functions
	rar_close
	rar_entry_get
	Rar::extract
	Rar::getAttr
	Rar::getCrc
	Rar::getFileTime
	Rar::getHostOs
	Rar::getMethod
	Rar::getName
	Rar::getPackedSize
	Rar::getUnpackedSize
	Rar::getVersion
	rar_list
	rar_open

	Zip
	Introduction
	Installing/Configuring
	Requirements
	PHP 4
	PHP 5.2.0 or later
	Installation
	PHP 4
	Linux systems
	Windows
	PHP 5.2.0 and later
	Linux systems
	Windows
	Installation via PECL

	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Zip Functions
	zip_close
	zip_entry_close
	zip_entry_compressedsize
	zip_entry_compressionmethod
	zip_entry_filesize
	zip_entry_name
	zip_entry_open
	zip_entry_read
	zip_open
	zip_read
	ZipArchive::addEmptyDir
	ZipArchive::addFile
	ZipArchive::addFromString
	ZipArchive::close
	ZipArchive::deleteIndex
	ZipArchive::deleteName
	ZipArchive::extractTo
	ZipArchive::getArchiveComment
	ZipArchive::getCommentIndex
	ZipArchive::getCommentName
	ZipArchive::getFromIndex
	ZipArchive::getFromName
	ZipArchive::getNameIndex
	ZipArchive::getStream
	ZipArchive::locateName
	ZipArchive::open
	ZipArchive::renameIndex
	ZipArchive::renameName
	ZipArchive::setArchiveComment
	ZipArchive::setCommentIndex
	ZipArchive::setCommentName
	ZipArchive::statIndex
	ZipArchive::statName
	ZipArchive::unchangeAll
	ZipArchive::unchangeArchive
	ZipArchive::unchangeIndex
	ZipArchive::unchangeName

	Zlib
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Zlib Functions
	gzclose
	gzcompress
	gzdecode
	gzdeflate
	gzencode
	gzeof
	gzfile
	gzgetc
	gzgets
	gzgetss
	gzinflate
	gzopen
	gzpassthru
	gzputs
	gzread
	gzrewind
	gzseek
	gztell
	gzuncompress
	gzwrite
	readgzfile
	zlib_get_coding_type

	Credit Card Processing
	MCVE
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	MCVE Functions
	m_checkstatus
	m_completeauthorizations
	m_connect
	m_connectionerror
	m_deletetrans
	m_destroyconn
	m_destroyengine
	m_getcell
	m_getcellbynum
	m_getcommadelimited
	m_getheader
	m_initconn
	m_initengine
	m_iscommadelimited
	m_maxconntimeout
	m_monitor
	m_numcolumns
	m_numrows
	m_parsecommadelimited
	m_responsekeys
	m_responseparam
	m_returnstatus
	m_setblocking
	m_setdropfile
	m_setip
	m_setssl_cafile
	m_setssl_files
	m_setssl
	m_settimeout
	m_sslcert_gen_hash
	m_transactionssent
	m_transinqueue
	m_transkeyval
	m_transnew
	m_transsend
	m_uwait
	m_validateidentifier
	m_verifyconnection
	m_verifysslcert

	SPPLUS
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SPPLUS Functions
	calcul_hmac
	calculhmac
	nthmac
	signeurlpaiement

	Cryptography Extensions
	Cracklib
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Crack Functions
	crack_check
	crack_closedict
	crack_getlastmessage
	crack_opendict

	Hash
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Hash Functions
	hash_algos
	hash_copy
	hash_file
	hash_final
	hash_hmac_file
	hash_hmac
	hash_init
	hash_update_file
	hash_update_stream
	hash_update
	hash

	Mcrypt
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Mcrypt ciphers
	Examples
	Mcrypt Functions
	mcrypt_cbc
	mcrypt_cfb
	mcrypt_create_iv
	mcrypt_decrypt
	mcrypt_ecb
	mcrypt_enc_get_algorithms_name
	mcrypt_enc_get_block_size
	mcrypt_enc_get_iv_size
	mcrypt_enc_get_key_size
	mcrypt_enc_get_modes_name
	mcrypt_enc_get_supported_key_sizes
	mcrypt_enc_is_block_algorithm_mode
	mcrypt_enc_is_block_algorithm
	mcrypt_enc_is_block_mode
	mcrypt_enc_self_test
	mcrypt_encrypt
	mcrypt_generic_deinit
	mcrypt_generic_end
	mcrypt_generic_init
	mcrypt_generic
	mcrypt_get_block_size
	mcrypt_get_cipher_name
	mcrypt_get_iv_size
	mcrypt_get_key_size
	mcrypt_list_algorithms
	mcrypt_list_modes
	mcrypt_module_close
	mcrypt_module_get_algo_block_size
	mcrypt_module_get_algo_key_size
	mcrypt_module_get_supported_key_sizes
	mcrypt_module_is_block_algorithm_mode
	mcrypt_module_is_block_algorithm
	mcrypt_module_is_block_mode
	mcrypt_module_open
	mcrypt_module_self_test
	mcrypt_ofb
	mdecrypt_generic

	Mhash
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Mhash Functions
	mhash_count
	mhash_get_block_size
	mhash_get_hash_name
	mhash_keygen_s2k
	mhash

	OpenSSL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Purpose checking flags
	Padding flags
	Key types
	PKCS7 Flags/Constants
	Signature Algorithms
	Ciphers
	Version constants

	Key/Certificate parameters
	Certificate Verification
	OpenSSL Functions
	openssl_csr_export_to_file
	openssl_csr_export
	openssl_csr_get_public_key
	openssl_csr_get_subject
	openssl_csr_new
	openssl_csr_sign
	openssl_error_string
	openssl_free_key
	openssl_get_privatekey
	openssl_get_publickey
	openssl_open
	openssl_pkcs12_export_to_file
	openssl_pkcs12_export
	openssl_pkcs12_read
	openssl_pkcs7_decrypt
	openssl_pkcs7_encrypt
	openssl_pkcs7_sign
	openssl_pkcs7_verify
	openssl_pkey_export_to_file
	openssl_pkey_export
	openssl_pkey_free
	openssl_pkey_get_details
	openssl_pkey_get_private
	openssl_pkey_get_public
	openssl_pkey_new
	openssl_private_decrypt
	openssl_private_encrypt
	openssl_public_decrypt
	openssl_public_encrypt
	openssl_seal
	openssl_sign
	openssl_verify
	openssl_x509_check_private_key
	openssl_x509_checkpurpose
	openssl_x509_export_to_file
	openssl_x509_export
	openssl_x509_free
	openssl_x509_parse
	openssl_x509_read

	Database Extensions
	Abstraction Layers
	DBA
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic usage

	DBA Functions
	dba_close
	dba_delete
	dba_exists
	dba_fetch
	dba_firstkey
	dba_handlers
	dba_insert
	dba_key_split
	dba_list
	dba_nextkey
	dba_open
	dba_optimize
	dba_popen
	dba_replace
	dba_sync

	dbx
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	dbx Functions
	dbx_close
	dbx_compare
	dbx_connect
	dbx_error
	dbx_escape_string
	dbx_fetch_row
	dbx_query
	dbx_sort

	ODBC
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	ODBC Functions
	odbc_autocommit
	odbc_binmode
	odbc_close_all
	odbc_close
	odbc_columnprivileges
	odbc_columns
	odbc_commit
	odbc_connect
	odbc_cursor
	odbc_data_source
	odbc_do
	odbc_error
	odbc_errormsg
	odbc_exec
	odbc_execute
	odbc_fetch_array
	odbc_fetch_into
	odbc_fetch_object
	odbc_fetch_row
	odbc_field_len
	odbc_field_name
	odbc_field_num
	odbc_field_precision
	odbc_field_scale
	odbc_field_type
	odbc_foreignkeys
	odbc_free_result
	odbc_gettypeinfo
	odbc_longreadlen
	odbc_next_result
	odbc_num_fields
	odbc_num_rows
	odbc_pconnect
	odbc_prepare
	odbc_primarykeys
	odbc_procedurecolumns
	odbc_procedures
	odbc_result_all
	odbc_result
	odbc_rollback
	odbc_setoption
	odbc_specialcolumns
	odbc_statistics
	odbc_tableprivileges
	odbc_tables

	PDO
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Connections and Connection management
	Transactions and auto-commit
	Prepared statements and stored procedures
	Errors and error handling
	Large Objects (LOBs)
	PDO
	Introduction
	Class synopsis
	PDO::beginTransaction
	PDO::commit
	PDO::__construct
	PDO::errorCode
	PDO::errorInfo
	PDO::exec
	PDO::getAttribute
	PDO::getAvailableDrivers
	PDO::lastInsertId
	PDO::prepare
	PDO::query
	PDO::quote
	PDO::rollBack
	PDO::setAttribute

	PDOStatement
	Introduction
	Class synopsis
	PDOStatement->bindColumn
	PDOStatement->bindParam
	PDOStatement->bindValue
	PDOStatement->closeCursor
	PDOStatement->columnCount
	PDOStatement->errorCode
	PDOStatement->errorInfo
	PDOStatement->execute
	PDOStatement->fetch
	PDOStatement->fetchAll
	PDOStatement->fetchColumn
	PDOStatement->fetchObject
	PDOStatement->getAttribute
	PDOStatement->getColumnMeta
	PDOStatement->nextRowset
	PDOStatement->rowCount
	PDOStatement->setAttribute
	PDOStatement->setFetchMode

	PDO Drivers
	MS SQL Server (PDO)
	Introduction
	PDO_DBLIB DSN

	Firebird/Interbase (PDO)
	Introduction
	PDO_FIREBIRD DSN

	IBM (PDO)
	Introduction
	Installation
	PDO_IBM DSN

	Informix (PDO)
	Introduction
	Installation
	Scrollable cursors
	PDO_INFORMIX DSN

	MySQL (PDO)
	Introduction
	Predefined Constants
	PDO_MYSQL DSN

	Oracle (PDO)
	Introduction
	PDO_OCI DSN

	ODBC and DB2 (PDO)
	Introduction
	Installation
	Runtime Configuration
	PDO_ODBC DSN

	PostgreSQL (PDO)
	Introduction
	Resource Types
	PDO_PGSQL DSN
	PDO::pgsqlLOBCreate
	PDO::pgsqlLOBOpen
	PDO::pgsqlLOBUnlink

	SQLite (PDO)
	Introduction
	PDO_SQLITE DSN
	PDO->sqliteCreateAggregate()
	PDO->sqliteCreateFunction()

	SDO
	Introduction
	The Structure of a Service Data Object

	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Limitations
	Examples
	Basic Usage
	Setting and Getting Property Values
	Working with Sequenced Data Objects
	Reflecting on Service Data Objects

	SDO Functions
	Data Access Services
	Predefined Classes
	SDO Application Programmer Interface
	SDO_DataObject
	Methods
	SDO_Sequence
	Methods
	SDO_List
	Methods
	SDO_DataFactory
	Methods
	SDO_Exception
	Methods
	SDO Reflection Application Programmer Interfaces
	SDO_Model_ReflectionDataObject
	Constructor
	Methods
	SDO_Model_Type
	Methods
	SDO_Model_Property
	Methods
	SDO Data Access Service Developer Interfaces
	SDO_DAS_DataObject
	Methods
	SDO_DAS_ChangeSummary
	Methods
	SDO_DAS_Setting
	Methods
	SDO_DAS_DataFactory
	Methods
	SDO_DAS_ChangeSummary::beginLogging
	SDO_DAS_ChangeSummary::endLogging
	SDO_DAS_ChangeSummary::getChangeType
	SDO_DAS_ChangeSummary::getChangedDataObjects
	SDO_DAS_ChangeSummary::getOldContainer
	SDO_DAS_ChangeSummary::getOldValues
	SDO_DAS_ChangeSummary::isLogging
	SDO_DAS_DataFactory::addPropertyToType
	SDO_DAS_DataFactory::addType
	SDO_DAS_DataFactory::getDataFactory
	SDO_DAS_DataObject::getChangeSummary
	SDO_DAS_Setting::getListIndex
	SDO_DAS_Setting::getPropertyIndex
	SDO_DAS_Setting::getPropertyName
	SDO_DAS_Setting::getValue
	SDO_DAS_Setting::isSet
	SDO_DataFactory::create
	SDO_DataObject::clear
	SDO_DataObject::createDataObject
	SDO_DataObject::getContainer
	SDO_DataObject::getSequence
	SDO_DataObject::getTypeName
	SDO_DataObject::getTypeNamespaceURI
	SDO_Exception::getCause
	SDO_List::insert
	SDO_Model_Property::getContainingType
	SDO_Model_Property::getDefault
	SDO_Model_Property::getName
	SDO_Model_Property::getType
	SDO_Model_Property::isContainment
	SDO_Model_Property::isMany
	SDO_Model_ReflectionDataObject::__construct
	SDO_Model_ReflectionDataObject::export
	SDO_Model_ReflectionDataObject::getContainmentProperty
	SDO_Model_ReflectionDataObject::getInstanceProperties
	SDO_Model_ReflectionDataObject::getType
	SDO_Model_Type::getBaseType
	SDO_Model_Type::getName
	SDO_Model_Type::getNamespaceURI
	SDO_Model_Type::getProperties
	SDO_Model_Type::getProperty
	SDO_Model_Type::isAbstractType
	SDO_Model_Type::isDataType
	SDO_Model_Type::isInstance
	SDO_Model_Type::isOpenType
	SDO_Model_Type::isSequencedType
	SDO_Sequence::getProperty
	SDO_Sequence::insert
	SDO_Sequence::move

	SDO-DAS-Relational
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Tracing

	Resource Types

	Predefined Constants
	Examples
	Creating, retrieveing, updating and deleting data
	Specifying the metadata
	Database metadata
	What the Relational DAS does with the metadata
	Specifying the application root type
	Specifying the SDO containment relationships

	One-table examples
	Two-table examples
	Three-table example

	Limitations
	SDO-DAS-Relational Functions
	Predefined Classes
	SDO_DAS_Relational
	Methods
	SDO_DAS_Relational_Exception
	SDO_DAS_Relational::applyChanges
	SDO_DAS_Relational::__construct
	SDO_DAS_Relational::createRootDataObject
	SDO_DAS_Relational::executePreparedQuery
	SDO_DAS_Relational::executeQuery

	Vendor Specific Database Extensions
	dBase
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	dBase Functions
	Examples
	dbase_add_record
	dbase_close
	dbase_create
	dbase_delete_record
	dbase_get_header_info
	dbase_get_record_with_names
	dbase_get_record
	dbase_numfields
	dbase_numrecords
	dbase_open
	dbase_pack
	dbase_replace_record

	DB++
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types
	dbplus_relation

	Predefined Constants
	db++ error codes

	DB++ Functions
	dbplus_add
	dbplus_aql
	dbplus_chdir
	dbplus_close
	dbplus_curr
	dbplus_errcode
	dbplus_errno
	dbplus_find
	dbplus_first
	dbplus_flush
	dbplus_freealllocks
	dbplus_freelock
	dbplus_freerlocks
	dbplus_getlock
	dbplus_getunique
	dbplus_info
	dbplus_last
	dbplus_lockrel
	dbplus_next
	dbplus_open
	dbplus_prev
	dbplus_rchperm
	dbplus_rcreate
	dbplus_rcrtexact
	dbplus_rcrtlike
	dbplus_resolve
	dbplus_restorepos
	dbplus_rkeys
	dbplus_ropen
	dbplus_rquery
	dbplus_rrename
	dbplus_rsecindex
	dbplus_runlink
	dbplus_rzap
	dbplus_savepos
	dbplus_setindex
	dbplus_setindexbynumber
	dbplus_sql
	dbplus_tcl
	dbplus_tremove
	dbplus_undo
	dbplus_undoprepare
	dbplus_unlockrel
	dbplus_unselect
	dbplus_update
	dbplus_xlockrel
	dbplus_xunlockrel

	FrontBase
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	FrontBase Functions
	fbsql_affected_rows
	fbsql_autocommit
	fbsql_blob_size
	fbsql_change_user
	fbsql_clob_size
	fbsql_close
	fbsql_commit
	fbsql_connect
	fbsql_create_blob
	fbsql_create_clob
	fbsql_create_db
	fbsql_data_seek
	fbsql_database_password
	fbsql_database
	fbsql_db_query
	fbsql_db_status
	fbsql_drop_db
	fbsql_errno
	fbsql_error
	fbsql_fetch_array
	fbsql_fetch_assoc
	fbsql_fetch_field
	fbsql_fetch_lengths
	fbsql_fetch_object
	fbsql_fetch_row
	fbsql_field_flags
	fbsql_field_len
	fbsql_field_name
	fbsql_field_seek
	fbsql_field_table
	fbsql_field_type
	fbsql_free_result
	fbsql_get_autostart_info
	fbsql_hostname
	fbsql_insert_id
	fbsql_list_dbs
	fbsql_list_fields
	fbsql_list_tables
	fbsql_next_result
	fbsql_num_fields
	fbsql_num_rows
	fbsql_password
	fbsql_pconnect
	fbsql_query
	fbsql_read_blob
	fbsql_read_clob
	fbsql_result
	fbsql_rollback
	fbsql_rows_fetched
	fbsql_select_db
	fbsql_set_characterset
	fbsql_set_lob_mode
	fbsql_set_password
	fbsql_set_transaction
	fbsql_start_db
	fbsql_stop_db
	fbsql_table_name
	fbsql_tablename
	fbsql_username
	fbsql_warnings

	filePro
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	filePro Functions
	filepro_fieldcount
	filepro_fieldname
	filepro_fieldtype
	filepro_fieldwidth
	filepro_retrieve
	filepro_rowcount
	filepro

	Firebird/InterBase
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Firebird/InterBase Functions
	ibase_add_user
	ibase_affected_rows
	ibase_backup
	ibase_blob_add
	ibase_blob_cancel
	ibase_blob_close
	ibase_blob_create
	ibase_blob_echo
	ibase_blob_get
	ibase_blob_import
	ibase_blob_info
	ibase_blob_open
	ibase_close
	ibase_commit_ret
	ibase_commit
	ibase_connect
	ibase_db_info
	ibase_delete_user
	ibase_drop_db
	ibase_errcode
	ibase_errmsg
	ibase_execute
	ibase_fetch_assoc
	ibase_fetch_object
	ibase_fetch_row
	ibase_field_info
	ibase_free_event_handler
	ibase_free_query
	ibase_free_result
	ibase_gen_id
	ibase_maintain_db
	ibase_modify_user
	ibase_name_result
	ibase_num_fields
	ibase_num_params
	ibase_param_info
	ibase_pconnect
	ibase_prepare
	ibase_query
	ibase_restore
	ibase_rollback_ret
	ibase_rollback
	ibase_server_info
	ibase_service_attach
	ibase_service_detach
	ibase_set_event_handler
	ibase_timefmt
	ibase_trans
	ibase_wait_event

	Informix
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Informix Functions
	ifx_affected_rows
	ifx_blobinfile_mode
	ifx_byteasvarchar
	ifx_close
	ifx_connect
	ifx_copy_blob
	ifx_create_blob
	ifx_create_char
	ifx_do
	ifx_error
	ifx_errormsg
	ifx_fetch_row
	ifx_fieldproperties
	ifx_fieldtypes
	ifx_free_blob
	ifx_free_char
	ifx_free_result
	ifx_get_blob
	ifx_get_char
	ifx_getsqlca
	ifx_htmltbl_result
	ifx_nullformat
	ifx_num_fields
	ifx_num_rows
	ifx_pconnect
	ifx_prepare
	ifx_query
	ifx_textasvarchar
	ifx_update_blob
	ifx_update_char
	ifxus_close_slob
	ifxus_create_slob
	ifxus_free_slob
	ifxus_open_slob
	ifxus_read_slob
	ifxus_seek_slob
	ifxus_tell_slob
	ifxus_write_slob

	IBM DB2
	Introduction
	Installing/Configuring
	Requirements
	Requirements on Linux or Unix
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	IBM DB2 Functions
	db2_autocommit
	db2_bind_param
	db2_client_info
	db2_close
	db2_column_privileges
	db2_columns
	db2_commit
	db2_conn_error
	db2_conn_errormsg
	db2_connect
	db2_cursor_type
	db2_escape_string
	db2_exec
	db2_execute
	db2_fetch_array
	db2_fetch_assoc
	db2_fetch_both
	db2_fetch_object
	db2_fetch_row
	db2_field_display_size
	db2_field_name
	db2_field_num
	db2_field_precision
	db2_field_scale
	db2_field_type
	db2_field_width
	db2_foreign_keys
	db2_free_result
	db2_free_stmt
	db2_get_option
	db2_lob_read
	db2_next_result
	db2_num_fields
	db2_num_rows
	db2_pconnect
	db2_prepare
	db2_primary_keys
	db2_procedure_columns
	db2_procedures
	db2_result
	db2_rollback
	db2_server_info
	db2_set_option
	db2_special_columns
	db2_statistics
	db2_stmt_error
	db2_stmt_errormsg
	db2_table_privileges
	db2_tables

	Ingres II
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Simple Ingres Example

	Ingres II Functions
	ingres_autocommit
	ingres_close
	ingres_commit
	ingres_connect
	ingres_cursor
	ingres_errno
	ingres_error
	ingres_errsqlstate
	ingres_fetch_array
	ingres_fetch_object
	ingres_fetch_row
	ingres_field_length
	ingres_field_name
	ingres_field_nullable
	ingres_field_precision
	ingres_field_scale
	ingres_field_type
	ingres_num_fields
	ingres_num_rows
	ingres_pconnect
	ingres_query
	ingres_rollback

	MaxDB
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	MaxDB extension overview example

	MaxDB Functions
	Predefined Classes
	maxdb
	Constructor
	Methods
	Properties
	maxdb_stmt
	Methods
	Properties
	maxdb_result
	Methods
	Properties
	maxdb_affected_rows
	maxdb_autocommit
	maxdb_bind_param
	maxdb_bind_result
	maxdb_change_user
	maxdb_character_set_name
	maxdb_client_encoding
	maxdb_close_long_data
	maxdb_close
	maxdb_commit
	maxdb_connect_errno
	maxdb_connect_error
	maxdb_connect
	maxdb_data_seek
	maxdb_debug
	maxdb_disable_reads_from_master
	maxdb_disable_rpl_parse
	maxdb_dump_debug_info
	maxdb_embedded_connect
	maxdb_enable_reads_from_master
	maxdb_enable_rpl_parse
	maxdb_errno
	maxdb_error
	maxdb_escape_string
	maxdb_execute
	maxdb_fetch_array
	maxdb_fetch_assoc
	maxdb_fetch_field_direct
	maxdb_fetch_field
	maxdb_fetch_fields
	maxdb_fetch_lengths
	maxdb_fetch_object
	maxdb_fetch_row
	maxdb_fetch
	maxdb_field_count
	maxdb_field_seek
	maxdb_field_tell
	maxdb_free_result
	maxdb_get_client_info
	maxdb_get_client_version
	maxdb_get_host_info
	maxdb_get_metadata
	maxdb_get_proto_info
	maxdb_get_server_info
	maxdb_get_server_version
	maxdb_info
	maxdb_init
	maxdb_insert_id
	maxdb_kill
	maxdb_master_query
	maxdb_more_results
	maxdb_multi_query
	maxdb_next_result
	maxdb_num_fields
	maxdb_num_rows
	maxdb_options
	maxdb_param_count
	maxdb_ping
	maxdb_prepare
	maxdb_query
	maxdb_real_connect
	maxdb_real_escape_string
	maxdb_real_query
	maxdb_report
	maxdb_rollback
	maxdb_rpl_parse_enabled
	maxdb_rpl_probe
	maxdb_rpl_query_type
	maxdb_select_db
	maxdb_send_long_data
	maxdb_send_query
	maxdb_server_end
	maxdb_server_init
	maxdb_set_opt
	maxdb_sqlstate
	maxdb_ssl_set
	maxdb_stat
	maxdb_stmt_affected_rows
	maxdb_stmt_bind_param
	maxdb_stmt_bind_result
	maxdb_stmt_close_long_data
	maxdb_stmt_close
	maxdb_stmt_data_seek
	maxdb_stmt_errno
	maxdb_stmt_error
	maxdb_stmt_execute
	maxdb_stmt_fetch
	maxdb_stmt_free_result
	maxdb_stmt_init
	maxdb_stmt_num_rows
	maxdb_stmt_param_count
	maxdb_stmt_prepare
	maxdb_stmt_reset
	maxdb_stmt_result_metadata
	maxdb_stmt_send_long_data
	maxdb_stmt_sqlstate
	maxdb_stmt_store_result
	maxdb_store_result
	maxdb_thread_id
	maxdb_thread_safe
	maxdb_use_result
	maxdb_warning_count

	mSQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	mSQL usage example

	mSQL Functions
	msql_affected_rows
	msql_close
	msql_connect
	msql_create_db
	msql_createdb
	msql_data_seek
	msql_db_query
	msql_dbname
	msql_drop_db
	msql_error
	msql_fetch_array
	msql_fetch_field
	msql_fetch_object
	msql_fetch_row
	msql_field_flags
	msql_field_len
	msql_field_name
	msql_field_seek
	msql_field_table
	msql_field_type
	msql_fieldflags
	msql_fieldlen
	msql_fieldname
	msql_fieldtable
	msql_fieldtype
	msql_free_result
	msql_list_dbs
	msql_list_fields
	msql_list_tables
	msql_num_fields
	msql_num_rows
	msql_numfields
	msql_numrows
	msql_pconnect
	msql_query
	msql_regcase
	msql_result
	msql_select_db
	msql_tablename
	msql

	Mssql
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Mssql Functions
	mssql_bind
	mssql_close
	mssql_connect
	mssql_data_seek
	mssql_execute
	mssql_fetch_array
	mssql_fetch_assoc
	mssql_fetch_batch
	mssql_fetch_field
	mssql_fetch_object
	mssql_fetch_row
	mssql_field_length
	mssql_field_name
	mssql_field_seek
	mssql_field_type
	mssql_free_result
	mssql_free_statement
	mssql_get_last_message
	mssql_guid_string
	mssql_init
	mssql_min_error_severity
	mssql_min_message_severity
	mssql_next_result
	mssql_num_fields
	mssql_num_rows
	mssql_pconnect
	mssql_query
	mssql_result
	mssql_rows_affected
	mssql_select_db

	MySQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Installation on Linux Systems
	Installation on Windows Systems
	MySQL Installation Notes

	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	MySQL extension overview example

	MySQL Functions
	Notes
	mysql_affected_rows
	mysql_change_user
	mysql_client_encoding
	mysql_close
	mysql_connect
	mysql_create_db
	mysql_data_seek
	mysql_db_name
	mysql_db_query
	mysql_drop_db
	mysql_errno
	mysql_error
	mysql_escape_string
	mysql_fetch_array
	mysql_fetch_assoc
	mysql_fetch_field
	mysql_fetch_lengths
	mysql_fetch_object
	mysql_fetch_row
	mysql_field_flags
	mysql_field_len
	mysql_field_name
	mysql_field_seek
	mysql_field_table
	mysql_field_type
	mysql_free_result
	mysql_get_client_info
	mysql_get_host_info
	mysql_get_proto_info
	mysql_get_server_info
	mysql_info
	mysql_insert_id
	mysql_list_dbs
	mysql_list_fields
	mysql_list_processes
	mysql_list_tables
	mysql_num_fields
	mysql_num_rows
	mysql_pconnect
	mysql_ping
	mysql_query
	mysql_real_escape_string
	mysql_result
	mysql_select_db
	mysql_set_charset
	mysql_stat
	mysql_tablename
	mysql_thread_id
	mysql_unbuffered_query

	Mysqli
	Introduction
	Examples

	Installing/Configuring
	Requirements
	Installation
	Installation on Windows Systems

	Runtime Configuration
	Resource Types

	Predefined Constants
	MySQLi
	Introduction
	Class synopsis
	mysqli->affected_rows
	mysqli::autocommit
	mysqli::change_user
	mysqli::character_set_name
	mysqli::close
	mysqli::commit
	mysqli->connect_errno
	mysqli->connect_error
	mysqli::__construct
	mysqli::debug
	mysqli::dump_debug_info
	mysqli->errno
	mysqli->error
	mysqli->field_count
	mysqli::get_charset
	mysqli::get_client_info
	mysqli::get_client_version
	mysqli->host_info
	mysqli->protocol_version
	mysqli->server_info
	mysqli->server_version
	mysqli::get_warnings
	mysqli->info
	mysqli::init
	mysqli->insert_id
	mysqli::kill
	mysqli::more_results
	mysqli::multi_query
	mysqli::next_result
	mysqli::options
	mysqli::ping
	mysqli::prepare
	mysqli::query
	mysqli::real_connect
	mysqli::real_escape_string
	mysqli::real_query
	mysqli::rollback
	mysqli::select_db
	mysqli::set_charset
	mysqli::set_local_infile_default
	mysqli::set_local_infile_handler
	mysqli->sqlstate
	mysqli::ssl_set
	mysqli::stat
	mysqli::stmt_init
	mysqli::store_result
	mysqli::thread_id
	mysqli::thread_safe
	mysqli::use_result
	mysqli::warning_count

	MySQLi_STMT
	Introduction
	Class synopsis
	mysqli_stmt->affected_rows
	mysqli_stmt::attr_get
	mysqli_stmt::attr_set
	mysqli_stmt::bind_param
	mysqli_stmt::bind_result
	mysqli_stmt::close
	mysqli_stmt::data_seek
	mysqli_stmt->errno
	mysqli_stmt->error
	mysqli_stmt->execute
	mysqli_stmt::fetch
	mysqli_stmt->field_count
	stmt::free_result
	mysqli_stmt::get_warnings
	mysqli_stmt->insert_id
	mysqli_stmt::num_rows
	mysqli_stmt->param_count
	mysqli_stmt::prepare
	mysqli_stmt::reset
	mysqli_stmt::result_metadata
	mysqli_stmt::send_long_data
	mysqli_stmt::sqlstate
	mysqli_stmt::store_result

	MySQLi_Result
	Introduction
	Class synopsis
	mysqli_result->current_field
	mysqli_result::data_seek
	mysqli_result::fetch_array
	mysqli_result::fetch_assoc
	mysqli_result::fetch_field_direct
	mysqli_result::fetch_field
	mysqli_result::fetch_fields
	mysqli_result::fetch_object
	mysqli_result::fetch_row
	mysqli_result->field_count
	mysqli_result::field_seek
	mysqli_result::free
	mysqli_result->lengths
	mysqli_result->num_rows

	MySQLi_Driver
	Introduction
	Class synopsis
	Properties
	mysqli_driver::embedded_server_end
	mysqli_driver::embedded_server_start

	Aliases and deprecated Mysqli Functions
	mysqli_bind_param
	mysqli_bind_result
	mysqli_client_encoding
	mysqli_disable_reads_from_master
	mysqli_disable_rpl_parse
	mysqli_enable_reads_from_master
	mysqli_enable_rpl_parse
	mysqli_escape_string
	mysqli_execute
	mysqli_fetch
	mysqli_get_metadata
	mysqli_master_query
	mysqli_param_count
	mysqli_report
	mysqli_rpl_parse_enabled
	mysqli_rpl_probe
	mysqli_rpl_query_type
	mysqli_send_long_data
	mysqli_send_query
	mysqli_set_opt
	mysqli_slave_query

	OCI8
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic query

	Connecting Handling
	Supported Datatypes
	OCI8 Functions
	oci_bind_array_by_name
	oci_bind_by_name
	oci_cancel
	oci_close
	OCI-Collection->append
	OCI-Collection->assign
	OCI-Collection->assignElem
	OCI-Collection->free
	OCI-Collection->getElem
	OCI-Collection->max
	OCI-Collection->size
	OCI-Collection->trim
	oci_commit
	oci_connect
	oci_define_by_name
	oci_error
	oci_execute
	oci_fetch_all
	oci_fetch_array
	oci_fetch_assoc
	oci_fetch_object
	oci_fetch_row
	oci_fetch
	oci_field_is_null
	oci_field_name
	oci_field_precision
	oci_field_scale
	oci_field_size
	oci_field_type_raw
	oci_field_type
	oci_free_statement
	oci_internal_debug
	OCI-Lob->append
	OCI-Lob->close
	oci_lob_copy
	OCI-Lob->eof
	OCI-Lob->erase
	OCI-Lob->export
	OCI-Lob->flush
	OCI-Lob->free
	OCI-Lob->getBuffering
	OCI-Lob->import
	oci_lob_is_equal
	OCI-Lob->load
	OCI-Lob->read
	OCI-Lob->rewind
	OCI-Lob->save
	OCI-Lob->saveFile
	OCI-Lob->seek
	OCI-Lob->setBuffering
	OCI-Lob->size
	OCI-Lob->tell
	OCI-Lob->truncate
	OCI-Lob->write
	OCI-Lob->writeTemporary
	OCI-Lob->writeToFile
	oci_new_collection
	oci_new_connect
	oci_new_cursor
	oci_new_descriptor
	oci_num_fields
	oci_num_rows
	oci_parse
	oci_password_change
	oci_pconnect
	oci_result
	oci_rollback
	oci_server_version
	oci_set_prefetch
	oci_statement_type
	ocibindbyname
	ocicancel
	ocicloselob
	ocicollappend
	ocicollassign
	ocicollassignelem
	ocicollgetelem
	ocicollmax
	ocicollsize
	ocicolltrim
	ocicolumnisnull
	ocicolumnname
	ocicolumnprecision
	ocicolumnscale
	ocicolumnsize
	ocicolumntype
	ocicolumntyperaw
	ocicommit
	ocidefinebyname
	ocierror
	ociexecute
	ocifetch
	ocifetchinto
	ocifetchstatement
	ocifreecollection
	ocifreecursor
	ocifreedesc
	ocifreestatement
	ociinternaldebug
	ociloadlob
	ocilogoff
	ocilogon
	ocinewcollection
	ocinewcursor
	ocinewdescriptor
	ocinlogon
	ocinumcols
	ociparse
	ociplogon
	ociresult
	ocirollback
	ocirowcount
	ocisavelob
	ocisavelobfile
	ociserverversion
	ocisetprefetch
	ocistatementtype
	ociwritelobtofile
	ociwritetemporarylob

	Ovrimos SQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Connect to Ovrimos SQL Server and select from a system table

	Ovrimos SQL Functions
	ovrimos_close
	ovrimos_commit
	ovrimos_connect
	ovrimos_cursor
	ovrimos_exec
	ovrimos_execute
	ovrimos_fetch_into
	ovrimos_fetch_row
	ovrimos_field_len
	ovrimos_field_name
	ovrimos_field_num
	ovrimos_field_type
	ovrimos_free_result
	ovrimos_longreadlen
	ovrimos_num_fields
	ovrimos_num_rows
	ovrimos_prepare
	ovrimos_result_all
	ovrimos_result
	ovrimos_rollback

	Paradox
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Paradox Functions
	Object oriented API
	px_close
	px_create_fp
	px_date2string
	px_delete_record
	px_delete
	px_get_field
	px_get_info
	px_get_parameter
	px_get_record
	px_get_schema
	px_get_value
	px_insert_record
	px_new
	px_numfields
	px_numrecords
	px_open_fp
	px_put_record
	px_retrieve_record
	px_set_blob_file
	px_set_parameter
	px_set_tablename
	px_set_targetencoding
	px_set_value
	px_timestamp2string
	px_update_record

	PostgreSQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	PostgreSQL extension overview example

	PostgreSQL Functions
	Notes
	pg_affected_rows
	pg_cancel_query
	pg_client_encoding
	pg_close
	pg_connect
	pg_connection_busy
	pg_connection_reset
	pg_connection_status
	pg_convert
	pg_copy_from
	pg_copy_to
	pg_dbname
	pg_delete
	pg_end_copy
	pg_escape_bytea
	pg_escape_string
	pg_execute
	pg_fetch_all_columns
	pg_fetch_all
	pg_fetch_array
	pg_fetch_assoc
	pg_fetch_object
	pg_fetch_result
	pg_fetch_row
	pg_field_is_null
	pg_field_name
	pg_field_num
	pg_field_prtlen
	pg_field_size
	pg_field_table
	pg_field_type_oid
	pg_field_type
	pg_free_result
	pg_get_notify
	pg_get_pid
	pg_get_result
	pg_host
	pg_insert
	pg_last_error
	pg_last_notice
	pg_last_oid
	pg_lo_close
	pg_lo_create
	pg_lo_export
	pg_lo_import
	pg_lo_open
	pg_lo_read_all
	pg_lo_read
	pg_lo_seek
	pg_lo_tell
	pg_lo_unlink
	pg_lo_write
	pg_meta_data
	pg_num_fields
	pg_num_rows
	pg_options
	pg_parameter_status
	pg_pconnect
	pg_ping
	pg_port
	pg_prepare
	pg_put_line
	pg_query_params
	pg_query
	pg_result_error_field
	pg_result_error
	pg_result_seek
	pg_result_status
	pg_select
	pg_send_execute
	pg_send_prepare
	pg_send_query_params
	pg_send_query
	pg_set_client_encoding
	pg_set_error_verbosity
	pg_trace
	pg_transaction_status
	pg_tty
	pg_unescape_bytea
	pg_untrace
	pg_update
	pg_version

	SQLite
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SQLite Functions
	Predefined Classes
	SQLiteDatabase
	Constructor
	Methods
	SQLiteResult
	Methods
	SQLiteUnbuffered
	Methods
	sqlite_array_query
	sqlite_busy_timeout
	sqlite_changes
	sqlite_close
	sqlite_column
	sqlite_create_aggregate
	sqlite_create_function
	sqlite_current
	sqlite_error_string
	sqlite_escape_string
	sqlite_exec
	sqlite_factory
	sqlite_fetch_all
	sqlite_fetch_array
	sqlite_fetch_column_types
	sqlite_fetch_object
	sqlite_fetch_single
	sqlite_fetch_string
	sqlite_field_name
	sqlite_has_more
	sqlite_has_prev
	sqlite_key
	sqlite_last_error
	sqlite_last_insert_rowid
	sqlite_libencoding
	sqlite_libversion
	sqlite_next
	sqlite_num_fields
	sqlite_num_rows
	sqlite_open
	sqlite_popen
	sqlite_prev
	sqlite_query
	sqlite_rewind
	sqlite_seek
	sqlite_single_query
	sqlite_udf_decode_binary
	sqlite_udf_encode_binary
	sqlite_unbuffered_query
	sqlite_valid

	Sybase
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Sybase Functions
	sybase_affected_rows
	sybase_close
	sybase_connect
	sybase_data_seek
	sybase_deadlock_retry_count
	sybase_fetch_array
	sybase_fetch_assoc
	sybase_fetch_field
	sybase_fetch_object
	sybase_fetch_row
	sybase_field_seek
	sybase_free_result
	sybase_get_last_message
	sybase_min_client_severity
	sybase_min_error_severity
	sybase_min_message_severity
	sybase_min_server_severity
	sybase_num_fields
	sybase_num_rows
	sybase_pconnect
	sybase_query
	sybase_result
	sybase_select_db
	sybase_set_message_handler
	sybase_unbuffered_query

	File System Related Extensions
	Direct IO
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Direct IO Functions
	dio_close
	dio_fcntl
	dio_open
	dio_read
	dio_seek
	dio_stat
	dio_tcsetattr
	dio_truncate
	dio_write

	Directories
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Directory Functions
	chdir
	chroot
	dir
	closedir
	getcwd
	opendir
	readdir
	rewinddir
	scandir

	Fileinfo
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Fileinfo Functions
	finfo_buffer
	finfo_close
	finfo_file
	finfo_open
	finfo_set_flags

	Filesystem
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Filesystem Functions
	basename
	chgrp
	chmod
	chown
	clearstatcache
	copy
	delete
	dirname
	disk_free_space
	disk_total_space
	diskfreespace
	fclose
	feof
	fflush
	fgetc
	fgetcsv
	fgets
	fgetss
	file_exists
	file_get_contents
	file_put_contents
	file
	fileatime
	filectime
	filegroup
	fileinode
	filemtime
	fileowner
	fileperms
	filesize
	filetype
	flock
	fnmatch
	fopen
	fpassthru
	fputcsv
	fputs
	fread
	fscanf
	fseek
	fstat
	ftell
	ftruncate
	fwrite
	glob
	is_dir
	is_executable
	is_file
	is_link
	is_readable
	is_uploaded_file
	is_writable
	is_writeable
	lchgrp
	lchown
	link
	linkinfo
	lstat
	mkdir
	move_uploaded_file
	parse_ini_file
	pathinfo
	pclose
	popen
	readfile
	readlink
	realpath
	rename
	rewind
	rmdir
	set_file_buffer
	stat
	symlink
	tempnam
	tmpfile
	touch
	umask
	unlink

	Mimetype
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Mimetype Functions
	mime_content_type

	xattr
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	xattr Functions
	xattr_get
	xattr_list
	xattr_remove
	xattr_set
	xattr_supported

	xdiff
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	xdiff Functions
	xdiff_file_diff_binary
	xdiff_file_diff
	xdiff_file_merge3
	xdiff_file_patch_binary
	xdiff_file_patch
	xdiff_string_diff_binary
	xdiff_string_diff
	xdiff_string_merge3
	xdiff_string_patch_binary
	xdiff_string_patch

	Human Language and Character Encoding Support
	Enchant
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Enchant Functions
	enchant_broker_describe
	enchant_broker_dict_exists
	enchant_broker_free_dict
	enchant_broker_free
	enchant_broker_get_error
	enchant_broker_init
	enchant_broker_list_dicts
	enchant_broker_request_dict
	enchant_broker_request_pwl_dict
	enchant_broker_set_ordering
	enchant_dict_add_to_personal
	enchant_dict_add_to_session
	enchant_dict_check
	enchant_dict_describe
	enchant_dict_get_error
	enchant_dict_is_in_session
	enchant_dict_quick_check
	enchant_dict_store_replacement
	enchant_dict_suggest

	FriBiDi
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	FriBiDi Functions
	fribidi_log2vis

	Gettext
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Gettext Functions
	bind_textdomain_codeset
	bindtextdomain
	dcgettext
	dcngettext
	dgettext
	dngettext
	gettext
	ngettext
	textdomain

	i18n
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	i18n Functions
	locale_get_default
	locale_set_default

	iconv
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	iconv Functions
	iconv_get_encoding
	iconv_mime_decode_headers
	iconv_mime_decode
	iconv_mime_encode
	iconv_set_encoding
	iconv_strlen
	iconv_strpos
	iconv_strrpos
	iconv_substr
	iconv
	ob_iconv_handler

	intl
	Introduction
	Links

	Installing/Configuring
	Requirements
	Installation
	Testing
	Building
	Resource Types

	Predefined Constants
	Examples
	Basic usage of this extension

	intl Functions
	grapheme_extract
	grapheme_stripos
	grapheme_stristr
	grapheme_strlen
	grapheme_strpos
	grapheme_strripos
	grapheme_strrpos
	grapheme_strstr
	grapheme_substr
	intl_error_name
	intl_get_error_code
	intl_get_error_message
	intl_is_failure

	Collator
	Introduction
	Class synopsis
	Predefined Constants
	Collator::asort
	Collator::compare
	Collator::__construct
	Collator::create
	Collator::getAttribute
	Collator::getErrorCode
	Collator::getErrorMessage
	Collator::getLocale
	Collator::getStrength
	Collator::setAttribute
	Collator::setStrength
	Collator::sortWithSortKeys
	Collator::sort

	NumberFormatter
	Introduction
	Class synopsis
	Predefined Constants
	
	
	
	
	
	
	
	See Also
	NumberFormatter::create
	NumberFormatter::formatCurrency
	NumberFormatter::format
	NumberFormatter::getAttribute
	NumberFormatter::getErrorCode
	NumberFormatter::getErrorMessage
	NumberFormatter::getLocale
	NumberFormatter::getPattern
	NumberFormatter::getSymbol
	NumberFormatter::getTextAttribute
	NumberFormatter::parseCurrency
	NumberFormatter::parse
	NumberFormatter::setAttribute
	NumberFormatter::setPattern
	NumberFormatter::setSymbol
	NumberFormatter::setTextAttribute

	Locale
	Introduction
	Class synopsis
	Predefined Constants
	
	See Also
	Locale::composeLocale
	Locale::filterMatches
	Locale::getAllVariants
	Locale::getDefault
	Locale::getDisplayLanguage
	Locale::getDisplayName
	Locale::getDisplayRegion
	Locale::getDisplayScript
	Locale::getDisplayVariant
	Locale::getKeywords
	Locale::getPrimaryLanguage
	Locale::getRegion
	Locale::getScript
	Locale::lookup
	Locale::parseLocale
	Locale::setDefault

	Normalizer
	Introduction
	Class synopsis
	Predefined Constants
	See Also
	Normalizer::isNormalized
	Normalizer::normalize

	MessageFormatter
	Introduction
	Class synopsis
	See Also
	MessageFormatter::create
	MessageFormatter::formatMessage
	MessageFormatter::format
	MessageFormatter::getErrorCode
	MessageFormatter::getErrorMessage
	MessageFormatter::getLocale
	MessageFormatter::getPattern
	MessageFormatter::parseMessage
	MessageFormatter::parse
	MessageFormatter::setPattern

	IntlDateFormatter
	Introduction
	Class synopsis
	See Also
	Predefined Constants
	
	IntlDateFormatter::create
	IntlDateFormatter::format
	IntlDateFormatter::getCalendar
	IntlDateFormatter::getDateType
	IntlDateFormatter::getErrorCode
	IntlDateFormatter::getErrorMessage
	IntlDateFormatter::getLocale
	IntlDateFormatter::getPattern
	IntlDateFormatter::getTimeType
	IntlDateFormatter::getTimeZoneId
	IntlDateFormatter::isLenient
	IntlDateFormatter::localtime
	IntlDateFormatter::parse
	IntlDateFormatter::setCalendar
	IntlDateFormatter::setLenient
	IntlDateFormatter::setPattern
	IntlDateFormatter::setTimeZoneId

	Multibyte String
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Summaries of supported encodings
	Basics of Japanese multi-byte encodings
	HTTP Input and Output
	Supported Character Encodings
	Function Overloading Feature
	PHP Character Encoding Requirements
	Multibyte String Functions
	mb_check_encoding
	mb_convert_case
	mb_convert_encoding
	mb_convert_kana
	mb_convert_variables
	mb_decode_mimeheader
	mb_decode_numericentity
	mb_detect_encoding
	mb_detect_order
	mb_encode_mimeheader
	mb_encode_numericentity
	mb_ereg_match
	mb_ereg_replace
	mb_ereg_search_getpos
	mb_ereg_search_getregs
	mb_ereg_search_init
	mb_ereg_search_pos
	mb_ereg_search_regs
	mb_ereg_search_setpos
	mb_ereg_search
	mb_ereg
	mb_eregi_replace
	mb_eregi
	mb_get_info
	mb_http_input
	mb_http_output
	mb_internal_encoding
	mb_language
	mb_list_encodings
	mb_output_handler
	mb_parse_str
	mb_preferred_mime_name
	mb_regex_encoding
	mb_regex_set_options
	mb_send_mail
	mb_split
	mb_strcut
	mb_strimwidth
	mb_stripos
	mb_stristr
	mb_strlen
	mb_strpos
	mb_strrchr
	mb_strrichr
	mb_strripos
	mb_strrpos
	mb_strstr
	mb_strtolower
	mb_strtoupper
	mb_strwidth
	mb_substitute_character
	mb_substr_count
	mb_substr

	Pspell
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Pspell Functions
	pspell_add_to_personal
	pspell_add_to_session
	pspell_check
	pspell_clear_session
	pspell_config_create
	pspell_config_data_dir
	pspell_config_dict_dir
	pspell_config_ignore
	pspell_config_mode
	pspell_config_personal
	pspell_config_repl
	pspell_config_runtogether
	pspell_config_save_repl
	pspell_new_config
	pspell_new_personal
	pspell_new
	pspell_save_wordlist
	pspell_store_replacement
	pspell_suggest

	Recode
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Recode Functions
	recode_file
	recode_string
	recode

	Unicode
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Unicode Functions
	unicode_decode
	unicode_encode
	unicode_get_error_mode
	unicode_get_subst_char
	unicode_set_error_mode
	unicode_set_subst_char

	Image Processing and Generation
	Exif
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Exif Functions
	exif_imagetype
	exif_read_data
	exif_tagname
	exif_thumbnail
	read_exif_data

	GD
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	PNG creation with PHP

	GD Functions
	gd_info
	getimagesize
	image_type_to_extension
	image_type_to_mime_type
	image2wbmp
	imagealphablending
	imageantialias
	imagearc
	imagechar
	imagecharup
	imagecolorallocate
	imagecolorallocatealpha
	imagecolorat
	imagecolorclosest
	imagecolorclosestalpha
	imagecolorclosesthwb
	imagecolordeallocate
	imagecolorexact
	imagecolorexactalpha
	imagecolormatch
	imagecolorresolve
	imagecolorresolvealpha
	imagecolorset
	imagecolorsforindex
	imagecolorstotal
	imagecolortransparent
	imageconvolution
	imagecopy
	imagecopymerge
	imagecopymergegray
	imagecopyresampled
	imagecopyresized
	imagecreate
	imagecreatefromgd2
	imagecreatefromgd2part
	imagecreatefromgd
	imagecreatefromgif
	imagecreatefromjpeg
	imagecreatefrompng
	imagecreatefromstring
	imagecreatefromwbmp
	imagecreatefromxbm
	imagecreatefromxpm
	imagecreatetruecolor
	imagedashedline
	imagedestroy
	imageellipse
	imagefill
	imagefilledarc
	imagefilledellipse
	imagefilledpolygon
	imagefilledrectangle
	imagefilltoborder
	imagefilter
	imagefontheight
	imagefontwidth
	imageftbbox
	imagefttext
	imagegammacorrect
	imagegd2
	imagegd
	imagegif
	imagegrabscreen
	imagegrabwindow
	imageinterlace
	imageistruecolor
	imagejpeg
	imagelayereffect
	imageline
	imageloadfont
	imagepalettecopy
	imagepng
	imagepolygon
	imagepsbbox
	imagepsencodefont
	imagepsextendfont
	imagepsfreefont
	imagepsloadfont
	imagepsslantfont
	imagepstext
	imagerectangle
	imagerotate
	imagesavealpha
	imagesetbrush
	imagesetpixel
	imagesetstyle
	imagesetthickness
	imagesettile
	imagestring
	imagestringup
	imagesx
	imagesy
	imagetruecolortopalette
	imagettfbbox
	imagettftext
	imagetypes
	imagewbmp
	imagexbm
	iptcembed
	iptcparse
	jpeg2wbmp
	png2wbmp

	ImageMagick
	Introduction
	

	Installing/Configuring
	Requirements
	Installation requirements on Windows
	Installation requirements on other platforms
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Examples

	The Imagick class
	Class synopsis
	Image methods and global methods
	Class Methods
	Imagick::adaptiveBlurImage
	Imagick::adaptiveResizeImage
	Imagick::adaptiveSharpenImage
	Imagick::adaptiveThresholdImage
	Imagick::addImage
	Imagick::addNoiseImage
	Imagick::affineTransformImage
	Imagick::annotateImage
	Imagick::appendImages
	Imagick::averageImages
	Imagick::blackThresholdImage
	Imagick::blurImage
	Imagick::borderImage
	Imagick::charcoalImage
	Imagick::chopImage
	Imagick::clear
	Imagick::clipImage
	Imagick::clipPathImage
	Imagick::clone
	Imagick::clutImage
	Imagick::coalesceImages
	Imagick::colorFloodfillImage
	Imagick::colorizeImage
	Imagick::combineImages
	Imagick::commentImage
	Imagick::compareImageChannels
	Imagick::compareImageLayers
	Imagick::compareImages
	Imagick::compositeImage
	Imagick::__construct
	Imagick::contrastImage
	Imagick::contrastStretchImage
	Imagick::convolveImage
	Imagick::cropImage
	Imagick::cropThumbnailImage
	Imagick::current
	Imagick::cycleColormapImage
	Imagick::deconstructImages
	Imagick::despeckleImage
	Imagick::destroy
	Imagick::displayImage
	Imagick::displayImages
	Imagick::distortImage
	Imagick::drawImage
	Imagick::edgeImage
	Imagick::embossImage
	Imagick::enhanceImage
	Imagick::equalizeImage
	Imagick::evaluateImage
	Imagick::flattenImages
	Imagick::flipImage
	Imagick::flopImage
	Imagick::frameImage
	Imagick::fxImage
	Imagick::gammaImage
	Imagick::gaussianBlurImage
	Imagick::getCompression
	Imagick::getCompressionQuality
	Imagick::getCopyright
	Imagick::getFilename
	Imagick::getFormat
	Imagick::getHomeURL
	Imagick::getImage
	Imagick::getImageBackgroundColor
	Imagick::getImageBlob
	Imagick::getImageBluePrimary
	Imagick::getImageBorderColor
	Imagick::getImageChannelDepth
	Imagick::getImageChannelDistortion
	Imagick::getImageChannelExtrema
	Imagick::getImageChannelMean
	Imagick::getImageChannelStatistics
	Imagick::getImageColormapColor
	Imagick::getImageColors
	Imagick::getImageColorspace
	Imagick::getImageCompose
	Imagick::getImageDelay
	Imagick::getImageDepth
	Imagick::getImageDispose
	Imagick::getImageDistortion
	Imagick::getImageExtrema
	Imagick::getImageFilename
	Imagick::getImageFormat
	Imagick::getImageGamma
	Imagick::getImageGeometry
	Imagick::getImageGreenPrimary
	Imagick::getImageHeight
	Imagick::getImageHistogram
	Imagick::getImageIndex
	Imagick::getImageInterlaceScheme
	Imagick::getImageInterpolateMethod
	Imagick::getImageIterations
	Imagick::getImageLength
	Imagick::getImageMagickLicense
	Imagick::getImageMatte
	Imagick::getImageMatteColor
	Imagick::getImageOrientation
	Imagick::getImagePage
	Imagick::getImagePixelColor
	Imagick::getImageProfile
	Imagick::getImageProfiles
	Imagick::getImageProperties
	Imagick::getImageProperty
	Imagick::getImageRedPrimary
	Imagick::getImageRegion
	Imagick::getImageRenderingIntent
	Imagick::getImageResolution
	Imagick::getImageScene
	Imagick::getImageSignature
	Imagick::getImageSize
	Imagick::getImageTicksPerSecond
	Imagick::getImageTotalInkDensity
	Imagick::getImageType
	Imagick::getImageUnits
	Imagick::getImageVirtualPixelMethod
	Imagick::getImageWhitePoint
	Imagick::getImageWidth
	Imagick::getInterlaceScheme
	Imagick::getIteratorIndex
	Imagick::getNumberImages
	Imagick::getOption
	Imagick::getPackageName
	Imagick::getPage
	Imagick::getPixelIterator
	Imagick::getPixelRegionIterator
	Imagick::getQuantumDepth
	Imagick::getQuantumRange
	Imagick::getReleaseDate
	Imagick::getResource
	Imagick::getResourceLimit
	Imagick::getSamplingFactors
	Imagick::getSize
	Imagick::getSizeOffset
	Imagick::getVersion
	Imagick::hasNextImage
	Imagick::hasPreviousImage
	Imagick::identifyImage
	Imagick::implodeImage
	Imagick::labelImage
	Imagick::levelImage
	Imagick::linearStretchImage
	Imagick::magnifyImage
	Imagick::mapImage
	Imagick::matteFloodfillImage
	Imagick::medianFilterImage
	Imagick::minifyImage
	Imagick::modulateImage
	Imagick::montageImage
	Imagick::morphImages
	Imagick::mosaicImages
	Imagick::motionBlurImage
	Imagick::negateImage
	Imagick::newImage
	Imagick::newPseudoImage
	Imagick::nextImage
	Imagick::normalizeImage
	Imagick::oilPaintImage
	Imagick::optimizeImageLayers
	Imagick::colorFloodfillImage
	Imagick::paintOpaqueImage
	Imagick::paintTransparentImage
	Imagick::pingImage
	Imagick::pingImageBlob
	Imagick::pingImageFile
	Imagick::polaroidImage
	Imagick::posterizeImage
	Imagick::previewImages
	Imagick::previousImage
	Imagick::profileImage
	Imagick::quantizeImage
	Imagick::quantizeImages
	Imagick::queryFontMetrics
	Imagick::queryFonts
	Imagick::queryFormats
	Imagick::radialBlurImage
	Imagick::raiseImage
	Imagick::randomThresholdImage
	Imagick::readImage
	Imagick::readImageBlob
	Imagick::readImageFile
	Imagick::reduceNoiseImage
	Imagick::removeImage
	Imagick::removeImageProfile
	Imagick::render
	Imagick::resampleImage
	Imagick::resizeImage
	Imagick::rollImage
	Imagick::rotateImage
	Imagick::roundCorners
	Imagick::sampleImage
	Imagick::scaleImage
	Imagick::separateImageChannel
	Imagick::sepiaToneImage
	Imagick::setBackgroundColor
	Imagick::setCompression
	Imagick::setCompressionQuality
	Imagick::setFilename
	Imagick::setFirstIterator
	Imagick::setFormat
	Imagick::setImage
	Imagick::setImageBackgroundColor
	Imagick::setImageBias
	Imagick::setImageBluePrimary
	Imagick::setImageBorderColor
	Imagick::setImageChannelDepth
	Imagick::setImageColormapColor
	Imagick::setImageColorspace
	Imagick::setImageCompose
	Imagick::setImageCompression
	Imagick::setImageDelay
	Imagick::setImageDepth
	Imagick::setImageDispose
	Imagick::setImageExtent
	Imagick::setImageFilename
	Imagick::setImageFormat
	Imagick::setImageGamma
	Imagick::setImageGreenPrimary
	Imagick::setImageIndex
	Imagick::setImageInterlaceScheme
	Imagick::setImageInterpolateMethod
	Imagick::setImageIterations
	Imagick::setImageMatte
	Imagick::setImageMatteColor
	Imagick::setImageOpacity
	Imagick::setImageOrientation
	Imagick::setImagePage
	Imagick::setImageProfile
	Imagick::setImageProperty
	Imagick::setImageRedPrimary
	Imagick::setImageRenderingIntent
	Imagick::setImageResolution
	Imagick::setImageScene
	Imagick::setImageTicksPerSecond
	Imagick::setImageType
	Imagick::setImageUnits
	Imagick::setImageVirtualPixelMethod
	Imagick::setImageWhitePoint
	Imagick::setInterlaceScheme
	Imagick::setIteratorIndex
	Imagick::setLastIterator
	Imagick::setOption
	Imagick::setPage
	Imagick::setResolution
	Imagick::setResourceLimit
	Imagick::setSamplingFactors
	Imagick::setSize
	Imagick::setSizeOffset
	Imagick::setType
	Imagick::shadeImage
	Imagick::shadowImage
	Imagick::sharpenImage
	Imagick::shaveImage
	Imagick::shearImage
	Imagick::sigmoidalContrastImage
	Imagick::sketchImage
	Imagick::solarizeImage
	Imagick::spliceImage
	Imagick::spreadImage
	Imagick::steganoImage
	Imagick::stereoImage
	Imagick::stripImage
	Imagick::swirlImage
	Imagick::textureImage
	Imagick::thresholdImage
	Imagick::thumbnailImage
	Imagick::tintImage
	Imagick::transformImage
	Imagick::transverseImage
	Imagick::trimImage
	Imagick::uniqueImageColors
	Imagick::unsharpMaskImage
	Imagick::valid
	Imagick::vignetteImage
	Imagick::waveImage
	Imagick::whiteThresholdImage
	Imagick::writeImage
	Imagick::writeImages

	The ImagickDraw class
	Class synopsis
	ImagickDraw::affine
	ImagickDraw::annotation
	ImagickDraw::arc
	ImagickDraw::bezier
	ImagickDraw::circle
	ImagickDraw::clear
	ImagickDraw::clone
	ImagickDraw::color
	ImagickDraw::comment
	ImagickDraw::composite
	ImagickDraw::__construct
	ImagickDraw::destroy
	ImagickDraw::ellipse
	ImagickDraw::getClipPath
	ImagickDraw::getClipRule
	ImagickDraw::getClipUnits
	ImagickDraw::getFillColor
	ImagickDraw::getFillOpacity
	ImagickDraw::getFillRule
	ImagickDraw::getFont
	ImagickDraw::getFontFamily
	ImagickDraw::getFontSize
	ImagickDraw::getFontStyle
	ImagickDraw::getFontWeight
	ImagickDraw::getGravity
	ImagickDraw::getStrokeAntialias
	ImagickDraw::getStrokeColor
	ImagickDraw::getStrokeDashArray
	ImagickDraw::getStrokeDashOffset
	ImagickDraw::getStrokeLineCap
	ImagickDraw::getStrokeLineJoin
	ImagickDraw::getStrokeMiterLimit
	ImagickDraw::getStrokeOpacity
	ImagickDraw::getStrokeWidth
	ImagickDraw::getTextAlignment
	ImagickDraw::getTextAntialias
	ImagickDraw::getTextDecoration
	ImagickDraw::getTextEncoding
	ImagickDraw::getTextUnderColor
	ImagickDraw::getVectorGraphics
	ImagickDraw::line
	ImagickDraw::matte
	ImagickDraw::pathClose
	ImagickDraw::pathCurveToAbsolute
	ImagickDraw::pathCurveToQuadraticBezierAbsolute
	ImagickDraw::pathCurveToQuadraticBezierRelative
	ImagickDraw::pathCurveToQuadraticBezierSmoothAbsolute
	ImagickDraw::pathCurveToQuadraticBezierSmoothRelative
	ImagickDraw::pathCurveToRelative
	ImagickDraw::pathCurveToSmoothAbsolute
	ImagickDraw::pathCurveToSmoothRelative
	ImagickDraw::pathEllipticArcAbsolute
	ImagickDraw::pathEllipticArcRelative
	ImagickDraw::pathFinish
	ImagickDraw::pathLineToAbsolute
	ImagickDraw::pathLineToHorizontalAbsolute
	ImagickDraw::pathLineToHorizontalRelative
	ImagickDraw::pathLineToRelative
	ImagickDraw::pathLineToVerticalAbsolute
	ImagickDraw::pathLineToVerticalRelative
	ImagickDraw::pathMoveToAbsolute
	ImagickDraw::pathMoveToRelative
	ImagickDraw::pathStart
	ImagickDraw::point
	ImagickDraw::polygon
	ImagickDraw::polyline
	ImagickDraw::pop
	ImagickDraw::popClipPath
	ImagickDraw::popDefs
	ImagickDraw::popPattern
	ImagickDraw::push
	ImagickDraw::pushClipPath
	ImagickDraw::pushDefs
	ImagickDraw::pushPattern
	ImagickDraw::rectangle
	ImagickDraw::render
	ImagickDraw::rotate
	ImagickDraw::roundRectangle
	ImagickDraw::scale
	ImagickDraw::setClipPath
	ImagickDraw::setClipRule
	ImagickDraw::setClipUnits
	ImagickDraw::setFillAlpha
	ImagickDraw::setFillColor
	ImagickDraw::setFillOpacity
	ImagickDraw::setFillPatternURL
	ImagickDraw::setFillRule
	ImagickDraw::setFont
	ImagickDraw::setFontFamily
	ImagickDraw::setFontSize
	ImagickDraw::setFontStretch
	ImagickDraw::setFontStyle
	ImagickDraw::setFontWeight
	ImagickDraw::setGravity
	ImagickDraw::setStrokeAlpha
	ImagickDraw::setStrokeAntialias
	ImagickDraw::setStrokeColor
	ImagickDraw::setStrokeDashArray
	ImagickDraw::setStrokeDashOffset
	ImagickDraw::setStrokeLineCap
	ImagickDraw::setStrokeLineJoin
	ImagickDraw::setStrokeMiterLimit
	ImagickDraw::setStrokeOpacity
	ImagickDraw::setStrokePatternURL
	ImagickDraw::setStrokeWidth
	ImagickDraw::setTextAlignment
	ImagickDraw::setTextAntialias
	ImagickDraw::setTextDecoration
	ImagickDraw::setTextEncoding
	ImagickDraw::setTextUnderColor
	ImagickDraw::setVectorGraphics
	ImagickDraw::setViewbox
	ImagickDraw::skewX
	ImagickDraw::skewY
	ImagickDraw::translate

	The ImagickPixel class
	Class synopsis
	ImagickPixel::clear
	ImagickPixel::__construct
	ImagickPixel::destroy
	ImagickPixel::getColor
	ImagickPixel::getColorAsString
	ImagickPixel::getColorCount
	ImagickPixel::getColorValue
	ImagickPixel::getHSL
	ImagickPixel::isSimilar
	ImagickPixel::setColor
	ImagickPixel::setColorValue
	ImagickPixel::setHSL

	The ImagickPixelIterator class
	Class synopsis
	ImagickPixelIterator::clear
	ImagickPixelIterator::__construct
	ImagickPixelIterator::destroy
	ImagickPixelIterator::getCurrentIteratorRow
	ImagickPixelIterator::getIteratorRow
	ImagickPixelIterator::getNextIteratorRow
	ImagickPixelIterator::getPreviousIteratorRow
	ImagickPixelIterator::newPixelIterator
	ImagickPixelIterator::newPixelRegionIterator
	ImagickPixelIterator::resetIterator
	ImagickPixelIterator::setIteratorFirstRow
	ImagickPixelIterator::setIteratorLastRow
	ImagickPixelIterator::setIteratorRow
	ImagickPixelIterator::syncIterator

	Mail Related Extensions
	Cyrus
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Cyrus Functions
	cyrus_authenticate
	cyrus_bind
	cyrus_close
	cyrus_connect
	cyrus_query
	cyrus_unbind

	IMAP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	IMAP Functions
	imap_8bit
	imap_alerts
	imap_append
	imap_base64
	imap_binary
	imap_body
	imap_bodystruct
	imap_check
	imap_clearflag_full
	imap_close
	imap_createmailbox
	imap_delete
	imap_deletemailbox
	imap_errors
	imap_expunge
	imap_fetch_overview
	imap_fetchbody
	imap_fetchheader
	imap_fetchstructure
	imap_get_quota
	imap_get_quotaroot
	imap_getacl
	imap_getmailboxes
	imap_getsubscribed
	imap_header
	imap_headerinfo
	imap_headers
	imap_last_error
	imap_list
	imap_listmailbox
	imap_listscan
	imap_listsubscribed
	imap_lsub
	imap_mail_compose
	imap_mail_copy
	imap_mail_move
	imap_mail
	imap_mailboxmsginfo
	imap_mime_header_decode
	imap_msgno
	imap_num_msg
	imap_num_recent
	imap_open
	imap_ping
	imap_qprint
	imap_renamemailbox
	imap_reopen
	imap_rfc822_parse_adrlist
	imap_rfc822_parse_headers
	imap_rfc822_write_address
	imap_savebody
	imap_scanmailbox
	imap_search
	imap_set_quota
	imap_setacl
	imap_setflag_full
	imap_sort
	imap_status
	imap_subscribe
	imap_thread
	imap_timeout
	imap_uid
	imap_undelete
	imap_unsubscribe
	imap_utf7_decode
	imap_utf7_encode
	imap_utf8

	Mail
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Mail Functions
	ezmlm_hash
	mail

	Mailparse
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Mailparse Functions
	mailparse_determine_best_xfer_encoding
	mailparse_msg_create
	mailparse_msg_extract_part_file
	mailparse_msg_extract_part
	mailparse_msg_extract_whole_part_file
	mailparse_msg_free
	mailparse_msg_get_part_data
	mailparse_msg_get_part
	mailparse_msg_get_structure
	mailparse_msg_parse_file
	mailparse_msg_parse
	mailparse_rfc822_parse_addresses
	mailparse_stream_encode
	mailparse_uudecode_all

	vpopmail
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	vpopmail Functions
	vpopmail_add_alias_domain_ex
	vpopmail_add_alias_domain
	vpopmail_add_domain_ex
	vpopmail_add_domain
	vpopmail_add_user
	vpopmail_alias_add
	vpopmail_alias_del_domain
	vpopmail_alias_del
	vpopmail_alias_get_all
	vpopmail_alias_get
	vpopmail_auth_user
	vpopmail_del_domain_ex
	vpopmail_del_domain
	vpopmail_del_user
	vpopmail_error
	vpopmail_passwd
	vpopmail_set_user_quota

	Mathematical Extensions
	BC Math
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	BC Math Functions
	bcadd
	bccomp
	bcdiv
	bcmod
	bcmul
	bcpow
	bcpowmod
	bcscale
	bcsqrt
	bcsub

	GMP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	GMP Functions
	See Also
	gmp_abs
	gmp_add
	gmp_and
	gmp_clrbit
	gmp_cmp
	gmp_com
	gmp_div_q
	gmp_div_qr
	gmp_div_r
	gmp_div
	gmp_divexact
	gmp_fact
	gmp_gcd
	gmp_gcdext
	gmp_hamdist
	gmp_init
	gmp_intval
	gmp_invert
	gmp_jacobi
	gmp_legendre
	gmp_mod
	gmp_mul
	gmp_neg
	gmp_nextprime
	gmp_or
	gmp_perfect_square
	gmp_popcount
	gmp_pow
	gmp_powm
	gmp_prob_prime
	gmp_random
	gmp_scan0
	gmp_scan1
	gmp_setbit
	gmp_sign
	gmp_sqrt
	gmp_sqrtrem
	gmp_strval
	gmp_sub
	gmp_testbit
	gmp_xor

	Math
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Math Functions
	abs
	acos
	acosh
	asin
	asinh
	atan2
	atan
	atanh
	base_convert
	bindec
	ceil
	cos
	cosh
	decbin
	dechex
	decoct
	deg2rad
	exp
	expm1
	floor
	fmod
	getrandmax
	hexdec
	hypot
	is_finite
	is_infinite
	is_nan
	lcg_value
	log10
	log1p
	log
	max
	min
	mt_getrandmax
	mt_rand
	mt_srand
	octdec
	pi
	pow
	rad2deg
	rand
	round
	sin
	sinh
	sqrt
	srand
	tan
	tanh

	Statistics
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Statistic Functions
	stats_absolute_deviation
	stats_cdf_beta
	stats_cdf_binomial
	stats_cdf_cauchy
	stats_cdf_chisquare
	stats_cdf_exponential
	stats_cdf_f
	stats_cdf_gamma
	stats_cdf_laplace
	stats_cdf_logistic
	stats_cdf_negative_binomial
	stats_cdf_noncentral_chisquare
	stats_cdf_noncentral_f
	stats_cdf_poisson
	stats_cdf_t
	stats_cdf_uniform
	stats_cdf_weibull
	stats_covariance
	stats_den_uniform
	stats_dens_beta
	stats_dens_cauchy
	stats_dens_chisquare
	stats_dens_exponential
	stats_dens_f
	stats_dens_gamma
	stats_dens_laplace
	stats_dens_logistic
	stats_dens_negative_binomial
	stats_dens_normal
	stats_dens_pmf_binomial
	stats_dens_pmf_hypergeometric
	stats_dens_pmf_poisson
	stats_dens_t
	stats_dens_weibull
	stats_harmonic_mean
	stats_kurtosis
	stats_rand_gen_beta
	stats_rand_gen_chisquare
	stats_rand_gen_exponential
	stats_rand_gen_f
	stats_rand_gen_funiform
	stats_rand_gen_gamma
	stats_rand_gen_ibinomial_negative
	stats_rand_gen_ibinomial
	stats_rand_gen_int
	stats_rand_gen_ipoisson
	stats_rand_gen_iuniform
	stats_rand_gen_noncenral_chisquare
	stats_rand_gen_noncentral_f
	stats_rand_gen_noncentral_t
	stats_rand_gen_normal
	stats_rand_gen_t
	stats_rand_get_seeds
	stats_rand_phrase_to_seeds
	stats_rand_ranf
	stats_rand_setall
	stats_skew
	stats_standard_deviation
	stats_stat_binomial_coef
	stats_stat_correlation
	stats_stat_gennch
	stats_stat_independent_t
	stats_stat_innerproduct
	stats_stat_noncentral_t
	stats_stat_paired_t
	stats_stat_percentile
	stats_stat_powersum
	stats_variance

	Non-Text MIME Output
	FDF
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	FDF Functions
	fdf_add_doc_javascript
	fdf_add_template
	fdf_close
	fdf_create
	fdf_enum_values
	fdf_errno
	fdf_error
	fdf_get_ap
	fdf_get_attachment
	fdf_get_encoding
	fdf_get_file
	fdf_get_flags
	fdf_get_opt
	fdf_get_status
	fdf_get_value
	fdf_get_version
	fdf_header
	fdf_next_field_name
	fdf_open_string
	fdf_open
	fdf_remove_item
	fdf_save_string
	fdf_save
	fdf_set_ap
	fdf_set_encoding
	fdf_set_file
	fdf_set_flags
	fdf_set_javascript_action
	fdf_set_on_import_javascript
	fdf_set_opt
	fdf_set_status
	fdf_set_submit_form_action
	fdf_set_target_frame
	fdf_set_value
	fdf_set_version

	GnuPG
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Clearsign text

	GnuPG Functions
	gnupg_adddecryptkey
	gnupg_addencryptkey
	gnupg_addsignkey
	gnupg_cleardecryptkeys
	gnupg_clearencryptkeys
	gnupg_clearsignkeys
	gnupg_decrypt
	gnupg_decryptverify
	gnupg_encrypt
	gnupg_encryptsign
	gnupg_export
	gnupg_geterror
	gnupg_getprotocol
	gnupg_import
	gnupg_init
	gnupg_keyinfo
	gnupg_setarmor
	gnupg_seterrormode
	gnupg_setsignmode
	gnupg_sign
	gnupg_verify

	haru
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic PECL/haru example

	Builtin Fonts And Encodings
	Builtin Fonts
	Builtin Encodings

	HaruException
	Introduction
	HaruException

	HaruDoc
	Introduction
	Class synopsis
	Predefined Constants
	HaruDoc::addPage
	HaruDoc::addPageLabel
	HaruDoc::__construct
	HaruDoc::createOutline
	HaruDoc::getCurrentEncoder
	HaruDoc::getCurrentPage
	HaruDoc::getEncoder
	HaruDoc::getFont
	HaruDoc::getInfoAttr
	HaruDoc::getPageLayout
	HaruDoc::getPageMode
	HaruDoc::getStreamSize
	HaruDoc::insertPage
	HaruDoc::loadJPEG
	HaruDoc::loadPNG
	HaruDoc::loadRaw
	HaruDoc::loadTTC
	HaruDoc::loadTTF
	HaruDoc::loadType1
	HaruDoc::output
	HaruDoc::readFromStream
	HaruDoc::resetError
	HaruDoc::resetStream
	HaruDoc::save
	HaruDoc::saveToStream
	HaruDoc::setCompressionMode
	HaruDoc::setCurrentEncoder
	HaruDoc::setEncryptionMode
	HaruDoc::setInfoAttr
	HaruDoc::setInfoDateAttr
	HaruDoc::setOpenAction
	HaruDoc::setPageLayout
	HaruDoc::setPageMode
	HaruDoc::setPagesConfiguration
	HaruDoc::setPassword
	HaruDoc::setPermission
	HaruDoc::useCNSEncodings
	HaruDoc::useCNSFonts
	HaruDoc::useCNTEncodings
	HaruDoc::useCNTFonts
	HaruDoc::useJPEncodings
	HaruDoc::useJPFonts
	HaruDoc::useKREncodings
	HaruDoc::useKRFonts

	HaruPage
	Introduction
	Class synopsis
	Predefined Constants
	HaruPage::arc
	HaruPage::beginText
	HaruPage::circle
	HaruPage::closePath
	HaruPage::concat
	HaruPage::createDestination
	HaruPage::createLinkAnnotation
	HaruPage::createTextAnnotation
	HaruPage::createURLAnnotation
	HaruPage::curveTo2
	HaruPage::curveTo3
	HaruPage::curveTo
	HaruPage::drawImage
	HaruPage::ellipse
	HaruPage::endPath
	HaruPage::endText
	HaruPage::eofill
	HaruPage::eoFillStroke
	HaruPage::fill
	HaruPage::fillStroke
	HaruPage::getCharSpace
	HaruPage::getCMYKFill
	HaruPage::getCMYKStroke
	HaruPage::getCurrentFont
	HaruPage::getCurrentFontSize
	HaruPage::getCurrentPos
	HaruPage::getCurrentTextPos
	HaruPage::getDash
	HaruPage::getFillingColorSpace
	HaruPage::getFlatness
	HaruPage::getGMode
	HaruPage::getGrayFill
	HaruPage::getGrayStroke
	HaruPage::getHeight
	HaruPage::getHorizontalScaling
	HaruPage::getLineCap
	HaruPage::getLineJoin
	HaruPage::getLineWidth
	HaruPage::getMiterLimit
	HaruPage::getRGBFill
	HaruPage::getRGBStroke
	HaruPage::getStrokingColorSpace
	HaruPage::getTextLeading
	HaruPage::getTextMatrix
	HaruPage::getTextRenderingMode
	HaruPage::getTextRise
	HaruPage::getTextWidth
	HaruPage::getTransMatrix
	HaruPage::getWidth
	HaruPage::getWordSpace
	HaruPage::lineTo
	HaruPage::measureText
	HaruPage::moveTextPos
	HaruPage::moveTo
	HaruPage::moveToNextLine
	HaruPage::rectangle
	HaruPage::setCharSpace
	HaruPage::setCMYKFill
	HaruPage::setCMYKStroke
	HaruPage::setDash
	HaruPage::setFlatness
	HaruPage::setFontAndSize
	HaruPage::setGrayFill
	HaruPage::setGrayStroke
	HaruPage::setHeight
	HaruPage::setHorizontalScaling
	HaruPage::setLineCap
	HaruPage::setLineJoin
	HaruPage::setLineWidth
	HaruPage::setMiterLimit
	HaruPage::setRGBFill
	HaruPage::setRGBStroke
	HaruPage::setRotate
	HaruPage::setSize
	HaruPage::setSlideShow
	HaruPage::setTextLeading
	HaruPage::setTextMatrix
	HaruPage::setTextRenderingMode
	HaruPage::setTextRise
	HaruPage::setWidth
	HaruPage::setWordSpace
	HaruPage::showText
	HaruPage::showTextNextLine
	HaruPage::stroke
	HaruPage::textOut
	HaruPage::textRect

	HaruFont
	Introduction
	Class synopsis
	HaruFont::getAscent
	HaruFont::getCapHeight
	HaruFont::getDescent
	HaruFont::getEncodingName
	HaruFont::getFontName
	HaruFont::getTextWidth
	HaruFont::getUnicodeWidth
	HaruFont::getXHeight
	HaruFont::measureText

	HaruImage
	Introduction
	Class synopsis
	HaruImage::getBitsPerComponent
	HaruImage::getColorSpace
	HaruImage::getHeight
	HaruImage::getSize
	HaruImage::getWidth
	HaruImage::setColorMask
	HaruImage::setMaskImage

	HaruEncoder
	Introduction
	Class synopsis
	Predefined Constants
	HaruEncoder::getByteType
	HaruEncoder::getType
	HaruEncoder::getUnicode
	HaruEncoder::getWritingMode

	HaruOutline
	Introduction
	Class synopsis
	HaruOutline::setDestination
	HaruOutline::setOpened

	HaruAnnotation
	Introduction
	Class synopsis
	Predefined Constants
	HaruAnnotation::setBorderStyle
	HaruAnnotation::setHighlightMode
	HaruAnnotation::setIcon
	HaruAnnotation::setOpened

	HaruDestination
	Introduction
	Class synopsis
	HaruDestination::setFit
	HaruDestination::setFitB
	HaruDestination::setFitBH
	HaruDestination::setFitBV
	HaruDestination::setFitH
	HaruDestination::setFitR
	HaruDestination::setFitV
	HaruDestination::setXYZ

	Ming
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	SWFAction Examples
	SWFSPrite basic examples

	Ming Functions
	ming_keypress
	ming_setcubicthreshold
	ming_setscale
	ming_setswfcompression
	ming_useconstants
	ming_useswfversion

	SWFAction
	Introduction
	Class synopsis
	SWFAction->__construct()

	SWFBitmap
	Introduction
	Class synopsis
	SWFBitmap->__construct()
	SWFBitmap->getHeight()
	SWFBitmap->getWidth()

	SWFButton
	Introduction
	Class synopsis
	SWFButton->addAction()
	SWFButton->addASound()
	SWFButton->addShape()
	SWFButton->__construct()
	SWFButton->setAction()
	SWFButton->setDown()
	SWFButton->setHit()
	SWFButton->setMenu()
	SWFButton->setOver()
	SWFButton->setUp()

	SWFDisplayItem
	Introduction
	Class synopsis
	SWFDisplayItem->addAction()
	SWFDisplayItem->addColor()
	SWFDisplayItem->endMask()
	SWFDisplayItem->getRot()
	SWFDisplayItem->getX()
	SWFDisplayItem->getXScale()
	SWFDisplayItem->getXSkew()
	SWFDisplayItem->getY()
	SWFDisplayItem->getYScale()
	SWFDisplayItem->getYSkew()
	SWFDisplayItem->move()
	SWFDisplayItem->moveTo()
	SWFDisplayItem->multColor()
	SWFDisplayItem->remove()
	SWFDisplayItem->rotate()
	SWFDisplayItem->rotateTo()
	SWFDisplayItem->scale()
	SWFDisplayItem->scaleTo()
	SWFDisplayItem->setDepth()
	SWFDisplayItem->setMaskLevel()
	SWFDisplayItem->setMatrix()
	SWFDisplayItem->setName()
	SWFDisplayItem->setRatio()
	SWFDisplayItem->skewX()
	SWFDisplayItem->skewXTo()
	SWFDisplayItem->skewY()
	SWFDisplayItem->skewYTo()

	SWFFill
	Introduction
	Class synopsis
	SWFFill->moveTo()
	SWFFill->rotateTo()
	SWFFill->scaleTo()
	SWFFill->skewXTo()
	SWFFill->skewYTo()

	SWFFont
	Introduction
	Class synopsis
	SWFFont->__construct()
	SWFFont->getAscent()
	SWFFont->getDescent()
	SWFFont->getLeading()
	SWFFont->getShape()
	SWFFont->getUTF8Width()
	SWFFont->getWidth()

	SWFFontChar
	Introduction
	Class synopsis
	SWFFontChar->addChars()
	SWFFontChar->addUTF8Chars()

	SWFGradient
	Introduction
	Class synopsis
	SWFGradient->addEntry()
	SWFGradient->__construct()

	SWFMorph
	Introduction
	Class synopsis
	SWFMorph->__construct()
	SWFMorph->getShape1()
	SWFMorph->getShape2()

	SWFMovie
	Introduction
	Class synopsis
	SWFMovie->add()
	SWFMovie->addExport()
	SWFMovie->addFont()
	SWFMovie->__construct()
	SWFMovie->importChar()
	SWFMovie->importFont()
	SWFMovie->labelFrame()
	SWFMovie->nextFrame()
	SWFMovie->output()
	SWFMovie->remove()
	SWFMovie->save()
	SWFMovie->saveToFile()
	SWFMovie->setbackground()
	SWFMovie->setDimension()
	SWFMovie->setFrames()
	SWFMovie->setRate()
	SWFMovie->startSound()
	SWFMovie->stopSound()
	SWFMovie->streamMP3()
	SWFMovie->writeExports()

	SWFPrebuiltClip
	Introduction
	Class synopsis
	SWFPrebuiltClip->__construct()

	SWFShape
	Introduction
	Class synopsis
	SWFShape->addFill()
	SWFShape->__construct()
	SWFShape->drawArc()
	SWFShape->drawCircle()
	SWFShape->drawCubic()
	SWFShape->drawCubicTo()
	SWFShape->drawCurve()
	SWFShape->drawCurveTo()
	SWFShape->drawGlyph()
	SWFShape->drawLine()
	SWFShape->drawLineTo()
	SWFShape->movePen()
	SWFShape->movePenTo()
	SWFShape->setLeftFill()
	SWFShape->setLine()
	SWFShape->setRightFill()

	SWFSound
	Introduction
	Class synopsis
	SWFSound

	SWFSoundInstance
	Introduction
	Class synopsis
	SWFSoundInstance->loopCount()
	SWFSoundInstance->loopInPoint()
	SWFSoundInstance->loopOutPoint()
	SWFSoundInstance->noMultiple()

	SWFSprite
	Introduction
	Class synopsis
	SWFSprite->add()
	SWFSprite->__construct()
	SWFSprite->labelFrame()
	SWFSprite->nextFrame()
	SWFSprite->remove()
	SWFSprite->setFrames()
	SWFSprite->startSound()
	SWFSprite->stopSound()

	SWFText
	Introduction
	Class synopsis
	SWFText->addString()
	SWFText->addUTF8String()
	SWFText->__construct()
	SWFText->getAscent()
	SWFText->getDescent()
	SWFText->getLeading()
	SWFText->getUTF8Width()
	SWFText->getWidth()
	SWFText->moveTo()
	SWFText->setColor()
	SWFText->setFont()
	SWFText->setHeight()
	SWFText->setSpacing()

	SWFTextField
	Introduction
	Class synopsis
	SWFTextField->addChars()
	SWFTextField->addString()
	SWFTextField->align()
	SWFTextField->__construct()
	SWFTextField->setBounds()
	SWFTextField->setColor()
	SWFTextField->setFont()
	SWFTextField->setHeight()
	SWFTextField->setIndentation()
	SWFTextField->setLeftMargin()
	SWFTextField->setLineSpacing()
	SWFTextField->setMargins()
	SWFTextField->setName()
	SWFTextField->setPadding()
	SWFTextField->setRightMargin()

	SWFVideoStream
	Introduction
	Class synopsis
	SWFVideoStream->__construct()
	SWFVideoStream->getNumFrames()
	SWFVideoStream->setDimension()

	PDF
	Introduction
	Installing/Configuring
	Requirements
	Issues with older versions of PDFlib
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic Usage Examples

	PDF Functions
	PDF_activate_item
	PDF_add_annotation
	PDF_add_bookmark
	PDF_add_launchlink
	PDF_add_locallink
	PDF_add_nameddest
	PDF_add_note
	PDF_add_outline
	PDF_add_pdflink
	PDF_add_table_cell
	PDF_add_textflow
	PDF_add_thumbnail
	PDF_add_weblink
	PDF_arc
	PDF_arcn
	PDF_attach_file
	PDF_begin_document
	PDF_begin_font
	PDF_begin_glyph
	PDF_begin_item
	PDF_begin_layer
	PDF_begin_page_ext
	PDF_begin_page
	PDF_begin_pattern
	PDF_begin_template_ext
	PDF_begin_template
	PDF_circle
	PDF_clip
	PDF_close_image
	PDF_close_pdi_page
	PDF_close_pdi
	PDF_close
	PDF_closepath_fill_stroke
	PDF_closepath_stroke
	PDF_closepath
	PDF_concat
	PDF_continue_text
	PDF_create_3dview
	PDF_create_action
	PDF_create_annotation
	PDF_create_bookmark
	PDF_create_field
	PDF_create_fieldgroup
	PDF_create_gstate
	PDF_create_pvf
	PDF_create_textflow
	PDF_curveto
	PDF_define_layer
	PDF_delete_pvf
	PDF_delete_table
	PDF_delete_textflow
	PDF_delete
	PDF_encoding_set_char
	PDF_end_document
	PDF_end_font
	PDF_end_glyph
	PDF_end_item
	PDF_end_layer
	PDF_end_page_ext
	PDF_end_page
	PDF_end_pattern
	PDF_end_template
	PDF_endpath
	PDF_fill_imageblock
	PDF_fill_pdfblock
	PDF_fill_stroke
	PDF_fill_textblock
	PDF_fill
	PDF_findfont
	PDF_fit_image
	PDF_fit_pdi_page
	PDF_fit_table
	PDF_fit_textflow
	PDF_fit_textline
	PDF_get_apiname
	PDF_get_buffer
	PDF_get_errmsg
	PDF_get_errnum
	PDF_get_font
	PDF_get_fontname
	PDF_get_fontsize
	PDF_get_image_height
	PDF_get_image_width
	PDF_get_majorversion
	PDF_get_minorversion
	PDF_get_parameter
	PDF_get_pdi_parameter
	PDF_get_pdi_value
	PDF_get_value
	PDF_info_font
	PDF_info_matchbox
	PDF_info_table
	PDF_info_textflow
	PDF_info_textline
	PDF_initgraphics
	PDF_lineto
	PDF_load_3ddata
	PDF_load_font
	PDF_load_iccprofile
	PDF_load_image
	PDF_makespotcolor
	PDF_moveto
	PDF_new
	PDF_open_ccitt
	PDF_open_file
	PDF_open_gif
	PDF_open_image_file
	PDF_open_image
	PDF_open_jpeg
	PDF_open_memory_image
	PDF_open_pdi_page
	PDF_open_pdi
	PDF_open_tiff
	PDF_pcos_get_number
	PDF_pcos_get_stream
	PDF_pcos_get_string
	PDF_place_image
	PDF_place_pdi_page
	PDF_process_pdi
	PDF_rect
	PDF_restore
	PDF_resume_page
	PDF_rotate
	PDF_save
	PDF_scale
	PDF_set_border_color
	PDF_set_border_dash
	PDF_set_border_style
	PDF_set_char_spacing
	PDF_set_duration
	PDF_set_gstate
	PDF_set_horiz_scaling
	PDF_set_info_author
	PDF_set_info_creator
	PDF_set_info_keywords
	PDF_set_info_subject
	PDF_set_info_title
	PDF_set_info
	PDF_set_layer_dependency
	PDF_set_leading
	PDF_set_parameter
	PDF_set_text_matrix
	PDF_set_text_pos
	PDF_set_text_rendering
	PDF_set_text_rise
	PDF_set_value
	PDF_set_word_spacing
	PDF_setcolor
	PDF_setdash
	PDF_setdashpattern
	PDF_setflat
	PDF_setfont
	PDF_setgray_fill
	PDF_setgray_stroke
	PDF_setgray
	PDF_setlinecap
	PDF_setlinejoin
	PDF_setlinewidth
	PDF_setmatrix
	PDF_setmiterlimit
	PDF_setpolydash
	PDF_setrgbcolor_fill
	PDF_setrgbcolor_stroke
	PDF_setrgbcolor
	PDF_shading_pattern
	PDF_shading
	PDF_shfill
	PDF_show_boxed
	PDF_show_xy
	PDF_show
	PDF_skew
	PDF_stringwidth
	PDF_stroke
	PDF_suspend_page
	PDF_translate
	PDF_utf16_to_utf8
	PDF_utf32_to_utf16
	PDF_utf8_to_utf16

	PS
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	PS Functions
	Contact Information
	ps_add_bookmark
	ps_add_launchlink
	ps_add_locallink
	ps_add_note
	ps_add_pdflink
	ps_add_weblink
	ps_arc
	ps_arcn
	ps_begin_page
	ps_begin_pattern
	ps_begin_template
	ps_circle
	ps_clip
	ps_close_image
	ps_close
	ps_closepath_stroke
	ps_closepath
	ps_continue_text
	ps_curveto
	ps_delete
	ps_end_page
	ps_end_pattern
	ps_end_template
	ps_fill_stroke
	ps_fill
	ps_findfont
	ps_get_buffer
	ps_get_parameter
	ps_get_value
	ps_hyphenate
	ps_include_file
	ps_lineto
	ps_makespotcolor
	ps_moveto
	ps_new
	ps_open_file
	ps_open_image_file
	ps_open_image
	ps_open_memory_image
	ps_place_image
	ps_rect
	ps_restore
	ps_rotate
	ps_save
	ps_scale
	ps_set_border_color
	ps_set_border_dash
	ps_set_border_style
	ps_set_info
	ps_set_parameter
	ps_set_text_pos
	ps_set_value
	ps_setcolor
	ps_setdash
	ps_setflat
	ps_setfont
	ps_setgray
	ps_setlinecap
	ps_setlinejoin
	ps_setlinewidth
	ps_setmiterlimit
	ps_setoverprintmode
	ps_setpolydash
	ps_shading_pattern
	ps_shading
	ps_shfill
	ps_show_boxed
	ps_show_xy2
	ps_show_xy
	ps_show2
	ps_show
	ps_string_geometry
	ps_stringwidth
	ps_stroke
	ps_symbol_name
	ps_symbol_width
	ps_symbol
	ps_translate

	RPM Reader
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic usage

	RPM Reader Functions
	rpm_close
	rpm_get_tag
	rpm_is_valid
	rpm_open
	rpm_version

	SWF
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic Usage

	SWF Functions
	swf_actiongeturl
	swf_actiongotoframe
	swf_actiongotolabel
	swf_actionnextframe
	swf_actionplay
	swf_actionprevframe
	swf_actionsettarget
	swf_actionstop
	swf_actiontogglequality
	swf_actionwaitforframe
	swf_addbuttonrecord
	swf_addcolor
	swf_closefile
	swf_definebitmap
	swf_definefont
	swf_defineline
	swf_definepoly
	swf_definerect
	swf_definetext
	swf_endbutton
	swf_enddoaction
	swf_endshape
	swf_endsymbol
	swf_fontsize
	swf_fontslant
	swf_fonttracking
	swf_getbitmapinfo
	swf_getfontinfo
	swf_getframe
	swf_labelframe
	swf_lookat
	swf_modifyobject
	swf_mulcolor
	swf_nextid
	swf_oncondition
	swf_openfile
	swf_ortho2
	swf_ortho
	swf_perspective
	swf_placeobject
	swf_polarview
	swf_popmatrix
	swf_posround
	swf_pushmatrix
	swf_removeobject
	swf_rotate
	swf_scale
	swf_setfont
	swf_setframe
	swf_shapearc
	swf_shapecurveto3
	swf_shapecurveto
	swf_shapefillbitmapclip
	swf_shapefillbitmaptile
	swf_shapefilloff
	swf_shapefillsolid
	swf_shapelinesolid
	swf_shapelineto
	swf_shapemoveto
	swf_showframe
	swf_startbutton
	swf_startdoaction
	swf_startshape
	swf_startsymbol
	swf_textwidth
	swf_translate
	swf_viewport

	Swish
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic usage

	Swish Functions
	Swish::__construct
	Swish->getMetaList
	Swish->getPropertyList
	Swish->prepare
	Swish->query
	SwishResult->getMetaList
	SwishResult->stem
	SwishResults->getParsedWords
	SwishResults->getRemovedStopwords
	SwishResults->nextResult
	SwishResults->seekResult
	SwishSearch->execute
	SwishSearch->resetLimit
	SwishSearch->setLimit
	SwishSearch->setPhraseDelimiter
	SwishSearch->setSort
	SwishSearch->setStructure

	Process Control Extensions
	Program execution
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Program execution Functions
	Notes
	See Also
	escapeshellarg
	escapeshellcmd
	exec
	passthru
	proc_close
	proc_get_status
	proc_nice
	proc_open
	proc_terminate
	shell_exec
	system

	Expect
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Expect Usage Examples

	Expect Functions
	expect_expectl
	expect_popen

	PCNTL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Process Control Example

	PCNTL Functions
	pcntl_alarm
	pcntl_exec
	pcntl_fork
	pcntl_getpriority
	pcntl_setpriority
	pcntl_signal
	pcntl_wait
	pcntl_waitpid
	pcntl_wexitstatus
	pcntl_wifexited
	pcntl_wifsignaled
	pcntl_wifstopped
	pcntl_wstopsig
	pcntl_wtermsig

	POSIX
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	POSIX Functions
	posix_access
	posix_ctermid
	posix_get_last_error
	posix_getcwd
	posix_getegid
	posix_geteuid
	posix_getgid
	posix_getgrgid
	posix_getgrnam
	posix_getgroups
	posix_getlogin
	posix_getpgid
	posix_getpgrp
	posix_getpid
	posix_getppid
	posix_getpwnam
	posix_getpwuid
	posix_getrlimit
	posix_getsid
	posix_getuid
	posix_initgroups
	posix_isatty
	posix_kill
	posix_mkfifo
	posix_mknod
	posix_setegid
	posix_seteuid
	posix_setgid
	posix_setpgid
	posix_setsid
	posix_setuid
	posix_strerror
	posix_times
	posix_ttyname
	posix_uname

	Semaphore
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Semaphore Functions
	ftok
	msg_get_queue
	msg_queue_exists
	msg_receive
	msg_remove_queue
	msg_send
	msg_set_queue
	msg_stat_queue
	sem_acquire
	sem_get
	sem_release
	sem_remove
	shm_attach
	shm_detach
	shm_get_var
	shm_put_var
	shm_remove_var
	shm_remove

	Shared Memory
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Shared Memory Operations Overview

	Shared Memory Functions
	shmop_close
	shmop_delete
	shmop_open
	shmop_read
	shmop_size
	shmop_write

	Other Basic Extensions
	GeoIP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	GeoIP Functions
	geoip_country_code_by_name
	geoip_country_code3_by_name
	geoip_country_name_by_name
	geoip_database_info
	geoip_db_avail
	geoip_db_filename
	geoip_db_get_all_info
	geoip_id_by_name
	geoip_isp_by_name
	geoip_org_by_name
	geoip_record_by_name
	geoip_region_by_name

	JSON
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	JSON Functions
	json_decode
	json_encode

	Misc.
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Misc. Functions
	connection_aborted
	connection_status
	connection_timeout
	constant
	define
	defined
	die
	eval
	exit
	get_browser
	__halt_compiler
	highlight_file
	highlight_string
	ignore_user_abort
	pack
	php_check_syntax
	php_strip_whitespace
	show_source
	sleep
	sys_getloadavg
	time_nanosleep
	time_sleep_until
	uniqid
	unpack
	usleep

	Parsekit
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Parsekit Functions
	parsekit_compile_file
	parsekit_compile_string
	parsekit_func_arginfo

	SPL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Datastructures
	SPL Functions
	class_implements
	class_parents
	iterator_count
	iterator_to_array
	spl_autoload_call
	spl_autoload_extensions
	spl_autoload_functions
	spl_autoload_register
	spl_autoload_unregister
	spl_autoload
	spl_classes
	spl_object_hash

	ArrayIterator
	Introduction
	Class synopsis
	ArrayIterator::current
	ArrayIterator::key
	ArrayIterator::next
	ArrayIterator::rewind
	ArrayIterator::seek
	ArrayIterator::valid

	ArrayObject
	Introduction
	Class synopsis
	ArrayObject::append
	ArrayObject::__construct
	ArrayObject::count
	ArrayObject::getIterator
	ArrayObject::offsetExists
	ArrayObject::offsetGet
	ArrayObject::offsetSet
	ArrayObject::offsetUnset

	CachingIterator
	Introduction
	Class synopsis
	CachingIterator::hasNext
	CachingIterator::next
	CachingIterator::rewind
	CachingIterator::__toString
	CachingIterator::valid

	RecursiveCachingIterator
	Introduction
	Class synopsis
	RecursiveCachingIterator::getChildren
	RecursiveCachingIterator::hasChildren

	DirectoryIterator
	Introduction
	Class synopsis
	DirectoryIterator::__construct
	DirectoryIterator::current
	DirectoryIterator::getATime
	DirectoryIterator::getCTime
	DirectoryIterator::getFilename
	DirectoryIterator::getGroup
	DirectoryIterator::getInode
	DirectoryIterator::getMTime
	DirectoryIterator::getOwner
	DirectoryIterator::getPath
	DirectoryIterator::getPathname
	DirectoryIterator::getPerms
	DirectoryIterator::getSize
	DirectoryIterator::getType
	DirectoryIterator::isDir
	DirectoryIterator::isDot
	DirectoryIterator::isExecutable
	DirectoryIterator::isFile
	DirectoryIterator::isLink
	DirectoryIterator::isReadable
	DirectoryIterator::isWritable
	DirectoryIterator::key
	DirectoryIterator::next
	DirectoryIterator::rewind
	DirectoryIterator::valid

	FilterIterator
	Introduction
	Class synopsis
	FilterIterator::current
	FilterIterator::getInnerIterator
	FilterIterator::key
	FilterIterator::next
	FilterIterator::rewind
	FilterIterator::valid

	LimitIterator
	Introduction
	Class synopsis
	LimitIterator::getPosition
	LimitIterator::next
	LimitIterator::rewind
	LimitIterator::seek
	LimitIterator::valid

	ParentIterator
	Introduction
	Class synopsis
	ParentIterator::getChildren
	ParentIterator::hasChildren
	ParentIterator::next
	ParentIterator::rewind

	RecursiveDirectoryIterator
	Introduction
	Class synopsis
	RecursiveDirectoryIterator::getChildren
	RecursiveDirectoryIterator::hasChildren
	RecursiveDirectoryIterator::key
	RecursiveDirectoryIterator::next
	RecursiveDirectoryIterator::rewind

	RecursiveIteratorIterator
	Introduction
	Class synopsis
	RecursiveIteratorIterator::current
	RecursiveIteratorIterator::getDepth
	RecursiveIteratorIterator::getSubIterator
	RecursiveIteratorIterator::key
	RecursiveIteratorIterator::next
	RecursiveIteratorIterator::rewind
	RecursiveIteratorIterator::valid

	SimpleXMLIterator
	Introduction
	Class synopsis
	SimpleXMLIterator::current
	SimpleXMLIterator::getChildren
	SimpleXMLIterator::hasChildren
	SimpleXMLIterator::key
	SimpleXMLIterator::next
	SimpleXMLIterator::rewind
	SimpleXMLIterator::valid

	SplDoublyLinkedList
	Introduction
	Class synopsis
	SplDoublyLinkedList::bottom
	SplDoublyLinkedList::__construct
	SplDoublyLinkedList::count
	SplDoublyLinkedList::current
	SplDoublyLinkedList::getIteratorMode
	SplDoublyLinkedList::isEmpty
	SplDoublyLinkedList::key
	SplDoublyLinkedList::next
	SplDoublyLinkedList::offsetExists
	SplDoublyLinkedList::offsetGet
	SplDoublyLinkedList::offsetSet
	SplDoublyLinkedList::offsetUnset
	SplDoublyLinkedList::pop
	SplDoublyLinkedList::push
	SplDoublyLinkedList::rewind
	SplDoublyLinkedList::setIteratorMode
	SplDoublyLinkedList::shift
	SplDoublyLinkedList::top
	SplDoublyLinkedList::unshift
	SplDoublyLinkedList::valid

	SplStack
	Introduction
	Class synopsis
	SplStack::__construct
	SplStack::setIteratorMode

	SplQueue
	Introduction
	Class synopsis
	SplQueue::__construct
	SplQueue::dequeue
	SplQueue::enqueue
	SplQueue::setIteratorMode

	SplHeap
	Introduction
	Class synopsis
	SplHeap::compare
	SplHeap::__construct
	SplHeap::count
	SplHeap::current
	SplHeap::extract
	SplHeap::insert
	SplHeap::isEmpty
	SplHeap::key
	SplHeap::next
	SplHeap::recoverFromCorruption
	SplHeap::rewind
	SplHeap::top
	SplHeap::valid

	SplMaxHeap
	Introduction
	Class synopsis
	SplMaxHeap::compare

	SplMinHeap
	Introduction
	Class synopsis
	SplMinHeap::compare

	SplPriorityQueue
	Introduction
	Class synopsis
	SplPriorityQueue::compare
	SplPriorityQueue::__construct
	SplPriorityQueue::count
	SplPriorityQueue::current
	SplPriorityQueue::extract
	SplPriorityQueue::insert
	SplPriorityQueue::isEmpty
	SplPriorityQueue::key
	SplPriorityQueue::next
	SplPriorityQueue::recoverFromCorruption
	SplPriorityQueue::rewind
	SplPriorityQueue::setExtractFlags
	SplPriorityQueue::top
	SplPriorityQueue::valid

	Streams
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Stream Classes

	Predefined Constants
	Stream Filters
	Stream Contexts
	Stream Errors
	Examples
	Stream Functions
	stream_bucket_append
	stream_bucket_make_writeable
	stream_bucket_new
	stream_bucket_prepend
	stream_context_create
	stream_context_get_default
	stream_context_get_options
	stream_context_set_option
	stream_context_set_params
	stream_copy_to_stream
	stream_encoding
	stream_filter_append
	stream_filter_prepend
	stream_filter_register
	stream_filter_remove
	stream_get_contents
	stream_get_filters
	stream_get_line
	stream_get_meta_data
	stream_get_transports
	stream_get_wrappers
	stream_notification_callback
	stream_register_wrapper
	stream_resolve_include_path
	stream_select
	stream_set_blocking
	stream_set_timeout
	stream_set_write_buffer
	stream_socket_accept
	stream_socket_client
	stream_socket_enable_crypto
	stream_socket_get_name
	stream_socket_pair
	stream_socket_recvfrom
	stream_socket_sendto
	stream_socket_server
	stream_socket_shutdown
	stream_wrapper_register
	stream_wrapper_restore
	stream_wrapper_unregister

	Tidy
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Examples

	Tidy Functions
	Predefined Classes
	tidyNode
	Methods
	Properties
	ob_tidyhandler
	tidy_access_count
	tidy_clean_repair
	tidy_config_count
	tidy::__construct
	tidy_diagnose
	tidy_error_count
	tidy_get_body
	tidy_get_config
	tidy_get_error_buffer
	tidy_get_head
	tidy_get_html_ver
	tidy_get_html
	tidy_get_opt_doc
	tidy_get_output
	tidy_get_release
	tidy_get_root
	tidy_get_status
	tidy_getopt
	tidy_is_xhtml
	tidy_is_xml
	tidy_load_config
	tidy_node->get_attr
	tidy_node->get_nodes
	tidy_node->next
	tidy_node->prev
	tidy_parse_file
	tidy_parse_string
	tidy_repair_file
	tidy_repair_string
	tidy_reset_config
	tidy_save_config
	tidy_set_encoding
	tidy_setopt
	tidy_warning_count
	tidyNode->hasChildren
	tidyNode->hasSiblings
	tidyNode->isAsp
	tidyNode->isComment
	tidyNode->isHtml
	tidyNode->isJste
	tidyNode->isPhp
	tidyNode->isText
	tidyNode::getParent

	Tokenizer
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Tokenizer Functions
	token_get_all
	token_name

	URLs
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	URL Functions
	base64_decode
	base64_encode
	get_headers
	get_meta_tags
	http_build_query
	parse_url
	rawurldecode
	rawurlencode
	urldecode
	urlencode

	Other Services
	cURL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Using PHP's cURL module to fetch the example.com homepage

	cURL Functions
	curl_close
	curl_copy_handle
	curl_errno
	curl_error
	curl_exec
	curl_getinfo
	curl_init
	curl_multi_add_handle
	curl_multi_close
	curl_multi_exec
	curl_multi_getcontent
	curl_multi_info_read
	curl_multi_init
	curl_multi_remove_handle
	curl_multi_select
	curl_setopt_array
	curl_setopt
	curl_version

	FAM
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	FAM Functions
	fam_cancel_monitor
	fam_close
	fam_monitor_collection
	fam_monitor_directory
	fam_monitor_file
	fam_next_event
	fam_open
	fam_pending
	fam_resume_monitor
	fam_suspend_monitor

	FTP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	FTP example

	FTP Functions
	ftp_alloc
	ftp_cdup
	ftp_chdir
	ftp_chmod
	ftp_close
	ftp_connect
	ftp_delete
	ftp_exec
	ftp_fget
	ftp_fput
	ftp_get_option
	ftp_get
	ftp_login
	ftp_mdtm
	ftp_mkdir
	ftp_nb_continue
	ftp_nb_fget
	ftp_nb_fput
	ftp_nb_get
	ftp_nb_put
	ftp_nlist
	ftp_pasv
	ftp_put
	ftp_pwd
	ftp_quit
	ftp_raw
	ftp_rawlist
	ftp_rename
	ftp_rmdir
	ftp_set_option
	ftp_site
	ftp_size
	ftp_ssl_connect
	ftp_systype

	Hyperwave
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Integration with Apache
	Hyperwave Functions
	Todo
	hw_Array2Objrec
	hw_changeobject
	hw_Children
	hw_ChildrenObj
	hw_Close
	hw_Connect
	hw_connection_info
	hw_cp
	hw_Deleteobject
	hw_DocByAnchor
	hw_DocByAnchorObj
	hw_Document_Attributes
	hw_Document_BodyTag
	hw_Document_Content
	hw_Document_SetContent
	hw_Document_Size
	hw_dummy
	hw_EditText
	hw_Error
	hw_ErrorMsg
	hw_Free_Document
	hw_GetAnchors
	hw_GetAnchorsObj
	hw_GetAndLock
	hw_GetChildColl
	hw_GetChildCollObj
	hw_GetChildDocColl
	hw_GetChildDocCollObj
	hw_GetObject
	hw_GetObjectByQuery
	hw_GetObjectByQueryColl
	hw_GetObjectByQueryCollObj
	hw_GetObjectByQueryObj
	hw_GetParents
	hw_GetParentsObj
	hw_getrellink
	hw_GetRemote
	hw_getremotechildren
	hw_GetSrcByDestObj
	hw_GetText
	hw_getusername
	hw_Identify
	hw_InCollections
	hw_Info
	hw_InsColl
	hw_InsDoc
	hw_insertanchors
	hw_InsertDocument
	hw_InsertObject
	hw_mapid
	hw_Modifyobject
	hw_mv
	hw_New_Document
	hw_objrec2array
	hw_Output_Document
	hw_pConnect
	hw_PipeDocument
	hw_Root
	hw_setlinkroot
	hw_stat
	hw_Unlock
	hw_Who

	Hyperwave API
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Hyperwave API Functions
	Integration with Apache
	Classes
	hw_api_attribute->key
	hw_api_attribute->langdepvalue
	hw_api_attribute->value
	hw_api_attribute->values
	hw_api_attribute
	hw_api->checkin
	hw_api->checkout
	hw_api->children
	hw_api_content->mimetype
	hw_api_content->read
	hw_api->content
	hw_api->copy
	hw_api->dbstat
	hw_api->dcstat
	hw_api->dstanchors
	hw_api->dstofsrcanchor
	hw_api_error->count
	hw_api_error->reason
	hw_api->find
	hw_api->ftstat
	hwapi_hgcsp
	hw_api->hwstat
	hw_api->identify
	hw_api->info
	hw_api->insert
	hw_api->insertanchor
	hw_api->insertcollection
	hw_api->insertdocument
	hw_api->link
	hw_api->lock
	hw_api->move
	hw_api_content
	hw_api_object->assign
	hw_api_object->attreditable
	hw_api_object->count
	hw_api_object->insert
	hw_api_object
	hw_api_object->remove
	hw_api_object->title
	hw_api_object->value
	hw_api->object
	hw_api->objectbyanchor
	hw_api->parents
	hw_api_reason->description
	hw_api_reason->type
	hw_api->remove
	hw_api->replace
	hw_api->setcommittedversion
	hw_api->srcanchors
	hw_api->srcsofdst
	hw_api->unlock
	hw_api->user
	hw_api->userlist

	HTTP
	Introduction
	Installing/Configuring
	Requirements
	Installation requirements on Windows
	Installation requirements on other platforms
	Installing the HTTP extension
	Installation

	Runtime Configuration
	Resource Types

	Predefined Constants
	Request Options
	The HttpDeflateStream class
	Class synopsis
	Class Members
	Predefined Constants
	HttpDeflateStream::__construct
	HttpDeflateStream::factory
	HttpDeflateStream::finish
	HttpDeflateStream::flush
	HttpDeflateStream::update

	The HttpInflateStream class
	Class synopsis
	Class Members
	Constants
	HttpInflateStream::__construct
	HttpInflateStream::factory
	HttpInflateStream::finish
	HttpInflateStream::flush
	HttpInflateStream::update

	The HttpMessage class
	Class synopsis
	Class Members
	Properties
	Predefined Constants
	HttpMessage::addHeaders
	HttpMessage::__construct
	HttpMessage::detach
	HttpMessage::factory
	HttpMessage::fromEnv
	HttpMessage::fromString
	HttpMessage::getBody
	HttpMessage::getHeader
	HttpMessage::getHeaders
	HttpMessage::getHttpVersion
	HttpMessage::getParentMessage
	HttpMessage::getRequestMethod
	HttpMessage::getRequestUrl
	HttpMessage::getResponseCode
	HttpMessage::getResponseStatus
	HttpMessage::getType
	HttpMessage::guessContentType
	HttpMessage::prepend
	HttpMessage::reverse
	HttpMessage::send
	HttpMessage::setBody
	HttpMessage::setHeaders
	HttpMessage::setHttpVersion
	HttpMessage::setRequestMethod
	HttpMessage::setRequestUrl
	HttpMessage::setResponseCode
	HttpMessage::setResponseStatus
	HttpMessage::setType
	HttpMessage::toMessageTypeObject
	HttpMessage::toString

	The HttpQueryString class
	Class synopsis
	Class Members
	Properties
	Predefined Constants
	HttpQueryString::__construct
	HttpQueryString::get
	HttpQueryString::mod
	HttpQueryString::set
	HttpQueryString::singleton
	HttpQueryString::toArray
	HttpQueryString::toString
	HttpQueryString::xlate

	The HttpRequest
	Class synopsis
	Class Members
	Properties
	Predefined Constants
	HttpRequest::addCookies
	HttpRequest::addHeaders
	HttpRequest::addPostFields
	HttpRequest::addPostFile
	HttpRequest::addPutData
	HttpRequest::addQueryData
	HttpRequest::addRawPostData
	HttpRequest::addSslOptions
	HttpRequest::clearHistory
	HttpRequest::__construct
	HttpRequest::enableCookies
	HttpRequest::getContentType
	HttpRequest::getCookies
	HttpRequest::getHeaders
	HttpRequest::getHistory
	HttpRequest::getMethod
	HttpRequest::getOptions
	HttpRequest::getPostFields
	HttpRequest::getPostFiles
	HttpRequest::getPutData
	HttpRequest::getPutFile
	HttpRequest::getQueryData
	HttpRequest::getRawPostData
	HttpRequest::getRawRequestMessage
	HttpRequest::getRawResponseMessage
	HttpRequest::getRequestMessage
	HttpRequest::getResponseBody
	HttpRequest::getResponseCode
	HttpRequest::getResponseCookies
	HttpRequest::getResponseData
	HttpRequest::getResponseHeader
	HttpRequest::getResponseInfo
	HttpRequest::getResponseMessage
	HttpRequest::getResponseStatus
	HttpRequest::getSslOptions
	HttpRequest::getUrl
	HttpRequest::resetCookies
	HttpRequest::send
	HttpRequest::setContentType
	HttpRequest::setCookies
	HttpRequest::setHeaders
	HttpRequest::setMethod
	HttpRequest::setOptions
	HttpRequest::setPostFields
	HttpRequest::setPostFiles
	HttpRequest::setPutData
	HttpRequest::setPutFile
	HttpRequest::setQueryData
	HttpRequest::setRawPostData
	HttpRequest::setSslOptions
	HttpRequest::setUrl

	The HttpRequestPool class
	Class synopsis
	Class Members
	Properties
	Predefined Constants
	HttpRequestPool::attach
	HttpRequestPool::__construct
	HttpRequestPool::__destruct
	HttpRequestPool::detach
	HttpRequestPool::getAttachedRequests
	HttpRequestPool::getFinishedRequests
	HttpRequestPool::reset
	HttpRequestPool::send
	HttpRequestPool::socketPerform
	HttpRequestPool::socketSelect

	The HttpResponse
	Class synopsis
	Class Members
	Properties
	Predefined Constants
	HttpResponse::capture
	HttpResponse::getBufferSize
	HttpResponse::getCache
	HttpResponse::getCacheControl
	HttpResponse::getContentDisposition
	HttpResponse::getContentType
	HttpResponse::getData
	HttpResponse::getETag
	HttpResponse::getFile
	HttpResponse::getGzip
	HttpResponse::getHeader
	HttpResponse::getLastModified
	HttpResponse::getRequestBody
	HttpResponse::getRequestBodyStream
	HttpResponse::getRequestHeaders
	HttpResponse::getStream
	HttpResponse::getThrottleDelay
	HttpResponse::guessContentType
	HttpResponse::redirect
	HttpResponse::send
	HttpResponse::setBufferSize
	HttpResponse::setCache
	HttpResponse::setCacheControl
	HttpResponse::setContentDisposition
	HttpResponse::setContentType
	HttpResponse::setData
	HttpResponse::setETag
	HttpResponse::setFile
	HttpResponse::setGzip
	HttpResponse::setHeader
	HttpResponse::setLastModified
	HttpResponse::setStream
	HttpResponse::setThrottleDelay
	HttpResponse::status

	HTTP Functions
	Function groups
	http_cache_etag
	http_cache_last_modified
	http_chunked_decode
	http_deflate
	http_inflate
	http_build_cookie
	http_date
	http_get_request_body_stream
	http_get_request_body
	http_get_request_headers
	http_match_etag
	http_match_modified
	http_match_request_header
	http_support
	http_negotiate_charset
	http_negotiate_content_type
	http_negotiate_language
	ob_deflatehandler
	ob_etaghandler
	ob_inflatehandler
	http_parse_cookie
	http_parse_headers
	http_parse_message
	http_parse_params
	http_persistent_handles_clean
	http_persistent_handles_count
	http_persistent_handles_ident
	http_get
	http_head
	http_post_data
	http_post_fields
	http_put_data
	http_put_file
	http_put_stream
	http_request_body_encode
	http_request_method_exists
	http_request_method_name
	http_request_method_register
	http_request_method_unregister
	http_request
	http_redirect
	http_send_content_disposition
	http_send_content_type
	http_send_data
	http_send_file
	http_send_last_modified
	http_send_status
	http_send_stream
	http_throttle
	http_build_str
	http_build_url

	Java
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Java Servlet SAPI
	Examples
	Java Example

	Java Functions
	java_last_exception_clear
	java_last_exception_get

	LDAP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Using the PHP LDAP calls
	Examples
	LDAP search example

	LDAP Functions
	ldap_8859_to_t61
	ldap_add
	ldap_bind
	ldap_close
	ldap_compare
	ldap_connect
	ldap_count_entries
	ldap_delete
	ldap_dn2ufn
	ldap_err2str
	ldap_errno
	ldap_error
	ldap_explode_dn
	ldap_first_attribute
	ldap_first_entry
	ldap_first_reference
	ldap_free_result
	ldap_get_attributes
	ldap_get_dn
	ldap_get_entries
	ldap_get_option
	ldap_get_values_len
	ldap_get_values
	ldap_list
	ldap_mod_add
	ldap_mod_del
	ldap_mod_replace
	ldap_modify
	ldap_next_attribute
	ldap_next_entry
	ldap_next_reference
	ldap_parse_reference
	ldap_parse_result
	ldap_read
	ldap_rename
	ldap_sasl_bind
	ldap_search
	ldap_set_option
	ldap_set_rebind_proc
	ldap_sort
	ldap_start_tls
	ldap_t61_to_8859
	ldap_unbind

	Lotus Notes
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Lotus Notes Functions
	notes_body
	notes_copy_db
	notes_create_db
	notes_create_note
	notes_drop_db
	notes_find_note
	notes_header_info
	notes_list_msgs
	notes_mark_read
	notes_mark_unread
	notes_nav_create
	notes_search
	notes_unread
	notes_version

	Memcache
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	memcache extension overview example

	Memcache Functions
	Memcache::add
	Memcache::addServer
	Memcache::close
	Memcache::connect
	memcache_debug
	Memcache::decrement
	Memcache::delete
	Memcache::flush
	Memcache::get
	Memcache::getExtendedStats
	Memcache::getServerStatus
	Memcache::getStats
	Memcache::getVersion
	Memcache::increment
	Memcache::pconnect
	Memcache::replace
	Memcache::set
	Memcache::setCompressThreshold
	Memcache::setServerParams

	mnoGoSearch
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	mnoGoSearch Functions
	udm_add_search_limit
	udm_alloc_agent_array
	udm_alloc_agent
	udm_api_version
	udm_cat_list
	udm_cat_path
	udm_check_charset
	udm_check_stored
	udm_clear_search_limits
	udm_close_stored
	udm_crc32
	udm_errno
	udm_error
	udm_find
	udm_free_agent
	udm_free_ispell_data
	udm_free_res
	udm_get_doc_count
	udm_get_res_field
	udm_get_res_param
	udm_hash32
	udm_load_ispell_data
	udm_open_stored
	udm_set_agent_param

	mqseries
	Introduction
	Installing/Configuring
	Requirements
	Installation requirements on non windows platforms
	Installation requirements on Windows
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	mqseries Functions
	mqseries_back
	mqseries_begin
	mqseries_close
	mqseries_cmit
	mqseries_conn
	mqseries_connx
	mqseries_disc
	mqseries_get
	mqseries_inq
	mqseries_open
	mqseries_put1
	mqseries_put
	mqseries_set
	mqseries_strerror

	Gopher
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	

	Gopher Functions
	gopher_parsedir

	Network
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Network Functions
	checkdnsrr
	closelog
	define_syslog_variables
	dns_check_record
	dns_get_mx
	dns_get_record
	fsockopen
	gethostbyaddr
	gethostbyname
	gethostbynamel
	getmxrr
	getprotobyname
	getprotobynumber
	getservbyname
	getservbyport
	header
	headers_list
	headers_sent
	inet_ntop
	inet_pton
	ip2long
	long2ip
	openlog
	pfsockopen
	setcookie
	setrawcookie
	socket_get_status
	socket_set_blocking
	socket_set_timeout
	syslog

	SAM
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Linux installation steps
	Windows installation steps
	Additional steps for Visual Studio 2005

	Runtime Configuration
	Protocol support and mapping

	Resource Types

	Predefined Constants
	Examples
	Connections
	Messages
	Messaging operations
	Publish/Subscribe and suscriptions to topics
	Error handling

	SAM Functions
	Predefined Classes
	SAMConnection
	Constructor
	Methods
	Properties
	SAMMessage
	Constructor
	Properties
	SAMConnection->commit()
	SAMConnection->connect()
	SAMConnection->__construct()
	SAMConnection->disconnect()
	SAMConnection->errno
	SAMConnection->error
	SAMConnection->isConnected()
	SAMConnection->peek()
	SAMConnection->peekAll()
	SAMConnection->receive()
	SAMConnection->remove()
	SAMConnection->rollback()
	SAMConnection->send()
	SAMConnection::setDebug()
	SAMConnection->subscribe()
	SAMConnection->unsubscribe()
	SAMMessage->body
	SAMMessage->__construct()
	SAMMessage->header

	SNMP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SNMP Functions
	snmp_get_quick_print
	snmp_get_valueretrieval
	snmp_read_mib
	snmp_set_enum_print
	snmp_set_oid_numeric_print
	snmp_set_oid_output_format
	snmp_set_quick_print
	snmp_set_valueretrieval
	snmpget
	snmpgetnext
	snmprealwalk
	snmpset
	snmpwalk
	snmpwalkoid

	Sockets
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Socket Errors
	Socket Functions
	socket_accept
	socket_bind
	socket_clear_error
	socket_close
	socket_connect
	socket_create_listen
	socket_create_pair
	socket_create
	socket_get_option
	socket_getpeername
	socket_getsockname
	socket_last_error
	socket_listen
	socket_read
	socket_recv
	socket_recvfrom
	socket_select
	socket_send
	socket_sendto
	socket_set_block
	socket_set_nonblock
	socket_set_option
	socket_shutdown
	socket_strerror
	socket_write

	SSH2
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SSH2 Functions
	ssh2_auth_hostbased_file
	ssh2_auth_none
	ssh2_auth_password
	ssh2_auth_pubkey_file
	ssh2_connect
	ssh2_exec
	ssh2_fetch_stream
	ssh2_fingerprint
	ssh2_methods_negotiated
	ssh2_publickey_add
	ssh2_publickey_init
	ssh2_publickey_list
	ssh2_publickey_remove
	ssh2_scp_recv
	ssh2_scp_send
	ssh2_sftp_lstat
	ssh2_sftp_mkdir
	ssh2_sftp_readlink
	ssh2_sftp_realpath
	ssh2_sftp_rename
	ssh2_sftp_rmdir
	ssh2_sftp_stat
	ssh2_sftp_symlink
	ssh2_sftp_unlink
	ssh2_sftp
	ssh2_shell
	ssh2_tunnel

	SVN
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SVN Functions
	svn_add
	svn_auth_get_parameter
	svn_auth_set_parameter
	svn_cat
	svn_checkout
	svn_cleanup
	svn_client_version
	svn_commit
	svn_diff
	svn_fs_abort_txn
	svn_fs_apply_text
	svn_fs_begin_txn2
	svn_fs_change_node_prop
	svn_fs_check_path
	svn_fs_contents_changed
	svn_fs_copy
	svn_fs_delete
	svn_fs_dir_entries
	svn_fs_file_contents
	svn_fs_file_length
	svn_fs_is_dir
	svn_fs_is_file
	svn_fs_make_dir
	svn_fs_make_file
	svn_fs_node_created_rev
	svn_fs_node_prop
	svn_fs_props_changed
	svn_fs_revision_prop
	svn_fs_revision_root
	svn_fs_txn_root
	svn_fs_youngest_rev
	svn_import
	svn_log
	svn_ls
	svn_repos_create
	svn_repos_fs_begin_txn_for_commit
	svn_repos_fs_commit_txn
	svn_repos_fs
	svn_repos_hotcopy
	svn_repos_open
	svn_repos_recover
	svn_status
	svn_update

	TCP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	TCP Functions
	tcpwrap_check

	YAZ
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	YAZ Functions
	yaz_addinfo
	yaz_ccl_conf
	yaz_ccl_parse
	yaz_close
	yaz_connect
	yaz_database
	yaz_element
	yaz_errno
	yaz_error
	yaz_es_result
	yaz_es
	yaz_get_option
	yaz_hits
	yaz_itemorder
	yaz_present
	yaz_range
	yaz_record
	yaz_scan_result
	yaz_scan
	yaz_schema
	yaz_search
	yaz_set_option
	yaz_sort
	yaz_syntax
	yaz_wait

	YP/NIS
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	YP/NIS Functions
	yp_all
	yp_cat
	yp_err_string
	yp_errno
	yp_first
	yp_get_default_domain
	yp_master
	yp_match
	yp_next
	yp_order

	Server Specific Extensions
	Apache
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Apache Functions
	apache_child_terminate
	apache_get_modules
	apache_get_version
	apache_getenv
	apache_lookup_uri
	apache_note
	apache_request_headers
	apache_reset_timeout
	apache_response_headers
	apache_setenv
	ascii2ebcdic
	ebcdic2ascii
	getallheaders
	virtual

	IIS
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	IIS Functions
	iis_add_server
	iis_get_dir_security
	iis_get_script_map
	iis_get_server_by_comment
	iis_get_server_by_path
	iis_get_server_rights
	iis_get_service_state
	iis_remove_server
	iis_set_app_settings
	iis_set_dir_security
	iis_set_script_map
	iis_set_server_rights
	iis_start_server
	iis_start_service
	iis_stop_server
	iis_stop_service

	NSAPI
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	NSAPI Functions
	nsapi_request_headers
	nsapi_response_headers
	nsapi_virtual

	Session Extensions
	Msession
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Msession Functions
	msession_connect
	msession_count
	msession_create
	msession_destroy
	msession_disconnect
	msession_find
	msession_get_array
	msession_get_data
	msession_get
	msession_inc
	msession_list
	msession_listvar
	msession_lock
	msession_plugin
	msession_randstr
	msession_set_array
	msession_set_data
	msession_set
	msession_timeout
	msession_uniq
	msession_unlock

	Sessions
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Registering a variable with $_SESSION.
	Passing the Session ID
	Custom Session Handlers

	Sessions and security
	Session Functions
	session_cache_expire
	session_cache_limiter
	session_commit
	session_decode
	session_destroy
	session_encode
	session_get_cookie_params
	session_id
	session_is_registered
	session_module_name
	session_name
	session_regenerate_id
	session_register
	session_save_path
	session_set_cookie_params
	session_set_save_handler
	session_start
	session_unregister
	session_unset
	session_write_close

	Session PgSQL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Table definitions
	Predefined Constants
	Session PgSQL Functions
	session_pgsql_add_error
	session_pgsql_get_error
	session_pgsql_get_field
	session_pgsql_reset
	session_pgsql_set_field
	session_pgsql_status

	Text Processing
	BBCode
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	BBCode Functions
	bbcode_add_element
	bbcode_add_smiley
	bbcode_create
	bbcode_destroy
	bbcode_parse
	bbcode_set_arg_parser
	bbcode_set_flags

	PCRE
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	PCRE Patterns
	Describes possible modifiers in regex patterns
	Describes PCRE regex syntax
	Description
	Differences From Perl
	Regular Expression Details
	Introduction
	Meta-characters
	Backslash
	Unicode character properties
	Circumflex and dollar
	Full stop
	Square brackets
	Vertical bar
	Internal option setting
	Subpatterns
	Repetition
	Back references
	Assertions
	Once-only subpatterns
	Conditional subpatterns
	Comments
	Recursive patterns
	Performances

	PCRE Functions
	preg_grep
	preg_last_error
	preg_match_all
	preg_match
	preg_quote
	preg_replace_callback
	preg_replace
	preg_split

	POSIX Regex
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	POSIX Regex Functions
	ereg_replace
	ereg
	eregi_replace
	eregi
	split
	spliti
	sql_regcase

	Strings
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	String Functions
	addcslashes
	addslashes
	bin2hex
	chop
	chr
	chunk_split
	convert_cyr_string
	convert_uudecode
	convert_uuencode
	count_chars
	crc32
	crypt
	echo
	explode
	fprintf
	get_html_translation_table
	hebrev
	hebrevc
	html_entity_decode
	htmlentities
	htmlspecialchars_decode
	htmlspecialchars
	implode
	join
	lcfirst
	levenshtein
	localeconv
	ltrim
	md5_file
	md5
	metaphone
	money_format
	nl_langinfo
	nl2br
	number_format
	ord
	parse_str
	print
	printf
	quoted_printable_decode
	quotemeta
	rtrim
	setlocale
	sha1_file
	sha1
	similar_text
	soundex
	sprintf
	sscanf
	str_getcsv
	str_ireplace
	str_pad
	str_repeat
	str_replace
	str_rot13
	str_shuffle
	str_split
	str_word_count
	strcasecmp
	strchr
	strcmp
	strcoll
	strcspn
	strip_tags
	stripcslashes
	stripos
	stripslashes
	stristr
	strlen
	strnatcasecmp
	strnatcmp
	strncasecmp
	strncmp
	strpbrk
	strpos
	strrchr
	strrev
	strripos
	strrpos
	strspn
	strstr
	strtok
	strtolower
	strtoupper
	strtr
	substr_compare
	substr_count
	substr_replace
	substr
	trim
	ucfirst
	ucwords
	vfprintf
	vprintf
	vsprintf
	wordwrap

	Variable and Type Related Extensions
	Arrays
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Array Functions
	array_change_key_case
	array_chunk
	array_combine
	array_count_values
	array_diff_assoc
	array_diff_key
	array_diff_uassoc
	array_diff_ukey
	array_diff
	array_fill_keys
	array_fill
	array_filter
	array_flip
	array_intersect_assoc
	array_intersect_key
	array_intersect_uassoc
	array_intersect_ukey
	array_intersect
	array_key_exists
	array_keys
	array_map
	array_merge_recursive
	array_merge
	array_multisort
	array_pad
	array_pop
	array_product
	array_push
	array_rand
	array_reduce
	array_reverse
	array_search
	array_shift
	array_slice
	array_splice
	array_sum
	array_udiff_assoc
	array_udiff_uassoc
	array_udiff
	array_uintersect_assoc
	array_uintersect_uassoc
	array_uintersect
	array_unique
	array_unshift
	array_values
	array_walk_recursive
	array_walk
	array
	arsort
	asort
	compact
	count
	current
	each
	end
	extract
	in_array
	key
	krsort
	ksort
	list
	natcasesort
	natsort
	next
	pos
	prev
	range
	reset
	rsort
	shuffle
	sizeof
	sort
	uasort
	uksort
	usort

	Classes/Objects
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Classes/Object Functions
	call_user_method_array
	call_user_method
	class_exists
	get_class_methods
	get_class_vars
	get_class
	get_declared_classes
	get_declared_interfaces
	get_object_vars
	get_parent_class
	interface_exists
	is_a
	is_subclass_of
	method_exists
	property_exists

	Classkit
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Classkit Functions
	classkit_import
	classkit_method_add
	classkit_method_copy
	classkit_method_redefine
	classkit_method_remove
	classkit_method_rename

	Ctype
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Ctype Functions
	ctype_alnum
	ctype_alpha
	ctype_cntrl
	ctype_digit
	ctype_graph
	ctype_lower
	ctype_print
	ctype_punct
	ctype_space
	ctype_upper
	ctype_xdigit

	Filter
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Filter Functions
	filter_has_var
	filter_id
	filter_input_array
	filter_input
	filter_list
	filter_var_array
	filter_var

	Function Handling
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Function handling Functions
	call_user_func_array
	call_user_func
	create_function
	func_get_arg
	func_get_args
	func_num_args
	function_exists
	get_defined_functions
	register_shutdown_function
	register_tick_function
	unregister_tick_function

	Object Aggregation
	Introduction
	Examples
	Object Aggregation examples
	Examples

	Object Aggregation Functions
	aggregate_info
	aggregate_methods_by_list
	aggregate_methods_by_regexp
	aggregate_methods
	aggregate_properties_by_list
	aggregate_properties_by_regexp
	aggregate_properties
	aggregate
	aggregation_info
	deaggregate

	Variable handling
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Variable handling Functions
	debug_zval_dump
	doubleval
	empty
	floatval
	get_defined_vars
	get_resource_type
	gettype
	import_request_variables
	intval
	is_array
	is_binary
	is_bool
	is_buffer
	is_callable
	is_double
	is_float
	is_int
	is_integer
	is_long
	is_null
	is_numeric
	is_object
	is_real
	is_resource
	is_scalar
	is_string
	is_unicode
	isset
	print_r
	serialize
	settype
	strval
	unserialize
	unset
	var_dump
	var_export

	Web Services
	SOAP
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	SOAP Functions
	Predefined Classes
	SoapClient
	Constructor
	Methods
	SoapFault
	Constructor
	SoapHeader
	Constructor
	SoapParam
	Constructor
	SoapServer
	Constructor
	Methods
	SoapVar
	Constructor
	is_soap_fault
	SoapClient->__call()
	SoapClient->__construct()
	SoapClient->__doRequest()
	SoapClient->__getFunctions()
	SoapClient->__getLastRequest()
	SoapClient->__getLastRequestHeaders()
	SoapClient->__getLastResponse()
	SoapClient->__getLastResponseHeaders()
	SoapClient->__getTypes()
	SoapClient->__setCookie()
	SoapClient->__soapCall()
	SoapFault->__construct()
	SoapHeader->__construct()
	SoapParam->__construct()
	SoapServer->addFunction()
	SoapServer->__construct()
	SoapServer->fault()
	SoapServer->getFunctions()
	SoapServer->handle()
	SoapServer->setClass()
	SoapServer->setPersistence()
	SoapVar->__construct()
	use_soap_error_handler

	XML-RPC
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	XML-RPC Functions
	xmlrpc_decode_request
	xmlrpc_decode
	xmlrpc_encode_request
	xmlrpc_encode
	xmlrpc_get_type
	xmlrpc_is_fault
	xmlrpc_parse_method_descriptions
	xmlrpc_server_add_introspection_data
	xmlrpc_server_call_method
	xmlrpc_server_create
	xmlrpc_server_destroy
	xmlrpc_server_register_introspection_callback
	xmlrpc_server_register_method
	xmlrpc_set_type

	Windows Only Extensions
	.NET
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	.NET Functions
	dotnet_load

	COM
	Introduction
	Installing/Configuring
	
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Errors and error handling
	Examples
	For Each
	Arrays and Array-style COM properties

	COM Functions
	See Also
	COM
	DOTNET
	VARIANT
	com_addref
	com_create_guid
	com_event_sink
	com_get_active_object
	com_get
	com_invoke
	com_isenum
	com_load_typelib
	com_load
	com_message_pump
	com_print_typeinfo
	com_propget
	com_propput
	com_propset
	com_release
	com_set
	variant_abs
	variant_add
	variant_and
	variant_cast
	variant_cat
	variant_cmp
	variant_date_from_timestamp
	variant_date_to_timestamp
	variant_div
	variant_eqv
	variant_fix
	variant_get_type
	variant_idiv
	variant_imp
	variant_int
	variant_mod
	variant_mul
	variant_neg
	variant_not
	variant_or
	variant_pow
	variant_round
	variant_set_type
	variant_set
	variant_sub
	variant_xor

	Printer
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Printer Functions
	printer_abort
	printer_close
	printer_create_brush
	printer_create_dc
	printer_create_font
	printer_create_pen
	printer_delete_brush
	printer_delete_dc
	printer_delete_font
	printer_delete_pen
	printer_draw_bmp
	printer_draw_chord
	printer_draw_elipse
	printer_draw_line
	printer_draw_pie
	printer_draw_rectangle
	printer_draw_roundrect
	printer_draw_text
	printer_end_doc
	printer_end_page
	printer_get_option
	printer_list
	printer_logical_fontheight
	printer_open
	printer_select_brush
	printer_select_font
	printer_select_pen
	printer_set_option
	printer_start_doc
	printer_start_page
	printer_write

	W32api
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Get the uptime and display it in a message box

	W32api Functions
	w32api_deftype
	w32api_init_dtype
	w32api_invoke_function
	w32api_register_function
	w32api_set_call_method

	win32ps
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Statistics about the current PHP process

	win32ps Functions
	win32_ps_list_procs
	win32_ps_stat_mem
	win32_ps_stat_proc

	win32service
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Registering a PHP script to run as a service

	win32service Functions
	win32_create_service
	win32_delete_service
	win32_get_last_control_message
	win32_query_service_status
	win32_set_service_status
	win32_start_service_ctrl_dispatcher
	win32_start_service
	win32_stop_service

	XML Manipulation
	DOM
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	DOMAttr
	Introduction
	Class synopsis
	Properties
	DOMAttr::__construct
	DOMAttr::isId

	DOMCharacterData
	Introduction
	Class synopsis
	Properties
	DOMCharacterData::appendData
	DOMCharacterData::deleteData
	DOMCharacterData::insertData
	DOMCharacterData::replaceData
	DOMCharacterData::substringData

	DOMComment
	Introduction
	Class synopsis
	DOMComment::__construct

	DOMDocument
	Introduction
	Class synopsis
	Properties
	DOMDocument::__construct
	DOMDocument::createAttribute
	DOMDocument::createAttributeNS
	DOMDocument::createCDATASection
	DOMDocument::createComment
	DOMDocument::createDocumentFragment
	DOMDocument::createElement
	DOMDocument::createElementNS
	DOMDocument::createEntityReference
	DOMDocument::createProcessingInstruction
	DOMDocument::createTextNode
	DOMDocument::getElementById
	DOMDocument::getElementsByTagName
	DOMDocument::getElementsByTagNameNS
	DOMDocument::importNode
	DOMDocument::load
	DOMDocument::loadHTML
	DOMDocument::loadHTMLFile
	DOMDocument::loadXML
	DOMDocument::normalizeDocument
	DOMDocument::registerNodeClass
	DOMDocument::relaxNGValidate
	DOMDocument::relaxNGValidateSource
	DOMDocument::save
	DOMDocument::saveHTML
	DOMDocument::saveHTMLFile
	DOMDocument::saveXML
	DOMDocument::schemaValidate
	DOMDocument::schemaValidateSource
	DOMDocument::validate
	DOMDocument::xinclude

	DOMDocumentFragment
	Class synopsis
	DOMDocumentFragment::appendXML

	DOMDocumentType
	Introduction
	Class synopsis
	Properties

	DOMElement
	Class synopsis
	Properties
	DOMElement::__construct
	DOMElement::getAttribute
	DOMElement::getAttributeNode
	DOMElement::getAttributeNodeNS
	DOMElement::getAttributeNS
	DOMElement::getElementsByTagName
	DOMElement::getElementsByTagNameNS
	DOMElement::hasAttribute
	DOMElement::hasAttributeNS
	DOMElement::removeAttribute
	DOMElement::removeAttributeNode
	DOMElement::removeAttributeNS
	DOMElement::setAttribute
	DOMElement::setAttributeNode
	DOMElement::setAttributeNodeNS
	DOMElement::setAttributeNS
	DOMElement::setIdAttribute
	DOMElement::setIdAttributeNode
	DOMElement::setIdAttributeNS

	DOMEntity
	Introduction
	Class synopsis
	Properties

	DOMEntityReference
	Class synopsis
	DOMEntityReference::__construct

	DOMException
	Introduction
	Class synopsis
	Properties

	DOMImplementation
	Introduction
	Class synopsis
	DOMImplementation::__construct
	DOMImplementation::createDocument
	DOMImplementation::createDocumentType
	DOMImplementation::hasFeature

	DOMNamedNodeMap
	Class synopsis
	DOMNamedNodeMap::getNamedItem
	DOMNamedNodeMap::getNamedItemNS
	DOMNamedNodeMap::item

	DOMNode
	Class synopsis
	Properties
	DOMNode::appendChild
	DOMNode::cloneNode
	DOMNode::hasAttributes
	DOMNode::hasChildNodes
	DOMNode::insertBefore
	DOMNode::isDefaultNamespace
	DOMNode::isSameNode
	DOMNode::isSupported
	DOMNode::lookupNamespaceURI
	DOMNode::lookupPrefix
	DOMNode::normalize
	DOMNode::removeChild
	DOMNode::replaceChild

	DOMNodeList
	Class synopsis
	Properties
	DOMNodelist::item

	DOMNotation
	Class synopsis
	Properties

	DOMProcessingInstruction
	Class synopsis
	Properties
	DOMProcessingInstruction::__construct

	DOMText
	Class synopsis
	Properties
	DOMText::__construct
	DOMText::isWhitespaceInElementContent
	DOMText::splitText

	DOMXPath
	Class synopsis
	Properties
	DOMXPath::__construct
	DOMXPath::evaluate
	DOMXPath::query
	DOMXPath::registerNamespace

	DOM Functions
	dom_import_simplexml

	DOM XML
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	DOM XML Functions
	Deprecated functions
	Classes
	Examples
	DomAttribute->name
	DomAttribute->set_value
	DomAttribute->specified
	DomAttribute->value
	DomDocument->add_root
	DomDocument->create_attribute
	DomDocument->create_cdata_section
	DomDocument->create_comment
	DomDocument->create_element_ns
	DomDocument->create_element
	DomDocument->create_entity_reference
	DomDocument->create_processing_instruction
	DomDocument->create_text_node
	DomDocument->doctype
	DomDocument->document_element
	DomDocument->dump_file
	DomDocument->dump_mem
	DomDocument->get_element_by_id
	DomDocument->get_elements_by_tagname
	DomDocument->html_dump_mem
	DomDocument->xinclude
	DomDocumentType->entities()
	DomDocumentType->internal_subset()
	DomDocumentType->name()
	DomDocumentType->notations()
	DomDocumentType->public_id()
	DomDocumentType->system_id()
	DomElement->get_attribute_node()
	DomElement->get_attribute()
	DomElement->get_elements_by_tagname()
	DomElement->has_attribute()
	DomElement->remove_attribute()
	DomElement->set_attribute_node()
	DomElement->set_attribute()
	DomElement->tagname()
	DomNode->add_namespace
	DomNode->append_child
	DomNode->append_sibling
	DomNode->attributes
	DomNode->child_nodes
	DomNode->clone_node
	DomNode->dump_node
	DomNode->first_child
	DomNode->get_content
	DomNode->has_attributes
	DomNode->has_child_nodes
	DomNode->insert_before
	DomNode->is_blank_node
	DomNode->last_child
	DomNode->next_sibling
	DomNode->node_name
	DomNode->node_type
	DomNode->node_value
	DomNode->owner_document
	DomNode->parent_node
	DomNode->prefix
	DomNode->previous_sibling
	DomNode->remove_child
	DomNode->replace_child
	DomNode->replace_node
	DomNode->set_content
	DomNode->set_name
	DomNode->set_namespace
	DomNode->unlink_node
	DomProcessingInstruction->data
	DomProcessingInstruction->target
	DomXsltStylesheet->process()
	DomXsltStylesheet->result_dump_file()
	DomXsltStylesheet->result_dump_mem()
	domxml_new_doc
	domxml_open_file
	domxml_open_mem
	domxml_version
	domxml_xmltree
	domxml_xslt_stylesheet_doc
	domxml_xslt_stylesheet_file
	domxml_xslt_stylesheet
	domxml_xslt_version
	xpath_eval_expression
	xpath_eval
	xpath_new_context
	xpath_register_ns_auto
	xpath_register_ns
	xptr_eval
	xptr_new_context

	libxml
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	libxml Functions
	Predefined Classes
	LibXMLError
	Properties
	libxml_clear_errors
	libxml_get_errors
	libxml_get_last_error
	libxml_set_streams_context
	libxml_use_internal_errors

	qtdom
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	qtdom Functions
	qdom_error
	qdom_tree

	SCA
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	The structure of a Service Component
	Obtaining a proxy for another Service Component
	Calling another Service Component
	Locating and calling services from a script which is not an
 SCA Component
	Exposing a Service Component as a Web service
	Deploying an SCA component
	Obtaining the WSDL for an SCA component offering a Service as
 a Web service
	Understanding how the WSDL is generated
	Location attribute of the <service> element
	Document/literal wrapped WSDL and positional
 parameters

	Working with Data Structures
	How data structures are defined to SCA components
	Creating SDOs
	Creating an SDO to pass to a service
	Creating an SDO to return from a component

	Error handling
	Handling of Runtime exceptions
	Handling of Business exceptions

	SCA Functions
	Predefined Classes
	SCA
	Methods
	SCA_LocalProxy
	Methods
	SCA_SoapProxy
	Methods
	SCA_LocalProxy::createDataObject
	SCA_SoapProxy::createDataObject
	SCA::createDataObject
	SCA::getService

	SDO DAS XML
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	SDO DAS XML Functions
	Predefined Classes
	SDO_DAS_XML
	Methods
	SDO_DAS_XML_Document
	Methods
	SDO_DAS_XML_ParserException
	SDO_DAS_XML_FileException
	Limitations compared with SDO 2.0 specification
	SDO_DAS_XML_Document::getRootDataObject
	SDO_DAS_XML_Document::getRootElementName
	SDO_DAS_XML_Document::getRootElementURI
	SDO_DAS_XML_Document::setEncoding
	SDO_DAS_XML_Document::setXMLDeclaration
	SDO_DAS_XML_Document::setXMLVersion
	SDO_DAS_XML::addTypes
	SDO_DAS_XML::create
	SDO_DAS_XML::createDataObject
	SDO_DAS_XML::createDocument
	SDO_DAS_XML::loadFile
	SDO_DAS_XML::loadString
	SDO_DAS_XML::saveFile
	SDO_DAS_XML::saveString

	SimpleXML
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Include file example.php with XML string

	SimpleXML Functions
	SimpleXMLElement->addAttribute()
	SimpleXMLElement->addChild()
	SimpleXMLElement->asXML()
	SimpleXMLElement->attributes()
	SimpleXMLElement->children()
	SimpleXMLElement->__construct()
	SimpleXMLElement->getDocNamespaces()
	SimpleXMLElement->getName()
	SimpleXMLElement->getNamespaces()
	SimpleXMLElement->registerXPathNamespace()
	SimpleXMLElement->xpath()
	simplexml_import_dom
	simplexml_load_file
	simplexml_load_string

	WDDX
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Serializing a single value with WDDX

	WDDX Functions
	wddx_add_vars
	wddx_deserialize
	wddx_packet_end
	wddx_packet_start
	wddx_serialize_value
	wddx_serialize_vars
	wddx_unserialize

	XML Parser
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Event Handlers
	Case Folding
	Error Codes
	Character Encoding
	Examples
	XML Element Structure Example
	XML Tag Mapping Example
	XML External Entity Example

	XML Parser Functions
	utf8_decode
	utf8_encode
	xml_error_string
	xml_get_current_byte_index
	xml_get_current_column_number
	xml_get_current_line_number
	xml_get_error_code
	xml_parse_into_struct
	xml_parse
	xml_parser_create_ns
	xml_parser_create
	xml_parser_free
	xml_parser_get_option
	xml_parser_set_option
	xml_set_character_data_handler
	xml_set_default_handler
	xml_set_element_handler
	xml_set_end_namespace_decl_handler
	xml_set_external_entity_ref_handler
	xml_set_notation_decl_handler
	xml_set_object
	xml_set_processing_instruction_handler
	xml_set_start_namespace_decl_handler
	xml_set_unparsed_entity_decl_handler

	XMLReader
	Introduction
	Encoding

	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	XMLReader
	Introduction
	Class synopsis
	Properties
	Predefined Constants
	XMLReader Node Types
	XMLReader Parser Options
	XMLReader::close
	XMLReader::expand
	XMLReader::getAttribute
	XMLReader::getAttributeNo
	XMLReader::getAttributeNs
	XMLReader::getParserProperty
	XMLReader::isValid
	XMLReader::lookupNamespace
	XMLReader::moveToAttribute
	XMLReader::moveToAttributeNo
	XMLReader::moveToAttributeNs
	XMLReader::moveToElement
	XMLReader::moveToFirstAttribute
	XMLReader::moveToNextAttribute
	XMLReader::next
	XMLReader::open
	XMLReader::read
	XMLReader::setParserProperty
	XMLReader::setRelaxNGSchema
	XMLReader::setRelaxNGSchemaSource
	XMLReader::XML

	XMLWriter
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	XMLWriter Functions
	Predefined Classes
	XMLWriter
	Methods
	XMLWriter::endAttribute
	XMLWriter::endCData
	XMLWriter::endComment
	XMLWriter::endDocument
	XMLWriter::endDTDAttlist
	XMLWriter::endDTDElement
	XMLWriter::endDTDEntity
	XMLWriter::endDTD
	XMLWriter::endElement
	XMLWriter::endPI
	XMLWriter::flush
	XMLWriter::fullEndElement
	XMLWriter::openMemory
	XMLWriter::openURI
	XMLWriter::outputMemory
	XMLWriter::setIndentString
	XMLWriter::setIndent
	XMLWriter::startAttributeNS
	XMLWriter::startAttribute
	XMLWriter::startCData
	XMLWriter::startComment
	XMLWriter::startDocument
	XMLWriter::startDTDAttlist
	XMLWriter::startDTDElement
	XMLWriter::startDTDEntity
	XMLWriter::startDTD
	XMLWriter::startElementNS
	XMLWriter::startElement
	XMLWriter::startPI
	XMLWriter::text
	XMLWriter::writeAttributeNS
	XMLWriter::writeAttribute
	XMLWriter::writeCData
	XMLWriter::writeComment
	XMLWriter::writeDTDAttlist
	XMLWriter::writeDTDElement
	XMLWriter::writeDTDEntity
	XMLWriter::writeDTD
	XMLWriter::writeElementNS
	XMLWriter::writeElement
	XMLWriter::writePI
	XMLWriter::writeRaw

	XSL
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	collection.xml

	XSLTProcessor
	Introduction
	Class synopsis
	XSLTProcessor::__construct
	XSLTProcessor::getParameter
	XSLTProcessor::hasExsltSupport
	XSLTProcessor::importStylesheet
	XSLTProcessor::registerPHPFunctions
	XSLTProcessor::removeParameter
	XSLTProcessor::setParameter
	XSLTProcessor::transformToDoc
	XSLTProcessor::transformToURI
	XSLTProcessor::transformToXML

	XSLT
	Introduction
	Installing/Configuring
	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	XSLT Functions
	xslt_backend_info
	xslt_backend_name
	xslt_backend_version
	xslt_create
	xslt_errno
	xslt_error
	xslt_free
	xslt_getopt
	xslt_process
	xslt_set_base
	xslt_set_encoding
	xslt_set_error_handler
	xslt_set_log
	xslt_set_object
	xslt_set_sax_handler
	xslt_set_sax_handlers
	xslt_set_scheme_handler
	xslt_set_scheme_handlers
	xslt_setopt

	PHP at the Core: A Hacker's Guide to the Zend Engine
	Preface
	The "counter" Extension - A Continuing Example
	Installing/Configuring
	Introduction
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Basic interface
	Extended interface
	Objective interface

	Counter
	Introduction
	Class synopsis
	Counter::__construct
	Counter::getValue
	Counter::bumpValue
	Counter::resetValue
	Counter::getMeta
	Counter::getNamed
	Counter::setCounterClass

	Basic
	counter_get
	counter_bump
	counter_reset

	Extended
	counter_create
	counter_get_value
	counter_bump_value
	counter_reset_value
	counter_get_meta
	counter_get_named

	The PHP 5 build system
	Building PHP for extension development
	The ext_skel script
	Talking to the UNIX build system: config.m4
	A short introduction to autoconf syntax
	PHP_ARG_*: Giving users the option
	Processing the user's choices
	Handling the --with-example[=FILE] option
	Handling the --enable-example-debug option
	Handling the --with-example-extra=DIR option
	Telling the buildsystem what was decided
	The counter extension's config.m4 file

	Talking to the Windows build system: config.w32
	The counter extension's config.w32 file

	Extension structure
	Files which make up an extension
	Non-source files
	Basic constructs
	The zend_module structure
	Filling in the structure in a practical situation
	What's changed between 5.2 and 5.3?

	Extension globals
	Introduction to globals in a PHP extension
	Declaring module globals
	Accessing module globals

	Life cycle of an extension
	Testing an extension

	Memory management
	Working with variables
	Writing functions
	Working with classes and objects
	Working with resources
	Working with INI settings
	Working with streams
	PDO Driver How-To
	Prerequisites
	Preparation and Housekeeping
	Source directory layout
	Creating a skeleton
	Standard Includes
	Build Specific Headers
	PHP Headers
	PDO Interface Headers
	Driver Specific Headers
	Optional Headers

	Fleshing out your skeleton
	Major Structures and Attributes
	pdo_SKEL.c: PHP extension glue
	function entries
	Module entry
	Standard PHP Module Extension Functions
	PHP_MINIT_FUNCTION
	PHP_MSHUTDOWN_FUNCTION
	PHP_MINFO_FUNCTION
	SKEL_driver.c: Driver implementation
	pdo_SKEL_error
	pdo_SKEL_fetch_error_func
	SKEL_handle_closer
	SKEL_handle_preparer
	SKEL_handle_doer
	SKEL_handle_quoter
	SKEL_handle_begin
	SKEL_handle_commit
	SKEL_handle_rollback
	SKEL_handle_get_attribute
	SKEL_handle_set_attribute
	SKEL_handle_last_id
	SKEL_check_liveness
	SKEL_get_driver_methods
	SKEL_handle_factory
	Driver method table
	pdo_SKEL_driver
	SKEL_statement.c: Statement implementation
	SKEL_stmt_dtor
	SKEL_stmt_execute
	SKEL_stmt_fetch
	SKEL_stmt_param_hook
	SKEL_stmt_describe_col
	SKEL_stmt_get_col_data
	SKEL_stmt_set_attr
	SKEL_stmt_get_attr
	SKEL_stmt_get_col_meta
	Statement handling method table

	Building
	Testing
	Packaging and distribution
	Creating a package
	Releasing the package

	pdo_dbh_t definition
	pdo_stmt_t definition
	Constants
	Error handling

	Extension FAQs
	Zend Engine 2 API reference
	Zend Engine 1
	Old introduction
	Streams API for PHP Extension Authors
	Overview
	Streams Basics
	Streams as Resources
	Streams open options

	Zend API: Hacking the Core of PHP
	Introduction
	Overview
	What Is Zend? and What Is PHP?
	Extension Possibilities
	External Modules
	Built-in Modules
	The Zend Engine
	Source Layout
	Extension Conventions
	Macros
	Memory Management
	Directory and File Functions
	String Handling
	Complex Types
	PHP's Automatic Build System
	Creating Extensions
	Compiling Modules
	Using Extensions
	Troubleshooting
	Source Discussion
	Module Structure
	Header File Inclusions
	Declaring Exported Functions
	Declaration of the Zend Function Block
	Declaration of the Zend Module Block
	Creation of get_module
	Implementation of All Exported Functions
	Summary
	Accepting Arguments
	Determining the Number of Arguments
	Retrieving Arguments
	Old way of retrieving arguments (deprecated)
	Dealing with a Variable Number of Arguments/Optional Parameters
	Accessing Arguments
	Dealing with Arguments Passed by Reference
	Assuring Write Safety for Other Parameters
	Creating Variables
	Overview
	Longs (Integers)
	Doubles (Floats)
	Strings
	Booleans
	Arrays
	Objects
	Resources
	Macros for Automatic Global Variable Creation
	Creating Constants
	Duplicating Variable Contents: The Copy Constructor
	Returning Values
	Printing Information
	zend_printf
	zend_error
	Including Output in phpinfo
	Execution Information
	Startup and Shutdown Functions
	Calling User Functions
	Initialization File Support
	Where to Go from Here
	Reference: Some Configuration Macros
	config.m4
	API Macros

	TSRM API

	The future: PHP 6 and Zend Engine 3

	FAQ
	General Information
	Mailing lists
	Obtaining PHP
	Database issues
	Installation
	Build Problems
	Using PHP
	PHP and HTML
	PHP and COM
	PHP and other languages
	Migrating from PHP 4 to PHP 5
	Miscellaneous Questions

	Appendices
	History of PHP and related projects
	History of PHP
	PHP/FI
	PHP 3
	PHP 4
	PHP 5
	History of PHP related projects
	PEAR
	PHP Quality Assurance Initiative
	PHP-GTK

	Books about PHP
	Publications about PHP

	Migrating from PHP 5.1.x to PHP 5.2.x
	What has changed in PHP 5.2.x
	Backward Incompatible Changes
	New Error Messages
	Changes in PHP datetime
 support
	New Parameters
	New Functions
	New Methods
	Removed Extensions
	New Extensions
	New Classes
	New Global Constants
	New Class Constants
	New INI Configuration Directives
	Error Reporting
	Other Enhancements

	Migrating from PHP 5.0.x to PHP 5.1.x
	Key PHP 5.1.x features
	Changes in reference handling
	Overview
	Code that worked under PHP 4.3, but now fails
	Code that worked under PHP 4.3.x, but now throws an error
	Code that failed under PHP 4.3.x, but now works
	Code that should have worked under PHP 5.0.x
	Warnings that came and went

	Reading []
	Integer values in function parameters
	Class and object changes
	instanceof, is_a(),
 is_subclass_of() and catch
	Abstract private methods
	Access modifiers in interfaces
	Changes in inheritance rules
	Class constants

	Extensions
	Extensions that are gone from the PHP core
	Class constants in new PHP 5.1.x extensions

	Date/time support
	Changes in database support
	PDO overview
	Changes in MySQL support
	Changes in SQLite support

	Checking for E_STRICT

	Migrating from PHP 4 to PHP 5
	What has changed in PHP 5
	Backward Incompatible Changes
	CLI and CGI
	Migrating Configuration Files
	New Functions
	New Directives
	Databases
	New Object Model
	Error Reporting

	Debugging in PHP
	About debugging in PHP

	Configure options
	List of core configure options
	Configure Options in PHP
	Misc options
	PHP options
	SAPI options

	php.ini directives
	List of php.ini directives
	List of php.ini sections
	Description of core php.ini directives
	Httpd Options
	Language Options
	Resource Limits
	Performance Tuning
	Data Handling
	Paths and Directories
	File Uploads
	General SQL

	Extension Categorization
	Membership
	Core Extensions
	Bundled Extensions
	External Extensions
	PECL Extensions
	State
	Deprecated Extensions
	Experimental Extensions

	List of Function Aliases
	List of Reserved Words
	List of Keywords
	Predefined Classes
	Standard Defined Classes
	Predefined classes as of PHP 5

	Predefined Constants
	Core Predefined Constants
	Standard Predefined Constants

	List of Resource Types
	List of Supported Protocols/Wrappers
	Filesystem
	HTTP and HTTPS
	FTP and FTPS
	PHP input/output streams
	Compression Streams
	Data (RFC 2397)
	Glob
	Secure Shell 2
	Audio Streams
	Process Interaction Streams

	List of Available Filters
	String Filters
	Conversion Filters
	Compression Filters
	Encryption Filters

	List of Supported Socket Transports
	Internet Domain: TCP, UDP, SSL, and TLS
	Unix Domain: Unix and UDG

	PHP type comparison tables
	List of Parser Tokens
	Userland Naming Guide
	Global Namespace
	Rules
	Tips

	About the manual
	Formats
	About user notes
	How to read a function definition (prototype)
	PHP versions documented in this manual
	How to find more information about PHP
	How to help improve the documentation
	How we generate the formats
	Translations

	Open Publication License
	I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS
	II. COPYRIGHT
	III. SCOPE OF LICENSE
	IV. REQUIREMENTS ON MODIFIED WORKS
	V. GOOD-PRACTICE RECOMMENDATIONS
	VI. LICENSE OPTIONS

	Function Index

